
National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1AON4

NOTICE

395. rue Wellington
Ottawa (Ontario)
K1AON4

AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

CaTI d,·,, a a

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

•

•

•

SPECIFICATION DRIVEN ARCHITECTURAL MODELLING

ENVIRONMENT FOR TELECOMMUNICATION

SYSTEMS SYNTHESIS

ORYAL TANIR

Department of Electrical Engineering

McGill University, Montreal

October 1994

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements of the degree of

Doctor of Philosophy

© Oryal Tanir 1994

••• National Ubrary
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic services Branch des services bibliographiques

395 Welli!l9lon Sireet 395. rue Wellington
OUawa, Onlario onawa (:Jnlario)
K1AON4 K1AON4

Our ~Itl' Noir" rtltrt'flC6

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LffiRARYOFCANADATO
REPRODUCE, LOAN, DISTRmUTE OR
SELL COPIES OF mSIHER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING TffiS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSmP
OF THE COPYRIGHT IN mSIHER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT mSIHER
PERMI8SION.

L'AUTEUR A ACCORDE UNE LICENCh
IRREVOCABLE ET NON EXCLUSIVE
PERMETfANT A LA BffiLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRmUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-00138-5

Canada

SPECIFICATION DRIVEN ARCHITECTURAL
MODELLING ENVIRONMENT FOR

TELECOMMUNICATION SYSTEMS SYNTHESIS

Oryal Tanir
Ph.D. Thesis May 1994

Departrnent of Electrica1 Engineering

SHORT TlTI.E:

Architectural modelling environment for telecommunication systems

•

•

•

Absi:ract

Design automation has steadily contributcd to improvements witnessed in lhe syslem

design process. Initial applications were lo address low ltvel design concerns such as tran­

sistor layout and simulation; however th.:: focus of lools has slowly been progressing up

the design abstraction scale. The current stale-of-the-art provides modelling capabililies at

different levels of abstraction, but solutions for synthcsis issues at lhe regisler-lrar.sfer and

lower levels are the norm. The proliferation of design description languages at differenl

abstraction levels has prompted the need for standardization (VHDL and Open-Vedlog) lo

promote design migration and re-use.

While design automation has helped in reducing design time-lines and design churn. a

major souree of design difficulties is just recently being addressed and promise t:J be lhe

next wave in design automation applicability. The problems arise within lhe architeclural

(or system) level of abstraction very early in the design cycle. The recent research in lhis

field attempts to bddge the design process gap belween specification and design, and pro­

vides a platform for experimenting with hardware and software lrade-oŒs.

This dissertation studies the requirements for an environment for archileclural design. In

particular. an environment specific to the telecommunications domain is proposed in order

to limit the potentially large design exploration space. An intermediate design language is

also introduced to aeeommodate both high level modelling and synlhesis driven by lhe

user and environment. Finally a Design Analysis and Synthesis Environment (DASE) is

deseribed to facilitate the architectural level aetivities. The environment, a proof of con­

cept, provides generic modellibrary, simulation. synthesis and Petri-net analysis support.

Realistic design examples are explored, to illustrate architectural design activities wilh lhe

environment.

•

•

•

Résumé

Les techniques d'autorr-atisation pour la conception des systèmes digitaux jouent un rôle

important dans ('avancement du processus de développement de ces systèmes. Les pre­

miers outils automatiques apparus s'adressaient surtout aux problèmes physiques et géo­

métriques de la conception, c'est-à-dire les questions de bas niveau d'abstraction comme

la simulation ct l'emplacement des transistors. Cependant l'évolution des outils se marque

par une progression du niveau d'abstraction employé par ceux-ci. Présentement les outils

les plus sophistiqués offrent un éventail de niveaux d'abstraction variant des transistors

jusqu'à la modélisation architecturale en passant par les abstractions au niveau des portes

logiques, des transferts entre registres et des algorithmes. Non pas comme les outils de

modélisation qui varient sur toute la gamme des niveaux d'abstrllction,la grande partie des

outils de synthèse se limite actuellement aux niveaux d'abstraction entre ceux des transis­

tors et des transferts entre registres. L'apparition d'une panoplie de langages de spécifica­

tion sur plusieurs niveaux d'abstraction souligne le besoin d'une standardisation (VHDL et

l'Open-Verilog) pour faciliter la réutilisation et la migration des conceptions.

Même si l'automatisation de la conception a déjà produit des résultats pour la réduction de

l'intervalle temporel requis pour la conception ainsi que la simplification des étapes itéra­

tives nécessitées par les rajustements, une source importante de difficultés retrouvées en

conception n'a été adressée que récemment et les solutions sont prometteuses pour la pre ­

chaine génération des outils pratiques en conception automatisée. Les problèmes survien­

nent tôt dans le eycle de conception au niveau d'abstraction architectural. Les recherches

récentes en ce domaine tente de faire le lien entre la spécification et la conception tout en

permettant une expérimentation sur les conséquences de la division d'un système en une

partie logiciel et une partie matérielle.

ii

•

•

•

Cette ~hèse étudie les exigences d'un environnement de conception au niveau architectural.

Plus particulièrement, un environnement spécifiquc aux systèmes de télécommunications

est introduit pour amoindrir les espaces dc solutions vastes qui sont rcliés au prohlème plus

général. De plus un langage intermédiaire est présenté pour la modélisation ct la synthèse

exercées par l'utili~ateur et sor: environnement. Finalement, un environnement d'analyse

et de synthèse (DASE) est exposé pour faciliter les activités au niveau architectural. Cet

environment est une preuve du concept émis dans la thèsc ct il soutient unc lihrairie de

modèles génériques, la simulation, la synthèsc ct l'analyse par réseau de Petri. Des exem­

ples réalistes sont présentés pour démontrer l'efficacité de l'environnement au niveau

architectural.

Hi

•

•

•

Acknowledgments

This dissertation would not have been possible without the support and guidance of many

different individuais. First, l wish to thank and acknowledge my academic advisors Vinod

K. Agarwal and Pramod C. P. Bhatt for their invaluab!e contribution to this work wd my

personal development. Their foresight and consistent ent;.:~iasm has been a constant

inspimtion. Through numerous interactions, Prof. Agarwal has helped forge my reasoning

and thinking processes that are essential in tackling current and future problems that l may

encounter. Prof. Bhatt has been a relentiess, organized and pragmatic mentor who has

deeply influenced the way in which l now perceive problems.

l would also Iike to thank Eric Masson from the MACS laboratory for his help in the

french translation of the abstract, as weil as numerous information sessions which contrib­

uted to the development of my work.

On another level, none the less important, l would like to thallk my parents for their love,

support and sacrifices that have led me to the point l am at now. l am also indebted to my

wife, who has contributed te my development as a person over the last few years. Her con­

stant understanding and love has been a beacon of light to my work and will guide me

brightly into the future. 1would also like to thank someone very special, my son Dilhan,

who's recent appearance to this world has inspired my work.

This work has been generously supported and made possible with the understanding of

various people at Bell Canada. l would like to thank Francois Coallier's encouragement,

and 1would also like to thank Jim Holz and Manine Corriveau-Gougeon for their support

and patience during the thesis work.

iv

•

•

•

Table of Contents

Abstract i

Résumé ii

Acknowledgments iv

Table of Contents v

List of Figures viii

List of Tables x

Claim of Originality xi

Chapter 1 . Introduction 1

1.1 Perspective 2

1.2 Rapid systl'm prototyping 6

1.3 Architectural design and modelling 8

1.4 Dissertation 0l1tline 10

Chapter 2 . The Design Specification Language 12

2.1 Introduction - Architectural Issues 12

2.1.1 System design 13

2.1.2 Design execution 14

2.1.3 Synthesis IS

2.1.4 An Intermediate language 16

2.2 The DSL modelling primitives 18

2.2.1 Modules: DSL building blocks 19

2.2.2 Model composition 21

2.2.3 Module behavioral description 24

i. Communication primitives 26

v

•

•

•

iL Data ma.lipulation 29
iii. Timing 31

2.2.4 Inheritance and hierarchy 33

2.2.5 Module behavior as Predicatcffransition nets 36

2.3 Design development support 43

2.3.1 Co-design constructs 44

2.3.2 Model refinement 47

2.4 DSL modelling example 50

2.4.1 The Generic Switch element 53

2.4.2 The Interface Unit(s): 57

2.4.3 Software constructs - Telephone Services 58

Chapter 3 - Design and Synthesis Environment (DASE) 62

3.1 Introduction 62

3.2 DSL Processor 63

3.2.1 Library support 64

32.2 DTSS example revisited - library support 68

3.2.3 Modelling support 70

3.3 Petri-Net analysis 72

3.3.1 Module analysis 72

3.3.2 Higher-order analysis 75

3.4 DSL simulator 75

3.5 Synthesis 78

3.5.1 Pre-synthesis support 78

3.5.2 DSL to VHDL Parser 82

3.5.3 DSL to VHDL translation 83

3.5.4 DTSS example revisited - experimentation 89

Chapter 4 .. Case Studies 94

4.1 ATM Switch Design 95

4.1.1 Introduction 95

4.1.2 The DSL model: 98

4.1.3 The Input module: 99

4.1.4 The Control module: 100

vi

•

•

•

4.1.5 The Processor module: 101

4.1.6 The Output_unit module: 102

4.1.7 Network model - module reuse 103

4.2 Reliable distributed broadcast protocols 106

4.2.\ The ABCAST protocol L07

4.2.2 The CBCAST protocol 114

4.2.3 The GBCAST protocol 117

4.2.4 Node model 127

4.3 ATM - Broadcast system model 130

Chapter 5 . Conclusions 136

References 139

Appendices 145

vii

•

•

•

List of Figures

FIGURE 1-1. Typical Design Flow for Large Telecommunication Systems 2

FIGURE 1-2. Typical Project Cost Demands 4

FIGURE 1-3. Different Views of Design 7

FIGURE 1-4. Architectural Design Automation Framework 10

FIGURE 2-1. The Typical Architectural Design Phase 13

FIGURE 2-2. DSL Constructs 20

FIGURE 2-3. Basic states of a module 20

FIGURE 2-4. Example of possible communication between modules 28

FIGURE 2-5. Example of Persistent Port 30

FIGURE 2-6. Examples of random number generation 32

FIGURE 2-7. Module inheritance and re-use 34

FIGURE 2-8. Predicate Net Representation of a Module 39

FIGURE 2-9. Predicateffransition Net correspondence with DSL statements 40

FIGURE 2-10. DSL - PrTN translation algorithm 42

FIGURE 2-11. PrTN representation of timer example 43

FIGURE 2-12. ModeIIing of a System 44

FIGURE 2-13. CO-Design Construct Examples 46

FIGURE 2-14. DSL Model Refinement 48

FIGURE 2-15. High Level Depiction of Switch Example 51

FIGURE 2-16. DSL Model of Generic Switch Element '" 54

FIGURE 2-17. DSL Model of the Interface Unit 58

FIGURE 3-1. DASE Organization 63

FIGURE 3-2. Model Hierarchy in DSL 64

FIGURE 3-3. Library Module Structure 65

vüi

•

•

•

FIGURE 3-4. Sampie Configuration Rule Structure 67

FIGURE 3-5. Library Construction of Module "x" 68

FIGURE 3-6. Configuration Rule Example 69

FIGURE 3-7. Analysis setup for Module Behavior , .. 73

FIGURE 3-8. Analysis example of timer 74

FIGURE 3-9. Simulator Data Structures 75

FIGURE 3-10. Sample Output of List Command 78

FIGURE 3-11. Output Port Preparation for Synthesis 80

FIGURE 3-12. The Synthesis Process 81

FIGURE 3-13. Parse Tree Structure 82

FIGURE 3-14. Mode 2 Translation 87

FIGURE 3-15. Synthesis Timing Example , 88

FIGURE 3-16. Representation of Environment Elements 90

FIGURE 3-17. Hierarchy Tree ofDTSS Example 91

FIGURE 3-18. Sample Simulation Output for Cali Set-up 92

FIGURE 4-1. Basic ATM Cell Structure 96

FIGURE 4-2. ATM Switch Operation Example 98

FIGURE 4-3. ATM Modules 99

FIGURE 4-4. Key Message Ordering in generic_oucunit Module 103

FIGURE 4-5. DSL Model of ATM Switeh 104

FIGURE 4-6. ATM SampIe Network Configuration 105

FIGURE 4-7. Permanent Virtual Connections 106

FIGURE 4-8. Structural View of Node 107

FIGURE 4-9. DSL Representation of generic_protocol_servcr 108

FIGURE 4-10. PrTN Representation of abeascserver Module 113

FIGURE 4-11. DSL Model of Broadcast Nodes 127

FIGURE 4-12. ATM-Broadeast Network Model 13 1

FIGURE 4-13. Hierarchy of Modules for ATM Broadcast 132

FIGURE 4-14. Sample Simulation Output 135

FIGURE A-1. 15 minute simulation of telephone trafflc 157

FIGURE A-2. Simulation of different ATM switch sizcs 158

ix

•

•

•

List of Tables

Table 2-1: Services Provided to Telephone 50

Table 3-1: DSL to VHDL Translation Rules 85

Table 4-1: Typical Service Charactedzations 95

Table 4-2: The Rouling Table o.. 106

x

•

•

•

Claim of Originality

The author claims originality for the following contributions of thc disscrtatir,il.

• In chapters 1 and 3. The proposed environmcnt fr,r dcsign automation of tcleeommuni­

cation systems (DASE) is original as il intcgratcs modelling, analysis and synLhesis at

the archiLecturallevel of abstraction within onc seamless framcwork. Ali components

of DASE have been implemenled as a proof of concept. Thcse include: the DSL proccs­

sor, simulator and synLhesizer (DSL-VHDL translator).

• In chapter 2. The intermediate language DSL is an original contribution tu architcctural

modelling. It's capability to permit definilion of constructs that can cvolve with addi­

tional design detail, permitting both abstract rcprescntation and synLhesis, is nove\.

• In chapter 2. The translation roles and algoriLhm for DSL modules to predicatcltransi­

tion nets is nove\.

• In chapter 2. The representation of software and hardware enlities as an indistinguisha­

ble module is original. This permits the modelling of such enlilies before design parti­

tioning.

• In chapter 4 and 2.4. The case studies arc extracted from rcal world prohlems. In that

sense they are not unique, however their representalion as DSL modules is novel.

Included is a generic module construction example (DTSS) providing substanlial model

re-use.

• In chapter 3. The library support description and implementation is original. In particu­

lar, the ability of library modules to configure their resources and interfaces to a given

model environment permits generic models to be managed by the library.

xi

•

•

•

• In chapter 3. The translation algorithms prcsented for DSL to VHDL (both mode 1 and

2) are original contribution~.

xii

•

•

•

Chapter 1 - Introduction

The telecommunication network is the largest manmade machine in the world - composed

of an elaborate blend of hardware and software elements. As with other high technology

driven fields, the market pressures force the telecommunication industry to produce higher

quality products in shorter times. However, the increased complexity of

telecommunication systems has made them very difficult to verify. Rapid system

prototyping aids can automate different aspect of the design process and help address these

concerns. This dissertation presents a rapid prototyping environment to help designers

describe, model and explore design tradeoffs at the more abstract architectural level of

representation and synthesize in the domain of telecommunication systems. In contrast,

traditional environments have focussed on design support at abstractions that arc at the

register-transfer level or lower.

This chapter is divided into four sections. The first section is a perspcctive on the product

design cycle for telecommunication systems. The section creates a premise for the use of

rapid system prototyping and in particular, potential benefits of use carly in the design

cycle. In the second section an overview of current research in the rapid system

prototyping field is presented. A need is defined for an internai architecturallevel modeling

language which possesses synthesis constructs to permit model refinement to register­

transfer level representations. The third section introduces such a language as part of a

Design Analysis and Synthesis Environment (DASE), the core of this thesis. The final

section concludes with an overview of the remainder of the dissertation.

1

•

•

•

1.1 Perspective

A typical design flow for large system design is represented in figure 1-1. The figure

highlights the high level flow of information from design concept to implementation. Four

phases of a product's early life-cycle are also shown: The specification, design,

implcmentation and test phase. The phases do not necessarily have wel1-defined

boundaries - for example specification and design may be considered as one phase within a

given engineering group. Listed above each phase are the related design activities that

contribute to the overall time to complete a phase. The activities represent a typical

development process and may differ in each organization, depending upon their maturity

levei.

Initial system requirements in the specification phase generate design specifications that

are input to the design phase. The design phase encompasses many activities related to

modelling, design exploration and synthesis. The modelling activity can be composed of

model creation and analysis. A design exploration activity can use the model to simulate

different scenarios or apply formai verification methods to obtain an acceptable

representation of the system. The designer can also partition the design into the respective

hardware and software components and, through the use of synthesis tools, generate a

prototype (or product) in the implementation phase. For hardware designers, description

l' l' " l'
1 l'~ Hardware ;
l' l'~..s Description 1__-, '" r--Lj:~!i!.:J Language 1DESIGN----, l'---, r- l ". " l'

AcrlVmES: I~ System ~ .~ L__ .. Design 1 ~,.. Integration î
""Ign J Design -5 Mod.[[lng r'" E'slomtion 1 1 und ::

~
.C[.o .::1 ~ Test ::;J..... Specification J op ure --..-... nctivity nn J n ~ ... "'51

Ill....... , - PnrtiUoning ;, ~ l 1 po a
CI l' ~ l'en" -:~ oS
~ 1 ~ ~ (pseudo) ~/"'" --'" ~ '--_---' j '--_--' ~ Coding ~

l' "1' l'

'--:= -_-::~t===::~==~ii'«~*~.~4~l==fj:=~+~§&~1/~=I:;.:.q:·..:+~.:-H~D~I<S~1~GN~~~IWR~N:I~-J
r. -~ ~;

PIlASES, SPECIFICATION ~ DESIGN ~ IMPLEMENTATION ~ TEST

FIGURE J.J, Dplcal Design Flow (or Large Telecommunication Systems

2

•

•

•

languages exist which can represent systems at various levcl of abstraction. The

proliferation of these languages has prompted the need for standardization (IEEE 1076

VHDL and Verilog) [VHDL 87] [Verilog 91] 10 promote design migration and re-use

Current commercial design environments permit synthesis of hardware described in a

subset of VHDL or Verilog, where the initial design is at a regisler transfer lcvel of

abstraction. The software developers may utilize methodologies, s\lch as Shlaer/Mellor

[Shlaer 88] or WardIMellor [Ward 85], to describe the software conslrucL~ in more detail.

Each phase in the product lifecycle can potentially flow back to the prcvious phase(s)

indicating potential design revisions. This creates design churn and adds to the ovemll time

to deliver a product.

Intuitively, the time period to create a product (from requirements tn test) can be inlluenced

with integrated tools to shorten various phases. The tools can either reduce the duration of

activities (such as modeling) within phases or reduee the design churn time. Traditional

design approaches have focussed upon such tools. Integrated across several design

activities, the tools can form a Rapid System Prototyping (RSP) environmcnt to quickly

produce a prototype system - which is a scaled down version of the final produet. The

prototype is a model of a cünceptual system to be fabricated and relies upon the

environment to expeditiously produce sound systems.

Although automation is one way to affect design times, furthcr motivation exists to apply

this as early as possible in the produet \ife-cycle. The progression of tool eapabilities

extending toward initial specifications promises to reduce design ambiguities and errors

early in the product life-eycle. Such tools must be capable of design capture at increased

levels of abstraction to support modelling at the architl~etural design level. T!le

architeeturallevel is the most abstract design level defined in [Bell 71] where system

elements are viewed as eommunieating processes.

The desire to move tools up the abstraction scale is attractive for several reasons. Il is weil

aecepted that design errors uncovered early in the life-cycle arc orders of magnitude less

expensive to fix than those deteeted downstream [Boehm 81]. Early error deteetion can he

3

•

•

a significant benefit of arehiteeturallevel automation. Figure 1-2 further emphasizes the

impact of design choices made in the carly phases. The ligure depicts product development

in terms of a project within a corporation [Saultz 92] and illustrates the typical resource

and personnel effort requirements during a productlife-cycJe. The horizontal axis depicts

the differcnt phases thatthe product may progress through, whilst the vertical axis indicates

a perccntage total cost of the project in terms of total effort and resources (equipment,

personnel, money). The diagram demonstrates that more than half of the total eost is

already committed to the projeet after the specification phase whereas only 15% of the cost

is incurred. It should also bc noted that resources freed from previously completed phases

may be allocated to other projects. This makes them difficult to access for potential design

reworks. Before reaching the production phase, nearly 90% of ail the total cost is already

commilled. As a result, significant design errors detected downstream can negatively

impact the resource allocation to the project resulting in cost overruns and delays. Hence

the resolution of design ambiguities at this early stage ensures that a projeet reduces

potenlial design reworks and chum so that the product can bc developed with the limited

resources available. Hence,the point in time where design aids are used in the products'

development, can significantly curb development costs [Hayes 88].

maintenance

FIGURE).2. TynicaJ Projeçt Cos! Demands

design Implcmcnt test production

Product Llle"Cycle Phase

rcqulrementsl
specification

0%

100%

18
(.J Cost
'3 Commlllcd
~

50%

•
4

•

•

•

In summary, an RSP environment applied to architeeturallevcl design of large systems can

have a signifieant impact upon the design cycle such as:

i. Shorter design cycle: Gcnerating a quick yet rcasonable design l'rom the very

conception of the praduct can weed out poor design decisions l'rom good ones. This

reduces expensive design reworks latcr in the design stage. As a result, the lime l'rom

system conception to integration is grcatly reduced.

ii. Verification of designs: CUITent designs are verified later in the design stage. At that

point, poor architectural decisions can be hidden in the complexity of the complete design

details. By synthesis of a system design one obtains a formaI represcntation or mode!.

Algorithms or rules can be applied at this level to test the corrcctncss of the design versus

the design specifications. Ideally, synthesis would generatc designs that are correct by

construction. These lead to less design eITors later on in the design cycle.

iii. Solidification of design requirements: Vague or ambiguous design specifications

can be identified and con'ected during this early stage. Traditionally this has been an area

where designers would interpret the specifications. This may not neccssarily have been the

intent of the specifications [Srivas 90] [Moore 90]. The level of abstraction in the

architectural level b closest to the conceptuaJ. model a designer would work on,

minimizing loss of information.

IV. Procedures for formaI design specification: With the advent of system level

synthesis tools, formaI requirements for design specifications can bc defined. FormaI

specifications following a well-defincd structure or methodology is cUITcntly lacking in the

design community.

v. More design alternatives: If design space exploration can be pcrformed quickly,

different design alternatives that may have otherwise not been feasible could also he

explored. This helps guide designer in the conceptual creation or cvaluation of their

designs.

5

•

•

•

1.2 Rapid system prototyping

RSP cnvironmcnts provide support for at least three main activities: system design,

exccution and synthesis. The design support is typically through an internal modelling or

specification languagc that can describe a given system at the desired level of abstraction.

The language must also be sufficiently versatile to accommodate the other two key

activities. Execution of the design entails the exploration of the design space and further

rcfincments to the design - in the case of architectural modelling, this would also involve

design partitioning and co-design. This activity may utilize simulation and formal methods

as design tools. Finally a synthesis activity uses the refined design to produce the target

product. The source and target model for synthesis reflects the level of synthesis being

undertaken in the design. Four different design abstraction levels are commonly depicted

as concentric circles radiating from the center of a three-dimensional graph [Gajski 92] as

shown in figure 1-3. The intersection of these circles with the threc axises represents three

possible views of design domains (behavioral, structural and physical) at a given level of

abstraction. As the circles move away from the center, the level of representation becornes

more abstract. Synthesis can typically occur from a given behavioral representation to a

structural one.

Prototyping systems have becn developed mostly to address synthesis at register-transfer

and lowcr levels. For example, IDEAS [Kumar 89] is an environment that allows RTL

synthesis of designs. CATHEDRAL [Lanneer 91], ISPS [Barbaci 81], and HIS

[Bergamaschi 93] are examples of high level synthesis tools. As the lower level design

tools have matured, research foeussed on arehitecturallevel synthesis (transforming a

system level design specification into an algorithmic level specification of the behavior) is

finally starting to become feasible and is drawing more attention. Sorne suecess for

rcasonably eomplex systems has becn obtained with systems dedicated to specifie problem

domains sueh as Digital Signal Proeessing where the design space is relatively

homogeneous [Lanneer 91].

6

• Behavioral
Struclurlll

Physical

FIGURE 1.3. Different Yiews of J)esjgn

•

•

With the increased level of abstraction, the design space for a "gcncral purposc"

architecturallevel RSP tool is heavily heterogeneous making it infcasiblc to dcrive a modcl

from most initial specifications [Ramming 93]. As a rcsult, it is gcncrally agrccd that

successful architecturallevel RSPs will be domain specific (cxhibiting a rcasonably

homogeneous design space) or support a wide varicty of specification paradigms.

The demands upon the modelling capabilities of an RSP environment imply that the

internal representation or design language employed by the environment can grcatly affect

the acceptance of the tool within a given domain of application. At the architectural

abstraction, design partitioning and co-design are major activities involving both software

and hardware designers. Therefore a design language is needed to accommodatc both

disciplines transparently. In the hardware community, design languages have evolved from

logic gate oriented formalisms to those capable of modelling up to the algorithanic

abstraction level. However they rarely support architecturallevel representation (although

attempts are being made to extend VHDL into this level [Jerraya 91]). Most hardware

description languages are simulation oriented and interleave simulation and modelling

semantics - making them difficult for use in synthesis systems. An example is VHDL ­

where only subsets of the language are applicable for synthesis by commercial too1s.

7

•

•

•

Wilhin the software design area, lhe trend has been loward a parallel and concurrenl

programming view. This has made lhe use of specification paradigms, that support

communicaling processes, highly amiable. A similar trend can aiso be observed witiîÏn the

hardware design community, wilh their desire lo find better ways to speeify the exisûng

parallclism inherent in hardware. Hence at the architectural level, where software and

hardware design concerns are first addressed, a formalism based upon communicating

processes appears naluralLO designers of both disciplines [Koomen 91]. For example, the

Specification and Description Language (SDL) [CCITI 88] is based upon eommunicating

proccsses and is in use in teleeommunieation software development groups [Klick

91][Jacobson 92]. Although descriptive, the language is undergoing revisions to adopt

objeel-oriented views and a timing model. Anolher language is Statecharts [Harel 87] that

allows description of systems in terms of hierarchieaI communicating finite state machines

expressed in a graphical notation.

Aparl from facilitating co-design, there is an added onus on the architectural design

language: the output of the inlernaI representation must also be synthesized to the desired

largel model. This implics that synthesis eonstructs be part of the internai representation

from the onset, with added modelling support to refine the modcls. Economie

considerations aIso justify the re-use of components in a modelling framework. Such an

environment requires a flexible library support system capable of management of models.

Typically, abslract models must be capable of beil1g stored, retrieved, configured and

organized hierarchically with object oriented capabilities (such as inheritance) to

racililate model construction and re-use.

1.3 Architectural design and modelling

The Design Specification Language (DSL) introduced within this dissertation, is the

internai representation language used within the Design Analysis and Synthesis

Environment (DASE). The language addresses the representation issues identified in the

8

•

•

•

preceding section and provides a platform for architectural modelling of

telecommunication systems as weil as support for synthesis constructs. The restricted

domain permits the use of a model library within DASE to aid in the DSL model

refinement through simulation. Although described in detail in the dissertation. DSL is

internai to the environment and is Ilot necessarily the language that must be lIsed hy a user.

A language translator can be employed between an existing specilïcation language and

DSL - redueing the need for training the user on a new language. The DSL representation

can then be used to facilitate the refinement of the design.

DSL is currently implemented in Prolog. This implies that model hehavior can he

described as a set of clauses. communicating processes or finite state machines - suilahle ln

represent both hardware and software at the architectural leve!. Prolog also provides a

suitable implementation platform for facilitating model relinements during the

development of a DSL mode!. Refinements arc carried out under environment support until

the model achieves astate where it can be translated to a corresponding VHDL

representation.

The DASE environment is shown in figure 1-4 as part of an architectural design

automation framework being developed by the MACS laboratory [Tanir 921. The

implemented environment provides the necessary support for DSL to hridge the gap

between specification and synthesis. Designers can conveniently creale architectural

models in a top-down fashion, ineorporating further detail as required through a model

library or during design exploration using simulation.

A DSL design is input to the environment through a user interface that is then interpreted

by a DSL proeessor unit. This unit interaets with ail other components as weil as managing

a DSL model library [Tanir 93a]. The model library is organized lU allow design

exploration within the identilied domain of telecommunication system [Tanir 93b] [Tanir

93c] [Tanir 93d]. Models within the library are termed generic and can be re-used and re­

configured with a large degree of freedom. During model execution, the initial DSL model

may undergo refinements under the guidance of the DSL proccssor as necessary model

9

•

•

•

..... 1 USER IN1.· ~FACE
1,.." 1 -

(design capture) t Library

1 DSL Processor 1" /DSL'\

,/ J. "- ICo1JStrllilllS\

1 Il Sy~ib~lzrr 1 1
Predicate Net 1 ~'''I''II''I ~

DSL Simulalor Analyzer " Modcls

nA<i:1<

(VIIDL
Bt'haviora/. Process)

............_.._._...__...._._........_._......._.._._...._........_-_..-_._._..............._......_._._........_......_.._..............

WWER LEVEI. DESIGNAUTOMATION mOLS

t
Software Hardware

Description Description

F1GlJRE 1-4. Architectura! Design Automation Framework

details are conligured through the library.

An interface is defined with a Predicate Transition Net tool to al10w the verification of

properties of DSL model components. Design exploration is achieved by using a simulator

which provides the timing model for DSL and permits observation of events at different

levels of detai!. Finally a synthesis component al10ws the DSL models to be synthesized to

an RTL behavioral VHDL mode!. The VHDL model can then be used by lower level

design aids to optimizc and eventual1y synthesizc to hardware.

1.4 Dissertation outIine

This dissertation presents an architectural rapid prototyping environment for

telecommunications systems. Il does not daim to resolve all design support issues at this

leve!. However this is a good starting point for constructing a potential environment that

10

•

•

•

can be amiable to system design.

The dissertation is divided into live chapters. The following chapler will present lhe DSL

language used by the environment. The chapler will also inlroduce an example of a design

of a digital tclephone switch using DSL, demonslraling lhe modelling capabililies of lhe

language. Chapter 3 will describe the environmenL supporl capahililies for aUlomalion

including simulation and synthesis. The swilCh example will he used lo demonslrale lhe

use of the different elemenls of DASE to impact model developmenl. Chapler 4 will

provide two detailed case studies demonslraLing the further capahililies and lcalures of lhe

proposed environment.The examples are based upon the design of an ATM switching

network and an implementation of a dislribuled broadcast protocol executing over lhe

ATM network. Finally, chapter 5 will provide conclusions and suggeslions for funher

extensions to this work.

li

•

•

•

Chapter 2 - The Design Specification Language

Design languages exist for a myriad of different applications. As opposed to register­

transfer 1circuit Icvel design, the architecturallevel blurs the distinction between software

and hardware, therefore requires elements common to languages applied in both fields.

Funhermore, the design language must be able to facilitate the three RSP activities

introduced in chapter 1; systems design, execution and synthesis.

To emphasize the architectural RSP needs for a design language, the first section of this

chapter will address language issues for each of the three RSP activities and their

implications on architectural design. An overview of the applicable research is a1so

provided for each RSP activity. The overview provides the motivation for the use of an

internaI design specification language: DSL. The language description is initiated in

section 2.2 with an introduction to several modelling constructs. The language is presented

in a BNF notation along with a corresponding formaI Predicate net mode\. Section 2.3

introduces the design support related constructs of DSL that aid in architectural design

exploration and synthesis. The chapter concludes with an example of a design of a digital

telephony switch to iIIustrate the DSL modelling approach. This example is also utilized in

subsequent chapters to reaffirm various features of the DASE environment.

2.1 Introduction· Architectural Issues

As introduced in the first chapter, RSP can impact the design of a product mainly within the

design phase of its Iife-cycle. The various activities (for the design phase) that are typically

12

•

•

pursued within the context of architectural design arc shawn in figure 2-1. The thrCll major

RSP activities arc broken into more detailed ones ta highlight the progression of the design.

The design flow is from design capture ta synthesis. The exccution phase may undergo

several iterations that are a part of a model refinement exercise. This requires the support of

a modellibrary capable of providing refinemenL~ ta progress the modcl to a more detailed

one which is suitable for synthesis [Booch 91].

2.1.1 System design

The system design activity is generally thc starting point within the design phase of a

produet life-cycle. The activity involvcs the design capture of specifications into a model

which can then be executed. Hencc the language requirements at this stage encompass

modelling capabilities. A model represents an abstraction of a domain under study and a

large body of knowledge exists with respect ta this abstraction. In the context of

architectural level design, an abstraction is closcly linked to spccification capture, re­

usability, and object-oriented features.

Specification capture has been an evolving discipline in system engineering. Today's sys­

tem engineer will find many different mechanisms for design capture [Raltray 891. Of

these, an underlying formai basis is desirable ta ensure consistent properties of a model

hardware
synthc:sis

System Design Execution Synthesi.

• FIGI1RE 2.1. The Typlca! Archltecturall)eslgn Phase

13

•

•

•

[Jacobson 92]. For example, LOTOS [ISO 88] and SDL utilize a process algebra based

formalism [Milner 80] [Hoare 85] and have been developed to specify telecommunication

systems. They have gained a considerable degree of attention in the protocol specification

field. Hardware oriented formalism, such as HOP [Ganesh 89], exist based upon a func­

tional programming paradigm. More general formalisms such as Petri-Nets (and their

extensions) [Peterson 81], Temporal Logic [Moszkowski 85] and queueing networks

[Kleinrock 76] are also applied to capture and analyze different aspects of a design. Addi­

tional paradigms can be found in [Gupta 92].

Most of the above formalism~ have object-oriented capabilities or extensions permitting

the modelling of high level communication paradigms. However, model re-use is still a

significant shortcoming in this area. Although the theoretieal notions exist, in practice the

languages appear to require more consideration.

2.1.2 Design execution

After a suitable model is defined, the language mu~t provide support for experimentation

and analysis. These execution aetivities are crucial for a designer to explore a given design

space, make appropriate trade-offs and partition the design to different hardware/software

configurations. Such activities can be supported through design simulators and formaI

methods.

FormaI methods refer to the application of techniques to prove properties of a system

model (such as the existence of deadlocks). Whereas it is highly desirable to use formal

analysis in ail aspects of design, current methods make it very difficult to formally analyze

large systems defined at detailed levels - where possible states in the system are just too

large to manage. Additional problems also persist within current formal verification

approaches. The formaI techniques apply to the verification of a model of the system - not

the system itse!f. The re!evance of the verification is always dependant upon how weil the

model represents all aspects of the system. A considerable effort can be p!aced upon for­

mal!y verifying a mode!, yet the mode! may not adequate!y describe the behavior of the

14

•

•

•

system in sufficient detail as to address ail design queries. The amount of time to formally

verify a complex system is currently unacceptably long.

Simulation is another technique for understanding system behavior where a given model

is executed through predefined test scenarios depicting typical (and worst case) operations

the system may encounter. For large systems, the scenarios arc not exhaustive and provide

a limited degree of confidence in the system. Hencc the validity of simulation rcsults are

heavily dependent upon the assumptions thc designer provides. Simulation can he

employed in cases where insufficient detail is available for a formaI method to he used

effectively.

Simulation is widely deployed as a major aid and many gcncral purpose simulators exist

such as GPSS [Schriber 74], SLAM-II [Pritsker 86], and SIMSCRIPT [CACI 871 to pro­

vide reasonable queuing based system simulation. Other systems such as Designers Work­

bench also provide analysis support for small systems [Thomas 91]. Large complex

simulation that require parallel or distributed processors and techniques like Time-Warp

[Jefferson 83] have been utilized in generating speed-ups in most cases [Reed 871. Petri­

net based simulators such as Voltaire [Parent 91] and Loopn [Lakos 91] are also applicahle

for modelling concurrency.

With the assorlment of simulation languages, model re-use becomes very dirticull. Modcl

interchange between different tools is generally not available and no standard exists for

these languages to permit sueh an operation - although work is under way within the IEEE

standards working groups to alleviate this problem and define rcquirements for a standard

simulation environment [Tanir 94a].

2.1.3 Synthesis

Model execlltion activities are repeated, refining the model until a final model is derivcd

whieh meets the designer's expectations and ean also be synthesized. Synthesis implies

taking a set of behaviors, constraints and goals and generate a suitable structure that can

15

•

•

•

implement the behavior while satisfying the eonstraints and goals. At the architectural

level, synthesis can implicate both hardware and software. Software synthesis at this point

rcquires significant research [.) integrate high-Ievel specifications towards computer aided

software environments and methodologies. The hardware field has seen a proliferation of

design languages (along with the IEEE standard VHDL), which can be used as potential

target languages for hardware synthesis.

The hardware design community has actively defined many design description languages

pre-dating the standard VHDL. For example CASCADE [Borrione 93], CONLAN [PilotY

80], ELLA [Morrison 93] and Verilog [Verilog 92] are sampies of languages available.

Synthesis has been one of the most important applications of hardware description lan­

guages. Initially targeted to circuit level synthesis, tools and methodologies have evolved

to synthesize designs from the algorithmic leveJ.

Although highly signifieant, synthesis has played a seeondary role to the design language

definition. For example, only restricted subsets of VHDL and Verilog are suitable for syn­

thesis. These languages have powerful constructs for simulation of hardware, however

(due in part to their low level modelling features) automatic refinement of models has

proven to be elusive at the very high levels of abstraction used within architecturallevel of

design.

2.1.4 An Intermediate language

System designers have typically utilized many different languages to capture relevant

aspecL~ of a system. It is also generally agreed that one "unified" language or methodology

is not capable of representing systems for ail levels of design abstraction. It is also

observed in the milieu that as the abstraction level increases, the analysis methods used in

1o01s shift from a simulation oriented one to a formai basis [Ward 85]. Hence it is difficult

to use an existing paradigm to address RSP concerns across a broad range of activities at

the architecturallevel of design.

16

•

•

•

The issues reflected in the previous sections indicate an applicability of differulll para­

digms at different stages of design. Consequently a possible solution to sUPP0l1 architec­

turai design is an interrnediate language within the RSP to obtain the various input anù

output forrns. Such a language would support inpuls in the forrn of specifications (possibly

defined in an existing specification language) and output a lower lcvcl synthesized ùesign

in a usable representation (such as VHDL). The interrnediate language wouId also require

modelling eapabilities for high level description to facilitate specification input. as weil as

design exploration and synthesis constructs to produce the outpuL~.

This dissertation presenls the Design Specification Language (DSL) as a potential

intermediate language for architectural RSP within the DASE environmenL The language

primarily captures specifications by use of abstractions and is free l'rom rigid disciplines of

simulator oriented hardware languages. In addition. since the language must bridge the

abstraction gap between high level system design notions to low levcl hardware

descriptors, it must aIso possess the flexibility of re-defining and altering its modcl

interfaces during design exploration.

This function of the language helped motivate the use of Prolog as the language for

implementation of DSL. It may be noted that DSL is a meta-language in the sense that it is

based upon Logic prograrnming semantics, utilizing built-in predicates 10 define iL~ own

construcls. A major contribution of DSL is in ils ability 10 capture high level specifications

within a re-usable model and, with the aid of a library support system. refine the modelto a

state where il ean be synthesized into an executable lower level representation language

such as VHDL (refer to appendix D for DSL and VHDL differcnccs).

DSL borrows the typeless notation to provide facilities for powerful abstraction and data

manipulation. The language is designed to have a corresponding structural graphical

eorrespondenee. The graphical representations of the main construels are shown in figure

2-2 and will be further elaborated in the upcoming sections. The language description is

partitioned in two sections: sections 2.2 and 2.3. The first describes the modelling

primitives (for design capture) of the language whereas the second section focuses upon

17

•

•

•

the experimentation and synthesis constructs to support design development.

2.2 The DSL modelling primitives

This subsection presents the DSL modelling primitives required for design capture,

addressing the design input concerns. The basic syntax is presented in BNF notation with

sorne regular expression shorthand to ease legibility. The shorthand symbols are:

{} : encloses comments.

>1< : any number of sequences of the preceding expression.

+ : at least one or more sequences of a preceding expression.

[]: Sets of characters enclosed by square brackets imply that any one of the charac­

ters within the brackets are applicable. A range of possibilities is indicated with

"-" within square brackets: Le. [0-9a-z] indicates any single digit and lower case

alphabet characters can be satisfied.

Characters in bold fonts are reserved words in DSL.

DSL adheres to Prolog's naming and syntax conventions. Hence the J".nguage primitives

are defined by:

integer ::= [0-9][0-9]*

real ::= integer. integer

number ::= integer 1 reall float

reCop ::= < 1> 1== 1=< 1>=

num_op ::= + 1- 1>1< 1/1111 is

operator ::= reCop 1num_op Il

literai ::= [a-z][a-zO-9]*

atom ::= literai 1number

list ::= [member*] 1[member 1member]

member ::= <null> 1dsCname 1variable 1number

variable ::= [A-Z][A-Za-zO-9]>I< 1U[A-Za-zO-9]>I<

18

•

•

•

dsCname ::= literai (parameter+)

1 literai

parameter ::= atom

1variable

A DSL progrmTI consists of a combiilation of DSL constructs defincd as:

dsl..'program :;= dsCmodeCconstructs+ dsCexperiment_constructs'

The dsCmodeCconstructs constitute the applicable commands that arc uscd for modcl

description and the dsCexperimencconstructs reprcst:nt thc commands m;cd for cxpcli­

mentation and synthesis support. The former is dcfined below whcrcas the lattcr is visitcd

in section 2.2.

dsCmodeCconstructs ::= module_dejinition

1 resource_dejinition

1ho_module_dejinition

1inheritance_dejinition

1persistent-'porcdejinition

1path_declaration

Each one of the possible DSL modelling primitives are described in the following subscc­

tions.

2.2.1 Modules: D8L building blocks

The basic construct within DSL is a modular object oriented design entity called module ­

the primitive building block of the language (refer to figure 2-2 for the graphical dcpic­

tion). These are constructs that possess a name, a set of possible behaviors, and resources.

Modules communicate with one another through messages - which trigger a defined

behavior within destination modules.

The basic DSL notation for a module is:

module_dejinition ::= module(dsCname ,[behavio'")).

where dsCname within the module_dejinition represents a unique identification of a mod-

19

• module:

name

higher-order module:

name

~B

•\1
pons

FIGURE 2-2. DSL CODstrnets

J

•

ule and is used extensively by DSL to resolve communication issues within a mode!.

behavior is a list of different behavior(s) the module is capable of interpreting. The behav­

ior(s) of the module represent the actions undertaken by the module when an event occurs.

The occurrence of an event implies the arrivaI of a message from one module to the other

module - which then attempts to execute the behavior associated with the message.

Modules operate within three conceptual states: ready, busy and delayed which are

depicted in figure 2-3. Ready. indicates that the module can process a message. Busy

implies that it is currently processing a message, and a delayed state indicates that a mod­

ule is suspended (delayed) and will commence processing the message after a time period

incoming message

{FIFO queue}

ready

(message to process)

busy

•
(t)

delayed (t)

FIGURE 2·3. Basje states of a module

20

•

•

•

(t). When a module is in the bllsy or delayed state, arriving messages arc queued within an

input message queue to be processed in tum by the module. Message execution within a

module in the bllsy state is atomic. However, pre-defined interrupt messages (deseribed

later) can interrupt the execution process if the module is in a delayed state.

The description of behavior and the respective possible actions will be deferred until a

later section on behavioral description. However, sorne actions may use or manipulate

data structures local to a module to model states, local variables etc. Such local data struc­

tures arc facilitated within DSL with the resource statement. Adhering to the Pl'Olog phi­

losophy, local variables can also be lists - facilitating the management of structures such as

arrays and queues. DSL eommands to manipulate resources are defined in the data manip­

ulation section later in the chapter. A resource is (a prcdicate) of the form:

l'esoul'ce_definition ::= resource(dsCname , dsCname , values).

values ::= variable

latom

1 (values+)

llist

For example, a statement such as resource(module_name, res(PI, ..Pn), (VI, .. ,Vn))

deseribes a resource local to a module (with name nwdule_name). The rcsource (l'es) may

be parameterized as above, and delines a set of variables (Vn) where Vn can be any Prolog

element such as integer, lists and strings. The applicable operations that can be performed

upon resources will be described within the behavioral modeling section.

2.2.2 Model composition

DSL permits composition of modules into higher-order (HO) modules. Connections

between modules are established through the use of "ports". A port is a virtual communi­

cation channel between the module and its environment. The language deduces direction

from information flow across ports. Port specification is not typed so that diffcrcnt lcvels

of abstract information may flow through the same port.

21

•

•

•

The graphical representation of a higher order module (refer to figure 2-2) is similar to that

of a module. The underlying subtlety is that higher order modules encapsulate a set of

modules and define specified interconnections. Hence using these constructs, more com­

plex (higher-order) models can be composed from simpler ones. Higher order modules

possess no pre-defined behavior of their own - however the interaction of modules com­

posed through such a higher order module establish the underlying behavior. A DSL

model defines a higher order module in the form

ho_module_definition ::= ho_module(ho_name , module_List).

ho_name ::= dsCname

module_List ::= [dsCname*l

The ho_name is a dsCname (Prolog structure) and the module_List is a list of modules

composed within the higher order module. Composition is not restricted just to modules,

but is also applicable to higher-order modules. Hence members of a higher-order module

may contain other higher-order modules as weil as modules - however when referring to

the constituent members of a given higher-order module, the term module will be used

loosely to imply both. The interconnection of the constituent modules is achieved through

a path declaration:

path_declaration ::= path(module_x, module-y ,[porer, port-y n.
module_x ::= dsCname 1 variable

module-y ::= dsCname 1 variable

porcx ::= dsCname 1 variable

port_v::= dsCname 1 variable

porcx and port-y are port names used to define a communication path between the two

named modules. The connection implies a default direction from porcx to port-y - hence

module_x is the name of a source module. The port names cau also be written as variables,

in which case no direction or specific port name is defined. In this case, the existence (or

22

•

•

•

need) for a communication path between the two modules is conveyed to the environment.

The details of the connection manipulation by the environment will be clabomted in

chapter 3.

Port names can also be associated to local variables - which result in persistent porl~. Such

a port is maintained as a resource within a module undcr the reserved resource namc:

persistencport:

persistent..porcdefinition::= resource(persistenCport ,(porUlame , vallles)).

porcname::= dsCname

This eapability permits ports to assume a value or state dietated by the most reeent message

that was sent from the port. Henee a state or value is said to persist on the port (similar to

the behavior of a wire in hardware design). Persistent ports are suitable to model lower

level constructs such as wires and buses whcre the value of the entity (voltage Icvcls or

high impedance) may be of concem. This also permits differentlevcls of rcprescnlation to

coincide within a given mode!.

Since paths are equivalent to Prolog predicates, unification and variable instantiation can

provide compact notation in defining sorne structures. For cxamplc, in the case of

symmetrical connections, the path statement can be uscd concisely to dcfine ail module

interconnections with a statement such as:

path(proc(X), mem(X), [port(X), mem_port(X)]).

This statement will interconnect ail modules namcd pme(X) and mcm(X) through their

respective ports (Le. proc(l) will connect to mem(l) etc.).

Relations can also be established through the port definitions. For exlmplc,

path(proc(X), mem(X+l), [port(X), mcm_port(X+l)]),

indicates that proc(1) is connected to mem(2) through their respective ports. The path

statements help define the necessary interconnections desired by the designer.

23

•
2.2.3 Module behavioral description

A module's list of behaviors describe all possible actions that may be undertaken by the

module in response to a given message. The resultant behavior of a higher-order module

composed of modules is a result of ail possible interactions between the modules. Module

behavior is a procedural description of actions which, within satisfaction of a set of con­

straints, may consist of:

i). communication initiation with other modules or intemally,

ii). modificatio:l of resources or temporary variables associated with the module, and

iii). timing related directives.

More precisely, the form is defined as:

behavior ::= (b_name :. condition' ,action+)

b_name ::= dsCname

•
action ::=

. . .
commUnicatIOn

1 data_manipulation •

1 timing

•

Behaviors can be viewed as a set of Prolog clauses where each behavior can also be multi­

ple clauses - applicable under different conditions. The head of a clause consists of the

behavior name (b_name) - a unary or N position predicate. The body is a set of conditions

and actions which are compound sub-goals of the clause. It should also be noted that DSL

conditions are Prolog sub-goals to be satisfied, and the actions are sub-goals that are

always satisfied, resulting in sorne desired side effects (such as message generation and

resource manipulation).

For a given behavior, a set of conditions can be evaluated before further execution of the

behavior is attempted. This facilitates the description of if-then-else type constructs as

weil as supporting state oriented behavioral description. The behavior selection may be

based on built-in DSL predicates or Prolog conditional operators. Formally conditions are

24

•

•

•

described as:

condition ::= variable rel_op variable

1number rel_op variable

1variable rel_op number

1number rel_op number

1check_res(dsl_name , value)

The checkJes statement is used to test for a resource (dsCname) or il~ value. For exam­

pIe, check]es(counter, X) will return the value (X) of a resourcc named cO/lnter. Allerna­

tively check]es(Caller, telephone(5551211)) could return the name of a subscriber

(Caller) assoeiated with a specifie telephone number. In either case, if therc is no match

the predicate will fail and another satisfaction of the behavior will be altempted.

DSL uses the Prolog programming style for resolving ambiguities and testing conditions.

Hence a declarative and procedural style of writing behavior is possible. A behavior with

the name b(X) for example is an unconditional attempt to satisfy the behavior statemenl~.

However, eode in the form:

bO):-c1, al.

b(wait):-c2, a2.

b(X):-c3, a3.

are multiple behavior names that DSL will attempt to satisfy for the arguments "1", "wail"

or otherwise. In addition a set of conditions cl, c2 and c3 determine if the action (a l, a2,

a3) for the given clause will be attempted (since actions are always truc - the conditions

act as guards against erroneously selecting actions).

Having introduced the basic behavioral styles, the possible actions available within a

behavioral description are described below:

2S

•

•

•

i. Communication primitives

Communication is the main means for changing state within DSL models. The main

action that invokes communication is the send statement. 11's format is as follows:

communication ::= send(destination, port, message)

1send(message)

1 execute(message)

destination ::= dsCname 1 variable 1 List /[*]

port ::= dsCname 1 variable

message ::= dsCname

The tirst form of the send statement has three possible parameters: destination, port and

message. The destination is the name of a destination module. The destination may be a

multiple one, expressed as a list such as [a, bl. In this example the respective module will

send the same message to modules a and b. An empty list [] will result in a message sent to

the tirst module capable of interpreting the message. The destination can also be an [*]

which has the potential effect of sending a message to ail modules capable of processing

the message.

The port is the name of a communication port of the source module that is identitied as the

desired source point from which the communication is to initiate. The message is the

name of the message to be sent. This can be any valid behavior name that is comprehensi­

ble by the receiving module.

The second form of send is for internai messages, and is essentially a short notation of the

tirst - where the destination is the source module.

The tirst two tields for the tirst forro of send are optional, which provides extreme flexibil­

ity in the way communication can be initiateti. The possible actions are described by the

26

following cases (parameters are undefined unless they begin with a lower case letter):

•

•

Case !.

Action:

Case 2.

Action:

Case 3.

Action:

Case 4.

Ali parameters are given: send(dest, port, message).

message will be sent from the source module to the module with a name

dest, through the source's port called port. A special case is when the desti­

nation is [*]. In this situation, the message will be sent to ail modules that

are connected to the source's port. This is equivalent to a broadcast mes­

sage in sorne systems.

No destination name is given: s~nd(-, port, message).

message will be sent to the first module capable of executing it and is con­

nected directly or indirectly to the source module's port.

No port name is given: send(dest,_, message).

Essentially the same as case!. Ports are not necessary for communication,

only for synthesis later in the process. This type of send statemenl~ will

generate pseudo-communication ehannels within the DSL environment

which can be used by a synthesizer to construct data paths.

No port or destination given: sendC_, message).

•

Action: This is similar to case 2. however any module that can interpret the mes­

sage will be selected. This mode is an aggressive one and should be used

with caution - since the communication paths arc determined solely by the

environment and not by the designer.

A message generated through a send statement will always be placed in the input

(message) queue of the destination module. Hence there is an implicit causality associated

with message communication.

The other communication primitive available is the execute statement. This statement is

similar ta an internai send statement, however it by-passes the input message queue of the

module. Consequently the message will be processed immediately.

By using the send and execute primitives, different message ordering can he implicitly

27

•

•

•

Different Behaviors of module a: module a moduleb

(s1:-exccutc(s2).execute(s3)).
H? DELTA

s3 ml
(s2:-dclay(DELTA), scnd(b._,ml)), DELTA Iii!'(s3:-delay(DELTA), scnd(b._,m2)) --(a) Ordercd communication

sI,
(sl:- exccutc(s2)), s2' ml
(s2:- delay(DELTA), scnd(b,_.ml), send(b._.m2))

DELTA

K ~

(b) Concurrent communication m2

s
DELTA

ml
(sl:- delay(DELTA), scnd(b._.ml), send(s2)), q(j --(s2:- send(b._,m2)) m2

s< -..

(c) Finite delaycd communication time time

FIGlJRE 2-4. Example of possible communicatlop belweeP modules

established. Figure 2-4 presenlS sorne possible message combinations. The figure assumes

thattwo modules (A and B) are communicating. In particular, module l'. is actively sending

two types of messages and the diagram indicates the relative times at which the messages

arrive at module B's input queue.

The first case shown is the effect of multiple execute and send statemenlS. Three selS of

behavior, each with a discrete delay of delta is assumed. The first behavior (sl) generates

two execute statemenlS for behaviors s2 and s3. The latter two behaviors use send

statemenlS to generate messages ml and m2 respectively. The destination module will

receive the two messages delta lime unilS apart in the order they are sent.

The second case depiclS a concurrent transmission of messages ml and m2. This is

achieved through behavior s2. Although message ml is listed before m2 within the

28

•

•

•

behavior, the order of arrivai at the destination is non-deterministic.

The final case shows the use of a combination of send statements. Behavior sI sends

message ml after a delta delay, then sends an internai message (s2). The latter will he

queued and processed al'ter a finite queueing time (g) and s2 will generate message m2. The

effect of the internai send is to schedule m2 after ml, but with an unknown dclay (q)

between the two.

ii. Data manipulation

Data manipulation actions can change values of internai variables defined by resourccs or

temporary variables local to a module. The actions can utilize any valid arithmetic and list

operators defined in Prolog. In addition, data values used within resources can also he

manipulated within defined DSL statements. The following comprises a description of ail

the actions.

data_manipulation ::= secdejinition

1create_dejinition

1remave_dejinition

1probe_dejinition

1arithmetic

1bui/Uns

secdejinition ::= set_res(dsCname, values)

create_dejinition ::= create(resource_dejinition)

remove_dejinition ::= remove(resource_dejinition)

probe_dejinition ::= probe(d5Cname , variable)

arithmetic ::= variable operator expression

expression ::= number

1(expression operator expression)

29

•

•

•

The first four data manipulation statements are those related to resources. The set_res

statement pennits the assignment of a value to the respective resource. For example,

secres(state, busy) will associate busy to the resource state. The create action will instan­

tiate a new resource. Hence, create(buffer(l), empty) will define a new resource named

buffer(1) with contents empty. The renwve action will remove (or disassociate) a resource

from a module. For example, renwve(buffer(l), full) will remove the named resource

whose contents are defined to be full. It should be noted that this operation has the effect

of removing a defined fact from the underlying Prolog database. Hence if there are multi­

ple cntries with the same resource name, only the oldest and least used copy of the

resource will be removed.

The probe action is reserved for resources defined as persistent ports. The invocation of

the action results in the variable to be bound to a local value maintained for the persistent

port. The statement pennits a module connected to another module's persistent port to

obtain the state of the port. The nuance of this representation is iIIustrated in figure 2-5. In

the example, module (A) has a persistent port (pa) connected to another module (B). The

implication is that there is a resource associated with module A, containing a state variable

V. At sorne point in module B's behavior, a probe statement is encountered. The effect of

this is to access the value V from the persistent port and bind it to the local variable ST.

Persistent ports can only be read by other modules. Changing the value can only be per­

fonned by the module associated with the port (in this case module A).

The probe statement is useful for depicting lower level interactions. For example consider

module A moduleB

'bchaVior(S) "\
bchavior(,)

pa .- ... ----_. pb, ".., ...
• '. probc(pb, ST),,, ...,

•• ' p• ST=V

.. '
..

'- ./resourcc(pcrsistcnt-POr~(pa,V) .

FIGURE 2·5. Example of Persistent Port

30

•
a model of a processor connected to a bus and memory. Assume that significantly detailed

operations of the memory is of interest and the proccssor model generates messages

representing astate of the bus (forexample read_memory could imply a "0010" bit level on

the control bus). If the bus were to be represented by a bus with a persistent port, the

processor could affect the state of the port with its messages to the bus, and the memory

module could utilize probe statements to lateh onto the required values.

There are additional behavior predieates defined with DSL to help within the manipulation

of data and creation of standard data struetuœs sueh as queues. These arc summarized

below:

•

builCins: :=

note dsUzame)

1member(literai, list)

1remove_clement(literai, List , new_List)

IlisUength(list, variable)

1append(atam , List, new_List)

1 iqsort(list, new_List)

IlasUist(List, atom)

iii. Timing

: negation of X (as in Prolog).

: true if literai is a member of the Iist List.

: Removes the first occurrence of an clement

literai within the list List and retums the

sub-Iist new_List.

: determines the number of clements variable

within the Iist /ist.

: appends atam to the end of the list List to ereate

the new_list (as in Prolog).

: a quick-sort algorithm for the sorting of the

elements of List. Elements arc sorlcd in

aseending order an placcd in new_/ist.

: identifies the last element a/am from a queue

narncd /ist.

•
Up until now timing has not been elaborated upon. Timing behavior in DSL is encoun­

tered through simulaticn, hence there is no explicit formaI timing model within the lan­

guage semantics. However module delays can he simulated with the use of the delay

31

•

•

action. A delay action suspends the module for a given period of simulated time. After the

elapsed time, the next consecutive action in the behavior is executed. The syntax of this

action is:

timing ::= delay(number)

1delay(variable)

1cJunction , delay(variable)

cJunction ::= call_c(atom , variable)

The action can utilize a numeric value explicitly, or implicitly (as an unbound variable).

The former simply implies the use of a numeric parameter such as delay(5.4) which will

suspend further operation within a module for 5.4 time units. The latter is a case where a

variable may be dependant upon an externally passed parameter - for example

(Behavior_name(Tl):- delay(Tl),.). Here Tl is passed to the module as a delay pararneter.

The ca/Cc action can also be used in conjunction with a delay action to access random

variables from a C Iibrary. Two exarnples of how random messages may be generated are

given in figure 2-6. The tirst uses a Iist (RANDIREST) to select a random number (a table

look up scheme could also have been used), suspend operation for that time period,

generate a message (stimuli) and then access the next number. This structure has the

advantage of replicating the same sequence of random numbers for every modelling

scenario. The second exarnple is that of a random number generation. A system caU to C is

used to access a random number generator (rand) and obtain a number between 0 and 1

FIGURE 2.6, Examples of rsmlom pumbeE generation•

module(random, [
(storl({):-

print('Finished random messages'»,
(start([RANDOMIRESTJ):·

delay(RANDOM),
sendL._,stimuli),
send(start(REST)))

D.

(a) Predetcnnined random numbers

module(random, [
(stort-

caICc(rand, RANDOMJ,
delay(RANDOM),
sendL.~stimuli),

send(start»
D.

(b) Utilizing function caUs

32

•

•

•

(which is scaled afte1Wards). A Prolog predicate calCc(Function, X) is used to pass the

random value from C to Prolog (sorne implementations of Prolog have predefined random

value predicates that can be used direetly). The value is then used to dclay and generate a

message as before. The difference here is that each simulation scenario will utilize ditTerent

random values and the timing delays will not be identical.

Timing issues for modules are resolved through scheduling during simulation. The

execution of a communication statement within a module's behavior is handled directly

through the simulator after the destination name has been resolved (chapter 3 describcs the

simulator data structures in detail). Similarly, a delay statement will cause a re-schedule of

the CUITent message being proeessed, until a specified time period. During this period no

further messages may be processed (the module's delayed state). Thcre is however one

exception to this rule. A default class of messages are defined within DSL to act as interrupt

messages. These are defined through the statement:

interrupcdeclaration ::= isa(message ,dsUnterrupt),

In this declaration, message is defined as a priority message. If a module is in a dclayed

state, sueh a message will cause the simulator to immediately rcmove the current message,

and schedule it after the priority message. After complelion of the priority message, the

interrupted message will once again delay the module. In the busy statc, messages cannot

be ÏnteITupted. A priority message can be interrupted by another priority message (there is

no notion oflevels of priority).

2.2.4 Inhcritance and hierarchy

DSL permits modules to inherit behavior (and structure) from other modules (and higher

order modules) - which expedites model re-use. A module that is writtcn to be sufficiently

generic and can be re-used by different parents is termed a generic module. By convention,

such module names are superseded with a "generic_" to stress this property.

33

•

•

Crealion of generic modules is simplified within DSL due lo the relaxed coupling scheme

belwccn modules. A module does nol necessarily require any knowledge about ils

destination, hence communication can be defined without destination names. Aiso, since

ports permit different assortmenls of messages lo pass lhrough them, interconnection is

also simplified. The model coupling is achieved by a higher order module accessing the

generic componenls Lhrough the library. Generic modules will be explained in detail within

the library support sub-seclion in chapter 3 - however it should be noted that if an

inheritance mcchanism exisls and if the super-class (generic) module does not use

communication primitives that embody destination names, then many different sub-classes

of modules may re-use the super-class definition. Expanding upon this notion, different re­

use capabilities can be observed as shown in figure 2-7.

The figure shows three different cases of inheritance. In each case, module A is the super­

class module and B the sub-class. In the first case, the communication primitives do not

specify destination nor port names. Hence the definition of module A resembles a truly

generic module - whereby ail the behavior is inherited as is.

The second case assumes the use of port names (but still no destination names) within the

send statemenls. This form is still a useful generic module within DSL. The environment

has the ability to adapt the sub-class lo the additional demands imposed by the super-class.

In this case, new port definitions may be required, hence additional port connections can be

generated by DASE (this is described in detailed in the next section).

FIGURE H. Module Igbetitagce agd re·use•

B
sendC_m)

A
smdL m)

B
sendl

AI
sendLport,m)

B
send(dest po ,

A

lAI
send(dest ,port,m

34

•

•

•

The final case is not amiable to generic module design. The communication primitives

refer to destination names, hence there is an added assumption that the sub-class must be

able to communicate with pre-defined modules. If however, the communication is

restricted to the bcundaries of the super-class (within a higher order module), then there is

no problem in inheriting.

The mechanism for inheritance is defined through the isa statement as below:

inheritance_definition ::= isa(module_x, module"'y).

The statement is use~ to establish that entity module_x is a sub-class of entity module_v.

modulcxcan also be defined to possess additional behavior local to ils particular function.

The statement also permits multiple relationships to be defined in one statcment. For

example isa(processor(X), cpu(risc)) identifies that aU modules defined with the name

processor(X) (where X is a variable) inherit properties associated with a super-class

module caUed cpu(risc). Module inheritance is not limited to a single source - henec

multiple inheritanee is allowed as in the following:

isa(processor(xyz), cpu(risc)).

isa(processor(xyz), memory(32M)).

In this example, processor(X) is defined as before, however a module processor(xyz) is also

indicated as inheriting sorne additional properties l'rom another module (memory).

The isa statement ean also be used to identify relationships between messages. For

example the following two lines define relationships between thrce different messages:

isa(update(ADDRESS,VALUE). msgJeqs/(Sfl'E, component(ADDRESS), update(VALUE))).

isa(msgJeqst(SITE, component(ADDRESS.l. update(VALUE)). memory_wrile(SITE+ADDRESS. VALUE)).

35

•

•

•

The first identifies a relationship between update and msgJeqst. This may represent a

corrcspondence between a high and low level protocol where an additional pararneter

(SITE) is provided by the respective module to interpret the message. In this case, the

higher level update message will be executed as a msgJeqst message at the destination

module. Therc is a further relationship also identified by the second line above; message

msgJeqst can also be broken down to another message memory_write - which may be a

message executable by a memory mode!. In this manner a high level representation of a

message can be sifted through different levels of abstraction.

The inheritance scheme for messages is adequate for messages that can be mapped to one

another. However, if a message rcquires more complex interactions at a lower level such as

multiple messages, acknowledgments and error checking conventions, it is best to use a

module that specifically models the desired protoco!.

2.2.5 Module behavior as Predicatetrransition nets

The semantics of most elements of a DSL module can be described in terrns of a Predicatel

Transition Net (PrTN) [Genrich 81]. The implication of this is that sorne properties of

modules can be forrnally exarnined using analysis methods available to PrTNs. The

analysis possibilities are described in chapter 3 which can provide for sorne verification of

modules before placing them in a module library. This sub-section will present the PrTN

model of a module and its limitations.

Petri-nets have been used in many areas to analyze hardware and software systems. The

forrnalism provides for a relatively powerful way for defining asynchronous concurrent

communication. One of the main complaints voiced about Petri-nets has been the problem

of state-space explosion and complexity of the generated graphs. These concems are min­

imized within DASE with the use of predicate nets to reduce net sizes and also by observ­

ing sorne restrictions to the general Petri Net forrnalism.

1. The first restriction is that modules exhibit a safeness property akin to that of Petri Nets.

36

•

•

•

This is observed l'rom the fact that a module processes one behavior at a time - which is

equivalent to a known bounded maximum number of tokens in a Petri-net or a strict PrTN.

2. The possible type of messages a module can accept or generate is finite and can he

parsed. This implies that a finite number of input and output places for each module can he

constructed.1f DSL messages are represented as PrTN tokens, this also permits the delini­

tion of finite token sets.

Since the original introduction of Petri-Nets [Petri 62] several extensions have bcen

proposed to increase their modelling power or expressiveness [Jensen 81][Jensen 891

[Murata 89] [Reisig 82]. Predicate{fransition Nets is one of the major extensions found in

the literature. The extension permits the specification of differcnt types that can he used to

represent the different behaviors within a module definition. The following is an overview

of the definition of a PrTN as defined in [Genrieh 81], a complete formai delinition of the

work can be found in the reference.

An ordinary Petri Net graph (PNG) is defined a~ a triple PNG = (P, T; F) where P is a set of

places, T is a set of transitions, F is the flow relation (elements of F arc arcs between places

andtransitions)suehthatFe (PxT) u (TxP), PnT =O,and PuT"i'O.

Markers called tokens, move l'rom place to place through the "liring" of a transition. The

firing rule for a transition t in a Petri Net is satisfied when ail input places contain at least

one token. The execution of the firing rule results in the removal of a token l'rom each input

place connected to t, and the placing of a token in each output place connected to t.

A PrTN is composed of an underlying PNG, a set of annotations A (applied to the PNG)

and a representative marking M. Henee, PrTN = (PNG, A, M) .

Ais defined to represent four types of annotation, A=(AN, Ap Al1AFJ:

i. AN is termed the support structure of the PrTN. It is composed of a finite set of constants

U, set of variables V (ranging over U), functions fi in U and relations Ri in U. It annotates

the whole net rather than specifie elements, deseribing statie aspeets of the net.

37

•

•

•

ii. Al' is a bijection between the set of places P and a set of variable predicates.

iii. Ar is a mapping of the set of transitions T, inta the set of formulae (ealled transition

sclectors) employing only static predicates and operators.

iv. AF is an arc labeIling function which associates formai sums of tuples of variables and

constants to the arcs. Hence the mapping is defined as: AF~ Wu w... u w" where

W = U u V and w" denotes the set of aIl k-tuples in W.

The marking M represents the displacement of tokens within the net. PrTN tokens

constitute separate individuals. whereas in ordinary Petri Nets they are indistinguishable

from one another - with their count at places being of interest. Hence token sets are formed

within PrTNs. attached to places and transitions of the net. If x E PuT and the arity of x

is k, then a token set of x can be defined as C (x) = cl. A given token c=(II]o...• lIk) ia a

place pEP denotes the fact that a predicate (of arity k) corresponding to the place is true

for a given instantiation of the tuple of arguments contained in the token. Similarly, for a

loken C in a transition tE T, the implication is that the variables within the annotations

specified for the transition and its incident arcs are substituted by the correspol!jing

constants appearing in the token.

A DSL module ean be represented by a PrTN as shown in the general form in figure 2-8.

The diagram gives the basic structure of the net that can be generated for a given module.

At the top. an input place (shaded in black) is defined where tokens annotated with possible

message names arrive. The assumption is that only one token may reside in the input place

at a particular time. To guarantee that no new message is processed by the net. a busy place

is explicitiy indicated where a token can be grabbed by active message tokens and released

upon completion of their behavior.

The initial arcs emanating from the input place are annotated with different possible

message predicates. hcnce each token type is directed to a different sub-net corresponding

to the particular DSL behavior. Any conditions demanded by the DSL model for a given

behavior are annotated upon the first set of transitions. In the event that a condition is

required from a resource, a bi-directional annotated arc is created to a place maintaining a

38

•
token for the given resource (within the set of rcsources block). The output arcs of these

transitions connect to a data manipulation sub-net which models the data manipulation

statements of DSL. Eventually arcs connect from this sub-net to a set of transitions that

make assignments to tokens as necessary, modelling a DSL communication statement. to

generate a token to an output place.

FIGURE 2-8. Predjca!e Net Beoreseplaliop of a Module

. , ,. :'w..tL.;;.ü*~* ... l......... ," •LE!i. ,","M .. .mL.u.·...~

1Predicate annotation

l
i~m:.'..~:) ·.;$1 , ••.
.~y: .. :-;.~", . "'. fS:.··4··· ... 9.

I
~Predicate (conditions) ;:i;~=ii~;~~i:~l----,,"W,"'4==W;Wiffi'4~"""",,4",W." .
~:::-~.,M~~M::'«m?~

", '

~ ~~
~ resourccs

The individual DSL behavior statements can be translated into Predicate-Transition net

elements as depicted in figure 2-9. As can be seen, the basic DSL clemenL~ can be repre­

sented by a sub-net. Each corresponding sub-net can connect with one another through

interrnediate places between them. The connections to the interrnediate places arc made by

input and output arcs within each sub-net. These arcs are shown as partly conneeted to

each transition in the sub-nets of figure 2-9. However thcrc arc two limitations for transla­

tion to be observed. The first is that delay statements are ignored, hencc timing is not

explicitly captured in the net rcpresentation. Another limitation is that the name of the

resource must be given in the use of the creale statemenl. In DSL it is possible LO deline

behavior such as:

. '"

•

•

39

• DSL Statement: PrTN Representation:

•

Condition slatement.

check_res(Resource(r, ,... ,r,,), (v, ,.. ,vy))
i.e. chcck_res(count(l), Value).

vnn Vm

where n is a valid Prolog operator.
i.e. N< New.

Daia Manipulation slalemenls:

seUes(Resource(r, ,...,r,,), (v, ,.. ,vy))
i.e. seUes(count(1), 0).

create(Resource(r, ,...,r,,), (v" .. ,vy))
Le. create(buffer(8), (1,0,0,1)).

resResource

resResou.'ce

ç~
. resAesource

FIGURE 2-9. l'redlcatelfrapsltlop Net correspopdepee witb DSf. slatemepts•

rernove(Resource(r1 ,....r.), (v, ,.. ,vy))
Le. remove(pointer(1), VAL).

Communication slatement:

send(Dest(d, ,...dn), POrl(o, ,... ,om)'
Message(a, ,.. ,a,,»).

note:
(execute(M) is simply an arc back to the input
place)

«r,,rz), (V1."·'Vy»

r9sResource

o = Desl(d1...·,dnl M = Message(a, ,a,:>

«D, M»

Port(o" ...,om)

40

•

•

•

b(Resollrce. Value):- create(Resource. Value).

Since this resource name depends upon an external type (supplied hy another module). a

corresponding place cannot be identified within the PrTN. The same prohlem also is

attributed with the probe statement. since it rcquires a value l'rom an external module.

Observing the limitations. an algorithm for translation l'rom OSL behavior to a PrTN is

given in figure 2-10. A small example is presented helow to demonslrate the algorithm

and clarify the use of the annotations. Larger nets arc presented in Ihe case sludies

described in chapter 4.

Assume a module timer(Vallle) wriuen in DSL is to be translated 10 a PrTN. wherc the

module is described as:

modulertimer(Value),
{(clck:- checkJes(count, M),

Value> M,
NewisM+l,
secres(count, New)),

(clck:- send(Dest, out. alarm)),
execute(reset)),

(reset:- secres(count, 0))
J).

The OSL behavior describes a timer that counts the number of clck messages il receives

and transmits an a1arm message (through iL~ out port) when the count has reached a limit

Value. At this point the count is reset to 0 and the process rcpeats. An extemal reset

message will a1so reset the eount.

The behavior can be represented as a PrTN. The translation algorithm generates the PrTN

net. shown in figure 2-11 (a). The figure omits the busy place which is part of a standard

module's behavior. The input place aeeepts the incoming messages and one of three

transitions (reset(l), clck(l), clk(2» are fircd depending upon the message name. A place is

41

•

•

•

Define a set T = Il and P=Il.
For a given module name with arguments e, •..•en

create an input place labeled innamo and add it to P.

For each behavior bi(a, •...aiJ do:
(create a transition node labeled as bi(l) where O<l<n such that bi (1) ~ T, and add it to T.

currenUransition =bi(I).
currenUabel = (a, ,...ak)'
create an arc with annotation <bila,ak» from innamo to bi(I),
For each DSL statement of the clause defined by behavior do:
{
If a condition statement is encountered then:

ff the condition = check_res(Resource(r1 ,...,r.l, (v, ,.. ,vy)) then:
{ ff a place resRosourœ does not exist create il.

creata and annotate arcs as in figure 2-9.
else
(annotate the transition bi(l) with the condition}

if a data manipulation statement is encountered then:
(create transition ti, place pi and areCs) and annotate as required by figure 2-9.
connect arc between currenUransition to newly created place pi.
annotate arc with currenUabel.
currenUransition = ti.
currenUabel = {currenUabel appended with annotation of input arc to ti.}
}

if a communication statement:
{create transition si and annotate as required by figure 2-9.
create arc to appropriate output place
}

}
}

FIGURE 2-)0. DS!.. PrIN translation algorjtbm

required to hold a token relating a value to a resource (labeled rescount) "count". The two

possible conditions for the behaviors for clk are represented by the clk(l) and clk(2)

transitions. In the event of a clk token in the input place, clk(1) will !irst be tested and then,

if needed, clk(2). The extemal message generated by the net is a result of following the

clk(2) path. where an alarm message is sent to "Dest".

The graph can be depicted within the PROD language (developed at the Helsinki

University of Technology [Gronberg 93]) or any other PrTN tool for further analysis.

Figure 2-11 (b) depicts the corresponding PROD representation of the PrTN graph. The

syntax of the net description is straightforward where the corresponding places and

42

•

•

transitions are defined. Since module behavior is described as a bounded net. high limits

are also defined at each place in the PRaD description, ensuring that the boundedness

property holds.

2.3 Design development support

As with any modelling language, DSL embodies a philosophy of ilS own to the design of

systems. The language is suited to the top-down design approach whercby design detail is

added and further refined by inherited modules. An initial design commences with a main

model consisting of a higher order module. Sub-componenlS are then systematically

defined or utilizcd to accomplish a suitable level of design detail. This approach requircs a

reasonable model library to support design exploration and a structured approach to the

design (which enforces a modelling discipline upon the designer) [Booch 91].

A modelling activity can be viewed as a composition of two models: a model of the

environment and of the system under consideration. The relation of the two within DSL is

given in figure 2-12. The model of the environment reprcsenlS a conglomerate of the

FIGURE 2.11, PrIN representatlon or t'mer eXBmple•

reset(1)

<Des!, a1arm>

Value: defined constant.

(a) PrTN graph for timer

Henum rellcf. clk
tldefine vnlue 3
IIplace Inpullo(<.O.» mk«.clk.>+<.resct.»
Itpince res_count 10(<.0.» hi«.l.» mk(<.I.»
Itplocc 1'_1111«.1.»
IIplnce 1'-2,10«.0.» 111«.1 .»
litrons rcseU

in 1input: <.re..ct.>; res_count: <'111.>; 1
oUI (rCli30unl: <.0.>: J

IIcndtr
IIltnns clk.J

in (input: <.clk.>: rel_counl: <.m.>; 1
gille ITKvnluc:
oui { p_l: o(.c1k.>; res_cuunt; <m.>; 1

<l'eset> /lendtr
IIlrll/Ul c1k..2

in (Input: <.clk.>: rel_count: <.m.>;}
gnle m==va]uc:
out (1'_2: <.cllc.>; rell_count: <m.>: 1

Itcndlr
IItrall5U

in 11'_1: <.cllc,>; fCl3·,unt: <IlL>: 1
oui (res_count: <na 1.>; input: <.clk.>: 1

Itendlr
ItlrBns t..,2

ln (p_2: <.c1k.>: J

out 1input: <.resct.>; 1
Itendlr

(b) PROD net representation

43

•

•

•

cxtemal trafflc and test cases to he applied to the model under consideration. Generally the

applicd load does not completely encapsulate all possible events that may occur upon the

system, however it should at least coyer the known scenarios of interest. State driven

models can easily be descrihed in DSL or the model of the environment can generate test

cases through another language (such as Prolog or C). Hence there may be a mixture of

DSL and other languages used. It should he noted that the model of the environment is used

solely for cxperimentation and model support, hencc it is never intended ta be synthesized

as part of the system.

Design development support, including simulation and synthesis constitutes the remainder

of possible DSL commands in a DSL program. 'These commands can be grouped as:

dsCexperimenCconstructs ::= module_type_definition

llibrary_definition

1constrainCdefinition

The differcnt commands are defined below.

2.3.1 Co-design constructs

In designing models for the system under consideration DSL makes no distinction between

software and hardware modules, however the language has provisions ta allow the

designer to identify these modules. This is of significance for synthesis since software

modules will not be synthesized to the target hardware language: VHDL. A module can be

Model of system

DSLModel DSL Model of System
of Environment Uoder Consideration

stimuli

{Random messages, {modules,
start;:tr, messages. higher order modules}
T'eCO >"8 elc.} response

.

FIGURE 2-12. Mo<!elllnv of a System

44

•

•

•

identified to represent a hardware or software entity simply within the predicate

module_type:

module_type_dejinition ::= module_type(dsCname ,synth_type).

synth_type ::= software

1hardware

1system

1 protocol

dsCname is the name of a module. The system identifier implies lhal the module is a

supporting module (such as a load generalor) and is nol synlhcsizcd. Thc pmtocol

argument indicates that the module is uscd lo implemenl a prolocol belween other modules

and can be synthesized into a VHDL procedure or function.

If the module_type predicate is not defined by lhe user, lhe respective module is assumed

(by default) to be a system type and is not considered for synthesis.

The representation mechanism provided by DSL facililates the description of generic

modules. These modules are defined entirely in terms of their potential behavior with

respect to the environment and are free to bind to software or hardware conslrucl~. Since

there is no default notion of hardware and software, co-dcsign modelling can hc facilitated

by DSL.

Co-design concepts within DSL are iIlustrated in figure 2-13. Modules can represent

behavior and structure (HO-modules) so that many different abstraction levels of hard­

waré ~an be described. Software behavior can similarly be captured by the behavior of a

module. Since each module may execute one particular behavior at a time, it is straightfor­

ward to describe seriai program execution in terms of delays and program control. This is

depicted within figure 2-13(a) by the shaded generic module S (for software). The ellipses

graphically represent a particular behavior, while the arrows indicate the program fiow

control. The names within "< >" indicate a name of a behavior defined within the module.

In this simple example, module S will accept a message with parameter X and either

45

•

•

increment or dccrcment the value, depending on the condition X<Y (where Y is assumed

to represent a local variable).

Concurrent software/hardware can also he described with a set of modules, confined

within a higher-order module. An example of this is given in figure 2-I3(b). Higher level

program control is described by the module interconnects, while local module control

Ilow is described by the behavior of each module.

In this e"~mple, a module PROC(X) spawns three identical messages indicated by thejork

behavior This behavior would typieally be deseribed in DSL in the forrn:

jork(X):- send([proc(1), proc(2), proc(3)},-, X).

The three concurrent processors (hardware or software) inherit a part of their behavior

from the generic module S. Consequently each processor will process the message X con­

currcntly. It should be noted that the processors PROC(l-3) can represent both hardware

processors or software processes. Inheritance is the typical way in which a hardware mod­

ule may absorb the behavior of a software module.

If a Iibrary is maintained with generic software modules representing specifie functions

such as branching, looping and sorting, then these modules can be inherited by other mod-

<X>

•
(a)

Module Concurrenl·Processor·Exnmple

PROC(X)

("'ork»
""';];"

PROC(1) PROC(2) PROC(3)

L ~ i ~ /' ~
\ 1 \)

r .. senerlemodultl S-
~

.

(b)

El!i'·lJRE 2·13. CO.Deslgn Construct ExamWes

46

•

•

•

ules as required. Parameterized generic modules allows for the dynamie definition of mod­

ule resources and delays upon invocation. This facilitates the description of rc-usable

software modules such as "sorter" which may acccpt messages sueh as "quiek­

sort(SIZE)" and "binary-sort(SIZE)". The parameter SIZE may be used by the generie

s0l1er module to determine the delay of the particular sort algorithm.

2.3.2 Model refinement

An initial DSL model can undergo several rcfinements by the environmcnt during design

exploration. Figure 2-14 depicts the interactions between environment components and the

DSL model. The initial model is at a very close level of abstraction to the design

requirements, hence if the requirements arc not specific, the DSL model will leave room

for significant refinement. In such circumstances, the user may intervene to make design

decisions to help narrow the design space. Refinement occurs during the course of

simulation as a consequence of interactions between the environment and the user.

The DASE environment provides the support (such as constraint checks and modellibrary)

for refinement. For example, whenever an ambiguous interconnection is deteeted between

modules (no path exists between communicating modules), the environment will initiate a

eonneetion, or if a constraint is violated the environment can aeccss ils model base for

replacement modules. This is ail deseribed in the next ehapter, however DSL provides

sorne basic library commands to facilitate these activities with the library support system.

The library support commands are defined as;

library_dejinition ::= use_dsUibrary([dsCname* n.
1conjigure_librarYJules

1starccondJules

conjigure_libraryJule ,. - configure_library(dsCname):- (Prolog rules and DSL

statements}

starccondJules ::= start_cond:- (Prolog rules and DSL statements}

47

•
DSL Model Development DASE

DSLSIMULATOR

PrTN
Verification

generic

Behavioral
VHDL
Executable Model

models

. \ '\
; ._-i t~ .
..,.~ constramt checks.....\ r'~ "';cl model interface definitions,,\ .:~ ..- .

·····

/ .._.--~._ .._"
rINITIAL DESIGN"I
C CONCEPT \",-._. :....J,_..~

•

• FIGURE 2..14. PSI, Mode. Re6g,:ment

48

•

•

•

The use_dsClibrary command refercnces library module Hames (<fsCname) to be uscd

within a given DSL progrum. A DSL program is free form., but adhering to basic Pmlog

syntactical guidelines. The next two commands are used to automate the set-up of DSL

models. They are both headers for Prolog rules, hencc any Prolog rule as weil as DSL

statements can be used to describe the actions to be taken by the respective commands. The

configure_libraryJules are rules associated to specifie (library) modules. They describe

the initial values the module may need upon initiation. These include creation of rcsources,

providing initial values for free variables, and definition of defau1t paths. The

starccondJules refer to the starting conditions required for the module. This command is

a mix of Prolog commands (generated by the environment) and DSL se11l/ statements. The

use of the command is to send initial messages to modules so as to place thcm in a known

state. The use of these eommands will be deseribed in detail in ehapter 3.

An additional predicate is useful both during synthesis and simulation. This is the

constraillt statement whieh identifies a constraintto be imposed upon a module's resourcc

or behavior. The form is:

constrainCdefinition::= constraint(module_name , elltity , consCtype, values).

module_name ::= dsCname

elltity ::= dsCname

consctype ::= dsCname

where, module_name is the name of the module which the constraint is applied to, elltity

defines what is being constrained (resouree nume or behavior name), type is the name of

the type of constraint, and values (defined in section 2.2.1) is a constraint value applied to

the type.

type is a user defined computation of a constraint (sorne pre-defined types are given within

appendix A). For example, constraint(c/ock, ClockJate, upper_limit, 100) describes that

the maximum dock rate is 100 (nsecs) for the indicated module. The type uppeUimit

would correspond to Prolog code which will compute the current value of Clock_rate and

ensure that it is below the upper limil

49

•

•

•

2.4 DSL modelling example

This section introduces the design of a significantly complex telecommunication system to

ilIustrate the hardware and software modelling capabililies provided by DSL, moving from

specifications to architectural modelling. The example is intended to provide insight into

the modelling approach taken to describe a desired system. The example will be revisited

in the next chapter to emphasize the DASE environment's capabililies.

The example is the design of a traditional digital voice switch providing service for "Plain

Old Telephone Service" (POTS). For this example il is useful to envision the design as that

of a service provider - the switch will provide a specifie service for the telephone. As part

of the system requirements, the services that must be provided are tabulated below:

No. Description of service DSL behaviour name *
1. - Detect an incoming cali (offhook) from Source Agent phone_off_hook(A)

- Provide dialtone dialtone

2. - Colleet digits from Source Agent diaCdest(A,B)

3. - Translate digits call_dialed(A,B)

4. - Select Terminatiog Agent status_response(B,STATE)

5. - Es~~blish connection belWeen the two Agents called_state(A,B)

6. - Scnd Ring tone to Terminating Agent ringtone
• Send Ring tone to Originating Agent ringtone
- Send busy tone to Originating Agent busytone

7. - Delect Answer (offhook) responded_call(B)

8. - Deteet a disconnect (onhook) phone_on_hook(B)

Table 2·1: Services Provided tu Telephone

*DSL Variables: A= Source Agent, B= Terminating Agent, STATE= (onhook, offhook, busy).

These services will be addressed dul"Îng the construction of the DSL modules within the

remainder of the section. A digital time-space switch (DTSS) based upon conventional

switch design will be introduced which can provide fast switching and flexible telephone

service support

50

•

•

••

A particular design of a DTSS can be viewed as composed of thœe major high level

elements: a switch element, an interface clement and a service provisioning clement (ail

shown in figure 2-15). These are the initial clements the designer would speeify as part of a

top-down design approach. At this point an overview of the functions of the various

clements are needed to proceed to the next level of design detail.

The switehing element is the most real-time dependent component of the design. Ils

funclion is to take a lime slotted incoming digital stream of voice samples (along incoming

seriai lines) and switch them to potenlially different output lines (spaee switching) at

different lime slots (lime switching).

The operation of the DTSS is as follows: An interface unit digitally samples (m) pulse code

modulated (PCM) telephone caUs and time mulliplexes them towards the switching

element at an allocated time slot (.l'). The switehing element then transfers the lime sloued

data to different outgoing lines and slots. Generally the number of time slots (.l') availahle

between the interface units and switching clement is such that m;:: s. This is hecause ail

telephones connected to an interface module are not active at once and do not require ail s

lime slots. However if more than .1' calls oceur at the same lime, then hloeking of sorne calls

will occur (a fast busy signal is sent by the network to the telephone). The choiee of the

number of interface units (n) and lime slots to use are design issues based upon assumed

traffie load criteria of the network.

DigitaCSw;tm(O)

mUnes Interface InlcrCac
milou

unit (0)

V-
unit (0)

~ GENERIC

m IInes 10'I1,·'ff-- SWITCH
~ Interr.Ct m IIne.

unt n~ unit (n-I).. ELEMENT

rn-tllnes Inlertau/ i'- Inferr.Cf!
1 Telephone

1
unit ln)

m·lllou

~
unlt(n)

Services

'~
A

8

FIGURE 2·15. H;gb l.eve! DeplctloQ of Swltcb l'xample

51

•

•

•

The service providing (Telephone Services) clement can be located \\ :thin the switching

clement. The function of this clement is to provide the call setup support needed to

establish a two-way tclephone service. This clement is assumed to be software. This is

desired since different services (such as call waiting) can be added as needed via software

rather than building custom hardware.

The seriaI time-multiplexed lines are given various specifications and conventions within

the telecommunication domain. For example, the number of time slots available per line

can vary depending upon the transmission rate. The standard for digital transmission in

North America is OS 1. OS 1 carries PCM signais in a 193 bit frame composed of 24 (8 bit)

channels (for voice samples) and a single framing bit. Transmitted at a rate of 1.54Mbitsl

sec, this ensures that a frame is transmitted every 125 microseconds. For telephone grade

quality, a 4khz voice needs to be sampled at 8000 times per second - which implies a

sample (byte) every 125 microseconds. Hence a OSI transmission facility can carry up to

24 separate voice samples across a single line.

The OS 1 transmission standard is used between the interface units and the switch element,

however the design will be flexible so as to allow different number of channels, always

guaranteeing the minimum requirement of 125 microseconds per frame.

At the system level of design shown in the figure, sorne design considerations are issues

such as traffic, the number of lines required for the switeh or verification that a calI will be

set-up. For the designer to explore different trade-offs in a rapid and intuitive manner key

re-usable or generic components must be available. For example the number of input Hnes

is an important factor in the switch size. This design criteria will impact the number of

interface units to use and the size of the switch element. Hence such a design parameter

must be accessible to the designer so that the system may configure the internai of the

switch accordingly. To satisfy high level design concerns, a digital time-space (dts) switch

higher-order module can be defined as:

52

•

•

•

ho_module(dts_swltch[NUMBER. INPUTS, CARDS. CHANNELSl,

[swltch_element[NUMBERl, lnterface_card(Y))).

The parameters for dts_swltch are relevant to the system designer. These arc.

i. NUMBER: is an identifier for the switch. This is used to identify and eonflgure diffel'ent

switches within a network of interconnected ones.

ii. INPUTS: defines the number of input (anà consequently output) lines that a switch should

have.

iii. CARDS: defines the number of interface units the designer may require.

iv. CHANNELS: defines the number of channels the seriaI lines should comply with (the

default is 24 which is OS 1).

Given these parameters for a OTSS. the environment should be able to generate the

underlying model based upon the high level arehitecture shown in the figure and existing

models in the modellibrary. We will assume that no applicable library models arc defined

(the l'ole of library support will be described further in chapter 3). As a l'esult. the various

details of the lower level elements must be described by the designer. The description of

the struetuw.l details is presented below for the two main hardware componenL~ of the

switch with sorne behavioral description. The description of the software clement

(telephone services) is given as an example of behavioral specification in OSL. Thc

complete design description in OSL ean be found in the appendices.

2.4.1 The Generic Switch element

The design presented in this section is one that is applicablc to many large OTSS designs.

The example concentrates upon the call-setup operations. so ,other operations that arc

important in the switeh design (such as customer billing, error processing, maintenance

and fault-tolerance) are not inc1uded in the example. However these arc easily added as

inherited (software) modules in a similar manner as that of the telephone services described

later in the section.

53

•

•

•

The real-time design eonccrns for this element can be numerous and complex depending

upon the size of the switeh. The objective of the generic switch clement is to capture the

scrial streams of data from input ports, identify the incoming lime-slot and port, determine

the destination port and lime-slot and ensure the right incoming data gets transferred to the

correct output stream. Since the number of input and output ports are variable, it is useful

to scparatc their functionality into separate modules. The design will also require a control

processor(s) to manage aIl the routi:Jg and calI set-up functions. To avoid congestion on the

control processor bus, a separate bus is desirable to move data from the input to the output.

Addressing these design issues, a typical generic switch clement model is given in figure 2­

16. The description is termed generic because the design is being constructed such that the

components can be re-used within a modellibrary framework.

The modules arc described below:

line_in: This module is the interface for the incoming message stream. Incoming seriai

channels are captured as byte long words (or voice samples) and sent to the buffer

module for temporary storage.

,
generlc_swltch_clcment Hbrur~' module

LlNE·IN bulTer SPEECH·BUS 11ME JNE.our. MODUL '1- MODUL MODULE 1--- swrrc~E1- r"ODULE 1-MODUL

1 VCONTROL
FRAME BUS
CONTROL MODULE gcneric_c1ock
MODULE

1 ------CONTROL CONTROL
PROCESSOR MEMORY
MODULE MODULE

'" ...
FIGURE 2-16. DS!. Mode! or Generic Swilcb Elemept

54

•

•

bufier: The buffer is a temporary storage facility for ail thc linc-in modulcs. which implies

that the buffer size is dependent upon the number of fine-in modules.

frame_control: The module provides the timing control for the speech_bus to lranslcr dala

l'rom the input buffers to the output. Conlrol is also provided for use by the

control..processor.

speech_bus: This is a model of the bus betwcen the input bulTcrs and the output

(tirne_switch).

timcswitch: This module. under control...plVcessor control. lalches onto data l'rom the

speech_bus and lransfers it to the appropriate line-oul module.

fine_out: This module depicts the output interface. The module conlains a butTer for each

channel it supports (i.e. for OSI therc are 24 bul'fers). New dala l'rom the

time_switch overwrites relevant buffers and information l'rom eaeh huflcr is

transmitted in sequence under control of the generic_clock module.

genericclock: This module provides the timing rcquirements for OS 1 type transmission

equipment. The behaviour of the module will be fUlther elaborated in this seclion.

control..processor and control_memory: The routing and call-selup control is mainlained

by these modules. The memory contains the routing tables for cali connections as

weil as the control software.

As a sampIe OSL behavior. the details of the generic_clock library modulc arc prcscnted

below.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

•

module(generlc_clock(INDEX. NO_OF_CHANNELI.I

(clock_countINO_OF_CHANNELI:- send(c1ock_counl(Oll.

sendl.clock_port.frame_cyclell.

(clock_count(NEW):- NEW<NO_OF_CHANNEL,

Clock_rate Is (l25/NO_OF_CHANNELl.

delay(Clock]atel.

COUNTlsNEW+1.

sendl,clock_port.c1ockINEW)) .

send(c1ock_counUCOUNT)ll Il.

55

•

•

•

1.9 start_cond:- wrtte('SCtUng up InlUaI messe.ges 'l.nl,

J.IO Isa(X, generlc_c1ockL, CHANNELS)),

1.11 retracl(current_module_processed(XXX)),

1.12 asserta(current_module_processed(X)),

1.13 send(clock_countlCHANNELS)).

J .14 conngure_lIbrary(generlc_c1ock).

This segment of code is typical of library modules. The first segment (lines 1.0 to 1.8) is the

behavioral description of the module. The module processes only one message:

c/ock30unt(NEW). where NEW is an undefined patameter or NO_OF_CHANNEL (a

parameter passed to the module). The parameters of the module are given in line 1.0.

INDEX is an identification number given to the clock module and NO_OF_CHANNEL is

the number of channels the clock is to support. The latter permits the module to produce

timing control for a wide variety of transmission components.

Lines 1.3 to 1.8 demonstrate the typical actions that occur upon receipt of a

c/ock_count(NEW) message (where NEW=<NO_OF_CHANNEL). Line 1.4 establishes a

Clock_rate for each channel and in line 1.4 the clock module is delayed for this period of

lime. After the delay, lincs 1.6 and 1.7 increment the value of NEW and send a

c/ock(NEW) message to any module connected to its clock_port. In line 1.8 an internai

clock30unt message is transmitted with the increment value of NEW lo start the cycle

over again.

Lines 1.1 and 1.2 guarantee lhat lhe module provides a modulo-NO_OF_CHANNEL

based timing. If the clock_count parameler is at the limit (NO_OF_CHANNEL) an internal

message c/ock_count(O) resets the parameter. A frame_cycle message is also generated to

modules connected to lhe clock's clock_port. This message advises lhe modules of lhe statt

of a new frame (or a sync bit in DS1).

The second segment of code (lines 1.9 to 1.13) define starting conditions for this module.

The required start message in this case is a clock_count message with an integer value,

56

•

•

•

used to star! the dock module. This value can be anything in the mnge () to

NO_OF_CHANNELS. If a value is not provided by the user as in line 1.13. the

environment obtains the value from the instantiation of the module (lines l.1O to l.12) if

possible - otherwise an error message is given to the user. In this case the instantiation of

the generic module would provide the NO_OF_CHANNELS value which is a valid

parameter for the dock_count message. Unes l.1O to 1.12 are simulator directed

operations added by the system.

Une 1.14 completes the last segment of code in the library module. These arc conliguration

rules. This module does not have any significant configuration requircmenl~. hence therc is

nothing added by the environmenl.

2.4.2 The Interface Unit(s):

The design demands are less severe for the Interface Unil.~. These unil~ must provide the

basic services that an individual telephone will require - services such as dialtonc. ring­

back tone and capture the dialed digits. These services can be provided in many ways. In

this example they will be provided by a programmable control/er module. The module's

"program" and hence its behaviour is defined by another library module: .l'ub_server (for

subscriber server). Hence the direct interactions with the telephone can be altered by

changes to the latter module.

The Interface Units 21so require a tine_inteiface module which will providc the neeessary

transmission eapabilities between the switch_element. The behaviour of this module is

identical to the combined tine_in and tine_out modules within the

generic_switeh_element. Also a timer module is delined (an instantiation of the

genericclock module) to provide the appropriate timing control for the transmission

components. The DSL representation of the Interface Unit is provided in ligure 2-17. The

details of the sub_server module (controller functionality) will not be elaborated here.

however sorne aspects will be shown during the description of the telephone call-setup

services in the following section.

57

•

•

2.4.3 Software constructs - Telephone Services

The example assumes that the telephone services provided by the switch are controlled

through the control...jJrocessor modules in the generic_switch_element. This is a design

choice. Alternatively, most of the services could be off-Ioaded to the interface_units, or to

another processor. These alternative scenarios can easily be incorporated within this

example by inheritance of different parts of telephone services through other modules.

Telephone services require communication between clements of the switch and possible

other switches. For example a cali originating on one switch could be trying to ring a party

connected to another switch. To transmit these type of signalling information, the switches

will reserve channel 0 (the tirst channel in a frame) as the default communication channel.

Hence ail telephone services messages passed from the generic3witch_element to the

inteiface_units will be through this channel. A1ternatively a separate iine can be allocated

specifically for signalling information - which is another design choice.

The telephone service routines are detined within a pots_server (for Plain Old Telephone

Service) module. This module will eventually be synthesized to software, hence will not

impact the DSL model in a structural manner - ils behaviour being inherited by the

control...jJrocessor within the switeh.

FIGURE 2·J7. PSI. Mode! of Ibe Interface Unit•

to teleph

ho_module: Interface_unit

controller Hne_interface
to/from
switch_elemen

...
ones m

+
timer 1

t

58

•

•

•

The basic operation of the pots_server is as follows:

When a phone cal! is placed, a calCdialed message is sent from the respective

inteiface_unit to the switchjlement - indicating the caller and destination phone numbers

(the phone number in this example is identified as telno). The module creates three

resources to accommodate the calI. The first is the connect resource which identilies the

two parties and also the status of the connection. The status can be conneccrequest

(connection not yet established), ringing (the destination is ringing), and eonneeted

(connection is established). The other two resources are the agent and terminator whieh

contain local data for the caller and destination phone respectively. Once complete, a

message line_status is sent to the destination phone's interface_unit to determine if the

telephone is occupied. The DSL code is:

(caU_dlaled(telno(ID, SONO, STEL), telno(RSNO, RDNO, RTEL)):-

create(connect(telno(lD, SDNO, STEL), telno(RSNO, RDNO, RTEL)), connecCrequesl),

create(agent(STEL), SDNO),

create(termlnator(RTEL), RDNO),

sendLllne-port(RDNO), update_buffer(RDNO, llne_status(RTEL))))

As a response to the last message, the respective inteiface_unit will eventually scnd a

status_response message indicating the state of the destination phone. The phone can be

onhook (not busy) or busy (talking to or dialing another line). In the former case, the

pots_server will allocate a free pair of channels for the two telephones (this information is

contained within a resource named connecCtable) and also send ring-tones to the two, If

no free lines are available, a fast-busy tone will be sent to the calling party and the di••,,­

structures will be cleaned up, The DSL code is outlined below:

(status_response(B, STATE):­

check]es(connect(A, B), connect]equest),

send(ca1led_state(A, B, STATE))

),

(ca1led_state(telno(SW,DS,A), telno(BSW,BDS,B), busy):-

59

•

•

•

check]es(agenl(A), Aportl,

remove(connecl(SW, lelno(DS,AI, lelno(BSW, BDS,Bll, SS),

remove(lermlnalor(BI, Bport),

sendl,lIne_port(Aportl, updale_bufferlAport, busy_lone(A)))

J,

Icalled_slale(lelno(XX,DS,Al, lelno{YY, BDS,BI, onhook):­

check]es(agenl(Al, Aportl,

check]es(lermlnalor(B1, Bporll,

check]es(channel_lable(Aporl, ChA), unusedl,

sel]eslchannel_lable(Aport, ChA), Al,

check_res(channel_lable(Bporl, ChBJ, unused1,

selJes(channel_lable(Bport, ChB), BI,

Index) Is ChN20+Aporl,

Index2 Is ChB'20+Bport,

selJes(connecl(lelnoIXX,DS,AI, telno{YY, BDS,Bll, rtnglng),

sendL,mem_porl(lDJ, mem_wr1le(lndexl, Index2ll,

sendl,mem_porUID1, mem_wr1le(lndex2, Indexlll,

sendL,lIne_port(AportJ, updale_buffer(Aport, channetallocale(A, ChA))),

sendL,lIne_port(Bport), update_bufferIBport,channel_allocale(B, ChBllI,

sendL,lIne_port(Bport1, updale_bufferIBport,change_slate(B, rlnglng)ll,

sendl,lIne_portIAportJ, updale_buffer(lndexl, rtnILlonell,

sendl,lIne_port(Bportl, updale_buffer(lndex2, rtnILlonell

),

Icalled_slale(lelno(XX,DS,Al, telno{YY, BDS,B1, onhookl:­

wrlle('No free IInes avallable'J,

remove(connecl(lelnoIXX,DS,AJ, BB), SSl,

removeltermlnalor(B), BportJ,

sendL.!lne_port(DS), updale_buffer(DS, fasl_busy(A)))

J,

If the destination phone is picked up, a responded_call message is received by the

pOLS_server, The module will consequently ensure the proper data structures are updated,

This is shown below:

(responded_call(telno(X,DSB,Bll:­

chcckJes(connecUA, telnolX,DSB,Bll, rtnglng),

check_res(termlnator(B), Bport),

set_res(connecl(A,telno(X,DSB,Bll, connectedJ,

60

•

•

•

sendL,llne-POrt(Bportl, update_bufferlBport,change_state(B, busy)))

J,

The phone conversation will tenninate when the originating party hangs up the lelephone.

The phone_on_hook message is generated by the respective imeljace_lI11it when a

telephone has been detected to become on-hook. The pots_servel' determines if the

telephone is the originator or the destination and accordingly cleans and updates the

respective data structures as bclow:

(phone_on_hook(telnolX, OS,A));-

check_res(connect(telno(X, OS,Al,telno(Y, OSB,B)), connectedl,

remove(connect(telnolX, OS,A), telno(Y, OSB,B))),

remove(agent(Al, Aport),

remove(termlnator(Bl, Bportl,

setJeslchannel_table(Aport, ChAl, unusedl,

setJes(channel_table(Bport, ChBI, unusedl,

sendL.llne_port(Bportl, update_buffer(Bport,phone_ofChook(B)))),

(phone_on_hook(B);­

checkJes(connect(A,B), connected)),

(phone_on_hook(telno(SW,OS,A));­

checkJes(agent(Al, Aportl,

remove(agent(Al, Aportl,

sendL.llne_port(Aportl, update_bufferlAport, change_state(A, onhook))) l,

(phone_on_hook(telno(SW,Aport,A)I:-

sendL,llne_port(Aportl, update_buffer(Aport, change_state(A, onhook))) l

This completes the behavioral description of the telephone services. At Olis point, design

exploration and further model development can be undertaken by use of Ole modelling

environment (DASE) - which is the topie of Ole following chapter.

61

•

•

•

Chapter 3 - Design and Synthesis Environment (DASE)

3.1 Introduction

The Design And Synthesis Environment (DASE) is the supporting framework for DSL to

provide the necessary facilities for design exploration and rapid prototyping at the

architectural level of design. The environment accepts a DSL model as input and provides

capabilities for model configuration, Iibrary support, module verification, design

exploration via simulation and module synthesis to a subset of VHDL. The environment

was motivated by a desire to support a top-down structured approach to design.

The major components of DASE are shown in figure 3-1. Specifications are entered

through a user interface and captured by the environment through the use of the internai

representation; DSL. The language is interpreted through a DSL processor which manages

the Iibrary and DSL model configurations. The Iibrary support is a key component in

permitting model re-use and facilitating rapid prototyping. The DSL processor also

interacts with a DSL simulator and a predicate/transition net based analysis tool (PRDD)

[Gronberg 93] to provide verification of module properties. The DSL simulator interacts

with the DSL processor during design exploration activities to refine the model as required.

The final component is the synthesizer which translates the (refined) hardware DSL models

into a behavioral VHDL representation.

This chapter will present the various components ofDASE and describe their functionality.

62

•

•

•

... 1 USER INTERFACE 1r 1

{design capru;eJ t Library

1 DSL Processor r /DSL,

./ .1. "- C()llstntill~~1

1\ S~~h';,lz" 1 1 1 I ••••••••~

....."j DSL Simulator Predicate Net ,ModclsAnnlyzer

nA.~R

(VllDL
Behavioral, Process)

WWER L/?VEL DESIGN AUTOMATION moLS

FIGURE 3·1, nASE Qrgao;zut;QO

These inc1ude; The DSL processor and library support, analysis of modules, simulation

and synthesis.

The eurrent implementation of DASE is invoked at the Prolog interpreter prompt with the

eommand: u> [dsl],", The DSL processor and simulator arc then automatically loaded

within the system displaying an introductory message.

3.2 DSL Processor

The DSL processor is a central component which manages the DSL models and is the

primary interface with the user. Ils main funetions are the management of library modules,

constraint ehecking (with the simulator) and module communication support (such as

deterrnination of unspecified destination modules). The library support system of DASE

provides a high level means for the modelling and management of models for

telecommunication systems. The support entails the organized storage and retrieval of

modules such that library modules are accessible to the environment as rcquired. This

implies that the DSL processor be capable of accessing modules at different levels of

representation and utilize them as warranted. Design details which may be neccssary, but

not of interest to a particular user can be processed by the DSL processor transparently •

frecing the designer to concentrate upon the pertinent details. For example. if the modeler

is modelling an application layer of a protocol, alilower layer messages used within the

63

•

•

modcl can be transparently maintained and re-used through a library supporting the

protocol. Altemativcly, differentlevels of abstraction can also be modelled within the same

model due to the ability of the environmentto maintain a message hierarchy.

3.2.1 Library support

The top-down design approach of OSL is supported by an experimentation and model

management mcchanism where re-usable "generic" model components are made available

to support simulation of different design options. A versatile library support system is

managed by the OSL processor which cnables creation, storage and retrieval of module

libraries in an organized manner. Libraries maintain all module information, as well as

added rules rcgarding any constraints to be imposed on the modules, any configuration

rules to be applied to the components of the library, and the interface specification of the

library module. The interface specification is erealed by the library system to define exactly

what ports are available for communication with the library module.

Library modules are invoked with the usej1sUibrary([NAMESJ) OS!.. statement defined

in the previous chapter. Upon invocation, each library module is processed in an order

identified lhrough a model hierarchy tree. The tree is crealed by the OSL processor to

establish a relationship between modules. An example of a model hierarchy is shown in

figure 3-2. The top level module (module al) utilizcs two other library modules (modules

Segments orDSL code: Corresoonding Model Hieoohy:

module al

FIGURE 3-2. Mode! Hierarcby in DSI.•

in: ho_modulc(a. [...J).
use.dsUibrory([b,c]).

...

~
in: ho_module(b.I ...}).

use.dsUibrary([dl.d2,d3]

in: ho_module(d2. [...J).
use.dsUibrary([f1 J).

...

in: ho_module(c.l...D.
use.dsUibmry([el J).

...

module bl module cl

64

•
bl and cl). Hence a tree is created with module al identilied as the root and modules hl

and cl as subsequent nodes. The procedure is then repeated for the suhsequent nodes to

create the complete tree.

The library modules are processed breadth-first by the DSL processor. This ensures that

any specifie requiremenls (such as interconnections and instantiations) arc idcntilicd hy the

immediate parent module. Hcnce library module configurations arc alTected hy the

environment into which they are invoked. For example, refening to ilie hierarchy example,

any instantiations of module bl are defined by module al - which can impact the way in

which bl instantiates ils subcomponents dl, d2 and d3. This is further clemonsU'ated within

the library construction predicates explained below.

•
Library modules are ereated using the build_dsUibrmy(NAME) prcdicate interpreted hy

the DSL processor which interactively construcls the neccssary data stmctures for the

library module NAME. The NAME is a valid module name loaded within the environmcnt

or available as a file name in a model direetory. The basic structure of a library module is

depicted graphically in figure 3-3. The prcdieate proceeds through three phases of

construction of a library module structure.

ibrary(x):

~
module, ho_module definilio~NAME)

1behavior defini!iOll~. or rcfercnce tu
other librnry lI1odulc.~ 1

Ily Internai library structure infa.
{i.e. interface. resourccs, Iibrary
relation.~ 1

configure_librnry(NAMEl :....

'g
1configumlion rules fol' NAME.
i.e. rcsource selup, lIefault vlIlues....)

slarCcond:·...
(initialscnd mes.~nges 10 execule 1

crealed usi
build_library

FIGURE 3·3. !.ihrary Module Structure

Automatlca
Cfcaled and
used during
synthcsis.

•
6S

•

•

•

Phase 1. The {irst stage is to create the module and higher-order module definitions of the

Iihrary. The system searches for the specified module and if successful, it

recreales the behavior of the module (the predicate will fail in the case of an

undefined module).

Phase 2. The second stage is the construction of the library configuration rules and starting

conditions which are created interactive!y. The system provides a template which,

when completed by the user, specifies the nature and use of the module. The DSL

processor will examine the module behavior and identify (to the user) any

resources, and path names used by the module requiring special treatment during

configuration. The configuration rules are stored as Prolog rules with the predicate

head defined as:

configure_library(NAME).

Configuration rules allow for the creation of module resources, interconnection

definition (for higher-order modules), definition of constraints and instantiation of

other modules. During library invocation the rules are executed by the DSL

processor ta create the required resources for the library module. The rules may be

parameterized, allowing for different possible types of path definitions. The user

may also define default values for parameters used by the library module which is

maintained as a defaults(Module(DI,..., Dn) predicate where the parameters Dl

to Dn are default values the system is to use. Defaults are only used if the

argument value is not defined by the environment during model configuration.

Conflicting or missing interconnections during configuration are identified by the

DSL processor and reported back to the user.

The structure of a configuration rule is shown in figure 3-4. The regions outlined

by bold text are inserted by the DSL processor as required. Four lines (with italic

text) are shown that require user inpu•. These are definitions of resources (local

variables, data structures), paths (interconnections), other modules and user

defined sub-rules. The figure indicates only one line per definition, however there

66

•

•

•

configure_llbrwy(NAMEJ:•
1.a(IN5TANCE. NAMEJ•
....crta(resourceONSfANCE. RESOURCE. VAWE)J.
8Jl.erta(pathi/NSfANCE, amER. /POlff, GTHER_''OIITJJJ•
....erta(module(NAME2, {/n.
otherJules!, ..),
CalI.

configure_llbrary(NAME):· write('L1brary module 'J.
wrIte(NAMEJ. write(' conflgured\ul·).

List ofVariables:
NAME: name orthe library module.
INSI'ANCE: an instance name for NAME cxtractcd from the cnvirollmcnl.
RESOURCE: name of resout'C($ for INSfANCE.
VALUE: Initial value of RESOURCE,
OTHER: name ofmodulc{s} to intcrconnecl \Vith INSTANCE.
PORT and OTHER_PORT: port nantes for INSTANCE and OTHER
NAME2: any ather module instantiations Ihat are dcpcndcnt upon NAME.
othcl'_rulcs(oo.): are further user dcOncd Bub-mles tlmt arc deflncd. 'nie funetor and arlty of

this predlcalc Is not stgnlficant and 15 uscd mcrely hcrc as an exmnplc.

FIGURE 3·4. Sampi. CnnfiguralioD Rul. Structure

can be multiple lines for each definition. It should also he noted that the

configuration mies are applied to ail instances of NAME.

Start conditions are also identified in this phase of library construction. A mie

beginning with the starccond predicate identifies any messages that need to he

sent to the module to place it in a valid state of operation. This allows sorne

control over the initial starting state of modules. Ali stal'ccond mies are executed

in tum during library invocation, seheduling any initial messages fol' the

simulator.

Phase 3. The third stage is to eapture the interface and resource information for the module.

This is achieved by the DSL processor by grouping the requircd module

resources, required ports and relations. In the latter case, a class relationship (if

applicable) is associated with the module library and is established with the ;sa

predicate as with modules. The class relationships for a model library are

maintained within a file called "lib_der'. The file consists of ;sa predicates

identifying any relationships that may exist between library modules.

Figure 3-5 illustrates an example for building a library module (called x) that is of

the same class as an existing module (y). The user, shown on the left hand side of

67

•

•

•

IIbrary module DSLModel
(name 4Oz") Behavlor

conlalnlng
Iibrarymodule "","

~ modules
fOI {rftOUfctll, file: lib_der'" Rult5
~

{clan rel.} Ubrary I,a(x,y) '" "Y
Relations \' u, u"

'--..../
DSL PROCESSOR

FIGURE 3·5. Ljbrarv Construction of Module "x"

the figure, supplies the module's name, configuration rules and identifies a

relationship to another module (y). The DSL processor will verify the existence of

the Iibrary module and verify that ail resources and paths used within the

module's (x) behavior have been properly defined.

The class relation allows Iibrary components to be identified and utilized by the

system during simulation, design exploration and synthesis.

Vpon creation of a Iibrary module, DSL also verifies that constraints are not in conflict and

there is no inconsistency with the Iibrary interface and its associated modules. Library

configuration rules allow a Iibrary to configure itself depending upon different conditions

during invocation. These rules allow a generic Iibrary module to be reused in different

ways as the design requirements demand.

3.2.2 DTSS example revisited • Iibrary support

The DSL model for the DTSS that was introduced in chapter 2.4 can be structured as a re­

usable Iibrary modeL Library structure is maintained upon invocation as a tree of modules

- where the root is the top-most level Oevel 0) module which has directly or indirectly

instantiated the others. Each parent Iibrary module configures its sibling within the

cnvironment as required. This property is demonstrated in figure 3-6(a), which shows a

segment of DSL and user written Prolog code which are part of the dts_switch Iibrary

module's configuration mIes.

68

•

•

ho_modale(dls_swltch(NUMBER. INPUTS. CARDS,
CHANNELS),lswitch_net(NUMBERl, interface_urd(Y)]).

usc_dsUlbrary(l
genertc_switch_clement.
Interface_Ulut
11.

configurc_lIbrary{dls_swltchl:~

Isa(lNsrANCE. dts_swltchIN.I.C.CH)l,
Il 1. IIIC.
asserta(lsa(swltch_net{N). gcnel1c_swltch_clement(C.CH1)).
assertallsa(lntcrfacc_card{'l), inlcrface_unlt(Il. CHlll.
asscrta(path(lnterfacc_card(Y), swltch_net(N), Ilnto_port(Y).
trunIUn(Y)lJ).
asserta{path(swltch_m:t(N), Inlerfacc_card{Y). Itnmk_outOO,
InIl..p0rt(Y)lJ).
as..,>crta{ho_module(swItch_net(N), Il)).
examplc_conflg(N. Il. C).

examplc_conOg{N. IN, l):~

Index 1s N·16,
asserta{ho_module(lntcrfacc_card(lndex), Il)),
lel_port_config{lndex. IN. 0).

examplc_conflg(N. IN. CARO):-
CARO 1 15 CARD-l,
Index 1s N-16+CARDl,
asserta(ho_module[mtcrfacc_card(lndex). Il)),
teLport_conflgllndex. IN. CAROl),
examplc_conflg(N, IN. CARDI).

teCporCconflg(lndex. O. CAROl).
tel.porCconfig(Index.IN. CARDl):­

Isa{INSTANCE. dts_swltch(N.I.C.CH).
IPRIME Is IIIC.
INN 15 IN-I.
Index2 15 IPRIME·CARD 1 + INN.
asserta(path(lnterface_card(lndex). INSTANCE.
It-paIr(lndex2l. te1jlne(lndex2lJll •
asserta(pat1l{lNSTANCE. Intcrface_card(lndex).
Ite1jlne(lndex2l. CpaJr{lndex2)1l).
tel_port_conflg{lndex. INN. CAROl).

mcgilLswitch(O)

interfRc~_cnrd(O)

D
DD
c:::::::J

resourcc5:
inpUI_buff~r(O). inpucbuff~r(l)

(a) D8L Description (b) Rule lIIustratlop

FIGURE 3-6. Copftruraliop Rule Example

•

The dts_switch module (the parent module in this case) identifies the sibling library

modules that it requires using the usejisClibrary statement. The next stalCment

configure_library(dscswitch) defines the configuration rules for resourccs, ports and

module instantiation that are identified by the dts_switch module. In this case, the

generic_switch_element and inteiface_unit modules are instantiated using configuration

parameters (such as number input/output lines and channels) defined from the instance of

the dts_switch module. A sub-rule, example_config, determines the numbcr of

inteiface_units to instantiate and also defines the port interconnections for each with the

dts3witch.

•

•

•

Tt.: effccts of the library configuration mies are demonstrated in figure 3-6(b). The figure

shows an example of a mcgill_switch(O) module which is an instance of the library module

dts_switeh(O, 20, 2, 4). The parameters identify the mcgill_switch(O) to be configured as a

switeh with a switch number 0, 20 telephone lines supPorled, 2 interface units desired and

4 channels per multiplexed line. The parameters have been kept small so that their effects

can be caplUred in the figure. There is also a significant impact upon the resources within

the various modules. The modules that are affected are shacled.

The restriction of the design domain enables the use of library modules with different

configuration raies in various interconnection schemes. This is useful to enhance model

modularity and re-usability within the application domain.

3.2.3 Modelling support

A constraint statement was introdueed in ehapter 2 as part of the DSL support eommands.

This command is also used by the DSL processor to identify any design condition

violations. Constraints are related to a module and are used to define limits upon

parameters of a given module, resources or messages. These can be defined to be system

wide constraints (affccting more than one module) or local constraints (restncted to

individual modules). For example, the maximum size of a memory module, can be

regarded as a local constraint. However, if multiple instances of the memory module is

used by a main DSL model to define a larger memory sub-system, then this can be viewed

as a system level constraint. System level constraints are defined within the main DSL

model, whereas local ones can be established within library modules. After invocation of

the library, DSL performs routine checks upon the constraints so that they are not violated

during simulation.

The OSL processor also resolves the communication decisions for messages sent through

undefined ports or destinations. A search algorithm is applied to deduce the final

destination module. The approach utilizes the backtracking in Prolog to attempt to find a

module that is both connected (through path statements) and is capable of understanding

70

•

•

•

the message. Tne algorithm for the destination search is described as the following:

Let Source be the sender of a given message through an unknown port or destination.

Let Port be a valid output port avai/able to sender.

O. Assign sender = Source.

1. choose DesCport and Dest such that there exists a path(sender, Dest, [Port, DesCport}).

2. If Dest is a module then

Ifmessage E {Behavior}

where (Behavior) is the set of ail behaviors within module Dest,

then finaLdestination=Dest;

Exit algorithm.

else beek/rack and repeet step 1 with a new Des!.

3. If Dest is a higher-order module then

sender = Dest, Port = DesCport, repeet step 1.

The algorithm determines a path moving away from the source module to potential

destination modules. This is accomplished in step 1. Step 2 is the stopping condition which

is the discovery of a module (finaLdestination) that contains the intended message witbin

its set of behaviors. On the other hand, if at this point the message is not within lhe

module's behavior set, backtracking is utilized to search for alternative modules.

Consequently the search is a depth-first search of destinations.

Step 3 addresses the case when the destination is a higher-order module. The sender and

port is then assigned to that of the higher-order module name and port. Il should be noted

that there are also provisions to ensure that the algorithm always moves away from the

source module (except when back-tracking) so that messages do not bounce back to the

~ûurce.

The algorithm retums an error condition if there is no possible destination with a

connection to the sender. The environment then will attempt to search for modules that are

not connected to the sender, but contain the message within their behavior set. If a module

is discovered. that can accept the message, then a pSt"'do path is delined by the

environment. If no module is found, the message is trapped and an error message is

71

•

•

•

generaled.

3.3 Petri-Net analysis

Section 2.3 introduced a relationship between module behavior and predicateltransition net

(PrTN) representation. This section will illustrale possible analysis options available to the

designer using the PrTN. The analysis of large models is a considerable effort requiring

experienced müdelers with a good understanding of the analysis methodology and the

application domain. The techniques presented here are applications of the basic PrTN

analysis methods to DSL behavior, but are intended to be an introduction to DSL analysis.

The innovative use of these techniques along with the art of modelling (such as partitioning

higher-order modules into sub-nets) will produce further analysis methods and benefits. A

tool called PROD (developed at the Helsinki University of Technology) has been used to

perform the PrTN analysis described in this section.

3.3.1 Module analysis

Analysis upon module representations can conceptually be performed at two levels: the

individual module level, and the higher-order module level (sub-nets of modules). There is

a difference in the two approaches. The first approach restricts the overall complexity of

the PrTN since nets representing individual modules are strict nets (one message is

processed at a time) and the state space is generaliy manageable. A module's PrTN

representation can be analyzed using reachability or invariance techniques [Genrich 81].

This analysis can detect inconsistent behavior structures, unused DSL code and undefined

message ports. Module level analysis is supported within DASE with the use of the PROD

analysis tool. .

Sorne basic properties of modules can he verified at this level of analysis. 1 nese include,

verification of safeness, liveness, sequence of firings and reachability to a particular state.

To perform the traditional analysis of a net generated from module behavior, the desired

initial markings must he specified. The net will have sorne tokens placed l'rom the starting

conditions, however, there is a need to identify the incoming token stream (representing the

72

•

•

possible messages). This involves playing the token game. The petri net can be initialized

in many different ways depending upon the analysis objective. One possible scenario is

iIIustrated in figure 3-7. The PrTN representation of a module is indicated by the shaded

rectangle. Around this representation, a supporting net can be attached consisting of a place

to hold ail the messages that can be interpreted by the module, a place (busy) ensuring that

only one message is processed at a time, and a place (message) identifying the message

being prccessed by the PrTN. The generation of the supporling net is trivial since only

three places and two transitions are required. The inpul place to hold the incoming

messages can be populated with tokens typed as possible message names (extmcled l'rom

the module behavior). Consequently a reaehability tree can be generated wilh a tool such as

PRaD and analysis of properties pursued.

As an example, the reachability tree for the PrTN of the timer introdueed in chapter 2.2.5

(figure 2-11) is shown in figure 3-S(a). The initiai marking assumes either a reset or clk type

token arriving to the input node (no other message type is acceptable). In the event that a

reset token arrives, th,; resource value (within res_count) is initialized to O. The clk token

causes the vake lO inerement or a reset to occur. The latter is when the resource is equal to

the count Iimit defined by Value. The PRaD language permits one lo query lhe reachahility

message

C{POSSib

1
messages)

<N>

<x>
busy

•
oules)

<x>

FIGURE 3·7. ADalys!s selup (or Module Bebaylor

73

•
graph.

A typical session within PROD is presef)~d in figure 3-8(b) and is shown here only as an

example of sorne possible analysis that can be pursued using the tool. The example

assumes a count!imit of 3 for the timer (hence the behavior is that of a modulo-4 device).

The listing is segmented into four sections. The first shows the statistics for the reachability

graph, indicating the number of nodes and initial marking of the graph. In this case, the

initial marking consists of a clk message in the input place. The second segment shows a

query command in PROD. This command displays the sequence of firings to reach a

terminal ncde in the reachability graph. The resource variable is indicated in bold, showing

the successful increment of the variable at eaéh clk message. Eventually when the resource

value reaches the Iimit, a reset token is generated and placed into the input place. The

(h) PROD listing

FIGURE 3·8. Agulysls _Iump!_ o[t;m_r

(0) Hlgb level renchability tree

<1 rese! 1cllt:: 1Al. Value, .,.:>

,/ ~
<"~iVelue, ".:rnU'<Ml'vwu\

<., O. ",- > <', Value, tlk.·> <", Value,·, clk >

Compiling...
Ocnerntlng rCl1cllllbilily graph
Compullng 'trongly connccled componenL5...
Oltsrntistics
Number of nodes: 8
NumOO' of (rcal) nrrows: 7
Number ortermilUll "odes: 1
Number of faet nrrow source nodes: 0
Number of fnct lllTOWS: 0
Number of nodes UlDt have been complclely processed: 8
Number of strangly conneclcd components: 8
Number of nontrlvlallerrnlnal strougly connecte<! componcnl~: 0
OIHook
Node 0, belongs 10 strongly connecled component $$1
Input: <.clk.>
res30unt: <.1.>

OIIqvov bspan(true) $0
PATII --+
Node O. belongs to s!rongly connected component $$7
input: <.clk.>
tts_count: <.1>

Arrow 0: transition clk..J. precedence class 0
m=1

Node 1. belongs la s!rongly conneclcd componenl $$6
rcs_couot: <. L>
p_l: <.clk.>

Arrow 0: transition ,-1. precedence class 0
m=1

Node 2, bclongs to 5!rongly conneclcd componenl S$5
input: <.clk.>
tes. count: <.2>

Arrow 0: traosition ciLI. precedence c1ass G
m=2

Node 3, bclongs 10 strongly connected component $$4
rcs_counl: <.2.>
p_l: <.clk.>

Arrow 0: transition '-l, precedence class 0
m=2

Node 4. belongs 10 strongly connecled componenl $$3
input: <.clk.>
ru_count: <.3>

Arrow 0: transition clk_2, precedence class 0
m=3

Node 5, betongs la slrangly connected component $$2
rcs30unt: <.3.>
p_2: <.clk.>

fÏ"\ Arraw 0: transition 1_2, precedence class 0>U Node 6, belongs la s!rongly connected component $$1
inpul: <.reset.>
res_count! <.3>

Arrow 0: transition rese,-I, precedence class 0
m=3

Node 7. belongs to s!rongl)' connected component $$0
rcs30unl: <.0.> ---+

< resct, Value.", - ><-,Valuc+l,-,->

•

•
74

•

•

analysis has then reached a terminal node, whieh was the initial marking of the graph.

Rence, the behavior of the timer, corresponds to what one would expecl.

3.3.2 Higher-order analysis

Analysis of higher-order modules is not as stmightforward. Such models can contain

unbounded places and very-large sUite spaces making analysis very dirticull. DASE does

not support explicit PrTN analysis at a higher-order moaule representation. Analysis at this

level is executed informa1ly with simulation (explained in the next section).

3.4 D8L simulator

The DSL simulator provides a means for experimentation and simulation of the DSL

models. The simulator interacts with the DSL processor and libmry, and manages the

scheduling and exchange of messages between modules. the update of a virtuai simulation

doek as weil as ensure no constraints are violated.

The simulator utilizes several data structures to schedule messages (shown in figure 3-9).

Messages are scheduled and maintained in message_queues created by the environment for

each module. The queue is a list of tuples consisting of the message to be executcd at the

module and its creation time (to be used for statistics and constraint checks).

module: message_queue

1 [(message, clime), ...) .J
module: module_state

ready or delayed

schedule tahle: next_Iime

module execulion
lime

•
1 currenuirnc

FIGURE 3-9. Simulator Hala Structures

75

•

•

•

The simulator also defines modules to be in a "ready" or "àelayed" state which is

maintained in a variable module_state. In the ready state, the next message in the module's

queue can be proccssed, whereas the delayed state indicates that the module is delayed

until a specified time period. This time period is maintained in a schedule table named

next_time. The simulator schedules the messages based upon this time value.

The simulator proceeds through several steps to schedule a message:

i. When a send statement is executed as part of a module's behavior, the simulator

automatically checks the next_time table to determine if any messages are scheduled for

the destination module. If no messages are scheduled (a negative tirne entry in the

nexCtime table), the execlltion time for the modale is updated to the currenCtime. In

either case, the message and its creation time (currenuime) is appended to the

message_queue for the destination module.

ii. The simulator will then process all messages with execution time equal to the

current_time. The processing involves removing the message from the respective

message_queue and executing it through the DSL processor. If the message was in a

delayed state, then the delay statement within the behavior is bypassed allowing for the

continuation of execution of the module's behavior and the module_state is set to ready.

If the module was in a ready state and a delay statement is encountered, then the

simulator places the module in a delayed state and updates the respective time in the

nexctime entry.

iii. During each behavior execution, any constraints associated with the module is checked.

If a constraint is violated, the simulator will identify the violation to the user. Included

in the message sent to the user is a list of possible alternative library modules of the

same class. This is retrieved through the lib_def file maintained by the DSL processor.

The designer can then choose to possibly alter the design with the replacement, relax the

constraint or ignore the constraint.

76

•

•

•

iv. The simulator determines the next highest time possihle in the nexuime tahle and sets

the simulator dock (currenctime) to il. The previous step is then repeated.

The model hiemrchy created during library invocation is also utilized hy the simulator to

aid the designer through design exploration. An observation levcl is dclined hy the

simulator which represents the level of detail different modules define. For example, the

root of the model hierarchy is labelled as level 0 - which represents the most abstract

module. The next level down would consist of modules that are referenced and inherited hy

the topmost module - and similarly for subsequent levels.

Abstracting hierarchy has often been employed to facilitate simulation and modelling at

various levels of detail [Zeigler 84]. For example, a system level analyst may not be

interested in the lower level details of a given model, whereas a hardware designer would

be more concemed with the lower timing details of the simulation. The DSL simulator

provides for dynamic alteration of the level of abstraction viewed by defining an

observation leveI. The level can be defined to be limited to a givcn level or at a particular

level and alileveis below il.

The observation level can be set at any time in the simulator with the seUeve/(LEVEL)

cùmmand. By default, the simulator is initiated to display aIl levds of information. The

simulator also utilizes a list command to provide snapshots of the statc of the system. This

command is a menu driven form which permits viewing of resourccs, modules and higher­

order modules, states of the simulator data structures, and the interconnections of modules.

AlI of the views can be constrained to a particular level or range of levels of observation.

The typical output of the command is shown in figure 3-10. The level of the obscrved

module or data structure is displayed at the first column. The sampie shows four parlicular

views of the state of the simulation. The first is a display of the hierarchy. As an example, a

module delivery_q(l) is defined to inherit behavior fmm another module

(delivery_queue(1Y). The seeond and third views show the statc of the message queues and

resources for each module. A module c1ock(1,3) is indicatcd as ready (a delay time of 0.0 is

shown in the right-most column) to process a new message (clock_count(44)) from iL~

77

• Hiernrchy li<lting
dclivcry_q(l)
priority_q(l)
aclock(3)

--> delivery_queuc(l)
--> priorilY_qucue(1)

--> generic_c1ock(3,2,44)

Listin~ idate of the module queues:
LEVEL Module: Messages queued: Delayed until time:
2 dock(I,3) [(dock-,ounl(44), 0.0)1 0.0
2 c1ock(l,2) [(clock_count(44), 0.0») 0.0

Listing Resourc~ Crtatcd:
LEV EL Modul.,
4 priorily_q(3)
4 gbc"'I(2)

Resourcc:
p_queue(l)
labeLcount

Variable(s):

Il
1

•

•

Listing Path Interconnections:
2 OU1Put(4,1~ is conncctcd to:

--> output 4 1) P0I1 pair: in,out]
--> sWllch 4) Port pair: !OUt...POrt(4'1)'OUtline(4.1)~
--> buffer(4,l) Port pair: qUeue..j>Ort\4.1).ouc.~n 4.1»
-.> alm(4._764) Pon pair: oUI-POr1(4,),outiinc(4.1)

FIGURE 3-10. Sample Output of List Command

message queue. The final view is a description of the intercornections between the

modules.

3.5 S~'nthesis

When the designer is satisfied with the simulation results, the system's synthesis may be

attempted. A translator within the DASE environment translates the DSL constructs into

cor.cun·ent entities in VHDL under user guidance. The synthesis process within DASE can

be pmtitioned into pre-synthesis support, DSL model code parsing and finally code

translation.

3.5.1 Pre-synthesis support

During the course of design exploration and simulation, the abstract DSL model may be

r.:fined to a more detailed structure. For exmnple, ports may be identified by the

environment and created on demand (these ports are labeled as dport(N) where N is an

increasing integer value). To synthesize the DSL model to VHDL, the following pre­

synthesis requirements must be met by the DSL model:

78

•

•

•

Requirement 1: a11 undcfined communications paths within an initial DSL rnodd must hc

resolved. This implies that a11 undcfincd ports within scnd slatcmenL~ have

been instantiated by the environmcnl.

Requirement 2: a11 message typcs have hccn resolvcd for porL~. This esscntia11y indicates

that a11 mcssages transmittcd by scnd commands have hcen idcntilied to

respective ports. The synthesis process rcquircs this infonnation 10 corre­

late the port types to VHDL signal typcs.

Requirement 3: the cnvironment has defincd a11 dcstinations for DSL send statemellls. The

environment can deduce most connections fmm the path statemenls

Requirement 4: multiple conncctions from output ports must hc resolved. The implication

is that DSL send statemenl.~ with multiple destinations of the form

send([b,c,d],aout,messagc) must bc handled by the environmenl. The issue

during synthesis with such communication is thatthe output port is used to

transmit directed messagcs (mcssages whcrc the dcstination is given). This

implies that a separate signal must be used in VHDL or a hus protocol (uti·

lizing the destination as part of the addrcss rcsolution) to realize thc com­

munication.

The chosen solution within DASE is to idcntify a unique port name for

each destination sharing the same output POlt of the source module. This is

shawn in figure 3-11. The illustration on the lert depicl~ threc modules con­

nected to the sarne output port of module 'a'. Such a (;onnection is inier­

preted by the DASE synthesizer as the diagram shawn on the righl within

figure 3·11. The output port name is appended with the rcspcctive dcstina­

tion names and instantia.od as threc separate ports. This operation is pero

fonned during synthesis whenever a multiple destination sond Slalement is

eneountered (hence the importance of requiremcnl 3).

Requirement 5: multiple connections to input pOf'.s must be resolved. This rcquirement

79

• b
in

a

in

h/in
a

aout_h

c
aout_c in

aouCd~ .
d

IR

•

•

FIGURE 3.11. Output Port 17eparatioD for Synthesjs

can be satisfied in two ways. The first is to ensure a unique input POlt namc

for each path statement. The second is to introduce a protocol module. This

module is conceptually diff~rent from normal modules. lt does not get syn­

thesized to a VHDL entity or process, but defines communication protocols

between modules. This is a natural step when modelling system utilizing

protocols for bus arbitration or shared mediums. A module is tagged as a

protocol module simply within the predicale modulejype(Module_Name,

protocol).

The synthesis proeess is invoked through the synthesis command wilhin DASE. The

environment utilizes various data structures 10 effectively synthesize a design 10 VHDL.

The relevant support iniJrmation required by the environment 10 proceed Ihrough a

successful synthesis is shown in figure 3-12.

The environment maintains a list of module names Ihat are 10 be synthesizcd. The lisl is

extracted from the module_type(NAME, hardware) predicates (sec chapter 2.3). The

predicate identifies that the respective module will be implemented as a hardware

eomponent. DASE will then extract ail pertinent predicales regarding the module(s) inlo an

intermediate file (file.dsl) as guidance to the parser. The prcdicates arc creatcd by Ihe

synthesis command and can consist of information such as:

i. The complete module behavior which is obtained directly from the module definition

and the isa statements.

80

e.vhd

HDLmodel
tity
oeesses

DSLmodel:
module_type(...). fil
path(...).
isa(...).

1
V

module(...). en
pn

'" ,--/7~ ...>-
mode(...).
outporUist(...). file.dsl
inporclist(...). ~ (inlcrrncdiatc

file)

1

pre-checker

DSL Parser

~ c:=J c:J
(parsI! tree ger.eration)

FIGURE 3·12. The Syntbesjs Process•

•

ii. The outporUist(Module, ourport, [BehaviorJ) which identifies ail messages that the

Module's output port ourport will support. The pertinent information is extracted

from the send statements within the module and added to the behavior list.

iii. The inporUist(Module, INPort, [BehaviorJ) is used to identify ail the messages that

can be receivcd (Behavior) through Module's input port INPort. This information is

obtained through a comparison of the possible sources of messages to a module (found

by an examination of the path statement) and the corresponding messages that can

potentia11y be delivered to the respective port (this information is already available

from the outporUist).

IV. AlI path statements related to a module.

•
A pre-check predicate verifies to ensure that a11 the requirements for synthesis to proceed

are satisfied.

81

•

•

3.5.2 D8L to VHDL Parser

'i'he file.dsl is input to a D8L parser. The parser is built using the UNiX flex and yacc

utilities. As the input file is parsed, a parse tree (represented in a linked list structure) is

created within the parser. The data structure is shown in figure 3-13. Each branch of the tree

identifies the VHDL equivalent of D8L actions, variables, branching conditions and other

model infonnation. Not aU fields are filled during the initial parse of the input. A second

pass of the tree entries is required to establish the VHDL eounter-paI1S to the DSL code.

The parse tree is then traversed to generate the correspondin[; VHDL mode!.

The nodes of the parse tree contain three information fields. The first identifies the type of

node. This can be an entity (module name), a command (such as set_res, create), signal

(identified VHDL signal names), type (identified types), statement (any branching

information) and condition node (any conditions beforc attempting commands). The other

toNTJ l'y name

pl1l'lln1elers

neXl 1 1 NULL 1 NULL, • namc

parame ers

neXl 1 1 1
YPh

'0 vnnu e
1 y l'I}_O vnnutlle

ne" 1 NULL 1NULL 1 NUIL

~
'IUNAL

IUlmc_ocslgnal

1 INULL ncxt 1 NULL 1 NULL 1NULI.,
name

resourc:c_nnme
Vilrln e name

1 1 ln.. lnn, 1NULL 1 ~n, 1 ~'"

• 1 1

nnme

1
·used ln a send mlnlemcnt

FIGURE 3-13. Pars Ire. Structure

82

•

•

•

two infonnation fields are used to store the relevant data with the corresponding node. Each

node also possesses four pointers. One of these is dedicated to point to the next node,

however others arc used as warranted to indicate other Ilodes that hold infonnation

regarding the particular DSL statement's parameters.

During the course of the constructicn of the parse tree, the data within nodes is modified as

the complete DSL code is parsed. The tree is then traversed applying translation rules

(explained below) to complete the tree and produce VHDL code.

3.5.3 DSL ta VHDL translation

The parser maintains a set of default variables and conventions during synthesis. It also

synthesizes to a subset of VHDL, since commercial VHDL synthesizers cannot handle the

full VHDL language. The applicable subset of VHDL will vary with each synthesis tool.

The corresponding VHDL statements presented in this section is generally acceptable in

most cases, however sorne tools may not support a particular fonn. In this case, additional

attention (such as further translations) may be needed before use with the particular tools.

The translation of DSL to VHDL representations is not straightforward and can proceed in

two different modes depending upon the intended description.The particular mode of

synthesis is maintained within the nwde(Module, Type) predicate where the Type variable

is either a 1 or 2, depending on the desired synthesis mode for Module as described below:

Mode 1: By default, the environment will assume that causality of messages arriving to

modules are satisfied by the DSL design. Most synchronous DSL designs will

satisfy this assumption. In such a case, translation from DSL to VHDL follows

direct rules where DSL ports and messages translate to VHDL signaIs and values

respectively. Each DSL module corresponds to a VHDL process and DSL

behaviors map to VHDL statements within a process. State or variable values and

types are also defined through the DSL environment. The basic dgorithm for this

Inode of translation is given below:

83

step 2.

:,'tep 2.1.

step 2.2.

step 2.3.

•

•

•

step 1. For each DSL higher-order module:

begin h-o-module,

create a VHDL entity header and port definition,

For each DSL module:

begin module,

create a VHDL process (named after the DSL module).

create the VHDL process sensiti'lity lis/.

translate each DSL behavior ta corresponding VHDL

behavior,

end module,

end h-o-module

The details of the algorithm are presented below for each of the steps:

Step 1:

The first step establishes the entity declaration. The higher-order module name

encapsulating the module(s) is used as the entity name. VHDL port declarations arc

defined through the DSL path statements.

Step 2:

This step constitutes most of the behavior translation activities. The first substep

(2.1) er.~ates a VHDL process with a label corresponding to the DSL module name.

This is a straightforward procedure shown within the translation table (table 3-1).

Step 2.2 establishes a sensitivity list for the corresponding VHDL process. The list

is defined through the inporUist predieate. Every input port of a module

corresponds to a signal within VHDL

The final step (2.3) is a translation of DSL actions to VHDL statements. Table 3-1

summarizes ail the corresponding translation rules employed by the parser.

Mode 2: For asynchronous design eomponents. the user may direct the environment by

setting a predieate within the simulator called mode(MODE). MODE establishes

84

•

•

•

the mode 10 use during parsing. This can be "1" or "2". The latter indicates the

desire to synthesizc an asynchronous design. This has the effect of indicating that

the implied causality and ordering of DSL messages should be maintaincd in the

VHDL mode!. In such a case, the corresponding VHDL model will include an input

buffer and control for each entity so that the order of arriving signal values (which

correspond to DSL messages) are maintained. Each signal value within the buffer

in turn are processed by the VHDL entity. Such designs may be costly in terrns of

hardware, but VHDL post synthesizers can optimize it further.

Id DSL Statement VHDL Statement
d,~clara- outporUist(Modulc, OPort{ol •... ,om), [Behav- t-. within dcclaration of Module:
lion ior(a Il ,...•aI n),...• Dehavior(aj l ,...,alij))). OPorCol..._om_type is ('Behavior(al1,aln)' ,.... 'Bchav-

ior(ajl •...•alij)');
inporUist(Modulc, IPolt, (Bchavior(all •....aln),.... IPorCol..._om_lypc is (·Behavior(allaln)' 'Behav-
Dehavior(aj l ,...,al ij»)) ior(aj l •...•alij)');

signal OPort_ol..._om: ûPort_ol.o._om_type;
signalIPort_ol..._om: IPort_ol..._om_typc;

modulc(Module(pl ..."pl). [(bchavior}]). Modulc_pl..._pl: process(

hchavior (Dchavior(g,l,an):· {conditionals and action}) iCinl behavior(al, ... ,an) then {conditionals and actions}
cndif;

condi- check_res(Resource(rl ,,,,,n),(v I.....vy». {actions}. type Resource_type is record
tiona] vI :VALUE1,

v2:VALUE2,
...
vy:VALUEy,
cnd record;
variable Resource_rl..._rl.: Resourcc_type;

jfResourcc_rl..._rl. = (vl,vy) then {actions} endif;
action delay(DELAY) used during translation of DSL send statement below
action sccres(Rcsource(r1.... ,n),(vi,vy)) Resourcc_rL._rz:_ (vl ,vy);
llCtion aealc(Rcsource(s I.....sz).(v1.....vy» not pennitted

action remove(Resource(s l,....sz),(vl,....vy» not permitted

llCtion scnd(Dest(dl •....dn). OPort(olom). Bchav· OPort_ol.,,_om <== Mcssagc(ajl."..aij) after DELAY;
ior(ajlnij»

action send([Dest(dll....,Desl(dn)], OPort(ol,...,onol, Behav- OPorCol.,,_om_Dcscdl<=Message(aj I.....aij) aiter DELAY;
ior(aj J.....aij)) ...

OPorCol..._om_Dest_dn<=Message(ajlaij) after DE':-~

Table 3·1: DSL to VHDL Tr<mslation Rules

The algorithm for the second mode of translation is slightly different. so as to

ensure the desired timing requirements. The tirst step of the algorithm is identical to

that described for mode 1 type synthesis. The differences are within step 2. The

algorithm for step 2 is:

85

step 2.1.

step 2.2

step 2.3.

step 2.4.

step 2.5.

step2.6.

•

•

•

step 2. For each DSL module:

begin module,

create a VHDL process "MODULE" named after the DSL module,

create a VHDL process "queue_MODULE"

create the VHDL process sensitivity listfor "queue_MODULE",

sensitivity listfor process MODULE is: signaCMODULE,

create FIFO queue code for queue_MODULE, and MODULE.

translate each DSL behavior to corresponding VHDL behavior for

MODULE,

end module.

Essentially what is obtained by the algorithm are two VHDL processes pel' DSL

module (shown in figure 3-14). One proeess is sensitive to ineoming signais (as in

the case for mode 1 processes), however its behavior represents a first-in-lirst-out

(FIFO) queue. Hence any new signal values is stored within the queue struclure

represented within the process. A signal named signaCMODULE is used lo

communicate with the second process. Anolher signal (ready) is an inpul from lhe

MODULE process. When the ready signal is asserted, the queue_MODULE places

the next value of signaCMVDULE from its FIFO.

The MODULE process is sensitive only to the signaCMODULE signal. When a

char.ge on this signal is detected, the value is obtained and treated within lhe body

of the proeess as in the case for mode 1 translation. At the same lime the ready

signal is not asserted indicating that the process MODULE is busy processing a

"message". The signal is asserted again to obtain the next message (if any).

The combination of the two signais ensures that incoming messages arc correclly

ordered for the process MODULE. Figure 3-14(b) presents the lypical liming

waveforrn encountered for the two proeesses. The first two waveforms rcpresent

the ready and signaLMODULE signais (in this example the MODULE post-fix is

86

•

•

,r archlt«ture ~havioror ho_roodule Is '\
b<gln

hlJ;hr~rdcrmodule: type lu_typel! (ml. m2•..., mn):
sl~naJ signaL't: in_type;

ho_roodule
signai ready: lWo_level;
signai input: in_lyp~;

modulc.Jt:
Cype IwoJevel ('busy·. 'noCbusy');

(ml:- ••) proc~ (input. readv)
(m21·_.) variable tirst, \r.st Inleger :=0;

type tire Is arra,. (0 te SIZE) of ilUype:

b<gln
Ir juput'cven! Ihcn

fifo(I:lSI):= input;
Irlast=SIZE Ibm last:::O: else lasl:=\ast+l: endlf;
If ready ='nol_busy' Ihm

signal_x<= fifo(flrst);
ICtirs! = SIZE Ihen first :=0; cise firs~:= first+l: endlf;

endle;
endlf;
Ifready'event and ready='DoCbusy' Ihen
Ir tirs! <> last Ihen

signnCx <= fifo(first);
If tirs! =SIZE then tirs! := 0; else lirsl := first+l; rndlf:

/ '\ endif;
Chilly hOJllodule 15 endlf;

port (input: in)
end prOCnlJ;

mudule_x: process (signal_x)

'- ./ begln
ready <= 'busy';
if slgnalJ. = 'ml' then
ready<= 'noLbusy' afler DELAY;
endif;

ifsignaLx = 'm2' then
ready<= 'oOLbusy' afterDELAYi
endifi

end proee!l!ll

end behavior;

'- /
(a) Correspondmg Constructs

IS~

1 1 1 1
(b) Interprocess Signal Timing

FIGURE 3-14. Mode 2 TranslaUo"

ready

signal_a

(signaIs)

•

a). ThesignaCa is an enumerated type (ml, m2, m3, m4 in this example). The third

wavefonn indicates the arrivaI of new signal values deteeted at the queue_a

process. The ready wavefonn indicates the order in which the incoming signal

values (or DSL messages) have been processed.

The amount of attention given to timing considerations within DSL can significantly

impact the eventual VHDL code. Ifpossible the designer should incorporate as much of the

87

timing relationship withill the DSL model (especially for re-usable generic modules). This

will tend to produce less overhead within the synthesized VHDL code. An example is

given below to help clarify the modelling issues.

FIGIJRE 3..15. Syntbesjs Timing Exawple•

(b) IVIode 1 Synthesjs Result

{VHDL queue process} rea {VHDL repcllter
.,... process}

input __

(c) Mode 2 Synthesis Result

,
'mJmJ ml

mT ml ml mllJlIII

•

Consider the example presented in figure 3-15. A DSL module repeater is presented with

one input port input and one output port out specified. The behavior of the modul:l is

simple, it sends any message arriving at its input port onto the output port after a delay of 3

time units. A stream of ineoming messages are assumed to he sent to the module as shown

in figure 3-15(a).

The first example shows a synthesis of the DSL module in mode 1. The resultant VHDL

code does not produce the exact same timing characteristies for the input message stream.

The problem is that the m3 value overwrites the m2 value before the VHDL process can

detect il. Figure 3-15(e) depicts the second mode ofsynthesis, ensuring the correct ordering

of messages. However it can be observed that the overhead within the VHDL model is

88

•

•

•

signilicant compared to the first mode. Further optimization could be attempted at this

point with lower level synthesis tools. The other alternative to guaranteeing the same

timing characteristics between the two representations is to enforce the timing discipline

within the DSL mode!. In this example. a possible solution is to guarantee that the message

m2 or m3 does not arrive before ml is finished processing.

3.5.4 DTSS example revisited • experimentation

A design mod~1 is as good as the experimentation il supports. Different operational

scenarios or configurations help refine and study the overall behavior of the modelled

system. Design experimentation requires the definition of two models. The first is a model

of the system under consideration. Such a model is studied and different sections are

eventually synthesized to hardware. The DSL modules presented ail fall under this

category. The second type of models that are required are those that emulate sorne key

aspects of the environment that the system under consideration will work in. Such models

can be trafflc generators, failurelfault injectors, interrupt generators etc. These provide the

stimuli to test and validate the models - utilized for experimentation support.

This subsection will use the DTSS example to demonstrate and observe a typical telephone

cali connection within a certain amount of time as a test of basic DTSS functionality.

Hence the environment will require a model of a typical telephone and user as weil as a

trafflc generator for background telephone trafflc. The user module will posses a simple

behavior that: lifts up the handset. waits for dial tone, dials a number, talks for a specified

random time period (if the connection is made) and hangs up.

The telephone module will act as the interface between the user and switch by performing

operations such as; sending the dialed digits to the switch, providing the different tones to

the handset (user feedback). and allowing voice messages to pass to and from the handset.

A load-llenerator module is also used to initiate a request for a cali to a user module at

random intervals to random destinations. The structural representation of the environment

model is represented in figure 3·16 (a). Figure 3-16 (b) provides a predicate/transition-net

89

•
œpresentation of the behavior for the telephone module and user modules.

DASE provides simulation support for design exploration. Once the main DSL progmm is

loaded into the environment, all library modules are also loaded. conligured. and

subscriber(Nllme)

1 load-8enerator :I--....~ uscr(Namc) 1

++

•
<10>

1 telephone(Numbcr) 1

(a); DSI. Mode!
Inullfl' USIŒI

TELEPIlONEI

Inleltphoae

10 dl!UlWilch

<X>

•
(b) PrIN Mode! for Telephope Module

FIGURE 3·16. Represeglatiog of Epy!copmep, E"mcPl.

90

•

•

•

instantiaicd. The DSL simulator automalically crcates an internai record of the hierarchy

trcc. This trec is used to define the observation level for the model dudng simula.·ion. The

hierarchy trcc for the DTSS is shown in figure 3-17.

By defaultthe observation level is setto depictthe maximum detail·· which corresponds to

level 4 in this example. However if the telephone call-setup is of interesl, which is a

relatively high level view of the system, then the internai nuances of the switch should be

hiddel1 from the user so thatthere is not an overload of information. This implies setling the

observation levelto the firstlevel with the statement seclevel(1). Based upon the hierarchy

trec, this level will restrict the sim.ulator output to only messages passing between the

switch and subscribers.

The observationallevel can be changed at any lime during a simulation - allowing the user

to zoom in or out as required. The library modules may also contain associated internai

constraints. For example sorne telephony practices di.:tate a maximum cali delay (time

from when a cali is dialed till ringtone is hea:d) of 450 microsr;;onds. This lime is

incorporated as a constraint (upper bound) for the ringtone message to be delivered to the

FIGURE 3-17. Hjerarcby 'fre<: of mss ExarnDle

91

•

•

•

destination. A sample snapshot of a simulation run is shown in figufl) 3-18.

The listing traces the messages for subscriber(O) who initiates a calltll subscriber(5). Pmt 1

of the listing shows the level 1 messages observed by the simulator. These include lifting of

the handset, dialtone, dialling the destination number and the related messages to the

DSL SIMULATOR: Observable level sel to 1

----> CURRENT SIMULATOR llME 18 0.0 mlcroscconds.
===
.._--_.--------------------------------..-----------
DSL SIMUt..ATOR: Schcdullng mes.....'1ge from subscrll>cr(O) via subscrlber{O) to tdel'hon~(Ol

Source Port: hand(O) Message ls: IIfl_handset
--------------------------_._-------------_..._----
--.__.-------_._---------------------.--------------
DSL SIMULATOR: Schcdullng mcs.<;age from te1ephone(O) via mcglll_swltch(O) to controller(O)

~Source Port: teUlne(O) Message .s: phom:_ofLhook(O)
-._._.--
---------~~-- ._---------------_.------~_._---------

DSL SIMULATOR: Schedullng message from telcphone{O) via telcphonc(O) to l'luhl'lcl1l.>cr(O) ...
Source Port: hear!sel(O) Message Is: dlaHone
---_.-------~-~~------------------------------------

--~-~-----~--------------------_..._----------------
DSL SIMULATOR: Schedullng message from subscrlber(O) via subscrlber(O} to tclcphone(O)
Source Port: hand(O) Message 15: dlgtts(telno{O, 1,S)}
-------------_. -------------- ._------~~---_.----_. ---
---------------------------------------_.-----------
DSL SIMULATOR: Schedullng message from telephone(O) via mcglll_switch(O) ta controller(O)
Source Port: teUlne{O) Message 15: dlaLdest(O,tclno(O, 1.51l

----> CURRENT SIMULATOR l1ME 15 400.0 mlcroseconds.
===============~=====================================c=

---~---------------~------------------------------

DSL SIMULATOR: Schedullng message from tclcphone{O) via telephonc(O) la Rubscl1her{O)
Source Port: headset(O) Message Is: clngtone
-------~--

-~~-------~---

DSL SIMULATOR: Schedullng INlERNAL mcs.<>age from subscrtber{O)
Message Is: tesl_patlcnce(9)
-------------------------------------~--------_._---

---------------------------_._---------_.---------
DSL SIMULATOR: Schedullng message from telephone{S) via tclephone{5) la Rubscl1her(5)

èSource Port: headset(5) Message Is: r1ngtone
------------------~-----------._------_.-----------

--~----_._.~------------------------._----------~---

DSL SIMULATOR: Schedullng IN1ERNAL message from Bubscl1ber(51 lI:l
Message Is: talk{hello)
------------~~~---------~-~----~---------------------

-------------------~-------.-----------------------

DSL SIMULATOR: Schcdullng message from subscrlber(5) via BubSCl1bcr(5) to telephone(5}
Source Port: hand(.5) Message 15: IIfChandsct
-----_.._---~---------~-----~----------------------
-_._-------._----------- "---_._-------_._---------
DSL SIMULATOR: Schedullng r.-.es.<qJge from l'lubserlber(6) via sulmcrlber(6) 10 telcphone(5)
Source Port: handlS} Message 15; send_volce(hello)
-------------------------------.------------------
------------._---------.---.----------------------
DSL SIMULATOR: Schcdullng message from lelephooe(5) via mcgIlU~w1tch(O) ta conlroller(l)
SOGree Port: teUlne(5) Message 15: phone_off..hook(5)
--------------_._---------------------------------
----------------------~---~---~---------~----------

DSL SIMULATOR: Schedullng message from telephone(5) via mcgl1tswltch(O) to controllcr(Il
Source Port: teUlne(5) Message 15: votce_message(5,hello)
----------------------~-----------------------

FIGURE 3.18. Sampi. Simulation Qutout (or Cali Set.up

92

•

•

•

switch from thc telephone. No other levell message is observed in the simulation mn until

400 microseconds later. The output for this time period is shown in part 2. A ringtone is

heard on subscriber(S)'s telephone as weil as the caller's, the phone is answered and a

"hello" voice message is sent to the originator. Hence the phone cali is established.

In this example, the cali delay is 400 microseconds, hence it is within the defined system

constraint. This constraint is used to understand and set sorne performance bounds for a

system level parameter (or metric). Lower design related parameters are also a pan of the

mode!. A significant design constraint is placed upon the control processor in the generic

switch clement. It must be able to process new incoming data before they are overwritten.

Hence there is a constraint imposed upon the control processor (in particular the

frame_select message must be processed before a cenain upper bound). If the number of

channels per line were increased to 32 and the number of interfaces units attached to the

switch to 20, then the demands upon the control processor are greater. The defined control

processor will not he able to keep up with the incoming traffic stream and a message will be

issued from the simulator such as:

DSL SIMULATOR: WARMNG: UppeOlmlt Conslra!nt Vlolatlonl

Module: c:ontrol...]Jl'Oœssor(O) Message:frwne_select{15)

Conslra!ned Variable 0.1 exœeds upper llmltofO.051

Accordingly, the user can decide upon the course of the design exploration. Options

include the traditional design decisions such as replacing the control processor with a faster

alternative or adding multiple processors. Alternatively, the design constraint can be

relaxed or ignored to view the impact upon the overall system behavior.

As in all modelling environments, the ultimate design decisions are directed by the user.

Hence the designer's modelling approach and style will effectively dictate the size of the

resultant VHDL code. Sorne of the different modelling approaches are funher illustrated in

the next chapter as detailed case studies - providing system design and modelling solutions

usingDASE.

93

•

•

•

Chapter 4 . Ca8e Studies

This section will present two case studies dealing with the application of DSL to diffcrcnt

problems in design. The examples are complementary to the DTSS example developed in

chapters 2 and 3. The studies are intended to present the generality and flexibility of thc

DASE environment within the restricted domain of telecommunication systems. Each

study focuses on different capabilities of the environment. The studies provide different

levels of detail and elaboration with respect to the DSL code - presenting detailed examples

of behavioral representation of design entities.

The tirst study will elucidate the advantage of DASE in the design of an upcoming

technology in switch design: ATM. The study is intended to provide insight to the DSL

modelling process as it presents a model of an ATM switch and applies it to an ATM

network. The model reusability is also illustrated with the incorporation of sorne modules

from the tirst case study in the ATM design. A network simulation is presented in detail

within the second case study.

The second study will detail the DSL modelling of three broadcast protocols used in the

support of reliable distributed computing systems. This example provides the most detai!

of behavioral descriptions within DSL. Mter a detailed walk-through the design of the

protoeols, an example node model utilizing the protocols will be introduced. The section

will conclude with a simulation of nodes communicating with the broadeast protoeols

through an ATM switehing network.

94

•

•

•

4.1 ATM Switch Design

4.1.1 Introduction

The technology push in telecommunications has blurred the distinction between voice and

data services. While most service3 today address voice and low speed data, future demands

will require the transparent use of these and more demanding services such as high

delinition TV and high speed data acros~ a common medium. Apart from placing

signilicant performance requirements on a system, these services have significantly

different characteristics. 50% of traditional voice trafflc contains silent periods which

translates to a burstiness factor of 2 (the ratio between the maximum and average

information rate). This factor helps to determine the design requirements for a switch.

Designing for the peak information rates implies wasted bandwidth at lower rates, while

design for the average rates resulw in loss of quality in service during peak periods.The

burstiness and information rates of a variety services are tabulated in table 4-1 [Prycker

91]. Il can be observed that the demands upon the systc.;m to support the different services

will vary from one service to the next.

Service Burstiness Infonnation Rate (bits/sec)

Basic Voice 2 6.4x103

Interactive Data 10 105.107

BulkData 1-10 105-106

Standard Video 2·3 107

High Definition TV 1-2 IOB_109

Table 4·1: Typical Service Characterizations

Asynchronous Transfer Mode (ATM) has been proposed as a potential solution for

incorporating constant and variable bit rate services such as voice and data under one

transmission and switching solution. ATM is essentially a connection oriented data-Hnk

level protocol with its main characteristics being summarized as [ATM 93]:

1. No errorcontrol on a link basis. Hence sorne information may be lost. The assumption is

that the transmission medium quality is good enough to keep such losses within acceptable

95

•

•

limits.

2. The infonnation field in ATM is small. Infonnation is transferrcd in small fixed length

cells of 53 byte lengths of which 48 are rcserved for infonnation and 5 arc header

infonnation.

3. No flow control on a link basis. Information may be lost due to overnowing queues

within a switch. This risk is minimized by statistical allocation of rcsources. The

infonnation fields arc also relatively small in ATM so that a momentary loss of infonnation

may not be a major impact on the service.

4. ATM is connection oriented. Hence a call setup phase exists betwecn the scrvice

requester (an ATM tenninaI) and a service provider (the ATM switch).

5. Header functionality and size arc minimal in ATM. This allows for fast hardware

switching of infonnation once a connection has been established.

An ATM cell for an ATM switeh is shown in figure 4-1. The live byte header comprises of

a VPI (Virtual Path Identifier),VCI (Virtual Channel Identifier), PTI (Payload Type

Indicator),CLP (Cell Loss Priority) and HEC (Header Error Control). The VPYVCI fields

are the virtual path and channel identifiers that reprcsent a virtual circuit the cell is

8
(Octet) 1····

7 6 5

VCI

4 3 2 1 (bit position)

VCI

HEC

PTI CLP

•
DATA FIELDS

FIGURE +J. Basic ATM Cel! Structure

96

•

•

•

traversing. A VCI is composed of a 16 bit address, hence each VPI can contain up to 64K

VCIs. These addresses are local to the switch, hence a connection table within switches

identify unique translations between incoming and outgoing VPI/VCI pairs. The PTI and

CLP are used by the network for congestion control and identifying cell priorities. If the

PTI indicates a significant increase in congestion on a line, variable bit rate cells are given

a lower priority (with respect to constant bit rate cells). In the event of buffer overloading

in the switches, the lower rate cells are discarded. The last header field is the HEC which

provides for error control across the 4 bytes of header information.

It should be noted that for smaller ATM devices such as ATM hubs which multiplex a set of

users across a single access point to an ATM switch, !he 4 bits of the first octet are intended

to be used for generic flow control between the hub and users. At present, there is no

consensus within the industry with regard to the way in which these bits are treated, hence

they are omitted in this exumple. ATM is initially expected to operate on a permanent

virtual circuit mode. This implies that virtual paths and circuits are allocated ahead of time

by the service provider and call-setup operations arc not performed on a per cali basis as for

traditional voice switching. As the signalling aspects for ATM become clearcr, ATM

services willlikely incorporate on-demand circuits [Wernik 91].

The basic operation of an ATM switch operating in a permanent connection mode is shown

in figure 4-2. The switch contains three input and output ports. Definition of the permanent

circuits are contained within a translation table in the switch (these would typically be

provisioned by the service provider or aJministrator). The addresses within the table are

local to the switch. The VPI/VCI address field of each incoming cell is examined by the

routing control in the switch and used as a reference address to the translation table - where

a new VPI/VCI address is identified along with the destination output port for the cell in the

switch. The figure presents an example of a cell address translation (incoming address 40/

75 to outgoing address 23/92). The cell is then routed (thr.:>ugh a routing network) to the

respective output port with the new VPI/VCI address until it final1y reaches the destination.

There arc many different design alternatives and decisions that can be considered in the

97

• Tran.;;lation Table
Incoming VPINCI New VPINCI Port

40nS 23192 4

VPINCI = 40nS

VPINCl = 23192

•

•

3x3 ATM Switch

FIGURE 4-2. ATM Switcb Operation Example

design of an ATM system suitable for fast switching of ATM ceUs [Zegura 93] [Bae 91].

This section will present an exarnple of a permanent virtual connection oriented central

queue based design with output buffering. The example is intended to demonstrate the

decreased level of modeling complexity (as compared to the digital time-space switeh) as

weU as the applicability of DSL in futuristic telecommunications applications.

4.1.2 The DSL model:

The ATM switch design will be introduced starting from the most abstract view ­

increasing in model granularity as the lower modeling levels are revealed (as in the case of

the DTSS exarnple). The delay parameters are omitted so as not to distract attention from

the behavior. The evolution of the model is depicted within figure 4-3. At the top most level

within a main model there is an instantiation of an ATM switch:

isa(atm(l), atm_switch(1,5)).

The above DSL statement indicates that atm(1) is an atm_switch with a parameter "5". The

pararneter in this case is the size (number of input/output lines) of the switeh that is

modeled.

98

• The next stage depicted in figure 4-3(b) illustrates t!,e different functionalilies within the

switch. The rational is similar to the DTSS design. There is a need for an in'put and output

interface modules that will acceptltransmit ceUs across a seriai Hne. Since ceUs will be

moving at relatively high rates, the design of these units should be simple and modular so

that they can be synthesized readily into fast hardware. The output modules will consist of

r. buffer module, a dock module (which is re-used from the DTS design) and a

transmission module. A control unit is needed to move incoming ceUs from the input

modules to temporary buffers and a processor/memory module is required to manipulate

the ceU headers and route the ceUs to the appropriate output modules.

4.1.3 The Input module:

The input modules need to capture incoming ceUs into a single ceUlatch, signal the control

module (new_ceil) and send the ceU to the module when signalled back (readJqst) from

the control module. Intuitively, the module should have an input port (inline) to receive the

ceUs, and a port to interact with the control module (control...]Jort). A typical description of•
i.e. : isa(alm(l), alm_switch(5».

1 nOJnoaule mam

- atm(N) 1-
- 1-
- 1-

- 1-- 1-

•

(a) Instantiation of top level design

1generic"oulput(N) 1

generic"c1ock(N, T)II

·-111 generic...buffer(N~

wh.", Z = 1... S.

(b) Lower levellibrary modules

FIGURE 4-3. ATM Modules

99

•
the module in DSL is:

module(generlc_lnput(INDEX.NODEJ.
[
(new_œU(vpI. VCI. DATA):-
checkJes(cell_buffer, [VPX. VCX. DX. unprocessedll.

prlnt("Lost an lncomlng cell at address [VPI/VCl) "J,
prlnt[vpX). prlnt(" /"), prtnt(VCX).
set_res(cell_buffer. [VPI,VCI.DATA, unprocessedll,
send(-,control_porl(INDEX). new_cell(INDEX)J

J.
(new_œU(vpI. VCI. DATA):-

setJes(cell_buffer. [VPI.VCI,unprocessedll,
send(-,controtport(INDEX), new_cell(INDEX)

)
(readJqst-
check_res(cell_buffer, [VPX.VCX,DX.xx]J.

seU"Cs(cell_buffer. [VPX,VCX.DX. processed),
send(-,controtport(INDEXl, cell_tnfo[vpX,VCX,DX)J

JI).

Mc.dnle Varlablea:
0=< INDEX < SIZE.
NODE = sW1tch number -
the above two variables dellne a
unIque Input module number

Module Reaourcea:
name: cell_buITer.
Values: (VI, V2, DATA, FLAG)
where
Vils the VPI address,
V2 Is the VCI address,
DATA Is the cell payload.
FLAG = Iprocessed. unprocessed)
Indlcates If data from the bufrer has
been successfully processed.

•

•

The first message that the module is capable of interpreting is the incoming cells new_cell.

Two possible sets of behavior for new_cell are defined above. A condition is used to check

if the cell in the buffer has been read, and if not, il is tliscarded and a message is printed to

this effect. In the new_cell description, a new 'eil is stored in celCbuffer and a

new_cell(INDEX) message is sent to the module's ..e:-.ltroCport (INDEX simply identifies

the input module that is signaiing).

The second message that is applicable to the module is readJqst. This message initiatcs a

message celCinto to the control..port. The mtent is to model the rcading of the buffer data.

The FLAG variable of the celCbuffer is aiso set to processed (the ccli data has bcen rcad).

4.1.4 The Control module:

The control module will require an inpucport to interact with the input modulc(s) and also

a port (proc_port) can be defined to communicate wilh the proccssor module. The

behaviorai description for the control module is relatively straightforward:

100

•

•

•

module(generic_control(I).
[
(new_œU(1NPun:-

send(-. lnput-port(lNPUn. readJqstJ
).
(œU_fnJo(vpl.VCI.DATA):-

send(-. proc_port(l). new_message(VPl. VCI. DATA))
JJl.

The module accepts a new_ceil message (from the input modules) and replies with a

readJqst message to the sender. It will then accept a celUnfo message carrying the cell

infonnation. The cell now must he sent to the processor module for correct address

translation and routing. This is accomplished with the new_message(VPI, VCI,DATA)

message.

4.1.5 The Processor module:

The address translation and routing function is accomplished within the processor module.

Traditionally the routing table would reside in a memory module accessible by the

processor and other modules. In this example the memory component is embedded into the

processor module to emphasize that the memory 1 processor interface is a fast one. This

example assumes the pennanent virtual connection oriented ATM, hence call-setup is

assumed to be predefined. The routing infonnation will reside within a connecCtable

resource in the processor module. This resource contains 5 fields: fields 1 and 2 define the

incoming VPIIVCI pair, fields 3 and 4 define the new (outgoing) VPIIVCI pair to use, and

field 5 defines the address of the physical outpuCunit to send the cell. The behavior of the

processor module is represented below as:

module(generic..proceuor(I),
[
(new_message(VPI. VCI. DATA):-

check_res(connecUable, (VPI. VCI. NVPI. NVCI, OUTLlNE)).
send(-, out-POrt(OUTLINE). atm_cell(NVPI, NVCI. DATA))

J.
(new_message(V,VC.~:-

prtnU"ERROR: undeflnecl circuit connecUon "),prtnt(V).prtnt(VC))
Il.

Consequently the processor will forward an atm3ell message to the appropriate

101

•

•

•

outpucunit module.

4.1.6 The OutpuCunit module:

The outpucunit module is a higher order module consisting of thrce other modules: the

generic_buffer, generic_output and generic_clock. The generic_buffer provides a simple

FIFü queueing function for messages direeted to a given outpuumit. Consequently the

module must accept atm_ceil messages from the processor module and maintain them in a

queue for proeessing. The DSL behavioral eode is given below:

modulelgenerlc_buffer(UNIT,INDEXI,
[
(next_œll:-

check]es(queue, [(null, nu11, null) 1 Q))
J,
(next_œll:-

check_res(queue, [(VPI, VCI, DATA) 1 Q)),
set_res(queue,QJ,
send(-, output..p0rt(INDEX), nexUnfo(VPI,VCI,DATA))

J,
(alm_ceH(vpI,vCI,DATA):­

check_res(queue,Q),
append([(vpI,VCI,DATAll,Q, NQ),
set]es(queue, NQ))

Il.

The queue can be depicted in lerms of a resource. The top element of the queue is

automatically removed through a nexcceil message from the control module. This

information is passed through the use of a nexUnfo message from the buffer module. To

reduce communication overhead, this message is only sent if there is a message waiting in

the queue (no information is represented by the null entry in the queue).

The generic_output transmits ATM ceUs using cell data provided either by the

generic_buffer module, or a "NULL" ceU contained within an internai single ccli buffer.

Ali this is synchronized through the generic3lock module to generate the appropriate bit

rates for cell transmission. The generic_clock introdueed in the DTSS example in ehapter2

is re-used here. The code for the generic_output module is listed below:

m ..:!u1elgenerlc_output(UNIT,JNDEX),
[
(c1ock(X):-

102

•

•

checkJed(out_buff, (VPI,VCI,DATA)),
setJes(out_buff, (nuIl,nuII,nuIlll,
send(-, out-POrtllNDEXJ, new_ceII(vpI,VCI,DATAll,
send(·, queue-POrtONDEX). next_ccII)

J,
(nexUnfo(VPI,VCI,DATA):·

set..res(out_buIT, (VPI, VCI, DATA)))
Il.

The timing is such that the g~nericoutput module is ready to transmit a message (cell)

when given the clock(X) message from the genericclock module. The typical high level

ordering of key messages are depicted in figure 4-4. Intuitively, an ATM ccli is being

transmitted between each clock message. The clock messages are provided by the same

generic_clock module described in the time-space switch example, however, since the

timing of ATM does not require frame definitions, the jrame_sync message generated by

the generic_clock is not used. The transmission period (D is dependent upon the

transmission rate of the line. The CCITT recommends two rates for ATM: 155Mb/s and

622Mb/s for medium and backbone trafflc respectively. Considering a medium trafflc rate,

this implies that each ATM ccli takes 2.74 microseconds of transmission time (Do This

time is expressed within the generic_clock module as ClockJate.

4.1.7 Network model - module reuse

After definition of the specific modules, the higher order definitions provide the structural

description of the underlying modules. The structural description of the switeh is shown in

figure 4-5. The figure shows only one incoming and outgoing line. For a switch of size N,

the generic_input and generic_out_unit modules would De replicated N times. The depicted

switch is capable of processing messages adhering to the ATM protocol.

,
- {gel nexl eeU} • ,

nexl.c:dI oexUn(•

T

ValldeeU

,

•
• {ATM cell beiDg transmltted}" . 1

103

•

•

•

~==t;~~~out(NJ
queucJXlrt(NJ \l

generlc_outputUO.Nl

:==~~c~~~ outl/nc(N}

FIGURE 4·5. DSL Mode! of ATM Swllcb

The defined ATM model can be re-used to create a network of ATM ~witchcs capable of

supporting routing and control of permanent circuits. The ATM model has already made

use of the genericclock module described in chapter 2 for the DTSS example. The

generic_input modules are also a particular instance of the DTSS's line_in module. Furtbcr

module re-use ean be achieved if voice circuit emulation was desired over an ATM

network. The ATM switch would then functionally be similar to the

generic_switch_element of the DTSS example. The ATM switch would require an

additional understanding of how to establish a demanded voice circuit. The desired

behavior can simply be inherited by the ATM switch's generic..jJrocessor from the cali

processing software module (pots3erver) described in the DTSS description in chapter 2.

In this case, incoming ATM cells containing voice information will be handled by the

poscserver as in the DTSS example. Considering the lines of DSL code in the behavior of

the ATM switch, approximately sixty-five percent of the ATM switeh's bchavior is

comprised of re-used code available from the library.

A network composed of ATM switehes can now be created for modelling different traffic

scenarios. For example, figure 4-6(a) shows a network of 4 switehes in a particl!lar

configuration and figure 4-6(b) lists the respective code for defining the network.

104

•

access(3)

palli(nodr,(I), nelwork, loutllne(l), acce.s(llil
palli(notiel3l, nclwork, loutllne(3), acce.s(311l
palli(node(4I, nelwork, ioutllne(2), acces.(211l
palli(nelwork, node(l), laccess(I), Inllne(llil
palli(nelwork, node(3), laccess(3), lnllne(311l
palli(nelwork, node(4), lacces.(2), lnllne(211l

(a) DSL Network diBgram

palli(node(3), node(2), loutllne(2l, lnllne(2)J)
palli(node(2), node(4), loutllne(3), lnllne(llil
palli(node(4), node(2), loutllne(l), ltùlne(311l

J'a(nodc(ll, atm_swJtch(1.3J)
Isa(nodc(2), atm_swJtch(2,3J)
Isa(nodc(3I, atm_swJtch(3,3J)
Jsa(nodc(4), atm_swJtch(4,2J)

palli(nodc(I), oodc(2l, loutllnc(2I,lnllnc(11il
palli(nodc(2I, nodc(l), loutlJne(I),ltùlne(2)1l
palli(node(ll, node(3), loutllnc(3),ltùlne(1l1l
palli(node(3I, node(I), loutllne(l),lnlJnc(3)1l
palli(nodc(2), node(3), loutllne(2), lnllne(211l• lb) Interconnection description of network

FIGURE 4·6. ATM Sampi. Network Configuration

The underlying network model is relatively complete. The only thing that is required is the

routing (permanent virtual path connections) definitions between nodes. This is established

by defining the respective connecCtable resource in each nodes's processor module.

Depending upon the assertions upon these resources, ail possible combinations of virtual

paths and circuits for the given network can be described.

•

A sample routing setup is described in table 4-2 where the entries for each node's

connecuable is given. The defined set-up describes virtual connections between the nodes

as shown in figure 4-7. Every VPUVCI address of incoming cells are translated to defined

outgoing ones at each node.The sanlple connection description defines three virtual

connections. More connections can be defined by the user beforehand (using library

configuration rules) or at run time using DSL seCres or create commands.

105

•

•

•

ho_module: network nodc(2)

."', Node lncoming OutgCling Output

l' " 1 VPINCI VPINCI Port Il

," (1) ~ 1 III 211 2nodc(l) ,." node(4)

"II:mB ft / 1 112 311 3b......... (21.... •pl)"'", ~ (2) h 1" 1 4/1 III 1l,
=

tr.r~11. ~ 1 511 III 1
13 ,

2 llX 4IX 1

"
(2)'. node{)

"
ff 2 2IX (,.1){ 3

"
ff 2 81X 71X 3

(1) ff 3 311 4/1 3,.....) 3 111 811 2

4 6/1 211 2., r 4 211 III 1

4 7/1 1/2 2

FIGURE +7. Pennanent victual Connections Table 4·2: The Routln~Table

As in the digital ûme spaee example, this model ean be exereised using random trame or

trafflc generaûon modules (such as a user or telephone). The ATM network model will be

incorporated with the protocol models described in the next section to demonstrate a

complex model of broadcast protocol executing over an ATM network.

4.2 Reliable distributed broadcast protocols

Protocols provide the basic formalism to support communication between computing

agents in a distributed c<Jmputing environment - hence protocol modelling is essentialto

the study of computer communication systems. This section presents a case study of the

modelling of a set of broadcast protocols for reliable communications within a distributed

environment. Typically an application will utilize several layers of protocol to

communicate. hence it is generally desirable to identify different layers of functionality in

models as weil [Bochman 90]. The protocols to be modelled in this St'J::ion (ABCAST,

CBCAST and OBCAST) [Birman 93]. are assumed to reside between highcr and lower

level services. Although these services are not modelled in detai!, they provide and request

the necessary services from the three protocols.The structure of a proccssing node using

these protocols are shown in figure 4-8. The generic_protocol servcr directs the upper and

lower layer requests to the respective protocols. The upper layer send rcquests for

106

•

•

•

f;.'w/%?-mwmum. _~#.f'M:%WA:.:Wfiill::
Hi et" level ~ce.'I ;;

FIGURE 4·8. Structura! Yiew of Node

communication using one of the three broadcast protocols, whereas the lower layer

provides the actual transmission level facilities such as send request and acknowledgments.

The section will first describe DSL models of the three protocols used to ensure reliable

distributed broadcasts. The protocols ABCAST, CBCAST and GBCAST are described in

further detail in [Birman 87]. The model of anode using the structure presented in the

above figure will be described with the lower level services tailored to interface with the

ATM protocol presented in the previous section.

4.2.1 The ABCAST protocol

The ABCAST protocol is one of three broadcast process primitives (within a distributed

environment) and ensures the order of a broadcast message received at multiple

destinations from a source process is the same even though the order is not pre-determined.

The DSL model describes node modules which represent distributed sites. A high level

program (high_leveCservices) will generate processes that request ABCAST

communication with other nodes through a low_leveCservices module. To support the

ABCAST primitive, each node will have an abcascserver, a priority_queue, and a

delivery_queue. The structural representation of this model is given in figure 4-9. The

algorithm presented in [Birman 87] for AllCAST is presented below with the DSL

representation.

107

•
send-POrt

(Iolower_leveCsenl«s)

ho module: generie-protowl_urveri:-iln;'::IUj

~ uP.!'''''ebcast_sernr(SITE_ID)
tporl ebp delivery_queue(SITE_lDl

1/ p'n
~l gbcasl nrver(SITE lD)b~

lporl In_p

gporl gb

T~
dq_porti .b<..._"...,,(SITE_ID) • .. gbeasl

prlorlly_queue(SITE_ID)
Iporl PUorl ...- -,.

qbcasl

•

•

FIGURE 4·9. DSI, Representation of generjc protocol seryer

The algorithm is composed of four steps detailed below:

Step 1. The sender transmits a message (Msg) with a unique label to its destinations.

This is represented through a jorm(abcast, PROCjD, Des~ Msg) message sent to the

abcascserver (from the upper level protocols). PROCjD is the source process identifier,

Dest is a list ofdestinations and Msg is the message to be transmitted. This segment of DSL

code is:

(form(abcast, PROC_IO, Oest, Msg):­

checkJesOabel_count, COUNn,

NCount Is COUNT + l,

lIsUength(Dest, Nol,

delay(X),

set_resOabetcount, NCountl,

create(NCount, (Oest, No, On,

wrIte(' Sendlng an abcast message '), wrIte(Msg), ni,

sendL. Iprot(SITE_ID), msg..rqst(Dest, abcast(Dest, Msg, NCount, PROCJO, SITE_ID))))

Two resources are utilized above: IabeCcount and NCount. The tirst is uscd to gcncrate

unique labels for the messages. The latter is utilized to keep track of how many destinations

within a process group have responded during step 2 of the protocol. The lastline will send

108

•

•

•

the abcast message to a lower level protocol handler (connected through port

lprotiSITE_lD».

Step 2. Recipients add Msg ta a priority queue associated with label, marking it as

undeliverable. A priority is assigned to the message (NPri) larger than the largest in the

queue, with a process identification (PROC_ID) added as a suffix. This suggested priority

is then transmitted to the sender.

The DSL code given below depicts the behavior for this step. However an interaction with

the priority_queue module (connected through the pq-port(SITEjD) is not shown here,

but will be presented later in the section. The add_new message sent to the priority_queue

module requests that the module add the new ABCAST message to the priority queue.

(abcast(Msg, Label, PROC_ID, Sende<-\D):-

sendl, P'!-JXlrt(SITE_lDl, add_new(abcast, Sender_ID, Msg, Label. PROC_ID)))

The priority_queue module will consequently send an updated_priority message (shown

below) that provides the suggested priority (NPri). This value is sent back to the sender as

shown below:

(updated_prtortt;y(abcast. SITE, Label, NPrt):-

sendL. Iprot(SITEJD), msg.,rqst(SITE. abcast(SITE. sug.,prlortt;y(NPrt). Labe!))))

Step 3. The sender waits for ail the suggested priorities from the destinations, computes the

maximum of ail the values and sends this value to ail the destinations - thus guaranteeing

correct order of delivery.

The DSL representation given below is used to compute the maximum priorities as well as

a check if all responses have been collected from the destinations. The largest priority

value is maintained within the resource Label (NCount in step 1) as well as a flag (State)

indicating if ail replies have been received.

109

•

•

•

(abcast(sugJ>r1orlty(Value), Label):­

checkJes(Label, (Dest, State, Prlor)),

NState 15 State -1,

set_res(Label, (Dest, NState, Prlor)),

Value> Prlor,

setJes(Label, (Dest, NState , Value)),

send(check(Label))).

(abcast(sugJ>r1orlty(Value), Label):­

send(check(Label)),

wrIte('Prlority recelved was not hlgh enough'))

(check(Label):-

check_res(Label, (Dest. State, Prlor)).

State>O,

wrIte('Have not recelved all repUes yet1 ,nI) ,

(check(Label):-

check_res(Label, (Dest. State, PrIer)),

delay(l),

remove(Label, Xl,

sendl, Iport(SITE_lDl, mslt-rqst(DEST, abcast(set-prlorlty(Prlorl, Label))))

Step 4. The destinations update the priority for Msg to the new value and mark the message

as deliverable and re-sort the priority queues. The destinations then move messages in

order of increasing priority from the priority queues to a delivery queue. This continues as

long as the priority queue remains non-empty and there is a deliverable message at the top

of the queue.

(abcast(set-prlorlty(Value). Label. Proc_lD):-

sendl, !"L..port(ID). change-prlorlty(abcast, Value, Label. Proc_lD)))

The above DSL code describes the final action that is required by the abcascserver. A

message is sent to the priority_queue to change the priority of the message identified by

Label. The priority_queue module requires sorne behavioral code to communicate with the

abcascserver and the delivery_queue. Its behavior is given as follows:

The add_new behavior is used to add a new message to a priority queue

110

•

•

•

(p_queue(PROCJD}). There are two cases defined below. The first case assumes that the

priority queue for a process exists. Hence a new priority is assigned to the new message and

another data structure (waiting_message(PROCJD}) is created to keep a copy of the

message and relevant information such as state (deliverable or undeliverable), message

label, data and priority value.The second case takes into account the situation where a

queue does not exist yet for a process (PROC_ID). Hence a queue :s created to hold

ordered priorities and ail other operations are performed as in the first case.

(add._new(Protocol. Sender. Msg. Label. PROC_ID):­

check_res(p_queue(PROC_lDl, [Prii Rest]).

NPriis PrI+l.

create(walUng..message(pROC_ID), (NPri. Msg. Label. undeUverable)).

check_res(p_queue(PROC_lDl. QUEUE l.

setJes(p_queue(pROC_ID). INpril QUEUEIl.

sendL, proc....Port(SITE_IDl. updated....PrlOrl:y(Protocol. Sender. Label. NPrI))).

ladd_new(Protocol. Sender. Msg. Label. PROC_ID):­

NEW ls SITE_ID/IDD.

delay(l).

create(p_queue(PROC_ID). [NEw)l.

create(walUng..message(PROC_IDI. (NEW. Msg. Label. undeUverable)).

sendl. proc....PortISlTE_IDI. updated....PrlOrlty(Protocol. Sender. Label. New))),

The second behavior understanding required by the priority_queue is change...]Jriority.

Upon receipt of this message, the module updates the priority (Value) of the specified

message (Label). An internai message check...]Jq is generated to clean up empty queues and

test if the topmost element of the p_queue is deliverable. The latter is accomplished

through another internai message (delivery) which removes deliverable messages from the

top of the queues and sends them to the delivery_queue module.

(change....Prlorlty(abcast. Value, Label. PROC_lOl:­

check_res(walUng..messagelPROC_IDI. (PrI, M. Label, Statell.

check_res(p_queue(PROC_IDI. QUEUEl.

delay(Il.

remove_element(QUEUE. PrI, NQI.

appo,nd([Vaiuel. NQ. Result).

111

•

•

•

Iqsort(Result. Sorted).

setJes(p_queue(PROC_IDJ. Sortedl •

setJes(Waltlng..message(PROC_IDJ. (Value. M. Label. dellverable))

send(check-IXI(abcast, PROC_ID, Label)).

(check-IXI(abcast. ID, Label):­

check_res(p_queue(ID), QueueJ,

last_llst(Queue, TOPJ.

check_res(waltlng..message(IDJ. (TOP. M. Label, srATUS)),

send(dellvery(Label. srATUS))),

(check-pq(abcast. ID, Label):­

remove(p_queue(ID), m.
wrIte('Prlorlt)' Queues for ID 'J, wrIte(IDJ, wrIte(' freed'l.nl).

(dellvery(Label. dellverableJ:-

checkJes(walttng..message(IDJ, (Val, M, Label. dellverable)).

remove(waltlng..message(IDJ. (Val, M, Label, dellverable)).

checkJes(p_queue(IDJ. Ql,

remove_element(Q. Val, NQ).

setJes(p_queue(IDJ, NQJ.

sendl.d'Lport(SITE_IDJ ,dellvery_oCnew_message(ID. M, Label)),

send(check_pq(abcast. ID. Label))),

(dellvery(L, undellverableJ:-

wrIte('Undeilverable message stlll waltlng for processlng.1.nI1ll.

The DSL description for the delivery_queue simply records the sequence of messages

delivered to a node. The queue functionality is implicit by the manner in which modules

process incoming messages. The DSL representation is:

moduIe(dellvery_queue(SITEJDl,1

(dellvery_oCnew_message(ID. M. LABELJ:­

wrIte('Message processed at nado: 1,

wrIte(SITE_IDJ.nI, wrIte(' ID= 1, wrIte(lDJ,nI.

wrIte(' label= 1, wrIte(LABELJ.nllll.

This is a very simple view of the delivery queue. however the model wil\ be refincd later

within the GBCAST protocol section to reflect the needs of ail three protocols.

The behavior of the abcascserver module is described in terms of its cquivalcnt prcdicatel

112

•
transition net given in figure 4-10. The protocol functionality is separated into two sets for

clarity; the sender and receiver components. Each handles the respective functionality of

the protocol. Input places (identified by the darkened circles) will allow their respective

token types (such as form_abcast(D,M,P). These tokens arrive from other sub-nets

(representing the other modules). A cr.ntrolling net (omitted here for sake of clarity)

ensures that the specified incoming tokens are directed to the appropriate input places as

well as ensuring safeness within e~..:h sub-net. Operations on transitions are indicated

between a "0" while predicates are labelled on arcs. By convention, labels beginning with

a capitalized letter is an unassigned variable.

Even at this level of representation, sorne design partitioning is being assumed. For

example, the protocol <ln~ priority queue management aspects are separated into different

modules which implies that the eventual design would also favor such a distinction.

FIGURE +10. PrIN Representation of .beaU server Module

(COMfded 10 Node{D))

(To Prlorlly_queue)
(connrdtd 10 Node(D»

(r'rom node{D» (!rom node{D))
aJ,,:cuI(IIlI..priDrit,(V), Lab~l) abcast(M, L,

(......Ied loNodt(D))

__CM. LMol, P, 8)

fo"".JJbcœr(D,M,P)•

•
113

•

•

•

4.2.2 The CBCAST protocol

The CBCAST protocol is less restrictive than ABCAST, while preserving the causality of

messages. It enforces a minimally synchronized delivery order. In this case, if a and b are

two concurrent processes, CBCAST may deliver the processes in different orders whereas

with ABCAST an order would be agreed upon by the destinations. The perceived

advantage over ABCAST is the performance of the protocol. CBCAST does not delay

transmission of messages and can therefore perform significantly faster. The algorithm for

an implementation of the CBCAST protocol as presented by Birman is as fol1ows:

Each process p has a message buffer BUFp which contains copies ofmessages sent ta and

from it. A message B is transmittedfromBUFp at site s ta BUFq at site tasfollows:

1. When a CBCAST message B is initiated by p, an lO(B) is associated with the message

and the List ofdestinations are added ta REM_DESTS(B) ta keep a record ofdestinations

that are destined ta receive the message.

2. A transfer packet <BI, B2, ...> is created which includes ail messages B' in BUFp such

that B' must precede Band REM_DESTS(B') is non-empty. The messages are maintained

in an arder ofprecedence ta preserve causality (BI must precede B2).

3. The transfer packet is sentfrom site s ta t.

4. For each Bi, the destination q is deletedfrom REM_DESTS(Bi).

5. On the receiving site t, for each message in preceding arder:

5.1 The lO(Bi) is checked. [fit is associated with a message in BUFq then Bi is a duplicate

and is discarded.

5.2 If q is a member ofREM_DESTS(Bi), q is removedfrom REM_DEST(Bi), Bi is placed

on the delivery queue for q and a copy ofBi is placed in BUFq.

114

•

•

•

5.3/fnone of the above Mo cases apply, Bi is a message in transit to another process and

is simply placed in BUFq.

The CBCAST algorithm is modelled within OSL using the following resources:

buffiPROCjD} represents the BUFFp (where p=PROCjD) in the algorithm above, and

the variables within this resource are (ID, M, REM_DESTS}.ID is a unique identification of

the message M and REM_DESTS - as above, represents the (remaining) destinations that

the message is to be sent to.

The OSl, model follows the same steps outlined above. There are two possible messages

that can be generated to the cbcascserver from a higher level protocol: 1) a message to

transmit any outstanding messages in the message buffer buffiPROCjD} and 2) a request

for the transmission of a new CBCAST message. Since the former is a special case within

the latter, the OSL code deals with the latter and is given below. A message from a higher

level protocol is given asform(cbcast, PROCjD, DESTS, MESSAGE} to create a new

entry in the buffer for the process (PROC_ID). The former is represented by aform_cbcast

message. This message looks at any entries in the buffer(s) where there are messages

awaiting transmission, creates a transfer packet (PACKET) and send the result to a lower

layer protocol for transmission. The OSL code to handle the CBCAST transmission is

given as:

(form(cbcast. PROC_ID. DESTS. Messagel:­

check_res(message_Iabel(PROC_IDI, Label).

ID Is Label+ 1.

set-"es(message_label(PROC_IDJ, 1Dl,

create(buIllPROC_IDJ, (ID. [DESTSI. Message)),

send(form_cbcast)l.

(form_cbcast:-

check_res(buIllPROCJDI, (ID. [DESfI REST), Mll,

set_reslbufllPROC_IDI. (ID, [REST). M)),

115

•
send(creale_packet(pROC_ID, DEST, OD, 1RE511. M)))),

(create""packet(pROC_ID, DEST, PAC!Œ11:-

check_res(bufl(PROC_ID). OD. REM, M)),

not(memberl(ID.REM.M). PAC!Œ11)

send(create_packet(pROC_ID. DEST, [PACKET 1 OD,REM,M)]))).

(creale....Packet(PROC_ID. DE5T, PAC!Œ11:-

send(-, proto_port. msg..rqst(DEST. cbcast_packet(DEST. PACKE'!1)).

The DSL model also requires knowledge about how an incoming CBCAST message is to

be handled (step 5 of the algorithm for theprotocol). A lower layer protocol is assumed to

deliver a CBCAST message as cbcascmessage(PROCjD, PACKET), wherc PACKET is

an ordered precedence list of messages sent to this site and PROC_ID is the destined

process identification. The DSL behavioral code along with the equivalent steps of

Birman's algorithm is shown below. Step 5.0 is an additional case that is thc stopping

condition for the algorithm.

•

•

(cbcast_message(PROC_ID. [)):-

wrtle('CBCAST messages ail processed at '),

wrtle(pROC_ID).nl),

(cbcast_message(PROC_ID, ((ID. REM. M) 1Rest)):­

check]es(bufl(PROC_ID), (ID, _,J),

wrtte('CBCASTmessage td 1,wrlle(ID),

wrtte(· already tu buffer.').nl,

send(cbcast_message(PROC_ID. Rcst))).

(cbast_message(PROC_ID. (OD. REM, M) 1Rest)):-

memberlPROC_ID. REM),

remove_element(REM, PROCUD, NEW_REM).

creale(buf!lPROC_ID). (ID. NEW_REM, M)),

send(deltvelY_queue(PROC_ID),_.dellvelY_oCnew_message(ID. M)).

send(cbcast_message(PROCJD, Rest)]),

(cbcast....Packet(PROC_ID.IOD, REM, MlIRestll:­

not(member(PROC_ID. REM)).

creale(buf!lPROCJD). (ID. REM. M)),

send(cbcasCmessage(PROC_ID. Rest))lll.

(slep 5.0)

(step 5.1)

(step 5.2)

(step 5.3)

t16

•

•

4.2.3 The GBCAST protocol

The last of the three protocols to be described provides a mean of communication between

changing process groups. The previous two protocols assume that ail the destinations are

known. however aBCAST permits communication to a group of processes whose

membership may change during the course of time. To manage the group view. the protocol

provides a totally ordered delivery scheme with re~!lect to the other two protocols. The

OBCAST protocol presented by BimJan is outlined below:

1. The first steps of the protocol order GBCASTs with respect to ABCAST messages. A

GBCAST message is composed ofa destination group G and an action to be performed by

the group members (action). A process p distributes the message to the member processes

ofgroupG.

The form message is interpreted by the gbcasCserver as a request to send a OBCAST

message (ACTlON) to a GROUP. A local view of groups is maintained within a

site...group_table (records which groups anode belongs to) and a proc...group_table (which

tracks the processes membership in groups). A resource labeCcount is also used to

generate increasing unique label values for messages. The originator of the OBCAST also

tracks the replies from destination members using the resource lABEL (line 1.9).

I.t

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

!.to

!.t t•

(form(gbcast. PROC_ID. GROUP. ACTION):­

check_resOabel_count. COUNTJ.

check_res(proc-St"0up_table, (GROUP, PROCS)),

check_res(slte-SJ"Oup_table, (GROUP. SI'ffi)).

LABEL Is COUNT + 1.

Ils\Jength(GROUP. No),

delay(DELAYtJ.

set_resOabetcount, LABEL).

create{LABEL, (GROUP. No, 0)),

wrIte(' 5endlng a gbcast message 'J, wrIte(ACTION). ni,

sendl, gport. msg..rqst(SI'Œ. gbcastlSITE_IO. ACnON, LABEL. GROUP)))),

117

•

•

•

2. Following the steps ofthe ABCASTprorocol, the recipient q places the message (taggeci

as undeliverable) on all ABCAST priority queues. A priority value is assigned ta ail the

messages based on the next highest value ofany message on the ABCAST queues and the

value is sent back ta process p.

(gbcast(Sender. ACTION. LABEL. G):­

check]es(proc..graup_Iable. (G. PROC)).

create(label_member. (LABEL. PROC. Sender)).

send(gbcasCm(Sender. ACTION, LABEL. PROC))).

(gbcast_m(Sender. Msg. Label. 1Il:-

wrIte('AIl gbcast prlarlttes suggested..:l.nl).

(gbcast_m(Sender. Msg. Label. [PROC_ID 1RES1']):­

sendL.M...port(SITE_IDl.add_new(gbcast. Sender. Msg. Label. PROC_ID).

send(gbcast_m(Sender. Msg, Label. RESTI)).

(updated_prlarlty{gbcast. Sender, Label. NPrl):-

sendL. gpart.ms~rqst(Sender.gbcast(suorlarlty(NPrI). Label))))

3. After obtaining all values from group members, p sends the maximum value of all the

values to the group G. The group members aecordingly assign the new value and re-sort the

priority queues. However, the messages are not tagged as deliverable as in the ABCAST

case before. When the GBCAST messages arrive to the head of their respective priority

queues further delivery from the queues will be suspended. When the GBCAST message

reaches the head of all the ABCAST priority queues, the next steps are undertaken to order

the GBCASTs relative to CBCASTs.

(gbcast(suOrlarlty(ValueJ, Label):­

check]eslLabel, (Dest. Slate. Prlar)).

NSlate Is Slate -1,

set]es(Label, (Dest, NSlate, Prlar)).

Value> Prlar.

set_res(Label. (Dest. NSlate , Value Il•

send(check(Label))),

118

•

•

•

(gbcast(sug..prlorlty(Value). Label):­

send(check(Label)).

wrIte('Prlorlty that was recelved was not hlgh enough1.nl).

(check(Label):-

checkJes(Label. (Dest. State. Prlor)).

State>O.

wrIte('Have not recelved ail repUes yet')."n.

(check(Label):-

check_res(Label. (Dest. StaIJ.'. Prlor)).

delay(l).

remove(Label. Xl.

check_res(slte~oup_table. (GROUP. SITE)).

sendL. gport. msg..rqst(SITE. gbcast(set...prlorlty(Prtor). Label.GROUP)))).

The DSL description presented above is virtually identical to step 3 for ABCAST and is

presented for sake of completeness. The difference is in the way in which the destinations

are specifled. In ABCAST the destinations were given directly as a part of the protocol. For

GBCAST the site and process group tables are used to identify the destinations within a

group relevant to a particular site.

Since GBCAST does not completely foUow the ABCAST step 4, there are sorne additional

differences to be considered. Unlike ABCAST, messages are not tagged deliverable at this

stage. The protocol defined below will tag them as gbcascwait, indicating that the message

is to be delivered according to GBCAST. An additional resource (gb_ab_arder) is

maintained in the gbacst_server which keeps track of how many GBCAST members

within the node stiU have not reached the top of their respective priarity queues. The

ABCAST step 4 represented in DSL as applied ta GBCAST would then be:

(gbcast(set_prlorlty(Valuel. Label. G):­

check_res(proc~up_table. (G. PROCS)).

create(gb_ab_order. (G. Label. PROCS)).

send(gbcast(sel,Jlrlorlty(Value). Label. G. PROCS)

(gbcast(sel,Jlrlorlty(Value). Label. G. 01:­

check...res(proc~up_table. (G. PROCS)).

119

•

•

•

sendl,JXLPOr!(SITE_IDJ.check--lXl(gbcast. PROCS. Label))).

(gbcast(set-prtortty(ValueJ, Label, G. (ID 1RESI1l:­

sendl.JXLPOr!(SITE_ID), change-prtortty(gbcast, Value. Label. ID)),

send(gbcast(set-prtortty(Value). Label, G, RES1'))

The priority_queue will require sorne additions t~ add the GBCAST message. This is

conveniently accomplished through the change-priority message. The first parameter of

the message shown below identifies it as a GBCAST message, hence it is tagged as being

in a gbcascwait state.

(change_prtortty(gbcast. Value. Label. PROC_ID):­

checkJes(waltln!l,message(PROC_IDl, (Pr!. M. Label. Siate)),

check_res(p_queue(pROC_IDJ. QUEUE).

delay(Il,

remove_element(QUEUE, Pr!. NQJ.

append(lValuel. NQ. Result).

tqsor!(Result. Sorted).

seCres(p_queue(PROC_IDJ, Sorted),

set_res(waltln!l,message(PROC_ID1, (Value. M. Label, gbcast_walt))).

send(check_pq(abcast. PROC_ID, Label))

In addition, the priority queue will inform the gbcascserver when a message with a state of

gbcasCwait is detected at the head of a priority_queue. This is described through the

delivery message below where a message gbcascwait is sent to the gbcascserver.

(deUvery(Label, gbcast_Walt):­

check_res(waltln!l,message(pROC_ID).lV,M,Label,gbcast_walt)),

sendL proc_port(SITE_IDJ, gbcast_walt(PROC)D. Label))).

The gbcascserver module must process the gbcasCwait(PROCjD, Label) message

generated above. The module identifies removes the proeess identification (PROCjD)

l'rom the appropriate gb_ab_order resource. When the third variable within the resourec is

an empty list, this implies that all members of the group arc at the top of their respective

120

•

•

•

priority queues (these tests are perfonned within the additional tescab behaviors given

bclow). At this point a set_waicqueue message is sent to each process' delivery queue

through the instancqueue behaviors. The additional code for the gbcascserver is given

below.

gbcast_waltlPROC_ID. Label):-

checkJes(gb_ab_order. (G, Label. PROCS)).

remove_element(PROCS, PROC_ID. NEW_PROCS).

setJes(gb_ab_order, (G.Label, NEW_PROCS)),

send(test_ab(G. Label. NEW_PROCS))

test_ab(G.Label,lIl:-

checkJes(proc-&roup_table. (G, PROCS)).

checkJesOabel_member. (Label, p. Sender)).

send(instant_queue(Sender, PROCS, PROI.~S)).

test_ab(G.Label,Dl:- prtnt(' Not ail members are at head ofqueues1.

Instant_queue(S. G, Dl:-prtnt('AlI walt queues generated·).

Instant_queue(Sender. PROC, [MEMBERIREST)):­

sendl,_,set_walt_queue(MEMBER)),

sendl._,f1ush_cbcast(Sender. PROC, MEMBER))

send(instant_queue(RESI))

4, A wait queue is used by the recipientprocesses to temporarily hold messages that would

have been placed on the delivery queue by the CBCAST protocol. A List (IDUST) is

maintained which contains IDs ofaIl CBCAST messages that were placed on a delivery

queue ofthe recipient processes.

The requirements for this step of the algorithm dictale the need for a more sophisticated

delivery_queue module. The module will contain resources thal define the delivery queue

(d_queue) and the wait queue function (waicqueue), as wel1 as idlist(ID) 10 store the

message labels within a d_queue(ID). The DSL description below aIso identifies the

behaviour of the secwait_queue message sent from the gbcascserver. The

121

•

•

•

delivery_of-new_message will place the message onto a wait_queue if it exists or directly

onto the d_qlleue. In the latter case a new messag(' notification is sent to the upper layer

protocol.

Iset_walt_queue(ID):­

create(walt_queue(ID), m)

(dellvelY_oCnew_message(ID, M, LABEL):­

check]es(walt_queue(ID), RES11,

set_res(walt_queue(ID). [(M, LABEL)).

IdellvelY_oCnew_messageIID, M, LABEL):­

check]es(d_queue(ID), CONTENTS).

seUes(d_queue(ID), [(M.LABEL) ICONTENTSll.

check_res(ldllst(ID). RES11.

set]es(ldllst(ID). [LABEL 1RES11).

sendl,up_portISlTE_ID), new_msg)).

5. For a process q, if any message B in IDUST is in BUFFq and B incllldes destinations

that are a part of the group G, these messages are scheduled for transmission ta the

destinations. When ail such messages are sent, q sends its IDUST to the originating

process p.

This step requires the interaction of the gbcascserver. delivery_queue and cbcascserver

modules. First. the gbcascserver must generate aj/ush3bcast message (from step 3) to the

delivery_queue. This signais that GBCAST ordering with respect to ABCASTs arc donc

and GBCAST with respect to the CBCAST ordering must now he performed. The

delivery_queue module will use this message to transfer the idlist resourcc data to the

cbcascserver with the gbJequest message. The cbcastJerver will then send any

messages residing in its buffer belonging to a destination who is a member of a given

group.

The DSL code below is a part of the delivery_queue behavioral description. As a response

to the gbcascserver's j/ush_cbcas! u.~"~'1ge. the module transmits a gbJequest message

122

•

•

•

to the cbcasCserver which is a request to process any messages that are to be transmitted

to group members. A cbcasclist message is sent to the gbcascserver which is used within

step 6 of the protocoI.

f1ush_cbast(Sender. PROCS, PROC_ID):­

check]es(ldllst(pROC_IDI, IDLIST),

send(cbcast_scrver(SITE_IDl.-, gb]equest(PROCS, IDLIST)),

sendl, lport, mSlLrqst(Sender, cbcasUlst(lDLIST, PROCS, PROC_ID)))

The code given below is located within the cbcascserver and is a description of the actions

to be undertaken upon receiving the gbJequest from the delivery_queue. Essentially each

member of the REM destination list within the buff resource is compared with each

member of the IDLIST within the tescmembership behaviours and a create-packet

message generated for CBCASTs to be sent to group members (this was described in the

CBCAST protocol section).

gb]equest(p, []J:- prlnt('A11 outstandlng CBCASfs sent~,

gb_request(pROCS, [B 1 IDLIST] l:­

check_res(buff(PRoc_IDl, lB, REM, MIl,

send(test_membershlp(REM, PROCS, B, PROC_ID),

send(gb_request(PROCS, [IDLIST!))

(test_membershtplO, G,ID,Pl:-

prlnt('Group members f1ushed from buffer')),

(tesCmembershlp([RlREST!, GROUP,ID, PROC_ID):­

member(R, GROUP),

check]es(buff(PROC_IDI, (ID, LIsr, MI),

remove_element[R, LIsr, NEWLIST),

set_res(bufllPROCJDI, (ID, NEWLIsr, MIl,

send(create"'packet(PROC_ID, DEsr, (ID, NEWLIsr, M)))

send(test_membershtpCREsr, GROUP, ID, PROC_ID))),

(tesCmembershlp([RI RESTl, GROUP,ID, PROC_ID):­

sendltest_membershlp(REsr, GROUP, ID, PROC_ID)))

123

•
6. After receiving al! the IDUSTs, p merges the lists into a before list which it sends to G.

The cbcasClist message that was sent from all the participating group members is

processed within the GBCAST originator's gbcascserver module. A resource

before_list(Group) is maintained for the group wbich keeps the merged version of the

IDUST as weil as a list of members that have sent their lists. Upon receipt of an mUST

from a group member, the member is removed from the before_list(Group). A tescbefore

behaviour is used to deterrnine if ail the members have sent their lists (this would be an

empty list for the second variable of the before list). If so, the before list is sentto members

as the message before_list(IDlist, Group).

•

(cbcast_Ust(lOLIST. Group. PROC_IO):­

check]es(before_lIstlGroupl, [LIST, PROCS)).

remove_element(PROCS. PROCJO, NEW_PROCl,

seUes(before_Ust(Groupl. ([IDUSTI LIST), NEW_PROC)).

send(test_before(Group, NEW_PROCJ)) ,

(test_before(GROUP, Dl:-

check]es(proc.,group_lable. (GROUP. PROCSll.

check]es(slte.,group_lable. (GROUP. SITEll.

check]es(before_Ust(GROUP). (lOUst, J).

sendL. _, mSll-rqst(SITE, before_Ust(lOllst, GROUP)J))

(test_before(G,Pl:-prtnt('Have not recelved allldllsis yet'))

•

•

7. Any messages in the wait queue that are alsa in the befare list are transferred to the

delivery queue, maintaining their order. The GBCAST message is alsa placed an the

delivery queue.

The gbcasCserver requires an additional description of the before_list message. Rcceipt of

this by member modules initiates a transfer of the llew (before) List to the respective

delivery_queue modules (sent as new_idlist).

(before_Ust[Ltst. GROUP):­

check_res(proc.,group_lable, (GROUP, PROCSll,

124

•

•

•

send(sendJlst(Llst. PROCS))),

(sendJlst(Llst.Ill:-prlnt(' Updated lDLlST sent')).

(send_\Ist(Llst, lM 1Rest)):-

send(dellveJ)'_queue(Mk. new_ldllst(Llst)).

selld(sendJlst(Llst,Rest))).

The delivery_queue modules perform the necessary comparisons below to move entries

from the waiCqueue to the d_queue. Finally a get...gbcast message is sent to the respective

priority_queue modules to obtain a copy of the aBCAST message.

(new_Idllst(Llst):­

check-<es(walt_queue(PROC_lDl. WAiTI.

check-<esld_queue(PROC_lDl. DELIVERY).

send(compare_queues(WAIT, Llst.l1.WAlTI)).

(compare_queuesm. BeforeLlst. TEMP. WAlTI:­

set_res(walt_queue(PROC_IDJ, WAJTI,

check-<es(d_queue(pROC_lDJ, DELIVERY).

seCres(d_,!ueue(pROC_lDl. [TEMP 1DELIVERY))),

send(prlorl~ _queue(PROC_IDk.get.,gbcast)),

(compare_queues([Top 1Restl. BeforeLlst. N, NewWalt)):­

member(Top, BeforeLlstJ,

append(Top. N. TEMPJ,

remo\·e_element(Top. NewWalt. WAlTI,

send(con;pare_queues(Rest, BeforeLlst, TEMP. WAlTI)) ,

The priority_queues react to the get...gbcast message by removing the aBCAST message

from the waiting_message resource and transferring it to the delivery_queue.

get.,gbcast:-

check_res(waltJnILmessage(pROC_IDI, (TOP, M. Label. gbcast_walt)).

remove(waltinlLmessage(pROC_IDJ. (Val, M. Label. gbcast_walt)),

sendl.dQ....POrt(PROC_IDI.add.,gbcast_messageIM. Label)),

8. The contents ofthe wait queue are appended to the delivery queue and the wait queue is

deleted.

125

•

•

•

The delivery_queue modules perfonn clean up operations after receiving the GBCAST

message from the priority_queue modules. The message (MESSAGE) is received through

the add...gbcascmessage sent within the previous step. The message is added to the

delivery queue resource d_queue as weil as remaining contents of the wait_queue, after

which the waicqueue is removed. A clean...gbcast message is sent to the priority_queue

modules to remove the GBCAST message from the head of the p_queues.

add-llbcast_message(MESSAGEJ:­

check]es(d_queue(PROC_IDJ, DELIVERY),

set]es(d_queue(PROC_IDJ, [MESSAGE 1DELIVERY)),

check]eslwalt_queueIPROC_IDJ, WAIT]J,

check_res(d_queue(pROC_IDJ, DELIVERY2J,

seCresld_queue(PROC_1D1, [WAITI DELIVERY21l,

removelwalt_queue(PROC_ID))

send(pliolity_queue(PROC_IDJ,_,c1ean-llbcastl

9. The GBCAST messages are removedfrom the heads ofthe ABCASTqueues.

This completes the final step of the protoco\. The code shown below is within the

priority_queue module to clean up the GBCAST message from the p_queue. A check~q

message is sent as outlined within the ABCAST protocol to commence delivery of any

eligible ABCAST messages.

clean-llbcast:-

check]es(p_queue(PROC_IDJ, [TOP 1REST]),

set]es(p_queue(PROC_lDl, REST],

check_reslp_queue(PROCJDJ, [Pli 1RIl,

check]es(WaiUn/Lmessage(PRùC_IDJ, (pli, M, Label, Stale)),

send(check_pq(abcast, PROC_ID, Label)))

126

•
4.2.4 Node model

Anode is defined to be composed of a high_Level...flervice (describing the higher level

services). a generic..protocoCserver (describing the various supported broadcast

protocols) and a Low_LeveCservice (describing the low level support for the node) module.

The generic..protocoCserver module details are presented in the previous section. This

section will present the details for the high and low level services support for the modelled

node. The DSL structure is shown in figure 4-11.

•

The high_LeveCservice module is intended to generate the communication requests

(typically from an application running on the node). In this example, a set of process

modules residing within this higher order module are defined to generate various broadcast

request~. Bach process module possesses a unique PROCjD and a requests resource. The

latter stores communication requests to be initiated from the process. The resource contains

three fields. The first identifies the protocol requested, the second a message to be executed

by a destination process, and the third indicates the PROC_ID of the destination process.

Bach process follows a simple behaviour of cycling through each of its entries in the

requests resource and sending a form message down to the generic"protocoCserver. This

behaviour is shown below.

hlgbJeveLservices(SITE)

"'"
FIGURE +11. DSL Model ofBmmleast Nodes

out

iD

}
iD

IIftanageJ1SITE, T1ME_OUT)

cp a!JJLPot1
clock-port

process(PROCJD)

vllunl SITE

••••mm••~.m..~Dd rt SITE)

Io..JmUervices(SITE)

clock(SITE)

•
127

•

•

•

module(process(PROC_IDJ, [

starU)rocess:-

checkJes(requests, (pRO, MSG, DESI')).

setJes(requests, (pRO, MSG, DESI')),

delay(pROCESS_DELAYl,

sendL. vtrtual(SITEJ. form(pRO, PROC_ID, DEST, MSG))

send(start-process)]}.

This description for a process willloop endlessly to provide a sequence of rcqucsl~. As

shown in the broadcast protocol models, the form message will initiate a given broadcast

protocol which will eventually result in a msgJqst(DEST_SITE,MESSAGE) message

being sent from the generic...]JrotocoCserver to the lower_leveCservices module.

The msg_rqst message is a low level message to rcquest a transmission of MESSAGE to a

node addrcss DEST_SITE. The low_leveCservices higher order module is composed of a

lfJnanager(SITE,TlME_OUT) and c/ock(SITE) module. The Il_manager provides the

behaviour for actual communication and transmission to an ATM switeh whereas the dock

(as in the prcvious examples) provides the timing requirements for the communication.

The TIME_OUT parameter identifies a time-out value for the low level communication

protocol. The protocol modelled in this example is a simple scnd (l" 'lSg) and acknowledge

(ack) protocol. If an acknowledgment is not received within TIME_OUT number of ATM

cells, then an error message is rccorded.

To provide low level services, the Il_manager maintains a translation_table rcsource

identifying the ATM (VPI,VCI) addresscs for the destination. A message identification is

also recorded for each message (from a message_id rcsource) to keep track of outstanding

acknowledgments. A time_oucbuffer for each message is used to record the waiting time

for time-out purposes.Finally, a resource (msg_store) maintains a copy of messages

waiting to he processed. The code for handling msgJqst is given below.

128

•

•

•

ms!Lrqstlll. J.

ms!Lrqst([DEST_SI1E1 REST). MESSAGE):­

check_res(translatlon_tablelDEST_SI1E). (VPI.VCm.

check]es[message_ld. VALUE).

COUNT Is VALUE+1.

set]es[message_ld. COUN1l.

creale[ms!Lsl.ore(COUNl1. (VPI. VCI. DEST_SI1E. MESSAGE)).

send(ms!Lrqst(REST. MESSAGE)

As defined in the ATM model, a new_cell message is sent to and from the switch. Hence

the Il_manager must process such a message. This is defined by:

new_cel1(vpl. VCI. MESSAGEJ:­

send[MESSAGEJ.

The convention in this example is thatMESSAGE can either be in the form of new message

sent from another node - described as hmsg(Sender, Destination, MessagejD, Message) ­

or an acknowledgment to a past message (ack(Sender, Destination, MessagejD). In the

case ofa hmsg message, an acknowledgment is sent back to the sender and the contents are

forwarded to the generic,.protocoCserver. In the case of an ack message, the respective

message is removed from the time_oucbuffer - indicating a successful message transfer.

The DSL descriptions are given below:

hmsg(Sender. _, MSGID. MESSAGE):­

check_res(translatlon_table(SenderJ. (VPI.VCOJ.

sendL atm...,POrt[SI1E). new_cell(VPI,vCl. ack[Sl1E. Sender. MSGlD)]J.

sendl. gen...,POrt. MESSAGE)

ack(SITE. Sender. MSGlD):­

remove(tlme_out_buffer(MSGlD). fIlME. DATA)).

prlnt('Message successfully recelved at destlnatlon1.

There is aIso a dock message sent from the dock module to initiatc the transmission of a

cell. If a message is awaiting transmission it is sent as a hmsg type message to the

129

•

•

•

destination, otherwise a null ATM cell is sent to the switch. The dock message also is used

to update any time-out values for waiting responses (this is perforrned within the

update_times behaviour shown below). The description of the dock module is the same as

the one given for the ATM switch design and will not be repeated herc.

clock:-

checkJes(mS!Lslore(MSGIDJ. (VPI, VCI. DEST_SITE. MESSAGE)),

remove(ms!Lslore(MSGID). DATA),

create(tlme_ouCbuffer(MSGIDJ, mME_OUT. DATA).

sendL atm"'port(SITEJ. new_cell(vpI,VCI, hmsg(SITE, DEST_SlTE. COUNT. MESSAGE)),

send(update_t1mesl

clock:-

sendl, atm...p0rt(SITEl. new_cell(null.null,nullJ,

send(update_tlmesl

update_t1mes:-

check_res(Ume_out_buffer(MSGID). (TIME. DATA)),

NEW Is TlME-I •

setJes(t1me_out_buffer(MSGIDJ, (NEW. DATA)).

fall.

update_ttmes:- .

check_res(ttme_out_buffer(MSGID1, mME, DATA).

TlME<O,

prlnt('Message ·1.prlnt(MSGID1.prlnt(' Umed out1.

faH.

update_Urnes:- prlnt('Ttmeouts updated1.

4.3 ATM· Broadcast system model

The DSL models presented in the ATM and this section provide the basic building blocks

for defining an ATM based broadband network running the dcfined broadcast protocols.

This section will demonstrate a design validation and simulation exercise that is typical for

many protocol designs. A network model is shown in figure 4.12 depicting a configuration

130

•
o

FIGURE HZ. ATM.Broadçast N_tw0r!< Mode!

node(3)

•

•

based upon the network introduced in the ATM section, and the nodes defined in this

section. DSL model details for this level of the example will not be dwelt upon. The

network is assumed to provide a bidirectional virtual path connection amongst the three

nodes.

Each node is assumed to contain ten processes running within ilS high_Ievel_services

module. The processes are identified (PROC_ID) by a combination of the node number

(SITE) and a unique integer n where 1 S; n S; 10. The resulting PROC_ID is in the form:

SITE.n. Five process groups are also defined within the model (G1."G5) and each process

has 20 predefined broadcast messages consisting of a mix of the three broadcast protocols.

Each process randomly chooses one of these messages, at random intervals, to broadcast to

the va.';ous destinations. A constraint is also defined for the queue resource in the

generic_buffer modules within each ATM switch. The constraint defines a maximum

output queue size to deteet overflowing message buffers (which is one of the major design

issues in ATM switches).

When loaded within DASE, a hierarchy tree is generated by the system as shown in figure

4·13. The protocol modules are represented at the lowest level of the module hierarchy

131

•

•

•

: Î.EVÈLO ..

n.:.twork

LEVEL2

1.. '

FIGURE 4·13. Hjerarcby of Modulçs for ATM Droadc8s1

(leveI3). Hence it may be desirable to implement these modules within software. Ali nodes

are initiated with messages which randomly generate broadcasts, hence each simulation

run can provide different outputs. A typical output is shown in figure 4-14. The effccts of

different observation levels can be seen. There are concurrent broadcast messages

generatéd by different processes, though the output shows only those from process(1.1)

residing on site 1. The ABCAST message is sent to processes at site2 and 3.

The first segment of code is set at an observation level of 1 which restricts the view to the

higher level protocols being modelled. The sample code shows an ABCAST message

request from the higher level protocol (11), the receipt of the message at one of the

destinations (12), lIpdate of the priority queue (13) and a suggestion of a priority value back

to the destination (14). This view avoids most of the low level details of the ATM protocol.

However it provides a reasonable view of the message generation and delivery for the

different broadcast protocols.

The second segment of the code shows the);ame simulation run with a different

observation level. In this scenario, the switehing function is of intercst, hence higher level

132

•

•

protocol messages are not observed. The code segment shows the receipt of a cell from site

1 to a switeh's input port (15), translation of the cell headers (16) and routing to the

destination port on the switeh (17).

>seUevel(1).

obllervatlon levelset 10 1

DSL SlMULAroR: Schedullog me!Sllge (rom hls(I.200) via gps(1) to abCdSl(l)
Source Port: vlrtual(l ,200) Message 15: form(abcast,200,[3,2J,abm3)
.=-.--._-----..-_.._-----------
<0.0> DSL SIMULATOR: new cutry added 10 message queue ofabcast(l)
<0.0> DSL PROCESSOR: Message 6tnfLPrOCe&S completed at roodule hls(I.200)
<0.0 > DSL SlMULATOR: Module abcasl(l) busy (delayed) until: 1.0
< 1.0 > DSL SIMULA1UR: abcasl(l) resourcc updated: labeLcount 10 value: 2
Sendlng no abcnst message obm3

DSLSlMULATOR: Schedullng message from abcosl(l) via gps(l) to lls(l,20)
Source Port: lport(l) Message ls: msgJqst([3,2],abcast(abm3.2,200,l»

DSL SIMULATOR: Scheduling message (rom 115(2,20) via gps(2) 10 abcasl(2)
SoW'te Port: gen-port Message ls: abcast(abm3,2,200,l)

<10.0 > DSL SIMULATOR: new cutry ndded to message queue of abcost(2)
< J0.0 > DSL PROCESSOR: Mcssage hrosg(1 ,2,2,abcasl(abm3,2,200,1») completed at module 115(2,20)

DSL SIMULATOlt Schedullng mC5&age from abcast(2) via abeast(2) to priority_q(2)
Source Port: PlJ-Port(2) Message 15: add-ftcw(abcast,l,abm3.2,200)

<10.0 > DSL SIMULATOR: new entry Ilddcd 10 message queue of priorlty_q(2)
<10.0 > DSL PROCESSOR: Mcssage abcasl(abm3,2,200,I) completed at module abcast(2)
<10,0> DSL SlMULATOR: Module priority_q(2) busy (dclaycd) until: 11.0
<10.0> DSL SlMULAl'OR: InpuI(2,4) resourcc updated: cclLburrcr 10 value: l ,2 , ack(2,l,2) ,unprocessed

-=_._.._----_.__.__._._-_._.__._-
DSL SlMULATOR: Scheduling mesSllge from input(2,4) via InpuI(2,4) 10 control(4)
Source Port: controLport(4,2) Mcssage ls: ncw_cell(2)

<10.0> DSLSIMULATOR: ncw entryadded to messagequeueofcontrol(4)
< 10.0 > DSL PROCESSOR: Message ncw_ccll(I,2,ack(2,1 ,2» completed al module Input(2,4)

DSL SIMULATOR: Schedullng message from 115(3,20) via gp5(3) la abcast(3)
Source Port: Ren"'port Mesaage ÎI: nbcast(abm3,2,200,I)

<10.0 > DSL SlMULATOR: Dew entry added la message queue ofabcast(3)
< 10.0> DSL PROCESSOR: Mcslllgc mg(I,3,1 ,abcast(abm3,2,200,l» completed al module 118(3,20)

DSL SIMULATOR: Schedullng message from abcast(3) via abcasl(3) 10 priority_q(3)
Source Port: M-p0rl(3) Message ls: add-ftcw(abcast,l,llbm3,2,200).=_._.._._._---_._._---_._--_.__.._-
DSL SlMULAl'OR: Sclwduling meuage from priority_q(3) via priority_q(3) la abcast(3)
Source Port: abcut Message Il: updaled...,prlority(abcasl,I.2,•.1344).=_.-....._.._._.__._.._._.__._.._._.__.

•
<11.0> DSL SIMULATOR: ncw entry added 10 rntSSlIge queue of Ilbcœt(3)
< 11.0 > DSL PROCESSOR: Meuage ndd_new(abtast,1,abm3,2.200) completed at module priority_q(3)

.:==-._.__.._-_._.._._.._.__._..-
DSL SlMULATOR: Schedullng mesSllge from ptlority_q(2) via priority_q(2) 10 abcast(2)
Source Port: _at Mcasagc Is: updatcd....priorily(abcasl,1,2...7436)

Figure +I4 copI.

133

•

•

•

< 11.0> DSLSIMULATOR: new entryadded 10 message queue ofnbcasl(2)
< Il.0 > DSL PROCESSOR: Message addJlcw(nbcast.l.nbm3.2.200) oompleted at module priotity_q(2)

broadcast send complete<! for message RlSgJqsl(l.abcasl(l,suuriorityU 1416),2»
< 11.0> DSL PROCESSOR: Mcss:lge updatcd...,priority(abcast.1.2._I1416) completed nt module nbcnst(2)

Y"

:>scUevcl(4).

obscrvlllion Ic'Vcl set to 4

XII'.
DSLSIMULATOR: Schedullng message (rom IIs(1.20) viasite(l) 10 input(!.!)
Source Port: atm...port(l) Message 15: new3cll(Z,1 ,hmsg(l .2,2.nbcnst(nbm3,2,200.1)))
.=-----_._----------._-----------_._--
<2.0 > DSL SlMULATOR: ncw cntry added 10 message queue of lnput(1.1)

DSL SIMULxroR: Scheduling INTERNAL message (rom 115(1.20)
Message is: updatc_times

<2.0 > DSL PROCESSOR: Message clock completed at module Ils(l,20)
<2.0> DSL SIMULATOR: lnput(l,l) resource updaled: cell_buffet to value: 2.1 •hrmg(I.2.2,nbcnst(nbm3.2.200.!» ,unprocessed

.=--------~"--_._-_ .._------------
_24796 cantrol-POrt(1.1) new_cell(1)
Source Destin, and Sender input(I,l)control(l)input(l.l)
Modulels control(l) message Is new_ceU(l)
Checting methad in control(l)

Checklog method in generic_control(1)
DSL SIMULATOR: Scheduling message from lnput(l,I) via Input(l,l) la control(l)
Source Port: controLport(I ,1) Messagels: new_cell(!)

< 2.0 > DSL SIMULATOR: new entry added ta mcssagequeue of control(l)
< 2.0 > DSL PROCESSOR: Message new_cell(2,! ,hl1l&g(I.2,2,abCllliI(nbm3,2,200,1))) complelcd at module Input(l ,1)

DSL SIMULATOR: Schedullog message from cantrol(l) via control(1) la inpul(l.1)
Source Port: inpUl...,port(1.1) Message is: readJqst.=--_.__._--_._-----._--------.__.--
<2.0> DSLSIMULATOR: oew eutry added ta message queueoflnput(1.l)
<2.0> DSL PROCESSOR: Message new_ceII(I) completed at roodule control(l)
< 2.0 > DSL S1?lIULATOR: Input(1,l) resource updaled: cell_buffer la value: 2. 1 • hrmg(I,2,2.nbcast(abm3.2,200,I» ,proceued

.= .__0 ----_._--_._----.-0_.---
DSLSlMULATOR: Scheduling message from Input(l.l) vin lnput(l.1) ta cantral(l)
Source Port: caotroLport(l ,1) Message 15: ceIUnfa(2,l,hI1l!!lg(1 ,2,2,abcllSt(nbm3,2,200,l)))
o= o o~ _

< 2.0 > DSL SlMULATOR: new entry added la message queue of control(l)
< 2.0 > DSL PROCESSOR: Message rend_rqst campleted at module Input(1 ,1)
control unit: transferriog a cell to output0= -_0 ---_0. ----------
DSLSIMULATOR: Scheduling message from control(l) via control(l) ta procellllor(l)
Source Port: proc-Port(1) Message 15: new_message(2,l,hmsg(l ,2,2,abt.'Mt(abm3,2,200,1»)o= o ~ _

<2.0> DSt SlMULATOR: new entry added to message queue of proccuar(l)
< 2.0 > DSL PROCESSOR: Message celljnfa(2,1 ,hrœg(l ,2,2,abcast(abm3,2,200,1))) completed at module cantrol(l)
ATM processor: muting acell

DSL SIMULATOR: Schedullng message from processor(l) via processor(1) to butTer(l ,3)
Source Port: oUl...,port(3) Message is: atm.sell(2,3.hmsg(l ,2,2,abcasl(abm3,2,200.1)))

<2.0> DstSlMULATOR: new entry added 10 rnessage queue ofbuITer(1 ,3)
< 2.0 > DSt PROCESSOR: Mesaage newJllCUllge(2,I,hmsg(1,2,2,abcast(abm3.2.200,I))) corJ1lleted al Tmdule proceuor(l)
< 2.0 > DSL SlMULAlUR: butTcr(l ,3) resource updaled: queue ta value: [(2, 3 ,hmsg(l ,2,2,abeut(abmJ,2,200,1))),(null , null •null)j
< 2.0 > DsL PROCESSOR: Message alnt.cell(2,3,hmsg(l,2,2,abcast(abm3,2,200,1») completed al module buITer(1 03)

'laure 4-14 egot.

134

•

•

•

.=--_..-._.._._----_._-._._-------_..-
DSL SIMULATOR: ScheduliDg message rrom buffer(1.3) via buCfer(!,3) to output(1.3)
Soutee Port: otltput-POrt(I,3) Message is: ncxUofo(2 , 3, hmsg(l ,2,2,abcast(abm3,2.200.1»»

DSL SlMULATOR: Scheduling message rrom output(!.3) via switch(3) 10 inpul(l.3)
Sc.utce Port: out-port(I,3) Message is: new_ccll(2.3,hmsg(1 ,2,2,abcast(abm3,2.200.1»)
.=_.__.-._.-_.__._.__._--_._._-----_.-.

FIGURE 4·14. Sample Simulation O~tl!!!!

As the examples try to illustrate, different observation levels during simulation can help the

user focus on the desired level of detail. This in tum, permits the use. to zoom at different

segments of the model during the course of the simulation, permitting observation of

pertinent information. The real impact of these features are difficult to depict in words - the

trial and use of the tool is the best way of observing the benefits.

135

•

•

•

Chapter 5 - Conclusions

This dissertation presents a rapid prototyping system for architectural levcl design of

telecommunication systems. The basic notion introduced is the need for a small

intermediate design language to refine conceptually abstract notions to more detailed

executable designs. The Design Specification language has been introduced as a potential

means for bridging the gap between the high level specification languages and behavioral

VHDL for hardware description. This chapter summarizes the major findings and potential

avenues for future research.

A major requirement to achieve an adequate level of design support is that the environment

must be able to provide modular and re-usable library components. This is stressed within

DSL with the use of generk modules and flexible interconnection schemes. The use of

Prolog as the underlying implementation language was found to significantly case the

development of the DSL language. The implementation language did not significantly

impact the simulator performance, as evident from sorne experimental results provided in

appendix C.

There is a significant amount of design specification languages used by the community at

the front end of the design process. To popularize the use of DASE within design teams,

translators will be required from the specification language in use and DSL. For example,

a DSL to SDL translator could be very favorable to a large amount of designers in the

telecommunication protocol area - permitting SDL models to be refined through DSL and

136

•

•

•

synthesized to VHDL.

The dissertation has also provided a significant amount of language detail in tenns of

design examples and case studies. This is important to demonstrate the language elements

and also the applicability of DASE within a reasonably realistic design project. Model

development within DSL in the creation of the case studies was found to be quite intuitive.

The relaxed use of port specifications greatly eased the construction of module behavior

and generate generic components. A large portion of code introduced within a digital

telephone switch was shown applicable to a broadband based ATM switch - demonstrating

model re-use. The viewing capabilities of the simulator have also been observed to be

very helpful in moving quickly through large design details.

Work on DASE is mainly focussed on hardware design, however the primary notions have

been introduced for software modelling as weil. Design exploration at the architectural

level is possible in both domains and has been demonstrated to some extent within the

broadcast protocol case study (chapter 4). In the example, protocol models can be

implemented in hardware or software. Further work can involve in defining interfaces

pennitting the synthesis of software directed DSL modules to popular software design

methodologies and tools.

As with any software engineering environment, DASE can be further enhanced to expedite

the design modelling task.For example, future work remains in developing a more

sophisticated and user friendly interface to communicate with the DSL processor. Research

in the area of model verification is also required. A relationship between modules and

predicate-transition nets was introduced, however other fonnal paradigms may also

provide interesting analysis.

The environment described in this dissertation has been developed to provide the necessary

hooks for design tools within different aspects of the design cycle. For example, synthesis

direeted predicates such as module_type, outpuclist and mode exist to facilitate translation

to executable lower level representations. The constraint predicate can be utilized in

137

•

•

•

numerous ways within the design process. It can he used to define performance hounds

during design exploration or it can he used to communicate manufacturing specifie

information hack into the mode!.

It should also he restated that DASE is part of a larger concept - wherc a framework

consisting of lower level design tools sueh as optimizcrs. structural synthesizcrs and

simulators are considered as necessary ingrcdients in providing a complete solution for thc

designer. It is with this knowledge that many of the supporting predicates for DSL have

heen devised. With the development of the lower design tools, hopefully a seamless

environment can he ohtained permitting users to evolve ahstract requircments into

executahle designs. The ultimate judge of the success of DASE will he its acceptance

within dliferent telecommunication system design groups.

138

•

•

•

[ATM 93]

[Bae 91]

[Barbacci 81]

[Bell 71]

[Bergamaschi 93]

[Birman 87]

[Birman 93]

[Bochman 90]

[Boehm 81]

References

ATM Forum, User-Network Interface Specification (Version 3.0),
Prentice Hall, Englewood Cliffs. New Jersey, 1993.

Jaime Jungok Bae and T. Suda, "Survey of Traffic Control Schemes
and Protocols in ATM Networks", Proceedings of the IEEE, Vol­
ume 79, Number 2, Februaury 1991, Pages 170-189.

M.R. Barbacci, "Instruction Set Processor Specifications (lSPS):
The notation and applications. "IEEE Transactions on Computers,
vol. C-30, no.l. pp.24-40. Jan. 1981.

C.G. Bell and ANewell, Computer Structures:Readings and exam­
pies. New York, NY, McGraw Hill, 1971.

Reinaldo A Bergamascbi, "High-Level Synthesis in a Production
Environment: Methodology and Algorithms", Fundamentals and
Standards in Hardware Description Languages - NATO ASI series,
Kluwer Academic Publishers. 1993. Netherlands. Pages 195-230.

Kenneth P. Birman and T.A Joseph. "Reliable Communication in
the Presence of Failures". ACM Transactions on Computer Sys­
tems. Vol. 5, No. l, February 1987. Pages 47-76.

Kenneth P. Birman, "The Process Group Approach to Reliable Dis­
tributed Computing", Communications of the ACM, December
1993, Vol. 36, Number 12, Pages 36-53.

Gregor V. Bochmann, "Specification of a Simplified Transport Pro­
tocol Using Different Formal Description Techniques", Computer
Networks and ISDN Systems 18, Elsevier Science Pub., 1990, pp.
335-377.

Barry W. Boehm, Software Engineering Economies. Prentice Hall,
N.Y., New York. 1981.

139

• [Booch 91] Grady Booch, Object Oriented Design with Applications, Bcn-
jarninlCummings Pub. Co., Redwood City, California, 1991.

[Borrione 93] Dominique Borrione, "CASCADE", Fundamentals and Standards
in Hardware Description Languages - NATO ASI series, Kluwer
Academic Publishers, 1993, Netherlands, Pages 411-430.

[CACI87] CACI inc., SIMSCRIPT IL5 Programming Language, CACI inc.,
Los Angeles, CA, 1987.

[CCITT 88] ccm Recommendation Z.lOO: Functional Specification and
Description Language SDL, AP IX-35, Geneva, 1988.

[Cox 91] Brad 1. Cox and A.J. Novobilski, Object Oriented programming: an
evolutionary approach, Addison Wesley, Reading, Mass., 1991.

[Gajski 92] Daniel Gajski et al., High-Level Synthesis - Introduction to Chip
and System Design, Kluwer Academic Publishers, Norwell Massa-
chusetts, 1992.

[Ganesh 89] Ganesh C. Gopalakrishnan, "Formalization of an Operational
Approach to Hardware Specification and Validation", Proceedings

• of the 3rd Banff Higher Order Wokshop, Banff, Alberta, September
24-27,1989, pp. 1-29.

[Genrich 81] H.J. Genrich and K. Lautenbach, "System Model1ing with High-
Level Petri-Nets", Theoretical Computer Science 13, North-Hol-
land Pub. Co., 1981, Pages 109-136.

[Gronberg 93] P. Gronberg et al, PROD - A Prrr-Net Reachability Analysis Tool,
Helsinki University of Technology, Digital Systems Laboratory,
Series B: Technic~l reports, No. lI, June 1993.

[Gupta 92] Aarti Gupta, "Formai hardware verification methods: A survey",
International Jouranl on Formai Methods in System Design, Klu-
wer Academie Pub., Vol. l, Numbers 213, October 1992, pp. 151-
238.

[HareI87] David Harel, "Statecharts: A visual formalism for complex sys-
tems", Science of Computer Programming, 8, Elsevier Science
Pub., 1987, Pages 231-274.

[Hayes 88] Kobert H. Hayes, et al, Dynamic Manufacturing - Creating the

• leaming organization, Free Press, NY, NY, 1988.

140

[Hoare 85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-

• Hall,1985.

International Organization for Standardization. Information Pro-[ISO 88]
cessing Ssytems. Open Systems Interconnection. LOTOS - A For-
mal Description Technique Based on the Temporal Ordering of
Observational Behavior (ISO International Standard 8807), 1988.

[Jacobson 92] Ivar Jacobson et al, Object Oriented Software Engineering: a use
case driven approach, Addison Wesley Pub., Reading, Mass., 1992.

[Jefferson 83] D.R. Jefferson, "Virtual lime", Proceedings of the 1983 Interna-
tional Conference on Parallel Processing, August 1983, Pages 384-
394.

[Jensen 81] Kurt Jensen, "Coloured Petri-Nets and the Invariant Method", The-
oretical Computer Science 14, pp 317-336. (1981).

[Jensen 89] Kurt Jensen, "Coloured Petri-Nets", Lecture Notes in Computer
Science, Vol 266, Springer-Verlag, 1989.

[Jerraya 91] Ahmed Jerraya, P.G. Paulin and S. Curry, "Meta VHDL for Higher
Level Controller modeling and synthesis", Proc. of VLSI-91, Edin-

• burgh, August 1991.

[Kleinrock 76] Leonard Kleinrock, Queueing Systems, Vol. 1and II, John Wiley
and Sons, New York, 1976.

[Klick 91] Vickie B. Klick, J. Patti and M. L. Todd, "Experiences in the use of
SDUGR in the software Development Process", SDL '91: Evolv-
ing Methods, O. Faergemand and R.Reed (Editors), Elsevier Sci-
ence Pub., 1991, Pages 449-457.

[Koomen 91] C.J. Koomen, The Design ofCommunicating Systems: A System
Engineering Approach, Kluwer Academie Publishers, Boston,
1991.

[Kumar 89] A. Kumar, V.Kashyap, S.D.Sherlekar, G.Venkatesh, S.Biswas,
P.C.P. Bhatt and S. Kumar, "IDEAS: A Tooi for VLSI CAD" IEEE
Design and Test of Computers, Vol. 6, No. 5, October 1989, Pages
50-57.

[Lakos 91] C.A. Lakos, "LOüPN - Language for Object-Oriented Petri Nets",
Technical Report 91-1, Department of Computer Science, Univer-

• sity of Tasmania, 1991.

141

[Lanneer 91] Dirk Lanneer et al. "Architectural Synthesis for Medium and High

• Throughput Signal Proeessing with teh new CATHEDRAL envi-
ronment", High-Level VLSI Synthesis, (edited by R. Camposano
and W. Wolf), Kluwer Academie PublishersNorwell Massachusetts,
1991, Pages 27-54.

[McFarland 90] Michael C. McFarland, A.C. Parker and R. Camposano, "The
High-Level Synthesis of Digital Systems", Proceedings of the
IEEE, Vol. 78, No. 2, February 1990, Pages 301-318.

[Milner 80] R. Milner, "A Caleulus of Communicating Systems", Lecture
Notes in Compute. Science, Vol. 92, Springer-Verlag, 1980.

[Moore 90] Andrew P. Moore, ''The Specification and Verified Decomposition
of Ssytem Requirements Using CSP", IEEE Transactions on Soft-
ware Engineering, Vol. 16, No. 9, September 1990, Pages 932-948.

[Morrison 93] John D. Morrison and c.a. Newton, "ELLA", Fundamentals and
Standards in Hardware Description Languages - NATO ASI series,
Kluwer Academie Publishers, 199: Netherlands, Pages 385-394.

[Moszowski 85] Ben Moszowski, "A Temporal Logie for Multilevel Reasoning
about Hardware", IEEE Computer magazine, Februaury 1985,

• Pages 10-19.

[Murata 89] Tadao Murata, "Petri Nets: Properties, Analysis and Applications",
Proceedings of Lite IEEE, April 1989, Vol. 77, No. 4, Pages 541-
580.

[Parent 91] Pierre Parent and O. Tanir, "Voltaire: a discrete event simulator",
Proceeding of the PNPM-91 workshop (tools ammendment), Mel-
bourne, December 1991.

[Peterson 81] James L. Peterson, Petri Net Theory and the Modeling of Systems,
Prentice-Hall inc., Englewood Cliffs, N.J., 1981.

[Petri 62] C. F ,tri, "Kommunikation mit Automaten (Communication with
Automata)", Ph.D. dissertation, University of Bonn, Bonn, West
Germany, 1962.

[Piloty 80] R. Piloty et al. "A overview of Conlan", Proc. of IFIP Congress,
Tokyo, 1980.

[Pritsker 86] A.A. Pritsker, Introduction to Simulation and SLAM II, Halsted

• Press, West Lafayette, Indiana, 1986.

142

[Prycker 91] Martin de Prycker, Asynchronous Transfer Mode - Solution for

• Broadband ISDN, Ellis HOlwood Ltd., Cornwall, England, 1991.

Franz J. Ramming, "System Level Design", Fundamentals and[Ramming 93]
Standards in Hardware Description Languages - NATO ASI series,
Kluwer Academie Publiehers, 1993, Netherlands, Pages 109-151.

[Rattray 89] C. Rattray (Ed.), Specification and verification of concurrent sys-
tems, Springer Verlag, NY, NY, 1989.

[Reed 87] Daniel A. Rl'.ed and R.M. Fujimoto, Multicomputer Networks -
Message Based Parallel Processing, The MIT Press, Cambridge,
Mass., 1987.

[Reisig 82] Wolfgang Reisig, "Petri-Nets - An Introduction", EATCS Mono-
graphs on Theoretical Computer Science, Springer-Verlag, NY,
1982.

[Saultz 92] J.E. Saultz, RASSP Final Technical Report (CLIN 0002AB),
CMDA972-92-R-OOI7, GE Aerospace - Advanced Technology
Laboratories, Moorestown, New Jersey, October 21, 1992.

[Schriber 74] Thimas Schriber, Simulation using GPSS, John Wiley and Sons,

• New York, NY, 1974.

[Srivas 90] Mandayam Srivas and M. Bickford, "Formal Verification of a Pipe-
Iined Microprocessor", IEEE Software Magazine, September 1990,
Pages 52-64.

[Tanir 92] Tanir, O. V.K. Agarwal and P.C.P. Bhatt, "A System Level Synthe-
sis Framework for Computer Architecture", Proc. of the third Inter-
national Workshop on Rapid System Prototyping, Research
Triangle Park, N.Carolina, June 23-25,1992, pp.94-111.

[Tanir93a] Tanir, O. V.K. Agarwal and P.C.P. Bhatt, "The Design of a Library
Support System for a Telecommunication System Synthesis Envi-
ronment", Proc. orthe fourth International Workshop on Rapid Sys-
tem Proto-typing, Research Triangle Park, (N.Carolina, June 28-
30), pp. 54-67.

[Tanir 93b] Tanir, O., V.K. Agarwal and P.C.P. Bhatt, "On the Design of Real-
Time Telecommunication Systems", Proc. of IEEE workshop on
Real-Time Applications, (New York, May 11-12).

• [Tanir93c] Oryal Tanir, Y.K. Agarwal, P.C.P. Bhatt, "Architectural Telecom-
munication Modelling", Presented at the Co-Design Workshop,

143

Cambridge, USA, October 7 1993.

• [Tanir93d] Oryal Tanir, V.K. Agarwal and P.C.P. Bhatt, "System Design Explo-
ration in a Specification Driven Simulation Environment", Proceed-
ings of the European Simulation Symposium, SCS International,
Delft, Netherlands, October 25-28,1993, pp. 591-596.

[Tanir94a] Oryal Taniï and S. Sevinc, "Defining the Requirements for a Stan-
dard Simulation Environement", IEEE Computer Magazine, Febru-
ary 1994, pp. 28-34.

[Tanir94b] Oryal Tanir, V.K. Agarwal and P.C.P. Bhatt, "DASE: An Architec-
tural Level System Design and Modelling Environment", Proceed-
ings of the International Conference on Concurrent Engineering
and Electronic Design Automation, SCS International,
Bournemouth, UK, April 7-8, 1994, pp. 414-421.

[Tanir 94c] Oryal Tanir, V.K. Agarwal and P.C.P. Bhatt,"DASE: An environ-
ment for system level telecommunication design exploration and
modelling", 4th International CAST 94 workshop, Ottawa, Canada,
16 May 1994, Proceedings to be published by Springer-Verlag.

[Thomas 91] D.E. Thomas and T.E.Fuhrrman, "Industrial Uses of the System

• Architect's Workbench", High-Level VLSI Synthesis, (edited by R.
Camposano and W. Wolf), Kluwer Academie PublishersNorwell
Massachusetts, 1991, Pages 307-330.

[Verilog 91] Verilog Hardware Description Language Reference Manual, Open
Verilog International, 1991.

[VHDL 87] IEEE Standard VHDL Language Reference Manual, IEEE IStd
1076,1987.

[Ward 85] Paul T. Ward and SJ. Mellor, Struetured Development for Real-
Time Systems, Vol. l, Yourdon Press Computing Series, Prentice
Hall Ine., Enlewood Cliffs, New Jersey, 1985.

[Wernik 91] Marek Wernik and E.A. Munter, "Broadband Public Network and
Switch Architecture", IEEE Communications Magazine, January
1991, Pages 83-89.

[Zeigler 84] Bernard P. Zeigler, Multifacetted Modelling and Discrete Event
Simulation, Academie Press, Orlando, Florida, 1984.

• [Zegura 93] Ellen Witte Zegura, "Architecture for ATM Switehing Systems",
IEEE Communications Magazine, Februaury 1993, Pages 28-37.

144

•

•

•

Appendices

Appendix A - DSL pre-defined types

For constraints: A constrainllype is a name given 10 label a given constrainl in DSL. Constraintlypes are

evaJuated within Prolog using the lescconstrainl predicate. Users can code their own constrainllypes using

this predicate. Tbe predicale accepts four arguments: the lype name, module, and message applied 10 as weil

as any numeric value associaled with the lype. The predicale is evalualed as true or fail depending upon any

constaint violations on the defined type. For eX2Il1ple, the buill-in lype uppeOimil is coded as helow:

tesccOnSlrainl(uppeOimi~ Module, Mess, Value):­
message_queue(Module,[(Mess,Qlime)IResl]),
sim_time(Curclime),
Queued_time is (Curr_lime - Qlime),
Value < Queued_time,
prinl(' !! !!!!!!!!!!!1!!!!!!! Il !!!!!!!!!!! I!! Il'),nl,prinUim_lime,
print(' DSL SIMULATOR: WARNING: UppeOimit Constraint Violation! '),nl,
prinUim_lime,print(' Module: '),
print(Module), printC Message: '),print(Mess),nl, print_sim_lime,
printC Constrained Variable 'l, print(Queued_lime),printC exceeds upper limit of '),
print(Value),nl,prinUim_lime,print(' !!! III!!!!!!!!!!!!!!! Il!!!!!!!!!!!! I!! !'),nl.

tescconstraint(uppeclimi~ Module, Mess, Value):-
print(DSL SIMULATOR: constrainl salisfied for '),prinl(Module),
printC on message '),print(Mess),nl.

The built-in types are:

uppeclimic tests to sec if an upper hound bas been violated. Can be applied to Il message, or resource.

10weclimiC test ta sec if a lower hound bas been violated. As ahove.

lesLmessage: tests ta see if a message is currently heing executed at any other module. If yes, the constaint
fails

record: maintains a list corresponding ta queue lime for a given message. Tbe list cao Ialer be used to plot
slatisties.

145

•

•

•

Appendix B - DSL DTSS example module listings

TIle following is a complete listing of the DTSS example introduced in the text.

-~=========*,
ho_module(main(lO, 0, 5, 2), [subscribcr(X), mcgilUwitch(X)]).'* Main parameters are: no of telephones, switch no, no of channels/card, no of int. cards *'
use_dsUibrary([

dts.switch,
telephone
n.

isa(subscriber(X), user(X».
isa(telephone(X), gen_tel(X)).

configure_library(main):-
ho_module(main(T, SW, CH, CARD), XXX),
nssertn(isn(mcgiU_switeh(SW), dts_switch(SW, T, CARD, CH))),
nssertn(ho.module(mcgill_switeh(SW), []),
configure_tel_con(T, SW).

cc afigure_tel_con(i, SW):-
assertn(module(subscribcr(O), [])),
assertn(module(telephone(O), 0),
nssertn(resource(subscribcr(O), slate, onhook»,
nssertn(path(subscribcr(O), telephone(O), [hand(O), headsct(O)])),
nssertn(path(telephone(O), subscriber(O), [headsct(O), hand(O)]),
nssertn(path(telephone(O), mcgilUwitch(SW), [teUinc(O), teUine(O)]),
nssertn(path(mcgilUwitch(SW), telcphone(O), [tcUine(O), ooUinc(O)])),
writerTelephoues counecOOd lU the switch...'),nl.

configure_tel.con(T, SW):-1>l,
TT is T-l,
nssertn(module(subscribcr(Tf), []),
nssertn(module(telephone(TT), 0),
nssertn(resource(subscriber(Tf), slate, onhook»,
nssertn(path(subscriber(TT), telepboue(Tf), [hand(TT), headset(Tl)])),
assertn(path(telephone(TT), subscribcr(Tf), [headset(TT), hand(Tf)])),
nssertn(path(telephone(TT), mcgilUwiteh(SW), [leUine(Tf), tcUine('IT)])),
assertn(path(mcgilUwitch(SW), telephone(TT), [ooUinc(Tf), ooUinc('IT)])),
configure_tel.con(TT, SW).

stnrLcoud:- retract(curreuLmodule-processed(XXX»,
assertn(current_module_processed(subscribcr(O»),
send(sillfLlLcall(telno(0,1,5»).

'* ==============================*,
ho...module(dts_swiOOh(NUMBER, INPUTS, CARDS, CHANNELS), [switch_nct(NUMBER),
interface_card(Y)]).

146

•

•

uœ_àl'1Jibrary([
generic_switeh_elemenl,
interface_comp
n.

configurc_library(dlS_switeh):-
isa(INSTANCE. dlS_swilch(N.I.C.CH».
II is I1/C.
asserta(isa(swilch_nel(N). generic_swilcb_elemenl(C.CH)).
assena(isa(interface_card(Y). interface30mp(lI. CH»).
asserta(path(inlerface_card(Y). swilco_nel(N). [inIO_port(Y). trunldn(Y)])).
assena(palh(swilch_nct(N). interface_card(Y). [trunicoul(Y). inli_port(Y)])).
asserta(ho_module(swilch_nel(N). [J)).
example_config(N. II. Cl.

example30nfig(N. IN. 1):-
Index is N-16.
assena(ho_module(interface_card(Index). D».
teI.JlOrt_config(lndex. IN. 0).

exarnple_config(N. IN. CARO):-
CAROl is CARO-l.
Index is N-l6+CAROl.
assena(ho_module(inlerface_card(Index). D».
teI.JlOrt_config(lndex. IN. CAROl).
example_config(N.IN. CARDl).

le1.JlOrt_config(lndex. O. CAROl):­
nI.

lel.JlOrt_config(lndex. IN. CAROl):-
isa(INSTANCE. dlS_swilch(N.I.C.CH».
IPRIME is I1/C.
INN isIN-l.
Index2 is IPRIME-CAROI + INN.
assena(palh(inlerface_card(lndex). INSTANCE. [1-pair(Index2). leUine(Index2)]).
asserta(path(INSTANCE. interface_card(Index). [teUine(Index2). l_pair(Index2)]).
lel.JlOrt_config(lndex. INN. CAROl).

•

/-
module(generic_clock(INDEX. NO_OF_CHANNEL).

[
(clock....count(NO_OF_CHANNEL):- send(c!ock....counl(O».

send(-.clock-POrt(INDEX).frame_cycle».
(clock....counl(NEW):- NEW<NO_OF_CHANNEL.

Clock_rate is (125/NO_OF_CHANNEL).
delay(Clock....rate).
COUNT is NEW+1.
send(-.clock....port(INDEX).clock(NEW».
send(clock....count(COUNl))

n.
starLcond:· write('Selting up i1ùtial messages ').nl.

--/

147

•

•

isa(X, generic_clockL NO»,
retract(currenLmodule_pt"~~·~~~(XXX»'

assena(currenLmodule_processed(X»,
send(clock30unt(NO».

/* =============================*/
module(generiOinein(Z),

[
(channel_sync:- set_res(channeI30unt,O),

print('»»»»»»»»»»»»> '),
print(1ine_line in card:channel sync received ln')

),
(channeUnessage(DATA):- check_res(channel_count,CHANNEL),

check_res(card_numbcr, CARD),
CHAN is (CHANNEL*16+CARD),
print('»»»»»»»»»»»>>> '),
print('line_ line in card: updating channel '),
print(CHANNEL),print(' with data: '),print1(DATA),
CHAN2 is CHANNEL+l,
seues(channeI30unt,CHAN2),
send(-, sp_port(Z), buffecupdale(CHAN,DATA»

)
J).

configure_library(generic_line_in):­
isa(X,generic_line_inU),
module(X, List),
geUndex(X, Value),
assena(resource(X, card_numbcr, Value»,
assena(resource(X, channel_count,O»,
fail.

configure_library(generic_line_in):-
wrile(' generic_line_in: AlI resourees successfully configured...'),nl.

•

/*
module(generic_lineout(Z),

[
(frame_cycle:­

send(-,ouLport(Z),channel_sync),
print('»»»»»»»»»»»»> '),
print(' DS-30 line output card: Frame sync message sent ln')

),
(clock(O):-

check_res(card_numbcr, CARO),
checkJes(channeCouLbuffer(CARO), MESSAGE),
send(-,ouLport(Z),channel_message(MESSAGE»,
print('»>>>>>>>>>>>>>>>>>>>>>>> '),
print('Line out card number: '), print(CARO),
print(' on channel 0 OUTPUTfED command '),
print1(MESSAGE),
set_res(channel_ouLbuffer(CARD), unused)

- --- =*/

148

•

•

•

l,
(clock(COUNTl:-

cbeck_res(card_number. CARDl.
COUNT2 is (COUNT*I6tCARDl.
cbeck_res(cbanncl_ouCbuffer(COUNT2l. VOICEl.
scnd(-,out_port(Zl.cbannel_message(VOICEll.
print('»»»»»»»»»»»»> .).
print('line_ out card number: '). print(CARD).
print(' : OlITPUTTED message 'l.
print(VOlCEl.
print(' in cbannel 'l.
prinU(COUNTl

l.
(updalC_buffer(ADD.DATAl:- ADD>15.

scues(cbannel_oucbuffer(ADD). DATAl.
print('»»»»»»»»»»»»> ·l.
print('linc_ out card: ncw channel data updalCd ln').
prinl(' address is 'l. print!(ADD)
).

(update_buffcr(ADD.DATAl:­
cbeck_res(channel_ouCbuffer(ADD).unused).
sccres(channeCouCbuffer(ADD). DATAl.
print('»»»»»»»»»»»»> ·l.
print('line_ out card: new channel data updated In·l.
prinl(' address is '). prinU(ADD)
).

(updale_buffer(ADD.DATA):­
delay(0.5).
send(updalc_buffer(ADD.DATAll
)

n.

configure_library(gcnericline_out):­
isa(X.generic_lino_out(Z».
isa(YYY.generic_swilCh_element(SIZE, RATE».
module(X. List).
geUndex(X. Value).
asserta(resource(X. card_number. Value».
gcnericJine_oull(X.Value.RATE).
fail.

configure_library(genericline_out):-
write(' generic_line_out AU resources successfuUy configured...'),nJ.

gcncric_lineout1(X.Y. 0):- ni.
wrile(' gencric_line_out Resource channel_oucbuffer for ·l.
wrile(Xl.wrile(' has been configured...'l.nI.

generic_lineout1(Name.Index.COUNT):- COUNT>D. CC is COUNT-l.
TEMP is (CC*I6+Indexl.
asserta(resnurce(Name. channel_ouCbuffer(TEMP). unused».
generic_line_outl(Name. Index, CC).

'* -*'
149

•

•

module(generic_frame_control(Z, UMm,
[
(frame_slart:- check_res(speech3rame_counter, COUNl),

check_res(numbecoUn_cards, INPUT),
COUNT<LIMIT,
1EMP is LIMIT*INPUT,
FDELAY is 125rrEMP,
delay(FDELAY),
COUNT2 is COUNT+I,
print('»»»»»»»»»»»»> '),
print('FRAME CONTROL: ncw framc count = 'l,
printl(COUNT2),
seues(speech3rame_counter, COUNT2),
send(channel_detect(COUNT2,INPlIT)),

(channeLdetect(COUNT, INPUT):­
COUNT<INPtIT,
send(sp(Z), sp_sync-port(Z), command_framc_selccl(COUN1),
send(control_processor(Z), proc_in_port(Z), command_fl".une_sclcct(COUNT»,
send(frame_slart)),

(channel_detect(COUNT, INPUT):-
send(sp(Z), SP_S)'Ilc-port(Z), framc_sclecl(COUNT»,
send(control_processor(Z), proc_in_port(Z), frame_sclccl(COUN1),
send(frame_start)),

(frame_slart:-check_res(speech3rame_counter,COUNT),
LIMIT2 is LIMIT-I,
COUN1'>LIMIT2,
secres(speech_frame_connter, -1),
s~nd(frame_slart))

n.
confignre_library(generic_frame_control):­

isa(X,generic_frame_control(ZZ,.J),
module(X, List),
geUndex(X, Z),
asserta(resonrce(frame30ntrol(Z), speech3rame_connter, -1»,
generic_frame_controll(Z),
fail.

confignre_library(generic3rame30ntrol):- write(' gencric_frame_control: Ali resourccs succcssflllly con­
figured...'),nl.

•

generic_frame_controll(Z):-
asserta(resonrce(frame_control(Z), number_oUn_cards, 0»,
isa(X, generic_line_in(XX»,
module(X,.J,
resource(frame_control(Z), number_oCin_cards, COUNl),
COUNTI is (COUNT+1),
retract(resonrce(frame_control(Z), numbecoUn_cards, XXX»,
asserta(resonrce(frame_control(Z), number_oUn_cards, COUNTl»,
write(' genericJrame_controJ: Number of line_ cards detected is 'l,
write(COUNTl),nl,
fail.

,*=== _.,

150

•

•

module(generie_sp(X),
[
(buffer_update(ADDRESS,DATA):- delay(O.5),

scues(ehanneUn_buffer(ADDRESS), DATA),
prime»»»»»»»»»»»»> '),
prinl('SP MODULE: In_buffer updalcd for channel '),
printl(ADDRESS)),

(frame_scleel(COUNT):- check_res(channel_in_buffer(COUNT), VOICE),
delay(O.4),
check_res(channeUn_buffer(COUNT), VOICE),
send(speech_bus(X),sp-porl(X),speech_dala(VOICE»),

(frame_selecl(COUNT):- nl,print('»»»>>>>>>>>>>>>>>>>>>> '),
print('SP module: speech bus unuscd al frame 'J,
printl(COUNT)),

(command_frame_sclect(Channel);­
check_res(channeUn_buffer(Channel), COMMAND),
scues(channeUn_buffer(Cbannel), unuscd),
scnd(-, proc_in-POrl(X), channel_command(Channel,COMMAND»))

D.

contigure_library(genericsp);-
isa(NAME, generic_sp(l)),
isa(DSNAME, genericJine_in(XX»,
module(NAME,->,
gel_index(NAME, Index),
module(DSNAME,->,
geUndex(DSNAME, Value),
isa(NAMEl, generic_switch_elemenl(NNL1NES,MMCHAN),
MM is MMCHAN-l,
Low_bound is (Index*16-1),
Up_bound is (Index*I6+16),
Low_bound < Value,
Up_bound> Value,
generic_sp1(Index,Value,MM),
fail.

contigure_library(generic_sp):-
write(' generic_sp: All resources successfully contigured...'),n1.

generic_spl(NO, Y, -1):- write(' generic_sp: Rcsource channeUn_buffer for SP has been contigured...'),nl.

generic_spl(NO, Index,COUN1):- COUNT> -l, TEMP is (COUNT*I6+lndex),
asscrta(resource(sp(NO), channeUn_buffer(TEMP), line_indala»,
Nexl is (COUNT-l),
genelic_spl(NO,Index, Next).

•
'*ho_module(generic_swilch_elemenl(M,R),

[
Iindn(N), line_oul(N),
outclock(N,R), frame_conlrol(M),
time_switch(M), sp(M),
speech...bus(M),
COlllrOCprocessor(M), memory(M)

-*,

151

•
D.

use_dsUibrary([
generic_line_out.

generic_line_in,
generic_frnme_contro\,
generic_sp,
generic_time_swilch,
generic_clock,

pOlS_server
D.

isa(line_in(X), generic_line_in(X».
isa(line_oul(X), generic_line_oul(X».
isa(frnme30ntrol(X), genericjrnme_control(X, 20)).
isa(outelock(X), generic_clock(X, ~).
isa(sp(X), generic_sp(X».
isa(time_swilch(X), generic_timcswiteh(X)).
isa(controCprocessor(M), polS..server(M».

'*------------------------- Speech Bus Module ---------_.._----*'

•

•

modu\e(speech_bus(M),
[

speech_data(VOlCE):- seues(persistencport,(specch_line(M), VOlCE))
D.

'*------------------------- Comrol Processor Module -------.. ---------*'

modu\e(contro_processor(M),
[
(frnme_se\ecl(COUN1):-

delay(0.05), send(-, mem_port(M), mem_rd_rqsl(COONf)
),

(memory_data(DATA):-
delay(0.02), send(-,time_port(M),address_selecl(DATA»

),
(command..frnme_selecl(CH):-prinl('Control Proc: Channel command pcriod : '),prinll(CH)

),
(Iine_indata:- prinl(' No command message delecled for cucrent channel ln')

),
(channeCcommand(CH, COMMAND):­

send(COMMAND)
)

D.

'*-------------------------memory behaviour -------------------..-----
memory read delay is sel al 0.1 microsees= 100 nsees

*'
module(memory(M),

[
(memJdJqsl(ADDRESS):- delay(O.I),

print('»»»»»»»»»»»»> '),

152

•

•

•

prinl('word being read from memory address of '),
prinU(ADDRESS),
check_res(roule_table(ADDRESS), DATA),
send(control_processor(M), proc_port(M), memory_dala(DATA»),

(mem_prinl(A,D):- delay(O.I),
seues(roule_table(A), D),
prinl('»»»»»»»»»»»»> '),
prinU('routing tahle in RAM updated. ')

)

D.
constrainl(sp(M), frame_selecl(X), uppeUimil, LIMI1):­

resource(frame_control,nUInbecoUn_cards, INPUT),
LIMIT is 3.906251INPUT.

constrainl(control_processor(M), frame_selecl(X), uppeclinùl, 0.051).

configure_lihrary(generic_switeh_elemenl):­
isa(X,generic_swilch_elemenl(SIZE, RATE»,
ho_module(X, []),
geUndex(X, Index),
B_SIZE is (2*SIZE*RATE),
retrael(isa(INSTANCE,generic_clock(CARENOT, ..J»,
asserta(isa(INSTANCE,generic_clock(CARENOT, RATE»),
generic_switeh_elemenl1(X, Index, SIZE),
generic..switeh_element2(lndex),
crealeJOule_table(lndex, B_SIZE),
fail.

configure_library(generic_swilch_elemenl):- wrile(' generic_switeh_elemenc AlI resources successfuUy
configured...'),nl.

generic_swilCh_elemenl1(X, Index, 0):- wrile('Generic switeh ('),wrile(lndex),wrile('): Created internai
modules.'),nl.

generic_swilch_elemenl1(X, Index, Size):- Size > 0,
Nexuize is (Size-I),
IndexI is (Index*I6+Nexuize),
asserta(module(line_out(lndexI), []),
asserta(module(linejn(lndexl), on,
asserta(module(outelock(lndexI), on,
asserta(palh(time_switeh(lndex), line_oul«(lndexl», [line_port«lndexl»,

ls_line---JlOft((Index1» l»,
asserta(palh(line_in(lndexl), sp(lndex), [sp_port(lndexl), ds-JlOrt(lndex)]»,
asserta(palh(outelock(Indexl),line_oul(Indexl), [clock-JlOrt(lndexl), dscp(Indexl)]),

asserta(palh(X, line_in(lndex1), [trunk_in(lndex1), in-JlOrt(lndex1)]),
asserta(palh(line_oul(lndexl), X, [oucport(lndexI), trunk_oul(lndex1)])),
asserta(palh(contrul-processor(lndex), line_oul(lndexl), [line_port(lndexl),

ds_line_pllrt(lndexl)D),
generic..swilch_elemenl1(X, Index, Nexuize).

generic_swilch_element2(1ndex):-asserta(module(sp(lndex), 0»,
asserta(module(time_switeh(lndex), on,
asserta(module(frame_contrul(lndex), m),
asserta(resource(speech_ilUs(Index), persislencport, (speech_line(lndex), voice_data»),
asserta(palh(sp(Index), speech_bus(lndex), [sP-JlOrt(lndex), speech_Iine(lndex)]),

153

•

•

asserta(path(sp(lndex), control_processor(lndex), [proc_in..JlOn(1ndex), sp_inLpon(lndex)]),
asserta(path(time_switeh(lndex), speech_bus(lndex), [speech_line(lndcx), speech_Iine(lndex)])),
asserta(path(frame_control(lndex), controLprocessor(lndcx), [proc_itLpon(1ndex),

frame..JlOn(lndex)]),
assena(path(frame_control(lndex), sp(lndex), [sp_sync..JlOn(lndcx), frame_sync(lndex)]),
asserta(path(memory(lndex), control_proccssor(ludcx), [proc..JlOn(lndex), mcm_pon(1udex)]),
assena(path(control_processor(1ndex), memory(lndex), [mcm_pon(1ndex), proc..JlOrl(lndcx)]»,
assena(path(control_processor(1ndex), time_swilch(1ndex), [timc..JlOn(lndcx),

proc_pon(lndex)]).

creale_route_table(Index, -1):­
write('setup routing table...'),nl.

creale_route_table(lndex, SIZE):-
SIZEI is SIZE-I, SIZE> -l,
assena(resource(memory(lndex), roule_table(SIZE),SIZE»,
creale_route_table(Index, SIZEI).

'*----------------------- Ttme Switeh Module -----------------------*'
module(generic_time_swilch(Z),

[
(address_selecl(ADDRESS):- delay(O.l),

checlcres(address_map(ADDRESS), CARD),
probe(speech_Iine(Z), DATA),
print('»»»»»»»»»»»»> 'l,
prinl(Tune_swilch: lalched onto data: 'l, print(DATA),
send(-, line_port(CARD), update_buffer(ADDRESS,DATA»),

(address_selecl(ADD):-
prinl('»»»»»»»»»»»»> Tune_switeh: Addrcss '),
prinl(ADD),prinl(' undefined. In')

)
D.

configure_library(generic_time_swilch):­
isa(X,generic_time_switeh(XX»,
isa(NAME, generic_line_ouIU),
module(X,.J,
geLindex(X, 1),
Low_bound is (1*16-1),
Up_bound is (1*16+16),
module(NAME,.J,
geLindex(NAME,lndex),
Low_bound < Index,
Up_bound> Index,
resource(NAME, channeLouLbuffer(VaIue), LL),
asserta(resource(X, address_map(VaIue), Index»,
fail.

configure_library(generic_time_switeh):-
write(' generic_time_switeh: AlI resources successfully configured...'),nl.

•
constraint(time_switch(Z), address_select(A), uppeclimil, 0.11).

,*=========
hOJllodule(interface_comp(INPUT, CH),

="'

154

•

•

[
line_card(CARD), controller(CARD), c1ock(CARD)
D.

usc_dsUibralY([
sub_server,
line_card,
genericclock
D.

configure_library(inlCrface_comp):-
isa(X, inlCrface_comp(INPU1;CH»,
ho_module(X, YYY),
geUndex(X,CARD),
assena(modulc(controller(CARD), [J)),
asscna(module(line_inlCrface(CARD), D»,
asscna(module(timer(CARD), []),
assena(path(X, line_inlCrface(CARD), [intt.port(CARD), lin_port(CARD)J»,
asscna(path(line_inlCrface(CARD), x, [louCport(CARD), inlO_port(CARD)J)),
asscna(path(line_inlCrface(CARD), controller(CARD), [proc_port(CARD),

proc_port(CARD)J)),
asscna(path(controller(CARD), line_inlCrface(CARD), [proc_pon(CARD),

proc_pon(CARD)J)),
asscna(path(limer(CARD),line_interface(CARD),

[c1ock_port(CARD),c1ock_port(CARD)]),
assena(isa(line_interface(CARD).line_card(CARD, CH»),
assena(isa(timer(CARD), genericclock(CARD, CH»),
assena(isa(controller(CARD), sub_server(CARD, INPU1)),
confi&-controller(X, CARD, CH),
fail.

configure_library(inlCrface_comp):- nl,n1, wrilC(' ComplclCd configllring inlCrface components.'),nl.

confi&-controller(X, CARD, 0):-
wrilC('set-up controller paths...'),nl.

confi&-controller(X, CARD, CH):-CH>O,
CC is CH-l, C is CARD"5,CH2 isC+CC,
assena(path(X, controller(CARD), [t-pair(CH2), twisted_pair(CH2)]),
assena(path(controller(CARD), X, [twisted_pair(CH2), CPair(CH2)]),
confi&-controller(X, CARD, CC).

•

/"
modllle(line_card(Z, INPlIT),

[
(frame_cycle:­

send(-,louCport(Z),channeUync),
prinl('»»»»»»»»»»»»> 'l,
print(' line output card: Frame sync message sent \n')

),
(clock(O):-

check....res(channel_bulfer(O), VOlCE),
send(-,loucport(Z),channel_message(VOICE»,
print{'»»»»»»»»»»»»> 'l,
print{'Line caro :1,

-"/

155

•

•

•

print('channeI 0 OlITPlJITED command 'l,
prinU(VOlCEl,
seues(channeI_bufTer(Ol, unusedl

l,
(cIock(COUNT):-

check_res(channeI_bufTer(COUNT), VOICEl,
send(-,loucport(Zl,channel_message(VOICEll,
print('»»»»»»»»»»»»> 'l,
print(' line out: OlITPUTfED message 'l,
print(VOICEl,
print(' in channel 'l,
print1(COUNTl

l,
(update_bufTer(ADD,DATAl:- check_res(channeI_buffer(ADDl,XXl,

seues(channeCbuffer(ADDl, DATAl
l,

(channel_sync:- seUes(channel_count,Ol,
print('»»»»»»»»»»»»> 'l,
print('Iine card:channel sync received \lI'l

l,
(channeCmessage(DATAl:- check_res(channeCcount,CHANNELl,

CHAN2 is CHANNEL+l,
seues(channeCcount,CHAN2l,
send(-, proc_port(Zl, channel_update(CHANNEL,DATA))

l
J).

configure_Iibrary(line_cardl:­
isa(X,Iine_card(Z, CH)),
module(X, Listl,
asserta(resource(X, channel_count, Oll,
geUndex(X, Valuel,
configure_buffers(X,Value,CHl,
fail.

configure_Iibrary(Iine_cardl:-
write(' line card: AIl resources successfully configured...'l,nl.

configure_buffers(X,Y, -Il:- nI,
write(' line_card: Resource channel_ouCbllffer for 'l,
write(Xl,write(' has been configured...'l,nl.

configure_buffers(Narne,lndex,COUNT):- COUNT > -l,
asserla(resource(Narne, cbannel_bufTer(COUNT), unusedll,
Decrement is (COUNT-IJ,
configure_buffers(Narne, Index, Decrement).

156

•
Appendix C - Experimental ResuUs

This section summarizes the results of two experiments performed using the DASE tool.
The experiments are presented to elaborate sorne of the simulation performance capabili­
ties of the DSL simulator. The first simulation is severa! simulations of the DTSS switch
example presented in sections 2 and 3 of the dissertation. The second simulation is that of
the ATM switch case study presented in section 4. Ali simulations were performed on a
Sun 10/30 platform with 64 Mbytes of RAM. The workstation was oedicated only for the
simulations. The resulting figures include operating system overhead.

1. DTSS simulation:

A DTSS switch was simulated with different numbers of subscribers. The numbers of sub­
scribers were:
2. 64, 640, 64,000, and 126,000.

Telephone trafflc was simulated to last for exponentia! interva!s betwccn 2-8 seconds
pel' cali. Each simulation mn was for a simulated period of 15 minutes of switching activ-

•
1.OOO,()()(j

100.000

'Vi'
u

! 10.000

"·a
5: 1,000

U

100

;
j
!

..~ .,

,
j

...1" , ..

•

10 100 1000 10,000 100,000

Switch capacity (no of subscribers)

FIGURE A·J. J5 minute simulation orteJçphone trame

ity. The figure above presents t:le performance figures for the example. The lime to simu­
late increases linearly as the complexity (number of telephone subscribers) increases. At
the extremes, a two subscriber interaction can be simulated under 13 minutes of CPU
lime, whereas a 126,000 subscriber simulation will take over 33 hours of simulation lime.

2. ATM simulation:

An ATM switch (as described in section 4) was simulated. The simulation consisted of
different switch sizes of 2, 4,8 and 16 input/output ports. Each port was loaded by a con-

157

• 150

125

~

~
.<::

100~

<l.l

.~
::;. 75

""U

50

25

,
!
!

===-~::..==t=~--t--·······1······ ········

---'-'" -.- ·..·..·..· T-..· _.. .. -.__ , ..

-·---1--- - t--l--
2 4 6 8 10 12 14 16

•

•

Switch size (no of ports)

FIGURE A·2. Simulatiop of dltI.repl ATM swllcb slzes

tinuous trafflc stream of ATM ceUs at a rate of 155 Mb/sec. this resull~ in an effeclive ccII
rate of 2.8 microseconds 1ceU. A recording of the CPU lime for each configuration was
taken at 2.8 and 8.4 seconds of simulated time. Approximately 1 million ceUs were gener­
ated at each port every 2.8 seconds.

The results are plotted in figure A-2. As can be observed, the simulation limes arc gener­
aUy extensive. However the times increase linearly.

Conclusions

The simulations indicate a linear progression of simulation times as model complexity

increases. The simulator performs reasonably weU, however for demanding simulations

such as the ATM switeh, accelerated simulation techniques would be desirable in order to

obtain quicker results. Designer experience and knowledge is truly required to reduce

unnecessary simulation runs and focus on the important aspects of a design.

158

•

•

•

Appendix D - DSL . VHDL DitTerences

This section highlights the major differences between DSL and a specialized hardware
description language VHDL. The semantics of the languages are similar in sorne respects
but strongly different in many others.

It is worthwhile understanding sorne of the major issues surrounding design automation
tool application. As one moves from an abstract level of design (architectural) to more
detailed levels (such as RTL), there is a strong shift of detail in the models created at each
level. At the architecturallevel, Iittle timing detail is provided compared to the lower lev­
els. However, freedom is given to structural aspects of the model so that design explora­
tion can be facilitated. At this point of design, a certain level of ambiguity is introduced
which is resuit of the flexibility in modeling with loosely typed constructs.

Ambiguity must be resolved by the designer and environment until a synthesizeable
design is reached. At this point, when synthesis to a lower level is possible, a mapping
must take place from low timing detail to higher timing detail. To accommodate this, the
environment must be able to fill the essential details. Hence sorne type of compromise is
required by the synthesis tool (such as cost, area or performance) so that details can be
added. Il is this fact that can make synthesis tools very poor performers as compared with
experienced human counterparts.

The strong distinction between design exploration (a key requirement at the architectural
level) and design formalization (a major requirement between the lower levels of abstrac­
tion) dictate the need for different languages. Hence, DSL is an internallanguage to sup­
port the former whereas VHDL the latter.

The major difference in the languages is the level of abstra,::tion in which they are to be
applied. VHDL's applicability is approximately Iimited to the RTL to circuit level design.
Application to higher levels is also probable, but unlikely for several reasons. The lan­
guage contains many simulator oriented semantics (such as wait on event of a simulator)
which are superfluous at higher levels of design. The language cames primitives which
are not highly desirable for architectural level designers (especially not for software
designers) such as signals and transport (low level timing) commands. Hence architectural
level representation could be possible, but would be highly cumbersome using a language
that was not intended for this purpose.

VHDL is a good language for hardware formalization, but very poor for design explora­
tion. This is not a negative feature, but again related to the area of applicability of VHDL.
As an RTL description language, it provides strong typing of communication and timing
between entities. However, as the abstraction level increases, detail is lost and less restric­
tions on the typing of the entities is required to permit design exploration. This necessi­
tates the use of a language such as DSL.

DSL and VHDL both use a simulator for timing verification. However, simulator seman­
tics are not embedded within the DSL language like il is for VHDL. This is a highly desir-

159

•

•

•

able feature of an architectural language since it permits formai verification. Such
techniques have been curnbersorne and fleeting for VHDL representations. whereas Petri­
net based verification (as weil as others not explored) can he applied to DSL rnoàulcs.

160

