
Redundancy for Cost, Performance,
and Lifetime Improvement in

Application Specific SIMT Processors

Seyyed Hasan Mozafari

Department of Electrical and Computer Engineering
McGill University

Montréal, Québec, Canada

December 2018

A thesis submitted to McGill University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

© 2019 Seyyed Hasan Mozafari

Dedicated to...

iii

Abstract

Redundancy is now routinely allocated in circuits, micro-architectural

structures, or at the system level, to mitigate mounting manufacturing yield

losses and reducing the cost of fabricating ICs. Also, the structure of single-

instruction multiple-thread (SIMT) systems makes them particularly suitable

for applying redundancy at multiple levels of granularity: coarse-grained (core)

and fine-grained (lane).

To address yield loss in SIMT processors, this thesis presents cold and

hot core-, lane-, and shared-lane-sparing. Cold sparing is a kind of redun-

dancy that addresses cost only, while hot-sparing is available to increase yield

(and reduce costs) when the components are defective; otherwise, it can be

used to improve performance in the field. Adding cold redundancy, specifi-

cally fine-grained one, would have timing overheads to the system’s critical

path. Also, hot sparing can improve the performance of a SIMT system for

some applications. Therefore this thesis characterizes performance and cost

together for SIMT systems with redundancy. In this regard, it introduces a

metric that captures cost and performance together, expected performance per

cost (E[P]/C). Then, it shows that for a case study system hot-sparing im-

proves E[P]/C significantly, while it shows that cold sparing has a negligible

performance overhead in SIMT systems.

Next, it introduces two E[P] estimation techniques, Êm[P] and Ês[P]. Hot-

sparing, complicates system evaluation: the presence of defects affects what

resources are available in the field. Accurate performance evaluation thus re-

quires the simulation of the entire population of resulting dice in order to

iv

determine the expected performance E[P] of the system. While simply expen-

sive for single system evaluation, it is intractable for design space exploration.

Therefore, it deploys Êm[P] to reduce the E[P] calculation complexity. Êm[P]

reduces simulation time by 93%. This remains computationally expensive for

design space exploration when individual, detailed, simulations require hours.

Therefore, it introduces Ês[P]. Ês[P] reduces simulation by 98% with no more

than 2.6% error in E[P] sufficient for design space exploration. Consequently,

designers may add redundancy, and evaluate system performance and cost,

with no greater design effort than performance evaluation alone.

Lastly, this thesis investigates performance-per-watt (PPW) and lifetime-

chip-performance (LCP) implications in SIMT systems with hot-sparing. Hot-

sparing improves the system performance for some applications. However it

adds power consumption, and consequently, hot-sparing may increase the tem-

perature of a system, which can lead to lower lifetime and LCP. It shows that

hot-sparing is effective for specific types of SIMT processor configurations

(small and medium sized) in terms of PPW. On these configurations, hot-

sparing can improve PPW more than 16%, on average, for some applications.

It shows that on the contrary embedding hot-sparing into SIMT processors not

only does not damage LCP, rather it increases LCP outstandingly for some spe-

cific types of SIMT processor configurations (small and medium systems) and

applications (FFT and FILTER), while hot-sparing improves cost and LCP

over other configurations and applications as well. For example, hot-sparing

can improve LCP more than 75% compared with conventional methods (i.e.,

cold sparing), on average, for FFT and FILTER applications.

v

Abrégé

La redondance est maintenant systématiquement attribuée dans les cir-

cuits, les structures micro-architecturales ou au niveau du système, afin dátténuer

láugmentation des pertes de rendement de fabrication et la réduction des coûts

de fabrication des circuits intégrés. En outre, la structure des systèmes á in-

structions multiples á threads unique (SIMT) les rend particulièrement adapté

pour appliquer une redondance á plusieurs niveaux de granularité: á grain

grossier (noyau) et á grain fin (piste). Pour remédier aux pertes de rendement

dans les processeurs SIMT, cette thèse présente une économie de froid, de

chaud et de froid pour les noyaux chauds et partagés. Le froid épargne est une

sorte de redondance qui ne traite que des coûts, alors que le chaud épargne est

disponible pour augmenter le rendement (et réduire les coûts) lorsque les com-

posants sont défectueux; sinon, il peut tre utilisé pour améliorer performance

sur le terrain.

Lájout de redondance á froid, en particulier á grain fin, aurait des coûts

de synchronisation sur le chemin critique du système. En outre, le remplace-

ment á chaud peut améliorer les performances d’un système SIMT pour cer-

taines applications. Par conséquent, cette thèse caractérise la performance et

le coût ensemble pour les systèmes SIMT avec redondance. á cet égard, il

introduit une métrique qui rend compte des coûts et des performances ensem-

ble, performances attendues par coût (E[P]/C). Ensuite, il montre que, pour

une étude de cas, l’économie de stockage á chaud améliore considérablement

E[P]/C, alors quélle montre que l’épargne de froid a un surcoût de perfor-

vi

mance négligeable dans les systèmes SIMT. Ensuite, il introduit deux tech-

niques déstimation E[P], Êm[P] et Ês[P].

Hot-Sparing, complique l’évaluation du système: la présence de défauts

affecte les ressources disponibles sur le terrain Une évaluation précise des

performances nécessite donc la simulation de la population entière des dés

résultants afin de déterminer la performance attendue E[P] du système. Bien

que tout simplement coûteux pour une évaluation de système unique, il est

insoluble pour l’exploration d’espace de conception. Par conséquent, il déploie

firstEvalTech pour réduire la complexité du calcul E[P]. Êm[P] réduit le

temps de simulation de 93%. Cela reste coûteux en termes de calcul pour

l’exploration de l’espace de conception lorsque des simulations individuelles et

détaillées nécessitent des heures. Par conséquent, il introduit Ês[P]. Ês[P]

réduit la simulation de 98% sans qu’une erreur de plus de 2.6% dans E[P]

soit suffisante pour l’exploration de l’espace de conception. Par conséquent,

les concepteurs peuvent ajouter de la redondance et évaluer les performances

et les coûts du système, sans autre effort de conception que la seule évaluation

des performances.

Enfin, cette thèse étudie les implications en termes de performances par

watt (PPW) et de performances á la puce sur la durée de vie (LCP) dans

les systèmes SIMT avec hot-sparing. Le remplacement á chaud améliore les

performances du système pour certaines applications. Cependant, cela aug-

mente la consommation d’énergie et, par conséquent, la gestion á chaud peut

augmenter la température d’un système, ce qui peut réduire la durée de vie

du système et la durée de vie du système. Cela montre que le hot-sparing est

vii

efficace pour certains types de configurations de processeurs SIMT (petites et

moyennes) en termes de PPW. Sur ces configurations, la sauvegarde á chaud

peut améliorer PPW de plus de 16% en moyenne pour certaines applications.

Cela montre quáu contraire l’intégration de la sauvegarde á chaud dans les

processeurs SIMT non seulement n’endommage pas le LCP, mais au contraire,

elle augmente considérablement le LCP pour certains types de processeurs

SIMT spécifiques configurations (petits et moyens systèmes) et applications

(FFT et FILTER), tandis que la gestion á chaud améliore les coûts et le LCP

par rapport aux autres configurations et applications aussi bien. Par exemple,

le maintien á chaud peut améliorer le LCP plus moins de 75% par rapport aux

méthodes conventionnelles (épargne á froid), en moyenne, pour les applications

FFT et FILTER.

viii

Acknowledgements

I would like to express my special appreciation and thanks to my advisor

Dr. Brett H. Meyer, you have been a tremendous mentor for me. I would

like to thank you for encouraging my research and for allowing me to grow

as a research scientist. Your advice on both research has been invaluable. I

would also like to thank my committee members, professor Z. Zilic, professor

W. Gross, and D. Nowrouzezahrai for serving as my committee members even

at hardship. I also want to thank you for your brilliant comments and sugges-

tions, thanks to you. A special thanks to my family. Words can not express

how grateful I am to my my mother, and father for all of the sacrifices that

youve made on my behalf. Your prayer for me was what sustained me thus

far. Finally I thank my God, my good Father, for letting me through all the

difficulties. I have experienced Your guidance day by day. You are the one

who let me finish my degree. I will keep on trusting You for my future. Thank

you, Lord.

I am also grateful to the Fonds de Recherche du Québec - Nature et Tech-

nologies (FRQNT) and McGill University for financially supporting this work

via McGill Engineering Doctoral Awards (MEDA) scholarship.

ix

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Objectives . 4

1.3 Thesis Contributions . 5

1.4 Related Publications . 8

1.5 Thesis Outline . 12

2 Related Work 14

2.1 Application Specific SIMT Processors 15

2.2 Cold Sparing . 16

2.3 Hot Sparing . 18

2.4 Efficient Performance Evaluation for SIMT with Hot-Sparing . . 19

2.5 Hot-Sparing for Performance-per-Watt Improvement 20

2.6 Adopted Design Space Exploration Algorithms 21

2.7 Hot-Sparing for Lifetime-Chip-Performance Improvement 22

3 Yield-Aware Performance-Cost Optimization in SIMT 23

3.1 Multi-Granularity SIMT Redundancy 26

x Contents

3.1.1 System Yield . 27

3.1.2 Core Sparing . 28

3.1.3 Lane Sparing . 29

3.1.4 Shared Spare Lane . 30

3.1.5 Model Validation . 32

3.2 Experimental Setup . 33

3.2.1 SIMT Configurations and Benchmarks 33

3.2.2 Cost Model . 34

3.2.3 Genetically Programmed Response Surfaces 35

3.3 Results . 36

3.3.1 Application-specific Results 38

3.3.2 Pareto-optimal Front Prediction 40

3.4 Conclusion . 41

4 Hot-sparing for Performance-Cost Improvement in SIMT 43

4.1 Multi-Granularity Hot-Sparing in SIMT 45

4.1.1 Redundancy Regimes . 47

4.1.2 Expected Performance per Cost, E[P]/C 48

4.2 Experimental Setup . 56

4.2.1 SIMT Configurations and Benchmarks 57

4.2.2 Cost Estimation . 57

4.2.3 Performance Degradation with Hot Redundancy 59

4.3 Results . 60

4.3.1 Cost-Effectiveness of Hot-Sparing 60

4.3.2 E[P]/C Improvement of Hot-sparing 61

Contents xi

4.4 Conclusion . 63

5 Efficient Performance Evaluation in SIMT Processors 65

5.1 Probability of Occurrence . 67

5.2 Estimating E[P] . 71

5.2.1 Selecting Proper Th for Êm[P] 72

5.2.2 Single-Simulation Estimation of E[P] with Ês[P] 73

5.3 Experimental Setup . 74

5.3.1 Small and Large Design Sets 74

5.3.2 Primary Design Set . 75

5.4 Results . 77

5.4.1 Validating Êm[P] Over the Small Set 77

5.4.2 Validating Ês[P] Over the Small Set 79

5.4.3 Validating Ês[P] over the Large Set 81

5.4.4 Validating Ês[P] via Analytical Evaluation 83

5.4.5 The Limitations of Estimating E[P] 85

5.5 Conclusion . 86

6 Hot-Sparing for Cost and Performance-per-Watt Improvement 88

6.1 Expected Performance per Watt 91

6.1.1 Estimating E[PPW] . 93

6.2 Cost-PPW Design Space Exploration 97

6.2.1 Metrics . 97

6.2.2 Design Space Exploration Algorithm 97

6.2.3 Experimental Setup . 107

xii Contents

6.2.4 Comparing With Conventional Methods 108

6.3 Results . 112

6.3.1 Effectiveness of Adding Hot Spares on PPW 112

6.3.2 Experimental Setup . 112

6.3.3 Analyzing Performance and PPW 112

6.3.4 Cost-PPW Design Space Characterization 116

6.3.5 Discussion . 119

6.4 Conclusion . 121

7 Hot-sparing for Lifetime-Chip-Performance Improvement 123

7.1 Expected Lifetime-Chip-Performance 125

7.1.1 Estimating E[LCP] . 127

7.2 Results . 132

7.2.1 Experimental setup . 132

7.2.2 Analyzing LCP . 132

7.2.3 Cost-LCP Design Space Characterization 136

7.3 Conclusion . 138

8 Conclusion and Future Work 140

8.1 Future Work . 145

8.1.1 Utilizing a Pool of Shared Redundancy Resources 146

8.1.2 Adaptive Redundancy Regime 146

8.1.3 Adaptive Performance Estimation Technique 147

xiii

List of Tables

4.1 SIMT Component Area. 58

5.1 Parameters for Small and Large system sets. 76

6.1 Architectural parameters for Small, Medium, and Large systems. 95

6.2 Comparison of the distances of APOF and RPOF for different

methods (Random, Best MSE, Proposed, and ReSPIR) in terms

of ADRS, and over Small, Medium, and Large sets. 110

6.3 Parameters for under-investigation design space. 117

7.1 Heatsink specification for Small, Medium, and Large systems. . . 129

8.1 Comparison of different SIMT systems (Small, Medium, and

Large) in terms of average relative difference to baseline systems

(%) for cost, Ês[P], Ês[PPW], and Ês[LCP] over different ap-

plications. To observe the specifications of Small, Medium, and

Large systems refer to Table 6.1. 144

xiv List of Tables

8.2 Comparison of different SIMT systems (Small, Medium, and

Large) in terms of type of redundancy that they utilize to opti-

mize Ês[P], Ês[PPW], and Ês[LCP] over different applications. 145

xv

List of Figures

3.1 SIMT architecture [1]. 27

3.2 The physical design of SIMT architecture allows them to incor-

porate coarse- and fine-grained redundancies. 29

3.3 Relative cost reduction when designing for average performance

(across all benchmarks). 37

3.4 Relative cost reduction for Filter. Lane and core sparing domi-

nate when redundancy reduces cost. 38

3.5 Relative cost reduction for KMeans. Spare lane sharing and

core sparing dominate in this case. 39

3.6 ADRS results for different fraction of data set samples over dif-

ferent benchmarks. 40

4.1 Architecture of a multi-core SIMT system with hot spare com-

ponents. 46

4.2 Case study system. 56

4.3 Comparison of cold- and hot-sparing under different sets of con-

figurations and redundancy techniques. 60

xvi List of Figures

4.4 Normalized E[P]/Cost (bars, left) and relative E[P] improve-

ment (lines, right) and over different benchmarks. 62

5.1 Cores placement in the presence of redundancy. 76

5.2 Distance from true POF points, in terms of ADRS, for different

levels of accuracy for Êm[P] (blue bars, left), ADRS numbers

for the second method of calculating Ês[P] (green bars, left),

average-relative-error of Êm[P] (red dots, right), and over dif-

ferent benchmarks. 77

5.3 Average relative performance differences to one failed main-lane

configuration, for different derivative configurations (blue bars,

left, in %), the errors of Ês[P] due to considering the perfor-

mance values of all operational derivative configurations equal

to one failed main-lane (red dots, right, in %), and over different

benchmarks. 81

6.1 Flow of our design space exploration tool. 98

6.2 Performance of the ANN prediction model (MSE) versus ADRS

for FFT. There is no obvious relationship between accuracy and

the quality of the resulting set. 104

6.3 Correlation of the training set and validation set over epochs

and ADRS for FFT. The average MSE (%) for 30% of the most

correlated ANN are reported in the right-hand side table. 105

6.4 Mean ADRS changes against varying the percentage of design

space evaluated over Small designs and FFT application. 111

List of Figures xvii

6.5 Average relative estimated expected performance (%) [2] im-

provement by adding hot spares to different configurations of

SIMT processors for different design sets (Small, Medium, and

Large) over different applications. 113

6.6 Average relative expected performance per watt improvement

by adding hot spares to different configurations of SIMT proces-

sors for different design sets (Small, Medium, and Large), and

over different applications. 115

6.7 Histogram of optimal solutions based on the type of redundancy

that they utilize—cold spare core (Cold-SC), hot spare core

(Hot-SC), cold spare lane (Cold-SL), hot spare lane (Hot-SL),

cold shared spare lane (Cold-SSL), and hot shared spare lane

(Hot-SSL). 116

7.1 Baseline (a) and cold spare lane (b) heat maps. 129

7.2 Hot spare lane (a) and Filler (b) heat maps. 130

7.3 Cost and average relative expected lifetime-chip-performance

(ARELCP) improvement compare to baseline systems when

adding hot spares (Hot-SL, Hot-SSL, Hot-SC), cold spares (Cold-

SL, Cold-SSL, Cold-SC), and Filler to different SIMT processor

configurations, across Small, Medium, and Large design sets,

and different applications. The lines corresponding to cold spar-

ing (black) and Filler (yellow) indicate the ARELCP improve-

ment that occurs when hot spares are cold instead, or replaced

with filler on die. 134

xviii List of Figures

7.4 Histogram of optimal solutions based on the type of redundancy

that they utilize—cold spare core (Cold-SC), hot spare core

(Hot-SC), cold spare lane (Cold-SL), hot spare lane (Hot-SL),

cold shared spare lane (Cold-SSL), and hot shared spare lane

(Hot-SSL). 135

1

Chapter 1

Introduction

In this chapter, we show that yield loss and reliability problems become

more important in multi-core processors as technology size shrinks. In this

regard, we study a widely used type of multi-core processors, single-instruction,

multiple-thread (SIMT). Then, we introduce our solutions to address yield

and reliability in these systems, architectural and micro-architectural cold and

hot redundancies. Also, we introduce the implications that these solutions

may have on other important design factors such as performance-per-watt and

lifetime-chip-performance. In the end, we mention the research articles that

are extracted from this work.

1.1 Motivations

Devices are more likely to experience early performance degradation, and

even failure in the field due to systematic and random defects [3, 4]. Defect

rates have been increased by 1-2 orders of magnitude from 65nm to 22nm tech-

2 Introduction

nologies, and this trend continues for newer technology sizes [5, 6]. Such obser-

vations support the need for yield-enhancing design techniques to ensure viable

future manufacturing yield. Yield can be improved by adding redundancy in

architectural and micro-architectural levels in processors [7]. However, some

performance and/or die area may need to be sacrificed to benefit yield and

reliability [8]. Therefore, a question arises: under what circumstances does a

redundancy regime can optimize yield? Note that redundancy improves yield,

but has area overhead which reduces the number of fabricated chips per wafer.

Therefore, in this work, instead of yield maximization, we aim at optimizing

manufacturing cost.

Single-instruction, multiple-thread (SIMT) systems [9], which are the con-

sequent generation of single-instruction, multiple-data (SIMD) processors [10]

are especially well-suited to incorporating redundancy at multiple granular-

ities (cores and lanes) [2]. SIMT architectures consist of multiple levels of

design abstraction: (a) the system, which consists of multiple thread-parallel

cores (which are referred to streaming multi-processor (SM) in NVIDIA G80

terminology [10]); and, (b) the cores, each of which consists of a single front-

end unit and multiple, data-parallel processing elements (lanes). In NVIDIA

G80 terminology, a lane consists of a streaming processor (SP), and a bank

of D$ or shared-memory [10]. Therefore, SIMT processors are well-suited to

incorporating redundancy at architectural and micro-architectural levels.

Designers need to investigate the opportunity to reduce manufacturing

cost in the presence of random defects by employing multi-granularity redun-

dancy in SIMT architecture (cold sparing). However, when designers add

1.1 Motivations 3

redundancy, specifically, fine-grained (e.g., a spare lane), it adds performance

overhead (redundancy can add timing overhead on the critical path of a sys-

tem) [11]. Therefore, designers need to consider design alternatives in the space

of cost-performance trade-offs. This is significant: tools are therefore needed

to assist designers with determining when and what sort of redundancy to

apply to optimize such systems.

Designers should investigate the cost and performance implications of em-

ploying hot spares in SIMT processors. Hot spares are available to increase

yield (and reduce cost) when the components are defective; otherwise, they

can be used to improve performance in the field [12]. Integrating such compo-

nents presents additional challenges compared with cold spares: 1) hot spare

components must be allocated in such a way that the programming model is

not disrupted. 2) Expected performance (E[P]) should be calculated in the

systems with hot redundancy. E[P] captures the performance of a multi-core

SIMT system by considering the resulting population of operational dice (here-

after denoted derivative designs). 3) Designers need to develop a probability

of occurrence model for SIMT processors with hot sparing to calculate their

E[P].

E[P] must be estimated. Unfortunately, measuring the performance of

all configurations derived from a single SIMT system is computationally in-

tractable [2]. Therefore, to reduce the complexity, designers group derivative

designs suffering from symmetric failures. However, even by grouping similar

derivative configurations, calculating E[P] accurately would be computation-

ally expensive (it takes 792 hours on a Corei7 with 8GB RAM for a single

4 Introduction

SIMT system [2]). While this may be tractable for a single design point, such

high computational requirements make design space exploration impossible (a

mid-size SIMT processor design space consists of 10K systems [13]). There-

fore, designers need to estimate E[P]. However, finding an estimation method

to be fast, but accurate enough to distinguish designs is not trivial.

Designers need to consider hot-sparing implications on other important

design factors; performance-per-watt (PPW) and lifetime-chip-performance

(LCP) in SIMT processors. Hot spares can increase the power consumption of

the processors to the point that damages PPW. Also, this power consumption

increase may lead to temperature increase and consequently damages lifetime

and LCP. However, on the contrary, the relative performance gain of hot-

sparing, for some applications, can be better than its associate relative power

and lifetime overhead. Therefore, it is very important for designers to know for

which applications and multi-core processor configurations they should (not)

utilize hot-sparing to gain the potential benefit in improving cost-PPW and

cost-LCP.

1.2 Objectives

The objectives of this work are: (a) to address cost problem in SIMT

systems by adding cold redundancy, (b) to introduce hot-sparing as a method

to improve performance and cost together in SIMT processors, and (c) to show

that hot-sparing can even improve other design factors such as PPW and LCP

as well. The main objective of this thesis is to show that redundancy is the

way to improve SIMT architectures in different design factors.

1.3 Thesis Contributions 5

1.3 Thesis Contributions

To address the implications that utilizing redundancy have on application-

specific SIMT processors in terms of cost, performance, PPW, and LCP, we

make the following contributions in this thesis:

Redundancy to Improve Performance and Cost in SIMT Systems

Premkishore et al., [14] and Schuchman and Vijaykumar [15] have investi-

gated the effect of core sparing and micro-architecture redundancy techniques

on yield improvement in general purpose multi-core processors (i.e. cold spar-

ing). However, they show that micro-architectural redundancy could have a

considerable performance overhead and it becomes more effective as technology

scales. We show that the performance overhead of utilizing micro-architectural

redundancy in SIMT processors is negligible since its architecture is well-suited

to incorporating redundancy at multiple granularities (cores and lanes). In

this regard, we utilize core- and lane-sparing. Also, we introduce a a new

type of redundancy, shared-spare-lane for SIMT processors. We show that the

performance overhead of fine-grained redundancies is negligible in the SIMT

architecture.

Gao et al., [12] use hot micro-architectural redundancy in a general pur-

pose processor to increase yield (and reduce cost) when the components are

defective; otherwise, they try to use the redundancy to improve performance

in the field. However, they show that for fine-grained redundancies, the perfor-

mance overhead of micro-architectural redundancy usually is bigger than its

performance gain, therefore, they utilize these redundancies to extend system’s

6 Introduction

lifetime instead. We take into consideration this performance overhead and we

show that this is not the case for SIMT systems (performance of some systems

with hot-sparing could be improved over some applications). Also, we intro-

duce two new types of micro-architectural redundancies in SIMT processors,

hot spare-lane (Hot-SL) and hot shared-spare-lane (Hot-SSL). We evaluate

cost and performance overhead of utilizing Hot-SL and Hot-SSL, and we show

that they significantly improve SIMT systems in terms of expected perfor-

mance per cost, E[P]/C.

Estimating Performance for Systems with Hot Redundancy

Prior work has explored how to quantify performance in the context of

defects [16, 15, 12]. They calculate system performance by simulating all

possible systems with defects and weighting their contribution to expected

performance by the likelihood of each configuration occurring. However it is

almost computationally intractable in our case since we need detailed multi-

core performance simulation. Therefore, we introduce an approximation for

expected performance, Êm[P] which evaluate systems at least 11× faster and

have 7% error (suitable for distinguishing SIMT systems in terms of perfor-

mance). Moreover, we extend upon this estimation technique (Êm[P]) and

introduce an alternative method of calculating, Ês[P]. This approach goes

further: it only evaluates the most likely derivative design, reducing the com-

putational cost by an additional 3×, while it’s estimating error is less than

2.6%.

1.3 Thesis Contributions 7

Hot-Sparing for Performance-per-Watt and Lifetime-Chip-Performance

Improvement in SIMT Processors

Ghasemazar et al., [17] and Hanumaiah et al., [18] showed that by using

system-level techniques (dynamic voltage and frequency scaling, task alloca-

tion, and task migration) we can significantly increase PPW for homogeneous

multi-core processors. Also Das et al., [19] shows that at the system level,

task scheduling and dynamic thermal and reliability management techniques

improve system lifetime, and consequently LCP. However, these techniques

only target PPW and LCP, respectively. We show that hot-sparing, which

is orthogonal to these techniques, can improve cost- and PPW and LCP for

some applications and systems. To identify which systems and applications

benefit from hot-sparing, we develop a framework. In this regard, we evaluate

cost-PPW and cost-LCP design spaces for SIMT processors and we categorize

applications and SIMT systems with respect to the type of redundancy that

they utilize the best. Likewise what we did for performance, we develop ex-

pected PPW, E[PPW], and expected LCP, E[LCP], metrics to evaluate the

PPW and LCP of designs with hot spares, respectively. Also, to make design

space exploration tractable for our framework, we introduce Ês[PPW] and

Ês[LCP] as estimation methods to estimate E[PPW], and E[LCP], which

lead to 6.3% and 15.3% average relative error, respectively. To explore cost-

PPW and cost-LCP design spaces efficiently, we adopt a guided design space

exploration (DSE) algorithm. Our DSE algorithm uses an artificial neural net-

work (ANN) regression model, adopted for our cost-PPW optimization prob-

8 Introduction

lem. We use this DSE algorithm in our framework to find optimal solutions.

Our DSE algorithm reduces the design exploration time to one-sixth, while

finding Pareto-Optimal fronts (POF) three times closer to the real POF than

conventional methods such as ReSPIR [20]. Lastly, we show that by utilizing

hot-sparing some applications and systems experience more than 16% and 75%

improvement in terms of PPW and LCP, while their cost decreases as well.

1.4 Related Publications

This dissertation has resulted in several publications, a partial list of which

and how they relate to the chapters of this thesis is provided here.

1. [11] S. H. Mozafari, K. Skadron, B. H. Meyer, “Yield-aware Performance-

Cost Characterization for Multi-Core SIMT,” Proceedings of the 25th

edition on Great Lakes Symposium on VLSI, pp. 237-240.

In this paper, we propose spare lane sharing, which reduces the cost of

multi-core SIMT systems by allowing one of two neighboring cores to

make use of a redundant lane if necessary. We have evaluated the cost-

performance trade-offs of core-, lane-, and shared-lane-sparing under a

variety of benchmarks, and found that for nearly all applications shared-

lane-sparing outperforms lane-sparing, reducing cost by up to 20%. This

paper is discussed in Chapter 3.

2. [2] S. H. Mozafari, and B. H. Meyer, “Hot spare components for cost-

performance improvement in multi-core SIMT,” 2015 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

1.4 Related Publications 9

Systems (DFTS), pp. 53-59.

In this paper, we extend our prior investigation by exploring the perfor-

mance and cost implications of allocating hot spare components in SIMT

systems. As before([11]), we allocate spare cores, lanes, and shared-lanes,

but this time enable these components for performance improvement

when possible. To evaluate designs with hot spares, we introduce a new

metric, expected performance per cost, E[P]/C. E[P]/C captures the

performance and cost of a multi-core SIMT system by considering the

population of dice that results from a given defect density. For a case

study system, we observe that expected performance per cost improved

more than 2.5 and 1.7 times relative to systems integrating no redun-

dancy and cold spares, respectively. This paper is discussed in Chapter 4.

3. [13] S. H. Mozafari, and B. H. Meyer, “Efficient Performance Evaluation

of Multi-core SIMT Processors with Hot Redundancy,” IEEE Transac-

tions on Emerging Topics in Computing, 2018, pp. 498-510.

In this paper, we introduce two E[P] estimation techniques, Êm[P] and

Ês[P]. Êm[P] evaluates the m most likely configurations, and assumes

the performance of all others is zero, reducing simulation by 93%. This

remains computationally expensive for design space exploration when

individual, detailed, simulations require hours. Ês[P] evaluates only the

most likely configuration, and assumes its performance for all other con-

figurations, reducing simulation by 98%, with no more than 2.6% error

in E[P], sufficient for differentiating designs along the Pareto-optimal

front during design space exploration. Consequently, designers may add

10 Introduction

redundancy, and evaluate system performance and cost, with no greater

design effort than performance evaluation alone. This paper is discussed

in Chapter 5.

4. [21] S. H. Mozafari, and B. H. Meyer, “Characterizing the Effectiveness

of Hot Sparing on Cost and Performance-per-Watt in Application Spe-

cific SIMT,” Submitted to INTEGRATION, the VLSI Journal.

In this paper, we investigate the performance improvement of hot spares

to see if it can be used to improve PPW in SIMT processors over dif-

ferent applications. Also, we investigate the cost and PPW implications

of employing different types of hot spares in SIMT processors. Then,

we study optimal solutions in the cost-PPW design space to see what

kind of redundancy improves cost and PPW the most. However, since

evaluating individual design points (different SIMT processor configu-

rations with redundancy) is time consuming, we adopt a design space

exploration algorithm to find near-optimal solutions without evaluating

the design space exhaustively, which finds approximated optimal solu-

tions three times better than conventional methods. We observe that

hot sparing is effective for specific types of SIMT processor configura-

tions (small and medium sized). On these configurations, it can im-

prove PPW more than 16%, on average, for applications that experience

significant performance improvement by adding hot spares (e.g., FFT

and FILTER). Furthermore, we show that hot sparing’s PPW improve-

ment on these applications is comparable with the results of conventional

techniques (e.g., voltage scaling) and can be utilized together with them

1.5 Thesis Outline 11

to more effectively improve PPW in the systems. Also, we observed

that micro-architectural hot redundant resources (e.g., hot shared-spare

lanes) achieve better PPW improvement than conventional architectural

redundancies (e.g., hot spare cores). This paper is discussed in Chapter

6.

5. [22] S. H. Mozafari, and B. H. Meyer, “Hot-sparing for Lifetime-Chip-

Performance and Cost Improvement in Application Specific SIMT Pro-

cessors,” Submitted to INTEGRATION, the VLSI Journal.

In this paper, we investigate the effect of hot spares on lifetime-chip-

performance (LCP) in multi-core single-instruction, multiple-thread (SIMT)

processors. We observe that hot-sparing is outstandingly effective for

specific types of SIMT processor configurations (small and medium sys-

tems) and applications (FFT and FILTER), while improving cost and

LCP over other configurations and applications as well. For example,

hot-sparing can improve LCP more than 75% compared with conven-

tional methods (i.e., cold sparing), on average, for applications that ex-

perience significant performance improvement when adding hot spares

(e.g., FFT and FILTER). In particular, micro-architectural hot redun-

dant resources (e.g., hot spare lanes) achieve better LCP improvement

than conventional architectural redundancies (e.g., hot spare cores). This

paper is discussed in Chapter 7.

1.5 Thesis Outline

Chapter 2 presents related work.

12 Introduction

Chapter 3 presents cold sparing in SIMT processors. Also, this chapter

introduces shared-spare lane technique in SIMT processors and investigates

the effect of adding micro-architectural redundancy on the performance of

SIMT processors. Moreover, this chapter models the yield and cost of SIMT

processors with redundancy.

Chapter 4 presents hot-sparing in SIMT processors. Also, this chapter

introduces a new metric, E[P]/C to evaluate designs with hot-sparing in terms

of cost and performance. Moreover, this chapter introduces an estimation

method for calculating E[P], Êm[P].

Chapter 5 presents another novel estimation method for estimating ex-

pected performance in the presence of defects in SIMT processors, Ês[P]. Also,

it measures the accuracy of Ês[P] over a wide range of SIMT systems to see if it

is accurate enough to be used to distinguish the designs in the design space of

cost and performance. Chapter 6 presents a framework to utilize hot-sparing

in SIMT processors to optimize cost and PPW. This chapter introduces an

adopted design space exploration algorithm that finds near optimal solutions

in cost and PPW design space efficiently.

Chapter 7 presents the utilization of hot-sparing to address cost and LCP

in SIMT processors. This chapter introduces a framework to find optimal

designs in terms of cost and LCP.

Chapter 8 concludes the thesis highlighting the main findings, and outlining

areas for future improvement.

13

Chapter 2

Related Work

In this chapter, we compare our solutions to address the already mentioned

research problems (refer to Chapter 1) with past work. In this regard, we show

the importance of SIMT architecture as a multi-core processor by showing the

range of its usage in these days applications. Afterward, we show how others

utilized redundancy (cold and hot) to address cost, performance, performance-

per-watt, and lifetime-chip-performance in multi-core processors, and what

their differences are from our solutions. Then, we show that how related work

addresses the complication of calculating the performance of a system with hot-

sparing and how our solution differentiates from them. Also, we compare our

introduced design space exploration method with existing ones in the research

criteria.

14 Related Work

2.1 Application Specific SIMT Processors

Unlike conventional high-performance computing systems, multi-core single-

instruction, multiple-thread (SIMT) systems, popularized in general-purpose

graphics processing units (GPGPUs) as well as embedded processors [10].

SIMT is another form of single-instruction, multiple-data (SIMD) architec-

ture executing multiple scalar threads instead of multiple data. Application

specific SIMT processors have emerged in a wide range of practical systems: 1)

embedded processors into mobile devices, such as smart-phones to accelerate

compute-intensive multimedia applications including image processing [23, 24],

video processing [25], and 3-D graphics [26], 2) application specific high-

performance systems. For example, Amazon Web Service provides comput-

ing resources for machine learning algorithms [27], and 3) application specific

edge computing workloads that a majority of them include machine learning

or signal processing algorithms [28].

SIMT processors are especially well-suited to incorporating redundancy at

multiple granularities: their architecture already utilizes component replica-

tion at multiple levels of design abstraction for the purpose of performance im-

provement. At the system level, SIMT cores consist of multiple thread-parallel

cores. Each core further consists of a single front-end unit and multiple, data-

parallel processing elements (lanes) [1]; because hardware and software support

already exists, this replication can be leveraged in a straightforward manner

to improve system performance and cost.

2.2 Cold Sparing 15

2.2 Cold Sparing

Cold redundancy is a well-studied technique for improving yield and reli-

ability, and has been previously employed at a variety of levels of design ab-

straction [4]. Cold sparing is a kind of redundancy that cannot contribute to

improve a system’s performance in the field since they only ever replace faulty

components, and are otherwise disables. In the context of circuits, repetitive

structures have been leveraged for improving yield in the context of cold spar-

ing in such as memory cells and programmable logic arrays (PLAs) [3], and

field programmable gate arrays (FPGAs) [29]. Prior work has attempted to

reduce the cost of redundancy by designing a single circuit to be able to replace

any of a number of different circuits [30].

At the micro-architecture and system level, Premkishore et al. [14] and

Schuchman and Vijaykumar [15] have investigated the effect of core sparing

and micro-architecture redundancy techniques on yield improvement in general

purpose multi-core processors (i.e. cold sparing). In both cases, the authors

observed that as the number of cores grows, the relative benefit of core-level

redundancy also increases: core-level redundancy becomes both more effec-

tive (as one spare can cover for an increasing number of components) and

more efficient (lower relative overhead is required). However, their developed

yield model is not applicable for SIMT processors (the architecture and the

components of general purpose multi-core processors are different from SIMT

processors).

Meyer et al. [31] investigated yield improvement for network-on-chip-based

multiprocessor systems-on-chips. Under the assumption that software tasks

16 Related Work

can be re-assigned and re-scheduled when components are defective, spare

computational and storage capacity can significantly improve yield, especially

during manufacturing process ramp-up, which is characterized by particularly

high yield losses. In our work (which is discussed in Chapter 3), 1) we specif-

ically target multi-core SIMT systems, which have different constraints, and

considers multiple granularities of redundancy, rather than the single approach,

slack allocation. 2) Also, we consider performance overheads due to adding

redundancies to take into account an important practical implication (perfor-

mance degradation by adding redundancies).

As a consequence of the growing interest in system-level redundancy, a va-

riety of authors proposed modeling or analysis frameworks for evaluating the

effectiveness of various redundancy strategies in the multi-core era. Markovsky

and Wawrzynek [7] approach the problem analytically with comparison of over-

engineering, circuit-level redundancy, and system-level redundancy, and con-

firm that core-level redundancy is the most cost-effective as cores proliferate.

Lower-level techniques incur too great an overhead to cover too few possi-

ble defects. Shamshiri et al. [32] develop a yield model for core sparing in

multi-core systems, and observe that spare cores make burn-in unnecessary.

Our work develops yield models specifically for multi-core SIMT processors,

considering their unique opportunity for yield improvement via adding cold

redundancies in architectural as well as micro-architectural granularity lev-

els. Also, we introduce a new kind of micro-architectural redundancy in these

systems, shared-spare-lane.

2.3 Hot Sparing 17

2.3 Hot Sparing

Prior work has explored the allocation of cold spare micro-architectural

units [16, 15]. The cost of micro-architectural redundancy, however, is high,

since the redundancy can only cover defects in a limited number of components.

For systems with many cores, core-replication generally performs better [12].

Core sparing, however, is not a panacea: recent work has also shown that when

multi- and many-core systems share redundant components, cost is reduced

relative to conventional resource sparing methods [12, 33, 11]. We expand

upon this work by allocating hot-spare cores as well as hot-spare-, and hot-

shared-spare-subcomponents. Hot sparing is a kind of redundnacy that is used

to address yield in manufacturing process, otherwise it can be turned on in

the field to improve a system’s performance.

Prior work has explored how to quantify performance in the context of

defects [16, 15, 12]. Like our work, these all calculated system performance by

simulating all possible systems with defects and weighting their contribution to

expected performance by the likelihood of each configuration occurring. In our

work, which requires detailed multi-core performance simulation, such an ap-

proach is intractable: Therefore, we introduce an approximation for expected

performance in order to reduce evaluation complexity with an acceptable loss

in accuracy.

Recent work has also investigated the utilization of redundancy to facilitate

graceful performance degradation and extend processor lifetime [34, 15, 35, 36].

These approaches substitute defective components with redundant ones, or

scavenge for functional subcomponents within failed components, extending

18 Related Work

the useful lifetime of the system while reducing the negative performance im-

pact of defects and failures. Such an approach to redundancy in general pur-

pose architecture, however, is very costly in terms of performance. We show

that this is not the case for SIMT architecture; to the best of our knowl-

edge, ours is the first research to evaluate the opportunity to improve both the

performance and yield of SIMT systems using hot redundant resources.

2.4 Efficient Performance Evaluation for SIMT with

Hot-Sparing

Prior work has quantified performance in the context of defects [16, 12,

15, 8]. These all consider all possible systems with defects and weight their

contribution to expected performance by the likelihood of each configuration

occurring; however, unlike our work, they employ performance estimates for

each system. Our work requires detailed multi-core performance simulation,

and evaluating each possible system is intractable: in one case, evaluating a

single configuration and all derivative designs for each of eight benchmarks

requires 792 hours of simulation, making design space exploration impossible.

We have previously proposed to address this problem by limiting simula-

tions to the first three most likely configurations [2]. We observe, in practice,

however, that achieving sufficient accuracy to differentiate Pareto-optimal de-

signs still requires a significant amount of simulation, and a different number

of evaluations, benchmark to benchmark. In this work, we therefore detail a

new approach which requires just a single evaluation per design: in this case,

calculating the expected performance of a system is not any more expensive

2.5 Hot-Sparing for Performance-per-Watt Improvement 19

than traditional performance evaluation, while it achieves sufficient accuracy

for design space exploration and identifying the true POF designs.

2.5 Hot-Sparing for Performance-per-Watt

Improvement

Great attention has been paid to energy-efficient computing in multi-core

processors since, in new technologies, performance and power do not scale

similarly [37]. Ghasemazar et al., [17] and Hanumaiah et al., [18] showed that

by using system-level techniques (DVFS, task allocation, and task migration)

we can significantly increase PPW for homogeneous multi-core processors.

They utilized the existing redundancy (timing slack) in a system to reduce its

power without changing the system’s performance (throughput). Also, Ejlali

et al., [38] used an online energy-management technique for lock-step proces-

sors. They exploited dynamic timing slack at run time and utilized DVFS and

dynamic power management (DPM) techniques to more effectively reduce the

system’s energy consumption. Moreover, Leng et al., [39] applied fine grained

DVFS and clock gating techniques to GPGPUs to more effectively reduce their

power consumption of GPGPU processors without reducing its performance

significantly (increasing PPW).

However, none of these works addresses cost, and on the other hand,

they rely on the presence of timing slack to optimize energy consumption.

Hot-sparing even can reduce energy consumption of applications with short-

balanced phases since it does not rely on timing slack to improve PPW. More-

over, note that hot-sparing can be utilized with other energy saving techniques

20 Related Work

(such as DVFS) since they are applied at different abstraction levels.

2.6 Adopted Design Space Exploration Algorithms

Design space exploration (DSE) algorithms are, generally, utilized to op-

timize multiprocessor systems by efficiently exploring a multiprocessor design

space and finding optimal solutions. These algorithms can be totally based

on prediction models. If so, they decrease the complexity of design space

exploration by predicting the design space (e.g., response surface modeling),

rather than investigating it exhaustively [40]. However, response surface model

(RSM) based methods suffer from prediction error. The prediction error could

easily lead them to detect optimal solutions with a considerable distance to

the real optimal solutions in a design space. On the other hand, some DSE al-

gorithms, like ReSPIR [20], use a combination of design of experiments (DoEs)

and response surface modeling (RSM) techniques to find better optimized de-

sign points by performing a less number of simulations. ReSPIR simulates a

part of a design space to perform RSM, then it uses the RSM to find opti-

mal solutions. After that, it iteratively simulates new design points and adds

them to the training set of the RSM to make it more accurate. Meanwhile the

algorithm tracks the optimal solutions improvements. Our DSE approach is

similar to this work: we use RSM to predict where the optimal solutions are

located in a design space. However, in our algorithm we do not just rely on the

optimal solution set that is being detected by RSM, instead we investigate the

design points near to the predicted optimal solution set to find better optimal

solutions, while we use a different approach to select RSM model as well.

2.7 Hot-Sparing for Lifetime-Chip-Performance Improvement 21

2.7 Hot-Sparing for Lifetime-Chip-Performance

Improvement

Many techniques, at different abstraction levels, have also been devel-

oped to improve LCP in multi-core processors. Several techniques have taken

advantage of existing micro-architectural redundancy to improve lifetime or

yield [41]. At the system level, task scheduling and dynamic thermal and re-

liability management (DTM, and DRM) techniques improve system lifetime,

and consequently LCP, [19]. Software techniques exploit parallelism (thread-

and/or instruction-level) to improve performance, and consequently, LCP [42].

These techniques only target lifetime or LCP; hot-sparing, which is orthogonal

to dynamic thermal or lifetime management, can improve cost as well.

22

Chapter 3

Yield-Aware Performance-Cost

Optimization in SIMT

In this chapter, we investigate the cost and performance of SIMT systems

in the presence of cold-sparing. In this regard, we introduce a new type of

cold-sparing (shared spare lane), and its yield and cost models. Then, we

investigate the design space of cost and performance for systems with cold

redundancy to understand which type of redundancy optimal solutions utilize

(cold- core, lane, or shared-spare-lane).

CMOS technology is aggressively scaling. Consequently, designers face

higher defect rates and detrimental effects of process variation [4]. Therefore,

devices are more likely to experience early performance degradation, and even

failure in the field due to systematic and random defects [3, 4]. Redundancy

is a well-studied technique for improving yield and reliability, and has been

previously employed at a variety of levels of design abstraction [4]. At the

23

micro-architecture and system level, Premkishore et al. [14] and Schuchman

and Vijaykumar [15] have investigated the effect of core sparing and micro-

architecture redundancy techniques on yield improvement in general purpose

multi-core processors (i.e. cold sparing). However, their yield and cost models

are not applicable for single-instruction multiple-thread (SIMT) processors

which their architecture is completely different [43]. To address yield loss in

SIMT processors, we investigate the opportunity to reduce manufacturing costs

in the presence of random defects by employing multi-granularity redundancy

in SIMT architecture, while we consider their performance overhead. In this

regard, we introduce yield and cost models in SIMT processors in the presence

of redundancy.

Application specific SIMT architectures present a unique opportunity for

yield improvement. As different applications exhibit differences in parallelism,

different configurations (e.g., data cache size, number of cores, number of lanes

per core) are expected to strike the best performance-cost trade-offs. Sys-

tems with many narrow cores may be performance-cost optimal for predom-

inately thread-parallel applications; data-parallel applications demand wider

cores with many lanes. As the relative mix of components (cores vs. lanes)

changes, the most cost-effective strategy for improving yield is also expected

to change (redundant cores vs. redundant lanes). While systems with many

narrow cores clearly benefit the most from core sparing, and systems with a

few wide cores benefit the most from lane sparing, a number of applications

and systems fall in between: not enough cores are present to amortize the cost

of a spare, and application-specific performance-optimal cores are not wide

24 Yield-Aware Performance-Cost Optimization in SIMT

enough to absorb the cost of an extra lane. In this context, we propose the

allocation of a shared spare lane (SSL) which can be used by either of two

neighboring cores to replace a defective lane. Moreover, tools are needed to

assist designers with determining when and what sort of redundancy to apply

to optimize such systems.

However, identifying the best trade-off is computationally expensive, due

primarily to the size of the design space and the complexity of performance

estimation. Consequently, we employ a prediction model, genetically pro-

grammed response surfaces (GPRS) [44] to estimate performance and facilitate

the efficient identification of cost-performance Pareto-optimal front systems.

GPRS uses genetic programming to fit a surface to samples given a set of

configuration parameters. Moreover, we employ average distance from refer-

ence set (ADRS) [45] as a metric to estimate GPRS accuracy in predicting

the Pareto-optimal set in the performance-cost design space. We observed

that by simulating 15% of the design space and using GPRS, on average, we

can correctly predict about 23% of Pareto-optimal points and reach to 0.02%

ADRS-distance of design space Pareto-optimal front, which is a very small

distance. Note that utilizing GPRS tool to explore performance-cost design

space, and its corresponding results have not been published in our work ([11])

as contributions.

3.1 Multi-Granularity SIMT Redundancy

A multi-core SIMT processor is depicted in Figure 3.1. Each core, which is

referred as a streaming multi-processor (SM) in NVIDIA G80 terminology [10],

3.1 Multi-Granularity SIMT Redundancy 25

consists of a unified front-end unit, including L1 instruction cache (I$), hard-

ware thread contexts, and instruction decoder, processing elements (lanes),

and a back-end write-back unit. Each lane, consists of a bank of register file

(RF), arithmetic and logic unit (ALU), and a bank of L1 data cache (D$).

Note that RF and D$ are banked in SIMT architecture [43, 10]. In NVIDIA

G80 terminology, a lane is consist of a streaming processor (SP), and a bank

of D$ or shared-memory [10]. At the system level, cores communicate with L2

caches through a crossbar [43], which is connected to RAM via a bus.

SIMT processors are designed to simultaneously take advantage of thread-

level and data-level parallelism (TLP and DLP, respectively). Not only can

different cores can be used to execute different threads of the same application,

or even different applications (in this work, we focus on single application

workloads), but each core can execute the same sequence of instructions on

multiple data elements at the same time [1, 43].

Different parallel applications have different working set sizes and mixes

of TLP and DLP; therefore, different configurations result in optimal perfor-

mance [46]. Applications with greater TLP require more cores; applications

with greater DLP require more lanes. Under a particular cost constraint, de-

termining the best ratio of cores to lanes is a complex, and further depends

on work set size (D$ requirement) and other factors. This variability in the

design space for multi-core SIMT systems has an important consequence for

yield enhancement: systems optimized for different applications may call for

different redundancy. Fortunately, both the programming model and physical

design of SIMT architectures make implementing redundancy at each of these

26 Yield-Aware Performance-Cost Optimization in SIMT

Robust SIMD: Dynamically Adapted SIMD Width and
Multi-Threading Depth

Jiayuan Meng
Leadership Computing Facility Division

Argonne National Laboratory
Argonne, Illinois

jmeng@alcf.anl.gov

Jeremy W. Sheaffer
Department of Computer Science

University of Virginia
Charlottesville, Virginia
jws9c@cs.virginia.edu

Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, Virginia
skadron@cs.virginia.edu

Abstract—Architectures that aggressively exploit SIMD often
have many datapaths execute in lockstep and use multi-
threading to hide latency. They can yield high through-
put in terms of area- and energy-efficiency for many data-
parallel applications. To balance productivity and perfor-
mance, many recent SIMD organizations incorporate implicit
cache hierarchies. Exaples of such architectures include Intel’s
MIC, AMD’s Fusion, and NVIDIA’s Fermi. However, unlike
software-managed streaming memories used in conventional
graphics processors (GPUs), hardware-managed caches are
more disruptive to SIMD execution; therefore the interaction
between implicit caching and aggressive SIMD execution may
no longer follow the conventional wisdom gained from stream-
ing memories. We show that due to more frequent memory
latency divergence, lower latency in non-L1 data accesses,
and relatively unpredictable L1 contention, cache hierarchies
favor different SIMD widths and multi-threading depths than
streaming memories. In fact, because the above effects are sub-
ject to runtime dynamics, a fixed combination of SIMD width
and multi-threading depth no longer works ubiquitously across
diverse applications or when cache capacities are reduced due
to pollution or power saving.

To address the above issues and reduce design risks, this
paper proposes Robust SIMD, which provides wide SIMD and
then dynamically adjusts SIMD width and multi-threading
depth according to performance feedback. Robust SIMD can
trade wider SIMD for deeper multi-threading by splitting
a wider SIMD group into multiple narrower SIMD groups.
Compared to the performance generated by running every
benchmark on its individually preferred SIMD organization,
the same Robust SIMD organization performs similarly—
sometimes even better due to phase adaptation—and outper-
forms the best fixed SIMD organization by 17%. When D-
cache capacity is reduced due to runtime disruptiveness, Robust
SIMD offers graceful performance degradation; with 25% pol-
luted cache lines in a 32 KB D-cache, Robust SIMD performs
1.4× better compared to a conventional SIMD architecture.

I. INTRODUCTION

By using a single instruction sequencer to control mul-
tiple datapaths, Single instruction, multiple data (SIMD)
organizations save both area and power. Several throughput-
oriented processors have been aggressively exploiting SIMD.
Examples include graphics processors (GPUs) [11] and the
Cell Broadband Engine (CBE) [15]. Such architectures have
been increasingly used for general purpose, data parallel ap-
plications, including scientific computation, media process-
ing, signal analysis, and data mining [8], [37]. Recently, sev-
eral SIMD organizations have employed hardware-managed
cache hierarchies in order to offer both throughput and pro-
ductivity. Specifically, gather loads (i.e. load a vector from
a vector of arbitrary addresses) or scatter stores (i.e. store

Figure 1: The baseline SIMD architecture groups scalar threads into
warps and executes them using the same instruction sequencer.

a vector to a vector of arbitrary addresses) are supported
in hardware and do not require explicit programmer effort.
Such architectures include Intel’s Many Integrated Core [32],
[10] and NVIDIA’s Fermi [2].1 This paper studies SIMD or-
ganizations with cache hierarchies, as illustrated in Figure 1.

In this paper, the set of hardware units under SIMD
control is referred to as a warp processing unit or WPU [24].
The banked register files and execute units are divided
into lanes. Each hardware thread context has its register
file residing in one of the lanes. The number of threads
that operate in SIMD is referred to as SIMD width, or
width for short in this paper. Instead of using out-of-order
pipelines, SIMD processors are often in-order so that they
can accommodate more threads and improve throughput.
They hide latency by having multiple groups of SIMD
threads, or warps, and time-multiplexing warps to overlap
memory accesses of one warp with computation of another.
The number of warps is referred to as multi-threading depth
or depth. SIMD is not limited to vectors; it can also come in
the form of arrays of scalar datapaths (i.e. single instruction,
multiple threads (SIMT) organizations) in which divergent
branches, scattered loads and stores are handled implicitly
by the underlying hardware.

It may seem that SIMD organizations with cache hi-
erarchies would demonstrate similar traits to those that
use streaming memories (e.g. NVIDIA’s Tesla [2], [11]):
moderate SIMD width, deep multi-threading, and a single

1Intel’s SSE2 instruction sets operate over cache hierarchies but require
explicit programmer effort to perform gather and scatter operations and to
align the vectors.

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.20

107

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.20

107

Fig. 3.1: SIMT architecture [1].

granularities both relatively easy and particularly beneficial, as compared with

equivalent strategies in general purpose designs.

3.1.1 System Yield

Based on the system architecture in Figure 3.2, the system yield ysys is the

product of the yield of different groups of components, namely the the cores,

ycores, the L2 caches, yL2, and the crossbar, ycrossbar:

ysys = ycores × yL2 × ycrossbar. (3.1)

3.1.2 Core Sparing

One straightforward way to improve system yield in homogeneous multi-

processors is to add spare cores. When a core is defective, a redundant core

3.1 Multi-Granularity SIMT Redundancy 27

can be substituted for it. System performance variation due to the topology

of cores within a die can be minimized by using NoC-Virtualization [47]. In

the context of a crossbar-based system, the only performance penalty is due

to the increased size of the crossbar.

While a portion of core lanes can be individually covered with finer-grained

redundancy, much of it cannot; we assume that hardware thread contexts

and write-back logic cannot be easily protected, and so therefore are not.

Consequently, a defect in one of these units results in core failure.

However, as the number of cores in the system increases, the relative over-

head of a single redundant core goes down [12]. As a result, applications that

perform optimally with many narrow cores benefit the most from core spar-

ing. Given a system that requires m operational cores and integrates n spares,

where each core has yield ycore, the yield of the set of cores ycores is calculated

with binomial distribution:

ycores =
m+n∑
i=m

(
m+ n

i

)
(1− ycore)m+n−i(ycore)

i. (3.2)

For the sake of simplicity, hereafter the binomial distribution will be denoted

Binom(y, b, s) for a system with b components and s spares, where each com-

ponent has a yield of y.

3.1.3 Lane Sparing

Core yield is dependent on the yield of its components. For the purposes

of this paper, we divide a core into (a) its lanes, (b) its L1 cache, and (c)

28 Yield-Aware Performance-Cost Optimization in SIMT

...C1

Crossbar

Shared L2 Cache

Main Memory

HTC
HTC

...
HTC

I$

Decode

RF
ALU
D$

Writeback

S1

...La
ne

...

Cm-1 Cm

RF
ALU
D$

RF
ALU
D$

HTC
HTC

...
HTC

I$

Decode

RF
ALU
D$

Writeback

...
RF

ALU
D$

RF
ALU
D$

RF
ALU
D$

Spare core

Spare laneShared spare lane

Fig. 3.2: The physical design of SIMT architecture allows them to incorporate
coarse- and fine-grained redundancies.

everything else (skeleton):

ycore = ylanes × yL1 × yskeleton. (3.3)

The yield of individual SIMT cores can be improved by allocating spare

lanes. SIMT processors are distinguished from general-purpose ones by their

two levels of granularity: cores, and per-core lanes. Each core is a multi-

processor in its own right, but its redundant functional units (decoder, and

write-back) have been removed to improve power and area efficiency for appli-

cations that exhibit data level parallelism. Just as homogeneity at the system

level makes core sparing effective, homogeneity within cores makes lane sparing

effective.

A spare lane can be integrated in a core as depicted in Figure 3.2. A

core without lane sparing is illustrated in white. When cold spare lane (gray)

is integrated, if one of the main lanes is defective, the core may continue to

function. Swapping in a spare lane only requires the addition of multiplexors in

3.1 Multi-Granularity SIMT Redundancy 29

decode and write-back to direct control signals to the spare and away from the

faulty lane. Note that the spare lane does not improve performance when all

four lanes are functional; an investigation of the trade-offs under hot-sparing

is the subject of Chapter 4.

Spare lanes effectively improve yield in wide cores with many lanes. The

greater the number of lanes in a core, the higher the proportion of area dedi-

cated to lanes, and the lower the relative overhead of a single spare lane. Given

a system where each core requires k operational lanes and integrates l spares,

and the yield of each lane is ylane, the yield of the lanes can, like the yield of

cores, be calculated with the binomial distribution: ylanes = Binom(ylane, k, l).

3.1.4 Shared Spare Lane

The homogeneity of lanes, and the significant role they play in SIMT archi-

tecture, presents an additional, unique opportunity for low-cost yield enhance-

ment: sharing a spare lane between two cores, illustrated in Figure 3.2. When

the two cores share a spare lane, if either the white cores have a defective lane,

shared-lane (depicted in orange) and the corresponding decode and write-back

logic can be employed; this only prevents core failure when there is not more

than one defective lane in both cores.

The performance penalty of accessing redundant resources (e.g., pipeline

stage) in general purpose multi-cores is high [36]. However, due to hierarchical

design of SIMTs, we hypothesize that a shared spare lane can be included in

either core with only marginally greater performance loss than if the spare

were dedicated to a single core. On the other hand, where yield improvement

30 Yield-Aware Performance-Cost Optimization in SIMT

is concerned, the shared spare lane improves yield and reduces costs when

spare lanes may otherwise be too costly; from a redundancy perspective, a

shared spare lane covers twice the lanes (and has half the relative overhead)

compared with a spare lane.

Calculating the yield when using shared spare lanes is rather more com-

plex than previous cases; rather than derive an exact analytical formula, we

estimate yield as follows. The use of a shared spare lane couples the yield of

the two cores. There are two cases in which both cores that share a lane are

functional:

1. Neither core needs the shared spare lane (ylanes ssl1),

2. One core needs the shared spare lane (2 · ylanes ssl2).

When neither core needs the shared spare lane, the yield of the set of lanes

(given k lanes and l spares) is simply:

ylanes ssl1 = Binom(ylane, k, l)×Binom(ylane, k, l). (3.4)

A pair of cores with one core suffering from l + 1 defective lanes only

survives if the shared spare lane is available, i.e., if it both functional (not

itself defective) and not needed by the other core. In this case, the yield is:

ylanes ssl2 = ylane×
(
k + l

l + 1

)
(1−ylane)l+1(ylane)

k−1×Binom(ylane, k, l). (3.5)

Symmetry in the system means there are two ways to have a core that

requires the shared spare lane. The total yield of the pair of cores is therefore

3.1 Multi-Granularity SIMT Redundancy 31

ylanes sslp = ylanes ssl1 + 2 · ylanes ssl2 . As the cores are identical, the yield of a

single core’s lanes can be estimated as ylanes ssl =
√
ylanes sslp .

When spare cores are not present, this model is exact. However, error is in-

troduced when spare cores are available. In this case, the system may yield de-

spite the failure of one of a pair of a cores sharing a spare lane. We approximate

the yield with an even number of spare cores as ycores = Binom(ycoressl ,m, n),

where ycoressl is the yield of a core with a shared spare lane. If an odd number

of spare cores are allocated and each but the last has a shared spare lane,

ycores = Binom(ycoressl ,m, n)(1− ycore)+
m+n+1∑
i=m

(
m+ n

i− 1

)
(1− ycoressl)m+n−(i−1)(ycoressl)

(i−1)(ycore).

(3.6)

The introduced error isn’t significant, and we observe in general that combi-

nations of redundancy are too expensive to fall on the Pareto-optimal front.

3.1.5 Model Validation

To verify the accuracy of the above yield formulas, we developed a Monte

Carlo Simulation (MCS) framework. We considered 100 large configurations.

We divide this set into four equal subsets in a way that three of them utilize

only one kind of redundancy (core-, lane-, or shared-lane-sparing), and the

last one has no redundancy. Then, we used the MCS to calculate their yield

under unrealistically high defect densities (0.7/cm2), in order to exaggerate

any potential error in the model. 100K MCS samples were collected in each

32 Yield-Aware Performance-Cost Optimization in SIMT

case of defect regimes (e.g., one failed lane per core). On average, the relative

difference in yield values between MCS and the analytical result is 0.21%, with

a 95% confidence interval of 0.76%.

3.2 Experimental Setup

In order to (i) determine what form of redundancy is most applicable given

a particular (a) configuration and (b) application, and (ii) evaluate GPRS

for the purpose of predicting the performance of SIMT configurations in the

context of identifying the Pareto-optimal front, we performed two sets of ex-

periments. First, we conducted exhaustive performance and cost evaluation

of a wide variety of multi-core SIMT systems on a set of diverse benchmarks.

Second, we performed a series of training and testing experiments using GPRS.

3.2.1 SIMT Configurations and Benchmarks

We used MV5 [43] to simulate the performance of SIMT configurations. For

each multi-core configuration, we fixed a number of architectural parameters;

these are consistent with the experimental environment in [46]. The configura-

tions we considered varied the number of cores N cores, N ∈ {1, 2, 4, 6, . . . , 20},

the number of lanes per core (SIMT width) W and hardware threads per

core (SIMT depth) D, W,D ∈ {1, 2, 4, 8, . . . , 64} and L1 data cache size S,

S ∈ {16, 32, 64}KB. From the parameter space defined above, we selected all

configurations with die area within [50, 250] mm2.

We selected benchmarks from several suites: Minebench [48], SPLASH-

2 [49], and Rodinia [50]. The set we selected, Fast Fourier Transform (FFT),

3.2 Experimental Setup 33

Filter Edge Detection (Filter), Thermal Simulation (HotSpot), LU Decompo-

sition (LU), Merge Sort (MergeSort), Shortest Path (ShortestPath), KMeans

Clustering (KMeans), and SVM Learning (SVM), have been previously used

in the literature to evaluate multi-core SIMT performance [43].

3.2.2 Cost Model

The cost of a chip or die Cchip is a function of the cost of a wafer Cwafer,

the number of dice per wafer, and the yield of the die, ysys [51]:

Cchip =
Cwafer/(Dice/Wafer)

ysys
. (3.7)

The number of dice per wafer can be estimated as:

Dice/Wafer =
π × (Radiuswafer)

2

Areadie
− π ×Radiuswafer

2

√
Areadie

2

. (3.8)

We assume a wafer radius of 150mm, a wafer yield of 1, and that wafers

cost $3000 each. Note that in Eq. 3.7 we do not include test cost since 1)

in this research we focus on on manufacturing cost. 2) Adding repetitive

components such as lanes and cores as redundancy does not increase test cost.

This is the case, as there are methods that do testing concurrently on repetitive

elements in multi-core processors to prevent any increase in test time [53, 54].

3) As Shamshiri et al. [52] mentioned, we can escape burn-in and detailed test

procedures in multi-core processors and incorporate test cost into service cost

when we have redundancy in the systems and yield is high enough (> 95%).

On the other hand, service cost compare to manufacturing cost would be

34 Yield-Aware Performance-Cost Optimization in SIMT

negligible when yield is high in multi-core processors [32]. In other words, our

analysis shows that test cost would be a constant term in overall cost when

we add cores and lanes as redundancy, and therefore, not adding test cost and

service cost to manufacturing cost as Cchip (refer to Eq. 3.7) would not change

any of the conclusions that we will draw.

ysys is calculated as described in Section 3.1.1. To calculate the yield of

individual components, such as lanes, we adopt the negative binomial yield

model, a function of three parameters, the clustering parameter (α), defect

density (λb), and block area (Ab) [55, 56]:

yb =

(
1 +

λb × Ab
α

)−α
. (3.9)

Smaller α results in stronger defect clustering and vice versa, a function

of the process technology. We assume α = 4 in 65nm manufacturing technol-

ogy [51].

To estimate chip area we measured the area of functional units based on

a die photo of an AMD Opteron processor. As this processor is fabricated in

130 nm, we used a scaling factor of 0.7 per generation to scale the processor

to 65nm.

3.2.3 Genetically Programmed Response Surfaces

Performance simulation is the clear bottleneck in the design space explo-

ration of SIMT architectures, requiring two hours on average using a 2.8GHz

Intel Core i5 with 24 GB of RAM. We have therefore evaluated genetically

programmed response surfaces (GPRS) [44] for the performance estimation

3.3 Results 35

of SIMT configurations. GPRS uses genetic programming to fit a surface

(the objective function) to samples (training data) given a set of configuration

parameters. In our case, GPRS requires an input training set: SIMT configu-

rations that vary with respect to the targeted parameter set (number of cores,

number of lanes per core, and L1 D$), and the resulting execution latency

(determined with MV5). It returns an analytical model relating configuration

parameters and execution latency.

To explore the trade-off between training time (a function of the size of the

input set of configurations), and prediction accuracy, we experimented with

using different fractions of the design space as input, {0.1, 0.15, 0.20, 0.25}.

The makeup of the input set affects the predictive strength of the resulting

surface. We used the Audze-Eglais [57] method, suggested by the creators of

GPRS, to identify appropriate input points.

3.3 Results

We began with experiments to identify the set performance-cost Pareto-

optimal designs for each benchmark. First, we performed exhaustive perfor-

mance simulation, considering an average of 850 configurations for each bench-

mark. The simulated configurations were not allocated redundancy. Second,

we added redundancy to all configurations and then selected those on the

performance-cost Pareto-optimal front (POF) for each benchmark, and in the

average performance case.

Cost reduction results for the average performance case is illustrated in

Figure 3.3. Designs have been binned by area on the x-axis; average cost re-

36 Yield-Aware Performance-Cost Optimization in SIMT

0
2
4
6
8

10
12
14
16
18
20

Configuration Area (mm2)

Relative Cost Reduction (%)

Core Lane Shared Lane None

42%

13%

45%

Fig. 3.3: Relative cost reduction when designing for average performance
(across all benchmarks).

duction for designs in each bin are then plotted on the y-axis. Each series,

Core, Lane, and Shared Lane, plot the set of Pareto-optimal designs imple-

menting that sort of redundancy. The pie chart then plots the fraction of

designs of each type represented in the global Pareto-optimal set, as well as

what fraction utilize no redundancy at all.

We observe in the average case that redundancy does not improve yield

inexpensively enough to reduce the die cost of performance-cost Pareto-optimal

configurations until processors are larger than 82 mm2. While some low cost

designs, 80 to 100 mm2 experience minor cost reduction with shared spare

lanes, in the average case core sparing dominates, reducing costs by over 18%

for 180-190 mm2 configurations.

3.3 Results 37

0

5

10

15

20

25

30

Configuration Area (mm2)

Relative Cost Reduction (%)

Core Lane Shared Lane None

24%

19%57%

Fig. 3.4: Relative cost reduction for Filter. Lane and core sparing dominate
when redundancy reduces cost.

3.3.1 Application-specific Results

While on average, spare cores reduce cost the most, individual applications

often have very different needs. For example, consider the results for Filter in

Figure 3.4. Redundancy begins reducing costs at 65mm2; lane sparing results

in the greatest cost reduction for designs under 145mm2. Filter benefits from

much larger configurations along the POF than other benchmarks. For large

designs, core sparing dominates, with cost reduction peaking at 25% for a 248

mm2 design. The global Pareto-optimal systems in this case mostly enjoys no

redundancy while core sparing is a better regime than shared and spare lane

ones.

Alternatively, consider the results for KMeans, illustrated in Figure 3.5.

This benchmark uses shared lane sparing until the area exceeds 90 mm2, and

38 Yield-Aware Performance-Cost Optimization in SIMT

0

2

4

6

8

10

12

14

16

Configuration Area (mm2)

Relative Cost Reduction (%)

Core Lane Shared Lane None

28%

31%

41%

Fig. 3.5: Relative cost reduction for KMeans. Spare lane sharing and core
sparing dominate in this case.

again when designs are larger than 130 mm2, peaking at over 14% cost reduc-

tion. The Pareto-optimal systems, in this case, mostly utilize shared-spare-

lane, which shows the result of having narrow cores in the POF set.

FFT, MergeSort and ShortestPath benefit the most from core sparing:

the Pareto-optimal systems in employ core sparing almost exclusively, which

reduces costs up to 8%, 9%, and 23% for designs at 145, 142, and 223 mm2,

respectively. On the other hand, spare lane sharing is more important for

HotSpot and LU. For HotSpot, 59% of Pareto-optimal designs implementing

redundancy use spare lane sharing, reducing costs up to 5% for systems in the

90-100 mm2 range. For LU, it’s 49%, with a peak cost reduction of 21%. SVM

has only two Pareto-optimal points, one of which uses a spare core.

3.3 Results 39

10 15 20 25
0

0.5

1

1.5

2

2.5

3
x 10

−3

Design Space Sampled (%)

A
D

R
S

FFT

Filter

HotSpot

KMeans

LU

MergeSort

ShortestPath

SVM

Fig. 3.6: ADRS results for different fraction of data set samples over different
benchmarks.

3.3.2 Pareto-optimal Front Prediction

Next, we experimented with GPRS to evaluate its suitability for identi-

fying Pareto-optimal SIMT configurations; in our case, exhaustive simulation

required 800 hours of computation to simulate the fastest benchmark. The

computational cost of GPRS increases with the size of the training set used to

fit the surface. In our case, GPRS required, on average, 5.3, 11.8, 25.6, and

43.4 hours (not including simulation time) for input sets amounting to 10%,

15%, 20%, and 25% of the parameter space respectively running on Intel Core

i7 Intel with 8GB of RAM, a 10 to 3.2 times speedup.

However, GPRS becomes more accurate the larger the training set. To

evaluate the accuracy of GPRS, for each combination of sample size and bench-

mark we compared the predicted Pareto-optimal front (PPOF) with the ref-

erence Pareto-optimal front (R) and that generated by randomly sampling

the design space (RaPOF). We compared the PPOF and R using the average

40 Yield-Aware Performance-Cost Optimization in SIMT

distance from reference (ADRS), a normalized-distance-based accuracy mea-

sure [58, 59]. Our results are summarized in Figure 3.6.

Compared with RaPOF (not illustrated), GPRS performs poorly for FFT,

Filter, LU, MergeSort and SVM when training with just 10% of the design

space. We observe in Figure 3.6 that as the input sample size increases to

15%, however, there is an average 0.004 improvement in ADRS for these

benchmarks; at 15%, GPRS achieves an ADRS of 0.0002 on average across

all benchmarks. Only incremental improvement is possible sampling up to

20% of the design space.

3.4 Conclusion

We introduced a new redundancy method in SIMT Multi-Core processors

which is called shared spare lane. Then, we presented a yield formula to address

that new redundancy method. After that, we evaluated that new redundancy

technique to see how effective this would be in terms of cost reduction. We

showed that, in some configurations and applications, shared spare lanes are

preferable to other kinds of redundancies, and in most of the cases when a

system utilizes narrow cores shared spare lane is a better sparing regime than

spare lane to reduce the manufacturing cost.

As the size of SIMT performance-cost design space is big, and evaluating

a single design point in this design space is computationally expensive, it is

infeasible to exhaustively explored it. Therefore, we utilized GPRS (a response

surface tool) to predict the performance of SIMT systems in this design space.

The accuracy of this tool is highly dependent on the size of its training set. In

3.4 Conclusion 41

this regard, we showed that what percentage of the design space should be used

as the training set to have enough accuracy to identify POF points. However,

providing a large enough training set, might not be feasible in some cases

(e.g., when a design space is huge). Consequently, designers cannot just rely

on prediction models, and need to utilize intelligent design space algorithms

as well.

42

Chapter 4

Hot-sparing for

Performance-Cost Improvement

in SIMT

In this chapter, we investigate the utilization of hot sparing to improve cost

and performance of SIMT systems. In this regard, we introduce architectural

and micro-architectural redundancies in SIMT processors, and their yield and

cost models. Also, to better compare systems with hot sparing in terms of cost

and performance, we introduce a new metric (expected performance per cost).

Then we study which type of redundancy improves systems the most in terms

of expected performance per cost.

Most yield improvement strategies utilize redundant components only when

another component fails (i.e., cold spares) [8, 60, 11]. However, this may lead to

a huge waste: a considerable portion of redundant components remain unused

43

after fabrication [11]. Gao et al. [12], use fabricated but unused redundancies

in the field to improve general purpose multi-core processors’ performance

(hot-sparing). However, they show that the performance overhead to utilize

micro-architectural redundancies in the field is considerable in a way that it

may damage the performance of systems. We show that this is not the case

for SIMT processors which their architecture let designers utilize hot-sparing

in different granularities to improve performance.

In this chapter, for the first time, we utilize hot-sparing in SIMT processors

and we investigate the cost and performance implications of utilizing this type

of redundancy in SIMT processors. Hot spares are available to increase yield

(and reduce costs) when the components are defective; otherwise, they can be

used to improve performance in the field.

To evaluate the performance and cost of systems with hot-sparing, we

introduce a new metric E[P]/C. E[P]/C captures the performance and cost

of a multi-core SIMT system by considering the population of dice that results

from a given defect density. In E[P]/C, E[P] is the expected performance of a

given configuration in the presence of defects. The performance of each possible

configuration is weighted by its likelihood of occurrence, thereby accounting for

the availability of hot spares to improve performance when they are not needed

to replace defective components. E[P]/C is similar to previously introduced

metrics such as yield-adjusted throughput (YAT) [15], performance-averaged

yield (PAY) [34]. However, it captures cost which is a better proxy than

yield and area when we want to capture the effectiveness of redundancy in

a system: while all redundancy increases area, not all redundancy improves

44 Hot-sparing for Performance-Cost Improvement in SIMT

yield sufficiently to reduce cost.

Prior work has explored how to quantify performance in the context of

defects [16, 15, 12]. Like our work, these all calculated system performance by

simulating all possible systems with defects and weighting their contribution

to expected performance by the likelihood of each configuration occurring. In

our work, which requires detailed multi-core performance simulation, such an

approach is intractable: Therefore, we introduce an approximation for E[P]

in order to reduce evaluation complexity with an acceptable loss in accuracy.

Starting with a baseline architecture with six cores, and 32 lanes each, we

added three hot spare cores, with two lanes each. When we make the lanes

of the hot spares available to replace defective lanes in the baseline cores, we

observe that E[P]/C improved more than 2.5 and 1.7 times relative to systems

integrating no redundancy and cold spares, respectively.

4.1 Multi-Granularity Hot-Sparing in SIMT

As mentioned in Section 3.1, SIMT systems consist of components repli-

cated at different levels of granularity (core and lane). This gives designers the

opportunity to apply redundancy at the same granularities from fine- (lane)

to coarse-grained (core), in order to address manufacturing defects. However,

redundant units that are integrated but not utilized are wasted if left cold;

we therefore propose integrating hot spare units that can be easily used to

improve performance when not needed to cover defects.

We illustrate a multi-core SIMT system in Figure 4.1, implementing dif-

ferent sparing regimes. Three different types of cores are illustrated: 1) main

4.1 Multi-Granularity Hot-Sparing in SIMT 45

RAM

L2 $

Crossbar

.

MCore1

. . .

RMCore

. . .

RCore2

. . .

MCore
1

RCore
1

RCore2

MCore2

RCore1

. . .

MCoren

Steering
Logic

Hot-SSL

Hot-SL

HTCs
I$

Decode

Write Back
Write
Back

HTCs
I$

Decode

HTCs
I$

Decode

Write
Back

MCore2

. . .

HTCs
I$

Decode

Write Back

D$

Reg

ALULane

Lane

Fig. 4.1: Architecture of a multi-core SIMT system with hot spare compo-
nents.

cores (MCores); 2) narrow, hot redundant cores (RCores) that make spare-

and shared-spare-lanes available for use by MCores and RMCores; and, 3)

wide hot redundant main cores (RMCores) for core sparing.

SIMT core and lane architectures are defined in Section 3.1. Each core

(MCore, RCore, and RMCore), which is referred as a streaming multi-processor

(SM) in NVIDIA G80 terminology [10], consists of a unified front-end unit,

including L1 instruction cache (I$), hardware thread contexts (HTCs), and

instruction decoder, processing elements (lanes), and back-end write back.

46 Hot-sparing for Performance-Cost Improvement in SIMT

4.1.1 Redundancy Regimes

We propose allocating redundancy to salvage defective main cores (MCores)

by scavenging for components in redundant cores (RCores) [36], by means of

steering logic, or replacing them entirely with redundant main cores (RM-

Cores). When not covering defects, RCores and RMCores can be used to

improve performance.

We illustrate several multi-core SIMT redundancy strategies in Figure 4.1:

• Hot spare lane (Hot-SL): a lane from an RCore that is dedicated to

an MCore. Up to one defective lane in each of MCore1 and MCore2

are covered by the pair of lanes in RCore1. Hot-SL implementation is

different from Cold-SL (refer to Section 3.1.3): Hot-SLs are added in

the context of RCores, while Cold-SLs are added as an extra lane in the

context of MCores.

• Hot shared spare lane (Hot-SSL): a lane that is not dedicated to a spe-

cific core, but can be used if needed by a small set (two, or three) of

cores. Hot-SSL implementation is different from Cold-SSL (refer to Sec-

tion 3.1.4): Hot-SSLs are added in the context of RCores, while Cold-

SSLs are added as an extra lane between two MCores without any skele-

ton. Up to two defective lanes in the pair of cores MCore2 and MCore3

(not pictured) are covered by the pair of lanes in RCore2. If MCore2 has

two defective lanes, and MCore3 none, the system remains functional,

while it would not if only spare lanes were available.

• Hot spare core (Hot-SC): an RMCore that can completely replace an

4.1 Multi-Granularity Hot-Sparing in SIMT 47

MCore that cannot be otherwise salvaged. Integrating Hot-SC to SIMT

systems is similar to Cold-SC (refer to Section 3.1.2), but with this dif-

ference that it can be utilized in the field to improve the performance of

a system.

To support current practices in GPGPU programming, we limit RCores s.t.

the number of active lanes is always a power of two, facilitating thread block

mapping and execution without requiring changes to runtime thread manage-

ment (e.g., to explicitly manage processor heterogeneity). Note that we also

assume that spare unit allocation and defective unit substitution are performed

at manufacturing time.

4.1.2 Expected Performance per Cost, E[P]/C

Performance and cost are influenced by several factors in multi-core SIMT

with hot spares. The addition of hot spares can improve performance when

the spares are not needed to mitigate defects, however, this is not the case

for cold-sparing. We capture this effect by simulating the multi-core systems

running a variety of benchmarks using the MV5 performance simulator [43].

Also, similar to cold-sparing, each type of hot redundancy, except core sparing,

results in the addition of steering logic: muxes, de-muxes, and wires are needed

to direct signals to/from a spare lane. These components lengthen the critical

path of the core utilizing them, thereby decreasing its operating frequency. We

capture this effect by synthesizing steering logic in the context of the FlexGrip

GPGPU [61]. Note that since hot micro-architectural redundancies (Hot-SL,

and Hot-SSL) are defined in the context of RCores, their performance overhead

48 Hot-sparing for Performance-Cost Improvement in SIMT

is different from similar cold sparing methods (Cold-SL, and Cold-SSL) as the

steering logic that connects them to MCores can result in a longer critical

path and lower clock frequency. When we calculate the overall performance

of a system with hot-sparing, we take into account both these performance

loss and gain. System cost is also affected: area goes up with the inclusion

of redundancy, but cost may decrease if the resulting improvements in yield

are significant enough. Area overhead of utilizing Hot-SL, and Hot-SSL is

higher than similar Cold-SL, and Cold-SSL methods as hot micro-architectural

redundancy is defined in the context of a complete core (RCore), while this is

not the case for cold sparing.

Given these various effects, a question arises: what is the best configuration

to jointly optimize performance and cost? In order to answer this question, we

propose expected performance per cost (E[P]/C), a new metric that captures

the effect of hot-sparing on system performance and cost.

E[P]/C is similar to previously introduced metrics such as yield-adjusted

throughput (YAT) [15], performance-averaged yield (PAY) [34], and E[P]/Area [8],

with two consequential differences. First, area is not an appropriate proxy for

cost: while all redundancy increases area, not all redundancy improves yield

sufficiently to reduce cost. Second, while previous metrics evaluate the set of

possible configurations resulting from defects in a given system, this is com-

putationally intractable in our case.

4.1 Multi-Granularity Hot-Sparing in SIMT 49

Cost Model

In E[P]/C, the cost, C, is the fabrication cost of a die (refer to Sec-

tion 3.2.2). As stated in Eq. (3.7), Cdie is a function of the cost of a wafer

(Cwafer), the number of dice per wafer, and the yield of the die, ysys. Sys-

tem yield, ysys in Eq. (3.8), is defined as the ratio of working ICs to the total

fabricated [3], and is a function of the component yield. In this section, we

adopt and extend the yield model we developed in Section 3.1. We calculate

yield based on the type of redundancy that is utilized in the system (None,

Hot-SC, Hot-SL, Hot-SSL); we previously observed that neither systems with

more than one type of redundancy nor more than one redundant component

of a given type are cost-performance cost optimal solutions [11].

For multi-core SIMT, yield is

ysys = ycores × yL2 × ycrossbar × (yRCskel
× yRCL1

)p, (4.1)

where ycores, yL2, and ycrossbar are the yield of the set of cores, the L2 cache, and

the crossbar, respectively. RCskel and RCL1 are RCore’s skeleton (anything

that is not a RCore-lane or L1 cache inside the RCore) and L1 cache yield

values, respectively. p is the number of hot spare RCores in the system. The

yield of the main cores (ycores) is:

ycores = Binom(ycore,m, n) =

m+n∑
i=m

(
m+ n

i

)
(1− ycore)m+n−i(ycore)

i, (4.2)

50 Hot-sparing for Performance-Cost Improvement in SIMT

where m and n are the number of required MCores and spare MCores (RM-

Cores), respectively, in the system. The yield of a single core (ycore) is:

ycore = ylanes × yL1 × yskel, (4.3)

where ylanes, yL1, and yskel are the yield of the lanes, L1 cache, and everything

else, respectively.

When RCore lanes are utilized as spare lanes, the yield of the lanes ylanes =

Binom(ylane, k, l), where k is the number of required lanes in each MCore (e.g.,

32) and l is the number of spare lanes for each MCore (the number of redundant

lanes available to an MCore from an RCore).

If RCore lanes are utilized as shared spare lanes, instead of calculating the

yield of an individual core (ycore, Eq. (4.3)), we divide the system into groups of

three cores (two MCores and one RCore) and calculate y3core. This is necessary

since the yield of the two MCores and the RCore are interdependent (refer to

Section 3.1.4). The yield of each of these groups is:

y3core = Binom(ylane, 2k, l)× y2
L1 × y2

skel. (4.4)

Note that the yield of each RCore’s L1 and skel are accounted for in the system

yield formula Eq. (4.1).

4.1 Multi-Granularity Hot-Sparing in SIMT 51

Expected Performance

E[P] is the expected performance of a given configuration in the presence

of defects:

E[P] =
∑

Ci∈{S}

Perf(Ci)× Prob(Ci), (4.5)

where S is the generating set of the baseline (no defects) and derivative config-

urations (with defects) of a system. Perf is the configuration’s performance

(the inverse of benchmark execution time), and is determined with detailed

simulation that accounts for the presence of defective components.

Prob is the probability of the configuration’s occurrence in the population

of dice given a particular defect density. Some configurations with many defects

and consequently low performance may be unlikely to occur. Therefore, the

performance of a given configuration must be weighted by how often it appears

in a given population of dice. The number of resulting performance simulations

may be large, however. Consider a system with six cores (MCores), each with

32 lanes, and three redundant cores (RCores), each with two shared lanes

that can replace defective lanes in the MCores. For such a system, there

are more than six million derivative configurations that meet the performance

requirement of at least six functional MCores.

To reduce the cost of evaluation, most configurations can be grouped into a

much smaller number of generating configurations. For instance, some defects

may result in configurations that are identical from a performance perspective,

such as when any single MCore in the system has a defective lane, or when

any single core is defective. Such symmetric configurations can be safely ex-

52 Hot-sparing for Performance-Cost Improvement in SIMT

cluded from S, and their probability of occurrence combined with that of the

generating configuration. Doing so in the case of our example above reduces

the number of required performance simulations to 33. Unfortunately, even

in this case evaluating each configuration in the generating set requires more

than 792 hours on a 3 GHz Core i7 platform with 8GB of RAM.

Estimating E[P]

To control the computational cost of design evaluation, we estimate E[P]

with Êm[P] ≤ E[P] by limiting the configurations we consider possible. By

evaluating only those configurations with high likelihood of occurring, we can

achieve a reasonable estimate at a fraction of the computational cost.

First, we assume that S = {C0, C1, ..., Cn} such that Prob(Ci+1) ≤ Prob(Ci).

Then,

Ĉi =


Ci

i∑
j=1

Prob(Cj) ≤ Th

Null otherwise

(4.6)

where 0 < Th ≤ 1 is selected to control the computational cost of the set of

simulations. Now, Ŝ = {Ĉ0, Ĉ1, ..., Ĉn}, and therefore

Êm[P] =
∑

Ĉi∈{Ŝ}

Perf(Ĉi)× Prob(Ĉi), (4.7)

when Perf(Null) = 0.

We observe that Êm[P] ≤ E[P] and that as Th → 1, Êm[P] → E[P].

This conservative calculation helps us to avoid costly performance calculations

that contribute little to E[P]. Determining how to select Th is the subject of

4.1 Multi-Granularity Hot-Sparing in SIMT 53

Chapter 5. We have observed in practice that dice with more than one defective

lane, for instance, are highly unlikely [11]; we therefore limit ourselves to the

cases where all components are functional (no defects), where one lane in the

system is defective (when considering hot- SL and SSL), and where one core in

the system is defective (when considering hot-SC). These cases constitute more

than 94% of the dice population for our example system whether considering

hot- SL, SSL, or SC, reduce the required simulation by 90%. This significantly

reduces the number of systems for which we must calculate Prob.

Probability of Occurrence

Calculating the probability of occurrence Prob is similar to calculating

yield, but rather than determine the fraction of systems that satisfy a particu-

lar set of requirements (number of cores, lanes, etc.), we calculate the fraction

of systems that have exactly one given configuration. The probability that a

given configuration occurs is

pCi
= pcores × pcrossbar × pL2$ (4.8)

where pL2$ and pcrossbar are the probability of occurrence of the L2 cache and

crossbar, respectively. We assume the yield of these components is 1 (see

Section 4.2.2); pL2$ and pcrossbar are therefore 1.

pcores is the probability of observing a particular set of cores given the com-

ponents that are present: the number of MCores nmc, the number of RCores

nrc, the number of total MCore lanes nml, and, the number of total RCore

lanes nrl; and, the number of components that are defective: the number of

54 Hot-sparing for Performance-Cost Improvement in SIMT

defective MCores ndmc, the number of defective RCores ndrc, the number of

defective lanes in an MCore ndml, and, the number of defective lanes in an

RCore ndrl.

When considering the application of spare lanes, for instance, the prob-

ability of observing a system with a one MCore with one defective lane is

determined by

pcores =

(
nmc
ndmc

)
× pndmc

core′ (nml, ndml)×

p(nmc−ndmc)
core (nml)×

(
nrc
ndrc

)
× pndrc

core′(nrl, ndrl)

× p(nrc−ndrc)
core (nrl), (4.9)

where pcore is the probability of having all nl lanes operational (nml and nrl

for MCores and RCores respectively),

pcore(nl) = ynl
lane × yskel × yL1$, (4.10)

and where pcore′ is the probability of having nl − ndl operational lanes (in the

case study system and utilizing SL, ndl = 1),

pcore′ (nl, ndl) =

(
nl
ndl

)
× y(nl−ndl)

lane × (1− ylane)ndl × yskel. (4.11)

pcores can be derived for the SSL and SC cases in a similar fashion.

4.2 Experimental Setup 55

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

C
ro

ss
ba

r

Fig. 4.2: Case study system.

4.2 Experimental Setup

To determine what form of hot spare redundancy is most beneficial for a

particular (a) configuration and (b) application, and compare these results with

that when cold spares are used, we performed a set of experiments on a case

study system inspired to by the GeForce GTX-260 GPGPU from NVIDIA Co.

We evaluated the performance and cost of a variety of multi-core SIMT con-

figurations with hot and cold spare lanes (SL), shared spare lanes (SSL), and

spare cores (SC), on a set of diverse benchmarks. The GTX-260 has six stream-

ing processors (cores), each with 32 CUDA-cores (lanes) [62]; we integrate an

additional three redundant RCores with two lanes each when considering SL

and SSL redundancy, or an entire core (RMCore) when considering SC redun-

dancy. RCores (red) are distributed among MCores in such a way that each

MCore is located beside only one RCore, as illustrated in Figure 4.2). We have

previously observed that many redundant lanes are not helpful in terms of cost

reduction in the context of SIMT processors (refer to Section 3.3). Therefore,

56 Hot-sparing for Performance-Cost Improvement in SIMT

we did not consider more than two lanes per each RCore.

4.2.1 SIMT Configurations and Benchmarks

We used MV5 [43] to simulate the performance of each SIMT configuration

we considered. We assume a number of architectural parameters consistent

with the literature [46], including: 0.6 GHz processor clock frequency, 16 KB

L1 instruction cache and a unified 4 MB L2 cache per core, 300 MHz crossbar,

and 300 cycle memory access latency. Each MCore has 64 KB L1 data cache,

while each RCore has 8 KB L1 data cache. The number of hardware threads

per core is set to twice the number of lanes per core (SIMT-depth = 2) for

both kinds of cores (R- and M-Cores) in the system. We use the same list

of benchmarks that is utilized in the simulation-setup of the previous section

(refer to Section 3.2).

4.2.2 Cost Estimation

We use the cost model developed in Section 3.2.2. We extend this model to

develop a cost model for systems utilizing hot-sparing. For wafers we assume

the cost of $3000, diameter 300mm, and yield of 1. Also, we adopt the negative

binomial yield model to calculate the yield of individual components (refer to

Section 3.2.2). This model has three parameters: defect density (λb), the

clustering parameter (α), and block area (Ab) [55, 56]:

yb =

(
1 +

λb × Ab
α

)−α
. (4.12)

4.2 Experimental Setup 57

Table 4.1: SIMT Component Area.

Processor Configuration Component Area (mm2)
Tech. size 65nm ALU 0.0915

#(Int. Mult.)/ALU 1 Reg. File 0.9436
#(Int. ALU)/Lane 1 Lane 0.1319

#Lanes/Core 32 Skeleton 1.5801
L1 D$ Size 64KB Core 7.1917

SIMT Depth 2 D$ 1.3901
L2$ Size 4096KB L2$ 46.0652
#Cores 6 Processor 89.2154

In 65nm manufacturing technology, we assume λb = 0.025/cm2 and α = 4 [51].

Moreover, we consider the yield values of D$ and crossbar 1, since inexpensive

redundancy can increase yield dramatically [32].

To estimate component area for yield estimation, we measured the area

of functional units based on a gate-level synthesis of a SIMT processor, Flex-

Grip [61]. FlexGrip is a configurable GPUPU targeting FPGA, which is based

on the NVIDIA G80 architecture. FlexGrip is configurable, and it is possi-

ble to define many architectural parameters such as the number of cores and

lanes. We set FlexGrip to mimic the case study system (32 lanes per core),

and modified it to be compatible with an ASIC flow by substituting HDL for

the IPs it employs. We synthesized the processor for the 65nm TSMC process,

considering both the timing and area overheads of wires in the design. We

extracted the sizes and the number of ports for the memories and register files

in the implementation and used CACTI [63] memory models to estimate their

areas. The area measurement of different sub-components of the FlexGrip

GPGPU is reported in Table 4.1.

58 Hot-sparing for Performance-Cost Improvement in SIMT

4.2.3 Performance Degradation with Hot Redundancy

Adding redundancy often increases critical path delay and consequently

ultimately reduces system performance [8, 11]. When we employ SC in a

crossbar-based system, the only performance penalty is due to the increased

size of the crossbar. MV5 does not support variation in crossbar delay; how-

ever, since crossbar delay grows slowly, we neglect this performance degrada-

tion in the system [64].

When using hot spare lanes, a main core that utilizes an SL must slow

down to accommodate the additional delay introduced by steering logic. We

measured this delay using FlexGrip and observed it to be less than 3.2%.

Therefore, whenever an MCore uses an SL, its frequency is decreased by 3.2%;

other cores operate at their highest clock rates.

We expect to observe similar performance degradation when SSL are uti-

lized. However, the amount of this degeneration varies depending on the num-

ber of accessible SSLs (which affects the delay of the steering logic) as well

as their physical distances to the MCore that they are shared with. Based on

measurements from FlexGrip, this variation is between 4.5% to 6.8% of the

operating frequency of the case study system, while the observed relative area

overhead (the area portion of added steering logic against the area of a lane)

is less than 0.1%.

These decreases in frequency, due to utilizing SL or SSL, 1) only affect the

core that is defective and utilizes a spare lane, and does not degrade to the

entire chip’s working frequency if the processor can independently clock the

cores, and 2) does not result in the same proportion of performance degradation

4.3 Results 59

-4
-2
0
2
4
6
8

10
12
14
16

Av
er

ag
ed

 R
el

at
iv

e
Co

st
 R

ed
uc

tio
n

(%
)

C-SC H-SC C-SL H-SL C-SSL H-SSL

#Cores [1,8] [1,8] [2,20] [2,20]
#Lanes [1,2] [1,4] [4,16] [32,64]
#HTC [1,4] [16,64] [4,16] [4,16]

Fig. 4.3: Comparison of cold- and hot-sparing under different sets of config-
urations and redundancy techniques.

for the corresponding core. Memory access latency can, in some cases, hide

the reduction in clock frequency.

4.3 Results

4.3.1 Cost-Effectiveness of Hot-Sparing

We conduct a variety of experiments to investigate the effectiveness of hot-

sparing. We begin with a comparison of the cost-effectiveness of cold and

hot-sparing across a wide variety of system configurations utilizing spare cores

(SC), spare lanes (SL), and spare shared lanes (SSL). In each case, we allocate

a single type of redundancy. We consider n SC, l SL, and zero to two SSL,

where n ∈ SC = {0, 1, ...,m}, l ∈ SL = {0, 1, ..., k}, for a system with m cores

and k lanes per core. SSLs are only allocated when there is more than one

main core in the system. We then calculate the average relative cost reduction

(ARCR) of the defect-tolerant system. ARCR is defined as the change in cost

60 Hot-sparing for Performance-Cost Improvement in SIMT

relative to the baseline design with no redundancy. Cost is calculated as in

Section 4.2.2.

In Figure 4.3, we divide configurations into four groups with similar param-

eters and cost reduction behavior: those that benefit from (a) no redundancy,

(b) core sparing, (c) spare lane sharing, and (d) lane sparing. The systems in

each group are specified by the tuple (Cores, Lanes, HTC), where each value is

given as a range. The ranges associated with each group are indicated on the

x-axis; the y-axis indicates the ARCR of the group of systems for each type of

redundancy.

When systems utilize cold or hot spare cores, we observe that there is no

difference in ARCR between hot and cold sparing. With both types of redun-

dancy, main cores in the system are replicated and result in the same area

overhead and yield improvement. When systems utilize Cold-SL or Cold-SSL,

their ARCR are at most 1.5% better than Hot-SL and Hot-SSL respectively in

all different groups of presented systems. This difference is observed because

cold sparing does not require RCore front-end and back-end units when inte-

grating redundant lanes to the system. This results in lower area overhead and

consequently higher yield. Although cold sparing outperforms hot redundancy,

this advantage is marginal; by trading 1.5% in cost, on average, designers can

equip their systems with hot spares that often improve system performance.

4.3.2 E[P]/C Improvement of Hot-sparing

In Figure 4.4, we illustrate the normalized expected performance per cost

(E[P]/C) for different types of redundancy (bar graphs), normalized to the

4.3 Results 61

-20

0

20

40

60

80

0

1

2

3

FFT

-50

0

50

100

0

1

2

3

FILTER

-60

-40

-20

0

20

0

0.5

1

1.5

2

HOTSPOT

-20

-15

-10

-5

0

5

0

0.5

1

1.5

2

KMEANS

-20

0

20

40

60

0

1

2

3

MERGESORT

-10

0

10

20

30

0

0.5

1

1.5

2

SHORTESTPATH

-2

0

2

4

6

0

0.5

1

1.5

2

SVM

-5

0

5

10

0

0.5

1

1.5

2

LU

Without Redundancy Cold Spare Lane Cold Shared Spare Lane Cold Spare Core Hot Spare Core HotSpare Lane Hot Shared Spare Lane

Relative Expected Performance Improvment

% % % %

% % % %

Fig. 4.4: Normalized E[P]/Cost (bars, left) and relative E[P] improvement
(lines, right) and over different benchmarks.

baseline-system (without redundancy). The left y-axis (bars) indicates the

E[P]/C of the systems normalized to the baseline; the right y-axis (lines)

indicates the percentage improvement in E[P] alone relative to the baseline.

Four applications (FFT, Filter, ShortestPath, and MergeSort) show better

E[P]/C (nearly 1.6, 1.7, 1.2, and 1.3x, respectively) using hot spares than cold,

over all types of redundancy. These application are able to make effective use

of the narrow hot spares, resulting in performance improvement.

We do not observe such improvement for all applications. For example,

SVM and LU show only marginally better E[P]/C with hot-sparing than

cold. For these applications, E[P] improvements are small, at most 7% over

than baseline system. These applications clearly make less effective use of the

narrow spare cores, possibly as a result of presence of a greater number of

62 Hot-sparing for Performance-Cost Improvement in SIMT

synchronization points in these applications [48, 49]: the wide cores (MCores)

must wait for the completion of thread blocks mapped to narrow cores (hot

RCores). While these applications experience poor E[P] improvement, the

reduction in cost results in nearly 1.5 times improvement in E[P]/C compared

to the baseline system; similar improvement is observed from cold sparing.

On the other hand, there are some applications (HotSpot and KMeans) that

not only do not show any improvement in E[P]/C in the presence of hot spares,

but also experience significant performance degradation. Even though cost

is reduced by adding redundancy to the system, E[P]/C decreases: the cost

reduction is not big enough to compensate for the loss of E[P]. We hypothesize

that this performance loss is due to data-dependencies [50, 48]: performance

is constrained by that of the narrow RCores when the wide MCores idle and

wait to receive data from them.

Ultimately, the decrease in E[P]/C for some applications in the presence

of hot-sparing is not a cause for concern for designers: hot spare units can be

disabled, even at runtime, rendering hot spares cold. In the case study system,

in the worst case, this transformation has a marginal overhead in terms the

of cost (less than 4%), while hot spare techniques improve cost of the baseline

system more than 31%.

4.4 Conclusion

We investigated how the application of hot redundancy in multi-core SIMT

systems can not only improve yield, but also increase performance. We intro-

duced a new metric, expected performance per cost (E[P]/C), and showed that

4.4 Conclusion 63

there are some applications that benefit greatly from hot-sparing, and for those

that do not, the overhead associated with leaving spares cold is not significant.

To support this effort, we synthesized the FlexGrip GPGPU in an ASIC flow

to determine the area of processor components for use in our yield models.

We observed that when systems consist of a few narrow cores, the area over-

head of hot-sparing compared to cold is considerable and results in 1.5% lower

average relative cost reduction (ARCR). However, this cost overhead becomes

negligible (less than 1%, in terms of ARCR) when systems integrate many

wide cores. On the other hand, we observed that the performance improve-

ment gained by hot-sparing reaches nearly 20% for some applications in a case

study system of six 32-lane cores and three two-lane redundant cores. Based on

this performance improvement, we observe that when the case study system is

equipped with RCores, some applications experience 1.7 to 2.5x improvement

in E[P]/C compared to the system without redundancy, while the addition

of those RCores increases the processor’s area less than 5%. By employing

hot-sparing and tolerating a marginal increase in the size of a SIMT processor,

designers can expect to see impressive performance per cost improvement.

64

Chapter 5

Efficient Performance

Evaluation in SIMT Processors

In this chapter, we build upon the previous chapter and we introduce a

new performance estimation technique for systems with hot-sparing (Ês[P]).

We show that Ês[P] can estimate expected performance with a cost not more

expensive than traditional performance evaluation.

Hot spares complicate system evaluation: the presence of defects affects

what resources are available [2]. Accurate performance evaluation thus requires

the simulation of the entire population of resulting dice in order to determine

the expected performance, E[P], of the system. While simply expensive for

single system evaluation, it is intractable for design space exploration. Prior

work has quantified performance in the context of defects [16, 12, 15, 8]. They

utilize performance estimation tools to avoid detailed multi-core performance

simulation. However, it is not applicable for our work since we require de-

65

tailed multi-core performance simulation to distinguish designs [2]. Therefore,

we extend the estimation method that is introduced in Chapter 4, Êm[P]: we

calculate a proper Th value for Êm[P] to make it accurate enough to distinguish

SIMT systems in terms of performance, keeping it computationally efficient.

We show that by selecting the proper value for Th (≥ 95%), Êm[P] evaluates

at most the three most likely configurations, and assumes the performance of

all others is zero, reducing simulation by 93%, while Êm[P] remains accurate

enough to distinguish designs. However, this remains computationally expen-

sive for design space exploration when individual, detailed, simulations require

hours. Therefore, we introduce another estimation techniques, Ês[P]. Ês[P]

evaluates only the most likely configuration, and assumes its performance for

all other configurations, reducing simulation by 98%, with no more than 2.6%

error in E[P], sufficient for differentiating designs along the Pareto-optimal

front during design space exploration. Consequently, designers may add re-

dundancy, and evaluate system performance and cost, with no greater design

effort than performance evaluation alone.

Expected Performance (Recall from Section 4.1.2)

As mentioned before, E[P] is the expected performance of a given config-

uration in the presence of defects:

E[P] =
∑

Ci∈{S}

Perf(Ci)× Prob(Ci), (5.1)

where S is the generating set of the baseline (no defects) and derivative config-

66 Efficient Performance Evaluation in SIMT Processors

urations (with defects) of a system. Perf is the configuration’s performance

(the inverse of benchmark execution time), and is determined with detailed

simulation that accounts for the presence of defective components. Prob is the

probability of the configuration’s occurrence in the population of dice given a

particular defect density.

5.1 Probability of Occurrence

In Section 4.1.2, we introduced a model that calculates the probability

of occurrence for a case study system. We expand upon that model, and

we introduce a general model that covers the probability of occurrence for

SIMT systems with different configurations. As mentioned in Section 4.1.2,

calculating the probability of occurrence, Prob, is similar to calculating yield,

but rather than determining the fraction of systems that satisfy a particular

set of requirements (number of cores, lanes, etc.), we calculate the fraction

of systems that have exactly one given configuration. The probability that a

given configuration occurs is

pCi
= pcores × pcrossbar × pL2$ (5.2)

where pL2$ and pcrossbar are the probabilities of occurrence of the L2 cache and

crossbar, respectively. We assume the yield of these components is 1 (refer to

Section 3.2.2); pL2$ and pcrossbar are therefore 1 as well.

pcores is the probability of observing a particular set of cores given the com-

ponents that are present: the number of MCores nmc, the number of RCores

5.1 Probability of Occurrence 67

nrc, the number of MCore lanes nml, and, the number of RCore lanes nrl; and

the number of components that are defective: the number of MCores with

defective MLanes ndmc, the number of RCores with defective RLanes ndrc, the

number of defective lanes in each MCore ndlmi
, the number of defective lanes

in each RCore ndlri , and the number of three cores with defective lanes nd3c.

Given ndl defective lanes and assuming the application of spare lanes (SL),

pcores =
∑

{ndmc,ndrc}∈E

∑
{ndlm1

,ndlm2
,...,ndlmi

}∈D∑
{ndlr1

,ndlr2
,...,ndlrj

}∈Q

[(
nmc
ndmc

)
×
(i∏
k=1

pcore′(nml, ndlmk
)
)
×

pnmc−ndmc
core (nml)×

(
nrc
ndrc

)
×

(j∏
k=1

×pcore′(nrl, ndlrj)
)
× pnrc−ndrc

core (nrl)

]
, (5.3)

whereD = {0, 1, 2, ..., ndl}ndmc , Q = {0, 1, 2, ..., ndl}ndrc , E = {0, 1, 2, ..., ndl}2,

ndml1 , ndml2 , . . . , ndmli ≤ nrl, ndrl1 , ndrl2 , . . . , ndrlj ≤ nrl, and (ndml1 + . . . +

ndmli + ndrl1 + . . .+ ndrlj) ≤ ndl.

The first summation takes care of where defective lanes might cause de-

fective cores (MCores or RCores), while the second and the third cover the

different cases where defective lanes are spread among cores. The rest of

the formula counts the number of possible cases that the number of defective

MCores, defective MLnaes per MCore, defective RCores, and defective RLanes

per RCore out of the total number of MCores, MLanes per MCore, RCores,

68 Efficient Performance Evaluation in SIMT Processors

and RLanes per RCore, respectively.

For SC, pcores is calculated by

pcores =

ndl∑
i=0

∑
{ndlm1

,ndlm2
,...,ndlmi

}∈D

[(
nmc + nrmc

i

)
(i∏
k=1

pcore′(nml, ndlmk
)
)
× pnmc+nrmc−i

core (nml)

]
, (5.4)

where D = {0, 1, 2, ..., ndl}i, ndlm1 + . . . + ndlmi
≤ ndl, and nrmc is the number

of RMCores in the system. Like in Eq.(5.3), the first summation takes care

of the cases where defective lanes might cause cores with defects (MCores

or RMCores), while the second summation covers all possible cases where

defective lanes are spread among cores with defects. Note that a core with

defect does not fail since its micro-architectural redudnancy can address its

defect. The rest of the formula counts the number of ways that the number of

defective MCores and RMCores and defective MLanes per MCore out of the

total number of MCores plus RMCores and MLanes per core, respectively.

For SSL, we first group cores (MCores and RCores) into groups of three

(two MCores and one RCore), and we call these groups three cores (3c). Then,

5.1 Probability of Occurrence 69

pcores for SSL is calculated by

pcores =

nd3c∑
i=0

∑
{ndl3c1

,ndl3c2
,...,ndl3ci

}∈D

[(
n3c

i

)

×
(i∏
k=1

pcore′(2× nml + nrl, ndl3ck)
)
×

pn3c−nd3c
core (2× nml + nrl)

]
, (5.5)

where nd3c is the number of defective three cores with defective lane-failure,

ndl3ck is the number of defective lanes in the kth three cores, D = {0, 1, 2, ..., ndl}i,

ndl3c1 , ndl3c2 , . . . , ndl3ci ≤ nrl, and ndl3c1 + . . .+ndl3ci ≤ ndl. The first summation

takes care of the cases where defective lanes might cause defective three cores.

The rest of the formula counts the number of possible cases that the number

of three cores with defects and defective lanes per three cores out of the total

number of three cores and lanes per three cores, respectively.

pcore is the probability of having all nl lanes operational (nml and nrl for

MCores and RCores, respectively),

pcore(nl) = ynl
lane × yskel × yL1$, (5.6)

pcore′ is the probability of having nl − ndl operational lanes,

pcore′ (nl, ndl) =

(
nl
ndl

)
× y(nl−ndl)

lane × (1− ylane)ndl × yskel. (5.7)

Note that Eqs. (5.3)-(5.5) can calculate, for different redundancy regimes,

the probability of occurrence for individual derivative designs or a group of

70 Efficient Performance Evaluation in SIMT Processors

symmetric derivative designs as well. To calculate the probability of occur-

rence for an individual design, we have to set every parameter in the formulas.

For instance, by determining {{ndmc, ndrc}, {ndlm1 , ndlm2 , ...}, {ndlr1 , ndlr2 , ...}}

in the pcores formula for SL, one can find the probability of occurrence for a

specific derivative design. However, when some of the specification variables

are not determined, the formulas calculate the probability of occurrence for

the group of corresponding symmetric derivative designs. For example, in the

pcores formula for SL, when the user does not determine the number of de-

fective MCores (ndmc) with the defective lanes, the formula will sum up the

probabilities of occurrence for all possible cases in which the defective lanes

can result in failure in MCores.

5.2 Estimating E[P]

In Chapter 4, we already have introduced a simplified estimation method,

Êm[P], by limiting the number of configurations that are evaluated. We showed

that Êm[P] ≤ E[P]. By simulating only those configurations with high like-

lihood of occurring, we can achieve a reasonable estimate of expected perfor-

mance at a fraction of the computational cost of exact evaluation. However,

we picked a value for one of the parameters in calculating Êm[P], Th, which is

translated to the number of configurations with high likelihood of occurrence

that should be simulated.

First, we justify a proper value for Th in Êm[P]. Êm[P], determines the m

most likely derivative designs, performs simulation to determine their perfor-

mance, and assumes the performance of all others is 0. Then, we propose and

5.2 Estimating E[P] 71

evaluate another estimation technique, Ês[P], which simulates the single most

likely derivative design, and assumes its performance for all configurations.

5.2.1 Selecting Proper Th for Êm[P]

We introduced Êm[P] in Section 4.1.2. Êm[P] reduces the computational

complexity of evaluating E[P] by evaluating only the m most likely designs.

Derivative designs that are unlikely to occur contribute little to E[P]; the

accuracy of Êm[P] can therefore be controlled by tuning the fraction of the

population of dice covered, Th. The challenging in selecting Th is to mini-

mize computational effort while maintaining sufficient accuracy to distinguish

between designs. We observe that in general, few simulations are needed to

cover nearly all of the population of dice, with Th ≥ 95%.

From Section 4.2.2, recall the example of a system of six MCores, each with

32 lanes, to which we allocate three RCores, each with two lanes. As previously

noted, configurations with symmetric defects may be grouped; there are 33

different groups for this example. If we set Th ≥ 95%, only the first three

most likely derivative designs are evaluated, and computation is reduced by

91%, to 72 hours from 792 hours.

In this case, these derivative designs correspond to the fully operational

system, and those with one or two MLane failures, which contribute 88%, 6%,

and 2% of the yield of the system, respectively, or of 96% of the population

of dice; coincidentally, this results in a 4% underestimation of E[P] for this

design.

72 Efficient Performance Evaluation in SIMT Processors

5.2.2 Single-Simulation Estimation of E[P] with Ês[P]

Unfortunately, the computational effort required to calculate Êm[P] (i.e.,

performing three performance evaluations per design point), is still high consid-

ering design space exploration; consequently, we propose to reduce the cost of

estimating E[P] to its limit, a single performance evaluation. This is justified

by the following observations. For the system above (6MCores + 3RCores):

(1) the performance of operational, unevaluated, derivative designs is much

closer to that of the fully functional design than zero; (2) in the worst case

across all benchmarks, the performance of the second and third most likely

configurations (one and two failed MLanes in the system, respectively) differ

from the baseline 15% and 19%, respectively; and, (3) the probabilities of oc-

currence of the second and third most likely configurations are 6% and 2%,

respectively.

We consequently hypothesize that if we (a) evaluate only the single most

likely design, and (b) assume its performance for all operational derivative

designs, that we further reduce the computational complexity of evaluation

with minimal error. In the case of our example, Ês[P] estimates E[P] with

1.43% error—less error than Êm[P], while reducing the cost of simulation to

24 hours. In general, if this trend holds across the design space of multi-

core SIMT processors, then Ês[P] would make it possible to evaluate the cost

and performance implications of hot redundancy with no overhead relative to

conventional performance evaluation.

5.3 Experimental Setup 73

5.3 Experimental Setup

To determine Th for Êm[P], and to evaluate the accuracy of Ês[P], we con-

duct several of experiments across a wide variety of multi-core SIMT configu-

rations. We measure the performance of derivative designs by using MV5 [43];

the probabilities of occurrence for the designs are calculated based on the for-

mulas in Section 5.1. The cost of each design is determined using the cost

formulas in Section 4.2.2. To observe the performance behavior of the de-

signs over different applications, we selected the same set of benchmarks as

Section 3.2.

5.3.1 Small and Large Design Sets

Given that our approach makes use of the distribution of probabilities of

occurrence and performance under defects, we performed experiments with

two different sets of configurations in order to evaluate how effectively the

estimation techniques distinguish design points in different circumstances: (a)

configurations in the Small set of systems that employ few narrow cores, and

(b) conversely, Large systems have many wide cores.

The Small set tests our hypothesis that when the baseline has high yield,

its performance is the most significant contributor to E[P]; related derivative

designs occur too infrequently to affect E[P]. The Large set tests our hypoth-

esis that the E[P] for large systems are dominated by a few derivative designs

with approximately the same performance: a few failures have relatively little

affect. The architectural parameters for Small designs are presented in Ta-

ble 5.1. Note that we assume the size of L2$ is constant and equal to 4MB.

74 Efficient Performance Evaluation in SIMT Processors

Small systems have die areas in [50, 100] mm2 (e.g., NVIDIA Tegra series [65]);

this set consists of 203 systems. The architectural parameters for Large de-

signs are also presented in Table 5.1. Large systems have die areas in [200, 250]

mm2; this set consists of 143 systems. Note that while real GPGPUs have die

areas greater than 500 mm2 (e.g., NVIDIA GTX 480), about two-third of their

die areas (200 to 350) mm2 are dedicated to streaming processors and L2$ [66],

while the rest is dedicated to the memory controller, host interface, etc.

As indicated in Table 5.1, we added the same type of RCores for both

Small and Large systems. RCores are distributed among MCores in such a

way that each MCore is located next to only one or two RCores (Figure 5.1):

the number of RCores that are added is either the same as the number of

MCores in the system (lane sparing), or half that (shared lane sparing).

5.3.2 Primary Design Set

After evaluating Êm[P] and Ês[P] techniques over the Small and Large

sets, we select the most efficient estimation technique (Ês[P]) and define more

experiments to evaluate its accuracy. Since performing performance evaluation

over all practical designs is intractable, we select a very wide design set, but

we perform an analytical evaluation of Ês[P] instead. We call this set of

designs Primary ; this set consists of 9582 systems. Primary covers the designs

between the Large and Small, i.e., the medium sized designs with die areas in

[100, 200] mm2. Under this constraint, we varied the number of MCores N ,

N ∈ {1, 2, 4, 6, . . . , 20}, the number of lanes per MCore (SIMT width) W and

hardware threads per MCore (SIMT depth) D, W&D ∈ {1, 2, 4, 8, . . . , 64},

5.4 Results 75

. .
 .

. .
 .

. .
 .

. .
 .

(a) Core placement when
#RCores = #MCores,
for utilizing SL.

. . .

. .
 .

. .
 .

. .
 .

(b) Core placement
when #RCores =
#MCores/2 for uti-
lizing SSL.

Fig. 5.1: Cores placement in the presence of redundancy.

Table 5.1: Parameters for Small and Large system sets.

MCores Spec. Small Large Redundant Cores Spec.

MCores {1, 2, 4, 8} {16, 20} RCores {# MC, # MC/2}
MC D$ Size {8, 16, 32, 64} {32, 64} RC D$ Size 8KB
MC HTCs {1, 2, 4, 8} {32, 64} RC HTCs {2, 4}
MC Lanes {1, 2, 4} {16, 32} MC Lanes {1, 2}
MC I$ Size 16KB 16KB RMCores {0, 1}
MC Freq. 1 GHz 1 GHz RC Freq. 1 GHz

and L1 data cache size S, S ∈ {8, 16, 32, 64} KB, while the number of RCores

M , M ∈ {0,#MCores,#MCores/2}, the number of lanes per RCore V and

hardware threads per RCore E, V ∈ {1, 2} and E ∈ {2, 4}, L1 data cache size

= 8KB, also there is zero or one RMCore for each system, and for all systems

L2$ ∈ {1, 2, 4} M, I$ = 8 KB. Note that we do not consider combinations

of redundancy techniques; optimal solutions tend to utilize a single type of

redundancy [11].

76 Efficient Performance Evaluation in SIMT Processors

0.00

0.02

0.04

0.06

0.08

0.10

0E+0

1E‐5

2E‐5

3E‐5

4E‐5

5E‐5

1st 2nd 3rd 4th 5th

FFT

0.00

0.02

0.04

0.06

0.08

0.10

0E+0

1E‐5

2E‐5

3E‐5

4E‐5

5E‐5

1st 2nd 3rd 4th 5th

FILTER

0.00

0.02

0.04

0.06

0.08

0.10

0E+0

1E‐5

2E‐5

3E‐5

4E‐5

5E‐5

1st 2nd 3rd 4th 5th

SHORTESTPATH

0.00

0.02

0.04

0.06

0.08

0.10

0E+0

5E‐3

1E‐2

2E‐2

1st 2nd 3rd 4th 5th

MERGESORT

0.00

0.02

0.04

0.06

0.08

0.10

0E+0

2E‐3

4E‐3

6E‐3

8E‐3

1E‐2

1st 2nd 3rd 4th 5th

LU

0.00

0.02

0.04

0.06

0.08

0.10

0E+0

1E‐3

2E‐3

3E‐3

4E‐3

5E‐3

1st 2nd 3rd 4th 5th

HOTSPOT

0.00

0.02

0.04

0.06

0.08

0.10

0E+0

2E‐2

4E‐2

6E‐2

8E‐2

1E‐1

1st 2nd 3rd 4th 5th

KMEANS

0.00

0.02

0.04

0.06

0.08

0.10

0E+0

2E‐1

4E‐1

6E‐1

8E‐1

1E+0

1st 2nd 3rd 4th 5th

SVM

Fig. 5.2: Distance from true POF points, in terms of ADRS, for different
levels of accuracy for Êm[P] (blue bars, left), ADRS numbers for the second
method of calculating Ês[P] (green bars, left), average-relative-error of Êm[P]
(red dots, right), and over different benchmarks.

5.4 Results

5.4.1 Validating Êm[P] Over the Small Set

When we evaluate Êm[P], we observe that, as expected, estimation accu-

racy increases as Th increases. Consider the situation when we evaluate the

performance of only the most likely design, C0; we call this the first level of

accuracy (m=1). In this case, Êm[P] = Perf(Ĉi) × Prob(Ĉi). We observe

that when Th ' 90% since the probability of occurrence for the most likely

derivative design is 90%. In this case, Êm[P] underestimates E[P] by 6.7% on

average for designs in the Small set.

We use average distance from reference set (ADRS) to compare the performance-

cost Pareto-optimal fronts of E[P] and Êm[P]. Given a reference set R (deter-

5.4 Results 77

mined by E[P]) and a solution set S (determined by Êm[P]), ADRS measures

the average normalized best-case distance along the worst-case axis (perfor-

mance or cost) from each design in R to the nearest design in S [58]. In this

way, it quantifies the difference in the considered objectives between the points

in the solution set and those in the true Pareto-optimal front; lower values are

better. Across all the applications we considered, we observe that Êm[P], at

worst, has an ADRS of 0.6 (on a scale from 0 to 1), indicating that Êm[P] is

not able to effectively identify designs on or near the Pareto-optimal front by

utilizing the first level of accuracy (m=1).

When we use the second (Th ' 95%), and the third (Th ' 97%) levels

of accuracy, we observe on average an ADRS of 0.002 and zero, respectively.

ADRS values as a function of level of accuracy is illustrated for eight different

benchmarks in Figure 5.2. The x-axis corresponds to the different levels of

accuracy, while the y-axis on the left represents the magnitude of ADRS dis-

tance, and on the right corresponds to the magnitude of relative error. Blue-bar

graphs correspond to the distance from true POF points, in terms of ADRS,

for the different levels of accuracy for Êm[P], while red dots represent the

average-relative-error, over the Small set for Êm[P]. The average-relative-error

is calculated by taking an average over the relative error of Êm[P] compared

with the exact E[P], derived by performing up to 51 performance evaluations

for each system. As expected, both ADRS and the average-relative-error of

Êm[P] decrease as we increase the levels of accuracy. However, improvement

is greatest for the first few derivative designs, since these designs contribute

the most to systems’ yield.

78 Efficient Performance Evaluation in SIMT Processors

As depicted in the graphs of Figure 5.2, Êm[P] can correctly detect the true

POF sets for FFT, ShortestPath and Filter with just the first level of accuracy.

For the rest of the applications, however, Êm[P] cannot identify the true POF

set and has a considerable distance to it (e.g., ADRS of 0.6 for SVM). These

experiments indicate that if we want to be able to distinguish design points,

we must use at least the third level of accuracy. In this case, more than three

days on a Intel Core i7 platform with 8 GB RAM is required to calculate the

estimated expected performance of a single system.

5.4.2 Validating Ês[P] Over the Small Set

Ês[P] is based on evaluating the performance of the most likely derivative

design of a system; therefore, it is 3× faster than Êm[P] when m=3. However,

the accuracy of Ês[P] is directly related to how good an approximation the

performance of the most likely derivative design is for other derivative designs.

For small systems, since cores are not very wide (they utilize, at most, four

lanes), we observed that the performance of derivative designs varies consider-

ably. However, the low probabilities of occurrence for designs other than the

most likely one lessen the impact of other derivative designs. We validate this

intuition by calculating Ês[P] over the Small set and determining its POF set.

Then, we measure its distance to the true POF set to see how well Ês[P] iden-

tifies Pareto-optimal solutions. We also calculate the average-relative-error for

systems in the Small set.

In Figure 5.2, green bars represent the distance between the true POF

and that found POF by utilizing Ês[P] in terms of ADRS. The true and

5.4 Results 79

approximated POF are very close to each other, and in the worst case (Fil-

ter), Ês[P] is unable to identify just 16% of the true POF set. Moreover,

the average-relative-errors for Ês[P] are 1.49%, 1.89%, 1.67%, 2.56%, 1.35%,

1.67%, 1.96%, and 2.23%, for FFT, Filter, ShortestPath, MergeSort, SVM,

LU, HotSpot, and KMeans, respectively. In most of the cases, this error is

less than that for Êm[P], resulting in better ADRS, despite the fact that fewer

performance simulations are performed.

As depicted in these graphs, when running one performance simulation per

system and utilizing the first level of accuracy (first blue bar in each graph),

Ês[P] outperforms Êm[P] by one order of magnitude, in terms of ADRS, over

all the benchmarks except Filter (where Êm[P] outperforms Ês[P]), FFT,

and ShortestPath (where the two techniques are equivalent). Moreover, the

average-relative-error of Ês[P] is less than or equal to Êm[P] at the first level

of accuracy. For Small systems, even though the performance differences be-

tween fully functional and other operational configurations are high, the low

probabilities of occurrence for configurations other than fully functional one

reduce their impact on E[P].

The behavior of Êm[P] and Ês[P] on Filter can be explained by observing

the characteristics of the application. Over the Small systems, the perfor-

mance of Filter application is affected considerably by each defective lane (i.e,

losing one RCore per lane failure in SL technique). Hence, estimating the

performance of derivatives with the most likely one (fully operational system)

introduces considerable error in Ês[P]. However, this error does not result in

a great distance between the Ês[P] identified POF set and the true POF over

80 Efficient Performance Evaluation in SIMT Processors

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.10

0.20

0.30

0.40

0.50

0 2 3 4 5 Acc

FFT

0.00

0.20

0.40

0.60

0.80

0.00

0.02

0.04

0.06

0.08

0.10

0 2 3 4 5 Acc

SHORTESTPATH

0.00

0.10

0.20

0.30

0.00

0.02

0.04

0.06

0.08

0.10

0 2 3 4 5 Acc

SVM

0.00

0.10

0.20

0.30

0.40

0.00

0.02

0.04

0.06

0.08

0.10

0 2 3 4 5 Acc

LU

0.00

0.05

0.10

0.15

0.20

0.00

0.02

0.04

0.06

0.08

0.10

0 2 3 4 5 Acc

HOTSPOT

0.00

0.20

0.40

0.60

0.80

1.00

0.00

0.05

0.10

0.15

0.20

0 2 3 4 5 Acc

MERGESORT

0.00

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.15

0.20

0 2 3 4 5 Acc

KMEANS

0.00

0.50

1.00

1.50

0.00

0.05

0.10

0.15

0.20

0 2 3 4 5 Acc

FILTER

Fig. 5.3: Average relative performance differences to one failed main-lane
configuration, for different derivative configurations (blue bars, left, in %), the
errors of Ês[P] due to considering the performance values of all operational
derivative configurations equal to one failed main-lane (red dots, right, in %),
and over different benchmarks.

the Small systems (less than 5e-5 in terms of ADRS).

5.4.3 Validating Ês[P] over the Large Set

To see how effectively Ês[P] distinguishes systems in the Large set, we

compared it with an accurate approximation of E[P] using Êm[P]. Ês[P]

approximates the performance of all derived configurations from each system

with one failure in main-core lanes (MLane): configurations with one MLane

failure have the highest probability of occurrence in this set of designs. For

Large systems (Table 5.1), each core is equipped with at least 16 lanes and

there are more than eight cores per system. In these kinds of systems, it is very

likely that at least one lane fails, since these systems utilize many lanes: for the

5.4 Results 81

Large set, the average probabilities of occurrence for the first six most likely

derivative configurations are 27%, 33%, 22%, 6%, 2%, and 0.8% for the fully

functional, and one to five main-core lane failures, respectively. Moreover, the

probabilities of occurrence are more evenly distributed over derivative designs

(in contrast with the Small set, where the fully function system has, by far,

the highest probability of occurrence).

As a baseline for comparison, we calculated Êm[P] for Large systems, cov-

ering more than 99.3% of each system’s yield by simulating up to 51 different

groups of configurations per system (m=51). Note that for Large systems

many groups of derivative designs have to be simulated to cover the remaining

0.7% (more than 95 other groups). Simulating these groups requires significant

computational effort (more than 500K hours), and is therefore intractable even

for this limited number of systems.

For each system, we measured the relative performance difference of each

system with one main-core lane failure configuration and other likely derivative

configurations (zero, and two to five MLane failures). Then we took an average

of those relative performance differences over all the systems for each derivative

configuration (average-relative-performance-error, left axis, percentage); this is

illustrated with the blue bars in Figure 5.3. The total accumulated error is

illustrated with the last bar.

Then, we calculated the error due to taking the performance of one MLane

failure as the performance for all derivative configurations for each system. We

averaged this over all the systems (average-Ês[P]-absolute-error, right axis,

percentage); this is illustrated with red dots in Figure 5.3. The total accumu-

82 Efficient Performance Evaluation in SIMT Processors

lated error is illustrated with the last dot.

As depicted in Figure 5.3, the accumulated error for the first five configurations—

which cover, on average, more than 90% of the yield of the systems—is not

more than 1.2% over all benchmarks. To further validate Ês[P], we again

identified the true POF (determined by Êm[P] with m=51) and the compared

it with the POF identified by Ês[P]. We observe that the estimation error

of Ês[P] does not result in any differences between the true and approximate

POF. In other words, due to the low error that this technique has for Large

systems, Ês[P] is accurate enough to identify the true POF set without per-

forming more than a single performance evaluation.

Also, in Figure 5.3, we observe that the average-Ês[P]-absolute-error of

fully functional systems is higher than that for two failed MLane for KMeans

and FFT applications. This originates with the considerable performance dif-

ference between fully operational systems and those with one MLane failure

for Large systems.

5.4.4 Validating Ês[P] via Analytical Evaluation

We observed that, for the Small and Large systems, Ês[P] can distinguish

the design points correctly by performing just one performance evaluation

for the most likely derivative design. However, many interesting designs lie

outside of these subsets; to validate the effectiveness of Ês[P], we must consider

estimation error over a wider variety of designs. Unfortunately, it is intractable

to evaluate all such designs, even if we utilize Ês[P]. Hence, we performed an

analytical evaluation to see how accurate Ês[P] is over a wide set of designs,

5.4 Results 83

Primary.

We grouped the designs in Primary according to their areas ([100, 110),

[110, 120), ..., and [190, 200) mm2), and performed analysis to determine the

tolerable error in performance estimation over each group of these systems. To

conservatively estimate the accuracy of Ês[P], we assume that each system’s

performance degrades, relatively, 50% for each lane failure after the the first

lane failure (i.e., 1st to 2nd, 2nd to 3rd, and so on), exaggerating the impact

of performance difference in less likely derivative designs. In other words, if we

assume that the performance of a system with one lane failure is an arbitrary

number 100, it will decrease to 6.25 after five lane failures.

We then determined the amount of performance difference required under a

single lane failure (on which the performance difference of further lane failures

depends) to result in the 2.6% estimation error previously observed for Ês[P].

If this required performance degeneration is less than that observed for designs

in the Small and Large design sets, then we assume that Ês[P] is accurate

enough to distinguish designs in Primary.

We observe that, over the systems grouped in [100, 110), if the relative

performance difference is less than 23% for the first lane failure, Ês[P] does

not result in more than 2.6% error. On the other hand, we observed that the

relative performance differences between the fully functional configuration and

those with one lane failure are not more than 15% over the Small set (systems

smaller than 100 mm2); the required 23% difference is even more unlikely,

since we observed that as systems gets bigger, the performance differences

due to defective lanes decreases. In other words, we expect a corresponding

84 Efficient Performance Evaluation in SIMT Processors

performance difference less than 15% over the set of designs that are grouped

into [100, 110), short of the 23% needed to exceed 2.6% estimation error.

Moreover, we observe that the error monotonically decreases over the re-

maining groups of designs. For the largest group of systems, [190, 200), the

relative performance differences between the fully functional and one lane fail-

ure must be greater than 3.1% to have error greater than 2.6% in terms of

Ês[P]. We observed, however, that the error for the [200, 250) group is less

than 0.5% (the calculated average performance difference between fully oper-

ational and one lane failure in the Large set). It is clearly not probable that

the average estimation error exceed 2.6% over the Primary set.

5.4.5 The Limitations of Estimating E[P]

In Section 5.4.4, we observed that under typical defect densities (0.025/cm2)

derivative designs are unlikely to experience sufficient performance differences,

relative to the most likely derivative design, for the estimation error of Ês[P]

to be greater than 2.6%. However, as manufacturing processes scale, higher

critical area results in higher effective defect densities [6]; this is expected to

make Ês[P] less accurate. Since the probabilities of occurrence, especially for

small systems, will be more evenly distributed over derivative designs, error

increases, and Ês[P] will tend to mistakenly select designs that are farther

from the true POF. We observe that when the defect density is 2.7× higher,

for Small systems (area less than 100mm2) the performance difference for sys-

tems with one lane failure is larger than 15%, on average; this results in more

than 2.6% error for Ês[P]. Consequently, Ês[P] might fail to find optimal

5.5 Conclusion 85

solutions due to not being sufficiently accurate. To address this problem, we

suggest adaptively selecting an estimation technique based on system area,

e.g., using Êm[P] for smaller designs and Ês[P] for larger ones.

5.5 Conclusion

In this chapter, we investigated how to estimate the performance of the

multi-core SIMT systems with hot redundancy. The performance of a system

in the presence of defects depends on the defect density and resulting popula-

tion of operational dice: systems with fewer defects have more hot redundant

resources available to improve performance. We therefore utilized expected per-

formance (E[P]), which depends on the probability of occurrence of different

derivative designs with defects and their resulting performance. Unfortunately,

evaluating E[P] exactly is computationally expensive, requiring more than 792

hours per system, and making design space exploration intractable.

Consequently, we have developed techniques for estimating E[P]. First,

we developed formulas for determining the probability of occurrence for multi-

core SIMT systems. Then, we proposed and evaluated a value for Th for

Êm[P], and evaluated the accuracy of this estimation method to distinguish

designs in terms of performance. Afterward, we introduced another estimation

techniques, Ês[P], to estimate E[P]. We showed that by employing Êm[P] and

Ês[P] techniques and performing just three and one performance simulation

per system, respectively, we can estimate E[P] with sufficient accuracy to

distinguish the Pareto-optimal front in a multi-core SIMT design space.

For our set of Small systems, Ês[P] is much more accurate than Êm[P]

86 Efficient Performance Evaluation in SIMT Processors

(on average 5.3×), identifying designs within 0.0024 to the true performance-

cost Pareto-optimal front, in terms of ADRS. Moreover, we observed that by

utilizing Ês[P] when considering Large systems (with many more derivative

designs), the average relative error decreases to less than 0.5%, and the the true

POF is found for all considered applications. Further analysis demonstrated

that these results generalize to the entire design space: when using Ês[P], error

is expected to remain in an acceptable range (≤ 2.6%) under realistic defect

densities.

Hence, by employing Ês[P], which performs a single performance evalua-

tion (about three hours for each application per system), designers are able

to distinguish designs accurately enough to consistently identify optimal and

near-optimal designs in terms of E[P]. Not only does Ês[P] help designers

evaluate system performance given hot spares and defective components, but

it does so at no higher computational cost than traditional performance eval-

uation.

87

Chapter 6

Hot-Sparing for Cost and

Performance-per-Watt

Improvement

In this chapter, we utilizing hot-sparing to improve cost and performance-

per-watt in SIMT systems. Likewise performance we should calculate expected

performance-per-watt for systems with hot-sparing. We show that calculating

expected performance-per-watt accurately is computationally too expensive, so

we estimate it. Also, we introduce an adopted design space exploration algo-

rithm specific for our problem to search the design space of cost and expected

performance-per-watt.

Great attention has been paid to energy-efficient computing in multi-core

processors since, in new technologies, performance and power do not scale sim-

ilarly [37]. For instance, Ghasemazar et al., [17] and Hanumaiah et al., [18]

88 Hot-Sparing for Cost and Performance-per-Watt Improvement

showed that by using system-level techniques (DVFS, task allocation, and task

migration) we can significantly increase PPW for homogeneous multi-core pro-

cessors. They utilized the existing redundancy (timing slack) in a system to

reduce its power without changing the system’s performance (throughput).

However, none of these work addresses cost, regardless they rely on the pres-

ence of timing slack to optimize energy consumption. To address these prob-

lems, we propose to utilize hot-sparing that even can reduce energy consump-

tion of applications with short balanced phases since it does not rely on timing

slack to improve PPW: the relative performance gain of hot-sparing, for some

applications, can be better than its associate relative power overhead. More-

over, note that hot-sparing can be utilized with other energy saving techniques

(such as DVFS) since they are applied at different abstraction levels.

In this chapter, we extend our prior investigation in Chapter 4 and we in-

vestigate the cost and performance-per-watt (PPW) implications of utilizing

hot-sparing in SIMT processors over different applications and configurations.

PPW captures both performance and power consumption in a system. In

Chapter 4, we introduced and utilized hot-sparing for cost and performance

improvement in SIMT processors, but we do not consider the power overhead

implications of hot-sparing. The same way we did in Chapter 4, we allocate

spare cores, lanes, and shared-lanes in SIMT processors, but we additionally

enable these components for cost and PPW improvement when possible. Also,

we evaluate cost and PPW design space and we categorize applications with

respect to the type of redundancy that they utilize the best. This helps design-

ers to observe how different types of redundancies match with different types

89

of applications.

Moreover, we introduce a guided design space exploration (DSE) algorithm,

which uses an artificial neural network (ANN) regression model, adapted for

our cost-PPW optimization problem. DSE algorithms can be totally based

on prediction models. If so, they decrease the complexity of design space

exploration by predicting the design space (e.g., response surface modeling),

rather than investigating it exhaustively [40]. However, response surface model

(RSM) based methods suffer from prediction error. The prediction error could

easily lead them to detect approximated optimal solutions with a considerable

distance to the real optimal solutions in a design space. On the other hand,

some DSE algorithms, like ReSPIR [20], use a combination of design of exper-

iments (DoEs) and response surface modeling (RSM) techniques to find better

optimized design points by performing fewer simulations. Our DSE approach

uses RSM to predict where the optimal solutions that are located in a design

space. However, in our algorithm we do not just rely on the optimal solution

set that is being detected by RSM, instead we investigate the design points

near to the predicted optimal solution set to find better approximated optimal

solutions, while we use a different approach to select RSM model as well. Our

design space exploration (DSE) algorithm reduces the design exploration time

to one-sixth, while finding Pareto-Optimal fronts (POF) three times closer to

the real POF than conventional methods such as ReSPIR [20]. Meanwhile,

our algorithm evaluates less than one-fifth of the design space. By employ-

ing the framework presented in this chapter, system architects can explore a

wide range of cost-PPW design alternatives in the early stages of the design

90 Hot-Sparing for Cost and Performance-per-Watt Improvement

process, and characterize the configurations that will generate the maximum

performance-per-watt per cost over different applications.

6.1 Expected Performance per Watt

Performance and power are influenced by several factors in multi-core SIMT

with hot spares. When a system employs hot spares, system performance

and power can be modeled with a random variables distributed based on the

available redundancy and manufacturing defect density. A die is considered

operational if it integrates the required number of functional cores, each with

the required number of functional lanes, etc. However, not all operational sys-

tems (dice) are fault free when systems are fabricated. This is the case since

redundancy has been added to the system and different derivative designs are

considered operational: they may meet the minimum system requirements in

different ways. To evaluate such systems, we introduce a metric, expected per-

formance per watt (E[PPW]), that captures the performance and power of a

multi-core SIMT system by considering the resulting population of operational

dice (denoted derivative configurations). E[PPW] is similar to previously in-

troduced metrics such as expected performance [2] (refer to Chapter 4) with

the difference that it also captures the power consumption of derivative con-

figurations. E[PPW] is the expected performance per watt of a given system

in the presence of defects:

E[PPW] =
∑

Ci∈{S}

(Perf(Ci)/Pwr(Ci))× P (Ci|D), (6.1)

6.1 Expected Performance per Watt 91

where S is the operational set, derivative configurations with no defects plus

the designs with defects that still meet the minimum system requirements.

Perf and Pwr are the system performance (the inverse of benchmark ex-

ecution time) and the system’s total power consumption when running the

benchmark, respectively. P is the probability of a specific derivative configu-

ration’s occurrence in the population of dice given a particular defect density

(D).

A huge number of performance as well as power simulations should be run

to calculate E[PPW] accurately. This is the case since, for instance, a single

manufactured system with six cores, and 32 lanes per core, results in a pop-

ulation of dice with millions of possible configurations when three redundant

cores with two lanes each are added. In Section 4.1.2, we introduced grouping

symmetric derivative configurations to calculate E[P]. However, we showed

that calculating E[P] exactly is intractable even for small numbers of groups

of derivative configurations, e.g., a few hundreds [13]. Calculating E[PPW]

requires one performance as well as one power simulation for each group of

symmetric derivative configurations. Hence, E[PPW] must be estimated.

6.1.1 Estimating E[PPW]

With inspiration from what we did in Chapter 5, we estimate E[PPW] by

evaluating just the most likely derivative configuration for each system, and

use it to approximate the performance and power of other derivative config-

urations. Hereafter, we use Ês[PPW] to denote the approximated expected

performance per watt using the most likely derivative configuration (single-

92 Hot-Sparing for Cost and Performance-per-Watt Improvement

evaluation technique). We show that the relative error of Ês[PPW] is not

only smaller than the measurement error of E[PPW], but also it can be uti-

lized to identify an acceptable set of near-optimal solutions.

Experimental Setup

To evaluate the accuracy of Ês[PPW] we conduct some experiments on

three different design sets that cover small, medium, and large systems. The

configurations of Small, Medium, and Large systems are selected based on real

processors: NVIDIA Tegra series [65], Tensilica Vision P6 [67], and NVIDIA

Tesla series [67], respectively. We utilize a cycle accurate SIMT performance

simulator, MV5 [43], to measure performance, and we used the approach in

Section 5.1 to calculate the probability of occurrence for the derivative config-

urations. To measure the power of each derivative configuration, we extract

activity traces from MV5 and pass them to the GPU modeling infrastruc-

ture, GPUWattch [39]. GPUWattch simulates power (dynamic-, static-, and

short-circuit-power) for different architectures of GPUs with an emphasis on

NVIDIA GPU architectures in 65nm, the same technology node that we per-

form our performance simulates by MV5. We use the GPUWattch model for

the Quadro FX5600 (G80 architecture) the closest architecture to the SIMT

architectures that we are investigating. We simulate the power for different

parts of a SIMT processor, cores (MCores as well as RCores), L2$ and cross-

bar network by using the GPUWattch power model. To have more reliable

results, we measure the power of cores individually, and then add them up to

calculate the entire cores’ power. Otherwise, GPUWattch will lose accuracy

6.1 Expected Performance per Watt 93

Table 6.1: Architectural parameters for Small, Medium, and Large systems.

MCores Spec. Small Medium Large
MCores {1, 2, 4} {4, 6, 8} {12, 14, 16}
MC D$ Size {8} {32} {64}
MC HTCs {2, 4, 8} {16, 32} {32, 64}
MC Lanes {1, 2, 4} {8, 16, 32} {16, 32}
MC I$ Size (KB) 16 16 16
MC Freq. (GHz) 0.6 0.6 0.6
L2$ (MB) 2 4 4
Area (mm2) [50, 53] [120, 222] [210, 222]

by averaging the activity of all cores to calculate a single core’s power. Note

that our systems are not necessarily homogeneous (the systems under investi-

gation may consist of RCores and MCores; refer to Section 4.1). Moreover, as

GPUWattch does not support the L2$ and crossbar specifications that MV5

uses for its simulations, we extract their performance traces and utilize the

McPAT power simulator [68] to measure their power. Afterward, we add them

to the cores’ power to calculate the entire system’s power.

Design Set and Simulation Setup

As mentioned before, evaluating the E[PPW] of a wide set of designs is

intractable due to the huge number of derivative configurations that must be

evaluated for each system. Therefore, we selected a few baseline designs (sys-

tems without redundancy) that are categorized as Small, Medium, and Large

in terms of die area. Then, we added three different kinds of redundancies (SL,

SSL, and SC) to the baseline systems (refer to Section 4.1) to have 60 systems

for each set (Small, Medium, and Large), and we identify those systems where

redundancy reduces cost. Next, we evaluate our estimation technique over

94 Hot-Sparing for Cost and Performance-per-Watt Improvement

these designs to determine the accuracy of Ês[PPW]. You can find the speci-

fications of the baseline systems in Table 6.1. Note that we assume 8KB of D$

for redundant MCores, while we assume one or two lanes per MCore [13]. Fur-

thermore, we use the same simulation setup that is introduced in Section 3.2.

Accuracy measurement for Ês[PPW]

To evaluate the accuracy of Ês[PPW], we begin by measuring the per-

formance and power of the ten most likely derivative configurations of each

system from those 180 selected systems in the Small, Medium, and Large sub-

sets (refer to Section 6.1.1). We compare Ês[PPW] and we observe that in the

worst case this approximation leads to less than 2.1%, 6.3%, and 4.8% relative

error over different applications for Small, Medium, and Large configuration

sets, respectively. E[PPW] has its own measurement error since power as

well as performance measurements are performed by simulators: For exam-

ple, GPUWattch has reported 13.4% error on average [39]. Thus, the error

of approximating E[PPW] with Ês[PPW] is less than the power simulator’s

inaccuracy.

Unfortunately, we do not have a more accurate power simulator for GPGPU

architectures in our community. As an alternative solution, we considered

implementing GPU configurations on a FPGA and measuring their power.

However, implementing GPUs on a FPGA does not necessarily help to measure

power more accurately since the implementation details of inner components

(such as warp and lanes) of well-known GPU architectures are not known.

Moreover, it is reported that the measurement inaccuracy of GPUWattch is

6.2 Cost-PPW Design Space Exploration 95

acceptable for PPW design space exploration of GPU processors [39].

As we have mentioned before, we did not include main memory power in

our PPW calculation. Not considering main memory power will not increase

error in PPW measurements in a way that changes the final results. This is

the case since in applications for which execution time is reduced by using hot-

sparing, we observe that the L2$ to main memory interactions do not increase

with the same pace that hot-sparing reduces execution time. Therefore, the

energy consumption of system caused by L2$ to main memory interactions

decreases by using hot spares. Also, as execution time decreases, static en-

ergy dissipation on main memory decreases as well. Note that static energy

consumption contributes a significant portion of total energy consumption for

memories (more than 30% in 65 nm technology node [63]). Consequently,

not considering main memory power consumption results in measuring PPW

pessimistically for applications that hot-sparing reduces their execution time.

Since, in this paper, we do not compare different applications in terms of PPW,

pessimistic results will not change the conclusion.

6.2 Cost-PPW Design Space Exploration

We propose a DSE approach, which is inspired by ReSPIR [20], to find

near optimal solutions in our two-dimensional (cost and PPW) design space.

We use this approach to reduce the required processing time of exploring the

design space to find optimal solutions; otherwise, we would spend 400K hours

on a Core i7 with 8GB of RAM to explore the design space exhaustively, even

if we utilize Ês[PPW].

96 Hot-Sparing for Cost and Performance-per-Watt Improvement

6.2.1 Metrics

Cost and PPW are the two metrics that our DSE approach optimizes. We

already have explained PPW above. Also, we introduced cost metric and the

way that we calculate it for each system in Section 4.2.2.

6.2.2 Design Space Exploration Algorithm

(3) Budget
Consumed?

No New Design
Point?

(2)Evaluati
ng Design

Points

N
o

Y
es

(8) Making an envelop over APOF
set, simulating them, and then

extracting final APOF set

Refining RSM
(ANN) in the 1st

Iteration

(4) RSM

(1) Design of
Experiments

In
itial S

et
F
eatu

res o
f

A
P

O
F
 set

(5) Extracting
Intermediate APOF

Set

Refining RSM
(ANN) over all

Iterations

Evaluated Set

Approximating
the Points in
Entire Design

Space

Fig. 6.1: Flow of our design space exploration tool.

We introduce a custom design space exploration (DSE) algorithm to explore

the cost and PPW design space more efficiently. Otherwise, we would spend a

6.2 Cost-PPW Design Space Exploration 97

considerable amount of computational time (400K hours on a Core i7 with 8GB

of RAM) exploring the design space exhaustively. Note that this algorithm is

utilized off-line to explore the design space and find near optimal systems

in terms of cost and PPW. Afterward, we investigate the optimality of the

identified solutions in terms of cost and PPW to study how much improvement

we receive by utilizing hot-sparing in SIMT processors.

Figure 6.1 illustrates our DSE approach. We have modified ReSPIR [20]

to better address challenges with our particular design problem. In our DSE

approach we make the differences between our approach and ReSPIR bold.

1. Design of Experiments: A combination of design of experiments (DoE)

as well as random selection are used to pick up the set of initial design

configurations from the feature space (Initial Set).

2. Evaluating Design Points: The approach uses performance, power, and

cost models to simulate the Initial Set to have a coarse view of the target

design space.

3. We check to see if the processing budget for making a response surface

model (RSM) is not yet fully utilized.

4. Response Surface Model: The DSE approach uses the Evaluated Set of

Designs to setup a neural network based RSM.

5. Extracting Intermediate APOF Set: Based on the RSM, the approach

predicts the PPW of the entire design space and extracts the approxi-

mated Pareto optimal front (APOF).

98 Hot-Sparing for Cost and Performance-per-Watt Improvement

6. If any of the APOF solutions have not been evaluated in the initial DoE,

they will be evaluated (simulated) and will be added to the Evaluated

Set.

7. Then, the approach goes back to (4), until it utilizes all the dedicated

budget for improving the RSM, or no new APOF solutions are

found to be added to the Evaluated Set ; otherwise,

8. Extracting Final APOF Set: Our DSE approach uses a prede-

termined budget to evaluate design points near the predicted

optimal solutions in hopes finding better solutions.

Design of Experiments

Our approach begins by performing design of experiments (DoE). We se-

lected full factorial [69] since our feature space (the configuration parameters

for SIMT systems) is not big, six parameters, and full-factorial DoE can iden-

tify better design points for a space with a limited number of parameters [20].

In our DSE approach, we took a different approach than ReSPIR in DoE.

Rather than evaluating just the design points that DoE identifies, we evaluate

some random design points until we consume half of the evaluation budget that

is dedicated for exploring the design space. We did this since we observed that

in our problem, which does not consist of many design points (about 10K), it

is better to decrease the initial inaccuracy of the RSM model by consuming

a considerable portion of the processing budget (in our approach, 50%). For

example, if DoE identifies 3% of design points, we select 7% of other design

points randomly and we add them to that 3% to provide an input set with an

6.2 Cost-PPW Design Space Exploration 99

acceptable size for the first round of training the RSM. Note that we consider

evaluating 20% of design space as a tractable computational budget. As we

already have mentioned in the beginning of this section, evaluating 20% of our

design space requires 80K hours on a Core i7 system, which is tractable using a

high performance computing server. Therefore, we evaluate 10% of the entire

design space (a half of processing budget) for training the RSM in the first

round.

Evaluating Design Points

As mentioned in Section 6.1, we utilize a combination of the MV5 per-

formance simulator and GPUWattch power models to evaluate Ês[PPW] of

design points (processor configuration). We use our cost model to calculate

the cost of each design points (see Section 6.2).

Then, we breakdown the evaluated design points, which are the input set

for the RSM, into three non-overlapping sub-sets: 75% for a training set (that

is used to tune the RSM) 15% for a validation set (a set that is used to evaluate

the accuracy of the RSM). and 10% for a test set. We chose this breakdown

after observing that if we make either the validation set or training set too

small, test set accuracy suffers; the above breakdown appears to result in

models with the least mean-squared-error (MSE).

Response Surface Model

In our DSE approach, the relation between architectural parameters and

PPW is very complicated. Therefore, we utilize a non-linear artificial neural

100 Hot-Sparing for Cost and Performance-per-Watt Improvement

network (ANN) regression model to predict Ês[PPW]. An ANN is a model of

computation that is based on biological neural networks which are especially

useful in the field of estimating and forecasting in complex systems that can

depend on a large number of features [70]. A large variety of ANNs have been

developed and widely used in many fields, such as function approximation,

classification, and data processing. Since there is no relation between the

sequence of the design points (inputs to the ANN) in our design space, we use

a fully connected feed-forward ANN, instead of a recurrent or a convolutional

neural network. We use the sigmoid activation function for each hidden unit

in the ANN model. Also, we use back-propagation with gradient descent

optimization to train our network and minimize its error.

We perform two refinements on the RSM model: Refining RSM (ANN)

in the 1st Iteration, and Refining RSM (ANN) over all Iterations. Regarding

Refining RSM (ANN) in the 1st Iteration, it finds the best ANN topology

(i.e., the numbers of hidden layers and hidden units per layer) that leads to

the highest accuracy. Since the number of features (inputs) is limited, six,

and the size of input set is moderate (couple of hundreds), searching for the

Best Topo of the ANN exhaustively is feasible. Note that each ANN evaluation

requires roughly 10s on a Core i7 system with 8GB RAM. In this regard, we

investigate a range of topologies for ANN (#hidden layers ∈ [1, 10], #hidden-

units per layer ∈ [6 to 24]). Then, by using the training set (75% of input

set), we evaluate this range of ANN topologies by using the five-fold cross

validation, and we choose the topology for ANN that has the least MSE over

the validation set, and we call it Best Topo. For example, the Best Topo for

6.2 Cost-PPW Design Space Exploration 101

FFT application over the Small set, is an ANN with two hidden layers each

with 12 hidden neurons.

During Refining RSM (ANN) over all Iterations, we re-train the ANN sev-

eral times (e.g., 25 times) over a constant training set. This results in ANN

with different inner weights. Then, we calculate their MSE over the validation

set. However, we do not select the ANN with the lowest MSE for those 25

training trials. We have observed that if we select the ANN with the lowest

MSE at this stage, this does not necessarily lead to the best ANN regression

model for finding optimal solutions. For example, consider Figure 6.2. In this

figure, we illustrate the performance of the ANN prediction model (MSE) ver-

sus the distance between approximated POF (APOF) and real POF (RPOF)

for FFT. To do so, we re-train Best Topo for the ANN several times with

a constant input set, over each design sets (Small, Medium, and Large), and

we measure the accuracy of the model in finding optimal solutions in terms

of average distance from reference set (ADRS). ADRS calculates the distance

between two POF (e.g., real POF (Π) and APOF (Λ) [45]):

ADRS(Π,Λ) =
1

| Π |
∑
xR∈Π

(
min
xA∈Λ
{δ(xR, xA)}

)
, (6.2)

where δ calculates a normalized distance of design points in Π from the cor-

responding closest design points in Λ. As is depicted in Figure 6.2, there

is no obvious relation between the performance (MSE) of a ANN prediction

model and its ability to find near-optimal solutions. This is the case since

the RSM’s accuracy does not have a direct relationship with finding better

approximated optimal solutions in a design space. For example, assume a hy-

102 Hot-Sparing for Cost and Performance-per-Watt Improvement

pothetical case in which we have an RSM that always estimates the metrics of

design points pessimistically with a 30% relative error. In this case, the RSM

will have a mean squared relative error of 9%, and even though this is a high

error, the RSM can distinguish the real optimal solutions completely since the

RSM does not change the relative positions of the design points in that design

space. Therefore, we looked for another metric that can better represent the

capability of a ANN response surface model to find optimal solutions.

0 5 10 15
0.004

0.006

0.008

0.01

0.012

0.014

0.016

Mean Squared Error (%)

A
D
R
S

Small
Medium
Large

Fig. 6.2: Performance of the ANN prediction model (MSE) versus ADRS for
FFT. There is no obvious relationship between accuracy and the quality of the
resulting set.

We observed that if the correlation between the MSE of training and vali-

dation sets over epochs is high, we will have a lower distance (ADRS) for the

approximated and real optimal solution sets. Epoch is a measure for the num-

ber of times that all of the training vectors are used to update the weights. In

Figure 6.3, we illustrate the correlation between the training set and validation

set of different ANN configurations (Best Topo with different inner weights)

against number of epochs as well as their corresponding ADRS numbers for

6.2 Cost-PPW Design Space Exploration 103

0.992 0.994 0.996 0.998 1
0.004

0.006

0.008

0.01

0.012

0.014

0.016

Correlation Between Training and
 Validation Sets over Epochs

A
D

R
S

Small

Medium

Large

5.12

6.53

8.65

10.94

13.67

4.96

6.58

8.75

11.23

12.54

4.18

7.02

8.23

11.68

12.98

Average

MSE

0 5 10 15 20 25 30 35 40 45
10

-3

10
-2

10
-1

10
0

M
S
E

Epochs

Train
Validation
Best

0 5 10 15 20

10
-2

10
0

M
S
E

Epochs

Train
Validation
Best

One third of ANN configurations

with the highest correlations

Fig. 6.3: Correlation of the training set and validation set over epochs and
ADRS for FFT. The average MSE (%) for 30% of the most correlated ANN
are reported in the right-hand side table.

the three design set (Small, Medium, and Large) for FFT. The best results in

terms of ADRS happen when correlation is high. However, designs with the

highest correlations spread over the ADRS axis (between 0.4% to 1.4%), and

therefore, examining correlation is insufficient. For example, a ANN with the

highest correlation for Small set leads to 0.9% ADRS, which does not give

the best ADRS. Hence, we select the one-third of ANN that have the highest

correlation between their training and validation sets for their MSE against

number of epochs. Then, we calculate their average MSE. This is reported

in the inset table. As is reported in the table, ADRS and MSE have a direct

relationship in this selected 33% setups. Therefore, we select ANN weights

that lead to the lowest MSE and call it Best ANN . We consider the 33% of

ANNs with the highest correlation, since after performing several experiments,

we observed that the best ANN to predict optimal solutions will be in that

104 Hot-Sparing for Cost and Performance-per-Watt Improvement

33% ANN setups.

Extracting Intermediate APOF

Our DSE approach has higher accuracy when approximating design points

near optimal solutions. The DSE approach uses the Best ANN model to

approximate the Ês[PPW] of the entire design space. Afterward, it compares

them with the optimal solutions that are found from the previous iteration. It

identifies any new dominant points that have not been evaluated (illustrated in

red colors in Figure 6.1). Then, our approach simulates them. Consequently,

the DSE approach adds them to the input set that is used to train and evaluate

the ANN model. In this way, our DSE approach enriches the input set with

design points from the APOF. In this way, selected design points are chosen

close to real optimal solutions, consequently the RSM will have less error near

optimal solutions.

Extracting Final APOF

Either when the processing budget for training the RSM (ANN) model

is consumed, or no new dominant design point is found when extracting the

intermediate APOF, our DSE approach extracts the final APOF. We do not

consume all the processing budget (20% of the entire design space) for making

the RSM model more accurate since we observed that the accuracy of RSM

model does not improve after couple of iterations. Also, we observed that

some points from the real POF are placed close to the APOF, though our DSE

approach cannot find them. This is due to the error of the RSM model: some

6.2 Cost-PPW Design Space Exploration 105

dominant solutions are kept out of real POF, while the RSM locates them close

to the APOF. Therefore, after couple of iterations and re-training the ANN

regression model based on the evaluated points from the intermediate APOF,

we stop this process, and we make an envelop over the APOF set to come up

with a set that consists of the APOF solutions and some nearby design points

(see the top chart in Figure 6.1). Then we consume the remaining budget (5%)

to explore those nearby designs. Afterward, we extract the dominant designs

and call them the final APOF set.

6.2.3 Experimental Setup

To evaluate our DSE approach, we conduct a set of experiments. Our

design space has two objectives, cost and PPW. Manufacturing cost is the

money required to fabricate a system in the presence of manufacturing defects.

We introduced the cost model in Section 4.2.2. Note that since the calculation

for system cost is neither complicated nor time consuming (on average it takes

three seconds per design), we evaluate the cost of all the design points, instead

of predicting them with a regression model. PPW is used to measure how

efficient our processor is in terms of energy consumption. We already have

defined PPW and how we estimate it (Ês[PPW]).

Design Sets

We use design sets similar to those in Section 6.1.1. Rather than having

a few number of design points per set (Small, Medium, or Large), we increase

the systems’ die-area intervals: [50, 67], [120, 146], and [210, 243] for Small,

106 Hot-Sparing for Cost and Performance-per-Watt Improvement

Medium, and Large sets, respectively, resulting in 800 design points (SIMT

processor configurations) per set.

6.2.4 Comparing With Conventional Methods

We compare the result of our proposed DSE algorithm, in terms of ADRS,

against: 1) consuming all the budget to randomly evaluate design points,

2) selecting Best ANN with respect to the least MSE, and 3) the original

ReSPIR [20]. In Table 6.2, we report the ADRS for each approach over dif-

ferent applications and design sets. In most cases, our method for selecting

Best ANN (see Section 6.2.2) performs better than using the best MSE to

select Best ANN . Also, our approach can find the real POF (RPOF) in cases

where it consists of only a small design points (e.g., LU and SVM).

We observe that ReSPIR usually converges after consuming less than half

of the budget that we considered tractable. However, it finds APOF that

are almost three times farther from the POF that our approach identifies.

For example, for ShortestPath application and over the Small set, if designers

select the near optimal solutions using ReSPIR, those systems will be relatively

7% and 8.2% worse than the selected points by our approach in terms of cost

and performance respectively. We hypothesize that the design points that

DoE identifies to train the RSM for the first iteration are not sufficient, and the

resulting error is quite high. For example, for the Small sets, the DoE numbers

just about 60 candidates (design points). This leads to high MSE (e.g., 15.3%

for FFT application). Even though MSE decreases in the following iterations

to 7.7%, the weights of the initial RSM have not been set properly to let the

6.2 Cost-PPW Design Space Exploration 107

next iterations reduce the RSM’s error effectively. Therefore, ReSPIR’s cannot

find more intermediate dominant solutions, and it stops after a few iterations.

Our approach finds considerably better near-optimal solutions over all ap-

plications except LU. We compare the APOF that are found by our proposed

tool to the original ReSPIR in terms of cost and PPW separately. Afterward,

we calculate the average relative difference between these APOF in terms of

cost and PPW. Then, we report their minimum differences, over different de-

sign sets, in the column Avg. Rel. Diff. Regarding LU, in the RPOF of the

Small set there are a few outliers that none of the methods can find.

1
0
8

H
o
t-S

p
a
rin

g
fo

r
C

o
st

a
n

d
P

e
rfo

rm
a
n

ce
-p

e
r-W

a
tt

Im
p
ro

v
e
m

e
n
t

Table 6.2: Comparison of the distances of APOF and RPOF for different methods (Random, Best MSE, Proposed,
and ReSPIR) in terms of ADRS, and over Small, Medium, and Large sets.

Random, ADRS (%) Best-MSE, ADRS (%) Proposed, ADRS (%) ReSPIR, ADRS (%)

Small Med. Large Small Med. Large Small Med. Large
Avg. Rel.
Diff. (%)

{Cost, PPW}
Small Med. Large Eval. (%)

SP∗ 4.5 3.8 2.6 1 1.1 0.8 0.4 0.6 0.8 {-4.4, +8.4} 2.8 2.8 1.4 7.4
FFT 2.8 3.2 2.6 1.1 0.7 0.8 0.4 0.4 0.5 {-5.1, +6.9} 1.0 1.9 2.3 10.4
HOTSPOT 2.5 2.8 2.4 1.3 0.9 1 0.5 0.6 0.4 {-3.8, +8.2} 1.7 2.0 1.4 8.5
FILTER 4.5 3.6 5.4 1.5 1.7 0.9 0.3 0.6 0.4 {-4.7, +6.6} 1.9 1.9 2.2 11.4
KMEANS 2.7 3.7 3.9 1.3 1.7 0.9 0.3 0.7 0.7 {-4.28, +6.8} 2.9 1.1 4.1 7.8
LU 5.4 4.6 3.9 3.3 1.2 0 3.1 0 0.3 {+3.7, -4.3} 2.7 1.4 2.8 8.4
SVM 3.7 3.9 2.6 0 0.5 0 0 0.5 0 {-5.2, +8.8} 1.2 2.2 1.6 9.4
MS+ 4.3 3.7 4.9 0 0.4 1.3 1.7 0.5 1.3 {-2.6, +3.4} 2.1 1.9 2.3 10.2

*: SHORTESTPATH, +: MERGESORT

6.2 Cost-PPW Design Space Exploration 109

0

1

2

3

4

5

6

5 10 15 20 25

M
ea

n
 o

f
A

D
R

S
(%

)

Precentage of Space Evaluated

Proposed

ResPIR

Fig. 6.4: Mean ADRS changes against varying the percentage of design space
evaluated over Small designs and FFT application.

To test the sensitivity of our approach to the evaluation budget, we de-

creased the evaluation budget. The average ADRS of both approaches (our

approach and ReSPIR) for FFT over the Small set is illustrated in Figure 6.4.

We ran each approach several times over this set and application, and plot-

ted the average ADRS (the 95% confidence interval is 0.75%). Our approach

consumes 10% of the evaluation budget to develop the first RSM, and its

APOF is better in terms of mean ADRS than ReSPIR. This is the case since

our approach builds its model based on Best ANN , rather than Best Topo.

However, the main difference is when ReSPIR cannot find a better APOF and

stops, while our approach continues.

The way that the ANN-based RSM is developed (e.g., choosing between

Best Topo and Best ANN) has a considerable effect on how well it finds near-

optimal solutions. An ANN model with lower error (MSE) does not necessarily

provide better results in terms of near-optimal solutions. In our future work,

110 Hot-Sparing for Cost and Performance-per-Watt Improvement

we intend to change the ANN’s objective function to optimize the model with

respect its APOF, rather MSE.

6.3 Results

6.3.1 Effectiveness of Adding Hot Spares on PPW

We have conducted experiments to study the effectiveness of adding hot-

spares to baseline systems (SIMT processors without redundancy) in terms of

PPW. We have also performed a design space exploration to determine what

types of redundancy most cost-efficiently improve PPW.

6.3.2 Experimental Setup

In Section 6.2.3, we defined and compared our ANN model with ReSPIR

over three sets (Small, Medium, and Large). Each set consists of 800 designs.

We study these sets to observe the effectiveness of adding hot-spares to systems

in terms of PPW.

We model the performance and power of each application over each config-

uration by using MV5 and GPUWattch tools. We utilize the cost model that

is presented in Section 4.2.2 to extract the yield and cost of each configuration.

6.3.3 Analyzing Performance and PPW

In Figure 6.5, we use expected performance (Ês[P] refer to Chapter 5)

to measure the performance of a multi-core SIMT system by considering the

population of dice that results from a given defect density (0.025/cm2). To

6.3 Results 111

-45
-35
-25
-15
-5
5

15
25
35
45
55
65
75
85
95

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

FFT FILTER SHORTESTPATH MERGESORT LU SVM HOTSPOT KMEANS

A
v
er

a
g
e
 R

el
a
ti
v
e
 E

x
p
e
ct

e
d

P
er

fo
rm

a
n
ce

 I
m

p
ro

v
m

e
n
t

(%
)

Different Applications and Design Sets

SL

SSL

SC

Fig. 6.5: Average relative estimated expected performance (%) [2] improve-
ment by adding hot spares to different configurations of SIMT processors for
different design sets (Small, Medium, and Large) over different applications.

calculate Ês[P] we simulate the performance of each possible derivative config-

uration of a system (with defects) and weight it by its likelihood of occurrence.

For example, we observe that when Large systems utilize SL, on average 29%

of the dice are fabricated fully operational in the field, while 37% have one

failed lane per core, and 22% experience two failed lanes per core (all of the

redundancy is consumed to increase yield). Therefore, a considerable portion

(66% = 29% + 37%) of dice for these systems have operational redundancies

in the field, which can be utilized to improve system’s performance (refer to

Chapter 4). Note that this portion of dice increases as the size of systems

decreases due to the lower failure probability of smaller systems. As we ex-

pected, hot-sparing is effective the most for Small systems (it can increase

the performance of these systems up to 85% on average). This is mainly due

to the fact that Small systems do not have many processing elements (cores

and lanes). Consequently, any type of hot redundancy is less likely used as

spares during fabrication (the system baseline yield is high). As a result, most

dice have functional hot spare units which can be used to gain a considerable

average performance improvement in the field for these systems.

112 Hot-Sparing for Cost and Performance-per-Watt Improvement

As systems become larger, this relative performance improvement becomes

smaller, since 1) the relative number of redundant processing components (hot

cores and lanes) that are added to the baseline systems decreases, 2) their yield

is lower than Small systems, and therefore, these systems use a larger portion

of hot spare units to address defects. Also, we observe that for some appli-

cations (e.g., KMEANS and HOTSPOT) adding hot-spares not only does not

increase performance of Medium and Large designs, but degrades it. This per-

formance degradation is more significant when we utilize micro-architectural

hot spare elements (SL and SSL). We hypothesize that this performance loss

is due to inter-thread data-dependencies as well as the many synchronization

points that these applications have [48, 50]: performance is restricted by that

of the narrow hot RCores when the wide MCores wait to receive data from

them. Furthermore, we observe that for some applications (e.g., LU and SVM),

adding hot spare cores for large systems causes a degradation of Ês[P]. We

hypothesize that this originates from greater L1$ coherency latency in Large

systems. We expect this is due to their limited number of parallel threads.

Moreover, we observe that hot-SL outperforms hot-SSL in terms of improving

Ês[P] as the probability of having functional spares after fabrication is higher

in this case.

In Figure 6.6, we illustrate the average relative improvement of systems

with hot-sparing compare to baseline, in terms of Ês[PPW], over different

applications and different design sets. For Small systems, on average, we

observed improvement for every application (up to 17%). This is the case

since the relative improvement in performance is greater than the resulting

6.3 Results 113

-55

-45

-35

-25

-15

-5

5

15

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

S
m

a
ll

M
e
d
iu

m

L
a
rg

e

FFT FILTER SHORTESTPATH MERGESORT LU SVM HOTSPOT KMEANS

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

x
p
ec

te
d

P
er

fo
rm

a
n
ce

 p
er

 W
a
tt

Im

p
ro

v
m

e
n
t

(%
)

Different Applications and Design Sets

SL

SSL

SC

Fig. 6.6: Average relative expected performance per watt improvement by
adding hot spares to different configurations of SIMT processors for different
design sets (Small, Medium, and Large), and over different applications.

relative the power overhead. This phenomena originates from the fact that,

in Small systems, a considerable portion of power is consumed in the L2$

and crossbar (e.g., ∼34% in FFT). The relative power increase due to adding

redundancy in the L2$ is not as large as the relative power overhead of adding

hot spares. Consequently, when we add hot spares in the form of MCores or

RMCores, power overhead for the system does not scale with the number of

redundant cores, while performance benefits significantly from the hot spares.

Also, we observed that Ês[PPW] improvement for Hot-SL is lower than Hot-

SSL over Small systems. This is because the greater relative performance

improvement that Hot-SL provides over Small systems cannot compensate for

its larger relative power consumption compare to Hot-SSL.

However, as systems become larger, average relative Ês[PPW] does not

improve like in Small systems. In Large systems, adding hot spares causes

a degradation in terms of Ês[PPW]. This happens since the relative perfor-

mance gain that the systems receive by adding hot spares are not considerable

enough to compensate for the power overhead that redundant cores (RCores

or RMCores) add to the systems. Moreover, some applications experience

114 Hot-Sparing for Cost and Performance-per-Watt Improvement

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

FFT

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

FILTER

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

SHORTESTPATH

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

MERGESORT

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

LU

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

SVM

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

HOTSPOT

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

KMEANS

Fig. 6.7: Histogram of optimal solutions based on the type of redundancy that
they utilize—cold spare core (Cold-SC), hot spare core (Hot-SC), cold spare
lane (Cold-SL), hot spare lane (Hot-SL), cold shared spare lane (Cold-SSL),
and hot shared spare lane (Hot-SSL).

performance degradation due to the performance overhead that heterogeneity

(adding hot narrow cores beside large wide cores in Large systems) have, and

consequently, these applications suffer more by adding hot spares in terms of

Ês[PPW].

Hence, hot-sparing is observed as a quite effective method to improve PPW

for small systems (SIMT processors consisting of a few narrow cores). It can

improve PPW significantly (e.g., up to 17% for hot-SSL over FFT) without

degrading system performance.

6.3.4 Cost-PPW Design Space Characterization

Experimental Setup

To find and study near-optimal solutions in cost-PPW, we conducted a

set of experiments. We selected a range of SIMT multi-core processors, and

added to them hot as well as cold redundancies in different forms (SL, SSL, and

SC). The specifications for the systems that we studied are in Table 6.3. We

added redundancies as described in Section 6.1.1. After adding redundancy, we

considered the systems with die-area ∈ [50 to 250] mm2. These assumptions

6.3 Results 115

Table 6.3: Parameters for under-investigation design space.

MCores Spec. Redundant Cores Spec.

MCores {1, 2, 4, ..., 16} RCores {#MC, #MC/2}
MC D$ Size {8, 16, 32, 64} RC D$ Size 8KB
MC HTCs {1, 2, 4, ..., 64} RC HTCs {#MC HTC}
MC Lanes {1, 2, 4, ..., 64} MC Lanes {0, 1, 2}
MC I$ Size 16KB RMCores {0, 1, 2}
MC Freq. 0.6 GHz RC Freq. 0.6 GHz

and specifications for SIMT configurations lead to more than 10K different

designs.

We use the same simulation setup that is introduced in Section 6.3.2 to sim-

ulate the performance of different systems over different applications. More-

over, to find optimal solutions in this design space we utilize our proposed DSE

approach (see Section 6.2) to find near-optimal solutions. Then, we evaluate

the performance and power of these near optimal solutions with MV5 and

GPUWattch simulators and we estimate their PPW with Ês[PPW].

In systems that utilize cold- or no-redundancy regimes, Ês[PPW] =E[PPW]

= PPW . We observe that cold redundant components have no or a negligi-

ble effect on performance and power in SIMT processors [11]. Therefore, in

a SIMT system, the performance and power of derivative configurations that

meet the minimum system requirement are the same as the most likely one.

Characterizing Near-Optimal Solutions

Designers cannot ignore hot-sparing when they are looking for optimal so-

lutions in the cost and PPW design space. In Figure 7.4, we present the

histogram of observed optimal solutions over different redundancy types for

116 Hot-Sparing for Cost and Performance-per-Watt Improvement

different applications. In most applications, hot spares contribute to APOF

sets. If we replace those solutions that utilize hot-sparing with their corre-

sponding cold systems, we will lose 19.1% Ês[PPW] on average over all ap-

plications. Moreover, the relative cost overhead of utilizing hot spares instead

of cold sparing varies between 3.4% to 7.5% with a mean of 5.0% over these

approximated optimal solutions.

We also observe that SSL dominates SL in terms of Ês[PPW]. Except

FILTER, no application utilizes SL redundancy (cold or hot) in its cost-PPW

APOF set. Also, if we compare the optimal solutions that utilize Hot-SL in

FILTER with the corresponding Hot-SSL solutions, we observe that Hot-SSL

systems have relatively only 2.2% less improvement, in terms of Ês[PPW].

Therefore, there is no point for designers to consider Hot-SL. This reduces the

time complexity for exploring this design space (cost and PPW) significantly:

blueby safely removing Hot-SL from the list of redundancies that we study, we

can save 4000 processing hour even when we utilize the DSE algorithm.

In terms of PPW, hot-sparing cannot help applications that do not benefit

from a considerable performance improvement when hot redundancy is added.

This happens since the power overhead due to hot redundancy is greater than

the resulting performance improvement for these sort of applications. Conse-

quently, no improvement is observed in terms of Ês[PPW] in these applications

(e.g., HOTSPOT, and KMEANS). For example, consider a case where a hot

spare is halted due to the data dependencies between its threads and other

cores’ threads. In this case, the hot spare consumes energy, but it does not

improve performance. These cores still improve cost, as they are available to

6.3 Results 117

replace defective components; furthermore, clock gating can be used to disable

them when PPW would otherwise be degraded.

Hot-sparing does not help large systems in terms of PPW. Optimal so-

lutions that utilize hot-sparing are generally among small to medium sized

systems (their die-area varies between 61mm2 and 123mm2). This is mainly

due to the fact that in large systems relative performance improvement of

hot spares cannot compensate for their relative power overhead. Our obser-

vation can save considerable computational effort for designers that perform

design space search. As systems become larger, the complexity of calculating

Ês[PPW] increases dramatically. For example, PPW simulation of a system

consisting of eight MCore with 32 lanes per MCore takes about 15 times longer

than a system with two MCores with four lanes each.

Moreover, designers can safely ignore the solutions that their cost increases

by adding redundancy as they do not contribute into APOF. We observed that

systems with no redundancy in the APOF are always small systems where

adding any type of redundancy (cold or hot) increases cost. The area of these

designs varies between 50 and 54 mm2. Note that even though adding redun-

dancy improves fabrication yield, not all redundancy improves yield sufficiently

to reduce cost.

6.3.5 Discussion

In 65 nm technology, we observed that hot-sparing is more effective for

small systems in terms of PPW improvement. This is because of two facts: 1)

In small systems, the probability of manufacturing defect is low (and thus yield

118 Hot-Sparing for Cost and Performance-per-Watt Improvement

is high). Therefore, small systems with hot-sparing have a higher chance to

have functional redundancy. 2) Hot-sparing performance gains are significant

since the relative number of processing elements that hot spares add to small

systems is substantial.

Furthermore, we observe that these systems are frequently used in different

embedded systems. However, as systems become larger, we observed that

PPW gains due to adding hot spares decrease. This happens since: 1) Hot

redundancies are more often used to increase yield. 2) Hot-sparing performance

gains decrease.

While our experiments assumed 65 nm technology, we expect to observe

similar trends in more advanced manufacturing technologies. As features

shrink, sources of failure multiply. Consequently, we expect that designers

will be required to allocate at least as much redundancy as in less aggressive

technology nodes, if not more. Therefore, applications that benefited from

increased performance and PPW when utilizing hot-spares will continue to do

so.

Finally, we observe that hot-sparing is a promising method when compared

to conventional methods such as DVFS and clock gating:

1. Unlike conventional methods, hot-sparing addresses both cost and PPW.

2. While redundancy is not expected to decrease, the margins for available

for DVFS are [71].

3. Hot-sparing does not increase design complexity significantly compared

to conventional methods (e.g., DVFS must be applied in a fine-grained

6.4 Conclusion 119

manner to be effective for SIMT processors [39]).

4. Hot-sparing can be applied jointly with conventional methods to even

more effectively improve PPW.

6.4 Conclusion

We showed that hot-sparing is a promising method for some systems and

applications to improve PPW and cost. It can be used jointly with conven-

tional PPW improvement methods (such as clock gating and DVFS) to even

more effectively improve PPW. In this regard, we studied three classes of SIMT

configurations, Small, Medium, and Large, each consisting of 800 design points.

We showed that hot-sparing is beneficial in terms of PPW with more than 16%

improvement, on average, for applications that experience significant perfor-

mance improvement by utilizing hot-sparing. Also, we showed that hot-sparing

should not be used for large processor configurations. The relative performance

improvement that is gained by utilizing hot-sparing cannot compensate for the

associated relative power overhead in these systems. Moreover, we observed

that micro-architectural redundancy (e.g., Hot-SSL) performs better than ar-

chitectural redundancy (i.e., Hot-SC) in terms of PPW.

Afterward, we studied cost and PPW in a typical design space, consisting

of about 10K different SIMT processor configurations. To make this tractable,

we proposed a DSE approach to explore this design space. Our approach

performs almost three times better than ReSPIR in terms of finding better

near-optimal solutions (measured in terms of ADRS). Then, we showed that

systems that employ hot spares are often among the near-optimal solutions

120 Hot-Sparing for Cost and Performance-per-Watt Improvement

of the design space. Moreover, we showed that if we replace near-optimal

solutions that utilize hot-sparing with their corresponding cold redundancy,

Ês[PPW] degrades more than 19%, while in the worst case, the average rel-

ative cost overhead of hot-sparing is not greater than 5.5%. Furthermore,

we observed that among micro-architectural redundancy techniques, Hot-SSL

improves PPW better than Hot-SL in such that almost no optimal solution

utilizes Hot-SL.

Ultimately, designers cannot ignore hot-sparing when exploring cost PPW

in SIMT processors. However, by using the hints and the framework that are

provided in this work, they can explore this design space more efficiently.

121

Chapter 7

Hot-sparing for

Lifetime-Chip-Performance

Improvement

In this chapter, we investigate the usage of hot-sparing to improve lifetime-

chip-performance of SIMT systems. In this regard, we study a wide range of

SIMT systems, and we show that hot-sparing is a very effective method to

improve lifetime-chip-performance for some applications and systems.

Several techniques have taken advantage of existing micro-architectural re-

dundancy to improve lifetime or yield [41]. At the system level, task schedul-

ing and dynamic thermal and reliability management (DTM, and DRM) tech-

niques improve system lifetime, and consequently LCP, [19]. These techniques

only target lifetime or LCP; hot-sparing which is orthogonal to dynamic ther-

mal or lifetime management, can improve cost as well.

122 Hot-sparing for Lifetime-Chip-Performance Improvement

In this chapter, we investigate the effect of hot spares on lifetime-chip-

performance (LCP) in multi-core SIMT processors. The same way we did

in the previous chapters, we allocate spare cores, lanes, and shared-lanes in

SIMT processors, but we, additionally, enable these components for cost and

LCP improvement when possible. blueWe use the power model that we devel-

oped in Chapter 6 to measure the temperature and lifetime of systems with

hot-sparing. At first glance, it would seem that utilizing hot-sparing would re-

sult in lower system lifetime. Utilizing hot-sparing would increase power, and

consequently, the temperature of a system, resulting in lower system lifetime:

lifetime decreases exponentially with temperature [72]. Consequently, if the

performance benefit due to utilizing hot-sparing is not greater than lifetime re-

duction, LCP decreases. However, likewise what we observed in Chapter 6, the

relative performance gain of hot-sparing, for some applications, can be higher

than its associated relative power and temperature overhead: hot-sparing can

improve LCP while decreasing lifetime. We show that hot-sparing is outstand-

ingly effective for specific types of SIMT processor configurations (small and

medium systems) and applications (FFT and FILTER), likewise what we ob-

served for performance improvement in Chapter 5. However, like what we

observed for cost and PPW, we show that its effectiveness on LCP decreases

as systems become larger. applications as well. For example, hot-sparing can

improve LCP more than 75% compared with conventional methods (i.e., cold

sparing), on average, for applications that experience significant performance

improvement when adding hot spares (e.g., FFT and FILTER). In particu-

lar, micro-architectural hot redundant resources (e.g., hot spare lanes) achieve

7.1 Expected Lifetime-Chip-Performance 123

better LCP improvement than conventional architectural redundancies (e.g.,

hot spare cores).

7.1 Expected Lifetime-Chip-Performance

When a system employs hot spares, system performance and lifetime can be

modeled with a random variable distributed based on the available redundancy

and manufacturing defect density (refer to Chapter 4). A die is considered

operational if it integrates the required number of functional cores, each with

the required number of functional lanes, etc. However, not all operational dice

are fault free: because redundancy has been added, systems with a variety of

sets of defects may still meet the minimum system requirements.

To evaluate such systems, we introduce a metric, expected lifetime-chip-

performance (E[LCP]), that captures the performance and lifetime of a multi-

core SIMT system by considering the resulting population of operational dice

(denoted derivative configurations). E[LCP] is similar to previously intro-

duced metrics, such as E[P] and E[PPW] (refer to chapters 4 and 6) with the

difference that it also captures the lifetime of derivative configurations.

E[LCP] is the expected lifetime-chip-performance of a given system in the

presence of defects:

E[LCP] =
∑

Ci∈{S}

(Perf(Ci)×MTTF)× P (Ci|D), (7.1)

where S is the operational set, derivative configurations with no defects plus the

designs with defects that still meet the minimum system requirements. Perf

124 Hot-sparing for Lifetime-Chip-Performance Improvement

and MTTF are the system performance (the inverse of benchmark execution

time) and the system’s mean time to failure, respectively. P is the probability

of a specific derivative configuration’s occurrence in the population of dice given

a particular defect density (D). Note that we consider the performance of a

system to be constant during its lifetime. We have observed that redundant

resources (SL, SSL, and SC) cannot be utilized to extend the MTTF of the

systems. This originates from the fact that for the highly parallel applications

that fully utilize SIMT systems, lanes age at roughly the same rate. Therefore,

a few redundant resources are not enough to extend the lifetime of the system

in any significant way.

A huge number of detailed simulations must be run to calculate E[LCP]

accurately. As we mentioned before in Section 4.1.2, a system manufactured

with six cores, and 32 lanes per core, results in a population of dice with

millions of possible configurations when three redundant cores with two lanes

each are added. In that sub-section, we grouped symmetric derivative config-

urations, calculating a similar metric, expected performance (E[P]). However,

we showed that calculating E[P] exactly is intractable even for small numbers

of groups of derivative configurations, e.g., a few hundreds [13]. Calculating

E[LCP] requires, for each derivative configuration: one simulation for each of

performance, power, and temperature, and at least one lifetime calculation for

each configuration sub-component. Hence, E[LCP] must be estimated.

7.1 Expected Lifetime-Chip-Performance 125

7.1.1 Estimating E[LCP]

Like what we did in Chapter 5, we estimate E[LCP] by evaluating just the

most likely derivative configuration for each system, and use it to approximate

the performance and LCP of other derivative configurations. Hereafter, we use

Ês[LCP] notation to denote the estimated expected lifetime-chip-performance

using the single most likely derivative configuration. We will see that not

only is the relative error of Ês[LCP] smaller than the measurement error of

E[LCP], but Ês[LCP] can also be used to identify near-optimal solutions in

the cost and LCP design space.

Experimental Setup

To evaluate the accuracy of Ês[LCP] we conduct experiments on three

different design sets that cover small, medium, and large systems. We calcu-

late LCP using
∫MTTF

t=0
Perf(t)dt, where Perf(t) is the instantaneous perfor-

mance of a system while it is running an application. To evaluate the MTTF

of SIMT processors, we adopt a Monte Carlo Simulation (MCS) based life-

time evaluation framework [73]. It models component failure by using three

temperature-dependent wear-out failure mechanisms: electro-migration (EM),

time-dependent dielectric breakdown (TDDB) and thermal cycling (TC) [74].

A Weibull failure distribution is used to model each of these mechanisms [75].

The MTTF of each failure mechanism per component is normalized to 30 years

for the characterization temperature of 345K [76].

To calculate system MTTF, we first generate a system’s floorplan using

ArchFP [77]. Then, to measure the power of each derivative configuration, we

126 Hot-sparing for Lifetime-Chip-Performance Improvement

follow the steps that are introduced in Section 6.2.3. We extract activity traces

from MV5 [43], a cycle-accurate SIMT performance simulator. These traces

are then processed by GPUWattach, a GPU dynamic-, static-, and short-

circuit-power simulator, with an emphasis on NVIDIA GPUs in 65nm [39].

Afterward, using the system’s floorplan and the per-component power data, the

steady-state temperature for each component is calculated using Hotspot [78].

For a fair comparison between the chips’ temperature, and consequently, the

lifetime of different systems, we make some assumptions regarding heat transfer

characteristics to calculate the heat dissipation over a system’s die: 1) heat

sink sizes do not grow proportionally with respect to a system’s die size. It

is very unlikely that a chip maker design a specific heat sink for each chip.

We consider three different heat sink sizes to match systems’ die sizes (refer

to Table 7.1). Also, we assume that the heat spreader’s size is proportional to

the heat-sink size. 2) We utilize non-active heat-sink models. 3) For the rest

of thermal model parameters, we assume they are constant over all systems

(i.e., we use HotSpot’s defaults).

Each components’ temperature is used to shape its failure distribution for

each failure mechanism. This distribution is sampled to determine the failure

time of each component for a sample system. During the lifetime simulation

of a sample system, a mode detector that checks the number of remaining

components after each component failure; system failure occurs when insuffi-

cient resources remain for the system to meet minimum system requirements.

We observe that 10,000 sample systems is sufficient to estimate system MTTF

with a 95% confidence interval of less than 1%.

7.1 Expected Lifetime-Chip-Performance 127

Table 7.1: Heatsink specification for Small, Medium, and Large systems.

MCores Spec. Small Medium Large
Heatsink size (mm2) 400 [79] 1500 [79] 3000 [80]
Heatsink thickness (mm) 30 40 60

Design Sets and Simulation Setup

Given that calculating LCP for each derivative configuration on average

takes two hours on a Core i7 system with 8 GB RAM, evaluating E[LCP] of

a wide a set of designs is intractable. Therefore, we selected a few baseline

designs (systems without redundancy) that are categorized as Small, Medium,

and Large in terms of die area; likewise what we did in Section 6.1.1. The

specifications of the baseline systems are in Table 6.1. Also, the specification

of heatsink for these systems are presented in Table 7.1. Also, we use the

same simulation setup that is mentioned in Section 3.2, while we assume that

a system runs a single application during its lifetime.

Accuracy measurement for Ês[LCP]

L1Cache L1Cache

Decoder Decoder

Lane Lane Lane Lane Lane Lane Lane Lane

Write Back Write Back

L2Cache

387

379

370

362

354

345

313

(a)

Lane Lane Lane Lane LaneLane Lane Lane Lane Lane

L1Cache

Decoder

Write Back

L1Cache

Decoder

Write Back

L2Cache

385

376

367

360

351

341

310

(b)

Fig. 7.1: Baseline (a) and cold spare lane (b) heat maps.

To evaluate the accuracy of Ês[LCP], we begin by measuring the per-

formance and lifetime of the ten most likely derivative configurations of each

128 Hot-sparing for Lifetime-Chip-Performance Improvement

L1Cache

Decoder

L
an

e

L
an

e

L
an

e

L
an

e

LaneLane

Write Back

L2Cache

Write Back Write Back Write Back

L1Cache

Decoder

384

375

373

365

359

353

329

312

L1CacheL1Cache

DecoderDecoder

L
an

e

L
an

e

L
an

e

L
an

e

(a)

L1Cache L1Cache

Decoder Decoder

Lane Lane Lane Lane Lane Lane Lane Lane

Write Back Write Back

L2Cache

387

379

370

362

354

345

313

L
a
n
e

L
a
n
e

L
a
n
e

L
a
n
e

L1Cache L1Cache

DecoderDecoder

L
a
n
e

L
a
n
e

L
a
n
e

L
a
n
e

Write BackWrite Back

F
il
le

r

F
il
le

r

379

368

361

356

343

321

311

L2Cache

(b)

Fig. 7.2: Hot spare lane (a) and Filler (b) heat maps.

design. These measurements cover 99.1%, 98.2%, and 96.3% of the operational

derivative configurations for Small, Medium, and Large systems, respectively.

In the worst case, Ês[LCP] estimates E[LCP] with less than 5.6%, 15.2%, and

11.6% average relative error over different applications for Small, Medium, and

Large configuration sets, respectively. Note that the lifetime model is prob-

abilistic, and contributes its own error, that, in some cases, could be near

30%, based on the selected model and the accuracy of the calculation for the

system’s temperature [75].

To better understand how adding redundancy affects system lifetime, and

consequently LCP, we experiment on a case study system consisting of two

cores with four lanes per core. We add Cold-SL (Cold-SL), Hot-SL (Hot-SL),

and Filler to the baseline system; we observe that the system’s temperature

decreases when adding redundancy, whether cold or not.

As we infere from the comparison of Figures 7.1 (a) and (b), the baseline

system dissipates its heat on a larger die-area when we add cold spare lanes.

This reduces system temperature by 1.3◦C, and consequently, increases system

lifetime by 1.8x. If we add one Hot-SL per core (Figure 7.2(a)), the overall

7.1 Expected Lifetime-Chip-Performance 129

die’s temperature decreases by 2.3◦C, a greater drop than with cold sparing.

Hot spares require more area, increasing the contact surface between the heat

spreader and die, leading to better heat transfer between the die and heat-sink,

and compensating for their additional power consumption.

For the sake of comparison, we substitute hot spares with Filler (inactive

silicon) on die (Figure 7.2(b)). We observe that the average temperature of

the system with Filler is 1.8◦C cooler than with hot-sparing, improving system

lifetime by 2.2x compared to the baseline. However, this change increases cost

significantly (18.3%), since Filler cannot compensate for manufacturing defects

in cores, like hot spare (we assume that defects in Filler do not affect system

yield.) This overhead makes Filler impractical compared with hot-sparing.

Redundancy does not work as expected because the thermal behavior on

die changes in ways we would not have guessed. By investigating this case

study system, we observed that the average temperature of the system with

hot spares is lower than its equivalent with cold spares, and it leads to 1.56x

higher lifetime eventhough its power is higher than cold spares. However, hot

spares cost is 3.4% higher and 2.3% lower than cold sparing and baseline,

respectively. Also, we should recall that in many applications hot-sparing

improves performance, which in the end helps to improve LCP even more.

Therefore, hot-sparing improves LCP the best, while it can reduce cost as

well.

130 Hot-sparing for Lifetime-Chip-Performance Improvement

7.2 Results

We conduct experiments to evaluate how effectively hot spares improve

performance and lifetime (LCP), as well as cost, relative to baseline SIMT

systems. We subsequently perform a design space exploration to determine

what types of redundancy most cost-efficiently improve LCP.

7.2.1 Experimental setup

We use the same sets of designs that are introduced in Section 6.2.3. We

study Small, Medium, and Large sets individually to observe the effectiveness

of adding hot-spares to these systems in terms of LCP and cost. We model

the performance and LCP of each application over each configuration by using

MV5 and the lifetime modeling framework in Section 7.1.1. Yield and cost are

determined with the model in Section 4.2.2.

7.2.2 Analyzing LCP

To analyze lifetime-chip-performance of the systems, first we need to ana-

lyze their performance in the presence of hot-sparing. We already have done

this analysis for the same sets of SIMT systems in Section 6.3.3. In Figure 7.3,

we illustrate the cost and average relative improvement of Ês[LCP] over differ-

ent applications and design sets when different types of redundancy (hot and

cold SL, SSL, and SC, and Filler) are allocated. When hot spares are added,

the lifetime of Small systems improves the most (on average up to 3.5x). This

is the case since: 1) the relative improvement in performance is more significant

in Small systems when we use hot spares (refer to Section 6.3.3); and, 2) the

7.2 Results 131

relative increase in die area is more pronounced when hot spares are allocated

in Small systems (refer to Section 4.3.1), leading to a greater decrease in heat

density, and consequently, longer lifetime. Also, we observe that the Ês[LCP]

improvement of Hot-SSL is always lower than Hot-SL. This is the case since

1) Hot-SL improves performance more than Hot-SSL, as it adds more lanes;

and 2) SL expands the die more than SSL, better distributing heat and ex-

tending lifetime. When we compare Hot-SSL with Hot-SC, we observe that

even though the average lifetime improvement due to adding Hot-SC (1.69x

over Small systems) is greater than hot SSL (1.67x), the LCP improvement

of Hot-SSL is greater in almost all applications and design sizes. This is the

case since: 1) the performance of the parallel applications we have used for

evaluation often increases with more cores [2] (e.g., FFT, FILTER, SHORT-

ESTPATH), and SSL increases core count more dramatically than SC; and, 2)

the area overhead introduced by Hot-SSL has lower power density than that

introduced by Hot-SC, as each SSL is narrower than a monolithic SC, result-

ing in lifetime improvement even when performance degrades (e.g., LU, SVM,

HOTSPOT, KMEANS).

We also observe that even though hot-sparing has power overhead, it always

outperforms cold sparing in terms of LCP (by at least 30% over all applica-

tions). This is the case since: 1) hot-sparing leads to a larger die area than

cold sparing, which decreases the on-chip power density more effectively. As

a result, paradoxically, systems with hot-sparing experience a longer lifetime

on average. 2) In some applications (e.g., FFT, FILTER, SHORTESTPATH),

hot-sparing leads to higher performance. Another factor is related to the way

132 Hot-sparing for Lifetime-Chip-Performance Improvement

0
50

100
150
200
250
300
350
400
450

S
m

al
l

M
ed

iu
m

L
ar

g
e

S
m

al
l

M
ed

iu
m

L
ar

g
e

S
m

al
l

M
ed

iu
m

L
ar

g
e

S
m

al
l

M
ed

iu
m

L
ar

g
e

S
m

al
l

M
ed

iu
m

L
ar

g
e

S
m

al
l

M
ed

iu
m

L
ar

g
e

S
m

al
l

M
ed

iu
m

L
ar

g
e

S
m

al
l

M
ed

iu
m

L
ar

g
e

S
m

al
l

M
ed

iu
m

L
ar

g
e

FFT FILTER SHORTESTPATH MERGESORT LU SVM HOTSPOT KMEANS Avg over Apps

A
v
er

ag
e

R
el

at
iv

e
E
x
p
ec

te
d

L
if
et

im
e-

C
h
ip

-P
er

fo
rm

an
ce

Im

p
ro

v
m

en
t

(%
)

Different Applications and Design Sets

HSL
HSSL
HSC

+20.3%
+12.4%
+10.9%

+15.3%

+10.3%
+9.3%

+6.1%
+5.1%
+5.9%

-4.3%
-5.7%

-2.4%

-7.8%

-8.1%

-5.3%

-10.4%
-9.1%
-6.7%

-1.1%
-2.7%

-2.4%

-4.3%
-6.9%

-5.3%

-9.1%

-8.3%
-6.7%

Hot Sparing
Cost ReductionCold Sparing

Cost Reduction

Filler
Cost Overhead

CS-
Filler-

Fig. 7.3: Cost and average relative expected lifetime-chip-performance
(ARELCP) improvement compare to baseline systems when adding hot spares
(Hot-SL, Hot-SSL, Hot-SC), cold spares (Cold-SL, Cold-SSL, Cold-SC), and
Filler to different SIMT processor configurations, across Small, Medium, and
Large design sets, and different applications. The lines corresponding to cold
sparing (black) and Filler (yellow) indicate the ARELCP improvement that
occurs when hot spares are cold instead, or replaced with filler on die.

components accumulate wear. Wear tends to accumulate evenly over hot com-

ponents: by the time a failure occurs, most of the rest of the system has aged as

well, limiting the lifetime extension resulting from cold sparing, as additional

failures are likely coming soon.

As systems become larger, the improvement in average relative Ês[LCP]

is not as significant as for Small systems. This happens since the relative

performance gain is smaller, as is the relative increase in area. Consequently,

we observe the lifetime improvement of disabled hot spares approaches that of

cold spares in this case.

Moreover, some applications experience performance degradation due to

the performance implications of heterogeneity: adding hot narrow cores beside

large wide cores in Large systems can slow the entire system if wide cores wait

at synchronization points for narrow cores. Whenever hot-sparing reduces

performance (e.g., Medium and Large designs running LU, SVM, HOTSPOT,

7.2 Results 133

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

FFT

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

FILTER

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

SHORTESTPATH

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

MERGESORT

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

LU

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

SVM

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

HOTSPOT

0
2
4
6
8

10
12
14

N
o
 R

ed
.

C
S
C

H
S
C

C
S
L

H
S
L

C
S
S
L

H
S
S
L

KMEANS

Fig. 7.4: Histogram of optimal solutions based on the type of redundancy that
they utilize—cold spare core (Cold-SC), hot spare core (Hot-SC), cold spare
lane (Cold-SL), hot spare lane (Hot-SL), cold shared spare lane (Cold-SSL),
and hot shared spare lane (Hot-SSL).

KMEANS), designers may disable hot spares; in the worst case, hot-sparing

adds 3.2% cost overhead on average compared to cold sparing. We assume

that hot spares are turned off in those systems.

Finally, hot-sparing in most cases outperforms simply using the same area

as filler. While filler performs better relative to hot-sparing when systems are

larger, it never makes sense to use filler, even when hot redundancy degrades

performance. Note that if we dedicate the area used by hot spares to filler

instead, we add a considerable overhead in terms of cost (e.g., more than 22%

over Small systems with hot SL), since filler cannot be used to compensate for

defects.

In summary, hot-sparing is observed to be quite effective method at im-

proving LCP for small and medium sized systems. These systems consist of

a few, relatively narrow cores. When hot redundancy is added, performance

usually improves, and power density usually falls, the result being that on

average improves LCP up 3x across all applications.

134 Hot-sparing for Lifetime-Chip-Performance Improvement

7.2.3 Cost-LCP Design Space Characterization

Experimental Setup

To see how often different types of redundancy strike the best trade-offs in

terms of cost and LCP, we select a range of SIMT multi-core processors, and

allocate to them hot as well as cold redundancies in different forms (SL, SSL,

and SC). We use the same sets of designs as Section 6.3.4. Also, we add redun-

dancy the same way as it is described in that sub-section. We use the same

simulation setup that is introduced in Section 3.2 to simulate the performance,

power, and Ês[LCP] of different systems over different applications. To find

optimal solutions in this design space, we utilize the design space exploration

algorithm that is introduced in Section 6.2.2.

When systems lack redundancy or employ cold spares, Ês[LCP] = E[LCP]

= LCP . It has been observed that cold spares have a negligible effect on

performance [11]. Therefore, in a SIMT system, the performance and LCP of

derivative configurations that meet the minimum system requirement are the

same as the most likely one.

Characterizing Near-Optimal Solutions

Designers should consider using hot-sparing when they are looking for op-

timal solutions in the cost and LCP design space. In Figure 7.4, we present a

histogram of the distribution of redundancy type among approximately Pareto-

optimal (APO) solutions for different applications. In most applications, hot

spares contribute to the APO set, and often represent a majority of the so-

lutions. If we replace those solutions that utilize hot-sparing with their cor-

7.2 Results 135

responding cold systems, we will lose 53.2% in terms of Ês[LCP] on average

over all applications. Moreover, the relative cost overhead of utilizing hot

spares instead of cold sparing varies between 2.3% to 6.1% with a mean of

4.3% over these optimal solutions. For a cost increase of 4.3%, we can improve

LCP 53.2%, a significant result compared to conventional LCP improvement

methods [19].

We also observe that SL dominates SSL in terms of Ês[LCP]. Except for

SHORTESTPATH and SVM, no application utilizes SSL redundancy (cold or

hot) in its cost-LCP APOF set. This is mainly due to the fact that SL expands

die more and improves performance more than SSL. Also, if we compare the

optimal solutions that utilize Hot-SSL in SHORTESPATH and SVM with

the corresponding Hot-SL solutions, we observe that Hot-SL systems have

relatively only 27.9% less improvement, in terms of Ês[LCP]. Therefore, there

is no point for designers to consider Hot-SSL. This reduces the time complexity

for exploring this design space (cost and LCP) significantly: blueby safely

removing Hot-SSL from the list of redundancies that we study, we can save

4000 processing hour even when we utilize the DSE algorithm.

In terms of LCP and cost, hot-sparing can even help applications that do

not benefit from a considerable performance improvement when hot redun-

dancy is added (e.g., Large systems over HOTSPOT and KMEANS applica-

tions). This happens since first the systems that do not enjoy hot-sparing in

terms of performance are Medium or Large (refer to Figure 6.5), therefore their

cost overhead due to utilizing hot-sparing rather than cold-sparing is low (refer

to Figure 7.3). Second, hot-sparing occupies more area than cold sparing on

136 Hot-sparing for Lifetime-Chip-Performance Improvement

die. Therefore, its resulting temperature reduction and consequently lifetime

extension are more significant.

Moreover, designers do not need to look for optimal solutions among small

systems which their cost increases by adding redundancy. In other words, no

optimal small systems employ redundancy. We observed that systems with

no redundancy in the approximated Pareto optimal front (APOF) are always

small systems where adding any type of redundancy (cold or hot) increases

cost. The area of these designs varies between 50 and 54 mm2. Note that

even though adding redundancy improves fabrication yield, not all redundancy

improves yield sufficiently to reduce cost.

7.3 Conclusion

We showed that hot-sparing is a promising method to improve LCP and

cost that can be used jointly with conventional LCP improvement methods

(such as DVFS and DTM) to even more effectively improve LCP. In this re-

gard, we studied three classes of SIMT configurations, Small, Medium, and

Large, each consisting of 800 design points. We showed that hot-sparing is

beneficial in terms of LCP with more than 3.5x improvement, on average, for

applications that experience significant performance improvement when utiliz-

ing hot-sparing. Moreover, we observed that micro-architectural redundancy

(e.g., Hot-SL) performs better than architectural redundancy (i.e., Hot-SC) in

terms of LCP.

Afterward, we studied cost and LCP in a typical design space, consisting

of about 10K different SIMT processor configurations. Then, we showed that

7.3 Conclusion 137

systems that employ hot spares are often among the near-optimal solutions

of the design space. Moreover, we showed that if we replace near-optimal

solutions that utilize hot-sparing with their corresponding cold redundancy,

Ês[LCP] degrades more than 27.9%, while in the worst case, the average rela-

tive cost overhead of hot-sparing compared to cold sparing is not greater than

6.1%. Furthermore, we observed that among micro-architectural redundancy

techniques, Hot-SL improves LCP better than Hot-SSL in such that almost no

near-optimal solution utilizes Hot-SSL.

Ultimately, designers should take into account utilizing hot-sparing when

exploring cost and LCP in SIMT processors. However, by designers can explore

cost-LCP design space more efficiently by utilizing the hints and the framework

that are provided in this work.

138

Chapter 8

Conclusion and Future Work

As semiconductor feature sizes shrink, devices become more prone to failure

in the field, resulting in early performance degradation. Redundancy is now

routinely allocated in circuits, micro-architectural structures, or at the system

level, to mitigate mounting manufacturing yield losses in multi-core processors.

The structure of multi-core SIMT systems makes them particularly suitable

for applying redundancy at multiple levels of granularity.

In this regard, we utilized architectural (SC) and micro-architectural (SL)

cold redundancy in SIMT systems, and we introduced a new fine-grained re-

dundancy method, SSL. Afterward, we proposed hot-sparing in SIMT systems

and we developed their yield and cost models. Also, we investigated cost and

performance implications in SIMT systems with redundancy. Since calculating

performance of a system with hot-sparing is intractable, we introduced two es-

timation techniques, Ês[P], and Êm[P]. Then, we investigated the implications

that utilizing hot-sparing have on PPW and LCP. We explored cost-PPW and

cost-LCP design spaces to find and characterize their optimal solution. To

perform this design space exploration, we adopted a DSE algorithm.

139

In Chapter 3, we utilized core-, lane-, and shared-spare-lane to address

yield, and consequently, cost in SIMT processors (cold-sparing). In this re-

gard, we developed yield and cost models for SIMT systems with redundancy

and we measured the performance overhead that adding each type of redun-

dancy (spare core, spare-lane and spare-shared-lane) has on a SIMT system.

We evaluated SIMT systems with redundancy when they execute a variety

of benchmarks. We found that configurations in performance-cost Pareto-

optimal front for some applications benefit most from core sparing, with up

to 25% cost reduction. However, for most of applications, shared-spare-lane

outperforms lane-sparing, reducing cost by up to 20%.

In Chapter 4, we showed that hot-sparing’s performance overhead is not

considerable for SIMT systems and just by placing a micro-architectural re-

dundancy (spare-lane and shared-spare-lane), in the context of a core, we can

turn that redundant core on and improve system’s performance. To capture

the performance and cost of a SIMT system with hot-sparing, we introduced a

new metric, expected performance per cost (E[P]/C), and showed that there

are some applications that benefit greatly from hot-sparing, and for those that

do not, the overhead associated with leaving spares cold is not significant.

For a case study system, we observe that E[P]/C improves more than 2.5

and 1.7 times relative to systems integrating no redundancy and cold spares,

respectively.

Also, we showed that calculating E[P] accurately is intractable even for a

single SIMT system with hot-sparing. Therefore, we introduced a new esti-

mation technique for E[P], Êm[P] that trade performance with computational

140 Conclusion and Future Work

complexity to estimate E[P] via simulating m most likely derivative designs.

Afterward, in Chapter 5, we showed that calculating Êm[P] is computationally

expensive for design space exploration when individual, detailed, simulations

require hours. Therefore, we introduced a new estimation technique for E[P],

Ês[P]. Ês[P] evaluates only the most likely configuration, and assumes its

performance for all other configurations, reducing simulation by 98%, with no

more than 2.6% error in E[P], sufficient for differentiating designs along the

Pareto-optimal front during design space exploration. Consequently, design-

ers may add redundancy, and evaluate system performance and cost, with no

greater design effort than performance evaluation alone.

In Chapter 6 and 7, we introduced hot-sparing as a technique that addresses

cost, and PPW or LCP in SIMT processors for some applications. In this

regard, we investigated the performance improvement of hot-sparing to see if

it can be used to improve PPW, and LCP in SIMT processors, respectively.

Then, we studied optimal solutions in the cost-PPW and cost-LCP design

spaces to see what kind of redundancy improves cost-PPW, and cost-LCP

the most, respectively. However, since evaluating individual design points

(different SIMT processor configurations with redundancy) is time consuming,

we adopted a design space exploration algorithm to find near-optimal solutions

without evaluating the design space exhaustively. Furthermore, we showed

that hot-sparing’s PPW improvement on these applications is comparable with

the results of conventional techniques (e.g., voltage scaling) and can be utilized

together with them to more effectively improve PPW in the systems. Also, we

showed that hot-sparing can improve LCP up to 75% on average on different

141

applications and configurations compared to cold-sparing.

In Table 8.1, we summarize the average relative difference of systems with

redundancy (cold or hot) to the baseline systems. We compare these systems

in terms of cost, Ês[P], Ês[PPW], and Ês[LCP] over a wide range of SIMT

configurations. We observe that as systems become larger SC becomes more

effective in terms of cost, while SSL always outperforms SL. We also observe

that hot-sparing is the most effective for Small systems in terms of Ês[P]. How-

ever, as systems become larger the performance improvement of hot-sparing

decreases while it becomes more effective for cost reduction. Cold-sparing

has a negligible effect on Ês[PPW] as it does not change the performance and

power of a system. However, it can considerably improve lifetime and Ês[LCP]

in Small systems by expanding their system die. Also, hot-sparing improves

the Ês[PPW] of Small systems only. However, it is quite an effective method

in terms of Ês[LCP] over all configurations: it improves performance signifi-

cantly over different applications and systems, while extending the lifetime of

systems by expanding their die as well.

In sum, this research show the alternative choices that designers have to

improve SIMT systems with redundancy. For example, when a system archi-

tect has an application and finds a system that satisfies its performance, she

can select the proper type of redundancy to maximize other design factors

(such as PPW or LCP) per cost. Afterward, she can use the frameworks that

have been introduced in Chapter 5 to 7 to explore the design space of cost and

the target design factor (performance, PPW, or LCP), and characterize any

better alternative configuration.

1
4
2

C
o
n
clu

sio
n

a
n

d
F
u
tu

re
W

o
rk

Table 8.1: Comparison of different SIMT systems (Small, Medium, and Large) in terms of average relative
difference to baseline systems (%) for cost, Ês[P], Ês[PPW], and Ês[LCP] over different applications. To observe
the specifications of Small, Medium, and Large systems refer to Table 6.1.

SIMT Systems
Small ([50, 67]mm2) Medium ([120, 146]mm2) Large ([210, 243]mm2)Application

cost Ês[P] Ês[PPW] Ês[LCP] cost Ês[P] Ês[PPW] Ês[LCP] cost Ês[P] Ês[PPW] Ês[LCP]
SL -4.3 +75 -7.8 +51 -10.4 +30
SSL -5.7

-1.3 -1.3
+53 -8.1

-1.3 -1.3
+42 -9.1

-1.3 -1.3
+24Cold

SC -2.4 0 0 +68 -5.3 0 0 +48 -6.7 0 0 +28

FFT +89 +17 +257 +51 +3 +186 +32 -3 +150
FILTER +79 +11 +239 +51 +5 +184 +34 -2 +154
SP∗ +76 +11 +233 +44 -4 +171 +12 -17 +111
MS+ +63 +8 +209 +24 -19 +134 +7 -24 +103
LU +60 +9 +203 +4 -35 +97 -19 -45 +89
SVM +61 +15 +205 +2 -28 +93 -25 -47 +86
HOTSPOT +51 +5 +186 -3 -40 +89 -10 -38 +89

SL

KMEANS

-1.1

+51 +3 +186

-4.3

-6 -39 +89

-9.1

-31 -53 +89

FFT +71 +17 +286 +45 +1 +143 +22 -8 +103
FILTER +69 +15 +283 +45 +3 +143 +23 -9 +106
SP∗ +65 +13 +175 +37 -6 +129 +9 -17 +81
MS+ +48 +6 +148 +13 -23 +89 +3 -25 +72
LU +54 +6 +158 +4 -33 +74 -25 -47 +67
SVM +53 +10 +156 +1 -27 +69 -22 -44 +66
HOTSPOT +47 +5 +146 -3 -38 +67 -9 -37 +67

SSL

KMEANS +48 +3 +148 -5 -37 +67 -27 -47 +69

-2.7 -6.9 -8.3

FFT +40 +9 +137 +27 +1 +115 +18 -9 +100
FILTER +36 +2 +131 +36 +1 +109 +14 -3 +93
SP∗ +34 +7 +126 +20 -3 +103 +7 -18 +82
MS+ +37 +10 +132 +10 -14 +87 +12 -14 +89
LU +35 +7 +128 +1 -23 +71 -6 -30 +69
SVM +27 +5 +115 +1 -20 +71 -3 -29 +68
HOTSPOT +34 +5 +127 -3 -25 +69 +1 -22 +71

Hot

SC

KMEANS

-2.4

+32 +5 +126

-5.3

-4 -26 +69

-6.7

-5 -27 +66

*: SHORTESTPATH, +: MERGESORT

8.1 Future Work 143

Table 8.2: Comparison of different SIMT systems (Small, Medium, and Large)
in terms of type of redundancy that they utilize to optimize Ês[P], Ês[PPW],
and Ês[LCP] over different applications.

App SIMT Systems
Small ([50, 67])mm2 Medium ([120, 146])mm2 Large ([210, 243])mm2

cost C-SSL C-SSL C-SC
E[P] E[PPW] LCP E[P] E[PPW] LCP E[P] E[PPW] LCP

FFT H-SL H-SL H-SSL H-SL H-SL H-SL H-SL NR† H-SL
FILTER H-SL H-SSL H-SSL H-SL NR H-SL H-SL NR H-SL
SP∗ H-SL H-SSL H-SL H-SL NR H-SL H-SL NR H-SL
MS+ H-SL H-SL H-SL H-SL NR H-SL H -SC, -SL NR H-SL
LU H-SL H-SL H-SL H -SSL, -SL NR H-SL H-SC NR H-SL
SVM H-SL H-SSL H-SL H -SSL, -SL, -SC NR H-SL NR NR H-SL
HOTSPOT H-SL H-SL H-SL NR NR H-SL NR NR H-SL
KMEANS H-SL H-SL H-SL NR NR H-SL NR NR H-SL
*: SHORTESTPATH, +: MERGESORT, †: No Redundancy

Also, in Table 8.2, we summarize systems and the redundancy techniques

that they utilize the best for each application. This table provides a guidance

for designers to select a proper redundancy technique when they want to opti-

mize their systems for a specific design objective. For example, we show that

H-SL outperforms H-SSL and H-SC in almost every applications and system

sizes in terms of E[P] and E[LCP], but it losses in terms of cost.

8.1 Future Work

We suggest to improve the applicability of this research by, 1) sharing

resources between cores and lanes rather than having one or two spare compo-

nents per processor or core, 2) activating redundancies adaptively in the field

with respect to an application that is running on a system, and 3) estimating

the performance of a system with respect to defect density that is fabricated

in.

144 Conclusion and Future Work

8.1.1 Utilizing a Pool of Shared Redundancy Resources

In multi-core processors, the effect of providing a pool of shared resources

on cost, performance, PPW, and LCP needs to be investigated. In Chapter 3,

we investigated the effect of architectural and micro-architectural redundan-

cies in terms of cost in SIMT systems. We observed that neither systems with

more than one type of redundancy nor more than one redundant component

of a given type are performance-cost optimal solutions due to their high area

cost. However, as feature sizes shrink and systems become larger, yield losses

are mounting due to systematic and random defects. We anticipate the re-

quirement to utilize a pool of shared redundant resources in future processors

that are fabricated in more advance technology nodes (e.g., 14nm).

8.1.2 Adaptive Redundancy Regime

For general purpose SIMT systems, an adaptive system configuration con-

troller needs to be designed to determine the best system configuration with

respect to the application that is running on the system. This controller can

have different objectives to optimize during run-time (e.g., performance, PPW,

or LCP). In Chapter 4, we assumed that spare units status (hot or cold) are

determined at manufacturing time and due to the application that they are

running. We analyzed applications and configurations, and we observed that

some of them utilize hot-sparing to improve performance, PPW, or LCP, while

there are some that do not. Therefore, when an application and a configuration

are determined, a designer can decide how to manage the resources (hot and

cold cores) to optimize the systems for performance, PPW, or LCP. However,

8.1 Future Work 145

this is not the case for general purpose SIMT systems that their applications

are determined at run-time only. Therefore, for these systems, designers need

to utilize an adaptive redundancy regime to optimize an objective design fac-

tor (performance, PPW, and LCP) in the field with respect to an application

that is running on the system.

8.1.3 Adaptive Performance Estimation Technique

We suggest to adaptively select a performance estimation technique for

systems that their defect density are higher than 65nm. In Section 5.4.5, we

observed that when the defect density is 2.7x higher, the accuracy for for

Small systems (area less than 100 mm2) drops: the performance difference for

systems with one lane failure is larger than 15%, on average; this results in

more than 2.6% error for Ês[P]. Note that the introduced estimation technique

for SIMT systems with hot-sparing that is based on evaluating only the most

likely derivative configuration from a system with hot-sparing. Consequently,

if we utilize Ês[P] to do a design space search when the defect density is

high, we might fail to find optimal solutions due to not being sufficiently

accurate in the estimating of the performance of systems. To address this

problem, it is needed to adaptively in-cooperate a more number of most likely

derivative configurations to estimate E[P], Êm[P]. To do so, the adaptive

algorithm should calculate the needed accuracy for an accurate enough design

space search, and afterward, it choose a proper m, the number of most likely

configurations that are in-cooperated into calculating Êm[P]. Note that this

adaptive performance estimation technique can be applied to estimate PPW

146 Conclusion and Future Work

(Êm[PPW]), and LCP (Êm[LCP]) as well.

147

References

[1] J. Meng, J. W. Sheaffer, and K. Skadron. Robust SIMD: Dynamically
Adapted SIMD Width and Multi-Threading Depth. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, pages 107–
118, May 2012.

[2] S. H. Mozafari and B. H. Meyer. Hot spare components for performance-
cost improvement in multi-core SIMT. In IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFTS), pages 53–59, Oct 2015.

[3] I. Koren and Z. Koren. Defect tolerance in VLSI circuits: techniques and
yield analysis. Proceedings of the IEEE, 86(9):1819–1838, Sept 1998.

[4] S. Borkar. Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation. IEEE Micro, 25(6):
10–16, 2005.

[5] T. Gupta and A. H. Jayatissa. Recent advances in nanotechnology: key
issues amp;amp; potential problem areas. In 2003 Third IEEE Conference
on Nanotechnology, 2003. IEEE-NANO 2003., volume 2, pages 469–472
vol. 2, Aug 2003.

[6] International Technology Roadmap for Semiconductors.
http://www.itrs.net/Links/2013ITRS/Home2013.htm, 2013. Ac-
cessed: 2015-01-30.

[7] Y. Markovsky and J. Wawrzynek. On the opportunity to improve system
yield with multi-core architectures. In the Proceedings of IEEE Interna-
tional Workshop on Design for Manufacturability and Yield, pages 1–9,
October 2007.

[8] Y. Gao, M. A. Breuer, and Y. Wang. A new paradigm for trading off
yield, area and performance to enhance performance per wafer. In Design,

148 References

Automation Test in Europe Conference Exhibition (DATE), pages 1753–
1758, March 2013.

[9] M. Gschwindand, H.P. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe, and
T. Yamazaki. Synergistic Processing in Cell’s Multicore Architecture.
Annual IEEE/ACM International Symposium on Microarchitecture, 26
(2):10–24, March 2006.

[10] Maitre, O. Understanding NVIDIA GPGPU Hardware. In Massively Par-
allel Evolutionary Computation on GPGPUs. Springer Berlin Heidelberg,
pages 15–34, 2013.

[11] Seyyed Hasan Mozafari, Brett H. Meyer, and Kevin Skadron. Yield-aware
Performance-Cost Characterization for Multi-Core SIMT. In Proceedings
of the 25th Edition on Great Lakes Symposium on VLSI, pages 237–240,
2015.

[12] Y. Gao, Y. Zhang, D. Cheng, and M. A. Breuer. Trading off area, yield
and performance via hybrid redundancy in multi-core architectures. In
IEEE 31st VLSI Test Symposium (VTS), pages 1–6, April 2013.

[13] S. H. Mozafari and B. H. Meyer. Efficient Performance Evaluation of
Multi-Core SIMT Processors with Hot Redundancy. IEEE Transactions
on Emerging Topics in Computing, 6(4):498–510, Oct 2018.

[14] Premkishore Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger.
Exploiting microarchitectural redundancy for defect tolerance. In Proceed-
ings 21st International Conference on Computer Design, pages 481–488,
Oct 2003.

[15] E. Schuchman and T. N. Vijaykumar. Rescue: a microarchitecture for
testability and defect tolerance. In 32nd International Symposium on
Computer Architecture (ISCA’05), pages 160–171, June 2005.

[16] Premkishore Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger.
Exploiting microarchitectural redundancy for defect tolerance. In Proceed-
ings 21st International Conference on Computer Design, pages 481–488,
Oct 2003.

[17] M. Ghasemazar, E. Pakbaznia, and M. Pedram. Minimizing the power
consumption of a Chip Multiprocessor under an average throughput con-
straint. In Quality Electronic Design (ISQED), 2010 11th International
Symposium on, pages 362–371, March 2010.

References 149

[18] V. Hanumaiah and S. Vrudhula. Energy-Efficient Operation of Multi-
core Processors by DVFS, Task Migration, and Active Cooling. IEEE
Transactions on Computers, 63(2):349–360, Feb 2014.

[19] A. Das, A. Kumar, and B. Veeravalli. Reliability and Energy-Aware Map-
ping and Scheduling of Multimedia Applications on Multiprocessor Sys-
tems. IEEE Transactions on Parallel and Distributed Systems, 27(3):
869–884, March 2016.

[20] G. Palermo, C. Silvano, and V. Zaccaria. ReSPIR: A Response Surface-
Based Pareto Iterative Refinement for Application-Specific Design Space
Exploration. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(12):1816–1829, Dec 2009.

[21] S. H. Mozafari and B. H. Meyer. Characterizing the Effectiveness of Hot
Sparing on Cost and Performance-per-Watt in Application Specific SIMT.
Submitted to Journal of Sustainable Computing: Informatics and Systems,
2018.

[22] S. H. Mozafari and B. H. Meyer. Hot Sparing for Lifetime-Chip-
Performance and Cost Improvement in Application Specific SIMT Pro-
cessors. Submitted to Integration, the VLSI, 2018.

[23] Z. Yu, M. J. Meeuwsen, R. W. Apperson, O. Sattari, M. Lai, J. W.
Webb, E. W. Work, D. Truong, T. Mohsenin, and B. M. Baas. AsAP: An
Asynchronous Array of Simple Processors. IEEE Journal of Solid-State
Circuits, 43(3):695–705, March 2008.

[24] B. Khailany, T. Williams, J. Lin, E. Long, M. Rygh, D. Tovey, and W. J.
Dally. A Programmable 512 GOPS Stream Processor for Signal, Image,
and Video Processing. In 2007 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers, pages 272–602, Feb 2007.

[25] H. Kim, Y. Kim, J. Oh, and L. Kim. A Reconfigurable SIMT Processor
for Mobile Ray Tracing With Contention Reduction in Shared Memory.
IEEE Transactions on Circuits and Systems I: Regular Papers, 60(4):
938–950, April 2013.

[26] J. Yoon, C. Yu, D. Kim, and L. Kim. A Dual-Shader 3-D Graphics Proces-
sor With Fast 4-D Vector Inner Product Units and Power-Aware Texture
Cache. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 19(4):525–537, April 2011.

150 References

[27] Machine Learning on Amazon Web Service.
https://aws.amazon.com/machine-learning/. Accessed: 2018-02-10.

[28] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang. A
Survey on the Edge Computing for the Internet of Things. IEEE Access,
6:6900–6919, 2018.

[29] F. Hatori, T. Sakurai, K. Nogami, K. Sawada, M. Takahashi, M. Ichida,
M. Uchida, I. Yoshii, Y. Kawahara, T. Hibi, Y. Saeki, H. Muroga,
A. Tanaka, and K. Kanzaki. Introducing redundancy in field pro-
grammable gate arrays. In Proceedings of IEEE Custom Integrated Cir-
cuits Conference - CICC ’93, pages 7.1.1–7.1.4, May 1993.

[30] V. V. Kumar and J. Lach. Heterogeneous redundancy for fault and defect
tolerance with complexity independent area overhead. In Proceedings 18th
IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, pages
571–578, Nov 2003.

[31] Brett H. Meyer, Adam S. Hartman, and Donald E. Thomas. Cost-effective
Lifetime and Yield Optimization for NoC-based MPSoCs. ACM Trans.
Des. Autom. Electron. Syst., 19(2), March 2014.

[32] S. Shamshiri and K. Cheng. Modeling Yield, Cost, and Quality of a
Spare-Enhanced Multicore Chip. IEEE Transactions on Computers, 60
(9):1246–1259, Sept 2011.

[33] D. Cheng and S. K. Gupta. Maximizing Yield per Area of Highly Parallel
CMPs Using Hardware Redundancy. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 33(10):1545–1558, Oct
2014.

[34] J. Srinivasan, S. V. Adve, Pradip Bose, and J. A. Rivers. Exploiting
structural duplication for lifetime reliability enhancement. In 32nd In-
ternational Symposium on Computer Architecture (ISCA’05), pages 520–
531, June 2005.

[35] B. F. Romanescu and D. J. Sorin. Core Cannibalization Architecture:
Improving lifetime chip performance for multicore processors in the pres-
ence of hard faults. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 43–51, Oct 2008.

[36] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. StageNet: A Reconfig-
urable Fabric for Constructing Dependable CMPs. IEEE Transactions
on Computers, 60(1):5–19, Jan 2011.

References 151

[37] H. P. Hofstee. Power efficient processor architecture and the cell proces-
sor. In 11th International Symposium on High-Performance Computer
Architecture, pages 258–262, Feb 2005.

[38] A. Ejlali, B. M. Al-Hashimi, and P. Eles. Low-Energy Standby-Sparing for
Hard Real-Time Systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 31(3):329–342, March 2012.

[39] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani,
Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. GPUWattch:
Enabling Energy Optimizations in GPGPUs. volume 41, pages 487–498,
June 2013.

[40] H. Cook and K. Skadron. Predictive design space exploration using genet-
ically programmed response surfaces. In Design Automation Conference,
2008. DAC 2008., pages 960–965, June 2008.

[41] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. StageNet: A Reconfig-
urable Fabric for Constructing Dependable CMPs. IEEE Transactions
on Computers, 60(1):5–19, Jan 2011.

[42] R. Rodrigues, A. Annamalai, I. Koren, S. Kundu, and O. Khan. Per-
formance Per Watt Benefits of Dynamic Core Morphing in Asymmetric
Multicores. In 2011 International Conference on Parallel Architectures
and Compilation Techniques, pages 121–130, Oct 2011.

[43] J. Meng and K. Skadron. Avoiding cache thrashing due to private data
placement in last-level cache for manycore scaling. In 2009 IEEE Inter-
national Conference on Computer Design, pages 282–288, Oct 2009.

[44] H. Cook and K. Skadron. Predictive design space exploration using ge-
netically programmed response surfaces. In 45th ACM/IEEE Design Au-
tomation Conference, pages 960–965, June 2008.

[45] T. Okabe, Y. Jin, and B. Sendhoff. A critical survey of performance indices
for multi-objective optimisation. In The 2003 Congress on Evolutionary
Computation, 2003. CEC ’03., volume 2, pages 878–885 Vol.2, Dec 2003.

[46] J. Mengte, A. Raghunathan, S. Chakradhar, and S. Byna. Exploiting
the forgiving nature of applications for scalable parallel execution. In
2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS), pages 1–12, April 2010.

152 References

[47] L. Zhang, Y. Han, Q. Xu, and X. Li. Defect Tolerance in Homogeneous
Manycore Processors Using Core-Level Redundancy with Unified Topol-
ogy. In 2008 Design, Automation and Test in Europe, pages 891–896,
March 2008.

[48] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choud-
hary. MineBench: A Benchmark Suite for Data Mining Workloads.
In 2006 IEEE International Symposium on Workload Characterization,
pages 182–188, Oct 2006.

[49] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 programs: characterization and methodological considerations. In Pro-
ceedings 22nd Annual International Symposium on Computer Architec-
ture, pages 24–36, June 1995.

[50] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, and Kevin Skadron. A performance study of general-purpose
applications on graphics processors using CUDA. Journal of Parallel and
Distributed Computing, 68(10):1370 – 1380, 2008.

[51] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers Inc., 5 edition, 2012. ISBN
1558607242.

[52] S. Shamshiri, P. Lisherness, S. Pan, and K. Cheng. A Cost Analysis
Framework for Multi-core Systems with Spares. In 2008 IEEE Interna-
tional Test Conference, pages 1–8, Oct 2008.

[53] I. Parulkar, T. Ziaja, R. Pendurkar, A. D’Souza, and A. Majumdar. A
scalable, low cost design-for-test architecture for UltraSPARC/spl trade/
chip multi-processors. In Proceedings. International Test Conference,
pages 726–735, Oct 2002.

[54] Y. Li, S. Makar, and S. Mitra. CASP: Concurrent Autonomous Chip
Self-Test Using Stored Test Patterns. In 2008 Design, Automation and
Test in Europe, pages 885–890, March 2008.

[55] J. A. Cunningham. The use and evaluation of yield models in integrated
circuit manufacturing. IEEE Transactions on Semiconductor Manufac-
turing, 3(2):60–71, May 1990.

[56] De Sousa J. T. and Agrawal V. D. Reducing the complexity of defect
level modeling using the clustering effect. In Design, Automation and

References 153

Test in Europe Conference and Exhibition 2000. Proceedings, pages 640–
644, 2000.

[57] Fabian Fuerle and Johann Sienz. Formulation of the AudzeEglais uniform
Latin hypercube design of experiments for constrained design spaces. Ad-
vances in Engineering Software, 42(9):680 – 689, 2011.

[58] Piotr Czyzak and Andrzej Jaszkiewicz. Pareto simulated annealing- A
metaheuristic technique for multiple-objective combinatorial optimiza-
tion. volume 7, pages 34 – 47, 01 1998.

[59] C. Silvano, W. Fornaciari, G. Palermo, V. Zaccaria, F. Castro, M. Mar-
tinez, S. Bocchio, R. Zafalon, P. Avasare, G. Vanmeerbeeck, C. Ykman-
Couvreur, M. Wouters, C. Kavka, L. Onesti, A. Turco, U. Bondik, G. Mar-
iani, H. Posadas, E. Villar, C. Wu, F. Dongrui, Z. Hao, and T. Shibin.
MULTICUBE: Multi-objective Design Space Exploration of Multi-core
Architectures. In 2010 IEEE Computer Society Annual Symposium on
VLSI, pages 488–493, July 2010.

[60] M. Mirza-Aghatabar, M. A. Breuer, S. K. Gupta, and S. Nazarian. Theory
of redundancy for logic circuits to maximize yield/area. In Thirteenth
International Symposium on Quality Electronic Design (ISQED), pages
663–671, March 2012.

[61] K. Andryc, M. Merchant, and R. Tessier. FlexGrip: A soft GPGPU
for FPGAs. In 2013 International Conference on Field-Programmable
Technology (FPT), pages 230–237, Dec 2013.

[62] GeForce GTX-260 graphic card. http://www.geforce.com/hardware/
desktop-gpus/geforce-gtx-260/specifications, 2010. Accessed:
2015-04-25.

[63] CACTI Tools. http://www.hpl.hp.com/research/cacti, 2008. Ac-
cessed: 2015-04-20.

[64] G. Passas, M. Katevenis, and D. Pnevmatikatos. Crossbar NoCs Are Scal-
able Beyond 100 Nodes. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 31(4):573–585, April 2012.

[65] NVIDIA Tegra Series a GPU processor that
is used in low-power embedded applications.
https://www.nvidia.com/object/tegra-superchip.html, 2018.
Accessed: 2018-08-18.

154 References

[66] GeForce GTX-480 graphic card and its die specifications.
http://hexus.net/tech/reviews/graphics/

24000-nvidias-geforce-gtx-480-finally-unleashed-reviewed-rated/

?page=2. Accessed: 2015-10-16.

[67] Tensilica Vision P6 an embedded processor that is used in neural network
models’ inferencing. https://ip.cadence.com/news/564/330/
Cadence-Announces-New-Tensilica-Vision-P6-DSP-Targeting-Embedded

-Neural-Network-Applications, 2018. Accessed: 2018-08-18.

[68] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 469–480, Dec 2009.

[69] L. M. Collins, J. J. Dziak, K. C. Kugler, and J. B. Trail. Factorial exper-
iments: Efficient tools for evaluation of intervention components. Ameri-
can Journal of Preventive Medicine, pages 498–504, 2014.

[70] Lang Zhang, Hai Wang, and S. X. D. Tan. Fast stress analysis for runtime
reliability enhancement of 3D IC using artificial neural network. In 2016
17th International Symposium on Quality Electronic Design (ISQED),
pages 173–178, March 2016.

[71] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency
scaling: The laws of diminishing returns. 2010 HotPower, 10 2010.

[72] Ayse K. Coskun, Tajana Simunic Rosing, Kresimir Mihic, and Giovanni
De Micheli. Analysis and Optimization of MPSoC Reliability. Journal of
Low Power Electronics, 2(1):56–69, 2006.

[73] B. H. Meyer, A. S. Hartman, and D. E. Thomas. Cost-effective slack
allocation for lifetime improvement in NoC-based MPSoCs. In Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1596–
1601, March 2010.

[74] Joint Electron Device Engineering Council. Failure mechanisms and mod-
els for semiconductor devices. In JEDEC Publication JEP122C, 2006.

[75] L. Huang and Q. Xu. Energy-efficient task allocation and scheduling
for multi-mode MPSoCs under lifetime reliability constraint. In Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1584–
1589, March 2010.

References 155

[76] Z. Gu, C. Zhu, L. Shang, and R. P. Dick. Application-Specific MPSoC
Reliability Optimization. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 16(5):603–608, May 2008.

[77] Gregory G. Faust, Runjie Zhang, Kevin Skadron, Mircea Stan, and Brett
H. Meyer. ArchFP: Rapid Prototyping of pre-RTL Floorplans. In VLSI-
SOC, pages 259–263, 2012.

[78] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang,
Sivakumar Velusamy, and David Tarjan. Temperature-aware Microar-
chitecture: Modeling and Implementation. ACM Trans. Archit. Code
Optim., 1(1):94–125, March 2004.

[79] Intel Atom Processor D400 and D500 Series Thermal/Mechanical Specifi-
cations and Design Guidelines. Technical Report 322856-001, Intel, Dec.
2009.

[80] Dual-Core Intel Xeon Processor 3000 Series Thermal and Mechanical De-
sign Guidelines. Technical Report 314917-001, Intel, Sept. 2006.

