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Abstract

Revealed preference techniques are used to test whether a data set is compatible with rational

behaviour. They are also incorporated as constraints in mechanism design to encourage

truthful behaviour. In auctions, revealed preference bidding constraints are very demanding.

We explain first how additively approximate rationality can be used to create relaxed revealed

preference constraints in an auction, and show how combinatorial methods can be used to

implement these relaxed constraints. Worst/best-case welfare guarantees that result from

the use of such mechanisms can be quantified via the minimum/maximum virtual valuation

function. We then go on to consider a combinatorial measure of approximate rationality,

and show that computing the degree of rationality is NP-hard, except in a 2-commodity

market. In showing that it is efficiently computable in 2-commodity markets, we introduce

a class of perfect graphs, which we believe to be new. When the market has at least three

commodities, we show that the problem is NP-complete by a reduction from 3-SAT. To

complete this reduction, we introduce the class of oriented-disk graphs.
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Abrégé

On utilise les techniques de la préférence révélée pour déterminer si une collection de données

peut être modélisée par les choix d’un consommateur rationnel. Ces techniques sont aussi

parfois mises en place pour encourager le comportement véridique. Chez les enchères, les

contraintes de demande à base de préférence révélée sont plutôt exigeantes. D’abord, nous

expliquons comment le comportement rationnel arithméthiquement approximatif peut être

utilisé pour créer une contrainte de demande moins exigeante, et produisons une méthode

combinatoire pour l’implémenter. De plus, les garanties minimales et maximales de bien-être

du consommateur peuvent être quantifiées en calculant les utilités virtuelles minimalement

et maximalement réalisables. Par la suite, nous considérons le comportement rationnel

combinatoirement approximatif, et déterminons que calculer le niveau d’approximation est

un problème NP-difficile, sauf lorsqu’il y a seulement deux items au marché. Pour démontrer

que le problème peut être résolu efficacement le cas échéant, nous introduisons une classe de

graphes parfaits, que l’on soupçonne être inconnu à date. Lorsqu’il-y-a au moins trois items

au marché, nous démontrons l’NP-complétude du problème en réduisant à partir de 3-SAT.

Cette réduction nécessite l’introduction de la classe des graphes à disques orientés.
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Chapter 1

Introduction

Historically, consumer theory has sought to model the behaviour of an economically rational

consumer. Beginning with Samuelson in 1938 [34], efforts have been made to characterise

the behaviour of a rational agent via revealed preferences : the notion that a consumer’s

choices reveal information about her underlying preferences. This gave rise to the axioms

of revealed preference outlined in Section 1.1, and culminated with Afriat’s Theorem [1],

which exactly characterises rational behaviour. See also [41] for more details. The axioms

of revealed preference formalise the observation that the actions of a rational agent must be

consistent with her historical behaviour in the market.

These axioms have been used in mechanism design to encourage rational behaviour in agents.

Consider, for example, combinatorial auctions i.e. simultaneous auctions of a collection of

indivisible items. These auctions have become a popular method of allocating many resources

which are related to one another. Such auctions, however, are susceptible to manipulation

by the bidders: they may underbid in early rounds to keep prices low and hide their true

interests [6]. As a result of such behaviour, many activity rules have been developed; these

rules restrict the bidders’ behaviour so as to make dishonest behaviour either impossible

or non-profitable. To counter the problem of underbidding for example, a monotonicity

requirement was first implemented: bidders wishing to bid for large quantities at the end

of the auction must, essentially, bid for large quantities in the early rounds. However,

1



such a rule on its own may hinder some bidders from bidding truthfully. Thus, in 2006,

Ausubel, Crampton and Milgrom [6] introduced a rule which permitted agents to violate

the monotonicity requirement so long as their behaviour was consistent with past behaviour.

They determined whether an agent was being consistent via the weak axiom of revealed

prefence, or warp. (See Section 1.1) This, however, only tests for consistency in pairs of

data points. In Chapter 2, we extend their derivation to the generalised axiom (garp), and

provide a graphical framework which allows us to efficiently verify that a bidder is behaving

consistently. We then derive a related test to determine whether a bidder is behaving almost-

consistently, in the sense that the bids they have placed are within some additive ε of their

optimal bid. This test reduces to computing the minimum mean cycle (mmc) on the same

graph. We go on to prove that, given the value of the mmc, there exists a unique minimum

(and maximum) estimate for the agent’s valuation among all valid estimates, and provide

a polytime algorithm to compute it. Finally, we note that the tests for rationality and

ε-approximate rationality can be implemented as bidding rules, since they are poly-time

computable. We then quantify the loss in the guarantee of rationality if we bound the

number of bids required to show a violation.

Various measures have been constructed to determine not only whether an agent is being

rational, but more specifically, the degree to which she is irrational. See [40] for an overview.

We outline a few of these in concluding Chapter 2, including a measure of rationality based on

the number of bids needed to be ignored for the remaining bids to be consistent. This leads

us to Chapter 3, where we consider such a measure in a broader context. Since rationality in

standard consumer theory is equivalent to acyclicity in preference (see Section 1.1) the above

problem can be modelled as the minimum directed feedback vertex set (mdfvs) problem on
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directed preference graphs. It is known that, in full generality, any directed graph is a

feasible preference graph. However, if we restrict the number of items in the market, i.e.

the dimension of the data points, the class of constructible graphs is also restricted. We

show that in a 2-commodity market, the problem can be reduced to solving the minimum

vertex cover (mvc) problem on an auxiliary graph, which we then show is perfect. Hence,

by the famous results of Grötschel, Lovász and Schrijver [20, 21], the problem can be solved

in polytime. (In fact, this class of auxiliary graphs appears to be a previously unknown

class of perfect graphs.) We then show that in a 3-commodity market, the problem becomes

NP-hard, via a reduction from 3-SAT. To do this, we introduce the class of oriented-disk

graphs which we show is a subset of preference graphs feasible in 3-commodity markets.

§1.1 The Axioms of Revealed Preference

In this section we provide a brief overview of the development of the axioms of revealed

preference. We consider, for this section and for Chapter 3, a rational agent purchasing a

bundle in a market of n different divisible resources. Any bundle of goods in this market

can be viewed as a vector in Rn, where each component is the quantity of some good in the

bundle. (Here R denotes the non-negative reals.) Our agent, according to standard consumer

theory, has a valuation function v : Rn → R and a budget B ∈ R. If in this market, goods

are priced linearly, we can view prices as a vector p ∈ Rn; the price of a bundle x ∈ Rn is

then the inner product p·x. In this setting, the agent is said to be rational if their demanded

bundle is the most valuable bundle subject to the budget constraint, i.e.

demand(v;p) = arg max
x:p·x≤B

v(x) . (1.1.1)
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Now, suppose we have a collection of observed consumer data {(p1,x1), (p2,x2), . . . , (pm,xm)}.

Each pair (pi,xi) denotes the fact that the consumer purchased the bundle of goods xi ∈ Rn

when the prices were pi ∈ Rn. If we then have pi ·xi ≤ pi ·xj, we have that xj is affordable

at prices pi, and therefore, by the choice of xi, the agent has revealed that xi is preferred

to xj (when both are affordable). We say xi is directly revealed preferred to xj and denote

this xi � xj. Furthermore, suppose we observe that xi � xj and that xj � xk. Then, by

transitivity of preference, we say xi is indirectly revealed preferred to xk.

It is important to note here that the demand function in Equation 1.1.1 may be single-valued

or multi-valued, i.e. there may be always one unique demanded item, or a set of demanded

items. If it is single-valued, purchasing xi when xj was affordable reveals that xi is strictly

preferable to xj, denoted xi � xj. However, if it is multi-valued, it is possible that the agent

was indifferent between the bundles, and hence we may only conclude xi � xj.

In 1938, Samuelson [34] noted that, if an agent reveals both xi � xj and xj � xi, then the

agent is clearly behaving inconsistently. From this, we conclude that a rational agent may

not behave as such. This was later termed the weak axiom of revealed preference (warp) for

the behaviour of a rational agent.

The Weak Axiom of Revealed Preference. If x1 � x2, then x2 � x1.

This is clearly a necessary condition for rationality. However Samuelson claimed that this

was also a sufficient condition and proved this in the trivial case of m = 2, where m is

the number of data points. Houtthakker [26] later showed that this was in fact only true

when m = 2, and instead considered the consistency of indirectly revealed preferences. The
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resulting axiom was termed the strong axiom of revealed preference (sarp).

The Strong Axiom of Revealed Preference. If x1 � x2, x2 � x3, . . . , xk−2 � xk−1

and xk−1 � xk then xk � x1.

Houtthakker proved that sarp was necessary and sufficient for rationality if demand is always

single-valued. One can expect, though, that agents have multi-valued demand; however, the

two previous axioms are defined in terms of strict preference, and as such are not suited

for this setting. In 1967, Afriat [1] constructed the generalised axiom (garp) below, and

showed that it is a necessary and sufficient condition for rationality in this more general

setting. This result is now known as Afriat’s Theorem.

The Generalised Axiom of Revealed Preference. If x1 � x2, x2 � x3, . . . , xk−1 � xk

and xk � x1, then x1 ∼ xk. (Equivalently, xk � x1.)

Afriat showed that this was a sufficient condition by giving a method to construct monotonic,

concave, piecewise-linear utility functions from any data set satisfying garp. It is easy to

check that this is a necessary condition.

Afriat’s Theorem is an important result: it allows us to efficiently test whether a consumer is

behaving consistently by simply checking for cycles in the preference data. In the rest of this

thesis, we explore derivations of similar results, and modifications of the axiom which test

not only the agent’s consistency, but also quantifies the degree to which they are consistent.
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For the purposes of relaxations in Chapter 2, we introduce here the k-th Axiom of Revealed

Preference:

The k-th Axiom of Revealed Preference. For any κ ≤ k + 1,

if x1 � x2, x2 � x3, . . . , xκ−1 � xκ and xκ � x1, then xκ � x1.

We note that this is very similar to garp. In fact, this is exactly garp if k is taken to be

arbitrarily large. Furthermore, we have also that, for k = 1, this is a multivalued-demand

version of warp. Thus, the value of k parametrises the entire spectrum of axioms of revealed

preference between the weak and strong axiom.
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Chapter 2

An Additive Measure of Rationality in the Quasilinear Setting:

Tractable Bidding Rules on a Versatile Graph

As discussed in Chapter 1, revealed preference has become an important tool in auction

design, since bidding rules based on warp have been implemented. These rules are now

standard in the combinatorial clock auction, one of the two prominent auction mechanisms

used to sell bandwidth. In part, the warp-based bidding rules have proved successful because

they are extremely difficult to game [10]. However, Harsha et al. [24] examine garp-based

bidding rules, and Ausubel and Baranov [5] advocate incorporating such constraints into

bandwidth auctions. Based upon Afriat’s theorem, these garp-based rules imply that there

always exists a utility function that is compatible with the bidding history. This gives the

desirable property that a bidder in an auction will always have at least one feasible bid – a

property that cannot be guaranteed under warp.

In this chapter, we show how a graphical viewpoint of revealed preference can be used to

obtain a virtual valuation function that best fits the data set. Specifically, we show in

Section 2.3 that an individually rational virtual valuation function can be obtained such

that its additive deviation from rationality is exactly the minimum mean length of a cycle in

a bidding graph. This additive guarantee cannot be improved upon. Furthermore, we show

there exists a unique minimum valuation function from amongst all individually rational
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virtual valuation functions that optimally fit the data. Similarly, given a set of upper bound

constraints, we show how to find the unique maximum virtual valuation that optimally fits

the data, if it exists.

Imposing revealed preference bidding rules can be harsh. Indeed, Cramton [10] states that

“there are good reasons to simplify and somewhat weaken the revealed preference rule”.

These reasons include complexity issues, common value uncertainty, the complication of

budget constraints, and the fact that a bidder’s assessment of her valuation function often

changes as the auction progresses! The concept of approximate rationality, however, natu-

rally induces a relaxed form of revealed preference rules. We examine such relaxed bidding

rules in Section 2.5, show how they can be implemented combinatorially, and show how to

construct the minimal and maximal valuation functions which fit the data, which may be

useful for quantifying worst-case and best-case welfare guarantees.

§2.1 Revealed Preference in Combinatorial Auctions

As discussed, a major application of revealed preference in mechanism design concerns com-

binatorial auctions. Here, there are some important distinctions from the standard revealed

preference model presented in Section 1.11. First, consumers are assumed to have quasilinear

utility functions that are linear in money. Thus, they seek to maximise profit. Second, the

standard assumption is that bidders have no budgetary constraints. For example, if prof-

itable opportunities arise that require large investments then these can be obtained. (This

1 However, as explained below, this slightly different model can be seen as a special case of the more
general model discussed in the first chapter.
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assumption is slightly unrealistic; Harsha et al. [24] show how to implement a budgeted

revealed preference model for combinatorial auctions; see also Section 2.6).

Third, the observations (pt,xt), for each 1 ≤ t ≤ T , are typically not purchases but are

bids made over a collection of auction rounds. When offered a set of prices at time t the

consumer bids for bundle xt. In such auctions, the market typically consists of a collection

of indivisible items, rather than a commodity market (i.e. bundles are represented by 0-

1 vectors.) However, we will still be denoting bundles as general vectors, as most of the

following results still hold in the general setting.

So what would a model of revealed preference be in this combinatorial auction setting?

Suppose that at time t we select bundle xt and that at an earlier time s we selected bundle

xs. Assuming a quasi-linear utility function and no budget constraint, we have revealed:

v(xt)− pt · xt ≥ v(xs)− pt · xs (2.1.1)

v(xs)− ps · xs ≥ v(xt)− ps · xt (2.1.2)

Summing Inequalities (2.1.1) and (2.1.2) and rearranging gives

(pt − ps) · xs ≥ (pt − ps) · xt (2.1.3)

This is the revealed preference condition for combinatorial auctions proposed as a bidding

activity rule by Ausubel, Crampton and Milgrom [6]. The activity rule simply states that,

between time s and time t, the price of bundle xt must have risen by at least as much as the

price of xs. If condition (2.1.3) is not satisfied then the auction mechanism will not allow

the later bid to be made.
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Observe that the bidding rule (2.1.3) was derived directly from the assumption of utility

maximisation. This unbudgeted revealed preference auction model can, though, also be

viewed within the framework of the standard budgeted model of revealed preference. To do

this, we assume the bidder has an arbitrarily large budget B. In particular, prices will never

be so high that she cannot afford to buy every item. Second, to model quasilinear utility

functions, we treat money as a good. Specifically, given a bundle of items x = (x1, . . . , xn)

and an amount x0 of money we denote by x̂ = (x0, x1, . . . , xn) the concatenation of x0 and x.

If p = (p1, . . . , pn) is the price vector for the the non-monetary items, then p̂ = (1, p1, . . . , pn)

gives the prices of all items including money.

In this n + 1 dimensional setting, let us select bundle x̂t at time t. As the budget B is

arbitrarily large, we can certainly afford the bundle xs at this time. But we may not be able to

afford bundle x̂s, as then we must also pay for the monetary component at a cost of B−ps·xs.

However, we can afford the bundle xs plus an amount B−pt ·xs of money. Applying revealed

preference to {x̂, p̂}, we have revealed that x̂t = (B − pt · xt,xt) � (B − pt · xs,xs). Hence,

by quasilinearity, subtracting the monetary component from both sides, we have,

(0,xt) � ((B − pt · xs)− (B − pt · xt),xs) = (pt · xt − pt · xs,xs) .

Equivalently,

v(xt) ≥ v(xs) + pt · xt − pt · xs . (2.1.4)

But Inequality (2.1.4) is equivalent to Inequality (2.1.1). Inequality (2.1.2) follows symmet-

rically, and together these give the revealed preference bidding rule (2.1.3). Note that this

bidding rule is derived via the direct comparison of two bundles.
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We can now extend this bidding rule to incorporate indirect comparisons in a similar fashion

to the extension from warp to sarp via transitivity. This produces a garp-based bidding

rule. Namely, suppose we bid for the money-less bundle xi at time ti, for all 0 ≤ i ≤ k,

where 1 ≤ ti ≤ T . Thus we have revealed that

(0,xi) � ((B − pi · xi+1)− (B − pi · xi),xi+1)

= (pi · xi − pi · xi+1,xi+1)

This induces the inequality

v(xi)− pi · xi ≥ v(xi+1)− pi · xi+1 . (2.1.5)

Summing (2.1.5) over all i, we obtain

k∑
i=0

(v(xi)− pi · xi) ≥
k∑
i=0

(v(xi+1)− pi · xi+1) ,

where the sum in the subscripts are taken modulo k. Rearranging now gives the combinatorial

auction karp-based bidding activity rule:

(pk − p0) · x0 ≥
k∑
i=1

(pi − pi−1) · xi . (2.1.6)

For k arbitrarily large, this gives the garp-based bidding rule. In order to qualitatively

analyze the consequences of imposing karp-based activity rules, it is informative to now

provide a graphical interpretation of the these rules.
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§2.2 A Graphical View of Revealed Preference

Given the bidder data {(pt,xt) : 1 ≤ t ≤ T}, we create a directed graph G = (V,A), called

the bidding graph, to which we will assign arc lengths `. There is a vertex in V for each

possible bundle – that is, there are 2n bundles in an n-item auction For each observed bid

xt, 1 ≤ t ≤ T , there is an arc (xt,y) for each bundle y ∈ V . In order to define the length

`xt,y of an arc (xt,y), note that Inequality (2.1.1) applied to xs = y gives

v(y) ≤ v(xt) + pt · (y − xt) ,

otherwise we would prefer bundle y at time t. For the arc length, we would like to simply

set `xt,y = pt · (y − xt). Observe, however, that the bundle xt may be chosen in more than

one time period. That is, possibly xt = xt′ for some t 6= t′. Therefore the bidding graph is,

in fact, a multigraph. It suffices, though, to represent only the most stringent constraints

imposed by the bidding behaviour. Thus, we obtain a simple graph by setting

`xt,y = min
t′
{pt′ · (y − xt) : xt′ = xt} .

Now the warp-based bidding rule (2.1.3) of Ausubel et al. [6] is equivalent to

(pt − ps) · xs − (pt − ps) · xt ≥ 0 .

However,
`xs,xt + `xt,xs

= min
s′
{ps′ · (xt − xs) : xs′ = xs}+ min

t′
{pt′ · (xs − xt) : xt′ = xt}

≤ ps · (xt − xs) + pt · (xs − xt)

= (pt − ps) · xs − (pt − ps) · xt .
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It is then easy to see that the bidding constraint (2.1.3) is violated if and only if the bidding

graph contains no negative digons (cycles of length two). Furthermore, we can interpret karp

and garp is a similar fashion. Hence, the k-th axiom of revealed preference is equivalent to

requiring that the bidding graph not contain any negative cycles of cardinality at most k+1,

and garp is equivalent to requiring no negative cycles at all. Thus, we can formalize the

preference axioms in terms of the lengths of negative cycles in a directed graph. We remark

that a cyclic view of revealed preference is briefly outlined by Vohra [43]. For us, this cyclic

formulation has important consequences in testing for the extent of bidding deviations from

the axioms. We will quantify this exactly in Section 2.3. Before doing so, though, we remark

that the focus on cycles also has important computational consequences.

First, recall that the bidding graph G contains an exponential number of vertices, one for

every subset of the items. Of course, it is not practical to work with such a graph. Observe,

however, that a bundle y /∈ {x1,x2 . . . ,xT} has zero out-degree in G. Consequently, y

cannot be contained in any cycle. Thus, it will suffice to consider only the subgraph induced

by the bids {x1,x2 . . . ,xT}. In a combinatorial auction there is typically one bid per time

period and the number of periods is quite small.2 Hence, the induced subgraph of the bidding

graph that we actually need is of a very manageable size.

Second, one way to implement a bidding rule is via a mathematical program; see, for example,

Harsha et al. [24]. The cyclic interpretation of a bidding rule has two major advantages:

we can test the rule very quickly by searching for negative cycles in a graph. For example,

we can test for negative cycles of length at most k + 1 either by fast matrix multiplication

or directly by looking for shortest paths of length k using the Bellman-Ford algorithm in

2 For example, in a bandwidth auction there are at most a few hundred rounds.
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O(T 3) time. Another major advantage is that a bidder can interpret the consequence of a

prospective new bid dynamically by consideration of the bidding graph. This is extremely

important in practice. In contrast, bidding rules that require using an optimization solver

as a black-box are very opaque to bidders.

§2.3 Minimum Mean Cycles and Approximate Virtual Valuation Functions

For combinatorial auctions, Afriat’s result that garp is necessary and sufficient for ratio-

nalisability can be reformulated as:

Theorem 2.1. A valuation function which rationalises bidding behaviour exists if and only

if the bidding graph has no negative cycle.

This is a simple corollary of Theorem 2.2 below; see also [43]. From an economic perspective,

however, what is most important is not whether agents are perfectly rational but “whether

optimization is a reasonable way to describe some behavior” [40].3 It is then important to

study the consequences of approximately rational behaviour, see, for example, Akerlof and

Yellen [3]. First, though, is it possible to quantify the degree to which agents are rational?

Gross [19] examines assorted methods to test the degree of rationality. Notable amongst

them is the Afriat Efficiency Index [1, 40]. Here the condition required to imply a preference

is strengthened multiplicatively. Specifically, xt � y only if pt · y ≤ λ · pt · xt where λ < 1.

We examine this index with respect to the bidding graph in Section 2.6. For combinatorial

auctions, a variant of this constraint was examined experimentally by Harsha et al. [24].

3 Indeed, several schools of thought in the field of bounded rationality argue that people utilize simple
(but often effective) heuristics rather than attempt to optimize; see, for example, [18].
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Here we show how to quantify exactly the degree of rationality present in the data via a

parameter of the bidding graph. Moreover, we are able to go beyond multiplicative guaran-

tees and obtain stronger additive bounds. To wit, we say that v̂ is an ε-approximate virtual

valuation function if, for all t and for any bundle y,

v̂(xt)− pt · xt ≥ v̂(y)− pt · y − ε .

Note that if ε = 0, then the bidder is optimizing with respect to a virtual valuation function,

i.e. is rational. We remark that the term virtual reflects the fact that v̂ need not be the

real valuation function (if one exists) of the bidder, but if it is then the bidding is termed

truthful.

We now examine exactly when a bidding strategy is approximately rational. It turns out

that the key to understanding approximate deviations from rationality is the minimum mean

cycle in the bidding graph. Given a cycle C in G, its mean length is

µ(C) =

∑
a∈C `a

|C|
.

We denote by µ(G) = minC µ(C) the minimum mean length of a cycle in G, and we say that

C∗ is a minimum mean cycle if C∗ ∈ argminC µ(C). We can find a minimum mean cycle in

polynomial time using the classical techniques of Karp [29].

Theorem 2.2. An ε-approximate valuation function which (approximately) rationalises bid-

ding behaviour exists if and only if the bidding graph has minimum mean cycle µ(G) ≥ −ε.

Proof. From the bidding graph G we create an auxiliary directed graph Ĝ = (V̂ , Â) with
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vertex set V̂ = {x1,x2, . . . ,xT}. The arc set is complete with arc lengths

ˆ̀
xs,xt = `xs,xt − µ(G) .

Observe that, by construction, every cycle in Ĝ is of non-negative length. It follows that we

may obtain shortest path distances d̂ from any arbitrary root vertex r. Thus, for any arc

(xt,y), we have

d̂(y) ≤ d̂(xt) + ˆ̀
xt,y

= d̂(xt) + `xt,y − µ(G)

≤ d̂(xt) + pt · (y − xt)− µ(G) .

So, if we set v̂(x) = d̂(x), for each x, then

v̂(xt)− pt · xt ≥ v̂(y)− pt · y + µ(G) .

for all t. Therefore, by definition of ε-approximate bidding, we have that v̂ is a (−µ)-

approximate virtual valuation function.

Conversely, let v̂ be an ε-approximate virtual valuation function which rationalises the graph,

and take some cycle C of minimum mean length in the bidding graph. Suppose for a

contradiction that µ(C) < −ε. By ε-approximability, we have

v̂(xs)− ps · xs ≥ v̂(xt)− ps · xt − ε .

But `xs,xt ≥ ps · (xt−xs). Therefore `xsxt ≥ v̂(xt)− v̂(xs)− ε. Summing over every arc in
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the cycle we obtain

`(C) =
∑

(x,y)∈C

`xy ≥
∑

(x,y)∈C

(v̂(y)− v̂(x)− ε) = −|C| · ε .

Thus µ(C) ≥ −ε, giving the desired contradiction.

Recall that, the bidding behaviour is irrational only if µ(G) is strictly negative. We empha-

size that Theorem 2.2 applies even when µ(G) is positive, but in this case, we have an ε-

approximate virtual valuation function where ε is negative! What does this mean? Well, set-

ting δ = −ε, we then have, for all t and for any bundle y, that v̂(xt)−pt ·xt ≥ v̂(y)−pt ·y+δ.

Thus, xt is not just the best choice, but it provides at least an extra δ units of utility over

any other bundle. Thus, the larger δ is, the greater our degree of confidence in the revealed

preference-ordering and valuation.

§2.4 Minimum & Maximum Individually Rational Virtual Valuation Functions

Theorem 2.2 shows how to obtain a virtual valuation function with the best possible additive

approximation guarantee: any valuation rationalising the bidding graph G must allow for an

additive approximation of at least −µ(G). However, there is a problem. Such a valuation

function may not actually be compatible with the data; specifically, it may not be individually

rational. For individual rationality, we require, for each time t, that v̂(xt)− pt ·xt ≥ 0. But

individually rationality is (almost certainly) violated for the the root node r since we have

v̂(xr) = 0.
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It is possible to obtain an individually rational, approximate, virtual valuation function

simply by taking the v̂ from Theorem 2.2 and adding a huge constant to value of each

package. This operation, of course, is entirely unnatural and the resulting valuation function

is of little practical value.

We say that v() is the minimum individually rational, ε-approximate virtual valuation func-

tion if v(xt) ≤ ω(xt) for each 1 ≤ t ≤ T , for any other individually rational, ε-approximate

virtual valuation function ω(). This leads to the questions: (i) Does such a valuation func-

tion exist? and (ii) Can it be obtained efficiently? The answer to both these questions is

yes.

Theorem 2.3. The minimum individually rational, µ-approximate virtual valuation function

exists and can be found in polynomial time.

Proof. Let Ĝ be as in Theorem 2.2. We create an auxiliary directed graph H from Ĝ by

adding a sink vertex z. We add an arc (xt, z) of length −pt ·xt, for each 1 ≤ t ≤ T , allowing

for repeated arcs. Because Ĝ contains no negative cycle, neither does H. Therefore, there

exist shortest path distances in H. Denote by d̂() the shortest path distance from vertex xt

to z in H. We claim that setting v(xt) = −d̂(xt) gives the minimum individually rational,

µ-approximate virtual valuation function.

To begin, let’s verify that v() is an individually rational, µ-approximate virtual valuation

function. First, we require that v() is individually rational. Now the direct path consisting

of the arc (xt, z) is at least as long as the shortest path from xt to z. Thus, −pt ·xt ≥ d̂(xt).

Individual rationality then follows as v(xt) = −d̂(xt) ≥ pt · xt.

Second we need to show that v() is µ-approximate. Consider a pair {xs,xt}. The shortest
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path conditions imply that

−v(xs) = d̂(xs) ≤ ˆ̀
st + d̂(xt) = (`st − µ) + d̂(xt) = (`st − µ)− v(xt) .

Here the inequality follows from the shortest path conditions on d̂(). Therefore, by definition

of `st,

v(xt) ≤ v(xs) + `st − µ

= v(xs) + min
s′
{ps′ · (xt − xs) : xs′ = xs} − µ

≤ v(xs) + ps · (xt − xs)− µ .

Hence, v() is µ-approximate as desired.

Finally we require that v() is minimum individually rational. So, take any other individually

rational, µ-approximate virtual valuation ω(). We must show that v(xt) ≤ ω(xt) for every

bundle xt. Now consider the shortest path tree T in H corresponding to d̂(). If (xt, z) is an

arc in T (and at least one such arc exists) then −pt · xt = d̂(xt). Thus

v(xt)− pt · xt = (−pt · xt)− d̂(xt) = 0 ≤ ω(xt)− pt · xt .

Here the inequality follows by the individual rationality of ω(). Thus v(xt) ≤ ω(xt). Now

suppose that v(xs) > ω(xs) for some xs. We may take xs to be the closest vertex to the

root z in T with this property. We have seen that xs cannot be a child of z. So let (xs,xt)

be an arc in T . As xt is closer to the root than xs, we know v(xt) ≤ ω(xt). Then, as T is a
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shortest path tree, we have d̂(xs) = ˆ̀
st + d̂(xt). Consequently −v(xs) = ˆ̀

st − v(xt), and so

ω(xt) ≥ v(xt) = ˆ̀
st + v(xs) > ˆ̀

st + ω(xs) .

But then

ω(xt) > ω(xs) + `st − µ = ω(xs) + min
s′
{ps′ · (xt − xs) : xs′ = xs} − µ .

It follows that there is at least one time period when xs was selected in violation of the µ-

optimality of ω(). So v() is a minimum individually rational, µ-approximate virtual valuation

function.

The minimum individually rational virtual valuation function allows us to obtain worst-

case social welfare guarantees when revealed preference is used in mechanism design, see

Section 2.5. For the best-case welfare guarantees, we are interested in finding the maximum

virtual valuation function. In general, this need not exist as we may add an arbitrary

constant to each bundle’s valuation given by the minimum individually rational virtual

valuation function. But, it does exist provided we have an upper bound on the valuation of

at least one bundle. This is often the case. For example in a combinatorial auction if a bidder

drops out of the auction at time t+1, then pt+1 ·xt is an upper bound on the value of bundle

xt. Furthermore, in practice, bidders (and the auctioneer) often have (over)-estimates of the

maximum possible value of some bundles.

So suppose we are given a set I and constraints of the form v(xi) ≤ βi for each i ∈ I. Then

there is a unique maximum µ-approximate virtual valuation function.
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Theorem 2.4. Given a set of constraints, the maximum µ-approximate virtual valuation

function exists and can be found in polynomial time.

Proof. Let v(xi) ≤ βi for each i ∈ I. We construct a graph H from Ĝ by adding a source

vertex z with arcs of length βi from z to xi, for each i ∈ I. Since z has in-degree zero, H has

no negative cycles because Ĝ does not. Denote by d̂() the shortest distance of every vertex

from z. We claim that setting v(x) = d̂(x) gives us the desired maximum µ-approximate

valuation function.

To prove this, we first begin by checking that it satisfies the upper-bound constraints. This

is trivial, because for each i ∈ I there is a path consisting of one arc of length βi from z

to xi. Thus the shortest path to xi has length at most βi. Second, the valuation function

v() = d̂() is µ-approximate by the choice of arc length in Ĝ. Third, we show that this

valuation function is maximum. So, take any other µ-approximate virtual valuation ω() that

satisfies the upper bound constraints I. We must show that v(xt) ≥ ω(xt) for every bundle

xt. For a contradiction, suppose that P = {z,y1,y2, . . . ,yr} is the shortest path from z to

yr in H and that v(yr) < ω(yr). Observe that the node adjacent to z on P must be y1 = xi

for some i ∈ I. Now because ω() is a µ-approximate valuation function, we have

r−1∑
j=1

ω(yj+1) ≤
r−1∑
j=1

(
ω(yj) + `yj ,yj+1

− µ
)

=
r−1∑
j=1

(
ω(yj) + ˆ̀

yj ,yj+1

)
.

Cancelling terms produces

ω(yr) ≤ ω(y1) +
r−1∑
j=1

ˆ̀
yj ,yj+1

≤ βj +
r−1∑
j=1

ˆ̀
yj ,yj+1

= d̂(yr) = v(yr) .
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Here the second inequality follows by the facts that y1 = xi, for some i ∈ I, and ω()

satisfies the upper bound constraint ω(xi) ≤ βi. This contradicts the assumption that

v(yr) < ω(yr).

Notice that Theorem 2.4 does not guarantee that the maximum virtual valuation function

is individually rational. For example, suppose βt = pt · xt, for all 1 ≤ t ≤ T . Individual

rationality then implies that v(xt) must equal pt · xt for every bundle. In general, however,

such a valuation function is not µ-approximate. In such cases no individually rational µ-

approximate virtual valuation functions may exist that satisfy the upper bound constraints.

On the other hand, suppose such a virtual valuation function does exist. Then the maximum

µ-approximate virtual valuation function in Theorem 2.4 must be individually rational by

maximality.

§2.5 Additive Relaxations to Revealed Preference Activity Rules

So far, we have focused upon how to test the degree of rationality reflected in a data set.

Specifically, we saw in Theorem 2.2 that the minimum mean length of a cycle, µ(G), gives

an exact and optimal goodness of fit measure for rationality. Furthermore, Theorem 2.3

explained how to quickly obtain the minimum individually rational valuation function that

best fits the data.

Recall, however, that revealed preference is also used as a tool in mechanism design. In par-

ticular, we saw in Section 2.1 how revealed preference is used to impose bidding constraints

in combinatorial auctions. We will now show how to apply the combinatorial arguments we
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have developed to create other relaxed revealed preference constraints.

Consider a combinatorial auction at time (round) t where our prior price-bundle bidding

pairs are {(p1,x1), (p2,x2), . . . , (pt−1,xt−1)}. By Inequality (2.1.3) in section 2.1, rational

bidding at time t implies that

v(xt)− pt · xt ≥ v(xs)− pt · xs, for all s < t.

Moreover, a necessary condition is then that (pt − ps) · xs ≥ (pt − ps) · xt and this can

easily be checked by searching for negative length digons in the bidding graph induced by

the first t bids. If such a cycle is found then the bid (pt,xt) is not permitted by the auction

mechanism.

The non-permittal of bids is clearly an extreme measure, and one that can lead to the

exclusion of bidders from the auction even when they still have bids they wish to make.

In this respect, it may be desirable for the mechanism to use a relaxed set of revealed

preference bidding rules. The natural approach is to insist not upon strictly rational bidders

but rather just upon approximately rational bidders. Specifically, the auction mechanism

may (dynamically) select a desired degree ε of rationality. This requires that at time t,

v(xt)− pt · xt ≥ v(xs)− pt · xs − ε, for all s < t.

A necessary condition then is (pt − ps) · xs ≥ (pt − ps) · xt − 2ε, and we can test this

relaxed warp-based bidding rule by insisting that every digon has mean length at least −ε.
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Similarly, the relaxed karp-based bidding rule is

(pk − p0) · x0 ≥
k∑
i=1

(pi − pi−1) · xi − (k + 1) · ε (2.5.1)

The relaxed garp-based bidding rule applies the relaxed karp-based bidding rule for every

choice of k. The imposition of the relaxed garp-based bidding rule ensures approximate

rationality.

Theorem 2.5. A set of price-bid pairings {(pt,xt) : 1 ≤ t ≤ T} has a corresponding

ε-approximate individually rational virtual valuation function if and only if it satisfies the

relaxed garp-based bidding rule.

Proof. Suppose the relaxed garp-based bidding rule is satisfied. By Theorem 2.2, it suffices

to show that the minimum mean cycle in the bidding graph with arc lengths ` is at least −ε.

So take any collection {xi}ki=1 of bundles. Let ti be the time when `xi,xi+1
was minimized,

and let pi := pti . Then we have

−(k + 1) · ε ≤ (pk − p0) · x0 −
∑k

i=1
(pi − pi−1) · xi

=
∑k

i=0
pi · (xi+1 − xi)

=
∑k

i=0
`xi,xi+1

Here, the inequality follows because the relaxed garp-based bidding rule is satisfied. (Again

the subscripts are taken modulo k + 1.) Since, the corresponding cycle contains k + 1 arcs,

we see that the length of the minimum mean cycle is at least −ε.

Conversely, if the bidding data has a corresponding ε-approximate individually rational vir-
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tual valuation function then the relaxed bidding rules are satisfied.

Theorem 2.5 tells us that imposing the relaxed garp-based bidding rule ensures approximate

rationality. But, in practice, even warp-based bidding rules are often confusing to real

bidders. There is likely therefore to be some resistance to the idea of imposing the whole

gamut of garp-based bidding rules. We believe that this combinatorial view of revealed

preference, where the bidding rules can be tested via cycle examination, will eradicate some

of the confusion. However, for simplicity, there is some worth in quantitatively examining

the consequences of imposing a weaker relaxed karp-based bidding rule rather than the

garp-based bidding rule. To test for the relaxed karp-based bidding rules, we simply have

to examine cycles of length at most k + 1. Now suppose the karp-based bidding rules are

satisfied. By finding the µ(G) in the bidding graph we can still obtain the best-fit additive

approximation guarantee, but we no longer have that this guarantee is ε. We can still,

though, prove a strong additive approximation guarantee even for small values of k. To do

this we need the following result.

Theorem 2.6. Given a complete directed graph G with arc lengths `. If every cycle of

cardinality at most k + 1 has non-negative length then the minimum mean length of a cycle

is at least − `max

k
, where `max = maxe∈E(G) |`e|.

Proof. Take any cycle C with cardinality |C| > k+ 1. Let the arcs of C be {e1, e2, . . . , e|C|}

in order. Then

|C|∑
i=1

i+k−1∑
j=i

`ej = k ·
|C|∑
i=1

`ei = k · `(C) = k · |C| · `(C)

|C|
. (2.5.2)
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Above, the inner summation is taken modulo |C|. On the other hand take any path segment

P = {ei, ei+1, . . . , ei+k−1}, where again the subscript summation is modulo |C|. Because the

graph is complete and the maximum arc length is `max, the length of P is at least −`max.

Otherwise, we have a negative length cycle of cardinality k+ 1 by adding to P the arc from

the head vertex of ei+k−1 to the tail vertex of ei. Thus,

|C|∑
i=1

i+k−1∑
j=i

`ej ≥ −|C| · `max . (2.5.3)

Combining Equalities (2.5.2) and Inequality (2.5.3) gives that `(C)
|C| ≥ −

`max

k
. As every cycle

of cardinality at most k + 1 has non-negative mean length, this implies that the minimum

mean length of any cycle in G is at least − `max

k
.

This result is important as it allows us to bound the degree of rationality that must arise

whenever we impose the relaxed karp-based bidding rule.

Corollary 2.1. Given a set of price-bid pairings {(pt,xt) : 1 ≤ t ≤ T} that satisfy the re-

laxed karp-based bidding rule, there is a ( b
max

k
+ ε)-approximate individually rational virtual

valuation function, where bmax is the maximum bid made by the bidder during the auction.

Proof. The relaxed karp-based bidding rule (2.5.1) implies that every cycle of cardinality

at most k + 1 in the bidding graph G has mean length at least −ε. Let G′ be the modified

graph with arc lengths `′xs,xt
:= `xs,xt + ε. Then every cycle in G′ of cardinality at most k+1

has non-negative length. By Theorem 2.6, the minimum mean length of a cycle in G′ is then

at most (`′)max

k
. Furthermore, (`′)max = `max + ε ≤ bmax + ε. Theorems 2.2 and 2.3 then

guarantee the existence of a ( b
max

k
+ ε)-approximate individually rational virtual valuation
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function.

One may ask whether the additive approximation guarantee in Corollary 2.1 can be improved.

The answer is no; Theorem 2.6 is tight.

Lemma 2.1. There is a graph G where each cycle of cardinality at most k + 1 has non-

negative length and the minimum mean length of a cycle is −`max/k.

Proof. Let G be a complete directed graph with vertex set V = {v1, v2, . . . , vn}. We will

define arc lengths ` such that all (k + 1)-cycles in G have non-negative length, but the

minimum mean length of a cycle is − `max

k
. First consider the cycle C0 = {v1, v2, . . . , vk+2, v1}.

Give each arc in C0 a length − `max

k
. Thus C0 has cardinality k + 2 and mean length − `max

k
.

Now let every other arc e have length `max. It immediately follows that the only cycle in G

with negative length is C0. Thus, all cycles of length at most k+1 have non-negative length,

but the minimum mean length of a cycle is − `max

k
, as desired.

§2.6 Alternate Bidding Rules

Interestingly other bidding rules used in practice or proposed in the literature can be viewed

in the graphical framework. For example, bid withdrawals correspond to vertex deletion in

the bidding graph, whilst budget constraints and the Afriat Efficiency Index can be formu-

lated in terms of arc-deletion. We briefly describe these applications here. See Chapter 3 for

a more detailed study of the computational complexity of bid-withdrawal rules.
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Revealed Preference with Budgets. Recall that, in Section 2.1, we have assumed that,

in the quasilinear model, bidders have no budgetary constraints. This is not a natural

assumption. Harsha et al. [24] explain how to implement budgeted revealed preference

in a combinatorial auction. Their method applies to the case when the fixed budget B

is unknown to the auction mechanism. To do this, upper and lower bounds on feasible

budgets are maintained dynamically via a linear program. It is also straightforward to do

this combinatorially using edge-deletion in the bidding graph; we omit the details as the

process resembles that of the following subsection.

The Afriat Efficiency Index. Recall that to determine the Afriat Efficiency Index we

reveal xt � y only if pt · y ≤ λ · pt · xt where λ < 1. This is equivalent, in Afriat’s original

setting, to removing from the graph any arc (xt,xs) for which pt ·xs > λ ·pt ·xt. Of course,

for the application of combinatorial auctions, we assume quasi-linear utilities. Therefore, the

appropriate implementation is to remove any arc (xt,xs) for which

v(xs)− ptxs > λ · (v(xt)− ptxt) .

How, though, can we implement this rule as v() is unknown? We can simply apply the

techniques of Section 2.3 and use for v the minimum individually rational virtual valuation

function. We can now determine the best choice of λ that gives a predetermined, ε additive

approximation guarantee ε. This can easily be computed exactly by bisection search over

the set of arcs, as each arc a has its own critical value λa at which it will be removed. The

optimal choice arises at the point where the minimum mean cycle in the bidding graph rises

above −ε. When ε = 0, the corresponding choice of λ is the anolog of the Afriat Efficiency

Index.
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Revealed Preference with Bid Withdrawals. Some iterative multi-item auctions al-

low for bid withdrawals, most notably the simultaneous multi-round auction (SMRA). Bid

withdrawals may easily be implemented along with revealed preference bidding rules. At

time t, a bid withdrawal corresponds to the removal of (a copy of) a vertex xs, where s < t.

This may be important strategically. To see this, suppose the bid xt is invalid under the

karp-based bidding rules because it would induce a negative cycle of cardinality at most

k + 1 in the bidding graph on {x1,x2, . . . ,xt}. If xs lies on all such negative cycles then xt

becomes a valid bid after the withdrawal of xs. Because auctions typically restrict the total

number of bid withdrawals allowed, the optimal application of bid withdrawals correspond

to the problem of finding small hitting sets for the negative length cycles of cardinality at

most k + 1.
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Chapter 3

A Combinatorial Measure of Rationality in the General Setting:

Perfect Graphs and Intractability Results

In Section 2.6, we introduced the problem of finding small hitting sets for cycles in the

preference data. In this chapter, we consider the problem in Afriat’s original setting of

an agent in a commodity market, and study its computational complexity. We show that,

unless the market has only two commodities, the problem is NP-hard. Therefore, such a

combinatorial measure of consistency may be difficult to implement in some cases.

Recall that we have observed a collection of consumer data {(p1,x1), (p2,x2), . . . , (pm,xm)},

where each pair (pi,xi) denotes the fact that the consumer purchased the bundle of goods

xi ∈ Rn when the prices were pi ∈ Rn. For clarity of presentation, we will assume that all

the chosen bundles are distinct and that all revealed preferences are strict (no ties). We can

represent the preferences revealed by the consumer data via a directed graph, D� = (V,A).

This directed revealed preference graph contains a vertex xi ∈ V for each data-pair (pi,xi),

and an arc from xi to xj if and only if xi � xj. Observe that garp holds if and only if

the revealed preference graph is acyclic. Consequently, Afriat’s theorem implies that the

consumer is rational if and only if D� contains no directed cycles. Observe also that this

graph is similar, but different, to the the bidding graph constructed in Chapter 2.

For example, Figure 3.0.1 displays visually two sets of consumer data. Each bundle xi is
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paired with its price vector pi, and a dotted line is drawn through xi perpendicular to pi.

Note that pixi ≥ piy if and only if y lies on the opposite side of the dotted line to the

drawing of pi. Hence, for the first consumer (left), we have x3 � x2, x3 � x1 and x2 � x1.

This produces an acyclic revealed preference graph D� and, therefore, her behaviour can be

rationalized. On the otherhand, the second consumer (right) reveals x3 � x2 � x3. This

produces a directed 2-cycle in D� and, so, her behaviour cannot be rationalised.

x1

x2

x3

p1
p2

p3

x1

x2

x3

p1 p2

p3

Figure 3.0.1: A rational consumer and an irrational consumer.

We have seen that graph acyclicity can be used to provide a test for consumer rational-

ity. However such a test is binary and, in practice, leads to the immediate conclusion of

irrationality, as observed data sets typically induce cycles in the revealed preference graph.

Consequently, there has been a large body of experimental and theoretical work designed to

measure how close to rational the behaviour of a consumer is. Examples include measure-

ments based upon best-fit perturbation errors (e.g. Afriat [2] and Varian [40]), measurements

based upon counting the number of rationality violations present in the data (e.g. Swofford

and Whitney [38] and Famulari [17]), and measurements based upon the maximum size of a

rational subset of the data (e.g. Houtman and Maks [27]). Gross [19] provides a review and

analysis of some of these measures. Recently new measures have been designed by Echenique

et al. [16], Apesteguia and Ballester [4], and Dean and Martin [11].
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Combinatorially, perhaps the most natural measure is simply to count the number of “ir-

rational” purchases. That is, what is the minimum number of data-points whose removal

induces a rational set of data? The associated decision problem is called the consumer

rationality problem.

CONSUMER RATIONALITY

Instance: Consumer data (p1,x1), . . . , (pm,xm) ∈ Rn ×Rn, and an integer k.

Problem: Is there a sub-collection of at most k data points whose

removal produces a data set satisfying garp?

We note that this consumer rationality problem is dual to the measure of Houtman and

Maks [27]. Using the graphical representation, it can be seen that the consumer rationality

problem is a special case of the directed feedback vertex set problem. In fact, as

we explain in Section 3.1, when there are many goods, the two problems are equivalent.

However, the consumer rationality problem becomes easier to approximate as the number of

commodities falls. Indeed, the main contribution of this paper is to obtain an exact threshold

on the number of commodities that separates easy cases (polynomial) and hard cases (NP-

complete). In particular, we prove the problem is polytime solvable for a two-commodity

market (Section 3.3), but that it is NP-complete for a three-commodity market (Section 3.4).

§3.1 The General Case: Many Commodities

In this section we show that the consumer rationality problem in full generality is

computationally equivalent to the directed feedback vertex set (dfvs) problem.
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DIRECTED FEEDBACK VERTEX SET

Instance: A directed graph D = (V,A), and an integer k.

Problem: Is there a set S of at most k vertices such that the induced

subgraph D[V \ S] is acyclic? (Such a set S is called a

feedback vertex set.)

First, observe that the consumer rationality problem is a special case of the directed

feedback vertex set problem: we have seen that the dataset is rationalizable if and only

if the preference graph is acyclic. Thus, the minimum feedback vertex set in the preference

graph D� clearly corresponds to the minimum number of data points that must be removed

to create a rationalizable data-set.

On the other hand, provided the number of commodities is large, dfvs is a special case

of the consumer rationality problem. Specifically, Deb and Pai [12] show that for

any directed graph D there is a data-set on m = n commodities whose preference graph is

D� = D; for completeness, we include the short proof of this result.

Lemma 3.1. [12] Given sufficiently many commodities, we may construct any digraph as a

preference graph.

Proof. Let D be any digraph on n nodes. We will construct n pairs in Rn ×Rn such that

D� ∼= D. Denote pi = (pi1, . . . , p
i
n), and set pii = 1, pij = 0 for j 6= i. Similarly, denote

xi = (xi1, . . . , x
i
n), and set xij = 1 if i = j, 0 if (i, j) ∈ D, and 2 if (i, j) /∈ D. We then have,

pi · xi = 1, pi · xj = 0 if we want an arc from i to j, and pi · xj = 2 if we do not want an

arc, as desired.
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It follows that any lower and upper bounds on approximation for (the optimization version

of) dfvs immediately apply to (the optimization version of) the consumer rationality

problem. The exact hardness of approximation for dfvs is not known. The best upper bound

is due to Seymour [36] who gave an O(log n log log n) approximation algorithm. With re-

spect to lower bounds, the directed feedback vertex set problem is NP-complete [28].

Furthermore, as we will see in Section 3.2, the consumer rationality problem is at least

as hard to approximate as vertex cover. It follows that dfvs problem cannot be ap-

proximated to within a factor 1.36 [13] unless P = NP . Also, assuming the Unique Games

Conjecture [30], the minimum directed feedback vertex set cannot be approximated to within

any constant factor [23, 37].

Lemma 3.1 shows the equivalence with directed feedback vertex set applies when the

number of commodities is at least the size of the data-set. However, Deb and Pai [12] also

show that for an m-commodity market, there exists a directed graph on O(2m) vertices that

cannot be realised as a preference graph. This suggests that the hardness of the consumer

rationality problem may vary with the quantity of goods. Indeed, we now prove that this is

the case.

§3.2 Two-Commodity Markets and the Vertex Cover Problem

We begin by outlining the basic approach to proving polynomial solvability for two goods. As

described, the consumer rationality problem is a special case of dvfs. For two goods,

however, rather than considering all directed cycles, it is sufficient to find a vertex hitting

set for the set of digons (directed cycles consisting of two arcs). The resulting problem can
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be solved by finding a minimum vertex cover in a corresponding auxiliary undirected graph.

The vertex cover problem is, of course, itself hard [13]. But we prove that the auxiliary

undirected graph is perfect, and vertex cover is polytime solvable in perfect graphs.

So, our first step is to show that it suffices to hit only digons. Specifically, we prove that every

vertex-minimal cycle in the revealed preference graph D� is a digon. This fact corresponds

to the result that for two goods the Weak Axiom of Revealed Preference is equivalent to the

Generalised Axiom of Revealed Preference. This equivalence was noted by Samuelson [35]

and formally proven by Rose [33] in 1958; for a recent structurally motivated proof see [25].

For completeness, and to illustrate some of the notation and techniques required in this

paper, we present a short geometric proof here.

We begin with the required notation. Let x = (x1, x2) ∈ R2, and define

x↘ := {(y1, y2) ∈ R2 : y1 ≥ x1, y2 ≤ x2} ,

i.e. the points which lie “below and to the right” of x in the plane. Define x↖, x↗ and x↙

similarly. In addition, define x↘↘ x↖↖, x↗↗ and x↙↙ by replacing the inequalities with strict

inequalities. Furthermore, if ` is a line in the plane of non-positive slope which intersects

the positive quadrant, we say a point lies below ` if it lies in the same closed half-plane as

the origin. For each data pair (pi,xi), we define `i to be the line through xi perpendicular

to pi. Hence, in our setting xi � xj if and only if xj lies below `i. Note that, if xi � xj,

then we may not have xj ∈ x↗↗i since pi is non-negative.

Lemma 3.2. [33] For two commodities, every minimal cycle is a digon.
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Proof. Let Ck = {x0,x1, . . . ,xk−1}, listed in order, be a vertex-minimal directed cycle in

D�. Suppose, for a contradiction, that k ≥ 3. By minimality, the cycle Ck is chordless,

therefore, xi � xj if and only if j = i + 1 (mod k). (Henceforth, we will often assume

without statement that indices are taken modulo k. Furthermore, “left” will stand for the

negative x direction.) Without loss of generality, suppose xi is the leftmost bundle – or one

of them. Since xi � xi+1, we have that xi+1 must fall in x↘i . We claim that `i must be

steeper than `i+1. To see this, suppose this is not true. Then, as shown in Figure 3.2.1(a),

`i+1 must intersect the line `i strictly to the left of xi. If not, xi+1 � xi. Now xi+2 lies under

`i+1 but not under `i, but this implies that xi+2 lies strictly to the left of xi as illustrated.

This gives the desired contradiction. Hence, `i must be steeper than `i+1. This situation is

xi

xi+1

xi+2

`i`i+1

(a)

xj

xj+1

xj+2

`j+1

`j

(b)

Figure 3.2.1: Leftmost 2-commodity bundles on a cycle.

illustrated in Figure 3.2.1(b) where we set j = i. We claim the following:

Claim 3.1. Suppose xj+1 ∈ x↘j and `j is steeper than `j+1, then we must have that xj+2 ∈

x↘j+1 and that `j+1 is steeper than `j+2.

As shown in Figure 3.2.1(b), because `j is steeper than `j+1, we must have xj+2 ∈ x↘j+1. It

remains to show that `j+1 is steeper than `j+2. Suppose not, then, since xj+1 must fall above

`j+2, the (highlighted) point where `j and `j+1 meet must also fall above `j+2. Thus, the
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region which falls above both `j and `j+1 cannot intersect the region below `j+2. Therefore,

there is no valid position for xj+3. Consequently, `j+1 must be steeper than `j+2, as desired.

Hence, by induction, for every 0 ≤ j ≤ k − 1, we have that `j is steeper than `j+1 and that

xj+1 ∈ x↘j , where our base case is j = i. However, this cannot hold for j = i− 1, since xi is

the leftmost point in the cycle, amounting to a contradiction, and refuting the assumption

that there existed a minimal cycle on at least 3 vertices.

Lemma 3.2 implies that a vertex set that intersects every digon will also intersect each

directed cycle of any length. Hence, to solve the consumer rationality problem for two

goods, it suffices to find a minimum cardinality hitting vertex set for the digons of D�. We

can do this by transforming the problem into one of finding a minimum vertex cover in an

undirected graph. Recall the vertex cover problem is:

VERTEX COVER

instance: Given an undirected graph G = (V,E) and an integer k.

problem: Is there a set S of at most k vertices such that every edge

has an endpoint in S?

The transformation is then as follows: given the directed revealed preference graph D� we

create an auxiliary undirected graph G�. The vertex set V (G�) = V (D�) so the undirected

graph also has a vertex for each bundle xi. There is an edge (xi,xj) in G� if and only if xi

and xj induce a digon in D�. It is easy to verify that a vertex cover in G� corresponds to

a hitting set for digons of D�.

Let’s see some simple examples for the auxiliary graph G�. First consider Figure 3.2.2(a),
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where bundles are placed on a concave curve. Now every pair of vertices xi and xj induce a

digon in D�. Thus G� is an undirected clique. Now consider Figure 3.2.2(b). The vertices

on the left induce a directed path in D�; the vertices along the bottom also induce a directed

path in D�. However each pair consisting of one vertex on the left and one vertex on the

bottom induce a digon in D�. Thus G� is a complete bipartite graph.

(a) A Complete Graph (b) A Complete Bipartite Graph (c) K2 ∪K2

Figure 3.2.2: Examples of the Auxiliary Undirected Graph.

§3.3 Auxiliary Graphs in 2-Commodity Market are Perfect Graphs

An undirected graph G is perfect if the chromatic number of any induced subgraph is equal

to the cardinality of the maximum clique in the subgraph. In 1961, Berge [7] made the

famous conjecture that an undirected graph is perfect if and only if it contains neither an

odd length hole nor an odd length antihole. Here a hole is a chordless cycle with at least

four vertices. An antihole is the complement of a chordless cycle with at least four vertices.

Berge’s conjecture was finally proven by Chudnovsky, Robertson, Seymour and Thomas [9]

in 2006.

Theorem 3.1 (The Strong Perfect Graph Theorem [9]). An undirected graph is perfect if

and only if it contains no odd holes and no odd antiholes.
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There are many important classes of perfect graphs, for example, cliques, bipartitie graphs,

chordal graphs, line graphs of bipartite graphs, and comparability graphs.1 Interestingly,

we now show that the class of 2D auxiliary revealed preference graphs are also perfect. To

prove this, we will need the following geometric lemma, but first, we introduce the required

notation.

Lemma 3.3. Let {xi, xj, xk}, listed in order, be an induced path in the 2D auxiliary revealed

preference graph G�. If xi ∈ x↖j then xk ∈ x↖j . (Similarly, if xi ∈ x↘j then xk ∈ x↘j .)

Proof. Recall the assumption that the bundles distinct, that is, xi 6= xj for all i 6= j.

Because {xi, xj} is an edge in the auxiliary undirected graph G�, we know that xi � xj and

xj � xi. Therefore it cannot be the case that xi ∈ x↗↗j or xj ∈ x↗↗i . Thus, either xj ∈ x↖i

or xj ∈ x↘i , but not both. Similarly, because {xj, xk} is an edge in G�, either xk ∈ x↖j or

xk ∈ x↘j .

Now, without loss of generality, let xi ∈ x↖j . For a contradiction, assume that xk ∈ x↘j .

Hence, we have xj ∈ x↘i ∩ x↖k . Suppose xj lies strictly below the line `i,k through xi and

xk. But then we cannot have both xj � xi and xj � xk. This is because the line `j must

cross the segment of `i,k between xi and xk if it is to induce either of the two preferences.

Thus, the line `j separates xi and xk and, so, at most one of bundles can lie below the line.

This is illustrated in Figure 3.3.1(a).

On the other hand, suppose xj lies on or above the line `i,k through xi and xk. Now we know

that xi � xj. This implies that xi � xk, as illustrated in Figure 3.3.1(b). Furthermore,

we know that xk � xj which implies that xk � xi. Thus {xi, xk} is an edge in G�. This

1 By the (Weak) Perfect Graph Theorem [31], the complements of these classes of graphs are also perfect.
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xi

xj xk
`j

`′j

`i,k

(a) xj below `i,k

xi
xj

xk

`i

`k

`i,k

(b) xj above or on `i,k

Figure 3.3.1: Induced path on three vertices.

contradicts the fact that {xi, xj, xk} is an induced path.

Lemma 3.4. The 2D auxiliary revealed preference graph G� contains no odd holes on at

least 5 vertices.

Proof. Take a hole Ck = {x0,x1, . . . ,xk−1}, listed in order, where k ≥ 5 is odd. For any

0 ≤ i ≤ k − 1, the three vertices {xi−1,xi,xi+1} induce a path in G�. Consequently, by

Lemma 3.3, either both xi−1 and xi+1 are in x↖i or both xi−1 and xi+1 are in x↘i . In the

former case, colour xi yellow. In the latter case, colour xi red. Thus we obtain a 2-coloring

of Ck. Since k is odd, there must be two adjacent vertices, xi and xi+1, with the same colour.

Without loss of generality, let both vertices be yellow. Thus, xi+1 is x↖i and xi is in x↖i+1.

This contradicts the distinctness of xi and xi+1.

We remark that the parity condition in Lemma 3.4 is necessary. To see this consider the

example in Figure 3.3.2 which produces an even hole on six vertices. Specifically, the only

mutually adjacent pairs are the (xi,xi+1) pairs, with indices taken modulo 6.
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x1

x2

x3

x4
x5

x6

Figure 3.3.2: Construction for C6

Lemma 3.5. The 2D auxiliary revealed preference graph G� contains no antiholes on at

least 5 vertices.

Proof. Note that the complement of an odd hole on five vertices is also an odd hole. Thus,

by Lemma 3.4, the graph G� may not contain an antihole on five vertices.

Next consider an antihole C̄k = {x0,x1, . . . ,xk−1}, listed in order, with k ≥ 6. The neigh-

bours in C̄k of xi, for any 0 ≤ i ≤ k−1, are Γi = {xi+2,xi+3, . . . ,xi−2}. We claim that either

every vertex of Γi is in x↖i or every vertex of Γi is in x↘i . To see this note that (xi+2,xi+3)

is not an edge, and therefore {xi+2,xi,xi+3} is an induced path in G�. By Lemma 3.3,

without loss of generality, both xi+2 and xi+3 are in x↖i . But {xi+3,xi,xi+4} is also an

induced path in G�. Consequently, as xi+3 is in x↖i , Lemma 3.3 implies that xi+4 is in x↖i .

Repeating this argument through to the induced path {xi−3,xi,xi−2} gives the claim.

Now consider the three vertices x0,x2 and x4. Since k ≥ 6 these vertices are pairwise

adjacent in C̄k. Without loss of generality, by the claim, Γ0 is in x↖0 . Thus, x2 and x4 are

in x↖0 . However x0 is in Γ2 ∩ Γ4. Thus every vertex in Γ2 is in x↘2 and every vertex in Γ2 is

in x↘4 . Hence, x4 is in x↘2 and x2 is in x↘4 , a contradiction.

Lemmas 3.4 and 3.5 together show, by applying the Strong Perfect Graph Theorem, that
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the auxiliary undirected graph is perfect.

Theorem 3.2. The 2D auxiliary revealed preference graph G� is perfect.

A Polynomial Time Algorithm in 2-Commodity Markets. In classical work, Grötschel,

Lovász and Schrijver [20, 21] show that the vertex cover problem in a perfect graph can

be solved in polynomial time via the ellipsoid method.

Theorem 3.3. [20] The vertex cover problem is solvable in polynomial time on a perfect

graph.

But by Theorem 3.2, the auxiliary undirected graph is perfect. Since the consumer ratio-

nality problem for two commodities corresponds to a vertex cover problem on this auxiliary

undirected graph, we have:

Theorem 3.4. In a two-commodity market, the consumer rationality problem is solv-

able in polynomial time.

A Combinatorial Algorithm in 2-Commodity Markets. In his external report on the

initial submission of this thesis, Sergey Norin pointed out that one can show these auxiliary

graphs are actually comparability graphs using only Lemma 3.3. A comparability graph is a

graph obtained from a partially ordered set P as follows: Let P be a set of elements, and <

be a relation on the elements of P which is acyclic and transitive. Construct a graph G on

the ground set P by connecting any elements which are comparable.

Theorem 3.5. The 2D auxiliary revealed preference graph G� is a comparability graph.
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Proof. We will construct an orientation of the edges of the auxiliary graph, and then show

that this orientation represents a partial order on the vertices.

Let {x1,x2} be an edge of G�. As argued above, we either have x1 ∈ x↘2 or x2 ∈ x↘1 , but

not both, as we have assumed that points are distinct. Orient the edge from x1 to x2 if

x1 ∈ x↘2 . We claim that repeating this for every edge constructs a transitive relation.

Consider any x1, x2, x3 for which we have constructed arcs (x1,x2) and (x2,x3). This would

imply that G� contained the edges {x1,x2} and {x2,x3}. However, we have x1 ∈ x↘2 and

x3 ∈ x↖2 . By Lemma 3.3, this implies that the auxiliary graph also contained an {x1,x3}

edge, and it must be oriented (x1,x3). Thus, the orientation of the edges forms a transitive

relation, as desired.

It is known that comparability graphs are perfect, which would give us our desired result.

However, it is also known that the vertex cover problem on comparability graphs of n

vertices reduces to a network-flow problem on a network of 2n+2 nodes. Both of these results

are outlined in [32]. The network-flow reduction provides a straightforward combinatorial

algorithm which is much simpler to implement than the ellipsoid-method algorithm provided

in Theorem 3.3.

§3.4 3-Commodity Markets and Oriented Disk Graphs

We have shown that for two commodities, the consumer rationality problem can be solved

in polynomial time. We now prove the problem is NP-complete if there are three (or more)

commodities by presenting a reduction from planar 3-sat. The proof has three parts: first
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we transform an instance of planar 3-sat to an instance of vertex cover in an associated

undirected gadget graph. Second, we show that a vertex cover in the gadget graph corre-

sponds to a directed feedback vertex set in a directed oriented disc graph. Finally, we prove

that every oriented disc graph corresponds to a preference graph in a three-commodity mar-

ket. Consequently, we can solve planar 3-sat using an algorithm for the three-commodity

case of the consumer rationality problem.

We begin by defining the class of oriented-disc graphs. Let {x1, . . . , xn} be points in the

plane and let {B1, . . . , Bn} be closed discs of varying radii such that Bi contains xi on

its boundary. We call this collection of points and discs an oriented-disc drawing. Given

a drawing, we construct a directed graph D = (V,A) on the vertex set V = {x1, . . . ,xn}.

There is an arc from xi to xj in D if xj, j 6= i, is contained in the disc Bi. A directed graph

that can be built in this manner is called an oriented-disc graph.

x1

x2x3

x1

x2x3

Figure 3.4.1: An oriented disc drawing and its corresponding oriented disc graph.

An example is given in Figure 3.4.1. The oriented-disc drawing is shown on the left and the

the resulting oriented disc graph, a directed cycle on 3 vertices, is shown on the right. (We

remark that, for enhanced clarity in the larger figures that follow, the boundary circles are

drawn half-dotted.) Note that, even if the discs have uniform radii, the resulting oriented-

disc graphs need not be symmetric – that is, (xi,xj) can be an arc even if (xj,xi) is not.

This is due to the fact that xi lies on the boundary, not at the centre, of its disc Bi. We
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now start by proving the third part of the reduction: every oriented disc graph corresponds

to a preference graph in a three-commodity market.

Lemma 3.6. Every oriented-disc graph corresponds to a preference graph induced by con-

sumer data in a three-commodity market.

Proof. Let D be any oriented-disc graph. We wish to build a three-commodity data set

whose preference graph is D. Recall that the plane is homomorphic to the 2-dimensional

sphere minus a point. Moreover, the inverse of the stereographic projection is a map from the

plane to a sphere which preserves the shape of circles; see, for example, [14]. This motivates

us to attempt to draw the points and discs on the unit sphere centered at (1, 1, 1) ∈ R3. To

do this, we scale the oriented-disc drawing appropriately and embed it in a small region on

the “underside” of the sphere, that is, around the point where the inwards normal vector is

(1, 1, 1). An example of this, where the oriented-disc graph is the directed 3-cycle, is shown

in Figure 3.4.2(a).

We now need to create the corresponding collection of consumer data. Let {x1, . . . , xn} be

the n points of some oriented-disc drawing of D embedded onto the underside of the sphere.

Note that the intersection of a sphere and a plane is a circle. Furthermore, a plane through a

point on the sphere will create a circle containing that point. Thus we may select the xi to be

the bundles chosen by the market and we may choose pi such that the plane with normal pi

that passes through xi intersects the sphere exactly along the boundary of the embedding of

the disc Bi. An example is shown in Figure 3.4.2(b). Because pi is non-negative it points into

the sphere. Therefore, xi is revealed preferred to every point on the inside of the embedding

of Bi; it is not revealed preferred to any other point on the sphere. Hence, the preference
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graph D� is isomorphic to the original oriented-disc graph, as desired.

(a) (b)

Figure 3.4.2: A 3-cycle embedded on a sphere section, and a disc on a sphere.

Now, recall the first part of the reduction: we wish to transform an instance of planar

3-sat to an instance of vertex cover in an associated undirected gadget graph. Our

gadget graph is based upon a network used by Wang and Kuo [44] to prove the hardness

of maximum independent set in undirected unit-disc graphs. However, we are able to

simplify their non-planar network by using an instance of planar 3-sat rather than the

general 3-sat. This simplification will be useful when implementing the second part of the

reduction.

Let ϕ be an instance of planar 3-sat with variables u1, . . . , un and clauses C1, . . . , Cm.

Recall that ϕ is planar if the bipartite graph Hϕ consisting of a vertex for each variable,

a vertex for each clause, and edges connecting each clause to its three variables, is planar.

The associated, undirected, gadget graph Gϕ is constructed as shown in Figure 3.4.3. For

each clause C = (ui ∨ uj ∨ uk), add a 3-cycle to the graph whose vertices are labelled by the

appropriate literals for the variables ui, uj and uk. We call these the clause gadgets. For

each variable ui, add a large cycle of even length whose vertices are alternatingly labelled

as the literals ui and ūi. We call these the variable gadgets. Finally, add an edge from each
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variable in the clause gadgets to some vertex on the corresponding variable gadget with the

opposite label – we choose a different variable vertex for each clause it is contained in.

. . .

. . .

. . .

. . .

. . .

. . .

ū1
u2

u3

u1
ū2

u3

ū3

u3

ū2

u2

ū1

u1

u3

ū3

u2

ū2

u1

ū1

u1 variable gadget

u2 variable gadget

u3 variable gadgetC
1
cl
au
se

ga
dg
et

C
2
clause

gadget

Figure 3.4.3: The gadget graph Gϕ for ϕ = (ū1 ∨ u2 ∨ u3) ∧ (u1 ∨ ū2 ∨ u3).

The next lemma is equivalent to the result shown by Wang and Kuo [44].

Lemma 3.7. [44] The planar 3-sat instance ϕ is satisfiable if and only if Gϕ has vertex

cover set of size at most 2m + 1
2

∑n
i=1 ri, where ri is the number of vertices in the variable

gadget’s cycle for ui.

Proof. Suppose ϕ is satisfiable. Take any satisfying assignment, and let U be the set of

literals which take true values in the assignment, i.e. the literal “ui” if the variable ui was

assigned true, and the literal “ūi” if the variable ui was assigned false. Let Ū be the

remaining literals. Now, every vertex in a variable gadget of Gϕ whose label is in Ū will be

selected to be in the vertex cover. In total this amounts to 1
2

∑n
i=1 ri vertices, and these cover

every edge in the variable gadgets of Gϕ. Next consider the clause gadgets of Gϕ. We must

select two vertices of each clause gadget to cover the edges of the 3-cycle. This amounts to

2m vertices. Since we have a satisfying assignment and we chose the nodes corresponding to

Ū in the variable gadgets, each clause gadget must have at least one incident edge covered
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by the variable gadgets’ selected vertices. Hence, selecting the other two vertices will cover

all incident edges to the clause gadgets, and all edges of the gadget’s cycle. Thus we have a

vertex cover with 2m+ 1
2

∑n
i=1 ri nodes. For example, in Figure 3.4.3, if we set all variables

to false, one possible vertex cover is the set of vertices labelled with non-negated literals,

i.e. those coloured in white. (Note, clearly, the set of white vertices will not typically form

a vertex cover in the gadget graph.)

Conversely, suppose we have a vertex cover C containing at most 2m+
∑n

i=1
ri
2

vertices. Each

variable gadget must contribute at least ri
2

vertices, otherwise we cannot cover every edge in

its cycle. Each clause gadget must contribute at least two vertices, or one edge in the 3-cycle

will be uncovered. Hence, C contains exactly 2m +
∑n

i=1
ri
2

vertices. The 1
2
ri vertices from

the variable gadget for ui corresponds either to the set of all vertices with negated labels or

to the set with non-negated labels, otherwise there is an uncovered edge in the cycle. This

induces a truth assignment; set ui to true if all the “ūi”-labelled vertices are selected, and

false if the “ui”-labelled vertices are selected. Furthermore this is a satisfying assignment.

To see this note that as C covers all edges, the unselected vertex in each clause is a literal

which evaluates to true by the selected assignment.

Hence, to solve for the satisfiability of ϕ, it suffices to test whether Gϕ admits a vertex cover

with at most 2m+ 1
2

∑n
i=1 ri vertices. It remains to show the second of the three parts of the

reduction. That is, we need to show that this vertex cover problem in the undirected

gadget graph can be solved by finding a minimum directed feedback vertex set in an oriented-

disc graph Dϕ. The basic idea is straightforward (albeit that the implementation is intricate).

The oriented-disc graph Dϕ will contain a digon for each edge in some Gϕ. However, it will

also contain a collection of additional arcs. The key fact will be that these additional arcs
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form an acyclic subgraph of Dϕ. Thus every cycle in Dϕ must induce a digon. Consequently,

a minimum directed feedback vertex set need only intersect each digon to ensure that every

cycle is hit. As argued previously, hitting the underlying graph formed by the digons of Dϕ

corresponds to selecting a vertex cover in Gϕ, as desired. We now formalise this argument.

Lemma 3.8. For every instance ϕ of planar 3-sat, there exists an oriented-disc graph

Dϕ on which the directed feedback vertex set problem is equivalent to the vertex

cover problem on Gϕ.

Proof. We prove this by explicitly constructing the oriented-disc drawing. Recall the disc

graph Dϕ should contain a digon for each edge in Gϕ. To do this, we begin with sufficiently

a large planar drawing of Hϕ, the planar bipartite network associated with ϕ. At each clause

vertex, we place an oriented-disc construction for the clause gadget. This construction, along

with its resulting graph, is shown in Figure 3.4.4. The figure shows a clause gadget and a

section of each of the neighbouring three variable gadgets to which it is attached. Observe

from the figure that, as claimed, the set of arcs created in Dϕ which are not in a digon, form

an acyclic subgraph of Dϕ.

It remains to construct the large cycles for the variable gadgets, and connect them to the

clause gadgets. However, parts of these cycles are already included in the clause gadgets.

Thus, it suffices to join these cycle segments together via paths of digons. This can be

done via the oriented disc constructions shown in Figure 3.4.5. To draw the cycle for some

variable, say ui, we note that ui’s vertex in the planar network Hϕ shares and edge with

every clause gadget which connects to ui’s gadget. Hence, as illustrated in Figure 3.4.6, we

may follow along the edges of Hϕ to construct the cycle. For example, in the figure, the
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Figure 3.4.4: Oriented-disc construction of the clause gadget, and its resulting graph.

(a) Straight line (b) Curve

Figure 3.4.5: Paths of bidirected edges as oriented-disc drawings.

u1 u2
u3

u4

C1

C3C2

Figure 3.4.6: Gϕ as an oriented-disc graph.
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variable cycle for u1 (highlighted) follows the topology of the edges incident to u1’s vertex,

and joins the clause gadgets (circled) to one another.

Observe that constructions in Figure 3.4.5 produce paths of digons in Dϕ, where every arc

produced is contained in a digon. It follows that the only arcs in Dϕ that are not in digons

are in the neighbourhoods of the clause gadgets and, as we have seen, these are acyclic. But

then, to hit all the cycles in Dϕ, it suffices to hit all the digons, which, in turn, corresponds

to a vertex cover in Gϕ, completing the proof.

This completes all the steps in the reduction and we obtain:

Theorem 3.6. The consumer rationality problem is NP-complete for a market with at

least 3 commodities.
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Chapter 4

Conclusion

This thesis aimed to study two relaxations of the axioms of revealed preference, one additive

and one combinatorial. We have shown the additive rule is efficiently computable in the

auction setting, which led us to study implementations of the rule, and variations thereof.

Further research is necessary to determine whether these variations have their intended

effects in empirical settings.

The combinatorial relaxation, however, is NP-hard in the standard setting (unless the market

has only 2 commodities), and therefore it is unlikely to be a good candidate for an activity

rule. We leave open the problem of finding the approximation complexity of this problem: a

reasonable degree of approximation may turn out to be efficiently computable. Furthermore,

the problem is NP-hard in the worst case, but it may not be too difficult to compute for real-

world data sets and simulated auctions. Further study is required to determine whether such

a rule may be worth considering in practice. Such implementation questions are, however,

outside of the scope of this thesis.

In showing that the combinatorial problem was efficiently computable in a 2-commodity

market, we showed that undirected auxiliary graphs form a class of perfect graphs. It is our

belief that this is a previously unknown class of perfect graphs, and it may be interesting to

characterise this class. This also leads to the problem of characterising the class of preference

graphs feasible for a market of given dimension. Both these problems are left open.
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