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Absiract

Design automation has steadily contributed to improvements witnessed in the system
design process. Initial applications were to address low Ievel design concerns such as trun-
sistor layout and simulation; however the focus of tools has stowly been progressing up
the design abstraction scale. The current state-of-the-art provides modelling capabilitics at
different levels of abstraction, but solutions for synthesis issues at the register-transter and
lower levels are the norm. The proliferation of design description languages at different
abstraction levels has prompted the need for standardization (VHDL and Open-Verilog) to

promote design migration and re-use.

While design automation has helped in reducing design time-lines and design churn, a
major source of design difficulties is just recently being addressed and promise to be the
next wave in design automation applicability. The problems arisc within the architectural
(or system) level of abstraction very early in the design cycle. The recent research in this
field attempts to bridge the design process gap between specification and design, and pro-

vides a platform for experimenting with hardware and software trade-offs.

This dissertation studies the requirements for an environment for architectural design. In
particular, an environment specific to the telecommunications domain is proposed in order
to limit the potentially large design exploration space. An intermediate design language is
also introduced to accommodate both high level modelling and synthesis driven by the
user and environment. Finally a Design Analysis and Synthesis Environment (DASE) is
described to facilitate the architectural lavel activities. The environment, a proof of con-
cept, provides generic model library, sirnulation, synthesis and Petri-nct analysis support.
Realistic design examples are explored, to illustrate architectural design activities with the

environment.



Résumé

Les techniques d’auton-atisation pour la conception des systémes digitaux jouent un role
important dans 'avancement du processus de développement de ces sysiémes. Les pre-
miers outils automatiques apparus s’adressaient surtout aux problémes physiques et géo-
métriques de la conception, ¢’est-3-dire les questions de bas niveau d’abstraction comme
la simulation ¢t I’emplacement des transistors. Cependant I’évolution des outils se marque
par unc progression du niveau d’abstraction employé par ceux-ci. Présentement les outils
les plus sophistiqués offrent un éventail de niveaux d’abstraction variant des transistors
jusqu’a la modélisation architecturale en passant par les abstractions au niveau des portes
logiques, des transferts entre registres et des algorithmes. Non pas comme les outils de
modélisation qui varient sur toute la gamme des niveaux d’abstraction, la grande partie des
outils de synthase se limite actuellement aux niveaux d’abstraction entre ceux des transis-
tors et des transferts entre registres. L’apparition d’une panoplie de langages de spécifica-
tion sur plusieurs niveaux d’abstraction souligne le besoin d’une standardisation (VHDL et

I'Open-Verileg) pour faciliter 1a réutilisation et la migration des conceptions.

Méme si I’automatisation de la conception a déja produit des résultats pour la réduction de
P'intervalle tempore! requis pour la conception ainsi que la simplification des étapes itéra-
tives nécessitées par les rajustements, une source importante de difficultés retrouvées en
conception n’a €té adressée que récemment et les solutions sont prometteuses pour 1a pre -
chaine génération des outils pratiques en conception automatisée. Les problémes survien-
nent t3t dans le cycle de conception au niveau d’abstraction architectural. Les recherches
récentes en ce domaine tente de faire le lien entre la spécification et la conception tout en
permettant une expérimentation sur les conséquences de la division d’un syst®me en une

partie logiciel et une partie matérielle.
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Cette these étudie les exigences d’un environnement de conceplion au niveau architectural.
Plus particuli¢rement, un environnement spécifique aux systiémes de télécommunications
est introduit pour amoindrir les espaces de solutions vastes qui sont reliés au probléme plus
général. De plus un langage intermédiaire est présenté pour la modélisation ct Ia synthdse
exercées par I'utilisateur et sor: environnement. Finalement, un environnement d’analyse
et de synthése (DASE) cst exposé pour faciliter les activités au niveau architectural. Cet
environment est une preuve du concept émis dans la thésc et il soutient une librairic de
modeles génériques, la simulation, la synthésc et I’anatyse par réscau de Petri. Des exem-
ples réalistes sont présentés pour démontrer i’efficacité de 'environnement au niveau
architectural.
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Claim of Originality

The author claims originality for the following contributions of the dissertatica.

* Inchapters 1 and 3. The proposed environment for design antomation of telecommuni-
cation systems (DASE) is original as it integrates modelling, analysis and synthesis at
the architectural level of abstraction within onc scamless framework. All components
of DASE have been implemented as a proof of concept. These include: the DSL proces-

sor, simulator and synthesizer (DSL-VHDL translator).

* Inchapter 2. The intermediate language DSL is an original contribution to architectural
modelling. It’s capability to permit definition of constructs that can cvolve with addi-

tional design detail, permitting both abstract representation and synthesis, is novel.

* Inchapter 2. The translation rules and algorithm for DSL modules to predicate/transi-

tion nets is novel.

 Inchapter 2. The representation of software and hardware entitics as an indistinguisha-
ble module is original. This permits the modelling of such entities before design parti-

tioning.

* Inchapter 4 and 2.4. The case studies are extracted from real world problems. In that
sense they are not unique, however their representation as DSL modules is novel.
Included is a generic module construction example (DTSS) providing substantial model

re-use,
* In chapter 3. The library support description and implementation is original. In particu-
lar, the ability of library modules to configure their resources and interfaces to a given

model environment permits generic models to be managed by the library.
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. « In chapter 3. The translation algorithms presented for DSL to VHDL (both mode 1 and

2) are original contributions.
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Chapter 1 - Introduction

The telecommunication network is the Iargest manmade machine in the world - composed
of an elaborate blend of hardware and software elements. As with other high technology
driven fields, the market pressures force the telecommunication industry to produce higher
quality products in shorter times. However, the increased complexity of
telecommunication systems has made them very difficult to verify. Rapid system
prototyping aids can automate differcnt aspect of the design process and help address these
concerns. This dissertation presents a rapid prototyping environment to help designers
describe, model and explore design tradeoffs at the more abstract architectural Ievel of
representation and synthesize in the domain of telecommunication systems. In contrast,
traditional environments have focussed on design support at abstractions that are at the

register-transfer level or lower.

This chapter is divided into four sections. The first scction is a perspective on the product
design cycle for telecommunication systems. The section creates a premise for the use of
rapid system prototyping and in particular, potential benefits of use early in the design
cycle. In the second section an overview of current research in the rapid system
prototyping field is presented. A need is defined for an internal architectural level modeling
language which possesses synthesis constructs to permit model refinement to register-
transfer level representations. The third section introduces such a language as part of a
Design Analysis and Synthesis Environment (DASE), the core of this thesis. The final

section concludes with an overview of the remainder of the dissertation.



1.1 Perspective

A typical design flow for large system design is represented in figure 1-1. The figure
highlights the high level flow of information from design concept to implementation. Four
phases of a product’s early life-cycle are also shown: The specification, design,
implementation and test phase. The phases do not necessarily have well-defined
boundarics - for example specification and design may be considered as one phase within a
given engineering group. Listed above each phase are the related design activities that
contribute to the overall time to complete a phase. The activities represent a typical
development process and may differ in each organization, depending upon their maturity

level.

Initial system requirements in the specification phase generate design specifications that
are input to the design phase. The design phase encompasses many activities related to
modelling, design exploration and synthesis. The modelling activity can be composed of
model creation and analysis, A design exploration activity can use the model to simulate
different scenarios or apply formal verification methods to obtain an acceptable
representation of the system. The designer can also partition the design into the respective
hardware and software components and, through the use of synthesis tools, generate a

prototype (or product) in the implementation phase. For hardware designers, description
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languages exist which can represent systems at various level of abstraction. The
proliferation of these languages has prompled the need for standardization (IEEE 1076
VHDL and Verilog) [VHDL 87] [Verilog 91] to promote design migration and re-use.
Current commercial design environments permit synthesis of hardware described in a
subset of VHDL or Verilog, where the initial design is at a register transfter level of
abstraction. The software developers may utilize methodologics, such as Shlaci/Mellor
[Shlaer 88] or Ward/Mellor [Ward 85], to describe the software constructs in more detail.
Each phase in the product lifecycle can potentially flow back to the previous phasc(s)

indicating potential design revisions. This creates design churn and adds to the overall time

to deliver a product.

Intuitively, the time period to create a product (from requirements to test) can be influenced
with integrated tools to shorten various phases. The tools can either reduce the duration of
activities (such as modeling) within phases or reduce the design churn time. Traditional
design approaches have focussed upon such tools. Integrated across scveral design
activities, the tools can form a Rapid System Prototyping (RSP) environment to quickly
produce a prototype system - which is a scaled down version of the final product. The
prototype is a model of a conceptual system to be fabricated and relies upon the

environment to expeditiously produce sound systems.

Although automation is one way to affect design times, further motivation cxists 1o apply
this as early as possible in the product life-cycle. The progression of tool capabilitics
extending toward initial specifications promises to reduce design ambiguities and crrors
early in the product life-cycle. Such tools must be capable of design capture at increased
levels of abstraction to support modelling at the architectural design level. The
architectural level is the most abstract design level defined in [Bell 71] where system

clements are viewed as communicating processes.

The desire to move tools up the abstraction scale is attractive for several reasons. It is well
accepted that design errors uncovered early in the life-cycle are orders of magnitude less

expensive to fix than those detected downstream [Boehm 81]. Early error detection can be



a significant benefit of architectural level automation. Figure 1-2 further emphasizes the
impact of design choices made in the carly phases. The figure depicts product development
in terms of a project within a corporation [Saultz 92] and illustrates the typical resource
and personnel effort requirements during a product life-cycle. The horizontal axis depicts
the different phases that the product may progress through, whilst the vertical axis indicates
a percentage total cost of the project in terms of total effort and resources (equipment,
personnel, money). The diagram demonstrates that more than half of the total cost is
already committed to the project after the specification phase whereas only 15% of the cost
is incurred. It should also be noted that resources freed from previously completed phases
may be allocated to other projects. This makes them difficult to access for potential design
reworks. Before reaching the production phase, nearly 90% of all the total cost is already
committed. As a result, significant design errors detected downstream can negatively
impact the resource allocation to the project resulting in cost overruns and delays. Hence
the resolution of design ambiguities at this early stage ensures that a project reduces
potential design reworks and churn so that the product can be developed with the limited
resources available. Hence,the point in time where design aids are used in the products’

development, can significantly curb development costs [Hayes 88].

100%

Cost
Committed

Total Cost

50%

0%
requirements/ design implement test production maintenance
specification Product Life-cycle Phase
FIGURE 1-2. Typical Project Cost D )



In summary, an RSP environment applied to architectural level design of large systems can
have a significant impact upon the design cycle such as:

i. Shorter design cycle: Generating a quick yet reasonable design from the very
conception of the product can wecd out poor design decisions from good ones, This
reduces expensive design reworks later in the design stage. As a result, the time from

system conception to integration is greatly reduced.

ii. Verification of designs: Current designs are verified later in the design stage. At that
point, poor architectural decisions can be hidden in the complexity of the complete design
details. By synthesis of a system design one obtains a formal representation or model.
Algorithms or rules can be applied at this level to test the correctness of the design versus
the design specifications. Ideally, synthesis would generate designs that are correct by

construction. These lead to less design errors later on in the design cycle.

iii. Solidification of design requirements: Vague or ambiguous design specifications
can be identified and corrected during this early stage. Traditionally this has been an arca
where designers would interpret the specifications. This may not necessarily have been the
intent of the specifications [Srivas 90] [Moore 90]. The level of abstraction in the
architectural level i5 closest to the conceptual mode! a designer would work on,

minimizing loss of information.

iv. Procedures for formal design specification: With the advent of system level
synthesis tools, formal requirements for design specifications can be defined. Formal
specifications following a well-defined structure or methodology is currently lacking in the

design community.

V. More design alternatives: If design space exploration can be performed quickly,
different design alternatives that may have otherwise not been feasible could also be
explored. This helps guide designer in the conceptual creation or evaluation of their

designs.



1.2 Rapid system prototyping

RSP cnvironments provide support for at least three main activities: system design,
exccution and synthesis. The design support is typically through an internal modelling or
specification language that can describe a given system at the desired level of abstraction.
The language must also be sufficiently versatile to accommodate the other two key
activities. Execution of the design entails the exploration of the design space and further
refinements to the design - in the case of architectural modelling, this would also involve
design partitioning and co-design. This activity may utilize simulation and formal methods
as design tools, Finally a synthesis activity uses the refined design to produce the target
product. The source and target model for synthesis reflects the level of synthesis being
undertaken in the design. Four different design abstraction levels are commonly depicted
as concentric circles radiating from the center of a three-dimensional graph [Gajski 92] as
shown in figure 1-3. The intersection of these circles with the three axises represents three
possible views of design domains (behavioral, structural and physical) at a given level of
abstraction. As the circles move away from the center, the level of representation becomes
more abstract. Synthesis can typically occur from a given behavioral representation to a

structural one.

Prototyping systems have been developed mostly to address synthesis at register-transfer
and lower levels. For example, IDEAS [Kumar 89] is an environment that allows RTL
synthesis of designs, CATHEDRAL [Lanneer 91], ISPS [Barbaci §1], and HIS
[Bergamaschi 93] are examples of high level synthesis tools. As the lower level design
tools have matured, research focussed on architectural level synthesis (transforming a
sysiem level design specification into an algorithmic level specification of the behavior) is
finally starting to become feasible and is drawing more attention. Some success for
rcasonably complex systems has been obtained with systems dedicated to specific problem
domains such as Digital Signal Processing where the design space is relatively

homogeneous [Lanneer 91].
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With the increased level of abstraction, the design space for a “gencral purpose™
architectural level RSP tool is heavily heterogencous making it infeasible to derive a model
from most initial specifications [Ramming 93]. As a result, it is generally agreed that
successful architectural level RSPs will be domain specific (exhibiting a reasonably

homogeneous design space) or support a wide variety of specification paradigms.

The demands upon the modelling capabilities of an RSP environment imply that the
internal representation or design language employed by the environment can greatly affcet
the acceptance of the tool within a given domain of application. At the architectural
abstraction, design partitioning and co-design are major activities involving both software
and hardware designers. Therefore a design language is needed to accommodate both
disciplines transparently. In the hardware community, design languages have evolved {rom
logic gate oriented formalisms to those capable of modelling up to the algorithmic
abstraction level. However they rarely support architectural level representation (although
attempts are being made to extend VHDL into this level [Jerraya 91]). Most hardware
description languages are simulation oriented and interleave simulation and modelling
semantics - making them difficult for use in synthesis systems. An example is VHDL -

where only subsets of the language are applicable for synthesis by commercial tools.



Within the software design area, the trend has been toward a parallel and concurrent
programming vicw. This has made the use of specification paradigms, that support
communicating processes, highly amiable. A similar trend can aiso be observed witiiin the
hardwarc design community, with their desire to find better ways to specify the existing
parallelism inherent in hardware. Hence at the architectural level, where software and
hardware design concerns are first addressed, a formalism based upon communicating
processes appears natural to designers of both disciplines [Koomen 91]. For example, the
Specification and Description Language (SDL) [CCITT 88] is based upon communicating
processes and is in use in telecommunication software development groups [Klick
91][Jacobson 92}. Although descriptive, the language is undergoing revisions to adopt
object-oriented views and a timing model. Another language is Statecharts [Harel 87] that
allows description of systems in terms of hierarchical communicating finite state machines

expressed in a graphical notation.

Apart from facilitating co-design, there is an added onus on the architectural design
language: the output of the internal representation must also be synthesized to the desired
target model. This implies that synthesis constructs be part of the internal representation
from the onset, with added modelling support to refine the models. Economic
considerations also justify the re-use of components in a modelling framework. Such an
environment requires a flexible library support system capable of management of models.
Typically, abstract models must be capable of being stored, retrieved, configured and
organized hierarchically with object oriented capabilities (such as inheritance) to

lacilitate model construction and re-use.

1.3 Architectural design and modelling

The Design Specification Language (DSL) introduced within this dissertation, is the
internal representation language used within the Design Analysis and Synthesis

Environment (DASE). The language addresses the representation issues identified in the



preceding section and provides a platform for architcctural modelling of
telecommunication systems as well as support for synthesis constructs. The restricted
domain permits the use of a model library within DASE to aid in the DSL model
refinement through simulation. Although described in detail in the disscrtation, DSL is
internal to the environment and is niot necessarily the language that must be used by a user.
A language translator can be employed between an existing specification language and
DSL - reducing the need for training the uscr on a new language. The DSL repiesentation

can then be used to facilitate the refinement of the design.

DSL is currently implemented in Prolog. This implies that model behavior can be
described as a set of clauses, communicating processes or {inite state machines - suitable to
represent both hardware and software at the architectural level. Prolog also provides a
suitable implementation platform for facilitating model refinements during the
development of a DSL model. Refinements arc carried out under environment support until

the model achieves a state where it can be translated to a corresponding VHDL

representation.

The DASE environment is shown in figure 1-4 as part of an architectural design
automation framework being developed by the MACS laboratory [Tanir 92]. The
implemented environment provides the necessary support for DSL to bridge the gap
between specification and synthesis. Designers can conveniently create architectural
models in a top-down fashion, incorporating further detail as required through a model

library or during design exploration using simulation.

A DSL design is input to the environment through a user interface that is then interpreted
by a DSL processor unit. This unit interacts with all other components as well as managing
a DSL model library [Tanir 93a]. The model library is organized to allow design
exploration within the identified domain of telecommunication system {Tanir 93b] [ Tanir
93c] [Tanir 93d). Models within the library are termed generic and can be re-used and re-
configured with a large degree of freedom. During model execution, the initial DSL model

may undergo refinements under the guidance of the DSL processor as necessary model
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details arc configured through the library.

An interface is defined with a Predicate Transition Net tool to allow the verification of
properties of DSL model components. Design exploration is achieved by using a simulator
which provides the timing model for DSL and permits observation of events at different
levels of detail. Finally a synthesis component allows the DSL models to be synthesized to
an RTL behavioral VHDL model. The VHDL model can then be used by lower level

design aids to optimize and eventually synthesize to hardware.

1.4 Dissertation outline

This disscrtation presents an architectural rapid prototyping environment for
telccommunications systems. It does not claim to resolve all design support issues at this

level. However this is a good starting point for constructing a potential environment that
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can be amiable to system design.

The dissertation is divided into five chapters. The following chapler will present the DSL
language used by the environment. The chapter will also introduce an exampie of a design
of a digital tclephone switch using DSL, demonstrating the modclling capabilitics of the
language. Chapter 3 will describe the environment support capabilitics for automation
including simulation and synthesis. The switch cxample will be used to demonstrate the
use of the different elements of DASE to impact model development. Chapter 4 will
provide two detailed case studies demonstrating the further capabilities and features of the
proposed environment. The examples are based upon the design of an ATM switching
network and an implementation of a distributed broadcast protocol exccuting over the
ATM network. Finally, chapter 5 will provide conclusions and suggestions for {urther

extensions to this work.,
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Chapter 2 - The Design Specification Language

Design languages exist for a myriad of different applications. As opposed to register-
transfer / circuit level design, the architectural level blurs the distinction between software
and hardware, therefore requires elements common to languages applied in both fields.
Furthermore, the design language must be able to facilitate the three RSP activities

introduced in chapter 1; systems design, execution and synthesis.

To emphasize the architectural RSP needs for a design language, the first section of this
chapter will address language issues for each of the three RSP activities and their
implications on architectural design. An overview of the applicable research is also
provided for each RSP activity. The overview provides the motivation for the use of an
internal design specification language: DSL. The language description is initiated in
section 2.2 with an introduction to several modelling constructs. The language is presented
in a BNF notation along with a corresponding formal Predicate net model. Section 2.3
introduces the design support related constructs of DSL that aid in architectural design
exploration and synthesis. The chapter concludes with an example of a design of a digital
telephony switch to illustrate the DSL modelling approach. This example is also utilized in

subsequent chapters to reaffirm various features of the DASE environment.

2.1 Introduction - Architectural Issues

As introduced in the first chapter, RSP can impact the design of a product mainly within the

design phase of its life-cycle. The various activities (for the design phase) that are typically

12



pursued within the context of architectural design arce shown in figure 2-1. The three major
RSP activities are broken into more detailed ones 1o highlight the progression of the design.
The design flow is from design capture to synthesis. The execution phase may undergo
several iterations that are a part of a model refinement exercise. This requires the support of

a model library capable of providing refinements to progress the model 1o a more detailed

one which is suitable for synthesis [Booch 91].
2.1.1 System design

The system design activity is generally the starting point within the design phase of a
product life-cycle. The activity involves the design capture of specifications into a model
which can then be executed. Hence the language requirements al this stage cncompass
modelling capabilities. A model represents an abstraction of a domain under study and a
large body of knowledge exists with respect to this abstraction. In the context of
architectural level design, an abstraction is closcly linked to specification capture, re-

usability, and object-oriented features.

Specification capture has been an evolving discipline in system cngincering. Today’s sys-
tem engineer will find many different mechanisms for design capture [Rattray 89]. Of

these, an underlying formal basis is desirable to ensure consistent propertics of a model
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[Jacobson 92). For example, LOTOS [ISO 88] and SDL utilize a process algebra based
formalism [Milner 80] [Hoare 85] and have been developed to specify telecommunication
systems. They have gained a considerable degree of attention in the protocol specification
ficld. Hardware oriented formalism, such as HOP [Ganesh 89], exist based upon a func-
tional programming paradigm. More general formalisms such as Petri-Nets (and their
extensions) [Peterson 81], Temporal Logic [Moszkowski 85] and queueing networks
[Kleinrock 76] are also applied to capture and analyze different aspects of a design. Addi-

tional paradigms can be found in {Gupta 92].

Most of the above formalisms have object-oriented capabilities or extensions permitting
the modelling of high level communication paradigms. However, model re-use is still a
significant shortcoming in this area. Although the theoretical notions exist, in practice the

languages appear to require more consideration.

2.1.2 Design execution

After a suitable model is defined, the language must provide support for experimentation
and analysis. These execution activities are crucial for a designer to explore a given design
space, make appropriate trade-offs and partition the design to different hardware/software
configurations. Such activities can be supported through design simulators and formal

methods.

Formal methods refer to the application of techniques to prove properties of a system
mode] (such as the existence of deadlocks). Whereas it is highly desirable to use formal
analysis in all aspects of design, current methods make it very difficuit to formally analyze
large systems defined at detailed levels - where possible states in the system are just too
large to manage. Additional problems also persist within current formal verification
approaches. The formal techniques apply to the verification of a model of the system - not
the system itself, The relevance of the verification is always dependant upon how well the
model represents all aspects of the system. A considerable effort can be placed upon for-

mally verifying a model, yet the model may not adequately describe the behavior of the
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system in sufficient detail as to address all design queries. The amount of time to formally

verify a complex system is currently unacceptably long.

Simulation is another technique for understanding system behavior where a given model
is executed through predefined test scenarios depicting typical (and worst case) operations
the system may encounter. For large systems, the scenarios are not exhaustive and provide
a limited degree of confidence in the system. Hence the validity of simulation results are
heavily dependent upon the assumptions the designer provides. Simulation can be

employed in cases where insufficient detail is available for a formal method to be used

effectively.

Simulation is widely deployed as a major aid and many general purposc simulators exist
such as GPSS [Schriber 74], SLAM-II [Pritsker 86], and SIMSCRIPT [CACI 87] to pro-
vide reasonable queuing based system simulation. Other systems such as Designers Work-
bench also provide analysis support for small systems [Thomas 91]. Large complex
simulation that require parallel or distributed processors and techniques like Time-Warp
[Jefferson 83] have been utilized in generating speed-ups in most cases {Reed 87]. Petri-
net based simulators such as Voltaire [Parent 91] and Loopn [Lakos 91] arc also applicable

for modelling concurrency.

With the assortment of simulation languages, model re-use becomes very difficult. Model
interchange between different tools is generally not available and no standard cxists for
these languages to permit such an operation - although work is under way within the IEEE
standards working groups to alleviate this problem and define requirements for a standard

simulation environment [ Tanir 94a).

2.1.3 Synthesis

Model execution activities are repeated, refining the model until a final model is derived
which meets the designer’s expectations and can also be synthesized. Synthesis implies

taking a set of behaviors, constraints and goals and generate a suitable structure that can
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implement the behavior while satisfying the constraints and goals. At the architectural
level, synthesis can implicate both hardware and software. Software synthesis at this point
requires significant research (o integrate high-level specifications towards computer aided
software environments and methodologies. The hardware field has seen a proliferation of
design languages (along with the IEEE standard VHDL), which can be used as potential

target languages for hardware synthesis.

The hardware design community has actively defined many design description languages
pre-dating the standard VHDL. For example CASCADE [Borrione 93], CONLAN [Piloty
80], ELLA [Morrison 93] and Verilog [Verilog 92] are sampies of languages available.
Synthesis has been one of the most important applications of hardware description lan-
guages. Initially targeted to circuit level synthesis, tools and methodologies have evolved

to synthesize designs from the algorithmic level.

Although highly significant, synthesis has played a secondary role to the design language
definition. For example, only restricted subsets of VHDL and Verilog are suitable for syn-
thesis. These languages have powerful constructs for simulation of hardware, however
{(due in part to their low level modelling features) automatic refinement of models has
proven to be elusive at the very high levels of abstraction used within architectural level of

design.

2.1.4 An Intermediate language

System designers have typically utilized many different languages to capture relevant
aspects of a system. It is also generally agreed that one “unified” language or methodology
is not capable of representing systems for all levels of design abstraction. It is also
observed in the milieu that as the abstraction level increases, the analysis methods used in
tools shift from a simulation oriented one to a formal basis [Ward 85]. Hence it is difficult
to use an existing paradigm to address RSP concerns across a broad range of activities at

the architectural level of design.
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The issues reflected in the previous sections indicaic an applicability of different para-
digms at different stages of design. Consequently a possible solution to support architee-
tural design is an intermediate language within the RSP to obtain the various input and
output forms. Such a language would support inputs in the form of specifications (possibly
defined in an existing specification language) and output a lower level synthesized design
in a usable representation (such as VHDL). The intermediate language would also require
modelling capabilities for high level description to {acilitate specification input, as well as

design exploration and synthesis constructs to produce the outputs.

This dissertation presents the Design Specification Language (DSL) as a potential
intermediate language for architectural RSP within the DASE environment. The language
primarily captures specifications by use of abstractions and is free from rigid disciplines of
simulator oriented hardware languages. In addition, since the language must bridge the
abstraction gap between high level system design notions to low level hardware
descriptors, it must also possess the flexibility of re-defining and altering its model

interfaces during design exploration.

This function of the language helped motivate the use of Prolog as the language for
implementation of DSL. It may be noted that DSL is a meta-language in the sense that it is
based upon Logic programming semantics, utilizing built-in predicates to define its own
constructs. A major contribution of DSL is in its ability to capture high level specifications
within a re-usable model and, with the aid of a library support system, refine the model to a
state where it can be synthesized into an executable lower level representation language

such as VHDL (refer to appendix D for DSL and VHDL differences).

DSL borrows the typeless notation to provide facilities for powerful abstraction and data
manipulation. The language is designed to have a corresponding structural graphical
correspondence. The graphical representations of the main constructs arc shown in figure
2-2 and will be further elaborated in the upcoming sections. The language description is
partitioned in two sections: sections 2.2 and 2.3. The first describecs the modelling

primitives (for design capture) of the language whereas the second section focuses upon
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the experimentation and synthesis constructs to support design development.

2.2 The DSL modelling primitives

This subsection presents the DSL modelling primitives required for design capture,
addressing the design input concerns. The basic syntax is presented in BNF notation with

some regular expression shorthand to ease legibility. The shorthand symbols are:

{} : encloses comments,

* : any number of sequences of the preceding expression.

+ : at least one or more sequences of a preceding expression.

[]: Sets of characters enclosed by square brackets imply that any one of the charac-
ters within the brackets are applicable. A range of possibilities is indicated with
“.” within square brackets: i.e. [0-9a-z] indicates any single digit and lower case
alphabet characters can be satisfied.

Characters in bold fonts are reserved words in DSL.

DSL. adheres to Prolog’s naming and syntax conventions. Hence the Janguage primitives
are defined by:

integer ::=[0-91{0-9]"

real ::= integer, integer

number ::= integer | real | float
rel_op::=<|>|==l=<l>=

num_op =+ 1-1*1/1/is

operator ::=rel_op | num_op | |

literal ::= [a-7] [a—zO-9]*

atom ::= literal | number

list :={ member* ]| [ member | member ]
member ::= <null> | dsl_name | variable | number
variable ::= [A-Z][A-Za-z0-9]* | [_J[A-Za-z0-9]*
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dsl_name ::= literal ( parameter+)
| literal
parameter ;.= atom
| variable
A DSL progra:na consists of a combination of DSL, constructs defined as:
dsl_program ::= dsl_model_constructs* dsl_experiment_constructs"
The dsi_model_constructs constitute the applicable commands that are used for model
description and the dsi_experiment_constructs represent the commands used for experi-
mentation and synthesis support. The former is defined below whereas the latter is visited

in section 2.2.

dsl_model_constructs ::= module_definition
| resource_definition
| ho_module_definition
| inheritance_definition
| persistent_port_definition
| path_declaration
Each one of the possible DSL modelling primitives are described in the following subsce-

tions.

2.2.1 Modaules: DSL building blocks

The basic construct within DSL is a modular object oriented design entity called module -
the primitive building block of the language (refer to figure 2-2 for the graphical depic-
tion). These are constructs that possess a name, a set of possible behaviors, and resources.
Modules communicate with one another through messages - which trigger a defined

behavior within destination modules.
The basic DSL notation for a module is:

module_definition ::= module( ds!_name ,[ behavior” 1).

where dsi_name within the module_definition represents a unique identification of a mod-
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module: higher-order module:

name name
A B
fe—% q
ports

ule and is used extensively by DSL to resolve communication issues within a model.
behavior is a list of different behavior(s) the module is capable of interpreting. The behav-
ior(s) of the module represent the actions undertaken by the module when an event occurs.
The occurrence of an event implies the arrival of a message from one module to the other

module - which then attempts to execute the behavior associated with the message.

Modules operate within three conceptual states: ready, busy and delayed which are
depicted in figure 2-3. Ready, indicates that the module can process a message. Busy
implies that it is currently processing a message, and a delayed state indicates that a mod-

ule is suspended (delayed) and will commence processing the message after a time period

incoming message

{FIFO queue}

{message to process)

delayed (t)
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(t). When a module is in the busy or delayed state, arriving messages are queued within an
input message queue to be processed in turn by the module, Message execution within a
module in the busy state is atomic. However, pre-defined interrupt messages (described

later) can interrupt the execution process if the module is in a delayed state.

The description of behavior and the respective possible actions will be delerred until a
later section on behavioral description. However, some actions may use or manipulate
data structures local to a module to model states, local variables etc. Such local data stroc-
tures are facilitated within DSL with the resource statement. Adhering to the Prolog phi-
losophy, local variables can also be lists - facilitating the management of structures such as
arrays and queues. DSL commands to manipulate resources are defined in the data manip-

ulation section later in the chapter. A resource is (a predicate) of the form:

resource_definition ::= resource( dsi_name , dsi_name , values ).
values =  variable

| atom

| (values)

| list
For example, a statement such as resource{module_name, res(Pl,.Pn), (VI,.,Vn)}
describes a resource local to a module (with name module_name). The resource (res) may
be parameterized as above, and defines a set of variables (V) where Va can be any Prolog
element such as integer, lists and strings. The applicable operations that can be performed

upon resources will be described within the behavioral modeling section.

2.2.2 Model composition

DSL permits composition of modules into higher-order (HO) modules. Connections
between modules are established through the use of “ports”. A port is a virtual communi-
cation channel between the module and its environment, The language deduces direction
from information flow across ports. Port specification is not typed so that different levels

of abstract information may flow through the same port.
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The graphical representation of a higher order module (refer to figure 2-2) is similar to that
of a module. The underlying subtlety is that higher order modules encapsulate a set of
modules and define specified interconnections. Hence using these constructs, more com-
plex (higher-order) models can be composed from simpler ones. Higher order modules
possess no pre-defined behavior of their own - however the interaction of modules com-
posed through such a higher order module establish the underlying behavior. A DSL

model defines a higher order module in the form

ho_module_definition ::= ho_module( ho_name , module_list ).
ho_name ::= dsl_name

module_list :=[ dsi_name*]

The ho_name is a dsl_name (Prolog structure) and the module_list is a list of modules
composed within the higher order module. Compaosition is not restricted just to modules,
but is also applicable to higher-order modules. Hence members of a higher-order module
may contain other higher-order modules as well as modules - however when referring to
the constituent members of a given higher-order module, the term medule will be used
loosely to imply both. The interconnection of the constituent modules is achieved through

a path declaration:

path_declaration .:= path{ module_x , module_y [ port_x, port_y ).
module_x ::= dsl_name | variable

module_y ::= dsl_name | variable

port_x ::= dsl_name | variable

port_y ::= dsl_name | variable

port_x and port_y are port names used to define a communication path between the two
named modules. The connection implies a default direction from porr_x to porz_y - hence
module_x is the name of a source module. The port names can also be written as variables,

in which case no direction or specific port name is defined. In this case, the existence (or
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need) for a communication path between the two modules is conveyed to the environment.

The details of the connection manipulation by the environment will be claborated in

chapter 3.

Port names can also be associated to local variables - which resuit in persisrent ports. Such
a port is maintained as a resource within a module under the rescrved resource name:

persistent_port:

persistent_port_definition::= resource(persistent_port ,( port_name , values)).

port_name::= dsl_name

This capability permits ports to assume a value or state dictated by the most recent message
that was sent from the port. Hence a state or value is said to persist on the port (similar to
the behavior of a wire in hardware design). Persistent ports are suitable to model lower
level constructs such as wires and buses where the value of the entity (voltage levels or
high impedance) may be of concern. This also permits different levels of representation Lo

coincide within a given model.

Since paths are equivalent to Prolog predicates, unification and variable instantiation can
provide compact notation in defining some structures. For example, in the case of
symmetrical connections, the path statement can be used concisely to define ail module
interconnections with a statement such as:

path(proc(X), mem(X), [port(X), mem_port(X)]).
This statement will interconnect all modules named proc(X) and mem(X) through their
respective ports (i.e. proc(l) will connect to mem(1) etc.).
Relations can also be established through the port definitions. For example,

path(proc(X), mem(X+1), [port(X), mem_port(X+1)]),
indicates that proc(1) is connected to mem(2) through their respective ports. The path

statements help define the necessary interconnections desired by the designer.
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2.2.3 Module behavioral description

A module’s list of behaviors describe all possible actions that may be undertaken by the
module in response to a given message. The resultant behavior of a higher-order module
composed of modules is a result of all possible interactions between the modules. Module
behavior is a procedural description of actions which, within satisfaction of a set of con-

straints, may consist of:

i). communication initiation with other modules or internally,
ii). modification of resources or temporary variables associated with the module, and
tii). timing related directives.

More precisely, the form is defined as:

. .. * .
behavior ::= ( b_name :- condition” , action™)
b_name ::= dsl_name

+ . N *”
action ;= communication
. . *
| data_manipulation

| timing

Behaviors can be viewed as a set of Prolog clauses where each behavior can also be multi-
ple clauses - applicable under different conditions. The head of a clause consists of the
behavior name (b_name) - a unary or N position predicate. The body is a set of conditions
and actions which are compound sub-goals of the clause. It should also be noted that DSL
conditions are Prolog sub-goals to be satisfied, and the actions are sub-goals that are
always satisfied, resulting in some desired side effects (such as message generation and

resource manipulation).

For a given behavior, a set of conditions can be evaluated before further execution of the
behavior is attempted. This facilitates the description of if-then-else type constructs as
well as supporting state oriented behavioral description. The behavior selection may be

based on built-in DSL predicates or Prolog conditional operators. Formally conditions are



described as:

condition ::= variable rel_op variable
| number rel_op variable
| variable rel_op number
i number rel_op number

| check_res( dst_name , value )

The check_res statement is used to test for a resource (dsl_name) or its value. For exam-
ple, check_res(counter, X) will return the value (X} of a resource named counter. Allerna-
tively check_res(Caller, telephone(5551211)) could rcwrn the name of a subscriber
(Caller) associated with a specific telephone number. In either case, if there is no match

the predicate will fail and another satisfaction of the behavior will be attempted.

DSL uses the Prolog programming style for resolving ambiguities and testing conditions.
Hence a declarative and procedural style of writing behavior is possible. A behavior with

the name b(X) for example is an unconditional attempt 1o satisfy the behavior statements.

However, code in the form:

b(1):-cl, al.
bfwait):-c2, a2.
b(X):-¢3, a3.

are multiple behavior names that DSL will attempt to satisfy for the arguments “1”, “wait”
or otherwise. In addition a set of conditions c1, ¢2 and c3 determine if the action (al, a2,
a3) for the given clause will be attempted (since actions are always true - the conditions

act as guards against erroneously selecting actions).

Having introduced the basic behavioral styles, the possible actions available within a

behavioral description are described below:
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i. Communication primitives

Communication is the main means for changing state within DSL models. The main

action that invokes communication is the send statement. It’s format is as follows:

communication ::= send( destination , port , message )
| send( message )

| execute( message )

destination ::= dsl_name | variable | list / [*]
port ;= dsl_name | variable

message ::= ds{_name

The first form of the send statement has three possible parameters: destination, port and
message. The destination is the name of a destination module. The destination may be a
multiple one, expressed as a list such as [a, b]. In this example the respective module will
send the same message to modules a and b. An empty list {] will result in a message sent to
the first module capable of interpreting the message. The destination can also be an [*]
which has the potential effect of sending a message to all modules capable of processing

the message.

The port is the name of a cominunication port of the source module that is identified as the
desired source point from which the communication is to initiate. The message is the
name of the message to be sent. This can be any valid behavior name that is comprehensi-

ble by the receiving module.

The second form of send is for internal messages, and is essentially a short notation of the

first - where the destination is the source module.

The first two fields for the first form of send are optional, which provides extreme flexibil-

ity in the way communication can be initiated. The possible actions are described by the
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following cases (parameters are undefined unless they begin with a lower case letter):

Case 1.

Action:

Case 2.

Action:

Case 3.

Action:

Case 4.

Action:

All parameters are given: send(dest, port, message).

message will be sent from the source module to the module with a name
dest, through the source’s port called port. A special case is when the desti-
nation is [*]. In this situation, the message will be sent to all modules that
are connected to the source’s port. This is equivalent to a broadcast mes-

sage in some systems.
No destination name is given: s=nd(-, port, message).

message will be sent to the first module capable of executing it and is con-

nected directly or indirectly to the source module’s port.
No port name is given: send(dest,_, message).

Essentially the same as casel. Ports are not neccessary for communication,
only for synthesis later in the process. This type of send statements will
generate pseudo-communication channels within the DSL environment

which can be used by a synthesizer to construct data paths.
No port or destination given: send(_,_, message).

This is similar to case 2. however any module that can interpret the mes-
sage will be selected. This mode is an aggressive one and should be used
with caution - since the communication paths arc determined solcly by the

environment and not by the designer.

A message generated through a send statement will always be placed in the input

(message) queue of the destination module. Hence there is an implicit causality associated

with message communication.

The other communication primitive available is the execute statement. This statement is

similar to an internal send statement, however it by-passes the input message queue of the

module. Consequently the message will be processed immediately.

By using the send and execute primitives, different message ordering can be implicily
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Different Behaviors of module a: module a module b
S 7{
(s1:-execule(s2),execute(s3)), s% ] DECTA ml
(s2:-delay(DELTA), send(b,_,m1)), Sﬁhm\m?.
(s3:-delay(DELTA), send(b,_,m2)) ‘;\.&
(a) Ordered communication
Sl>
(sl:- execute(s2)), 2 “DELTA ml
(s2:- delay(DELTA), send(b,_,m1}, send(b,_,m2))
(b} Concurrent communication m2
s
DELTA ml
(s1:- delay(DELTA), send(b,_,m1), send(s2)), q
(s2:- send(b,_,mn2)) m2
5
(c) Finite delayed communication time vlime

eslablished. Figure 2-4 presents some possible message combinations. The figure assumes
that two modules (A and B) are communicating. In particular, module A is actively sending
two types of messages and the diagram indicates the relative times at which the messages

arrive at module B’s input queue.

The first case shown is the effect of multiple execute and send statements. Three sets of
behavior, each with a discrete delay of delta is assumed. The first behavior (s!) generates
two execute statements for behaviors s2 and s3. The latter two behaviors use send
stalements 10 generate messages ml and m2 respectively. The destination module will

receive the two messages delta time units apart in the order they are sent.

The second case depicts a concurrent transmission of messages m/ and m2. This is

achieved through behavior s2. Although message ml is listed before m2 within the
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behavior, the order of arrival at the destination is non-deterministic,

The final case shows the use of a combination of send statements. Behavior s/ sends
message ml after a delta delay, then sends an internal message (s2), The latter will be
queued and processed after a finite queueing time (g) and s2 will gencrate message m2. The
effect of the internal send is to schedule m2 aftcr ml, but with an unknown dclay (g)

between the two.

ii. Data manipulation

Data manipulation actions can change values of internal variables defined by resources or
temporary variables local to a module. The actions can utilize any valid arithmetic and list
operators defined in Prolog. In addition, data values used within resources can also be
manipulated within defined DSL statements. The following comprises a description of all

the actions.

data_manipulation ::= set_definition
| create_definition
| remove_definition
| probe_definition
| arithmetic

| built_ins

set_definition .= set_res( dsi_name, values')
create_definition ::= create( resource_definition )
remove_definition ::= remove( resource_definition )
probe_definition ::= probe( dsi_name , variable )
arithmetic ::= variable operator expression
expression .= number

| ( expression operator expression )
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The first four data manipulation statements are those related to resources. The set_res
statement permits the assignment of a value to the respective resource. For example,
set_res(state, busy) will associate busy to the resource state. The create action will instan-
tiate a new resource. Hence, create(buffer(1), empty) will define a new resource named
buffer(1) with contents empty. The remove action will remove (or disassociate) a resource
from a module. For example, remove(buffer(1), full) will remove the named resource
whose contents are defined to be full. It should be noted that this operation has the effect
of removing a defined fact from the underlying Prolog database. Hence if there are multi-
ple cntries with the same resource name, only the oldest and least used copy of the

resource will be removed.

The probe action is reserved for resources defined as persistent ports. The invocation of
the action results in the variable to be bound to a local value maintained for the persistent
port. The statement permits a module connected to another module’s persistent port to
obtain the state of the port. The nuance of this representation is illustrated in figure 2-5. In
the example, module (A) has a persistent port (pa) connected to another module (B). The
implication is that there is a resource associated with module A, containing a state variable
V. At some point in module B’s behavior, a probe statement is encountered. The effect of
this is to access the value V from the persistent port and bind it to the local variable ST.
Persistent ports can only be read by other modules. Changing the value can only be per-

formed by the module associated with the port (in this case module A).

The probe statement is useful for depicting lower level interactions. For example consider

module A module B

behavior(s) behavior(s)
par pb

* |, prove(ph, ST),

¥ ST=V L - "

-
-
-
.---
-
-

resource(persistent_port,(pa, V) .

FIGURE 2-5. Example of Persistent Port
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a model of a processor connected to a bus and memory. Assume that significantly detailed
operations of the memory is of interest and the processor model gencrates messages
representing a state of the bus (for example read_memory could imply a “0010" bit level on
the control bus). If the bus were to be represented by a bus with a persistent port, the
processor could affect the state of the port with its messages to the bus, and the memory

module could utilize probe statements to latch onto the required valucs.

There are additional behavior predicates defined with DSL to help within the manipulation

of data and creation of standard data structures such as queues. These are summarized

helow:
built_ins:=
not( dsi_name ) : negation of X (as in Prolog).
| member( literal , list) : true if literal is a member of the list List,

| remove_element( literal , list , new_lisf) : Removes the first occurrence of an clement
literal within the list /ist and returns the
sub-list new_list.

| list_length(/ist, variable ) : determines the number of clements variable
within the list list.

| append(atom , list, new_list ) : appends atom to the end of the list List to create
the new_list (as in Prolog).

| igsort( list, new_list) : a quick-sort algorithm for the sorting of the
elements of List. Elements are sorted in
ascending order an placed in new_list.

| last_list( list, atom) : identifies the last clement afom from a queue

named lisz.
iii. Timing
Up until now timing has not been elaborated upon. Timing behavior in DSL is encoun-

tered through simulaticn, hence there is no explicit formal timing model within the lan-

guage semantics. However module delays can be simulated with the use of the delay
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action. A delay action suspends the module for a given period of simulated time. After the
elapsed time, the next consecutive action in the behavior is executed. The syntax of this

action is:

timing .= delay( number )
| delay( variable )
| ¢_function , delay( variable )

c_function ::= call_c( atom , variable )

The action can utilize a numeric value explicitly, or implicitly (as an unbound variable).
The former simply implies the use of a numeric parameter such as delay(5.4) which will
suspend further operation within a module for 5.4 time units. The latter is a case where a
variable may be dependant upon an externally passed parameter - for example

(Behavior_name(T1):- delay(T1),.). Here T1 is passed to the module as a delay parameter.

The call_c action can also be used in conjunction with a delay action to access random
variables from a C library. Two examples of how random messages may be generated are
given in figure 2-6. The first uses a list (RANDIREST) to select a random number (a table
look up scheme could also have been used), suspend operation for that time period,
penerate a message (sﬁmuli) and then access the next number. This structure has the
advantage of replicating the same sequence of random numbers for every modelling
scenario. The second example is that of a random number generation. A system call to Cis

used to access a random number generator (rand) and obtain a number between 0 and 1

module(random, [ module{random, [

(start([]):- (start:-
print(‘Finished random messages")), call_c(rand, RANDOM),

(start(IRANDOM\REST}):- delay(RANDOM),
delay(RANDOM), send(_,_,stimuli),
send(_,_ stimuli), send(start))
send(start(REST))) D.

D.

{a) Predetermined random numbers (b) Utilizing function calls

EIGURE 2-6, Examples of random number generation
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(which is scaled afterwards). A Prolog predicate call_c(Function, X) is used to pass the
random value from C to Prolog (some implementations of Prolog have predefined random
value predicates that can be used directly). The value is then used to delay and generate a
message as before. The difference here is that each simulation scenario will utilize difterent

random values and the timing delays will not be identical.

Timing issues for modules are resolved through scheduling during simulation. The
execution of a communication statement within a module’s behavior is handled directly
through the simulator after the destination name has becn resolved (chapter 3 describes the
simulator data structures in detail). Similarly, a delay statement will cause a re-schedule of
the current message being processed, until a specified time period. During this period no
further messages may be processed (the module’s delayed state). There is howcver onc
exception to this rule. A default class of messages are defined within DSL to act as interrupt

messages. These are defined through the statement:
interrupt_declaration ::= isa( message ,dsl_interrupt).

In this declaration, message is defined as a priority message. If a module is in a delayed
state, such a message will cause the simulator 10 immediately remove the current message,
and schedule it after the priority message. After completion of the priority message, the
interrupted message will once again delay the module. In the busy state, messages cannot
be interrupted. A priority message can be interrupted by another priority message (there is

no notion of levels of priority).

2.2.4 Inhcritance and hierarchy

DSL permits modules to inherit behavior (and structure) from other modules (and higher
order modules) - which expedites model re-use. A module that is written to be sufficiently
generic and can be re-used by different parents is termed a generic module. By convention,

such module names are superseded with a *“generic_" to stress this property.



Creation of generic modules is simplified within DSL due to the relaxed coupling scheme
between modules. A module does not necessarily require any knowledge about its
destination, hence communication can be defined without destination names. Also, since
ports permit different assortments of messages to pass through them, interconnection is
also simplified. The model coupling is achieved by a higher order module accessing the
gencric components through the library. Generic modules will be explained in detail within
the library support sub-section in chapter 3 - however it should be noted that if an
inheritance mechanism exists and if the super-class (generic) module does not use
communication primitives that embody destination names, then many different sub-classes
of modules may re-use the super-class definition. Expanding upon this notion, different re-

use capabilities can be observed as shown in figure 2-7.

The figure shows three different cases of inheritance. In each case, module A is the super-
class module and B the sub-class. In the first case, the communication primitives do not
specify destination nor port names. Hence the definition of module A resembles a truly

generic module - whereby all the behavior is inherited as is.

The second case assumes the use of port names (but still no destination names) within the
send statements. This form is still a useful generic module within DSL. The environment
has the ability to adapt the sub-class to the additional demands imposed by the super-class.
In this case, new port definitions may be required, hence additional port connections can be

generated by DASE (this is described in detailed in the next section).

a LEpdest
B B B
send(_,_m) sendf, @ m) send(desr )
A A
| K
! | {1
! 1 ]

A A, A

send(_,_m) send{_portm) send(clie.ﬂ Jport.n

FIGURE 2-7, Modul¢ inheritance and re-use
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The final case is not amiable to generic module design. The communication primitives
refer to destination names, hence there is an added assumption that the sub-class must be
able to communicate with pre-defined modules. If however, the communication is
restricted to the beundaries of the super-class (within a higher order module), then there is

no problem in inheriting.
The mechanism for inheritance is defined through the isa statement as below:
inheritance_definition := isa( module_x , module_y ).

The statement is usec to establish that entity module_x is a sub-class of entity module_y.
module_x can also be defined to possess additional behavior local to its particular (unction.
The statement also permits multiple relationships to be defined in one statement. For
example isa(processor(X), cpu(risc)) identifies that all modules defined with the name
processor(X) (where X is a variable) inherit properties associated with a super-class
module called cpufrisc). Module inheritance is not limited to a single source - hence

multiple inheritance is allowed as in the following:

isa(processor(xyz), cpu(risc)).

isaf{ processor(xyz), memory(32M)).

In this example, processor(X) is defined as before, however a module processor(xyz) is also

indicated as inheriting some additional properties from another module (memory).

The isa statement can also be used to identify relationships between messages. For

example the following two lines define relationships between three different messages:

isa(update(ADDRESS,VALUE), msg_regsi(SITE, component{ADDRESS), update{VALUE))).
isa{msg_reqst(SITE, component(ADDRESS), update(VALUE)), memory_write(SITE+ADDRESS, VALUE)),
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The first identifies a relationship between update and msg_regst. This may represent a
correspondence between a high and low level protocol where an additional parameter
(SITE) is provided by the respective module to interpret the message. In this case, the
higher level update message will be executed as a msg_regst message at the destination
module. There is a further relationship also identified by the second line above; message
msg_regst can also be broken down to another message memory_write - which may be a
message executable by a memory model. In this manner a high level representation of a

message can be sifted through different levels of abstraction.

The inheritance scheme for messages is adequate for messages that can be mapped to one
another. However, if a message requires more complex interactions at a lower level such as
multiple messages, acknowledgments and error checking conventions, it is best to use a

module that specifically models the desired protocol.

2.2.5 Module behavior as Predicate/Transition nets

The semantics of most elements of a DSL module can be described in terms of a Predicate/
Transition Net (PrTN) [Genrich 81]. The implication of this is that some properties of
modules can be formally examined using analysis methods available to PrTNs. The
analysis possibilities are described in chapter 3 which can provide for some verification of
modules before placing them in a module library. This sub-section will present the PrTN

model of a module and its limitations.

Petri-nets have been used in many areas to analyze hardware and software systems. The
formalism provides for a relatively powerful way for defining asynchronous concurrent
communication. One of the main complaints voiced about Petri-nets has been the problem
of state-space explosion and complexity of the generated graphs. These concerns are min-
imized within DASE with the use of predicate nets to reduce net sizes and also by observ-

ing some restrictions to the general Petri Net formalism.,

1. The first restriction is that modules exhibit a safeness property akin to that of Petri Nets.
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This is observed from the fact that a module processes one behavior at a time - which is

equivalent to a known bounded maximum number of tokens in a Petri-net or a strict PrTN,

2. The possible type of messages a module can accept or generate is finite and can be
parsed. This implies that a finite number of input and output places for cach module can be

constructed. If DSL messages are represented as Pr'TN tokens, this also permits the defini-

tion of finite token sets.

Since the original introduction of Petri-Nets [Petri 62] scveral extensions have been
proposed to increase their modelling power or expressiveness [Jensen 81][Jenscn 89]
[Murata 89] [Reisig 82]. Predicate/Transition Nets is one of the major cxtensions found in
the literature. The extension permits the specification of different types that can be used to
represent the different behaviors within a module definition, The following is an overview
of the definition of a PrTN as defined in [Genrich §1], a complete formal definition of the

work can be found in the reference.

An ordinary Petri Net graph (PNG) is defined as a triple PNG = (P, T; F) wherc P is a sct of
places, T is a set of transitions, F is the flow relation (elements of F arc arcs between places

and transitions) such that F e (PxT) U (TxP), PNT = 0,and PUT=%0.

Markers called tokens, move from place to place through the “firing” of a transition. The
firing rule for a transition t in a Petri Net is satisfied when all input places contain at least
one token. The execution of the firing rule results in the removal of a token from cach input

place connected to t, and the placing of a token in each output place connected to t.

A PrTN is composed of an underlying PNG, a set of annotations A (applied to the PNG)
and a representative marking M. Hence, PrTN = (PNG,A, M) .

A is defined to represent four types of annotation, A=(Ay, ApApAg):

i. Ay is termed the support structure of the PrTN. It is composed of a finite set of constants
U, set of variables V (ranging over U), functions fi in U and relations Ri in U. It annotatcs

the whole net rather than specific elements, describing static aspects of the net.
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ii. A p is a bijection between the set of places P and a set of variable predicates.

iti. Ay is a mapping of the set of transitions 7, into the set of formulae (called transition
sclectors) employing only static predicates and operators.

iv. Ap is an arc labelling function which associates formal sums of tuples of variables and
constants to the arcs. Hence the mapping is defined as: A o WU W...UW' where
W= UwuVand Wk denotes the set of all k-tuples in W.

The marking M represents the displacement of tokens within the net. PrTN tokens
constitute separate individuals, whereas in ordinary Petri Nets they are indistinguishable
from one another - with their count at places being of interest. Hence token sets are formed
within PrTNs, attached to places and transitions of the net. If xe P U T and the arity of x
is k, then a token set of x can be defined as C (x) = Uk A given token c=(u,...,1) in a
place p € P denotes the fact that a predicate (of arity k) corresponding to the place is true
for a given instantiation of the tuple of arguments contained in the token. Similarly, for a
ioken ¢ in a transition t € T, the implication is that the variables within the annotations
specified for the transition and its incident arcs are substituted by the corresponding

constants appearing in the token.

A DSL module can be represented by a PrTN as shown in the general form in figure 2-3.
The diagram gives the basic structure of the net that can be generated for a given module.
At the top, an input place (shaded in black) is defined where tokens annotated with possible
message names arrive. The assumption is that only one token may reside in the input place
at a particular time. To guarantee that no new message is processed by the net, a busy place
is explicitly indicated where a token can be grabbed by active message tokens and released

upon completion of their behavior.

The initial arcs emanating from the input place are annotated with different possible
message predicates, hence each token type is directed to a different sub-net corresponding
to the particular DSL behavior. Any conditions demanded by the DSL model for a given
behavior are annotated upon the first set of transitions. In the event that a condition is

required from a resource, a bi-directional annotated arc is created to a place maintaining a
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token for the given resource (within the sct of resources block). The output arcs of these
transitions connect to a data manipulation sub-net which models the data manipulation
statements of DSL. Eventually arcs connect from this sub-nct to a set of transitions that
make assignments to tokens as necessary, modelling a DSL communication statement, (o

generate a token to an output place.

The individual DSL behavior statements can be translated into Predicate-Transition net
elements as depicted in figure 2-9. As can be scen, the basic DSL clements can be repre-
sented by a sub-net. Each corresponding sub-net can connect with one another through
intermediate places between them. The connections to the intermediate places arc made by
input and output arcs within each sub-net. These arcs arc shown as partly connected to
each transition in the sub-nets of figure 2-9. However there are two limitations for transla-
tion to be observed. The first is that delay statements are ignored, hence timing is not
explicitly captured in the net representation. Another limitation is that the name of the

resource must be given in the use of the create statement. In DSL it is possible to define

behavior such as:

Predicate annotation
% (messages) ' o b 0
v e e Rl S R usy place

2] Predicate (conditions)

22 e 2% o
i = & ; 3
A & % 5 %Y i Setof

resources

wm&mxs:mw&&mmmmmﬁw{

RS

N T A S T R A TR AR

S

QOutput Place(s)
e
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DSL Statement:
Condition statements

check_res(Resource(ry,...,rz), (V1,...¥y))
i.c. check_res(count(1), Value).

V, Q Vo,
where {2 is a valid Prolog operator.
i.e. N < New.

Datn Manipulation statements;

sel_res(Resource(ry,....r2), (v4,-.Wy})
i.e. set_res(count(1), 0).

create{Resource(ry,....1z), (V4,..¥y))
i.e. create(buffer(8), (1,0,0,1)).

remove(Resource(r,...,rz), {v1,...Vy))
i.e. remove(pointer(1), VAL).

Communication statement:

send(Dest(d;....d,), Port(o,,....om},
Message(ay,...az)).

note;
{execute(M) is simply an arc back to the input
place)

<W,(r,.....rz},(vl.....vyji

PrTN Representation:

{rqrndyy (Vi vyl

by{}

f8SRecource

<Fylgh (V10 Vy)>

<W>

b [V, 2V

<(Munnbp)y (Xq Xk
<W> l

diy | H=V, for allx

<Ws | [8SRecouce

<(r1,...,rz). (H‘,....Hy):‘

<Wi

W

< >l \/ eSgesource
<AFyifzh Fpaeayl>

AP prealz)y (Fqpe V)

<W>|

biffy

<Ws.
réSpgsaurce

0 = Dest(d,...d,) M =Message(a,,...a;)

<(D, M)>

Port{oy,....on)
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b(Resource, Value):- create{Resonrce, Value).

Since this resource name depends upon an cxternal type (supplied by another module), a
corresponding place cannot be identified within the PrTN. The same problem also is

attributed with the probe statement, since it requires a value from an external module.

Observing the limitations, an algorithm for translation from DSL behavior to a PrTN is
given in figure 2-10. A small example is presented below to demonstrate the algorithm
and clarify the use of the annotations. Larger nets arc presented in the case studics

described in chapter 4.

Assume a module timer({Value) writien in DSL is to be translated to a PrTN, where the

module is described as:

module(timer{ Value),

[(clck:- check_res(count, M),
Value > M,
New is M+1,
set_res{count, New)),

(clck:- send(Dest, out, alarm)),
execute(reset)),

(reset:- set_res{count, 0))

D.

The DSL behavior describes a timer that counts the number of clek messages it receives
and transmits an alarm message (through its out port) when the count has reached a limit
Value. At this point the count is reset to 0 and the process repeats. An external reset

message will also reset the count.

The behavior can be represented as a PrTN. The translation algorithm generates the PrITN
net shown in figure 2-11(a). The figure omits the busy place which is part of a standard
module’s behavior. The input place accepts the incoming mcssages and onc of three

transitions (reset(1), clck(1), c/k(2)) are fired depending upon the message name. A place is
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Define a set T = {} and P={}.
For a given module name with arguments e,,..,e,
create an input place labeled in,z,g and add it to P.

For each behavior bi(ay....a;) do:
{ create atransition node labeled as bj(l) where O<l<n such that b, (i) £ T, and add itto T.
current_transition = by(i).
current_label = (a4,...ay).
create an arc with annotation <bj(a4,...ay)> from injame 10 bi(l),
For each DSL statement of the clause defined by behavior do:
{
If a condition statement is encountered then:
if the condition = check_res{Resource(ry.,....rz), (vy....vy)) then:
{ if a place resggesunce 40€S NOt exist create it.
creatz and annotate arcs as in figure 2-9,
else
{ annotate the transition by(l) with the condition}
if a data manipulation statement is encountered then:
{create transition ti, place pi and arc(s) and annotate as required by figure 2-9,
connect arc between current_transition to newly created place pi.
annotate arc with current_label.
current_transition =ti.
current_label = {current_label appended with annotation of input arc to ti.}
}
if a communication statement:
{create transition si and annotale as required by figure 2-9.
create arc to appropriate output place

}

required (o hold a token relating a value to a resource (labeled res,,,) “count”. The two
possible conditions for the behaviors for clk are represented by the clk(1) and clk(2)
transitions. In the event of a clk token in the input place, clk(1) will first be tested and then,
if needed, clk(2). The external message generated by the net is a result of following the

clk(2) path, where an alarm message is sent to “Dest”.

The graph can be depicted within the PROD language (developed at the Helsinki
University of Technology [Gronberg 93]) or any other PrTN tool for further analysis.
Figure 2-11(b) depicts the corresponding PROD representation of the PrTN graph. The

syntax of the net description is straightforward where the corresponding places and
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transitions are defined. Since module behavior is described as a bounded net, high limits
are also defined at each place in the PROD description, ensuring that the boundedness

property holds,

2.3 Design development support

As with any modelling language, DSL embodics a philosophy of its own to the design of
systems. The language is suited to the top-down design approach whercby design detail is
added and further refined by inherited modules. An initial design commences with a main
model consisting of a higher order module. Sub-components are then systematically
defined or utilized to accomplish a suitable level of design detail. This approach requires a
reasonable model library to support design exploration and a structured approach to the

design (which enforces a modelling discipline upon the designer) [Booch 911].

A modelling activity can be viewed as a composition of two models: a model of the
environment and of the system under consideration. The relation of the two within DSL is

given in figure 2-12. The model of the environment represents a conglomerate ol the

#lenun resct, clk

#define value 3

#place input lo(<.0,>) mk{<.clk.>+<rescl.>)
Hplace res_count lo{<.0.>) hif<.1.>) mk(<.1.>)
#iplace p_1 hi(<.1.>)

fiplace p_2 lo(<.0.2) hi{<.1.>)

#irans reset_|

in { inpul: <.resed.>; res_count: <m.>; |

out [ res_count; <.0.>; |

Hender

#trans clk_1
in [ input; <l res_count: <m.x; }
gate m<value;
oul | p_1: <clk.>; res_count: <> |

fendtr

Herans ¢lk_2
in [ input; <cli>, res_count: <.m.>; }
gale m==value;

[€Scoup y <clck> <clck> tendts ot [ p_2: <.clk.>; res_count: <m.>; )
. 4 #lronst_§
M=M+l l I_ in [ p.l: <clk>: rea_counk: < )

out [ res_count: <m+1.>; inpul: <cile>:

Hendur

<Dest, alarm> frans1_2
in [ p_2 <clk>; )
out [ input: <.reset.>; |
Value: defined constant. Rendts
(a) PrTN graph for timer (b) PROD net representation
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external traffic and test cases to be applied to the model under consideration, Generally the
applied load does not completely encapsulate all possible events that may occur upon the
sysicm, however it should at least cover the known scenarios of interest. State driven
models can easily be described in DSL or the model of the environment can generate test
cases through another language (such as Prolog or C). Hence therc may be a mixture of
DSL and other languages used. It should be noted that the model of the environment is used
solely for experimentation and model support, hence it is never intended to be synthesized

as part of the system.

Design development support, including simulation and synthesis constitutes the remainder
of possible DSL commands in a DSL program. These commands can be grouped as:
dsl_experiment_constructs ::= module_type_definition

| library_definition

| constraint_definition

The different commands are defined below.

2.3.1 Co-design constructs

In designing models for the system under consideration DSL makes no distinction between
software and hardware modules, however the language has provisions to allow the
designer to identify these modules. This is of significance for synthesis since software

modules will not be synthesized to the target hardware language: VHDL. A module can be

Model of system
DSL Model ~{ DSL Model of System
of Environment Under Consideration
stimuli
|
o {modules,
iﬁ%ﬂmm’:g;;gf ' . h';;het; frder modules}
reconding etc.} response
EIGURE 2-12. Modelling of a System



identified to represent a hardware or softwarc entity simply within the predicate

module_type:

module_type_definition ::= module_type( dsl_name , synth_type ).
synth_type ;= software

| hardware

| system

| protocol
dsi_name is the name of a module. The system identifier implies that the module is a
supporting module (such as a load generator) and is not synthesized. The prorocol
argument indicates that the module is used to implement a protocol between other modules

and can be synthesized into a VHDL procedure or function.

If the module_type predicate is not defined by the user, the respective module is assumed

(by default) to be a system type and is not considered for synthesis.

The representation mechanism provided by DSL facilitates the description of generic
modules. These modules are defined entirely in terms of their potential behavior with
respect to the environment and are free to bind to software or hardware constructs. Since

there is no default notion of hardware and software, co-design modelling can be facilitated
by DSL.

Co-design concepts within DSL are illustrated in figure 2-13. Modules can represent
behavior and structure (HO-modules) so that many different abstraction levels of hard-
ware can be described. Software behavior can similarly be captured by the behavior of a
module. Since each module may execute one particular behavior at a time, it is straightfor-
ward to describe serial program execution in terms of delays and program control. This is
depicted within figure 2-13(a) by the shaded generic module S (for software). The cllipscs
graphically represent a particular behavior, while the arrows indicate the program flow
control. The names within “< >" indicate a name of a behavior defined within the module.

In this simple example, module S will accept a message with parameter X and either

45



increment or decrement the value, depending on the condition X<Y (where Y is assumed

to represent a local variable).

Concurrent software/hardware can also be described with a set of modules, confined
within a higher-order module. An example of this is given in figure 2-13(b). Higher level
program control is described by the module interconnects, while local module control

flow is described by the behavior of each module.

In this c*~mple, a module PROC(X} spawns three identical messages indicated by the fork
beiravior. This behavior would typically be described in DSL in the form:

fork(X):- send({proc(1), proc(2), proc(3)],_, X).

The three concurrent processors (hardware or software) inherit a part of their behavior
from the generic module S. Consequently each processor will process the message X con-
currently. It should be noted that the processors PROC(1-3) can represent both hardware
processors or software processes. Inheritance is the typical way in which a hardware mod-

ule may absorb the behavior of a software module.

If a library is maintained with generic software modules representing specific functions

such as branching, looping and sorting, then these modules can be inherited by other mod-

x>

1
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ules as required. Parameterized generic modules allows for the dynamic definition of mod-
ule resources and delays upon invocation. This facilitates the description of re-usable
software modules such as “sorter” which may accept messages such as “quick-
sort'SIZE)” and “binary-sort(SIZE)”. The parameter SIZE may be used by the generic

sorter module to determine the delay of the particular sort algorithm,
2.3.2 Model refinement

An initial DSL model can undergo several refinements by the environment during design
exploration. Figure 2-14 depicts the interactions between environment components and the
DSL model. The initial model is at a very close level of abstraction to the design
requirements, hence if the requirements are not specific, the DSL model will lcave room
for significant refinement. In such circumstances, the user may intervenc to make design
decisions to help narrow the design space. Refinement occurs during the course of

sirnulation as a consequence of interactions between the environment and the user.

The DASE environment provides the support (such as constraint checks and model library)
for refinement. For example, whenever an ambiguous interconnection is detected between
modules (no path exists between communicating modules), the environment will initiate a
connection, or if a constraint is violated the environment can access its model basc for
replacement modules. This is all described in the next chapter, however DSL provides

some basic library commands to facilitate these activities with the library support system.

The library support commands are defined as:
library_definition ::= use_dsl_library([ dsl_name* ]).
| configure_library_rules
| start_cond_rules

configure_library_rule ::= configure_library( ds/_name ):- {Prolog rules and DSL
statements }

start_cond_rules ::= start_cond:- { Prolog rules and DSL statements}
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The use_dsl_library command references library module names (dsl_name) to be used
within a given DSL program. A DSL program is frec form, bui adhering to basic Prolog
syntactical guidelines. The next two commands are used to automaie the set-up of DSL
models. They are both headers for Prolog rules, hence any Prolog rule as well as DSL
statements can be used to describe the actions to be taken by the respective commands. The
configure_library_rules are rules associated to specific (library) modules. They describe
the initial values the module may need upon initiation. These include creation of resources,
providing initial values for free variables, and definition of deflault paths. The
start_cond_rules refer to the starting conditions required for the module. This command is
a mix of Prolog commands (generated by the environment) and DSL send statements. The
use of the command is to send initial messages to modules so as to place them in a known

state. The use of these commands will be described in detail in chapter 3.

An additional predicate is useful both during synthesis and simulation. This is the
constraint statement which identifies a constraint to be imposed upon a module’s resource
or behavior. The form is:

constraint_definition::= constraint( module_name , entity , const_type, values ).
module_name ::= dsi_name

entity = dsl_name

const_type .= dsl_name

where, module_name is the name of the module which the constraint is applied to, entity
defines what is being constrained (resource name or behavior name), type is the name of
the type of constraint, and values (defined in section 2.2.1) is a constraint value applicd to
the type.

type is a user defined computation of a constraint (some pre-defined types are given within
appendix A). For example, constraint(clock, Clock_rate, upper_timit, 100} describes that
the maximum clock rate is 100 (nsecs) for the indicated module. The type upper_limit
would correspond to Prolog code which will compute the current value of Clock_rate and

ensure that it is below the upper limit.
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2.4 DSL modelling exampie

This section introduces the design of a significantly complex telecommunication system to
illustrate the hardware and software modelling capabilities provided by DSL, moving from
specifications to architectural modelling. The example is intended to provide insight into
the modelling approach taken to describe a desired system. The example will be revisited

in the next chapter to emphasize the DASE environment’s capabilities.

The example is the design of a traditional digital voice switch providing service for “Plain
Old Telephone Service” (POTS). For this example it is useful to envision the design as that
of a service provider - the switch will provide a specific service for the telephone. As part

of the system requirements, the services that must be provided are tabulated below:

No. Description of service DSL behaviour name *
1. - Detect an incoming call (offhook) from Source Agent phone_off_hook(A)
- Provide dialtone dialtone
2. - Collect digits from Source Agent dial_dest(A,B)
3. | - Translate digits call_dialed(A,B)
4, - Select Terminating Agent status_response(B,STATE)
5. - Establish connection between the two Agents called_state(A,B)
6. - Send Ring tone to Terminating Agent ringtone
- Send Ring tone to Originating Agent ringtone
- Send busy tone to Originating Agent busytone
- Detect Answer (offhook ) responded_cali(B)
- Detect a disconnect (onhook) phone_on_hook(B)

Table 2-1: Services Provided to Telephone
* DSL Variables: A= Source Agent, B= Terminating Agent, STATE= {onhock, offhook, busy].
These services will be addressed during the construction of the DSL modules within the
remainder of the section. A digital time-space switch (DTSS) based upon conventional

switch design will be introduced which can provide fast switching and flexible telephone

service support.
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A particular design of a DTSS can be viewed as composed of three major high level
elements: a switch element, an interface element and a service provisioning clement (all
shown in figure 2-15). These are the initial clements the designer would specily as part of a
top-down design approach. At this point an overview of the functions of the various

elements are needed to proceed to the next level of design detail.

The switching element is the most real-time dependent component of the design. Its
function is to take a time slotted incoming digital stream of voice samples (along incoming
serial lines) and switch them to potentially different output lines (space switching) at

different time slots (time switching).

The operation of the DTSS is as follows: An interface unit digitally samples (m) pulse code
modulated (PCM) telephone calls and time multiplexes them towards the switching
element at an allocated time slot (s). The switching clement then transfers the time slotted
data to different outgoing lines and slots. Generally the number of time slots (s) available
between the interface units and switching clement is such that m 2 s. This is because all
telephones connected to an interface module are not active at once and do not require all s
time slots. However if more than s calls occur at the same time, then blocking of some calls
will occur (a fast busy signal is sent by the network 1o the telephone). The choice of the
number of interface units (n) and time slots to use are design issues based upon assumed

traffic load criteria of the network.

Digital_Switch(9)
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m lines nnnlltr { 3;0 / !’mﬁr(rssze
N cEneric .
mlines| | Interfacel SWITCH : interface m lines
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The service providing (Telephone Services) element can be located w “thin the swiiching
element. The function of this clement is to provide the call setup support needed to
establish a two-way tclephone service. This clement is assumed to be software. This is
desired since different services (such as call waiting) can be added as needed via software

rather than building custom hardware.

The serial time-multiplexed lines are given various specifications and conventions within
the telecommunication domain. For example, the number of time slots available per line
can vary depending upon the transmission rate. The standard for digital transmission in
North America is DS1. DS1 carries PCM signals in a 193 bit frame composed of 24 (8 bit)
channels (for voice samples) and a single framing bit. Transmitted at a rate of 1.54Mbits/
sec, this ensures that a frame is transmitted every 125 microseconds. For telephone grade
qualiiy, a 4khz voice needs to be sampled at 8000 times per second - which implies a
sample (byte) every 125 microseconds. Hence a DS1 transmission facility can carry up to

24 separate voice samples across a single line.

The DS1 transmission standard is used between the interface units and the switch element,
however the design will be flexible so as to allow different number of channels, always

guaranteeing the minimum requirement of 125 microseconds per frame.

At the system level of design shown in the figure, some design considerations are issues
such as traffic, the number of lines required for the switch or verification that a call will be
set-up. For the designer to explore different trade-offs in a rapid and intuitive manner key
re-usable or generic components must be available. For example the number of input lines
is an important factor in the switch size. This design criteria will impact the number of
interfacc units to use and the size of the switch element. Hence such a design parameter
must be accessible to the designer so that the system may configure the internal of the
switch accordingly. To satisfy high level design concemns, a digital time-space (dts) switch

higher-order module can be defined as:
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ho_module(dts_switch(NUMBER, INPUTS, CARDS, CHANNELS),
fswitch_element(NUMBER), interface_card(Y)).

The parameters for dts_switch are rclevant to the system designer. These are,

i. NUMBER: is an identifier for the switch. This is used to identify and configure different
switches within a network of interconnected ones.

ii. INPUTS: defines the number of input (and conscquently output) lincs that a switch should
have.

iii. CARDS: defines the number of interface units the designer may require.

iv. CHANNELS: defines the number of channels the serial lines should comply with (the
default is 24 which is DS1).

Given these parameters for a DTSS, the environment should be able to generale the
underlying model based upon the high level architecture shown in the figure and existing
models in the model library. We will assume that no applicable library models are defined
(the role of library support will be described further in chapter 3). As a result, the various
details of the lower level elements must be described by the designer. The description of
the structural details is presented below for the two main hardware components of the
switch with some behavioral description. The description of the softwarc clement
(telephone services) is given as an example of bchavioral specification in DSL. The

complete design description in DSL can be found in the appendices.

2.4.1 The Generic Switch element

The design presented in this section is one that is applicable o many large DTSS designs.
The example concentrates upon the call-setup operations, so other operations that are
important in the switch design (such as customer billing, error processing, maintenance
and fault-tolerance) are not included in the example. However these are casily added as
inkerited (software) modules in a similar manner as that of the telephone services described

later in the section.
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The real-time design concerns for this element can be numerous and complex depending
upon the size of the switch. The objective of the generic switch element is to capture the
serial streams of data from input ports, identify the incoming time-slot and port, determine
the destination port and time-slot and ensure the right incoming data gets transferred to the
correct output stream. Since the number of input and output ports are variable, it is useful
to scparate their functionality into separate modules. The design will also require a control
processor(s) to manage all the routing and call set-up functions. To avoid congestion on the

control processor bus, a separate bus is desirable to move data from the input to the output.

Addressing these design issues, a typical generic switch element model is given in figure 2-
16. The description is termed generic because the design is being constructed such that the

components can be re-used within a model library framework.
The modules are described below:
line_in: This module is the interface for the incoming message stream. Incoming serial

channels are captured as byte long words (or voice samples) and sent to the buffer

module for temporary storage.

weneric_switch_etement ibrary medule
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buffer: The buffer is a temporary storage facility for all the linc-in modules, which implics
that the buffer size is dependent upon the number of /ine-in modulcs.

frame_control: The module provides the timing control for the speech_bus to transfer data
from the input buffers to the output. Control is also provided for use by the
control_processor.

speech_bus: This is a model of the bus between the input buffers and the output
(time_switch).

time_switch: This module, under control_processor control, latches onto data {rom the
speech_bus and transfers it to the appropriate linc-out module.

line_out: This module depicts the output interface. The module contains a bufter for cach
channel it supports (i.e. for D81 there arc 24 buffers). New data from the
time_switch overwrites relevant buffers and information from cach buffer is
transmitted in sequence under control of the generic_clock module.

generic_clock: This module provides the timing requircments for DS1 type transmission
equipment. The behaviour of the module will be further claborated in this section.

control_processor and control_memory: The routing and call-sctup control is maintaincd
by these modules. The memory contains the routing tables for call conncetions as

well as the control software.

As a sample DSL behavior, the details of the generic_clock library module are presented

below.

1.0 module(generic_clock(INDEX, NO_OF_CHANNEL), {

1.1 (clock_count(NO_OF_CHANNEL):- send{clock_counti(0}},
1.2 send(_,clock_pori,frame_cycle)},

1.3 (clock_count{NEW):- NEW<NO_OF_CHANNEL,

14 Clock_rate 1s (125/NO_OF_CHANNEL),

1.5 delay{Clock_rate},

1.6 COUNT is NEW+1,

1.7 send(_,clock_port.clockiNEW}),

1.8 send{clock_count(COUNT) 1).
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1.g start_cond:- write('Setting up initlal messages 7,nl,

1.10 isa{X, generic_clock(_, CHANNELS)),

1,11 retract{current_module_processed (3X234),
1.12 asserta(current_module_processed(X}),
1.13 send(clock_count(CHANNELSJ).

1.14  conflgure library{generic_clock).

This segment of code is typical of library modules. The first segment (lines 1.0 to 1.8) is the
behavioral description of the module. The module processes only one message:
clock_count(NEW), where NEW is an undefined parameter or NO_OF_CHANNEL (a
parameter passed to the module). The parameters of the module are given in line 1.0.
INDEX is an identification number given to the clock module and NO_OF_CHANNEL is
the number of channels the clock is to support. The latter permits the module to produce

tliming control for a wide variety of transmission components.

Lines 1.3 to 1.8 demonstrate the typical actions that occur upon receipt of a
clock_count(NEW) message (where NEW=<NO_OF_CHANNEL). Line 1.4 establishes a
Clock_rate for each channel and in line 1.4 the clock module is delayed for this period of
time. After the delay, linecs 1.6 and 1.7 increment the value of NEW and send a
clock(NEW) message to any module connected to its clock_port. In line 1.8 an internal
clock_count message is transmitted with the increment value of NEW to start the cycle

over again,

Lines 1.1 and 1.2 guarantee that the module provides a modulo-NO_OF_CHANNEL
based timing. If the clock_count parameter is at the limit (NO_OF_CHANNEL) an internal
message clock_count(0) resets the parameter. A frame_cycle message is also generated to
modules connected to the clock’s clock_port. This message advises the modules of the start

of a new frame (or a sync bit in DS1).

The second segment of code (lines 1.9 to 1.13) define starting conditions for this module.

The required start message in this case is a clock_count message with an integer value,
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used to start the clock module. This value can be anything in the range O to
NO_OF_CHANNELS. If a value is not provided by the user as in line 1.13, the
environment obtains the value from the instantiation of the module (lines 1.10 to 1.12) if
possible - otherwise an error message is given to the user. In this case the instantiation of
the generic module would provide the NO_OF_CHANNELS value which is a valid
parameter for the clock_count message. Lines 1.10 to 1.12 arc simulator directed

operations added by the system.

Line 1.14 completes the last segment of code in the library module. These are configuration
rules. This module does not have any significant configuration requircments, hence there is

nothing added by the environment.

2.4.2 The Interface Unit(s):

The design demands are less severe for the Interface Units. These unils must provide the
basic scrvices that an individual telephone will require - services such as dialtone, ring-
back tone and capture the dialed digits. These services can be provided in many ways. In
this example they will be provided by a programmable controller module. The module’s
“program” and hence its behaviour is defined by another library module: sub_server (for
subscriber server). Hence the direct interactions with the telephone can be altered by

changes to the latter module.

The Interface Units also require a line_interface module which will provide the necessary
transmission capabilities between the switch_element. The behaviour of this module is
identical to the combined line_in and line_out modules within the
generic_switch_element. Also a timer module is defined (an instantiation of the
generic_clock module) to provide the appropriate timing control for the transmission
components, The DSL representation of the Interface Unil is provided in figure 2-17. The
details of the sub_server module (controller functionality) will not be elaborated here,
however some aspects will be shown during the description of the telephone call-setup

services in the following section.
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2.4.3 Software constructs - Telephone Services

The example assumes that the telephone services provided by the switch are controlled
through the control_processor modules in the generic_switch_element. This is a design
choice. Alternatively, most of the services could be off-loaded to the interface_units, or to
another processor. These alternative scenarios can ecasily be incorporated within this

example by inheritance of different parts of telephone services through other modules.

Telephone services require communication between elements of the switch and possible
other switches. For example a call originating on one switch could be trying to ring a party
connecled to another switch. To transmit these type of signalling information, the switches
will reserve channel O (the first channel in a frame) as the default communication channel.
Hence all telephone services messages passed from the generic_switch_element to the
interface_units will be through this channel. Alternatively a separalte iine can be allocated

specifically for signalling information - which is another design choice.

The telephone service routines are defined within a pots_server (for Plain Old Telephone
Secrvice) module. This module will eventually be synthesized to software, hence will not
impact the DSL model in a structural manner - its behaviour being inherited by the

control_processor within the switch,

ho_module: Interface_unit

line 1 to/from
controller ine_interface switch_element

—
to telephonesI m

ot -

timer
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The basic operation of the pots_server is as follows:

When a phone call is placed, a call_dialed message is sent from the respective
interface_unit to the switch_element - indicating the caller and destination phone numbers
(the phone number in this example is identified as telno). The module creates three
resources to accommodate the call, The first is the connect resource which identifics the
two parties and also the status of the connection. The status can be connect_request
(connection not yet established), ringing (the destination is ringing), and connccted
(connection is established). The other two resources are the agent and terminator which
contain local data for the caller and destination phone respectively. Once complete, a
message line_status is sent to the destination pihone’s interfacc_unit to determine if the

telephone is occupied. The DSL code is:

(call_dialed{telno(ID, SDNQ, STEL)}, telno(RSNO, RDNO, RTEL)):-
create(connectitelno({lD, SDNC, STEL), telno(RSNO, RDNC, RTEL)), connecl_request),
create(agent(STEL), SDNO},
create(terminator(RTEL), RDNO),
send(_,line_porl(RDNO), update_bulfer{RDNO, line_status(RTEL))

As a response to the last message, the respective interface_unit will eventually send a
status_response message indicating the state of the destination phone. The phone can be
onhook (not busy) or busy (talking to or dialing another line). In the former case, the
pots_server will allocate a free pair of channels for the two telephones (this information is
contained within a resource named connect_table) and also send ring-tones to the two. 1If
no free lines are available, a fast-busy tone will be sent to the calling party and the data

structures will be cleaned up. The DSL code is outlined below:

(status_response(B, STATE):-
check_res(connect(A, B), connect_reqtiest),
send(called_state[A, B, STATE))

b

(called_state(telno(SW,DS,4), telno(BSW,BDS,B), busy):-
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check_res(agent(A), Aport],
remove(connect(SW, telno(DS,A), telno(BSW, BDS,BJ), S8},
remove(lerminator{B), Bport),
send(_,line_porti{Aport), update_buffer{Aport, busy_tone{A)))

)

(called_state(lelno(XX,DS,A), lelnol(YY, BDS,B), onhook):-
check_res(agent(A), Aport),
check_res(termtnalor(B), Bport),
check_res(channel_table(Aport, ChA), unused),
set_res(channel_table(Apori, Chal, A),
check_res{channel_table(Bport, ChB}, unused),
sel_res(channel_table{Bport, ChB), B,
Index1 is ChA*20+Aport,
Index2 is ChB*20+Bport,
sel_res{connect(telno(XX,DS,A), telnofYY, BDS,B)), ringing),
send(_,mem_port{lD), mem_write(Index], Index2]),
send(_,mem_port(ID}, mem_write(Index2, Index1})),
send(_,line_port{Aport), update_buffer(Aport, channel_allocate(A, ChA))},
send(_,line_porl(Bport), update_bulffer(Bport,channel_allocate{B, ChB)}),
send(_,line_port(Bport), update_buffer(Bport,change_state(B, ringing))).
send(_,line_port(Aport), update_buffer(index1, ring_tone)),
send(_,line_port(Bport), update_buffer(Index2, ring tone))

),

(called_state(telno{XX,DS,A), telno(YY, BDS,B), onhook):-
write('No free lines available’),
remove({connectftelno(XX,DS,4), BB}, SS),
remove(terminator(B}, Bport),
send(_,line_porl(DS), update_buffer(DS, fast_busy(A)))

)

If the destination phone is picked up, a responded_call message is received by the
pots_server. The module will consequently ensure the proper data structures are updated.

This is shown below:

{responded_call{telno(X,DSB,B)):-
check_res(connect(A, telno(X,DSB,B)), ringing),
check_res{terminator{B), Bport),
set_res(connect(A,lelno(X,DSB,B)Y), connected),



send(_,line_port(Bport), update_buffer{Bport,.change_state(B, busy)))

The phone conversation will terminate when the originating party hangs up the telephone.
The phone_on_hook message is generated by the respective interface_unit when i
telephone has been detected to become on-hook. The pots_server determines if the

telephone is the originator or the destination and accordingly cleans and updates the

respective data structures as below:

(phone_on_hook(telno(X, DS,A)):-

check_res(connect(telno(X, DS,A),leino(Y, DSB,B)), connected),

remove(connect(telno(X, DS,4), telno{Y, DSB,B))),

remove(agent(4), Aport},

remove(terminator(B), Bport),

set_res{channel_table(Aport, ChA), unused),

set_res(channel_table(Bport, ChB), unused),

send(_ line_port(Bport), update_buffer(Bport,phone_off_hook{B}}.
(phone_on_hook(B}):-

check_res(connect(A,B), connected)),
{phone_on_hook(telno(SW,DS,A)):-

check_res{agent(A), Aport),

remove(agent(A}, Aport),

send(_ line_port(Apori), update_buffer(Aport, change_state(A, onhook))) ),
(phone_on_hook(telno{SW,Aport,A)):-

send(_,line_port{Aport}, update_buffer{Aport, change_state(A, onhook})) )

This completes the behavioral description of the telephone services. At this point, design
exploration and further model development can be undertaken by use of the modelling

environment (DASE) - which is the topic of the following chapter.
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Chapter 3 - Design and Synthesis Environment (DASE)

3.1 Introduction

The Design And Synthesis Environment (DASE) is the supporting framework for DSL to
provide the necessary facilities for design exploration and rapid prototyping at the
architectural level of design. The environment accepts a DSL model as input and provides
capabilities for model configuration, library support, module verification, design
exploration via simulation and module synthesis to a subset of VHDL. The environment

was motivated by a desire to support a top-down structured approach to design.

The major components of DASE are shown in figure 3-1. Specifications are entered
through a user interface and capiured by the environment through the use of the internal
representation; DSL. The language is interpreted through a DSL processor which manages
the library and DSL model configurations. The library support is a key component in
permitting model re-use and facilitating rapid prototyping. The DSL processor also
interacts with a DSL simulator and a predicate/transition net based analysis tool (PROD)
[Gronberg 93] to provide verification of module properties. The DSL simulator interacts
with the DSL processor during design exploration activities to refine the model as required.
The final component is the synthesizer which translates the (refined) hardware DSL models

into a behavioral VHDL representation.
This chapter will present the various components of DASE and describe their functionality.
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These include; The DSL processor and library support, analysis of modules, simulation

and synthesis.

The current implementation of DASE is invoked at the Prolog interpreter prompt with the
command: “> [dsl].”. The DSL processor and simulator ar¢ then automatically loaded

within the system displaying an introductory message.
3.2 DSL Processor

The DSL processor is a central component which manages the DSL models and is the
primary interface with the user. Its main functions are the management of library modules,
constraint checking (with the simulator) and module communication support (such as
determination of unspecified destination modules). The library support system of DASE
provides a high level means for the modelling and management of models for
telecommunication systems. The support entails the organized storage and retricval of
modules such that library modules are accessible to the environment as requircd. This
implies that the DSL processor be capable of accessing modules at different levels of
representation and utilize them as warranted. Design details which may be necessary, but
not of interest to a particular user can be processed by the DSL processor transparently -
freeing the designer to concentrate upon the pertinent details. For example, if the modeler

is modelling an application layer of a protocol, all lower layer messages used within the
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model can be transparently maintained and re-used through a library supporting the
protocol. Alternatively, different levels of abstraction can also be modelled within the same

model due to the ability of the environment to maintain a message hierarchy.

3.2.1 Library support

The top-down design approach of DSL is supported by an experimentation and model
management mechanism where re-usable “generic” model components are made avatlable
to support simulation of different design options. A versatile library support system is
managed by the DSL processor which enables creation, storage and retrieval of module
libraries in an organized manner. Libraries maintain all module information, as well as
added rules regarding any constraints to be imposed on the modules, any configuration
rulcs to be applied to the components of the library, and the interface specification of the
library module. The interface specification is created by the library system to define exactly

what ports are available for communication with the library module.

Library modules are invoked with the use_dsi_library{{NAMES]) DSL statement defined
in the previous chapter. Upon invocation, each library module is processed in an order
identified through a model hicrarchy tree. The tree is created by the DSL processor to
cstablish a relationship between modules. An example of a model hierarchy is shown in

figure 3-2. The top level module (module al) utilizes two other library modules (modules

Scgments of DSL code: T nding Model Hi hy:

in: ho_module(a, [...]).
use_dsl_library({b,c]).

in: ho_modute(, [...1)-
use_dsl_library([d1,d2,d3]

| modulebl] | modufeecl |

in: ho_module(d2. [..]). /
use_dsl_tibrary([f1]).

] (] [
in: ho_““’d:;i_(_c‘isll':l]ii;my(lcl D -




bl and c!). Hence a tree is created with module al identified as the root and modules bl
and cl as subsequent nodes. The procedure is then repeated for the subscquent nodes to

create the complete tree.

The library modules are processed breadth-first by the DSL processor. This ensures that
any specific requirements (such as interconnections and instantiations) are identified by the
immediate parent module. Hence library module conligurations arc affected by the
environment into which they are invoked. For example, referring to the hicrarchy example,
any instantiations of module bl are defined by module al - which can impact the way in
which b1 instantiates its subcomponents d1, d2 and d3. This is further demonstrated within

the library construction predicates explained below.

Library modules are created using the build_ds!_library(NAME) predicate interpreted by
the DSL processor which interactively constructs the necessary data structures for the
library module NAME. The NAME is a valid module name loaded within the environment
or available as a file name in a model directory. The basic structure of a library module is
depicted graphically in figure 3-3. The predicate procceds through three phases of

construction of a library module structure.

use_ds)_library(x):

module, ho_medule definitiogNAME)

.| {behavior definitious, or feference to
other library modules}

Automatically > Internal library strectuse info.
created and {i.c. interface, resources, library
used during relations }
synthesis.

configure_library(INAME) :- ...
created using {configuration rules for NAMLE,

i , def: alues,..
build._Library. S i.c. resource selep, default values,...

starl_cond:-...
[initial send messoges to execute )
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Phase 1.

Phase 2.

The first stage is to create the module and higher-order module definitions of the
library. The system searches for the specified module and if successful, it
recreates the behavior of the module (the predicate will fail in the case of an

undefined module).

The second stage is the construction of the library configuration rules and starting
conditions which are created interactively. The system provides a template which,
when completed by the user, specifies the nature and use of the module. The DSL
processor will examine the module behavior and identify (to the user) any
resources, and path names used by the module requiring special treatment during
configuration. The configuration rules are stored as Prolog rules with the predicate
head defined as:
configure_library(NAME).

Configuration rules allow for the creation of module resources, interconnection
definition (for higher-order modules), definition of constraints and instantiation of
other modules. During library invocation the rules are executed by the DSL
processor to create the required resources for the library module. The rules may be
parameterized, allowing for different possible types of path definitions. The user
may also define default values for parameters used by the library module which is
maintained as a defaults(Module(D1,..., Dn) predicate where the parameters D1
to Dn are default values the system is to use. Defaults are only used if the
argument value is not defined by the environment during model configuration.
Conflicting or missing interconnections during configuration are identified by the

BSL processor and reported back to the user.

The structure of a configuration rule is shown in figure 3-4. The regions outlined
by boid text are inserted by the DSL processor as required. Four lines (with italic
text) are shown that require user inpu.. These are definitions of resources (local
variables, data structurcs), paths (interconnections), other modules and user

defined sub-rules. The figure indicates only one line per definition, however there



configure_Hbrary{NAME):-
1sa{INSTANCE, NAME),
asacrta{resource(INSTANCE, RESOURCE, VALUE},
asserta(pathlINSTANCE, OTHER, [FORT, OTHER_PORTI)),
asserta{module(NAMEZ, 1),
other_rules{...),
fall.

configure_library(NAME):- write('Library module ‘),
write(NAME), write(' configuredinl’).

List of Variables:

NAME: name of the library module,

INSTANCE: an instance name for NAME extracted from the environmenl,

RESQURCE: name of resources for INSTANCE.

VALUE: initial value of RESOURCE,

QOTHER: name of module(s) to interconnect with INSTANCE,

PORT and OTHER_PORT: port names for INSTANCE and OTHER,

NAME?2: any other module instantiations that are dependent upon NAME.

other_rules(...): are further user deflned sub-rules that are defined. The [unctor and arity of
this predicate is not significant and Is used merely here as an example,

i 3-4. Sa urati 1 1ctil

can be multiple lines for each definition. It should also be noted that the

configuration rules are applied to all instances of NAME.

Start conditions are also identified in this phase of library construction. A rule
beginning with the start_cond predicate identifics any messages that need to be
sent to the module to place it in a valid statc of operation. This allows some
control over the initial starting siate of modules. All start_cond rules arc executed
in turn during library invocation, scheduling any initial messages for the

simulator.

Phase 3. The third stage is to capture the interface and resource information for the module.
This is achieved by the DSL processor by grouping the required module
resources, required ports and relations. In the latter case, a class relationship (if
applicable) is associated with the module library and is established with the isa
predicate as with modules. The class relationships for a model library arc
maintained within a file called “lib_def”. The file consists of isa predicates

identifying any relationships that may exist between library modules.

Figure 3-5 illustrates an example for building a library module (called x) that is of

the same class as an existing module (y). The user, shown on the left hand side of
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the figure, supplies the module’s name, configuration rules and identifies a
relationship to another module (y). The DSL processor will verify the existence of
the library module and verify that all resources and paths used within the

module’s (x) behavior have been properly defined.

The class relation allows library components to be identified and utilized by the

system during simulation, design exploration and synthesis.

Upon creation of a library module, DSL also verifies that constraints are not in conflict and
there is no inconsistency with the library interface and its associated modules. Library
configuration rules allow a library to configure itself depending upon different conditions
during invocation. These rules allow a generic library module to be reused in different

ways as the design requirements demand.

3.2.2 DTSS example revisited - library support

The DSL model for the DTSS that was introduced in chapter 2.4 can be structured as a re-
usable library model. Library structure is maintained upon invocation as a tree of modules
- where the root is the top-most level (level 0) module which has directly or indirectly
instantiated the others. Each parent library module configures its sibling within the
environment as required. This property is demonstrated in figure 3-6(a), which shows a
segment of DSL and user written Prolog code which are part of the dts_switch library

module’s configuration rules.



ho_module(dts_switch(NUMBER. INPUTS, CARDS,
CHANNELS), [switch_net{NUMBER), interface_card(Y])]).

usc_ds]_libraryl] megill_switch(0)
generic_switch_element.
interface_unit

1.

conflgure_library({dts_switch):-
isa(iINSTANCE, dts_swiich(N.I.C,CH])
ilist//C,
asserta(lsa(switch_net(N), generic_switch_clement(C.CH)).
asserta(lsafinterface_card(Y], interface_unit{ll, CH))).
asscrta(path(interface_cardfY), switch_net{N), [into_port(Y). interface_card(0)
trunk_in{Y}))), -
asscrta{path{switch_nct(N), Interface_card{Y). [trunk_oul(Y).
inti_port(¥il}).
assertafho_module{switch_net{N), [J)).
cxample_config(N, Il, C).

peneric_swilch_elemeni(2,20)

example_config(N, IN, 1):- ierfoce_card(1)
Index Is N*16,
assertalho_module(interface_card(Index), (1)),
tel_port_conflg(index. IN, 0).
example_config(N. IN. CARD):-
CARDI1 i{s CARD-1,
Index I3 N*16+CARD1,
assertalho_medule{tnterface_card{indexi, [,
tel_port_config{index, IN, CARD1), l

example_conflg(N, IN, CARD1).

tel_port_conflgiindex, 0, CARD1).
tel port_conlfig{index, IN, CARDI1):-
FeSOLTCes:
;;argﬂ%l‘ﬁ?fé-dls_swltchm.l.C.CH]). inpul_buffer(0), input_buffer(1)
INNis IN-1,
Index2 is IPRIME*CARD] + INN,
asserta(path(interface_card(Index), INSTANCE,
{t_pair{indexd), tel_linc{index2)))),
asserta(path(INSTANCE, interface_card{Index),
[tel_line(Index2), t_pair{Index2)),
tel_port_config(index, INN, CARD1}.

The dts_switch module (the parent module in this case) identifies the sibling library
modules that it requires using the use_dsl_library statement. The next statement
configure_library(dst_switch) defines the configuration rules for resources, ports and
module instantiation that are identified by the drs_switch module. In this case, the
generic_switch_element and interface_unit modules are instantiated using configuration
parameters (such as number input/output lines and channels) defined from the instance of
the dts_switch module. A sub-rule, example_config, determines the number of
interface_units to instantiate and also defines the port interconnections for cach with the

dts_switch.



The cffects of the library configuration rules are demonstrated in figure 3-6(b). The figure
shows an examplc of a megill_switch(() module which is an instance of the library module
dis_switch(0, 20, 2, 4). The parameters identify the megill_switch(0} to be configured as a
switch with a switch number 0, 20 telephone lines supported, 2 interface units desired and
4 channcls per multiplexed line. The parameters have been kept small so that their effects
can be captured in the figure. There is also a significant impact upon the resources within

the various modules. The modules that are affected are shaded.

The restriction of the design domain enables the use of library modules with different
configuration rules in various interconnection schemes. This is useful to enhance model

modularity and re-usability within the application domain.

3.2.3 Modelling support

A constraint statement was introduced in chapter 2 as part of the DSL support commands.
This command is also used by the DSL processor to identify any design condition
violations. Constraints are related to a module and are used to define limits upon
parameters of a given module, resources or messages. These can be defined to be system
wide constraints (affecting more than one module) or local constraints (restricted to
individual modules). For example, the maximum size of a memory module, can be
regarded as a local constraint. However, if multiple instances of the memory module is
used by a main DSL model to define a larger memory sub-system, then this can be viewed
as a system level constraint. System level constraints are defined within the main DSL
model, whereas local ones can be established within library modules. After invocation of
the library, DSL performs routine checks upon the constraints so that they are not violated

during simulation.

The DSL processor also resolves the communication decisions for messages sent through
undefined ports or destinations. A search algorithm is applied to deduce the final
destination module. The approach utilizes the backtracking in Prolog to attempt to find a
module that is both connected (through path statements) and is capable of understanding
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the message. Tne algorithm for the destination search is described as the following:

Let Sotsrce be the sender of a given message through an unknown port or destination.
Let Port be a valid output port available to sender.
0. Assign sender = Source.

1. choose Dest_port and Dest such that there exists a path(sender, Dest, [Port, Dest_port]).
2. If Dest is a mouitle then

If message € {Behavior}
where {Behavior} is the set of all behaviors within module Dest,
then final_destination=Dest;
Exit algorithm.
else backtrack and repeat step 1 with a new Dest.
3. If Dest is a higher-order module then

sender = Dest, Port = Dest_port, repeat step 1.

The algorithm determines a path moving away from the source module to potential
destination modules. This is accomplished in step 1. Step 2 is the stopping condition which
is the discovery of a module (final_destination) that contains the intended message within
its set of behaviors. On the other hand, if at this point the message is not within the
module’s behavior set, backtracking is utilized to search for alternative modules.

Consequently the search is a depth-first search of destinations.

Step 3 addresses the case when the destination is a higher-order module. The sender and
port is then assigned to that of the higher-order module name and port. It should be noted
that there are also provisions to ensure that the algorithm always moves away [rom the

source module (except when back-tracking) so that messages do not bounce back to the

source.

The algorithm returns an error condition if there is no possible destination with a
connection to the sender. The environment then will attempt to search for modules that are
not connected to the sender, but contain the message within their behavior set. If 2 module
is discovered, that can accept the message, then a psewdo path is defined by the

environment. If no module is found, the message is trapped and an error message is
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generated.

3.3 Petri-Net analysis

Section 2.3 introduced a relationship between module behavior and predicate/transition net
(PrTN) representation. This section will illustrate possible analysis options available to the
designer using the PrTN. The analysis of large models is a considerable effort requiring
experienced miodelers with a good understanding of the analysis methodology and the
application domain, The techniques presented here are applications of the basic Pr'TN
analysis methods to DSL behavior, but are intended to be an introduction to DSL analysis.
The innovative use of these techniques along with the art of modelling (such as partitioning
higher-order modules into sub-nets) will produce further analysis methods and benefits. A
tool called PROD (developed at the Helsinki University of Technology) has been used to
perform the PrTN analysis described in this section.

3.3.1 Module analysis

Analysis upon module representations can conceptually be performed at two levels: the
individual module level, and the higher-order module level (sub-nets of modules). There is
a difference in the two approaches. The first approach restricts the overall complexity of
the PrTN since nets representing individual modules are strict nets (one message is
processed at a time) and the state space is generally manageable. A module’s PrTN
representation can be analyzed using reachability or invariance techniques [Genrich 81].
This analysis can detect inconsistent behavior structures, unused DSL code and undefined
message ports. Module level analysis is supported within DASE with the use of the PROD

analysis tool. .

Some basic properties of modules can be verified at this level of analysis. 1 nese include,
verification of safeness, liveness, sequence of firings and reachability to a particular state.
To perform the traditional analysis of a net generated from module behavior, the desired
initial markings must be specified. The net will have some tokens placed trom the starting

conditions, however, there is a need to identify the incoming token stream (representing the
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possible messages). This involves playing the token game. The petri net can be initialized
in many different ways depending upon the analysis objective. Onc possible scenario is
illustrated in figure 3-7. The PrTN representation of a module is indicated by the shaded
rectangle. Around this representation, a supporting net can be attached consisting of a place
to hold all the messages that can be interpreted by the module, a place (busy) cnsuring that
only one message is processed at a time, and a place (message) identifying the message
being prccessed by the PrTN. The generation of the supporting net is trivial since only
three places and two transitions are required. The inpul place to hold the incoming
messages can be populated with tokens typed as possible message names (extracted from
the module behavior). Consequently a reachability tree can be generated with a tool such as

PROD and analysis of properties pursued.

As an example, the reachability tree for the PrTN of the timer introduced in chapter 2.2.5
(figure 2-11) is shown in figure 3-8(a). The initial marking assumes either a reset or ¢k type
token arriving to the input node (no other message type is acceptable). In the cvent that a
reset token arrives, th: resource value (within res_count) is initialized to 0. The clk token
causes the valrc (0 increment or a reset 1o occur. The latter is when the resource is equal to

the count limit defined by Value. The PROD language permits one to query the reachability

>

V<N

<N> N> —

<N>

- O

message

3
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<X> o
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graph.

A typical session within PROD is preseped in figure 3-8(b) and is shown here only as an
example of some possible analysis that can be pursued using the tool. The example
assumes 4 count limit of 3 for the timer (hence the behavior is that of a modulo-4 device).
The listing is segmented into four sections. The first shows the statistics for the reachability
graph, indicating the number of nodes and initial marking of the graph. In this case, the
initial marking consists of a ¢lk message in the input place. The second segment shows a
query command in PROD. This command displays the sequence of firings to reach a
terminal ncde in the reachability graph. The resource variable is indicated in bold, showing
the successful increment of the variable at each clk message. Eventually when the resource

value reaches the limit, a reset token is generated and placed into the input place. The

Oftqvov bspan(true) $0
<[ reset | clk | -], Value, -,- > PATH —_—
Node D, belongs to strongly connected componeat $87
input: <clk.>
res_count: <. 1>
< veaet, Value, -- > <clk, Valug, +- > Arrow {: transition ¢lk_1, precedence ¢lass 0
ms=1
Value<M, Node 1, belongs 10 strongly connected component $36
res_count: <l.>
<-0,-->  <-Valueclk,-> <=, Value,-,elk> p_l: <clk>
Arrow §: transition t_1, precedence class O
m=1
l Node 2, belengs to strongly conaected component 335
input: <.clk>
<-, Value+l, -, -> < reset, Value, -, - > res_count: <25
Amrow 0: transition ¢lk_1, precedence class G
{a) High level renchability tree m=2
Node 3, belongs to strongly coanected component $34
res_count: <2,
p_l: <clk> @
Arrow 0: transition1_1, precedence class 0
™ = 2
Comgiling... m
Generating reachability graph \ hi:d::,( bz{;nfs to strongly connected component $83
Compuling strongly connected companents.., "E c w'm, ’ 3>
g’:fgﬂft?n odos: 8 A;E“; 0: transition clk_2, precedence class 0
Number of (real) mrows: 7 -
Number of terming nodes: 1 P«:checs‘;ul;et!n‘g%s >to strongly connected component $52
Number of fact arrow source nodes: 0 p 2 ¢ cIk.:- ’
:ﬁmg 2; Lﬁﬁ:{sﬁfm been completely processed: § @ Iﬁﬁ:ﬁoﬁnsmfn tt—rzl prlcced;::;clinss 0 el
Number of strongly connected components: 8 P ;.res:tg:- o strongly co ed compane
Number of nontrivial terminal strongly connected components: 0 "}; c'oun“ <.3 >
Odlook . :
Node 0, belongs Lo strongly connected component $57 Ar;rciusﬂ traasition reset .1, precedence class 0
:_'gméo:[;lk:l N Node 7, belongs to strongly conaected compoxnent 350 J
s T res_count: < (.> — @
J
(b) PROD listing
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analysis has then reached a terminal node, which was the initial marking of the graph.,

Hence, the behavior of the timer, corresponds to what one would expect.

3.3.2 Higher-order analysis

Analysis of higher-order modules is not as straightforward. Such models can contain
unbounded places and very-large state spaces making analysis very difficult. DASE docs
not support explicit P'TN analysis at a higher-order moaule representation. Analysis at this

level is executed informally with simulation {explained in the next scction).

3.4 DSL simulator

The DSL simulator provides a means for experimentation and simulation of the DSL
models. The simulator interacts with the DSL processor and library, and manages the
scheduling and exchange of messages between modules, the update of a virtual simulation

clock as well as ensure no constraints are violated.

The simulator utilizes several data structures to schedule messages (shown in figure 3-9).
Messages are scheduled and maintained in message_quecues created by the environment for
each module. The queue is a list of tuples consisting of the message to be exceuted at the

module and its creation time (to be used for statistics and constraint checks).

module : message_queue schedule table: next_time

module | execution

[ (message, ctime), ...] time

module: module_state

ready or delayed

I current_time I

FIGURE 3-9. Simulator Data Structures
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The simulator also defines modules to be in a “ready” or “delayed” state which is

maintained in a variable module_state. In the ready state, the next message in the module's

queue can be processed, whereas the delayed state indicates that the module is delayed

until a specified time period. This time period is maintained in a schedule table named

next_time. The simulator schedules the messages based upon this time value.

The simulator proceeds through several steps to schedule a message:

i. When a scnd statement is executed as part of a module’s behavior, the simulator

it.

iii.

automatically checks the next_time table to determine if any messages are scheduled for
the destination module. If no messages are scheduled (a negative time entry in the
next_time table), the execution time for the modale is updated to the current_time. In
either case, the message and its creation time (current_time) is appended to the

message_queue for the destination module.

The simulator will then process all messages with execution time equal to the
current_time. The processing involves removing the message from the respective
message_queue and executing it through the DSL processor. If the message was in a
delayed state, then the delay statement within the behavior is bypassed allowing for the
continuation of execution of the module’s behavior and the module_state is set to ready.
If the module was in a ready state and a delay statement is encountered, then the
simulator places the module in a delayed state and updates the respective time in the

next_time entry.

During each behavior execution, any constraints associated with the module is checked.
If a constraint is violated, the simulator will identify the violation to the user. Included
in the message sent to the user is a list of possible alternative library modules of the
same class. This is retrieved through the lib_def file maintained by the DSL processor.
The designer can then choose to possibly alter the design with the replacement, relax the

constraint or ignore the constraint.
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tv. The simulator determines the next highest time possible in the next_time table and scts

the simulator clock (current_time) to it. The previous step is then repeated.

The model hierarchy created during library invocation is also utilized by the simulator o
aid the designer through design exploration. An observation level is defined by the
simulator which represents the level of detail different modules define. For example, the
root of the model hierarchy is labelled as level 0 - which represents the most abstract
module. The next level down would consist of modules that are referenced and inherited by

the topmost module - and similarly for subsequent levels.

Abstracting hierarchy has often been employed to facilitate simulation and modelling at
various levels of detail [Zeigler 84]. For example, a system level analyst may not be
interested in the lower level details of a given model, whereas a hardware designer would
be more concerned with the lower timing details of the simulation. The DSL simulator
provides for dynamic alteration of the level of abstraction viewed by defining an
observation level. The level can be defined to be limited to a given level or at a particular

level and all levels below it.

The observation level can be set at any time in the simulator with the ser_level{ LEVEL)
command. By default, the simulator is initiated to display ail levels of information. The
simulator also utilizes a list command to provide snapshots of the statc of the system. This
command is a menu driven form which permits viewing of resources, modules and higher-
order modules, states of the simulator data structures, and the interconnections of modules.
All of the views can be constrained to a particular level or range of levels of obscrvation.
The typical output of the command is shown in figure 3-10. The level of the observed
module or data structure is displayed at the first column. The sample shows four particular
views of the state of the simulation. The first is a display of the hicrarchy. As an example, a
module delivery_g(1) is defined to inherit behavior from another module
(delivery_gueue(1)). The second and third views show the state of the message queues and
resources for each module. A module clock(1,3) is indicated as ready (a delay time of 0.0 is

shown in the right-most column) to process a new message (clock_count(44)) from its
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Hierarchy listing

delivery_q(1) -> delivery_quene(l)

priotity_g(1) --> priority_queue(1}

aclock(3) --> generic_clock(3,2,44)

Listing state of the module queves:

LEVEL  Module: Messages queued: Delayed until time:
2 clock(1,3) [{clock_count{44),0.0)] 0.0

2 clock(1,2) [(clock _count(44), 0.0)] 0.0
Listing Resources Created:

LEVEL  Module: Resource: Varinble(s):
4 pricrity_q(3) p_queue(1} I

4 gbeast(2) label_count 1

Listing Path interconnections:

2 output(4,1) is connected to: oo
--> oulput Port pair: [in.out] R
- switch{4 Port pair: {out_port(4,1).outline(d,1)
-2 buffer(4.24 Port pair: queuekponi J1)out_port(4,1)]
-->atm{4,_764) Port pair: {out_port(4,1),outline(4,1}

F b a e Qutput of List Coj and

message queue. The final view is a description of the intercornections between the

modules.

3.5 Svynthesis

When the designer is satisfied with the sirnulation results, the system’s synthesis may be
attempted. A translator within the DASE environment translates the DSL constructs into
corcurrent entities in VHDL under user guidance. The synthesis process within DASE can
be partitioned into pre-synthesis support, DSL model code parsing and finally code

translation.

3.5.1 Pre-synthesis support

During the course of design exploration and simulation, the abstract DSL model may be
refined 1o a more detailed structure. For example, ports may be identified by the
environment and created on demand (these ports are labeled as dport(N) where N is an
increasing integer value). To synthesize the DSL model to VHDL, the following pre-

synthesis requirements must be met by the DSL model:
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Requirement 1: all undefined communications paths within an initial DSL model must be

. resolved. This implies that all undefined ports within send statements have

been instantiated by the environment.

Requirement 2: all message types have been resolved for ports. This essentially indicates
that all messages transmitted by scnd commands have been identitied to
respective ports. The synthesis process requires this information to corre-

late the port types to VHDL signal typcs.

Requirement 3: the environment has defined all destinations for DSL send statements. The

environment can deduce most connections from the path statements

Requirement 4: muliiple connections {rom output ports must be resolved. The implication
is that DSL send statements with multiple destinations of the form
send([b,c,d],aout,message) must be handled by the environment, The issue
during synthesis with such communication is that the output port is used to
transmit directed messages (messages where the destination is given). This

‘ implies that a separate signal must be used in VHDL or a bus protocol (uti-
lizing the destination as part of the address resolution) to realize the com-

munication.

The chosen solution within DASE is to identify a unique port name for
each destination sharing the same output port of the source module. This is
shewn in figure 3-11. The illustration on the left depicts three moedules con-
neeted to the same output port of module ‘a’. Such a conncction is inicr-
preted by the DASE synthesizer as the diagram shown on the right within
figure 3-11. The output port name is appended with the respective destina-
tion names and instantiaicd as three scparate ports. This operation is per-
formed during synthesis whenever a multiple destination send statement is

encountered (hence the importance of requirement 3).

' Requirement 5: multiple connections to input poris must be resolved. This requirement
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can be satisfied in two ways. The first is to ensure a unique input port name
for each path statement. The second is to introduce a protocol module. This
module is conceptually different from normal modules. It docs not get syn-
thesized to a VHDL entity or process, but delines communication protocols
between modules. This is a natural step when modelling system utilizing
protocols for bus arbitration or shared mediums. A module is tagged as a

protocol module simply within the predicate module_type(Module_Name,

protocol).

The synthesis process is invoked through the synthesis command within DASE. The
environment utilizes various data structures to effectively synthesize a design to VHDL.
The relevant support information required by the environment to proceed through a

successful synthesis is shown in figure 3-12.

The environment maintains a list of module names that are to be synthesized. The list is
extracted from the module_type(NAME, hardware) predicates (sec chapter 2.3). The
predicate identifies that the respective module will be implemented as a hardware
component, DASE will then extract all pertinent predicates regarding the module(s) into an
intermediate file (file.dsl) as guidance to the parser. The predicates are created by the
synthesis command and can consist of information such as:

i. The complete module behavior which is obtained directly from the module definition

and the isa statements.



DSL model:

module_type(...). file.vhd
path(...).
isaf...).
VHDL model
module(...). entity
processes

e =

mode(...).
outport_list(...). ﬁle—‘fvl
. 't list(... ). (intermnediate
inport_Iist(.). |-me| (e '
pre-checker
DSL Pavser
flex yace

{parse tree gereration}

ii. The outpore_list Module, OUTPort, { Behavior]) which identifies all messages that the
Module’s output port OQUTPort will support. The pertinent information is extracted
from the send statements within the module and added to the behavior list.

iii. The inport_list{tModule, INPort, { Behavior]) is used to identify all the messages that
can be received (Behavior) through Module’s input port INPort. This information is
obtained through a comparison of the possible sources of messages to a module (found
by an examination of the path statement) and the corresponding messages that can
potentially be delivered to the respective port (this information is already available
from the outport_list).

iv. All path statements related to a module.

A pre-check predicate verifies to ensure that all the requirements for synthesis to proceed

are satisfied.
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3.5.2 DSL to VHDL Parser

The file.dsl is input to a DSL parser. The parser is built using the UNIX flex and yace
uiilities. As the input file is parsed, a parse tree (represented in a linked list structure) is
created within the parser. The data structure is shown in figure 3-13. Each branch of the tree
identifies the VHDL equivalent of DSL actions, variablcs, branching conditions and other
model information. Not all ficlds are filled during the initial parse of the input. A second
pass of the tree entries is required to establish the VHDL counter-parts to the DSL code.

The parse tree is then traversed to gencrate the corresponding VHDL model.

The nodes of the parse tree contain three information fields. The first identifics the type of
node. This can be an entity (module name), a command (such as set_res, crcate), signal
(identified VHDL signal names), type (identified types), statement (any branching

information) and condition node (any conditions before attempting commands). The other

ENTITY name
paramelets

next I | NULLl NULL

\

FRUCUESS 1tasne
paramelers
next I l |
I TYPE
> NAME ol _variable
TYPi_of varoble
new | NuL [wutn | woi
e v
STATEMENT SIGNAL
_condition 1o snter staternent name_ol_signal
o 1o nest | NULL | NULL [NULL
CUMMAND name CONDITION sarze
resource_name
varioble_neme —

o | * I !mm | o

DESTINATION fame ©
destination_name

I I I *used in a gend sttement

FIGURE 3-13. Parse Tree Structure
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two information ficlds are used to store the relevant data with the corresponding node. Each
nodc also possesses four pointers. One of these is dedicated to point to the next node,
however others are used as warranted to indicatc other nodes that hold information

regarding the particular DSL statement’s parameters.

During the course of the constructicn of the parse tree, the data within nodes is modified as
the complete DSL code is parsed. The tree is then traversed applying translation rules

(explained below) to complete the tree and produce VHDL code.

3.5.3 DSL to VHDL ftranslation

The parser maintains a set of default variables and conventions during synthesis. It also
synthesizes to a subset of VHDL, since commercial VHDL synthesizers cannot handle the
full VHDL language. The applicable subset of VHDL will vary with each synthesis tool.
The corresponding VHDL statements presented in this section is generally acceptable in
most cases, however some tools may not support a particutar form. In this case, additional

attention (such as further translations) may be needed before use with the particular tools.

The translation of DSL to VHDL representations is not straightforward and can proceed in
two different modes depending upon the intended description.The particular mode of
synthesis is maintained within the mode(Module, Type) predicate where the Type variable

is either a 1 or 2, depending on the desired synthesis mode for Module as described below:

Mode 1: By default, the environment will assume that causality of messages arriving to
modules are satisfied by the DSL design. Most synchronous DSL designs will
satisfy this assumption. In such a case, translation from DSL to VHDL follows
direct rules where DSL ports and messages translate to VHDL signals and values
respectively. Each DSL module corresponds to a VHDL process and DSL
behaviors map to VHDL statements within a process. State or variable values and
types are also defined through the DSL environment. The basic «lgorithm for this

inode of translation is given below:
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. step I. For each DSL higher-order module:
begin h-o-module,

create a VHDL entity header and port definition,

step 2. For each DSL module:
begin module,
siep 2.1, create a VHDL process (named after the DSL module),
step 2.2. create the VHDL process sensitivity list,
step 2.3. translate each DSL behavior o corresponding VHDL
behavior,
end modiile,

end h-o-module

The details of the algorithm are presented below for each of the steps:

Step 1:

The first step establishes the entity declaration. The higher-order module name
. encapsulating the module(s) is used as the entity name. VHDL port dcclarations are

defined through the DSL path statements.

Step 2:

This step constitutes most of the behavior translation activities. The first substep

(2.1) creates a VHDL process with a label corresponding to the DSL module name.

This is a straightforward procedure shown within the translation table (table 3-1).

Step 2.2 establishes a sensitivity list for the corresponding VHDL process. The list

is defined through the inport_list predicate. Every input port of a module

corresponds to a signal within VHDL

The final step (2.3) is a translation of DSL actions to VHDL statements, Table 3-1

summarizes all the corresponding translation rules employed by the parser.

Mode 2: For asynchronous design components, the user may direct the environment by
‘ setting a predicate within the simulator called mode(MODE). MODE establishes



the mode to usc during parsing. This can be “1” or “2”. The latter indicates the

desire to synthesize an asynchronous design. This has the effect of indicating that

the implied causality and ordering of DSL messages should be maintained in the

VHDL model. In such a case, the corresponding VHDL model will include an input

buffer and control for each entity so that the order of arriving signal values (which

correspond to DSL messages) are maintained. Each signal value within the buffer

in turn are processed by the VHDL entity. Such designs may be costly in terms of

hardware, but VHDL post synthesizers can optimize it further.

Id DSL Statement VHDL Statement
daclarn- | outport_list(Module, OPort{ol,...,om), Eﬁzhnv- #* within declaration of Module:
tion ior(all,..,aln),..., Behavior(ajl,...,alij)i) OPort_ol..._om_type is (‘Behavior(all,...,aln) ..., ‘Behav-
ior(ajl,...,alij)'y
inport_list(Module, IPort, [Behavior(all,....aln),..., IPort_ol..._om_type is (*Behavior(all,...,aln)’ ..., ‘Behav-
Behavior(ajl,....alij)]) tor(ajl,...,alif)');
signal OPort_ol..._om: OPort_ol..._om_type;
signal IPort_ol..._om: IPort_ol..._om_type;
module(Module(pl,...,pl), [{behavior}]), Module_pl..._pl: process(
behavior | (Behavior(al,....an) :- {conditionals and action}) if inl = behavior(al,...,an) then {conditionals and actions}
endif;
condi- check_tes{Resource(rl,...,1z),(v 1,...¥y)), {actions}. type Resource_type is record
tional vl : VALUEL
v2: VALUE2;
vy : VALUEy;
end record;
variable Resource_tl..._rz : Resource_type;
if Resource_rl..._rz = (v1,...,vy) then {actions} endif;
action delay{DELAY) used during translation of DSL send statement below
actlion set_res(Resource(rl,....rz)(v1,...,v¥)) Resource_rl.._rz = (v1,..,v¥);
action create{Resource(sl,...,sz),(¥1,...,v¥)) not permitted
action remove(Resource(s],....sz)(v1,..v¥)) not permitted
action send(Dest(dl,...,dn), OPori(ol,...,om), Behav- QPort_ol..._om <= Message(ajl,...aij) after DELAY;
ior(ajl,...,m})
action send([Dest(d1}, ..., Dest(dn}], OPort(o],...,om), Behav- OPort_ol.,,_om_Dest_dl<=Message(ajl,...,aij) after DELAY;

ior(ajl,...,aij})

OPort_ol..._om_Dest_dn<=Message(ajl,...,aij) after DELAY;

Table 3-1: DSL to VHDL Translation Rules

The algorithm for the second mode of translation is slightly different, so as to

ensure the desired timing requirements. The first step of the algorithm is identical to

that described for mode 1 type synthesis. The differences are within step 2. The

algorithm for step 2 is:
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step 2. For each DSL module:

begin module,

step2.1. create a VADL process “MODULE” named after the DSL module,
step 2.2 create a VHDL process “quene_ MODULE"
step 2.3. create the VHDL process sensitivity list for “quene_ MODULE",
step 2.4. sensitivity list for process MODULE is: signal_MODULE,
step 2.5. create FIFQ queue code for queue_ MODIULE, and MODULE.,
step 2.6. translate each DSL behavior to corresponding VHDL behavior for
MODULE,
end module.

Essentially what is obtained by the algorithm are two VHDL processes per DSL
module (shown in figure 3-14). One process is scnsitive to incoming signals (as in
the case for mode 1 processes), however ils behavior represents a first-in-{irst-out
(FIFO) queve. Hence any new signal values is stored within the queue structure
represented within the process. A signal named signal MODULE is uscd lo
communicate with the second process. Another signal (ready) is an input from the
MODULE process. When the ready signal is asserted, the guene_MODULE places
the next value of signal_MODULE from its FIFO.

The MODULE process is sensitive only to the signal_MODULE signal. When a
charge on this signal is detected, the value is obtained and reated within the body
of che process as in the case for mode 1 translation. At the same time the rcady
signal is not asserted indicating that the process MODULE is busy processing a

“message”. The signal is asserted again to obtain the next message (if any).

The combination of the two signals ensures that incoming messages are correctly
ordered for the process MODULE. Figure 3-14(b) presents the typical timing
waveform encountered for the two processes. The first two waveforms represent

the ready and signal_MODULE signals (in this example the MODULE post-fix is



/ archliecture behavior of ho_module is \
begin

. type in_typeis (ml, m2, ..., mn);
higher-order module: siznal signal_x : in_type;

stgnal ready : two_level;
signal input: in_type;
type two_level ('busy’, ‘not_busy”);

ho_module

module_x:
{ml:-...) process {input, ready)

(mZ:-...) variable first, [zst: integer '=0;

type fifo is array (0 to SIZE) of in_type;

n
If input’event then
fifo(last) ;= input;
— If 1ast=SIZE then last:=0; else tast:=last+1; endif;
If ready ="not_busy’ then
signal_x<= fifo(first);
If first = SIZE then first := 0; else firs. := first+1; endif;
endif;
endif;
If ready'event and ready="not_busy® then
if ficst <> last then
signal_x <= fifo(first);
v If first = SIZE then first := 0; else tirst := first+1; endify
endil;
entity ho_module is endif;
end process;

port (input: in)
module_x: process (signal_x)

begin
ready <= ‘busy';
if signal_x =*ml" then
ready<= ‘nat_busy' after DELAY;
endif;

if signal_x = 'm2* then
ready<= ‘not_busy’ after DELAY;
endil;

end process;

\ end behavior; )

(a) Corresponding Constructs

—1_ Il T ready

AN %% %% signal_a
| I Pl (signals)

(b) Interprocess Signal Timing

FIGURE 3-14. Mode 2 Translation

a). The signal_a is an enumerated type (m1, m2, m3, m4 in this example). The third
waveform indicates the arrival of new signal values detected at the queue_a
process. The ready waveform indicates the order in which the incoming signal

values (or DSL messages) have been processed.

The amount of attention given to timing considerations within DSL can significantly

impact the eventual VHDL code. If possible the designer should incorporate as much of the
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timing relationship within the DSL model (especially for re-usable generic modules). This
will tend to produce less overhead within the synthesized VHDL code. An example is

given below to help clarify the modelling issues.

Consider the example presented in figure 3-15. A DSL module repeater is presented with
one input port input and one output port out specified. The behavior of the module is
simple, it sends any message arriving at its input port onto the output port after a delay of 3

time units. A stream of incoming messages are assumed to be sent to the module as shown
in figure 3-15(a).

The first example shows a synthesis of the DSL module in mode 1. The resultant VHDL
code does not produce the exact same timing characteristics for the input message stream.
The problem is that the m3 value overwrites the m2 value before the VHDL process can
detect it. Figure 3-15(c) depicts the second mode of synthesis, ensuring the correct ordering

of messages. However it can be observed that the overhead within the VHDL model is

88



significant compared to the first mode. Further optimization could be attempted at this
point with lower level synthesis tools. The other alternative to guaranteeing the same
timing characteristics between the two representations is to enforce the timing discipline
within the DSL model. In this example, a possible solution is to guarantee that the message

m2 or m3 does not arrive before m1 is finished processing.

3.5.4 DTSS example revisited - experimentation

A design model is as good as the experimentation it supports. Different operational
scenarios or configurations help refine and study the overall behavior of the modelled
system. Design experimentation requires the definition of two models. The first is a model
of the system under consideration. Such a model is studied and different sections are
eventually synthesized to hardware. The DSL modules presented all fall under this
category. The second type of models that are required are those that emulate some key
aspects of the environment that the system under consideration will work in. Such models
can be traffic generators, failure/fault injectors, interrupt generators etc. These provide the

stimuli to test and validate the models - utilized for experimentation support.

This subsection will use the DTSS example to demonstrate and observe a typical telephone
call connection within a certain amount of time as a test of basic DTSS functionality.
Hence the environment will require a model of a typical telephone and user as well as a
traffic generator for background telephone traffic. The user module will posses a simple
behavior that: lifts up the handset, waits for dial tone, dials a number, talks for a specified

random time period (if the connection is made) and hangs up.

The telephone module will act as the interface between the user and switch by performing
operations such as; sending the dialed digits to the switch, providing the different tones to
the handset (user feedback), and allowing voice messages to pass to and from the handset.
A load_generator module is also used to initiate a request for a call to a user module at
random intervals 1o random destinations. The structural representation of the environment

model is represented in figure 3-16 (a). Figure 3-16 (b) provides a predicate/transition-net
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representation of the behavior for the telephone module and user modules.

DAGSE provides simulation support for design exploration. Once the main DSL program is

loaded into the environment, all library modules are also loaded, configurcd and

subscriber(Nome)

load_generator g user{Name)

y 4

telephone(Number)  [wl—— —— (o dis_switch

(a): DSL Model

10yger

USER:

<test_patience(0)>

<_,close> +
<send_volge(M)>
<X>

TELEFHONE:

<start_a_call(DEST)>

<>
<_, digit{ DEST)> desl_paIan:(Gb
<test_patlence({0)> \
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N N N ~ 5 1Y

<_Mift_handser> <test_patiencf(VV)>

Inlekphon

<dialione>
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instantiaied. The DSL simulator automatically creates an internal record of the hierarchy
tree. This tree is used to define the observation level for the model during simulation. The

hierarchy tree for the DTSS is shown in figure 3-17.

By default the observation level is set to depict the maximum detail - which corresponds to
level 4 in this example. However if the telephone call-setup is of interest, which is a
relatively high level view of the system, then the internal nuances of the switch should be
hidden from the user so that there is not an overload of information. This implies setting the
observation level to the first level with the statement ser_level(1). Based upon the hierarchy
tree, this level will restrict the simulator output to only messages passing between the

switch and subscribers.

The observational level can be changed at any time during a simulation - allowing the user
to zoom in or out as required. The library modules may also contain associated internal
constraints. For example some telephony practices dictate a maximum call delay (time
from when a call is dialed till ringtone is heard) of 450 microseconds. This time is

incorporated as a constraint (upper bound) for the ringtone message to be delivered to the
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destination. A sample snapshot of a simulation run is shown in figure 3-18,

The listing traces the messages for subscriber(() who initiates a call to subscriber(5). Part 1
of the listing shows the level 1 messages observed by the simulator. These include lifting of

the handset, dialtone, dialling the destination number and the related messages to the

DSL SIMULATOR: Ohservabile level setto 1

----» CURRENT SIMULATOR TIME is 0.0 mlcrosceonds.

DSL SIMULATOR: Scheduling message from subserier(Q) via subscriber(0} to telephone(0)
Source Port: hand(0) Message is: lIlt_handset

DSL SIMULATOR: Scheduling message [rom telephone{Q) via meglll switch(0) to controller(0)
Source Port: tel_line(0} Mcssage .s: phone_oll_hook(0)

T 1a9vd

DSL SIMULATOR: Scheduling message from telephone(0} via telephone(0) to subseriber{0)
Source Port: hearlsct{O) Message Is: dlaltone

DSL SIMULATOR: Scheduling message from subscriber(0) via subseriber{0} to telephone(0)
Source Port: hand(0) Message Is: diglts(telno{0, 1,5))

DSL SIMULATOR: Scheduling message from telephone(0) via megill_switch(0) to controller{())
Source Port: tel_fine(0) Message Is: dial_dest(0,telno(0.1.5)

----> CURRENT SIMULATOR TIME s 400.0 mictuseconds.

DSL SIMULATOR: Scheduling message from telephonc{0) via telephone(0} to subseriber{0)
Source Port: headset(0) Message is: ringtone

DSL SIMULATOR: Scheduling INTERNAL mcessage from subseriber{0)
Message is: test_patience(9)

DSL SIMULATOR: Scheduling message from telephone(5) via telephone(5) to subscriber(5)
Source Port: headsct(5} Message 1s; ringtone

Z Lavd

DSL SIMULATOR: Scheduling INTERNAL message [rom subscriber(5)
Message Is: talk({hello)

DBSL SIMULATOR: Scheduling message from subseriber(5) via subscriber(5) to telephione(5)
Source Port: hand(5) Message 1s: ift_handsect

DSL SIMULATOR: Scheduling ri.zssage from subscriber{5} via subseriber() to telephone(5)
Source Port: hand(5) Message is. send_volce(hello)

DSL SIMULATOR: Schedullng message from telephone{5) via mcgill_switch{0} te contreller{1}
Sotrce Port: tel_line(5) Message ts: phone_off_hook(5)

DSL SIMULATOR: Scheduling message from telephone(5) via megill_switch(0) to controller{1)
Source Port; tel_line(5) Message is: velee_message(5, hello)
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switch from the telephone. No other level 1 message is observed in the simulation run until
400 microseconds later. The output for this time period is shown in part 2. A ringtone is
heard on subscriber(5)’s telephone as well as the caller’s, the phone is answered and a

“hello” voice message is sent to the originator. Hence the phone call is established.

In this example, the call delay is 400 microseconds, hence it is within the defined system
constraint. This constraint is used to understand and set some performance bounds for a
system level parameter (or metric). Lower design related parameters are also a part of the
model. A significant design constraint is placed upon the control processor in the generic
switch element. It must be able to process new incoming data before they are overwritten.
Hence there is a constraint imposed upon the control processor (in particular the
frame_select message must be processed before a certain upper bound). If the number of
channels per line were increased to 32 and the number of interfaces units attached to the
switch to 20, then the demands upon the control processor are greater. The defined control
processor will not be able to keep up with the incoming traffic stream and a message will be

issued from the simulator such as:

DSL SIMULATOR: WARNING: Upper_limit Constraint Violation!
Module: corttrol_processor(0) Message: frame_select(15)
Constrained Variable 0.1 exceeds upper limit of 0.051

Accordingly, the user can decide upon the course of the design exploration. Options
include the traditional design decisions such as replacing the control processor with a faster
alternative or adding multiple processors. Alternatively, the design constraint can be

relaxed or ignored to view the impact upon the overall system behavior.

As in all modelling environments, the ultimate design decisions are directed by the user.
Hence the designer’s modelling approach and style will effectively dictate the size of the
resultant VHDL code. Some of the different modelling approaches are further illustrated in
the next chapter as detailed case studies - providing system design and modelling solutions
using DASE.
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Chapter 4 - Case Studies

This section will present two case studies -dealing with the application of DSL to different
problems in design. The examples are complementary to the DTSS example developed in
chapters 2 and 3. The studies are intended to present the generality and flexibility of the
DASE environment within the restricted domain of telecommunication systems. Each
study focuses on different capabilities of the environment. The studies provide different
levels of detail and elaboration with respect to the DSL code - presenting detailed examples

of behavioral representation of design entities.

The first study will elucidate the advantage of DASE in the design of an upcoming
technology in switch design: ATM. The study is intended to provide insight to the DSL
modelling process as it presents a model of an ATM swiich and applies it to an ATM
network. The model reusability is also illustrated with the incorporation of some modules
from the first case study in the ATM design. A network simulation is presented in detail

within the second case study.

The second study will detail the DSL modelling of three broadcast protocols used in the
support of reliable distributed computing systems. This example provides the most detail
of behavioral descriptions within DSL. After a detailed walk-through the design of the
protocols, an example node mode! utilizing the protocols will be introduced. The section
will conclude with a simulation of nodes communicating with the broadcast protocols
through an ATM switching network.
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4.1 ATM Switch Design

4.1.1 Introduction

The technology push in telecommunications has blurred the distinction between voice and
data services. While most services today address voice and low speed data, future demands
will require the transparent use of these and more demanding services such as high
definition TV and high speed data across a common medium. Apart from placing
significant performance requirements on a system, these services have significantly
different characteristics. 50% of traditional voice traffic contains silent periods which
translates to a burstiness factor of 2 (the ratio between the maximum and average
information rate). This factor helps to determine the design requirements for a switch.
Designing for the peak information rates implies wasted bandwidth at lower rates, while
design for the average rates resulte in loss of quality in service during peak periods.The
burstiness and information rates of a variety services are tabulated in table 4-1 [Prycker
91]. it can be observed that the demands upon the system to support the different services

will vary from one service to the next.

Service I Burstiness Information Rate (bits/sec)

Basic Voice 2 6.4x103
Interactive Data 10 10°-1¢7
Bulk Data 1-10 10°-10°
Standard Video 2-3 10

High Definition TV 12 108-10°

Table 4-1: Typical Service Characterizations

Asynchronous Transfer Mode (ATM) has been proposed as a potential solution for
incorporating constant and variable bit rate services such as voice and data under one
transmission and switching solution. ATM is essentially a connection oriented data-link

level protocol with its main characteristics being summarized as [ATM 93]:

1. No error control on a link basis. Hence some information may be lost. The assumption is

that the transmission medium quality is good enough to keep such losses within acceptable
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limits.

2. The information field in ATM is small. Information is transferred in small fixed length

cells of 53 byte lengths of which 48 are reserved for information and 5 are header

information.

3. No flow control on a link basis. Information may be lost due 1o overllowing qucues
within a switch. This risk is minimized by statistical allocation of rcsources. The
information fields are also relatively small in ATM so that a momentary loss of information

may not be a major impact on the service.

4. ATM is connection oriented. Hence a call setup phase exists between the service

requester (an ATM terminal) and a service provider (the ATM switch).

5. Header functionality and size are minimal in ATM. This allows for {ast hardware

switching of information once a connection has been established.

An ATM cell for an ATM switch is shown in figure 4-1. The five byte header comprises of
a VPI (Virtual Path Identifier),VCI (Virtual Channel Identifier), PTI (Payload Type
Indicator),CLP (Cell Loss Priority) and HEC {Header Error Control). The VPI/VCI ficlds

are the virtual path and channel identifiers that represent a virtual circuit the cell is

8 7 6 5 4 3 2 1 (bit position)

4 vCl _ PTI cLe
HEC

£7 DATA FIELDS %

53

FIGURE 4-1, Basic AIM Cell Structure
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traversing. A VCI is composed of a 16 bit address, hence each VPI can contain up to 64K
VClIs. These addresses are local to the switch, hence a connection table within switches
identify unique translations between incoming and outgoing VPI/VCI pairs. The PTI and
CLP are used by the network for congestion control and identifying cell priorities. If the
PTI indicates a significant increase in congestion on a line, variable bit rate cells are given
a lower priority (with respect to constant bit rate cells). In the event of buffer overloading
in the switches, the lower rate cells are discarded. The last header field is the HEC which

provides for error control across the 4 bytes of header information.

It should be noted that for smaller ATM devices such as ATM hubs which multiplex a set of
users across a single access point to an ATM switch, the 4 bits of the first octet are intended
to be used for generic flow control between the hub and users. At present, there is no
consensus within the industry with regard to the way in which these bits are treated, hence
they are omitted in this example. ATM is initially expected to operate on a permanent
virtual circuit mode. This implies that virtual paths and circuits are allocated ahead of time
by the service provider and call-setup operations are not performed on a per call basis as for
traditional voice switching. As the signalling aspects for ATM become clearer, ATM

services will likely incorporate on-demand circuits [Wernik 91].

The basic operation of an ATM switch operating in a permanent connection mode is shown
in figure 4-2. The switch contains three input and output ports. Definition of the permanent
circuits are contained within a translation table in the switch (these would typically be
provisioned by the service provider or administrator). The addresses within the table are
local to the switch. The VPI/VCI address field of each incoming cell is examined by the
routing control in the switch and used as a reference address to the translation table - where
anew VPI/VCI address is identified along with the destination output port for the cell in the
switch. The figure presents an example of a ceil address translation (incoming address 40/
75 to outgoing address 23/92). The cell is then routed (through a routing network) to the
respective output port with the new VPI/VCI address until it finally reaches the destination.

There are many different design alternatives and decisions that can be considered in the
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Translaticn Table
Incoming VPL/VCI | New VPLVCI|Port
40775 2392 4

Routing Control
VPIVCI = 40175

B
VPIVCT = 2392

| T

>

Rduting_ N_etwork

3x3 ATM Switch

FIGURE 4-2. ATM Switch Ogeration Examol

design of an ATM system suitable for fast switching of ATM cells [Zegura 93] [Bae 91].
This section will present an example of a permanent virtual connection oriented central
queue based design with output buffering. The example is intcnded to demonstrate the
decreased level of modeling complexity (as compared to the digital time-space switch) as

well as the applicability of DSL in futuristic telecommunications applications.
4.1.2 The DSL model:

The ATM switch design will be introduced starting from the most abstract view -
increasing in model granularity as the lower modeling levels are revealed (as in the case of
the DTSS example). The delay parameters are omitted so as not to distract attention from
the behavior. The evolution of the model is depicted within figure 4-3. At the top most level
within a main model there is an instantiation of an ATM switch:
isa(atm(1), atm_switch(1,5)).

The above DSL statement indicates that arm( 1) is an atm_switch with a parameter “5”. The
parameter in this case is the size (number of input/output lines) of the swiich that is

modeled.
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The next stage depicted in figure 4-3(b) illustrates the different functionalities within the
switch. The rational is similar to the DTSS design. There is a need for an input and output
interface modules that will accept/transmit cells across a serial line. Since cells will be
moving at relatively high rates, the design of these units should be simple and modular so
that they can be synthesized readily into fast hardware. The output modules will consist of
¢ buffer module, a clock module (which is re-used from the DTS design) and a
transmission module. A control unit is needed to move incoming cells from the input
modules to temporary buffers and a processor/memory module is required to manipulate

the cell headers and route the cells to the appropriate output modules.

4.1.3 The Input module:

The input modules need to capture incoming cells into a single cell latch, signal the control
module (new_cell) and send the cell to the module when signalled back (read_rgst) from
the control module. Intuitively, the module should have an input port (inline) to receive the

cells, and a port to interact with the control module (control_port). A typical description of

ho_module main

i.e. : isa(atm(1), atm_switch(5)). — atm(N)

(a) Instantiation of top level design

o]
ho_module
generic_out_unit{Z,N}

generic_output(N}

eric_control(N)
E:\ .’ gmeric-CIOCk(N’ T) I

o w—

generic_buffer(N)

ey

whereZ=1...5.

(b) Lower level library modules
FIGURE 4-3. ATM Modules
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the module in DSL is:

module(generic_input(INDEX,NODE]),

[

(new_cell{VPI, VCI, DATA):-

check_res(cell_buffer, (VEX, VCX, DX, unprocessed)),
print(“Lost an incoming cell at address (VF1/VCI) *),
print(VPX), print(*/”), print(VCX],
set_res(cell_buffer, (VPI,VCI,DATA, unprocessed)),
send(-,control_port(INDEX], new_cell(INDEX))

)R

{new_cell(VPI, VCI, DATA)-
set_res{cell_buffer, (VPL.VCI,unprocessed)),
send(-,control_port(INDEX), new_cell(INDEX))

)

(read_mgst:-

check_res(cell_buffer, (VPX,VCX, DX, XX}),

Modnle Varlables:

0=< INDEX « SIZE,

NODE = switch number -

the above two variables define a
unique input module number

Module Resources:

name: cell_buffer.

Values: (V1, V2, DATA, FLAG)
where

V1 is the VPI address,

V2 is the VCI address,

set_res{cell_buffer, (VFX,VCX,DX, processed),

DATA is the cell payload,
send(-,control_port(INDEX]}, cel_info(VPX,VCX,DX])

FLAG = (processed, unprocessed)
indicates if data from the buffer has
been successfully processed.

.

The first message that the module is capable of interpreting is the incoming cells new_cell.
Two possible sets of behavior for new_cell are defined above. A condition is used to check
if the cell in the buffer has been read, and if not, it is discarded and a message is printed to
this effect. In the new_cell description, a new el is stored in cell buffer and a
new_cell(INDEX) message is sent to the module’s uc.itrol_port (INDEX simply identifies
the input module that is signaling).

The second message that is applicable to the module is read_rgst. This message initiates a
message cell_info to the control_port. The intent is to model the reading of the buffer data.

The FLAG variable of the cell_buffer is also set to processed (the cell data has been read).

4.1.4 The Control module:

The control module will require an input_port to interact with the input module(s) and also
a port (proc_port) can be defined to communicate with the processor module. The

behavioral description for the control module is relatively straightforward:
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module(generic_control(l),
{
{new_cell{INPUT);-
send(-, input_port(INPUT), read_rqsl)
),
(cell_info(VPLVCIDATA):-
send(-, proc_pert(l), new_message(VP], VCI, DATA))
.

The module accepts a new_cell message (from the input modules) and replies with a
read_rgst message to the sender. It will then accept a cell_info message carrying the cell
information. The cell now must be sent to the processor module for correct address
translation and routing. This is accomplished with the new_message( VPIL,VCI,DATA)

message.

4.1.5 The Processor module;

The address translation and routing function is accomplished within the processor module.
Traditionally the routing table would reside in a memory module accessible by the
processor and other modules. In this example the memory component is embedded into the
processor module to emphasize that the memory / processor interface is a fast one. This
example assumes the permanent virtual connection oriented ATM, hence call-setup is
assumed to be predefined. The routing information will reside within a connect_table
resource in the processor module. This resource contains 5 fieids: fields 1 and 2 define the
incoming VPI/VCI pair, fields 3 and 4 define the new (outgoing) VPI/VCI pair to use, and
field 5 defines the address of the physical output_unit to send the cell. The behavior of the

processor module is represented below as:

module{generic_processor{l),
[
(new_message(VPI, VCI, DATA):-
check_res{connect_table, (VPI, VCI, NVPI, NVCI, QUTLINE)},
send{-, out_port(OUTLINE), atm_cell{NVPI, NVCI, DATA))
),
{new_message(V,VC,D}:-
print(*ERROR: undefined circuit connection *),print(V),print(VC))
k.

Consequently the processor will forward an atm_cell message to the appropriate
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output_unit module.

4.1.6 The Output_unit module:

The output_unit module is a higher order module consisting of three other modules: the
generic_buffer, generic_output and generic_clock. The generic_buffer provides a simple
FIFO queueing function for messages directed to a given outpur_unit. Consequently the
module must accept arm_cell messages from the processor module and maintain them in a

queue for processing. The DSL behavioral code is given below:

module(generic_buffer(UNIT,INDEX],
[
(next_cell:-

check_res(queue, [(null, null, null) 1 Q))
),
(next_cell:-

check_resigueue, [(VPI, VCI, DATA) ! Q),
set_res{queue, Q},
send(-, output_port{INDEX), next_info(VP1,VCi,DATA))
.
{atm_cell(VPI,VCI,DATA):-
check_res(queue, Q),
append({(VPI,VCI,DATA)L.Q. NQ).
set_res{queue, NQ))
D).

The gueune can be depicted in terms of a resource, The top element of the queue is
automatically removed through a next_cell message from the control module. This
information is passed through the use of a next_info message from the buffer module. To
reduce communication overhead, this message is only sent if there is a message waiting in

the queue (no information is represented by the null entry in the queuc).

The generic_output transmits ATM cells using cell data provided ecither by the
generic_buffer module, or a “NULL"” cell contained within an internal single cell buffer.
All this is synchronized through the generic_clock module to generate the appropriate bit
rates for cell transmission. The generic_clock introduced in the DTSS example in chapter2

is re-used here. The code for the generic_output module is listed below:

mydule(generic_output(UNIT,INDEX]},
[
{clock(X}:-
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check_res(out_buff, (VPL,VCI,DATA]),
set_res{out_buff, (null,nuil,nuli)},
send(-, out_port(INDEX), new_cell{(VPI,VCI,DATA}),
send(-, queue_port(INDEX}. next_cell)

)

(next_info{VPI,VCI,DATA}:-

. set_res(out_buff, (VPI, VCI, DATA))

The timing is such that the generic_output module is ready to transmit a message (cell)
when given the clock(X) message from the generic_clock module. The typical high level
ordering of key messages are depicted in figure 4-4. Intuitively, an ATM cell is being
transmitted between each clock message. The clock messages are provided by the same
generic_clock module described in the time-space switch example, however, since the
timing of ATM does not require frame definitions, the frame_sync message generated by
the generic_clock is not used. The transmission period (7T) is dependent upon the
transmission rate of the line. The CCITT recommends two rates for ATM: 155Mb/s and
622Mb/s for medium and backbone traffic respectively, Considering a medium traffic rate,
this implies that each ATM cell takes 2.74 microseconds of transmission time (7). This

time is expressed within the generic_clock module as Clock_rate.

4.1.7 Network model - module reuse

After definition of the specific modules, the higher order definitions provide the structural
description of the underlying modules. The structural description of the switch is shown in
figure 4-5. The figure shows only one incoming and outgoing line. For a switch of size N,
the generic_input and generic_out_unit modules would be replicated N times. The depicted

switch is capable of processing messages adhering to the ATM protocol.

deck(i+)

. Kev Message Ordering in generic out_unit Module
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generic_control(iD) ho_module:

generic_out_unit

trput_port

proc_port

generic_buffer{lD,N)

control_port
out_part(N}

>
clock_port(N}
generic_clock(N,T)

generic_processor{lD)

FIGURE 4-5. DSL Mode} of ATM Switch

The defined ATM model can be re-used to create a network of ATM awitches capable of
supporting routing and control of permanent circuits. The ATM model has already made
use of the generic_clock module described in chapter 2 for the DTSS cxample. The
generic_input modules are also a particular instance of the DTSS’s line_in module. Further
module re-use can be achieved if voice circuit emulation was desired over an ATM
network., The ATM switch would then functionally be similar to the
generic_switch_element of the DTSS example. The ATM switch would require an
additional understanding of how to establish a demanded voice circuit. The desired
behavior can simply be inherited by the ATM switch’s generic_processor from the call
processing software module (pots_server) described in the DTSS description in chapter 2.
In this case, incoming ATM cells containing voice information will be handled by the
post_server as in the DTSS example. Considering the lines of DSL code in the behavior of
the ATM switch, approximately sixty-five percent of the ATM switch’s bchavior is

comprised of re-used code available from the library.
A network composed of ATM switches can now be created for modelling different traffic

scenarios. For example, figure 4-6(a) shows a network of 4 switches in a particular

configuration and figure 4-6(b) lists the respective code for defining the network.
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accens(1)

node(3)

access(3)
(a) DSL Network diagram
path{node(3), node(2), [outline(2), inline(2)])

pathinode{2), node(4), [outline(3), tnline(1)])
pathinode(4). node(2), [outline(1), inline(3)])

fea(node(1). atm_switch(1,3))
isa(node(2), atm_switch(2,3))
isa(node(3), atm_switch(3,3})
isa(nodc(4). atm_switch(4.2))

pathinods{1), network, [outline(1), access(1]])

path(node(1), node(2). loutline(2], {inline(1)l)
path(node(2), node(1}, [outline(1}, inline{2)]}
path(node(1}, node(3}. [outline(3). inline{1)
pathi{node{3}, node(1}, [outline(1), inline{3)})
path{node{2), node(3). [outline(2), inline(2]])

path(node(3), network, loutline(3). access(3)])
path(node{4), network, [outline(2), access{2)])
path(network, node(1). laccess(1). inline(1)])
path({network, node(3), [access(3), inline(3}])
path{network, node(4), [access(2). inline(2}])

(b) Interconnection description of network

FIGURE 4-6. ATM Sample Network Configuration
The underlying network model is relatively complete. The only thing that is required is the
routing (permanent virtual path connections) definitions between nodes. This is established
by defining the respective connect_table resource in each nodes’s processor module.
Depending upon the assertions upon these resources, all possible combinations of virtual

paths and circuits for the given network can be described.

A sample routing setup is described in table 4-Z where the entries for each node’s
connect_table is given. The defined set-up describes virtual connections between the nodes
as shown in figure 4-7. Every VPI/VCI address of incoming cells are translated to defined
outgoing ones at each node.The samiple connection description defines three virtual
connections. More connections can be defined by the user beforehand (using library

configuration rules) or at run time using DSL set_res or create commands.
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ho_module: network
Nodez | Incoming | Outgoing | Output
# | VBIVCL| VRINCI | Poct it
'l' — — ———
node(1) "|| 1 1711 P73 2
-|I=| uuuul“’ i 172 an 3
ulb I 1 o ! 1
\ \ N B 0 1
3]
( l. 2 X X 1
I‘ 2 |2X %3 3
|. R ER X 3
‘ 3 k1| 4/1 3
3 171 81 2
4 6/l 21 2
4 21 1/1 1
4 m 12 2
FIGURE 4-7, Permanent Virtual Counections Table 4-2: The Routing Tuble

As in the digital time space example, this model can be exercised using random traffic or
traffic generation modules (such as a user or telephone). The ATM network model will be
incorporated with the protocol models described in the next section to demonstrate a

complex model of broadcast protocol executing over an ATM network.

4.2 Reliable distributed broadcast protocols

Protocols provide the basic formalism to support communication between computing
agents in a distributed ¢computing environment - hence protocol modelling is essential to
the study of computer communication systems. This section presents a case study of the
modelling of a set of broadcast protocols for reliable communications within a distributed
environment. Typically an application will utilize several layers of protocol to
communicate, hence it is generally desirable to identify different layers of functionality in
models as well [Bochman 90). The protocols to be modelled in this section (ABCAST,
CBCAST and GBCAST) [Birman 93], are assumed to reside between higher and lower
level services. Although these services are not modelled in detail, they provide and request
the necessary services from the three protocols.The structure of a processing node using
these protocols are shown in figure 4-8. The generic_protocol server directs the upper and

lower layer requests to the respective protocols. The upper layer send requests for
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cheric_proloco

communication using one of the three broadcast protocols, whereas the lower layer

provides the actual transmission level facilities such as send request and acknowledgments.

The section will first describe DSL models of the three protocols used to ensure reliable
distributed broadcasts. The protocols ABCAST, CBCAST and GBCAST are described in
further detail in [Birman 87]. The model of a node using the structure presented in the
above figure will be described with the lower level services tailored to interface with the

ATM protocol presented in the previous section.

4.2.1 The ABCAST protocol

The ABCAST protocol is one of three broadcast process primitives (within a distributed
environment) and ensures the order of a broadcast message received at multiple
destinations from a source process is the same even though the order is not pre-determined.
The DSL model describes node modules which represent distributed sites. A high level
program (high_level_services) will generate processes that request ABCAST
communication with other nodes through a low_level_services module. To support the
ABCAST primitive, each node will have an abcast_server, a priority_gueue, and a
delivery_queue. The structural representation of this model is given in figure 4-9. The
algorithm presented in [Birman 87] for ABCAST is presented below with the DSL

representation,
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h_port (o higher_level_services)

Ro_module: generic_protocol_scrver(STTE_TD}
up_pocl
cheast_server{SITE_ID)
cpoct cbp defivery_queue(SITE_ID)
pin
gheast_server(SITE_ID) |4 » _ lport inp
send_port gport BbP‘" Y
{to lower_level_services)
dq_port
abcast_server(SITE_ID) —> gheast
priority_queue{SITE_ID)
Iport pa_port [€—P qbeast

The algorithm is composed of four steps detailed below:
Step 1. The sender transmits a message (Msg) with a unique label to its destinations.

This is represented through a form{abcast, PROC_ID, Dest, Msg) message sent (o the
abcast_server (from the upper level protocols). PROC_ID is the source process identifier,

Dest is a list of destinations and Msg is the message to be transmitted. This scgment of DSL

code is:

{form(abcast, PROC_ID, Dest, Msg):-
check_res(label_count, COUNT),
NCount is COUNT + 1,
list_length(Dest, No),
delay(X),
set_res(label_count, NCount),
create(NCount, (Dest, No, 0)),
write( Sending an abcast message ‘), write(Msg), ni,
send(_, Iprot(SITE_ID), msg_rgst(Dest, abeast(Dest, Msg, NCount, PROC_ID, SITE_ID))

Two resources are utilized above: label count and NCount. The first is used to generate
unique labels for the messages. The latter is utilized to keep track of how many destinations

within a process group have responded during step 2 of the protocol. The last line will send
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the abcast message to a lower level protocol handler (connected through port

lprot{SITE_ID)).

Step 2. Recipients add Msg to a priority queue associated with label, marking it as
undeliverable. A priority is assigned to the message (NPri) larger than the largest in the
queue, with a process identification (PROC_ID) added as a suffix. This suggested priority

is then transmitted to the sender.

The DSL code given below depicts the behavior for this step. However an interaction with
the priority_gueue module (connected through the pg_port(SITE_ID)) is not shown here,
but will be presented later in the section. The add_new message sent to the priority_queue

module requests that the module add the new ABCAST message to the priority queue.

(abcast(Msg, Label, PROC_ID, Sender_ID):-
send(_, pg_port(SITE_{D}, add_new{abcast, Sender_ID, Msg, Label, PROC_ID}))

The priority_queue module will consequently send an updated_priority message (shown
below) that provides the suggested priority (NPri). This value is sent back to the sender as

shown below:

{updated_priority(abcast, SITE, Label, NPri):-
send(_, 1prot(SITE_ID), msg_rqst(SITE, abcast(SITE, sug_priority(NPri), Label})))

Step 3. The sender waits for all the suggested priorities from the destinations, computes the
maximum of all the values and sends this value to all the destinations - thus guaranteeing

correct order of delivery.

The DSL representation given below is used to compute the maximum priorities as well as
a check if all responses have been collected from the destinations. The largest priority
value is maintained within the resource Label (NCount in step 1) as well as a flag (State)

indicating if all replies have been received.
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{abcast{sug_priority{Value), Label):-
check_res(Label, (Dest, State, Prior}),
NState is State -1,
set_res(Label, (Dest, NState, Prior)),
Value> Prior,
set_res(Label, (Dest, NState , Value )),
send(check({Label))},
{abcast{sug_priority(Value), Label):-
send(check(Label)),
write('Priority recelved was not high enocugh'’))

(check(Label):-

check_res(Label, (Dest, State, Prior)),
State>0,
write{'Have not recetved all replies yet),nl),
(check(Label):-
check_res(Label, (Dest, State, Prior)},
delay(1),
remove(Label, X),
send(_, Iport(SITE_ID), msg_rqst(DEST, abcast(set_priority(Prior}, Label))))

Step 4. The destinations update the priority for Msg to the new value and mark the message
as deliverable and re-sort the priority queues. The destinations then move messages in
order of increasing priority from the priority queues to a delivery queue. This continues as

long as the priority queue remains non-empty and there is a deliverable message at the top

of the queue.

(abcast(set_priority(Value}, Label, Proc_ID):-
send(_, pq_port(ID), change_priority(abcast, Value, Label, Proc_ID))}

The above DSL code describes the final action that is required by the abcast_server. A
message is sent to the priority_queue to change the priority of the message identificd by
Label. The priority_queue module requires some behavioral code to communicate with the

abcast_server and the delivery_queue. Its behavior is given as follows:

The add_new behavior is used to add a new message to a priority queue
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(p_queue{ PROC_ID)). There are two cases defined below. The first case assumes that the
priority queue for a process exists. Hence a new priority is assigned to the new message and
another data structure (waiting_message(PROC_ID)) is created to keep a copy of the
message and relevant information such as state (deliverable or undeliverable), message
label, data and priority value.The second case takes into account the situation where a
queue does not exist yet for a process (PROC_ID). Hence a queue s created to hold

ordered priorities and all other operations are performed as in the first case.

(add_new(Protocol, Sender, Msg, Label, PROC_ID):-

check_res(p_queue(PROC_ID}, [Pril Rest}),

NPrl is Pri+1,

create(waiting_message(PROC_ID), (NPrl, Msg, Label, undeliverable)),

check_res{p_queue(PROC_ID), QUEUE },

set_res(p_queue(PROC_ID), [Npril QUEUE],

send(_, proc_port(SITE_ID), updated_prioriiy(Protocol, Sender, Label, NPri)}),
(add_new(Protocol, Sender, Msg, Label, PROC_ID):-

NEW is SITE_ID/100,

delay(1),

create(p_queue(PROC_ID), [NEW]),

create(walting_message(PROC_ID), (NEW, Msg, Label, undeliverable)),

send(_, proc_port{SITE_ID), updated_priority(Protocol, Sender, Label, New))),

The second behavior understanding required by the priority_queue is change_priority.
Upon receipt of this message, the module updates the priority (Value) of the specified
message (Label). An internal message check_pq is generated to clean up empty queues and
test if the topmost elemeni of the p_gueue is deliverable. The latter is accomplished
through another internal message (delivery) which removes deliverable messages from the

top of the queues and sends them to the delivery_queue module.

(change_priority(abcast, Value, Label, PROC_ID):-
check_res(walting message(PROC_ID), (Pri, M, Label, State)),
check_res(p_queue(PROC_ID}, QUEUE),
delay(1),
remove_clement(QUEUE, Pri, NQ),
append([Value], NQ, Result),
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igsort( Result, Sorted),
set_res(p_queue{PROC_ID), Sorted),
set_res(walting message(PROC_ID), {Value, M, Label, deliverable))
send(check_pq(abecast, PROC_ID, Label)),
{check_pqlabeast, ID, Label):-
check_res(p_queue(ID), Gueue),
last_list(Queue, TOP),
check_res(watting_message(ID), (TOP, M, Label, STATUS)),
send(delivery(Label, STATUS)),
{check_pq(abcast, ID, Label):-
remove(p_gueue(ID}, [1),
write('Priority Queues for ID ), write(ID), write(* freed'},nl),
(delivery(Label, deliverable):-
check_res(walting message(ID), (Val, M, Label, deliverable}},
remove(waltlng_message(iD), (Val, M, Label, deliverable)),
check_res(p_queue(ID), Q).
remove_element(Q, val, NQ),
set_res(p_queue(ID), NQ),
send(_,dq_port(SITE_ID) dellvery_of_new_message(ID, M, Label)),
send(check_pq(abcast, ID, Label}}),
{delivery(L, undeliverable):-
write{'Undeliverable message still walting for processing.}.nl).

The DSL description for the delivery_queue simply records the sequence of messages
delivered to a node. The queue functionality is implicit by the manner in which modules

process incoming messages. The DSL representation is:

module(delivery_queue(SITE_ID),[

{deltvery_of_new_message(ID, M, LABEL):-
write(‘Message processed at noda: ),
write(SITE_ID),nl, write(* ID= ), write(ID),nl,
write(' label= 9, write(LABEL},nl)]).

This is a very simple view of the delivery queue, however the model will be refined later

within the GBCAST protocol section to reflect the needs of all three protocols.

The behavior of the abcast_server module is described in terms of its equivalent predicate/
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transition net given in figure 4-10. The protocol functionality is separated into two sets for
clarity; the sender and receiver components. Each handles the respective functionality of
the protocol. Input places (identified by the darkened circles) will allow their respective
token types (such as form_abcasi(D,M,P)). These tokens arrive from other sub-nets
(representing the other modules). A ccatrolling net (omitted here for sake of clarity)
ensures that the specified incoming tokens are directed to the appropriate input places as
well as ensuring safeness within e2ch sub-net. Operations on transitions are indicated
between a “<>" while predicates are labelled on arcs. By convention, labels beginning with

a capitalized letter is an unassigned variable.

Even at this level of representation, some design partitioning is being assumed. For
example, the protocoi znd priority queue management aspects are separated into different

modules which implies that the eventual design would also favor such a distinction.

{from source(S)) (from node{D}) {from reode(D))
abeast(sug_priority(V), Label) abeast(M, L, B} D)l

{from priority_q(S)}
ed_priority(M,L, KD,

Jform_abeast(D,M,F)
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4.2.2 The CBCAST protocol

The CBCAST protocol is less restrictive than ABCAST, while preserving the causality of
messages. It enforces a minimally synchronized delivery order. In this case, if a and b are
two concurrent processes, CBCAST may deliver the processes in different orders whereas
with ABCAST an order would be agreed upon by the destinations. The perceived
advantage over ABCAST is the performance of the protocol. CBCAST does not delay
transmission of messages and can therefore perform significantly {aster. The algorithm for

an implementation of the CBCAST protocol as presented by Birman is as follows:

Each process p has a message buffer BUFp which contains copies of messages sent to and

fromit. A message B is transmitted from BUFp at site s to BUFq at site t as follows:
1. When a CBCAST message B is initiated by p, an ID(B) is associated with the message

and the list of destinations are added to REM_DESTS(B)} to keep a record of destinations

that are destined to receive the message.

2. A transfer packet <Bl, B2, ...> is created which includes all messages B’ in BUFp such
that B’ must precede B and REM_DESTS(B’) is non-empty. The messages are maintained
in an order of precedence to preserve causality (BI must precede B2).

3. The transfer packet is sent from site s to t.

4. For each Bi, the destination q is deleted from REM_DESTS(Bi).

S. On the receiving site 1, for each message in preceding order:

5.1 The ID(Bi) is checked. If it is associated with a message in BUFq then Bi is a duplicate
and is discarded.

5.2 If q is a member of REM_DESTS(Bi), q is removed from REM_DEST{(Bi), Bi is placed
on the delivery queue for q and a copy of Bi is placed in BUFgq.
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5.3 If none of the above two cases apply, Bi is a message in transit to another process and

is simply placed in BUFg.

The CBCAST algorithm is modelled within DSL using the following resources:

bufff PROC_ID) represents the BUFFp (where p=PROC_ID) in the algorithm above, and
the variables within this resource are (ID, M, REM_DESTS). ID is a unique identification of
the message M and REM_DESTS - as above, represents the (remaining) destinations that

the message is to be sent to.

The DSI. model follows the same steps outlined above, There are two possible messages
that can be generated to the cheast_server from a higher level protocol: 1) a message to
transmit any outstanding messages in the message buffer buff PROC_ID) and 2) a request
for the transmission of a new CBCAST message. Since the former is a special case within
the latter, the DSL code deals with the latter and is given below. A message from a higher
level protocol is given as form(cbcast, PROC_ID, DESTS, MESSAGE) to create a new
entry in the buffer for the process (PROC_ID). The former is represented by a form_cbcast
message. This message looks at any entries in the buffer(s) where there are messages
awaiting transmission, creates a transfer packet (PACKET) and send the result to a lower
layer protocol for transmission. The DSL code to handle the CBCAST transmission is

given as:

{formicbcast, PROC_ID, DESTS, Message):-
check_res(message_label(PROC_ID), Label),
ID is Label+1,
set_res(message_label(PROC_ID), 1D},
create(buffPROC_ID), (ID, [DESTS], Message)),
send(form_chcast)),

{form_cbcast:-
check_res{(bufffPROC_ID}, (ID, [DESTIREST], M}),
set_res(buffPROC_ID), (ID, [RESTI, M)},
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send(create_packet(PROC_ID, DEST, [ID, [REST], M) )},

{create_packet(PROC_ID, DEST, PACKET):-

check_res{buff(PROC _ID), (ID, REM, M)),

not(member((ID,REM,M), PACKET))

send(create_packet{PROC_ID, DEST, [PACKET | {(ID,REM.MII),
(create_packet(PROC_ID, DEST, PACKET):-

send(-, proto_port, msg_rqst{DEST, cbcast_packet(DEST, PACKET})),

The DSL model also requires knowledge about how an incoming CBCAST message is to
be handled (step 5 of the algorithm for the protocol). A lower layer protocol is assumed to
deliver a CBCAST message as chcast_message(PROC_ID, PACKET), where PACKET is
an ordered precedence list of messages sent to this site and PROC_ID is the destined
process identification. The DSL behavioral code along with the equivalent steps of
Birman’s algorithm is shown below. Step 5.0 is an additional case that is the stopping
condition for the algorithm.

{cbeast_message(PROC_ID, [ }):- (step B.0)
write(‘CBCAST messages all processed at 9,
write(PROC_ID},nl),

(cbecast_message(PROC_ID, [(ID, REM, M) | Rest]}:- (step 5.1)
check_res(bufffPROC_ID), (ID, _, ) },
write(CBCAST message id 9,write(ID),
write{' already {n buffer."},nl,
send{cbcast_message(PROC_ID, Rest})),

{cbast_message(PROC_ID, [(ID, REM, M) | Rest}):- (step 5.2)
member{PROC_ID, REM),
remove_element(REM, PROC_ID, NEW_REM]),
create(bufflPROC_ID), (ID, NEW_REM, M)},
send(dellvery_queue(PROC_ID),_,delivery_of_new_message(ID, M)),
send(cbeast_message(PROC_ID, Rest))),

(cbeast_packet(PROC_ID, [(ID, REM, M){Rest]:- {step 5.3)
not(member(PROC_ID, REM}},
create(buff(PROC_ID), (ID, REM, M)),
send(cbcast_message(PROC_ID, Rest)))i).
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4.2.3 The GBCAST protocol

The last of the three protocols to be described provides a mean of communication between
changing process groups. The previous two protocols assume that all the destinations are
known, however GBCAST permits communication to a group of processes whose
membership may change during the course of time. To manage the group view, the protocol
provides a totally ordered delivery scheme with resnect to the other two protocols. The

GBCAST protocol presented by Birman is outlined below:

1. The first steps of the protocol order GBCASTs with respect to ABCAST messages. A
GBCAST message is composed of a destination group G and an action to be performed by
the group members (action). A process p distributes the message to the member processes

of group G.

The form message is interpreted by the gbcast_server as a request to send a GBCAST
message (ACTION) to a GROUP. A local view of groups is maintained within a
site_group_table (records which groups a node belongs to) and a proc_group_table (which
tracks the processes membership in groups). A resource label_count is also used to
generate increasing unique label values for messages. The originator of the GBCAST also

traéks the replies from destination members using the resource LABEL (line 1.9).

1.1  (formigbcast, PROC_ID, GROUF, ACTION}:-

1.2 check_res{label_count, COUNT),

1.3 check_res(proc_group_table, (GROUP, PROCS)),

1.4 check_res(site_group_table, (GROUP, SITE)),

1.5 LABEL is COUNT + 1,

1.6 list_length{GROUF, No),

1.7 delay(DELAY1),

1.8 sei_res(label_count, LABEL),

1.9 create(LABEL, (GROUP, No, 0)),

1.10 write(* Sending a gbcast message ‘), write{ACTION}, nl,

1.1l send(_, gport, msg_rgst(SITE, gheast{SITE_ID, ACTION, LABEL, GROUP)))),
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2. Following the steps of the ABCAST protocol, the recipient q places the message (tagged
as undeliverable) on all ABCAST priority queues. A priority value is assigned to all the

messages based on the next highest value of any message on the ABCAST queues and the

value is sent back to process p.

(gbcast(Sender, ACTION, LABEL, G):-
check_res(proc_group_table, (G, PROC)),
create{label_member, (LABEL, PROC, Sender)),
send{gbcast_m(Sender, ACTION, LABEL, PROC))),

{gbecast_m(Sender, Msg, Label, [l}:-
write(All gbeast priorities suggested...),nl),

(gbcast_m(Sender, Msg, Label, [PROC_ID | RESTI):-
send(_,pq_port{SITE_ID),add_new(gbcast, Sender, Msg, Label, PROC_ID),
send(gbcast_m{Sender, Msg, Label, REST))),

(updated_priority(gbcast, Sender, Label, NPri):-
send(_, gport,msg_rqst(Sender, gbcast(sug_priority(NPri}, Label))))

3. After obtaining all values from group members, p sends the maximum value of all the
values to the group G. The group members accordingly assign the new value and re-sort the
priority queues. However, the messages are not tagged as deliverable as in the ABCAST
case before. When the GBCAST messages arrive 1o the head of their respective priority
queues further delivery from the queues will be suspended. When the GBCAST message
reaches the head of all the ABCAST priority queues, the next steps are undertaken to order
the GBCASTS: relative to CBCASTS.

(ghcast(sug_priority(Value), Label):-
check_res(Label, (Dest, State, Prior)),
NState Is State -1,
set_res{Label, (Dest, NState, Prior)),
Value> Prior,
set_res(Label, (Dest, NState , Value )},
send{check(LabeD)),
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(ghbcast(sug_priority(Value), Label):-

send(check(Label)),

write('Priority that was received was not high enough’),nl),
{check(Label):-

check_res(Label, (Dest, State, Prior)),

State>0,

write('Have not received all replies yet),nl),
(check(Label):-

check_res(Label, (Dest, State, Prior]),

delay(1),

remove(Label, X},

check_res(site_group_table, (GROUP, SITE)),

send(_, gport, msg rqst(SITE, ghcast(set_priority(Prior), Label, GROUP))},

The DSL. description presented above is virtually identical to step 3 for ABCAST and is
presented for sake of completeness. The difference is in the way in which the destinations
are specified. In ABCAST the destinations were given directly as a part of the protocol. For
GBCAST the site and process group tables are used to identify the destinations within a

group relevant to a particular site.

Since GBCAST does not completely follow the ABCAST step 4, there are some additional
differences to be considered. Unlike ABCAST, messages are not tagged deliverable at this
stage. The protocol defined below will tag them as gbcast_wait, indicating that the message
is to be delivered according to GBCAST. An additional resource (gb_ab_order) is
maintained in the gbacst_server which keeps track of how many GBCAST members
within the node still have not reached the top of their respective priority queues. The
ABCAST step 4 represented in DSL as applied to GBCAST would then be:

(gbcast{set_priority(Value), Label, G):-
check_res(proc_group_table, (G, PROCS)),
create(gb_ab_order, (G, Label, PROCS)),
send(gbcast(set_priority(Value), Label, G, PROCS)

(gbcast{set_priority(Value), Labei, G, [I:-
check_res(proc_group_table, (G, PROCS)),
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send(_,pq_port(SITE_ID),check_pq(gbcast, PROCS, Label))),
{gbcast(set_priority(Value), Label, G, [ID IREST]):-

send(_,pq_port(SITE_ID}, change_priority(gbcast, Value, Label, ID)),

send(gbcast(set_priority(Value}, Label, G, REST))

The priority_queue will require some additions to add the GBCAST message. This is
conveniently accomplished through the change_priority message. The first parameter of
the message shown below identifies it as a GBCAST message, hence it is tagged as being

in a gbcast_wait state.

(change_priority(gbeast, Value, Label, PROC_ID):-
check_res{walting_message[PROC_ID), (Prl, M, Label, State)),
check_res(p_queue(PROC_ID), QUEUE},
delay(1),
remove_clement{(QUEUE, Pri, NQ),
append([Value], NQ, Result},
iqsort( Result, Sorted),
set_res(p_queue(PROC_ID), Sorted),
set_res(walting_message(PROC_ID), (Value, M, Label, gbcast_walt))),
sendicheck_pq{abeast, PROC_ID, Label))

In addition, the priority queue will inform the gbcast_server when a message with a state of
gbcast_wait is detected at the head of a priority_queue. This is described through the

delivery message below where a message ghcast_wait is sent to the ghcast_server.

(delivery(Label, gbcast_wait):-
check_res(waiting_message(PROC_ID),(V,M,Label,ghcast_wait)},
send(_, proc_port(SITE_ID), gbcast_walt{PROC_ID, Label))}.

The ghbcast_server module must process the gbcast_wait(PROC_ID, Label) message
generated above. The module identifies removes the process identification (PROC_ID)
from the appropriate gb_ab_order resource. When the third variable within the resource is

an empty list, this implies that all members of the group are at the top of their respective
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priority queues (these tests are performed within the additional fesz_ab behaviors given
below). At this point a set_wait_queue message is sent to each process’ delivery queue
through the instant_queue behaviors. The additional code for the gbcast_server is given

below.

gbeast_walt(PROC_ID, Label):-
check_res(gh_ab_order, (G, Label, PROCS)),
remove_element(PROCS, PROC_ID, NEW_FPROCS),
set_res(gb_ab_order, (G,Label, NEW_PROCS)],
send(test_ablG, Label, NEW_PROCS))

test_ab(G,Label,[j):-
check_res(proc_group_table, (G, PROCS]),
check_res(label_member, (Label, P, Sender)),
send(instant_queue(Sender, PROCS, PROCS)),
test_ab(G,Label,[]}:- print(’' Not all members are at head of queues’,

Instant_queue(S, G, [I):-print(All wait queues generated’),

Instant_queue(Sender, PROC, [MEMBER | REST]}):-
send(_._.set_walt_queue(MEMBER)),
send(_,_.flush_cbeast(Sender, PROC, MEMBER))
send(instant_gueue(REST))

4. A wait queue is used by the recipient processes to temporarily hold messages that would
have been placed on the delivery queue by the CBCAST protocol. A list (IDLIST) is
maintained which contains IDs of all CBCAST messages that were placed on a delivery

queue of the recipient processes.

The requirements for this step of the algorithm dictate the need for a more sophisticated
delivery_queue module. The module will contain resources that define the delivery queue
(d_gueue) and the wait queue function (wait_queue), as well as idlisi(ID) to store the
message labels within a d_gueue(ID). The DSL description below also identifies the

behaviour of the se!_wait_gueue message sent from the gbcast_server. The
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delivery_of new_message will place the message onto a wait_queue if it exists or directly
onto the d_gueue. In the latter case a new message notification is sent to the upper layer

protocol.

(set_walt_queue(ID}):-
create(wait_queue(ID), [} )

(dellvery_of new_message(ID, M, LABEL):-
check_res(walt_queue(ID), REST),
set_res{walt_gueue(ID), [(M, LABEL)),

(delivery_of_new_message(ID, M, LABEL}:-
check_res(d_queue(lD}, CONTENTS),
set_res{d_queue(iD), [(M,LABEL) ICONTENTS)),
check_res(idlist{ID), REST),
set_res(idlist(ID), [LABEL | REST]),
send(_,up_port(SITE_ID}, new_msg)),

5. For a process q, if any message B in IDLIST is in BUFFq and B includes destinations
that are a part of the group G, these messages are scheduled for transmission to the
destinations. When all such messages are sent, q sends its IDLIST to the originating

process p.

This step requires the interaction of the gbcast_server, delivery_queue and cbcast_server
modules. First, the gbcast._server must generate a flush_cbcast message (from step 3) to the
delivery_queue. This signals that GBCAST ordering with respect to ABCASTSs are done
and GBCAST with respect to the CBCAST ordering must now be performed. The
delivery_queue module will use this message to transfer the idlist resource data to the
cbeast_server with the gb_request message. The cbeast_server will then send any
messages residing in its buffer belonging to a destination who is a member of a given
group.

The DSL code below is a part of the delivery_queue behavioral description. As a response

to the gbcast_server’s flush_cbcast w.c:vage, the module transmits a gh_request message
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to the cbcast_server which is a request to process any messages that are to be transmitted
to group members. A cbeasr_list message is sent to the ghcast_server which is used within

step 6 of the protocol.

flush_cbhast(Sender, PROCS, PROC_ID):-
check_res(idlist(PROC_ID), IDLIST),
send(cbcast_server(SITE_ID)._, gb_request(PROCS, IDLIST},
send(_, lport, msg_rgst(Sender, cbeast_list(IDLIST, PROCS, PROC_ID))}

The code given below is located within the cbcast_server and is a description of the actions
to be undertaken upon receiving the gb_request from the delivery_queue. Essentially each
member of the REM destination list within the buff resource is compared with each
member of the IDLIST within the fest_membership behaviours and a create_packet
message generated for CBCASTs to be sent to group members (this was described in the
CBCAST protocol section).

gb_request(P, []);- print(‘Aill outstanding CBCASTSs sent]},

gb_request(PROCS, [B| IDLIST] ):-
check_res(bufflPRQC_ID), (B, REM, M)),
send(test_membership(REM, PROCS, B, PROC_ID),
* send(gb_requestPROCS, [IDLIST] )
{test_membership((j, G,ID,P):-
print(Group members flushed from buffer?),
{test_membership([R1REST], GROUP,ID, PROC_ID):-
member(R, GROUP),
check_res(bufffPROC_ID), (ID, LIST, M)),
remove_element(R, LIST, NEWLIST),
set_res(buff(PROC_ID), (ID, NEWLIST, M)},
send(create_packet(PROC_ID, DEST, (ID, NEWLIST, M)))
send(test_membership(REST, GROUP, ID, PROC_ID))},
(test_membership([R{ RESTI, GROUP,ID, PROC_ID):-
send(test_membership(REST, GROUP, ID, PROC_ID)))
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6. After receiving all the IDLISTs, p merges the lists into a before list which it sends to G.

The cbcast_list message that was sent from all the participating group members is
processed within the GBCAST originator’s gbcast_server module. A resource
before_list{{Group) is maintained for the group which keeps the merged version of the
IDLIST as well as a list of members that have sent their lists. Upon receipt of an IDLIST
from a greup member, the member is removed from the before_list{Group). A test_before
behaviour is used to determine if all the members have sent their lists (this would be an
empty list for the second variable of the before list). If so, the before list is sent to members

as the message before_list(IDlist, Group).

(cbeast_list{IDLIST, Group, PROC_ID}):-
check_res(before_list(Group), (LIST, PROCS)},
remove_element(PROCS, PROC_ID, NEW_PROC),
set_res(before_list{Group), {[IDLISTILIST], NEW_PROC)},
send(test_before(Group, NEW_PROC))).

(test_before(GROUP, [):-
check _res(proc_group_table, (GROUP, PROCS)),
check_res(site_group_table, (GROUP, SITE})},
check_res(before_list(GROUP), {IDlist, )},
send(_, _, msg_rqst(SITE, before_list(Dlist, GROUF})))

(test_before{G.P):-print{‘Have not received all idlists yet])

7. Any messages in the wait queue that are also in the before list are transferred to the
delivery queue, maintaining their order. The GBCAST message is also placed on the

delivery queue.

The gbeast_server requires an additional description of the before_list message. Receipt of
this by member modules initiates a transfer of the new (before) List to the respective

delivery_queue modules (sent as new_idlist).

(before_list(List, GROUP):-
check_res(proc_group_table, (GROUP, PROCS)),
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send(send_list(List, PROCS))),
(send_list{List, []):-print(' Updated IDLIST sent’)),
(send_list(List, [M | Rest)):-

send(delivery_queue(M),_, new_idlist(List}],

send(send_list{List,Rest))),

The delivery_queue modules perform the necessary comparisons below to move entries
from the wait_queue 10 the d_gueue. Finally a ger_gbcast message is sent to the respective

priority_gueue modules to obtain a copy of the GBCAST message.

(new_idlist{List):-
check_res(walt_queue(PROC_ID), WAIT),
check_res{d_gqueue(PROC_ID), DELIVERY),
send(compare_queues{WAIT, List,[l, WAIT})),
(compare_queues([], BeforeList, TEMP, WAIT):-
set_res(walt_queue{PROC_ID), WAIT},
check_res(d_queue(PROC_ID), DELIVERY),
set_res(d_gueue(PROC_ID), [TEMP | DELIVERY])),
send{priority_queue(PROC_ID),_.get_ghcast)},
(compare_queues([Top | Rest], BeforeList, N, NewWail)):-
member{Top, BeforeList),
append{Top, N, TEMF),
remove_element(Top, NewWait, WAIT),
send(compare_cgueues(Rest, BeforeList, TEMP, WAIT)),

The priority_queues react to the ger_gbcast message by removing the GBCAST message

from the waiting_message resource and transferring it to the delivery_queue.

get_gbcast:-
check_res(waiting message(PROC_ID), (TOP, M, Label, gbcast_walit)),
remove(walting_message(PROC_ID), (Val, M, Label, gbcast_wait)),
send(_,dq_port(PROC_ID),add_gbcast_message(M, Label)),

8. The contents of the wait queue are appended to the delivery queue and the wait queue is
deleted.
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The delivery_queue modules perform clean up operations after receiving the GBCAST
message from the priority_queue modules. The message (MESSAGE) is received through
the add_gbcast_message sent within the previous step. The message is added to the
delivery queue resource d_queue as well as remaining contents of the wait_queue, after
which the wait_gueue is removed. A clean_gbcast message is sent to the priority_queue

modules to remove the GBCAST message from the head of the p_qgueues.

add_gbcast_message(MESSAGE):-
check_res(d_queue(PROC_ID), DELIVERY],
set_res(d_queue(PROC_ID), [MESSAGE | DELIVERY]),
check res(walt_queue(PROC_ID), WAIT)Y),
check_res(d_queue(PROC_ID), DELIVERYZ2),
set_res(d_queue(PROC_ID), [WAIT | DELIVERY?2]),
remove{wait_queue(PROC_ID))
send(priority_queue(PROC_ID},_,clean_gbcast)

9. The GBCAST messages are removed from the heads of the ABCAST queues.

This completes ihe final step of the protocol. The code shown below is within the
priority_queue module to clean up the GBCAST message from the p_gueue. A check_pg
message is sent as outlined within the ABCAST protocol to commence delivery of any
eligible ABCAST messages.

clean_gbcast:-

check_res(p_queue(PROC_ID}, [TOP IREST]},
set_res(p_queue{(PROC_ID), REST},
check_res(p_queue{(PROC_ID), [PriIR]},

check_res(waiting message(PROC_ID), (Prl, M, Label, State}),
send(check_pqglabeast, PROC_ID, Label)})
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4,2.4 Node model

A node is defined to be composed of a high_level_service (describing the higher level
services), a generic_protocol_server (describing the various supported broadcast |
protocols) and a low_level_service (describing the low level support for the node) module.
The generic_protocol_server module details are presented in the previous section. This
section will present the details for the high and low level services support for the modelled

node. The DSL structure is shown in figure 4-11.

The high_level_service module is intended to generate the communication requests
(typically from an application running on the node). In this example, a set of process
modules residing within this higher order module are defined to generate various broadcast
requests. Each process module possesses a unique PROC_ID and a requests resource. The
latter stores communication requests to be initiated from the process. The resource contains
three fields. The first identifies the protocol requested, the second a message to be executed
by a destination process, and the third indicates the PROC_ID of the destination process.
Each process follows a simple behaviour of cycling through each of its entries in the
requests resource and sending a form message down to the generic_protocol_server. This

behaviour is shown below.

process(PROC_ID)

vitual(SITE)
]

generic_protocol_server(SITE)
low_lﬂel,,senfisrrE)
in|

clock(SITE) 1_manager(SITE, TIME_OUT)
o wm_port

clock_port
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module{process(PROC_ID), [

start_process:-
check_res(requests, (PRO, MSG, DEST)),
set_res(requests, {PRO, MSG, DEST}},
delay(PROCESS_DELAY),
send(_, virtual(SITE), form{PRQ, PROC_ID, DEST, MSG})
send(start_process}]).

This description for a process will loop endlessly to provide a sequence of requests. As
shown in the broadcast protocol models, the form message will initiate a given broadcast
protocol which will eventually result in a msg_rgs( DEST_SITE,MESSAGE) message

being sent from the generic_protocol_server to the lower_level_services module.

The msg_rqst message is a low level message to request a transmission of MESSAGE to a
node address DEST_SITE. The low_level_services higher order module is composed of a
il_manager(SITE,TIME_OUT) and clock(SITE) module. The !l_manager provides the
behaviour for actual communication and transmission to an ATM switch whereas the clock
(as in the previous examples) provides the timing requirements for the communication.
The TIME_OUT parameter identifies a time-out value for the low level communication
protocol. The protocol modelled in this example is a simple send (- «sg) and acknowledge
(ack) protocol. If an acknowledgment is not received within TIME_OUT number of ATM

cells, then an error message is recorded.

To provide low level services, the {/_manager maintains a translation_table resource
identifying the ATM (VPLVCI) addresses for the destination. A message identification is
also recorded for each message (from a message_id resource) to keep track of outstanding
acknowledgments. A rime_out_buffer for each message is used to record the waiting time
for time-out purposes.Finally, a resource (msg_store) maintains a copy of messages

waiting to be processed. The code for handling msg_rgst is given below.
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msg_rgst(l], 3.

msg_rqst{IDEST_SITE! REST], MESSAGE):-
check_res{translation_table(DEST_SITE), (VPLVCI)},
check _res(message_id, VALUE),
COUNT Is VALUE+1,
set_res(message_ld, COUNT),
create(msg_store{(COUNT), (VPI, VCI, DEST_SITE, MESSAGE]},
send(msg_rqst(REST, MESSAGE)

As defined in the ATM model, a new_cell message is sent to and from the switch. Hence

the li_manager must process such a message. This is defined by:

new_cell{(VPI, VCI, MESSAGE):-
send(MESSAGE).

The convention in this example is that MESSAGE can either be in the form of new message
sent from another node - described as hmsg(Sender, Destination, Message_ID, Message) -
or an acknowledgment to a past message (ack(Sender, Destination, Message_ID}). In the
case of a hmsg message, an acknowledgment is sent back to the sender and the contents are
forwarded to the generic_protocol_server. In the case of an ack message, the respective
message is removed from the time_out_buffer - indicating a successful message transfer.

The DSL descriptions are given below:

hmsg(Sender, _, MSGID, MESSAGE}):-
check_res{translation_table(Sender), (VPL,VCI),
send(_, atm_port(SITE), new_cell(VPL,VCI, ack(SITE, Sender, MSGiD})),
send(_, gen_port, MESSAGE)

ack(SITE, Sender, MSGID):-

remove(time_out_buffer(MSGID), (TIME, DATA)),
print(Message successfully recelved at destination’).

There is also a clock message sent from the clock module to initiaic the transmission of a

cell. If a message is awaiting transmission it is sent as a hmsg type message to the
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destination, otherwise a null ATM cell is sent to the switch, The clock message also is used
to update any time-out values for waiting responses (this is performed within the
update_times behaviour shown below). The description of the clock module is the same as

the one given for the ATM switch design and will not be repeated here.

clock:-
check_res(msg_store(MSGID), (VPI, VCI, DEST_SITE, MESSAGE)),
remove{msg_store(MSGID}, DATA),
create(iime_cut_buffer(MSGID), (TIME_OUT, DATAJ),

send(_, atm_port(SITE), new_cell(VPL,VCI, hmsg(SITE, DEST SITE, COUNT, MESSAGE)),
send(update_times)

clock:-

send(_, atm_port(SITE}, new_cell(null,nuil,nullj,
send(update_times)

update_times:-
check_res(time_out_buffer(MSGID), (TIME, DATA)),
NEW Is TIME-1,
set_res(time_out_buffer(MSGID), (NEW, DATA)},
fail.

update_times:- .
check_res(time_out_buffer(MSGID), (TIME, DATA)).
TIME<0,
print(Message *,print{MSGID),print{’ timed out),
fail,

update_times:- print(Timeouts updated?.

4.3 ATM - Broadcast system model

The DSL models presented in the ATM and this section provide the basic building blocks
for defining an ATM based broadband network running the defined broadcast protocols.
This section will demonstrate a design validation and simulation exercise that is typical for

many protocol designs. A network model is shown in figure 4.12 depicting a configuration
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ho_moedule: network

node(1)

‘ node(d)

node(Z)

- - [ -] [+

based upon the network introduced in the ATM section, and the nodes defined in this
section. DSL model details for this level of the example will not be dwelt upon. The
network is assumed to provide a bidirectional virtual path connection amongst the three

nodes.

Each node is assumed to contain ten processes running within its high_level_services
module. The processes are identified (PROC_ID) by a combination of the node number
(SITE) and a unique integer n where 1 < n < 10. The resulting PROC_ID is in the form:
SITE.n. Five process groups are also defined within the model (G1...G5) and each process
has 20 predefined broadcast messages consisting of a mix of the three broadcast protocols.
Each process randomly chooses one of these messages, at random intervals, to broadcast to
the various destinations. A constraint is also defined for the queue resource in the
generic_buffer modules within each ATM switch. The constraint defines a maximum
output queue size to detect overfliowing message buffers (which is one of the major design
issues in ATM switches).

When loaded within DASE, a hierarchy tree is generated by the system as shown in figure

4-13. The protocol modules are represented at the lowest level of the module hierarchy
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(level 3). Hence it may be desirable to implement these modules within sofiware. All nodes
are initiated with messages which randomly generate broadcasts, hence each simulation
run can provide different outputs. A typical output is shown in figure 4-14, The effects of
different observation levels can be seen. There are concurrent broadcast messages
generated by different processes, though the output shows only those from process(1.1)

residing on site 1. The ABCAST message is sent to processes at site2 and 3.

The first segment of code is set at an observation level of 1 which restricts the view to the
higher level protocols being modelled. The sample code shows an ABCAST message
request from the higher level protocol (11), the receipt of the message at one of the
destinations (12}, update of the priority queue (13) and a suggestion of a priority value back
to the destination (14). This view avoids most of the low level details of the ATM protocol.

However it provides a reasonable view of the message generation and delivery for the

different broadcast protocols.

The second segment of the code shows the same simulation run with a different

observation level. In this scenario, the switching function is of interest, hence higher level
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protocol messages are not observed. The code segment shows the receipt of a cell from site
. 1 to a switch’s input port (15), translation of the cell headers (16) and routing to the
destination port on the switch (17).

»sel_level(l),
observation level setto 1
UL,

DSL SIMULATOR: Scheduling message from his(1,200) via gps(1) to ebeast(i}
Source Port: virtual(1,200) Message Is: [orm{abeast,200,(3,2],2bm3)

<0.0> DSL SIMULATOR: new entry added to message queue of abcast(1)
<{.0> DSL PROCESSOR: Message start_process completed at module his(1,200)
<0.0> DSL SIMULATOR: Module abcast(1) busy (delayed) until: 1.0

< 1.0> DSL S{MULATOR: abcast(1) resource updated: Iabel_count to value: 2
Sending an abcast message abm3

DSL SIMULATOR: Scheduling message from abcast(1) via gps(1) to i1s(1,20)
Source Pot: Iport(1) Message {s: msg_rqst{[3,2],abeast{abm3,2,200,1))

DSL SIMULATOR: Scheduling message from 11s(2,20) via gps(2) to abeasi(2)
Source Pori; gen_port Message is: abcast{abm3,2,200,1)

<10.0> DSL SIMULATOR: new cntry ndded to message queue of abcast(2)
<10.0> DSL PROCESSOR: Message hmsg(l,2,2 abcast(abm3,2,200,1)) completed at module 115(2,20)

DSL SIMULATOR: Scheduling message from abeast(2) via abcast{2) to priority_q(2)
. Source Port: pg_port{2) Message is: add_new(abcast,1,abm3,2,200)

<10.0> DSL SIMULATOR: new entry ndded to message queue of priority_q(2)

<10.0> DSL PROCESSOR: Message abcast(abm3,2,200,1) completed at module abeast(2)

< 100> DSL SIMULATOR: Module priority_q(2) busy (delayed) uatil: 11.0

< 100> DSL SIMULATOR: input(2,4) resource updated: celi_buffer to value: 1,2, ack(2,1,2) , unprocessed

DSL SIMULATOR: Scheduling message from input(2,4) via input(2,4) to contrel(4)
Source Port: control_pori(4,2) Message fs: new_cell(2)

<10.0> DSL SIMULATOR: new entry added to message queue of control{4)
<10.0> DSL PROCESSOR: Message new_cell{1,2,ack(2,1,2)) completed at module input(2,4)

DSL SIMULATOR: Scheduling message [rom 1ls(3,20) via gps(3) to abcast(3)
Source Port: gen_port Message is: abeast(abm3,2,200,1)

<10.0> DSL SIMULATOR: new entry added to message queue of abcast(3)
<10.0> DSL PROCESSOR: Mestage hmsg(1,3.1,abcast(abm3,2,200,1)) completed at module 115(3,20)

DSL SIMULATOR: Scheduling message from abeast(3) via abcast(3) to priority_q(3)
Source Porl: pg_port(3) Message is: add_new(abcast,l,abm3,2,200)

DSL SIMULATOR: Scheduling message from priority_g(3) via priority_q(3) to abcast(3)
Sowrce Port: abcast Message is: updaled_priority{abeast,1,2,_1344)

<11.0>> DSL SIMULATOR: new entry added to message queue of abcast(3)
<11.0> DSL PROCESSOR: Message ndd_new(abcast,1,abm3,2,200) completed ot module priority._g(3)

DSL SIMULATOR: Scheduling message from priority_q(2) via priority_g(2) to abcast(2)
. Source Port: abcast Message {s: updated_priority(abeast,1 2, 7436)
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<11,0> DSL SIMULATOR: new entry added o message queue of abcast(2)
<11.0> DSL PROCESSOR: Messape add_new(abcast,1,abm3,2,200) completed at module priofity_q(2)

broadeast send completed for message msg_rqst(l.abeast(l,sug_priovity(_11416).2)
< {1.0> DSL PROCESSOR: Message updated_pricrity{abeast,1,2,_11416) completed at module abenst(2)

yes
>set_level(d},
observation level set to 4

srun.

DSL SIMULATOR: Scheduling message from 115(1,20) via site(1) to fnput(1,1)
Source Port: atm_port(1) Message is: new_cell(2,1 hmsg(1,2,2,nbcast(abm3,2,200,1)))

<2,0 > DSL SIMULATOR: new entry added to message queue of input(1,1)

DSL SIMULATOR: Scheduling INTERNAL message from l1s(1,20)
Messape is: update_times

<2.0 > DSL PROCESSOR: Message clock completed at module ils(1,20)
<2.0 > DSL SIMULATOR: {nput(l,1) resource updated: cell_buffer to vatue: 2, 1 , hmsg(i.2,2.abenst(abm3,2,200,1)) , unprocessed

24796 control_post{l,1} new_celi(])

Source Destin, and Sender input(1,1)control(1)input{1,1)
Module Is control(1) message is new_cell{1)

Checking method in control(1)

Checking method in generic_control(1)
DSL SIMULATOR: Scheduling message from {nput(1,1) via input(1,1) lo controi(1)
Source Port: controt_port(1,1) Message is. new_cell(1)

<2.0> DSL SIMULATCR: new entry added to message queue of control{1)
<20 > DSL PROCESSOR: Meszage new_cell(2,1,hmsg(1,2,2,abcasi(abm3,2,200,1))) compleled al module input(1,})

DSL SIMULATOR: Scheduling message from contral(1) via control(i) to input(1,1)
Source Port: input_port(1,1) Message is: read_rqst

<2.0> DSL SIMULATOR: new entry added to message queue of input(1.1)
«2,0 > DSL PROCESSOR: Message new_cell{1) completed ot module control(1)
<2.0 > DSL STMULATOR: {nput(1,1) resource updated: cell_bufTer to value: 2, 1 , hmsg(1,2,2,abenst(abm3,2,200,1)) , processed

DSL SIMULATOR: Scheduling tiessage from input(1,1) via input(1,1) to control(L)
Source Port: control_port(l,1) Message is: cell_info(2,]1 hmsg(1,2,2 abcast(abm,2,200,1}1)

<2.0> DSL SIMULATOR: new entry added to message queue of control{1)
<2.0 > DSL PROCESSOR: Message rend_rqst campleted at module input(1,1)
control unlt: transferring a cell to output

DSL SIMULATOR: Scheduling message from control(1) via contro(1) to processor(1)
Source Port: proc_port(1) Message is: new_message(2,1,hmsg(1,2,2 abcast(abm3,2,200,1))}

<2.0> DSL SIMULATOR: new entry added to message queue of processor(l)}
<2.0> DSL PROCESSOR: Message cell_info(2,] hmsg(1,2.2,abeast(abmn3,2,200,1))) completed at module control(1)
ATM processor: routing a cell

DSL SIMULATOR: Scheduling message from processor(l} via processor(1) to buffer(1,3)
Setrce Port: oul_port(3) Message {s: atm_cell(2,3,himsg{1,2,2 abcasi(abm3,2,200,1)})

<2.0> DSL SIMULATOR: new entry added to message queve of bulfer{1,3)

<2.0> DSL PROCESSOR: Message new_message(2,1,hmsg(1,2,2 abcast{abm3,2,200,1))) compleled at module processor(1)

<2.0> DSL SIMULATOR: buffer(1,3) resource updated: queue to value: [(2, 3, hmsg(1,2,2 sbeast(ebmn3,2,200,1 )))(null | nuli, null))
<2.0> DSL PROCESSOR: Message atm_cell(2,3,hmsg(1,2,2 abcast(abm3,2,200,1})) compleied af module buffer(1,3}

Figure 4-14 cont,
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l';gl. SIMULATOR: Scheduling message (rom buffer(1,3) via buffer(1,3) to output(1,3)
Source Port: output_port(1,3) Message is: next_info{(2 , 3, hmsg(1,2,2 abcast(abm3,2,200,1))))

DSL SIMULATOR: Scheduling message from output(1.3) via switch{3} 10 input(1,3)
Scarce Port: out_port{i,3) Message is: new_cell(2,3hmsg(1.2,2 abeast(abm3,2,200.1)))

FIGURE 4-14. Sample Simulation Gutput

As the examples try to illustrate, different observation levels during simulation can help the
user focus on the desired level of detail. This in turn, permits the user to zoom at different
segments of the model during the course of the simulation, permitting observation of
pertinent information. The real impact of these features are difficult to depictin words - the

trial and use of the tool is the best way of observing the benefits,
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Chapter 5 - Conclusions

This dissertation presents a rapid prototyping system for architectural level design of
telecommunication systems. The basic notion introduced is the necd for a small
intermediate design language to refine conceptually abstract notions 1o more detailed
executable designs. The Design Specification language has been introduced as a potential
means for bridging the gap between the high level specification languages and behavioral
VHDL for hardware description. This chapter summarizes the major findings and potcntial

avenues for future research.

A major requirement to achieve an adequate level of design support is that the environment
must be able to provide modular and re-usable library components. This is stressed within
DSL with the use of generic modules and flexible interconnection schemes. The use of
Prolog as the underlying implementation language was found to significantly easc the
development of the DSL language. The implementation language did not significantly
impact the simulator performance, as evident from some experimental results provided in

appendix C.

There is a significant amount of design specification languages used by the community at
the front end of the design process. To popularize the use of DASE within design teams,
translators will be required from the specification language in use and DSL. For example,
a DSL to SDL translator could be very favorable to a large amount of designers in the

telecommunication protocol area - permitting SDL models to be refined through DSL and
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synthesized to VHDL.

The dissertation has also provided a significant amount of language detail in terms of
design examples and case studies. This is important to demonstrate the language elements
and also the applicability of DASE within a reasonably realistic design project. Model
development within DSL in the creation of the case studies was found to be quite intuitive.
The relaxed use of port specifications greatly eased the construction of module behavior
and generate generic components. A large portion of code introduced within a digital
telephone switch was shown applicable to a broadband based ATM switch - demonstrating
mode! re-use. The viewing capabilities of the simulator have also been observed to be

very helpful in moving quickly through large design details.

Work on DASE is mainly focussed on hardware design, however the primary notions have
been introduced for software modelling as well. Design exploration at the architectural
level is possible in both domains and has been demonstrated to some extent within the
broadcast protocol case study (chapter 4). In the example, protocol models can be
implemented in hardware or software. Further work can involve in defining interfaces
permitting the synthesis of software directed DSL modules to popular software design

methodologies and tools.

As with any software engineering environment, DASE can be further enhanced to expedite
the design modelling task.For example, future work remains in developing a more
sophisticated and user friendly interface to communicate with the DSL processor. Research
in the area of model verification is also required. A relationship between modules and
predicate-transition nets was introduced, however other formal paradigms may also

provide interesting analysis.

The environment described in this dissertation has been developed to provide the necessary
hooks for design tools within different aspects of the design cycle. For example, synthesis
directed predicates such as module_type, output_list and mode exist to facilitate translation

to executable lower level representations. The constraint predicate can be utilized in
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numerous ways within the design process. It can be used to define performance bounds
during design exploration or it can be used to communicate manufacturing specific

information back into the model.

It should also be restated that DASE is part of a larger concept - where a framework
consisting of lower level design tools such as optimizers, structural synthesizers and
simulators are considered as necessary ingredients in providing a complete solution for the
designer. It is with this knowledge that many of the supporting predicates for DSL have
been devised. With the developmeant of the lower design tools, hopelully a scamless
environment can be obtained permitting users to evolve abstract requircments into
executable designs. The ultimate judge of the success of DASE will be its acceptance

within different telecommunication system design groups.
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Avppendices

Appendix A - DSL pre-defined types

For constraints: A constraint type is a name given to label a given constraint in DSL. Constraint types are
cvaluated within Prolog using the test_constraint predicate. Users can code their own constraint types using
this predicate. The predicate accepts four arguments: the type name, module, and message applied 1o as well
a5 any numeric value associated with the type. Thé predicate is evaluated as true or fail depending upon any
constaint violations on the defined type. For example, the built-in type upper_limit is coded as below:

lest_constraint{upper_limit, Module, Mess, Value):-
message_queue(Module,[(Mess,Qtime)IRest]),
sim_time(Curr_time),
Queved_time is (Curr_time - Qlime),
Value < Queued_time,
print(’ NPT e NN, nl, print_sim_time,
print{’ DSL SIMULATOR: WARNING: Upper_limit Constraint Violation! "),nl,
print_sim_time,print(' Module: ),
print(MModule), print(’ Message: ),print(Mess),nl, print_sim_time,
print("  Constrained Variable '), print(Queued_time),print(’ exceeds upper limit of ),
print(Value),nl,print_sim_time,print(’  {HIINITTER0TEE NI I00T 01000 L0 0Y ) md,

test_constraint(upper_limit, Module, Mess, Value):-
prin{DSL SIMULATOR: conslraint satisfied for ),print(Module),
print(’ on message *),print(Mess},nl.
The built-in types are:
upper_limit; tests to see if an upper bound has been violated, Can be applied to 4 message, or resource.

lower_limit: test to see if a lower bound has been violated. As above.

test_message: tesis to see if 4 message is currently being executed at any other module. If yes, the constaint
fails

record: maintains a list corresponding to queue time for a given message. The list can later be used to plot
statistics.
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Appendix B - DSL DTSS example meodule listings

Tae following is a complete listing of the DTSS example introduced in the text.

f*line_

S *‘f
ho_module(main(10, 0, 5, 2), [subscriber(X), megill_switch(X)7).
f* Main parameters are; no of telephones, switch no, no of channels/card, no of int. cards */

use_ds]_library([
dis_switch,
telephone
D.

isa(subscriber(X), user(X)).
isa(telephone(X), gen_tel(X)).

configure_library(main):-
ho_module(main(T, SW, CH, CARD), XXX),
asserta(isa(mcgill_switch(SW), dts_switch(SW, T, CARD, CH))),
asserta(ho_module(megill_switch(SW), 1)),
configure_tel_con(T, SW).

c< afigure_tel_con(l, SW):-
asserta(module(subscriber(0), [1)),
asserta(module(telephone((), 1)),
asserta(resource(subscriber(0), state, onhook)),
asserta(path(subscriber(0), telephone(0), [hand(0), headset(0)])),
asserta(path(telephone(0), subscriber(0), [headset(0), hand(0)])),
asserta(path(telephone(0), mcgill _switch(SW), [tel_line(0), tel_line(0)])),
asserta(path(megill_switch(SW), telephone(0), [tel_line(0), tel_line(0)])),
write("Telephones connected to the switch..."),nl.

configure_tel_con{T, SW):-T>1,
TTis T-1,
asserta(module(subscriber(TT), [1)),
asserta(module(telephone(TT), 1)),
asserta(resource(subscriber(TT), state, onhook)),
asserta(path{subscriber(TT), telephone(TT), [(hand(TT), headset(TTH])),
asserta(path(telephone(TT), subscriber(T'T), {headset(TT), hand(TT)1)),
asserta(path(telephone(TT), megill_switch(SW), ftel_line(TT), tcl_line(TT)])),
asserta(path(mcgill_switch(SW), telephone(TT), [tel_line{TT}, tel_linc(TT)])),
configure_tel_con(TT, SW).

start_cond:- retract(current_module_processed(XXX)),
asserta(current_module_processed(subscriber(()}),
send(start_a_call(telno(0,1,5)) ).

I* S *f

ho_module(dts_switch(NUMBER, INPUTS, CARDS, CHANNELS), [switch_nct(NUMBER),
interface_card(Y)]).
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use_os]_library([
. generic_switch_element,
interface_comp
D.

configurc_library(dts_switch):-
isa(INSTANCE, dts_switch(N,I,C,CH)),
I1is 1/C,
asserta({isa(switch_net(N), generic_switch_element(C,CH))),
assenta(isa(interface_card(Y), interface_comp(ll, CH))),
asserta(path(interface_card(Y), switch_net(N), [into_port(Y), trunk_in(Y)])),
asserta(path(switch_net(N), interface_card(Y), [trunk_out(Y), inti_port(Y1)),
asserta(ho_module(switch_net(N), [1)),
example_config(N, II, C).

example_config(N, IN, 1):-
Index is N*16,
asserta(ho_module(interface_card(Index), [1)),
tel_port_config(Index, IN, 0).

example_config(N, IN, CARD):-
CARD1 is CARD-1,
Index is N*16+CARD1,
asserta(ho_module(interface_card(Index), [1)),
tel_port_config(Index, IN, CARDI1),
example_config(N, IN, CARD1).

. tel_port_config(Index, 0, CARD1):-
nl,

tel_port_config(Index, IN, CARD1):-
isa(INSTANCE, dis_switch{N,1,C,CH)),
IPRIME is T//C,
INN is IN-1,
Index2 is IPRIME*CARD] + INN,
asserta{path(interface_card(Index), INSTANCE, [t_pair{Index2), tel_line{index2)1}),
asserta(path(INSTANCE, interface_card(Index), [tel_line(Index2), t_pair(Index2)1)),
tel_port_config{Index, INN, CARD1).

I* — e . *]

module(generic_clock(INDEX, NO_OF_CHANNEL),
[
(clock_count(NO_OF_CHANNEL):- send(ctock_count(0)),
send(-,clock_port(INDEX),frame_cycle)),
(clock_count(NEW):- NEW<NO_OF_CHANNEL,
Clock_rate is (125/NO_OF_CHANNEL),

delay(Clock_rate),
COUNT is NEW+1,
send(-,clock_port(INDEX),clock(NEW)),
send(clock_count(COUNT)))
D.
. start_cond:- write("Setting up initial messages "),nl,
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isa(X, generic_clock(_, NO)),
retract(current_module_pcressed(XXX)),
asserta(current_module_processed(X)),
send(clock_count(NQ)),

configure_library(generic_clock).

I

— =%/

madule(generic_linein(Z},

[

(channel_sync;- set_res(channel_count,0),

)

Prnt(oo55>00500550050b0000H> ),
print(line_ lin¢ in card:channel sync received \n')

(channel_message(DATA):- check_res(channel_count, CHANNEL),

D.

check_res(card_number, CARD),

CHAN is (CHANNEL*16+CARD)},

PHNL(>5o35 000053 BIB IS > %
print('line_ line in card: updating channel "),
print(CHANNEL),print(' with data: "),printi(DATA),
CHAN2 is CHANNEL+1,

set_res(channel_count, CHAN2),

send(-, sp_port(Z), buffer_update(CHAN,DATA))

configure_library(generic_line_in):-
isa(X,generic_line_in(_)),
module(X, List),
get_index(X, Value),
asserta(resource(X, card_number, Value)),
asserta(resource(X, channel_count,0)),

fail.

configure_library(generic_line_in):-
write(’ generic_line_in: All resources successfully configured...’),nl.

¥ =

p— )

module(generic_lineout(Z),

[

(frame_cycle:-

)
{clock(0):-

send(-,out_port(Z),channel_sync),
PHE(>>550005555p350>5005055> ),
print(' DS-30 line output card: Frame sync message sent \n')

check_res{card_number, CARD),
check_res(channel_out_buffer(CARD), MESSAGE),
send(-,out_port(Z),channel_message(MESS AGE)),
Prnt(>oo0000 0500533550555 ),
print(‘Line out card number: "), print(CARD),

print(' on channel 0 QUTPUTTED command ),
printlMESSAGE),
set_res(channel_out_buffer(CARDY), unused)
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)
{clock(COUNT):-
check_res(card_number, CARD),
COUNT?2 is (COUNT*16+CARD),
check_res(channel_out_buffer(COUNT2), VOICE),
send(-,out_port(Z),channel_message(VOICE)),
T PSSSESLAS SRS LSS5 L5 > N
print(line_ out card number: ), print(CARD),
print(’ : OUTPUTTED message ‘),
print(VOICE),
print(’ in channel "),
printl{COUNT)
)
(update_buffer(ADD,DATA):- ADD>15,
set_res(channel_out_bulfer(ADD), DATA),
LTS SESSLELSSDSS LS S8 S0 e 8
print{'linc_ out card: new channel data updated \n'},
print(' address is "), print'(ADD)
)|
(update_buffer{ ADD,DATA):-
check_res(channel_out_buffer(ADD),unused),
set_res(channel_out_buffer(ADD), DATA),
PrN(>D55050005o00oe0000e00bb> ),
prini(line_ out card: new channel data opdated 'n’),
print(’ address is '), print{ADD)
)l
(update_buffer(ADD,DATA):-
delay(0.5),
send(update_buffer(ADD,DATA))
)
.

configure_library(generic_line_out):-
isa(X,generic_linc_out(Z}),
isa{YY'Y,generic_switch_element(SIZE, RATE)),
module{X, List),
get_index(X, Value),
asserta(resource(X, card_number, Value)),
generic_line_out1(X, Value,RATE),
fail.

configure_library(generic_line_out):-
write(' generic_line_out; All resources successfully configured..."),nl.

generic_lineout1(X)Y, 0):- nl,
wrile(' generic_line_out: Resource channel_out_buffer for "),
write(X),write(' has been configured...”),nl.

generic_lineout! (Name,Index,COUNT):- COUNT>0, CC is COUNT-1,
TEMP is (CC*16+Index),
asserta(resource(Name, channel _out_buffer(TEMP), unused)),
generic_line_outl(Name, Index, CC).
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module(generic_frame_control(Z, LIMIT),
{
(frame_start:- check_res(speech_frame_counter, COUNT),
check_res(number_of_in_cards, INPUT),
COUNT<LIMIT,
TEMP is LIMIT*INPUT,
FDELAY is 125/TEMP,
delay(FDELAY),
COUNT2 is COUNT+1,
PHNL(S>5 55505555055 SH DD %
pritt(FRAME CONTROL: new frame count =),
printd(COUNT?2),
set_res(speech_frame_counter, COUNT?2),
send(channel _detect(COUNT?2, INPUT))),
(channe]_detect(COUNT, INPUTY):-
COUNT<INPUT,
send(sp(Z), sp_sync_port(Z), command_frame._select(COUNTY),
send(control_processor(Z), proc_in_port(Z), command_frame_select{(COUNT)),
send(frame_start) ),
{channel_detect(COUNT, INPUT):-
send(sp(Z), sp_sync_pori(Z), frame_select(COUNTY),
send(control_processor(Z), proc_in_port(Z}, frame_sclect(COUNT)),
send(frame_start) ),
(frame_start:-check_res(speech_frame_counter, COUNT),
LIMIT2 is LIMIT-1,
COUNT>LIMITZ2,
sel_res(speech_frame_counter, -1),
sond(frame_start) )
)2

configure_library(generic_frame_control):-
isa(X,generic_frame_control(ZZ, )),
module(X, List),
get_index(X, Z),
asserta{resource(frame_control(Z), speech_frame_counter, -1)),
generic_frame_controli(Z),
fail,

configure_library(generic_frame_control):- wrile(' gencric_frame_control: Al resources successfully con-
figured..."),nl.

generic_frame_control1(Z):-
asserta(resource(frame_control(Z), number_of_in_cards, 0)),
isa(X, generic_line_in(XX)),
moduole(X, ),
resource(frame_control(Z), number_of_in_cards, COUNT),
COUNT!1 is (COUNT+1),
retract(resource(frame_control(Z), number_of_in_cards, XXX)),

asserta{resource(frame_control(Z), number_of_in_cards, COUNTIL)),
write(' generic_frame_control: Number of ling_ cards detected is '),
write(COUNT1),nl,

fail,

S — mm=m—=———m¥/
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module(generic_sp(X),

{

{buffer_updaie(ADDRESS,DATA):- delay(0.5),
sel_res(channel_in_buffer( ADDRESS), DATA),
PHNL(>>5>>55555005>00005055505> ),
print("SP MODULE: In_buffer updated for channel '),
printl ADDRESS) ),

(frame_seleci(COUNT): - check_res(channel_in_buffer{COUNT), VOICE),
delay(0.4),
check_res(channel_in_bufler{COUNT), VOICE),
send(speech_bus(X),sp_port(X),speech_data(VOICE))),

(frame_select(COUNTY:- nLprnt(>>>50>>055 500000 55555555> ),
print("SP module: speech bus unused at frame '),
printl{COUNT)),

(command_frame_select{Channel);-
check_res(channel_in_buffer(Channel}, COMMAND),
set_res(channel_in_buffer(Channel), unused),
send(-, proc_in_port(X), channel_command(Channel, COMMAND)))

D.

configure_library(generic_sp):-
isa(NAME, generic_sp(I)),
isa(DSNAME, generic_line_in(XX)),
module(NAME, ),
get_index(NAME, Index),
module(DSNAME, ),
get_index(DSNAME, Value),
isa(NAMEI1, generic_switch_clement(NNLINES MMCHAN}),
MM is MMCHAN-1,
Low_bound is (Index¥*16-1),
Up_bound is {Index*16+16),
Low_bound < Value,
Up_bound > Value,
generic_spl(Index, Valug, MM),
fail.

configure_library(generic_sp):-
write(' generic_sp: All resources successfully configured...”),nl.

generic_spl(NO, Y, -1):- write(' generic_sp: Resource channel_in_buffer for SP has been configured...”),nl.

generic_spl(NO, Index,COUNT):- COUNT > -1, TEMP is {COUNT*16+Index),
asserta(resource(sp(NO), channel_in_buffer(TEMP), line_indata)),
Next is (COUNT-1),
generic_spl(NO,Index, Next).

¥ == e — —— e *f

ho_module(generic_switch_element(M,R),
[
line_in(N), line_out(N),
outclock(lN,R), frame_control(M),
time_switch(M), sp(M),
speech_bus(M),
control_processor(M), memory(M)
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D.

. use_dsl_library([

generic_line_out,
generic_line_in,
generic_frame_control,
generic_sp,
generic_tlime_swilch,
generic_clock,
pots_server

D

isa(line_in(X), generic,_line_in(X)).

isa(line_out(X), generic_linz_out(X)).
isa(frame_control{X), generic_frame_control(X, 20)).
isa(outclock(X), generic_clock(X, ).

isa(sp(X), generic_sp(X)).

isa(time_switch(X), generic_time_switch(X)}).
isa(control_processor(M), pots_server(M)).

1* Speech Bus Module  -—----ecomenaaen */
module(speech_bus(M),
[
speech_data(VOICEY):- set_res(persistent_port,(specch_line(M), VOICE))
.
. * Control Processor Module --------+--=eveee- *f

module(control_processor(M),
1
(frame_select(COUNT):-
delay(0.05), send(-, mem_port(M), mem_rd_rgst(COUNT))
),
{memory,_data(DATA}:-
delay(0.02), send(-,time_port{M),address_selectl(DATAY))
),
(command_frame_select(CH):-print('Control Proc: Channel command period ; *),printh(CH)
)
(line_indata:- print(' No command message detected for current channel \n')
)l
{channet_command(CH, COMMAND):-
send(COMMAND)
)
.

* memory behaviour
memory read delay is set at 0.1 microsecs= 100 nsecs
¥/

module(memory(M),
[
. (mem_rd_rgst(ADDRESS):- delay(0.1),
PHN>>o00550505m>o050035055> ),
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print('word being read from memory address of '),
printl{ ADDRESS),
check_res(route_table(ADDRESS), DATA),
send(control_processor(M), proc_port(M), memory_data(DATA)),
{mcm_print(A,D);- delay(0.1),
set_res(routc_table(A), D),
P Sooo0o30D503055050He>> ),
printl('routing table in RAM updated. "
)
.
constraint{sp(M), frame_select(X), upper_limit, LIMIT):-
resource(frame_control,numnber_of_in_cards, INPUT),
LIMIT is 3.90625/INPUT.
constraint{control_processor{M), frame_select(X), upper_limit, 0.051).

configure_library(generic_swilch_clement):-
isa(X,generic_switch_element(SIZE, RATE)),
ho_module(X, []),
gel_index(X, Index),
B_SIZE is (2*SIZE*RATE),
retract(isa(INSTANCE, generic_clock(CARENOT, 1)),
asserta(isa(INS TANCE, generic_clock(CARENOT, RATE))),
generic_switch_element1(X, Index, SIZE),
generic_switch_clement2(Index),
create_route_table(Index, B_SIZE),
fail.

configure_library(generic_switch_element):- write(' generic_swilch_element: Al resources successfully
configured...”),nl,

generic_switch_element1(X, Index, 0):- write('Generic switch (),write(Index),write(’): Created internal
modules,),nl,

generic_swilch_element1(X, Index, Size):- Size > Q,
Next_size is (Size-1),
Index1 is (Index*16+Next_size),
asserta(module(line_out(Index1), 1)),
asserta(module(line_in{Index1}, {1)),
asserta(module(outclock(Index1), (1)),
asseria{path(time_switch(Index), line_out{(Index1)), [line__port((Index1}),
ts_line__port((Index1 )1},
asserta(path(line_in(Index1), sp(Index), {sp_port(Index1), ds_port(Index)])),
asserta(path(outclock(Index1), line_out(Index1}, [clock_port(Index1), dscp(index1)])),
asserta(path(X, line_in(Index1), [trunk_in(Index1), in_port(index1)1}},
asserta(path(line_out{Index1), X, [out_port(Index1), trunk_out(Index1)1)),
asserta(path(control_processor(Index}, line_out{Index1}, [ling_port(Index1),
ds_line_port(Index1)1)),
generic_switch_element1(X, Index, Next_size).

generic_switch_element2(Index):-asserta(module(sp{Index), [1)),
asserta(module(time_switch(Index), [1)),
asserta(module(frame_control(Index), 1)),
asserta(resource(speech_vus(Index), persistent_port, (speech_line(Index), voice_data))),
asserta(path(sp(Index), speech_bus(Index), [sp_port(Index), speech_line(Index)])),
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asserta(path(sp(Index), control_processor(Index), [proc_in_pon{Index}, sp_int_port(Index)})},
asserta(path(time_switch(Index), speech_bus{Index), [speech_line(Index), speech_line(Index)))),
asserta(path({frame_control(Index), control_processor({Index), [proc_in_port(Index),
frame_port(Index)])),
asserta(patb(frame_control(Index), sp(Index), {sp_sync_pori(Index), frame_sync(Index)})),
asscrta(path(mermory(Index), control_processor(Index), [proc_pon(Index), mem_port(index)])),
asserta(path(control_processor{Index), memory(Index), [mem_port{Index), proc_port(Index)),
asserta(path(control_processor(Index), time_swilch{(Index}, [time_port(Index),
proc_port(Index)])).

create_route_table(Index, -1):-
wrile('setup routing table...),nl.

creale_route_table(Index, SIZE):-
SIZEl is SIZE-1, SIZE > -1,
asserta(resource{memory(Index), route_table(SIZE),SIZE)),
create_route_table(Index, SIZE1),

/* Time Switch Module *f

module(generic_time_switch(Z),

[

(address_select{ADDRESS):~ delay(0.1),
check_res(address_map(ADDRESS), CARD),
probe(speech_line(Z), DATA),

s [{ESSSSL NSRS L S5 S5 555 S o T §
print(‘'Time_switch: latched onto data: 7, print{DATA),
send(-, line__pori{CARD), update_buffer(ADDRESS,DATA)) ),

(address_select{ADD):-
PNt S>SOOOOLPSOEOHER>>>5>>>  Time_switch: Address ),
print(ADD),print(" undefined. \n")

)

D.

configure_library(generic_time_switch):-
isa(X,generic_time_switch(XX)),
isa(NAME, generic_line_out(_}),
module(X, ),
get_index(X, I},
Low_bound is (I*16-1),
Up_bound is (I*16+16),
module(NAME,_},
get_index(NAME ,Index),
Low_bound < Index,
Up_bound > Index,
resource(NAME, channel_out_buffer(Value), LL),
asserta(resource(X, address_map(Value), Index)},
fail.
configure_library(generic_time_swilch):-
write(" generic_time_switch: All resources successfully configured...’),nl.

constraint(time_switch(Z), address_select(A), upper_limit, 0.11).

* —————= =+
ho_module(interface_comp(INPUT, CH),
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[
line_card(CARD), controlle{ CARD), clock(CARD)

D.

use_ds!_library(]
sub_server,
line_card,
generic_clock

D.

configure_library(interface_comp):-
isa(X, interface_comp(INPUT,CH}),
ho_module(X, YYY),
gel_index(X,CARD),
asserta(module(controller(CARD), {1)},
asserta(module(line_interface(CARD), 1)),
asserta(module(timer(CARD), [1)),
asserta(path(X, line_interface(CARD), [inti_port(CARD), lin_port(CARD)])),
asserta(path(line_interface(CARD), X, [lout_port(CARD), into_port{CARD)])),

asserta(path(line_interface(CARD), controller(CARD), [proc_pori(CARD),
proc_portl(CARD)))),
asserta(path(controller(CARD), line_interface(CARD), [proc_port(CARD),

proc_port(CARD)])),
asserta(path(timer(CARD),line_interface(CARD),
[clock_port(CARD),clock_port(CARD)1)),
assertaisa(line_interface(C ARD). line_card(CARD, CH))),
asserta(isa{timer(CARD), generic_clock(CARD, CH))},
asserta(isa(controller(CARD), sub_server{CARD, INPUT))),
config_controller(X, CARD, CH),
fail.
configure_library(interface_comp):- nl,nl, write(' Completed configuring interface components.’),nl.

config_controller(X, CARD, 0):-
write('set-up controller paths...,nl.

config_controller(X, CARD, CH):-CH>0,
CCis CH-1, C is CARD*5,CH2 is C+CC,
asserta(path(X, controller(CARD), [t_pair(CH2), twisted_pair(CH2)])),
asserta(path(controller(CARD), X, [twisted_pair(CH2), t_pair(CH2)])),
config_controller(X, CARD, CC).

j* —————— —_ Y — =¥/

module(line_card(Z, INPUT),
[
(frame_cycle:-
send(-,lout_port(Z),channel_sync),
PrN(So50>5055555555H0B55> ),
print(' line output card: Frame sync message sent \n')

)!
(clock(0):-
check_res{channel_buffer(0), VOICE),
send(-,lout_port(Z),channel_message(VOICE)),
PN >5D5D50030BHBHIFIEN> ),
print(Line card ; ),
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print(‘channel 0 OUTPUTTED command '),
printl(VOICE),
set_res(channel_buffer(0}, unused)
)'
{clock(COUNTY:-
check_res(channel_buffer(COUNT), VOICE),
send(-,lout_port(Z),chanrel_message(VOICE)),
prnt(>oooo0m00000000000000be>> ),
print{’ line out: OUTPUTTED message "),
print(VOICE),
print(’ in channel ),
print{ COUNT)
)
(update_buffer(ADD,DATAY):- check_res(channel_buffer(ADD),XX),
set_res(channel_buffer{ ADD), DATA)
)

(channel_sync:- set_res{channel_count,0),
PHR(Soo 505D BBEDBLIDIDIIISHH %
print('line card:channel sync received \n'")

)!

(channel_message{DATA):- check_res(channel_count, CHANNEL),
CHAN2 is CHANNEL+1,
set_res(channel_count,CHAN2),
send(-, proc_port(Z), channel_update(CHANNEL,DATA))

)

D.

configure_library(line_card):-
isa(X,line_card(Z, CH)),

module(X, List),

asserta(resource(X, channel_count, 0}),
get_index(X, Value),
configure_buffers(X, Value,CH),

fail.

configure_library(line_card):-
write(' line card: All resources successfully configured...),nl,

configure_buffers(X,Y, -1):- nl,
write(' line_card: Resource channel_out_buffer for "),
write(X),write(’ has been configured..."),nl.

configure_buffers(Name,Index,COUNT):- COUNT > -1,
asserta(resource(Name, channel_buffer(COUNT), unused)),
Decrement is (COUNT-1),

configure_buffers(Name, Index, Decrement).
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Appendix C - Experimental Results

This section summarizes the results of two experiments performed using the DASE tool.
The experiments are presented to elaborate some of the simulation performance capabili-
ties of the DSL simulator. The first simulation is several simulations of the DTSS switch
example presented in sections 2 and 3 of the dissertation. The second simulation is that of
the ATM switch case study presented in section 4. All simulations were performed on a
Sun 10/30 platform with 64 Mbytes of RAM. The workstation was dedicated only for the
simulations. The resulting figures include operating system overhead.

1. DTSS simulation:

A DTSS switch was simulated with different numbers of subscribers, The numbers of sub-

scribers were:
2, 64, 640, 64,000, and 126,000.

Telephone traffic was simulated to last for exponential intervals between 2-8 seconds
per call. Each simulation run was for a simulated period of 15 minutes of switching activ-
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ity. The figure above presents tie performance figures for the example. The time to simu-
late increases linearly as the complexity (number of telephone subscribers) increases. At
the extremes, a two subscriber interaction can be simulated under 13 minutes of CPU
time, whereas a 126,000 subscriber simulation will take over 33 hours of simulation time.

2. ATM simulation:

An ATM switch (as described in section 4) was simulated. The simulation consisted of
different switch sizes of 2, 4,8 and 16 input/output ports. Each port was loaded by a con-
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FIGURE A-2. Simulation of different ATM switch sizes

tinuous traffic stream of ATM cells at a rate of 155 Mb/sec. this results in an effective cell
rate of 2.8 microseconds / cell. A recording of the CPU time for each configuration was
taken at 2.8 and 8.4 seconds of simulated time. Approximately 1 million cells were gener-
ated at each port every 2.8 seconds.

The results are plotted in figure A-2. As can be observed, the simulation times arc gener-
ally extensive. However the times increase linearly.

Conclusions

The simulations indicate a linear progression of simulaiion times as model complexity
increases. The simulator performs reasonably well, however for demanding simulations
such as the ATM switch, accelerated simulation techniques would be desirable in order to
obtain quicker results. Designer experience and knowledge is truly required to reduce

unnecessary simulation runs and focus on the important aspects of a design.

158



Appendix D - DSL - VHDL Differences

This section highlights the major differences between DSL and a specialized hardware
description language YHDL. The semantics of the languages are similar in some respects
but strongly different in inany others.

It is worthwhile understanding some of the major issues surrounding design automation
tool application. As one moves from an abstract level of design (architectural) to more
detailed levels (such as RTL), there is a strong shift of detail in the models created at each
level. At the architectural level, litide timing detail is provided compared to the lower lev-
cls. However, freedom is given to structural aspects of the model so that design explora-
lion can be facilitated. At this point of design, a certain level of ambiguity is introduced
which is result of the flexibility in modeling with loosely typed constructs.

Ambiguity must be resolved by the designer and environment until a synthesizeable
design is reached. At this point, when synthesis to a lower level is possible, a mapping
must take place from low timing detail to higher timing detail. To accommodate this, the
environment must be able to fill the essential details. Hence some type of compromise is
required by the synthesis tool (such as cost, area or performance) so that details can be
added. It is this fact that can make synthesis tools very poor performers as compared with
experienced human counterparts.

The strong distinction between design exploration (a key requirement at the architectural
level) and design formalization (2 major requirement between the lower levels of abstrac-
tion) dictate the need for different languages. Hence, DSL is an internal language to sup-
port the former whereas VHDL the latter.

The major difference in the languages is the level of abstraction in which they are to be
applied. VHDL's applicability is approximately limited to the RTL to circuit level design.
Application to higher levels is also probable, but unlikely for several reasons. The lan-
guage contains many simulator oriented semantics (such as wait on event of a simulator)
which are superfluous at higher levels of design. The language carries primitives which
are not highly desirable for architectural level designers (especially not for software
designers) such as signals and transport (low level timing) commands. Hence architectural
level representation could be possible, but would be highly cumbersome using a language
that was not intended for this purpose.

VHDL is a good language for hardware formalization, but very poor for design explora-
tion. This is not a negative feature, but again related to the area of applicability of VHDL.
As an RTL description language, it provides strong typing of communication and timing
between entities. However, as the absiraction level increases, detail is lost and less restric-
tions on the typing of the entities is required to permit design exploration, This necessi-
tates the use of a language such as DSL.

DSL and VHDL both use a simulator for timing verification. However, simulator seman-
tics are not embedded within the DSL language like it is for VHDL. This is a highly desir-
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able feature of an architectural language since it permits formal verification. Such
techniques have been cumbersome and fleeting for VHDL representations, whercas Petri-
. net based verification (as well as others not explored) can be applied to DSL moduics.
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