
Characteristics Mapping Methods
and Application to Adaptive Moving Mesh

Xi Yuan Yin

Master of Science

Department of Mathematics and Statistics

McGill University

Montreal,Quebec

August 2016

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Science in Mathematics and Statistics

c©Xi Yuan Yin 2016



ACKNOWLEDGEMENTS

I would like to thank my supervisors Prof. Jean-Christophe Nave and Prof.

Linan Chen for their guidance and support. I also thank the Natural Sciences and

Engineering Research Council of Canada for its financial support.

The new ideas in Chapters 3 and 4 were developed with Prof. Nave. The mesh

management method in Chapter 5 was developed with Prof. Nave and Prof. Chen.

ii



ABSTRACT

The characteristics mapping method has many applications in numerical math-

ematics, notably in the simulation of moving surfaces. There are several versions

of this method, each adapted to different problems. In this thesis, we present char-

acterisitcs mapping methods used to evolve implicit and parametric surfaces. We

also attempt to implement a method designed for the cases where these two types of

surfaces are simulated at the same time. Finally, we propose an application of the

characteristics mapping methods to the mesh adaptivity problem. This is used to

control the quality of the simulations for parametric surfaces.
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ABRÉGÉ

La méthode de l’application des caractéristiques a plusieurs utilitées en

mathématiques numériques, notamment en simulation de surfaces mobiles. Il ex-

iste plusieurs versions de cette méthode, chacune adaptée à de différentes problèmes.

Dans cette thèse, nous présentons des méthodes de l’application des caractéristiques

utilisées pour l’évolution des surfaces implicites et paramétriques. Nous tentons

aussi d’implémenter une méthode conçue pour les cas où ces deux types de surfaces

évoluent en même temps. Finalement, nous proposons une utilisation des méthodes

de l’application des caractéristiques pour résoudre le problème du maillage adaptatif.

Celle-ci a pour but de contrôler la qualité des simulations des surfaces paramétriques.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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CHAPTER 1
Introduction

Simulations of moving surfaces are useful in many real life applications. For

instance, problems in computer graphics often involve finding the position and shape

of a surface that changes under the influence of a time dependent velocity field.

Images and videos of objects such as cloth can be generated this way by computer.

In fluid dynamics, the interface between two non-mixing fluids, such as oil and water,

is a surface that evolves with the fluid flows. Solving for the movement of the interface

is essential for simulating the behavior of these fluids.

The behaviors of these physical systems are very difficult to simulate directly:

we simply do not have the computing power and memory to keep track of every

molecule in play. Instead, the macroscopic features of these surfaces are captured

and approximated by mathematical equations, notably partial differential equations

(PDEs). These equations model the change of interesting quantities such as position,

velocity, curvature etc. throughout the simulation. Once formulated mathematically,

these equations are then discretized and solved numerically on a computer, providing

the information we need to reproduce the simulated surfaces at different times.

There are many algorithms used for this task. Depending on the surfaces we

are given, some methods work better than others. Here we will mainly focus on

Characteristics Mapping, a method that performs surface evolution by integrating

the characteristic ODEs of an advection equation. Furthermore, we will propose a
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particle management method based on Characteristics Mapping. Particle manage-

ment will allow us to control the way information is stored on the surface, thus to

improve the efficiency of the simulations.

In this thesis, we will first review in Chapter 2 some preliminary mathematical

concepts. Chapter 3 discusses the theory behind Gradient Augmented Level Set

and Characteristics Mapping methods and provides an analysis of convergence. We

then apply these methods to surface evolution and carry out numerical experiments

in Chapter 4. In Chapter 5, we design a particle management method applied to

our problem. Finally, Chapter 6 contains some final remarks and propose potential

future research on the subject of surface advection.
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CHAPTER 2
Preliminaries

In this chapter, we will introduce a few mathematical concepts that we will use

throughout the paper. We will give a quick overview of finite difference approxi-

mation for derivatives, polynomial interpolation, numerical ODE solvers, numerical

integration via Gaussian quadrature, implicit and explicit definitions for surfaces,

and characteristic equations for PDEs.

Finite Difference Schemes

Finite difference schemes are used to approximate derivatives of continuously

differentiable functions. We can obtain these by writing out the Taylor expansion of

a function f at a given point x0. For a k+ 1 times continuously differentiable (Ck+1)

function f : R→ R, we have the following expansion:

f(x) =
k∑
i=0

f (i)(x0)

i!
(x− x0)i +Rk(x) (2.1)

where Rk(x) is the remainder term and is of order O((x− x0)k+1).

We can approximate derivatives of f at x0 by evaluating the function at points

xj = x0 + αj∆x for some chosen αj’s and ∆x small. Using these values, we can

set up formulæ or “finite difference schemes” of the form f (m)(x0) ≈ ∑s
j=1 βjf(xj)

to approximate the derivatives. One can solve for the appropriate coefficients βj by

expanding f(xj) around x0 as in (2.1). For instance, f ′(x0) can be approximated by

a centered difference with α1 = −1, β1 = −1
2∆x

, α2 = 1 and β2 = 1
2∆x

:
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f ′(x0) =
f(x0 + ∆x)− f(x0 −∆x)

2∆x
+O(∆x2) (2.2)

This scheme can be generalized to higher dimensions to approximate the gradient

vector of a given function.

Also, for the second derivative, we can use

f ′′(x0) =
f(x0 + ∆x)− 2f(x0) + f(x0 −∆x)

∆x2
+O(∆x2) (2.3)

this scheme can be used to approximate the Laplacian operator ∆ =
∑d

i=1 ∂
2
xi

in

d-dimensional space.

In some cases we work on a rectangular domain equipped with a mesh grid,

for instance, the square [0, 1]2 with grid points (n/N,m/M) for n = 0, 1, . . . , N and

m = 0, 1, . . . ,M . Oftentimes, the function values of f will be provided at the grid

points. Then we can find derivatives of f using “cell-based finite difference”. We

will choose ∆x,∆y to be the distance between adjacent grid points. The derivatives

at a grid point will be approximated by a finite difference of the function values at

neighboring grid points.

In 2 dimensions, we will often use the 4-points stencil to approximate the gradi-

ent of a function f . Let ~xi,j = (xi, yj) be the grid points of a regular grid. We have

uniform spacing in each dimension, that is, xi+1−xi = ∆x∀i and yj+1− yj = ∆y ∀j.

We denote fi,j = f(~xi,j). Then, we have that the gradient and the second order
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mixed partial are approximated by:

fx(~xi,j) =
fi+1,j+1 + fi+1,j−1 − fi−1,j+1 − fi−1,j−1

4∆x
+O(∆x2)

fy(~xi,j) =
fi+1,j+1 − fi+1,j−1 + fi−1,j+1 − fi−1,j−1

4∆y
+O(∆y2)

fxy(~xi,j) =
fi+1,j+1 − fi+1,j−1 − fi−1,j+1 + fi−1,j−1

4∆x∆y
+O(∆x∆y)

Polynomial Interpolation

The main purpose of polynomial interpolation is to provide a polynomial approx-

imation to a regular enough function f everywhere over some given interval I. The

usual construction of the interpolating polynomial, called interpolant, involves evalu-

ating the function and/or its derivatives at given distinct sample points {xi}ni=0 ∈ I.

For instance, the Lagrange interpolant is given by Lf (x) =
∑n

i=0 f(xi)li(x). This

interpolation uses degree n basis polynomials li(x) =
∏n

j=0
x−xj
xi−xj . These satisfy

li(xj) = δi,j, where δi,j denotes the Kronecker delta; it is equal to 1 iff i = j and

0 otherwise. It can be shown that the Lagrange polynomial is the unique polyno-

mial of degree n that matches the value of f at every sample point. However, this

method suffers from some accuracy issues, notably the Runge effect where higher

order polynomials exhibit large oscillations between sample points.

In this paper, we work with d−dimensional rectangular domains obtained from

Cartesian product of intervals. These are equipped with mesh grids of uniform spac-

ing in each dimension. Since we have a large number of evenly spaced grid points,

we opt for piecewise polynomial interpolations instead of high degree Lagrange poly-

nomials. These interpolants are piecewise defined on an interval I = [a, b] with
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sample points a = x0 < x1 < . . . < xn = b; they are polynomial in each subinterval

[xi, xi+1]. The interpolants will match the function values and derivatives of the in-

terpolated function at the grid points, and may be chosen to satisfy some continuity

and differentiability conditions.

For instance, the interpolation method we will use in most of this paper is the

Hermite Cubic spline. It is piecewise cubic. In 1 dimension, it matches the function

and its derivative at the grid points. In higher dimensions, it matches the gradient

and all partial derivatives with at most one differentiation in each variable. The

resulting interpolant is therefore C1 on the whole domain.

The following definitions and notation for the Hermite Cubic interpolant are

taken from [8]. We will use this notation in Chapter 3.

Definition 2.0.1. The four Hermite basis function w0
0, w

1
0, w

0
1 and w1

1 are cubic

polynomials [0, 1]→ R defined as follows:

w0
0(x) = 1− 3x2 + 2x3 w1

0(x) = 3x2 − 2x3 (2.4)

w0
1(x) = x3 − 2x2 + x w1

1(x) = x3 − x2

These basis functions have the property that ∂βwvα(u) = δαβδuv, for α, β, u and

v ∈ {0, 1}. That is, each basis function only contributes a value of 1 to either function

or derivative value at exactly one of the two endpoints.

We can scale this interpolant from [0, 1] to an interval [xi, xi+1] with length ∆xi.

x ∈ [xi, xi+1] can be mapped back to the unit interval by x 7→ x−xi
∆xi

. Therefore, given
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a C1 function f(x), we have that

p(x) = f(xi)w
0
0

(
x− xi
∆xi

)
+ f(xi+1)w1

0

(
x− xi
∆xi

)
+ f ′(xi)w

0
1

(
x− xi
∆xi

)
∆xi

+ f ′(xi+1)w1
1

(
x− xi
∆xi

)
∆xi for x ∈ [xi, xi+1] (2.5)

gives us a piecewise polynomial interpolation that matches f and its derivative at

all grid points.

This interpolation can be generalized in d dimensions using a tensor product of

the basis functions.

Definition 2.0.2. The d−cubic Hermite basis functions are polynomials [0, 1]d ⊂

Rd → R obtained from a tensor product of d Hermite basis defined in (2.4). We

denote by ~x the d−dimensional vector ~x = (x(1), x(2), . . . , x(d)) where x(k) is the value

of the kth coordinate.

W ~v
~α(~x) =

d∏
k=1

wv
(k)

α(k)(x
(k)) (2.6)

We write ∂
~β = ∂β

(1)

1 ∂β
(2)

2 . . . ∂β
(d)

d for the mixed partial derivative given by the

vector ~β ∈ {0, 1}d. As before, ~u,~v ∈ {0, 1}d, that is ~u is a corner of the hypercube.

Then, from the properties of Hermite basis functions, we have that

∂
~βW ~v

~α(~u) =
d∏

k=1

δα(k)β(k)δu(k)v(k) = δ~α~βδ~u~v (2.7)

where δ~a~b = 1 if a(k) = b(k) for every k = 1, 2, . . . d and 0 otherwise.

This interpolant is defined on the unit hypercube [0, 1]d and can also be scaled

to an arbitrary hypercube of side lengths h.
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The domains we work with are equipped with a d−dimensional uniform mesh

grid. We will use the vector ~i to index the grid points. These are given by ~x~i =

(x
(1)
i1
, x

(2)
i2
, . . . , x

(d)
id

), x
(k)
ik

is the ik
th grid point in the kth dimension. We say that a

point ~x lies in the ~ith cell if x(k) ∈ [x
(k)
ik
, x

(k)
ik+1] for k = 1, 2, . . . , d. We will use the

following notation to refer to the corners of the cell which contains a point ~x. Let

~v ∈ {0, 1}d. For ~x a point in the cell ~i, we denote by ~x[~v] the grid point given by

x
(k)
[~v] = x

(k)
ik+vk

or in short, ~x[~v] = ~x~i+~v. For instance, ~x[~0] is the corner which is lowest

in every dimension, i.e. the “cell floor” for ~x, and ~x[~1] is the highest corner, the “cell

ceiling”. In 2 dimensions, they correspond respectively to the lower left and upper

right corners of the cell containing ~x.

Definition 2.0.3. The d−cubic Hermite interpolant for a function f at position ~x

is given as follows:

H[~x, f̂ ] =
∑

~v,~α∈{0,1}d
f~v~αh

|~α|W ~v
~α

(
~x− ~x[~0]

h

)
(2.8)

Here, f~v~α refers to the ∂~α mixed partial derivative of the function f evaluated at

the cell corner ~x[~v]. We denote by f̂ the array of function and derivative values f~v~α

at grid points for all ~v, ~α ∈ {0, 1}d. Also, |~α| =
∑
αi and ~x − ~x[~0] is the position of

~x relative to the ~x[~0] grid point of the cell containing ~x.

Two immediate consequences of this definition is that H is linear in f̂ , and it

follows from (2.7) that

∂~αH[~x[~v], f̂ ] = f~v~α = ∂~αf(~x[~v]) (2.9)

It is known that for f a C2 function, this interpolant can approximate f(~x) to

order O(h4) and the gradient ∇f(~x) to O(h3) everywhere in the domain. Further
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details on this interpolant and its application to the advection problem can be found

in [8].

Numerical Solutions to ODEs

The ordinary differential equations (ODEs) we deal with in this paper are simple

first order equations of the form

d

dt
Y (t) = v(Y, t) (2.10)

Y (0) = Y0

We want to approximate the solution Y (t) at discrete times steps ∆t apart.

That is, we want to find Y (n∆t) for n an integer. Integrating both sides of the

equation with respect to t, we get that the solution must satisfy

Y (t+ ∆t) = Y (t) +

∫ t+∆t

t

v(Y (τ), τ)dτ (2.11)

Hence, approximating the integral on the right gives us a way to find Y (n∆t) by

iteratively applying (2.11) starting from Y (0). Different schemes used to approximate

the integral give rise to a variety of ODE solvers.

For instance, the left endpoint approximation
∫ t+∆t

t
v(Y (τ), τ)dτ = v(Y (t), t)∆t+

O(∆t2) gives the forward Euler method y(t+ ∆t) = y(t) + v(y(t), t)∆t, which has a

local truncation error (LTE) of O(∆t2). Here, the lowercase y denotes the numerical

approximation. Similarly, the right endpoint rule gives the implicit Euler method

y(t+ ∆t) = y(t) + v(y(t+ ∆t), t+ ∆t)∆t. This method also has an LTE of O(∆t2).

However, implicit methods are slower and more complicated numerically: since the

unknown appears on both sides of the equality, an implicit equation needs to be
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solved. In both cases, if we want the solution Y (T ) at some fixed time T , the num-

ber of times step we take is T/∆t. It can then be shown that the global truncation

error (GTE) |Y (T )− y(T )| is of order O(∆t) for both methods.

The trapezoidal rule offers better accuracy on the time integration, however,

like implicit Euler, it is an implicit method and is slower to solve on a computer.

Instead, we approximate the right endpoint by first using a forward Euler step. This

gives us Heun’s method (also known as improved Euler):

y(t+ ∆t) = y(t) +
1

2

(
v(y(t), t) + v(ỹ, t+ ∆t)

)
∆t (2.12)

where ỹ = y(t) + v(y(t), t)∆t. This method has global accuracy of order O(∆t2).

In this paper, we will use a family of ODE solvers known as Runge-Kutta meth-

ods. The Heun’s method above is one of the second order explicit methods in the

Runge-Kutta family. We will also use a third and a fourth order explicit methods

given below. These are abbreviated as RK3 and RK4.

y(t+ ∆t) = y(t) + ∆t
s∑
i=1

biki (2.13)

ki = v

(
y(t) +

i−1∑
j=1

ai,jkj∆t, t+
i−1∑
j=1

ai,j∆t

)

Equation (2.13) is the general form of an explicit Runge-Kutta method. For

RK3, we selected b1 = 1/6, b2 = 2/3, b3 = 1/6, a2,1 = 1/2, a3,1 = −1 and a3,2 = 2.

For RK4, we chose b1 = 1/6, b2 = 1/3, b3 = 1/3, b4 = 1/6, a2,1 = 1/2, a3,1 = 0,

a3,2 = 1/2, a4,1 = a4,2 = 0 and a4,3 = 1.
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Gaussian Quadrature

Gaussian quadrature rules are a family of numerical methods used to accurately

approximate a definite integral. The general n-points quadrature rule estimates the

integral of f(x) over [−1, 1] using n function evaluations. The approximation has

the form: ∫ 1

−1

f(x) ≈
n∑
i=1

wif(xi) xi ∈ [−1, 1] (2.14)

The quadrature rules we use in this paper are the Gauss-Legrendre quadratures.

The weights wi and sample points xi are chosen such that all polynomials of degree

2n− 1 or less are integrated exactly by formula (2.14). This means that scaling the

quadrature rule to the interval [x − ∆x, x + ∆x], the method achieves O(∆x2n+1)

accuracy for C2n([x−∆x, x+ ∆x]) functions:∫ x+∆x

x−∆x

f(x)dx = ∆x
n∑
i=1

wif(x̃i) +O(∆x2n+1) for x̃i = x+ xi∆x (2.15)

This can be generalized to 2 dimensions where the sample points are coordinate-

wise the same as in the 1 dimensional case. The algorithm in Chapter 5 was imple-

mented with a 4 points quadrature rule which corresponds to a 2 points quadrature in

1 dimension. We used the sample points (xi, yj) =
(
± 1√

3
,± 1√

3

)
with equal weights

wi,j = 1. For general quadrilaterals, the sample points are mapped from the [−1, 1]2

square to the quadrilateral using a linear map, and the weights are scaled by area.

Implicit and Explicit Definitions for Surfaces

In this paper, we use two ways to define surfaces: by explicit parametrization

and by implicit level set functions.
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A parametric surface S is represented as the image of a subset of R2 by a

parametrization function ~P : U ⊂ R2 → S ⊂ R3. ~P is given by: x = P1(u, v),

y = P2(u, v), z = P3(u, v) where (u, v) ∈ U ⊂ R2 are parameters. The parametriza-

tion function ~P not only provides the location of the surface, it also contains some

useful information about the surface geometry. The Jacobian of the parametrization,

denoted ∇~P gives us a pushforward of the tangent space at (u0, v0) in U to ~P (u0, v0)

on S; it can be used to map a vector in the parametric space to a vector in the tangent

space of S and vice-versa. The first fundamental form of the surface with respect to

this parametrization is also relevant. We will mainly use the coefficients E = ~Pu · ~Pu,

G = ~Pv · ~Pv and F = ~Pu · ~Pv to compute the area element A =
√
EG− F 2. This

is used to find the surface area corresponding to the image of a subset R ⊂ U . We

have that the area of ~P (R) is given by:

Area(~P (R)) =

∫
R

√
EG− F 2 dudv (2.16)

This will be useful when defining a mesh density for redistributing sample points

on a surface in Chapter 5.

We can also define a surface implicitly without relying on a parametric space.

Indeed, we can define the surface as the level set of some function Φ : R3 → R. For

instance, the zero level set of Φ1(x, y, z) =
√
x2 + y2 + z2 − 1 is the unit sphere in

R3. Note that for a same surface, these level set functions are not unique: we can

also define the unit sphere as the zero level set of Φ2(x, y, z) = (
√
x2 + y2 + z2 − 1)2.

However, numerically speaking, Φ1 is a much better choice. Indeed, a small pertur-

bation or error in Φ2 can result in drastic changes for the surface represented. We
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see that even for small ε > 0, the zero level set of Φ2 + ε is the empty set whereas

the level set of Φ1 + ε is a sphere of radius 1− ε. Similarly, Φ2 − ε gives two spheres

of radius 1±√ε, Φ1 − ε gives a sphere of radius 1 + ε.

For the reasons above, we require that the gradient of the level set function

be nonzero at any point on the level set. Furthermore, it can be shown via Taylor

expansion that an ε perturbation in the function value causes an error on the order

of ε/|∇Φ| on the location of the level set. Hence, we would like |∇Φ| to be nearly

constant on the surface so that numerical error doesn’t produce drastic changes in

the shape of the surface, as the example below will demonstrate. Another reason why

we require |∇Φ| to be constant is that in some applications such as fluid dynamics,

we need to compute an ε neighborhood or “tube” around the surface. A constant

|∇Φ| is necessary to ensure that this tube has uniform width.

Here we demonstrate a case where |∇Φ| is not constant along the surface in a

2 dimensional case: consider the function Φ(x, y) = (x2 + x+ 0.275)(
√
x2 + y2 − 1)

whose zero level set is the unit circle. Figure 2–1 shows the level set {~x : Φ(~x) = c}

at c = −0.01, 0 and 0.01. Clearly, this is not a good level set function to represent

the unit circle since a slight perturbation results in very inaccurate curves.

As we can see, the ideal level set function for representing a surface S should

satisfy the following:

Φ(~x) = 0 ⇐⇒ ~x ∈ S (2.17)

|∇Φ(~x)| = 1 ∀~x ∈ S
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Figure 2–1: Effect of Gradient for Level Set Functions

One way of finding a good level set function is by solving an Eikonal equation,

i.e. extending the gradient constraint in equation (2.17) to the whole space. This

gives us the signed distance function Φ, with |Φ(~x)| = d(~x, S). Φ is set to be negative

on one side of the surface and positive on the other.

These requirements make finding a good level set function difficult if not impos-

sible in some cases. For instance, non-orientable surfaces cannot be represented this

way since there is no continuous choice of normal vectors on the surface. Suppose Φ

is a continuously differentiable level set function and |∇Φ| is non-zero and constant

on the surface, then we have that the unit normal is ~n = ∇Φ/|∇Φ|. However, this

choice of normal vector is continuous, hence we have a contradiction.

Characteristic Equations for PDEs

A more complete and rigorous treatment of characteristic equations can be found

in Chapter 3 of Evans [5]. The following is a summary:
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The method of characteristics is a technique used to solve a first order PDE by

transforming it into a family of ODEs which we can solve.

Let the PDE be given by F (Du, u, ξ) = 0, where F is the left-hand side of the

equation involving Du, u and ξ. ξ ∈ Ω and u : Ω → R is the solution. Here Du

denotes the vector of all first order partial derivatives (gradient) including the time

derivative if applicable. We can see F as a function from Rd × R× Ω to R where d

is the dimension of Ω (hence also the dimension of the space containing Du).

The method of characteristics seeks to find families of parametrized curves in the

space Rd ×R×Ω such that each point on the curve solves F = 0. For this purpose,

we let s be the parameter and write ξ = ξ(s), z(s) = u(ξ(s)) and p(s) = Du(ξ(s)).

We look for curves (p(s), z(s), ξ(s)) that satisfy F (p(s), z(s), ξ(s)) = 0. This gives

us a way to associate a value of u to each ξ0 by finding the curve and the parameter

s0 for which ξ0 = ξ(s0), i.e. u(ξ0) = u(ξ(s0)) = z(s0). The parametrization for the

curve (p, z, ξ) is obtained by solving the characteristic ODEs whose initial values are

given by the boundary conditions of the PDE:

p′(s) = −∂ξF (p, z, ξ)− ∂zF (p, z, ξ)p(s)

z′(s) = ∂pF (p, z, ξ) · p(s)

ξ′(s) = ∂pF (p, z, ξ)

For the case of linear homogeneous PDEs of the form

F (Du, u, ξ) = b(ξ) ·Du(ξ) + c(ξ)u(ξ) = 0

the characteristic equations simplify to:
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z′(s) = −c(ξ(s))z(s) (2.18)

ξ′(s) = b(ξ(s))

In this paper, we are especially interested in the advection equation:

Φt(~x, t) + ~v(~x, t) · ∇Φ(~x, t) = 0 (2.19)

Φ(~x, 0) = 0

We can rewrite (2.19) in the previous formulation as:

F (DΦ,Φ, ξ) =
(
~v(ξ) 1

)T ·DΦ(ξ) = 0 (2.20)

where ξ denotes the vector
(
~x t

)T
. In the context of (2.18), c(ξ) = 0 and

b(ξ) =
(
~v(ξ) 1

)T
. Then, the characteristic equations are:

z′(s) = 0 (2.21)

ξ′(s) =
(
~v 1

)T
(2.22)

This gives us that s = t+t0 for t0 a constant and d~x
dt

= ~v(~x, t). Also, dΦ
ds

= dΦ
dt

= 0,

that is, Φ is constant with time along ~x(t). In summary:

d

dt
Φ(~x(t), t) = 0 (2.23)

d

dt
~x(t) = ~v(~x(t), t)

This tells us that Φ(~x1, t1) = Φ(~x0, t0) as long as ~x(t0) = ~x0 and ~x(t1) = ~x1.
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CHAPTER 3
Gradient Augmented Level Set and Characteristics Mappings Methods

Oftentimes, in problems that involve moving fluids such as air or water, we are

interested in the behavior of objects under the influence of the fluid flows. Examples

include ink in water, smoke in air or air bubbles in water. These are few of many

situations where surface advection can be used to produce numerical simulations.

There are two main approaches to the advection problem: Eulerian and Lagrangian.

The difference lies in the reference frame we use at a given time in the advection.

The Eulerian approach uses the current time space as its reference frame, whereas

the Lagrangian approach uses the initial space.

The classical analogy is as follows: using the Eulerian frame is like sitting on

the river banks and observing the water at the same place as time advances. The

Lagrangian frame would correspond to selecting a piece or “parcel” of water and

follow it down the river along the flow: the reference frame is the initial space.

For simulating moving surfaces under some velocity flow, one of these two ap-

proaches can be more appropriate depending on the way the surface is defined. For

surfaces defined implicitly as a level set, the Eulerian specification is more natural.

This gives rise to Level Set Advection methods. For surfaces defined explicitly via

parametrization, we use the Lagrangian approach.

The implicit methods represent the surface as the zero contour of a scalar level

set function defined in the ambient space. Standard level set methods advect the
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level set function using the linear advection equation [9]. Improvements on overall

accuracy and subgrid structures representation were proposed in [8]. It is important

to note that while implicit methods work well for closed orientable surfaces, their

application to surfaces with boundaries or non-orientable surfaces is problematic.

On the other hand, explicit methods represent the surface parametrically. Math-

ematically speaking, we are evolving the parametrization function so that it repre-

sents the moving surface as time advances. Numerically, a collection of sample points

on the surface are selected to represent its shape and position. We simply trace out

the trajectories of these sample points in time to produce the simulation. These

methods are fast and straightforward, and unlike level set methods, they perform

equally well on all surfaces.

For problems where multiple surfaces are evolved under the same velocity field,

we may wish to use both implicit and explicit methods at the same time. A version

of characteristics mapping (CM) methods was introduced in [8] which, using implicit

definition of surfaces, allows for the advection of multiple surfaces with essentially the

same computational complexity as standard gradient augmented level set (GALS)

methods. In this chapter we extend the CM methods to parametric surfaces. This

extension, in conjunction with the CM method in [8] allows us to evolve multiple

surfaces, both implicit and explicit, at the same time.

In our setup, the simulated surface is subject to a time dependent velocity field

~v : Rd × R→ R. We let each ~x0 ∈ S0 be the initial condition of the following initial

value problem:
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d

dt
~X(~x0, t0, t) = ~v( ~X(~x0, t0, t), t) (3.1)

~X(~x0, t0, t0) = ~x0

These equations essentially say that ~X is the position of a particle at time t if

it was at position ~x0 at time t0. The notation doesn’t assume that t > t0 and is also

used to describe positions of particles in the past. The map ~X(·, t1, t2) : Rd → Rd

have the special structure that for adjacent time intervals [t1, t2] and [t2, t3], (t1, t2, t3

completely arbitrary), a composition of maps gives a new map for [t1, t3]:

(
~X(·, t2, t3) ◦ ~X(·, t1, t2)

)
(~x) = ~X( ~X(~x, t1, t2), t2, t3) = ~X(~x, t1, t3) (3.2)

This also implies that every map has an inverse:

~X(·, t1, t2) ◦ ~X(·, t2, t1) = ~X(·, t2, t1) ◦ ~X(·, t1, t2) = id(·) (3.3)

We see that the map ~X encodes the motion generated by ~v, hence, we use it to

define the moving surface.

Definition 3.0.1. Given velocity field ~v(~x, t) and an initial surface S0 at time t0,

the moved surface S(t) at time t is defined as:

S(t) =
{
~X(~x0, t0, t)

∣∣~x0 ∈ S0

}
(3.4)

3.1 Mathematical Setup for the GALS method

Level set methods use a level set function Φ0 : Rd → R to represent a (d − 1)-

manifold S0 ⊂ Rd as its zero contour. The classical level set method consists of
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finding S(t) by advecting the level set function Φ through the following PDE:

Φt + ~v · ∇Φ = 0 (3.5)

Φ(~x, 0) = Φ0(~x)

From Chapter 2, we know that equation (3.5) is a linear advection equation. It

has the property that the solutions to equation (3.1) are exactly the characteristic

curves of the PDE. That is, Φ is constant along the curve ~X(~x0, t0, t) parametrized

by t. This implies that given S0 = {~x ∈ Rd|Φ0(~x) = 0}, we have

S(t) = {~x ∈ Rd|Φ(~x, t) = 0} (3.6)

This is the definition of the surface we use in the level set advection context.

The GALS method improves on the classical one by adding an equation to (3.5)

specifying the evolution of the gradient ∇Φ:

Φt + ~v · ∇Φ = 0 (3.7)

(∇Φ)t + ~v · ∇(∇Φ) = −∇Φ · ∇~v

Φ(~x, 0) = Φ0(~x)

The second equation in (3.7) is obtained by simply applying the gradient oper-

ator on both sides of (3.5). However, given that d~x
dt

= ~v(~x, t), (3.7) can be rewritten

as

d

dt
Φ(~x(t), t) = 0 (3.8)

d

dt
(∇Φ(~x(t), t)) = −∇Φ · ∇~v
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This formulation is useful for the numerical implementation of the method.

Although mathematically speaking, the gradient equation is redundant, it can be

used to improve numerical accuracy. Indeed, the gradient of Φ allows us to construct

a Hermite Cubic interpolant which can provide better approximations.

To build the numerical scheme, we will use the fact that Φ stays constant along

characteristic curves. Essentially, the method will update the value of Φ at time

t2 > t1 using Φ at t1 through the following equations:

Φ(~x, t2) = Φ( ~X(~x, t2, t1), t1) (3.9)

∇Φ(~x, t2) = ∇Φ( ~X(~x, t2, t1), t1)−
∫ t2

t1

∇Φ · ∇~vdt (3.10)

The function evaluations will be performed by interpolation and the integral will be

approximated using one step of an ODE solver.

3.1.1 Numerical Implementation of GALS

The formulation and notations we use in this section are sumarized from [8],

more details on GALS methods can be found there.

We will approximate the level set function at discrete times steps n∆t where

∆t is the step size and n is integer. We denote by φ(~x, n∆t) the approximation to

Φ(~x, t) at t = n∆t. This will be obtained by iteratively applying equation (3.9) with

t1 = n∆t and t2 = (n+ 1)∆t.

The approximation of the level set function is constructed using an approxima-

tion of Φ at grid points. We denote by φ̂(n∆t) the array of estimated function and

derivative values of Φ at the grid points. We define the following approximate level
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set function using the Hermite Cubic interpolant (see definition 2.0.3):

φ(~x, n∆t) = H[~x, φ̂(n∆t)] (3.11)

The estimated level set function φ(~x, t) can be advected by updating the grid

values φ̂(t) at discrete time steps n∆t. Given φ̂(n∆t) we can find φ̂((n+ 1)∆t) using

the characteristic equations stated in (3.9). Since Φ is constant along characteristic

curves, for a grid point ~xg, we have Φ(~xg, (n+ 1)∆t) = Φ(~xfoot, n∆t), where ~xfoot =

~X(~xg, (n+1)∆t, n∆t). That is, ~xfoot is the position at time n∆t of the curve passing

through ~xg at time (n+ 1)∆t; we simply trace the velocity for ∆t backwards in time

starting from ~xg. Hence, we discretize this by the following update rule:

φ(~xg, (n+ 1)∆t) = H [̊~xg, φ̂(n∆t)] (3.12)

where ~̊xg is the numerical approximation of ~xfoot.

The position ~̊xg can be found by integrating the velocity field backwards in time

for a ∆t step starting from ~xg using an ODE solver such as Runge-Kutta 3.

Once we found the foot point ~̊xg we can proceed to updating the gradient values

of φ̂ by solving the second equation in (3.8). This is done by integrating −∇φ · ∇~v

for a time step ∆t forward in time starting from ∇φ̊ = ∇φ(̊~xg, n∆t).

The higher order mixed partials in φ̂((n + 1)∆t) can be obtained by cell based

finite difference. We would then have enough data to define the Hermite cubic

interpolant for φ(·, (n+ 1)∆t).
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Updating ∇φ directly using the velocity field allows us to easily build the Her-

mite cubic interpolant. Furthermore, the extra information provided by the gradient

of the velocity enables us to better represent subgrid structures [8].

3.2 Characteristics Mapping Method

Consider the maps ~X(·, t0, t) introduced in equation (3.1). Since for a fixed initial

~x0, these correspond exactly to the characteristic curves of the advection equation,

we call them characteristics maps.

~X(·, t0, t1) : Rd → Rd ~X(·, t0, t1) : ~x0 7→ ~x1 (3.13)

We can think of ~X as a mapping that identifies a particle at position ~x0 at time

t0 with the particle at ~x1 at t1. It encodes the result of the transport generated by ~v

between t0 and t1. Hence, using the fact that Φ(~x, t) is constant along characteristics,

we get the following alternative expression for Φ:

Φ(~x, t) = Φ( ~X(~x, t, 0), 0) = Φ0( ~X(~x, t, 0)) (3.14)

∇Φ(~x, t) = ∇Φ0

∣∣
~X(~x,t,0)

· ∇ ~X(~x, t, 0)

where the second line is obtained simply by applying the gradient operator to line 1.

As we can see, equation (3.14) is the formula for Φ(~x, t) obtained by the method

of characteristics. This means that for the level set method, we can simply compose

the initial Φ0 with the characteristics map to obtain the advected function.

The benefit of solving for this characteristics map ~X from time 0 to t is obvious:

we can represent multiple initial surfaces with different level set functions and obtain
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the corresponding advected level set functions by composition with ~X. The compu-

tation of the map needs to be done only once and can be used for multiple surfaces.

Furthermore, this approach allows for multiscaling using dynamic grid sizes as shown

in [7]. Essentially, one can compute the characteristics maps on small subintervals of

time during which the map can be properly represented on a coarse grid. The final

map is obtained by composition of the individual small interval maps.

For computational purposes, we distinguish two characteristics maps: a forward

and a backward map defined as below:

~XB(~x, t) = ~X(~x, t, 0) the backward map (3.15)

~XF (~x, t) = ~X(~x, 0, t) the forward map

The backward map traces back along the characteristic curve from ~x at time t

to the initial starting position ~X(~x, t, 0) of the curve. The forward map finds the

corresponding position on the curve at time t given a starting position ~x at time 0.

We have the following equations for the time derivatives of these maps and their

Jacobian matrices:

~XB
t +∇ ~XB · ~v(~x, t) = 0 (3.16)

(∇ ~XB)t +∇∇( ~XB) = −∇ ~XB · ∇~v(~x, t)

As with the GALS method, we rewrite the second equation as d
dt
∇ ~XB = −∇ ~XB ·∇~v.
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For the forward map, we have:

~XF
t = ~v( ~XF , t) (3.17)

(∇ ~XF )t = ∇~v( ~XF , t) · ∇ ~XF

From now on, we denote by ~χB(~x, t) and ~χF (~x, t) the numerical approximations

for the backward and forward maps.

The numerical implementation for the backward map is essentially the same

as the one used for the advection of the level set function in GALS. We first find

the foot point by pulling back the position of grid points from t + ∆t to t using

~xfoot = ~X(~xg, t+∆t, t). The map value is then updated by evaluating ~XB(~xfoot, t) =

~XB(~xg, t+ ∆t). The Jacobian matrix is updated by approximating the integral

∇ ~XB(~xg, t+ ∆t) = ∇ ~XB(~xfoot, t)−
∫ t+∆t

t

(
∇ ~XB · ∇~v

) ∣∣∣∣
( ~X(~xfoot,t,τ),τ)

dτ (3.18)

It is shown in [8] that using RK3 for finding the foot point and RK2 to evaluate

the integral for the Jacobian yields a third order convergent method.

We also propose in this thesis an implementation of the forward map using

Runge-Kutta time stepping and Hermite Cubic spacial interpolation. We can see

from (3.17) that in order to approximate ~XF (~x, t) at grid points, no evaluation of

~XF at off-grid points are required; indeed, no function is composed with (to the right

of) ~XF . Unlike the backward map, ~XF and ∇ ~XF can simply be pushed forward

using an ODE solver. We will use RK4 to integrate ~XF forward in time and RK3 to

integrate the Jacobian matrix in the following expressions:
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~XF (~xg, t+ ∆t) = ~XF (~xg, t) +

∫ t+∆t

t

~v( ~XF (~xg, τ), τ)dτ (3.19)

∇ ~XF (~xg, t+ ∆t) = ∇ ~XF (~xg, t) +

∫ t+∆t

t

∇~v( ~XF (~xg, τ), τ) · ∇ ~XF (~xg, τ)dτ

From this, we obtain numerical approximations ~χF (~xg, n∆t) and ∇~χF (~xg, n∆t)

at grid points ~xg. Cell based finite difference on ∇~χF can be used to evaluate

higher order derivatives. This allows us to construct the Hermite Cubic interpolation

~χF (~x, n∆t) = H[~x, ~̂χF (n∆t)]. The next section will provide a proof that ~XF can be

approximated to O(h4) and ∇ ~XF to O(h3) on the whole domain in the 3 dimensional

case.

The two maps can be run independently at the same time as described in the

following pseudo-code. We will try in the next section to couple the two maps in

order to improve accuracy. Here is a pseudo-code for the CM methods:
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Algorithm 1 Forward and Backward Characteristics Maps

Inputs: ~v, ~xg,∆t, T (here ~xg refers to the collection of grid points of the mesh grid)

Outputs: ~χF (·, T ), ~χB(·, T )

1: Initialize ~χF (~xg, 0) = ~χB(~xg, 0) = ~xg, ∇~χF (~xg, 0) = ∇~χB(~xg, 0) = Id and t = 0

2: while t < T do

3: ~χF (~xg, t+ ∆t)← ~χF (~xg, t) +
∫ t+∆t

t
~v(~χF (~xg, τ), τ)dτ by RK4.

4: ∇~χF (~xg, t + ∆t) ← ∇~χF (~xg, t) +
∫ t+∆t

t
∇~v(~χF (~xg, τ), τ) · ∇~χF (~xg, τ)dτ by

RK3.

5: ~̊xg ← ~xg +
∫ t
t+∆t

~v( ~X(~xg, t+ ∆t, τ), τ)dτ by RK3.

6: ~χB(~xg, t+ ∆t)← H [̊~xg, ~̂χB(t)] by Hermite cubic interpolation.

7: ∇~χB(~xg, t+ ∆t)← ∇H [̊~xg, ~̂χB(t)]−
∫ t+∆t

t

(
∇~χB · ∇~v

) ∣∣
( ~X (̊~xg ,t,τ),τ)

dτ by RK2.

8: ~χF (·, t+ ∆t)← H[·, ~̂χF (t+ ∆t)]

9: ~χB(·, t+ ∆t)← H[·, ~̂χB(t+ ∆t)]

10: ∆t← min(T − t,∆t), t← t+ ∆t

11: end while

3.3 Analysis of Convergence in 3 Dimensional Case

3.3.1 Forward Map

Given the Hermite cubic approximation

H[~x, f̂ ] =
∑

~v,~α∈{0,1}3
f~v~αW

~v
~α

(
~x− ~x[0]

h

)
h|~α|

For notation’s sake, we will abbreviate
~x−~x[0]
h

by [~x]h. This is the position of ~x

after mapping the cell containing it to the unit cube.
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Define the error at grid points as follows:

Ei = max
|~α|=i

~v∈{0,1}3

|∂~αF (~x[~v])− f~v~α|

Let e0(~x) = |F (~x) − H[~x, f̂ ]| the error in function value at an off-grid point ~x

and let e1(~x) = max|~α|=1 |∂~αF (~x)− ∂~αH[~x, f̂ ]|, the error in first order derivatives.

Lemma 3.3.1. We have the following bounds for e0(~x) and e1(~x) for arbitrary ~x:

e0(~x) ≤ c0h
4+
∑3

i=0Eih
i. e1(~x) ≤ c1h

3+
∑3

i=0 3Eih
i, where c0 and c1 are the Hermite

cubic error constants for F and ∇F .

Proof.

e0(~x) = |F (~x)−H[~x, f̂ ]| = |F (~x)−H[~x, F̂−(F̂−f̂)]| = |F (~x)−H[~x, F̂ ]−H[~x, F̂−f̂ ]|

≤ |F (~x)−H[~x, F̂ ]|+ |H[~x, F̂ − f̂ ]| (3.20)

This holds sinceH[~x, f̂ ] is linear in f̂ . We have the following bound for |H[~x, F̂ − f̂ ]|:

|H[~x, F̂−f̂ ]| =

∣∣∣∣∣∣
∑

~v,~α∈{0,1}3
(F ~v

~α − f~v~α)W ~v
~α([~x]h)h

|~α|

∣∣∣∣∣∣ ≤
3∑
i=0

∑
~v∈{0,1}3
|~α|=i

∣∣∂~αF ~v − f~v~α
∣∣ ∣∣W ~v

~α([~x]h)h
|~α|∣∣

≤
3∑
i=0

max
~v∈{0,1}3
|~α|=i

∣∣∂~αF ~v − f~v~α
∣∣ ∑
~v∈{0,1}3
|~α|=i

∣∣W ~v
~α([~x]h)h

|~α|∣∣ =
3∑
i=0

Eih
i
∑

~v∈{0,1}3
|~α|=i

∣∣W ~v
~α([~x]h)

∣∣ (3.21)

The interpolation error |F (~x)−H[~x, F̂ ]| for Hermite Cubics is known to be order

O(h4). Using Mathematica, we find that
∑

~v∈{0,1}3
|~α|=i

∣∣W ~v
~α(~y)

∣∣ ≤ 1 ∀~y ∈ [0, 1]3. Hence,
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from (3.20) and (3.21), we get that

e0(~x) ≤ |F (~x)−H[~x, F̂ ]|+
3∑
i=0

Eih
i = c0h

4 +
3∑
i=0

Eih
i

For |~β| = 1,
∑

~v∈{0,1}3
|~α|=i

∣∣∣∂~βW ~v
~α(~y)

∣∣∣ ≤ 3 ∀~y ∈ [0, 1]3, and we have the following

bound for e1:

e1(~x) ≤ |∂~βF (~x)− ∂~βH[~x, F̂ ]|+ |∂~βH[~x, F̂ − f̂ ]|

≤ c1h
3 +

3∑
i=0

Eih
i−1

∑
~v∈{0,1}3
|~α|=i

∣∣∣∂~βW ~v
~α([~x]h)

∣∣∣ ≤ c1h
3 +

3∑
i=0

3Eih
i−1

Theorem 3.3.2. The numerical approximation ~χF (~x, t) has global truncation error

of O(h4) with respect to the sup norm.

Proof. The grid values ~χF (~xg, t) and ∇~χF (~xg, t) are obtained by RK4 and RK3

respectively, they have global truncation error of order 4 and 3. In the context of

Lemma 3.3.1, E0 = O(h4) and E1 = O(h3). The higher order derivatives are obtained

by cell-based finite difference on the first order derivatives of ~χF . We lose an order of

convergence for every derivative we take, so E2 = O(h2) and E3 = O(h). Therefore,

we can obtain the statement of the theorem by applying Lemma 3.3.1.

3.3.2 Backward Map using the Gradient of the Forward Map

Based on the results we have for the convergence of the forward map, we are

also able to prove convergence of a modified method for the backward map. In this

modified method, we use the fact that the backward and forward characteristic maps
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compose to identity to find the gradient of the backward map. The inverse function

theorem implies that if ~X( ~X(~x, t0, t1), t1, t0) = ~x ∀~x, then

∇ ~X(·, t0, t1)

∣∣∣∣
~x

=
(
∇ ~X(·, t1, t0)

)−1
∣∣∣∣
~X(~x,t0,t1)

or simply

∇ ~XB(~x, t) = (∇ ~XF (·, t))−1

∣∣∣∣
~XB(~x,t)

Hence, if we define the approximate gradient of the backward map this way

then the error on ∇~χB(~x, t) is the same as the error on ∇~χF
∣∣
~χB(~x,t)

provided that

∇~χF is not ill-conditioned. In the implementation, this amounts to changing line 7

in Algorithm 1 to
(
∇~χF

∣∣
~χB

)−1

. We will show below that this gives an order O(h3)

method.

For notation, we let ~XB
n (~x) = ~XB(~x, n∆t) and let ~χBn be the corresponding

numerical approximation.

Let En
i be the error of the backward map on grid points defined as follows:

En
i = max

|~a|=i
~v∈{0,1}3

∣∣∣∂~a( ~XB
n )~v − (~χBn )~v~a

∣∣∣
Theorem 3.3.3. The numerical approximation ~χB(~x, t) has global truncation error

of O(h3) with respect to the sup norm.

Proof. We will show that En
0 = O(h3), En

1 = O(h3), En
2 = O(h2) and En

3 = O(h).

Given the characteristic maps at step n, suppose we have errors En
i for the

backward map, we will inductively derive a bound for En+1
i . Since

~XB
n+1(~xg) = ~XB

n (~xfoot) ≈ ~χBn (̊~xg)
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we have that

En+1
0 =

∣∣∣ ~XB
n (~xfoot)− ~χBn (̊~xg)

∣∣∣ ≤ ∣∣∣ ~XB
n (~xfoot)− ~XB

n (̊~xg)
∣∣∣ +

∣∣∣ ~XB
n (̊~xg)− ~χBn (̊~xg)

∣∣∣
(3.22)

Assuming that ~X ∈ C1, the first term in (3.22) can be bounded by some c0h
4

since |~xfoot − ~̊xg| ∝ h4. Lemma 3.3.1 allows us to bound the second term by c1h
4 +∑3

i=0E
n
i h

i. Hence, we set the upper bound on the error as:

En+1
0 ≤ ch4 +

3∑
i=0

En
i h

i (3.23)

The approximation to∇ ~XB
n+1(~xg) is obtained by evaluating the inverse of∇~χFn+1

at ~χBn+1(~xg). Assuming that numerical error from inverting ∇~χF is negligible, we use

the error bound for ∇~χFn+1 at ~χBn+1(~xg) as E1 bound for the backward map.

En
1 =

∣∣∣∇ ~XF
n ( ~XB

n (~xg))−∇~χFn (~χBn (~xg))
∣∣∣

≤
∣∣∣∇ ~XF

n ( ~XB
n (~xg))−∇ ~XF

n (~χBn (~xg))
∣∣∣+
∣∣∣∇ ~XF

n (~χBn (~xg))−∇~χFn (~χBn (~xg))
∣∣∣

≤ d0

∣∣∣ ~XB
n (~xg)− ~χBn (~xg)

∣∣∣+ en1
(
~χBn (~xg)

)
We had

∣∣∣ ~XB
n (~xg)− ~χBn (~xg)

∣∣∣ ≤ En
0 . Also, en1 is the error on the gradient of the

forward map at off-grid points. This is order 3 accurate by Theorem 3.3.2.

We get that En
1 ≤ d0E

n
0 +d1h

3, where d0 is the Lipschitz constant for ∇ ~XF and

d1 is the constant from the Hermite cubic interpolation in the forward map. En
2 and

En
3 are obtained by cell-based finite difference on En

1 so En
2 = En

1 /h + O(h2) and

En
3 = En

1 /h
2 +O(h2).
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From (3.23), we have the following rule for the evolution of E0 with n:

En+1
0 = ch4 +

3∑
i=0

En
i h

i ≤ ch4 + En
0 + 3hEn

1 = (1 + 3d0h)En
0 + (c+ 3d1)h4 (3.24)

We can convert (3.24) into the following:

En+1
0 ≤ (1 + 3d0h)nE1

0 + (c+ 3d1)h4 (1 + 3d0h)n − 1

3d0h

Taking n = t/h, we get the GTE result for the backward map:

GTE(t) ≤ (1 + 3d0h)t/hE1
0 + (c+ 3d1)h3 (1 + 3d0h)t/h − 1

3d0

≤ e3d0tE1
0 +

e3d0t − 1

3d0

h3(c+ 3d1)

where E1
0 comes from one step of RK3 which has error O(h4).
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CHAPTER 4
Application to Surface Evolution and Numerical Results

In this chapter, we will apply the backward and forward mapping methods to

surface evolution and show some numerical results.

The backward map is used as an Eulerian method tracking the surfaces through

the advected level set function. The forward map is a Lagrangian method that

represents the surface by tracing the trajectories of sample points. Recall the two

ways we used to define the time dependent moving surface S(t) in Chapter 3:

Given the initial surface S0 ⊂ Rd, we let S(t) = ~X(S0, 0, t) = ~XF (S0, t) for the

Lagrangian approach, and let S(t) = {~x ∈ Rd| ~X(~x, t, 0) = ~XB(~x, t) ∈ S0} for the

Eulerian approach. If ~X(·, 0, t) is a diffeomorphism then ~XF (·, t) =
(
~XB
)−1

(·, t)

and the two definitions are equivalent.

We will use the backward map for the Eulerian definition of S(t). This is done

by defining a function Φ0 : Rd → R such that S0 is exactly the zero level set of Φ0.

The criteria for a good choice of level set function are explained in the preliminaries

chapter.

In relation to the backward map, we have the following equivalences:

~x ∈ S(t) ⇐⇒ ~XB(~x, t) ∈ S0 ⇐⇒ Φ0( ~XB(~x, t)) = 0 ⇐⇒ Φ(~x, t) = 0 (4.1)

Hence, for the level set advection approach, we let S(t) = {~x ∈ Rd|Φ(~x, t) = 0}.
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For the Lagrangian approach, we will use a parametric definition of S0. Let

~P0 : Ω→ S0 ⊂ Rd be a parametrization of the surface. Ω is the (d− 1)-dimensional

parametric space, usually [0, 1]d−1. We then parametrize S(t) by the composition of

the forward map with ~P0:

~P (·, t) : Ω→ S(t) ⊂ Rd (4.2)

~P (·, t) = ~XF (~P0(·), t)

The Jacobian of both the backward and forward maps provide useful information

on the surface being evolved. The gradient of the level set function Φ(~x, t) is normal

to the surface at ~x ∈ S(t). Hence, we have that the normal of the surface S(t) at

any time is given by ∇Φ(~x, t) = ∇Φ0 ·∇ ~XB. Other quantities such as curvature can

also be obtained by analytic formulæ explained in [8].

For the forward map, ∇ ~XF gives the pushforward of the tangent space T~xS0 to

T ~X(~x,t)S(t). This allows us to easily relate the first fundamental form of S0 with that

of S(t).

The two methods each have their drawbacks. For the level set method, one main

disadvantage is the difficulty of finding appropriate level set functions Φ0 for certain

types of surfaces. When choosing level set functions, we prefer functions that are

smooth and change signs when crossing the surface. This facilitates the process of

solving for the zero contour. For non-orientable surfaces such as the Möbius strip,

it is impossible to meet both criteria since there is no continuous choice of normal

vector along the strip. Furthermore, even if we start with a good level set function
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with |∇Φ(~x, 0)| = 1 on its zero level set, there is no guarantee that after advection

to time t, the function Φ(~x, t) will maintain this property.

For the Lagrangian method with the forward map, the main problems are topol-

ogy changes and particle distribution. Unlike in the level set method where splitting

or merging of surfaces are naturally represented by the level set function, we need to

actively detect changes in topology in the forward map method. Particle manage-

ment is also an issue since initially well distributed sample points can be arbitrarily

clustered or scattered after some time. We will look into this in more details in the

next section.

In some cases, it might be useful to compute both maps at the same time. Sup-

pose we want to simulate the movement of an elastic sphere and a Möbius strip

embedded in the same ambient space and under the influence of the same veloc-

ity field. We can use an implicit definition for the sphere, and an explicit one for

the Möbius trip. Then at every time step, the image of the sphere at time t can

be reconstructed using the composition of the level set function with the backward

map. The Möbius strip can be obtained by composing the forward map with the

parametrization of the initial strip. Simulating these surfaces simultaneously is easy

since both the forward and backward maps are stored at the same times and on the

same grid, the two maps are updated at the same time.

We now present some numerical result we obtained using these methods. In the

3D simulations, we used the following velocity field ~v = (u, v, w) in the flat 3-torus

encoded as [0, 1]3 with periodic boundary conditions. Throughout the simulation, we
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assumed that this velocity is provided analytically at all times, hence we also have

access to the exact derivatives used to integrate the gradients of the maps.

u(x, y, z, t) = 2 cos

(
πt

2

)
sin2(πx) sin(2πy) sin(2πz) (4.3)

v(x, y, z, t) = − cos

(
πt

2

)
sin(2πx) sin2(πy) sin(2πz)

w(x, y, z, t) = − cos

(
πt

2

)
sin(2πx) sin(2πy) sin2(πz)

We carried out a few tests using this velocity field: figures 4–1 and 4–2 show

the results of simulations for surface evolution. Figures 4–3 to 4–5 show the results

of the convergence tests for the CM methods.

In the experiments, we simulated the evolution of a sphere and a Möbius strip.

We chose a sphere of radius 0.1 centered at (0.35, 0.35, 0.35) and a Möbius strip of

radius 0.1 and width 0.05 centered at (0.65, 0.65, 0.65). The sphere is defined as the

zero level set of Φ0(~x) = |~x− ~cs| − r, where r is the radius and ~cs is the center. The

parametrization of the strip is given by:

~X(u, v) = [R + u cos(
1

2
v)] cos(v) + cx (4.4)

~Y (u, v) = u sin(
1

2
v) + cy

~Z(u, v) = [R + u cos(
1

2
v)] sin(v) + cz

for u ∈ [−w/2, w/2] (w is width) and v ∈ [0, 2π]. cx = cy = cz = 0.65 and R = 0.1.

The forward and the backward maps are updated simultaneously at every time

step. We compose the backward map with Φ0 for the sphere to obtain the advected

level set function for some time t ∈ [0, 2]. We also compose the parametrization of
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the initial Möbius strip with the forward map to obtain a parametrization of the

evolved Möbius strip.

Figure 4–1 shows our results. For these tests, we used the remapping method

proposed in [7]. The computations are carried out on a coarse grid of 323, the maps

are regularly remapped on a fine grid of 1283 after which the coarse grid computations

are reinitialized.

We also compared the original backward maps with the modified method which

uses the analytic inverse of the Jacobian of the forward map, see figure 4–2. The

same sphere as above is used, however the maps are computed on a fixed 643 grid.

The level set function is still defined on a 1283 grid, and extra grid point values are

computed using the Hermite Cubic interpolation.

To test the accuracy of the CM method in the whole domain, we ran convergence

tests for the maps at various times between 0 and 2. The results are shown in

figures 4–3 to 4–5. We carried out the tests as follows: First, we randomly select

N points ~xk ∈ [0, 1]3. We also have m times t1, . . . , tm when we wish to test the

maps. For each of these points and for each time ti, we approximate the exact value

of ~XF (~xk, ti) = ~X(~xk, 0, ti) and ~XB(~xk, ti) = ~X(~xk, ti, 0) by integrating the following

ODEs from t = 0 to ti.

d

dτ
~y(τ) = ~v(~y(τ), τ) ~y(0) = ~xk (4.5)

d

dτ
~z(τ) = −~v(~z(τ), ti − τ) ~z(0) = ~xk

We have that ~y(ti) = ~XF (~xk, ti) and ~z(ti) = ~XB(~xk, ti). These ODEs are solved

using RK4 with a time step much smaller than the one used for the characteristics
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maps. The error from integrating the ODEs should be negligible compared to the

characteristics map errors. We used these as “exact solutions” to generate conver-

gence plots for the forward and backward maps. Figures 4–3 to 4–5b show our results

using 10000 uniformly randomly distributed test points at 20 equally spaced times

in [0, 2].

We can see from figure 4–5a that the backward map is asymptotically 3rd order

accurate and the forward map is 4th order. It is interesting to notice that the error of

the forward map is highest at t = 1, the middle of the simulation where distortions are

the biggest. However, this error decreases afterwards. One hypothesis consistent with

this observation is that the error is mainly due to the interpolation. Indeed, the grid

point values of the forward map at various time steps do not rely on interpolation.

They are simply solutions of the characteristic equations integrated in time using

Runge-Kutta methods. Furthermore, the velocity we used are very well-behaved and

a RK4 time integration for individual particle paths should be very precise. The error

at grid points should be small but increasing almost monotonically with time. The

off-grid points however depend on the interpolation. The error from interpolation can

grow as the interpolated function becomes less well-behaved. Indeed, even though

the velocity field is simple, the characteristics maps may accumulate large distortions

after a long time. The Lipschitz constants associated with the function change with

time and can affect the precision of the interpolant.

Figures 4–4 and 4–5b are error plots for the backward map using analytic inverse

of the Jacobian of the forward map. Although we provided a proof that this method

should have 3rd order convergence, figure 4–5b suggests that there are problems
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in the 2003 grid test. The reason why this happened isn’t clear. It could be due

to an error in the code. Another possibility is that additional error was introduced

when inverting the Jacobian of the forward map. The inverse was computed using an

analytic formula which wasn’t numerically optimal. If the Jacobian is ill-conditioned,

the matrix inversion can produce unexpected errors.

Furthermore, the limited number of test points might not capture the worst case

scenario in every test. In other words, the accuracy of the method for the coarse

grid cases could have been misrepresented. The actual maximum error in those cases

might be much higher and in line with that of the 2003 grid test.

We would need to carry out further tests and corrections on this method to

evaluate its performance. Indeed, even though there seems to be an increase in error

as we shrink the grid size, the absolute error is still smaller than that of the original

CM method. Furthermore, we can look at the convergence plot of the averaged

error (average taken over all test points). This can be viewed as an L1 error with

the integral carried out by Monte-Carlo integration using 10000 uniformly random

samples. We see in figure 4–5d that the modified method has better absolute accuracy

and exhibits the asymptotic order 3 earlier than the original. These tests offer some

evidence that the method is 3rd order convergent at least in L1 norm. However, this

is merely an indication that the method could be made to work; further research is

required to analyze this method.
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

(e) t = 2 (f) Another view of t = 1

Figure 4–1: Surfaces evolved simultaneously using the forward and backward maps.
Backward map for implicit definition and forward map for explicit definition.
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(a) CM, t = 1
(b) CM with inverse forward Jacobian,
t = 1

Figure 4–2: Surface Evolution using the Inverted Jacobian CM
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Figure 4–3: Original Gradient Augmented Characteristics Mapping Method: Evolu-
tion over time of the error in the forward (blue) and backward (red) maps for various
grid sizes.
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Figure 4–4: Modified Gradient Augmented Characteristics Mapping Method: Evolu-
tion over time of the error in the forward (blue) and backward (red) maps for various
grid sizes.
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Figure 4–5: Convergence plot for the forward and backward maps on Log10 scale
using maximum and averaged error over test points
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CHAPTER 5
Mesh Management

5.1 Introduction and Motivation

The forward characteristics mapping method, like most Lagrangian methods,

has the advantage of being able to track more general surfaces. However since the

surface is tracked using marker points, the distribution of these points on the surface

needs to be controlled. The goal of this section is to study numerical methods for

controlling the discrete representation of the moving surfaces optimally throughout

its evolution.

We will work under the following setup:

Denote by S(t) ⊂ Rd the surface of interest at some time t. We assume that

the initial surface is given by some parametrization ~P0 : Ω → S(0) ⊂ Rd where

Ω is the 2 dimensional parametric space. Under the framework of the Lagrangian

forward characteristics map, S(t) for t > 0 is given by the push-forward of S(0) by

the forward characteristics map ~XF . Recall the forward map is defined as follows:

∂t ~X
F = ~v( ~XF , t)

~XF (~x, 0) = ~x
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Then, we can write S(t) = ~XF (S(0), t). This naturally gives us a parametriza-

tion of the surface S(t):

~P (·, t) : Ω→ S(t) ⊂ Rd where ~P (·, t) = ~XF (~P0(·), t) (5.1)

We assume that at any time, the surface is tessellated using a mesh on Ω. That

is, let the mesh {Ai} be a partition of Ω, then S(t) = ∪i ~P (Ai, t). Usually, Ai’s are

taken to be triangles or squares. We can say that {Ai} is an equiareal mesh for S(t)

if the area of ~P (Ai, t) is the same for all i. This is called the equidistribution or

equiareal principle.

A more thorough formulation of the problem can be found in the book Adaptive

Moving Mesh Methods by Huang and Russell [6]. Here, we will summarize a few

main concepts we need for designing our method in sections 5.2 and 5.3.

The equidistribution condition can be formulated as follows:

Let M(·, t) be the first fundamental form associated with the parametrization

~P (·, t). Then the area of ~P (Ai, t) is given by:

αi(t) =

∫
Ai

√
det(M)d~x

Finding an equidistributing mesh then boils down to finding a mesh {Ai} such

that αi is the same for all i at a given time t. This would yield equal area cells on

the surface S(t). A stronger additional condition would be to require that the Ai’s

be equilateral with respect to the metric M . This would yield P (Ai, t)’s that are

equilateral on S(t).
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In general, if the geometry of the surface is not the only concern, we will work

with a chosen metric tensor M called a monitor function. An M -uniform mesh is a

mesh {Ai} which satisfies the equidistribution and equilateral properties with respect

to the metric M . The goal would be to find a mesh that is nearly M -uniform.

There are three main families of methods for adapting the mesh: mesh subdivi-

sion or refinement, p-adaptivity for finite elements and moving mesh methods.

Mesh refinement mainly focuses on equidistribution. The general idea is to sub-

divide a cell Ai into smaller cells whenever αi is above some threshold. For instance, a

2 dimensional region can be subdivided using a quadtree implementation [11]. These

methods have the advantage of being fast and robust but tend to be sub-optimal

in the equidistribution sense. Indeed, although the result will have all αi below the

fixed threshold, the variations occurring from the subdivisions can be quite large.

This can lead to a larger than necessary number of cells which is computationally

wasteful.

P-adaptivity methods for finite elements use the monitor function to choose basis

functions of the appropriate order for each element. Basis polynomials of higher order

are used in elements requiring higher precision. The mesh itself is not modified.

The methods we will examine in further detail here are the moving mesh meth-

ods. These methods consist generally of obtaining the position and shape of the

mesh elements as the solution of some mesh PDE. Possible mesh PDEs include

Monge-Ampère equations [3] or variational formulations of minimization problems

of given adaptation functionals [12]. A number of adaptive moving mesh methods

are presented and analyzed in [6].
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5.2 Theoretical Construction of the Mesh Transformation

In this part we will assume that the surface has evolved to some fixed time τ .

We then consider its associated monitor function M which can be taken as the first

fundamental form of S(τ) at time τ . We pause the time evolution of the surface and

construct a mesh transformation which adapts the initial mesh to M . The method

will use a pseudo-time evolution which can also be interpreted as an iterative process.

The variable t used in this section refers to an imaginary pseudo-time and not to

the time of the evolution of the surface. Accordingly, the notations ~XF and ~XB for

characteristics maps will refer to the maps on the parametric space Ω generated by

the pseudo-time evolution/iteration.

For simplicity, we can assume that the domain Ω is simple (square, rectangle,

flat torus). For general domains, we will need a simple computational space Ωc that

is mapped to Ω by some transformation. The method still applies, we simply take

the pull-back of M to Ωc where we compute a mesh. The mesh will then be mapped

to Ω using the given transformation.

One possible approach to adapt the mesh is to construct a change of coordinate

map from Ω to Ω. We start with a simple, potentially uniform mesh {Ri} on Ω

and we construct a map T : Ω → Ω such that the transformed mesh {Ai}, where

Ai = T (Ri), are equidistributed. That is, for a mesh consisting of N cells, we want∫
Ai

ρMd~x =
1

N

∫
Ω

ρMd~x (5.2)
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where ρM =
√
det(M) is called the mesh density. More generally, the mesh density

needs not to be defined pointwise, we can simply work with a given measure µM and

construct Ai such that µM(Ai) are the same for all i.

The method we designed in this paper is inspired from the optimal transport

problem. See for instance [2] and [4] for application of optimal transport to mesh

adaptivity. We refered to Optimal Transport, Old and New by Villani [10] for the

following definition on transport maps.

Definition 5.2.1. Let (X,ΣX , µX) and (Y,ΣY , µY ) be two probability spaces. A

measurable function f : X → Y is a transport map if∫
Y

φ(y)dµY =

∫
X

φ(f(x))dµX ∀φ integrable w.r.t. µY (5.3)

We can check that this is equivalent to

µY (R) = µX(f−1(R)) ∀R measurable w.r.t. ΣY (5.4)

The main difficulty is to find a transport map that moves µX to µY . An approach

to finding such a map using a fluid dynamics intuition of the L2 Monge-Kantorovich

problem was given by Benamou and Brenier [1]. Their setup is as follows:

Given densities ρ0 and ρM . For any pair ρ(~x, t) and ~v(~x, t) satisfying theses

initial conditions and conservation laws:

ρ(~x, 0) = ρ0(~x) (5.5)

ρ(~x, 1) = ρM(~x)

∂tρ+∇ · (ρ~v) = 0
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we have that the transport map moving ρ0 to ρM is given by the forward character-

istics map generated by ~v at time t = 1. More specifically, let ~XF (~x, t) be such that

~XF (~x, 0) = ~x and ∂t ~X
F = ~v( ~X, t), then ~XF (~x, 1) is a transport map moving ρ0 to

ρM .

The method we propose here is based on this framework. Let µ0 and µM be the

measures induced by the densities ρ0 and ρM respectively.

Firstly, we invert the roles of µ0 and µM and use the backward map instead of

the forward map to move µ0 to µM . Indeed, by switching µ0 with µM , the forward

maps gives us a transport map from µM to µ0. Then, from equation (5.4), we have:

µ0(Ri) = µM

(
( ~XF )−1(Ri)

)
= µM( ~XB(Ri)) = µM(Ai) (5.6)

We will use the backward map ~XB as the mesh transformation. This allows

us to directly choose the value of µM(Ai) by defining the appropriate measure for

µ0(Ri) on the corresponding initial cell. If we want µM to be equidistributed on Ai, it

suffices to pick µ0(Ri) to be the same constant for every i. That is, equidistributing

a density ρM can be done by finding a transport map moving a uniform density ρ0

to ρM .

Secondly, we do not optimize the transport map. We will not solve for the

optimal velocity field, instead we choose ~v to be the velocity field associated with

the heat equation by Fick’s law of diffusion. With this velocity, we will evolve the

characteristics map until a large time until the density is close enough to the targeted

equilibrium.
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These two choices make the algorithm simple and easy to implement. The use of

the backward map allows us to compute velocities only at grid points without need

for any extra interpolation. The choice of velocity eliminates several costly steps at

the expense of optimality but still maintains some good convergence properties.

Assuming for now that we have measure density functions ρ0 and ρM corre-

sponding to µ0 and µM , we define the velocity field to be

~v(~x, t) := −α∇(ρ− ρ0)

ρ
(5.7)

In the setup of (5.5), our initial conditions and conservation law read:

ρ(~x, 0) = ρM(~x) (5.8)

∂tρ = div(α∇(ρ− ρ0)) (5.9)

which is a heat equation with ρM as initial condition and α(~x, t) as diffusion coef-

ficient. We impose that ρ has the same normal derivative at the boundaries as ρ0.

This implies that ρ0 will be the equilibrium solution.

The backward characteristics map is evolved using the following equations:

~XB(~x, 0) = ~x (5.10)

∂t ~X
B +∇ ~XB · ~v = 0 (5.11)

We compute the map until a large time tf . Since the forward map ~XF (·, tf )

moves ρM(~x) to ρ(~x, tf ), ~X
B(~x, tf ) moves ρ(~x, tf ) to ρM(~x), and ρ(~x, tf ) approximates

the equilibrium ρ0 for large enough tf . We will analyze this in detail later.
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Here we provide a summary of a semi-discretization of the method using Euler

steps in time. ~χB denotes the numerical approximation of ~XB, and u, the approx-

imation of ρ where ρ(x, t) = ρ( ~XB, 0) det(∇ ~XB) by semi-Lagrangian form of con-

servation of mass (change of variables). Using this definition, we will need that ρ is

strictly positive at all times. This is not guaranteed for heat equation with constant

diffusion coefficient. Indeed, if the source term −∆ρ0 is non-positive, i.e. ρ0 not

concave, then the solution ρ(~x, t) can be less or equal to 0 even though the initial

and equilibrium states are both strictly positive. Hence, we introduced a diffusion

coefficient α(~x, t). We want to pick α to be 1 if ρ >> 0 and we choose α ∈ (0, 1)

accordingly if ρ(~x, t) is close to 0 so that ρ(~x, t + ∆t) > 0. Its purpose is essentially

to slow down or pause the diffusion when u is close to 0. We’ll see later that choosing

α(~x, t) = cρ(~x, t) is sufficient, however, this is not always necessary.

Algorithm : (5.12)

1. Initialize u(~x, 0) = ρM(~x), ~χB(~x, 0) = ~x.

2. At time t, update u(~x, t) = ρM(~χB(~x, t)) det
(
∇~χB(~x, t)

)
3. Compute footpoint

~̊x = ~x+ α
∇(u− ρ0)

u
(~x, t)∆t

choosing α(~x, t) such that ρM(~χB (̊~x, t)) det
(
∇~χB (̊~x, t)

)
> 0. Also, enforce the

boundary condition ~̊x ∈ ∂Ω for all ~x ∈ ∂Ω.

4. Evolve characteristics map ~χB(~x, t+ ∆t) = ~χB (̊~x, t)

5. Advance to time t + ∆t. Repeat steps 2 through 4 until time tf when u is a

“good enough” approximation of ρ0.
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The issue of “good enough” stopping time will be addressed later on.

In the following lemma, we make a brute force Taylor expansion of u(~x, t+ ∆t)

which allows us to describe the evolution of u and its asymptotic behaviors.

Lemma 5.2.2. The above Euler time stepping semi-discretization gives us that

u(~x, t+ ∆t) = u(~x, t) + div(α∇(u− ρ0))∆t+O(∆t2)

Proof.

u(~x, t+ ∆t) = ρM
(
~χB(~x, t+ ∆t)

)
det
(
∇~x~χB(~x, t+ ∆t)

)
= ρM

(
~χB (̊~x, t)

)
det

(
∇~x~χB

(
~x+

α∇(u− ρ0)

u
(~x, t)∆t, t

))
= ρM

(
~χB (̊~x, t)

)
det

(
∇~χB

∣∣∣∣
(~̊x,t)
·
(
I +∇α∇(u− ρ0)

u
∆t

))

=
[
ρM

(
~χB (̊~x, t)

)
det
(
∇~χB

(
~̊x, t
))]

det

(
I +∇α∇(u− ρ0)

u
∆t

)
= u

(
~̊x, t
)

det

(
I +∇α∇(u− ρ0)

u
∆t

)
(5.13)

It suffices to define α(~x) such that det
(
I +∇α∇(u−ρ0)

u
∆t
)
> 0.

We can estimate each factor in the previous expression:

u

(
~x+

α∇(u− ρ0)

u
∆t, t

)
= u(~x, t) +

α∇u · ∇(u− ρ0)

u
∆t+O(∆t2) (5.14)

det

(
I +∇α∇(u− ρ0)

u
∆t

)
= 1 + tr

(
∇α∇(u− ρ0)

u
∆t

)
+O(∆t2) (5.15)

= 1 + div

(
α∇(u− ρ0)

u
∆t

)
+O(∆t2)

= 1 +
αu∇2(u− ρ0)− α∇u · ∇(u− ρ0) + u∇α · ∇(u− ρ0)

u2
∆t+O(∆t2)
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From this, we see that it suffices to pick α such that 1 + div
(
α∇(u−ρ0)

u
∆t
)
> 0.

One way to achieve this is to pick α = cu for some constant c depending on∇2(u−ρ0).

Finally, multiplying (5.14) and (5.15), we get

u(~x, t+ ∆t) = u(~x, t) + α∇2(u− ρ0)∆t+∇α · ∇(u− ρ0)∆t+O(∆t2)

= u(~x, t) + div(α∇(u− ρ0))∆t+O(∆t2) (5.16)

Corollary 5.2.3. Assuming that α(~x) ≥ αmin > 0, the L2 error ‖u − ρ0‖L2 decays

exponentially in time.

Proof. Consider the squared L2 distance E(t) =
∫

Ω
|u(~x, t)− ρ0(~x)|2d~x.

E(t+ ∆t)− E(t) ≤
∫

Ω

[u(~x, t+ ∆t) + u(~x, t)− 2ρ0(~x)] [u(~x, t+ ∆t)− u(~x, t)] d~x

=

∫
Ω

2(u(~x, t)− ρ0(~x)) div (α∇(u(~x, t)− ρ0(~x)) ∆td~x+O(∆t2)

= −2∆t

∫
Ω

α |∇(u(~x, t)− ρ0(~x))|2 d~x+O(∆t2)

≤ −2αmin‖∇(u− ρ0)‖2
L2∆t+O(∆t2) (5.17)

we use the fact that the normal derivative of (u − ρ0) vanishes on the boundary by

our choice of boundary condition to go from line 2 to line 3.

Since
∫

Ω
ρ0d~x =

∫
Ω
ρMd~x and∫

Ω

u(~x, t)d~x =

∫
Ω

ρM(~χB) det(∇~χB)d~x =

∫
~χB(Ω)

ρMd~x =

∫
Ω

ρMd~x
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we have that

1

|Ω|

∫
Ω

(u− ρ0)d~x = 0 ∀t ≥ 0 (5.18)

Hence, we can apply the Poincare-Wirtinger inequality: ‖u−ρ0‖L2 ≤ C‖∇(u−ρ0)‖L2 ,

which, combined with (5.17) gives us:

E(t+ ∆t) ≤ (1− αminC∆t)E(t) +O(∆t2) (5.19)

This allows us to run the algorithm until a time tf for which ‖u − ρ0‖L2 < ε.

ε is some chosen threshold which should not be on the same order of magnitude as

∆t2. Otherwise, the convergence will be polluted by the O(∆t2) noise.

Theorem 5.2.4. The algorithm (5.12) outputs a map T which moves ρ0 to ρM . The

L2 error can be bounded by a selected ε as long as ∆t is taken to be much smaller

than
√
ε.

Proof. We set T = ~χB(·, tf ) for a tf such that ‖u(~x, tf )− ρ0(~x)‖L2 < ε. Replacing u

with its definition, we have that

‖ρM(~χB(~x, tf )) det(∇~χB(~x, tf ))− ρ0‖L2 < ε

=⇒ ‖ρM(T ) det(∇T )− ρ0‖L2 < ε
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Then, for any measureable set R,

|µ0(R)− µM(T (R))| =
∣∣∣∣∫
R

ρ0(~x)d~x−
∫
T (R)

ρM(~x)d~x

∣∣∣∣
≤
∫
R

|ρ0(~x)− ρM(T (~x)) det(∇T (~x))| d~x

≤
√
|R|
(∫

R

[ρ0 − ρM(T ) det(∇T )]2d~x

)1/2

< ε
√
|R|

Since T (Ri) = Ai, we can control µM(Ai) to be within ε
√
|Ri| of µ0(Ri) which

we can choose by defining an appropriate ρ0.

The method has problems when the diffusion coefficient α is chosen to be very

small at certain points. This happens when u(~x, t) approaches 0. However, if the

equilibrium density ρ0 is concave (∇2ρ0 ≤ 0), then by maximum principle, u remains

strictly positive. For the purpose of generating an equiareal mesh, the equilibrium

density is simply defined to be uniform in which case u > 0 for all t and we can

choose α ≡ 1.

5.3 Numerical Discretization

The spacial discretization of this method is less straightforward. Numerical

tests seem to suggest that gridpoint based finite difference with analytically com-

puted det(∇~χB) yields unstable schemes. Instead, we avoid computing det(∇~χB) by

working directly with µM(~χB(Ri, t)). Since u in the algorithm is supposed to be a

measure density of µM(~χB(·, t)), this in principle should be the same as using the

Jacobian of the backward map. However, it has the advantage of being tied directly
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to the measures of the cells and avoids error from approximating the measure den-

sity ρ. The method can be thought of as an iterative process that terminates when

the cell measures are within a threshold of the target value.

For simplicity, assume that Ω is a rectangular domain equipped with a uniform

mesh of dimensions ∆x×∆y (see figure 5–1 for grid organization). Let Ri,j denote

the cell on the ith row and jth column. Let the corners of Ri,j be xi,j, xi+1,j, xi,j+1

and xi+1,j+1. Let ui,j be the average integral of ρM(~χB) det(∇~χB) on Ri,j. We also

let ρ(~x, t) = ρM(~χB(~x, t)) det(∇~χB(~x, t)) to facilitate the notation of integrals.

ui,j =
1

|Ri,j|

∫
Ri,j

ρd~x =
1

|Ri,j|

∫
~χB(Ri,j)

ρMd~x =
1

|Ri,j|
µM(~χB(Ri,j)) (5.20)

~xi,j

~xi,j+1

~xi+1,j

~xi+1,j+1

uni,j

~̊xi,j

~̊xi,j+1

~̊xi+1,j

~̊xi+1,j+1

F x
i,j

F y
i,j+1

F x
i+1,j

F y
i,j

Figure 5–1: Positions of grid points, cell averages and discrete flux. The dotted area
is the region where the average integral is un+1

i,j . The grey area corresponds to the
numerical flux.

Since we use the backward characteristics mapping method, the velocities at time

t only need to be defined on grid points. We would like to define these velocities

such that the cell averages ui,j behave like a heat equation. This is equivalent to
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enforcing the flux generated by ~v on the boundary between adjacent regions to be

proportional to their difference. However it is difficult to solve for a velocity that

satisfies the flux specifications. Instead, we look for a simpler definition of velocity

field that satisfies the required flux up to some order of accuracy.

We can analyze the 1D case where Ω is an interval with grid points {xi}Ni=1 and

grid size ∆x = h. We use a periodic or Neumann boundary condition.

ui =
1

h
µM(~χB([xi, xi+1])) =

1

h

∫ ~χB(xi+1)

~χB(xi)

ρMdx =
1

h

∫ xi+1

xi

ρM(~χB)
d~χB

dx
dx (5.21)

Let qi be the average integral of the residual:

qi =
1

h

∫ xi+1

xi

(ρ− ρ0)d~x =
1

h

(
ui −

∫ xi+1

xi

ρ0d~x

)
(5.22)

We define the velocity as follows:

~vi = −2

h

qi − qi−1

ui + ui−1

(5.23)

We also cap the velocity such that ~v∆t is less than 1
3

of the cell length. This is

the discrete equivalent of defining the diffusion coefficient α(~x, t) in the continuous

version; doing so prevents the characteristic curves from crossing.

Lemma 5.3.1. Using the velocity defined above, we have that

un+1
i − uni =

∆t

h2
(qni+1 − 2qni + qni−1) +O(h∆t) (5.24)
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Proof. Let Fi denote the discrete flux from cell Ri−1 = [xi−1, xi] to Ri from time step

n to n+ 1. We have that un+1
i − uni = 1

h
(Fi+1 − Fi). We can approximate the flux:

Fi =

∫ xi−~vi∆t

xi

ρd~x = ~viρ(~xi, t)∆t+O(∆t2) (5.25)

The approximate flux −~viρ(~xi) is essentially qi − qi−1. In order to make this

claim, we need to control the difference between ρ(~xi) and 1
2
(ui + ui−1).

ui + ui−1

2
− ρ(~xi) =

1

2h

(∫ xi+1

xi−1

ρ(~x)d~x− 2hρ(~xi)

)
= O(h2) (5.26)

Since the error of the midpoint rule for the integral approximation is O(h3), the

above error is of order h2.

Hence, we get an order O(h2∆t) approximation to the flux:

−~viρ(~xi)∆t =
2

h

qi − qi−1

ui + ui−1

ρ(~xi) =
qi − qi−1

h
∆t(1 +O(h2)) (5.27)

=
∆t

h
(qi − qi−1) +O(h2∆t)

Since for stability of the scheme, we will pick ∆t ∝ h2, we have that Fi =

∆t
h

(qi − qi−1) +O(h2∆t). Therefore,

un+1
i − uni =

1

h
(Fi+1 − Fi) =

∆t

h2
(qni+1 − 2qni + qni−1) +O(h∆t)

Lemma (5.3.1) shows that the choice of ~vi in (5.23) results in the time evolution

of uni being consistent with the heat equation to order h.

We notice that by definition, un+1
i −uni = qn+1

i −qni . Therefore, choosing ∆t = h2

2
,

we get that qn+1
i = 1

2
(qni+1 + qni−1) + O(h3). This scheme is stable, the O(h3) error
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are negligible and won’t affect stability. We can conclude that qni will converge to a

constant by using periodic or Neumann boundary conditions. Furthermore, since un

and ρ0, being probability distributions, both sum to 1, we have that qn converges to

0. Hence, un converges to
∫ xi+1

xi
ρ0d~x.

Theorem 5.3.2. This scheme is consistent with the heat equation in the 2-dimensional

case.

The proof of lemma (5.3.1) generalizes to 2 dimensions. We work on a grid with

∆x×∆y cells. ∆x and ∆y are of order h and ∆t is of order h2. We choose velocity

to be

~vi,j =
−(∇hq)i,j

1
4
(ui,j + ui,j−1 + ui−1,j + ui−1,j−1)

(5.28)

where qi,j denotes 1
|Ri,j |

∫
Ri,j

(ρ− ρ0)d~x and (∇hq)i,j denotes the discrete finite differ-

ence gradient with grid size h.

We define x and y direction flux for each cell (see figure 5–1):

F x
i,j :=

∫
Bx

i,j

ρ(~x, t) sgn(x− xi)d~x (5.29)

F y
i,j :=

∫
By

i,j

ρ(~x, t) sgn(y − yi)d~x (5.30)

where F x
i,j approximates the x-direction flux from cell Ri−1,j to Ri,j. B

x
i,j denotes the

quadrilateral region with corners ~xi,j, ~̊xi,j, ~xi,j+1, ~̊xi,j+1 where ~̊xi,j = ~xi,j −~vi,j∆t. By
i,j

is the region bounded by ~xi,j, ~̊xi,j, ~xi+1,j, ~̊xi+1,j. The signum function determines for

given ~x whether ρ(~x, t) contributes to the flux going in or out of the cell. With these

definitions, we have that

un+1
i,j = uni,j +

1

|Ri,j|
(F x

i+1,j − F x
i,j + F y

i,j+1 − F y
i,j) (5.31)
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One can check that with Fi,j defined using the signum functions, this equality

is exact.

For the x-direction flux, we will approximate the region Bx
i,j with the trapezoid

defined by ~xi,j, ~xi,j+1, ~xi,j−vxi,j∆t, ~xi,j+1−vxi,j+1∆t where vx denotes the x component

of the velocity vector. This approximation is of order O(∆y∆t2). Hence,

F x
i,j =

∫ yj+1

yj

∫ xi−vx(xi,y)∆t

xi

ρ(x, y, t)dxdy +O(∆y∆t2) (5.32)

=

∫ yj+1

yj

−ρ(xi, y, t)v
x(xi, y)∆t+O(∆t2)dy +O(∆y∆t2)

= −1

2
[ρ(~xi,j, t)v

x
i,j + ρ(~xi,j+1, t)v

x
i,j+1]∆y∆t+O(∆y∆t2) +O(∆y3∆t)

where the last line is the trapezoidal approximation of the integral with O(∆y3)

error. From the midpoint rule, we can approximate ρ(~xi,j, t) as

ρ(~xi,j, t) =
1

4
(uni−1,j−1 + uni,j−1 + uni−1,j + uni,j) +O(h2) (5.33)

Hence, we have that

F x
i,j =

1

2
[(∇h,xq

n)i,j + (∇h,xq
n)i,j+1]∆y∆t+O(h∆t2) (5.34)

F y
i,j =

1

2
[(∇h,yq

n)i,j + (∇h,yq
n)i+1,j]∆x∆t+O(h∆t2)

60



which gives us

un+1
i,j =uni,j +

1

|Ri,j|
(F x

i+1,j − F x
i,j + F y

i,j+1 − F y
i,j) (5.35)

=uni,j +

[
1

2∆x

(
(∇h,xq

n)i+1,j + (∇h,xq
n)i+1,j+1 − (∇h,xq

n)i,j − (∇h,xq
n)i,j+1

)
+

1

2∆y

(
(∇h,yq

n)i+1,j+1 + (∇h,yq
n)i,j+1 − (∇h,yq

n)i,j − (∇h,yq
n)i+1,j

)]
∆t+O(h∆t)

=uni,j + (∇2
hq
n)i,j∆t+O(h∆t)

where (∇2
hq
n) denotes the discrete Laplacian obtained by the above finite difference

divergence of gradients.

In 2 dimensions, we need to be careful in choosing a definition for ~v. We can

use a straightforward 4 points stencil finite difference for ∇hq:

vxi,j = − 2

∆x

qi,j + qi,j−1 − qi−1,j − qi−1,j−1

ui,j + ui,j−1 + ui−1,j + ui−1,j−1

(5.36)

However, this velocity results in a diagonal stencil for the Laplacian. The step

un+1
i − uni has cell weights distributes as in figure 5–2. This discretized Laplacian

can cause Red-Black (or checkerboard) instabilities. Indeed, in each time step, a

cell only communicates with its diagonal neighbors; the system decouples into two

regions like on a checkerboard. The red squares and the black squares are decoupled.

Although solving the same equation, they may converge to a different constant away

from the equilibrium state.
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Cell weigths for
finite difference of ~vxi,j

Cell weigths for
un+1
i,j − un

i,j

1

1

−1

−1

1 0 1

0 −4 0

1 0 1

Figure 5–2: Weight distribution for velocity (5.36)

One solution is to use a wider stencil for the approximation of ~v:

vxi,j = −qi+1,j + qi+1,j−1 + 2qi,j + 2qi,j−1 − 2qi−1,j − 2qi−1,j−1 − qi−2,j − qi−2,j−1

∆x(ui,j + ui,j−1 + ui−1,j + ui−1,j−1)

(5.37)

vyi,j = −qi,j+1 + qi−1,j+1 + 2qi,j + 2qi−1,j − 2qi,j−1 − 2qi−1,j−1 − qi,j−2 − qi−1,j−2

∆y(ui,j + ui,j−1 + ui−1,j + ui−1,j−1)

We can check that the stencil on the right in figure 5–3 is consistent with the

Laplacian operator by Taylor expansion, it is also stable by von Neumann analysis.

Here is a summary of the method in pseudocode:
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Cell weigths for
finite difference of ~vxi,j

Cell weigths for
un+1
i,j − un

i,j

−1

−1

−2

−2

2

2

1

1

0 1 2 1 0

1 2 −2 2 1

2 −2 −16 −2 2

1 2 −2 2 1

0 1 2 1 0

Figure 5–3: Weight distribution for velocity (5.37)

Algorithm 2 Mesh Transformation from Heat Flow
Inputs: Ω, ρ0, ρM , ε
Outputs: ~T , un

1: Let ~xij be grid points of a regular mesh on a simple domain. Let Ri,j be the cell
with ~xi,j as its lower-left corner.

2: ri,j ←
∫
Ri,j

ρ0(~x)d~x

3: u0
i,j ←

∫
Ri,j

ρM(~x)d~x

4: ~χB(~xi,j, 0)← ~xi,j
5: res← max(|u0

i,j − ri,j|)/|Ri,j|
6: n← 0
7: while res > ε do
8: ~vni,j ← −1

Average(uni,j)
(∇h(u

n − r))i,j
9: Cap the length of ~vni,j∆t at h

3
at every grid point.

10: Project ~vni,j onto the tangent direction of the boundary for any ~xi,j ∈ ∂Ω.

11: ~̊xni,j ← ~xi,j − ~vni,j∆t
12: ~χB(~xi,j, (n+ 1)∆t)← ~χB (̊~xni,j, n∆t) by linear interpolation

13: un+1
i,j ←

∫
~χB(Ri,j ,(n+1)∆t)

ρM(~x)d~x by standard quadrature

14: res← maxi,j(|un+1
i,j − ri,j|)/|Ri,j|

15: n← n+ 1
16: end while
17: ~T ← ~χB(·, n∆t)
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5.4 Numerical Results

We present a few numerical experiments in this section. Figure 5–4 shows the

results of the algorithm applied to some given monitor function. Figures 5–5 to 5–7

show the results of this method applied to evolving parametrized surfaces.

For figure 5–4, the maps are computed on a 50× 50 cells grid, with ∆x = ∆y =

1/50. We chose ε = 5 × 10−2; the iterations stop when the error |µM(~χB(Ri,j)) −

µ0(Ri,j)| is bounded by ε|Ri,j| = 2×10−5. The subfigures illustrate ~χB obtained from

different monitor functions. To define these functions, we used the bump function

given by:

ηr(s) =


C
r2

exp
(
− 1

1−(s/r)2

)
if |s| < 1

0 if |s| ≥ 1

(5.38)

where the constant C is chosen so that ηr integrates to 1. The bump function has the

property of being smooth with compact support in [−r, r]. We define the monitor

functions by composing ηr with some distance function. For instance, ρM(~x) =

ηr(d(~x,K)) + 1 for some set K. This way the mass of ρM is concentrated in an

r-neighborhood of K.

We can see in figure 5–4d, one of the shortcomings of this method. Since only

the cell areas are taken into account, we do not control the shape of the cells. As

a consequence, we can find very elongated cells on the top right and bottom left of

figure 5–4d. This needs to be corrected with some additional adjustments.

We can also apply this method to redistribute sample points on a moving para-

metric surface. For these experiments, we used the 3D swirl velocity field defined in

(4.3) in Chapter 4. The results are shown in figures 5–5 to 5–7.
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(a) M(~x) = ηr(|~x− ~x0|2) + 1
~x0 = (0.5, 0.5)
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(b) M(~x) = ηr(|~x− ~x0|2) + 1
~x0 = (0.4, 0.35)
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(c) M(~x) = ηr(|~x− ~x0|2 − 4) + 1
~x0 = (0.5, 0.5)
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(d) M(~x) = ηr((~x− ~x0) ·~l) + 1
~x0 = (0.3, 0.5), ~l = (−1, 1)

Figure 5–4: These mesh maps are computed using given monitor functions assuming
a uniform distribution for the initial mesh. In all cases, r is taken to be 0.15 and
the functions are normalized so that the integral is 1. All maps are computed using
Neumann boundary conditions.
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Figure 5–5 shows the sample point distribution on a torus evolved under the

swirl flow. For this test, we used as initial surface a torus of major radius 0.1 and

minor radius 0.025, parametrized by ~P0 : [0, 1]2 → T. The torus is centered at

(0.2, 0.2, 0.2). We distributed 2500 sample points across the unit square parametric

space, 25 in the minor axis and 100 in the major axis. The torus and the sample

points are then evolved forward in time using the characteristics mapping method in

Chapter 3. We stopped the evolution at time t = 1, S(1) is the pushforward of the

torus, parametrized by ~P1. We computed a mesh transformation on the parametric

space, and the new sample points are obtained by evaluating the mesh map at the

original sample points and plotting them on S(1) using P1. From the point of view of

transport maps, the mesh transformation moves uniformly distributed sample points

to points that are distributed according to the area density of the surface with respect

to the parametrization.

Directly applying the method in this chapter can redistribute these sample points

evenly. However, in order to compensate for the fact that S(1) and the unit square

[0, 1]2 are not isometric, we multiply the velocity field by the “inverse” of the differen-

tial ∇~P1: Assume that at a point ~s ∈ S(1), we have a parametrization ~Q : U → S(1)

which is a local isometry at ~s. We multiply the velocity field by the matrix given

by
(

(∇ ~Q)−1(∇~P1)
)−1

, which amounts to dividing each component of the velocity

by the norm of ∂x ~P1 and ∂y ~P1 respectively. Intuitively, this is meant to mimic the

diffusion process happening on the surface instead of the parametric space. It avoids

the problem of having the diffusion carry out at drastically different speeds depend-

ing on the metric induced by the parametrization. The theoretical results should
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still hold. Indeed, since the matrix multiplying the velocity is diagonal and positive

definite, we are in the case of an anisotropic diffusion.

(a) Original Sample Points (b) Adapted Sample Points

Figure 5–5: Sample Points Distribution (Torus) - Adapted vs. Original

We also ran the same tests on a square given by x = 0.35, y ∈ [0.25, 0.45] and

z ∈ [0.25, 0.45] as well as on a Möbius strip centered at (0.35, 0.35, 0.35) of width and

radius 0.1 whose central circle lies in the x = 0.35 plane. The mesh map is computed

on a 64×64 grid for the square and a 32×128 grid for the Möbius strip. Figures 5–6

and 5–7 show the results; the square is drawn with 50× 25 points, and the Möbius

strip, with 8× 100 points.

5.5 Acceleration by Grid Size Adjustment

The speed of this method is mostly limited by the size ∆t of the time steps we

take. Indeed, in order to reach a good approximation, we must find the backward map

for a large tf . If the times steps we take are small, many iterations are needed. The

size of the time step is limited by the stability condition of the heat equation, that is,

we need to take ∆t on the same order as h2 where h is the cell width. Clearly, taking
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(a) Original Sample Points (b) Adapted Sample Points

Figure 5–6: Sample Points Distribution (Square) - Adapted vs. Original

finer grids allows for higher accuracy but can quickly becomes computationally costly.

However, we can exploit the underlying heat equation to accelerate the method: the

acceleration is achieved by starting the computations on a coarse grid and gradually

refining towards the targeted resolution.

On a N points grid, the CFL stability condition allows us to take time steps

of O(1/N2). Since the time it takes for a frequency ω signal to decay below a fixed

threshold is O(1/ω), we would need O(N2/ω) steps. However, the highest frequency

this grid can represent is the Nyquist frequency of N/2, so it takes O(N) steps

to eliminate the highest observable frequency. If we gradually increase grid size

from a coarse N0 grid to an Nf fine grid, each grid of size Ni only deals with the

highest frequency and takes O(Ni) steps. Indeed, lower frequencies were eliminated

by previous coarser grids. The total number of iterations should be on the order

of
∑
Ni. In our implementation, we increase grid size by doubling the number of

grid points in each dimension, this should result in O(Nf ) number of iterations in
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(a) Original Sample Points (b) Adapted Sample Points

Figure 5–7: Sample Points Distribution (Möbius) - Adapted vs. Original

total. Whereas if we made all iterations on the fine grid, the lowest frequencies would

require O(N2
f ) steps to decay.

We tested the method again for the bump function in figure 5–4a with ε =

5 × 10−2. Using a gradually refined grid from 8 to 64, the computations can be

carried out in about 0.6 seconds, whereas on a fixed 64×64 grid, the algorithm takes

around 4 seconds to run.
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(a) Map from Gradually Refined Grid
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(b) Map from Fixed Grid

Figure 5–8: Computation on fixed and gradually refined grid.
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CHAPTER 6
Conclusion

In this thesis, we examined the numerical implementation and applications of

the CM method. We designed a forward CM method which performs time inte-

gration using Runge-Kutta 4 and spacial interpolation using Hermite cubic splines.

We analyzed the convergence of this method in 3 dimensions and performed some

numerical tests. The results provide good evidence that the method is 4th order

convergent.

Since many situations require evolving implicitly and explicitly defined surfaces

at the same time, the forward and backward characteristics maps should be computed

simultaneously. In Chapter 3 we proposed a variation of the backward CM method

which is coupled with the forward method to improve accuracy. We’ve also proved

that the method should be 3rd order accurate. However, the numerical tests did not

make evident the 3rd order convergence we were expecting. It is unclear now whether

the test or the method was flawed. We have conjectured several possible reasons for

the error. Further analysis and testing are required.

Finally, in Chapter 5, we applied the CM method to the moving adaptive mesh

and particle management problem. The method is based on the continuity equation

behind the heat equation and obtains the mesh map as the backward characteristics

map of a chosen velocity field. We have shown in the 2 dimensional case that this map

can be used to equidistribute a given mesh density function among grid cells. From

70



a mass transport point of view, it also allows us to move sample particles from one

distribution to another. However, this method has limitations on the accuracy it can

achieve. Also, for mesh adaptation purposes, it focuses only on the equidistribution

principle and cannot control for mesh regularity or alignment. There remains a lot of

work to be done in order to properly apply the CM method to the mesh management

problem.
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