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Abstract

Ph.D. Ya Guo Renewable Resources

The role of molecular mixing (as opposed to molecular—collision transport) in
the description of turbulent diffusion in continuum framework 1s examined. This is
done by comparing a new virtual fluid parcel treatment with the classical flmd
particle treatment of the BMDFE (Basic Macroscopically Describable Fluid
Element). It is found that the classical fluid particle treatment conceptually
excludes molecular mixing between different BMDFEs, due to its postulated
constraint that individual BMDFEs maintain their integrities in motion The new
virtual fluid parcel treatment, on the other hand, conceptually incorporates
molecular mixing between different BMDFEs, by relaxing this constraint to permit
disintegration of individual BMDFEs. The main improvement made by the new
virtual fluid parcel treatment lies in the introduction of a {eedback mechamsm in
the form of physically coupled disintegration and integration of the BMDFEs. This
improvement suggests that molecular mixing 15 a controling agent of the mixing
mechanism in every time-step of turbulent diffusion, whose sigmficance would
increase cumulatively. By applying the two treatments to the evolution of the
diffusion cloud on the level of single timne-step diffusion redistribution, it is shown
that molecular mixing persistently and cumulatively influences the evolution of the
diffusion cloud by reducing the diffusion « tribution variance. This indicates that
the exclusion of molecular mixing in the classical fluid particle treatment would
lead to a potential mathematical-physical inconsistency in the description of
turbulent diffusion by exaggerating the diffusion distribution variance. The results
of this analysis are qualitatively supported by experiments of passive scalar

diffusion in water flow with moderate turbulence intensity. As a prelhiminary test, a
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Abstract  iii

simplified numerical modeling of scalar diffusion based on the virtual fluid parcel
treatrant 1s executed in two wind tunnel models. In this case, measurements are
used to directly estimate the fractional redistribution density of the scalar so as to
bypass technical difficulties in solving the disintegration equation. The numerical

predictions show general agreement with experimental observations.



Résumé

Ph.D. Ya Guo Ressources Renouvelables

Le role de 'échange moléculairc (échange de molécules par contraste avec la
'diffusion moléculaire’ par collision) est examiné dans la description de la diffusion
turbulente en cadre continu. Une nouvelle méthode, basée sur des '¢lements
virtuels’ du fluide, est comparée a la méthode classique de la description du
BMDFE (élement de base pour la description macroscopique du fluide) Cette
description classique exclué, par la contrainte que le BMDFE maintienne son
intégrité le long des trajectoires, tout échange de molécules parmi les BMDFE. Par
contre, I’échange moléculaire est incorporé dans la nouvelle description 'virtuelle?,
permettant la desintégration des BMDFE. Cecr est exécuté, du point de vue
technique, par un feed-back d’intégrations et de desintégrations des BMDFE. Cette
modification suggére que D’échange moléculaire influence méme la diffusion
turbulente a chaque intervalle de temps, avec une importance cumulative
croissante. En appliquant les deux méthodes & la diffusion d’un scalaire passif au
niveau de redistribution continue de la concentration dans chaque intervalle de
temps, on constate que I’échange moléculaire, de fagon persistente et cumulative,
influence le processus de diffusion, en réduisant la variance de la distribution de la
concentration. Ceci suggére que D’exclusion de I’échange moléculaire par le
traitement classique devrait mener & une inconsistence dans la description
mathématique, par rapport aux réalités physiques, en exagérant cette variance. Les
conclusions de cette analyse sont supportées par des expériences de diffusion d’un
scalaire passif dans un courant d’eau avec intensité de turbulence modérée. Comme
essai supplémentaire et préliminaire, une simulation numérique simplifiée de la

diffusion turbulente est également comparée & la simulation expérimentale exécutée
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avec deux modéles de soufflerie. Dans ce cas, des observations expérimentales de
vélocité servent & l’estimation approximative de la densité de redistribution du
scalaire, évitant des difficultés techniques dans la solution de 1’équation de
desintégration. En général, les simulations numériques se conforment aux

simulations expérimentales.
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Contribution to Knowledge

This thesis examines the effect of molecular mixing on turbulent diffusion in
continuum framework, through comparson of the fundamental conceptuahzation
(or mathematical treatment) of the BMDFE (Basic Macroscopically Describable
Fluid Element), with and without consideration of molecular muxing To the
author’s knowledge, the following aspects of the thesis constitute criginal
contributions to knowledge.

1. Molecular collision-transport and molecular mixing are conceptually
distingmshed. Molecular collision-transport is a process involving transport of
physical properties (such as momentum, heat, etc) through surface contact
between different BMDFEs, while molecular mixing is a process involving exchange
of individual molecules, carrying physical properties across the boundaries of
different BMDFEs.

2. The randomization of the classical fluid particle treatment of BMDFE 1s
shown not to alter the fact that molecular mixing 15 excluded by this treatment,
because it does not change the nature of the postulated fluid particle moving as an
entity.

3. Based on the classical random fluid particle treatment, the Lagrangian and
Eulerian variables in the ensemble of realizations of a turbulent flow are shown to
be related by statistical multi-to—one Lagrangian-Eulenian transformations, instead
of one-to—one transformations. The multi-to—one Lagrangian—-Eulerian
transformations deny the statistical equvalence between the Lagrangian variables
of a single fluid particle and the Eulerian variables at one space-time point.

4. According to the statistical multi-to-one Lagrangian-Eulenan

transformations, turbulent diffusion under the classical random fluid particle
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Contribution to Knowledge _ ix

treatment car only be described as random fluid particle dispersions, in the form of

statistical superimpositions of contributions from individual flmd particles. The

limitations of this descripiion, with its lack of a feedback mechanisin in the

statistical superimpositions, 15 demonstrated

5. A new wirtual flurd parcel treatment of BMDFE 15 proposed to extend the
classical fluid particle treatment The new treatment conceptually incorporates
molecular mixing by permitting disintegration of individual BMDFEs.

6. The main improvement maae by the new treatment in the description of
turbulent diffusicn 15 the mmtroduction of a feedback mechanism in the form ot
physically coupled disintegration and integration of the BMDFEs This
improvement suggests that molecular mixing could be a controlling agent of the
mixing mechanism in every time-step of turbulent diffusion, whose significance
would be cumulatively increased.

7. A companson of the new and classical treatments in application to the
diffusion cloud evolution, with experimental support, suggests that molecular
mixing persistently and cumulatively influences diffusion by reducing the diffusion
distribution variance. This means that due to the exclusion of molecular mixing,
the classical fluid particle treatment must be expected to exaggerate thn diffusion
distribution variance.

8. A first test of the new treatment 1s presented by comparing simplified
numerical modeling of scalar turbulent diffusion against experimental observations
of diffusion 1n two wind tunnel models. The numerical predictions show a general

agreement with the experimental observations.




Thesis Statement

This thesis is presented as a series of four parts in paper manuscript format
with the relevant literature review contained in each part. Each part 15 relatively
independent, but serves as an integral part of the thesis under the same main topic
Connection between the different parts 1s naturally provided by the introduction
and conclusion to each part. Mathematical symbols and terminology used in this
thesis are carefully chosen to match common conventions, unless specificd
otherwise. Bold face symbols represent vectors.

The thesi: conforms to the conditions, concerning authorship, as outlined in
the Guidelines Concerning Thesis Preparation which are excerpted as follows:

"The inclusion of manuscripts co—authored by the candidate and others is
acceptable but the candidate is required to make an explicit statement on who
contributed to such work and to what extent, and supervisors must attest .o
the accuracy of the claims, e.g before the oral committee Since the task of
the examiners is made more difficult in these cases, it 1s 1in the candidate’s
interest to make the responsibilities of authors perfectly clear Candidates
following this option must inform the Department before it submi‘s the thesis
for review."

Part 3 and part 4 are co-authored by this author and P.H. Schuepp. Dr.
Schuepp was the student’s supervisor who undertook the administrative operation
of the project, helped to set up the experiments for electrochemical simulations,
and contributed as well in the general guidance and editorial work on the

manuscripts.
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General Introduction

Understanding the role of microscopic molecular mixing in turbulent fluids is
important to the description of the real diffusion, mixing, dilution, combustion and
chemical reactions in turbulent flows. It has been given increased attention in
recent years (Pope 1979; Chatwin & Sullivan 1979; Durbin 1980; Hunt 1985;
Sawford & Hunt 1986; Stapountzis et al. 1986; Kaplan & Dinar 1988; Chatwin &
Sullivan 1991). This renewed discussion should not be regarded as a simple review
of the old issue about the comparison between molecular collision—transport and
turbulent transport.

In the continuum perception of real fluids, molecular diffusion in general may
involve two different processes: One is collision-transport, described by molecular
kinematic and scalar viscosities v and & (collision—transport coefficients for
momentum and scalar), through which the collision-transportable physical
properties (such as momentum, heat, etc.) are transmitted, by contact, between
fluid elements. The other is mixing through which individual molecules carrying
physical properties are exchanged from one fluid element to another. The
distinction between these two processes will become clear later in the study and the
terminology (possibly inappropriate) may be subject of further debate. Although
the first process may have been intensively studied and well understood, there is
still something to be learned about the second process.

Consideration of molecular mixing in the description of turbulent diffusion in
continuum framework would introduce additional difficulties into the
conceptualization (or mathematical treatment) of the BMDFE (Basic
Macroscopically Describable Fluid Element). Because of the cascaded transport of

turbulent energy from large scales down to fine scales, the BMDFE, as the starting




General Introduction 2

point of the description in continuum mechanics, may face disintegration of 1its
integrity in turbulent fluids (Durbin 1980) Ultimately, the real mixing in
turbulent fluids takes place through molecular mixing, or through molecular
diffusion in general, at fine scales, irrespective of the macroscopic flow character
(Chatwin & Sullivan 1991).

Although the contribution of molecular mixing to t'.e large-scale transport of
physical properties may be relatively small, its effect in smoothing fine-scale
structure enhanced by turbulent motion should not generally be neglected, as
realized by the previous studies (Chatwin & Sullivan 1979; Durbin 1980, Hunt
1985; Sawford & Hunt 1986; Stapountzis et al. 1986; Kaplan & Dinar 1988,
Chatwin & Sullivan 1991). Molecular mixing may continuously cause disintegration
of "old" BMDFEs, and hence integration of "new”" BMDFEs in turbulent fluids,
and may essentially become a persistent controlling agent of the mixing
mechanism.

In this thesis, an attempt is made to explain the role of molecular mixing as
such a controlling agent in the description of turbulent diffusion in continuum
framework. Emphasis is on comparison of different conceptual treatments of the
BMDFE, excluding and including molecular mixing. Turbulent diffusion, in this
context, is applied broadly to the transport phenomena of both vector and scalar
physical properties. The bulk of the work is covered in three studies given in the
first three chapters: (Part 1) A critical investigation of the classical fluid particle
treatment of the BMDFE and its potential limitation in the description of
turbulent diffusion due to exclusion of molecular mixing; (Part 2) An exploratory
proposal of a new 'virtual fluid parcel” treatment of the BMDFE with
incorporation of molecular mixing, and examination of 1ts formal improvement in

the description of turbulent diffusion; (Part 3) An attempt to clarify, analytically
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and experimentally, the effect of molecular mixing on turbulent diffusion, by
comparing the application of the classical and new treatments to the evolution of
the diffusion cloud.

As a prelminary trial, a simplified numerical modeling of scalar diffusion
based on the virtual fluid parcel treatment, and associated experimental tests, are

presented in the last chapter (Part 4).
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Part 1. The Limitation of the Fluid Particle Treatment

Abstract

The classical fluid particle treatment of the BMDFE (Basic Macroscopically
Describable Fluid Element) in continuum framework, and its description of
turbulent diffusion, are critically examined. It is found that the fluid particle
treatment excludes molecular mixing between different BMDFEs. The
randomization of the fluid particle is shown not to alleniate this fact because it
does not change the nature of the postulated fluid particle moving as an entity.
Instead, it leads to the statistical multi-to-one Lagrangian-Eulerian
transformations which deny the statistical equivalence of the random Lagrangian
and Eulerian variables in turbulent flows.

According to  the  statistical  multi-to—one  Lagrangian—Eulerian
transformations, turbulent diffusion under the random fluid particle treatment can
only be described as random fluid particle dispersions, processed in the statistical
superimposition of the "shadow-like" ensemble mean contributions from individual
fluid particles. The non—feedback mechanism in this description may lead to a
potential mathematical-physical inconsistency in the understanding of turbulent
diffusion in real turbulent fluids, because the mixing between real BMDFEs, caused

by molecular mixing, does not lend itself to such superimposition.




Part 1 )

1. Introduction

The conceptualization (or mathematical treatment) of the Basic
Macroscopically Describable Fluid Element (BMDFE) is a primary problem in the
description of turbulent diffusion in continuum framework. The BMDFE has been
classically defined as the fluid particle which maintains its integnty i motion
However, due to molecular mixing, molecules may cross the boundaries of different
BMDFEs. When this process has had a significant cumulative effect, 1t becomes
meaningless to refer to the classical concept of flmd particles and to consider mass
contained within the same individual fluid particles (Chatwin & Sullivan 1979). 1t
is then reasonable to conjecture that the non—consideration of this aspect by the
classical description, based on the fluid particle treatment, may lead to difficulties
in the interpretation of turbulent diffusion mechamsms in real fluids

In this study, we attempt to explore the above conjecture through a critical
examination of the classical fluid particle treatment, and 1ts potential limitation 1n
the description of turbulent diffusion due to exclusion of molecular mixing
Discussion will be restricted to incompressible fluids for reason of simplicity,

without jeopardizing the validity of the basic argument.

2. Review of the fluid particle treatment

2.1. The fluid particle treatment
Real fluids are composed of individual molecules and thus discrete when considered
microscopically at the molecular level. These molecules usually exist separately,
with separation distances that are large compared to their sizes In fluild mechanics,
generally in continuum mechanics, attention is primarily paid to the macroscopic
phenomena of fluid motion, where detaiied properties of individual molecules need

not be taken into account. Instead, the average effects of many molecules are of




Part 1 7

interes.. Therefore, except for special situations such as gases at low pressure,
where intermolecular distances approach the characteristic dimensions of the
problem, a continuum hypothesis is applied, that treats a fluid as a macroscopically
continuous medium composed indiscretely of the BMDFEs (Lamb 1932; Townsend
1956; Longwell 6-7Tpp 1966, Pao 6-Tpp 1966; Batchelor 1967; Owczarek 3pp 1968;
Mironer, 10pp 1979; Lu 11pp 1979; Massey 3pp 1983; John & Haberman 9pp 1988).
Under this hypothesis, the macroscopic physical properties of a fluid, such as mass
density p, velocity V, and mass—specific concentration C of any other scalar, are
assumed to vary continuously in space X and time t, described by the Eulerian
variables pE(x,t), VE(x,t) and CE(x,t), respectively.

The classical definition of the BMDFE in continuum framework 1s based on
the fluid particle treatment, subject to the following assumed constraints: On the
one hand, it has dimensions that are large compared to the separation distances
between molecules, so that the macroscopic physical properties of a fluid can be
reasonably defined and measured by averaging molecular properties within that
element. On the other hand, its dimensions are sufficiently small compared to the
distance over which the macroscopic pl{ysical properties of the fluid may change
significantly. It can then be regarded as a point-like "particle" of uniform state in
space, relative to the macroscopic flow scale, moving as a whole in motion (Pao
7pp 1966; Owczarek 3pp 1968; Monin & Yaglom 528pp 1971; Lu 1lpp 1979;
Mironer 10pp 1979; Richardson 3-4pp 1989).

The description of the physical behaviour of an individual fluid particle
necessarily involves, implicitly or explicitly, the Lagrangian variables of a fixed
entity. They include the Lagrangian trajectory XL(xo,t), mass density
(Xt Xouto),  velocity VL(XL,t; X.')» and mass-specific concentration

CL(xL,t; Xoto) Of any other scalar of an individual fluid particle identified by its
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initial position X at initial time t .

Here PLX Lt Xoibo), VL(XL,t; X,.t,) and CL(XL,L; X:to) are purposely written in
the explicit forms of X, in order to emphasize that the Lagrangian variables of
physical properties are defined by following the trajectory of the same fluid
particle. They explicitly denote the Lagrangian mass density, velocity and
mass—specific concentration of any other scalar of the fluid particle X, when it
appears at position XL at time t. The argument XL in these variables is a function
of time t, given as XL(xo,t). These notations, which should not be considered to be
different from the conventional implicit—in—XL notations such as P (Xgut), VL(xo,t)

and CL(XO,t), can bring convenience to the following analyses.

2.2. The conservation principles

A major advantage of the fluid particle treatment may lie in the convenience it
offers for the mathematical formulation of changes of physical properties of fluids.
Under this treatment, a fluid is visualized as a group of fluid particles which, in
sum, produce a macroscopically continuous medium. Since each fluid particle in
this medium is assumed as a point-like system moving as a whole, the conservation
principles of classical particle mechanics are readily applied to it (Lamb 1932; Pao
1966; Batchelor 1967; Massey 1983; Richardson 1989).

The conservation of mass expresses the constancy of material of a fluid

particle during its motion. In vector (printed in bold face) form, it is written as

(o (X s Xyt)-8X,) = 0 (2.1)

where 6X_ is the volume of the fluid particle X at position X| at time t.

Suppose the fluid particle X, has its position XL(xo,t) at time t. At time
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t + dt, it moves to another position )(L + d){L along its trajectory. In this process,

the change of its mass density due to advection would be
(de- V) pp (XLt Xgit)

and the change due to time would be

-g-pr(XL,t; Xoito) - dt

50, the total change rate would be (Pao 15pp 1966)

gpr(XL.t; Xoito) = -gpr(XL,t; Xoto) + (%YXL-V,L)-pL(xL,t; Xot,)

(2.2)
where Vy, is del operator with respect to X
Considering also that
d =
TEXLXot) = V(X[ 6 Xo,to) (2.3)

(2.1) can be written in the conventional form

d d
FPLELE Xoito) = AL (XL b Xoto) + (VX 6 Xoito) Va ) pp (X b5 Xoito)
Py,

= “mq'gf(‘”‘m)

(24)
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In an incompressible fluid, JXL should be kept constant, i.e.

g't'(ﬁxL) =0
or
X, = oX,

60X, is the volume of the fluid particle X at initial time t .
Then, (2.4) becomes

%pr(xL)t; xolto) = %pr(vat; xovt()) + (VL(XLrt; xo,to)'vx.,)'PL(xL,t; xonto)
=0

(2.5)

which indicates that mass density of an individual fluid particle is kept constant

during motion in an incompressible fluid. For convenience of identification in the

subsequent analysis, however, we retain the original notation as (XLt Xoit)-
Similarly, the conservation of momentum cf a fluid particle is expressed by

Newton’s Second Law

%VL(XL,t; Xoito) = %VL(XL,t; Xoito) + (VX[ i Xoibo): V)V (K] 65 Xit)
= GLX 6 Xpte) + v-VE -V (X4 Xoit)

(2.6)

Here GL(XL,t; X,t,) is the Lagrangian external mass—specific source strength of
momentum exerted on the fluid particle X, at position XL at time t. v is the

molecular kinematic viscosity (or the molecular collision-transport coefficient for




momentum). V,’(t is the Laplace operator with respect to XL.
The conservation of any other scalar of a fluid particle is then expressed as
d o (x4 Xt = 2C (X 4 X V(X Xoto)- V)~ (X, ot X
a’f L( Lrtl Xo,to) - 'ai' L(xL’t’ ovto) + ( L( Latt ovto)' x)* L(XL’ 1 Mgy 0)
= SL(XL,t; Xto) + n-ng-CL(XL,t; X, to)

2.7)

where SL(xL,t; X,.t,) is the Lagrangian external mass-specific source strength of
scalar exerted on the fluid particle X, at position XL at time t, and x is the
molecular scalar viscosity (or the molecular collision-transport coefficient for
scalar).

Combining (2.5) into (2.6) and (2.7), we have the following convenient forms
of conservations of momentum and any other scalar of a fluid particle in an

incompressible fluid:

gfﬂL(XL,t; Xoitg) + (VX b Xoito): V) » ) (X Xt)
= Hp (X} 6 Xyto) + v Vi - 8 (Xt Xt (2.8)

g—t-\I’L(XL,t; X ito) + (VL(XL,t; Xo,to)-vx,')-\I’L(XL,t; Xoto)

= EL(XL,t; X,t,) + ﬁ'vgl-‘I’L(XL,t; Xoito) (2.9)

In these two equations, the second order derivative of mass density XLt Xoito)
along the trajectory )(L is negligible for ordinary fluids. OL(XL,t; Xoitoh
HL(xL,t; Xoto)s \PL(xL,t; X,t,) and EL(xL,t; X,:t,) are the corresponding volumetric

measurements of the Lagrangian variables VL’ GL’ CL and SL’ respectively, e.g.
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0L(XL’t; xovto) = pL(xL’t; xo'to)'vL(xL't; xovto)

2.3. The potential limitation

When a real fluid, either a liquid or a gas, moves. Its constituent molecules may
continuously change their positions relative to one another. In a liqud, although
the forces of attraction between molecules are sufficient for macroscopic cohesion,
the molecules can still move past one another to find new neighbours. In a gas, the
forces of attraction between molecules are, in general, neglgible so that the
molecules are almost free to travel away from one another until collision (Batchelor
1967; Massey 1983). Therefore, both liquid and gas, cannot avoid mixing of
molecules across the boundaries of different fluid elements during motion. This
molecular mixing could contribute to the disintegration of the BMDFEs in
turbulent flows (Durbin 1980a).

The structure of molecular mixing in turbulent fluids may have been implicitly
described by the cascaded breakdown of eddies to small scales proposed by
Richardson (1922) and developed by Kolmogorov (1941). According to their
descriptions, 4 fully-developed turbulence at sufficiently large Reynolds number
would be composed of eddies down to the molecular scale. Ultimately, the real
mixing in turbulent fluids takes place through molecular mixing at fine scales,
irrespective of the macroscopic flow character (Chatwin, Sullivan & Yip 1990,

Chatwin & Sullivan 1991). Molecular mixing could occur, e.g. at the conduction

1
cut—off length scale (x3/¢)? (Batchelor 1959; Batchelor, Howells & Townsend 1959),
which is of the order of 10-4 — 10-3 m in most flows, with ¢ the dissipation rate of

turbulent kinetic energy.



Part 1 13

Considering molecular mixing in real fluids, molecular diffusion in general
should involve a mxing process through which individual molecules carrying
physical properties are exchanged from one macroscopic fluid element to another.
Unfortunately, this process has not so far been included in the fluid particle
treatment according to its definition. This makes for an unsatisfactory description
of molecular diffusion under the fluid particle treatment, as explained below.

With the second constraint of the fluid particle treatment met (see Section
2.1.), the term v-Vi-d (Xt Xgt,) n (2.8) can only be interpreted as the
molecular transport of momentum through surface collision between adjacent fluid
particles of different velocities, without actual exchange of molecules between these
fluid particles. Similarly, for any collision-transportable scalar such as heat, the
term n-Vﬁt-\PL(xL,t; X,t,) in (2.9) can only be interpreted as the molecular
collision—transport of scalar through surface contact between adjacent fluid
particles of different scalar concentrations. In these processes, however, the
molecular collision-transport is by no means considered to cause exchange of
molecules across the boundaries of different fluid particles. As shown in the mass
conservation equation (2.5) of a fluid particle, where a fluid particle is assumed as
a point-like system moving as a whole, exchange of molecules between this fluid
particle and adjacent fluid particles is ignored in the first place. This is reflected by
non-existence of a molecular mass transport term in the equation. Therefore, the
classical fluid particle treatment could inherently suffer from a potential limitation
of excluding the real physical process of molecular mixing (as opposed to
collision-transport) between different BMDFEs in turbulent fluids.

The process of molecular collision-transport interacting with turbulent
transport (generally referred to as "molecular diffusion" and "turbulent diffusion")

has been studied by Saffman (1960) and many others (see Monin & Yaglom §10.1
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and §10.2 1971), based on the diffusion equation similar to (2 9) in absence of the
external source. According to their basically intuitive analyses, 1t has been
suggested that the influence of molecular collision—transport on the evolution of the
diffusion cloud is negligible in companson with turbulent transport, for long
diffusion times and sufficiently large Reynolds numbers. However, the parallel

process of molecular mixing has not yet been given much attention.

3. The randomization supplement and the Lagrangian—-Eulerian transformations
3.1. The randomization supplement

The randomization of fluid particles provides an important supplement to the fluid
particle treatment in the statistical approach to turhulent diffusion in continuum
framework. With this supplement, the Lagrangian trajectory X, (X,t), mass density
pL(xL,t; X,t,), volumetric concentration of momentum 0L(XL,t; X,.t,) and
volumetric concentration of scalar ¥, (Xt X,t;) of a fluid particle 1 turbulent
flows are treated as random processes. Correspondingly, the Eulerian mass density
pE(x,t), volumetric concentration of momentum 0E(x.t) and volumetric
concentration of scalar \IJE(x,t) are treated as random fields. A turbulent flow is
then statistically described as random motions of a group of fluid particles, where
the observed values of either the Lagrangian or the Eulerian variables may differ in
repeated experiments under the same conditions.

The complete set of values obtained in all repeated experiments is considered
as an "ensemble" and each value obtained in one experiment is considered as a
"realization" chosen under a certain probability from this ensemble (Taylor 1921,
1935; Von Karman 1934; Millionshchikov 1939; Kampé de Fériet 1939). This
random fluid particle treatment has, up to now, been generally used in the classical

theory of turbulence (Kolmogorov 1942; Batchelor 1953; Obukhov 1954; Lin 1955;
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Townsend 1956; Hinze 1959; Chandrasekhar 1961; Pasquill 1962; Lumley &
Panofsky 1964; Longwell 1966; Monin & Yaglom 1971; Csanady 1973; Massey 1983;
Lesieur 1987)

However, it should be born in mind that the above randomization supplement
does not help to reduce the potential limitation of the fluid particle treatment in
excluding molecular mixing between different BMDFEs in turbulent fluids, since it

does not change the nature of the postulated fluid particle moving as an entity.

3.2. The Lagrangian—Eulerian transformations
In each realization of a turbulent flow, both Lagrangian and Eulerian variables can
be regarded as single-valued ordinary variables under a certain probability. As
such, they should satisfy the one-to-one Lagrangian—Eulerian transformations
under the continuum hypotheses, i.e. the Lagrangian variables on the trajectory
XL(xo,t) of a fluid particle at time t must be identical to the corresponding
Eulerian variables at the fluid particle’s position XL at that time.

However, the exact determination of these variables in individual realizations
of a real turbulent flow is practically impossible because they strongly depend on
the details of initial and boundary conditions which may never be known with
sufficient precision. Moreover, the structure of a turbulent flow may be so complex
that the solution for any single realization, which may not always correspond to an
actually observed flow, may be useless for practical application (Monin & Yaglom
1971).

Nevertheless, the random fluid particle treatment for a turbulent fluid implies
the transition from the consideration of a single realization of a turbulent flow to
the consideration of an ensemble of realizations of that turbulent flow. As a

consequence, only the ensemble characteristics of the fluid dynamics are of interest,
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instead of their exact values in individual realizations. With this implication, the
relations between the random Lagrangian and Eulerian variables in a turbulent
flow might be presented differently from the one used for a single realization, which
is analyzed as follows.

Generally, the Lagrangian volumetric concentration of momentum
0, (Xt Xo.to) of the «h fluid particle X, isa random variable dependent on the
random trajectory XL(in,t) of that fluid particle. (Here the subscript 1 = 1,2,3 .
reflects a discrete form chosen to explicitly label X, as the sth fluid particle 1n
space, for convenience of expression only. It should not be interpreted as a
violation of the continuum hypothesis.) The random trajectory XL(XOi‘t) at a given
time will choose the space positions as its realizations from an ensemble that could

possibly cover the whole flow space:

X (X t) € {X, Xy, o X 0} (3.1)

Here the continuous space coordinates X is again purposely written in the discrete
form X; (3=1,2,3...) to explicitly label X as the pth realization of XL(xoi,t) in its
ensemble, for convenience of expression only.

To each realization position Xj of the random trajectory XL(XO,’t) at a given
time t, there corresponds a 19L(xj,t; x°i't°) in ﬁL(x.L,t; xoi,to), which should also be a

random variable of itself with its ensemble of realizations expressed as

B, (Xt xoi,to) € {0L1(xj’t; X, sto) sz(xj,t; xoi,to) ﬂLk(xj,t; xoi,to) o}

(3.2)
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Here 0Lk(xj,t; xoi,to) is the kth realization of *ﬂL(xJ,t; xoi,to) in its ensemble,

(k=1,23..)
Overall, the value of the random Lagrangian volumetric concentration of

X, t,) should be chosen from the following ensemble of

momentum 0L(XL,t; ogto

realizations:

9, (X .t Xooto) € {{0Ll(x,,t; X ato)s 0L2(X1,t; Xoto) - OLk(Xl,t; X, to) wh
{0Ll(x2,t; X, to)s 0L2(X2,t; X ato) - 0Lk(x2,e; Xpte) b

......

W {0

(33)

where its overall ensemble of realizations is composed of all the sub-ensembles for
different realization positions of the random trajectory XL(xoi,t) of the given single
fluid particle )(0i at a given time t.

For any combination of the realizations from ensembles (3.1) and (3.2), there

should exist a joint probability density P(de,xj,tlxo.,to) for the unit volume fluid
1

particle X, to appear at position Xj at time t and have an unit value of the
1

volumetric concentration of momentum "L .
k

All the joint probability density values for all realizations of the random
variable 0L(xL,t; X, .to), combined with the random trajectory XL(xo_,t) of the
1 1

given fluid particle Xoi, should then be given in the following value set
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Py, € {{P( xl,c|x ), P(d, Xl,t|xoi.t°) P(ﬂLk,x,,qxoi,to) it
{P(d, X2,t.|X ), P8, Xz‘t|xoi,to) P(de,xmnlxoi,to) .}
{P(ﬂLl,Xj,tiXOi,to), P(!’L?,Xj,tlxoi,to) P(o t|x0 to) b

...... |

(3.4)

Each value P(t?L . J,tlx t,) in set (3.4) can be further presented in the form

P(#Lk,xj,tlxoi,to) = P(ﬂLklxj,t; xoi'to)'P(xjvtlxo;‘o)

(3.5a)

Here P('delxj,t; xoi,to) is the conditional probability density for the fluid particle
X, to have an unit value of the volumetric concentration of momentum 19Lk when
1

it appears at position X, at time t. P(X tlxo t,) is the probability density for the
unit volume fluid particle X, to appear at position X, at time t. They should
1

satisfy the normal restrictions under the continuum hypothesis:

04

12 PX;t X to)-dX, = 1 (3.5b)

j2=31P(xj,t|xoi,eo)-dxj =1 (3.5¢)
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N m
kEIP(19Lk|xJ,t; xoi’to)'d"Lk =1 (3.5d)
2 EP( B, Xpt] Xoto)-dby -dX, (3.5€)

i=1k

where dX, (= dX; n an incompressible fluid) is the volume of the fluid particle
1

X

0. and dﬂLk is the differential increment in the volumetric concentration of
1
momentum of the fluid particle X; at position X, at time t. Here, we change the
1
original notations éX  and b"Xj to dX; and dX; for technical convenience of
1 1
expression. Hopefully, this would not confuse the fluid particle volume with the

trajectory increment, in the remaining analysis.

By comparison, the Eulerian volumetric concentration of momentum 0E(Xj,t)
at a given space-time point (Xj,t) (j=1,2,3..) is simply a random variable at

that given point, with its ensemble of realizations expressed as

Xt) € {{0 (X;,t), B 2(Xj,t) ...0Ehk(xj,t) b

{"E (X;.t), & E, (x it) . 0E2,k(xj’t) o}

......

{#Ei,l(xj,t), 6Ei,2(xj’t) 0Ei,k(xj't) wh

...... |

(3.6)

where "E- k(xj,t) is the kth realization of 0E(Xj,t) in its sub-ensemble at the given
- 11
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space-time point (Xj,t) contributed by the sth fluid particle X_, (i, k =1, 2,3 ...).
1

The overall ensemble of realizations of 0E(xj,t) is then composed of all the

sub-ensembles at the given space-time point (Xj,t) contributed by different fluid

particles X, in the flow.
1
As mentioned before, in each realization of a turbulent flow, the Lagrangian

variable #Lk(xj,t; xoi,to) and the Eulerian vaiiable 0E (x (xo, oht) must be

identical to each other with one-to-one transformation under the continuum

hypothesis, so that (3.6) can be further expressed as

dE(xj,t) € {{0Ll(xj,t; xol,to), 0L2(xj,t; xol,to) 0Lk(xj,t~, xol,to) b
{0L1(xj,t; xoz,to), 9 2(XJ,t; xoz,to) ﬂLk(xJ,t; xoz,to) -}

{ﬂL‘(Xl,t X, to), 9 L, (Xt xoi,to) 0Lk(xj,t; xoi,to) v h

...... |

(3.7)
All the probability density values for all the realizations of the random

Eulerian variable #,(X;,t) are then given in the following value set

Pag € {{P(ﬂLl,xj,tlxol,co), P(ﬂLz,Xj,tlxol,t .. P(9 L, J,t|x o) b
{P(‘,Lt’xj’tlx%’tc)’ P(0L2,x 4 X, ,0) P(',Lk'xj’tixog’to) -h

tX,. ,to) o}y

{P(0Ll,xj,t}xoi,to), P(ﬂLz,xj,zlxoi,to) (0L X,

(3.8)
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According to probability theory, two random variables are said to be
statistically identical if and only if they have identical ensemble of realizations and
identical probability distribution. Generally, the two conditions are not satisfied by
the random Lagrangian variable 9, (X t; Xo.to) and the random Eulerian variable
O, (X.t). In fact, the two random variables have different ensembles of realizations
and different probability density distributions if we compare (3.3) with (3.7) and
(3.4) with (3.8). Therefore, although the instantaneous equivalence, expressed as
one—to-one transformations between the Lagrangian and Eulerian variables in a
single realization of a turbulent flow, should be maintained under the continuum
hypothesis, the assumption of the statistical equivalence of the two variables in an
ensemble of realizations of that turbulent flow is not generally satisfied. This
assumption may have been expressed alternatively in terms of fluid particles
moving at the local Eulerian velocity of the fluid (Thomson 1984, 1950).

The traditionally used Markovian approximation to the Lagrangian behaviour
of individual fluid particles does not help to justify the above assumption either,
because the "memory-loosing" feature of a fluid particle does not assure that this
fluid particle should be statistically identical to the other "memory-loosing" fluid
particles in the flow. The only exception may be the mathematical idealization of
the stationary and homogeneous turbulence, where the statistical behaviour
between different fluid particles cannot be discriminated (Taylor 1921; Batchelor
1949). However, this exception should not be regarded as invalidating the following
statistical principle:

Equations (3.3), (3.4), (3.7) and (3.8) indicate that any fluid particle at a
given time has a certain probability to appear at every space point in a turbulent
flow in repeated experiments, and that any fixed space-time point of a turbulent

flow is statistically linked to all fluid particles in the flow with certain
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e

probabilities. This means that one Lagrangian fluid particle statistically occupies
multiple Eulerian space points at any time and, conversely, one Eulerian space
point statistically corresponds to multiple Lagrangian flud particles at any instant.
This statistical multi-to-one Lagrangian—-Eulerian transformation can be expressed
in the following calculation of the ensemble mean Eulerian volumetric

concentration of momentum BE(xj,t) according to (3.7) and (3.8):

B (X;0) = i2=31 kglt,Lk(xj,t; xoi,to)-P(ﬂLk,Xj,tlxoi,to)-dﬂLk-dXOi

(3.9)
Considering (3.5a), (3.9) can be written as
®
B (X;0) = 12 l?L(xj,t; Xouto)-dXo, (3.10a)

with 3L defined as

By (Xt Xot) = (kZ=) B (8 X to) P [ Xt X )+ )Pt X )

(3.10b)

Here 3L(xj,t; X, .to) s the ensemble mean contribution to the Eulerian volumetric
1

concentration of momentum at the space-time point (X,t) from the unit volume
fluid particle Xoi. ES’LR("J‘"* xoi,to)-P | o, d0 is the ensemble

mean evolution of the Lagrangian volumetric concentration of momentum of the
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fluid particle Xoi at position X; at time t.
By returning to the continuous (rather than discrete) description of the
ordinary variable X, and random variables X, and 9, equations (3.5)s are

rewriiten as

P(oL,x,t |Xgto) = P(d, |X,t; Xguto) e P(X,t] X, 0t,) (3.11a)
S Pt X,t0)-dX, = 1 (3.11b)
SPxi|x,t)-dX = 1 (3.11¢)
[P, |xx; x, dd, =1 (3.11d)
[P, xuix, o-dd dX, =1 (3.11¢)

and (3.9) is rewritten as

QE(x,t) =ff (Xit; Xouto) (B X,t] Xo0t)- dd, -dX,
= [ 9, (Xt: Xyt)-dX, (3.12a)

with 3L defined as

L (Xt Xyt) = (f 008 Xouto)P(B, | Xt Xoto) )+ P(X,t| X, t)
(3.12b)

Similarly, for mass density in a turbulent flow, we have
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P(pL,X,tIXO,t P(pLIXt Xoito) P(X,t| X t,) (3.13)
EE(x,t) = f f pL(X,t; Xo,to)-P(pL,X,t|xo,to)-dpL-dX0

= f Py (Xt Xpto)-dX, (3.14a)

with EL defined as

pr(X,t; Xoibo) f PLXts Xouto)e Plop | Xt Xooto)-dpy )+ P(X,t | X 0t,)
(3.14D)

In the above equations, P(pL,x,tlxo,to) is the joint probability density for the unit
volume fluid particle X, to appear at position X at time t and have an unit value
of mass density Py P(lex,t; X,.t,) is the conditional probability density for the
fluid particle X, to have an unit value of mass density p;, when it appears at
position X at time t. pLXst; Xyito) s the Lagrangian mass density of the fluid
particle X, at position X at time t. ﬁE(X,t) is the ensemble mean Eulerian mass

density at the space-time point (Xt). EL(x,t; X,t,) is the ensemble mean

contribution to the Eulerian mass density at the space-time point (X,t) from the
unit volume fluid particle X. f p(Xts Xto)-P(p | Xt Xjt0)-dpy is the ensemble
mean evolution of the Lagrangian mass density of the fluid particle X at position

X at time t.

For any other scalar in a turbulent flow, we have

P(\I!L,x,tlxo,to) = P(‘I!le,t; Xoito) P(Xt] X0t (3.15)
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V(x4 = f f WL (Xt Xoubo) PV Xt Xpbo)- Y -dX,
= f TITL(x,t; Xoito) - dX, (3.16a)

with '\I7L defined as

WL(x,t; Xoite) = ( f V(X Xo,to)-P(\Ple,t; Xo,to)-d\IlL)-P(X,tlxo,to)
(3.16b)

where symbols are defined in analogy to those in (3.13) and (3.14) for mass

density, but here for the volumetric concentration of any other scalar.

4. The description of turbulent diffusion

Under the random fluid particle treatment, (3.12a), (3.14a) and (3.16a) define
the basic problem of turbulent diffusion as finding the ensemble mean contributions
'p'L, BL and WL to the Eulerian physical properties from individual fluid particles in
the flow. Credits should then be given to the long—practiced random-walk models
in simulation of fluid particle dispersions, since by their nature they do address this

problem.

4.1. Formulations of p, , ?L and \—II'L
As long as the random fluid particle is assumed to move as a whole, the
conservation equations (2.5), (2.8) and (2.9) should be still applicable to individual
fluid particles in turbulent flows. These equations in turbulent flows should be
understood as random equations with respect to the random trajectory XL and
random evolutions of the Lagrangian properties [ ﬂL and \IIL, respectively. Based

on these random equations, the ensemble mean contributions ﬁL(x,t; X, to),
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'0L(x,t; X,t,) and '\I7L(x,t; X,t,) to the Eulerian properties from a single fluid

particle can be statistically formulated as

%’ﬁL(X,t; Xoto) + (VL (X Xoito)* V) - o (Kot Xoot)

- (Vi(xvt; xo,to) * vx) .pi(xlt; Xo.to) (41)

%BL(x,t; Xyt,) + (VL(x,t; xo,to).vx)-EL(x,t; Xgito)

= Hp (X8 Xoto) + v+ V3 8 (Xt; Xoto) = TVIIKE Koito) V) - 0 (K5 Xoito)

(4.2)

%@'L(x,t; Xoito) + (VL (Xiti Xputo) - Vy) - T (Xt; Xoit)

= By (Xt Xoto) + K-V U (X5 Xoto) = TVIKE Xoito) Vo) T (XGE Xty)

(4.3)

with the initial conditions:
whent =t and X = X,
PLX: Xouto) = oy (Xguto)y B (Xt Xoto) = 8] (Xto), Up (Xits Xouto) = W (Xoit)
whent =1t and X # X,
P (Xt Xgitg) = 0, B (X5 Xbo) = 0, T (X5 Xgptp) = 0

(4.4)

Here P (Xoito), 0L(X0,t0) and ‘IIL(xo,to) are the initial mass density, volumetric
concentration of momentum and volumetric concentration of scalar of the fluid
particle X, respectively. The ensemble means in the above equations are defined in
the sense of (3.12b), (3.14b) and (3.16b), in which the random trajectory and

random evolutions of the Lagrangian properties are jointly processed. ™" indicates
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the deviation from such ensemble mean.

According to (3.16b), EL(x,t; X,t,) should be defined as

E (Xt Xgto) = ( f E (Xt Xoto)- P(EL [ X6 Xyto)-dB )+ P(X,t] Xg0t,)

Here E (X,t; X,.t;) is the Lagrangian external volumetric source strength of scalar
exerted on the fluid particle X, at position X at time t. P(E |Xt; X,t,) is the
conditional probability density for the fluid particle X, to have an unit value of
external source strength of scalar EL when it appears at position X at time t.

Since the existence of the external source may not depend on any specific fluid
particle, f EL(x,t; Xo,to)-P(ELIX,t; xo,to)-dEL may be approximated by the

ensemble mean Eulerian external volumetric source strength, i.e.
Eyxy) = f Eg(X.)-P(Eg|Xt)-dE,

where EE(x,t) is the Eulerian external volumetric source strength of scalar and
P(EElx,t) is the probability density of E_(X) at space-time point (X,t).

Then, EL(x,t; X,t,) can be regarded as the ensemble mean transport rate of
scalar from the external source into the unit volume fluid particle X :

E (Xt X .t,) ® EE(x,t)-P(x,tlxo,to)

{

Similarly, ﬁL(x,t; X,.t,) may be approximated as

H (X4 Xoto) ¥ H(X,t)- P(Xt| Xo,t0)




Rp

Part 1 28

with ﬁE defined as

Hy(X,t) = [ Hy(X,t) P(Hg | Xt)-dHp & [ H (X Xputo)- P(H, | X,t; Xgto)-dH

where symbols are defined in analogy to those for the scalar source, but here for

the momentum source.

With the above approximations, (4.1), (4.2) and (4.3) combined with their

initial conditions (4.4) are written as

%EL(X,t; Xoite) + (VX Xgt0)« Vo) Py (X5 Xoit)

= - (VI’l(x,t; Xtg) V) pp(Xit; Xto) + pL(xo,to)-6(x-x0)-6(t-to)

(45)
%?L(x,t; Xoito) + (VL(x,t; xo,to)-vx)-3L(x,t; Xoto)
= H(X,0) PXt] Xit) + v V3-8 (Xt Xoit)
- (VI’J(X,t; xo,to)-vx)-ﬂi(x,t; Xpt,) + oL(xo,tO)-é(x—xo)-6(t-t0)
(46)
-g-t-\’P'L(x,c; Xoto) + (VLK Xoite) V) Tp (Xt Xty
= EE(x,t)-P(x,tlxo,to) + n-Vi-WL(x,t; X, to)
- (Vl"(x,t; xo,to)-Vx)~\I'£(x,t; X,t,) + \I!L(xo,to)~6(x—xo)- o(t—t,)
(4.7)

where § is the Dirac delta function indicating the combined initial conditions as

instantaneous point "sources".

The probability density P(X,t|Xt,) of the fluid particle’s trajectory can, in
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principle, be determined from (2.3) and (2.6}, given specified initial conditions. The
modified Langevin equation may be considered to be an approximate approach in
this case, which has been used implicitly or explicitly in most random—walk models
to describe the motions of individual fluid particles in analogy with the description
of Brownian motion (Durbin 1980b; Wilson, Thurtell & Kidd 1981; Lamb 1981,
Legg & Raupach 1982; Gifford 1982; Pope 1983; Janicke 1983; Ley & Thomson
1983; Wilson, Legg & Thomson 1983; Thomson 1984; Sawford 1984; van Dop,
Nieuwstadt & Hunt 1985; Haworth & Pope 1986; Sawford 1986; Novikov 1986;
Raupach 1987; Thomson 1987; Pope 1987; Kaplan & Dinar 1988; Luhar & Britter
1989).

In order to solve equations (4.5), {(4.6) and (4.7), some Lagrangian statistics
must be specified. This may entail difficulties in practice, because the assumption
of the statistical equivalence of the Lagrangian and Eulerian random variables is
not generally satisfied, as shown in Section 3.2.. Evaluating the Lagrangian
statistics of a given fluid particle by the Eulerian statistics at a given spatial
position, implicitly or explicitly based on this assumption, then becomes
inappropriate.

Generally, the solutions of (4.5), (4.6) and (4.7) for individual fluid particles
may involve technical difficulties in the nonlinearity of equations and the
parameterization of the flow character with macroscopic inhomogeneity of both
flow scale and turbulence intensity in complex systems. These difficulties are
beyond the scope of this study.

In addition to the above-mentioned difficulties, the probability density
distribution P(X,t|Xt,) of a fluid particle’s trajectory would be modified by any
change of the fluid particle’s momentum. Such modification would influence the

probability density distributions of other fluid particles in the flow if the restriction
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(3.11b) is considered. As a result, equation (4.6) for a fluid particle would become
dependent on the momentum of the other fluid particles in the flow Similarly,
equation (4.7) of a non-passive scalar for a fluid particle would become dependent
on the scalar concentrations of the other fiuid particles in the flow. Therefore, the
solutions of ?L(x,t; X,t,) and WL(x,t; X,:t,) may become practically complex.

For a passive scalar, the complexity of solution of WL(x,t; X,t,) can be
reduced. Because the change of the passive scalar concentration of a fluid particle
does not influence fluid motion, and thus does not alter the dynamic behaviour of
other fluid particles, equation (4.7) of the passive scalar for individual fluid
particles can be independently solved. As will be discussed later, this has a
practical importance in the final solution of the ensemble mean Eulerian
concentration TII—E(x,t).

If the passive scalar of individual fluid particles in the flow is also conservative
in the sense of neglecting the external source influence and the molecular
collision-transport between different fluid particles, the scalar would at all times
remain in the same fluid particles as at the imtial time, i.e. 'IIL(x,t; Xot,)
\I'L(xo.to). In this case, the solution of TFL(x,t; X,.t,) is reduced to the solution of
the probability density distribution P(Xt|X,t,) of the fluid particle’s trajectory
only. (e.g. Monin & Yaglom §10.1 1979; Thomson 1987).

4.2, The turbulent diffusion mechanism
In summary, turbulent diffusion under the random fluid particle treatment is

formulated through the following equations:
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%ﬁL(X,t; X,ito) + (VL(X,t; Xo,to)-vx)-ﬁL(x,t; X,ito)

= = [V7(Xk Xouto) Vo) a7 (K Xoito) + 2y (Kouto)* 6(X-X ) blt—t,)

%BL(x,z; Xoto) + (VL (Kiti Xguto)- V) By (Xiti Xoito)

= —E(x,t)-P(X,t]XO,to) + u-vi-BL(x,t; X, to)

— (VI(XE Xoito) V) (X Xpubo) + By (Xpito) - 6(X-Xg) - &(t—to)

%TI?L(x,t; Xgite) + (Vi (X Xout0) V) UL (Xoti Xoit)

= EE(x,z)-P(x,zlxo,to) + n-vi-WL(x,e; X, to)

- (V] (X Xoito) Vy) UL (Xt Xiity) + \I!L(xo,to)-6(x—xo)-6(t-to)

pe(Xt) = [ b (X,t; Xyto)-dX,
9.(X4) = f 9 (Xt Xpt,)-dX,

T (Xt) = f T, (X4 Xpho)-dX,

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Here, turbulent diffusion is c'escribed in terms of random fluid particle dispersions
through which the ensemble mean Eulerian mass density 'ﬁE(x,t), volumetric
concentration ?E(x,t) of momentum and volumetric concentration TITE(x,t) of any
other scalar are respectively calculated as the statistical superimpositions of the

ensemble mean contributions from all the individual fluid particles in the flow.

In the process of statistical superimposition, each ensemble mean contribution
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from a single fluid particle is individually solved from (4.8), (4.9) and (4.10). It
could be essentially viewed as a statistical "shadow" in physical properties of that
fluid particle, which is assumed to be developed as if the "shadows" of the other
fluid particles did not exist. Therefore, it is a consequence of the fact that the fluid
particle treatment excludes molecular mixing between the BMDFEs, that turbulent
diffusion under the random fluid particle treatment can only be described by
superimposing the "shadows" of individual fluid particles. It is the conjecture of
our study that this limitation has been inherently embodied in the described
turbulent diffusion mechanism, which lacks a description for feeding back the
superimposed "shadows" in terms of p_(X,t), EE(x,t) and "ITE(x,t) into the diffusion
process. Any further joint development of the superimposed fluid particle
"shadows" then becomes physically meaningless.

It might thus be said that the mixing between the BMDFEs of real turbulent
fluids, caused by molecular mixing, does not lend itself to the concept of
superimposition of the fluid particle "shadows". The lack of a feedback mechanism
in this description may suggest the possibility of error when it is applied to real
turbulent flows. In real turbulent flows, molecular mixing between different
BMDFEs requires that the mixed BMDFEs should be physically described in their
further joint development. Therefore, the description of turbulent diffusion under
the random fluid particle treatment may lead to a potential mathematical-physical
inconsistency in the understanding of turbulent diffusion in real turbulent fluids.

According to the discussion in Section 4.1., the statistical superimposition
(4.12) or (4.13), for momentum or non-passive scalar, should be dependent in the
sense that their ensemble mean contributions from different fluid particles in the
flow are mutually dependent. This adds an additional practical complexity to

solutions of turbulent diffusion. For a passive scalar, however, the contributions to
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the statistical superimposition (4.13) from different fluid particles become mutually
independent. The practical importance of this independence is that the overall
diffusion of a passive scalar from distributed sources (assigned to different fluid
particles at the initial time) can be reduced to an independent summation of
separate diffusions from individual point sources.

Finally, it should be emphasized that the statistical superimposition is
conceptually different from the standard technique of linear superposition. The
statistical superimposition is an expression of the statistical summation (or
ensemble average) of all the realization values of a random variable weighted by
certain probabilities from the ensemble of realizations. The standard technique of
linear superposition, on the other hand, is an expression of the non-statistical
linear summation (or linearity) of non-random values. Therefore, the statistical
superimposition is not conceptually related to linearity and the standard technique

of linear superposition is not conceptually related to statistics.

5. Conclusion

This study points out that with the constraint that individual BMDFEs
maintain their integrities in motion, the classical fluid particle treatment of the
BMDFE excludes molecular mixing between different BMDFEs in turbulent fluids.
The randomization of the fluid particle does not alleviate this fact since it does not
change the nature of the postulated fluid particle moving as an entity.

It is demonstrated that the statistical equivalence of the random Lagrangian
and Eulerian variables in turbulent flows under the random fluid particle treatment
is not generally satisfied. Instead, the one-to-one Lagrangian—Eulerian
transformations for a single realization of a turbulent flow are shown to be replaced

by the statistical multi-to-one Lagrangian-Eulerian transformations for the
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ensemble of realizations of that turbulent flow. This leads to the following
consequence:

Turbulent diffusion under the random fluid particle treatment can only be
described as random fluid particle dispersions in process of the statistical
superimposition of the shadow-like ensemble mean contributions from individual
fluid particles in the flow. The lack of a feedback mechanism 1n this description
suggests the possibility of error when it is applied to real turbulent flows, because
the physical process of mixing between real fluid elements, caused by molecular
mixing, does not lend itself to such superimposition. As a result, this description
may lead to a potential mathematical-physical inconsistency in the understanding
of turbulent diffusion in real turbulent fluids.

This analysis suggests, therefore, tnat the description of turbulent diffusion
might be improved by extendinr, the flmd particle treatment to incorporate
molecular mixing. This suggestion will be further explored in the following study

(Part 2).
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Part 2. The Virtual Fluid Parcel Treatment

Abstract

A new "virtual fluid parcel”" treatment of the BMDFE (Basic Macroscopically
Describable Fluid Element) in continuum framework is proposed to extend the
classical fluid particle treatment. This new treatment conceptually incorporates
molecular mixing between different BMDFEs by permitting disintegration of
individual BMDFEs. It is found to simplify the description of the fluid dynamic
variables in turbulent flows by not tracing the Lagrangian characteristics of the
BMDFEs. It gives the description only in the Eulerian framework, so that
additional concerns about the transformation between Lagrangian and Eulerian
variables can be avoided.

The main improvement made by the virtual fluid parcel treatment in the
description of turbulent diffusion lies in the introduction of a feedback mechanism
in the form of physically coupled disintegration and integration of the BMDFEs.
This improvement might reduce the potential mathematical-physical inconsistency
in the understanding of turbulent diffusion in real turbulent fluids, when compared
to the non-feedback mechanism of the statistical superimpositions under the
classical random fluid particle treatment. It suggests that molecular mixing is a
controlling agent of the mixing mechanism in every time-step of turbulent

diffusion, whose significance could be cumulatively increased.
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1. Introduction

As pointed out in the first part (Part 1), molecular mixing between
macroscopic fluid elements has been conceptually excluded by the classical fluid
particle treatment of the BMDFE (Basic Macroscopically Describable Fluid
Element) in continnum framework. This may cause difficulties in the interpretation
of turbulent diffusion mechanism in real turbulent fluids. The randomization of the
fluid particle does not alleviate this fact because it does not change the nature of
the postulated fluid particle moving as an entity. Instead, it leads to the statistical
multi-to-one Lagrangian-Eulerian transformations, resulting in the non-feedback
mechanism of statistical superimpositions in the description of turbulent diffusion.
This non-feedback mechanism may be perceived as a potential mathematical-
physical inconsistency in the understanding of turbulent diffusion.

In order to improve the situation, molecular mixing needs to be conceptually
considered. The idea has been addressed by Chatwin and Sullivan (1979) and
developed by Durbin (1980), who pointed out that "blobs", as the BMDFEs,
undergo disintegration in turbulent flows through molecular mixing.

To account for details of molecular mixing we should, in principle, focus on
individual molecules that exhibit Brownian motion relative to the fluid continuum,
rather than on the BMDFEs (Sawford & Hunt 1986; Stapountzis et al. 1986;
Kaplan & Dinar 1988). This approach, however, may go beyond continuum
mechanics. Its success requires detailed specification and prescription of individual
molecular behaviour, which may not generally be accessible under the present state
of knowledge and technology.

In the interim, this study attempts to explore an alternative as an extension of
the fluid particle treatmen. of the BMDFE. By developing Durbin’s (1980) idea, a

new "virtual fluid parcel” treatment of the BMDFE is proposed, which
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conceptually incorporate molecular mixing between different BMDFEs. This new
treatment is then applied to the description of turbulent diffusion problem. For
reason of simplicity, and without jeopardizing general validity, the discussion is

limited to incompressible fluids.

2. The virtual fluid parcel treatment
2.1. Concept

The classical fluid particle treatment defines the BMDFE subject to two assumed
constraints: First, it is considered as a finite, macroscopically significant fluid
element in which macroscopic physical properties (such as density, velocity,
temperature etc.) can be reasonably defined and measured by averaging molecular
properties within that element. Second, it is nevertheless regarded as a point-like
"particle" of uniform state in space, relative to the macroscopic flow scale, moving
as a whole in motion (Pao 7pp 1966; Owczarek 3pp 1968; Monin & Yaglom 528pp
1971; Lu 11pp 1979; Mironer 10pp 1979; Richardson 3-4pp 1989).

Except for some extreme situations, such as a gas at low pressure, where the
intermolecular distances may be comparable to the characteristic dimensions of the
problem, the first constraint should be acceptable for studies of macroscopic
phenomena of fluid moticn within continuum framework.

Before commenting on the second constraint, we may consider that a real fluid
is a moving medium whose constituent molecules may continuously change their
positions relative to one another (Batchelor 1967, Massey 1983). During motion, a
real fluid cannot avoid mixing of molecules from one macroscopic fluid element to
another. In turbulent flows, this molecular mixing could break the integrity of the
BMDFE (Durbin 1980). Ultimately, the real mixing in turbulent fluids takes place

through molecular mixing at fine scales, such as the conduction cut—off length scale
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(x3/ e)"}, irrespective of the macroscopic flow character (Chatwin, Sullivan & Yip
1990, Chatwin & Sullivan 1991). The latter is of the order of 10-4 — 10-3 m in most
flows, where & is the molecular scalar viscosity (or the molecular collision-transport
coefficient for scalar) and ¢ is the dissipation rate of turbulent kinetic energy
(Batchelor 1959; Batchelor, Howells & Towrsend 1959).

When the process of molecular mixing has had a significant cumulative effect,
it becomes meaningless to refer to the classical concept of the fluid particle
(Chatwin & Sullivan 1979). Instead, any real BMDFE may physically exist or
maintain its integrity only briefly before it is disintegrated in turbulent flows. We
may refer to this more realistic BMDFE as the "wvirtual fluid parcel”, to distinguish
it from the classical "fluid particle". In fact, the new concept of the virtual fluid
parc:l extends the classical concept of the fluid particle by relaxing its second
constraint to permit disintegration of the BMDFE. Therefore, the virtual fluid
parcel is not distinguished from the classical fluid particle by its size, but by the
fact that it is not necessarily perceived as moving as an entity. With this
extension, molecular mixing between different BMDFEs in turbulent fluids can be
naturally incorporated. A turbulent fluid under the continuum hypothesis may then
be viewed as being continuously composed of virtual fluid parcels which are subject

to potential disintegration at any time.

2.2. The description of the fluid dynamic variables
The virtual fluid parcel treatment can simplify the description of the fluid dynamic
variables in turbulent flows in a way not permitted by the random fluid particle
treatment, by giving the description only in the Eulerian framework. Because the

virtual fluid parcel may not, in general, maintain integrity in turbulent flow, its



trajectory and Lagrangian variables of physical properties cannot be properly
defined. Therefore, additional concerns about the transformation between the
Lagrangian and Eulerian variables are eliminated.

Under the virtual fluid parcel treatment, any space point in a turbulent fluid
can at any time be macroscopically considered as being occupied by only one
virtual fluid parcel. Its composition, originating from different parts of the fluid,
may sooner or later disintegrate. The (Eulerian) macroscopic physical properties at
that point and at that time should be uniquely measurable by averaging the
molecular properties within that virtual fluid parcel, which can be defined as
follows:

Suppose that in the neighbourhood of an given space-time point (X,t) of a
turbulent fluid, an existing volume d7 contains a number N of molecules. Each
molecule is located at position (X;,t), with microscopic mass m(X;t), velocity
v(X,,t) and mass-specific concentration c(X;t) of any other scalar. We can then
always find a virtual fluid parcel, with volume dX and a number N, of molecules,

whose center of gravity coincides with the spatial position X

N
X= lim - (2.1)
N

N
-+ No .Elm(xi,t)
i =

and whose mass dM(X,t), momentum dMV(X,t), and amount of scalar dA(Xt) are

N
dM(xt) = lim _E‘m(xi,t) (2.2)

d1+ dx 1=
ad o
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N
dMV(Xt) = lim 3 m(X,t)- v(X;) (2.3)
dv+ dx 1:=1
» N,
N
dAXt) = lim 2 m(X,t)-c(Xyt) (2.4)
d1» dx 1=1
N. N,

Then, the (Eulerian) macroscopic mass density p(Xt), velocity V(Xt) and

mass—specific concentration C(X,t) of any other scalar at the space~time point (X,t)

can be defined as

N
) m{X;t)
p(Xt) = lim AM(X¢t) = lim is 1 i (2.5)
dr + dx dr dr + dx dr
N i [s] » 0
N
5 m(x ;1) v(X,)
V(x,t) - lim d_M_V_KLLQ. - lim j=1 . i
dv » dx dM (X,t) dv » dx
N. No N, No 'Elm(xi't)
1 =
(2.6)
N
2 m(X ;,t)c(X;,t)
C(X,t) = lim QA(M = lim iz1 ; i
d1 » dx dM(x,t) d&-o gx
N+ N, + No _Elm(xi,t)
1 =
(2.7)

For incompressible fluids, the convenient volumetric concentration #X.t) of
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momentum and volumetric concentration W(X,t) of scalar at point (X,t) are given

by

N

E m(xitt ) 'V(xi,t)
AXt) = p(Xt)- V(Xt) = lim 3=

D dr
(2.8)
N
2 m(X;,t) - c(Xyt)
P(X,t) = p(Xt)-C(X,t) = lim 121
dtr » dx dr
N+ N,
(2.9)

In the above definitions, the space-time point (Xt) is arbitrarily and
continuously chosen in the fluid, so that any change of spatial position X or time t
could result in composition changes in dX and, consequently, change of the identity
of the virtual fluid parcel. Therefore, the virtual fluid parcel treatment is truly
compatible with the continuum hypothesis.

According to the above concept and definitions, the following three points
need to be emphasized.

1). Earlier, Durbin’s (1980) "outer limit" two-particle relative dispersion
model may have implied an adaptation similar to the virtual fluid parcel
treatment. By arguing that the small-scale structure of the scalar field is
eliminated by molecular mixing between fluid elements with different
concentrations, his model has already implicitly incorporated the effect of

molecular mixing. In this sense, his fluid particle concept has already differed from
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the classical one. The virtual fluid parcel treatment presented here may be
considered as a development of his idea, but more direct in incorporation of
molecular mixing.

2). The virtual fluid parcel treatment incorporates molecular mixing into the
definitions of the macroscopic physical properties without necessarily considering
the details of how the molecular mixing occurs. In each small time interval we
could, in principle, prescribe the motion of a single molecule as the sum of a
macroscopic component (the motion of the center-of-mass of the virtual fluid
parcel containing the molecule at that time) and a Brownian component (similar to
that used by Sawford & Hunt 1986, and Kaplan & Dinar 1988). However, doing so
would expect difficulties in practice, as mentioned in the Introduction. In any case,
when individual molecules with detailed prescriptions are used to calculate
macroscopic physical properties in continuum framework, an averaging process
(such as that used by Sawford & Hunt 1986) is required. This averaging should
have a proper macroscopic scale resolution matching the fluid continuum in order
to make the macroscopic physical properties meaningful. The virtual fluid parcel
treatment provides a theoretical base for such averaging. Beyond the continuum
framework, however, only the description of individual molecules 1s capable of
gaining iusight into the details of molecular mixing. It is not our concern at this
stage of the study.

3). The local Eulerian fluid velocity at a space-time point (X,t) in a turbulent
flow should be measured as macroscopic momentum by averaging the molecular
momentum within the fluid element at (X,t). However, due to molecular mixing,
all the molecules in the fluid element at (X,t) in a real turbulent flmd are not
guaranteed to originate from the same group in the previous time interval and

subsequently to move as an entity to another spatial point during the next time
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interval. Therefore, strictly speaking, fluid elements assumed to move at the local
Eulerian fluid velocity (such as Thomson 1990) in turbulent flow can only be
regarded as virtual fluid parcels. The assumption that classical fluid particles move
at the local Eulerian velocity may be inappropriate. In the previous study (Part 1),
it has been shown that under the random fluid particle treatment the assumption
of statistical equivalence between the Lagrangian variables of a single fluid particle

and the Eulerian variables at one space-time point is not generally satisfied.

3. The mixing processes

The virtual fluid parcel treatment can naturally access to the description of
molecular mixing in a way not accessible to the random fluid particle treatment. In
their life cycles, the virtual fluid parcels undergo two mixing processes: One is
disintegration through which they are fragmented, and the other is integration
through which the disintegrated fragments come together to form "new" virtual

fluid parcels, whose integrities will again be broken in subsequent disintegration.

3.1. Disintegration
For the given times t and t+at, where at is a small time interval, we can
arbitrarily choose two virtual fluid parcels, located at (X,t) with volume dX and at
(Y,t+at) with volume dY, respectively. During at, the disintegration of parcel
(X,t) may occur in such a way that each molecule with its mass m(X;,t) in parcel
(X,t) has a potential to mix into parcel (Y,t+at), with a mass contribution

m(Y;,t+at; X;,t)

m(Y;,t+AL Xpt) = m(X,t) 1(Y;t+at | X,t) (3.1)
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Here r(Y;,t+at| X;,t) is the molecular mixing coefficient for a single molecule, which
is defined as r = 1 if this molecule in parcel (X,t) mixes into parcel (Y,t+at) in at,
and r = 0if it does not.

The fractional contribution dM(Y,t+at; X,t) to mass of parcel (Y,t+at) by

disintegration of parcel (X,t) is then

No
AM(Y t+at; X,t) = 2 m(Xyt)-T(Yyt+at| X, it) (3.2)

1=1

where N is the number of molecules in parcel (X,t).

Considering (2.2), (3.2) can be written as
dM(Y,t+at; X,t) = dAM(Xt)- RM(Y,t+At | X,t) (3.32)

with RM defined as

No
'E Im(Xi, t ) ¢ I(Yl,t+At|X1,t)
-— 1
RM(Y,t+At| Xt) = o
2 m(X;t)

(3.3b)

RM(Y,t+-At|x,t) represents the portion of mass disintegrated from parcel (X,t) and
then mixed into parcel (Y,t+at) in at. It can be defined as the fractional
redistributicn coefficient for mass disintegrated from parcel (X,t) and then mixed
into parcel (Y,t+at).

Dividing both sides of (3.3a) by dX and dY, multiplying both sides by dX and



considering (2.5), we have
p(Y t+at; X t)-dX = p(X,t)-FM(Y,t-i-AtIX,t)-dX (3.4a)

with p defined as

dM(Y, t+at; Xt) (3.4b)
dX.dY

b(Y At Xit) =

and FM defined as

Ry (Y.t +At I X,t)

(3.4¢)
dy

FM(Y,t+At [Xxt) =

Here p(X,t) is the (Eulerian) mass density at (X,t). p(Y,t+at; Xt) is the fractional
contribution to the mass density of parcel (Y,t+at) from the unit volume of parcel
(X,t). FM(Y,HAtIX,t) is the fractional redistribution density coefficient for mass
disintegrated from parcel (X,t) and then mixed into the unit volume of parcel
(Y,t+at), which represents the portion of mass disintegrated from parcel (X,t) and
then mixed into the unit volume of parcel (Y,t+at) in at.

Similarly, the fractional contribution dMV(Y,t+at; X,t) to momentum of parcel

(Y,t+at) by disintegration of parcel (X,t) would be

No
dMV(Y,t+at; Xt) = 12 lm(xi,t) V(Y AL Xit) (Y5048t X t)

= dMV(X})- Ry (Yt+at]| X ) (3.5a)
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with Rv defined as
No
iZ_) 1m(xi,t ) s V(Yut+at; X ,t)er(Y t+at X t)
RV(Y,t+At|X,t) = = o
12 lm(xi,t) V(X |, t)
(3.5b)

Here v(Y;t+at; X;t) is the velocity of a molecule found in parcel (Y,t+at) which
comes from parcel (X,t) (considering the molecular collision-transport,
V(Y t+At; X;,t) may be different from 1ts previous value v(X,t) in parcel (Xt)).
RV(Y,t+At|x,t) is the fractional redistribution coefficient for momentum
disintegrated from parcel (X,t) and then mixed into parcel (Y,t+at).

Multiplying both sides of (3.5a) by "d)d()LdT and considering (2 8), we have

AY,t+4t; Xt)-dX = AX,t)- Fy(Yi+at|Xt)-dX

(3.62)

with @ defined as

dMV(Y, t+At; Xt)
dX-dY

AY,t+4t; Xt) =

(3.6b)

and Fv defined as

RV(Y, t +4t| X,t)
Fv(Y,H-At IXt) = (3.6¢)
dy




Here #Xt) is the (Eulerian) volumetric concentration of momentum at (Xt).
AY,t+4t; Xt) is the fractional contribution to the volumetric concentration of
momentum of parcel (Y,t+at) from the umt volume of parcel (X,t). FV(Y,t+At|x,t)
is the fractional redistnbution density coefficient for momentum disintegrated from
parcel (X,t) and then mixed into the unit volume of parcel (Y,t+at).

For any other scalar, the fractional contribution dA(Y,t+4t; X,t) to scalar of

parcel (Y,t+at) by disintegration of parcel (X,t) would be

No
dA(Y t+at; Xt) = iglm(xl,t)‘c(Yi,HAt; Xl,t)~r(Yi,t+At|Xi,t)

= dA(X,t)-RC(Y,HAt [ X,t) (3.7a)

with RC defined as

No
-
_L m(X;,t ) - (Y, t+aAt; xi,t)-r(Yi,t+At|xi,t)
RC(Y,t+At|X,t) = -1zl N
]

,2 lm(xi,t) <C(X,t)

1=

(3.7b)

Here c(Y;t+at; X;;t) is the mass-specific concentration of scalar of a molecule found
in parcel (Y,t+at) which comes from parcel (X,t) (considering the molecular
collision-transport, c(Y;t+at; X,,t) may be different from its previous value c(Xt)

in parcel (X,t)). R (Y,t+at|X,t) is the fractional redistribution coefficient for scalar

(
C
disintegrated from parcel (X,t) and then mixed into parcel (Y,t+at).

Multiplying both sides of (3.7a) by 'a)d{xqv‘ and considering (2.9), we have
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B(Y,t+at X,t)-dX = W(X,t) Fo(Y,t+at X,t)- dX
(3.8a)
with ¥ defined as
Ty, eat Xty = SANL b3aL; X (3.8b)
dX.dY
and FC defined as
R (Yt +at [ X,t)
Fo(Yitat|Xt) = (3.8¢)

dy

Here W(X,t) is the (Eulerian) volumetric concentration of scalar at (Xt).
(Yt+at; X,t) is the fractional contribution to the volumetnic concentration of
scalar of parcel (Y,t+at) from the unit volume of parcel (X,t). FC(Y,t+M|X,t) 1S
the fractional redistribution deusity coefficient for scalar disintegrated from parcel
(X,t) and then mixed into the unit volume of parcel (Y,t+at).

Generally, there may exist, at (X,t), external sources for momentum and

scalar, with volumetric source strengths H(X,t) and E(X.t), respectively. Thus the

general forms of (3.6a) and (3.8a) should become

AY t+at; X,t)-dX = (KX,t)+ H(X,t)-at)-F(Y,t+a X,t) - dX

(3.9)

By e+at; X t)-dX = (P(x,t)+ E(X,t)'At)-FC(Y,t+At|X,t)-dX

(3.10)
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. If mass, momentum and scalar are conservative during disintegration, the

following constraints must be satisfied

[ By (Virar x0)-dY = 1 (3.11)
f F(Yi+at|X,t)-dY =1 (3.12)
[ (Yitot|x0)-dY = 1 (3.13)

3.2. Integration
In each time interval at, the virtual fluid parcel at every point (X,t) in a turbulent
fluid can be regarded as a potential source of disintegraticn which redistributes its
disintegrated fragments p(Y t+at; X,t)-dX, AY.t+at; X,t)-dX and P(Y,t+at; Xt)-dX
to the parcel at (Y,t+at). Therefore, at the end of the time interval, the (Eulerian)
mass density p(Y,t+at), volumetric concentration of momentum wXY,t+at) and
volumetric concentration of scalar W(Y,t+at) in the "new" virtual fluid parcel at
(Y,t+at) would be constituted of the disintegrated fragments from all the "old"
virtual flmd parcels in the turbulent fluid. They are expressed as the integration of

(3.4a), (3.9) and (3.10), respectively, over the space of the flow

p(Y t+At) = f p(Y t+at; X,t)-dX
= f p(X,t)-FM(Y,t+At|X,t)-dx (3.14)

AY+at) = [ Ay t+at; X8)-dX
= [(#x) + HX)-at)-F\ (V.48 X,t)- X (3.15)

o‘jﬁ
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V(Y t+At) = f (Y, t+4t; X,t)-dX
= [(¥(Xt) + E(Xt)-at)-F (Y.e+at| X1)-dX (3.16)

The results of the above integration then become the new sources for the next

disintegration described again by (3 4a), (3.9) and (3.10) in the next time interval.

4. The description of turbulent diffusion

Under the virtual fluid parcel treatment, (3.14), (3 15) and (3 16) define the
basic problem of turbulent diffusion as finding the fractional redistnibution density
coefficients FM, FV and FC, or the fractional contributions p, @ and ¥, from the
"old" virtual fluid parcels 1n space (X,t) to the "new" virtual flmd parcels in space

(Y,t+at) in each time interval at.

4.1. Approximations of Fy , F, and F,, or p, dand ¥

If the time interval at 1s sufficiently small for the virtual fluid parcel at (X,t) to be
still recognized by 1its center of gravity in at, it may be acceptable, as an
approximation, to assume that the virtual fluid parcel moves as a whole during at,
with its possible disintegration taking place at the end of the time interval In this
case, the virtual fluid parcel at (X,t) can be temporanly treated as a
"pseudo—fluid-particle" during at, with its mass, momentum and any other scalar,
including the parts coming from external source, regarded as an instantaneous
point source Its fractional contributions to the (Eulenan) mass density, volumetric
concentrations of momentum and scalar at (Y,t+at) during at may then be
approximated in the following:

According to our previous study (Part 1), the conservation equations for the

mass, momentum and any other scalar of such “pseudo—fluid-particle" can be




expressed as

%ﬁ(v,m; Xt) + (V(Y,te4s; X,t)-Uo)- p(Y t4s; Xit)

= - [V(Y,t+s Xt)-Vy): p'(Yits; Xt) + p(X,t)+ §(Y-X)- 6(s)

(4.1)
%V(Y,Hs; Xt) + (V(Ytts X,t)-Vo)e KY et Xot)
= U-v;-aY,t+s; X,t) = (V'(Yitts; X,t)-vy)-WY,H-s; X,t)
+ (&x,t) + H(Xp)-at)- 6Y-X)- §(5)
(42)
%W(Y,t+s; Xt + (V(Yt+s x,t)-vy)-TIT(Y,Ha; X.t)
= n-V;-"ri(Y,t&s; X,t) — (V'(Y,t+s; X,t)-vy)-\F’(Y,t-H; X,t)
+ (¥(X,t) + E(Xt)-at)- §Y-X)- §s)
(43)

(0 <5< at)

Here the original subscript L, indicating the Lagrangian properties, is omitted in
order to distinguish the present, assumed "pseudo—Lagrangian" approximations
from the original, true Lagrangian descriptions. The statistical mean contributions
are defined as
(Y t+8; Xt) = f p(Yt+8; Xt)-P(p,Y t+s| X t)-dp
= ( f pYt+s; X,t)-P(p| Y,ths; Xt)- dp) P(Y,t+8 X,t)
(4.4)
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RY,t+s; Xt) = fﬂY,t+s; Xt) - P(OY,t+s| X t)-d@
= f AY,t+s; X,t)-P(B]Y,t+s; Xt)-dd)- P(Y t+s] X,t)
(4.5)

V(Y t+s; Xpt) = f Y(Y,t+s; Xt)-P(P,Y,t+s| X;t)-d W
= (f V(Y t+s; X,t)-P(W]Y.t+s; Xt)-d¥)-P(Y,t4s] Xt)

(0 <s¢at)

Terms in the above equations are defined as following: V(Y,it+s; Xt) =
AY,t+s; Xt)/p(Y,t+s; Xt) is the pseudo-Lagrangian velocity of the
pseudo-fluid-particle arriving at (Y,t+s) from (X,t). p(Y.t4s; X.t), AY,i+s Xt),
Y(Y,t+s; X,t) are the pseudo-Lagrangian mass density, volumetric concentrations of
momentum and scalar of the pseudo-fluid—particle arnving at (Y,c+s) from (X,t),
respectively. p(Y,t4s; X,t), &Yt+s; Xt), U(Y,t+s, Xt) are the ensemble mean
contributions to the (Eulerian) mass density, volumetric concentrations of
momentum and scalar at (Y,t+s) by the unit volume pseudo-fluid—particle from
(X,t), respectively. p'(Y,t+s; Xt), ®(Y,t4s, X,t), and ¥'(Y,t+s; X;t) are the deviations
from p, 9, U, respectively. P(p,Y,t-+s|X,t), P(8Y,t+s|X,t) and P(¥,Y,t+s|Xt) are the
joint probability densities for the unit volume pseudo—fluid-particle from (X,t) to
appear at position Y at time t+s, and to have unit mass density, unit volumetric
concentration of momentum and unit volumetric concentration of scalar,
respectively. P(p|Y.t+s; X,t), P(9]Y,t+s; X,t) and P(¥]Y,t+s; Xt) are the conditional
probability densities for the pseudo-flmd-particle from (X,t) to have unit mass
density, unit volumetric concentration of momentum and unit volumetric

concentration of scalar when it appears at position Y at time t+s, respectively.




bR

P(Y,t+s] X,t) is the probability density for the unit volume pseudo-fluid—particle
from (X,t) to appear at position Y at time t+s. v and k are the molecular
kinematic and scalar viscosities (or the molecular collision-transport coefficients for
momentum and scalar), respectively. V, and V; are del and Laplace operators with
respect to Y, and 6 is the Dirac delta function.

With solutions from (4.1), (4.2) and (4.3) at the end of the time interval at,

the fractional redistribution density coefficients Fop F and FC could be

\'4
approximately estimated by the following ratios:

p(Y, t +At; Xt)

F (Y.t+at | X,t) » ST (4.7)
AY,t+at; X,t)

Fy(Y.t+at| Xt) » NCOMIER: G (4.8)
V(Y t+4t; X,t)

Fo(Yitat|Xt) = WX ) 7 EX 18 (4.9)

Comparing (4.7) with (3.4a), (4.8) with (3.9), (4.9) with (3.10), we have

P(Y t+4 Xt) & p(Y,t+at; X,t) (4.10)

AY,t-+08 Xt) & Y, t+at Xt) (4.11)

WY 488 X,8) ® T(Y+A¢; X,t) (4.12)

Strictly speaking, the above estimations of FM, Fv and FC, or p, 9 and ¥,
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should approach their exact values only for the vanishing time interval at when the
assumed pseudo-Lagrangian statistics may not significantly differ from the local
Eulerian statistics. In practice, however, these estimations may be justified when at
is comparable to the mimmum period of the significant fluctuations of p(X,t), #Xt)
and ¥(Xt).

In order to solve equations (4.1), (4.2) and (4.3), some local Eulerian statistics
and the molecular collision-transport properties (such as v and &) must be
specified. The values of v and k may have to be specified because, if a virtual flud
parcel at any time is regarded as a small point source, the effect of v and x should
be considered for small time intervals at according to Saffman (1960).

Generally, the solutions of (4.1), (4.2) and (4.3) may involve techmical
difficulties in the nonlinearity of equations and the parametenzation of the flow
character with macroscopic inhomogeneity of both flow scale and turbulence
intensity in complex systems. Solutions of these difficulties are not pursued at this
stage of the study. However, according to the above approximations, the fractional
redistribution density coefficients FM, Fv and FC, or the fractional contributions p,
# and ¥ should be, in general, solved as functions of flow scale, turbulence
intensity and distributions of physical properties, with their dependence on the

molecular collision-transport properties.

4.2. The turbulent diffusion mechanism
In summary, turbulent diffusion under the virtual fluid parcel treatment is

formulated in the following recurring joint equations:




R,

%E(Y,ti-{-a; Xty + (V(Yiti+s x,ti)-vy)-;—)(Y,tiﬂ; X.t;)

= = [V{Y,t+s Xt)- Vo) p(Viti+s; Xity) + p(X.t;)* §(Y-X)- &(s)

(4.13)
%B(Y,tﬁs; Xty) + (V(Yitihs Xty)- Vo) Yot 4s; Xot)
= V-V;'a‘[,tiﬂ; x,ti) - (v’(Yrti+s; x’ti) 'v;)' J(Y:ti'*’s; xrti)
+ (AX,t;) + H(Xt;)- at) §(Y-X)- &(s)
(4.14)
%W(Y,tx+ﬂ; x,tl) + (V(Y,t{*‘ﬂ} X,tl)-vy)-\—I’-(Y,tl+s; X,t‘)
= K-V;-W(Y,tiﬂ; Xit;) = (V(Y,t+s; X,tl)'vy)-WY,ti-i-s; X,t;)
+ (¥(x,t;) + E(Xt;)- at)- §(Y-X)- §(s)
(4.15)
(0 ¢s¢at)
P(Yibiy) = f P(Y g Xoty)-dX (4.16)
AVt = [ A0 Xity)-dX (4.17)
‘I’(Y,t‘*l) = f—‘ﬁ(y’tl‘l' X,tl)-dx (4.18)

ti*‘=ti+At, l=0,1,2 ......

Here, turbulent diffusion is described as a succession of physically coupled
disintegration and integration of the virtual fluid parcels. Through them, the

(Eulerian) mass density p(Y.t;,,), volumetric concentration &Y,t;,,) of momentum
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and volumetric concentration ¥(Y,t;,,) of any other scalar are solved, 1n successive
time steps, through cascaded integrations of the fractionai contributions in physical
properties from continuous disintegration of the previous virtual fluid parcels in the
flow.

This description differs from the description under the classical random fluid

particle treatment, which is formulated in the following equations (Part 1):

%EL(x,t; Xote) + (VL (Xt Xoito) V) Bp (Xiti Xut)

= - (Vi(x,t; Xouto) V) ] (Xit; Xoito) + pL(xo,to)-5(X-X0)-6(t—to)

(4.19)
%3L(x,t; X,t,) + (VL(x,t; xo,to)-v,)-aL(x,t; X,.t5)
= H(X,t)- P(X;t| X,t,) + v VE- B (Xt Xt)
= (VI (Xt Xoito) Vi) T (X Xit) + 0 (Xouto) e 6(X-X ) 6(t~,)
(4.20)
%’@L(X,t; Xoto) + (VL (Xt Xouto)- U)W (Xt Xto)
= E(Xt) P(X,t] Xg,tp) + £ VZ- T (X5 Xputo)
= (Vi(Xt Xopto) Vo) WU (X Xoito) + V) (Xqito) BX-X,)- 8(t-t,)
(4.21)
p(Xt) = f EL(x,t; X,to) dX, (4.22)
Axt) = [ B (Xt Xt,)-dX,, (4.23)

T(xp) = [T (Xt Xot0)-dX, (4.24)
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Here VL(x,t; Xoto) = 0L(x,t; xo,to)/pL(x,t; X,it,) is the Lagrangian velocity of the

fluid particle X, at position X at time t. EL(x,t; Xoto)s BL(x,t; Xqt,) and
WL(x,t; X,.t,) are the ensemble mean contributions to the Eulerian mass density,
volumetric concentrations of momentum and scalar at (X,t) from the unit volume
fluid particle X, respectively. P (Xiti X b)), ﬂi(x,t; Xt,) and \Pi(x,t; X t,) are the
deviations from ﬁL, 3L and 'lil'L, respectively. P (Xoito)s ﬂL(xo,tO) and \IJL(xo,to) are
the initial mass density, volumetric concentrations of momentum and scalar of the
fluid particle X, respectively. H(X,t) and E(X.t) are the ensemble mean Eulerian
external volumetri. source strengths of momentum and scalar, respectively.
P(X,t| X,.t,) is the probability density for the unit volume fluid particle X, to
appear at posihon X at time t. p(Xt), %X,t) and ¥(X,t) are the ensemble mean
Eulerian mass density, volumetric concentrations of momentum and scalar at (X,t),
respectively.

Under the classical random fluid particle treatment, turbulent diffusion can
only be described as random fluid particle dispersions. Through them, the ensemble
mean Eulerian physical properties p(X,t), &X,t) and ¥(X,t) are calculated as the
statistical superimpositions of the "shadow-like" ensemble mean contributions from
individual fluid particles in the flow. The non-feedback mechanism of the
statistical superimpositions in this description reflects the exclusion of molecular
mixing between different BMDFEs.

By comparison, the introduction of the feedback mechanism through
physically coupled disintegration and integration of the BMDFEs under the virtual
fluid parcel treatment would be seen as a major improvement in the description of
turbulent  diffusion. This improvement might reduce the potential
mathematical-physical inconsistency in the understanding of turbulent diffusion in

real turbulent fluids, when compared to the non-feedback mechanism of the

S
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statistical superimpositions under the classical random fluid particle treatment. It
is exclusively attributed to the incorporation of molecular mixing.

According to (4.13)-(4.18), in each time step, the disintegration of the "old"
virtual fluid parcels will trigger the integration of the "new" virtual flmd parcels,
which are then potentially subject to subsequent disintegration At the end of each
time step, the integrated solutions of p(Yt;,,), &Y,t;,) and ¥(Y,t ,,) must be fed
back, as "new" source terms, into the conservation equations (4.13), (4.14) and
(4.15). In the process of this feedback, each fractional contribution from a "old"
virtual fluid parcel must be physically considered as an integral part of the "new"
virtual fluid parcel, whose existence physically interferes with the other parts of the
"new" virtual fluid parcel due to molecular mixing. This suggests, then, that
molecular mixing is a controlling agent of the mixing mechamism 1in every
time-step of turbulent diffusion, whose significance could be cumulatively

increased.

5. Conclusion

By permitting disintegration of individual BMDFEs, this study extends the
classical fluid particle treatment to a new virtual fluid parcel treatment of the
BMDFE where molecular mixing between different BMDFEs in turbulent fimds is
conceptually incorporated. Improvements over the classical fluid particle treatment
are embodied in the following two aspects:

First, it simplifies the description of the fluid dynamic variables in turbulent
flows by not tracing the Lagrangian characteristics of the BMDFEs, but rather by
restricting the description to the Eulerian framework. As a result, additional
concerns about the transformations between Lagrangian and Eulerian variables are

eliminated.
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Second, it introduces a feedback mechanism in the description of turbulent
diffusion through physically coupled disintegration and integration of the BMDFEs.
In comparison with the non—feedback mechanism of the statistical superimpositions
under the classical random fluid particle treatment, this feedback mechanism might
reduce a potential mathematical-physical inconsistency in our understanding of
turbulent diffusion in real turbulent fluids. This feedback mechanism suggests that
molecular mixing is a controlling agent of the mixing mechanism in every
time-step of turbulent diffusion, whose effect could be cumulatively important.

According to these improvements, we may infer that the new virtual fluid
parcel treatment of the BMDFE in continuum framework would be more realistic,
from a physical viewpoint, 1n its description of turbulent diffusion than the
classical random fluid particle treatment. Confirmation of this inference will be

attempted in the next study (Part 3).
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turbulent diffusion 1n fluid continuum Part 1. The limitation of the fluid particle
treatment.

Part 3 (attached Y. Guo, 1991): The role of molecular mixing in the description of
turbulent diffusion 1n fluid continuum. Part 3. Application to the diffusion cloud.




Part 3. Application to the Diffusion Cloud.

Abstract

The influence of molecular mixing on turbulent diffusion 15 quahtatively
examined by comparing the virtual fluid parcel treatment with the random fluid
particle treatment of the BMDFE (Basic Macroscopically Descnibable Flhnd
Element) in continuum framework The evolution of the diffusion cloud 1s analyzed
by both treatments on the level of single time—step diffusion redistributions The
analytical results suggest a persistent and cumulative influence of molecular mixing
on the evolution of the diffusion cloud, and thus on the evolution of the mean
concentration field, by reducing the diffusion distribution varrance This suggestion
would mean that the random flmd particle treatment, by excluding molecular
mixing, may lead to a potential mathematical-physical inconsistency 1n the
description of turbulent diffusion by exaggerating the diffusion distnbution
variance. Supporting evidence 1s presented from water flow diffusion experiments
which appear to confirm that the virtual fluid parcel treatment 1s more reahstic in
its description of turbulent diffusion than the classical random flwmd particle

treatment.

66
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1. Introduction

Our previous study (Part 2) has outlined differences between the classical
random fluid particle treatment and a new virtual fluid parcel treatment of the
BMDFE (Basic Macroscopically Describable Fluid Element) in continuum
framework The main difference lhes 1n the fact that the new treatment
incorporates molecular muxing between different BMDFEs by permitting
disintegration of individual BMDFEs, while the classical treatment excludes such
molecular mixing by restricting individual BMDFEs to move as entities. This
difference leads to different descriptions of turbulent diffusion

Under the classical random fluid particle treatment, turbulent diffusion is
descnbed as random fluid particle dispersions, in process of statistical
supenimpositions of the "shadow-like" ensemble mean contributions from

individual fluid particles in the flow (Part 1):

%EL(X,t, Xoto) + (Vo (X, Xoto) V)« 0y (Xots Xoto)

= - (VI’J(x,t, xo,no)-vx)-pl’l(x,t, Xoito) + AL (Xqto)* 6(X-X,) - 6(t—t,)

(1.1)

%BL(x,t; Xoto) + (VL (Xti Xote) V) B (X, Xj0t,)

= Hixt)- P(Xt| X t,) + u-Vﬁ-?’L(x,t; Xgto)

= (VX Xoto) Vo) g1 (Xt Xotg) + 8 (Xt) - 6(X-X,)- 6(t~t,)

(1.2)
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%WL(x,t; Xoito) + (VL (Xt X,t0) V) - U (X5 Xt

= E(Xt) P(X¢t|X,t0) + £-V3- T (Xt Xjt0)

= (VX0 Xoto) Vi) W (Xt Xoutg) + W (Xpitg) O(X=X )« 8(t—t,)

(1.3)
B(Xt) = f Py (Xt Xputo)-dX, (1.4)
AX,) = f B, (Xt Xo1t,)-dX, (1.5)
T(x) = [T, (8 Xgte) dX, (16)

Terms in these equations are defined as follows V (Xt X t) =

L
0L(x,t; Xo,to)/pL(X,t.; X,t,) is the Lagrangian velocity of the flud particle X, at

position X at time t. EL(x,t; Xoto)s 9 (Xt Xoto) and WL(X,L, X, t,) are the ensemble

L

mean contributions to the Eulerian mass density, volumetric concentrations of

momentum and scalar at (X,t) from the unit volume flurd particle X, respectively

o)

pf,(x't' X, .to) 0£(x,t, X,t,) and \I/L(X,t, X,t,) are the deviations from }3[‘, ?9]‘ and

‘IIL, respectively. pL(XO,tO), 0L(xo,t0) and \I’L(XO,LO) are the mnitial mass density,

volumetric concentrations of momentum and scalar of the flmd particle X

respectively. H(X,t) and E(X,t) are the ensemble mean Eulenian external volumetnc

source strengths of momentum and scalar, respectively P(Xt]|X 15 the

orto)
probability density for the unit volume fluid particle X to appear at positicn X at
time t. p(Xt), &X,t) and ¥(X,t) are the ensemble mean Eulerian mass density,
volumetric concentrations of momentum and scalar at (X,t) , respectively v and %

are the molecular kinematic and scalar viscosities (or the molecular

collision—transport coefficients for momentum and scalar), respectively. V. and V2
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are del and Laplace operators with respect to X, and & is the Dirac delta function.
Under the new virtual fluid parcel treatment, turbulent diffusion is described

as physically coupled disintegration and integration of the virtual fluid parcels, in

process of cascaded integration of the fractional contributions from the

continuously disintegrated virtual fluid parcels in the flow (Part 2)-

%E(Y,t‘-{—s; Xt,) + (V(Yt,+s; X,t,) ¥p) - p(Y 48, Xt

= = (V(Yit, 45 Xit)-Vo)-p' (Vb 48 Xit,) + p(Xot,)- §(Y-X) - §(s)

(17)
%&Y,tﬁ-s; Xt) + (V(Y,tl-{»-s, X,t‘)-vy)-&Y,tﬁs; X.t,)
= v-Vi-AYt 48, Xot)) = (VY45 Xt) V) P +s; Xit)
+ (dXt,) + H(Xt)-at): §(Y-X)- &s)
(1.8)
%’\F(Y,tiﬂ; Xty + (V(Vit s Xt ) V0) WY e 45 Xot;)
= ﬁ-vg'W(Y,tl-{»s, Xt)) - (V’(Y,tﬁs; X,tl)-vy)-q”(Y,tl-i-s; X,t;)
+ (¥(Xt) + E(X.t)-at)- 6(Y-X)- §5)
(1.9)
(0 < s <at)
p(YltiQX) = fb-(Y|t1¢1; xvtj)'dx (1-10)

AY.L,) = f&Y,tm; X,t;)-dX (1.11)




|
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‘I’(Yntiﬂ) = fW(Y)tiol; xvti)'dx (112)
ti*1=ti+At’ l=0, 1,2 ......

Terms in these equations are defined as follows. V(Yt+s; Xt) =
AY,t,+s; X,t,)/p(Yot +s; X.t,) is the pseudo-Lagrangian velocity of the center of the
virtual fluid parcel arriving at (Y,t +s) from (X,t)) p(Yt+s, X)), HY,t +s, X))
and W(Y,t,+s, X,t,) are the approximate fractional contnbutions to the mass
density, volumetnc concentrations of momentum and scalar of the wvirtual flnd
parcel at (Y,t +s) from the unit volume virtual flmd parcel at (X,t,), respectively
P(Y,t,+s; Xt,), P(Yt+s, Xt)) and ¥'(Y,t, +s, X,t,) are the deviations from p, 9 and
¥, respectively. H(X,t) and E(X,t) are the (Eulenan) external volumetne source
strengths of momentum and scalar at (X,t,), respectively p(Y.t,,,), &Yt,) and
¥(Y,t,,,) are the (Eulerian) mass density, volumetnc concentrations of momentum
and scalar at (Y.;,,), respectively at is the time interval comparable to the
minimum period of the significant fluctuations of p(X,t)), A X)) and ¥(X )

The main improvement by the new virtual flmd parcel treatment in the
description of turbulent diffusion 1s embodied in the introduction of a feedback
mechanism through physically coupled disintegration and integration of the
BMDFEs This might reduce a potential mathematical-physical inconsistency in
the understanding of turbulent diffusion ir real turbulent fluids, when contrasted to
the non-feedback mechanism of the statistical supertmpositions under the classical
random fluid particle treatment. The feedback mechanism suggests that, as a
controlling agent of the mixing mechanism, molecular mixing could be
cumulatively important in every time-step of turbulent diffusion. The conclusion 1s

then that molecular mixing should not generally be neglected in the description of
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turbulent diffusion, which was also realized by the previous studies (Chatwin &
Sullivan 1979, Durbin 1980; Sawford & Hunt 1986; Stapountzis et al. 1986; Kaplan
& Dinar 1988).

According to the above improvement, we may infer that the new virtual fluid
parcel treatment is more realistic in its description of turbulent diffusion than the
classical random fluid particle treatment

To clarify the effect of molecular mixing, and thereby to confirm the above
inference, this study tnes to apply the new and classical treatments to the
description of the diffusion cloud evolution on the level of single time—step diffusion
redistribution analysis. The analytical results are then compared and
experimentally tested.

Earlier, the effect of molecular collision-transport interacting with turbulent
transport (generally referred to as "molecular diffusion" and "turbulent diffusion")
has been studied by Saffman (1960) and many others (see Monin & Yaglom §10.1
and §10 2 1971) based on the classical scalar diffusion equation. According to their
basically intuitive analyses, it has been suggested that the influence on the
evolution of the diffusion cloud by molecular colhision-transport is neghgible when
the diffusion time is long and the Reynolds number 1s sufficiently large. However,
the effect of molecular mixing in such situation remains an open question.

For reason of simplicity, a passive scalar will be used as a tracer in the
subsequent analysis It 1s assumed to be conservative in the sense that the influence
from external sources and from molecular collision-transport between different

BMDFEs are neglected.
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2. Diffusion redistributions and the effect of molecular mixing

2.1. Formal description of redistributions
Suppose, for the sake of argument, a scalar located at positions XO‘, XO2 Xon, at
initial time t,, with volumetric concentrations \If(xol,to), \v(x%,to) . \ll(x(,n,tn),
respectively. In the first small time interval at, = t - t , the scalar at imtial
positions in X is diffused into X,. At time t,, we may arbitranly choose a point
(X,t,) where the volumetric concentration ¥(X,t,) of the scalar is measured as the
sum of contributions from all imitial locations. In the second small time interval
at, = t, — t,, the scalar property at (Xt,) 15 re—dffused into X, with
redistribution density P(X,t,|Xt,) It will be shown below that different solutions
for P(X,t,|X,t,) would be obtained under the random flud particle treatment and

the virtual fluid parcel treatment, respectively.

Under the random fluid particle treatment, each imtial location of the scalar 1s
assumed to be occupied by a flmd particle with volume dxol (1t=1,2 n) which
subsequently moves randomly as an entity, statistically described by the
probability density distribution of 1ts trajectory in repeated experiments.

In the first time interval at, = t, -t , each flmd particle has a probability
density P(X,t,|Xg.to) for its unit volume to move from the imtial location (X t,)
to point (X,t,) At tume t, each flud particle should have a "shadow-like"
ensemble mean (Lagrangian) contribution density ¥ (X,t,, X, t,) to the ensemble
mean (Eulerian) volumetnic concentration ¥(X,t,) of the scalar at point (X,,t,) in

repeated experiments:

U, (Xytgi Xopto) = W(Xoote) P(Xyty Xouto) (2.1)
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According to (13) and (1.6), the ensemble mean (Eulerian) volumetric
concentration ¥(X,t) at (X;t,) should be calculated as the statistical
superimposition of the ensemble mean (Lagrangian) contributions from all the

individual flmd particles in the flow:

n

(Xt = iZ}lWL(xl,tl, Xouto) X,

n
= 123 V(Xgpto) PRty Xgpto) - dXoy (2.2)

Since molecular mixing between fluid particles is excluded by the fluid particle
treatment (Part 1), the shadow-like ensemble mean contributions to point (X,,t,)
from different fluid particles are not allowed to be physically linked. In this
process, each ensemble mean contmbution W(Xto)P(X,t | X, to)-dX,, from a
single fluid particle 15 assumed to be developed as if the ensemble mean
contributions from other fluid particles did not exist. This means that different
flud particles only come to pomnt (X,t) in different realizations in repeated
experiments since more than one fluid particle cannot physically occupy a given
space-time pomnt in a single realization. In the next time interval, the overall
shadow-like ensemble mean contributions at point (X,t,) cannot then be jointly
considered in their further re—diffusion.

In the second time interval at, = t, — t,, each fluid particle has a further
probability density P(Xyty|X by, Xoto) for its unit volume to re—diffuse from
(Xpty) to (Xyt,). At time t,, each fluid particle via (X,,t,), or each shadow-like
contribution at (X,t,), should have a further shadow-like ensemble mean
(Lagrangian) contnibution density W(X,.to)s P(Xpt | Xguto)  P(Xpto] Xyt s Xoibo) - dX,

to the ensemble mean (Eulerian) volumetric concentration ¥(X,t,) of the scalar at
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point (X,t,) in repeated experiments. The overall further ensemblc mean
contribution density to ¥(X,t,) from all the fluid particles via (X,,t,), or from all

their shadow-like contributions at (X,,t,), should then be calculated as

T, (Xpty| Xyty) = Z (Xto) P(Xyty | Xog to) P(Kpty] Xt Xeut)-dX

0

(2.3)

This means that, under the random fluid particle treatment, the redistribution
density P (X,t,|X,t,) of the scalar for all the fluid particles via (X,t,), or for all

their shadow-like contributions at (Xt ), to appear at (X,,t,) 15 described as

¥ (X, to| Xpty)

V(X,t )

P (Xyty| Xpty) =

E \Il P(x ’tllxo vo) P(X'Z’ 2le‘t\‘ ‘ ) -dX

0j

0 ’0 P(xl’t1|x0 ’0) dx
(2.4)

where the subscript r denotes the random fluid particle treatment

The appropriateness of (2.4) can be tested as follows: If we statistically
consider that every point (X,,t,) in X, is occupied by an "imaginary fluid particle"
with volume dX,, the ensemble mean (Eulerian) volumetric concentration W(X,t,)
of the scalar at point (X,t,) should then be calculated as the statistical
superimposition of the shadow-like ensemble mean contributions from all such

"imaginary fluid particles" in X:
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X4
T(Xpty) = 2 T(Xt,) Po(Xpty] Xpty) - dX,
X; n

=X iE__)i\ll(x()i,t(,) P(X by Xgoto) P(Xpty | Xytys Xoto)-dX o - dX
(2.5)

Considering that the probability density for each fluid particle to move from

its initial location (X.,t;) to (Xpty) is

X1
P(x2.t2[x0i,t0) =X P(xx-txlxopto)'P(xz‘tzlxm; Xgoto)-dX,

(2.5) can be written as

n

T(xyty) = X Y(Xguto)- P(Xyty| Xyyt)-dX,,
which complies with (1.6).

By contrast, under the virtual fluid parcel treatment, each initial location of
the scalar is assumed to be occupied by a virtual fluid parcel with volume dXOi
(i= 1, 2 .. n), subject to disintegration as described by the fractional
redistnibution density.

In the first time interval at, = t, — t, each virtual fluid parcel in X  has a
fractional redistribution density F(xl,tllx()i,to) for its disintegrated scalar fragment
to diffuse into the unit volume virtual fluid parcel at (X ,t,). If at, is sufficiently
small for the virtual fluid parcel at (X,,t,) to be still recognized by its center of

gravity, it may be ~ccepiable, as an approximation, to assume that the virtual
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fluid parcel moves as a whole during at, with disintegration taking place at the end
of the time interval. In this case, the virtual flud parcel at (X, ty) can be
temporarily t-eated as a "pseudo- fluid-particle” during at;, F(X,t,|X,.t,) can then
be approximately estimated by the probability density P(xl,tllxo.l,to) for such a
"pseudo—fluid~particle" to diffuse from the 1nitial location (XO.X,tO) to pomnt (X,,t,).
At time t,, due to disintegration, each wvirtual fluid parcel in X, should have a
fractional contribution density ¥ to the (Eulerian) volumetric concentration
¥(X,t,) of the scalar of the newly formed virtual fluid parcel at (Xt ,)
B(X by Kooty = U(Xgote) F(X by | X o)
® (Xt Xqsto)
& U

X
(Xopte) - P(X ity Xg,1t0) (2.6)

According to (1.9) and (1.12), the (Eulerian) volumetric concentration ¥(X,t,)
should be calculated as the integration of the fractional contributions disintegrated

from all the previous virtual fluid parcels in X:

n

Y(X,t,) = izgl\ll(xl,tl; Xopto)  d X,
n
= El\l’(xc,i,co) F(Xpty| X t)-dX,
n
» igl\I’(XOi,to)-P(Xl,tllXOi,to)-dXOi (2.7)
Since molecular mixing between fluid elements is considered under the virtual

fluid parcel treatment, the fractional contributions to point (X,t,) disintegrated

from the different previous virtual fluid parcels in X, should be physically linked.
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In this process, each fractional contribution U(Xqto) F(X it Xguto) - dX,,. from a
previous virtual fluid parcel is regarded as an integral part of the newly formed
virtual fluid parcel at (X,t,). In the next time interval, the overall fractional
contributions at (X,t,) should then be jointly considered in their further
re—diffusion, which is descibed by the joint disintegration of the new virtual fluid
parcel at (X,t,).

In the second time interval at, = t, — t,, the new virtual fluid parcel at
(X,,t,) has a further joint fractional redistribution density
F(x2(xol),x2(x02) x2(x0n),t2ix1,t1) for all its constituent scalar parts, arrived at
(X,t,) from all the previous virtual fluid parcels in X, to jointly disintegrate and
then re-diffuse into the unit volume newer virtual fluid parcel at (X,t,). In
addition, each constituent scalar part of the virtual fluid parcel at (X,,t ), coming
from one previous virtual fluid parcel in X, has a further individual fractional
redistribution density F(X,ty| Xyt Xo.t,) to re-diffuse into the unit volume newer
virtual fluid parcel at (X,t,). If at, is sufficiently small for the new virtual fluid
parcel at (X,t,) to be still recognized by its center of gravity, it may again be
acceptable, as an approximation, to assume that the new virtual fluid parcel moves
as a whole during at,, with disintegration taking place at the end of the time
interval. As discussed above, the new virtual fluid parcel at (X,t,) becomes a
temporary "pseudo-fluid-particle" during at,. F(xz(xol),xg(x%) . x2(xon)»"2'xbt1)
can then be approximately estimated by the joint probability density
P(xz(xol),xg(x%) x2(xon),t2|xl,t1) for all the fluid particles in X  to jointly
appear at (Xyt,) via (X,t;). F(Xpty|Xyts X, .t,) can then be approximately
estimated by the probability density P(X,t,{X;t; Xy.t;) for each of the fluid
particles in X, to jointly appear at (X,t,) via (Xyt,). At time t,, due to

disintegration of the virtual fluid parcel at (X,t,), each of its constituent scalar
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parts should have a subsequent fractional contribution to the newer virtual fluid
parcel at (X,,t,), with a contribution to the center of gravity (with respect to the

scalar) of the newer virtual fluid paicel estimated as

WXyt Xopte) Xg(Xy) dXo
V(X,t,)

As a consequence, the overall contributions to the center of gravity of the newer
virtual fluid parcel at (X,,t,) from all the constituent fractions of the virtual fluid

parcel at (X,,t,) should be estimated as

n
ix iglﬁ'(xl,t b Xote) Xg(Xo)-dXo
a(X) = TTX,5)

n
iz;!‘p(xoi)tn)-F(xl,tllx()i, tO).x2(xO i ).dXOi
n

iZ:JI\II(XOi, ty) 'F(xwtxlxoi, t o) dX,,

n
i);l'll(xc,i ) (Xt Xy t0) Xy(X, ) dX,,

~
~

n
iglq’(xoil to) 'P(xl, tllei’ to)-dxoi
(28)

This means that, under the virtual fluid parcel treatment, the redistribution
density P (X,t,|X,t,) of the scalar for all the constituent fractions to diffuse from
(Xpt,) to (X,,t,) is determined according to (2.8). Here the subscript v denotes the
virtual fluid parcel treatment.

In practice, the determination of P (X,t,|X,t,) according to (2.8) is often
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complicated. One possible approach is through the concept of the characteristic

function P (6,), which is defined as the Fourier integral transform:

N m . .
P(0) = f P (Xpty| X, t)-€¥ o, x2-dx2

(k = yT) (2.9)

Assuming Xz(xol), Xz(xoz) y Xz(x%) in (2.8) are mutually statistically

independent, we can expect (Derman, Gleser & Olkin 1973) that

P(0) = py(0,)Dyl0) -+ + Bo(B)) (2.10)
where the characteristic functions p;(f,) are defined as
o Rifail k- 0,-X
Bl = [ (f P POX Xty Xgte)-aY)- € o RaXol.4x,
- -®
(2.11)

with

Y(Xyt g5 Xogote) dXo,
b= VX, ty
VX, t0) P(Xy X0 t,)-dX,

n
iglq’(xoi’ to) .P(xl’tllxoi)t 0)-dX0i
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Xo(Xo;)

Here f b P(Y(Xo) | Xyt Xopto)+dY is the individual probability density of

-

b Xy(X,)-
Then the redistribution density P (X,t,|X,t,) can be calculated as the

inversion of the Fourier integral transform:

@, ke .
-

m
= —2%— f (Dy(0y) Py(Oy) - -+ f)n(02))-e—k' 0, xz.d02
-

(2.12)

The distinct forms of (2.4) and (2.12) suggests that the redistribution density
P (X,t,|X,t) under the virtual fluid parcel treatment differs from the
redistribution density P (X,t,|X,t,) under the random fluid particle treatment.

The nature of this difference will be further explored in the following section.

2.2. The means and variances of the redistributions
For convenience of illustration, we may assume a simple situation where a scalar is
initially located at two positions x°1 and X02 in a turbulent fluid, with initial
volumetric concentrations \P(xol,to) and \I’(xoz'to)’ respectively. In the first time
interval at, = t, — t,, the individual probability densities for each of the unit
volumes of fluid at (Xol,to) and (on,to) to diffuse into point (X,t,) are
P(xl,tx|xol,t0) and P(xl'tllxoz'to)’ respectively. In the second time interval
at, = t, — t,, the individual probability densities for each of the contributions at
(X,t) from (Xol,to) and (on,to) to re-diffuse into point (X,t,) are

P(X,t,| X ity X, to) and P(X,to| Xty Xo stoh respectively, with their joint
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probability density being P(X,(X, 1)’X2(x°2)’t2| Xpty)-
Under the random fluid particle treatment, according to (2.4), the
redistribution density P (X,t,|X.t,) of the scalar from (X, t,) to (X,t,) is

determined as

¥(x, ot o) *P(X b, X, ,to)~P(X2,t2|X1,tl;Xol,to)-dxol

P (Xptq| Xty =

-dX

0} ito)* 0}

Z (X t) P(Xpty| X

¥(x 2,t ) PRyt | Xg, ito) P (Xt X 84X, ) dX,

+
E B (X to) PRyt Xg  ot) Xy
(2.13)
If we let
¥, = \Il(xo‘,to)-P(xl,tllxol,to)-dxo‘
¥, = \F(X02,t0)-P(Xl,tliX02,to)-dx%
2
V=¥, +¥,= iEjlxll(xm,eo)-P(xl,t,|x,,i,t0)-dx0i
(2.13) can then be written as
P = YLp ; Y 2 P(Xyty| Xyt X, ot
r(xz»‘z‘xvtx) = (xﬁ’tzlxl'tll xol"'o) + 2 (X, 2‘ v Sog 0)
(2.14)

By definition, the mean vector E, of the redistribution P (X,t,|X,t,) is

calculated as
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@

E = f X3P (Xptg| Xpt))-dX,
-
1]
¥
= f x2.(_$l‘P(x2’t2|xl"'l; xol'to) + '-V?'P(xz'tﬂx[)tﬁ x02)to))'dxz
—m
= Ve -$ Va-e (2.15)

with the individual mean vectors e, and e, defined as

®
b ]

m
€= [ Xy P(Xytyl Xyty X, t0)-dX,
-m

The variance 2 of P (X,t,| X,.t,) is calculated as

®

ng = f (x2 - El')2'Pr(x2’t2|xl:t1)'dx2

Ve + ¥r-e v
—m
+

Viey + Uree v
-0

1 v, .y @
-
vy v
+ -——53——2—_[ (X, — €)% P(Xyt,| Xty X to) Xy
-
20 .
+ ! 3 2 (X, — €)(X; — &) P(Xytg| Xyt5 X, t0)-dX,
P -
o0, . @
+ ""—l‘—“‘i‘f (X - e)(X; - &) PXpto|Xpty X, t)-dX,
q,s —o 2

(2.16)
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with the individual variances o? and o2 defined as

ol

@
f (X, — ) P(Xptg| Xyty X, ito) dX,

o}

-
1]

f (X5 =€) P(Xpty| Xptys X; 1t0)-dX,
-

By contrast, under the virtual fluid parcel treatment, the contribution to the
center of gravity with respect to the scalar from (X,t,) to (X,,t,) is determined
according to (2.8) as

X,(X)) = —‘I\Ij—‘-xz(xol) + —g—’-xz(xoz) (2.17)

If the marginal distribution densities of the joint distribution density
P(xz(xol)’xz(xoz)»tz‘xvtn) are approximated by P(Xt,|X.t, X to) and
P(X,t0| Xyt Xo,to) respectively, the mean vector E, and variance Q2 of the
redistribution P (X,t,|X,t,) of (2.17) are calculated as (Derman, Gleser & Olkin

1973):

v,. v,
E,=—L& 3 S0l (2.18)

2= Yol + 29;%0 + ¥3- o3
v

o (2.19)

Here, the covariance o,,, is defined as

opa= [ f (KX, )-er)- (XX, )-€5)- PIRy(Xq ) Xy(Xo, )t Xyt dX (X, )- X (X, )
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Comparing (2.15) with (2.18) and (2.16) with (2.19), we have
E, = E, (2.20)
and
02 ¢n? (2.21)

This indicates that, although both redistributions P (X,t,{X,t,) and
P (Xpty| X,t,) have the same mean, the redistribution P (X,t,|X.t,) under the
virtual fluid parcel treatment may generally have "narrower" distribution, with
smaller variance, than the redistribution P (X,t,|Xt,) under the random fluid
particle treatment

The direct comparison between (2.16) and (2.19) is structurally complex. It
can be simplified by assuming

P(Xpty| Xty xoi,to) = P(Xpty| Xty xoz,to)

with e, =e,=¢ and ol =0} = o2

Then, (2.15), (2.16), (2.18) and (2.19) are simplified as

E,=E =e (2.22)

] 3
= o? (2.23)

and

USRS+ 2 Y ~

|5 T
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\'4 \Il2
< (2.24)

2.3. The effect of molecular mixing

In the above analysis, the mean E and variance f2° can be, respectively, interpreted
as the center of gravity and the expansion with respect to the center of gravity of
the re-diffusion cloud in a single time-step. Then, (2.20) and (2.21) suggest that
molecular mixing may generally reduce the expansion of the re-diffusion cloud 1n a
single time-step from the value it would have if molecular mixing was not
incorporated into the description. This reduction, however, may not influence the
center of gravity of the re—diffusion cloud. In other words, the expansion of the
re—diffusion cloud in a single time-step would generally be exaggerated by the
classical fluid particle treatment due to exclusion of molecular muxing This
analysis may confirm the notion that, as a controlling agent of the mixing
mechanism, molecular mixing is important in every time-step of turbulent
diffusion.

From (2.23) and (2.24), we may infer the following: In a laminar flow or a
weakly turbulent flow with very low turbulence intensity, the constituent portions
of any fluid element at any time should be relatively well correlated, 1e. o,,—
0>— 0. Then, the variances of both redistributions P (X,t,|X,t,) and
P, (X,t,|X,t,) tend to vanish. This means negligible reduction of the expansion of
the re-diffusion cloud in a single time-step by molecular mixing, or negligible
exaggeration of the expansion of the re-diffusion cloud in a single time-step by the

classical fluid particle treatment. In a flow with high turbulence intensity, however,
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the constituent portions of any fluid element al any time may become less
correlated, ie 0,, decreases when o’ increases. Then, the redistribution
P, (X,ty| X ,t,) becomes more narrowly distributed, with smaller vanance, than the
redistribution P (X,t,|X,,t,). This imphes a larger reduction of the expansion of the
re—diffusion cloud 1n a single time-step oy molecular mixing, or a more pronounced
exaggeration of the expansion of the re-diffusion cloud 1n a single time-step by the
classical fluid particle treatment.

According to (1.1)~(1.6) and (17)—(1.12), the above analysis should be
applicable 1n any further time-step development, so that the effect of molecular
mixing 1n reducing the expansion of any intermediate re—diffusion cloud should be
continuously renewed. This effect is then accumulated with increasing time so as to
change the evolution of the overall diffusion cloud and, simultaneously, the
evolution of the mean concentration field Given a sufficient length of time of
accumulation, this change should in principle become experimentally observable.

Previously, scalar concentration fluctuations have been examined by studies
which impliaitly or explicitly incorporate molecular mixing with {Sawford & Hunt
1986; Stapountzis et al. 1986) or without (Durbin 1980) consideration of the
molecular collision-transports (i.e. the molecular momentum and scalar collision
transports v and ). Their results showed that the decay of scalar concentration
fluctuations, in comparnison with the fluid particle model (one—particle or "inner
limit" two-particle relative dispersion (Durbin 1980)), is mainly caused by
molecular mixing, although the molecular collision—transports also have noticeable
effects (shown by Sawford & Hunt 1986; Stapountzis et al. 1986). However, these
studies were implicitly or explicitly based on the assumption that the influence on
the mean concentration field by molecular mixing can be ignored. According to our

analysis presented above, this assumption may not be justified. It is usually
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supported, in 1ts turn, by a further assumption that the flmd particles move at the
local Eulenan fluid velocity (such as Sawford & Hunt 1986, Thomson 1990) This
may be inappropriate because, having imphatly incorporated molecular mixing by
this seccnd assumption, their flmd elements (moving at the local Eulenan fluid
velocity) can only be regarded as virtual flud parcels (Part 2) In our previous
study (Part 1), 1t has been shown that under the random fluid particle treatment,
the assumption of the statistical equivalence between the Lagrangian vanables of a
single flud particle and the Euleman vanables at one space-time point 1s not

generally satisfied.

3. Experimental test

3.1 Design
In this section, the results of the above analysis about the effect of molecular
mixing are tested in passive scalar turbulent diffusion experiments In order to
simulate the situations used in the analysis, and to assure sufficient physical
overlap of plumes, the experiments are arranged mn two sub—designs, explained in
Figure 1..

In the first sub—design, three single instantaneous point sources of a passive
scalar are separately released at positions S1, S2 and S53, and their individual
diffusion puffs are separately measured at sensor positions In the second
sub—design, the instantaneous point source of the passive scalar at Si 1s released
first. When its center of puff reaches S2, the instantaneous point source at 52 1s
released. When the center of the joint puff from S1 and S2 reaches S3, the
instantaneous point source at S3 is released, Then, the joint diffusion puff from S1,
S2 and S3 is observed at sensor positions. The time delays for release of puffs in the

second sub—design are estimated from mean flow velocity and source spacings.
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Figure 1. Design of experiments.
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The result from the second sub—design would naturally involve molecular
mixing between the overlapping puffs developed from Si, S2 and S3, which is the
major concern of the virtzal fluid parcel treatment. Therefore, the overall diffusion
cloud from this sub—design would in principle be expected to be simulated by the
virtual fluid parcel description. Under the random fluid particle treatment,
however, the overall diffusion is calculated as the statistical superimposition of the
contributions from the separate puffs developed from the individual pont sources
S1, 52 and S3. In the case of passive scalar diffusion, this superimposition 18
reduced to an independent summation of the separate diffusion puffs from the three

point sources, as measured in the first sub—design (Part 1)

3.2. Setup

The experiments were carried out in a closed~circuit water tunnel generally used
for electrochemical simulations of heat or mass transfer (e.g. Schuepp 1989). Flow
straighteners and 1.2 x 1.2 mm square-mesh screen precede a working section 110
cm long (x), 28 cm wide (y) and 28 cin high (z), as shown in Figure 2

The source material was a dilute NaOH solution, with concentration equal to
1% of saturation (0.01g/ml, NaOH /H;0), injected at the source positions by
syringes, as approximate instantaneous point sources with constant volumes of
about 0.5 cm®. The ions of the source material acted as tracers to be detected by
the measurement sensors. Because buoyancy and gravitational setthing cf the source
solution were negligibly small, the source material could be considered to be
passive.

The measurement sensors were manufactured by open ends of Cu-K
thermocouple wires (1.2 mm diameter), used as electrodes connected to a simple

5V DC loaded circuit. Since the voltage drop between the two electrodes depends
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Figure 2. Schematic diagram of the experimental arrangement.
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on the ion concentration around the sensor, changes of concentrations are measured
as voltage changes. The measurement sensors were calibrated in standard solutions.

Water flow in the central streamline of the working section of the water tunnel
was set at a stationary mesn velocity of 15 cm-s™!, with a moderate turbulence
intensity (a ratio of mean velocity to the root-mean—squared velocity fluctuations)
around 0.1. To avo.d boundary effects, the sources were introduced into the
working section at points S1, S2 and S3 with 10 cm spacing along the central
streamline, through fine tubes penetrating the ceiling of the tunnel. The
measurement sensor array was located at P, 50 cm downstream from source 53,
where a sufficient length of time of accumulation of molecular mixing effect in the
diffusion puff evolution could be expected.

The measurement sensor array is shown in Figure 3.. Principal sensors,
represented by letters B ... N, were fixed with spacing of 4 cm, and supplementary
sensors, represented by A, ... A,, were movable. The puffs of NaOH released from
the three point sources were expected to hit the center of the array.

Measurements were recorded by CR7X datalogger (Campbell Scientific Inc.
model 700) at a frequency of 11 Hz, continuously for 10 5. This sampling interval
was sufficient t{o cover the passage of the diffusion puffs in each experimental run.
The recorded signals were transferred to a IBM PC disk storage for analysis.

Experiments in both sub-designs were repeated 10 times.

3.3. Results
Figure 4 shows the integrated two-dimensional representations of the observed
diffusion puff distributions across the yz plane for the two sub—designs. They were
constructed from integrations of the time series of sensor measurement output,

covering the full passage of the puffs. Results are shown in flat contour and solid
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Figure 3. The arrangement of principal measurement sensors B to N
and supplementary measurement sensors A, 0 A ,.
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Figure 4. The integrated two-dimensional contour (a) and surface (b)
plots of the natural joint diffusion distribution P, of the jint puff

measured in the second sub-design (al and bl), and the diffusion
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superimposition of the separate puffs individually measured in the
first sub-design (a2 and b2), averaged from 10 repetiticzs. * gives
data position.
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surface graphs.

Due to imprecise release timing in the second sub-design, the centers of the
puffs from the three point source: may not overlap perfectly. The resulting error
may, to some degree, enlarge the variance of the natural joint puff distribution in
the second sub-design. This would -educe the difference in variances between the
natural joint puff distribution in the second sub-design and the one processed in
the statistical superimposition of the results from the first sub—design. Moreover,
there may exist an internal "contamination" in the first sub-design due to
already-existing molecular mixing in the individual puffs from the individual point
sources. This "contamination" would also, to some degree, reduce the difference in
variances between the natural joint puff distribution in the second sub-design and
the one processed in the statistical superimposition of the results from the first
sub—design. Quantitative estimation of these errors is, unfortunately, not possible
in our experiments. Without these errors, however, the difference in variances
between the two treatments should be more observable.

Nevertheless, a non-negligible difference in variances between the two
treatments in our experiments is still observed, so that our experimental
confirmation of such difference is, at least, qualitatively meaningful.

In our experiments, the means E,, and E,, and the variances Q?,  and Z

y'n y'n zn

of the natural joint puff distribution from the second sub-design (the subscript n

denotes the natural joint distribution), and the means E

and Q2

'r

yr and E,, and the

variances 2

e of the diffusion distribution processed in the statistical

superimposition of the results from the first sub—design, are observed as

Ey,n = (.82 cm E,,=-081cm

b2

Eyy =07cm  E, =-09cm
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and

02 =18.13cm? Q2

ym 2m

Qf, =21.36 cm® Q7 = 20.93 cm?

't

= 17.33 cm?

where the hypotheses E.,, = E,,, E

gy Bpp = Eupy Q2 < Q2 and 02, < Q2 are
accepted, respectively, with confidence levels 95%, 95%, 65% and 65% in U-tests
(Gaussian) and F—tests.

These experimental results qualitatively confirm the analysis in the preceding
section. They lend support to the notion that molecular mixing in the natural joint
diffusion tends to reduce the diffusion distribution variance, in agreement with the
prediction by the virtual fluid parcel treatment. It indicates that the diffusion
processed in statistical superimposition under the classical random fluid particle
treatment exaggerates the natural joint diffusion by overestimating the diffusion
distribution variance, in the same way as it exaggerates the diffusion distribution
described by the virtual fluid parcel treatment. It would then appear to confirm

the inference stated in the Introduction

4. Conclusion

This study suggests that molecular mixing in turbulent diffusion persistently
and cumulatively influences the evolution of the diffusion cloud, and thus influences
the evolution of the mean concentration field, by reducing the diffusion distribution
variance. This suggestion is presented through a comparison of the classical random
fluid particle treatment with the new virtual fluid parcel treatment of the BMDFE,
in application to the description of the diffusion cloud evolution on the level of
single time-step diffusion redistribution.

According to this suggestion, the description under the random fluid particle
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treatment would generally exaggerate the diffusion distribution variance due to
exclusion of molecular mixing. This is supported by experiments of passive scalar
diffusion in water flow with moderate turbulence intensity. It would then appear to
confirm that the virtual fluid parcel treatment, with incorporation of molecular
mixing, is more realistic in its description of turbulent diffusion than the classical

random fluid particle treatment.
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Part 4. A Preliminary Simulation of Scalar Turbulent Diffusion
under the Virtual Fluid Parcel Treatment

Abstract

A preliminary simplified numerical modeling of scalar turbulent diffusion,
based on the virtual fluid parcel treatment of the BMDFE (Basic Macroscopically
Describable Fluid Element), is presented. It uses direct experimental observation to
estimate the fractional redistribution density of the scalar, to bypass technical
difficulties in solving the disintegration equation.

This simplified scheme approximates the fractional redistribution of the scalar
by the fractional redistribution of fluid volume, calculated from the probability
density distribution of the local real-time Eulerian velocity, It also assumes that
sub~grid scale motion, ignored by the discrete Eulerian velocity measurements, is
recovered by linear and/or proportional interpolation. Comparison of numerical
model predictions against experimental simulation of ammonia diffusion in wind
tunnel models shows encouraging general agreement, particularly in the case of low

turbulence intensity.

98
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1. Introduction

An exploratory virtual fluid parcel treatment has been proposed in our
previous study (Part 2), which conceptually incorporates molecular mixing by
permitting  disintegration of indindual BMDFEs (Basic Macroscopically
Describable Fluid Element) in turbulent fluids. This treatment is expected to
improve the classical random fluid particle treatment in the description of
turbulent diffusion, by introducing a feedback mechamsm through physically
coupled disintegrations and integrations of the BMDFEs (Part 2, Part 3) It
describes turbulent diffusion, in successive time steps, through cascaded integration
of the fractional contributions from continuously disintegrating virtual fluid parcels
in the flow. For scalar diffusion in an incompressible fluid, this description is given
by the following recurring joint equations (Part 2):

%’\F(Y,ti-rs; Xt;) + (V(Yts+s x,tl)-vy)-TP_(Y,ti+s; Xt,)

= K.-V;-W(Y,tiﬁ-s; Xt;) = (V(Yit,+s; X,tl)-vy)- UI(Yt+s Xt)
+ (¥(Xt;) + E(Xt)-at)- §¥-X)- &s)
(0 ¢s¢at) (1.1)

T(Yiti, Xty)
FC(Y’ti*llx’ti) = VX, t;) + E(X,t;) At (1.2)

U(Yoti) = [ (¥(Xt9) + E(Xty) ) F (Vg Xtp)-dX
(1.3)
ti*l=ti+At’ i-—-O, 1,2 ......

Terms in these equations are defined as follows: V(Y,t;+s; Xt;) and W(Y,t;+s Xty



are the approximate fractional contributions to the velocity and volumetric
concentration of scalar of the virtual fluid parcel at (Y,t;+s) from the unit volume
virtual fluid parcel at (X,t;), respectively. V'(Y,t;4s X,t;) and W(Y,t;+s; Xt;) are
the dewiations from V and ¥, respectively. Fo(Yt,4| Xt;) is the fractional
redistribution density coefficient for scalar disintegrated from the virtual fluid
parcel at (X,t;) and then mixed into the unit volume virtual fluid parcel at
(Y,t,,)- E(Xt;) is the (Eulerian) external volumetric source strength of scalar at
(X,t;). ¥(xt;) and ¥(Y,t,,,) are the (Eulerian) volumetric concentrations of scalar
at (X,t;) and (Y,t,,) respectively. at is the time interval comparable to the
minimum period of the significant fluctuation of the scalar volumetric
concentration W(X,,). x is the molecular collision-transport coefficient for scalar. Vy
and V; are del operator and the Laplace operator with respect to Y, respectively,
and § is the Dirac delta function.

In practice, however, the solution of (1.1) may involve technical difficulties in
the nonlinearity of the equation and in the parameterization of the flow character
with macroscopic inhomogeneity of both flow scale and turbulence intensity (e.g.
Thomson 1984; van Dop, Nieuwstadt & Hunt 1985; Sawford 1986; Pope 1987,
Jones & Musong 1988; Luhar & Britter 1989). Up to now, successful solutions to
these difficulties have not generally been available.

This preliminary test of the virtual fluid parcel treatment is based on a
simplified numerical modeling, where measurements are used to bypass some of the
difficulties in solving (1.1). In particular, the fractional redistribution density
FC(Y»‘iulx»‘i): will be directly estimated from observations of the velocity field.
Such simplified numerical modeling should be feasible, in principle, because the
information required is obtainable through Eulerian measurements, although

approximations may have to be used for reasons of practical convenience.
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The simplified numerical modeling is applied to the diffusion of ammonia
(NH;) from a continuous point source 1n two wind tunnel models, representing
open-surface and plant canopy, respectively. A corresponding type of numercal
simulation under the classical random fluid particle treatment cannot be executed
because of our current inability to obtain direct and rehable Lagrangian
measurements. Therefore, the predictions of this study cannot be compared against
those of the classical random fluid particle approach Instead, this study 1s hmited
to the first practical application of the virtual fluid parcel treatment to a situation

where the numerical predictions can be tested against experimental observations.

2. Alternative approximate disintegration

Generally, FC(thm‘x»tJ rmust be linked to the fractional redistnbution
density of the virtual flud parcel volume. As a very rough approximation, we may
use the latter to estimate FC(Y,tmlx,tl) for reasons of practical convenmience, under
the implied assumptions that the scalar is completely mixed in every virtual flmd
parcel at any time, and that the redistribution of the scalar perfectly follows the
redistribution of fluid volume Given that the virtual fluid parcel 1s defined 1n such
a way that it always moves at the local Eulerian fluid veloaity (Part 2), the
displacements Y — X of the disintegrated fragments of flud volume from the
virtual fluid parcel at (X,t,) can be approximated, under assumption of ergodicity,
by the measurements of the local real-time Eulerian velocity V(X.,) during the

small time interval At. We then have

Y - X = V(X,t;)-at (2.1)

and F(Y.t;, | X;t;) can be estimated as
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1
Fc(thiﬂ'x:ti) = Pv(v |Xtti)' ——
1

atl

Y-X

= Pyl—5

| X)) (2.2)
Here Pv(v |X,t,) 15 the probability density distmbution of the local real-time
Eulerian velocity —measurements at space-time point (X,t;). If the
frequency-response of the measurement sensor is sufficiently high, Pv(v |X,t,) can
be statistically determined from a large number of observations.

It should be emphasized here, that the classical random fluid particle
treatment does not provide theoretical access to the above approximation. It has
been shown in our previous study (Part 1), that under the random fluid particle
treatment the assumption of the statistical equivalence between the Lagrangian
variables of a fluid particle and the Eulerian variables at one space-time point is
not generally satisfied due to the multi-to-one Lagrangian-Eulerian
transformations.

Multiplying bhoth sides of (2.2) by dY, we have

Y -X
Fo(Yityey| Xt))-dY = P (——= [Xt;)-dV (2.3)
This means that the volume redistribution F(¥.t;,,|X;t;)-dY is equivalent to the

velocity distribution P (v | X,t,)-dV under the following scale transform

d

dx dz
At = du = v = v (24)

where the time step at could be interpreted as the time grid size, expressed as a

function of the space grid size (dx, dy and dz) and the velocity grid size (du, dv
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and dw).

With the above approximation, the joint equations (1.1)—(1.3) are simplified

as

F (Y, |Xt) = Po(——X | x¢, 1

) = = Ty
(2.5)
(2.6)

Their numerical solutions require information about the probahility density
distribution PV(V | X,t;) of the local real-time Eulerian velocity, the external source
strength E(X.t,) of the scalar, the initial volumetric concentration distribution

W(X,.t,) and appropriate boundary conditions.

3. Experimental details
3.1. Laboratory set—-up

An open-top and open-ended laboratory wind tunnel was constructed, with 3:1
volume contraction over a 50 cm section of flow straighteners, and 1.2 x 1.2 mm?
square-mesh grid screen upstream of a working section 240 c¢m long (x), 43.2 cm
wide (y) and 32 cm high (z), as shown in Figure la.

Two types of physical models were used: open-suriace (empty tunnel) and
artificial plant canopy, respectively. The open—surface consists of a wooden hoard

commensurate with the size of the wind tunnel floor. The artificial canopy is
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composed of an array of small artificial trees installed in a regular square cell
pattern of 4.8 cm spacing (Figures 1b,c), over a length (x) of 182.4 cm and
width (y) equal to that of the wind tunnel. Trunk, branches and leaves of artificial
trees are made of 2 mm diameter wire, 0.5 mm diameter wire and 6 x 12 mm? rigid
paper strips, respectively. Each tree is 11 cm tall, with 5 cm trunk and
2.4 x 2.4 x 6 cm3 crown.

To avoid leading and tailing edge effects, the area used for simulations
(simulation section) starts at 36 cm into the working section, and ends at 160.8 cm
and 218.4 cm, respectively, for canopy and open-surface models. Coordinate origins
are defined by the start of the simulation section (x = 0), the central streamline
(y = 0) and the surface (z = 0).

An external continuous point source was introduced in both models, located at
position x = 4.8 cm, y = 0.0 cm, z = 9.6 cm, along the central streamline for
open—surface, and at the center of the central cell pattern for the canopy model
(Figure 1b). The source location splits the simulation section into two symmetrical
parts about the central xz plane (y = 0). Source material is a 98% ammonia (NH,)
solution, introduced by a small glass tube with 38.5 mm? opening on the top.

To assure a relatively steady plume development, winds in both models were
set stationary with free-stream velocity U =210 cm-s”!. Simulations started at
initial time t, when the simulation sections were clean of external source material,
i.e. ¥(X,t,) = 0. Since the simulations were not aimed at any specific application,
no special boundary treatment was imposed. Boundary conditions on both sides
and at the bottom of the models were assumed to be elastic reflections, and the
thermal stratification measured to be neutral.

The results of the experimental simulations were directly measured as NH,

concentration distributions of the steady plumes, at measurement positions shown
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in Figure 2. Since the plumes are symmetrical about the central xz plane (y = 0),
only one side (y > 0) of the plumes was measured. Measurement positions were
arranged in six profiles, three on the xz plane at y = 0, three on the xz plane at
y = 9.6 cm, with five sensors per profile. Sensors were located at centers of cell

patterns in the canopy model.

J.2. Measurements

The NH, concentration ¥ in the experimental simulations was measured through
an air sampling system, consisting of sampling tubes, plastic tubing and vacuum
pumps. The sampling tubes were silica gel absorbent tubes, 7 cm long, 4 mm inner
diameter and 6 mm outer diameter (Supelco Chromatography Supplies, ORBO-52,
1987), functioning like NH, filters. During sampling, they were mounted at the
measurement positions (Figure 2), pointing open-ended into the prevailirg wind,
with the downwind opening connected through 4 mm dianveter plastic tubings to
two vacuum pumps. Airflow in the sampling tubes was controlled and adjusted to
approximate local flow speed. For calculation of concentration, air flow F (L-min™)
for each sampling tube was measured by flow meter (Union Carbide Corp.,
Model 201-4334).

After simultaneous sampling of the steady plumes for one minute, sampling
tubes were disconnected and sealed at both ends. The silica gel absorbent in each
sampling tube was washed into 10 mL of water, in which the NH, concentration \IIS
(mol-L-') was measured by pH meter (Fisher Accumet, Model 610) with Ammonia
Electrode (ORION 951000, 1978). Due to the wide range of NH, concentrations,
two calibrated ammonia electrodes were used. One is filled with normal ammonium
chioride solution (ORION 951006), covering the ¥ range from 107 to 107

mol-L-!, the other diluted half-normal ammonium chloride solution, covering the
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Figure 2. The arrangements of concentration measurement positions:
A, A, A, B, B, and B, are measurement profiles, each with five

sensors at levels of 2.4, 7.2, 9.6, 14.4 and 19.2 cm respectively.
Sensors are located at centers of cell patterns in the canopy model.
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¥ range from 1077 to 107 mol-L"" The final mean NH; concentration ¥ in the

steady plumes is calculated as

0.1703-¥¢
F

¥ = (mg-cm™3)

The strength E of the continuous point source of NH; was determined from
the evaporation rate of NH,, which is the product of the specific weight of NH,
solution and the volumetric evaporation rate. The specific weight was measured as
714.9 mg-ml™ and the volumetric evaporation rate read from the scales of the glass
tube of the source solution. Because airflow conditions in both models were
stationary, E was found to be very steady over the time intervals concerned, at
0.0834 mg-s-cm™ and 0.0477 mg-s.cm™ for the open-surface and canopy
models, respectively.

The three components (u, v, w) of the Eulerian wind velocity were measured
by three mutually perpendicular hot-film sensors, as shown in Figure 3a, and the
directions in v and w determined by another two pairs of mutually perpendicular
hot-film sensors, as shown in Figures 3b and 3c. Hot-film sensors were 2 mm long,
0.025 mm in diameter, with 20 KHz frequency response (Thermo—Systems Inc.,
Model 1210-20).

The hot—film sensor output from corstant-temperature anemometers
(Thermo-Systems Inc., Model 1050) with 2KHz low-pass filters and linearizers,
was digitized by a data acquisition and control system interfaced with IBM PC
(Tecmar Incorporated, 5712 module, 1984) and sampled at 1000 Hz continuously
for 10 seconds at each measurement position. The sampled signals were converted

into time series, which were used to calculate the probability density distributions
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Figure 3. The design of hot-film sensors for the measurement of the
value of the three components of the Eulerian wind velocity (a), the
direction of v (b) and the direction of w (c). A,, A,, A,, B, B,, C,;

and C, are sensors.
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Pv(le,ti) of the Eulerian wind velocity.

Some measured aerodynamic features are summarized in Figure 4. In the
open-surface model, the flow is shown to be weakly turbulent with relatively big
mean velocity and relatively small turbulence intensity. In the canopy model,
however, the mean velocity is reduced by the canopy crown and consequently
transformed into higher turbulence intensity. The along-wind and cross-wind
variations of mean velocity and turbulence intensity in both models are shown to
be small except near the boundaries. This is contrasted by the dramatic vertical
variations. In the open-surface model, the mean velocity logarithmically increases
from the surface .0 a height of 15 cm then decreases to the top (Figure 4 a3), while
the turbulence intensity profile shows a pronounced dip between 3 and 15cm
(Figure 4 b3). The relative reduction in mean wind and increase in turbulence
intensity, in the canopy model, are shown in Figures 4 a3 and 4 b3, respectively.

Similar phenomena are reflected in the spectra of Figure 5. In the open—surface
model, the down-transport of energy is normally cascaded from the height of 15cm
to the surface. In the canopy model, however, this down-transport of energy is
resisted by the canopy crown and, consequently, large eddies are broken into small
eddies by canopy elements with their dominant scales (near the peaks of the

spectra) shifted to smaller values (higher frequencies).

4. Numerical details

4.1. Interpolations
In order to run the numerical simulations based on (2.5) and (2.6), the input
information of external source strength and Eulerian velocity, synchronized with
the plume development, must be provided. In principle, detailed real-time

observations of the Eulerian velocity are required at all spatial positions in the
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simulation section, with infinitely fine grids. In practice, however, measurements
are restricted to a limited number of positions with relatively large discrete
spacing, and interpolations between these measurement positions are used.

Based on the preliminary observations of spatial variation in the wind field
(Figure 4), the simulation section was divided into linear rectangular sub—sections
bounded by y = 0, 9.6, 19.2, 21.6 cm, z = 0, 2.4, 7.2, 12.0, 14.4, 16.8, 19.2, 33.6 cm
and x = 0, 91.2, 182.4 cm for the open-surface model, or x = 0, 62.4, 124.8 c¢cm for
the canopy model. In each of the sub-sections, the Eulenan velocity V at any
position (x,y,z) was linearly interpolated from the measurements at all corners of
the sub-section (measurements V, to V), as illustrated in Figure 6a

In the canopy model, the above linear interpolation was only applicable to the
center of each cell paitern forired by four surrounding trees. For any other position
within each cell pattern, a further proportional interpolation was used under the
assumption of similarity between cell patterns. As symbolized in Figure 6b,
a central cell pattern A was chosen as being representative, in whick the Eulerian
velocities at various positions V,, inside the cell pattern and along the cell pattern
periphery, were measured in addition to the central velocity V,. Any other cell
pattern B in the simulation section was assumed to be dynamically similar to A,
and the Eulerian velocity V at any position in cell B was proportionally
interpolated on the basis of V, (itself linearly interpolated as described above).

By not providing information about sub-grid scale motion, the Eulerian
velocity measurements at discrete spatial positions may not adequately reflect the
natural spatial coherence of flow structures. The proposed interpolations (both
linear and proportional) from isolated point measurements can only approximate
such structures in a statistical sense; it cannot reproduce a dynamic picture of such

structures. The potential error introduced by this procedure will be discussed later.
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4.2. Gridding

The simulation sections were numerically divided into space grids To mimmze
computational errors within the limitations imposed by available computing
facilities, the division of the space gnds was subject to the conditions that the
space grid size dx, dy and dz be smaller than the dominant eddy scales reflected in
the spectrum measurement. For optimum companson of numerical and
experimental simulation, the Eulerian velocity measurement positions descrnibed n
Section 4.1. should also be located at centers of the space grids. According to these
conditions, the space grid size in both open—surface and canopy models was chosen
to be dx = dy = dz = 1.2 c¢cm. The loss of information from eddies below this
cut-off scale (at frequencies around 170 Hz) would be expected to be small (Figure
5).

With the above space grid size, the simulation sections were divided 1into
three-dimensional 152 x 36 = 28 space grids in the open-surface model and
104 x 36 = 28 space grids in the canopy model, respectively, starting at the
coordinate origins. The source was then located at space gnd point (x = 4,y = 0,
z = 8). in both open—surface and canopy models.

In order to calculate the probability density distribution Py(v [X,t,), the
measured or interpolated time series of the Euleman velocity at each space grid
point were divided into three—dimensional 7 x 7 x 7 velocity grids, with grid size
du = dv = dw = 26 cm-s!, covering fluctuations from -90 to 90 cm-s™. The time
step at was then determined as at = —12%— = 0.046154 s according to (2.4).

The numerical simulations were carried out until steady plumes were
developed. Since the plumes were expected to be symmetrical about the central xz
plane (y = 0), only halves of plumes (y > 0) were actually simulated. Calculations

were coded by FORTRAN 77 and performed in the mainframe computer systems
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MVS and MUSICA (McGill University, Computing Center). Each simulation
required about 15 hr CPU time. For later reference, the main parameters are listed

in Table 1.

5. Results

5.1. Comparison of numerical simulations with experimental observations
The concentration profiles of the steady numerical plumes are compared with
observed concentration profiles of the steady experimental plumes in Figures 7
and 8, at the measurement positions indicated in Figure 2.

Considering that the sampling tubes of the experimental measurements occupy
non—negligible space in the fluid, a proper spatial averaging has been imposed on
the numerical profiles, without significant changes from original results.

In the open—surface model, numerical predictions show good agreement with
experimental observations (Figure 7), except for a tendency towards overestimation
close wo the source (z = 8) and underestimation at some distance from it. These
minor discrepancies might be attributed to the wake structure introduced by the
glass tube that contains the source solution (Figure 1), which might contaminate
the fluid flow. This would retard NH, diffusion in a way not reflected and
recovcred by the discrete Eulerian velocity measurements and the linear
interpolation approximation used in the numerical simulation (Figure 6a). The
influence of this wake flow would be expected to decrease with increasing distance
from the source. This appears to be confirmed by the close agreement between
numerical predictions and experimental observations at x = 150.

In the canopy model, the numerical predictions also show general agreement
with the experimental observations (Figure 8), at least in the central xz plane.

However, the agreement is not as good as in the open-surface model. In particular,
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Table 1. List of simulation parameters.

Parameters: Open Surface: Canopy:
Canopy height (h;) cm n. a. 11
Canopy cell shape n. a. square
Canopy cell spacing ¢n n. a. 48
Velocity grids (U x v x W) Tx7x7 7T x 7 x7
Velocity grid size (du) cm st 26 26
Space grids (X x y x 2) 152%36x28 104x36x28
Space grid size (dX) cm 1.2 1.2
Time step (At) ¢ 0.046154 0.046154
Initial concentration (¥ A) mg cm™ 0.0 0.0
Source material 98% NH, 98% NH,
Source location (X,¥,2) grid (4,0,8) (4,0,8)
Source strength (E A) mg s lem™ 0.0834 0.0477
Boundary condition reflection reflection
Free—stream velocity (Um) em s’ 210 210
Mean velocity at h, cm 57! 200 60
Turbulence intensity at h, 0.102 0.306
Simulation duration g 10.0 16.0

L
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the numerical overestimations are more pronounced around the canopy crown, both
above and within, where strong turbulence intensity has been measured
(Figure 4b). These overestimations do not seem to diminish with increasing
distance, as observed in the open—surface model. On the contrary, they tend to
grow and spread with plume development. The strong turbulence intensity
structure in the canopy crown may be the main cause for persistent overestimation.
It is almost certainly too complex in detail to be reflected and recovered by the
discrete Eulerian velocity measurements and the interpolation approximations used
in the numerical simulations (Figure 6).

In general, it might be concluded, in both open-surface and canopy models,
that the numerical simulations deviate from experimental observations primarily in
areas of high concentration, like the centroid of the plume, and/or in areas of
complex flow with strong turbulence intensity, like the wake structure behind the

source tube and within the canopy.

5.2. Development of the numerical plumes
For interest only, the development with time of the numerical plumes in both
open-surface and canopy models are presented here. Since continuous time in the
numerical simulations was separated into a discrete time series, with the time step
at = t;,, — t;, the sources were perceived as periodic trains of NH, puffs whose
further development was simulated. This can be seen in the cutaway views of the
central xz plane (y = 0) in the open-surface model (Figure 9a), where the train of
puffs persists over some distance in the field of weak turbulence intensity. In the
canopy model, the individual puffs are not distinguishable since the strong
turbulence intensity generated by the canopy destroys the consistency of the flow

(Figure 9b). Due to the resistance of the canopy crown, the plume is distorted into
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Figure 9. The developments of NH; concentration contours on the
central xz plane (y = 0) of the numerical plumes from continuous
point sources in the open—surface model (a) and the canopy model (b)
at simulation times 0.18 (al, bl), 0.5s (a2, b2), 2.0s (a3, b3), 10.0s
(a4) and 16.08 (b4).
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two fronts, spreading above the canopy and into the trunks space, respectively.
Similar developments of the numerical plumes are shown in the cutaway views of
the horizontal xy plane at source height (z = 8) in Figure 10, which again shows a
clearly defined plume in the open—surface model. In the canopy model, however,
the shape of the plume is blurred by rapid lateral spread of source material.

Figures 9 and 10 also illustrate that the numerical plume in the open-surface
model develops at almost twice the speed of the plume in the canopy model, so
that the numerical formation of stable plumes takes less time (about 8 seconds) in
the former model than in the latter (about 14 seconds). This is in agreement with
the observed higher mean velocity and source release rate in the open-surface
model, compared to the canopy model.

Differences in fully developed plumes between the two models become evident
in the longitudinal cuts along the xz plane at y = 0, 4, 8 and 18 in Figure 11. In
the open-surface model (Figure 11a), the flow of weak turbulence intensity
smoothly spreads source material into a narrow and orderly plume with clear
outline and strong cross—wind concentration gradients. In the canopy model
(Figure 11b), the high turbulence intensity diffuses the source material into a broad
and disorderly plume with vague outline and weak cross-wind concentration
gradients.

To illustrate these structures more clearly, the concentration profiles of the
steady numerical plumes are presented in Figure 12 at three distances from the
source (x = 21, 67 and 150 in the open—surface model; x = 20, 52 and 100 in the
canopy model) on each of the xz planes at y = 0, 8 and 18. These concentration
profiles again demonstrate the effective lateral mixing in the canopy model, because
concentration profiles do not change much in the cross-wind direction. By contrast,

the plume in the open-surface model, with poor lateral mixing, shows rapidly
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Figure 10. The developments of NHy concentration contours on the
xy plane (z = 8. source height) of the numerical plumes from
continuous point sources in the open—surface model (a) and the
canopy model (b) at simulation times 0.1s (al, bl), 0.5s (a2, b2), 2.08
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Figure 11. NH, concentration contours of the steady numerical
plumes from continuous point sources in the open-surface model (a)
and the canopy model (b) on different xz planes at y = 0 (al, bl),
y = 4 (a2, b2), y = 8 (a3, b3) and y = 18 (a4, b4).
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decreasing concentration profiles in the cross—-wind direction. Similar results can be
seen from the concentration profiles, presented in Figure 13, at the three
cross—wind distances y = 0, 8 and 18, on each of the yz planes at x = 21, 67 and
150 in the open—surface model, and at x = 20, 52 and 100 in the canopy model.
However, sufficiently far downwind from the source, the difference of the steady
numerical plumes in cross section between the open~surface model and the canopy
model becomes small, because the simulation sections are limited in space and

boundary—induced contaminations may be unavoidable.

6. Error analyses

In spite of generally encouraging agreement between numerical simulations
and experimental observations in this preliminary application, discrepancies do
exist. They could conceivably result from the following errors: (a) loss of tracer
concentration unreclaimed by the sampling tubes of the experimental observations
in areas of high concentration; (b) idealized boundary condition treatments due to
the assumption of elastic reflection; (c) deficiency of flow information due to the
discrete Eulerian velocity measurements and inadequate interpolation procedures;
(d) loss of eddies smaller than the space grid size of 1.2 cm; (e) perturbations of
the Eulerian velocity measurement from directional contaminations of the three
velocity components (u, v, w) through the limited accuracy provided by the
hot-film measurement array; (f) imprecise estimate of the fractional redistribution
density F, by the approximation (2.2) or (2.5).

Error (a) most likely occurs along the centroid of the experimental plumes. It
would flatten the peaks of the observed concentration profiles. In the experimental
simulations, however, tracer concentrations are of the same order of magnitude in

both models, so that error (a) is expected to be comparable in both, and unlikely
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Figure 13. NHy concentration profiles of the steady numerical
plumes from continuous point sources in the open—surface model (O)
and the canopy model (C) at three crosswind distances (y), on each of
three yz planes at x = 21 (O) or 20 (C) in (al), x = 67 (O) or 52 (C)
in (azf and x = 150 (O) or 100 (C) in (a3).
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to explain relative differences between their respective degrees of success.

Error (b) may cause the numerical plumes to be contaminated by the
boundaries, while errors (c) and (d) may unduly simplify the numerical plumes.
The magnitude of error (c), stemming from neglect of sub—grid scale motion, is
likely a function of the complexity of the flow structure. It is potentially more
worrisome in the case of coherently inhomogeneous and intermittent flow with
strong turbulence intensity, so that it might be more pronounced in the canopy
model, while errors (b) and (d) may be expected to be comparable in the two
models under the same boundary and gridding treatments.

Error (e) may distort the calculated Fulerian velocity probability density
distribution Pv(v [X,t,) used by (2.5) in the numerical simulations. However, this
error has been reduced to some degree by directional corrections so that, as a first
approximation, it could be expected to be comparable in the two models.

Error (f) cannot be directly evaluated, but its existence certainly distorts the
true fractional redistribution density FC, and thus the numerical plumes. It stems
from the assumptions that the scalar tracer (NH,) is completely mixed in every
virtual fluid parcel at any time, and that the redistribution of the scalar perfectly
follows the redistribution of the fluid volume. In laminar or weakly turbulent flow
with small turbulence intensity, these assumptions may be justified. However, in
strongly turbulent flow with large turbulence intensity, such as in the canopy
model, they may introduce noticeable error since the fluid may become
non-uniformly mixed with the scalar. The weakness of the assumption (2.5), that
the fractional redistribution density FC can be deduced from the probability
density distribution Pv of the local real-time Eulerian velocity, where the
significant influence of the scalar concentration distribution is not incorporated,

then becomes apparent.
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It may thus be said that the larger discrepancy between the numerical
simulations and the experimental observations in the canopy model is expected to
be due primarily to errors (¢) and (f), with a relative distribution between them

that cannot be ascertained within the framework of this preliminary study.

7. Conclusion

As a preliminary trial, this study explores a simplified numerical modeling of
turbulent diffusion under the virtual fluid parcel treatment of the BMDFE. It has
been based on the approximation of the fractional redistribution of the scalar by
the fractional redistribution of fluid volume, calculated from the probability density
distribution of the local Eulerian velocity. It is also based on the assumption that
the sub—grid scale motion, ignored by the discrete Eulerian velocity measurements,
can be recovered by linear and/or proportional interpolations. This simplified
numerical modeling has been applied to the simulations of diffusion of ammonia
(NH,) from a continuous point source in open—surface and canopy models in a wind
tunnel. The numerical simulations showed general agreement with the experimental
observations, with partial discrepancies.

The discrepancies in the canopy model have been shown to be bigger than in
the open—surface model, presumably because of the existence of the inhomogeneous
and intense turbulence in the canopy flow. In such turbulent flow, the above
approximations may produce significant errors, since the mixing of fluid may be
too severe for its scalar distribution to be precisely estimated by its volume
distribution, and since the structure of the flow may be too complex in detail for
its sub—grid scale motion to be accurately represented by simple interpolations.

Overall, the relative success of the simplified numerical modeling encourages

tests of the full numerical modeling, based on the joint equations (1.1)—(1.3), for
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which proper (closure) parameterization in the disintegration equation (1.1) should

be explored.
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General Summary

This thesis examined the role of molecular mixing in the description of
turbulent diffusion in continuum framework at the level of conceptualization (or
mathematical treatment) of the BMDFE (Basic Macroscopically Describable Fluid
Element). The classical fluid particle treatment of the BMDFE is compared with a
new virtual fluid parcel treatment of the BMDFE. Main findings are summarized
as follows:

With its postulated constraint that individual BMDFEs maintain their
integrities in motion, the classical fluid particle treatment excludes molecular
mixing between different BMDFEs. The randomization supplementary treatment
does not alleviate this fact because it does not change the nature of the postulated
fluid particle moving as an entity. As a result, turbulent diffusion under the
random fluid particle treatment can only be described as the random fluid particle
dispersions in process of the non—feedback statistical superimposition of the
shadow-like ensemble mean contributions from individual fluid particles in the
flow. Due to the existence of molecular mixing between the BMDFEs in real
turbulent fluids, this description may lead to a potential mathematical-physical
inconsistency in the understanding of turbulent diffusion.

By relaxing the above constraint to permit disintegration of individual
BMDFEs, a new virtual fluid parcel treatment is proposed to incorporate molecular
mixing between different BMDFEs. The main improvement made by the new
virtual fluid parcel treatment lies in the introduction of a feedback mechanism in
the form of physically coupled disintegration and integration of the BMDFEs. This
improvement suggests that molecular mixing is a controlling agent of the mixing

mechanism in every time-step of turbulent diffusion, whose significance could be
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cumulatively increased.
By applying the above two treatments to the evolution of the diffusion cloud,
analysis shows that molecular mixing persistently and cumulatively influences the
' evolution of the diffusion cloud by reducing the diffusion distribution variance.
; This indicates that the exclusion of molecular mixing in the classical fluid particle
, treatment could lead to an exaggeration of the diffusion distribution variance. This
| analysis is qualitatively supported by scalar diffusion experiments in water flow
with moderate turbulence intensity.
As a preliminary trial, a simplified numerical modeling of scalar diffusion
based on the virtual fluid parcel treatment is executed in two wind tunnel models.
The simplification is made by direct estimation of the fractional redistribution
density of scalar from measurements. The numerical predictions show general

agreement with the experimental observations.



Suggestions for Future Study

Future study would be primarily pursued in quantitative examination of the
effect of molecular mixing on turbulent diffusion. This would involve numerical
experiments to compare the virtual fluid parcel treatment and the random fluid
particle treatment in the description of the diffusion cloud evolution.

The (closure) parameterization of the macroscopic inhomogeneity in both flow
scale and turbulence intensity is the common technical difficulty in solving the
diffusion equations under both the virtual fluid parcel and the random fluid particle
treatments. In order to minimize the influence of this difficulty, the diffusion in
stationary and homogeneous turbulence will be a start of the study. As a working
hypothesis, the errors caused by parameterization in the two descriptions are
expected to be comparable.

According to Part 3, the reduction of the diffusion distribution variance by
molecular mixing (or the exaggeration of the diffusion distribution variance by the
random fluid particle treatment due to exclusion of molecular mixing) is expected
to becorme more pronounced when the Reynolds number, the Peclet number, or the
turbulence intensity in general, increases. Quantitative confirmation of this analysis
should be done by numerical experiments under variation of the Reynolds number,
the Peclet number or the turbulence intensity. The results may then be used to
evaluate the role of molecular mixing in the transition from laminar flow, through
weakly turbulent flow to highly turbulent flows. The numerical experiments can
also be easily adjusted to account for the effect of molecular collision—transport if
the dependence on the Prandtl or Schmidt number is considered in the diffusion

equations.
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