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ABSTRACT

We examine complex fluid systems where both translational and conformational de-
grees of freedom are present and focus on systems in which the interplay between
the two sets of degrees of freedom is manifested in the macroscopic phase behaviour.
We develop an efficient random lattice algorithm describing the translational degrees
of freedom and analyze a series of microscopic models defined on a two dimensional
fluid surface. Different degrees of complexity in the description of the microscopic
coupling between the translational and conformational degrees of freedom allow us to
study a variety of models related to pure lipid membrane and lipid-sterol membrane
systems.

The phase equilibrium described by the models is calculated by use of Monte
Carlo simulation techniques. The different models are shown to exhibit a rich phase
behaviour. Depending on the specific model parameters, the phase transition associ-
ated with the conformational degrees of freedom is found to be either coupled to, or
uncoupled from, that associated with the translational degrees of freedom.

Specifically, the order-disorder transition of an Ising model defined on a fluid
surface is shown to be of first order, when the two sets of degrees of freedom are
strongly coupled. In contrast, the transition falls in the universality class of the two-
dimensional Ising model when the two sets of degrees of freedom are weakly coupled.

We next analyze a model for pure lipid bilayers which is shown to exhibit a phase
behaviour with different types of macroscopic coupling between the two sets of degrees
of freedom. Depending on the strength of the microscopic interactions the lipid chain
melting transition and the lattice melting transition may be either macroscopicaily
coupled or uncoupled.

A related model for lipid-sterol mixtures is shown to provide a consistent interpre-
tation of the various phases of lipid-cholesterol and lipid-lanosterol binary mixtures
based on the microscopic dual action of the sterol molecule on the lipid-chain degrees
of freedom. We discuss the results for the systems in the context of membrane evolu-
tion and suggest that evolution has tended to optimize the lipid-sterol interaction so
as to stabilize optimally the mechanical properties of the membrane. Furthermore, a
specific small-scale structure is identified and characterized in the liquid-ordered phase
in lipid-cholesterol mixtures. This structure is found to be absent in lipid-lanosterol
mixtures.



Finally, a model for membrane lysis gives evidence for the high mechanical stabi-
lizing effect of cholesterol on the membrane. The inclusion of cholesterol is shown to
inhibit lysis whereas lanosterol only has little stabilizing effect.



RESUME

Dans cette thése on analyse des systemes fluides complexes ou les degrés de liberté
translationels et conformationels sont tous les deux présents. On met I’emphase
sur les systémes dans lesquels le couplage entre les deux types de degrés de liberté
se manifeste dans le comportement de la phase macroscopique. On développe une
description réseau aléatoire efficace des degrés de liberté translationels, et on analyse
une série de modeles microscopiques définis sur une surface fluide en deux dimensions.
Les degrés de liberté conformationels sont traités en essence comme les variables de
spin du modele Ising. Des différents degrés de complexité dans la description du
couplage entre les degrés de liberté translationels et conformationels nous permettent
d’étudier une variété de modeles liés aux systémes de membranes purement lipidiques
et lipide-stérol.

On calcule les équilibres de phase décrits par les modeles en utilisant des techniques
de simulation Monte Carlo. Les différents modeéles présentent un comportement de
phase riche. Dépendant des parameétres spécifiques du modele, la transition de phase
associée aux degrés de liberté conformationels peut étre couplée &, ou découplée de,
la transition de phase associée aux degrés de liberté translationels.

Spécifiquement, on démontre que la transition d'ordre-désordre d'un modeéle Ising
défini sur la surface fluide est de premier ordre, résultant de la transition de fusion
du réseau quand les deux types de degrés de liberté sont fortement couplés. Par
contre, la transition Ising tombe dans la classe universelle des modéles Ising en deux
dimensions quand les deux types de degrés de liberté sont faiblement couplés.

Un modéle des bi-couches purement lipidiques présente aussi un comportement
de phase avec différentes sortes de couplage macroscopique entre les deux degrés
de liberté. Dépendant de la grandeur des intéractions microscopiques, la transition
de fusion des chaines lipidiques et celle du réseau peuvent étre macroscopiquement
couplées ou découplées.

Un modele des mélanges lipide-stérol apporte une interprétation consistante des
différents phases des mélanges binaires de lipide-cholestérol et de lipide-lanostérol,
basée sur 1'action duale microscopique de la molécule de stérol sur les degrés de liberté
des chaines lipidiques. On discute les résultats des deux systémes lipid-stérol dans le
contexte de I’évolution des membranes et on suppose que l'évolution a eu la tendance
d’optimiser I'intéraction lipide-stérol de facon a stabiliser optimalement les propriétés

vii



mécaniques de la membrane. De plus, une structure i courte portée de la phase
liquide ordonnée est identifiée et caracterisée dans les mélanges lipide-cholestérol. On
démontre que cette structure est absente dans les mélanges lipide-lanostérol.

Finalement, un modele de la lyse des membranes met en évidence le grand effet
stabilisant du cholestérol sur les propriétés mécaniques de la membrane. On démontre
que l'inclusion du cholestérol dans la membrane empéche la lyse, tandis que I'inclusion
du lanostérol a peu d’effet stabilisant.
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Numerical Studies of Ising Models
defined on a Random Lattice
as Applied to the Phase Behaviour of

Lipid Bilayer Systems




1

INTRODUCTION

Simple fluids such as argon exhibit three phase lines in their phase diagrams, rep-
resenting solid-liquid, liquid-gas and solid-gas phase transitions, respectively. Such
fluids are composed of atoms or molecules which have no conformational (internal) de-
grees of freedom, but the fluids themselves clearly have configurational (translational)
degrees of freedom and the various phases can be characterized structurally in terms
of the translational variables. Complex fluids, however, are composed of molecules
which also have internal degrees of freedom due to their structure. Examples are poly-
mers, surfactant molecules, liquid crystalline molecules and lipid molecules (Prost and
de Gennes [93]; Bloom, Evans and Mouritsen [91]; Safran [94]; Gelbart, Ben-Shaul
and Roux [94]). The possible internal degrees of freedom include orientational vari-
ables and thermally induced isomeric changes of structure. The purpose of this thesis
is to examine complex fluid systems for which the interplay between fluctuations in
the two sets of degrees of freedom is manifested in the macroscopic phase behaviour.
Specifically, we analyze a series of microscopic models of molecular species described
by both conformational and translational degrees of freedom defined on a two di-
mensional fluid surface in terms of their phase behaviour and physical properties.
The models are defined in a statistical mechanical framework and the equilibrium
thermodynamic properties are determined by using different numerical simulation

techniques.

A central part of the simulation method developed in this thesis is an efficient
algorithm which implements the translational degrees of freedom of the different mi-
croscopic models. The algorithm essentially employs a random lattice description to
provide an efficient representation of the translational degrees of freedom. This simu-

lation approach offers an accurate description of the translational degrees of freedom

1



2 1 INTRODUCTION

for dense fluid systems and an efficient framework within which several of the aspects
that stem from the complex phase behaviour of the systems described below can be
addressed. The simulation method and the associate algorithm are general and can
be applied to any dense two dimensional system described by a set of translational
degrees of freedom. In this thesis we have mainly concentrated on the application
of the random lattice algorithm to calculate the phase behaviour of a series of mod-
els related to biophysical systems. It is however important to emphasize that the
method is general and can be applied to any statistical mechanical model for a dense
two dimensional fluid system. Furthermore, all the models investigated are essentially
variations of the two dimensional Ising models defined on a fluid surface and the mod-
els are thus of general statistical mechanical interest. The connection to biological
systems nevertheless offers an interesting frame of reference with the dual purpose
of being both a source of inspiration for the questions we investigate in this thesis
and a reference that casts the results obtained from the analysis of the statistical

mechanical models into a broader perspective.

A large variety of phenomena observed in nature arise from a subtle coupling be-
tween the molecular conformational degrees of freedom (rotational orientation, con-
formational state etc.) and the translational degrees of freedom (shape fluctuations,
surface diffusion, density fluctuations etc.) of the specific system. Common to these
systems is that an understanding of the details underlying the interplay between the
conformational degrees of freedom and the degrees of freedom associated with the
translational motion of the related particles is required in order to gain insight into
the nature of the thermodynamic properties as manifested in the phase behaviour.
The list of systems which exhibit such an interesting interplay between the two types
of degrees of freedom is large. Liquid crystals and biological membranes are just two
of the more prominent systems in which the interplay plays a key role in defining the

phase behaviour.

In liquid crystals, the phase behaviour is controlled by an interplay between the
lateral organization and the orientation of the molecules (Prost and de Gennes [93]).
Liquid crystals are materials that exhibit a phase behaviour with aspects of both the

low symmetry of the ordered crystalline solid phase and the high symmetry of the



isotropic liquid phase. The molecules of a liquid crystal material are highly anisotropic
and can to a good approximation be described as rigid rods or ellipsoids with length
[ greater than the width d. At high temperatures, the anisotropic molecules are
randomly oriented and their center of mass positions randomly distributed. The high
temperature phase is thus an isotropic liquid. As the liquid is cooled, the system
undergoes a series of transitions. The first phase to condense is the nematic phase.
This phase is characterized by a rotational order of the anisotropic molecules. The
molecules align so that they are on the average parallel to a particular direction,
n, called the director. The position of the center of mass of the molecules remains
random. The nematic phase thus breaks the orientational symmetry of the isotropic
liquid phase but leaves the translational symmetry intact. When the system is cooled
further, a sequence of distinct phases (smectic A, smectic C) condense before the
system enters the low temperature crystalline ordered solid phase characterized by
both long range rotational and translational order. In some systems an hezatic phase
exists at temperatures just above the solid phase. In the hexatic phase the rod-like
molecules are organized into two-dimensional layers each with a thickness close to
the rod length [. Each layer is characterized by a mixed order in that it exhibits
long-range hexagonal orientational order as manifested in the six-fold symmetry of
the diffuse ring in the structure factor and the long range positional order is absent.
It is clear from the above discussion that the complex phase behaviour of the liquid
crystal system is a direct consequence of a subtle coupling between the conformational

(rotational) order of the asymmetric molecules and their translational motion.

Lyotropic liquid crystals form a specific class of liquid crystals. Here, liquid crys-
talline phases are formed in response to variations in solvent concentration and/or
solvent type. As the name suggests, these liquid crystals are stabilized by mixing cer-
tain types of molecules with a solvent. In fact, lyotropic liquid phases are in general
formed by amphiphilic molecules consisting of two parts that repel each other and/or
have different solubility in the solvent. A large class of lyotropic liquid crystals are the
hydrated lipid systems. A lipid is an amphiphilic molecule with a hydrophilic {water
“liking”) polar head-group and a hydrophobic (water “hating”) tail. The hydropho-

bic tail consists of two hydrocarbon chains, also called acyl chains (see Fig. 1.1(a)).



4 1 INTRODUCTION

Different lipid species differ with respect to the length of their hydrocarbon chains

and the degree of saturation as well as in the nature of the polar head group.

(b) Cholesterol 2

{a) Lipid molecule (POPC)
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Figure 1.1: The chemical structure of (a) a POPC lipid molecule, (b) a cholesterol molecule, and
(c) a lanosterol molecule.

When mixed with water, the amphiphilic lipid molecules self-organize to form ag-
gregates where the hydrophobic hydrocarbon chains are shielded from contact with
water. The force driving the formation of aggregates is known as the hydrophobic
effect and it is predominantly of entropic origin. Since water molecules cannot form
hydrogen bonds with the non-polar hydrocarbon chains, a free hydrocarbon chain dis-
solved in water will lower the free volume available for the water molecules and hence
cause the water molecules to be more ordered locally. By shielding the hydrocarbon
chains from contact with water, the free volume of the water can be maximized and
the entropy loss of the water minimized. It is this balance between the loss of en-
tropy of the hydrocarbon chains associated with the formation of aggregates and a
maximization of the free volume of the water that is the origin of the hydrophobic
effect.

The hydrocarbon chains achieve this shielding by forming a variety of geometrical

conformations. Common aggregate structures are micelles, inverted micelles, hexago-



nal (cylindrical micelles), bilayer sheets, vesicles and bicontinuous cubic phases (Chaikin
and Lubensky [95]). The relative stability of the various types of aggregates of differ-
ent morphology is determined by a subtle balance between the hydrophobic energy,
the surface free energy of the aggregate, the electrostatic free energy and the loss in
entropy associated with the formation of the specific aggregate. The stability of these
different aggregate phases can, to some extent, be understood in terms of packing con-
straints on lipids with different geometrical shapes (See Fig. 1.2). Phase transitions
can also take place between the different equilibrium aggregate phascs by varying the

temperature, degree of hydration, pH, etc.

il
)

Inverted
truncated
Cone Spherical micelles cone
(a) (b)
T’ uncated wo Planar bi[ayers
cone Globular micelles Cylinder (d)
(c)

Bilayer vesicles

(e)

Figure 1.2: Different aggregate structures formed by hydrated lipids: (a) micelle, (b) inverted micelle,
(c) cylindrical micelle, (d) flat bilayer, and (e) closed vesicle. Planar bilayer aggregates close into
vesicle structures due to the hydrophobic energy of the edges exposed to water of planar bilayers.
Along with the different aggregate structures is shown the different average shapes of the lipid
molecules. Adapted from P. M. Chaikin and T. C. Lubensky [95], p. 73



6 1 INTRODUCTION

It should be noted that the different equilibrium phases are not stabilized by
covalent bondings between the molecules as they owe their existence solely to the
hydrophobic effect. Turning to bilayer aggregates, once the bilayer structure is formed
the internal structure and dynamics is predominantly determined by intermolecular
interactions within the aggregate. The in-plane motion of the lipid molecules is hence
controlled by a series of in-plane forces among which the van der Waals force acting
between the acyl chains and the electro-static force acting between charged polar head
groups are predominant. It turns out that these forces often give raise to very low
values of, for instance, the bending rigidity on the scale of the thermal energy (Evans
[74]: Helfrich [753]). In giant SOPC vesicles, the bending rigidity is thus of the order
of 1.5kgT at room temperature (Evans and Rawicz [90]). This means that lipid
bilayer aggregate phases are soft matter systems characterized by a high degree of

deformability and thermally renormalized properties.

The plasma membrane of a biological cell can in many respects be described as a
pseudo two dimensional fluid-mosaic aggregate of a lipid bilayer where the membrane
bound proteins are anchored or embedded (Singer and Nicolsen [72]). The proper-
ties of the lipid bilayer thus play a very important role in determining the functional
properties of the cell membrane. The membrane of a biological cell is an extremely
complex system. Lipid molecules constitute about 50 % of the mass of most ani-
mal cell membranes, nearly all the remaining part being proteins. The number of
lipids molecules in a small animal cell membrane is typically of the order 10° (Alberts
et al. [89]). Natural cell membranes typically contain a large number of different lipid
species, a phenomenon referred to a lipid diversity. The three major types of lipids in
the eucaryotic cell membrane are phospholipids (the most abundant), cholesterol and
glycolipids, all three of which are amphiphilic molecules. The plasma cell membrane
of most eucaryotic cells contains a large amount of cholesterol (about 25 %) (Alberts
et al. [89]). It is believed that the high concentration of cholesterol in the eucaryotic
cell membrane plays an important role as a stabilizer against mechanical stress (Need-
ham and Hochmuth [89]; Zhelev and Needham [93]). The eucaryotic cell membrane
also contains a variety of different phospholipids. The membrane of many mam-

malian cells, for example, contains four major phospholipids - phosphatidylcholine,
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sphingomyelin, phosphatidylserine and phosphatidylethanolamine (Alberts et al. [89)]).

1.1 Lipid Bilayers

Due to the similarity in structure, lipid bilayers are commonly used as simplified model
systems for biological cell membranes. Depending on the type of lipid head-group and
lipid chain length, the bilayer thickness lies in the range from 50 A to 100 A. The linear
extension of the lipid bilayer can vary between 200 A and 300 um . When mixed in
water many lipid molecules spontaneously form heterogeneous mixtures of vesicular
structures which contain multiple bilayers organized in an “onion-like” structure of
concentric shells. Through different experimental preparative techniques, these multi-
lamellar vesicles (MLV) can be transformed into different types of liposomes. For
example, small unilamellar vesicles (SUV) are single bilayer vesicles with diameters
in the range from 200 A to 500 A, whereas large unilamellar vesicles (LUV) are
unilamellar vesicles with diameters up to 5,000 A. Finally, giant unilamellar vesicles
can be prepared with diameters as large as 300 um (Gennis [89]).

' Pure lipid bilayers display phase transitions and a very rich phase behaviour. The
existence of two principal thermodynamic phases has been well established for such
bilayers. These are characterized by different types of macroscopic behaviour of both
the translational and the chain conformational degrees of freedom: a low-temperature
(gel) phase, which is a 2D solid phase with (quasi') long-range translational order and
which also has a high degree of collective ordering in the chain conformations of the
lipid molecules in the system and a high-temperature (liquid-crystalline) phase, which
displays macroscopic disorder in both the translational (as does a liquid) and the chain
conformational degrees of freedom. Although the common terminology in biophysical
literature describes the two phases as the gel phase and the liquid-crystalline phase,
we for our purposes in this work shall label the two phases with so (solid, chain
ordered) and ld (liquid, chain disordered), respectively.

The transition known as the main-transition takes the membrane from the high

'The terminology quasi long-range order refers to the fact that two dimensional system cannot exhibit

true long-range translational order and the low-temperature phase of the lipid-bilayer is hence only
. quasi long-range ordered.
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temperature liquid crystalline disordered phase to the low temperature gel ordered
phase. This transition is a very sharp and co-operative transition characterized by
a well defined transition temperature and transitional enthalpy (G. Cevc [93]). One
significant experimental observation is that, although the main transition is accom-
panied by a large area expansion of around 20%, it hardly involves any change in the
bilayer volume. Lipid bilayer are thus, to a good approximation, incompressible sys-
tems and there is an almost constant reciprocal relationship between the lipid bilayer

thickness and the cross-sectional area per lipid molecule.

The entropy of transition associated with the main transition is large (~ 15 kg7 per
molecule (G. Ceve [93])) and much larger than the entropy change associated with a
traditional two dimensional melting transition (~ 1 kgT per molecule (Doniach [78])).
The main source of this large change in entropy is the change in conformational order
of the lipid chains at the main transition. The main transition has thus often been
described as a chain melting transition, and many of the aspects of the main transition
have been successfully described solely in terms of the chain conformational degrees
of freedom. It can be concluded from experimental data that, thermally driven, the
translational order and the chain conformational order that are characteristic of the
so phase appear simultaneously on cooling through the temperature of the “main
transition”, for almost all of the systems of one-component lipid bilayers studied
(Mouritsen [91]). In other words, the translational and the conformational degrees of

freedom appear macroscopically coupled.

However, there are no fundamental physical principles dictating that this macro-
scopic coupling be a necessary generic feature of the thermodynamic behaviour of
either two-dimensional systems with both translational and internal degrees of free-
dom in general, or lipid-bilayers in particular. Indeed, a previous study of minimal
models for 2D random lattice Ising systems and one-component lipid bilayers has
shown that it is only a matter of engineering the microscopic interactions in order to
macroscopically uncouple the two types of degrees of freedom (Nielsen et al. [96b]).
An intermediate phase does exist as part of the generic phase behaviour of systems
(such as lipid bilayers) with both translational and internal degrees of freedom. In

this phase the (quasi) long-range translational order is broken, but the internal (chain
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conformational) degrees of freedom remain macroscopically ordered. We refer to this
intermediate phase as the lo (for liquid, chain ordered) phase. We note, however, that
concrete experimental evidence has yet to be found for the existence of such a phase
in one-component lipid bilayers, although some evidence has been found for lipid
monolayers (Mouritsen and Zuckermann [87a]). The lo phase has been discovered,
however, in bilayer systems of some lipid-cholesterol binary mixtures and the lipid-
cholesterol mixture system thus provides a prominent example of a system where the
coupling between the chain conformational and the translational degrees of freedom

is manifested macroscopically in the phase behaviour.

The question of the biological relevance of cholesterol has intrigued many re-
searchers, as evidenced by a large body of both theoretical and experimental work
on lipid-cholesterol bilayers and monolayers (Ipsen et al. [87]; Lemmich et al. [97];
Mitchell and Litman [98]; Halstenberg et al. [98]; Needham, McIntosh and Evans
[88]; Vist and Davis [90]), among which we briefly review those that are most rel-
evant to the purpose of our study. Evidence for the existence of a liquid lo phase
in bilayers of dimyristoyl phosphatidylcholine (DMPC)-cholesterol mixtures was first
provided by Needham and Evans on the basis of their micromechanical measure-
ments (Needham, McIntosh and Evans [88]). A full phase diagram in terms of choles-
terol concentration and temperature was firmly established for bilayers of dipalmi-
toyl phosphatidylcholine (DPPC)-cholesterol mixtures by M. Vist and J. H. Davis
by combining data from deuterium-NMR, Differential-Scanning-Calorimetry (DSC)
and ESR studies (Vist and Davis [90]) (see Fig. 1.3). This phase diagram displays
a modest depression of the main-transition (so-ld) temperature for low concentra-
tions of cholesterol; and remarkably, it demonstrates a macroscopic uncoupling of the
translational and the chain conformational degrees of freedom, as manifested by a
high-temperature 1d-lo coexistence and a low-temperature so-lo coexistence at in-
termediate concentrations of cholesterol as well as a single lo phase region at high

cholesterol concentrations.

As stated earlier, the plasma membrane of eucaryotic cells contains considerable
concentrations of cholesterol. These high cholesterol concentrations have a profound

influence on the thermodynamic and mechanical properties of the cell membrane (Al-
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Figure 1.3: The Vist-Davis phase diagram for the DPPC-cholesterol system as determined by NMR
spectroscopy, differential scanning calorimetry and micromechanics. The phases are labeled as fol-
lows: L, is the fluid or liquid crystalline phase; gel is the gel phase; and 3 is the high-cholesterol-
content phase characteristic of biological membranes. Solid () and (e) are determined by difference
*H NMR spectroscopy; solid (o) show the three-phase line determined from DSC; (x) are from the
upper limit of the broad component of the DSC traces and (A) are from the abrupt sharpening of
the resonance at high cholesterol concentrations. Adapted from M. Vist and J. H. Davis [90].

berts et al. [89]). One of the important structural properties of the cholesterol
molecule is the conformationally almost inflexible planar steroid ring (see Fig. 1.1(b)).
This chemical structure governs most of the interactions between cholesterol and the
lipid bilayer. When a cholesterol molecule is adjacent to a lipid acyl chain, the flat
steroid ring restricts the conformational flexibility of the acyl chain and the choles-
terol molecule thus induces a local increase in the order of the lipid chains (Stockton
and Smith [76]). Cholesterol also acts as an impurity in that it prevents the formation
of the low temperature gel phase of a lipid bilayer by inhibiting close packing of the
lipid acy! chains (Estep et al. [78]). This dual molecular effect of cholesterol stabilizes

the thermal and mechanical properties of the lipid membrane and inhibits possible
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phase transitions (Alberts et al. [89]). No other component of biological membranes

affects the membrane in the same manner (Yeagle [92]).

Sterols are synthesized according to long, complicated and energetically expen-
sive biosynthetic pathways. Along the biosynthetic pathway of cholesterol, a large
number of sterols are synthesized as intermediates. Starting with lanosterol, which
is the first intermediate sterol synthesized along the pathway, 19 different sterols are
formed on the way to cholesterol. Extensive cellular energy as well as molecular
oxygen is utilized in the synthesizing process. The structural differences between
lanosterol and cholesterol are not very great (see Fig. 1.1(b) and Fig. 1.1(c)) and
the question naturally arises as to why the cell spends so much energy in producing
specifically cholesterol. It has been suggested by Bloom and Mouritsen ([88]) that
cholesterol played a crucial role in the evolution of eucaryotic cells. These authors
also hypothesized that the manner in which cholesterol modifies the thermodynamic
and mechanical properties of the lipid membrane may have been essential for the de-
velopment of a mechanically stable plasma membrane of the eucaryotic cell. Bloom
and Mouritsen pointed out that it is the specific differences between the molecular
structure of lanosterol and cholesterol that allow for the specific phase behaviour of
cholesterol in lipid bilayers. In order to shed some light on the role of cholesterol in the
optimization process specifically developed by nature to achieve optimal mechanical
and biophysical properties for the cell membrane, a detailed analysis comparing the
effects of different sterol on the lipid bilayer properties is needed. At the present, the
amount of experimental work published on lipid-sterol mixture systems other than
cholesterol is however rather limited and so far no consensus has been reached as to
the specific properties of cholesterol that makes its effect on lipid bilayers different

from for example lanosterol.

Cholesterol has been shown to have important stabilizing effects on the membrane
against rupture (Needham and Hochmuth [89]; Zhelev and Needham [93]). The me-
chanical stability of a lipid membrane can be modified in many ways (Needham and
Hochmuth [89]; Wilhelm et al. [93]; Winterhalter [96]). The absorption of peptides
induces defect formation and lysis of the lipid membrane as the concentration of pep-

tides is increased (Dimitrova and Matsumura [97]; Heller et al. [97]; Ludtke et al.
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[96]; Matsuzaki et al. [97]). The inclusion of cholesterol, on the other hand, in-
creases the mechanical stability of the lipid membrane and thus its stability against
lysis (Needham and Hochmuth [89]; Zhelev and Needham [93]; Benachir et al. [97]).
Little theoretical work has been done in the field of membrane lysis. A simple model
was recently proposed for the description of the thermal stability of the membrane
in the presence of pores (Shillcock and Boal [96]; Shillcock and Seifert [98]). This
model, however, does not include a description of the conformational degrees of free-
dom in the membrane and it thus gives no insight into the function of cholesterol as

a mechanical stabilizer of the membrane.

From the above discussion, it is clear that many aspects of the phase behaviour
of the lipid bilayer are due to the coupling between the chain conformational and the
translational degrees of freedom of the lipid bilayer. A description of many of the
important properties of the lipid bilayer, therefore has to include a detailed description
of the translational motion of the lipid molecules. It is a key objective of this thesis
to develop descriptions of the lipid bilayer based on minimal models that include a
full representation of the translational degrees of freedom. These models permit an
investigation, using simulation techniques, of what importance the coupling between
the two types of degrees of freedom has on the phase behaviour of the lipid bilayer

system.

The phase behaviour of lipid bilayer systems has been determined from several
different experimental techniques. Among the most important are deuterium NMR
and differential scanning calorimetry (DSC). The technique of ?H NMR is an use-
ful tool for studies of the orientation and dynamics of the lipids in the membrane.
The 2H NMR spectrum provides information on changes in lipid chain structure as
function of, for example, variations in temperature or membrane composition (Davis
[79]). The 2H NMR spectrum changes dramatically at the gel-to-liquid crystalline
phase transition, hence demonstrating the large change in lipid chain order associ-
ated with the chain melting involved in the main transition. Since there is a large
heat of transition associated with the first order transitions in lipid bilayers, DSC
is a key method for identifying temperatures where bilayer systems undergo phase

transitions. The method provides information on the location of phase boundaries
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and the corresponding latent heats of transition. For pure DPPC water mixture sys-
tems, a DSC experiment thus gives evidence for a series of phase transitions, the most
prominent being the main transition occurring at about 41 °C with a corresponding
latent heat of ~ 16kgT per molecule (G. Cevc [93]).

As described earlier, the phase diagram of the DPPC-cholesterol mixture system
by M. Vist and J. H. Davis was derived by combining data from 2H NMR and DSC
studies (Vist and Davis [90]).

1.2 Models for Lipid Bilayers

During the last decades, many theoretical models have been developed in order to
elucidate different aspects of the phase behaviour of lipid bilayer membrane systems.
The majority of these models can be classified as either statistical mechanical mod-
els studied by the use of Monte Carlo algorithms (Dammann et al. [95]; Mouritsen
et al. [95]), microscopic molecular models examined using molecular dynamics algo-
rithms (Tieleman, Marrink and Berendsen [97)), or force field models investigated by
minimization of a free energy potential function (Schlenkrich et al. [96]).

All the theoretical approaches invoke different kinds of approximations when de-
scribing the lipid bilayer system. It is practically impossible (and in general undesir-
able) to examine the physics of lipid bilayers by using a full description of all of the
variables in the system. First, such a treatment involves a large number of degrees
of freedom and hence makes computer simulations very costly, and second (and per-
haps more important) it leads to a description with a wealth of details which would
make it very difficult to grasp the essential and relevant physics of the phenomenon
investigated. As stated earlier, the lipid molecules can, from a physical point of view,
be described by two distinct fundamental sets of degrees of freedom corresponding to
internal and translational motion. A model for the lipid bilayer is hence most usefully
described in terms of these two sets of variables which are coupled by some kind of in-
teraction. The variables may each represent a large set of coarse-grained microscopic
details and the effective interactions are not necessarily directly related to the basic
molecular interactions. For the statistical mechanical models for the lipid layer, the

general approach has been to model the bilayer as composed of two non-interacting
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monolayers. In each monolayer, the degrees of freedom of the lipid head groups is
disregarded and the two acyl chains of the lipid molecule are treated as independent
systems. Finally, the degrees of freedom associated with the translational mobility of
the lipid chains on the surface are omitted by adopting a lattice description for the
lateral degrees of freedom, where the lipid chains are positioned on a regular trian-
gular two-dimensional lattice. In this lattice description, the conformational degrees
of freedom of the lipid chains are commonly approximated by a small finite number
of conformational states corresponding to a mapping of the three-dimensional acyl

chain conformations onto a small discrete set of projected coarse-grained variables.

A model for the cooperative behaviour of a lipid bilayer system of this kind was
first proposed by Doniach ([78]) and later extended by Pink et. al ([80]). In the
Pink Model the conformational degrees of freedom of the lipid chains are described in
terms of ten discrete states, each characterized by an internal conformational energy,
€;, a cross-section area, A; and a degeneracy, D;, denoting the number of different
conformational chain states with energy ¢; and area A;. The lowest energy state
is the all-trans state where the number of gauche rotations is zero. This state has
zero degeneracy. The 10th state, which has the characteristics of the fluid phase,
has a high conformational energy and large degeneracy corresponding to the many
different conformational states of the fluid chain. The eight gel-like intermediate
states are the lowest-lying excitations of the all-trans state subject to conditions of
low conformational energy and optimal packing. The interaction potential between
the lipid chains is approximated as a van der Waals interaction between long rigid
cylindrical rods with a radius defined by the cross section area, A;. Finally, the

stabilizing force against lateral expansion is modelled by a lateral pressure, 7.

The Pink model has been quite successful in describing several essential thermo-
dynamic properties of the main transition that are mainly related to the chain con-
formational degrees of freedom (Mouritsen et al. {95]). However, it does not take into
consideration the interplay between the conformational (or internal) and translational
degrees of freedom, an important issue in understanding the structural properties and
thermodynamic behaviour of lipid systems. For example, both the surface density of

the bilayer and the lateral mobility of individual lipid molecules strongly depend on
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the chain conformational states as revealed by considerable experimental data.

The molecular mechanisms underlying the ability of cholesterol to uncouple the
macroscopic processes of lateral ordering and chain ordering in a lipid bilayer have
been investigated in a theoretical study based on a lattice model (Ipsen et al. [87]).
In this model, each lattice site was assigned a multi-valued variable corresponding
to chain conformational states. The physics governing this set of degrees of freedom
was described by the Pink model (Pink, Green and Chapman [80]). In addition,
a multi-state Potts model was employed to give, in a very approximate way, a phe-
nomenological description of the lateral crystallization process, describing the process
only in terms of thermal energetics of the grain boundaries (Sahni, Grest and An-
derson (83]). The final essential ingredient of the model was a hypothesis of a dual
molecular effect for cholesterol. On the one hand, a cholesterol molecule acts as an
“ice breaker”, i.e., as a substitutional impurity that weakens the inter-lipid interac-
tions responsible for crystallization. On the other hand, cholesterol also acts as a
“chain rigidifier”, tending to induce its neighbouring lipid chains into conformation-
ally ordered states. Calculations based on a mean-field theory of the model predicted
a phase diagram of DPPC-cholesterol bilayers that agreed qualitatively with the ex-
perimental phase diagram (see Fig. 1.3). This model study provided concrete theo-
retical support for the hypothesis and strongly suggested that the lattice model could
capture the essence of the microscopic physics governing the thermodynamic phase
behaviour of lipid-cholesterol bilayers. This model, however, suffers a fundamental
shortcoming inherent in the lattice description: the description of the translational
degrees of freedom and the microscopic physics underlying the associated ordering

process is only little realistic.

[t is one of the themes of the work in the present thesis to eliminate this short-
coming of the lattice models and explore the interplay between conformational and
transformational degrees of freedom of two dimensional systems by developing mi-
croscopic models that contain a full description of the transformational degrees of
freedom as well as microscopic interactions that couple the transformational degrees

of freedom explicitly to the conformational degrees of freedom.
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1.3 2D Melting, Two Dimensional Hard Disk Models

The nature of 2D melting transitions has been a focal point of numerous statistical
mechanical studies of two-dimensional systems for the past two decades (Strandburg
[89]; Joés (96]). In the work presented in this thesis, where we consider the effects
of coupling the translational degrees of freedom to internal degrees of freedom of
the particles, we are inevitably confronted with this issue. Two scenarios for this
transition have been presented and discussed in the literature. Halperin and Nel-
son, and Young (Nelson and Halperin [79]; Young [79]) developed the basic idea of
Kosterlitz and Thouless, and Berenzinskii (Kosterlitz and Thouless [73]; Berenzinski
[71]) and proposed that the 2D solid-liquid transition can proceed via two continu-
ous (second-order) transitions corresponding, respectively, to dissociation of disloca-
tions (the solid-hexatic transition) and dissociation of disclinations (the hexatic-liquid
transition). A single conventional first-order transition is the other possible scenario.
Despite the significant amount of effort devoted to resolve the issue, no consensus
has been reached. A prominent model developed for the study of two dimensional
systems with translational degrees of freedom is the hard disk model (Alder and Wain-
wright [62]). In this model, each particle is described as a hard disk with a diameter
d. The disks interact through steric interactions in that each point in space cannot
be occupied by more than one hard disk. The hard disk system exhibits a phase
transition between a triangular ordered solid phase and a fluid disordered phase as
a function of the lateral pressure. The models presented in the present thesis are all
variations of the hard disk model in that all model particles are described as hard
disks decorated with conformational degrees of freedom and in that the excluded
volume interaction between particles is modelled through the hard disk repulsion.
While most Monte Carlo simulations on hard disk systems suggest a first-order 2D
melting (Lee and Strandburg [92]), others suggest a one-stage continuous transition
(Fernandez, Alonso and Stankiewicz [95]). In the work presented in this thesis we are
not concerned with the details of the type of transition involved in the 2D melting
process, since we cannot, in principle, provide any new information on the true na-
ture of the transition when studying more complex models. However, for all practical

purposes we can consider that the melting is a first-order transition. In fact, for the
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models examined in this thesis all the simulation data obtained for the solid-liquid

‘ transition are consistent with a first-order transition.
The work presented in this thesis is based on results that either have already
been published as original research articles or have been prepared for submission for

publication;

e Model of the sub-main transition in long-chain phosphatidylcholine
lipid bilayers. M. Nielsen, L. Miao, J. H. Ipsen, K. Jorgensen, M. J. Zucker-
mann, and O. G. Mouritsen. Biochim. Biophys. Acta. 1283 170-176 (1996).

¢ Random Lattice Models and Simulation Algorithms for the Phase
Equilibria in Two-dimensional Condensed Systems of Molecules with
Coupled Internal and Translational Degrees of Freedom. M. Nielsen L.
Miao, J. H. Ipsen, O. G. Mouritsen and M. J. Zuckermann. Phys. Rev. E. 54,
6889 (1996).

e Lipid—Cholesterol Phase Diagrams, M. Nielsen, L. Miao, J. H. Ipsen, O.
. G. Mouritsen and M. J. Zuckermann. Biophys. J. A132 (1997).

e An off-lattice model for the phase behaviour of lipid-cholesterol bilay-
ers. M. Nielsen, L. Miao, J. H. Ipsen, M. J. Zuckermann and O. G. Mouritsen.
Accepted for publication in Phys. Rev. E. (Feb. 1999).

e A Model for the phase behaviour of lipid-sterol mixtures. M. Nielsen,

L. Miao, J. H. Ipsen, M. J. Zuckermann and O. G. Mouritsen. In preparation.
(1998)

e A model for thermally induced lysis in lipid membranes containing
sterols. M. Nielsen, L. Miao, J. H. Ipsen, M. J. Zuckermann and O. G. Mourit-
sen. In preparation. (1998)

The plan for the presentation of the thesis is as follows. In Chapter 2, we present
the various models investigated in this work. The models are minimal models in that
they contain an approximate description of the molecular structure and internal de-

. grees of freedom of the related model particles and in that the microscopic interaction
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potentials are all designed to contain only features that are essential for describing
systems where the complex interplay between the internal and lateral degrees of free-
dom can manifest itself in a simple manner in the phase behaviour.

In Chapter 3, we discuss the series of numerical methods we have applied to
calculate the equilibrium phase behaviour of the microscopic models. In particular,
we describe the general use of the Monte Carlo simulation algorithm as a tool for
determining the nature and loci of phase transitions in a microscopic model, the use
of finite-size scaling analysis in the context of first and second order phase transitions,
the application of thermodynamic reweighting techniques to calculate equilibrium
distribution functions at a set of different temperatures based on data from one single
simulation, and finally the use of the Umbrella Sampling Method to optimize the
sampling of the equilibrium phase space in situations where two coexisting phases
are separated by a free energy barrier. Chapter 3 also contains a description of
the random-lattice algorithm developed to provide an accurate and highly efficient
description of the translational degrees of freedom of fluid two dimensional systems.

In Chapter 4, Chapter 5 and Chapter 6, we give the results which describe the
equilibrium phase behaviour of the different microscopic models. The results include
a series of phase diagrams calculated for these models as well as equilibrium thermal
averages for specific quantities characterizing their phase behaviour. Each chapter is
concluded with a short discussion of the simulation results that underlines the generic
phenomenology of, and the physical mechanisms underlying, the macroscopic coupling
and uncoupling between the translational and conformational degrees of freedom in
the different models.

Finally, Chapter 7 concludes the thesis with a brief summary of the work reported

here and remarks on future applications of the random lattice model approach.
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MODELS. MICROSCOPIC HAMILTONIANS

In this chapter, we present the different microscopic models investigated in this thesis.
All the models studied are minimal models in the sense that they give a very limited
description of the molecular structure or internal degrees of freedom of the related
model particles. The microscopic interaction potentials are all designed to contain
only features that are necessary for describing systems where the complex interplay
between the internal and translational degrees of freedom can manifest itself in a
simple manner in the phase behaviour. Our studies of the interplay between internal
and translational degrees of freedom of many-particle systems is largely motivated
by the collective phenomena found in lipid-bilayer systems, and we naturally see the
purpose of developing microscopic models as being two-fold: 1) to study the generic
thermodynamic behaviour of two-dimensional systems where the two types of degrees
of freedom are present and coupled, and 2) to model this coupling in a way that is
relevant to lipid-bilayer systems. To this end, we have chosen to study a series of
statistical mechanical models, which have different emphasis and levels of complexity
in describing the microscopic interactions that govern the interplay between the two

types of degrees of freedom.

The various models are introduced by starting with the simplest case and then
gradually increasing the complexity. Five models are described in total and are num-
bered I to V. Model [ is a regular Ising model on a random lattice, Model II is an Ising
model with a distant dependent Ising interaction, Model I1I is specific for pure lipid
bilayer systems, Model IV extends Model III to include sterols, and finally Model V is
a model for membrane lysis. All models are basically variants of the nearest neighbour

Ising model defined on a two-dimensional fluid surface.

In the models, the particles are free to move on the 2D surface and the particles

19



20 2 MODELS. MICROScOPIC HAMILTONIANS

are hence described by two distinct sets of degrees of freedom, the translational and
the internal degrees of freedom, respectively. The details of the implementation of
the random lattice algorithm describing the translational degrees of freedom is given
in Section 3.2 and we will here just describe the essential ingredients of the algorithm.
The algorithm employs a tethered random lattice representation of the spatial con-
figurations of a dense 2D system of many particles and generates the phase space of
the spatial configurations. Each particle is considered as a hard disk of diameter d,
and every site on the random lattice is occupied by such a hard-disk particle. The
algorithm contains a compact “link” data structure that allows for efficient access to
the nearest-neighbour structure of a microconfiguration.

In all of the models, the short-range repulsion between particles is modelled
through the hard-disk repulsion and the particles interact via nearest-neighbour in-
teractions defined by the “link structure”.

Although we often refer to the particles in our models as “lipid molecules” and
“sterol molecules” and to the systems as “lipid bilayers”, we are fully aware that the
descriptions of the microscopic properties of the “model molecules” are considerably
simplified pictures of those of real lipid and sterol molecules, as our emphasis is on
revealing generic physics rather than on providing quantitative interpretations for the
experiments. Furthermore, the generic physics with which we are concerned should
be viewed in a broader context: it should also be relevant to certain two-dimensional
non-lipid systems where both translational and internal molecular degrees of freedom

are thermodynamically relevant.

2.1 Ising Models on a Random Lattice (Model I and Model II)

The 2D spin-1/2 Ising model defined on a regular triangular lattice has a continuous
phase transition from a high-temperature paramagnetic (spin disordered) phase to a
low-temperature ferromagnetic (spin ordered) phase at a critical temperature l—‘{%@ =
3.641, where Jj is the exchange interaction between nearest-neighbour spins.

Ising models defined on different types of 2D random lattices have received con-
siderable attention over the last years, in particular as model systems involving 2D

gravity. Considerable progress was made by the finding of the exact solution for an
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Ising model on an unconstrained random triangular lattice (Boulatov and Kazakov
[87]). It was shown that the critical behaviour of this model is characterized by the
critical exponents, « = ~1 and 8 = } (Boulatov and Kazakov [87]), which are very
different from those of the universality class of the standard two-dimensional Ising
model (& = 0 and 8 = ;). The same results were also obtained numerically by
Monte Carlo simulations (Ben-av, Kinar and Solomon [92]). A different approach
was taken in a recent study of an Ising model on a dynamically-generated lattice
based on the spatial proximity of the particles in the plane {Vekié, Liu and Hamber
[94]). In this study, spins were assigned to hard disks that were allowed to move in
the plane, and in contrast to the random lattice considered here, the local lattice
topology was not fixed. It was shown that, for systems where the hard disk radius is
very small compared to the range of the Ising interaction, the spins tend to form tight
ordered clusters at low temperatures. In the clusters, each spin interacts with a large
number of neighbours. This clustering transition is found to be sudden and strongly
first order. For condensed systems, where the hard disk radius is comparable to the
range of the Ising interaction, the standard 2D Ising-model behaviour is recovered,
irrespective of the presence of full translational invariance (Veki¢, Liu and Hamber
[94]). As the hard-disk radius decreases with respect to the interaction range, the
line of Ising critical (temperature) points is found to terminate at a tricritical-like
point and beyond the tricritical-like point, the spin order-disorder transition becomes
first order. It was argued that the special critical behaviour displayed by the Ising
model on the unconstrained random triangular lattice (Boulatov and Kazakov [87])
was again observed at the tricritical point. In comparison with the later work, our

studies always correspond to the condensed regime.

In the present thesis, we have extended the standard Ising model in two ways.
Our first extension, which will be referred to as Model I, is to associate a spin with
each hard-disk particle on the random lattice. Nearest-neighbour particles are con-
nected by tethers and interact through the usual Ising spin-spin exchange interaction.
This leads to a random Ising model in which the number of nearest neighbours is a
fluctuating quantity. In this model, the characteristic interaction range is set by the

particle density of the system, which in turn is controlled by the external pressure, P,
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and the translational and spin degrees of freedom are only coupled by the fluctuating
local connectivity (or the number of nearest neighbours) of the random lattice. For
later reference, we write down the microscopic interaction Hamiltonian used in our

simulation,

Hi=-4 ) SS; , (2.1)
(i<5)
where (i < j) denotes a sum over nearest neighbours connected by tethers, and
S,' = +1.

In the second extension of the standard Ising model, which will be referred to as
Model II, we have modified the above model in Eq. (2.1) by introducing a spin-spin
interaction that is distance dependent: the tethered spins only interact if they are
within a certain distance, Ry, of each other. The random-lattice Hamiltonian is then

given by

HII = —Jo Sj N (22)

> S
L%k
where (i < j) again denotes a sum over all possible nearest neighbours, and R;; is the
distance between spins S; and S;. Hence, in this case, Ry sets the range of interaction.

The fact that the density of the system sets another length scale leads to a different

type of coupling between the spins and the translational degrees of freedom.

Using these two models, we can address the basic issue of how and to what extent
different types of microscopic coupling between the internal and translational de-
grees of freedom manifest themselves in the macroscopic thermodynamic behaviour
of the systems, and understand and underline the generic physics associated with
such coupling. Ising spin transitions in these models will be of particular interest,
as the classical understanding of the critical transition in the Ising model defined on
a regular lattice provides an essential framework of reference, with respect to which
effects arising from the interplay between the two types of degrees of freedom can be

mapped out.
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2.2 The Doniach Model on a random lattice — a Model for
Pure Lipid Bilayers (Model IIT)

Model III is in fact an Ising model similar to those introduced above, but with the
basic difference that one of the spin states is assigned an internal degeneracy larger
than one. This model is inspired by a regular-lattice model proposed by Doniach ([78])
to describe the essential thermodynamic properties of lipid bilayers, in particular the
main transition, that are primarily associated with the conformational degrees of
freedom of lipid chains in a planar array. Doniach and Nagle([73]) were the first
researchers to give a statistical mechanical description of the lipid bilayer melting
transition in terms of a cooperative change in the lipid conformational distribution.
In particular, Doniach’s minimal model of the lipid bilayer was used to estimate the
lowering of the free energy barrier for transbilayer ion permeability due to enhanced

lateral compressibility near the main transition.

Doniach’s model is based on two states to represent the lipid-chain conformations.
One state, the “ordered” state {denoted S; = 1), has zero internal (conformational)
energy (E, = 0) and is non-degenerate (D, = 1), characteristic of the chain conforma-
tional state of lipid molecules in the gel phase. The other state, the “disordered” state
(denoted S; = —1), has a high internal energy, E4, corresponding to the excitation
energy associated with a conformational change, and a large degeneracy, Dy > 1,
representing the large number of possible chain conformations which have the same
value of Ey4, which is characteristic of the chain conformation of lipid molecules in the
liquid-crystalline (fluid) phase. Each chain occupies a site on a regular triangular lat-
tice and each state is assigned a cross-sectional area, A, or 44, corresponding to the
average area occupied by chains in the ordered and the disordered state, respectively.

The model is formally described by the following Hamiltonian

Hp = Ho+ VY +PZ{Ad (1 '25*') + A (#)} : (2.3)

where

Hu=zi:Ed(1;S‘) , (2.4)
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and

Ji
Vil = -Z L 1+S)1+5)) (2.5)
(i<y)
with (i < j) denoting a sum over nearest neighbours on the lattice. In this case, P

plays the role of an internal interfacial pressure which provides the lateral stabilizing

force controlled mainly by the hydrophobic effect at the lipid-water interface. Hjg
(1)

int

describes the chain internal energy. V,,’ models the chain-chain interaction, which
(somewhat arbitrarily) is taken to be nonzero only if a chain and its neighbour are
both in the ordered state. This is an extreme approximation to the hypothesis, that
the interaction forces are expected to decrease when either or both of the neighbouring
chains are in the disordered state, but it is formally equivalent to setting the relative
energy scales of the Hamiltonian. The third term in Eq. (2.3) represents the energy
cost of stabilizing the lipid system against lateral expansion.

[t is straightforward to determine the thermodynamic behaviour of this model
(Doniach [78]), which is isomorphic to an Ising model in a temperature-dependent

effective field, i.e.

J
Hp = Ey - TO Y SiS;i+ Y hea(T)S: | (2.6)
(i<y) i

i<j

where E, is a constant, heg(T) = —3(Eq + Jo + PAA ~ kT In Dy), AA = A4 — A,
and : is the coordination number of the lattice (z = 6 for a triangular lattice). At
low temperatures the effective field prefers the chains to be in the ordered state. As
T increases, the system crosses over from the ordered state to the disordered state at

a temperature T, determined by

heﬁ'(Tm) =0 ) (27)

provided that T}, is less than the critical temperature, T¢, of the standard Ising model.
This transition is effectively a field-induced transition below the critical temperature
of the standard Ising model and is therefore a first-order transition usually referred
to as the “chain-melting” transition.

While the Doniach lattice model includes the most essential physics associated

with the lipid-chain conformational degrees of freedom, it ignores the translational
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degrees of freedom. We therefore here propose an extension of the Doniach model to
account for the interplay between the conformational and the translational degrees of
freedom in the simplest way: the translational degrees of freedom of lipid chains are
governed by interchain interactions that depend on the conformational states of the
interacting chains. This extended model, which we refer to as Model III, is described

by the following random-lattice Hamiltonian,

Hu=Ho+V{ +v@ + P-4, (2.8)
where
. 1
Vid =7 2 VIR - RiA+S)(1+5)) (2.9)
(i<7)

and A is the total area of the system. V(R) in Eq. (2.9) is an attractive square-well
potential of depth V; and range Ro. V,{\) and V/'?) together provide an approximation
to the attractive intermolecular interaction between any two chains in the conforma-
tionally ordered state. The sum of the hard-disk potential and the two square-well
potentials, V,,(,:) and Vifi), constitutes an approximation to a standard intermolecular
potential of the Lennard-Jones type, as schematically illustrated in Fig. 2.1. By anal-
ogy with the Doniach lattice model, the effective interaction between any two chains
in Model III is taken to be zero if either one or both of the chains are in the conforma-
tionally disordered state. The square-well potential described by Ry and Vj controls
the minimum of the potential and hence the lattice parameter of the crystalline (solid)
phase. The tail of the potential extending beyond Ry permits a possible decoupling
between the two melting (or order-disorder) processes associated with the transla-
tional and conformational degrees of freedom. This model is a minimal model in the
sense that it contains only the most essential physics required to model the coupling
between translational and internal degrees of freedom in lipid-bilayer systems.

The fundamental difference between Model III and the lattice model of Doniach
is that each chain in Model III is allowed to have a varying number of nearest neigh-
bours and varying distances from its neighbours. Furthermore, the chains are allowed
to diffuse through the whole system, as the essential manifestation of translational
invariance of the system. The two sets of degrees of freedom are coupled in a natu-

ral way through the intermolecular interactions. This model should display different
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Figure 2.1: Schematic illustration
V(R) A of the interaction potential, V(R),
in Model III. It consists of a sum
of a hard-disk potential and two
square-well potentials. The hard-
disk radius is d and the range and
strength of the square-well poten-

1 tials are (Imax, Ro) and (Jo, V),

:Ro respectively, described in the text.

d lmax is the maximum tether length

' "R defined in Section 3.2. The dashed

Jo g line illustrates a Lennard-Jones-like

' | potential, to which the model poten-
Vo ; : tial is an approximation.

types of thermodynamic behaviour, depending on the strength of this coupling.

2.3 A Model for Lipid-Cholesterol Mixtures (Model IV)

The microscopic model discussed in this section is an extension of Model III proposed
in the previous section to describe the generic phase behaviour of single-component
lipid bilayers (Nielsen et al. [96a]).

The main result of the simulation studies of the model for the single-component
system is given in Section 4.3 and summarized in Fig. 4.8, which shows a phase
diagram given in terms of temperature and a parameter, Vy/Jy, measuring the relative
strength of the two square-well attractions. The point of key importance in this phase
diagram is the appearance of two distinct regimes, separated by a triple point, of
different types of macroscopic interplay between the two types of degrees of freedom.
A regime of macroscopic coupling between the two types of degrees of freedom, as
observed experimentally in pure lipid bilayers, exists for values of V,/Jy greater than
the triple-point value. However, a regime of macroscopic decoupling also exists as part
of the generic thermodynamic behaviour of the model for values of V4/Jy smaller than
the triple-point value, where two distinct ordering transitions take place successively,
separated by an intermediate lo phase. The question then arises as to which part of
the phase diagram of the single component system represents a pure lipid bilayer. In
such a bilayer, the translational and conformational degrees of freedom are coupled.

We therefore choose the phase behaviour of a pure lipid bilayer in the absence of
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cholesterol to lie at a value of Vy/Jy greater than the triple point value.

Based upon the model for the pure lipid bilayer system described in the previous
section and the physics described above, a minimal model which describes a system
containing both lipid chain particles and cholesterol molecules can be constructed by

adding additional microscopic interaction terms to the Hamiltonian in Eq. (2.8):
H=Hy+H, .+Hy_.+H._.+Hygq . (2.10)

Here H,_., Hy_., H._. and H,_4, as indicated hy the various subscripts, represent the
pairwise interaction potentials between an ordered chain and a cholesterol molecule, a
disordered chain and a cholesterol molecule, two cholesterol molecules, and an ordered
chain and a disordered chain, respectively. They are defined as follows:
Hoe = Y VocelRij){LioLje + LjoLlic}
(i<y)
Hy_. = Z) Va—e(Rij){LiaLjc + LjaLlic} (2.11)
(i<y
Hc-c = E V::—-C(Rij){cicﬁjc}
(i<J)
Hocg= Y Vooa(Rij){LioLja + LjoLia} -

{i<j)

Here (i < j) denotes a summation over nearest neighbours and i is an index labeling
the particles in the system. L4 and L,, are occupation variables which are unity
when the ith particle is in the ordered and the disordered states, respectively and
zero otherwise. L;. is introduced so as to include the presence of the cholesterol
molecules in the system and £, is unity if the ith particle is a cholesterol molecule
and zero otherwise. The energy of interaction between two chains which are both in
the disordered state is set to zero. For completeness, the model of Eq. (2.10) includes
a term for the interaction between an ordered and a disordered lipid chain. This term
was not included in the Hamiltonian in Eq. (2.8) since it has no importance for the
generic phase behaviour of the model.

In terms of these occupation variables, the Hamiltonian for the pure lipid system

Eq. (2.8) can be rewritten as

H, = Z EqLiq + Z VO_O(R)QOLJ'O +I1-A . (2.12)

(<))
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Here Ej, is the excitation energy of the disordered conformational state and V,_,(R)
is a distance-dependent interaction potential between two neighbouring particles that
are both in the ordered state. II is, in effect, a lateral surface pressure stabilizing the
system against lateral expansion and A is the total area of the system.

Reflecting the strategy of minimal modelling, the additional microscopic interac-
tions, Vo_c(R), Via-c(R), Veec(R) and V,_4(R), are each approximated in a similar
manner to V,_o(R) in Hy, by a sum of a hard-disk repulsive potential of range d, a
short-range square-well potential, V*(R), and a longer-range attractive square-well
potential, V!(R). V3(R) and V'(R) are given by

*S _ __‘/'S , d < R S RO ,
ViR) = { 0 , otherwise, (2.13)
Ay _ [ =V' L d< R < lpax .
ViR = { 0 . otherwise. (2.14)
(@) M) © .
A \
R R T V(r)*: - V(r)“: x > I, vm\-‘. N > e
‘?u - i > R L > R :_’ o> Ry
I‘ T ' ! el - - = r 4 N -3 r
- ‘\‘ " *
g N =

Figure 2.2: Model interaction potentials. (a) Vo—o(R), (b) Vo—e(R), (c) Vi_o(R) and (d) Ve-.(R). d

is the hard-disk radius, Rg the radius of the short range square-well potential and !,,,. the range of

the longer range square-well potential. The ratio %ﬁ is chosen so that g"—‘; = 1.3 giving an average

surface area of the cholesterol molecules to be 30% larger than that of th;_lipid chains in the ordered
state

Some of the microscopic interactions are sketched in Fig. 2.2 to illustrate our
specific way of modelling the dual molecular mechanism of cholesterol molecules in
lipid bilayers. A comparison between Fig. 2.2(a) and Fig. 2.2(b) illustrates the “ice-
breaker” mechanism, as the interactions involved imply that a cholesterol molecule
dissolved in an ordered-chain environment tends to have a larger surface area than
that of a lipid chain, thus disrupting the lateral packing of the ordered chains.
Similarly, a comparison between Fig. 2.2(b), Fig. 2.2(c) and Fig. 2.2(d) makes the

“chain-rigidifier” mechanism clear, as the given interactions are such that a choles-
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terol molecule prefers its neighbouring chains to be in the conformationally ordered
state.

This simple model describes the dual effect of the cholesterol molecule on the lipid
bilayer in a minimal manner. We can thus hope that the phase behaviour of the
minimal model, as obtained from numerical simulations, gives the important phase
characteristics of the lipid—cholesterol system and thus allows for an understanding of
microscopic and macroscopic physical properties of lipid bilayers containing choles-

terol.

2.4 A Model for Lipid-Sterol Mixtures

The model for lipid-cholesterol mixture systems given in the previous section was con-
structed without direct reference to the specific structure of the cholesterol
molecules (Nielsen et al. [98]). Only the dual molecular mechanism of the sterol
molecule being both a chain “rigidifier” and an “ice-breaker” made the model connect
closely to the lipid-cholesterol system. It was hence expected that the model, given its
various microscopic parameters, should be capable of describing more types of equi-
librium phase behaviour than that of the lipid-cholesterol system. In other words, by
systematically varying the values of certain parameters one should be able to estab-
lish a broader picture of the generic equilibrium phase behaviour of two-component
systems. In particular, such a systematic variation could represent a change in the
type of sterol dissolved in the lipid bilayer. This is particularly important in rela-
tion to the evolution of membranes. Bloom and Mouritsen ({88]) have proposed that
cholesterol, which is the end-product along an evolutionary (biosynthetic) pathway
for eucaryotic membranes, was specifically developed by nature to achieve optimal
mechanical and biophysical properties for such eucaryotic membranes. It is therefore
interesting to study the effect on the lipid bilayer of other sterols along the biosyn-
thetic pathway so as to shed some light on this optimization process. In consequence,
we have constructed a microscopic model designed with the aim of capturing the
systematics of the equilibrium phase behaviour of a range of two-component systems
modelling mixtures of lipids with different sterols. The model is identical to the one

we proposed for the lipid-cholesterol mixture system, and the different sterol systems
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are modelled via systematic variations in the model parameters.

Different sterol molecules should clearly have different effects on the lipid molecules
when dissolved into the membrane bilayer. One way to distinguish the effect of the
different sterol molecules on the lipid membrane system is to study their ability to
rigidify the lipid acyl chains. Figure 2.3 shows the maximum chain order parameter
as obtained by NMR measurements for the PPetPC bilayer as a function of concen-

tration of two different sterol molecules, cholesteroi and lanosterol (Thewalt [96]). At
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Figure 2.3: The maximum chain order parameter as a function of sterol concentration for the
PPetPC-Cholesterol and the PPetPC-Lanosterol bilayer at T=40° C. (Adapted from J. Thewalt
(96])

the temperature of T = 40° C, the pure PPetPC lipid system is in the fluid phase
characterized by a high degree of both lipid chain and lateral disorder. The chain
rigidifying effect of both sterol types is clearly demonstrated in the figure. The figure
also shows that lanosterol, which on an evolutionary time scale is the precursor of
cholesterol, has a weaker rigidifying effect on the lipid chains in the membrane than
cholesterol (Thewalt and Bloom [95]).

In the spirit of a minimal model, we assume that this ability to rigidify the lipid
chains differently is the major difference between the various lipid sterol mixture
systems. One way of modelling this effect is via a systematic variation in the strength
of the lipid-sterol interaction potential V,_. in Eq. (2.10). In Fig. 2.4, we show a graph

of the interaction potential suggested to describe a series of three different lipid-sterol
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mixture systems along the biosynthetic pathway. It is clear from the figure that
the dual molecular effect of being both a chain “rigidifier” and an “ice-breaker” is
maintained in the form of the model interaction potential for all three sterol types.
The only variation between the different sterol molecules is in the strength of the
interaction with a lipid chain in the ordered state. This variation should lead to
substantial differences between the different sterols in terms of both the effect of an
“ice-breaker” and the effect of a chain “rigidifier”.

The microscopic Hamiltonian for the different lipid-sterol systems is for all sys-
tems defined by Eq. (2.10) with the interaction potential V,_,.,o defined as given in
Fig. 2.4. All the other model parameters are taken to be identical for the different

lipid-sterol mixtures. Since we invoke only one simple molecular mechanism in de-
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Figure 2.4: Model interaction potentials for a series of three lipid-sterol systems. (a} Vo—cnot(R), the
cholesterol system, (b) V,_;n:(R), an intermediate sterol and (c) V,_;on(R), the lanosterol system.

scribing the different lipid-sterol mixture systems, we should be able to characterize
the important molecular differences that distinguish the function of different sterols
along the biosynthetic pathway in the lipid bilayer by comparing the phase behaviour
of the model for different lipid-sterol mixture systems with that of the corresponding

experimental ones.

2.5 Models for Thermally Induced Lysis of Fluid Lipid
Membranes (Model V)

In the previous section, we constructed a model for the phase behaviour of lipid

membranes containing sterols. This model can now serve as the basis for a description
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of a large variety of problems related to lipid membrane systems. To illustrate the
potential of the model, we shall in the following examine the lipid-sterol model in
the context of membrane lysis and thermal stability of lipid membranes containing

sterols.

A living cell depends crucially on its ability to maintain a mechanically stable
plasma membrane that provides a tight chemical insulating layer with limited per-
meability to water, ions and other aqueous solutes. The fluid lipid bilayer encapsu-
lating the living cell constitutes this insulating layer. The mechanical stability of the
cell membrane can be modified in various ways. Electroporation experiments show
that black lipid membranes (BLM’s) rupture irreversibly when they experience an
electric field of the order of 500 mV during a time period longer than several mi-
croseconds (Needham and Hochmuth [89]; Wilhelm et al. [93]; Winterhalter [96)).
Absorption of foreign molecules also modifies the mechanical stability of the fluid
membrane, e.g. absorption of peptides such as alamethicin, melittin and magainin
induces defects and lysis of lipid membranes as the concentration of peptides is in-
creased (Dimitrova and Matsumura (97]; Heller et al. [97]; Ludtke et al. [96]; Mat-
suzaki et al. [97]). The inclusion of sterols, such as cholesterol, in the lipid bilayer,
on the other hand, increases resistance to pore formation and thus increases the me-
chanical stability against lysis of the lipid membrane (Needham and Hochmuth [89];
Zhelev and Needham [93]; Benachir et al. [97]).

A simple and commonly used model for membrane rupture is the zero temperature
model of Litster ([75]). In this model, the appearance of a single hole with perimeter
I' in the membrane under tension is associated with an edge energy cost, AI', and
an energy gain, dA. The cost in edge energy is due to the hydrophobic properties of
the lipid chains and the energy gain is due to the lateral tension. The two control
parameters in the model are the line tension, A, defined as the energy cost per unit
length associated with the formation of a pore, and the lateral surface stress, o, on the
membrane. Note that 0 < 0 corresponds to compression and o > 0 corresponds to
tension. The free energy controlling the stability of the membrane at zero temperature

is then given as



2.5 Models for Thermally Induced Lysis of Fluid Lipid Membranes (Model V) 33

Fo=—-cA+ A" , (2.15)

where A is the total area of the bulk membrane and hole, and I is the length of the
hole perimeter. At zero temperature, holes with a circular shape minimize the free
energy. The creation of a circular hole with diameter R is associated with a change

in the free energy, AF,, given by

AFy = —omR* + A27R . {2.16)

In Fig. 2.5 is shown a schematic plot of the function AFy(R). The figure shows that
holes with a radius larger than a critical size A\/o are unstable and grow without
bound. The membrane is thus metastable against formation of a large hole. In a
situation where the critical free energy barrier AF; = 7 \?/o is inaccessible to thermal
fluctuations, the membrane will however remain intact in a finite time experiment
since thermal fluctuations cannot take the system across the kinetic barrier AFy(R).
The expression for the critical free energy barrier implies that the barrier vanishes

only in the limitsof A = 0 or ¢ — oc.
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2.5.1 Models for Thermal Stability of Lipid Membranes

The model presented here for the lysis of lipid membranes is an extension of a model
first proposed by Shillcock and Boal ([96]) to describe the stability of fluid lipid

membrane without internal degrees of freedom in the presence of a single hole. The
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model was also extended by Shillcock and Seifert ([98]) to describe the stability of
fluid lipid membranes in the presence of multiple holes. Before describing the model

investigated in the present thesis, we give a short summary of the two earlier models.

A Model for Thermal Stability of Membranes in the Presence of a Single Hole.
The model of Shillcock and Boal ([96]) for the stability of lipid membranes in the

presence of a single hole employs an algorithm similar to the random-lattice algo-
rithm developed in this thesis. The fluid configurations of the membrane are defined
in terms of the vertex positions and the connectivity of a random network (see Sec-
tion 3.2). In the presence of a single hole, the number of vertices in the network is
fixed but the number of tethers varies. Tethers can be inserted and removed at the
boundary of the hole, thus allowing the hole size to fluctuate. Vertices defining the
edge of the hole are called external as are tethers connecting two external vertices.
All other vertices and tethers are internal. The Hamiltonian governing the thermal
equilibrium properties of the single-hole membrane is the zero-temperature free en-
ergy defined in Eq. (2.15). The trial moves employed to sample phase space in the
Monte Carlo simulation algorithm are the particle move, link flip and area change
procedures described in Section 3.2.1 combined with an attempt to remove or add
tethers along the edge of the hole. In the trial move that changes the area of the
system, the side lengths L; and L, are attempted to be rescaled independently. This
is in contrast to the procedure described in Section 3.2.1. The different types of trial
moves are attempted with a fixed probability. In order to ensure detailed balance
for the updating procedure of the length of the hole edge, we must insist that the
probability for inserting a tether at a specific vertex equals the probability for re-
moving a tether from a specific vertex. When removing a tether from a hole with
Negge vertices along the edge, the probability for removing a tether from a specific
vertex is 1/N.4q.- Note that the tether to be removed is always the tether connecting
consecutive vertices in the anti-clockwise direction along the hole edge. If the trial
move is accepted, the value of N4, is increased by one. When performing the reverse
trial move, the probability for attempting an insertion of a tether at a specific vertex
along the edge is then 1/(Negge +1). In order for the two trial moves to be attempted
with equal probability, the probability for removing a tether must hence be modified
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according to Nedge/(Negge + 1)

The central data structures in the algorithm implementing the single hole model of
Shillcock and Boal ([96]) are link structures defining the configuration of the tethered
network, a matrix defining the position of the vertices and a linked ordered list defining
the edge of the single hole.

The central result in the work by Shillcock and Boal is a phase diagram for the
stability of the lipid membrane as a function of the reduced line tension \* = 3Ad
and applied reduced surface pressure o = Jod? (¢ < 0). In situations where the
membrane is under zero stress (¢ = 0), they find that for A* > 1.3 only small holes
are present in the membrane, whereas large holes are observed for A* < 1.2. The hole
size is found to change rapidly around a value of A* close to 1.24. They find that the
value of \* = 1.24 separates the (meta)stable intact state from the ruptured state of
the lipid membrane. When the membrane is under compression, they find that the
membrane at values of the line tension larger than a specific (stress dependent) value
is thermodynamically stable. The value of A* that separates the stable and unstable
state of the membrane is naturally smaller than 1.24 when the membrane is under

compression.

A Model for Thermal Stability of Membranes in the Presence of Multiple Holes.
Shillcock and Seifert ([98]) extended the single-hole model of Shillcock and Boal so

as to describe the stability of the lipid membrane in the presence of multiple holes.
In this model, both the number of holes and the length of the hole perimeter are
fluctuating quantities. The free energy defining the equilibrium phase behaviour is
given by Eq. (2.15). Holes are created in the internal part of the membrane, when a
tether connecting two internal vertices is removed. The energy cost associated with
the creation of such a hole is @. This represents the barrier that thermal fluctuations
must overcome in order to create a hole of minimal size in the lipid membrane. In
the model, @ is defined in terms of a chemical potential u as follows; @ = ALpin — 2,
where L, is the summed length of the tethers forming the edge of the new hole and
A is the line tension. In the simulations, it is found that the minimum hole perimeter
Lnin is always close to 5.33d, and the barrier, @, is thus related to the chemical

potential, y, in a simple manner. The two dimensionless parameters controlling the
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formation and stability of holes in the membrane are then
A=A and g¢* =6Q , (2.17)

where d is the hard disk diameter and 3 the inverse temperature.

The set of trial moves adapted to sample phase space for the multiple hole model
is naturally larger than for the single hole model, since we now have to include moves
that allow for a variation in the number of holes present in the membrane. In the
model by Shillcock and Seifert ({98]), the number of holes is allowed to vary via two
distinct processes. Holes are created and resealed in the membrane as described ear-
lier. Furthermore, holes can coalesce and fragment. For the coalescence process, two
holes come into contact and coalesce to form a larger hole. In a fragmentation process,
a hole breaks up into two smaller ones. In order to ensure the correct implementa-
tion of the multiple hole model, the various trial moves for insertion and removal of
tethers along the edge of the holes as well as the trial moves for creation, sealing,
coalescence and fragmentation of holes must be attempted in a manner that obeys
detailed balance. The details regarding how the multiple hole model is implemented
in the simulations so as to ensure detailed balance is given in Appendix A.3.

The main result of the work of Shillcock and Boal is a phase diagram giving
the stability of the lipid membrane under zero stress as a function of the reduced
parameters A\* and ¢*. This phase diagram is given in Fig. 2.6. The rupture line in
the phase diagram separates two distinct regimes corresponding to an intact and a
ruptured state of the lipid membrane, respectively. The rupture line can be described

as a function of one of the two reduced parameters, ¢g* or A* as;
A" = Ag(g®) or ¢" =qxr(\") , (2.18)

where the subscript R refers to the rupture transition. In the asymptotic limit, the

rupture transition occurs at
Ar(@® = 00) =1.24+0.02 and gR(A* = 00)=33+02 . (2.19)

In the limit of ¢* — oo, corresponding to the limit of an infinitely high barrier against
the formation of a single hole, the authors find that the membrane ruptures through

the formation of a single hole that grows in size to pass the critical minimum hole
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size for rupture (see Fig. 2.5). In this limit, the result of Shillcock and Boal ([96]) for
the single hole model is thus recovered. For A* — oo, they find a rupture scenario
where multiple small holes form and coalesce into a large hole with a size larger than
the critical hole size for rupture. In the two limits, they thus find distinct scenarios

for rupture.
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Figure 2.6: Phase diagram for the model fluid membrane in the reduced line tension, reduced barrier
height plane at zero stretching tension. The bold line denotes the rupture transition separating an
intact membrane form a disintegrated one, and the symbols mark the simulation data. At large
line tension, multiple small holes are present in the membrane, and a single large hole fluctuates
through the membrane close to A* = 1.25. The upper horizontal arrow represents a possible path
for rupture at large A* in which more small holes are created as ¢* is reduced. The lower horizontal
arrow represents rupture at small A*. Rupture via the entropy-driven growth of a single fluctuating
hole is indicated by the vertical arrow. Adapted from Shillcock and Seifert [98].

2.5.2 A Model for Thermal Stability of Membranes Decorated with
Lipid Chain Degrees of Freedom in the Presence of Holes

We now present Model V, which is a model for the stability of lipid membranes
decorated with lipid chain degrees of freedom in the presence of single holes. In this

model, the configurational degrees of freedom of the lipid membrane are described



38 2 MoDELS. MIcroscorIiC HAMILTONIANS

in the same way as in the models of Shillcock and Boal ([96]) and Shillcock and
Seifert ([98]). We include the lipid chain degrees of freedom by decorating each
vertex in the random-lattice description with a set of conformational states defined
by the Model IV of Eq. (2.10). The edge free energy associated with a hole in the
membrane is given by Y AR; + V' (R;). Here, the summation is over the perimeter of
the hole, R; is the length of the tethers connecting consecutive vertices along the edge
of the hole and V(R;) is the interaction potential between neighbouring particles at
the vertices along the edge of the hole.

This minimal model for the thermal stability of the lipid membrane, allows us to
address the question of how the stability of the lipid membrane is modified in the
presence of sterols. The analysis of the phase behaviour of the lipid-sterol systems
as described in Section 2.3 provides a detailed picture of the functional difference be-
tween cholesterol and lanosterol molecules when dissolved in lipid membranes. This
knowledge combined with the results of a simulation study of the model (see Chap-
ter 6) allows us to gain insight into the function of different sterols as mechanical
stabilizers of lipid membranes in general and to obtain a specific understanding of
the functional differences between different sterol types in the context of membrane

lysis.



3

NUMERICAL METHODS

In this chapter, we describe the different numerical methods that we have developed
and employed in analyzing the equilibrium phase behaviour of the models proposed in
Chapter 2. All the models were analyzed using the numerical method of Monte Carlo
simulations. In the first part of this chapter, we describe in terms of the methodology
and diagnostic tools how numerical methods can be applied to determine the phase
behaviour of a microscopic thermodynamic model. Next we give a detailed description
of the random-lattice algorithm developed to allow for an accurate and highly efficient

description of the lateral degrees of freedom of the microscopic models.

3.1 Methodology and Diagnostic Tools

A variety of diagnostic techniques were employed to determine the equilibrium phase
behaviour of the different models described in the previous chapter. In the following,

we will give a short summary of each of the different techniques.

e The Metropolis Monte Carlo algorithm and the calculation of thermodynamic

averages.

Finite size scaling.

Histograms and Ferrenberg-Swendsen reweighting techniques.

Spectral free energy functions and Lee-Kosterlitz finite size scaling.

The Umbrella sampling or modified Hamiltonian technique.

39
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3.1.1 The Metropolis Monte Carlo Algorithm

The thermodynamic behaviour of systems in equilibrium is described by thermal av-
erages of appropriate physical quantities. In this section, we describe the Metropolis
Monte Carlo method which is used in this thesis together with numerical simula-
tions to calculate such averages. The relevant physical averages include the order
parameter, internal energy, surface area, and corresponding thermodynamic response
functions like susceptibility, specific heat and compressibility. It should be emphazised
that one of the main forces of the Monte Carlo method is that it provides a solution
for the equilibrium state of a model system where no analytic solution is available.
Furthermore, this solution includes the effects of thermal fluctuations.

The thermal average of a quantity O is defined as

TR0
Z
=S o)00 |

<0>= (3.1)

where ¥, is a sum over the entire phase space. Z is the partition function Z =
Yy, e PHW | 3 is the inverse temperature 1/kgT, p(l) is the statistical weight and H(!)
is the internal energy of the microconfiguration (.

If the simulation algorithm is ergodic, then a single simulation is able to sample
all of the equilibriumn phase space. Suppose that the algorithm we are using will
generate the different microconfigurations with a probability given by the probability
distribution p({). Then we can approximate the thermal average in Eq. (3.1) by a

“time” average

<O>= %2 o(t) . (3.2)
t=1

This relation between the thermal average and the “time” average is the key to all
Monte Carlo simulations. It is important to note that relation (3.2) was derived
using two criteria. First, the algorithm employed in the simulations must be able to
explore the entire equilibrium phase space of the system (ergodic sampling). Second,
the random sequence of microconfigurations (the underlying Markov chain) must

generate the different microconfigurations with the probability p(!). If either of these
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two conditions fails the Monte Carlo algorithm will not give the correct equilibrium
properties of the system.

How do we ensure that the algorithm generates the different microconfigurations
with a probability given by p(!)? In the Metropolis Monte Carlo scheme (Metropolis
et al. [53]), the probability for accepting a trial move from a microconfiguration I to

a microconfiguration J is given by

ace(I = J) = min(1,e 3%y | (3.3)

where AH is the difference in energy between the microconfigurations I and J. We
now show that the Metropolis Monte Carlo scheme generates the correct distribution
function, p(l). One obvious criterion the Monte Carlo algorithm must satisfy is that it
should not destroy a thermodynamic equilibrium state (Frenkel and Smit [97]). This
is to say that, in equilibrium, the number of accepted trial moves that result in the
system leaving state I must be exactly counterbalanced by the number of accepted
trial moves from all other states to state [. If, in equilibrium, the average number of
accepted moves from a state [ to any other state J is equal to the number of reverse
moves from any state J to state I, then detailed balance is said to be satisfied. It is
clear that this criterion is stronger than the one given above, and that the criterion
of detailed balance hence is a sufficient, but not necessary condition for the stability

of the equilibrium state. The condition of detailed balance can be written as

p(Nx(I = J) = p(N)x(J = 1) , (3.4)

where p(I) is the probability of the system being in the state I and n(I — J) is
the transition matrix defining the probability of performing the move from state |
to state J. Now 7 can be decomposed in two parts, a(I — J), the probability of
attempting a trial move from I to J and acc(I — J), the probability of accepting

this particular trial move,

(I = J)=a(l = Jacc(I = J) . (3.5)

If @ is symmetric (i.e. a(I = J) = a(J — I)), we can then rewrite Eq. (3.4) as
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acc(I = J) _ _san

—_— = . 3.6

acc(J = I) € (36)
The Metropolis Monte Carlo acceptance criteria (Eq. (3.3)) clearly satisfies this rela-
tion and we have hence shown that the Metropolis Monte Carlo scheme does indeed

generate the correct equilibrium distribution function.

It is important to keep in mind that in deriving Eq. (3.6) we impose a strong
constraint on the properties of the transition matrix, «, since we assume it to be
symmetric. This has important consequences for the manner in which the Monte
Carlo algorithm must be constructed especially for complex systems with many de-

grees of freedom, as we shall see later.

Based on the Metropolis Monte Carlo scheme for accepting trial moves between dif-
ferent microconfigurations, we generate a series of random microconfigurations which

we use to calculate the thermal averages using the Eq. (3.2).

Thermodynamic response functions are all related to thermal averages of first and
second moments of thermodynamic quantities such as the internal energy, E, the
order parameter, M, and the area, A, through the fluctuation-dissipation theorem.
The specific heat at constant pressure, Cp, the order parameter susceptibility, x, and

the area compressibility, K, are hence given by

Co = (Hz) - <H)2
P T NkgT?2
_{(MP) - (M)?
T NkgT
_ (A = (A)?
K==

(3.7)

where H is the model Hamiltonian (for a system at constant pressure), M is the total
spin order parameter, A is the total area of the system and N the total number of
particles. These response functions can thus be calculated via “time-averages” of first
and second moments of H, M and A, respectively. Signatures of phase transitions
can then be identified from these measured equilibrium quantities without having to

perform numerical differentiation.
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3.1.2 Finite Size Scaling

In a computer simulation, one can only examine systems of finite size. When simulat-
ing a system close to a phase transition, this finite size alters the phase behaviour as
compared to the infinitely large system. The nature of such finite-size effects depends
on the type of transition.

In a second order (continuous) transition, the thermodynamic response functions
diverge as the critical point is approached. This divergence is a direct consequence
of the divergence of the correlation length £ at the critical point. Close to a critical
point, the response functions Cp and x for a finite system can be expressed in the

following scaling forms (Ferdinand and Fisher (69])

Co(L,T) = [t|™*g(L/&(2))
X(L, T) = |¢|77 f(L/&(E)) (3.8)

where ¢t = (T — T¢)/T¢, and T is the critical temperature of the corresponding

infinite system. g and f are non-singular scaling functions with the following limiting

behaviour
g(z), f(z) = const for £ = > , (3.9)
f(z) = 2 for £ =0 , (3.10)
g(z) » /¥ for £ =0 . (3.11)

The first of these limits ensures the correct scaling relations Cp ~ ¢t~ and x ~ |t|™
in the limit where L — oo. Since £(t) ~ |t|~ close to a critical point, the other
two limits ensure that the response functions are temperature independent as the
correlation length becomes much larger that L. Eq. (3.10) and Eq. (3.11) predict the
following finite size scaling relations for the maximum of the specific heat, Cp max,
the maximum of the order parameter susceptibility, xmax, as well as for the half

width of the susceptibility curve, §x (Plischke and Bergensen [89}])

Cepmax ~ LoV |
Xmax ~ L, (3.12)
dx ~ L7 .
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N 125 1,000 64,000 1000,000
Ppe 8% 49% 14 % 6 %

Table 3.1: Percentage of particles (Pin:) in the interface of a cubic domain containing N particles.
Only the outermost particles are assumed to belong to the interface. (Adapted from D. Frenkel and
B. Smit [97] p. 184.)

For first order phase transitions, the nature of the finite-size effect on the phase
behaviour is totally different. At a first order phase transition, two equilibrium phases
coexist at a point where the temperature, pressure and chemical potential are identical
for the two bulk phases. For an infinitely large system, the thermodynamic properties
are hence determined by the properties of the bulk phases. This is because the number
of particles on the interface between the two bulk phases is vanishing small compared
to the number of bulk particles. In a finite size system, the situation is quite different.
Here the number of particles on the interface plays an important role and even for
rather large systems the fraction of particles on the interface is not negligible (see
Table 3.1).

The phase behaviour close to a first order transition for a finite-size system hence
depends strongly on system size simply because a large fraction of the particles is
at the interface between the two coexisting phases. A direct simulation of phase
coexistence is difficult under the best circumstances and often even impossible be-
cause of the large system sizes needed for the effects of the interface to be negligible.
Many different methods have been developed to deal with the problems of simulat-
ing first order phase transitions and coexistence in a finite system. Two important
methods are the finite size scaling theory of Lee and Kosterlitz ([90]) described in
Section 3.1.4 and a series of techniques, commonly denoted Gibbs ensemble tech-
niques, that simulate coexistence indirectly without having to deal explicitly with
an interface (Panagiotopoulos [87]; Kofke [93]). In this work, we concentrate on the
application of the finite size scaling method and we will not give here a detailed de-
scription of the different Gibbs ensemble methods but rather refer the reader to the
book by D. Frenkel and B. Smit ([97]) and references in this book.

When analyzing the thermodynamic models defined in Chapter 2, we are dealing
with systems undergoing solid-liquid phase transitions. It is in general a very difficult

and time consuming task to perform direct Monte Carlo simulations of a solid-liquid
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phase transition. The problems associated with a direct simulation of a solid-liquid
phase coexistence are described in Section 3.1.5.

In the simulations of the phase equilibria of two component systems (Model IV), we
perform the simulations within a semi-grand canonical ensemble. In the semi-grand
canonical ensemble, the relative concentration of the two components is allowed to
fluctuate. The equilibrium concentration is controlled by the difference in chemical
potential between the two species. A simulation at coexistence within the semi-
grand canonical ensemble thus samples the two pure equilibrium phases with equal
probability and hence samples the thermodynamic equilibrium distribution function
without generating an interface. The details of how this ensemble is implemented in

the Monte Carlo algorithm is given in Section 4.1.1.

3.1.3 Histograms and Ferrenberg-Swendsen Reweighting Techniques

As described in the Section 3.1.1, the Monte Carlo algorithm generates a random
sequence of points (microconfigurations) in such a way that the points are distributed
in phase space according to the probability distribution function p(!). Rather than
just calculating the thermal averages as given by Eq. (3.2), we can thus extract the
full information on the probability distribution function in a Monte Carlo simulation.

Some of the related techniques are now described.

Histograms

The probability distribution function, P3(E), at an inverse temperature 8 = 1/kgT

is defined as

Ps(E) = [ DF §(E - E'(7)) ps(7, E'(7)) (3.13)
=< 4§(E-E')>5 ,

where E’ is the operator returning the energy of a microconfiguration 7 and [DF
denotes integration over the entire phase space. In a Monte Carlo simulation, an
energy histogram can be calculated by dividing the energy of the sampled microcon-
figurations into groups of bin-width AF. The normalized energy histogram is then
given by
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5 Na(Ei)
Ps(E) = =——o=
() 2; Ns(E;)
where Nj(E;) is the number of microconfigurations with an energy E in the interval

(3.14)

E; - AE/2 < E < E; + AE/2. This energy histogram is then an approximation to

the exact energy distribution function of Eq. (3.13) since

Ps(Ei) = Ps(E:)AE . (3.15)

Once the histogram has been calculated for a thermodynamic quantity, X, it is

straightforward to calculate the thermal average of any function of this quantity

< f(X)>5= / dX f(X)Ps(X) (3.16)
~ 3 f(X)PsX) -

The Ferrenberg-Swensen Reweighting Technique

Ferrenberg and Swensen ([88]) developed an important technique that greatly reduces
the computational cost of analyzing the phase behaviour of microscopic models such
as those described in Chapter 2. Ferrenberg and Swensen noted that a probability
distribution function P, calculated at an inverse temperature §q can be reweighted to
another probability function at a new inverse temperature 3 close to J. The method
relies on the fact that the density of states, Q(F), for a system is independent of

temperature. The density of states is defined as

QE) =S 8(E - E'(l)) , (3.17)
i

where ¥°; denotes a summation over the entire phase space. The energy distribution

function is defined as

Pao(E) =< 6(E — E') >4,
=Y "4(E - E'())e MW Z,, (3.18)
{
e"ﬁOE

= 'Eﬂﬂo(E) -
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Using the fact that Q4,(E) = Qs(E), the energy distribution function at 8 can be

written as

Zgy _(4—
Ps(E) = ;;e (B=Bo)Ep, (E) . (3.19)

Now the ratio EZ-;; can be expressed in terms of the distribution function P4, (E) as
(4}

Zs _ 1 -0
Zﬁu Zﬂo l

- e~ (8—Bo)El) ,-GoE(l) (3.20)
Zﬁo ]

=3 e P Py ()

where we in the last line have used the definition for Ps,(E) of Eq. (3.18). Rewriting
Eq. (3.19) in terms of the energy histogram and substituting the result of Eq. (3.20)
we obtain a general expression for Py(E;)

Py (Ei)e™ 955

Palka) = T Ps,(Ej)e(B=5a)E; (3.21)

The reweighting technique can be generalized to any distribution function

P(X,Y, Z,---) with respect to the corresponding conjugated fields hy,hy, hz,---.
For our calculations, an important generalization is the reweighting of the two-
dimensional distribution function P, (E, N,}, where E is the total internal energy
(enthalpy) of the system, N, the number of sterol particles, and p the conjugated
field, i.e. the difference in chemical potential between the lipid and the sterol parti-
cles . If Pgy s, (E, Ny) is calculated at specific values Gy and pag, the distribution
function at a new set of values 3 and ua close to Gy and pag can be found from the

following reweighting relation

P, E, N, e~ (B=Ro)E o—(1raB—paobo)Ns
Psus(E,N,) = ﬂO.I-‘A_o( s)

- T Phopno(E's N )e—(B-Po)E' e—(uaB—paobo)N; (3.22)

Based on this two-dimensional distribution function, one can then calculate the two

one-dimensional distribution functions as
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Pous(N) = Paus(E.N) (3.23)
E

Pﬁ,#A (E) = Z Pﬂ,;m (E: N) . (3.24)
N

It is important to note that reweighting will only be accurate if the “overlap” be-
tween the “old” and the “new” histogram is large so that the “old” histogram has
an accurate statistical sampling where the “new” histogram has large values. Since
the probability function becomes extremely sharply peaked as NV — oo, the inter-
val over which the probability function is accurately sampled becomes narrower as
N becomes larger. The parameter interval where the reweighting technique is ac-
curate thus becomes very narrow as the system size is increased. An extension of
the Ferrenberg-Swendsen reweighting method has been reported by Ferrenberg and
Swendsen ([89]) and P.B. Bowen et. al. ([89]). This extension of the single histogram
technique provides an optimized method for combining the data from an arbitrary
number of simulations to obtain information over a wide range of parameters values
in form of continuous functions. However, the method still requires a substantial
overlap between the distribution function of the different simulations in order for the
calculation of the combined histogram to be accurate. Close to a first order transition,
the histogram must sample two coexisting phases and the corresponding free energy
barrier. In these situations, the combination of multiple histograms will not give an
improved statistical sampling of the free energy barrier and therefore will not provide
a significant improvement as compared to the single histogram method. In this work,

we have hence only applied the single histogram reweighting technique.

3.1.4 Spectral Free Energy Functions and Lee-Kosterlitz Scaling

It was realized by Lee and Kosterlitz ([90]; [91]) that a free-energy-like function
(the so-called spectral free energy function) can be constructed from the probability

distribution function Ps(E) as follows

BFs(E) = — InP4(E) . (3.25)
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Using the definition of Ps(F) (Eq. (3.18)) and the definition of the microcanonical
entropy function S(E) = kg InQ(F), the distribution function Pg(E) can be written

as

1
Ps(E) = Z—ﬁe"f"s‘”"s” : (3.26)

It can then be seen that the free energy function of Eq. (3.25) only differs from the
Helmholtz free energy F3(E) = E — ST of the system by an additive temperature

and system size dependent constant
BF3(E) =1InZsz + BF3(E) . (3.27)

At fixed size and temperature, the shape of F3(E) will be identical to that of F3(E)
and more important AF3 = F3(E) — Fz(E') will be equal to AFz = F3(E) - F3(E").

Based on this close connection between the spectral free energy function and the
real free energy of the system, Lee and Kosterlitz proposed a powerful finite-size
scaling method to determine the nature of a phase transition in a microscopic model.

Consider the spectral free energy function F4(E, L) calculated for a finite system
of size L close to a first order transition. Then F3(E, L) will have the general shape
of a double well function with minima at £ = E, and £ = E), corresponding to the
equilibrium energies of the two coexisting phases, respectively. The two minima will
be separated by a barrier AF(L) with a maximum at £ = E,;,,. The height of this
barrier is a measure of the interfacial free energy between the two coexisting phases

and is given by

A‘Fﬂ(L) = fﬂ(Emu, L) - Fﬂ(El,Z: L)
=y L4t + O(L4?) (3.28)

where d is the dimension of the system and -3 is the interfacial tension. This relation
provides a clear and unambiguous (at least in principle) way to distinguish the types
of transitions in play in a microscopic model. A first order phase transition is char-
acterized in the thermodynamical limit by a non-zero interfacial tension between the

two coexisting phases. Therefore, AFg(L) at a first order transition must increase
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monotonically with L. On the other hand, the interfacial tension vanishes in the ther-
modynamical limit at a critical point and AFg(L) therefore in this case approaches

a constant value. Finally, AFs(L) will tend to zero in the absence of a transition.

3.1.5 The Umbrella Sampling or Modified Hamiltonian Technique

One of the important criteria for the Metropolis Monte Carlo method is the ergodicity
criterion stating that the Monte Carlo algorithm must be designed in such a way that
the thermal average of a physical quantity is equal to the “time-average” of Eq. (3.2).
This means that, close to a first order phase transition, the Monte Carlo algorithm
must be able to sample microconfigurations corresponding to both of the coexisting
phases. In doing so, the system must “travel” through the energy barrier separating
the two coexisting phases several times during the simulations. At a first order
transition, where the free energy barrier is an increasing function of system size (see
Section 3.1.4), the use of the conventional Metropolis Monte Carlo scheme becomes
difficult for large system sizes since the large value of the interfacial free energy causes
the Monte Carlo trial moves to configurations with an interface to be energetically
highly unfavorable and hence very improbable.

Risbo et al. {{97]) developed a method based on a modified Hamiltonian to over-
come these difficulties. The method exploits the idea of constructing an “artificial”
Hamiltonian that gives a considerably diminished energy barrier. The name Umbrella
sampling refers to the bridging property of the Monte Carlo sampling of the “arti-
ficial” Hamiltonian, in that the distribution function of the “artificial” Hamiltonian
bridges the minimum in the distribution function separating the two coexisting phases
of the original Hamiltonian (Frenkel and Smit [97]).

The equilibrium distribution functions for the original Hamiltonian can then be es-
tablished from simulations of the modified Hamiltonian through a simple reweighting
relation. This method can be considered to be a generalization of other Monte Carlo
sampling schemes such as the multicanonical-ensemble scheme (Berg and Neuhaus
[92]). For a complete discussion of the method and related references, the reader is
referred to Ref. (Risbo. {97]).

In our simulation study of the microscopic model of Eq. (2.10), this method

was implemented in simulations performed within the semi-grand canonical ensem-
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ble. One of the most important equilibrium distribution functions in this ensem-
ble is Pg,, (€, zc), where 3 and pa are the thermodynamic control parameters, and
£ = % and z. are the energy per particle and the cholesterol concentration, re-
spectively. A corresponding spectral free energy function can now be defined as
Fsusle, zc) = —kgT In Py, (€, zc), which displays a barrier when coexistence condi-
tions corresponding to special values of T and pa are approached. Given an original
Hamiltonian, H, a natural candidate for a modified Hamiltonian can have the follow-

ing functional form,

H=H+ f(e) , (3.29)

where f(¢), known as the shape function, must be chosen in such a way that the
spectral free-energy function corresponding to the modified Hamiltonian shows no
significant barrier, as described below. Straightforward simulations of the modified

Hamiltonian yield a modified probability distribution function, P(e. z.),

Ple,ze) = 5 3 d(ef ~ )Y
i
= 215 (e - )W gmorew) (3.30)
ZZ%4

where Py(¢) is the probability function of the original Hamiltonian. Z can be ex-

pressed in terms of Z and the probability function Py as
7 = Z e—BH)
]

1 ,

=7 3 e Ol O) (3.31)

]

= 2 Pylenze )

i

We then find the following relationship between the modified distribution function

P(e, z.) and the original distribution function P(e, z.),

P(E, zc)e_ﬁf(e)

D(e, 1) = — .
P( -'l'c) 25',::{. 'P(E', zlc)e—ﬂf(e )

(3.32)

An expression for P(e,z.) can then be obtained from P(g, z.), based on the above
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equation and the normalization of P(e, z):

_ Ple,zc)ef )
Plers) = 5 (e, e (333

which leads to the following definitions

Plz.) = E'P(e,xc) ,
Ple) =) Ple,zc) - (3.34)

A judicious choice for f(e) requires some prior knowledge of the original spectral
function F(e) = —kgT InP(e); such knowledge can be obtained from simulations of
systems of very small sizes. Establishing the phase diagram, especially the loci of
phase coexistence, requires sufficient data from systematic simulations of systems of

larger sizes. Iteration of a five-step procedure accomplishes the task:

1. At values of T and pa estimated to be close to true coexistence conditions, an
initial estimate of F (<) is obtained from a simulation of a system of a relatively

small size L governed by the original Hamiltonian H.

2. An extrapolation based on the size dependence of the energy barrier is used to
approximate the barrier of a system of larger size, L', and in turn, the shape

function:

fle) = -Fu(e) = “%fL(E) , (3.35)

when ¢ lies in the barrier region. f(¢) then defines the modified Hamiltonian
of Eq.(3.29) which is used in a second simulation of a system of size L'. From
this simulation, the modified probability distribution function, P (e, z.), is

obtained.
3. Pr(e, z) is reconstructed from Py (e, z.) by use of Eq. (3.33).

4. Based on Py:(g,z.), the Ferrenberg-Swendsen reweighting technique (Ferren-
berg and Swendsen [88]) is applied in order to obtain a better estimate of the
coexistence values of T and p, and an improved approximation of F(e) at the

coexistence by F/(¢).
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5. If desired, another iteration is started from step (2) with F(¢), either to obtain
an improved statistical sampling of Fy. (e, z.) for the same system size or to

simulate a larger system.

The Use of the Umbrella Sampling Technique

In order to demonstrate the strength of the Umbrella sampling method, we now give
a description of the general use of the method and the details of its application to
the specific problem of sampling the free energv barrier between a liquid and a solid
phase for the microscopic model of Eq. (2.10).

The Umbrella sampling technique is in the most cases applied to systems where
the interfacial free energy between two coexisting phases is large. In these cases, the
use of the modified Hamiltonian will allow for an efficient sampling of both of the two
coexisting phases as well as the free energy barrier separating the equilibrium phases.
This is because the ensemble described by the modified Hamiltonian samples all the
corresponding microconfigurations with equal probability (Risbo. [97]). The use of
the Umbrella sampling technique will hence enable an accurate and effective sampling
of the free energy barrier of magnitude larger than kg7". This can be illustrated by a
simple example. A simulated process during which the system passes through a region
of the barrier between two coexisting equilibrium phases corresponds to a sequence of
correlated simulation steps. Each simulation step in the barrier-crossing sequence can
only be tried with a probability ag and realized with a smaller probability age#2E1,
where AE| represents the energy increase in a single simulation step. Crossing a high
or even modest energy barrier, AE, therefore implies a long sequence of simulation
steps and is dictated by a total probability of roughly (ag)¥e?2£, where M is the
number of steps in the sequence. For a conventional Monte Carlo algorithm used in
the simulation of a lattice model such as the Doniach model described in Section 2.2,
the value of M will generally be of the order of unity since the algorithm can in a few
Monte Carlo steps generate variations in the microconfigurations corresponding to a
change from one coexisting phase to the other. The average simulation time needed to
cross the barrier will thus be of the order e?2£. If, for instance, BAE = 15, then the
time to cross the barrier will be of the order 107 MCS, making an accurate sampling

of the free energy barrier a very time-consuming and inefficient process. On the other
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hand, the use of a modified Hamiltonian will effectively remove the free energy barrier
and thus allow for an accurate and efficient sampling of the equilibrium distribution

function.

In the case of a random lattice model, the situation is more complicated. In
these models, the phase space associated with each single molecule is very large.
Each simulation step involves only a small variation in microscopic configurations, or
microscopic energy, of the system. In the random lattice algorithm (as in conventional
off lattice algorithms), the Monte Carlo move of a particle is thus confined to be within
a small box of size 8rprax X d7pr4x (see Section 3.2). Crossing an even modest energy
barrier, AE, therefore implies a very long sequence of correlated simulation steps.
The total probability of realizing the sequence of simulation steps is still roughly
(ap)Me P2E but now this probability is made very small by the large number of
steps in the sequence, M. For a modest height of an energy barrier of 4kgT, one
barrier crossing from a solid to a liquid phase requires typically 107 MCS for a system
of linear size L = 12. This difficulty makes it practically impossible to reliably identify

solid-liquid phase transitions.

The problem of accurate sampling of the free energy barrier separating the two
phases with different lateral structures is thus not only related to the height of the
free energy barrier alone but also (and more importantly) to the low probability for
generating the long correlated sequence of Monte Carlo steps that will take the system
from one free energy minimum to the top of the free energy barrier. It is clear that the
value of M will increase with the system size L, and the probability of generating the
sequence of Monte Carlo steps will thus decrease with system size, making it difficult

to sample accurately solid-liquid transitions for large system sizes.

The part of the problem of accurate sampling which is due to an extremely small
value of (ap)¥ is inherent in the random lattice algorithm and, therefore, cannot be
removed unless special algorithms are designed and implemented. However, the part
of the difficulty that arises from the energy barrier can be overcome by employing the
Umbrella technique. This method greatly reduces the computational cost associated
with an accurate sampling of the free energy barrier. A removal of a moderate free

energy barrier of height 3AF ~ 4 will thus reduce the time cost of the simulations
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by a factor e#4F ~ 50.

In Fig. 3.1, we demonstrate the use of the Umbrella sampling technique. The figure
shows the results of a simulation of the model defined in Eq. (2.10) for a system size of
L = 16 at a temperature of T = 0.969T!. Fig. 3.1(a) shows the enthalpy per particle
as a function of Monte Carlo time calculated using a modified Hamiltonian. As is
clear from Fig. 3.1(a), the Monte Carlo time needed to obtain an accurate sampling
of the free energy barrier (i.e. the time needed to perform a large number of barrier

crossings) is large even for this rather small system size.

1 st _—
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Figure 3.1: Simulation data for the model defined in Eq. (2.10) for a system size of L = 16 at a
temperature of T = 0.969T\; (a) The enthalpy per particle as a function of Monte Carlo time (cal-
culated using the modified Hamiltonian). (b) The different histograms calculated using a modified
Hamiltonian. Curve (a) (e) the initial estimate of the shape function f(g). Curve (b) (o) the spectral
free energy function for the modified Hamiltonian. Curve (c) (solid O) the spectral free energy of
the original system. Curve (d) (A) the spectral free energy function at coexistence.

Fig. 3.1(b) gives the different histograms obtained from the simulations using the
modified Hamiltonian. As an initial estimate for the shape function, f(¢), a rescaled
form of the spectral free energy function F(¢) calculated for a system size of L = 14
(see Eq. (3.35)) is used. The simulations sample the distribution function of the
modified Hamiltonian P(g, z.) and the corresponding spectral free energy function,
F(¢), is calculated. Here, ¢ is the internal energy per particle and z. is the relative
cholesterol concentration. Based on Eq. (3.33), the distribution function of the orig-
inal Hamiltonian is obtained and the corresponding spectral free energy function is

calculated. Finally, we use the reweighting technique defined in Eq. (3.22) to obtain

1For a definition of T see Section 5.1.
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the distribution function, the corresponding spectral free energy function F(z.), F(¢)

. and the values of T and Ay at coexistence. The initial shape function f(¢) and the
different spectral free energy functions are all shown in Fig. 3.1(b).

Fig. 3.1 demonstrates that the Umbrella sampling is indeed able to remove the

free energy barrier between the two coexisting phases and hence allows for an efficient

sampling of both the free energy barrier and the two equilibrium phases.

3.2 The Random Lattice Description

In this section, the random lattice algorithm is introduced. The algorithm provides
the basic representation for the translational degrees of freedom, upon which the
specific microscopic models of Chapter 2 are constructed so as to take into account
the conformational degrees of freedom and their coupling to the translational degrees
of freedom. The description is, to a large extent, similar to the dynamic-triangulated
random network applied in the study of fluid membrane conformations (Boal and Rao
[92]; Kroll and Gompper [92]; Jeppesen and Ipsen [93]). In the following, we will use
. the word random-lattice when referring to the dynamic-triangulated random network
representation of the translational degrees of freedom of a two-dimensional system.
A full microscopic (or first-principles) treatment of the translational degrees of
freedom would be ideal. Such a treatment is, however, computationally demand-
ing and severely limits numerical studies involving translational degrees of freedom'.
Consequently, different approximation schemes are usually employed, depending on
the nature and scope of the study. For example, lattice-gas models are used to de-
scribe systems of interacting particles and gas-liquid transitions. In these models,
the structure and the occupation of lattices account for the hard-disk repulsion, the
short-range nature of the molecular interactions, and the translational entropy. De-
spite the simplifications underlying these models, they are able to capture the generic
thermodynamic properties of gas-liquid transitions for which the full translational

invariance of the system is preserved. It is necessary to invoke a different kind of

'Recent molecular dynamics calculations for pure lipid bilayers in both the so and Id include: (Heller,
Scheaffer and Schulten [93]; Chu et al. [95]; Tu, Tobias and Klein (95]; Tu et al. [96]). However such
studies cannot as yet be used to examine the regions of phase transition due to the large calculational

‘ times required for systems of sufficiently large size.
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approximation scheme, however, if breaking of the translational symmetry occurs, as
. is the case with solid-liquid phase transitions.

In the present work, we have developed a simple description based on the idea of
representing microscopic spatial configurations of many-particle systems by configu-
rations of a randomly-varying triangular lattice. This random-lattice description is
formulated in such a way that it is adequate both for describing collective phenomena,
manifesting the interplay between the conformational (in our case lipid chain confor-
mational) and translational degrees of freedom in a class of two-dimensional systems,
and suitable for computer simulations. It is different from conventional lattice de-
scriptions, in that the lattice structure is dynamic: it can be seen as the result of
“fluidizing” a regular triangular lattice through sampling over non-regular triangular
lattice configurations with a fixed global topology. The global topology is here given
by the Euler characteristics cf the regular triangular lattice!. The phase space for the
translational degrees of freedom includes both the fluid phases, which have full trans-
lational symmetry, and the solid phases which represent a broken symmetry. The
algorithm enables us to access both types of phases. Our description is also different

. from conventional off-lattice descriptions in that it only provides a restricted phase
space: those microscopic configurations that correspond to large density fluctuations
on short length scales are effectively excluded. This approximation is, nevertheless,
sufficient for describing condensed fluid phases of systems of hard-disk particles with
short-range interactions.

The translational degrees of freedom of a 2D many-particle system are conveniently
represented by the planar coordinates, (z,y), of the particles. A particle configura-
tion is therefore given by {(z,,y,),n = 1,...,N}, where N is the total number of
particles. When dealing with interactions between particles, the most important in-
formation required concerns the local environment of each individual particle, such
as the distribution of other particles in its neighbourhood and their distances from
it. In conventional simulations that explicitly deal with the translational degrees of

freedom, it is usually one of the most time-consuming steps to obtain and update this

The Euler characteristic of the regular triangular lattice with periodic boundary conditions is given
by x = N - Lg + Nt = 0, where N is the number of lattice sites, Lg is the number of bonds and
‘ N is the number of triangles.
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information from the microscopic configurations. In this Section, we describe an al-
gorithm which handles structural information in a manner that is distinctly different
from conventional off-lattice algorithms, and which at the same time achieves high

computational efficiency.

3.2.1 Detailed Description of the Algorithm

Our algorithm is a version of the dynamic-triangulation algorithm used for modelling
fluid membranes (Dammann et al. [95]), adapted to 2D planar systems of many
particles. The algorithm performs two essential tasks: 1) it generates the phase space
associated with the translational degrees of freedom, and 2) it generates and retains a
compact data structure that allows efficient access to structural information contained
in each microscopic configuration. The data structure is based on triangulation of each
spatial configuration of the particles. This triangulation is implemented as follows.
An ordered configuration in which the particles are positioned on a regular triangular
lattice is used as an initial state in which each site is linked to its six nearest neighbours
by tethers. The lattice configuration is then represented by a network of tethers
forming triangles; the term “triangulation” refers to this representation. Each site in
the random lattice is occupied by a hard disk and a model particle is associated with
every hard disk. The phase (or configuration) space can then be explored through
a random updating (or stochastic evolution) of configurations of the lattice, which
consists of three steps to be described in the following Subsections. All these steps are
subject to the standard Metropolis Monte Carlo (MC) acceptance criterion Eq. (3.3).
The central data structures in the random lattice algorithm and a detailed description

of the updating methods for the random lattice are given in Appendix A.1.

(a) Particle Moves

The first step in the MC updating procedure is the “particle move”, which is illus-
trated in Fig. 3.2. A particle is chosen at random and its center is subject to a random

displacement (dz, dy) where

oz = (2¢z — 1)drmax



3.2 The Random Lattice Description 59

¢z and (, are random numbers, 0 < (;,) < 1. The value of dryax is adjusted
during the simulations so that approximately 25 % of the moves are accepted. The
acceptance criterion of 25 % is found to ensure that the range of particle displacements
is sufficiently large to allow for an efficient sample of the phase space. Moves which
would result in an overlap of hard disks are always rejected. Another constraint is

that the length of every tether is not allowed to exceed a maximum value may.

N
SR

Figure 3.2: Particle move. The hard disk at position P is moved to position P’.

(b) Link Flip

The second step is referred to as the “link flip.” In every configuration of the random
lattice, each tether (or link) is one diagonal of a quadrilateral formed by the two
adjacent triangles. In the “link flip”, a tether is chosen at random; this tether is
replaced by a tether along the other diagonal of the quadrilateral if the length of the
replacement does not exceed [max, and is kept otherwise. A “link flip” is illustrated

schematically in Fig. 3.3.

Figure 3.3: A tether (shown as a thick line) is replaced by another tether along the diagonal provided
that the length of the new tether does not exceed I 2.

The combination of the particle move and the link flip makes the lattice “dynamic”

(or random) in the sense that its configuration evolves through stochastic variations
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in both the local connectivity of the lattice and the real-space coordinates of the par-
ticles. This ensures both particle diffusion across the whole system and fluctuations in
local particle distribution, as required in any description of the translational degrees

of freedom.

(c) Change of System Size

In the constant (V, P,T) ensemble used in the simulations it is necessary to allow
the area of the 2d system to fluctuate. In our simulations this is achieved via a third
step in the MC procedure - a random uniform expansion or contraction of the whole
system (McDonald {72]). In this step, a random change in the size of the system is

generated by rescaling the length as follows
dL = (2¢ — 1)0Lmax (3.37)

where ( is a random number, 0 < ¢ < 1, and the coordinates of all particles are
rescaled accordingly. If the distance between any two particles after the rescaling is
smaller than the hard-disk diameter, the change is always rejected. The maximum
possible size change, d Lyax, is adjusted during the simulation to give an acceptance
ratio of about 50 %. The criterion of a 50 % acceptance ratio is found to ensure an
efficient sample of the phase space.

In this MC updating procedure for change of system size, the probability of accept-
ing a move from a state with an area A; = L? to a state with an area Ay = (L +4L)?
is determined by min(1,e-#*#), where H defined as H = Hpode + Hup. Himodel is the

microscopic model Hamiltonian describing the interactions between the particles and

Hup = PA-kgTNInA . (3.38)

The first term in Hyp represents the energy associated with the lateral pressure, P,
and the second term reflects the degeneracy of a microscopic configuration of 2V
translational degrees of freedom. A derivation showing that the Hamiltonian defined
by Eq. (3.38) does indeed generate the constant N — P — T ensemble is given in
Appendix A.2.

In order for the simulational algorithm to obey detailed balance, we combine all

of the updating procedures in a random manner so that the symmetry of the Markov
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chain generated by the algorithm is maintained (see section 3.1.1). This means in
practice that there must be no preferred sequential order in the way the different
updating procedures are performed (Frenkel and Smit [97]). We define for our sim-
ulations, a time unit of one Monte Carlo step (MCS), which is the time needed to
perform on average one complete pass through steps (a), (b) and (c), and one com-
plete run through changing the molecular type or conformational state of each particle
in the system.

A sufficiently large number of the simulation steps then generates a configuration
(phase) space that is characteristic of the translational degrees of freedom of the
system. It is important to emphasize that the given Hamiltonian H,.qe describing
the microscopic interactions between particles is included in the acceptance criterion

of Eq. (3.3) for all of the three steps in the MC update for the random lattice.

3.2.2 The Hard Disk Model

The value of /.- is kept fixed during the simulations. This constraint on the maxi-
mum tether length ensures that configurations where two tethers cross are excluded
from the configurational space accessed by the algorithm. The main data structure
used in our algorithm describes the position of each individual particle relative to its
tethered neighbours. This is referred to as the “link structure.” When the tether
length is bounded, a one-to-one mapping can be efficiently established from a given
link structure to a nearest-neighbour structure. It can be expected that the con-
straint on the tether length prevents the algorithm from accessing the entire phase
space spanned by the 2D translational degrees of freedom, since those microscopic
configurations that correspond to large fluctuations in the particle density are not
compatible with this constraint. In order to assess the validity of this approximation,
we have revisited the system of non-interacting hard disks by studying the solid-liquid
transition in this system in the presence of our constraint. This solid-liquid transition
is solely driven by the configurational entropy associated with the 2D translational
degrees of freedom. Moreover, a recent simulation study by Lee and Strandburg
([92]) using a full off-lattice algorithm provides quantitative information on the tran-
sitional properties and presents numerical evidence that the transition is of first-order

(although this subject still remains a contentious issue). A numerical study of this
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system using our random-lattice algorithm therefore allows us to assess quantitatively
any restrictive effect that the constraint may have on the representation of the trans-
lational degrees of freedom. We expect that, once the constraint is effectively removed
by allowing a large value for the maximum tether length, our algorithm should lead to
results that are consistent with those obtained by using the full off-lattice algorithm
(Lee and Strandburg [92]; Fernindez, Alonso and Stankiewicz [95]).

In the following, we give a short summary of the results of our study of the hard-
disk system with the random-lattice algorithm. A hard-disk system with N = L? =
122 particles was simulated for two cases with respect to the constraint of the max-
imum tether length. In the first case, a strong constraint was employed in the al-
gorithm; in the second case, this constraint was relaxed. In the case of the relaxed
constraint the algorithm was modified to include a cell-list structure to facilitate a
fast check of steric interactions between neighbouring hard disks (Allen and Tildesley

[87]). During the simulations, the structure factor of the system was calculated as
S(k) = <Ze"(§’”§’)'5> : (3.39)
LJ

where R,J is a two-dimensional vector giving the position of disk i (j) and (.. .) denotes
a thermal average. In Fig. 3.4, S(k) is shown for different values of the reduced lateral
pressure, P* = l%:" where d is the hard-disk diameter. For the constrained case, there
is a clear change in lateral order as the value of the reduced pressure is changed from
8.75 to 9.75, as indicated in Figs. 3.4(a) and 3.4(b). Using the reweighting histogram
method (Ferrenberg and Swendsen (88]), we found the position of the transition to be
at P* >~ 9.15. We also estimated the change in the average area per molecule across
the transition to be Aa = a — a5 >~ 0.014, where ay)) = %ﬂg}% and Ay is the total
area of the solid (liquid) phase. As the constraint on the tether length is relaxed, the
lattice-melting event shifts to a value of the reduced pressure between 8.25 and 8.75,
as illustrated in Figs. 3.4(c) and 3.4(d). Again, by using the reweighting histogram
method, the position of the solid-fluid transition is found to be located at P* ~ 8.55,
and the value of the area change across the transition is estimated to be Aa ~ 0.052.

These results demonstrate that, as the constraint is relaxed, our simulation data

tend toward the results for P* obtained from other off-lattice studies of the hard-

disk system (Lee and Strandburg [92]). For example, the work reported in Ref. (Lee
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(c) (d)

Figure 3.4: Contour plot of the structure factor S(k) in the (k;, k) plane calculated for the hard-disk
system of size N = 144. In (a) and (b) {{max) =~ 1.73d and d = 0.6. Here (---) denotes a thermal
average. In {c) and (d) {{max) ~ 7d and & = 1.0. The value of the reduced lateral pressure is (a) P*
= 9.75, (b) 8.75, (c) 8.75 and (d) 8.25. The position of the first Bragg-peak is at a k-value of 27 /d,
which for the system (a) corresponds to |k| ~ 10.5 and (c) |k| ~ 6.28.

and Strandburg [92]) estimates that P* ~ 8.0 and Aa = 0.05 in the limit of L — oc.
Our results also show that the essential characteristics of the transition remain largely
intact in the random-lattice algorithm, although imposing the constraint of maximum
tether length results to a certain extent in changes in transition quantities, such as
the small shift in the transition pressure. However, since we have not in the present
work performed a systematic finite-size analysis or a detailed study of the relaxation
times (Fernindez, Alonso and Stankiewicz [95]), we will not make a closer comparison

with the results from other theoretical work on the hard-disk melting transition.
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4

RESULTS FOR PURE SYSTEMS

In this chapter, we describe the phase behaviour of the single component models,
Models I-III, defined in Chapter 2 as obtained from the Monte Carlo simulations.
The presentation falls naturally in two parts. The first part contains the results of
the simulational study of Ising Models [ and II, and the second part describes the

results for the extended Doniach model, Model III.

4.1 Details of the Simulations

Before presenting the numerical results obtained from the simulation studies of the
microscopic models of Chapter 2, we describe the statistical-mechanical formulation
of the problem in terms of thermodynamic ensembles and the simulation procedures.

The systems under consideration consist of a total number of N particles confined
in a simulational box with periodic boundary conditions. All simulations were per-
formed using the Monte Carlo Metropolis algorithm defined in Eq. (3.3), for fixed N,
T and surface pressure II.

The simulations were initialized using a lattice configuration which was crystalline
(regular triangular) and the internal degrees of freedom were disordered. This initial
configuration was then equilibrated by the Metropolis Monte Carlo algorithm to a
high-temperature disordered state in both the translational and internal degrees of
freedom. The high temperature equilibrium state then served as the initial state
for the simulations at lower temperatures. In the case of a cooling experiment the
equilibrium states at lower temperatures were reached by cooling down from the high-
temperature state in small temperature steps. In each of the cooling steps, several
Monte Carlo updating steps (Monte Carlo steps per particle, MCS) were discarded

before the measurement of various physical quantities of the equilibrated system was
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started. Depending on the particular model, the number of MCS used to reach the
equilibrium high-temperature state was between 30,000 and 200,000. The number of
MCS discarded in the subsequent temperature steps was between 10,000 and 200,000.
The measurement of various physical quantities was performed over a simulation
period of 30,000 to 5-10° MCS for simulations within the canonical ensemble (see
below) and over a simulation period of 10-200-10° MCS for the simulations within

the semi-grand canonical ensemble.

4.1.1 Statistical Mechanical Ensembles

The acceptance criterion and the class of Monte Carlo trial moves for the Monte Carlo
algorithm of Eq. (3.6) is specific to the statistical ensemble to be generated in the
Monte Carlo simulations. For the single component systems defined by the Models
I-III, the natural ensemble is the constant N — P — T ensemble. In Appendix A.2,
it is shown that acceptance criterion defined by the Hamiltonian of Eq. (3.38) does
indeed generate the distribution function corresponding to this ensemble.

For the Models III-IV which contain two types of molecular species, two different
statistical mechanical ensembles were used: (a) the semi-grand canonical ensemble, in
which the relative number of “sterol” particles was controlled by a parameter, p,, the
difference between the chemical potentials of “lipid” and “sterol” particles, and could
therefore fluctuate; and (b) the canonical ensemble, in which the number of “sterol”
particles, and thus the “sterol” concentration, z., was fixed. The two formulations
are complementary to one another. The canonical ensemble in our formulation is
similar to the constant N — P — T ensemble defined above.

The semi-grand canonical ensemble is generated by using the Monte Carlo Metropo-

lis acceptance criterion with the model Hamiltonian modified as:

Hsemi—grand = Hmodet + piaNsterot (41)

where Ny.ro is the number of sterol molecules in the system and p, is the difference
in chemical potential between the lipids and the sterol particles. The terminology
semi-grand canonical ensemble refers to the fact that the total number of particles

is kept fixed in the simulations and that only the relative concentration of sterol
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particles is a fluctuating quantity as opposed to the grand canonical ensemble where
the total number of particles is a fluctuating quantity.

The simulations based on the semi-grand canonical ensemble immediately give the
equilibrium probability distribution as functions of T and pa, for relevant quantities
such as the “sterol” concentration. The phase diagram of the system, both in the
(ea, T) representation and in the (z., T), can then be unambiguously obtained from

these probability distributions.

4.2 Ising Model I and Ising Model II on a Random Lattice

Ising Models I and II were formulated to describe two-dimensional systems where
both internal (spin) and translational degrees of freedom are present and are cou-
pled through microscopic interactions. Consequently, characterization of the phase
behaviour of these model systems requires knowledge of the macroscopic behaviour of
both types of degrees of freedom. As the macroscopic behaviour of the translational
degrees of freedom is described as either solid (s) or liquid (1) and that of the spin
degrees of freedom is characterized as either (spin) ordered (o) or (spin) disordered
(d), each model system can in principle have four different phases: a solid-ordered
(so) phase, a solid-disordered (sd) phase, a liquid-ordered (lo) phase, and finally a
liquid-disordered (ld) phase. We use this terminology below in our description of the
phase behaviour of the models. Our simulation study of the models concentrates on
identifying these phases in parameter spaces of the models, locating the boundaries
between the different phases and characterizing the nature of the thermodynamic

singularities associated with the phase boundaries.

4.2.1 Ising Model I.

For Ising Model I, a convenient choice for the parameter space is given by a reduced
lateral pressure, defined as Pd?/J;, and a scaled temperature T/Tc, where T¢ is the
critical temperature of the spin transition in the Ising model on the regular triangular
lattice. The simulation study of Ising Model I was performed for a range of values
of the reduced lateral pressure and the reduced temperature. The results show that

the four phases described above are indeed all present in the region of the parameter
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space explored. Moreover, the phase boundaries separating these four phases are
' simply two intersecting lines. One line is predominantly controlled by the solid-
liquid thermodynamic singularity and is considered to be a first-order line. This line
will be termed as the “lattice-melting” transition, while the second line is mainly
associated with a critical order-disorder transition of the spin system. Specifically,
the low-pressure, high-temperature phase is the 1d phase, and the low-temperature
high-pressure phase is the so phase. The low-pressure intermediate phase is the lo
phase; and the high-pressure intermediate phase is the sd phase. For low pressures,
e.g., Pd*/Jy = 10.0, the critical Ising spin transition has a higher temperature than
the lattice-melting transition. As the pressure increases, the temperature difference
between the two transitions decreases. At the point of intersection, where Pd?/J, =
30.0, the two transitions coincide in temperature. For higher pressures, e.g., Pd?/Jy =
50.0, this ordering in temperature is reversed and the lattice-melting transition has a
higher temperature than the Ising spin transition.
In order to investigate the critical behaviour of the Ising spin transition for this
model and to compare it to that of the regular-lattice [sing model, a detailed finite-
‘ size scaling analysis of the simulation data for this transition was carried out. The
scaling relations for the thermodynamic response functions Cp and x are given in
Section 3.1.2, Eq. (3.12). Fig. 4.1 shows the results of the analysis of three sets of
simulation data obtained for three different values of the lateral pressure, Pd?/Jy
= 10.0, 30.0 and 30.0, as cited in the previous paragraph. The total number of
particles, N = L2, varied in the finite-size scaling analysis from 64 to 400. In our
analysis, the value of xymax (CpMax) was taken as an average of the maximum value
of the susceptibility (the specific heat) over five different simulation runs. The value
of Jx was taken as the average value of the half width over the five different x curves!'.
As is clear from Fig. 4.1, the critical exponents ¥ and v found from the finite-size
scaling analysis are, within the statistical error of the calculations, consistent with

those of the 2D regular-lattice Ising model (y = 7/4,v = 1) (Stanley [71]).

!More accurate values of these three quantities can obviously be obtained by performing longer

simulations in conjunction with the Ferrenberg-Swendsen reweighting technique (Ferrenberg and

Swendsen [88]). For the present purpose, it is however sufficient to use the peak position and the
‘ height of the response functions as estimates for xmax(L), Cp,max(L) and dx(L).
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Figure 4.1: Finite-size scaling plots for Ising Model I in the cases of three different values of Pd*/Jy.
(a) xarax ~ LY and (b) dx ~ L~'/¥. The upper curve (A) corresponds to Pd®/Jo = 10.0, the
middle curve (o) to Pd?/Jy = 30.0, and the lower curve (o) to Pd®/Jy = 50.0. For clarity the three
curves are shifted along the vertical axis. (a) The values for the ratio of the exponents v and v for
the three curves are 1.76 £0.02, 1.73 + 0.02, 1.78 + 0.05, respectively. (b) The corresponding values
of the exponent 1/v are 0.98 + 0.04, 1.06 £ 0.06 and 1.09 % 0.05, respectively.

It would be much more demanding to perform a finite-size scaling analysis of the
specific heat (data not shown) because of the very weak singularity and the influence
of a non-singular term in Cp which cannot be neglected at finite L. However, the Cp-
data for the larger system sizes gives a weak dependence of Cp yiax(L) on L, indicative
of a small specific-heat exponent, a ~ 0, consistent with the logarithmic singularity
(a = 0) associated with the regular-lattice Ising critical behaviour. We thus conclude
that, within the range of lateral-pressure values studied in our simulation, the Ising
Model I defined on the dynamic random lattice belongs to the same universality class

as the regular-lattice [sing model.

Overall, the simulation study of Ising Model I shows that there is no significant
macroscopic manifestation of the microscopic coupling between the spin and the trans-
lational degrees of freedom. This observation can be rationalized as follows. In this
model, the particle-particle interaction has no distance dependence, and the micro-
scopic coupling between the two types of degrees of freedom is only facilitated through
the fluctuating local connectivity of the lattice. In the condensed systems considered
here, not only are the fluctuations in the local connectivity of the lattice small, but
there is also no change in the macroscopic value of the local connectivity as the sys-

tems change from solid to liquid state. In other words, the microscopic coupling
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does not give rise to a strong coupling between the spin and the translational de-
. grees of freedom that alters the characteristics of their corresponding thermodynamic

singularities and macroscopic phase behaviour.

4.2.2 Ising Model II.

Ising Model II describes a more complex type of microscopic coupling between the
spin and the translational degrees of freedom: In addition to the coupling through the
fluctuating local connectivity, there is also coupling through the distance-dependent
(Ro) spin-spin interaction. The emphasis of our study of this model is to investigate
whether the more complex microscopic coupling will lead to intricate coupling at the
macroscopic level, and in turn, to more complex phase behaviour.

Indeed, Ising Model II was found to have more complex phase behaviour, in partic-
ular with respect to the coupling of the degrees of freedom at the macroscopic level.
Displayed in Fig. 1.2 is the phase diagram for the model, given in the parameter
space of the reduced pressure and the scaled temperature for a fixed %‘1 = 1.41.

The phase diagram was obtained from simulation data and our analysis of that

. data. Again, as in Ising Model [, the four principal phases are all present, and the
remnant of the phase diagram of Ising Model [ can be seen in the low-pressure and
high-pressure regions of the parameter space, where the lattice-melting transition
and the critical spin transition are decoupled and where lo and sd phases intervene
between the so and the 1d phases. However, the phase boundaries separating these
phases no longer consist of two intersecting lines alone. A new phase boundary
directly separating the so and the ld phases, is now present, as indicated by the

solid line between the two special points, t; and ¢t,. These two points are in fact

tricritical points (see below) and their locations, (%! = 35, 7%: = (0.945) and
l 3
(PT‘;iL = 40, %L = 1.035), as indicated in the phase diagram are only estimates
2 2

(which include finite-size effects) !. Along this phase boundary, which is of first order,

the translational degrees of freedom override the spin degrees of freedom and the

'To determine the precise locations of the two tricritical points requires a detailed analysis based on
finite-size scaling theory, which however, is computationally very demanding and outside the scope

of the present work. The important point is that we were able to establish the existence of these

. two points.
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Figure 4.2: The phase diagram for Ising Model II for Ry/d = 1.41. The dashed phase boundary line
(o) corresponds to the critical [sing-like transitions from a spin-ordered (o) to a spin-disordered (d)
phase. The solid boundary line (o) corresponds to the first-order lattice-melting transition from a
solid (s) phase to a liquid () phase. ¢, and ¢, are the two tricritical points described in the text.
Between the two tricritical points the spin order-disorder singularity is coupled to the lattice melting
and is of first order.

lattice-melting transition preempts the critical spin transition, leading to a first-order

singularity also in the spin order parameter.

Presented in Figs. 4.3-4.5 is a collection of simulation data obtained for Ising
Model II, which corroborates the phase diagram. Fig. 4.3(a) shows the change of
area (per molecule) with temperature for a set of values of pressure that cover the
parameter range investigated. An abrupt change in the area takes place at a specific
pressure-dependent temperature for all the pressure values considered. The corre-
sponding response function, the reduced area compressibility, K* = K/3d?, given in
Fig. 4.3(b), displays the signature of the same singularity. The sharpness of the peaks

is taken as the indication of a first-order lattice melting transition.

The critical spin order-disorder transition, existing in both the low-pressure (P <
P, ) and the high-pressure (P > P,,) regions, is identified principally from the sim-

ulation data such as those shown in Fig. 4.4. The temperature dependence of the
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Figure 4.3: a) Area, ., per particle, and (b) the corresponding reduceced area compressibility,
K* = K/Bd?, of Ising Model II for different values of the lateral pressure P* = Pd?/Jy. The system
size is N = 256 and Ro/d = 1.4]1. The temperature is given in units of the critical temperature, Tc,
of the regular lattice Ising model. For clarity, the K curves are shifted along the vertical axis by
multiples of 0.005.

spin order parameter is given in Fig. 4.4(a), for a set of pressure values. Both at low
values and high values of the pressure, the spin order parameter varies steeply, but
continuously, at a particular pressure-dependent temperature concomitantly with the
occurrence of a peak at the same temperature in the spin susceptibility function, ¥,
in Fig. 4.4(b). This particular temperature is thus determined for each value of the
pressure, giving the location in the parameter space of the critical spin transition.

As expected, the specific heat, Cp, which carries information about energy fluctua-
tions arising from both the translational and spin degrees of freedom, display peaks at
both transitions, as Fig. 4.5 clearly demonstrates. The identification of the solid and
liquid characteristic of the phases has also been confirmed by analysis of the structure
factor, S(k) (data not shown). S(k) has clear Bragg peaks in the solid phase and
displays only diffuse rings in the liquid phase.

The simulation data suggests that the critical temperature of the spin transition
separating the lo and the ld phases in the low-pressure region has an observable
pressure dependence, whereas the temperature of the critical spin transition sepa-
rating the so and sd phases in the high-pressure region coincides with the critical
temperature of the regular-lattice Ising model (as expected).

In order to investigate the critical behaviour of the spin transitions in more detail

in both the low-pressure and the high-pressure regions, we also performed finite-size
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Figure 4.4: (a) Spin order parameter, M, and (b) the corresponding susceptibility, x, of Ising
Model II for different values of the lateral pressure P* = Pd®/J;. The system size is N = 256
and Ro/d = 1.41. M is shown as a function of T/Tc, whereas x is given as a function of T/T,_y,
where T,_4 is determined by the peak pasition of y. For clarity the x curves are shifted along
the horizontal axis. The actual peak position for the different curves are 0.825T¢, 0.897¢, 0.987¢,
1.00T¢, 1.03T¢, 1.05T¢ and 1.057c respectively. The inset in (b) shows a comparison between x of
the regular-lattice Ising model and x of Ising Model II for P* = 50.0.

scaling analysis of the simulation data on the spin susceptibility x in the low-pressure
region, based on the scaling hypothesis described in Eq. (3.12), and the result of
the analysis is shown in Fig. 4.6. This figure shows that the universal Ising critical
behaviour is unaltered by the fluctuations in the density (or local connectivity of the
random lattice). On the high-pressure side of the tricritical point ¢», both the universal
and non-universal behaviour of the critical transition is expected to be identical to
that of the regular-lattice Ising model. This is confirmed by the data shown in the
inset in Fig. 4.4(b), which demonstrate that, in this pressure region, the susceptibility,
as a function of T fits perfectly in shape to the susceptibility of the regular-lattice

[sing model in the neighbourhood of the critical temperature.

The phase boundary between the two special points, ¢, and ¢, (see Fig. 4.2), dis-
tinguishes the phase behaviour of Ising Model II from that of Ising Model I. It lies
directly between the so and 1d phases. The first-order nature of this phase transition
is indicated by the discontinuous change in the area A (for example, see Fig. 4.3(a)
for Pd®/Jy = 37.5) at the transition temperature, and more interestingly, by a corre-
sponding sharp change in the spin order parameter (see Fig. 4.4a for Pd?/Jy = 37.5)

that is distinctly different from the temperature-dependence of the spin order param-
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Figure 4.5: Specific heat, Cp, per par-
ticle of Ising Model II as a function of
T/Tc for different values of the lateral
pressure P* = Pd?/Jy. The system size
is N = 256 and Rp/d = 1.41. For clar-
ity the Cp curves are shifted along the
vertical axis by multiples of 0.025. For
low values of the lateral pressure P* (P*
= 10.0 and P* = 30.0) the temperature
of the critical spin transition, T,_4, is
higher than the lattice-melting temper-
ature T;_;. At higher values of P* (P* =
43.0) T is higuer than To_q. For inter-
mediate values of P* (P* = 37.5) the two
transitions are coupled and To—g4 =~ Ts_;.

Figure 4.6: Finite-size scaling plots
for Ising Model II for Pd*/J; =
20.0. xmax is the maximum value
of the spin susceptibility and dy is
the half width of the x curve. The
values of ymax and dx were de-
termined as described in the text.
The value of the exponent v/v is
1.76 £ 0.04 and the value of the ex-
ponent 1/v is 1.03 = 0.06

In order to demonstrate unambiguously that the spin order-disorder singularity is

a first-order singularity, i.e., that it is slaved by the lattice melting, we calculated the

two-dimensional probability distribution function, approximated by the histogram,

P(A, M) (for a fixed system size), which is displayed in Fig. 4.7. The statistics

underlying this histogram were obtained from 8 - 106 MCS!. The histogram clearly

exhibits a two-state (spin-ordered and spin-disordered) structure, indicating coexist-

ing so and 1d phases and a finite interfacial tension. Since the line of the critical spin

transition is terminated from both the low-pressure and the high-pressure sides at ¢,

'A more satisfactory analysis would be a detailed finite-size scaling analysis of the two-dimensional
histogram, P(4, M). However, due to the extensive statistics which an analysis of this kind would

require, we have not performed such a systematic finite-size scaling analysis.
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and t,, these two points are tricritical points.

Figure 4.7: The two-dimensional his-
togram P(A, M), where A is the to-
tal area of the system and M is the
spin order parameter, obtained for Ising
Model IT at parameter values Pd?/Jo =
37.5 and T = 1.012T¢ where the spin
singularity is coupled to the lattice-
melting. The system size is N = 256.
The histogram is obtained by extrapo-
lation from a nearby temperature using
the reweighting technique of Ferrenberg
and Swendsen. The sampling time to
obtain the histogram was 8-10% MCS.

A last, but no less important, observation which we have made from the simulation
data concerns the interplay between the two types of degrees of freedom in the low-
pressure and the high-pressure regions. Although in these regions, the first-order
singularity associated with the translational degrees of freedom is decoupled from
the critical singularity arising from the spin degrees of freedom, as manifested in
the two separate transitions corresponding to the lattice melting and the critical spin
transitions, respectively, there is evidence that the macroscopic behaviour of one type
of degree of freedom is affected by the thermodynamic singularity arising from the
other. For example, the critical spin fluctuations at the spin transitions, both in the
low-pressure region and in the high-pressure region, enhance the density fluctuations,
as indicated in Fig. 4.3(b) by the peaks in the area compressibility occurring at
the spin transitions although they are less pronounced than the peaks related to
the lattice-melting transitions. Vice versa, at the lattice-melting transitions, the
spin degrees of freedom are expected to display a weaker first-order singularity, the
signature of which is too weak to be identified unambiguously from the simulation
data.

A simple argument based on mainly mean-field considerations puts all the above
observations and analysis into perspective, in relation to the phase behaviour of Ising
Model I. As described in Section 2.1, in Ising Model II a new length scale, Ry, is
introduced to define the range of the spin-spin interaction. It is mainly the interplay
between this new length scale and the length scale, {(P), set by the density (or
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pressure) of the system, that gives rise to the phase behaviour of Ising Model II,
which is more complex than that of Ising Model 1. If [(P) is always smaller than Ry,
there is then no difference between the thermal average values of the local coordination
number and the number of the interacting nearest neighbours, whether the system is
in solid or liquid state; and the phase behaviour of Ising Model II is effectively the
same as the phase behaviour of Ising Model I. If, however, {(P) for low pressures is
larger than Ry, then the average value of the number of interacting nearest neighbours

in the liquid state can be smaller than that in the solid state.

At very low pressures, the lattice-melting takes place before any critical fluctua-
tions in the spin degrees of freedom set in, taking the system from the so phase to the
lo phase. The critical spin transition occurs at a higher temperature, well separated
from the lattice-melting transition, as in Ising Model I. However, due to the reduced
number of interacting particles in this case, the transition temperature is suppressed
compared to that of the solid-state critical spin transition. In this region of the phase
diagram, the macroscopic behaviour of the spin degrees of freedom is expected to
have properties similar to the annealed and bond-diluted regular-lattice Ising model
at low dilution (Stinchcombe [83]). As the pressure increases, the lattice-melting
temperature increases and reaches at a point (t,) the temperature of the critical spin
transition, which is still lower than the critical temperature in the solid state. Be-
yond this point, the lattice-melting dictates the macroscopic behaviour of the spin
degrees of freedom, altering it discontinuously from the ordered state characteristic
of the solid-state spin order parameter to the disordered state described by the bond-
diluted and annealed Ising model, rather than the regular lattice Ising model, and
thereby rendering it a first-order singularity. At point ,, the lattice-melting temper-
ature coincides with the critical temperature of the solid-state (regular-lattice) Ising
model, and the first-order singularity in the spin degrees of freedom turns into the
critical singularity again. In the high-pressure region, the lattice-melting tempera-
ture, being bounded from below by that of the non-interacting hard-disk system, is
higher than the critical temperature for the magnetic transition. [(P) becomes irrel-
evant to the critical magnetic transition which separates the so and sd phases. The

phase behaviour in this region is again similar to the phase behaviour of Ising Model I
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in the high-pressure region.

4.3 Model III: Doniach’s Model on a Random Lattice

As discussed in the Introduction and Section 2.2, Model III - Doniach’s model defined
on the random lattice ~ was constructed as a minimal model that describes phase
equilibria in phospholipid-bilayer systems which are characterized by translational
degrees of freedom as well as internal degrees of freedom corresponding to the different
conformational states of lipid-acyl chains. In this model, the spin degrees of freedom
represent the chain conformational degrees of freedom. The principal (dimensionless)
parameters in the model are the following four: Pd?/Jy, Ro/d, Vo/Jo and kpT/Jy (see
Fig. 2.1). Our simulation study of the model explored the two-dimensional parameter
space spanned by V3/Jo and kgT'/Jy, for fixed values of the other two parameters,
Pd?/Jy = 0.925, and Ry/d = 1.41, and the simulation results are summarized in the
phase diagram given in Fig. 4.8.

The topology of the phase diagram, characterized by three phase boundaries merg-
ing at a triple point, t,, resembles the low-pressure part of the topology of the phase
diagram of Ising Model II, with the difference that the spin or chain conformational
order-disorder transition in this model is first order, driven by the internal or confor-
mational entropy and it thus referred to as the chain-melting transition. This distinct
topology indicates that, again, as in Ising Model II, the thermodynamic singularity
arising from the lattice melting can be either coupled or decoupled from the singu-
larity associated with the chain-melting, depending on the values of the parameters.
The three phase boundaries, all being of first order and corresponding to a lattice-
melting transition, a chain-melting transition and a transition at which both melting
processes take place, divide the explored region of the parameter space into three
phases, the so, lo and ld phases. The three insets in the figure show, respectively, a
characteristic microscopic configuration of each phase.

Fig. 4.9 displays a selection of the simulation data that led to the construction of
the above phase diagram. The data shown consists of the temperature dependence of
the various thermodynamic quantities, the area per particle, {A), the area compress-

ibility, K, the specific heat per particle, Cp, and the enthalpy per particle, (H), and
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Figure 4.8: Phase diagram for the extended Doniach model, Model III. All three phase boundaries are
first-order phase boundaries. The insets show snapshots of typical micro-configurations for the three
different phases labeled so (solid-ordered), ld (liquid-disordered), and lo (liquid-ordered). Chains
in the disordered state are plotted as (o) and chains in the ordered chain state as (o). The three
snapshats are not given to scale. In comparison with experiments the so-lo phase line is interpreted
as the sub-main phase transition and the lo-ld phase line as the main phase transition in long-chain
phospholipid bilayers. ¢; is the triple point described in the text.

was obtained for a system with V = 256 particles and for the following specific values
of the model parameters: the internal entropy, s = kg In Dq = 14.4kg, the conforma-
tional energy of the chain disordered state, Eq/Jp = 1.303, and V/Jy = 0.25. The
data clearly indicates that two distinct first-order phase transitions take place at two
different temperatures. At the lower temperature, 75_; = 0.218Jy/kg, a low-enthalpy,
lattice-melting transition takes the system from the so phase into the lo phase. At
the higher temperature, T,_4 = 0.335Jy/kg, the chain-melting transition changes the

system from the lo phase to the Id phase.

Our calculation also showed that in the region of the parameter space where the
two melting processes are decoupled, i.e., Vy/Jy < Vo/ Jo|¢1, the temperature of the
chain-melting transition, T,,_4, actually depends on the model parameters in a rather

simple way. Explicitly, T,_4 can be determined as the solution to the equation
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Figure 4.9: Simulation data of the extended Doniach model, Model III, for a system size of N = 256
and parameter values Pd*/Jo = 0.925, Vp/Jo = 0.25 and Ry/d = 1.41. (a) shows the area per
particle, A (A), and the area compressibility, K (o). (b) shows the heat capacity per particle, Cp.
The inset in (b) shows the full scale curves for the heat capacity (¢) and the enthalpy per particle
(- - -). To-q is identified as the chain melting transition and 7T,_; as the sub-main transition in
long-chain phospholipid bilayers.

1 .
B+ B+ @) Vo) —keTealnDy| + PAHY =0 . (42)

where (z;) is the mean value of the local coordination number of the dynamic lattice,
and A() is the change in the surface area per particle as the system undergoes the
spin order-disorder transition. (g;) is the mean fraction of the nearest-neighbour pairs
that interact with the strength of the deeper square well, a quantity which most signif-
icantly reflects the interplay between the translational and the chain-conformational
degrees of freedom. It is quite straightforward to understand this result. The Hamil-
tonian of Model III, as defined in Eq. (2.8), can be written as a diluted Ising model in
an effective external temperature-dependent field, h(;) .;f(T), similar to the original

Doniach lattice model. However this field, depends on z; and g; as follows

1 ;
hoes(T) =~ [Ed + %(J0 +q; Vi) — kpTo_aln Dd] . (4.3)

It thus is a fluctuating quantity of the random lattice via the fluctuations in z; and g;.
For the systems simulated with periodic boundary conditions, the local coordination
number z; is conserved on average, i.e., (2;) = 6. Furthermore, for a dense 2D liquid
system, z; was found to have a very narrow distribution around 6. Similarly, the

fluctuations of ¢; about its mean value were also found to be small. Hence, the chain-
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melting transition temperature is well approximated by the temperature set by the
condition (heg(To—g)) + PA(A) = 0, which corresponds to that given by Eq. (4.2).
For small values of V5/Jy the gap between the so-lo and the lo-1d phase boundaries
is quite large and the lo states close to the chain-melting transition contains many
“defects” — interacting pairs having interparticle distances larger than Ry and hence
has a rather small value of (¢;). For instance, for V5/Jo = 0.25, we find (g;) = 0.77
for the lo states just below the chain-melting transition. As we move closer to t;,
the number of the defects in the lo states decreases, and for V,/J; = 0.625 we find
(g:) = 0.96. Beyond the triple point the low-temperature phase remains crystalline
ordered, due to the strong interactions imposed by larger values of 14, and the number
of pair defects is essentially zero. Increase in temperature leads to the chain-melting
process, which makes the particle-particle interaction ineffective and consequently
brings about the lattice-melting process. The phase boundary is then determined by
the chain-melting process, for which Eq. (4.2), with (g;) = 1, still gives a reasonable

valid description.

The enthalpy change across the lattice-melting transition can be found from the
enthalpy histogram at the transition temperature. An estimate of the enthalpy change
per particle, AH,_,, leads to a value of approximately 0.35kg per particle for the cor-
responding entropy change, AS;_,. In contrast, the chain-melting transition exhibits
a much larger latent heat, corresponding to an entropy change per particle of ap-
proximately 14kg. The heat content in the lattice melting is thus only a few percent
of the heat content in the spin order-disorder transition for the chosen set of model

parameters.

The dependence of the lattice-melting transition temperature on V4/J, is apparent
from the phase diagram. The transitional entropy also was found to have a systematic
dependence on the parameter. As the value of V;/Jj is increased from below towards
the triple-point value, the simulation data given in Fig. 4.10 shows a steady increase

in AS;_, with the parameter value.

Our study of Model III predicts for lipid-bilayer systems a generic picture of the
phase behaviour, or more specifically, of the mode in which the chain conformational

and molecular translational degrees of freedom are coupled at macroscopic level. In
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particular, it is shown that the loss of the lateral or in-plane ordering, represented
by the lattice-melting transition, can take place without the complete loss of the
collective ordering in chain conformations; consequently, an intermediate phase, the
lo phase, can exist '. There is no a priori reason why the lattice-melting transition and
the chain-melting transition should be simultaneous, although it is generally accepted
that the main transition in phospholipid bilayers involves both the lattice-melting and

the chain-melting processes.

[n a recent high-sensitivity calorimetric study by Jorgensen (Jorgensen [95]) a new
and distinct sub-main transition was shown to be present in fully hydrated multi-
lamellar bilayers of long-chain lipids in the homologous series of di-acy! phosphatidyl-
cholines, DC,PC, with 17 < n < 20. The experimental data shows that the entropy
change per lipid molecule across this sub-main transition, AS;n, is very small, being
in the range between 0.22kg and 0.56kg. Our model calculations offer an interpre-
tation of this newly-discovered sub-main transition in terms of a decoupling of the

lattice-melting transition from the chain-melting transition. As discussed in a recent

1The phase diagram for Model III (the Doniach model) of Fig. 4.8 which is applicable to the phase
behaviour of pure lipid bilayers is given in terms of the so, lo and ld phases. The generic phase
behaviour shown in this diagram was first found using a lattice model (Mouritsen and Zuckermann
[87b]) which combined a Pink model ([80]) and a 30-state Potts model. The pink model is an
extension of the Doniach model involving 10 conformational states and thus describes the chain
degrees of freedom, while the Potts model represents the translational degrees of freedom. The
combined Pink-Potts model was examined on a regular lattice and therefore cannot give a true

physical representation of the lattice melting.
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paper (Nielsen et al. [96a]), the latent heat, or correspondingly, the transitional en-
tropy predicted by our study of Model III for the lattice-melting transition compares
favorably with the experimental data for the sub-main transition. This implies that
Model III, despite of its minimal nature captures some of the essential mechanisms
underlying the interplay between the chain-conformational and the translational de-

grees of freedom in lipid-bilayer systems.

4.4 Discussion

Motivated by the rich phase behaviour of lipid-bilayer systems, the work reported in
this chapter is the result of an investigation of the equilibrium phase behaviour in
two-dimensional dense many-particle systems where both translational and internal
degrees of freedom are present and are coupled through microscopic interactions. We
first developed a random-lattice algorithm given a full description of the translational
degrees of freedom for a dense two-dimensional system. We then formulated, and
studied using computer-simulation techniques, a series of three statistical mechanical
models. These models treat the internal degrees of freedom essentially as Ising spin
variables, but with different emphasis and levels of complexity in the description of
the microscopic coupling to the translational degrees of freedom. The models were
shown to lead to quite rich phase behaviour although they only describe microscopic
interactions in a minimal and generic manner. The most important feature in the
phase behaviour of these models is that, depending on the model parameters, phase
transitions associated with the internal degrees of freedom can be either coupled to,
or decoupled from, the first-order phase transition in the translational degrees of free-
dom corresponding to the lattice-melting process, thus manifesting at the macroscopic
level the interplay between the two types of degrees of freedom. In particular, as in
Model II, when the internal degrees of freedom are strongly coupled to the transla-
tional degrees of freedom in a macroscopic manner, their order-disorder singularity in
the conformational degrees of freedom is slaved by the singularity leading to the first
order lattice melting transition and the order-disorder transition becomes first order.
This is in contrast to the critical singularity which occurs when the coupling is weak

at the macroscopic level. It is further shown that in the case of weak coupling, the
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universal critical behaviour of the internal degrees of freedom remains unchanged, in
the sense that it is in the same universality class as the regular-lattice Ising model.
Finally, we discussed the prediction of one of the models, Model III, in relation to a
recent experimental observation of a new sub-main phase transition in phospholipid
bilayer systems.

We conclude this chapter with a final remark on the prospects of the type of
random-lattice models as proposed in the chapter. The formulations of such models
are quite general and may be applied to any two-dimensional dense systems where
different types of degrees of freedom are present and relevant. In particular, this
approach should open up new possibilities in studies of structural and thermody-
namic properties of complex systems such as multicomponent lipid bilayers - a highly
biologically-relevant example being lipid-cholesterol mixtures, as will be shown in the

next chapter.
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RESULTS FOR LIPID-STEROL MIXTURES

This chapter contains details of our simulations of the generic phase behaviour of the
models for the series of lipid-sterol mixtures as defined in Section 2.3. The description
is written in two parts. First we give the results for the analysis of the lipid-cholesterol

system and next the results for the analysis of the series of lipid-sterol systems.

5.1 Model IV, Lipid-Cholesterol Mixtures

In this section, we give the results of Monte Carlo simulations for the phase diagrams
and physical quantities of lipid-cholesterol bilayers. The simulations were based on
the model of Section 2.3 (Eq. (2.10)) and the techniques described in Chapter 3 were
applied. The principal thermodynamic control parameters for the simulations are
the temperature T, and either the cholesterol concentration, z., or u,, the effective
chemical potential controlling the equilibrium cholesterol concentration. We define
I = %‘, where N is the total number of particles in the system and N, is the
number of cholesterol molecules. This definition is related to the molar definition,
z?, commonly used in experimental work, by zI" = lszﬁZ’ since each lipid molecule
contains two chains. The other parameters in the model were fixed at specific values in
the

strength of the longer range attraction between chains in the ordered state, as defined

by Eq. (2.14); and the unit for lengths is set at the hard-disk diameter, d. The surface

all simulations. For convenience, the unit for energy was chosen to be Jy = V_,

pressure, I1, was fixed at [1d?/J; = 6.0. The excitation energy of the disordered state
of lipid chains was chosen as E4 = 1.303Jp, and the degeneracy, Dy, of the state, was
taken to be In Dy = 7.2. The parameters defining the different interaction potentials
asin Eq. (2.13) and Eq. (2.14) were set to the following specific values: V_ = 1.55J;,
V. = 245J, V2. = —1.75J,, V). = 0.35Jy, V. = —0.35Jp, V.. = 0.5Jy,

85
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VS

c—C

= —=1.0Jp, V}_y = 0.5Jy and V2, = -0.5J;. The radius of the short range
square well potential was Rp/d = 1.3. The values of [, Ry, E4 and In Dy were chosen
so that the latent heat of the main transition and the change in surface area across
the main transition are comparable to that measured experimentally for the single-
component DPPC bilayer system (G. Ceve [93]). The value for V2

oo Was chosen such

that the phase transition in the pure “lipid system” is located in the regime where the
lateral and the internal degrees of freedom are coupled (see discussion in Section 2.3).
Other parameters, V:ﬂc (a = o0,l,c}, were also set at certain values, for which the
phase behaviour predicted by the model resembles that of DPPC-cholesterol bilayers.
The above values of the parameters, however, are not unique in that the same generic

phase behaviour holds for a large set of different parameter values.

5.1.1 Phase Diagrams: Simulations within the Semi-Grand Canonical

Ensemble

In order to calculate phase diagrams for our model system, we performed simulations
within the semi-grand canonical ensemble (see Section 4.1.1), using the simulation

methods described in Chapter 3.

Figure 5.1 gives the phase diagrams constructed based on our simulation data.
Fig. 5.1(a) is presented in terms of two control parameters, the concentration of
cholesterol z. and the reduced temperature T/Ty;, where Ty is the temperature of
the main transition in the pure lipid system, while Fig. 5.1(b) shows a conjugate rep-
resentation in the parameter space spanned by pa and T/T)ys. As clearly illustrated
in the phase diagrams, the generic thermodynamic behaviour of our model is charac-
terized by three principal phases, an so phase, an 1d phase, and an lo phase, defined
in the Introduction, by three first-order lines between these three phases and finally,
by two special points, a critical point, Pc, which terminates the ld-lo transition and
a triple point, P;, at which all three phases coexist.

Figure 5.2 gives examples of the finite-size analysis of the phase coexistence. This
figure shows the spectral free energies, i (z.), calculated as a function of the system
size L, for two of the three first-order transitions, corresponding to the so-lo and the

ld-lo coexistence, respectively. In each case, a value of T was chosen and kept fixed
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Figure 5.1: Phase diagram for the lipid cholesterol model. (a) The phase diagram as a function
of cholesterol concentration zc and reduced temperature T/Ty. The inserts to the figure show
different snapshot of micro configurations corresponding of the different phase in the diagram. The
snapshots are not given to scale. The different phases labeled in the phase diagram are; so, solid
ordered (gel), 1d, liquid disordered (fluid) and lo liquid ordered where the first letter refers to the
lateral order of the phase and the second letter refers to the conformational order of the phase. (b)
The phase diagram as a function of ga and T/Tyv. Fc and P, are the critical point of the 1d-lo
coexistence region and the triple point respectively described in the text.

in the simulations of systems of different sizes while the parameter u was tuned and
a specific value, u% (T'; L), was determined for each system size from the “coexistence”
condition, which is specified by two equal-energy minima in Fy(z.).

The figure shows a monotonic increase with system size L in the “interfacial en-
ergy”, AF.(z.), defined as the height of the maximum relative to the minima of the
spectral free energy function, indicating the existence of a first-order transition (Lee
and Kosterlitz [91}). The magnitude of the free energy barrier between the coexisting
phases can be obtained from the curves in the figure. For example, for a system of
size L =20, AFr(Zc)d-10 = 3kgT and AF;(zc)so-10 = 4.5k5T.

The finite-size analysis also provides evidence for the presence of a critical point
terminating the ld-lo coexistence. In Fig. 5.3 we show the finite-size analysis of
the simulation data for three different temperatures close to the critical point of
the 1d-lo coexistence region. The inserts in the figure show the variation of the
spectral free energy as a function of system size for all three temperatures. For the
lowest temperature, T = 1.007Ty; (Fig. 5.3(a)), the finite-size analysis shows a linear
increase of the energy associated with an interface between the 1d and the lo phase,

indicating the existence of a first-order phase transition. The gradient of the linear
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Figure 5.2: Finite size scaling plot of 3F(z¢c). (a) T = 0.969Ty (so-lo phase coexistence). The
system sizes are L = §, 10, 12, 14, 16, 18 and 20. (b) T = 1.007Ty {ld-lo phase coexistence). The
system sizes are [ = 8, 10, 12, 14, 16, and 20. The inserts to the figures show the barrier height
BAF(xc) as a function of system size. The lines connecting the points in the two inserts are guides
to the eye.

relation corresponds to the interfacial tension between the two coexisting phases. For
the highest temperature, T = 1.018Ty (Fig. 5.3(c)}, AFL(Z¢)ia-10 decreases as a
function of system size L, demonstrating the absence of a phase transition for this
temperature. Finally, the results for T = 1.013Ty (Fig. 5.3(b)) suggest that the
“interfacial energy” at this temperature for large system sizes approaches a constant
value, indicating that the critical point of the ld-lo coexistence region is located close
to T = 1.013T .

A precise determination of the line of the three-phase coexistence, requires system-
atic simulations for different system sizes, which turns out to be impractical. We have,
therefore, contented ourselves with making a good estimate from a single histogram
calculated for a sufficiently large system. Figure 5.4 shows the histogram P (e, z..) for
a system of size L = 18 at a temperature 0.997Ty;. The histogram demonstrates the
coexistence of the three distinct phases: the so phase, with a low internal energy and
low cholesterol concentration; the 1d phase, with a high internal energy and a modest
cholesterol concentration; the lo phase, with an intermediate internal energy and a
relatively high cholesterol concentration. Based on this result we estimate the location
of the three phase line to be close to T' ~ 0.9977y; and the concentration of choles-
terol in the three coexisting phases to be, respectively, z.4 =~ 0.010, .14 ~ 0.053
and zj9 =~ 0.143.
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Figure 5.3: Finite size scaling plot of BAF(zc) at three temperatures close to the critical point
of the ld-lo coexistence region. (a) T = 1.007Ty, (b) T = 1.013Ty and (c) T = 1.018Ty;. The
system sizes are L=8,10,12,14,16,20,24 and 30. The inserts to the figure show the spectral free
energy Fi(zc) for the different system sizes. The line connecting the point in (a) is a linear fit to
the barrier height as a function of system size. The lines connecting the point in (b) and (c) are
guides to the eye.

The coexistence region between the so and the ld phases is very narrow and
both the three phase coexistence line the main transition point of the pure lipid
system are strongly dependent on system size. It is therefore quite time consuming
to obtain histograms of the distribution function at coexistence, which have sufficient
accuracy for finite size scaling analysis. We have thus used the Ferrenberg Swendsen
reweighting technique (Ferrenberg and Swendsen [88]) to estimate the locations of
the boundaries of the so-ld coexistence region. Specifically, we have through the
reweighting procedure extrapolated the probability distribution functions obtained

from the three-phase histogram to higher temperatures.

The phase diagrams in Fig. 5.1 exhibit all the characteristics of macroscopic un-
coupling of the translational and the chain-conformational degrees of freedom: the

appearance of the lo phase, and the two uncoupled transitions associated with this
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Figure 5.4: The histogram P(e, z)
for a system size of L =18 and T =
0.997. The three coexisting phases
are located at cholesterol concentra-
tion of x. = 0.010 (so), z. = 0.053
{ld) and £, = 0.143 (lo).

phase specifically, the so-lo and the ld-lo transitions. These two transitions cor-
respond to the ordering processes of the translational and the chain-conformational
degrees of freedom, respectively. It is clear that this phenomenon is a macroscopic
consequence of the dual-natured interaction of the cholesterol molecule with the trans-
lational and chain-conformational degrees of freedom of the lipid molecules. When
Fig. 5.1(a) is considered together with our understanding of the so-ld transition in
the pure lipid system as described in Ref. (Nielsen et al. [96b]) and displayed in
Fig. 4.8, it provides clues as to how the dual effect of cholesterol is macroscopically
manifested in the system. In the one-component lipid system, the so-ld transition
is predominantly driven by the conformational entropy associated with the disor-
dered state of the lipid chains, and the transition temperature, Ty, is determined
by the competition between the conformational-entropy effect and the strength of
the effective interactions between conformationally ordered chains. Incorporation of
cholesterol into the lipid system creates a complex picture of the macroscopic order-
ing phenomena. Below T, the so phase can only solubilize very low concentrations
of cholesterol without loosing its quasi long-range translational order, due to the
“crystal-breaking” function of cholesterol. Once the concentration reaches certain
small, temperature-dependent, values, the “crystal-breaking” function of cholesterol
does indeed cause a breakdown of the global packing order of the chains, and the loss of
the long-range translational order. This breakdown in turn affects the chain-ordering
process, as it also implies a reduction in the strength of the effective cohesive inter-

actions between chains in the conformationally ordered state. The reduced effective
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interaction strength thus sets a maximal temperature for the macroscopic ordering
of chain conformations, and this maximal temperature is essentially the temperature
of the three-phase line. Below this temperature, the cohesive interaction between
chains, albeit at its reduced strength, dominates over the conformational-entropy ef-
fect and sustains a macroscopic conformational order, even though the translational
order is lost. The “chain-ordering” tendency of cholesterol, or the high affinity of
cholesterol for conformationally ordered chains, results in relatively high solubility
of cholesterol in the lipid matrix, corresponding to the wide miscibility gap between
the lipid-rich so and the cholesterol-rich lo phases. In contrast, above the tempera-
ture of the three-phase coexistence, and for intermediate cholesterol concentrations,
the effect of conformational entropy takes precedence over both the cohesive interac-
tions and the chain-ordering effect of cholesterol, thus favoring the ld phase as the
equilibrium phase. Under this entropy dominance, the chain-ordering effect of the
cholesterol translates into its low affinity for lipid molecules with disordered chains
as reflected in the moderate solubility of cholesterol molecules in the 1d phase. At
high enough cholesterol concentrations, however, the chain-ordering effect wins the
competition over the entropy effect, reinstating the macroscopic order in the lipid
chain conformations, i.e., the lo phase. This ordering event, which only involves the
conformational degrees of freedom, is manifested in the reasonably wide region of the

1d-lo coexistence.

5.1.2 Simulations within the Canonical Ensemble; a Structural Anal-
ysis

In this section, we present results of a detailed structural analysis of the various phases

described above. The results have all been obtained by performing simulations within

the canonical ensemble as described in Section 4.1.1. In the simulations, we calculate

the following structure factors

S1(@ = 3 {or@pr(-) = (Pr(@)3g5)

So(@) = 5 {{eo(@o(~D) ~ (po(@)555)
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Seld) = +{{pc(@pc(~) — {pe(@)azs) 5.1)

So-cl@) = 5{{po@pe(~d) + pe@pol~)
~2{po(@ac(D) bgg} -

Here, pr(q) is the Fourier transform of the total density operator, pr(F) = ¥; §(F-7;)
and pg(q), pc(q) the Fourier transforms of the partial density operators po(7) =
i 0(7 — ;) Lq4; for the lipid chains in the ordered state (¢ = o) and the cholesterol
molecules (a = c) respectively. {---) denotes a thermal average and N is the number

of particles.

Figures 5.5-5.10 summarize the calculated structure factors characterizing the lat-
eral structure of the various thermodynamic phases. Each simulation was performed
for a system size of N = 1600 and the thermodynamic average of the structure factor
contains 10° different microconfigurations with a time interval of 100 MCS between

two consecutive configurations.

Fig. 5.5(a) and Fig. 5.5(b) show, for the so and the ld phase, respectively, the
structure factors St(¢) and So(g) as well as the circular averages of Sy, So, Sc
and Sg-c¢. In Fig. 5.5(a) the plots of Sr(g) and Sp(q) give a clear signal of a solid
hexagonal phase characterized by a lattice spacing close to d. In Fig. 5.5(b) the plot
of St(q) demonstrates the liquid characteristics of the ld phase. The average inter-
particle distance can be determined from the position of the first diffuse scattering

ring, and an estimate gives a value of < r > close to 1.115d.

Figure 5.6 displays both the total structure factor, Sr, and the two partial struc-
ture factors, Sp, and, Sc, calculated at T = 0.969Ty; and z¢c = 0.165 where the
system is in the lo phase. The characteristics of the phase, as far as its lateral struc-
ture is concerned, is unambiguously that of a liquid. More systematic analysis of
the lo phase is summarized in Figure 5.7. The three upper figures show the circular
averages of St, So, Sc¢ and Sp_c¢ calculated at three different locations in the param-
eter region where the lo phase exists. The three lower figures are the corresponding
snapshots of microconfigurations. The collective ordering in lipid chain conforma-
tions can be observed directly from the snapshots. The figure at the right hand side
further demonstrates the “rigidifying” effect of the cholesterol. The high degree of
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Figure 5.5: The structure factors St(¢§) and So(g) calculated within the so phase and the 1d phase,
respectively. The upper three figures show the results for T = 0.969Ty, z. = 0.010 (so phase).
The lower three figures show results for T = 1.007Ty, z. = 0.085 (ld phase). The figure to the left
shows St(q), the middle figure So(§) and the figure to the right the circular averages for Sr, So,
Sc and Sg-¢. The g-values are given in units of 2r/d. The Bragg peaks in the upper figure show
the structure of an hexagonal ordered solid phase with a lattice spacing around d. The diffuse rings
in the lower figure show the existence of the liquid phase. The average inter-particle distance can
be determined from the position of the first ring and gives a value of around 1.115d.

chain ordering as illustrated in the snapshot is stabilized only by the incorporated
cholesterol, as the pure lipid system is in the ld phase at this temperature. Clearly,
the appearance of the lo phase as a stable equilibrium phase is a macroscopic man-
ifestation of the dual molecular function of cholesterol. When present at relatively
high concentrations, cholesterol destroys the quasi long-range translational order and
at the same time either induces or reinforces macroscopic order in the lipid chain

conformations.

Figure 5.7 offers more information on the details of the lateral structure of the
lo phase. The three graphs of Sc(g) all exhibit a diffuse ring located close to
|g| = 0.4 27/d. The intensity of the ring increases with the concentration of the
cholesterol. An examination of the corresponding snapshots gives indications of
the structures that give rise to these rings. It appears that most of the choles-

terol molecules and a significant fraction of the lipid chains aggregate with their own
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lo

Figure 5.6: The structure factors S7(§), So(q) and Sc(q) calculated at r, = 0.165, T = 0.969T
within the lo phase. The g-values are given in units of 2r/d.

species to form one-dimensional thread-like micro-structures. The physical reason for
this particular structure lies in the difference between the interaction potential be-
tween two cholesterol molecules (Fig. 2.2(d)) and that between a cholesterol molecule
and an ordered lipid chain (Fig. 2.2(b)). The relatively weaker cholesterol-cholesterol
interaction gives the cholesterol a tendency to minimize nearest neighbour contacts
between its own kind in exchange for maximal number of contacts with ordered lipid
chains. The formation of the thread-like micro-structures allows this tendency to be
expressed to an appreciable extent at high concentrations of the cholesterol. The
data for So_c indicate that the average distance between an ordered lipid chain and
a cholesterol molecule is about 1.3d. In two neighbouring thread-like structures where
the cholesterol molecules are separated by one lipid chain, the distance between the

cholesterol molecules is then about 2.6d (see Fig 5.8).

A configuration as the one shown in Fig. 5.8 ought to give rise to a diffuse ring
in the structure factor located at |g| = 0.4 - 2r/d. Furthermore, this signal should
be more appreciable in Sc(g) than in So(q), due to the relatively higher fraction of
those cholesterol molecules forming the thread-like structure out of the total number

of the cholesterol molecules. This picture is consistent with the simulation results.

Finally, Fig. 5.9 and Fig. 5.10 show the structure factors calculated inside the
so — lo and Id — lo coexistence region, respectively. The structure factor St(¢) in

Fig. 5.9 gives a clear signal of both a liquid and a solid phase. Sc(g), the partial
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lo

Figure 5.7: The structure factor calculated at different locations within the lo phase. The upper
three figures show the circular averages of Sr, So, Sc and Sg_c calculated at (from the left)
zr. = 0.165, T = 0.969Ty, . = 0.250, T = 0.969Ty and z. = 0.250, T' = 1.007Ty. The g-values
are given in units of 27 /d. The lower three figures show snapshots of the microconfigurations of the
corresponding phases. In the snapshots, a lipid chain in the ordered state is shown as (s), a lipid
chain in the disordered state as (o) and a cholesterol molecule as (x).

Figure 5.8: Snapshot of two neighbouring

@ thread-like micro structures where the cholesteroi
{ X.‘ X. molecules are separated by one lipid chain. The
pod x : snapshot is a part of the snapshot given in Fig. 5.7
o X9 x® for zc = 0.250, T = 0.960Ty. A lipid chain in
.. x @ x. the ordered state is shown as (e), and a choles-
x x x.. terol molecule as (x).
LY

structure factor related to the cholesterol, on the other hand displays only the diffuse

properties of a liquid, showing that cholesterol only dissolves in the liquid lo phase.
The structure factors in Fig. 5.10, corresponding to the ld-lo coexistence, show no

sign of a structural difference between the two coexisting phases. This result further

supports the characterization of the lo phase as a liquid phase.

5.1.3 Discussion

The experimentally observed equilibrium phase behaviour of bilayer systems of binary

mixtures of phospholipids and cholesterol is characterized by a macroscopic uncou-
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Figure 5.9: The structure factors St(q) (left figure) and Sc(g) (middle figure} calculated at z. =
0.075 and T = 0.969T)1 within the region of phase coexistence of the so and the lo phases. The
figure to the right gives the circular averages of St, So, Sc and So-c¢. The g-values are given in
units of 2r/d.

ld-lo
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Figure 5.10: The structure factors calculated at z. = 0.17 and T = 1.010Ty within the region of
phase coexistence of the 1d and the lo phases. In the figure to the left is shown St(g), the figure
to the right gives the circular averages of S, So, Sc and So_c. The g-values are given in units of
2r/d.

pling of the translational degrees of freedom from the internal molecular, specifically,
the chain conformational degrees of freedom. This phenomenon provides a context
for investigating the generic physics involved in the interplay between translational
and internal molecular degrees of freedom, both at the microscopic level and at the
macroscopic level. To this end, we formulated a microscopic model to describe a two-
dimensional system composed of two distinct types of “model molecules”, representing
lipid molecules and cholesterol, respectively, and we have carried out a statistical me-
chanical study of the model to investigate the equilibrium phase behaviour based on

Monte Carlo computer simulations.

The model differs in an essential way from the earlier lattice models developed
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to describe the phase behaviour of lipid-cholesterol mixtures in that it provides an
off-lattice, and therefore more realistic, representation of the translational degrees
of freedom in terms of a specific random-lattice algorithm. Naturally, this feature
enables us to better characterize and make predictions concerning the macroscopic
behaviour of the translational degrees of freedom, i.e. the lateral structures of different

thermodynamic phases of the model system.

Given our aim of elucidating generic behaviour of the interplay between the config-
urational and translational degrees of freedom together with the considerable compu-
tational effort required for the explicit treatment of translational degrees of freedom,
the remaining of the ingredients of the model were tailored to correspond to minimal
descriptions of the relevant microscopic physics. The chain conformational degrees
of freedom and the associated phase space are represented by only two molecular
conformational states. Cholesterol is treated as a simple substitutional impurity. Its
molecular function in a lipid bilayer is described, based on an earlier hypothesis (Ipsen
et al. [87]; Ipsen, Mouritsen and Zuckemann [89]; Ipsen, Mouritsen and Zuckemann
[90]), to be dual, both as a “crystal breaker” and as a “chain rigidifier.” This molec-
ular mechanism forms in our opinion a microscopic basis for the interplay between
translational and conformational degrees of freedom. The microscopic interactions,
those between a cholesterol molecule and a lipid chain in particular, were all de-
signed to only contain features that are essential and necessary for describing both
the phase behaviour of one-component lipid systems and the dual molecular function

of cholesterol.

Our rather extensive and systematic study of the minimal model based on Monte
Carlo computer simulations has led to a phase diagram for the model system. This
phase diagram displays the same topology as the experimentally obtained phase dia-
gram (Vist and Davis [90]). Particularly, the theoretical phase diagram demonstrates
that the proposed microscopic model does indeed provide a picture of microscopic
physics underlying the ability of cholesterol to uncouple the macroscopic ordering
processes of the translational and chain conformational degrees of freedom already
at very low concentrations. The fact that the model is a minimal model suggests

that the macroscopic uncoupling between translational and chain conformational de-
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grees of freedom in these systems may not depend sensitively on the details of the
microscopic physics and should, therefore, be a generic phenomenon. It has indeed
been argued that the phase behaviour of the DPPC-cholesterol bilayer system con-
tains some generic features for mixtures of lipids and cholesterol or cholesterol-like
molecules (Ipsen et al. [87); Thewalt and Bloom [92]; Linseisen et al. [93]), although

more concrete experimental evidence is yet to be obtained.

In addition, our study provides detailed information on the lateral structure of the
different phases. The structure of the cholesterol-rich phase is of particular interest,
since it has been the subject of a long and continuing debate in the experimental
literature (Finegold [93]). The structure factor that we have obtained from the sim-
ulations clearly shows that the lo phase is indeed a liquid phase. More interestingly,
the partial structure factors associated with cholesterol molecules and ordered lipid
chains, respectively, show signatures of an additional structure that is characterized by
length scales roughly twice that of the average distance between nearest neighbours.
Inspection of the related microscopic configurations leads to an interesting observa-
tion: the cholesterol molecules and those lipid chains that are in direct contact with
them tend to form “thread-like” structures. In these structures, each molecule tends
to align linearly with its own species. This tendency becomes more pronounced at
higher cholesterol concentrations (data not shown). The “threads” are short, involv-
ing only a few molecules, and there is no sign of long-range orientational correlations.
The origin of this behaviour can be understood as follows. At low and intermedi-
ate temperatures as compared with the temperature of the main transition in the
one-component system of lipid, the system in the lo phase consists of cholesterol
and chains in the ordered state only. Therefore, the model effectively becomes an
off-lattice antiferromagnetic Ising model with a spin-exchange interaction of strength
1Voo(Rij) + 1Veee(Rij) — 3Vi_c(R;;) subject to an external field!. Even though this

'In the case where the lo phase consists of only cholesterol and chains in the ordered state the
microscopic Hamiltonian Eq. (2.10) can be rewritten as an Ising model in an external field. If
we associate the Ising spin S = +1 state with a chain in the ordered state and the Ising spin

= -1 state with a cholesterol molecule, the occupation variables £;, and £,. can be expressed as
Lio = (1+ 5:)/2, Lic = (1 - S;)/2. Rewriting Eq. (2.10) in terms of the Ising spin variable we get
H= Z(K_;)(Vc'—a/4 + Veee/4 = Voo /2)SiS;j + 3, h(T, P)S;. Noting that the interaction potentials
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model has not been studied, a related antiferromagnetic Ising model defined on a lat-
. tice with elastic deformability, has been shown to display a low-temperature striped
phase, in which spins of the same sign line up to form stripes (Gu et al. [96]). The
characteristic periodicity in the stripe phase is twice that of the average lattice spacing
(Gu et al. [96]). The presence of the “thread-like” structures revealed by our simula-
tions has some experimental support, particularly from fluorescence (Rogers, Lee and
Wilton [79]; Mitchell and Litman [98]) and X-ray diffraction (Hui and He [83]) studies.
The results of the earlier fluorescence and X-ray diffraction studies were interpreted
as support for a structural model where lipid and cholesterol molecules formed sto-
ichiometric complexes and moreover, the complexes aligned themselves linearly (see
(Presti [85]) for a review of the earlier studies). In contrast, our theoretical study
as well as both the fluorescence study by D.C. Mitchell and B.J. Litman ([98]) and
the X-ray diffraction study by Hui and He ([83]) specifically shows, that the partial
alignment of molecules as observed in the simulations does not require a chemically
specific mechanism such as the formation of stoichiometrical complexes. It is im-
portant to note that the “thread-like” structures in the lo phase are not the ripple
. structures observed in experimental systems in so-lo coexistence region (Mortensen
et al. [88]). The ripple structures involve much larger length scales as well as non-

planar membrane surface configurations!'.

Vo-o and V,_. have very similar strength and that the strength of the interaction potential V.
is relatively small, we see that the model becomes an antiferromagnetic Ising model in an external
temperature- and pressure-dependent field. (V,—,, Vo-. and V._. are all attractive interaction

potentials.)
!Note that bilayers in our model are considered to be flat. An interpretation of ripple structures has

recently been given in terms of a mesoscopic phenomenological model for lipid bilayers (Hansen,

. Miao and Ipsen [98]).



100 5 RESULTS FOR LIPID-STEROL MIXTURES

5.2 Lipid-Sterol Mixture Systems

In this section, we extend the model of Eq. (2.10) to the series of lipid-sterol systems
discussed in Section 2.4. In order to make contact with experimental results, we focus
on lipid-cholesterol and lipid-lanosterol bilayer systems. In particular we choose values
of the parameters for the model in such a way that the calculated phase diagrams
for both systems will have the same characteristics as the experimental ones. At
this point, it should be noted that the parameter values chosen as characteristic
for a particular lipid-sterol system are not unique. In fact, the same generic phase
behaviour can be found for a range of different parameter values. The parameter
values used in this section differ from the values used in Section 5.1 above for lipid-
cholesterol mixtures (Nielsen et al. [98]). The reason is as follows: experimental
observations suggest that the main transition in DPPC lipid bilayers lies close to a
critical point (Morrow, Whitehead and Lu {92]). The parameters used in the present
section therefore lead to a main transition temperature of the pure lipid system which
is close to that of the Ising critical point. This change in parameter values as compared

. to Section 5.1 does however not change the generic phase behaviour of the model.

The results of the present section are expressed in terms of thermodynamic phase
diagrams and thermodynamic observables in the same way as for the analysis of the
lipid-cholesterol system presented in Section 5.1. The thermodynamic control param-
eters are again the temperature T, and either the global sterol concentration, ryeroi,
or pa, the effective chemical potential controlling the equilibrium sterol concentra-
tion. The other parameters are kept fixed at specific values in all the simulations. For
convenience, the length scale is set at the hard-disk diameter, d, and the unit of en-
ergy is defined to be J;!. Thus, the surface pressure, II, is fixed at [1d?/Jy = 3.0. The
excitation energy of the disordered state of lipid chains is chosen as Ey = 2.78J;, and
the degeneracy, Dy, of the disordered state, is taken to be ln Dy = 12.78. The radius
of the short range square well potential of Eq. (2.13) is given by Ry/d = 1.3. The val-
ues of IT and Ry, are chosen so that change in surface area across the main-transition

is comparable to that of the single component DPPC bilayer system (G. Cevc [93]).

'In order to convert the energy and length scales into units relevant for lipid bilayer systems, Jo
‘ should be of the order 10~2°.J and d of the order 5 A.
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E4 and In D4 have the same values as for the 10th state of the Pink Model (Pink,
Green and Chapman [80]) and are determined such that the latent heat of the main-
transition is comparable to that of the single component DPPC bilayer system. The
interaction potential is defined in terms of V' (the longer range square well poten-
tial of Eq. (2.14)) and V* (the short range square well potential of Eq. (2.13)). The

parameters defining the interaction potentials are summarized in Table 5.1.

‘/o—o ‘/o—d ‘/d--d V;—c V::—d
(@) 11040J, -0.13J, 020J, 0.20J, 0.00 J,

s | 0.45 Jo 0.40 Jo -0.20 JG -0.15 Jo -0.065 J{)

Cholesterol Intermediate Lanosterol
(b) Vi | 0854 0.825 J, 0.75 Jo
Ve, | -0.625 Jg -0.60 J, -0.525 Jy

Table 5.1: Interaction parameters for the model potential of the three lipid-sterol systems in units
of Jy. (a) The parameter values for the interaction potential,V,_,, between two lipid chains in the
ordered state, the interaction potential, V,_4, between a lipid chain in the ordered state and a lipid
chain in the disordered state, the interaction potential, V;_4, between two lipid chains in the disor-
dered state, the interaction potential, V,_., between two cholesterol molecules, and the interaction
potential, V._4, between a lipid in the disordered state and a cholesterol molecule. Note that these
values are identical for all three lipid-sterol systems. (b) The parameter values for the interaction
potential V,_,, between a lipid chain in the ordered state and the three different sterol molecules,
a being either chol, int or lan, respectively.

In the following, we refer to the three systems treated in this section as being spe-
cific to lipid systems containing cholesterol, intermediate sterol and lanosterol, where
the intermediate sterol is a sterol on the evolutionary pathway between lanosterol
and cholesterol. We are aware that the molecular description in the model is highly
approximate and that the model cannot therefore describe the molecular difference be-
tween the three specific sterols in any detail. However, based on the phase behaviour
of the model system as obtained by numerical simulations, we find that the results for
the three specific sets of parameters corresponding to cholesterol, intermediate sterol
and lanosterol do indeed give a reasonable description of the differences between the
three lipid-sterol systems when compared to experimentally obtained phase diagrams.

We will therefore in this section refer to the three lipid-sterol mixtures specifically as
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lipid-cholesterol, lipid-intermediate sterol, and lipid-lanosterol mixtures.

The value for V2__/V!__ was again determined so that the phase transition of the
pure lipid system is located in the regime where the translational and the internal
degrees of freedom are coupled (see discussion in Section 2.3). For the lipid-cholesterol
system, the values for vl (e = 0,!, c) were determined so that the phase behaviour
of the equilibrium lipid-cholesterol system resembles that of the DPPC-cholesterol
bilayer. For the lipid-lanosterol system, the values for stlm were chosen so that the
difference in lipid chain order parameter at high sterol concentration between the
lipid-cholesterol and the lipid-lanosterol system is comparable to the experimentally
observed difference in the PPetPC-cholesterol and the PPetPC-lanosterol systems
(see Fig. 2.3). Finally, the values for %s;lim in the lipid-intermediate sterol system are
chosen so that the rigidifying effect on the lipid chains due to the three sterols follows

the relation cholesterol > intermediate > lanosterol.

5.2.1 Phase Diagrams; Simulations within the Semi-Grand Canonical

Ensemble

The series of simulations reported here were performed within the semi-grand canon-

ical ensemble similar to those described in Section 5.1.

In Fig. 5.11, we show the phase diagrams for the three different sterol systems
based on the simulation results. The diagrams on the left in Fig. 5.11 give the results
in terms of the two control parameters Zyeror (Where Tsterot = Zchoty Zint OF Tian),
the concentration of sterol, and the reduced temperature T'/Ty;, where Ty is the
main transition temperature for the pure lipid system. The diagrams to the right in
Fig. 5.11 show the same results in terms of the difference in chemical potential, p,,
between the lipid chains and the sterol molecules, and T/Ty;. From the figure, it is
clear that smalil modifications in the strength of the interaction potential between the
lipid chains in the ordered state and the sterol molecules lead to a series of phase
diagrams which exhibit considerable topological differences.

For the phase diagrams in Fig. 5.11(a), the strength of the interaction between
cholesterol and a lipid chain in the ordered state is comparable to the interaction

strength between two lipid chains both in the gel state. The phase diagrams are
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Figure 5.11: Phase diagrams for the lipid-sterol mixture model for three different sterols. (a) lipid-
cholesterol mixture, (b) lipid-intermediate sterol mixture, (c) lipid-lanosterol mixture. The left part
of the figure gives the phase diagrams as a function of sterol concentration Z..q and reduced
temperature T/Ty. The right part of the figure gives the phase diagrams as a function of u and
T/Ty. The different phases labeled in the phase diagrams are the so, solid ordered (gel), Id, liquid
disordered (fluid), and lo, liquid ordered phases, respectively, where the first letter refers to the
lateral order of the phase and the second letter refers to the conformational order of the phase.
The points P and P, are the critical point of the ld-lo coexistence region and the triple point,
respectively, and the point P, in the right part of (c) is the critical point of the metastable Id-lo
coexistence region described in the text. The error bars given in the left phase diagram in (c) are
due to finite size effects as described in the text.
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similar to those calculated for the model proposed earlier for the lipid-cholesterol
system (Nielsen et al. [98]) (see Section 5.1) and they again show the characteristics
of a macroscopic uncoupling of the translational (lateral) and the chain conformational
(internal) degrees of freedom due to the inclusion of cholesterol. The strength of the
interaction between a lipid chain in the ordered state and a cholesterol molecule is
capable of stabilizing the lo phase up to high temperatures and the phase diagram
is characterized by a substantial miscibility gab between the lo phase and the 1d
phase in the region above the three-phase line. The ld-lo coexistence region is found
to terminate in a critical point, P., at T = 1.00757y;, ua = 1.659. The point
of three-phase coexistence, P,, is located close to T = 0.9977Ty, ua = 1.460 and
the concentration of cholesterol in the three coexisting phases is Iopos0 = 0.013,

Tenot1d = 0.035, and Lepgrto = 0.175, respectively.

For lipid-intermediate sterol systems, the lipid-sterol interaction was taken to be
weaker than for the lipid-cholesterol systems and the critical point, P, of the ld-lo
coexistence region is found to shift to lower temperatures and slightly higher sterol
concentrations as compared to the lipid-cholesterol system. Figure 5.11(b) shows a
miscibility gab between the ld and the lo phases above the three-phase line. The
critical point, P,, is located close to T = 1.0035T\;, pa = 1.651 and the three-
phase line, P, in found to be located close to T = 0.99767Ty, ua = 1.527 with
corresponding sterol concentrations in the coexisting phases being i, 50 = 0.017,
Zinead = 0.040, and zin 1o = 0.190, respectively. The ld-lo coexistence region is thus
reduced substantially as compared to the phase diagram in Fig. 5.11(a), whereas the

change in the temperature of three-phase coexistence only displays a minor shift.

Finally, for Fig. 5.11(c) the strength of the interaction between the ordered lipid
chains and the sterol molecules is made too weak to stabilize the lo phase at high
temperatures and the phase diagram shows the absence of a miscibility gab between
the lo and the ld phases. The phase diagram for this sterol system hence has no
three-phase line. The critical point, P, terminating the ld-lo coexistence region is
located below the solid-liquid phase line at T = 0.9952Ty;, ua = 1.66. The ld-lo
coexistence region is found to be metastable and thus we cannot define two distinct

fluid phases for this system.
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The results displayed in Fig. 5.11 were obtained from a detailed finite-size anal-
ysis. In Fig. 5.12-5.13, we give several results from this analysis. The procedure
employed in the finite-size scaling analysis for the model is similar to that described
in Section 5.1 (Nielsen et al. [98]).

The graphs in Figure 5.12 show the finite size scaling plot of 3F(Zca) for the
lipid-cholesterol (left side) and BF;(zin,) for the lipid-intermediate sterol (right side)
systems for different temperatures. Figure 5.12(a) and (b) indicate the existence of
a first order transition for both the lipid-cholesterol and the lipid-intermediate sterol
system at the two temperatures (Lee and Kosterlitz [91]). The magnitude of the free
energy barrier between the coexisting phases can be obtained from the curves in the
figure. For example, for a system of size L = 20, AF.(Zchot)1d-10 = 3.5k87T and
AFr(ZTchot)so—to = 4.0kgT for the lipid-cholesterol system. Figure 5.12(c) gives the
spectral free energy OF.(Tcha) and BFp(zine) calculated for different system sizes,
L, at a temperature close to the critical point of the ld-lo coexistence region. The
figure demonstrates that the “interfacial energy” at this temperature for large system
sizes approaches a constant value. This indicates that the critical point, P, of the
ld-lo coexistence region is located close to T = 1.0075Ty;, pa = 1.659 for the lipid-
cholesterol system and close to T = 1.0035Ty;, ua = 1.651 for the lipid-intermediate
sterol system. The critical point of the ld-lo coexistence region is thus shifted for the
intermediate sterol system to a lower temperature as compared to the lipid-cholesterol

system.

Figure 5.13 gives examples of the finite-size scaling analysis for the lipid-lanosterol
system. In Fig. 5.13(a), the plot of the “interfacial” energy indicates the existence of
a first order transition between the so and the lo phases. In Fig. 5.13(b), we show the
finite-size dependence of 3F(¢) at a temperature of T = 0.9952T);. The figure shows
that the interfacial energy at this temperature approaches a constant value for large
system sizes, thus indicating the existence of a ld-lo coexistence region terminating
in a critical point close to T = 0.9952T;, ua = 1.660. The plot in Fig. 5.13(c), on the
other hand, suggests that the ld-lo coexistence region is only metastable with respect
to the so phase. In this figure, we plot the finite-size dependence of 3F.(¢) for T =
0.9952T\; and g5 = 1.660 calculated for a series of relatively small system sizes. The
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Figure 5.12: Finite size scaling plot of BFL(zchot) and 8FL(Zin:) for the lipid-cholesterol (left side)
and the lipid-intermediate sterol (right side) systems. (a) Lipid-cholesterol system at T = 0.99687y,
lipid-intermediate sterol system at T = 0.9860Ty (so-lo coexistence region). System sizes are L
= 10, 12, 14, 16, 18 and 20. (b) Lipid-cholesterol system at T = 1.0035Ty, Lipid-intermediate
sterol system at 1.0022T); (ld-lo coexistence region). System sizes are L = 8 (for the intermediate
sterol), 10, 12, 14, 16, 20, 24, 30 and 40. (c) Lipid-cholesterol system at T = 1.0075Ty (close to
the point of the ld-lo coexistence region). The system sizes are L = 10, 12, 14, 16, 20, 24 and 30.
Lipid-intermediate sterol system at T = 1.0035Ty (close to the critical point of the ld-lo coexistence
region). The system sizes are [ = 12, 14, 16, 18, 20, 24, 30 and 40. In the insert to the figures is
shown the interfacial free energy AGFr(zchot) and ASFL(Zin:) as a function of system size. The
line connecting the points is a guide to the eye.
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spectral free energy functions shown in Fig. 5.13(c) were calculated at T = 0.9952T
for values of ua close to the melting curve and reweighted to the specific value of
1A = 1.66 by use of the Ferrenberg-Swendsen reweighting technique (Ferrenberg and
Swendsen [88]). As the figure shows, the free energy of the so phase is lower than that
of the two liquid phases, suggesting that the ld-lo coexisting region is only metastable
with respect to the so phase. Due to the difficuities associated with simulations of
solid-liquid phase transitions for large system sizes described in Section 3.1.5, we have
not been able to perform a finite-size analysis of the solid-liquid phase transition up
to sufficiently large system sizes in order to conclude rigorously whether the results
given above represent the thermodynamic limit of the system. The limited finite-size
analysis nevertheless suggests that the ld-lo coexisting region remains metastable
with respect to the so phase as the system size is increased. The lipid-lanosterol
system thus has no region of ld-lo phase coexistence and the stable phases in the
lipid-lanosterol bilayer systems are those of the solid ordered so phase and the liquid
(1d/lo) phase. In the phase diagram of Fig. 5.11(c), the metastable 1d-lo coexistence
region is indicated as a metastable phase coexistence line terminating at P, below the

so-(lo/1d) transition line.

The presence of the metastable 1d-lo coexistence region in the vicinity of the solid-
liquid melting transition curve gives rise to large error bars in the estimated values
for the concentration of lanosterol in the liquid phase for temperatures close to .
In the vicinity of P,, the spectral free energy of a finite system indicates the presence
of three distinct phases (see Fig. 5.13(c)). Only in the thermodynamic limit does the
barrier between the ld and the lo phases vanish and the spectral free energy will then
have a shape corresponding to two coexisting phases. For finite systems, we cannot
obtain accurate estimates of the lanosterol concentration in the liquid phase based
on the loci of the minima in the spectral free energy, 8F (i) when the metastable
ld-lo coexistence region lies close to the solid-liquid melting curve. In the phase
diagram of Fig.5.11(c), the error bars on the lanosterol concentration in the liquid
phase for temperatures close to T = 0.9952Ty; are thus determined from the relative
position of the metastable fluid minimum as compared to the position of the stable

fluid minimum in the spectral free energy function 3Fp(zi,) at the specific values
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Figure 5.13: Finite size scaling plot of 3F(xian) and BF(€) for the lipid-lanosterol system. (a)
Finite size scaling plot of 8F(zi4n) for T = 0.9860T; (so-lo coexistence region). System sizes are
L =10, 12, 14, 16, 18 and 20. (b) Finite size scaling plot of 3F(¢) for T = 0.9952Ty. System
sizes are L = 20, 30, 40 and 50. For clarity the curves have been shifted down along the y-axis so
that the largest L is the lowest curve. (c) Finite size scaling plot of 3F(¢) for T = 0.9952T; and
ua = 1.66. The system sizes are L = 10, 12, 14, 16, 18, 20 and 22. In the insert to the figures is
shown the interfacial free energy ABFL(21an) or ABFL(€) as a function of system size. The lines
connecting the points are guides to the eye.
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of T and pa. A detailed finite size analysis up to much larger system sizes in order
to estimate the lanosterol concentration in the liquid phase in the thermodynamic
limit would clearly give more accurate results. Such an analysis is however very
time consuming and beyond the scope of the present work and the above estimate is
sufficient for our purpose.

The phase diagram in Fig. 5.11(a) for the lipid-cholesterol system has a topology
similar to the experimentally obtained phase diagram for the DPPC cholesterol bilayer
system. This close resemblance between the theoretical and the experimental phase
diagram again suggests that the microscopic model proposed for the lipid-cholesterol
system does indeed provide a correct picture of the effective mechanism of cholesterol
in lipid bilayers. We discussed in Section 5.1 how the minimal model for the lipid-
cholesterol system provides new insights into how the dual mechanism of cholesterol
as being both a crystal breaker and a lipid chain rigidifier is manifested in the phase
behaviour of the lipid-cholesterol mixture system. The reader is referred to Section 3.1

for details.

Figure 5.14: Phase diagram
for the PPetPC-lanosterol
system as obtained form
NMR and DCS studies.
Filled A are determined from
DCS data. e are from NMR
data such as the data shown
in Fig. 5.15, and filled O
are from *H NMR difference
spectroscopy. The lines
connecting the points are
guides to the eye. Adapted
from J. Thewalt [96].

Based on NMR and calorimetry studies, J. Thewalt ([96]) obtained a phase di-
agram for the PPetPC-lanosterol bilayer system (see Fig. 5.14). PPetPC is a lipid
molecule similar to POPC. PPetPC has a double bond at the 6-7 carbon position of
the petroselinic acyl chain (Bloom, Evans and Mouritsen [91]). The detailed phase
behaviour of the PPetPC-cholesterol system is thus different from that of the DPPC-

cholesterol system; however, the generic phase behaviour for the two systems is found
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Figure 5.15: The average chain orientational order parameter {|Scp|) as a function of temperature
for several PPetPC-cholesterol (left) and PPetPC-lanosterol (right) mixtures . A rough estimate
of the salid-liquid phase transition can be found as the temperature where the slope of the order
parameter curve has its maximum. The constant transition temperature, determined in this manner,
for the PPetPC-cholesterol system for concentrations of cholesterol up to 15 % is taken as evidence
for the existence of a three-phase line. The constant decrease in transition temperature observed
for the PPetPC-lanosterol system as the lanosterol concentration is increased, is, on the other hand.
taken as evidence for the absence of a three-phase line. Adapted from J. Thewalt [96].

to be very similar (Thewalt [96]; Bloom and Mouritsen [95]). In the NMR, study one
cannot distinguish between the ld and the lo phases, and the experimental results
thus cannot rigorously determine if the PPetPC-lanosterol phase diagram does con-
tain a ld-lo coexistence region. The data for the chain order parameter nevertheless
suggest that the PPetPC-lanosterol phase diagram has no three-phase line and it does
thus not have a ld-lo coexistence region (see Fig. 5.15).

The experimental phase diagram of J. Thewalt ([96]) for the PPetPC-lanosterol
bilayer system exhibits a topology similar to that of the lipid-lanosterol model system
shown in Fig. 5.11(c). This suggests that the model proposed for the lipid-lanosterol
system also captures some of the important mechanisms underlying the effects of
lanosterol in lipid bilayers and that the differences between cholesterol and lanosterol
as proposed in the variation of the model parameters defining the two model sys-
tems do indeed picture some of the important differences between the two lipid-sterol
systems.

The sole difference between the cholesterol and the lanosterol model molecules
within the model picture studied here lies in the strength of the interaction potential

between the sterol molecules and lipid chains in the ordered state. The difference
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in the interaction strength shown in Fig. 5.11(a) and 5.11(c) is about 11 %, and the
difference between the lanosterol and cholesterol model molecules is thus relatively
small. This difference is nevertheless the only reason for the topological difference
between the phase diagrams of Fig. 5.11(a) and 5.11(c) and the sole reason for the

substantial difference between the two lipid-sterol systems.

5.2.2 Simulations within the Canonical Ensemble

We have also performed simulations within the canonical ensemble as described in
Section 4.1.1. In these simulations, we calculated the structure factors as defined by

Eq. (5.1) and the order parameter for the lipid chains defined as;

_ 1 Zi Eio - £id
M= 2(<Zi£io+£id

where £;, and £;4 are the occupation variables for the lipid chains defined in Eq. (2.12)

Y+1) , (5.2)

and (---) denotes a thermal average. This order parameter is close to unity in the low
temperature so phase and zero in the high temperature 1d phase. The thermal average
of the structure factors was taken over 5-10* different microconfigurations with a time
interval of 100 MCS between two consecutive configurations. In the calculation of the
thermal average of the order parameter, the system was equilibrated during 200.000
MCS at each value of the temperature and sterol concentration before the thermal
average was calculated over a period of 500.000 MCS.

In Fig. 5.16(a), we show the average lipid chain order parameter, M, as a func-
tion of sterol concentration for the three different sterol systems for T = 1.0129T .
This temperature is above the critical point of the ld-lo coexistence region of the
lipid-cholesterol system and all three lipid-sterol systems are in a single phase at this
temperature for all sterol concentrations investigated. Figure 5.16(b) shows the av-
erage lipid chain order parameter, M, for the three different lipid-sterol systems as a
function of temperature for zye-ot = 0.225. This concentration is beyond the so-lo
and ld-lo coexistence regions of both the lipid-cholesterol and lipid-intermediate sterol
phase diagrams, and the three systems are in a single phase at this sterol concentra-
tion for all the temperatures investigated. Both Figure 5.16(a) and (b) demonstrate

the rigidifying effect on the lipid chains of all three sterols. Figure 5.16(a) shows that
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Figure 5.16: Lipid chain order parameter for the three lipid-sterol systems for a system size of
N =1600. (e) cholesterol, (D) intermediate sterol and (full ¢) lanosterol. (a) The lipid chain order
parameter as a function of sterol concentration calculated using Eq. (5.2) for T = 1.0129Ty. (b)
The lipid chain order parameter as a function of temperature for £,ero = 0.225.

cholesterol at a x4, = 0.30 is able to rigidify close to 70 % of the lipid chains, whereas
lanosterol at this concentration can rigidify only 40 %. A direct comparison between
the experimental data for the chain order parameter (Fig. 2.3) and the simulation
results (Fig. 5.16(a)) shows that the difference in chain rigidifying effect between
the two model lipid-sterol systems is similar to that of the cholesterol and lanosterol
experimental systems. For the experimental systems, we find that cholesterol at a
molar concentration of 30 % enhances the chain order parameter by 0.12 units as
compared to the pure lipid system. Lanosterol at the same molar concentration en-
hances the chain order parameter by only 0.07 units. From the simulation results
shown in Fig. 5.16(a) we find that cholesterol at a concentration of z. = 0.20 (this
concentration corresponds to a molar concentration of z7* = 0.33) enhances the chain
order parameter by 0.325 units as compared to the pure system, whereas lanosterol
enhances the chain order parameter by only 0.185 units. If we take the ratio between
the two experimental and theoretical values, respectively, we obtain in both cases a

value close to 0.57.

Fig. 5.16(b) gives a comparison of the effect on the lipid chains for the three
different sterols as a function of temperature at fixed sterol concentration. At low
temperatures, all curves tend to the same value of M and the figure shows that the

lipid chains in the three lipid-sterol systems are equally ordered at low temperatures.
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However, at temperatures above the main transition of the pure lipid system, Ty,
the three sterols have very different effects on the lipid chains. Cholesterol is capable
of maintaining most of the lipid chains in the ordered state up to a temperature
of T = 1.0129T);, whereas most of the lipid chains are in the disordered state at
this temperature in the lipid-lanosterol system. Since the average lipid chain order
parameter in the fluid phase of the lipid membrane is an indirect measure of the
mechanical stability of the membrane, the curves in Fig. 5.16 give evidence for the

high mechanical stabilizing effect of cholesterol as compared to lanostcrol.

Figure 5.17 gives examples of the structure factors characterizing the lateral struc-
ture of the high sterol concentration liquid phase of the three sterol systems. The
figure shows the partial sterol structure factor Syerai(|g|) of Eq. (5.1) calculated at
T = 1.0022Ty; and T = 0.9860T\; for Zyeroq = 0.225. At those temperatures and
this sterol concentration, the lipid-cholesterol and lipid-intermediate sterol are both
in the lo phase, which is characterized by a high degree of conformational order in
the lipid chains and a high lateral disorder, whereas the lipid-lanosterol system is
in the 1d/lo liquid phase. The figure shows the characteristics of a liquid phase for
all three systems. The graphs of Syerot(|g|) for the cholesterol and the intermediate
sterol systems show a diffuse ring located close to 0.40 - 27 /d, as was the case for the
lipid-cholesterol system investigated in Section 5.1. The origin of this ring is due to
the one-dimensional thread-like microdomains formed by the two types of sterols in
the lipid bilayer as described in Section 5.1. The graph of S,eroi(lg|) for the lanosterol
system shows the absence of the diffuse ring at |g| ~ 0.40-27/d. In the lipid-lanosterol
system, the interaction between the ordered chains and the lanosterol molecules is
thus too weak to stabilize the one-dimensional lanosterol microstructures. A com-
parison between the snapshots given in the lower part of Fig. 5.17, demonstrates the
weaker rigidifying effect on the lipid chains of lanosterol as compared to cholesterol.
The snapshots show characteristic microconfigurations of the three lipid-sterol sys-
tems at 7' = 1.00227y; and Zserq = 0.225. The plots give evidence for the strong
ability of cholesterol and the much weaker ability of lanosterol to rigidify the lipid

chains at temperatures above the main transition, Ty.
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Figure 5.17: The partial sterol structure factor Sss.rot(|gl) calculated at (a) T = 1.0022Ty, Zsterat =
0.225, (b) T = 0.9806T 1, Tyterot = 0.225 for three sterol systems. S.no(|q]) is shown as (e}, Sine(|q])
is shown as (O) and S4,(|g|) is shown as (solid o). For clarity the curves for Schoi(lg]) and Sin:(|q])
have been shifted along the y-axis. The |g|-values are given in units of 2n/d. The insert to the figures
shows the total structure factor St(|q|) for the three sterol systems. In the three lower figures are
shown snapshots of microconfigurations for lipid systems containing cholesterol (left), intermediate
sterol (middle) and lanosterol (right) systems calculated at T = 1.0022Ty; and Ty¢erer = 0.225. In
the snapshots, a lipid chain in the ordered state is shown as (e), a lipid chain in the disordered state
as (o) and a sterol molecule as (x).

5.2.3 Discussion

In this section, we investigated a microscopic model describing the phase behaviour
of lipid-sterol mixtures. The investigation focused on the application of the model
specifically to lipid-cholesterol and lipid-lanosterol mixtures. The effect of the sterol
molecules in the lipid bilayer is hypothesized to be a dual mechanism, in that a sterol
molecule is both a “crystal breaker” and a "lipid chain rigidifier”. The details of
the model and the results as applied to lipid-cholesterol mixtures were described in
Section 5.1 (Nielsen et al. [98]). In the model, the effective differences between choles-

terol and lanosterol are described in a minimal manner by a difference in both the
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ability of the sterol molecules to rigidify the lipid chains and in the ability to dis-
rupt the crystalline order. We have calculated phase diagrams and thermal averages
of quantities characterizing the different thermodynamic phases for three lipid-sterol
systems designed to be specific to the lipid-cholesterol, lipid-intermediate sterol and
lipid-lanosterol systems. The phase diagrams of the first and last system display the
same topology as the experimentally obtained phase diagrams (Vist and Davis [90;
Thewalt [96]). The theoretical phase diagram for the lipid-cholesterol system shows
the presence of a distinct ld-lo coexistence region thus demonstrating the ability of
cholesterol to uncouple the ordering processes of the chain conformational and the
translational degrees of freedom. For the lipid-lanosterol system, on the other hand,
the theoretical phase diagram shows the absence of such ld-lo coexistence region and
we hence predict that lanosterol does not uncouple the transitions associated with the
two sets of degrees of freedom. We find for the lipid-lanosterol system that the ld-lo
coexistence region is metastable with respect to the so phase and that the critical

point of the ld-lo coexistence region is located below the solid-liquid melting curve.

The structural analysis of the lo phase for the lipid-cholesterol and the lipid-
intermediate sterol systems showed the presence of a diffuse scattering ring at |q| ~
0.4-27/d in the partial structure factor related to the sterol molecules. The origin of
this diffuse ring is the “thread-like” microstructures discussed in Section 5.1 (Nielsen
et al. [98]). The structural analysis of the 1d/lo phase in the lipid-lanosterol system,
on the other hand, showed the absence of such a diffuse ring and we conclude that the
interaction strength between the ordered lipid chains and the lanosterol molecules is
too weak to stabilize the formation of one-dimensional thread-like microdomains in

the lipid-lanosterol bilayers.

With regard to the metastability of the ld-lo phase coexistence predicted here
for lipid-lanosterol bilayers, Wolde and Frenkel ([98]) and Hagen and Frenkel ([94])
reported results on a series of colloidal particle systems exhibiting a generic phase
behaviour similar to the series of phase diagrams for the lipid-sterol systems inves-
tigated in the present thesis. Hagen and Frenkel showed that the phase behaviour
of the hard-core attractive Yukawa system depends strongly on the range of Yukawa

interaction (Hagen and Frenkel [94]). They found that the liquid-vapor coexistence



116 5 RESULTS FOR LIPID-STEROL MIXTURES

region in the hard-core Yukawa system is only exists for systems where the interac-
tion range of the Yukawa potential is larger than a certain value. For values of the
interaction range larger than this specific value, all three phases (solid, liquid and
vapor) are present in the calculated phase diagram. As the range of the interac-
tion potential is decreased, the critical point of the liquid-vapor coexistence region is
shifted towards the three-phase line, and at a specific value of the interaction range
the critical point of the liquid-vapor coexistence region is found to be located at the
solid-liquid melting curve. For an interaction range below this specific value, only two
stable phases (a solid and a liquid/vapor phase) are present in the system and the
liquid-vapor coexistence region lies as a metastable phase coexistence region below
the melting curve. Close to the critical point of the liquid-vapor coexistence region,
large density fluctuations are present in the system. In the case where the critical
point is located in the vicinity of the melting curve, Wolde and Frenkel argue that one
should expect large density fluctuations in the solid-liquid phase transition due to the
coupling between the critical liquid-vapor transition and the first order solid-liquid
transition (Wolde and Frenkel [98]).

The work of Wolde and Frenkel focused on the ‘enhancement on protein crystal
nucleation by critical density fluctuation” in the context of a phase behaviour of the

above kind. They conclude their work by noting that

. the phase diagram shown (a phase diagram with a metastable
liquid-vapor coexistence region) is likely to be the rule rather than the
exception for compact macromolecules. Moreover, it occurs both in the
bulk and in (quasi) two-dimensional systems (e.g. in membranes). It is
therefore tempting to speculate that nature already makes extensive use
of “piggy-back riding” on critical fluctuations to facilitate the formation
of ordered structures (Wolde and Frenkel [98]).

In the context of the function of cholesterol in biological membranes, it is tempting
to extend the above argument and speculate that Nature has tended to optimize the
lipid-sterol interaction strength along the biosynthetic pathway of the different sterols
so that the critical point of the ld-lo coexistence region is shifted as far away from

the solid-liquid melting line as possible. By the synthesis of cholesterol, Nature would
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thus have arrived at a sterol with optimal lipid-sterol interactions, resulting in the
ability of the sterol to stabilize optimally the lo phase and the mechanical properties
of the lipid membrane. This point was first made by Bloom and Mouritsen ([88]).
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MEMBRANE LysIS

In this chapter, we present the results of the analysis of Model V, which is a model
for the stability of lipid membranes in the presence of single or multiple holes. The
work presented is based on preliminary results and the presentation has character of a
discussion rather than a detailed analysis as was the case in the previous chapters. In
this work, we mainly concentrate on the single hole model of Shillcock and Boal ([96]).
The results are organized in three parts. First, we give the results for the single hole
membrane model with only translational degrees of freedom and compare the results
to those obtained by Shillcock and Boal ([96]). Next, we present the results for the
stability of single hole membranes described by both translational and conformational
degrees of freedom. Finally, we consider the multiple hole model of Shillcock and
Seifert ([98]) and discuss whether the effect of multiple holes is greatly overestimated
in the work of Shillcock and Seifert. We then present a new phase diagram for the

multiple hole membrane model based on numerical simulations.

6.1 Thermal Stability of Membranes in Zero Stress

Here we give the results of Monte Carlo simulations of the single hole model for the
thermal stability of membranes at zero stress. Figures 6.1-6.2 show the results of the
analysis. The simulations were performed for a system of size N = 400 at zero stress
(0 = 0). In this case, the stability of the membrane is controlled by a single parameter,
the reduced edge tension, A* = Ad. In each simulation, the system was prepared in a
triangular lattice configuration, which was equilibrated at a high temperature during
100.000 MCS. After the equilibration, a hole was made in the membrane by removing
a randomly chosen tether. The high temperature configuration served as the initial

state for the simulations at a given value of A*. In the simulations, the first 100.000
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Figure 6.1: The reduced hole perimeter length, I'/Nd, as a function of the reduced edge tension, A*,
for a system size of NV = 400. To the right are shown two typical snapshots of microconfigurations
for the intact membrane, A* = 1.275, and the ruptured membrane, A\* = 1.235, respectively. In the
snapshots, the edge of the hole is shown as a thick solid line. The snapshots are not shown to scale.

MCS were discarded before the measurement of various thermodynamic quantities
was performed over 1-10-106 MCS. From the simulation results, we calculated the
average total area of the bulk membrane and hole, (A), the average length of the hole
perimeter, (I'), and the area compression modulus, K4. The later was calculated

from the fluctuation-dissipation theorem as

(4)

K= T — ()

(6.1)

Figure 6.1 shows the reduced hole perimeter length, I'/Nd, as a function of the
reduced edge tension, A*. The figure shows a sharp change in the value of ['/Nd
close to A* = 1.24. For values of A* > 1.25 only a small hole is present in the
membrane, whereas large holes are present for A* < 1.23. The formation of a large
hole in the membrane allows for large area fluctuations in the membrane/hole system.

The signal of such large fluctuations is seen in the area compression modulus, K 4.



6.2 Thermal Stability of Decorated Membranes 121

Fig. 6.2(a) gives 8K 4d? as a function of the reduced edge tension, A*. For A\* < 1.23,
the compression modulus is close to zero, whereas it is close to the pure fluid modulus,
BK.d* = 18 (Boal [93]) for A* > 1.35. In Fig. 6.2(b) is shown the area of the bulk
membrane and hole, A, and the hole perimeter length, ', as a function of Monte
Carlo time for A* = 1.275. The graph demonstrates the presence of large fluctuations
in A for this value of A* due to the growth and shrinkage of the hole. For the single

hole model at zero stress, we thus reproduce the results of Shillcock and Boal ([96]).
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Figure 6.2: (a) The area compression modulus, 3K 4d?, as a function of reduced edge tension, A",
for a system of N = 400. (b) The system area (bulk and hole), A, (the upper curve) and the hole
perimeter length, [, (the lower curve) as a function of Monte Carlo time for A* = 1.275.

6.2 Thermal Stability of Decorated Membranes in the Pres-

ence of Holes

We now present the results of the simulations of Model V, which is a model for the
thermal stability of membranes decorated with conformational degrees of freedom.
The parameters used in the following for the conformational degrees of freedom are
those of the lipid-sterol mixture systems described in Section 5.2. The simulations
were performed as described in the previous section for a system of size N = 400 at
zero stress (¢ = 0). In the simulations, we calculate thermal averages of the quantities

described in the previous section as well as an effective line tension, A.gy, associated
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with the growth (shrinkage) of the hole defined as

V(R,)> |

Aeff = AF <—F (6.2)

where A is the bare line tension of Eq. (2.15). R; is the length of the tether / to
be removed in the process of growth (shrinkage), V(R;) is the interaction potential
between the particles connected by [/, and Ad is the change in hole perimeter in the
growth (shrinkage) process. .y is a measure for the effective line tension associated
with the growth and shrinkage of holes in a membrane which is decorated with internal
degrees of freedom.

One should note at this point that the results reported below are calculated for
o = 0. It is hence not possible to compare directly the results for the intact membrane
given here with the results reported in Section 5.2, since the results for the lipid-
sterol membrane systems reported in Section 5.2 were obtained for membranes under
a lateral pressure of 3od® = 3.0.

Fig. 6.3 shows 8A.;rd, T and 3Kd? as a function of sterol concentration, I
and 4y, for mixtures of lipid-cholesterol and lipid-lanosterol, respectively. The tem-
perature, T, was set to T = 0.91607; in all the simulations, where T\ is the main
transition temperature of the pure lipid system defined in Section 5.2. At this temper-
ature the pure lipid membrane at zero stress is found to be in the 1d phase. The value
of A* was set at 0.9, such that the pure lipid membrane system is unstable against
rupture. For lipid-cholesterol mixtures, Fig. 6.3(a) shows that 3).srd becomes larger
than 1.24 for z., > 0.2. At high concentrations, cholesterol thus induces an in-
crease in A.srd such that the formation of large holes in the membrane is prevented.
Cholesterol is therefore seen to inhibit membrane rupture. For the lipid-lanosterol
system, on the other hand, Fig. 6.3(a) shows that GA.ssd remains below 1.24 for
values of 5, up to 0.25 and lanosterol is thus unable to inhibit membrane rupture
even at high concentrations. Fig. 6.3(c) gives the reduced area compression modulus,
BKd? as a function of sterol concentration for the two lipid-sterol systems. The figure
shows that 3K d? for the lipid-cholesterol system is close to the pure fluid modulus
for high concentrations of cholesterol, again demonstrating the high stabilizing effect
of cholesterol. For the lipid-lanosterol system, on the other hand, 3K d? is close to

Zero up to I;., = 0.25, showing the weak stabilizing effect of lanosterol.
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Figure 6.3: (a) The effective line tension, A7,, = BAcsd, (b) the average hole perimeter, [', and (c)
the area compression modulus, 3K d?, as function of sterol concentration for lipid-cholesterol (o} and
lipid-lanosterol (o) mixtures. The system size is N = 400 and the temperature is T = 0.9160T ;.

Fig. 6.4 gives snapshots of microconfigurations for a series of sterol concentrations
for lipid-cholesterol and lipid-lanosterol systems. The figure shows the strong stabi-
lizing effect of cholesterol on the lipid membrane as compared to lanosterol. At low
concentrations, both lipid-sterol mixtures are unstable against the formation of large
holes and the membranes shown in the corresponding snapshots are ruptured. High
concentrations of cholesterol inhibit the formation of large holes and the microcon-
figuration shows the presence of a small hole. For high concentrations of lanosterol,
however, the snapshot shows the presence of a large hole, again implying that lano-

sterol is unable to inhibit membrane lysis even at high concentrations.

6.3 Discussion

In this chapter, we presented the preliminary results of an analysis of a model for mem-
brane lysis. We compared the results obtained with those of Shillcock and Boal ([96])
in the case of zero lateral stress and found that we reproduce their results. The sta-
bility of the membrane is controlled by the reduced line tension, A\* = §Ad. We find
that for A* > 1.25 the membrane stays intact and only a small hole is present in the
system. For A* < 1.23, however, a large hole is present and the membrane is thus
ruptured. The value of A* separating the intact membrane from the ruptured one is
estimated to be close to 1.24.

By decorating the membrane with a set of conformational degrees of freedom de-

fined by Model IV (see Section 5.2), we were able to analyze the mechanical stabilizing
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Figure 6.4: Snapshots of characteristic microconfigurations for (a) lipid-cholesterol mixtures, (b)
lipid-lanosterol mixtures, at sterol concentrations of 0.05 (left) and 0.25 (right), respectively. T =
0.91607y. In the snapshots, lipid chains in the ordered state are shown as (e), lipid chains in the
disordered state as (o) and cholesterol molecules are shown as (solid A). The snapshots are not
shown to scale.

effect of different sterols on the membrane. We found that cholesterol has a signifi-
cantly higher stabilizing effect on the lipid membrane as compared to lanosterol. In
the simulations, we analyzed the stability of lipid membranes containing several con-
centrations of either cholesterol or lanosterol. A concentration of 20 % cholesterol was
found to inhibit the formation of large holes in the membrane, hence stabilizing the
membrane against rupture. For the lipid-lanosterol system, however, the membrane
was shown to be unstable against rupture even at high concentrations of lanosterol,
implying that lanosterol is unable to inhibit rupture.

The mechanical stability of lipid vesicles can be modified by the absorption of
peptides such as melittin (Benachir et al. [97]). Furthermore, the lysis associated with
the absorption of melittin can be viewed as a result of the reduction of the effective
line tension induced by melittin. When the melittin content in the membrane exceeds

a certain lower value, the effective line tension becomes too small to stabilize the
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membrane against lysis. It is found that the lytic power of melittin in POPC vesicles
is inhibited by the presence of high concentrations of cholesterol (Benachir et al.
[97]). This “healing” effect of cholesterol on the lipid membrane can be viewed as the
result of an enhancement of the effective membrane line tension due to the inclusion
of cholesterol as demonstrated in our theoretical study. It would clearly be very
interesting to analyze the results of an experimental investigation of melittin-induced
lysis of lipid vesicles containing lanosterol. Such an investigation could demonstrate
whether lanosterol indeed has a significantly weaker “healing” effect on the lipid
membrane than that of cholesterol, as predicted by our study. However, such results

are not, to our knowledge, available at present.

Now we turn to the multiple hole model for the thermal stability of membranes
by J. Shillcock and U. Seifert ([98]). We have performed a limited simulation study
of this model and our results are quite different from those reported by Shillcock
and Seifert. The multiple hole model of Shillcock and Seifert employs a chemical
potential, g, to control the number of holes present in the membrane. The chemical
potential is related to the kinetic barrier against hole formation, Q, as Q@ = ALun — 1
(see Section 2.5.1). Here, A is the line tension and L., is the perimeter length
of the new hole. The number of holes present in the membrane can vary in two
distinct ways. Holes can be created and resealed in single-hole processes, and holes
can coalesce and fragment in two-hole processes. [n order for the equilibrium state
of the system to be well defined, the chemical potential must be correctly included
in both of these processes. In our analysis of the multiple hole model, we find that
the results of Shillcock and Seifert can only be reproduced if the chemical potential
is not included in the two-hole processes of coalescence and fragmentation (Shillcock
[98]). We believe, however, that the chemical potential should be included in both the
single-hole and the two-hole processes and a simple example can demonstrate why. If
the intact membrane without holes is taken to be the reference state, then we could
arrive at a final state with a single large hole present in at least two distinct ways.
First, we could create a single hole and let it grow to its final size. The energy of the
final state would then be E}L = AL — p, where L is the perimeter length of the final

hole. Second, we could create a series of N holes and subsequently coalesce these
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holes into the large final hole. If the chemical potential is not included in the two-
hole processes of coalescence and fragmentation, the energy of the final state would
be E%Z = AL — Np. This is clearly different from E} and the energy would, in this
case, be a path dependent variable, which is clearly incorrect. Only if the chemical
potential is included in the two-hole processes would the energy of the final state be

path independent and the thermodynamical state of the system well defined.

It turns out that the way in which the chemical potential is implemented in the
model of Shillcock and Seifert has very important consequences for the phase be-
haviour. In Fig. 6.5, we give the phase diagram as obtained from simulations of a
small system with N = 256. Also shown is the phase diagram as obtained from
simulations in the case where the chemical potential is only involved in the single-
hole processes. The figure shows that the specific implementation of the chemical
potential can change the phase behaviour substantially for small values of ¢* (= Q).
This limit corresponds to large values of u and to situations in which many holes are

present in the system.

In our calculations, we find that the presence of multiple holes have a minor effect
on the stability of the membrane against rupture. This is in contrast to the results of
Shillcock and Seifert ([98]). Using the chemical potential in both the single-hole and
the two-hole processes, we find that the scenario for membrane rupture for all values
of ¢* is that of the formation and growth of a single hole. The stability of the multiple

hole membrane is thus essentially identical to that of the single hole membrane.

The snapshots shown to the right in Fig. 6.5 demonstrate the presence of multiple
holes in the membrane for small values of q*. The phase behaviour, as described
by the phase diagram, however, indicates that the holes only interact weakly. The
reason for this weak interaction is the chemical potential. Situations in which many
holes are present in the membrane correspond to large values of u. In the process of
coalescence, the length of the hole perimeter remains essentially constant. The energy
cost associated with the coalescence is hence . In cases where many holes are present
in the membrane and the process of coalescence thus could be important, the value
of u is large and the energy cost associated with the coalescence process is hence so

high that the process only rarely occurs. This presents a difficulty in the model of
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Figure 6.5: Phase diagram for the fluid membrane in terms of the reduced line tension, A*, and
reduced barrier height, ¢*. (e) are the resuits from the simulation study using the chemical potential
in both the single-hole and the two-hole processes. (o) are the results from simulations using the
chemical potential only in the single-hole processes. The lines connecting the points are guides to
the eye. The snapshots to the right show characteristic microconfigurations at different values of
g® and A\* from the simulation study using the chemical potential in both the single-hole and the
two-hole processes. {a) A\* = 1.2,¢* =34, (b) A* =13,¢° =3.9, (¢} A* =1.3,¢° = 7.4, and (d)
A* = 1.4, g* = 7.7. The snapshots are not shown to scale.

Shillcock and Seifert, since the stability of the membrane should indeed depend on

the presence of multiple holes.

The difficulty in the model of Shillcock and Seifert lies in the use of a chemical
potential to induce variations in the barrier against hole formation. We here suggest
a model which should give a correct description of the stability of lipid membranes
in the presence of multiple holes and which should not suffer from the difficulties
associated with the use of a chemical potential. The formulation of the model is
inspired by the function of melittin absorbed by lipid membranes. In the model, a
change in the barrier against hole formation is induced by the inclusion of melittin-like
impurities which have a lower line tension than that of the lipid chains. We associate
a line tension with all tethers in the system. The line tension along tethers connected
to an impurity is then a certain fraction of the line tension along tethers connecting
two lipid chains. The impurities act as nucleation sites for holes. At low impurity

concentrations, only few holes will be present in the membrane and the model should
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essentially be identical to the single hole model of Shillcock and Boal ([96]). At
high impurity concentrations, however, multiple holes should be present. These holes
interact strongly through the two-hole processes of coalescence and fragmentation,
since basically no energy cost is associated with these processes. We hence expect
that the presence of multiple holes should have an important effect on the phase

behaviour of the membrane for this model.

150.0Q\ —— 20.0
/ 15.0
100.0 -
- \ 4100 R
50.0 p J
5.0
/ 1
VR
yd
E._A — ‘ — — e
0%.05 0.10 0.15 0.20 o.%? °
LT

L " 'W"‘g
et 0% \975 O X
PN o “*'”ﬁ
TERUR AR g'a.!n'
\_/

2N,
4
- 0«

. .Q'D’\'."'.“a‘-’i'é
&'

Figure 6.6: The total hole perimeter for all holes, [ (o) and the area compression modulus, 3K d?
(o), as a function of impurity concentration, z,., for a system of size N = 256. The lipid-lipid
line tension is A* = 1.5 and the impurity-lipid and impurity-impurity line tension is 0.75-A*. In
the lower part of the figure are shown snapshots of characteristic microconfigurations for different
concentrations of impurities. I = 0.05 (left), py = 0.15 (middle) and z,,¢ = 0.25 (right). In
the snapshots, lipid chains are shown as (e) and impurities as (o), respectively. The snapshots are
not given to scale.

Preliminary simulations show that this is indeed the case. At low impurity con-
centratjons, isolated holes are formed in the membrane at the sites of the impurities.
The hole size is found to change rapidly for values of A* close to 1.24, as was the
case for the single-hole model of Shillcock and Boal ([96]). At high concentrations,

however, the impurity sites are not isolated and the holes formed at the impurity sites
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interact strongly. Fig. 6.6 shows the results obtained from a simulation at A* = 1.5.
At this value of A*, the membrane is shown to become unstable against formation
of large holes as the concentration of impurities is increased. As is seen from the
snapshots of microconfigurations given in Fig. 6.6, the impurities tend to accumulate
close to or on the edge of the hole. The results from our preliminary work on the
multiple hole model for membrane lysis is hence very promising, and we believe that
further investigations which will include a minimal model for the conformational de-
grees of freedom should allow us to understand better how melittin induces lysis in

lipid membranes containing sterols.
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7

GENERAL CONCLUSIONS

In the present thesis, we have investigated a series of microscopic models for two
dimensional complex fluid systems. We have developed a random lattice algorithm
which provides an effective representation of the translational degrees of freedom of
the complex fluids. The main concern of this work has been the investigation of
complex systems in which the phase behaviour is determined by an interplay between
the translational and conformational degrees of freedom of the fluid systems.

We have investigated a series of five microscopic models. All models are minimal
in that they only contain an approximate description of the conformational degrees
of freedom of the related model particles and in that the interparticle interaction
potentials are designed to contain only features that are necessary for describing
systems where the interplay between the two sets of degrees of freedom can manifest
itself in the macroscopic phase behaviour. The conformational degrees of freedom
are in all models essentially treated as Ising spin variables. Different degrees of
complexity in the description of the microscopic coupling between the translational
and conformational degrees of freedom, allowed us to study a variety of models related
to pure lipid membrane and lipid-sterol membrane systems.

The phase equilibria described by the models, specifically phase diagrams and
equilibrium thermal averages of specific quantities, such as structure factors, internal
energy, surface area and order parameter characterizing the different phases, were
calculated using several Monte Carlo simulation techniques, including histogram- and
thermodynamic reweighting techniques, finite-size scaling as well as non-Boltzmann
sampling techniques.

The different models were shown to exhibit a rich phase behaviour. Depending on

the specific model parameters, the phase transition associated with the conformational
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degrees of freedom was found be either coupled to, or uncoupled from, the phase

transition associated with the translational degrees of freedom.

The first model investigated was an Ising model defined on a two dimensional ftuid
surface. The simulation study of this model displayed no macroscopic manifestation of
a coupling between the spin and the translational degrees of freedom. For the second
model, an Ising model in which the spin degrees of freedom are more strongly coupled
to the translational degrees of freedom, the phase transitions in the two sets of degrees
of freedom were shown to be macroscopically coupled for certain values of the model
parameters. For parameter values for which the two transitions are coupled, the Ising
spin transition was shown to be of first order and slaved by the first order lattice
melting transition associated with the translational degrees of freedom. In situations
where the Ising transition is uncoupled from the transition in the translational degrees
of freedom both Ising models were shown to display a critical behaviour identical to

that of the regular-lattice [sing model universality class.

For the Model III, 2 minimal model for the phase behaviour of lipid bilayers, we
calculated a phase diagram in terms of temperature and a parameter, Vy/Jy, which
measures the strength of the coupling between the two sets of degrees of freedom.
The point of key importance in the phase diagram is the appearance of two distinct
regimes, separated by a triple point, of different types of macroscopic interplay be-
tween the two sets of degrees of freedom. A regime of macroscopic coupling between
the two sets of degrees of freedom, as observed in most systems of pure lipid bilayers,
exists for values of V,/Jy greater than the triple-point value. However, a regime of
macroscopic decoupling also exists as part of the generic thermodynamic behaviour
of the model, for values of V;/Jy smaller than the triple-point value, where two dis-
tinct ordering transitions take place successively, separated by an intermediate phase
characterized by the translational order of the liquid crystalline (ld) phase and the

conformational order of the gel (so) phase of pure lipid bilayer systems.

Our study of the model for lipid bilayers containing sterols (Model IV) led to a
series of phase diagrams expressed in terms of sterol concentration and temperature.
We focused on the application of the model to the specific systems of lipid-cholesterol

and lipid-lanosterol mixtures. The calculated phase diagrams were shown to have the
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same topology as the experimentally obtained phase diagrams. The phase diagram
calculated for the lipid-cholesterol displayed the presence of a ld-lo coexistence re-
gion, thus demonstrating the ability of cholesterol to uncouple the phase transitions
associated with the translational and conformational degrees of freedom, respectively.
The phase diagram for the lipid-lanosterol, however, showed the absence of a 1d-lo
coexistence region. For the lipid-lanosterol system, our theoretical study thus pre-
dicts that lanosterol does not uncouple the phase transitions associated with the two
scts of degrees of freedom. We view the metastability of the 1d-lo coexistence region
predicted for the lipid-lanosterol system as a support of the hypothesis on membrane
evolution of M. Bloom and O.G. Mouritsen ([88}). Specifically, we suggest that Na-
ture in the process of evolution has tended to optimize the lipid-sterol interaction
so as to stabilize optimally the lo phase and the mechanical properties of the lipid

membrane.

In the analysis of the lipid-sterol systems, we also obtained detailed information
on the lateral structure of the various phases. Here, the study of the sterol-rich phase
was of particular interest, since this phase for the lipid-cholesterol systems has been
the subject of a long and continuing debate in the literature due to its relevance
for biological membrane systems. The structure analysis showed that the sterol-rich
phase is indeed a liquid phase. More interestingly, for the lipid-cholesterol system,
the partial structure factors associated with the cholesterol molecules showed a dif-
fuse ring corresponding to a structure characterized by a length scale of roughly twice
the average interparticle distance. We argue that the origin of the diffuse ring is the
formation of “thread-like” microdomains in the lipid-cholesterol system. The forma-
tion of such microdomains is stabilized by the strong interaction between ordered lipid
chains and cholesterol and by the weak interaction between two cholesterol molecules.
The structure analysis of the lipid-lanosterol system showed the absence of this diffuse
ring, and we thus predict that lanosterol has too weak an interaction with the lipid

chains to stabilize the formation of “thread-like” microdomains.

For the model for membrane lysis which inciudes sterols (Model V), we find that
cholesterol has a significantly higher stabilizing effect on the lipid membrane as com-

pared to lanosterol. We find that the inclusion of 20 % cholesterol in the lipid mem-
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brane inhibits the formation of large holes and cholesterol is thus found to stabilize
the membrane against lysis. Lanosterol, on the contrary, is found to have a weak
stabilizing effect on the membrane and inclusion of lanosterol was found to be unable

to stabilize the membrane against lysis.

The use of Monte Carlo simulations to calculate the equilibrium phase behaviour of
the various models proposed in this thesis turned out to be difficult in situations where
simulations up to large system sizes were needed in order to determine the finite size
scaling behaviour. This was in particular the case for the model proposed for lipid-
sterol mixtures. For this model, our simulation study could not determine rigorously
the equilibrium phase diagram for the lipid-lanosterol system due to strong finite-size
effects. To circumvent the difficulties associated with finite size effects, we could apply
the methods of thermodynamic integration (Frenkel and Smit [97]) combined with
the Gibbs-Duhem integration method due to D. Kofke ([93]) to calculate the phase
boundaries in the lipid-lanosterol phase diagram. Such an analysis would be highly
interesting since it could conclusively determine if the topology of the lipid-lanosterol
phase diagram is indeed different from the generic lipid-cholesterol phase diagram, as

predicted in this thesis.

We end this thesis with some final remarks on the further applications of the
random-lattice simulation approach in general and the models proposed for lipid bi-
layer systems in particular. The random-lattice algorithm developed in this thesis
has proved very powerful in the investigation of dense liquid systems and the mini-
mal model approach put forward in the thesis can readily be applied to a large series
of problems related to lipid membrane systems where the interplay between transla-
tional and conformational degrees of freedom plays an important role for the phase
behaviour. The list of such problems is large: lipid mixtures, lipid mixtures con-
taining sterols and membrane protein systems are just a few. The phase behaviour
of all these systems is to some degree controlled by constraints on the packing of
the different conformational states of the molecular species and an understanding of
the thermodynamic behaviour thus requires a detailed description of the interplay

between the translational and conformational degrees of freedom.

Finally, the random lattice algorithm can in a straightforward manner be extended
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to include the third spatial dimension and thus extended to give a realistic description
of the curved two-dimensional surface of a lipid membrane. This extension should
allow for a whole new class of problems to be addressed where the phase behaviour
is determined by an interplay between the out-of-plane curvature and the in-plane

translational and conformational degrees of freedom.
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A.1 The Datastructure of the Random Lattice Algorithm

The central datastructures in the random lattice algorithm are the vertex (hard disk)
positions and a “link” structure defining the connectivity of the random lattice.

The vertices are labled V;, i = 1,..., NV and the real space positions of a vertex
are stored as a matrix X(i,j), fori=1,...,N and j = 1,2. The number of tethers
(or links) in the random lattice is a fixed quantity and the tethers are labeled as L;,
i =1,...,3N (the number of tethers in the random lattice is 3 times the number of
vertices).

The connectivity of the triangulated random lattice is organized as a series of
ordered linked lists, each defining the tethers forming a triangle in the random lattice.
We associate two numbers +: to each tether L;. The triangles in the random lattice

£ b
/ Figure A.1: Linked lists defining the trian-
-i i gulated random lattice. In a cyclic fashion
we can locate the tethers in the two trian-
h f gles sharing L;.
!

are defined by the linked lists, each of which are organized in such a way that we
via the lists can locate all the tethers in the two triangles sharing L;, i.e. 7|, = N (i),
iy = N(iy), i3 = N(—i) and iy = N (i3) (See Fig. A.1), where A denotes a operator
for stepping one element ahead in the linked list. This relation must hold for all
tethers L; and each linked list must thus satisfy the condition N (N (N (2))) = 1, Vi.
By using the oriented datastructure and a datastructure defining the vertices at each
end of a tether, we can in a cyclic fashion locate the tethers defining the connectivity
of any given vertex in the random lattice. We can in this manner locate the nearest
neighbour structure of any such vertex.

AT Y
N N

Figure A.2: The update of the linked lists after a link-flip. We only need to make the following
changes in the datastructure in order to update the connectivity after a link-flip: N'(3) = iz, N(=i) =
iz, N(i1) = —i, N(iz) = i3, N(iz) =i and N(iy) = ;.
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The update of the connectivity of the random lattice is described in the link-flip
procedure of Section 3.2. In a link-flip procedure two vertices each loose a tether and
two other vertices each gain a tether. To keep the random lattice regular we must
require that no vertex has less than three tethers connecting it to other vertices, and
that two vertices can only be connected once to each other. Further we must also
ensure that the length of the new tether is greater than the hard-disk diameter, d,
and smaller than the maximum tether length [,,,;. To update the linked lists after
flipping a tether we need only to change M (1), N(4;), N (d2), M(i3) and N (i4) (see
Fig. A.2) which makes the link structure a very compact and efficient datastructure.
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A.2 The Isobaric-Isothermal Ensemble

In this appendix, we demonstrate that a Metropolis Monte Carlo simulation based
on the Hamiltonian defined in Eq. (3.38) does indeed sample the isobaric-isothermal
N — P — T thermodynamic ensemble. The derivation given here follows closely that
given by D. Frenkel and B. Smit ([97]), page 103.

The partition function Z(N,V,T) for a classical system of N identical particles in
a volume V is given by

. 1 L L
Z(N,V,T) ="\W/o /0 dr™ exp[-BE(xV)] | (A1)

where E is the energy of the configuration r¥, § is the inverse temperature 1/kpT

and A = /h?/(2rmkgT) is the thermal Broglie wavelength. If we assume that the
system is contained in a cubic box of size L = V'!/4, we can introduce a set of rescaled

coordinates s; = r;/L for i = 1,..., N and rewrite Eq. (A.1) as
vy 1 1
NVT)= —— [ - N - N . Al
ZWNV,T) = /0 /0 ds™ exp[—-BE(sV, L)] (A.2)

Now the Helmholtz free energy of the system is

F(N,V,T)= —kgT InZ

VN L 1
= —kgT In ( TGN V') — kgT ln/o .[o ds” exp[-BE(sV, L)|(A.3)

= FY4(N,V,T) + F<=(N,V,T) .

In the last line, we have identified the two parts of the free energy as an ideal gas
contribution and an excess part. Say that the system is allowed to interact with an
ideal gas reservoir. The total volume of the system plus the reservoir is fixed at a
value V. The total number of particles is fixed at M. The volume of the N-particle
system is V' and the volume of the M — N ideal gas reservoir is then V4 — V. The
partition function for the combined system is the product of the partition function
for the two subsystems

vy v V M~N
Z(N,M,V,V,T) = \3“’(N'(M / ds~ / ds¥ exp[-BE(sV,L)] , (A4)

where we have assumed that the thermal wavelength of the ideal gas is equal to
A for the interaction system. We now allow the volume of the N-particle system
to fluctuate. The most probable value of V' will be the value that minimizes the
free energy of the combined system. The probability density (V') of finding the
subsystem with a volume V is given by

VN(Vo - V)=V [y ds" exp[-BE(s", L)]
JP dV'VIN(Vy — V)M-N (1 dgN exp[-BE(sV,L)]

N(V)= (A.5)
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In the limit where the size of the reservoir tends to infinity (V5 — oo, M — oo,
(M — N)/Vy = p) a small change in the volume of the small system does not change
the pressure of the large system and the large system simply acts as a manostat for
the small system. In that limit, we can write

(Vo = V)M = VN1 — (V1)
— ViV exp(—(M — N)V/V;) (A.6)
= V" Vexp(—pV) .

Since the reservoir contains only an ideal gas, p can be written as GP. With these
substitutions Eq. {A.5) can be simplified as

V" exp(=8PV) Jy ds" exp[-BE(s", L)]

vrr(V) = '
Nwrr(V) = TGN exp(<BPV) I ds™ expl—BE (Y. L)

(A7)

We thus find that the probability of locating the small system in a particular config-
uration sV of the N particles at a given volume V' is

Nuvpr(V) x V¥ exp(~BPV) exp[-BE(sV, L)]
= exp{—B[(E(s", L)+ PV - NG 'InV]} . (A.8)

[t is then clear, that a Monte Carlo algorithm in which a change in the system
volume is accepted according to the Metropolis scheme with a Hamiltonian defined
by Eq. (3.38) will indeed generate a sampling of phase space corresponding to the
isobaric-isothermal (N — P — T') ensemble.
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A.3 Details of the Multiple Hole Algorithm

. In this appendix, we give some of the details of the actual implementation of the
multiple hole algorithm as described in the Section 2.5.1.

In the insertion or removal procedure for the multiple hole algorithm a vertex is
chosen at random among the Ny vertices in the network. An attempt to remove or
add a tether is tried with equal probability. A hole is created, if the selected vertex
is internal by removing one of the connected tethers at random. An attempt to add
a tether to an internal tether always fails. If the selected vertex is external, a tether
is removed from the edge of the corresponding hole as described for the single hole
simulations. A hole is sealed. when it has only four vertices on the edge and a tether
is placed successfully across the hole. Holes are allowed to fragment and coalesce. If
the removal of the tether results in a vertex being on the edge of two holes, then an
attempt is made to allow the two holes to coalesce. In the same way, if two vertices
on the edge of a hole get so close that a tether can be added between them, then an
attempt to fragment the hole into two smaller holes is made.

This algorithmic scheme is quite complex and it is therefore appropriate to make
some clarifying comments as to how the scheme is implemented so as to obey detailed
balance. The move classes defining the particle move, link flip and area change are all
identical to the procedures described in Section 3.2.1. In the following, we hence only
summarize how detailed balance is ensured in the different move classes connected to
the variations in the number of holes and the hole perimeter.

. Creation/Sealing of Holes. The probability for removing a tether connected to a
specific vertex and subsequent create a hole is 1/Ny - 1/Nr, where Ny is the
number of vertices in the network and N7 is the number of tethers connected to
the particular vertex. If the move is accepted, the number of tethers connected
to the particular vertex will decrease by one. The probability for attempting
the reverse move is just 1/Ny, since the hole will always seal if the number of
vertices along the edge is equal to four. In order for the hole creation/sealing
procedure to obey detailed balance, the probability for sealing a hole must thus
be modified according to 1/( Nt + 1).

Coalescence/Fragmentation of Holes. The probability for the coalescence of two
holes is just 1/Ny, since coalescence is always attempted if the removal of a
tether leads to a vertex being on the edge of two holes. The probability for
performing the reverse move, of fragmenting the larger hole into the original two
smaller ones, is however 1/Ny - 1/Np,r, Where Ny is the number of vertices
along the edge of the large hole that are within a distance from the particular
vertex to allow for a tether be inserted. Detailed balance for the coalescence or
fragmentation procedure is thus only ensured, if the probability for coalescence
is modified according to 1/Nyqr, where Ny is the total number of vertices
along the edge of the combined hole, that can be connected to the selected
vertex.

Removal/Insertion of Tethers. Since, in the scheme for the multiple hole aigo-
. rithm, we perform moves at a randomly selected vertex, the probability for the
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removal/insertion of tethers at a vertex along the edge of a hole does not depend
on the actual number of external vertices in the membrane. The probability
for attempting a removal/insertion of a tether is always 1/Ny. In contrast to
the single hole algorithm, the probability for the removal/insertion of tethers
along the edge of the holes does thus not need any modification in order to obey
detailed balance.

With this implementation of the multiple hole model, we thus ensure that the
transition matrix defining the Monte Carlo process for hole creation and sealing as
well as hole coalescence and fragmentation is symmetric. This, in turn, ensures that
the corresponding Monte Carlo moves obey detailed balance.
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