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Abstract

Contemporary machine learning models, particularly deep learning models, are frequently

trained on large datasets within high-dimensional feature spaces, presenting challenges for

traditional analytical approaches. Notably, the effective generalization of highly overparam-

eterized models contradicts conventional statistical wisdom. Furthermore, the presence of

non-linear activations in artificial neural networks adds complexity to their analysis. To

simplify theoretical analysis, it is often assumed that training data is sampled from an un-

structured distribution. While such analyses offer insights into certain aspects of machine

learning, they fall short in elucidating how neural networks extract information from the

structure of the data, crucial for their success in real-world applications.

Fortunately, random matrix theory has emerged as a valuable tool for theoretically un-

derstanding certain machine learning procedures. Various techniques have been employed

to explore large random matrices through asymptotic deterministic equivalents. One such

approach involves substituting the random resolvent associated with a large random ma-

trix with the solution of a deterministic fixed-point equation known as the matrix Dyson

equation. Another effective technique, known as the linearization trick, involves embedding

a matrix expression into a larger random matrix, termed a linear matrix pencil, with a

simplified correlation structure.

In this thesis, we extend the matrix Dyson equation framework to derive an anisotropic

global law for a broad class of pseudo-resolvents with general correlation structures. This

extension enables the analysis of spectral properties of a wide range of random matrices

using a simpler and deterministic solution to the matrix Dyson equation. Through the

development of this theory, we address critical aspects such as existence-uniqueness, spectral

support bounds, and stability properties. These considerations are essential for constructing
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deterministic equivalents for pseudo-resolvents of a class of correlated linear pencils.

Leveraging this theoretical framework, we provide an asymptotically exact deterministic

expression for the empirical test error of random features ridge regression. The random

features model, characterized by its non-linear activation function and potential for overpa-

rameterization, emerges as a powerful model for studying phenomena observed in real-life

machine learning models, such as multiple descent and implicit regularization. Our exact ex-

pression facilitates a precise characterization of the implicit regularization of the model and

unveils connections between random features regression and closely related kernel methods.

Since we make no particular assumptions about the distribution of the data and response

variable, our work represents a significant step towards understanding how neural networks

exploit specific data structures.
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Abrégé

Les modèles d’apprentissage automatique contemporains, en particulier les modèles d’appren-

tissage profond, sont souvent entrâınés sur de vastes ensembles de données à l’intérieur

d’espaces de dimensions élevées, ce qui pose des défis pour les approches analytiques tra-

ditionnelles. Notamment, la généralisation adéquate de modèles surparamétrés contredit

les conventions statistiques. De plus, la présence de fonctions d’activations non linéaires

dans les réseaux neuronaux artificiels ajoute de la complexité à leur analyse. Pour sim-

plifier cette analyse théorique, il est souvent supposé que les données d’entrâınement sont

échantillonnées à partir d’une distribution non structurée. Bien que de telles analyses perme-

ttent de mieux comprendre certains aspects de l’apprentissage automatique, elles ne parvien-

nent pas à élucider comment les réseaux neuronaux extraient des informations de la structure

des données, élément crucial de leur réussite dans les applications du monde réel.

La théorie des matrices aléatoires s’est révélée être un outil précieux pour la compréhension

de certaines procédures d’apprentissage automatique. Diverses techniques ont été utilisées

pour explorer les grandes matrices aléatoires par le biais d’équivalents déterministes asymp-

totiques. Une telle approche implique de substituer la résolvante associé à une grande matrice

aléatoire par la solution d’une équation à point fixe déterministe appelée équation de Dyson

matricielle. Une autre technique efficace, connue sous le nom de truc de linéarisation, con-

siste à intégrer une expression matricielle dans une plus grande matrice aléatoire, appelée

linéarisation, avec une structure de corrélation simplifiée.

Dans cette thèse, nous étendons le cadre théorique de l’équation de Dyson matricielle pour

dériver une loi globale anisotrope pour une large classe de pseudo-résolvantes avec des struc-

tures de corrélation générales. Cette extension permet l’analyse des propriétés spectrales

d’une large gamme de matrices aléatoires à l’aide d’une solution plus simple et déterministe
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de l’équation de Dyson matricielle. À travers le développement de cette théorie, nous abor-

dons des aspects critiques tels que l’existence d’une solution unique, les bornes de support

spectral et les propriétés de stabilité. Ces considérations sont essentielles pour construire des

équivalents déterministes pour les pseudo-résolvantes d’une classe de linéarisations corrélées.

En tirant parti de ce cadre théorique, nous fournissons une expression déterministe

asymptotiquement exacte pour l’erreur de validation empirique de la régression ridge pour

le modèle de caractéristiques aléatoires. Le modèle à caractéristiques aléatoires, caractérisé

par sa fonction d’activation non linéaire et son potentiel de surparamétrage, émerge comme

un modèle puissant pour étudier les phénomènes observés dans les modèles d’apprentissage

automatique de la vie réelle, tels que la descente multiple et la régularisation implicite.

Notre expression exacte facilite une caractérisation précise de la régularisation implicite du

modèle et révèle des liens entre le modèle de caractéristiques aléatoires et les méthodes de

noyau étroitement reliée. Comme nous ne faisons aucune hypothèse particulière par rap-

port à la distribution des données, notre travail représente une avancée significative vers

la compréhension de la manière dont les réseaux neuronaux exploitent des structures de

données spécifiques.
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2.1.2 Carathéodory-Riffen-Finsler Pseudometric . . . . . . . . . . . . . . . 10

2.1.3 Holomorphic Fixed-Point Theorem . . . . . . . . . . . . . . . . . . . 12

2.2 Matrix Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 General Matrix Identities . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Real and Imaginary Parts of Matrices . . . . . . . . . . . . . . . . . . 14

2.2.3 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Matrix-Valued Herglotz Function . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



2.3 Random Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Deterministic Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Matrix Dyson Equation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Linearization Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Matrix Dyson Equation for Correlated Linearizations 29

3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Main Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Large Spectral Parameter . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Stieltjes Transform Representation . . . . . . . . . . . . . . . . . . . 41

3.2.4 Power Series Representation . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Solution to the Regularized Matrix Dyson Equation . . . . . . . . . . 46

3.3.2 Solution to the Matrix Dyson Equation . . . . . . . . . . . . . . . . . 47

3.4 Asymptotic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.4 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Random Features Ridge Regression 69

4.1 Empirical Test Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Conjugate Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Gaussian Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



4.2.3 Training and Test Error of Random Features . . . . . . . . . . . . . . 78

4.3 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 First Deterministic Equivalent . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Second Deterministic Equivalent . . . . . . . . . . . . . . . . . . . . . 97

5 Conclusions and Future Work 100

Bibliography 103

ix



List of Figures

1.1 Relationship between the number of datapoints and the number of param-

eters in machine learning models, color-coded by date. The data, sourced

from [Epo22], reveals a distinct trend of utilizing more datapoints with an

increasing number of parameters over time. . . . . . . . . . . . . . . . . . . . 2

1.2 The spectrum of the sample covariance matrix associated with the MNIST

dataset can be decomposed into a noise component, depicted by the overlap-

ping Marchenko-Pastur distribution with shape parameter 1, and a low-rank

signal component characterized by outlier eigenvalues. . . . . . . . . . . . . . 7

2.1 Eigenvalue densities for two different types of matrices. Left: eigenvalue

density of a normalized GOE matrix, which converges to the Wigner semi-

circular distribution

√
max(4−x2,0)

2π
; Right: eigenvalue density of a normalized

Wishart matrix, which converges to the Marchenko-Pastur distribution, char-

acterized by µMP(dx) = max{(1 − r−1), 0}δ0(x) +
√

(λ+−x)(x−λ−)

2πrx
dx, where

λ± = (1±√
ρ)2σ2 and r = 1/2 is the shape parameter. . . . . . . . . . . . . 19

4.1 Etest vs the deterministic approximation given in Theorem 4.1.1 for various

odd activation functions with different sizes of hidden layers d and ridge pa-

rameter δ. The data matrices, as well as the response variables, are sampled

from a synthetic regression dataset, ntrain = ntest = n0 = 1000. Left: Error

function activation (σ(x) = erf(x)); Right: Sign activation (σ(x) = sign(x)). . 72

x



4.2 Etest vs the deterministic approximation given in Theorem 4.1.1 for various

flattened image classification datasets with different sizes of hidden layers d

and ridge parameter δ. Sine activation (σ = sin), ntrain = 1500, ntest = 1000.

Upper left: MNIST [Den12]; Upper right: Fashion-MNIST [XRV17]; Lower

left: CIFAR-10 [Kri09]; Lower right: CIFAR-100 [Kri09]. . . . . . . . . . . . 73

4.3 Spectrum of the conjugate kernel matrix AAT . Empirical spectrum (blue)

compared to the theoretical density obtained from Theorem 4.1.1 (orange).

Left: Sample covariance matrix with σ = Id, ntrain = 1000, n0 = 1000, and

d = 1500. X is a diagonal matrix with entries drawn uniformly from {1, 3, 5}.
Right: Conjugate kernel matrix with σ = erf, ntrain = 1500, n0 = 1000, and

d = 3000. The matrix X = ZC for some matrix Z ∈ Rntrain×n0 with i.i.d.

standard Gaussian entries and C ∈ Rn0×n0 a diagonal matrix with entries

drawn uniformly from {1, 3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



List of Abbreviations & Symbols

Abbreviations

CIFAR Canadian Institute For Advanced Research
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1
Introduction

The development of artificial intelligence is characterized by a transition from elementary

rule-based systems to the dominant paradigm of data-driven methodologies, particularly

in the realm of machine learning. Fundamentally, machine learning seeks to establish a

statistical relationship based on a given set of examples, typically comprising samples and

their associated response variables.

The trajectory of machine learning has undergone a profound transformation, fueled

by significant advancements in processing power and the widespread accessibility of vast

datasets. In stark contrast to contemporary practices, the machine learning landscape in

1959 is exemplified by the work of Samuel [Sam59]. This study utilized a rudimentary ma-

chine learning model with fewer than 50 parameters trained on 53 000 datapoints to play

checkers. Notably, the author reported that the program was able to outperform the person

who programmed it in a game of checkers. Nowadays, machine learning models are trained

using large datasets within high-dimensional feature spaces. For instance, the GPT-3 model,

a precursor to the widely-used conversational agent ChatGPT, stands out with an impres-
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sive 175 billion parameters and training on 374 billion data points [Bro+20]. Additionally,

the image generation systems DALL-E and DALL-E 2, capable of producing photo-realistic

images from text prompts, leverages a staggering 12 billion and 3.5 billion parameters respec-

tively, trained on 250 million and 650 million data points respectively [Ram+21; Ram+22].

These examples exemplify an enduring trend of embracing progressively larger models in

contemporary machine learning practices.
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Figure 1.1: Relationship between the number of datapoints and the number of parameters

in machine learning models, color-coded by date. The data, sourced from [Epo22], reveals

a distinct trend of utilizing more datapoints with an increasing number of parameters over

time.

This escalation in model complexity raises critical questions about the theoretical under-

pinnings of such expansive models. This inquiry is driven by the so-called “curse of dimen-

sionality”, a term coined by Bellman in his exposition on dynamic programming [Bel10].

The concept is loosely used to convey the idea that low-dimensional intuition, as well as

computational or theoretical approaches, may break down entirely in high-dimensional sce-

narios [CL22]. Manifestations of this curse are observable in various aspects in the context
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of machine learning. As a first example, traditional performance metrics for optimization

techniques often rely on worst-case complexity. Yet, in real-world, high-dimensional scenar-

ios, the likelihood of encountering a data point associated with the worst-case running time

of a given algorithm may be exceedingly low. Therefore, while worst-case complexity offers

assurances regarding running time, it may not accurately reflect the algorithm’s expected

performance in high dimensions. A second example is found in the analysis of artificial neural

networks. When overparameterized, meaning the number of trainable parameters exceeds

the number of data points, these models possess extraordinary capacity. In fact, they are

capable of fitting given data perfectly, even when the labels are pure noise [Zha+21]. In this

scenario, the fact that they still exhibit good generalization performance contravenes con-

ventional statistical knowledge. Furthermore, the presence of non-linear activation functions

adds complexity, making them challenging to analyze analytically.

Fortunately, the scale of contemporary models not only brings about the curse of dimen-

sionality but also offers a blessing. Conceptualizing the problem as random, we may leverage

the fact that scalar observations of large random systems often follow a law of large numbers

effect and concentrate around a deterministic quantity. If this quantity accurately charac-

terizes observed behavior in practice, one can argue that the chosen model is satisfactory.

To describe this deterministic limit, we can turn to tools from random matrix theory. The

origins of random matrix theory can be traced back to the work of Wishart, who investigated

the eigenvalues of large sample covariance matrices [Wis28]. The theory gained significant

momentum after the contributions of Wigner, who explored the spacing between the eigen-

values of a symmetric random matrix, using it as a model for the spacings between the lines

in the spectrum of heavy atomic nuclei [Wig55].

In the analysis of machine learning, random matrix theory appears because one chooses

to simplify the model by assuming that a component of it is random. To illustrate this

concept, consider a traditional supervised problem setting. In a typical supervised problem

scenario, we are provided with a labeled dataset D = {(xj, yj)}ntrain
j=1 , where each sample

xj ∈ Rn0 is associated with a label yj ∈ R for j = 1, 2, . . . , ntrain. For conciseness, we

organize the data into a matrix X ∈ Rntrain×n0 , where the jth row of X represents xT
j , and

a vector y ∈ Rntrain representing the labels. The objective is to establish a relationship

between the inputs xj and the corresponding outputs yj. To achieve this, we confine our
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focus to a class of parametric functions. One of the simplest models is the linear model,

which represents the relationship using the mapping x 7→ xTw for some weights w ∈ Rn0 .

Once we have selected a model, we use the dataset to find optimal weights by minimizing a

loss function. A fundamental loss is obtained by taking the squared norm of the residuals

and leads the optimization problem minw∈Rd ∥y−Xw∥2. This optimization problem is called

linear regression. It serves as a simple tractable model to study the behavior of iterative

minimization procedures used to train more complex models. Using gradient descent with a

constant step size, a straightforward iterative optimization algorithm, generates a sequence

of iterates {wk}∞k=0, where w0 ∈ Rn0 is arbitrary and wk+1 = wk − γXT (Xwk − y) for

k = 1, 2, . . .. Assuming that the linear model is correct, that is there exists a ground truth

vector w∗ ∈ Rn0 such that y = Xw∗, we can unfold the iterative procedure and express

wk − w∗ = (In0 − γXTX)k(w0 − w∗). Substituting this expression into the loss function,

we can represent the loss function after k iterations of gradient descent as ∥y − Xwk∥2 =

∥X(In0 − γXTX)k(w0 − w∗)∥2 = (w0 − w∗)
TXTX(In0 − γXTX)2k(w0 − w∗). Although

this expression represents the training loss of the simplest model trained using the simplest

optimization algorithm, the behavior of the loss during training depends non-trivially on the

data matrix through XTX(In0 − γXTX)2k. However, in machine learning, it is common

to assume that the data is sampled from a certain distribution. Therefore, to analyze the

training loss of a linear regression model at the iterates of gradient descent, it is reasonable

to assume that the entries of X are random variables. Under some additional statistical

assumptions, tools from random matrix theory can be employed to study the polynomial of

random matricesXTX(In0−γXTX)2k for large ntrain and n0. More precisely, it can be shown

that as both ntrain and n0 grow to infinity proportionally, the loss function at the iterates of

gradient descent approaches a deterministic limit, dependent only on the distribution of the

entries ofX through their first two moments [Paq+23]. This type of analysis can be extended

to other loss functions and variants of stochastic gradient descent [Paq+23; Col+23; Lee+22;

PP21; Paq+21]. Such analyzes provide realistic expectations for training time and aid in

selecting hyperparameters without conducting extensive grid searches.

Another related area where random matrix theory is beneficial is in analyzing the loss

landscape associated with the training of machine learning models. These landscapes, which

are typically non-convex and often non-smooth, present challenges in optimization. Nonethe-
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less, empirical models often achieve remarkable performance. By examining the eigenvalues

and alignment of eigenvectors of the Hessian matrix, which captures second-order informa-

tion about the loss function, we can gain valuable insights into the structure and properties

of the landscape [LM21]. A better understanding of the loss landscape can help explain the

successes and limitations of various optimization algorithms.

In practice, the linear model often proves insufficiently expressive for representing com-

plex functions. Hence, a more general class of parametric function is given by fully connected

2-layer feed-forward neural networks. In this model, the relationship between samples and

labels is modeled using the function x 7→ σ(xTW )w, where W ∈ Rn0×d and w ∈ Rd are

respectively the weight matrix and vector, and σ : R 7→ R denotes an activation function ap-

plied entrywise. The activation function introduces non-linearity into the model, and allows

the representation of more complex functions. Common examples of activation functions

include the rectified linear unit (ReLU), hyperbolic tangent function, and sigmoid function.

Although we omitted it for the sake of discussion, we note that the output of the network is

often scaled by a normalizing constant to maintain stability as dimensions increase propor-

tionally. Using a regularized version of the norm squared loss, we consider the minimization

problem

min
W∈Rn0×d, w∈Rd

∥y − Aw∥2 + δ∥w∥2

where we defined A = d−1/2σ(XW ) for notational convenience. The addition of the regu-

larization term makes the optimization problem strongly convex. In fact, the minimization

problem admits the closed-form solution wridge = AT (AAT + δIntrain
)−1y, which is called the

ridge estimator. To quantify how well our model performs on the training dataset, we can

look at the squared norm of the residuals ∥y − AAT (AAT + δIntrain
)
−1
y∥2. Expanding the

squared norm, we get a quantity that depends on bilinear forms of rational expressions in

AAT . Motivated similarly to the linear model case, we may assume that the dataset is sam-

pled from a distribution. Alternatively, a common theoretical exploration technique involves

assuming randomness in the weight matrix. Given that neural networks are often initialized

with random weights, this corresponds to constructing a two-layer neural network, fixing

the first-layer weights at random initialization, and training only the second layer. This

approach gives rise to the popular random features model introduced in [RR07]. Unlike
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the linear model, the random features model incorporates a non-linear activation function

and has the capacity for overparameterization. However, it remains tractable, serving as

a suitable tool for studying phenomena observed in real-life machine learning models, such

as multiple descent [MM22; AP20b; Bel+19] and implicit regularization [Cho22; Jac+20].

Further details on the random features model and a result about the empirical test error will

be discussed in Chapter 4.

A more practical application of random matrix theory in machine learning lies in select-

ing suitable estimators for generalization error [WHS22]. While generalization error serves

as a crucial metric in machine learning, accurately estimating it poses a challenge. Ran-

dom matrix theory also finds application to study scaling laws [Bah+21], which delineate

power-law scaling relationships among various dimensions of system size and computational

resources. Understanding these scaling laws offers insights into the performance of machine

learning models as the size of the training dataset increases. Such insights are indispensable

for devising more efficient and scalable machine learning algorithms.

In the examples provided and in many other problems, theoretical analysis often hinges

on comprehending the behavior of bilinear forms or traces of rational expressions of random

matrices. Crucially, the behavior of the object in such cases is not contingent upon any finite

number of individual entries; rather, it necessitates an understanding of the collective behav-

ior arising from global interactions between these entries. An important consideration in this

approach is ensuring that the distribution from which random variables are drawn accurately

reflects the statistical properties of real-world scenarios. For instance, in the context of the

random features model, where random weights are employed, the model effectively repre-

sents the neural network at its early training stages and serves as a valuable theoretical tool.

However, it falls short in capturing the full generality of a 2-layer neural network. Moreover,

while isotropic distributions often suffice to provide interesting theoretical results, they may

not consistently mirror the statistical properties of real-world datasets. For example, the

Modified National Institute of Standards and Technology (MNIST) database [Den12], which

contains handwritten digits from 0 to 9, cannot be accurately characterized by assuming that

samples are drawn from a multivariate standard normal distribution alone, as illustrated in

Figure 1.2. Instead, a more realistic model might entail a spiked Gaussian mixture distri-

bution. On a related note, empirical evidence suggests that part of the efficacy of neural
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networks stems from their capacity to leverage the inherent structure within data to de-

rive suitable representations, a concept commonly referred to as feature learning [Ba+22].

Isotropic distributions, by their very nature, fall short in capturing such structural nuances.

To attain a more comprehensive understanding, it becomes imperative to incorporate more

intricate correlations within the random matrix framework.
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Figure 1.2: The spectrum of the sample covariance matrix associated with the MNIST

dataset can be decomposed into a noise component, depicted by the overlapping Marchenko-

Pastur distribution with shape parameter 1, and a low-rank signal component characterized

by outlier eigenvalues.

In this thesis, which builds upon the work of a previous article co-authored by the author

and his co-supervisor Elliot Paquette [LP23], we commence by delving into foundational

concepts that serve as essential background material for our subsequent discussions. Follow-

ing this, we introduce a comprehensive framework tailored to analyze rational expressions of

random matrices characterized by general correlation structures. Central to our framework

is the utilization of the matrix Dyson equation, a deterministic fixed-point equation, which

offers a means to study scalar observations of random matrices. We contribute to the existing

literature on the matrix Dyson equation by expanding its application to derive deterministic

equivalents for general pseudo-resolvents. These pseudo-resolvents naturally emerge from our

adoption of the linearization trick, also known as the linear pencil method. This approach

involves representing rational functions of random matrices as blocks of inverses of larger

random matrices that linearly depend on their random matrix inputs. Such linearizations
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possess simpler correlation structures, rendering them more amenable to certain types of

analysis. This notably explains why they have been successfully utilized in conjunction with

tools from operator-valued free probability to analyze simple machine learning models. Af-

ter reviewing relevant literature and laying the groundwork for our study, we systematically

develop our framework. This involves establishing the existence of a unique solution to the

matrix Dyson equation, demonstrating the stability of the equation in a suitable context,

and leveraging this stability to assert that the solution serves as a surrogate for studying

random matrices.

Given the preceding discussion, we have tailored our framework with a specific focus on

its relevance to machine learning applications. In order to illustrate the practical utility

of our framework, we apply it to analyze the empirical test error of random features ridge

regression. This application enables us to precisely quantify the implicit regularization in-

herent in the model. Furthermore, it allows us to draw interesting connections to a closely

related kernel method. Importantly, our framework enables the consideration of anisotropic

random features models, yielding results consistent with empirical observations on real-world

datasets.
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2
Preliminaries

Before delving into the core of this thesis, it is essential to establish a foundational under-

standing of key concepts. In this preliminary chapter, we introduce fundamental topics in

complex analysis and random matrix theory. These concepts serve as essential tools for com-

prehending the discussions that follow. Instead of presenting a comprehensive introduction

to these topics, we will focus on concepts directly relevant to the objectives of this thesis

and refer the reader to appropriate references for more information.

2.1 Complex Analysis

Since our focus lies in understanding the behavior of rational expressions of matrices, we will

frequently encounter matrix-valued expressions. Certain concepts from complex analysis,

typically introduced for functions of complex variables, can be naturally extended to more

general complex normed vector spaces. We will review these concepts as they are crucial

for our purposes. Additionally, we will define the Carathéodory-Riffen-Finsler-pseudometric

and discuss its properties. Utilizing this pseudometric, we will introduce the Earle-Hamilton
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fixed-point theorem, which will play a vital role in constructing our theoretical framework.

2.1.1 Holomorphic Functions

The content presented in this section is standard and can be found in various references,

such as [Hil48]. Throughout this discussion, we consider X and Y as normed vector spaces

over the complex numbers, with D being an open subset of X .

A function f : D 7→ Y is termed Fréchet differentiable at x ∈ D if there exists a bounded

linear operator Df(x) : X 7→ Y satisfying

lim
h→0

∥f(x+ h)− f(x)−Df(x)h∥
∥h∥

= 0.

When this condition holds, Df(x) is referred to as the Fréchet derivative of f at x. A function

f is deemed holomorphic in D if the Fréchet derivative of f exists as a bounded complex

linear map from X onto Y for every x ∈ D . We will denote by Hol(D ,Y ) the set of all

holomorphic functions from D to Y . Fréchet differentiability extends the concept of complex

differentiability. Importantly, when f is holomorphic in D , the nth order Fréchet derivative of

f at x, denoted Dnf(x), exists as a symmetric multilinear mapping from X n = X ×· · ·×X

to the completion of Y as a Banach space. This connection allows us to establish a link

between holomorphicity and analyticity. Let Br(x0) denote the open ball of radius r centered

at x0 in X . If f : Br(x0) ⊆ X 7→ Y is a bounded holomorphic function, then

f(x) =
∞∑
n=0

Dnf(x0)

n!
(x− x0)

n

for all x ∈ Br(x0). Moreover, this series converges uniformly on Bs(x0) for every s ∈
(0, r) [Hil48, Theorem 3.17.1].

2.1.2 Carathéodory-Riffen-Finsler Pseudometric

Let D be a domain in a normed linear space over the complex numbers X . We define the

infinitesimal Carathéodory-Riffen-Finsler (CRF)-pseudometric as

α : (x, v) ∈ D × X 7→ sup{∥Df(x)v∥ : f ∈ Hol(D ,B)} ∈ R,
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where B denotes the open complex unit ball of unit radius [Har03; Har79]. The pseudometric

α is an infinitesimal Finsler pseudometric on D , meaning that it is non-negative, lower

semicontinuous, locally bounded, and satisfies α(x, tv) = |t|α(x, v) for every (x, v) ∈ D ×X

and t ∈ R.
Let Γ be the set of all curves in D with piecewise continuous derivatives, referred to as

admissible curves, and define

L : γ ∈ Γ 7→
∫ 1

0

α(γ(y), γ′(t))dt ∈ R.

The pseudometric α is a seminorm at each point in D , and we interpret L (γ) as the length

of the curve γ measured with respect to α [Har03]. Then, the CRF-pseudometric ρ of D is

defined as

ρ : (x, y) ∈ D2 7→ inf{L (γ) : γ ∈ Γ, γ(0) = x, γ(1) = y} ∈ R≥0.

As the name suggests, ρ is a pseudometric.

Our main tool for extrapolating results about norms is the Schwarz-Pick inequality, which

we state here for completeness.

Proposition 2.1.1 ([Har79, Proposition 3]). Let D1 and D2 be domains in complex normed

vector spaces, and let ρ1 and ρ2 be the associated CRF-pseudometrics. If f : D1 7→ D2 is

holomorphic, then ρ2(f(x), f(y)) ≤ ρ1(x, y) for all x, y ∈ D1.

In fact, the inequality in Proposition 2.1.1 can be replaced by an equality when the

function f is a biholomorphic mapping. This means that the CRF-pseudometric is biholo-

morphically invariant [HFS07]. In some sense, Proposition 2.1.1 indicates that the CRF-

pseudometric is non-expansive on the space of holomorphic functions mapping a domain

onto itself.

If we denote by ρB the CRF-pseudometric on the complex open unit disk B, then Proposi-

tion 2.1.1 becomes particularly useful because ρB, also known as the Poincaré metric, admits
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the closed form expression

ρ∆(z1, z2) = arctanh

∣∣∣∣ z1 − z2
1− z̄1z2

∣∣∣∣ . (2.1)

For a derivation of (2.1), refer to [Har79, Example 2].

2.1.3 Holomorphic Fixed-Point Theorem

One of the most well-known fixed-point results is the Banach fixed-point theorem, also

known as the Banach contraction mapping theorem, which asserts that contractive self-

maps on Banach spaces have unique fixed points. The Earle-Hamilton fixed-point theorem

can be viewed as an extension of the Banach fixed-point theorem to holomorphic functions.

Essentially, it asserts that every strictly holomorphic function defined on a domain of a

complex Banach space has a unique fixed point. Here, by strictly holomorphic function,

we refer to a holomorphic function f : D 7→ D such that there exists ϵ ∈ R>0 such that

y ∈ f(D) for every x ∈ f(D) and y ∈ D satisfying ∥x− y∥ < ϵ. This theorem leverages the

CRF-pseudometric, in conjunction with Proposition 2.1.1, to reduce strict holomorphicity

to contractiveness. Subsequently, it employs the Banach fixed-point theorem to establish its

conclusion. Given the significance of the Earle-Hamilton fixed-point theorem to subsequent

sections, we provide its statement and proof.

Theorem 2.1.1 (Earle-Hamilton Fixed-Point [EH70]). Let D be a non-empty domain in a

complex Banach space X . If f : D 7→ D is a bounded strictly holomorphic function, then

f has a unique fixed point in D . Furthermore, for any x0 ∈ D , the sequence xk+1 = f(xk)

converges, in norm, to the unique fixed point of f .

Proof. We follow the proof techniques outlined in [Har03, Theorem 3.1] and [Har79, Theorem

4]. By assumption, there exists ϵ ∈ R>0 such that Bϵ(f(x)) ⊆ D for every x ∈ D . To clarify,

Bϵ(x) denotes the open ball of radius ϵ centered at x. Since f is bounded, we can assume

without loss of generality that D is bounded by setting D =
⋃

x∈D Bϵ(f(x)).

Let δ = ϵ(supx,y∈D ∥x− y∥)−1 and x ∈ D . Define the function

h : y ∈ D 7→ f(y) + δ (f(y)− f(x)) ∈ D .
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Then, δ∥f(y) − f(x)∥ ≤ ϵ and h is a holomorphic mapping of D onto itself. For every

v ∈ X , we have Dh(x)v = (1 + δ)Df(x)v. Therefore, for g ∈ Hol(D ,B), it follows from the

definition of the infinitesimal CRF-pseudometric that

(1 + δ)∥Dg(h(x))Df(x)v∥ = ∥Dg(h(x))Dh(x)v∥ = ∥D(g ◦ h)(x)v∥ ≤ α(x, v),

where α denotes the infinitesimal CRF-pseudometric on D . Since g ◦h = g ◦ (y 7→ y+ δ(y−
f(x))) ◦ f ∈ Hol(D ,B), this implies that α(f(x),Df(x)v) ≤ (1 + δ)−1α(x, v). According

to [Har79, Lemma 1], we get ρ(f(x), f(y)) ≤ (1 + δ)−1ρ(x, y) for every x, y ∈ D .

Now, let x0 be arbitrary, and consider the sequence {xk}∞k=0 with xk+1 = f(xk) for every

k = 1, 2, . . .. It follows easily from the above that the sequence is Cauchy with respect to

the CRF-pseudometric on D . Since the underlying Banach space is complete with respect

to the norm ∥ · ∥, it only remains to show that the CRF-pseudometric majorizes the norm,

i.e. ρ(x, y) ≥ c∥x− y∥ for some c ∈ R>0.

Consider x, y ∈ D . By the Hahn-Banach theorem, there exists a linear operator L ∈ X ∗

with ∥L∥ = 1 such that L(x− y) = ∥x− y∥. Define the holomorphic function

h : w ∈ D 7→ L(u− y)

supx,y∈D ∥x− y∥
∈ B.

Then, if we let ρ be the CRF-pseudometric on D and ρB be the CRF-pseudometric associated

with B, it follows from Proposition 2.1.1 and (2.1) that

arctanh

(
∥x− y∥

supx,y∈D ∥x− y∥

)
= ρB (h(x), h(y)) ≤ ρ(x, y).

In particular, this implies that the sequence {xk}∞k=0 is Cauchy with respect to the norm on

X . Since (X , ∥ · ∥) is complete, there exists a limit point x∞ ∈ D . This limit point must

be a fixed point of f .

To demonstrate uniqueness, assume that x, y ∈ D are two fixed points for f . Then,

we must have ρ(x, y) = ρ(f(x), f(y)) ≤ (1 + δ)−1ρ(x, y), implying ρ(x, y) = 0. As the

CRF-pseudometric majorizes the norm in D , the fixed point is unique.
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2.2 Matrix Identities

In this section, we introduce various matrix identities, including the block inversion lemma

and the Herglotz-Nevanlinna representation theorem, providing essential tools in random

matrix theory.

2.2.1 General Matrix Identities

We begin by presenting some standard, general matrix identities.

Lemma 2.2.1. If M1,M2 ∈ Cn×n are non-singular, then M−1
1 −M−1

2 = M−1
1 (M2−M1)M

−1
2 .

Proof. Multiply on the left by M1 and on the right by M2.

Lemma 2.2.2. Let z ∈ C, M ∈ Cn×n and assume that ∥M∥ ≤ a < b ≤ |z| from some

a, b ∈ R≥0. Then, M − zIn is non-singular and ∥(M − zIn)
−1∥ ≤ (b− a)−1.

Proof. For every v ∈ Cn, we have ∥(M − zIn)v∥ ≥ ∥zv∥ − ∥Mv∥ ≥ (|z| − ∥M∥)∥v∥. This

implies that M − zIn is non-singular. Choosing v = (M − zIn)
−1u for some unit vector u,

we have ∥(M − zIn)
−1u∥ ≤ (|z| − ∥M∥)−1. Taking the supremum over unit vectors u and

using the definition of spectral norm, we obtain the desired result.

Lemma 2.2.3. For every M1,M
T
2 ∈ Cn×d and z ∈ C such that both M1M2 − zIn and

M2M
T
1 − zId are non-singular, we have M1(M2M1 − zId)

−1 = (M1M2 − zIn)
−1M1.

Proof. Left-multiply the equation on both sides byM1M2−zIn and right-multiply byM2M1−
zId.

2.2.2 Real and Imaginary Parts of Matrices

Apart from general matrix identities, we will also need to consider the real and imaginary

parts of matrices. Just like complex numbers, we can decompose a complex matrixM ∈ Cn×n

as M = ℜ[M ] + iℑ[M ] where 2ℜ[M ] = M + M∗ and 2iℑ[M ] = M − M∗. The real and

imaginary parts of M are Hermitian. The following lemma states that the norm of the real

and imaginary parts of a matrix are bounded by the norm of the matrix itself.

Lemma 2.2.4. For every M ∈ Cn×n, ∥ℜ[M ]∥ ∨ ∥ℑ[M ]∥ ≤ ∥M∥.
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Proof. Let v ∈ Cn be a complex unitary vector. By Cauchy-Schwarz’s inequality, ∥Mv∥2 =
∥Mv∥2∥v∥2 ≥ |v∗Mv|2 = |v∗ℜ[M ]v+iv∗ℑ[M ]v|2. Since both ℜ[M ] and ℑ[M ] are Hermitian,

the quadratic forms v∗ℜ[M ]v and v∗ℑ[M ]v are real. Hence, |v∗ℜ[M ]v + iv∗ℑ[M ]v|2 =

(v∗ℜ[M ]v)2 + (v∗ℑ[M ]v)2. Taking the supremum over all unitary vectors v, we obtain the

desired result.

The proof of Lemma 2.2.4 is as crucial as the statement itself, if not more so. For instance,

the following lemma follows directly from this argument.

Lemma 2.2.5. Let M ∈ Cn×n. If there exists a ∈ R>0 such that ℜ[M ] ⪰ aIn, ℜ[M ] ⪯ −aIn,

ℑ[M ] ⪰ aIn or ℑ[M ] ⪯ −aIn, then M is non-singular and ∥M−1∥ ≤ a−1.

Proof. Assume that ℜ[M ] ⪰ aIn or ℜ[M ] ⪯ −aIn. By the proof of Lemma 2.2.4, we have

∥Mv∥ ≥ |v∗ℜ[M ]v| ≥ a for every unitary v ∈ Cn. Hence, M is non-singular. Taking

v = M−1u
∥M−1u∥ for some unitary u ∈ Cn \ {0}, we have ∥M−1u∥ ≤ a−1. Taking the supremum

over all unitary u gives the result first half of the result. The second half follows similarly.

Another important lemma relates the real and imaginary parts of an inverse matrix to

those of the original matrix.

Lemma 2.2.6. Let M ∈ Cn×n be invertible. Then, ℜ[M−1] = M−1ℜ[M ]M−∗ and ℑ[M−1] =

−M−1ℑ[M ]M−∗.

Proof. Write M = ℜ[M ] + iℑ[M ]. Since the matrix ℜ[M ] is Hermitian and iℑ[M ] is skew-

Hermitian, we have M∗ = (ℜ[M ]+iℑ[M ])∗ = ℜ[M ]−iℑ[M ]. By the definition of matrix real

and imaginary parts as well as Lemma 2.2.1, 2ℜ[M−1] = M−1+M−∗ = M−1(M∗+M)M−∗ =

2M−1ℜ[M ]M−∗. The proof for the imaginary part is similar.

2.2.3 Matrix Norms

Throughout this thesis, we will utilize several useful inequalities involving norms. The first

one pertains to the Frobenius norm of a product.

Lemma 2.2.7. Let M1 ∈ Cn×d and M2 ∈ Cd×m be arbitrary matrices. Then, ∥M1M2∥F ≤
∥M1∥∥M2∥F and ∥M1M2∥F ≤ ∥M1∥F∥M2∥.
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Proof. By definition, ∥M1M2∥2F = tr(M∗
2M

∗
1M1M2). Using the cyclic property of the trace,

tr(M∗
2M

∗
1M1M2) = tr(M2M

∗
2M

∗
1M1). Let M2M

∗
2 = UΛU∗ for some unitary U ∈ Cd×d and

real positive semidefinite diagonal Λ. With W = U∗M∗
1M1U , we have tr(M∗

2M
∗
1M1M2) =

tr(M2M
∗
2M

∗
1M1) =

∑d
j=1 Λj,jWj,j. Indeed, as ∥M2∥2 = ∥M2M

∗
2∥ = maxj Λ

2
j,j, we have∑d

j=1 Λj,jWj,j ≤ ∥M2∥2 tr(U∗M∗
1M1U) = ∥M2∥2∥M1∥2F . A similar argument can be made

for the second inequality.

The second inequality related the trace to the spectral norm and the nuclear norm.

Lemma 2.2.8. Let M,U ∈ Cn×n. Then, | tr(UM)| ≤ ∥U∥∗∥M∥.

Proof. Let {uj}nj=1 and {mj}nj=1 be a non-increasing enumeration of the singular values of

U and M , respectively. By Von Neumann’s trace inequality, | tr(UM)| ≤
∑n

j=1 ujmj ≤
m1

∑n
j=1 uj = ∥U∥∗∥M∥.

2.2.4 Matrix-Valued Herglotz Function

In what follows, we let H := {z ∈ C : ℑ[z] > 0} denote the complex upper half-plane.

A matrix-valued analytic function M : H 7→ Cn×n satisfying ℑ[M(z)] ⪰ 0 for all z ∈ H is

termed Herglotz [GT00]. The Nevanlinna, or Riesz-Herglotz, representation theorem is a

fundamental result in complex analysis. In this thesis, we will require a matrix version of

this theorem, which we state here for completeness.

Theorem 2.2.1 (Nevanlinna representation [GT00, Theorem 5.4(iv) and Theorem 2.3(iii)]).

Let M : H 7→ Cn×n be a matrix-valued Herglotz function. Then, there exists a matrix-valued

measure Ω on the bounded Borel subsets of R satisfying
∫
R

v∗Ω(dλ)v
1+λ2 < ∞ for all v ∈ Cn such

that

M(z) = C +Dz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
Ω(dλ)

for every z ∈ H with C = ℜ[M(i)] and D = limη→∞(iη)−1M(iη) ≥ 0. Furthermore, if

limη→∞−iηM(iη) = E ∈ Rn×n, then M(z) =
∫
R

Ω(dλ)
λ−z

and
∫
R Ω(dλ) = E.

The Nevanlinna representation theorem, which we adapted from [GT00, Theorem 5.4(iv)

and Theorem 2.3(iii)], is a powerful tool, especially due to the Stieltjes inversion lemma for

the matrix-valued measure.
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Lemma 2.2.9 (Stieltjes inversion formula [GT00, Theorem 5.4(v) and Theorem 5.4(vi)]).

Let M be a matrix-valued Herglotz function and Ω be the associated matrix-valued measure

in the Nevanlinna representation theorem. Then, for λ1, λ2 ∈ R with λ1 ≤ λ2,

2−1Ω({λ1}) + 2−1Ω({λ2}) + Ω((λ1, λ2)) = π−1 lim
η↓0

∫ λ2

λ1

ℑ[M(λ+ iη)]dλ.

Additionally, the absolutely continuous part Ωac of Ω is given by Ωac(dλ) = limη↓0 π
−1ℑ[M(λ+

iη)]dλ.

While the matrix Herglotz function is defined on the complex upper half-plane, we can

analytically extend it to the complex lower half-plane through an open interval on which the

matrix-valued measure is not supported.

Lemma 2.2.10 (Analytic continuation [GT00, Lemma 5.6]). Let M be a matrix-valued Her-

glotz function with the associated matrix-valued measure Ω in the Nevanlinna representation.

Then, M can be analytically continued through the open interval (λ1, λ2) by reflexion if and

only if Ω is supported on R \ (λ1, λ2).

2.2.5 Block Matrices

The main portion of this thesis will focus on block matrices. An important aspect will be de-

termining when block matrices are non-singular and being able to express their inverses using

rational expressions of the blocks. The block inversion lemma utilizes the Schur complement

to express the inverse of a block matrix in terms of the inverses of its blocks.

Lemma 2.2.11 (Block matrix inversion lemma [LS02, Theorem 2.1]). Let

M =

[
A B

C D

]

be a block matrix with A ∈ Cn×n, B,CT ∈ Cn×d and D ∈ Cd×d. If A is non-singular, then

M is non-singular if and only if D−CA−1B is non-singular. In this case, the inverse of M

17



is given by

M−1 =

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1.

]
.

Alternatively, if D is non-singular, then M is non-singular if and only if A − BD−1C is

non-singular. In this case, the inverse of M is given by

M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1.

]

Proof. The first part of the lemma follows from the decomposition

M =

[
In 0n×d

CA−1 Id

][
A 0n×d

0d×n D − CA−1B

][
In A−1B

0d×n Id

]

and the fact that the triangular block matrices are non-singular if and only if their diagonal

blocks are non-singular. The second part follows from a similar decomposition.

2.3 Random Matrix Theory

In this section, we begin by introducing the notion of the resolvent and its significant connec-

tion to eigenvalues and eigenvectors. We will then delve into the concept of a deterministic

equivalent, followed by a concise overview of fundamental methods in random matrix the-

ory, particularly the matrix Dyson equation and the linearization tricks. Those methods will

form the foundation of the core thesis discussions.

2.3.1 Resolvent

When we aim to understand the behavior of large random matrices, it is common practice to

examine scalar observations derived from the matrix itself. A pertinent quantity of interest

in this context is the empirical spectral distribution µH = 1
n

∑n
j=1 δλj(H) associated with a

Hermitian matrix H ∈ Cn×n. This distribution represents a probability measure on the real

line, where δλ signifies the Dirac measure at λ and λj(H) corresponds to the jth ordered

eigenvalue of H. Just as probability distributions can be investigated through characteristic
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functions, the empirical spectral distribution is analyzed using the Stieltjes transform. This

transform, denoted mµ(z), is defined for a real probability measure µ with support supp(µ)

as mµ(z) =
∫ µ(dλ)

λ−z
for each z ∈ C \ supp(µ). The Stieltjes transform boasts attractive

properties, such as being holomorphic within its domain, bounded, and positivity preserving.

As its name implies, the Stieltjes transform offers an inverse formula to reconstruct the

underlying measure. In the field of random matrix theory, the focus has traditionally been

on the distribution of eigenvalues. Foundational outcomes concerning the weak convergence

of the empirical spectral distribution of Wigner or Wishart matrices to continuous measures

often begin by demonstrating the convergence of the Stieltjes transform, followed by the

application of the inverse formula to retrieve the measure [Wig55; Wis28].
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Figure 2.1: Eigenvalue densities for two different types of matrices. Left: eigenvalue den-

sity of a normalized GOE matrix, which converges to the Wigner semicircular distribution√
max(4−x2,0)

2π
; Right: eigenvalue density of a normalized Wishart matrix, which converges to

the Marchenko-Pastur distribution, characterized by µMP(dx) = max{(1 − r−1), 0}δ0(x) +√
(λ+−x)(x−λ−)

2πrx
dx, where λ± = (1±√

ρ)2σ2 and r = 1/2 is the shape parameter.

The primary limitation of the Stieltjes transform approach is its inability to provide

insight into the eigenvectors of a matrix. To address this, one can employ the resolvent, also
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known as Green’s function, which is defined as RH(z) = (H − zIn)
−1. The resolvent can be

seen as a generalization of the Stieltjes transform for empirical spectral measures since

1

n
trRH(z) =

1

n

n∑
j=1

1

λj(H)− z
=

∫
µH(dλ)

λ− z
= mµH

(z).

The resolvent emerges as a central object in this thesis, as it captures nearly all spectral

information of H while being more analytically tractable than analyzing the matrix directly.

We compile some of the resolvent’s fundamental properties in the following lemma.

Lemma 2.3.1. Let H ∈ Cn×n be a Hermitian matrix. Then, the resolvent RH(z) is a

holomorphic function on C \ σ(H) and ∥RH(z)∥ ≤ dist(z, σ(H))−1 ≤ (ℑ[z])−1 for every

z ∈ C \ σ(H). Furthermore, RH(z) is a Herglotz function. Finally, if H = UΛUT for some

orthonormal matrix U and diagonal matrix Λ and Γ is a positively oriented simple closed

curve with interior Γ◦, then

U diag{f(λj(H))Iλj(H)∈Γ◦}UT =
1

2πi

∮
Γ

f(z)RH(z)dz

for every complex function f analytic on a region containing Γ and its inside.

The proof of Lemma 2.3.1 mostly follows from the properties introduced above. The

conclusion concerning the contour integral is a consequence of Cauchy’s integral formula and

is inspired by [CL22, Theorem 2.2 and the discussion that follows]. We refer the reader to

this reference for a good introduction to the topics discussed here.

2.3.2 Deterministic Equivalent

When examining random matrices, we are generally not interested in individual matrix en-

tries, as their contributions often prove to be negligible. Rather, we are focused on the

collective impact of all entries. Consequently, we tend to analyze scalar observations. While

exploring the distribution of eigenvalues is a common practice, it is also important to un-

derstand the eigenvector structure. For instance, in principal component analysis (PCA),

we pay close attention to the largest eigenvectors of the sample covariance matrix. For this

reason, we will be interested in deriving deterministic equivalents. Given a potential ran-
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dom matrix A ∈ Cn×n, we say that B ∈ Cn×n is a deterministic equivalent of A if B is a

deterministic matrix and trU(A − B) → 0 almost surely as n → ∞ for any sequence of

unit matrices U ∈ Rn×n with ∥U∥∗ ≤ 1. For example, by finding a deterministic equivalent

for the resolvent of a random matrix, one may use Lemma 2.3.1 to study the asymptotic

properties of the spectrum of the random matrix and Lemma 2.2.9 to study the density of

the limiting empirical spectral distribution.

2.3.3 Matrix Dyson Equation

Various approaches have been developed to derive deterministic equivalents for random ma-

trices. Each method has its own advantages and disadvantages, and the choice of method

often depends on the specific problem at hand. One popular method is the leave-one-out

approach, which is a perturbation method that involves removing a relatively small set of

entries from the matrix and studying the impact on the resolvent. This method is par-

ticularly useful when the matrix is a sum of independent random variables or when the

matrix has independent rows or columns. The leave-one-out method is often simple to use

and relies on the concentration of quadratic forms [BZ08; BS10]. This concentration can

be established using a variety of techniques, for instance using concentration of measure

arguments [Cho22; LLC18]. Indeed, when the entries of the random matrix of interest can

be expressed as the Lipschitz image of Gaussian random variables, one may use a powerful

Gaussian concentration inequality to establish the concentration of various functionals.

Proposition 2.3.1 (Gaussian concentration inequality for Lipschitz functions [Tao12, The-

orem 2.1.12] and [Led01, Proposition 1.10]). Suppose that x ∼ N (0, Iγ) and let f : Rγ 7→ R
be a λ-Lipschitz function. Then, for every t ∈ R,

P (|f(x)− E[f(x)]| ≥ t) ≤ c1e
− c2t

2

λ2

for some absolute constants c1, c2 ∈ R>0.

Another approach is the moment method, which can be more combinatorial and differs

from resolvent analysis [FM19; BP21].

The “Gaussian method”, utilizing Stein’s lemma and a Lindeberg’s interpolation trick,

has also proven to be effective [PS11]. This method relies on Stein’s lemma to study the
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expected resolvent of random matrices with Gaussian entries.

Proposition 2.3.2 (Stein’s lemma [Ste81, Lemma 1]). Let x ∼ N (0, 1) be a real random

variable and let f : R 7→ R be an indefinite integral of the Lebesgue measurable function f ′.

Suppose that E|f ′(x)| < ∞. Then, E[xf(x)] = E[f ′(x)].

Then, one may use a Nash-Poincaré inequality, as shown in [Pas05, Proposition 2.4], to

establish the concentration of the functional of the resolvents around their mean. It is worth

noting that while the aforementioned approach is specific to Gaussian matrices, it can be

extended to more general matrices using Lindeberg’s interpolation trick [PS11].

The method that we focus on in this thesis is the matrix Dyson equation (MDE). The

matrix Dyson equation is a crucial method used in constructing a deterministic equivalent

for the resolvent of a random matrix. Given a symmetric random matrix H ∈ Rn×n, the

matrix Dyson equation takes the form

(EH − E[(H − EH)M(H − EH)]− zIn)M = In

for z ∈ H. The equation contains the mean matrix EH and encodes the covariance structure

in the so-called superoperator M 7→ E[(H − EH)M(H − EH)]. In order to use the matrix

Dyson equation framework, the first step is to demonstrate the existence of a unique solution

within a suitable admissible set. As we aim for the solution to serve as a deterministic

equivalent for the random resolvent (H − zIn)
−1, it must share certain properties with the

resolvent, such as analyticity and a positive definite imaginary part. To show the existence of

this unique solution, we rely on the Earle-Hamilton fixed-point theorem [HFS07]. The unique

solution becomes the candidate deterministic equivalent for the random resolvent. The next

step is to confirm that the solution of the MDE closely matches the random resolvent. We

accomplish this in two substeps. First, we demonstrate that the random resolvent nearly

solves the MDE, up to an additive perturbation matrix. If we can show that this perturbation

matrix vanishes in a suitable sense, then the random resolvent asymptotically solves the

MDE. Lastly, we must ensure that the matrix Dyson equation is stable. This means that

two functions nearly solving the MDE should be close to each other, which is a standard

consideration in the fixed-point literature.
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For an in-depth introduction to this subject, we recommend reading [Erd19]. The vector

version of the matrix Dyson equation has proven invaluable in establishing local laws for Gen-

eralized Wigner matrices [AEK17; AEK19a; AKE17]. Extending its applicability, the matrix

Dyson equation has been instrumental in investigating local laws for Hermitian matrices with

correlations featuring fast decay, as well as those with slower correlation decay, particularly

focusing on regular edges [Alt+20] and regions away from the support edges [EKS19]. A

notable advantage of the matrix Dyson equation is that its solution is given by a Stieltjes

representation. Leveraging this equation, detailed regularity properties of the self-consistent

density of states have been explored [AEK18], and bounds on the spectrum of Kronecker

random matrices have been established [Alt+19]. In this thesis, we will explore a broader

version of the matrix Dyson equation. Thus, we reserve the detailed discussion of the matrix

Dyson equation’s various properties for our theoretical exploration.

For now, a constructive approach is to heuristically derive the matrix Dyson equation for

a Gaussian Orthogonal Ensemble (GOE) matrix. A matrix G ∈ Rn×n is considered a GOE

matrix if its entries are independent and identically distributed (i.i.d.) up to symmetry,

meaning that Gj,k ∼ N (0, 2) and Gj,k ∼ N (0, 1) for every 1 ≤ j, k ≤ n and j ̸= k.

Particularly, to generate a GOE matrix, we sample a matrix of i.i.d. Gaussian Z ∈ Rn×n

and set G = Z+ZT
√
2

. Let H = n− 1
2G be a normalized GOE matrix. We present the following

lemma and provide a brief sketch of the proof because it is a good illustration of how we will

eventually apply our extension of the matrix Dyson equation framework to study random

matrices.

Before stating the result, we recall that the notation on(f(n)) refers to any function g(n)

such that limn→∞
g(n)
f(n)

= 0.

Lemma 2.3.2. Let H ∈ Rn×n be a GOE matrix. Then, −(E[HE[RH(z)]H]+zIn)ERH(z) =

In + on(1).

Sketch of proof. Rearranging the equation E[(H − zIn)RH(z)] = In, we get

−(E[HE[RH(z)]H] + zIn)ERH(z) = In − E[HRH(z)]− E[HE[RH(z)]H]ERH(z).
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By Stein’s lemma, we have

E[GRH(z)]j,k = E[Gj,aRH(z)a,k] =
∑
a̸=j

E
[
∂RH(z)

∂Gj,a

]
a,k

+
√
2E
[
∂RH(z)

∂Zj,j

]
j,k

.

Let Ej,k is the matrix which has all zero entries except the (j, k) entry, which is 1. By

Lemma 2.2.1,

lim
h→0

R
H+

√
2
n
hEj,j

(z)−RH(z)

h
= lim

h→0
−
√

2

n
R

H+
√

2
n
hEj,j

(z)Ej,jRH(z)

= −
√
2n− 1

2RH(z)Ej,jRH(z)

for every j. Similarly, for j ̸= a,

lim
h→0

RH+ h√
n
(Ej,a+Ea,j)

(z)−RH(z)

h
= lim

h→0
−n− 1

2RH+ h√
n
(Ej,a+Ea,j)

(z)(Ej,a + Ea,j)RH(z)

= −n− 1
2RH(z)(Ej,a + Ea,j)RH(z)

Therefore, −E[HRH(z)] = n−1E[(RH(z))
2] + n−1E[tr(RH(z))(H − zIn)

−1] + on(1). Since

the resolvent RH(z) is bounded in spectral norm, it follows from Jensen’s inequality that

the term n−1E[(RH(z))
2] is of order n−1 in spectral norm. For any H1, H2 ∈ Rn×n, it fol-

lows from Lemma 2.2.1 and the Cauchy-Schwarz inequality for the Frobenius norm that

n−1| tr(RH1(z)−RH2(z))| ≤ n− 1
2∥RH1(z)(H1 −H2)RH2(z)∥F . Using Lemma 2.2.7 and the

fact that resolvent is bounded in spectral norm, we have n−1/2∥RH1(z)(H1−H2)RH2(z)∥F ≤
n−1/2(ℑ[z])−2∥(H1 −H2)∥F . By Proposition 2.3.1, the probability that n−1 tr(RH(z)) devi-

ates from its mean by more than t is bounded above by c1 exp(−c2ℑ[z]2n2t2) for some abso-

lute constants c1, c2 ∈ R>0. This implies that n−1 tr(RH(z)) concentrates around its mean.

Hence, n−1E[tr(RH(z))RH(z)] ≈ n−1 tr(ERH(z))ERH(z). On the other hand, straightfor-

ward calculations gives E[HE[RH(z)]H]ERH(z) = n−1(ERH(z))
2+n−1 tr(ERH(z))ERH(z).

This gives the claim.

If we have stability of the matrix Dyson equation, then we can conclude that the solution

of the matrix Dyson equation is an asymptotic deterministic equivalent for the expected

24



random resolvent E(H − zIn)
−1. Using the Gaussian concentration inequality for Lipschitz

functions, we can show that the expected random resolvent is a deterministic equivalent for

the random resolvent itself. Hence, we can use the solution of the matrix Dyson equation as

a deterministic equivalent for the random resolvent. This is a broad and incomplete overview

of how the matrix Dyson equation is derived. We will provide a more detailed discussion

regarding using the matrix Dyson equation to derive deterministic equivalents for random

matrices later in this thesis.

2.3.4 Linearization Trick

The matrix Dyson equation is a powerful tool for deriving deterministic equivalents, but it is

limited to certain classes of matrices. To illustrate this point, consider two examples where

we compute the superoperator for Wigner and Wishart matrices.

Example 2.3.1 (Superoperator for Wigner matrix). Let Z ∈ Rn×n be a matrix with i.i.d.

standard Gaussian entries and define the Wigner matrix W = (2n)−
1
2 (Z +ZT ) ∈ Rn×n. Let

M ∈ Cd×d be any deterministic matrix. Then, for 1 ≤ j, k ≤ d, we have E[WMW ]j,k =∑
a,b EWj,aMa,bWb,k. Indeed, EWj,aMa,bWb,k ̸= 0 if and only if either (j, a) = (b, k) or

(j, a) = (k, b). Thus, E[WMW ]j,k = Ij=k
n−1
n
Mj,j + Ij=k2n

−1Mj,j + Ij ̸=kn
−1Mk,j. Hence, if

M is bounded in norm as n → ∞, we have E[WMW ] = n−1 tr(M)In + on(1).

Example 2.3.2 (Superoperator for Wishart matrix). Let Z ∈ Rd×n be a matrix with i.i.d.

standard Gaussian entries and define the Wishart matrix W = n−1ZZT ∈ Rd×d. Let M ∈
Cd×d be any deterministic matrix. Indeed, EW = Id and E[(W − EW )M(W − EW )] =

E[WMW ]−M . For 1 ≤ j, k ≤ d, we have E[WMW ]j,k = n−2
∑

a,b,p,q EZj,aZb,aMb,pZp,qZk,q.

Since the entries of Z are i.i.d. centered Gaussian, EZj,aZb,aMb,pZp,qZk,q is not zero if and only

we can group the indices into even groups. This gives E[WMW ]j,k = Ij=kn
−1E[Z4

1,1]Mj,j +

Ij=k
n(n−1)

n2 Mj,j + Ij ̸=kMj,k + Ij ̸=kn
−1Mk,j + Ij=kn

−1
∑

a̸=j Ma,a. Hence, if M is bounded in

norm as n → ∞, we have E[(W − EW )M(W − EW )] = n−1 tr(M)Id + on(1).

Examples 2.3.1 and 2.3.2 illustrate that the superoperator for Wigner and Wishart ma-

trices are asymptotically equal. Substituting the superoperator E[WMW ] = n−1 tr(M)In

for the Wigner matrix into the matrix Dyson equation, we obtain m = −(m + z)−1 for

m = n−1 tr(M). Solving for m using the fact that as ℑ[z] → ∞ we have m(z) → 0 to choose
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the right root, we get m =
√
z2−4−z

2
. This is precisely the Stieltjes transform of the semicir-

cular distribution in Figure 2.1. On the other hand, substituting the same superoperator for

the matrix Dyson equation associated with the Wishart matrix, we get m = d
n
(1−m− z)−1.

In particular, m satisfies d
n
m2 − (1− z)m+ 1 = 0. The equation for the Stieltjes transform

of the Marchenko-Pastur law, as shown in Figure 2.1, is d
n
m2 − (1− d

n
− z)m+ 1 = 0.

To summarize, while the matrix Dyson equation correctly recovers the limiting behavior of

the Stieltjes transform for the Wigner matrix, it fails to capture the correct limiting behavior

for the Wishart matrix. This is because the matrix Dyson equation is only applicable to

a certain class of matrices, essentially those that are “Wigner-like”. This is a significant

limitation of the matrix Dyson equation. In order to extend its applicability to a broader

class of matrices, we employ a linearization trick. The idea behind linearizations, which are

also referred to as linear pencils or realizations, is to represent rational functions of random

matrices as blocks of inverse of larger random matrices which depend linearly on their blocks.

These linearizations possess simpler correlation structures, rendering them more amenable

to certain types of analysis.

The concept of linearization became particularly important following the influential work

of Haagerup and Thorbjørnsen. This work essentially demonstrated that to analyze a poly-

nomial expression in matrices, it is sufficient to consider a linear polynomial with matrix

coefficients [HT05]. However, a limitation of [HT05] is that their linearization approach

does not inherently preserve the self-adjointness of the original polynomial expression. An-

derson addressed this problem, proving that a self-adjoint polynomial expression allows the

linearization’s coefficients to be chosen in a way that retains self-adjointness [And13]. This

finding was later generalized to include rational expressions [HMS18]. The fact that lin-

earizations are not unique has inspired other linearization methods. For example, [EKN20]

developed the concept of a minimal linearization. A key strength of these linearization tech-

niques is that their supporting arguments are often constructive, giving explicit instructions

for creating appropriate linearizations.

Examples 2.3.3 to 2.3.5 illustrate how the linearization trick can encode the resolvent of

common random matrices as the inverse of a larger random matrix. We use the notation

M−1
1,1 ≡ [M−1]1,1 to refer to the (1, 1) sub-block of the inverse of a block matrix M .
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Example 2.3.3 (Linearization for Wishart matrix). Let X ∈ Cn×d and z ∈ H. Then,[
−zIn X

X∗ −Id

]−1

1,1

= (XX∗ − zIn)
−1.

Example 2.3.4 (Linearization for sample covariance matrix). Let X ∈ Cn×d, Y ∈ Cd×m and

z ∈ H. Then, 
−zIn 0 0 X

0 0 Y −Id

0 Y ∗ −Im 0

X∗ −Id 0 0


−1

1,1

= (XY Y ∗X∗ − zIn)
−1.

Example 2.3.5 (Linearization for the anticommutator). Let X, Y ∈ Cn×d and z ∈ H. Then,

−zIn X Y

X∗ 0 −Id

Y ∗ −Id 0


−1

1,1

= (XY ∗ + Y X∗ − zIn)
−1.

The linearization trick is a powerful tool within free probability, enabling the study of

random matrix polynomials on the global scale [And13; BMS17; HT05; HMS18; HMV06] and

the local scale [EKN20; FKN23; And15]. Combined with operator-valued free probability,

the linearization trick—referred to as the pencil method in this context—has found successful

applications in the study of simple neural networks [MP22; ALP22; AP20a; AP20b; TAP21].

We will revisit the linearization technique and its integration with our theoretical framework

when studying the asymptotic empirical test error of random features ridge regression.

The linearization trick, illustrated in Examples 2.3.3 to 2.3.5, naturally leads to the study

of pseudo-resolvents, or generalized resolvents. Given a linearization L ∈ Cℓ×ℓ for ℓ = n+ d,

we aim to understand the asymptotic properties of the pseudo-resolvent (L− zΛℓ)
−1, where

Λ = diag{In, 0d×d}. As a generalization of resolvents, pseudo-resolvents are inherently more

challenging to analyze than resolvents due to the absence of a spectral parameter spanning

the entire diagonal. For example, unlike Hermitian matrix resolvents which are bounded

by the inverse of the imaginary part of the spectral parameter as stated in Lemma 2.3.1,
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pseudo-resolvents lack such an a priori bound. Despite these challenges, the matrix Dyson

equation has been extended for pseudo-resolvent analysis. Anderson derived global laws for

linearizations of polynomials in independent Wigner matrices, terming their matrix Dyson

equation the Schwinger-Dyson equation [And13]. This work was expanded to study the anti-

commutator (see Example 2.3.5) on a local scale [And15] and more generally to polynomials

of matrices with independent centered entries and suitable normalization [EKN20; FKN23]

under the name Dyson equation for linearization (DEL).

In this work, we develop a framework based on an extension of the matrix Dyson equation

to study asymptotic properties of linearizations with a general correlation structure. This

provides an alternative to the use of operator-valued free probability, and we believe that

our framework could find multiple applications in machine learning. Our approach differs

significantly from previous extension of the matrix Dyson equation for linearizations. While

previous research has focused on linearizations with blocks of independent generalizedWigner

matrices, we consider linearizations with arbitrary correlation structures. We are interested

in studying pseudo-resolvents on a global scale, which, although less precise than the local

scale, allows us to relax the assumptions of previous work. Additionally, global laws are

sufficient to make assertions about machine learning models in many cases. Our approach

also provides a novel perspective on studying the matrix Dyson equation. Notably, we

analyze the Carathéodory-Riffen-Finsler pseudometric to demonstrate that the matrix Dyson

equation for linearizations is asymptotically stable under general assumptions. We will

rigorously state our settings in the next section and relate our approach to the literature

while developing our theoretical framework.
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3
Matrix Dyson Equation for Correlated

Linearizations

In this chapter, we extend the matrix Dyson equation to correlated linearizations, demon-

strating that key properties such as existence of a unique solution, asymptotic stability, and

other desirable characteristics persist under these general conditions. Our approach faces

two key challenges. First, the general correlation structures in our study preclude the direct

use of free probability tools commonly leveraged in this field [And13; EKN20]. The second

challenge emerges from the inherent instability of the matrix Dyson equation for linearization

and the pseudo-resolvent when compared to their counterparts involving a spectral parame-

ter spanning a full-rank identity matrix. To overcome these challenges, drawing inspiration

from [EKN20], we introduce a regularized version of the problem in which properties such

as existence and stability can be more easily established. Subsequently, a significant portion

of our efforts is focused on demonstrating that we can gradually eliminate the regularization

while simultaneously increasing the dimension of the problem, thereby preserving these key
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properties. This endeavor is challenging due to the fact that, initially, numerous bounds

and attributes related to the regularized problem deteriorate as the regularization term ap-

proaches zero. An insightful perspective on this is to consider that, with the results obtained

for the full resolvent case, the removal of the regularization essentially corresponds to driving

the spectral parameter towards zero.

Unlike much of the existing MDE literature, we focus on deriving global laws, studying

eigenvalue behavior on a macroscopic scale. While potentially less precise, this allows us to

work under broader assumptions. We believe that generalizing the MDE to obtain global

laws for pseudo-resolvents of correlated linearizations has significant potential, particularly

in machine learning where global laws often provide sufficient insight.

We begin by introducing the settings for the chapter, then outline the main properties of

the MDE for correlated linearizations. Using these, we establish the existence and uniqueness

of the MDE solution within a carefully chosen set. As far as we are aware, our method for

establishing existence represents one of the most comprehensive approach within the existing

literature. Next, we demonstrate asymptotic stability of the solution under appropriate

conditions, offering a novel perspective on this proof. Finally, we show that the unique

solution to the MDE is an asymptotic deterministic equivalent for the pseudo-resolvent of

random linearizations under suitable assumptions.

The results outlined in this chapter are a slight extension of the findings presented by

the current author in [LP23], but we add a more detailed discussion of the results and their

implications.

3.1 Settings

Using the linearization trick introduced in Section 2.3.4, we study a class of real self-adjoint

linearizations of the form

L =

[
A BT

B Q

]
∈ Rℓ×ℓ. (3.1)

Here, A ∈ Rn×n is self-adjoint, Q ∈ Rd×d is self-adjoint with both Q and EQ non-singular,

and B ∈ Rd×n is arbitrary. Our primary focus is analyzing the high-dimensional behavior of

the pseudo-resolvent (L−zΛ)−1, where Λ := diag{In×n, 0d×d} and z ∈ H := {z ∈ C : ℑ[z] >
0} represents the upper half of the complex plane. Our framework relies on the linearized
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matrix Dyson equation (MDE)

(EL− S(M)− zΛ)M = Iℓ, (3.2)

where the spectral parameter z ∈ H and the superoperator

S : M ∈ Cℓ×ℓ 7→

[
S1,1(M) E[(A− EA)M1,1(B − EB)T ]

E[(B − EB)M1,1(A− EA)] E[(B − EB)M1,1(B − EB)T ]

]
∈ Cℓ×ℓ (3.3)

is a symmetric positivity-preserving linear map encoding the correlation structure of the

linearization. Here, by positivity-preserving, we mean that S maps positive semidefinite

matrices to positive semidefinite matrices. On the other hand, by symmetric, we mean

that (S(M))∗ = S(M∗). The sub-superoperator S1,1 also preserves positivity. Importantly,

the expectation in the superoperator is taken only over the linearization, and not over the

superoperator’s argument. Throughout the rest of this thesis, we will refer to (3.2) as the

matrix Dyson equation, or MDE for short. For conciseness, let s ∈ R>0 be such that

∥S(M)∥ ≤ s∥M∥ and ∥Si,j(M)∥ ≤ s∥M1,1∥ for (i, j) ∈ {(1, 2), (2, 1), (2, 2)} and all M ∈
Cℓ×ℓ. This condition resembles the upper bound in the flatness assumption common in MDE

literature [Erd19; Alt18; Alt+19]. Consequently, we will adopt the term flatness to describe

this property.

Remark 3.1.1. Under the setting presented above, Q is non-singular and the Schur comple-

ment of the lower-right d×d block of L−zΛ is given by A−BTQ−1B−zIn. By Lemma 2.2.4,

the Schur complement is non-singular. Hence, we may apply Lemma 2.2.11 to conclude that

the matrix L − zΛ is non-singular, and the pseudo-resolvent (L − zΛ)−1 is well-defined for

every z ∈ H.

We consider S as a perturbation of the full superoperator M ∈ Cℓ×ℓ 7→ E[(L−EL)M(L−
EL)] ∈ Cℓ×ℓ. While the full superoperator is appropriate for resolvent approximation, as

evidenced by the derivation in Example 2.3.1, the perturbed superoperator proves more

convenient for analyzing the MDE. This is because we can first establish good control over

the upper-left block of the matrix Dyson equation and demonstrate the existence of a solution

there. We then leverage the form of the superoperator to extend the solution to the full
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matrix. However, this approach requires a trade-off. Define

S̃ : M ∈ Cℓ×ℓ 7→ E [(L− EL)M(L− EL)]− S(M) ∈ Cℓ×ℓ. (3.4)

Then S̃ must become asymptotically negligible for our approach to be valid.

In order to ensure the existence of a unique solution to the matrix Dyson equation, we

need to restrict (3.2) to a suitable set. Consequently, based on properties of the pseudo-

resolvent (L− zΛ)−1, we introduce the admissible set

M := Hol(H,A ), A := {W ∈ Cℓ×ℓ : ℑ[W ] ⪰ 0 and ℑ[W1,1] ≻ 0}. (3.5)

Our primary strategy for analyzing (3.2) involves initially establishing analogous results

for a regularized version of the equation. This regularization typically simplifies the problem,

enabling us to leverage existing knowledge. Subsequently, we demonstrate the feasibility of

setting the regularization parameter to zero, effectively reverting to the original equation.

Importantly, we ensure that the statements derived for the regularized variant remain valid

in this limit, thereby providing valuable insights into the properties of (3.2). For this reason,

we introduce the regularized matrix Dyson equation (RMDE)

(EL− S(M (τ))− zΛ− iτIℓ)M
(τ) = Iℓ (3.6)

for every τ > 0. The corresponding admissible set is given by

M+ := Hol(H,A+), A+ := {W ∈ Cℓ×ℓ : ℑ[W ] ≻ 0} ∩ A . (3.7)

It will be convenient to view (3.2) as a fixed point equation, so we introduce the MDE

map

F : f ∈ M 7→ (EL− S(f(·))− (·)Λ)−1 ∈ M , (3.8)

assuming its well-definedness, which we establish in lemmas 3.2.1 to 3.2.3. With this defini-

tion, we can reexpress the MDE (3.2) as M = F (M). Whenever convenient, we will fix a

spectral parameter z ∈ H and operate with F over A . Similarly, the formulation of (3.6)
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becomes M (τ) = F (τ)(M (τ)), where

F (τ) : f ∈ M+ 7→ (EL− S(f(·))− (·)Λ− iτIℓ)
−1 ∈ M+ (3.9)

is the RMDE map.

3.1.1 Notation

To maintain consistency between the regularized matrix Dyson equation and the matrix

Dyson equation, we will denote solutions with a regularization parameter of zero (i.e., τ = 0)

as M (0) = M , F (0) = F , etc. Throughout this section, the spectral parameter z ∈ H is fixed,

unless otherwise specified. For notational brevity, we will represent the solution of the MDE

as M ≡ M(z), omitting the explicit dependence on z. Matrices M ∈ Cℓ×ℓ and operators on

this space will be represented in block form

M =

[
M1,1 M1,2

M2,1 M2,2

]

where M1,1 ∈ Cn×n, M1,2 ∈ Cn×d, M2,1 ∈ Cd×n, and M2,2 ∈ Cd×d. Sub-block operations

follow the conventions: M∗
j,k = (Mj,k)

∗ denotes the conjugate transpose of the (j, k) sub-

block, and M−1
j,k = (M−1)j,k denotes the (j, k) block of the inverse of M . We will use ∥ · ∥

to denote the Euclidean norm for vectors and the operator norm for matrices and complex-

valued matrix functions. Additionally, ∥ · ∥F denotes the Frobenius norm, and ∥ · ∥∗ denotes
the nuclear norm.

3.2 Main Properties

In this section, we establish the main properties of the MDE and RMDE. We begin by

demonstrating general properties of the MDE map F and the RMDE map F (τ), such as

their well-definedness. Subsequently, we consider the behavior of the fixed point equations

for large spectral parameters, demonstrating that they are well-behaved in this limit. Then,

we establish a Stieltjes transform representation, as well as a power series representation for

the solution of the matrix Dyson equation. These properties will be crucial to establish the

existence of a unique solution to (3.2) in Section 3.3.
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3.2.1 General Properties

The primary challenge in analyzing (3.2) lies in the fact that the spectral parameter does

not span the entire diagonal. Consequently, obtaining certain desirable properties that are

typically straightforward to establish for the full resolvent case requires additional effort. As

an initial example, it is not immediately evident whether the matrix EL − S(M) − zΛ is

non-singular. The following lemma confirms that this is indeed the case.

Lemma 3.2.1. Let τ ∈ R≥0 and M ∈ A . Then, EL− S(M)− zΛ− iτIℓ is invertible.

Proof. Let M ∈ A be arbitrary. By definition of A , ℑ[M ] ⪰ 0. Since S is symmetric,

linear and positivity-preserving, ℑ[S(M)] = S(ℑ[M ]) ⪰ 0. If τ > 0, it follows directly that

ℑ[EL−S(M)− zΛ− iτIℓ] ⪯ −τ , which implies that EL−S(M)− zΛ− iτIℓ is non-singular

by Lemma 2.2.5.

Assume that τ = 0 and let v∗ = (v∗1, v
∗
2) with v1 ∈ Cn and v2 ∈ Cd be a unitary vector

in the kernel of EL − S(M) − zΛ. We will show that v = 0 and conclude that the kernel

of EL − S(M) − zΛ is trivial. Decomposing EL − S(M) − zΛ into its real and imaginary

parts, we have

0 = v∗(EL− S(M)− zΛ)v = v∗ℜ[EL− S(M)− zΛ]v + iv∗ℑ[EL− S(M)− zΛ]v.

Since both ℜ[EL−S(M)− zΛ] and ℑ[EL−S(M)− zΛ] are Hermitian, the quadratic forms

are real and v∗ℜ[EL−S(M)− zΛ]v = v∗ℑ[EL−S(M)− zΛ]v = 0. Since ℑ[S(M)] ⪰ 0, the

imaginary part of the upper-left n×n block of EL−S(M)− zΛ is negative definite and the

imaginary part of the whole matrix is negative semidefinite. Consequently, it must be the

case that v1 = 0.

Returning to the equation (EL − S(M) − zΛ)v = 0, we have in particular that (EQ −
S2,2(M))v2 = 0. Left-multiplying by v∗2 and decomposing the matrix EQ− S2,2(M) into its

real and imaginary parts,

0 = v∗2ℜ[EQ− S2,2(M)]v2 + iv∗2ℑ[EQ− S2,2(M)]v2.

Again, since the real and imaginary parts of a matrix are Hermitian, the quadratic forms

are real and v∗2ℑ[EQ−S2,2(M)]v2 = v∗2ℜ[EQ−S2,2(M)]v2 = 0. In particular, since M ∈ A ,
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ℑ[M1,1] ≻ 0 and 0 = v∗2ℑ[EQ − S2,2(M)]v2 ≤ −v∗2S2,2(ℑ[M ])v2 ≤ 0. By definition of S2,2,

v∗2S2,2(ℑ[M ])v2 = Ev∗2(B − EB)ℑ[M1,1](B − EB)Tv2. Consequently, as ℑ[M1,1] is positive

definite, it must be the case that (B−EB)Tv2 = 0 almost surely. Going back to the equation

(EQ − S2,2(M))v2 = 0, we obtain EQv2 = 0. However, EQ is non-singular, which implies

that v2 = 0. This is a contradiction, as v is a unitary vector. Consequently, the kernel of

EL− S(M)− zΛ is trivial, and the matrix is non-singular.

For everyM ∈ A , τ ∈ R≥0 and z ∈ H, the upper-left n×n block of EL−S(M)−zΛ−iτIℓ

has negative definite imaginary part. Hence, by Lemma 2.2.5, the upper-left n × n block

is non-singular. By Lemma 2.2.11, this implies that the full matrix EL − S(M) − zΛ −
iτIℓ is non-singular if and only if the associated Schur complement is non-singular. Since

we established non-singularity of the full matrix, this implies that the lower-right block of

(EL−S(M)−zΛ−iτIℓ)
−1 is non-singular. Similarly, the previous lemma establishes that the

lower-right d×d block of EL−S(M)−zΛ−iτIℓ is non-singular. Additionally, the associated

Schur complement has a negative definite imaginary part, which, by Lemma 2.2.5, implies

that the Schur complement is non-singular. Consequently, we obtain the following corollary.

Corollary 3.2.1. Let τ ∈ R≥0 and M ∈ A . Then, the diagonal blocks of (EL − S(M) −
zΛ− iτIℓ)

−1 are invertible.

Lemma 3.2.1 is a first step towards considering the MDE (3.2) as a fixed point equation

F (M) = M , along with its regularized counterpart. This perspective allows us to explore the

existence and uniqueness of solutions by leveraging the extensive theory on fixed points. A

second step in this direction is showing that F and F (τ) both map their respective domains

to themselves. We adapt the argument from [HFS07].

Lemma 3.2.2. Let τ ∈ R≥0, z ∈ H and M ∈ A . Then,

ℑ[F (τ)(M)] ⪰ τF (τ)(M)(F (τ)(M))∗, ℑ[F (τ)
1,1 (M)] ⪰ ℑ[z]F (τ)

1,1 (M)(F (τ)
1,1 (M))∗

and ∥F (τ)
1,1 (M)∥ ≤ (ℑ[z])−1. Furthermore, if τ > 0, then ∥F (τ)(M)∥ ≤ τ−1.

Proof. By Lemma 2.2.6, ℑ[F (τ)(M)] = −F (τ)(M)ℑ[EL − S(M) − zΛ − iτIℓ](F (τ)(M))∗ ⪰
F (τ)(M)(ℑ[z]Λ + τIℓ)(F (τ)(M))∗ ⪰ τF (τ)(M)(F (τ)(M))∗ ⪰ 0. Leveraging the observation
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that the spectral norm of positive semidefinite matrices adheres to the Loewner partial order-

ing of positive semidefinite matrices, we obtain ∥ℑ[F (τ)(M)]∥ ≥ τ∥F (τ)(M)(F (τ)(M))∗∥ =

τ∥F (τ)(M)∥2. By Lemma 2.2.4, ∥F (τ)(M)∥ ≤ τ−1 whenever τ > 0. For the other inequali-

ties, extract the upper-left n×n block of the equation ℑ[F (τ)(M)] ⪰ ℑ[z]F (τ)(M)Λ(F (τ)(M))∗

to obtain ℑ[F (τ)
1,1 (M)] ⪰ ℑ[z]F (τ)

1,1 (M)(F (τ)
1,1 (M))∗ and ∥F (τ)

1,1 (M)∥ ≤ (ℑ[z])−1.

It is important to note that Lemma 3.2.2 reveals a weaker control of the MDE in com-

parison to the RMDE. Specifically, we only have an a priori norm bound for the upper-left

n× n block of F .

Combining lemmas 3.2.1 and 3.2.2, it only remains to show that the MDE map F and

the RMDE map F (τ) preserve holomorphicity to establish that they map their respective

domains to themselves.

Lemma 3.2.3. Let τ ∈ R≥0. Then, F and F (τ) are well-defined. In particular, they map

their respective domains into themselves.

Proof. As mentioned above, it suffices to prove that F and F (τ) preserve holomorphic-

ity. We will only prove this for F , as the proof for F (τ) is analogous. Let M ∈ M

be arbitrary and z, h ∈ H. Since M is holomorphic on H, let DM(z) : h ∈ H 7→
DM(z)h be the Fréchet derivative of M at z. Furthermore, let D[F (M(z))(z)] : h ∈
H 7→ F (M(z))(z)S(DM(z)h)F (M(z))(z) + h[F (M(z))(z)]2. Clearly, D[F (M(z))(z)] is a

bounded linear operator. Furthermore, F (M(z+h))(z+h)−F (M(z))(z)−D[F (M(z))(z) =

X1 +X2 with

X1 = −F (M(z + h))(z + h)S(M(z + h)−M(z)− S(DM(z)h))F (M(z))(z + h)

and X2 = h([F (M(z))(z)]2 − F (M(z))(z + h)F (M(z))(z)). On one hand, since M is holo-

morphic,

lim
h→0

∥X1∥
|h|

≤ s∥F (M(z))(z)∥2 lim
h→0

∥M(z + h)−M(z)− S(DM(z)h)∥
|h|

= 0.

On the other hand, by continuity of the map z 7→ F (M(z))(z) onH, we have limh→0 ∥X2∥/h =

0. Consequently, F (M(z+h))(z+h)−F (M(z))(z)−D[F (M(z))(z)]h = o(h), which implies
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that z 7→ F (M(z))(z) is holomorphic on H. This concludes the proof.

The insights garnered from Lemma 3.2.3, which relies on lemmas 3.2.1 and 3.2.2, leads

us to conceptualize the MDE and RMDE as fixed point equations. This characterization

is instrumental, as we rely on it to assert the existence of a unique solution for (3.6) using

the contractive property of the RMDE map F (τ) with respect to the CRF-pseudometric.

Furthermore, this perspective will be crucial to establish the stability of the MDE in Sec-

tion 3.4.2.

In what follows, we will take advantage of the block structure of the MDE and RMDE.

Using Lemma 2.2.11, we decompose (3.2) as

M1,1 =
(
T1,1(M)− T1,2(M)(T2,2(M))−1T2,1(M)

)−1
, (3.10a)

M2,2 =
(
T2,2(M)− T2,1(M)(T1,1(M))−1T1,2(M)

)−1
, (3.10b)

M1,2 = − F1,1(M)T1,2(M)(T2,2(M))−1 and (3.10c)

M2,1 = − (T2,2(M))−1T2,1(M)F1,1(M) (3.10d)

where we write T (M) = EL− S(M)− zΛ for notational convenience. It may sometimes be

practical to work with the equivalent form

M2,2 = (T2,2(M))−1 + (T2,2(M))−1T2,1(M)F1,1(M)T1,2(M)(T2,2(M))−1. (3.10e)

We may decompose (3.6) similarly. In this case, we will write T (τ)(M) = EL − S(M (τ)) −
zΛ− iτId.

3.2.2 Large Spectral Parameter

For any solution M to (3.2), Lemma 3.2.2 implies that ∥M1,1(z)∥ ≤ (ℑ[z])−1. This bound is

particularly useful when ℑ[z] is large, as it allows us to ensure that the norm of the upper-left

n×n block of M is arbitrarily small. In fact, as this suggests, it will be beneficial to analyze

the limit of the MDE map as ℑ[z] grows large. For every τ ∈ R≥0, we define

M (τ)
⋆ = (EQ− iτId)

−1 and M (τ)
∞ =

[
0n×n 0n×d

0d×n M
(τ)
⋆

]
(3.11)
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and denote M⋆ = M
(0)
⋆ , M∞ = M

(0)
∞ . Indeed, by Lemma 2.2.6, ℑ[M (τ)

∗ ] ⪰ 0. We demonstrate

in Lemma 3.2.4 that M
(τ)
⋆ corresponds precisely to the limit of M (τ)(z) as ℑ[z] diverges to

infinity.

Lemma 3.2.4. Fix τ ∈ R≥0 and assume that M ∈ M such that, for all z ∈ H, M(z) solves

the RMDE (3.6). Then, ∥M(z)−M∞∥ → 0 as ℑ[z] → ∞.

Proof. We proceed block-wise. By Lemma 3.2.2, ∥M1,1(z)∥ ≤ (ℑ[z])−1. Consequently,

∥M1,1(z)∥ → 0 as ℑ[z] → ∞. Furthermore, it follows from Lemma 2.2.6 and the assumed

properties of the superoperator that ℑ[(T (τ)
1,1 (M))−1] ⪰ ℑ[z](T (τ)

1,1 (M))−1(T (τ)
1,1 (M))−∗. Here,

we use the notation T (τ)(M) = EL − S(M) − zΛ − iτIℓ introduced in (3.10). Taking

the norm of both sides and rearranging, we obtain ∥(T (τ)
1,1 (M))−1∥ ≤ (ℑ[z])−1. Hence,

∥(T (τ)
1,1 (M))−1∥ → 0 as ℑ[z] → ∞. Furthermore, using the flatness of the superopera-

tor, we have ∥S1,2(M)∥ ∨ ∥S2,1(M)∥ ∨ ∥S2,2(M)∥ → 0 as ℑ[z] → ∞. This implies that

T1,2(M) → EBT , T2,1(M) → EB and T2,2(M) → EQ− iτId as ℑ[z] → ∞. Since EQ− iτId is

non-singular and the taking a matrix inverse is a continuous operation, (T2,2(M))−1 → M
(τ)
∗

as ℑ[z] → ∞. Finally, using (3.10), we conclude that M(z) → M∞ as ℑ[z] → ∞.

Remark 3.2.1. Similarly to Lemma 3.2.4, it follows from lemmas 2.2.5 and 2.2.11 that ∥(L−
zΛ− iτIℓ)

−1 − diag{0n×n, (Q− iτId)
−1}∥ as ℑ[z] → ∞.

Although the pseudo-resolvent and the solution to the (R)MDE display favorable prop-

erties when the spectral parameter moves far from the real axis, it is crucial to understand

their behavior near the real axis, as this region contains the spectral information. Hence,

we need to bring the spectral parameter closer to the real axis. The next lemma constructs

a loose bound on the norm of any solution to (3.6). This bound holds for every spectral

parameter large enough in norm, regardless of the magnitude of its imaginary part. As a

result, we can explore the behavior of the solution of the (R)MDE for large spectral values

that are close to the real line.

Lemma 3.2.5. Fix τ ∈ R≥0 and assume that M ∈ M such that, for all z ∈ H, M(z) solves

the RMDE (3.6). Then, there exists some constant c ∈ R>0 such that ∥M(z) − M
(τ)
∞ ∥ ≤

c(|z| − κ)−1 for all z ∈ {z ∈ H : |z| > κ + cκ−1} with κ := 2∥(EQ − iτId)
−1∥(∥EB∥ +

(2∥(EQ− iτId)
−1∥)−1)2 + ∥EA∥+ (2∥(EQ− iτId)

−1∥)−1 + s∥(EQ− iτId)
−1∥.
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Proof. Fix z ∈ H with |z| > κ and let M ≡ M(z). For notational convenience, we denote

a = ∥EA∥, b = ∥EB∥ and m⋆ = ∥M (τ)
⋆ ∥. We will show that there exists c ∈ R>0 such that

∥M(z) − M
(τ)
∞ ∥ /∈ (c(|z| − κ)−1, κ] for every z ∈ H with |z| > κ + cκ−1. By Lemma 3.2.4,

∥M(z) −M
(τ)
∞ ∥ is in a neighborhood of the origin for every z ∈ H with ℑ[z] large enough.

Since z 7→ ∥M(z) −M
(τ)
∞ ∥ is a continuous function on {z ∈ H : |z| > κ + cκ−1}, this will

imply that ∥M(z)−M
(τ)
∞ ∥ ∈ [0, c(|z| − κ)−1] for every z ∈ {z ∈ H : |z| > κ+ cκ−1}.

Suppose that ∥M − M
(τ)
∞ ∥ ≤ (2sm⋆)

−1 such that ∥M∥ ≤ ∥M − M
(τ)
∞ ∥ + ∥M (τ)

∞ ∥ ≤
(2sm⋆)

−1 + m⋆. We consider the blocks separately using (3.10). By definition of S2,2,

∥S2,2(M)∥ ≤ s∥M1,1∥ ≤ (2m⋆)
−1. It follows from Lemma 2.2.2 that

∥(T2,2(M))−1∥ = ∥(EQ− iτId)
−1
(
S2,2(M)(EQ− iτId)

−1 − Id
)−1 ∥ ≤ 2m⋆.

By subadditivity of the spectral norm,

∥EA− S1,1(M)− T1,2(M)(T2,2(M))−1T2,1(M)∥ ≤ a+ (2m⋆)
−1 + 2m⋆(b+ (2m⋆)

−1)2.

For z ∈ H with |z| > κ ≥ a + (2m⋆)
−1 + 2m⋆(b + (2m⋆)

−1)2, it follows from Lemma 2.2.2

and (3.10a) that ∥M1,1∥ ≤ (|z|−κ)−1. We now turn our attention toM2,2. Using Lemma 2.2.1

and (3.10b),

M2,2 −M (τ)
⋆ = M2,2

(
S2,2(M) + T2,1(M)(T1,1(M))−1T1,2(M)

)−1
M (τ)

∗ .

By Lemma 2.2.2, ∥(T1,1(M))−1∥ ≤ (|z| − a− (2m⋆)
−1 − sm⋆)

−1. Hence,

∥M2,2−M (τ)
⋆ ∥ ≤ sm⋆((2sm⋆)

−1+m⋆)∥M1,1∥+m⋆((2sm⋆)
−1+m⋆)(b+(2m⋆)

−1)2 (|z| − κ)−1 .

Plugging the bound for ∥M1,1∥ derived above and simplifying,

∥M2,2 −M (τ)
⋆ ∥ ≤ m⋆(s+ (b+ (2m⋆)

−1)2)((2sm⋆)
−1 +m⋆)(|z| − κ)−1.

It only remains to treat ∥M1,2∥ and ∥M2,1∥, which we directly bound by

max{∥M1,2∥, ∥M2,1∥} ≤ 2m⋆(b+ (2m⋆)
−1)∥M1,1∥ ≤ 2m⋆(b+ (2m⋆)

−1)(|z| − κ)−1
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using (3.10c) and (3.10d). To summarize, we showed that for every z ∈ H with |z| >

a+ (2m⋆)
−1 + 2m⋆(b+ (2m⋆)

−1)2 + sm⋆, ∥M(z)−M
(τ)
∞ ∥ ≤ (2sm⋆)

−1 implies that

∥M(z)−M (τ)
∞ ∥ ≤ ∥M1,1(z)∥+ ∥M1,2∥+ ∥M2,1∥+ ∥M2,2 −M (τ)

⋆ ∥ ≤ c(|z| − κ)−1

with c := 1 +m⋆(s + (b + (2m⋆)
−1)2)((2sm⋆)

−1 +m⋆) + 4m⋆(b + (2m⋆)
−1). Choosing |z| >

κ+ cκ−1 completes the proof.

The previous lemma is a key step in controlling the norm of the solution to the RMDE

for large spectral parameters. We will now proceed with our analysis of the RMDE by estab-

lishing an upper bound on the imaginary part of any solution when the spectral parameter

large.

Lemma 3.2.6. Fix τ ∈ R≥0 and assume that M ∈ M such that, for all z ∈ H, M(z)

solves the RMDE (3.6). Let κ and c be defined as in Lemma 3.2.5. Then, there exists

κ+ ≥ κ+ cκ−1 and constant c+ ∈ R>0 such that ∥ℑ[M1,1(z)]∥ ≤ c+(|z| − κ)−2(τ + ℑ[z]) for
every z ∈ {z ∈ H : |z| ≥ κ+}. In particular, if τ = 0, then ∥ℑ[M(z)]∥ converges uniformly

to 0 as ℑ[z] ↓ 0 on {z ∈ H : ℜ[z] ≥ κ+}.

Proof. Let m ≡ m(z) = c(|z|−κ)−1 be the bound in Lemma 3.2.5 and choose κ+ ≥ κ+ cκ−1

such that 3sm2 ≤ 2−1 and 4sm2(1 + 2(m + m⋆)
2) ≤ 2−1 for all z ∈ H with |z| ≥ κ+. Fix

z ∈ H with |z| ≥ κ+ and denote M = M(z).

By Lemma 2.2.6, we may write ℑ[M ] = M(ℑ[z]Λ+iτIℓ+S(ℑ[M ]))M∗. By Lemma 3.2.5,

∥M∥ ≤ ∥M −M∞∥+ ∥M∞∥ ≤ m+m⋆ where we denote m⋆ = ∥M (τ)
∗ ∥ = ∥(EQ− iτId)

−1∥.
Furthermore, by flatness, ∥S1,2(ℑ[M ])∥ ∨ ∥S2,1(ℑ[M ])∥ ∨ ∥S2,2(ℑ[M ])∥ ≤ s∥ℑ[M1,1]∥ and

∥S1,1(ℑ[M ])∥ ≤ s∥ℑ[M ]∥. Let N ∈ R2×2 such that Nj,k = ∥ℑ[Mj,k]∥. Then,

N ≤

[
m m

m m+m⋆

][
ℑ[z] + τ + s∥ℑ[M ]∥ s∥ℑ[M1,1]∥

s∥ℑ[M1,1]∥ τ + s∥ℑ[M1,1]∥

][
m m

m m+m⋆

]
,

where the inequality is entry-wise. Expanding the product, we get that

∥ℑ[Mj,k]∥ ≤ m2ℑ[z] + 2(m+m⋆)
2τ + 3s(m+m⋆)

2∥ℑ[M1,1]∥+ sm2∥ℑ[M ]∥

40



for every (j, k) ∈ {(1, 2), (2, 1), (2, 2)}. In particular, since ∥ℑ[M ]∥ ≤
∑2

j,k=1 ∥ℑ[Mj,k]∥,

x ≤ m2ℑ[z] + 2(m+m⋆)
2τ + 4s(m+m⋆)

2∥ℑ[M1,1]∥+ 3sm2x

where x = ∥ℑ[M1,2]∥ ∨ ∥ℑ[M2,1]∥ ∨ ∥ℑ[2, 2]∥. Given our choice of κ+, we can rearrange to

obtain x ≤ 2m2ℑ[z] + 4(m+m⋆)
2τ +8s(m+m⋆)

2∥ℑ[M1,1]∥. Using the bound for N above,

∥ℑ[M1,1]∥ ≤ m2ℑ[z] + 2m2τ + 4sm2∥ℑ[M1,1]∥+m2x

≤ m2(1 + 2m2)ℑ[z] + 2m2(1 + 2(m+m⋆)
2)τ + 4sm2(1 + 2(m+m⋆)

2)∥ℑ[M1,1]∥.

Rearranging, we obtain that ∥ℑ[M1,1]∥ ≤ 2m2(1 + 2m2)ℑ[z] + 4m2(1 + 2(m+m⋆)
2)τ . This

proves the first part of the lemma. The second part follows from the first part and the

derived bound on x.

3.2.3 Stieltjes Transform Representation

Given our chosen admissible set, it is evident that any solution to (3.2) or (3.6) is a matrix-

valued Herglotz function. Specifically, every solution possesses a Stieltjes transform rep-

resentation, as guaranteed by Theorem 2.2.1. This representation will prove particularly

advantageous, as the positive semidefinite measure in the Stieltjes transform representation

of the solution to the MDE is compactly supported.

Lemma 3.2.7 (Stieltjes transform representation). Assume that M ∈ M such that, for all

z ∈ H, M(z) solves the MDE (3.2). Then,

M(z) = M∞ +

∫
R

Ω(dλ)

λ− z

for all z ∈ H, where Ω is a matrix-valued measure on bounded Borel subsets of R. Addition-
ally, Ω is compactly supported and satisfies

∫
R
Ω(dλ) =

[
In −EBT (EQ)−1

−(EQ)−1EB (EQ)−1E[BBT ](EQ)−1.

]
.
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Proof. By Lemma 3.2.4, ∥M −M∞∥ → 0 as ℑ[z] → ∞. Using (3.10a), we have

zM1,1 = −In + (EA− S1,1(M)− T1,2(M)(T2,2(M))−1T2,1(M))M1,1.

Hence, zM1,1(z) → −In as ℑ[z] → ∞. In addition, by (3.10c), (3.10d) and Lemma 3.2.4,

zM1,2 → EBT (EQ)−1 and zM2,1 → (EQ)−1EB as ℑ[z] → ∞. Finally, by (3.10e) and

Lemma 2.2.1,

z(M2,2 −M⋆) = (T2,2(M))−1S2,2(zM)M⋆ + (T2,2(M))−1T2,1(M)zM1,1T1,2(M)(T2,2(M))−1.

By definition of the superoperator,

lim
ℑ[z]→∞

S2,2(zM) = E[(B − EB) lim
ℑ[z]→∞

zM1,1(B − EB)T ] = −E[(B − EB)(B − EB)T ].

Since S2,2(M) approach 0 as ℑ[z] approaches infinity, (T2,2(M))−1 → (EQ)−1 as ℑ[z] →
∞. Also, T1,2(M) → EBT and T2,1(M) → EB as ℑ[z] → ∞. We get z(M2,2 − M⋆) →
(EQ)−1E[BBT ](EQ)−1 as ℑ[z] → ∞. Since M∞ is real, it is clear that M − M∞ is a

matrix-valued Herglotz function. Hence, by Theorem 2.2.1,

M(z) = M∞ +

∫
R

Ω(dλ)

λ− z

for all z ∈ H, where Ω is a matrix-valued measure on bounded Borel subsets of R satisfying

∫
R
Ω(dλ) = − lim

η→∞
iηM(iη) =

[
In −EBT (EQ)−1

−(EQ)−1EB (EQ)−1E[BBT ](EQ)−1.

]

It only remains to show that Ω is compactly supported. By Lemma 3.2.6, the imaginary

part ℑ[M(z)] converges uniformly to 0 as ℑ[z] → 0 on {z ∈ H : ℜ[z] ≥ κ+}. Hence, by

Lemma 2.2.9, Ω is compactly supported on [−κ+, κ+], where κ+ is the constant defined in

Lemma 3.2.6.

We can interpret the integral representation in Lemma 3.2.7 as a matrix-valued Stieltjes

transform. Hence, we will refer to it using this terminology. Furthermore, given the nor-

42



malization of Ω in Lemma 3.2.7, we say that Ω1,1 is a matrix-valued probability measure in

the sense that v∗Ω1,1v is a real Borel measure satisfying
∫
R v

∗Ω1,1(dλ)v = 1 for every v ∈ Cn

with ∥v∥ = 1.

Lemma 3.2.7 provides an explicit bound on the solution to (3.2), which we state in the

following corollary.

Corollary 3.2.2. Assume that M ∈ M such that, for all z ∈ H, M(z) solves the MDE (3.2).

Then, for every z ∈ H,

∥M(z)∥ ≤ ∥M∞∥+ dist(z, supp(Ω))−1

∥∥∥∥∫
R
Ω(dλ)

∥∥∥∥ . (3.12)

It is tempting to try to directly generalize Lemma 3.2.7 to the solution of the regularized

matrix equation (3.6). However, we encounter a challenge in applying the same procedure

to obtain a bound on the solution to the regularized version. The issue arises from the fact

that, when the regularization parameter τ is strictly positive, M
(τ)
∞ has a positive semidefinite

imaginary part, which implies that the function z 7→ M (τ)(z) − M∞ may not be Herglotz.

One potential alternative approach is to utilize a multivariate Herglotz representation, as

discussed in [LN17]. This representation provides an integral representation for the function

(z, iτ) 7→ M (τ)(z) involving a multivariate measure. However, it should be noted that in such

representations, the measure cannot be finite unless it is trivial. Nonetheless, an analogue of

Lemma 3.2.7 holds for the upper-left n × n block of the solution to the RMDE. The result

is obtained via a similar argument, so we omit the proof.

Lemma 3.2.8. Fix τ ∈ R≥0 and assume that M ∈ M such that, for all z ∈ H, M(z)

solves the RMDE (3.6). Then, M1,1(z) =
∫
R

Ω1,1(dλ)

λ−z
for all z ∈ H, where Ω1,1 is a n × n

matrix-valued measure on Borel subsets of R satisfying
∫
R Ω1,1(dλ) = In.

Aside from their inherent value as results, lemmas 3.2.7 and 3.2.8 are particularly sig-

nificant because they allow us to treat the solution of the MDE as the limit of solutions to

the RMDE as τ approaches zero. The tightness of the family of measures induced by the

Stieltjes representation of RMDE solutions plays a key role in this step.

Corollary 3.2.3. For every τ ∈ R>0, let M (τ) ∈ M+ such that, for all z ∈ H, M (τ)(z)

solves the RMDE (3.6). For all τ ∈ R>0, denote by Ω
(τ)
1,1 the positive semidefinite measure
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in the Stieltjes transform representation of M
(τ)
1,1 . Then, for every v ∈ Cn and τ+ ∈ R>0, the

family of measures {v∗Ω(τ)
1,1v : τ ∈ [0, τ+]} is tight.

Proof. Let τ ∈ R>0. By lemmas 3.2.5 and 3.2.6, there exists κ, c, κ+ ∈ R>0 such that

∥ℑ[M1,1(z)]∥ ≤ c(|z| − κ)−2(τ + ℑ[z]) for every z ∈ H with |z| ≥ κ+. Then,

∥ℑ[M1,1(λ+ iϵ)]∥ ≤ c(
√
λ2 + ϵ2 − κ)−2(τ + ϵ) ≤ c(λ− κ)−2(τ + ϵ)

for every λ > κ+ and ϵ ∈ [0, 1]. Here, c is some constant independent of λ and τ . Hence, for

every λ+ > κ+, according to the Stieltjes inversion formula for Ω(τ) as stated in Lemma 2.2.9,

Ω
(τ)
1,1 ((λ+,∞)) ⪯ π−1 lim

ϵ↓0

∫ ∞

λ+

ℑ[M (τ)
1,1 (λ+ iϵ)]dλ

⪯ π−1 lim
ϵ↓0

∫ ∞

λ+

∥ℑ[M (τ)
1,1 (λ+ iϵ)]∥dλ

⪯ cπ−1τ

∫ ∞

λ+

(λ− κ)−2dλ.

Therefore, if τ is bounded, we may pick λ+ > κ+ arbitrarily large to ensure that
∫∞
λ+
(λ −

κ)−2dλ is arbitrarily small.

3.2.4 Power Series Representation

As the set of admissible solutions M comprises analytic matrix-valued functions, any solution

to equation (3.2) can be locally expressed as a power series. Utilizing the Stieltjes transform

representation provided in Lemma 3.2.7, we can derive a solvable recurrence relation that

determines the coefficients in such an expansion. This recurrence relation facilitates the

systematic computation of the coefficients in the power series representation of the solution.

Lemma 3.2.9. Let M ∈ M such that, for all z ∈ H, M(z) solves the MDE (3.2) and let Ω

be the positive semidefinite measure in Lemma 3.2.7. Then, there exists λ+ > sup{|λ| : λ ∈
supp(Ω)} such that

M(z) =
∞∑
j=0

z−jMj = (EL− zΛ)−1
∞∑
j=0

(
∞∑
k=0

z−kS(Mk)(EL− zΛ)−1

)j
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for every z ∈ H with |z| ≥ λ+. Here, M0 = M∞ and Mj = −
∫
R λ

j−1Ω(dλ) for every j ∈ N.

Proof. Since Ω is compactly supported by Lemma 3.2.7, sup{|λ| : λ ∈ supp(Ω)} is finite.

Let z ∈ H with |z| > sup{|λ| : λ ∈ supp(Ω)} and write

M(z) = M∞ +

∫
R

Ω(dλ)

λ− z
= M∞ − z−1

∫
R

Ω(dλ)

1− λ/z
.

We recognize (1−λ/z)−1 as a geometric series and write (1−λ/z)−1 =
∑∞

j=0
λj

zj
. By Fubini’s

theorem, ∫
R

Ω(dλ)

1− λ/z
=

∞∑
j=0

z−j

∫
R
λjΩ(dλ)

which implies that

M(z) = M∞ −
∞∑
j=0

z−j−1

∫
R
λjΩ(dλ).

On the other hand, by definition, M(z) solves (3.2), and we may write M(z) = F (M(z)) =

(EL− S(M(z))− zΛ)−1. Using Lemma 2.2.11,

(EL− zΛ)−1 =

[
R −RE[BT ]Q−1

−Q−1E[B]R Q−1 +Q−1E[B]RE[BT ]Q−1

]
(3.13)

with R = RE[BT ](EQ)−1E[B]−E[A](z). Since ∥R∥ ≤ dist(z, σ
(
E[A]− E[BT ]Q−1E[B]

)
)−1 by

Lemma 2.3.1, we obtain (EL− zΛ)−1 −→ M∞ as |z| → ∞. Because M∞ is non-zero only in

its lower-right d×d block, it follows from Lemma 3.2.5 and the flatness of the superoperator

that ∥S(M(z))(EL− zΛ)−1∥ → 0 as |z| → ∞. Let λ+ > max{|λ| : λ ∈ supp(Ω)} such that

∥S(M(z))(EL − zΛ)−1∥ < 1 for all z ∈ H with |z| ≥ λ+. Then, Iℓ − S(M(z))(EL − zΛ)−1

is non-singular with Neumann series

(
Iℓ − S(M(z))(EL− zΛ)−1

)−1
=

∞∑
j=0

(
S(M(z))(EL− zΛ)−1

)j
.
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In particular,

(EL− S(M(z))− zΛ)−1 = (EL− zΛ)−1

∞∑
j=0

(
S(M(z))(EL− zΛ)−1

)j
.

We obtain the result by plugging the series expansion for M(z) and using linearity of the

superoperator.

3.3 Existence and Uniqueness

In this section, we establish the existence and uniqueness of a solution to the MDE (3.2).

As discussed earlier, we begin by proving the existence of a solution to the RMDE (3.6)

for every τ ∈ R>0, followed by employing a continuity argument to consider the vanishing

regularization.

3.3.1 Solution to the Regularized Matrix Dyson Equation

For every τ ∈ R>0, the existence of a unique M ∈ M+ satisfying (3.6) for every z ∈ H
follows directly from [HFS07]. At a high level, the proof of the existence of a solution to the

RMDE (3.6) proceeds by demonstrating that the map M 7→ F (τ)(M) is strictly holomorphic

on bounded domains of M+. By the Earle-Hamilton fixed-point theorem, strict holomor-

phicity implies that the mapping is contractive with respect to the CRF-pseudometric. For

further details on the CRF-pseudometric and a proof of the Earle-Hamilton fixed-point the-

orem, we refer the reader to sections 2.1.2 and 2.1.3.

Define

Mb := Hol(H ∩ bB,Ab), and Ab := A+ ∩ Bb(0) (3.14)

for every b > 0. Indeed, for every b ∈ R>0, Mb is a domain in the Banach space of matrix-

valued bounded holomorphic functions on H with the canonical supremum norm. Also, Ab is

a domain in the Banach space of complex symmetric ℓ× ℓ matrices with the operator norm.

Using the work we did above, we can easily show that F (τ) is indeed a strict holomorphic

function on Ab for every τ ∈ R>0. The following lemma is a direct adaptation of [HFS07,

Proposition 3.2].
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Lemma 3.3.1. Let z ∈ H, τ, b ∈ R>0 and define mb = ∥EL∥+ sb+ |z|+ τ . Then, for every

W ∈ Ab, ∥F (τ)(W )∥ ≤ τ−1 and ℑ[F (τ)(W )] ⪰ τm−2
b Iℓ ≻ 0. In particular, if b > τ−1, then

F (τ) maps Mb strictly into itself.

Proof. LetW ∈ Ab. By Lemma 3.2.2, ∥F (τ)(W )∥ ≤ τ−1 and ℑ[F (τ)(W )] ⪰ τF (τ)(W )[F (τ)(W )]∗.

Let v ∈ Cℓ such that ∥v∥ = 1. By Cauchy-Schwarz inequality,

1 = v∗(F (τ)(W ))−1F (τ)(W )v ≤ ∥F (τ)(W )v∥∥(F (τ)(W ))−∗v∥

which implies that ∥(F (τ)(W ))−1∥−2 ≤ ∥(F (τ)(W ))−∗v∥−2 ≤ ∥F (τ)(W )v∥2. Additionally,

∥(F (τ)(W ))−1∥ = ∥EL− S(W )− zΛ− iτIℓ∥ ≤ mb.

Thus, ℑ[F (τ)(W )] ⪰ τm−2
b Iℓ.

The existence of a unique solution to (3.6) then follows directly from an application of

the Earle-Hamilton fixed-point theorem stated in Theorem 2.1.1. Indeed, for every b ∈ R>0

large enough, F (τ) has exactly one fixed point on Mb. Since M+ =
⋃

b∈R>0
Mb, we obtain

the following result.

Lemma 3.3.2 ([HFS07, Theorem 2.1]). There exists a unique solution M ∈ M+ such that

M (τ)(z) solves (3.6) for every τ ∈ R>0 and z ∈ H. Furthermore, for every W0 ∈ M+, the

iterates Wk+1 = F (τ)(Wk) converge in norm to M (τ).

In what follows, we will denote the unique solution of the RMDE with τ ∈ R>0 by M (τ).

While not explicitly stated, the analyticity of M (τ)(z) in τ can be inferred using an implicit

function theorem, as demonstrated in [EKN20, Theorem 2.14]. We state this result in the

following lemma but omit the proof, directing the reader to the aforementioned reference for

further details.

Lemma 3.3.3. For every z ∈ H, the map τ ∈ H 7→ M (τ)(z) is analytic.

3.3.2 Solution to the Matrix Dyson Equation

We now establish the existence and uniqueness of a solution to the MDE (3.2).
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Theorem 3.3.1 (Existence and Uniqueness). There exists a unique matrix-valued function

M ∈ M such that M(z) solves the MDE (3.2) for every z ∈ H.

For clarity, we will separate the proof into two distinct sub-proofs: proof of existence and

proof of uniqueness. Together, the following two proofs prove Theorem 3.3.1.

Proof of existence in Theorem 3.3.1. For every k ∈ N, let M (k−1) be the unique solution to

the RMDE and write

M
(k−1)
1,1 (z) =

∫
R

Ω
(k−1)
1,1 (dλ)

λ− z

the Stieltjes transform representation guaranteed by Lemma 3.2.8. Additionally, let {vj :

j ∈ N} ⊆ Cn be a countable dense subset of the ball of n-dimensional complex unit vectors.

By Corollary 3.2.3, the family of measures {v∗1Ω
(k−1)
1,1 v1 : k ∈ N} is tight. Consequently,

by Prokhorov’s theorem, there exists a probability measure ω1 and a subsequence {τ1,k : k ∈
N} ⊆ {k−1 : k ∈ N} such that v∗1Ω

(τ1,k)
1,1 v1 converges weakly to ω1 as k approaches infinity.

We now proceed inductively. Assume that there exists m ∈ N and a collection of com-

pactly supported measures {ωj : 1 ≤ j ≤ m} such that v∗jΩ
(τm,k)
1,1 vj converges weakly to ωj

for all 1 ≤ j ≤ m as k approaches infinity. By Corollary 3.2.3 and Prokhorov’s theorem, there

exists a probability measure ωm+1 and a subsequence {τm+1,k : k ∈ N} ⊆ {τm,k : k ∈ N}
such that v∗m+1Ω

(τm+1,k)
1,1 vm+1 converges weakly to ωm+1 as k approaches infinity. Also, by

construction of the subsequence, v∗jΩ
(τm+1,k)
1,1 vj converges weakly to ωj for all 1 ≤ j ≤ m + 1

as k approaches infinity.

Let τk = τk,k for all k ∈ N. By construction, v∗jΩ
(τk)vj converges weakly to a probability

measure ωj for every j ∈ N as k → ∞. Furthermore, by Lemma 3.2.2, {M (τk)
1,1 : k ∈ N}

is a locally uniformly bounded sequence of analytic functions. Hence, Montel’s theorem

guarantees the existence of a subsequence of {τk : k ∈ N}, which we will assume WLOG

to be {τk : k ∈ N} for notational convenience, such that M
(τk)
1,1 converges to an analytic

function M1,1. By the proof of Corollary 3.2.3, there exists κ+ ∈ R>0 and a constant c ∈ R>0

such that ∫ ∞

λ+

ωj(dλ) = lim
k→∞

∫ ∞

λ+

v∗jΩ
(τk)
1,1 (dλ)vj ≤ c lim

k→∞
τk

∫ ∞

λ+

(λ− κ)−2dλ = 0
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for every λ+ ≥ κ+ and j ∈ N. By Lemma 3.2.8,

v∗jℑ[M1,1]vj = lim
k→∞

v∗jℑ[M
(τk)
1,1 ]vj = ℑ[z]

∫
R

ωj(dλ)

|λ− z|2
.

Since ωj is a probability measure,∫
R

ωj(dλ)

|λ− z|2
=

∫
[−κ+,κ+]

ωj(dλ)

|λ− z|2
≥
(

max
λ∈[−κ+,κ+]

|λ− z|
)−2

which implies that v∗jℑ[M1,1]vj ≥ ℑ[z]
(
maxλ∈[−κ+,κ+] |λ− z|

)−2
for every j ∈ N. Fix z ∈ H,

ϵ = 3−1(ℑ[z])2
(
maxλ∈[−κ+,κ+] |λ− z|

)−2 ∈ R>0. Let v ∈ Cn be any unit vector and let j ∈ N
such that ∥v − vj∥ ≤ ϵ. Then,

v∗ℑ[M1,1]v ≥ v∗ℑ[M1,1]v − 2∥vj − v∥∥M1,1∥∥v∥ ≥ ϵ

3ℑ[z]
> 0.

In particular, ℑ[M1,1(z)] ≻ 0 for all z ∈ H.

Define M1,2,M2,1 and M2,2 as functions of M1,1 using (3.10c), (3.10d) and (3.10e) respec-

tively and let M be the block matrix with j, k block given by Mj,k for all (j, k) ∈ {1, 2}2. It
follows from Lemma 3.2.1, that EQ − S2,2(M) is non-singular and that M is well-defined.

By construction, it is clear that M ∈ M and that M(z) solves (3.2) for all z ∈ H.

Proof of uniqueness in Theorem 3.3.1. Uniqueness of the solution follows from analycity and

the power series representation in Lemma 3.2.9. Let λ+ ∈ R>0 such that

M(z) =
∞∑
j=0

z−jMj = (EL− zΛ)−1
∞∑
j=0

(
∞∑
k=0

z−kS(Mk)(EL− zΛ)−1

)j

for every z ∈ H with |z| ≥ λ+.

Since resolvent of Hermitian matrices are analytic when the spectral parameter is away

from the support, is follows from the decomposition in (3.13) that (EL− zΛ)−1 is analytic.

Write (EL − zΛ)−1 =
∑∞

j=0 z
−jCj for some complex matrices {Cj : j ∈ N≥0} ⊆ Cℓ×ℓ.

Plugging this in the power series expansion ofM and gathering coefficients of z−1, we get that

M1 = C1+C0S(M0)C1+C0S(M1)C0. We computed in Lemma 3.2.9 that (EL−zΛ)−1 → M∞
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as |z| → ∞ and similarly for M(z). In other words, C0 = M0 = M∞. Looking at the

structure of the superoperator, S2,2(M0) = 0, which gives us C0S(M0) = 0. In particular,

M1 = C1 + C0S(M0)C1 is expressible solely in terms of C0 and C1.

This proves the base case. Let k ∈ N and assume that {Mj : j ∈ {0, 1, . . . , k}} are fully

determined by {Cj : j ∈ N≥0}. Gathering the coefficients for z−(k+1) in the power series

expansion, we get that

Mk+1 = f(M0,M1, . . . ,Mk) + C0S(Mk+1)C0

for some analytic function f . By induction hypothesis, f(M0,M1, . . . ,Mk) may be expressed

as an analytic function of {Cj : j ∈ N≥0}. Furthermore, since C0 = M∞ is 0 everywhere

outside its lower d× d block,

C0S(Mk+1)C0 =

[
0n×n 0n×d

0d×n M⋆S2,2(Mk+1)M⋆.

]

Therefore, extracting the upper-left n× n block, we obtain that the upper-left n× n block

along with both off-diagonal blocks of Mk+1 are determined by the coefficient matrices {Cj :

j ∈ N≥0}. Since S2,2(M) does not depend on the lower-right block of M , we may also

determine the lower-right block of Mk+1. Inducting, we get that any two solution to (3.2)

must be equal for all z ∈ H with |z| > λ+ for some λ+ ∈ R>0. By analytic continuation, it

follows that any two solution must be equal for all z ∈ H.

For the rest of this document, we will denote the unique solution of the MDE with by

M , and we will omit the explicit mention of z when the context confines it to a fixed z ∈ H.

Remark 3.3.1. The rationale behind our choices regarding the settings is now quite evident.

By excluding S̃ from the superoperator, we gain the advantage that each block in the block

decomposition of the MDE can be determined by the upper-left n×n block. This upper-left

block exhibits favorable properties, including an a priori norm bound due to the position

of the spectral parameter. By leveraging these properties, we establish the existence of

a solution for the upper-left block of (3.2). Subsequently, we utilize the existence of this

sub-solution to construct the remaining part of the solution.
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However, our selection of superoperator also imposes implicit restrictions on the dis-

tribution of the entries of L. To treat the term S̃ as a perturbation, we need to ensure

that the perturbation is small. It would be intriguing to explore the possibility of ex-

tending our results to a more general superoperator by adapting the proof, thus removing

this restriction. For instance, by redefining the lower-right block of the superoperator as

S2,2(M) = E[(B−EB)M1,1(B−EB)]+E[(Q−EQ)M2,2(Q−EQ)], we believe that a promis-

ing approach would involve applying similar techniques as in the proof of Lemma 3.3.2 to a

similar MDE but with a slightly different admissible set. Specifically, we propose considering

admissible solutions that admit the limit limℑ[z]→∞ M(z) = diag{0n×n,M⋆}, where M⋆ solves

the fixed-point equation M⋆ = (EQ− E[(Q− EQ)M⋆(Q− EQ)])−1.

Upon initial inspection, the general properties established in Section 3.2.1 seem appli-

cable, with the main adaptation being that Lemma 3.2.4 would require adjustments to

demonstrate that the MDE map preserves the admissible set. We believe that pursuing this

avenue holds promise, and it may be possible to extend the existence of a solution from

the upper-left block to the entire solution by carefully analyzing the stability of the limiting

equation which defines M⋆.

During the proof of the uniqueness of the solution to the linearized matrix Dyson equa-

tion, we encounter the stability operator evaluated at z = ∞. The stability operator is a

fundamental concept in the literature on matrix Dyson equations, and we will delve into

it further in Section 3.4.2. Its significance lies in the fact that our proof of uniqueness is

equivalent to establishing the invertibility of the stability operator at infinity. This result

effectively enables us to recursively determine the terms within the power series expansion

of M .

In contrast to the assurance provided by Lemma 3.3.2, it is crucial to acknowledge that

Theorem 3.3.1 does not guarantee pointwise convergence for the fixed-point iterationMk+1 =

F (Mk) with an initial condition M0 ∈ M to the solution of the matrix Dyson equation. This

underscores one of the primary reasons we rely on the solution to the regularized MDE as

a means to establish stability, effectively treating it as a surrogate for the solution to the

MDE. Nonetheless, in our example application, will show in Lemma 4.3.11 that a fixed-point

iteration converges to the solution of the MDE.
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3.4 Asymptotic Equivalence

Now that we have existence of a unique solution M to (3.2), we want to show that M(z)

serves as a favorable asymptotic approximation for the pseudo-resolvent (L − zΛ)−1. We

will compare the pseudo-resolvent with the solution of the MDE using the following pairwise

comparisons:

(L− zΛ)−1 −M(z) = (L− zΛ)−1 − E(L− zΛ)−1 (3.15a)

+ E(L− zΛ)−1 − E(L− zΛ− iτIℓ)
−1 (3.15b)

+ E(L− zΛ− iτIℓ)
−1 −M (τ)(z) (3.15c)

+M (τ)(z)−M(z). (3.15d)

The first comparison in (3.15a) corresponds to the concentration step of our argument.

Although this difference may not generally be controlled in norm, we have the capability to

demonstrate concentration, either in probability or almost surely, of generalized trace entries

of the regularized pseudo-resolvent around its mean. By separating the concentration step

from the rest of the method, we adopt a strategy that enables us to primarily work with

deterministic objects throughout the analysis. This approach offers significant simplifications

in various steps and allows us to work with norm bounds.

The second comparison in (3.15b) assesses the proximity of the pseudo-resolvent to its

regularized counterpart, measured in norm. We show in Lemma 3.4.1 that this difference can

be easily controlled by the parameter τ and E∥(L−zΛ)−1∥2. Consequently, if E∥(L−zΛ)−1∥2

is bounded, we can employ the regularized pseudo-resolvent with small τ ∈ R>0 as an

approximation for the pseudo-resolvent.

The third comparison, (3.15c), is directly linked with the stability properties of the

RMDE. We will use the CRF-pseudometric to show that (3.6) is stable under small additive

perturbation. Then, we will show that the expected regularized pseudo-resolvent almost

satifies the RMDE, up to a small additive perturbation which vanishes as the dimension of

the problem increases. The convergence of the expected regularized pseudo-resolvent to the

solution of the regularized matrix Dyson equation depends intricately on the rate at which

τ approaches zero while ℓ increases to infinity.
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The fourth and final comparison, (3.15d), simply states that the solution to (3.6) should

be a good approximation for (3.2) for small τ . For a fixed τ ∈ R>0, it follows from the

construction of M that ∥M (τ)(z) −M(z)∥ → 0 as τ → 0. However, because we are taking

ℓ → ∞ and τ → 0, we rely on Assumption 2 to control this term.

In the upcoming sections, we will demonstrate the convergence of the pseudo-resolvent

to the solution of the matrix Dyson equation. Initially, in Section 3.4.1, we will focus on

proving the convergence of the expected regularized pseudo-resolvent to the expected pseudo-

resolvent, alongside establishing the convergence of the unique solution to the regularized

matrix Dyson equation to the solution of the matrix Dyson equation. This involves con-

firming the convergence of equations (3.15b) and (3.15d) to zero. Following this, we will

delve into section 3.4.2 to establish the stability of the regularized matrix Dyson equation

with respect to small additive perturbations. Moving forward to section 3.4.3, we will in-

troduce general distributional assumptions on the entries of L to derive simple conditions

to establish that the perturbation vanishes as the problem dimension increases. Leveraging

a similar approach, we will proceed to section 3.4.4 to illustrate the concentration of the

pseudo-resolvent around its mean. Finally, in section 3.4.5, we will integrate these findings

to establish the convergence of the pseudo-resolvent to the solution of the matrix Dyson

equation. Throughout all of this, we will accumulate various assumptions critical to our

analysis.

3.4.1 Regularization

In the proof of Theorem 3.3.1, we define M1,1 as the limit point of the normal family {M (τ)
1,1 :

τ > 0} as τ → 0. Decomposing (3.2) block-wise, we then observe that M (τ)(z) converges to

M(z) in spectral norm for any fixed z ∈ H as τ approaches the origin from above. However,

this statement is derived for a fixed dimension ℓ ∈ N. To derive asymptotic global laws, we

need to consider the solution of the matrix Dyson equation in the limit as ℓ → ∞. Therefore,

it would be considerably beneficial to quantify the extent to which ∥M(z)−M (τ)(z)∥ varies

with respect to τ ∈ R>0 and ℓ ∈ N. Ideally, we would like to establish that ∥M(z)−M (τ)(z)∥
converges to zero as τ approaches zero from above, and that this convergence is uniform with

respect to ℓ ∈ N. This idea is not far-fetched, as the associated pseudo-resolvent (L− zΛ)−1

satisfies it under reasonable assumptions.
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Lemma 3.4.1. For every τ ∈ R≥0 and z ∈ H, ∥(L − zΛ − iτIℓ)
−1 − (L − zΛ)−1∥ ≤

τ∥(L− zΛ)−1∥2.

Proof. By Lemma 2.2.1, ∥(L−zΛ−iτIℓ)
−1−(L−zΛ)−1∥ ≤ τ∥(L−zΛ−iτIℓ)

−1∥∥(L−zΛ)−1∥.
Let v ∈ Cℓ be arbitrary and decompose L− zΛ− iτIℓ = X + iY − iτIℓ with X = ℜ[L− zΛ]

and Y = ℑ[L−zΛ]. Then, using the fact that (L−zΛ−iτIℓ)
∗ = X−iY +iτIℓ and ℑ[Y ] ⪯ 0,

v∗ (X + iY − iτIℓ)
∗ (X + iY − iτIℓ) v ≥ v∗(X + iY )∗(X + iY )v + τ 2v∗v − 2τv∗Y v

≥ v∗(X + iY )∗(X + iY )v.

Because taking the inverse reverses the Loewner partial ordering, it follows that ∥(L− zΛ−
iτIℓ)

−1∥ ≤ ∥(L− zΛ)−1∥.

By Lemma 3.4.1 and Jensen’s inequality, the expected pseudo-resolvent E(L − zΛ)−1 is

well-approximated by its regularized version for small τ as long as E∥(L−zΛ)−1∥2 is bounded.
In fact, if the norm squared of the expected pseudo-resolvent is bounded in expectation,

then the regularized expected pseudo-resolvent converges to the expected pseudo-resolvent

in operator norm as τ approaches zero from above, uniformly in the dimension. Since our

primary objective is to investigate the behavior in the high-dimensional limit, it is essential

for the superoperator S , among other objects, to remain bounded as the problem dimension

increases.

Assumption 1. Suppose there exists s ∈ R>0 such that ∥S(W )∥ ≤ s∥W∥ for every

W ∈ Cℓ×ℓ and lim supℓ→∞ s < ∞. Furthermore, assume that lim supℓ→∞ ∥EL∥ < ∞ and

lim supℓ→∞ E∥(L− zΛ)−1∥2 < ∞.

As we expect the solution of the matrix Dyson equation to be a deterministic equivalent

for the (expected) pseudo-resolvent, we should anticipate a similar behavior from it. We

formalize this expectation as follows.

Assumption 2. For every z ∈ H, there exists a function f and a subsequence {τk} ⊆ R>0

such that τk → 0, f(τk) → 0, and ∥M (τk)(z)−M(z)∥ ≤ f(τk)+ oℓ(1) for all k ∈ N and every

ℓ ∈ N large enough.
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It is noteworthy that Assumption 2 is fulfilled within the frameworks based on the matrix

Dyson equation for linearization as detailed in [EKN20; And13; FKN23]. This is explicitly

indicated by [EKN20, Equation 4.11], [And13, Estimates 6.3.3.], and [FKN23, Equation

A.25]. In general, the validity of Assumption 2 in these cases stems from the ability to

construct a dimension-independent representation of the solution to the (R)MDE using tools

from free probability. For instance, as asserted by [HT05, Lemma 5.4], such a representation

exists whenever L takes the form L = A0⊗In+
∑k

j=1Ai⊗Xj, where {Aj}kj=0 forms a collection

of complex d×d self-adjoint matrices, and {Xj}kj=1 forms a collection of independent random

matrices with {(Xj)a,a}na=1 ∪ {(
√
2ℜXj)a,b}a<b ∪ {(

√
2ℑXj)a,b}a<b being a collection of n2

i.i.d. centered Gaussian random variables for every j ∈ {1, 2, . . . , k}.

3.4.2 Stability

In this section, we establish the asymptotic stability of the RMDE (3.6) with respect to

small additive perturbations. The stability of the matrix Dyson equation is a fundamental

concept in the matrix Dyson equation literature, typically analyzed through the use of the

stability operator. Following the notation in [Alt+19], the stability operator is defined as

L : X ∈ Cℓ×ℓ 7→ X −MS(X)M , where M ≡ M(z) denotes the unique solution to a matrix

Dyson equation. The concept of the stability operator is intrinsically linked to the analysis

of the matrix Dyson equation [Alt+19; Erd19; AEK19b; FKN23]. The term “stability

operator” is aptly chosen because, when it is both invertible and its inverse is bounded, it

provides a means to establish the stability of the matrix Dyson equation through techniques

like the implicit function theorem, as demonstrated in the work of [AEK19b, Lemma 4.10],

and by [Erd19; EKN20]. The stability operator naturally emerges in the uniqueness part

of the proof for Section 3.3, where its invertibility at infinity enables us to uniquely and

recursively determine the coefficients in the power series expansion of the solution.

The connection between the stability operator and Assumption 2 becomes apparent when

we consider the derivative of M (τ)(z) with respect to iτ , which yields L(∂iτM(z)) = (M(z))2.

Then, under reasonable assumptions, because M(z) is bounded in operator norm by Corol-

lary 3.2.2, we can conclude that Assumption 2 is implied by the requirement of having an

invertible stability operator with a bounded inverse. While Assumption 2 may be considered

weaker than the requirement of having an invertible stability operator with a bounded in-
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verse, we will eventually delve into the study of the invertibility of a small stability operator

when applying our framework to analyze the empirical test error of random features ridge

regression.

In order to maintain a certain level of generality, we will fix z ∈ H and consider matrices

in Ab for some b ∈ R>0, as defined in (3.14). When considering the class of matrices Ab, it

is helpful to keep in mind the (expected) regularized pseudo-resolvent.

Lemma 3.4.2. Fix z ∈ H and let τ, b ∈ R>0 with τ−1 < b. Then, (L− zΛ− iτIℓ)
−1,E(L−

zΛ− iτIℓ)
−1 ∈ Ab.

Proof. By Lemma 2.2.5 and Jensen’s inequality, ∥(L−zΛ−iτIℓ)
−1∥∨∥E(L−zΛ−iτIℓ)

−1∥ ≤
τ−1. Furthermore, by Lemma 2.2.6, we can follow a similar argument as in the proof of

Lemma 3.3.1 to obtain ℑ[(L − zΛ − iτIℓ)
−1] ⪰ τ(L − zΛ − iτIℓ)

−1(L − zΛ − iτIℓ)
−∗ ⪰

τ∥L− zΛ− iτIℓ∥−2 ⪰ τ(∥L∥+ |z|+ τ)−2 ≻ 0. By monotonicity of the expectation, ℑ[E(L−
zΛ− iτIℓ)

−1] ⪰ τE(∥L∥+ |z|+ τ)−2. Since the function x 7→ x−2 is convex for x ∈ R>0, we

may apply Jensen’s inequality to obtain ℑ[E(L−zΛ−iτIℓ)
−1] ⪰ τ(E∥L∥+|z|+τ)−2 ≻ 0.

Fix z ∈ H, let b, τ ∈ R>0 and assume that F (τ) ∈ Ab satisfies

(EL− S(F (τ))− zΛ− iτIℓ)F
(τ)(z) = Iℓ +D(τ), (3.16)

where D(τ) is a perturbation term. In particular, F (τ) almost solves (3.6) up to an additive

perturbation term D(τ). For a fixed z ∈ H, let Eτ = F (τ)(F (τ))D(τ) for every F ∈ Ab and

τ ∈ R>0, defining the error matrix, and ϵτ = ∥Eτ∥ representing the magnitude of the error

at τ . The objective for the rest of this section is to show that if ϵτ is small, then F (τ) is close

to M (τ). We will establish this result using properties of the CRF-pseudometric introduced

in Section 2.1.2.

Before stating the first lemma, we recall from (3.14) and (3.3.1) that Ab := A+ ∩ Bb(0)

is a domain in the Banach space of ℓ × ℓ complex matrices for every b ∈ R>0. The CRF-

pseudometric is a crucial tool because F (τ) is a strict contraction on Ab with respect to the

CRF-pseudometric. This can be observed and quantified by combining Lemma 3.3.1 with

the proof of Theorem 2.1.1.
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Lemma 3.4.3. Fix z ∈ H and τ ∈ R>0. For every b ∈ R>0, let mb = ∥EL∥+ sb+ |z|+ τ +1

and δ = (m2
bτ

−2−1)−1. Suppose that τ−1(1+2δ) < b and let ρ denotes the CRF-pseudometric

on Ab. Then, for every X, Y ∈ Ab, ρ(F (τ)(X),F (τ)(Y )) ≤ (1 + δ)−1ρ (X, Y ).

Proof. Let X ∈ Ab and define G : Y ∈ Ab 7→ F (τ)(Y ) + δ(F (τ)(Y ) − F (τ)(X)). By

Lemma 3.3.1, ∥F (τ)(Y )∥ ≤ τ−1 and ℑ[F (τ)(Y )] ≻ τm−2
b for every Y ∈ Ab. Hence,

∥G(Y )∥ ≤ τ−1+2δτ−1 and ℑ[G(Y )] ⪰ (1+δ)ℑ[F (τ)(Y )]−δ∥F (τ)(X)∥ ≻ (1+δ)τm−2
b −δτ−1.

By our choice of δ and b, ∥G(Y )∥ < b and ℑ[G(Y )] ≻ 0 for every Y ∈ Ab. In fact, G is a

strict holomorphic function on Ab. By the proof of Theorem 2.1.1, ρ(F (τ)(X),F (τ)(Y )) ≤
(1 + δ)−1ρ(X, Y ).

While the MDE map exhibits favorable properties with respect to the CRF-pseudometric,

we would like to know whether the CRF-pseudometric captures the convergence relevant to

the problem at hand. Specifically, we aim to understand the behavior of the operator norm

with respect to the CRF-pseudometric. The subsequent lemma notably demonstrates that

the CRF-pseudometric can be employed to establish convergence in terms of generalized

trace entries.

Lemma 3.4.4. Fix z ∈ H and τ ∈ R>0. Let b ∈ R>0 with b > τ−1, F ∈ Ab and ρ be the

CRF-pseudometric on Ab. Then, tr(U(M (τ) − F )) ≤ (b + τ−1) tanh(ρ(M (τ), F )) for every

U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1.

Proof. Let mb be defined as in the proof of Lemma 3.4.3 and recall that ∥M (τ)∥ ≤ τ−1 as

well as ℑ[M (τ)] ≻ τm−2
b . In particular, M (τ), F ∈ Ab. Define the holomorphic function

f : X ∈ Ab 7→ tr(U(X − M (τ)))(b + τ−1)−1 ∈ B. By Lemma 2.2.8, | tr(U(X − M (τ)))| ≤
∥X −M (τ)∥ < b+ τ−1, which ensures that f is well-defined. By Proposition 2.1.1 and (2.1),

arctanh

∣∣∣∣tr(U(X −M (τ)))

(b+ τ−1)

∣∣∣∣ = ρ∆
(
f(M (τ)), f(X)

)
≤ ρ

(
M (τ), X

)
.

Using the fact that the hyperbolic tangent is increasing, we obtain the result.

Since the dual norm of the operator norm is the nuclear norm, Lemma 3.4.4 implies that

the CRF-pseudometric captures the convergence of the operator norm.
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Corollary 3.4.1. Under the settings of Lemma 3.4.4, ∥M (τ)−F∥ ≤ (b+τ−1) tanh(ρ(M (τ), F )).

In Lemma 3.3.2, we established that the solution to the regularized matrix Dyson equa-

tion can be obtained using a fixed-point iteration scheme. Using this idea, we will recur-

sively define a sequence of matrices and use the contraction property in Lemma 3.4.3 to

control the distance between M (τ)(z) and F ∈ Ab in the CRF-pseudometric. Since the

CRF-pseudometric dominates the operator norm, we will obtain convergence in norm. The

only remaining ingredient is a loose control of the CRF-pseudometric. In fact, while the

norm ∥M (τ)(z)∥ may be easily bounded uniformly in ℓ, transferring this bound to the CRF-

pseudometric poses additional difficulties which we address in the following lemma.

Lemma 3.4.5. Let z ∈ H and τ, b ∈ R>0 such that b > τ−1+ τm−2
b . Additionally, let F (τ) ∈

Ab satisfying (3.16) with ϵτ < τm−2
b , ρ be the CRF-pseudometric on Ab and mb = ∥EL∥ +

sb+ |z|+ τ +1 be defined as in Lemma 3.4.3. Then, ρ(F (τ)(F (τ)), F (τ)) ≤ arctanh(ϵτm
2
b/τ).

Proof. We may assume WLOG that F (τ)(F (τ)) ̸= F (τ), as otherwise the claim is trivial.

By Lemma 3.3.1, ∥F (τ)(F (τ))∥ ≤ τ−1 and ℑ[F (τ)(F (τ))] ≻ τm−2
b . Define the holomorphic

function

g : w ∈ B 7→ F (τ)(F (τ)) +
wτm−2

b

∥F (τ)(F (τ))− F (τ)∥
(F (τ) − F (τ)(F (τ))) ∈ Ab.

Then, it is straightforward to check that ∥g(w)∥ ≤ τ−1 + τm−2
b < b and ℑ[g(w)] ≻ 0 for

every w ∈ B.
Let ρB denote the CRF-pseudometric on B. Using (3.16), we may write F (τ)(F ) −

F (τ) = −Eτ = −F (τ)(F (τ))D(τ) which implies that ∥F (τ)(F ) − F (τ)∥ ≤ ϵτ . Hence, by

Proposition 2.1.1,

ρ(F (τ)(F (τ)), F (τ)) = ρ

(
g(0), g

(
∥F (τ)(F )− F (τ)∥

τm−2
b

))
≤ ρB

(
0,

∥F (τ)(F )− F (τ)∥
τm−2

b

)
.

By (2.1), ρB(0, ∥F (τ)(F )− F (τ)∥m2
b/τ) ≤ arctanh(ϵτm

2
b/τ).

Lemma 3.4.5 controls the discrepancy between the matrix F (τ) ∈ Ab, which approxi-

mately solves the RMDE up to an additive perturbation term D(τ), before and after applying

the RMDE map once, in terms of the magnitude of the error ϵτ .
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Combining lemmas 3.4.3 to 3.4.5, we obtain the main stability result.

Theorem 3.4.1. Fix z ∈ H, τ ∈ R>0 and let b = τ−1+2τ and mb = ∥EL∥+sb+ |z|+ τ +1.

Let F (τ) ∈ Ab satisfying (3.16) with ϵτ < τm−2
b . Then, ∥M (τ)−F (τ)∥ ≤ 2(τ + τ−1) tanh((1+

τ 2)(m2
bτ

−2 − 1)arctanh(ϵτm
2
b/τ)).

Proof. Recall that δ = (m2
bτ

−2 − 1)−1. We begin by verifying that this choice of b satisfies

the assumptions in lemmas 3.4.3 and 3.4.5. That is, we show that τ−1(1 + 2δ) < b and

b > τ−1 + τm−2
b . To this end, notice that m2

bτ
−2 > τ−2 + 1. Therefore, δ < τ 2 and

τ−1(1 + 2δ) < b. Furthermore, m−2
b < 1 so τ−1 + τm−2

b < b.

By Corollary 3.4.1, ∥M (τ) − F (τ)∥ ≤ (b + τ−1) tanh(ρ(M (τ), F (τ))). Recursively define a

sequence {Mk : k ∈ N0} ⊆ Ab such that M0 = F (τ) and Mk = F (τ)(Mk−1) for every k ∈ N.
By lemmas 3.4.3 and 3.4.5,

ρ(M (τ), F (τ)) ≤ ρ(M (τ),Mk) +
k∑

j=1

ρ(Mj,Mj−1)

≤ (1 + δ)−kρ(M (τ), F (τ)) + ρ(F (τ)(F (τ)), F (τ))
k∑

j=1

(1 + δ)−j

≤ (1 + δ)−kρ(M (τ), F (τ)) +
arctanh(ϵτm

2
b/τ)

1− (1 + δ)−1
.

Since the above inequality hold for every k ∈ N, we may take the limit as k → ∞ to obtain

ρ(M (τ), F (τ)) ≤ (1+δ)arctanh(ϵτm
2
b/τ)/δ. Combining everything, using the fact that δ < τ 2,

we obtain the result.

To summarize, if F (τ) ∈ Aτ−1+2τ approximately solves (3.6) up to an additive perturba-

tion term D(τ) in the sense of (3.16), and ∥F (τ)(F (τ))D(τ)∥ ≤ τ−1∥D(τ)∥ vanishes as ℓ → ∞,

then ∥M (τ)−F (τ)∥ converges to 0 as ℓ → ∞. Here, M (τ) refers to the unique solution to the

regularized matrix Dyson equation. Notably, if we take F (τ) = E(L− zΛ− iτIℓ)
−1, then we

obtain a way to establish pointwise convergence in z and τ . Utilizing assumptions 1 and 2

and lemmas 3.4.1 and 3.4.2, along with a diagonalization argument, we can establish the

following result.
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Corollary 3.4.2. Let z ∈ H, M ∈ M be the unique solution to (3.2) and assume that

assumptions 1 and 2 hold. For every τ ∈ R>0, let D
(τ) be defined by (3.16) with F (τ) = E(L−

zΛ− iτIℓ)
−1. If ∥D(τ)∥ → 0 as ℓ → ∞ for every τ ∈ R>0, then ∥E(L− zΛ)−1 −M(z)∥ → 0

as ℓ → ∞.

Proof. The result follows from a combination of Theorem 3.4.1 along with assumptions 1

and 2 and lemmas 3.4.1 and 3.4.2. We write

∥E(L− zΛ)−1 −M(z)∥ ≤ ∥E(L− zΛ)−1 − E(L− zΛ− iτIℓ)
−1∥

+ ∥E(L− zΛ− iτIℓ)
−1 −M (τ)(z)∥

+ ∥M (τ)(z)−M(z)∥.

For the first term, we use Lemma 3.4.1 and Assumption 1 to obtain ∥E(L− zΛ)−1 − E(L−
zΛ − iτIℓ)

−1∥ ≲ τ . For the second term, it follows from Theorem 3.4.1 and Assumption 2

that ∥E(L−zΛ−iτIℓ)
−1−M (τ)(z)∥ ≲ τ−1 tanh(τ−4arctanh(τ−4∥D(τ)∥)). For the third term,

it follows directly from Assumption 2 that there exists a sequence {τk}k∈N and a function

f : R 7→ R≥0 such that τk → 0 as k → ∞, f(τk) → 0 as k → ∞ and ∥M (τ)(z) −M(z)∥ ≤
f(τk) + oℓ(1). We obtain the result by letting τ → 0 and ℓ → ∞ simultaneously such that

the rate of convergence of τ is chosen in terms of the rate of convergence of D(τ).

The proof of Corollary 3.4.2 highlights a contrast between τ and ℓ regarding their impact

on convergence behavior. On one hand, as τ approaches 0, the solution to the regularized

matrix Dyson equation converges to the solution of the matrix Dyson equation. However,

the solution to the matrix Dyson equation possesses less desirable properties compared to

the regularized solution, notably because the imaginary part is not guaranteed to be posi-

tive definite. On the other hand, as ℓ approaches ∞, we establish stability for fixed τ by

controlling the magnitude of the error ϵτ . We leverage this stability to establish convergence

between the expected regularized pseudo-resolvent and the solution to the MDE. Therefore,

we need to allow τ to approach 0 slowly enough as ℓ → ∞ to preserve the stability property.
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3.4.3 Perturbation

In view of Theorem 3.4.1 and Corollary 3.4.2, the focus shifts to proving that the perturbation

matrix vanishes in norm as the problem dimension grows for every regularization parameter.

For each τ ∈ R>0, we consider the expected regularized pseudo-resolvent F (τ) ≡ F (τ)(z) =

E(L− zΛ− iτIℓ)
−1 ∈ A+ which satisfies (EL− S(F (τ)(z))− zΛ− iτIℓ)F

(τ)(z) = Iℓ +D(τ)

where D(τ) is a regularized perturbation term explicitly given by

D(τ) = E
[(
EL− L− S(E(L− zΛ− iτIℓ)

−1)
)
(L− zΛ− iτIℓ)

−1
]
. (3.17)

There are various methods to establish that the perturbation term is vanishing, depend-

ing on the assumptions about the linearization L. To apply our framework and study random

features ridge regression, we naturally choose a route based on Gaussian concentration in-

equalities inspired by works such as [LLC18; Cho22]. This choice confines our theoretical

considerations to linearizations characterized by Gaussian-concentrated entries.

Assumption 3. Suppose that γ ∈ N, g ∼ N (0, Iγ) and that there exists a map C : Rγ 7→
Rℓ×ℓ such that L ≡ L(g) = C(g) + EL. Furthermore, assume that C is symmetric in the

sense that C(x) = (C(x))T for every x ∈ Rγ.

This allows us to derive straightforward conditions on the function C, ensuring D(τ) → 0

as ℓ → ∞ for all τ ∈ R>0. Additionally, we employ a Gaussian concentration inequality as

in Proposition 2.3.1 to show that Lipschitz functionals of the regularized pseudo-resolvent

(L− zΛ− iτIℓ)
−1 concentrate around their mean. Alternatively, we could utilize the Nash-

Poincaré inequality [Pas05, Proposition 2.4], a consequence of Stein’s lemma, to establish

concentration.

Under Assumption 3, we aim to decompose the perturbation matrix D(τ) into terms that

are amenable to analysis. To achieve this, define

∆(L, τ ; z) = E[(L− EL)(L− zΛ− iτIℓ)
−1]

+ E[(L̃− EL)(L− zΛ− iτIℓ)
−1(L̃− EL)(L− zΛ− iτIℓ)

−1] (3.18)

61



where L̃ is an i.i.d. copy of L and consider the decomposition

D(τ) = E
[
S((L− zΛ− iτIℓ)

−1)(L− zΛ− iτIℓ)
−1
]
− S(F (τ))F (τ) (3.19a)

+ E
[
S̃((L− zΛ− iτIℓ)

−1)(L− zΛ− iτIℓ)
−1
]

(3.19b)

−∆(L, τ). (3.19c)

The first perturbation term in (3.19a) arises from the use of the expected pseudo-resolvent

in Theorem 3.4.1. To ensure that this perturbation term is asymptotically small, we require

the superoperator S to be averaging. This implies that S((L−zΛ− iτIℓ)
−1) should exhibit a

“law of large numbers” behavior and converge around a deterministic limit. While working

directly with the pseudo-resolvent would eliminate this specific perturbation term from the

expectation of D(τ), such an approach would have its disadvantages. Indeed, utilizing the

expected pseudo-resolvent allows us to work with deterministic objects and leverage norm

bounds. We derive a condition for S((L − zΛ − iτIℓ)
−1) to concentrate around its mean

based on Gaussian concentration.

The second perturbation term, as expressed in (3.19b), arises from our specific definition

of the superoperator and would not be present if we defined the superoperator as E[(L −
EL)M(L−EL)]. However, our chosen definition of the superoperator ensures that the MDE

can be expressed solely in terms of its upper-left n× n block. This distinction allows us to

establish the existence of a solution to (3.2). Consequently, we view S̃ as a correction term

that should be vanishing in ℓ.

Finally, (3.19c) posits that the matrix L should approximate a Gaussian distribution in

the sense that it should asymptotically satisfy a matrix Stein lemma with a vanishing error.

The quantity ∥∆(L, τ)∥ serves informally as a metric characterizing the distance between

L and a matrix with Gaussian entries, since ∆(L, τ) = 0 holds whenever L has Gaussian

entries.

Lemma 3.4.6. If τ ∈ R>0, z ∈ H and Assumption 3 holds with a linear map C, then

∆(L, τ ; z) = 0.

Proof. Let j, k ∈ {1, 2, . . . , ℓ} be arbitrary. Consider C as a ℓ × ℓ × γ tensor such that

[C(g)]j,k = Cj,k,αgα. Here, we use Einstein’s notation which means that we sum over every
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subscript appearing at least two times in a given expression. By Stein’s lemma, which we

stated in Proposition 2.3.2,

E
[
(L− EL)(L− zΛ− iτIℓ)

−1
]
j,k

= E
[
Cj,m,αgα(L− zΛ− iτIℓ)

−1
m,k

]
= E

[
Cj,m,α

∂(L− zΛ− iτIℓ)
−1
m,k

∂gα

]

Let eα ∈ Rγ be the α-th canonical basis vector, δ ∈ R>0 and Lδ = C(g + δeα) + EL.
Then,

(Lδ − zΛ− iτIℓ)
−1
m,k − (L− zΛ− iτIℓ)

−1
m,k =

[
(Lδ − zΛ− iτIℓ)

−1(L− Lδ)(L− zΛ− iτIℓ)
−1
]
m,k

= −δ
[
(Lδ − zΛ− iτIℓ)

−1C(eα)(L− zΛ− iτIℓ)
−1
]
m,k

.

Taking the limit of the quotient of this difference with δ as δ approaches 0, we get that

∂(L− zΛ− iτIℓ)
−1
m,k

∂gα
= −

[
(L− zΛ− iτIℓ)

−1C(eα)(L− zΛ− iτIℓ)
−1
]
m,k

and, consequently, E[(L−EL)(L−zΛ−iτIℓ)
−1]j,k = −E[Cj,m,α(L−zΛ−iτIℓ)

−1
m,aCa,b,α(L−zΛ−

iτIℓ)
−1
b,k]. Note that E[(L−EL)TW (L−EL)]j,k = E[Cj,a,αgαWa,bCb,k,βgβ] = E[Cj,a,αWa,bCb,k,α]

for every W ∈ Rℓ×ℓ independent of L. The result follows.

Thus, it is trivial to control ∥∆(L, τ)∥ when L has Gaussian entries. Alternatively, an

interpolation approach based on cumulant bounds in the spirit of [LP09, Proposition 3.1]

appears to be a suitable avenue to extend the result to other distributions. In Section 4.3.1,

we employ a leave-one-out strategy to demonstrate that ∥∆(L, τ)∥ is vanishing in ℓ for every

τ ∈ R>0.

In order to maintain an adequate level of abstraction, we will directly assume that the

mapping g 7→ S(L(g) − zΛ − iτIℓ)
−1 is λ-Lipschitz with respect to the operator norm and

employ an ϵ-net argument to obtain bounds EL̃[∥(L̃− EL)((L− zΛ− iτIℓ)
−1 − E(L− zΛ−

iτIℓ)
−1)(L̃− EL)∥] for k ∈ N.

Lemma 3.4.7. Fix z ∈ H and τ ∈ R>0. Assume that the mapping g ∈ (Rγ, ∥ · ∥2) 7→
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S((L(g) − zΛ − iτIℓ)
−1) ∈ (Cℓ×ℓ, ∥ · ∥2) is λ-Lipschitz. Then, for every k ∈ N, there exists

an absolute constant c ∈ R>0 such that

E
[
∥S
(
(L− zΛ− iτIℓ)

−1 − E(L− zΛ− iτIℓ)
−1
)
∥k
]
≤ cℓk/2λk.

Proof. By Proposition 2.3.1, there exists some absolute constant c1, c2 ∈ R>0 such that

P
(
λ−1

∣∣u∗S
(
(L− zΛ− iτIℓ)

−1 − E(L− zΛ− iτIℓ)
−1
)
v
∣∣ ≥ x

)
≤ c1e

−c2x2

for all unit vectors u, v ∈ Cℓ. Suppose that ϵ ∈ (0, 2−3/2) and let N be an ϵ-net for the unit

ball of ℓ-dimensional real vectors. Then, given u ∈ Cℓ, we may find v1, v2 ∈ N such that

∥u− v1 − iv2∥2 = ∥ℜ[u]− v1∥2 + ∥ℑ[u]− v2∥2 ≤ 2ϵ2. In particular, N + iN := {v1 + iv2 :

v1, v2 ∈ N } forms a
√
2ϵ-net for the unit sphere of ℓ-dimensional complex unitary vectors.

By [Ver18, Corollary 4.2.13], |N + iN | ≤ (2ϵ−1 + 1)2ℓ.

Let u, v ∈ Cℓ be unitary and let u0, v0 ∈ N +iN such that ∥u−u0∥ ≤
√
2ϵ and ∥v−v0∥ ≤√

2ϵ. LetX ∈ Cℓ×ℓ be any matrix. Using the identity u∗Xv = u∗
0Xv0+(u∗−u∗

0)Xv+u∗
0X(v−

v0), we obtain |u∗Xv| ≤ supu0,v0∈N +iN |u∗
0Xv0| + 23/2ϵ∥X∥. Taking the supremum over

unitary complex vectors u and v, we get that ∥X∥ ≤ (1−23/2ϵ)−1 supu0,v0∈N +iN |u∗
0Xv0|. In

particular, for X = S ((L− zΛ− iτIℓ)
−1 − E(L− zΛ− iτIℓ)

−1), we apply a union bound to

obtain P (λ−1∥X∥ ≥ y) ≤ c1(2ϵ
−1 + 1)4ℓe−c3y2 for every y ∈ R, where c3 = c2(1− 23/2ϵ). Let

c4 ∈ R>0 and y = c4(2
√
ℓ+ x) for all x ∈ R≥0 such that y2 ≥ c24(4ℓ+ x2). Choosing c4 large

enough such that c23y
2 ≥ ln(2ϵ−1+1)4ℓ+x2 for every x ∈ R≥0, we have c1(2ϵ

−1+1)4ℓe−c3y2 ≤
c1(2ϵ

−1 + 1)4ℓe− ln(2ϵ−1+1)4ℓ−x2
= c1e

−x2
. Let k ∈ N be arbitrary. Then,

E[λ−k∥X∥k] = k

∫ ∞

0

P
(
λ−1∥X∥ ≥ y

)
yk−1dy

= k

∫ 2c4
√
ℓ

0

P
(
λ−1∥X∥ ≥ y

)
yk−1dy + k

∫ ∞

2c4
√
ℓ

P
(
λ−1∥X∥ ≥ y

)
yk−1dy.

On one hand, it is straightforward to bound k
∫ 2c4

√
ℓ

0
P (λ−1∥X∥ ≥ y) yk−1dy ≤ 2kck4ℓ

k/2. On
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the other hand, we have

k

∫ ∞

2c4
√
ℓ

P
(
λ−1∥X∥ ≥ y

)
yk−1dy = ck4k

∫ ∞

2c4
√
ℓ

P
(
λ−1∥X∥ ≥ c4(2

√
ℓ+ x)

)
(2
√
ℓ+ x)k−1dx

≤ c1c
k
4k

∫ ∞

2c4
√
ℓ

e−x2

(2
√
ℓ+ x)k−1dx

= c1c
k
4k

∫ ∞

0

e−(x+2c4
√
ℓ)2(2(1 + c4)

√
ℓ+ x)k−1dx.

In particular, writing
∫∞
0

e−(x+2c4
√
ℓ)2(2(1 + c4)

√
ℓ+ x)k−1dx ≤ e−2c4ℓ

∫∞
0

e−x2
(2(1 + c4)

√
ℓ+

x)k−1dx and noting that
∫∞
0

e−x2
(2(1 + c4)

√
ℓ + x)k−1dx is polynomial in ℓ, we get that∫∞

2c4
√
ℓ
P (λ−1∥X∥ ≥ y) yk−1dy = oℓ(1). The result follows.

The practicality of Lemma 3.4.7 relies on the Lipschitz constant λ satisfying limℓ→∞ λ
√
ℓ =

0. Under this condition, we may show that the perturbation term D(τ) vanishes in norm as

ℓ → ∞ for every τ ∈ R>0.

Lemma 3.4.8. Let τ ∈ R>0, z ∈ H and D(τ) be the perturbation matrix in (3.17). Under

Assumption 3, assume that the mapping g ∈ (Rγ, ∥ · ∥2) 7→ S((L(g) − zΛ − iτIℓ)
−1) ∈

(Cℓ×ℓ, ∥ · ∥2) is λ-Lipschitz. Then, there exists an absolute constant c ∈ R>0 such that

∥D(τ)∥ ≤ cτ−1
√
ℓλ+ τ−1E∥S̃((L− zΛ− iτIℓ)

−1)∥+ ∥∆(L, τ)∥.

Proof. By (3.19), we have

∥D(τ)∥ ≤ ∥E[S((L− zΛ− iτIℓ)
−1 − E(L− zΛ− iτIℓ)

−1)(L− zΛ− iτIℓ)
−1]∥

+ ∥E[S̃((L− zΛ− iτIℓ)
−1)(L− zΛ− iτIℓ)

−1]∥+ ∥∆(L, τ)∥.

By Jensen’s inequality, submultiplicativity of the operator norm, Lemma 3.2.2 and Lemma 3.4.7,

there exists an absolute constant c ∈ R>0 such that ∥E[S((L− zΛ− iτIℓ)
−1 − E(L− zΛ−

iτIℓ)
−1)(L−zΛ−iτIℓ)

−1]∥ ≤ cτ−1
√
ℓλ. Similarly, ∥E[S̃((L−zΛ−iτIℓ)

−1)(L−zΛ−iτIℓ)
−1]∥ ≤

τ−1E∥S̃((L− zΛ− iτIℓ)
−1)∥. The result follows.

As a direct outcome of lemmas 3.2.2 and 3.4.8, it follows that as the dimension ℓ tends

towards infinity, ∥D(τ)∥ diminishes, provided that limℓ→∞
√
ℓλ = 0, limℓ→∞ ∥S∥ = 0, and
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limℓ→∞ ∥∆(L, τ)∥ = 0 for every τ ∈ R>0 sufficiently small. Before we proceed, we highlight

two significant observations.

Remark 3.4.1. Despite the possibility to simplify the upper bound τ−1E∥S̃((L−zΛ−iτIℓ)
−1)∥

in Lemma 3.4.8 to τ−2∥S̃∥ using Lemma 3.2.2, we choose to retain its current form since

we consider it as more insightful and convenient in certain scenarios. For example, if B = 0

in the linearization, the regularized pseudo-resolvent becomes block-diagonal. Hence, the

chosen bound allows us to focus solely on demonstrating the vanishing operator norm of S̃
within the set of block diagonal matrices as ℓ grows.

Remark 3.4.2. In the context of our application concerning the test error of random fea-

tures ridge regression, we upper-bound the Lipschitz constant λ in Lemma 3.4.8 by λ ≤
τ−2∥S∥F→2λC . Here, ∥S∥F→2 denotes the operator norm of the map S : (Cℓ×ℓ, ∥ · ∥F ) 7→
(Cℓ×ℓ, ∥ · ∥2), while λC represents the Lipschitz constant associated with the map C : (Rγ, ∥ ·
∥2) 7→ (Rℓ×ℓ, ∥ · ∥F ). Consequently, limℓ→∞

√
ℓλ = 0 ensues from ∥S∥F→2 ≲ ℓ−

1
2 and

λC ≲ ℓ−
1
2 .

The convergence results from Corollary 3.4.2 and Lemma 3.4.8, coupled with the out-

lined assumptions, establish that M(z) serves as a deterministic equivalent for the expected

pseudo-resolvent E(L− zΛ)−1 across the entire upper-half complex plane H.

Corollary 3.4.3. Let z ∈ H and λ be defined as in Lemma 3.4.8. Under assumptions 1

to 3, suppose that limℓ→∞
√
ℓλ = limℓ→∞ ∥S̃∥ = limℓ→∞ ∥∆(L, τ)∥ = 0 for every τ ∈ R>0

small enough. Then, ∥E(L− zΛ)−1 −M(z)∥ → 0 as ℓ → ∞.

3.4.4 Concentration

The only remaining task is to establish that the expected pseudo-resolvent is itself a de-

terministic equivalent for the pseudo-resolvent. We present one possible approach, which is

based on Assumption 3.

Lemma 3.4.9. Under Assumption 3, let U ∈ Cℓ×ℓ with ∥U∥F ≤ 1 and assume that the map

g ∈ (Rγ, ∥ · ∥2) 7→ (L(g)− zΛ)−1 ∈ (Cℓ×ℓ, ∥ · ∥F ) is λ-Lipschitz with λ ≍ ℓ−r for some r > 0.

Then, tr(U((L− zΛ)−1 − E(L− zΛ)−1)) → 0 almost surely as ℓ → ∞.
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Proof. Let g1, g2 ∈ Rγ. Then, by Cauchy-Schwarz’s inequality | tr(U((L(g1)−zΛ)−1−(L(g2)−
zΛ)−1))| ≤ ∥U∥F∥(L(g1) − zΛ)−1 − (L(g2) − zΛ)−1∥F ≤ λ∥g1 − g2∥. By Proposition 2.3.1,

there exists absolute constants c1, c2 ∈ R>0 such that P(| tr(U((L−zΛ)−1−E(L−zΛ)−1))| ≥
x) ≤ c1e

−c2x2/λ2 ≤ c1e
−c3x2ℓ2r for every x ∈ R>0 and ℓ ∈ N. Here, c3 ∈ R>0 is some constant

satisfying 0 < c3 ≤ c2/(λℓ
r)2 for every ℓ ∈ N large enough. In particular, for any ϵ ∈ R>0,∑∞

ℓ=1 P(| tr(U((L−zΛ)−1−E(L−zΛ)−1))| ≥ ϵ) ≤ c1
∑∞

ℓ=1 e
−c3ϵ2ℓ2r . By the integral test, the

series
∑∞

ℓ=1 e
−c3ϵ2ℓ2r converges, and the result follows from the Borel-Cantelli lemma.

Lemma 3.4.9 ensures the concentration of the generalized trace entries of the pseudo-

resolvent around its mean, assuming a Gaussian design. However, it is worth noting that this

concentration phenomenon may not always hinge on Assumption 3. An alternative approach

could involve invoking a universality result, such as [BH23, Lemma 6.11], which asserts that

certain functionals of the resolvent of a class of random matrices remain unaffected by the

distribution of the input. This notion is known as universality. This class of random matrices

is typically characterized by low-order moments of the entry distribution. For instance, it

could encompass all linearizations sharing a fixed mean and covariance structure. If we

can identify a linearization within this class featuring Gaussian entries, then according to

Corollary 3.4.3, we can conclude that the solution to the MDE serves as a deterministic

equivalent for the pseudo-resolvent of linearizations within this class.

3.4.5 Convergence

Finally, we combine the results from Corollary 3.4.3 and Lemma 3.4.9 to establish the con-

vergence of the pseudo-resolvent to the unique solution to (3.2).

Theorem 3.4.2. Let z ∈ H, M ∈ M be the unique solution to (3.2), S̃ be defined in (3.4),

∆(L, τ) be defined in (3.18) and assume that assumptions 1 to 3 hold. Suppose that the

mapping g ∈ (Rγ, ∥ · ∥2) 7→ S((L(g) − zΛ − iτIℓ)
−1) ∈ (Cℓ×ℓ, ∥ · ∥2) is λ-Lipschitz and

limℓ→∞
√
ℓλ = limℓ→∞ ∥S̃∥ = limℓ→∞ ∥∆(L, τ)∥ = 0 for every τ ∈ R>0 small enough.

Furthermore, suppose that the mapping g ∈ (Rγ, ∥ · ∥2) 7→ (L(g) − zΛ)−1 ∈ (Cℓ×ℓ, ∥ · ∥F ) is

cℓ−r-Lipschitz for some c, r ∈ R>0. Then, tr(U(L − zΛ)−1 − M(z)) → 0 almost surely as

ℓ → ∞ for every sequence of matrices U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1.
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Proof. The result follows immediately from Corollary 3.4.3, as well as lemmas 2.2.8 and 3.4.9.

By decomposing the analysis as shown in (3.15), we were able to segregate the concen-

tration step from the stability analysis. This allows us to work with deterministic objects

throughout sections 3.4.1 to 3.4.3. This approach conferred a notable advantage, enabling

us to exploit norm bounds and streamline our analysis. This methodology proved ade-

quate for deriving several results, including global anisotropic laws. However, for a more

fine-grained examination, such as studying the behavior of eigenvalues at the edge of the

spectrum, we would need to extend and adapt the stability argument to directly involve the

pseudo-resolvent. We posit that the arguments presented in the stability section could be

modified by considering convergence in generalized trace entries instead of operator norm.

A key distinction would arise from the existence of correlations between the perturbation

matrix D(τ) and F (τ)((L − zΛ − iτIℓ)
−1), necessitating a refined approach to control the

error term. This remains a topic for future research.

Example 3.4.1. In Example 2.3.1, we derive an expression for the superoperator S for GOE

matrices. It is straightforward to verify that both assumption 1 and assumption 3 hold

in this context. Furthermore, considering two Wigner matrices W1 = (2n)−
1
2 (Z1 + ZT

1 )

and W2 = (2n)−
1
2 (Z2 + ZT

2 ), as described in Example 2.3.1, we observe that ∥S((W1 −
zIn)

−1 − (W2 − zIn)
−1)∥ ≤ n−1/2(ℑ[z])−2∥W1 −W2∥F ≤

√
2n−1(ℑ[z])−2∥Z1 − Z2∥F . Hence,

by Corollary 3.4.3, the perturbation matrix vanishes in norm as n → ∞. Leveraging the

stability result from Theorem 3.4.1 alongside the concentration result from Lemma 3.4.9, we

can conclude that the resolvent of Wigner matrices converges to the solution of the MDE.

In doing so, we recover Wigner’s semicircle law in the particular case of GOE matrices.
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4
Random Features Ridge Regression

In Chapter 3, we developed a rigorous theoretical framework for the matrix Dyson equation

involving correlated linearizations, designed for application to machine learning problems.

In this chapter, we will leverage this theory to analyze the empirical test error of random

features ridge regression. Specifically, we will demonstrate that the empirical test error

of random features ridge regression concentrates around a deterministic quantity in the

proportional regime, and we will characterize this deterministic quantity using the matrix

Dyson equation. Furthermore, we will utilize the deterministic equivalent to derive insightful

conclusions about the performance of random features ridge regression. Our analysis will be

complemented by numerical experiments, a discussion of related work, and implications of

our results. Importantly, we will substantiate our findings using the theory developed in the

previous chapter, showcasing its applicability in addressing machine learning problems. This

approach will provide valuable insights into how theoretical frameworks can be effectively

applied to analyze real-world machine learning scenarios.

Consider a supervised training problem with a labeled dataset D = {(xj, yj)}ntrain
j=1 with
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xj ∈ Rn0 and yj ∈ R for every j ∈ {1, 2, . . . , ntrain}. For conciseness, let X ∈ Rnntrain×n0 be

the matrix with jth rows corresponding to xT
j and y be the vectors of labels. We wish to

learn a relation between the inputs xj and the outputs yj by fitting the parametric function

x 7→ n− 1
2σ(xTW )w for some random matrix W ∈ Rn0×d, a λσ-Lipschitz activation function

σ : R 7→ R applied entrywise and some weights w ∈ Rd. Following the setup of Louart,

Liao, and Couillet, we will assume that W = φ(Z) for some Z ∈ Rn0×d with independent

standard normal entries and φ : R 7→ R a λφ-Lipschitz function applied entrywise [LLC18].

The Lipschitz constants λσ and λφ should be independent of the dimension of the problem

in the sense that, as n → ∞ with ntrain ∝ n0 ∝ d ∝ n, lim supn→∞(λφ ∨ λσ) < ∞. As

mentioned in the introduction, this is corresponds to the random features model of [RR07].

This model can be viewed as a two-layer neural network, where the first layer is frozen at

random initialization, and only the second layer is trained.

In order to find suitable weights w, we minimize the ℓ2-regularized norm squared loss

min
w∈Rd

∥y − Aw∥2 + δ∥w∥2 (4.1)

where A = n− 1
2σ(XW ) ∈ Rntrain×d denotes the random features matrix and δ ∈ R>0 is

the ridge parameter. In other words, we are fitting a random features model using ridge

regression. The minimization problem in (4.1) is strongly convex and admits the closed form

solution wridge = AT (AAT + δIntrain
)−1y which is called the ridge estimator.

4.1 Empirical Test Error

Suppose that we computed the ridge estimator wridge which solves (4.1). To evaluate its

performance, we can compute the empirical test error, or out-of-sample error, on a separate

labeled dataset D̂ = {(x̂j, ŷj)}ntest
j=1 using the squared norm of the residuals

Etest := ∥ŷ − Âwridge∥2 = ∥ŷ − ÂAT (AAT + δIntrain
)−1y∥2 (4.2)

with Â = n− 1
2σ(X̂W ) ∈ Rntest×d. This measures the performance of the model x 7→

n− 1
2σ(xTW )wridge on D̂ . If D̂ = D , then (4.2) corresponds to the training error.

Since Etest is a scalar observation, we expect that it will concentrate around a deter-
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ministic quantity depending on the first and second moments of A and Â. Consequently,

denote

E[(aT1 , âT1 )T (aT1 , âT1 )] =

[
KAAT KAÂT

KÂAT KÂÂT

]
where {(aTj , âTj )T}dj=1 represent the i.i.d. columns of A and Â. Indeed, KAAT , KAÂT , KÂAT ,

and KÂÂT encode the covariance between the entries of A and Â. Our main result veri-

fies [LLC18, Conjecture 1] under an additional boundedness assumption.

Theorem 4.1.1. Assume that EA = EÂ = 0. Furthermore, suppose that ntrain, d, ntest, n0 ∝
n such that λσ, λφ ∥X∥, ∥X̂∥, ∥y∥, ∥ŷ∥, E[∥A∥4] and E[∥Â∥4] remain bounded as n → ∞.

Let α be the unique non-positive real number satisfying

α = −(1 + tr(KAAT (δIntrain
− dαKAAT )−1))−1 ∈ R≤0

and denote M = (δIntrain
− dαKAAT )−1 as well as

β =
α2 tr(KÂÂT + dαKÂATM(Intrain

+ δM)KAÂT )

1− ∥
√
dαK

1
2

AATMK
1
2

AAT ∥2F
∈ R≥0.

Then, dβ∥K
1
2

AATMy∥2 + ∥dαKÂATMy + ŷ∥2 − Etest → 0 almost surely as n → ∞.

In the rest of this section, we will discuss some aspects pertaining to the assumptions

and implications of Theorem 4.1.1. This will be followed by a discussion of related work in

Section 4.2, and a proof of Theorem 4.1.1 in Section 4.3.

4.1.1 Discussion

Let us briefly discuss some aspects regarding Theorem 4.1.1.

Boundedness Assumptions and Extension to Deep Random Features

The conditions lim supn→∞ E[∥A∥4] < ∞ and lim supn→∞ E[∥Â∥4] < ∞ are satisfied when

the data matrices exhibit approximate orthogonality, as discussed in [FW20; WWF24]. The-

orem 4.1.1 extends naturally to deep random features models, which consider compositions
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of random feature layers

x ∈ Rn0 7→ n
− 1

2
k σ

(
n
− 1

2
k−1σ

(
· · ·n− 1

2σ
(
n
− 1

2
1 σ(xTW1)W2

))
Wk

)
w ∈ Rnk .

Here, k ∈ N corresponds to the number of layers and {Wj ∈ Rnj−1×nk}kj=1 is a collection

of random matrices with independent standard normal entries. Under the assumptions

of [FW20], it follows from [FW20, Lemma D.4] and the equivalent characterizations of sub-

exponential random variables [Ver18, Proposition 2.7.1] that the norm of the conjugate kernel

matrices AAT and ÂÂT have bounded fourth moments. This allows for a direct extension

of Theorem 4.1.1 to deep random features.

0 1000 2000 3000 4000
d

0.2

0.4

0.6

0.8

1.0

E t
es

t

0 1000 2000 3000 4000
d

0.5

1.0

1.5

2.0

2.5
= 0.01
= 0.05
= 0.1
= 0.5
= 1

Figure 4.1: Etest vs the deterministic approximation given in Theorem 4.1.1 for various odd

activation functions with different sizes of hidden layers d and ridge parameter δ. The data

matrices, as well as the response variables, are sampled from a synthetic regression dataset,

ntrain = ntest = n0 = 1000. Left: Error function activation (σ(x) = erf(x)); Right: Sign

activation (σ(x) = sign(x)).

The boundedness conditions are also met with concentrated random vectors, as outlined

in [LCM21, Assumption 2]. Notably, these assumptions include the common case of i.i.d.

standard normal entries in independent data matrices, a widely studied scenario.
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Figure 4.2: Etest vs the deterministic approximation given in Theorem 4.1.1 for various

flattened image classification datasets with different sizes of hidden layers d and ridge pa-

rameter δ. Sine activation (σ = sin), ntrain = 1500, ntest = 1000. Upper left: MNIST [Den12];

Upper right: Fashion-MNIST [XRV17]; Lower left: CIFAR-10 [Kri09]; Lower right: CIFAR-

100 [Kri09].

Bounded Denominator

While not obvious at first, we show in Lemma 4.3.9 that 1−∥
√
dαK

1/2

AATMK
1/2

AAT ∥2F is positive

and bounded away from 0 as n → ∞ in the setting of Theorem 4.1.1. This implies that β,

and therefore Etest, is well-behaved in the proportional limit.
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Data Assumptions and Real-World Relevance

Our assumptions concerning the norms of A and Â implicitly impose constraints on the data

matrices X and X̂. However, conditioning on these matrices allows us to establish asymp-

totic equivalence without requiring restrictive distributional assumptions. Consequently, our

results extend applicability to a broad spectrum of data matrices, offering a more accurate

model for real-world datasets. For instance, as illustrated in Figure 4.2, we observe a strik-

ing alignment between the empirical test error Etest and the deterministic approximation

provided by Theorem 4.1.1 across various dimensions and ridge parameters when the data

is sourced from real-world flattened image classification datasets such as MNIST [Den12],

Fashion-MNIST [XRV17], CIFAR-10 [Kri09], and CIFAR-100 [Kri09]. Notably, the agree-

ment between empirical simulations and the theoretical prediction of Theorem 4.1.1 holds

even for datasets with anisotropic features.

This adaptability also permits the analysis of random features ridge regression with test

samples drawn from a distribution distinct from that of the training samples. Such flexibility

opens up promising avenues for future research, particularly in the realm of privacy, where

test samples may be deliberately chosen in an adversarial manner.

Numerical Considerations

Even though Theorem 4.1.1 is an asymptotic result, figures 4.1 and 4.2 demonstrates a close

match between the empirical test error Etest and the deterministic approximation provided by

Theorem 4.1.1 for various activation functions σ and datasets. Notably, the approximation

remains accurate for realistic dimensions and even for the non-Lipschitz continuous sign

function. Theorem 4.1.1 suggests that computing the asymptotic deterministic equivalent

for Etest can be reduced to solving a scalar fixed-point equation. As shown in Lemma 4.3.11,

the iterates {αk}k∈N0 obtained by iterating αk+1 = −(1+tr(KAAT (δIntrain
−αkdKAAT )−1))−1

for every k ∈ N with arbitrary α0 ∈ R≤0 converge to α as k → ∞. Using the spectral

decomposition KAAT = U diag{λj(KAAT )}ntrain
j=1 UT for some orthonormal matrix U , we can

rewrite the iteration as

αk+1 = −

(
1 +

ntrain∑
j=1

λj(KAAT )

δ − dαkλj(KAAT )

)−1

.
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Hence, instead of performing a matrix inversion at each iteration, we compute one spectral

decomposition and use the above formula to update αk for every k ∈ N. This allows us to

efficiently compute the deterministic equivalent of Etest for various activation functions and

dimensions. Moreover, when φ is the identity, the kernel matrices KAAT , KAÂT , and KÂÂT

can be efficiently computed using [LLC18, Table 1].

4.1.2 Implications

We now discuss some implications of Theorem 4.1.1.

Gaussian Equivalence

Theorem 4.1.1 establishes a Gaussian equivalence principle, indicating that every random

features model trained with ridge regression, as described in the statement of Theorem 4.1.1,

performs equivalently to a surrogate Gaussian model with a matching covariance structure.

However, it is important to note, as mentioned in [LLC18], that the distribution of the input

data can impact the performance of the random features model. This influence stems from

the fact that, although there is Gaussian equivalence at the level of random feature matrices,

the distribution of the input may influence the covariance matrices KAAT , KAÂT , KÂAT , and

KÂÂT , which are directly linked to the performance of the random features model.

Implicit Regularization and Relation to Kernel Regression

Theorem 4.1.1 demonstrates the concentration of the empirical test error of random features

ridge regression around the deterministic quantity dβ∥K1/2

AATMy∥2 + ∥dαKÂATMy + ŷ∥2 as

the dimensions increases in the proportional regime. The second term, ∥dαKÂATMy+ ŷ∥2 =
∥ŷ−dKÂAT (dKAAT +(−δ/α)Intrain

)−1y∥2, is equivalent to the squared norm of the empirical

test error for kernel ridge regression with ridge parameter −δ/α ∈ R>0 and the conjugate

kernel K(x1, x2) = d
n
Ez∼N (0,In0 )

[σ(xT
1 φ(z))σ(x

T
2 φ(z))]. We will show in Section 4.3 that

−1 ≤ α < 0, which implies that δ < −δ/α. This reveals that the randomness in the random

features matrix acts as a form of regularization, similar to increasing the ridge parameter in

kernel ridge regression. This is reminiscent of [Jac+20] and the generalization in [Cho22],

and is related to the implicit regularization of the random features model. In fact, the proof

of Theorem 4.1.1 recovers both of those results.

However, the additional term dβ∥K1/2

AATMy∥2 represents the variance in the empirical test
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error due to the random weights. Consequently, despite its computational benefits for kernel

approximation, Theorem 3.3.1 indicates that in the proportional regime, the random fea-

tures model may still underperform kernel ridge regression if dβ∥K1/2

AATMy∥2 is significantly

positive.

4.2 Related Work

This section connects our results to the existing body of research and discusses relevant prior

work.

4.2.1 Conjugate Kernel

The conjugate kernel, defined as the Gram matrix of features produced by the final layer

of a network [FW20], is central to the analysis of random features models. This connection

stems from the fact that the ouput of a neural network is linear in those derived features.

Thus, the conjugate kernel characterizes the training and test error of this linear model. In

the case of shallow random features models, the conjugate kernel is equivalent to the Gram

matrix of the random features themselves.

Numerous studies have employed random matrix theory to investigate the conjugate ker-

nel in the proportional regime. Works such as [PW17; BP21] leverage the moment method to

establish deterministic equivalents for random features models with isotropic data and weight

matrices. Piccolo and Schröder extend these results to include an additive bias [PS21]. To

address more realistic data distributions, Fan and Wang study the case of nearly orthogonal

data. They introduce a notion of orthogonality that can propagate through network layers,

providing control over key quantities related to the conjugate kernel [FW20]. Notably, their

settings encompass the case of isotropic data, with the difference that the author conditioned

on the data. The conjugate kernel is also studied in [Cho22; LLC18] utilizing concentration

of measure and leave-one-out techniques.

Beyond bulk spectrum analysis, Benigni and Péché investigate outlier eigenvalues of the

conjugate kernel using random rectangular matrices with i.i.d. centered entries for both data

and weights [BP22]. They demonstrate that uninformative spikes can arise in the conju-

gate kernel when the activation function lacks odd symmetry. Building on this, [WWF24]

proposes a spiked conjugate kernel model with low-rank informative structure in the data.
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Analyzing deep networks under a near-orthogonality assumptions similar to that of [FW20],

they study outlier propagation in the conjugate kernel. This work is motivated in part by

results from [Ba+22; Cui+24], where a single gradient step in a neural network at random

initialization is shown to be equivalent to a spiked random features model. The structure in

random features model turns out to have important implication, notably in understanding

the feature learning mechanisms.
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Figure 4.3: Spectrum of the conjugate kernel matrix AAT . Empirical spectrum (blue) com-

pared to the theoretical density obtained from Theorem 4.1.1 (orange). Left: Sample covari-

ance matrix with σ = Id, ntrain = 1000, n0 = 1000, and d = 1500. X is a diagonal matrix

with entries drawn uniformly from {1, 3, 5}. Right: Conjugate kernel matrix with σ = erf,

ntrain = 1500, n0 = 1000, and d = 3000. The matrix X = ZC for some matrix Z ∈ Rntrain×n0

with i.i.d. standard Gaussian entries and C ∈ Rn0×n0 a diagonal matrix with entries drawn

uniformly from {1, 3}.

The proof of our main result recovers a deterministic equivalent for the conjugate kernel,

consistent with the findings of [Cho22; LLC18], employing a significantly different approach.

In particular, replacing the ridge parameter by a spectral parameter in Theorem 4.1.1 and

using the Stieltjes inversion lemma, we can recover the density of the empirical spectral

distribution of the conjugate kernel. This is illustrated in Figure 4.3. As a particular
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instance of the conjugate kernel, we recover the Marchenko-Pastur law for Wishart matrices,

as discussed in examples 2.3.2 and 2.3.3 and illustrated in Figure 4.3.

4.2.2 Gaussian Equivalence

As a consequence of Theorem 4.1.1, we discussed in Section 4.1.2 that random features ridge

regression follows a Gaussian equivalence principle. This means that in terms of training

and empirical test error, it behaves equivalently to a surrogate linear Gaussian model with

matching covariance. This phenomenon was initially established for random features ridge

regression under the linear regime in the sense of test error [MM22]. Subsequent work proved

its extension to broader loss functions and regularization, initially via non-rigorous replica

methods [Ger+20] and later through rigorous analysis [Gol+22; HL23]. Gaussian equivalence

has also been demonstrated for deep random features [Sch+23] and for random features ridge

regression beyond the linear scaling regime [HLM24].

Our work extends this literature by establishing Gaussian equivalence in terms of the

empirical test error of random features ridge regression. This contributes to the general-

ization of Gaussian equivalence under broader distributional assumptions, aligning with the

direction explored by Schröder et al. [Sch+24].

4.2.3 Training and Test Error of Random Features

The random features model provides valuable insights into the behavior of more complex

machine learning models and serves as a useful benchmark. Within the context of high-

dimensional settings, random features ridge regression is a generalization of traditional ridge

regression [DW18; Dic16; WX20; MG21]. With non-linear activation functions, previous

studies have extensively examined the test error of random features ridge regression in the

proportional regime both using non-rigorous replica methods [Ger+20] and rigorous analy-

ses [MM22; ALP22; AP20b]. This line research characterizes the training and test error of

random features ridge regression in order to offer insights into the impacts of various model

choices, such as overparameterization.

Research has expanded to address anisotropic data [Has+22; MP22; MMM22; Sch+24]

and covariate shift scenarios [TAP21]. A key motivation lies in overcoming the kernel lower

bound of isotropic data in the proportional regime, where random features models only learn
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linear label components. By introducing anisotropy, the aim is to feature learning—the

ability of machine learning models to extract meaningful representations from data. This

enhances the expressiveness of random features models, enabling them to better capture the

statistical properties of trained neural networks. Breaking the kernel lower bound can also

be achieved using a random features model with a hidden layer size that scales polynomially

with input size. Studies have investigated random features models beyond the linear scaling

regime, revealing significant transitions in the degree of label learning as a function of the

polynomial scaling exponent [HLM24; MMM22]. Additionally, some studies investigated

training, test, and cross-validation errors in the highly overparameterized regime with nearly

orthogonal data assumptions [WZ23].

It is worth noting that investigations into the test error of random features extend be-

yond ridge regression. Studies have explored generic convex losses [Gol+22] and alternative

penalty terms [Lou+22; BPH23]. A recent trend focuses on deep random features, a multi-

layer generalization of random features. Empirical findings indicate that trained neural

network outputs can be modeled by a deep random features model, with each layer’s covari-

ance corresponding to that of the neural network [Gut+23]. Research has delved into deep

structured linear networks [ZP23] and deep non-linear networks [BPH23; Sch+23; Sch+24].

Our study diverges from these works by focusing on the empirical test error of ran-

dom features ridge regression, without assuming specific data models or distributions be-

yond some boundedness conditions. Our main result regarding the test error of random

features ridge regression is most similar to the work of Louart, Liao, and Couillet, who es-

tablished an asymptotically exact expression for the training error of random features ridge

regression [LLC18]. The authors conjectured that Theorem 4.1.1 holds without the addi-

tional conditions imposing bounded fourth moments for the norm of the random features

matrices. [LCM21] resolves this conjecture in the special case of random Fourier features.

Both [LCM21; LLC18] employ leave-one-out techniques and concentration of measure argu-

ments in their approaches. Although we also utilize a leave-one-out argument to establish

universality, our overall approach differs fundamentally, providing flexibility for addressing

more complex scenarios where leave-one-out approaches may not be as straightforward to

apply.
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4.3 Proof of Theorem 4.1.1

In this section, we utilize the framework developed in Chapter 3 to prove Theorem 4.1.1.

Before delving into the argument, note that we may expand the test error in (4.2) as

Etest = ∥ÂAT (AAT + δIntrain
)−1y∥2 − 2ŷT ÂAT (AAT + δIntrain

)−1y + ∥ŷ∥2.

Each term in the above equations is a bilinear form, aligning well with the framework of

deterministic equivalence. In order to apply our framework, we have to find a linearization

such that a matrix of interest is contained in one of the block of the inverse. To this end, let

ℓ = ntrain + d+ 2ntest and consider the linearization

L =


δIntrain

A 0ntrain×ntest 0ntrain×ntest

AT −Id×d 0d×ntest ÂT

0ntest×ntrain
0ntest×d 0ntest×ntest −Intest

0ntest×ntrain
Â −Intest 0ntest×ntest

 ∈ Rℓ×ℓ. (4.3)

Taking Λ := diag{Intrain+d, 02ntest×2ntest}, we use Lemma 2.2.11 to express the pseudo-resolvent

(L− zΛ)−1 block-wise as

(L− zΛ)−1 =


R (1 + z)−1RA (1 + z)−1RAÂT 0

(1 + z)−1ATR R̄ R̄ÂT 0

(1 + z)−1ÂATR ÂR̄ ÂR̄ÂT −Intest

0 0 −Intest 0

 .

Here R := ((1 + z)−1AAT + (δ − z)Intrain
)−1 represents a resolvent and R̄ := −((1 + z)Id +

(δ − z)−1ATA)−1 is a co-resolvent. Indeed, limz→0(L − zΛ)−1
3,1 = ÂAT (AAT + δIntrain

)−1

holds one of the relevant expression for which we want to find a deterministic equivalent.

Therefore, it suffices to find a deterministic equivalent for the pseudo-resolvent (L − zΛ)−1

and take the spectral parameter to zero in order to recover a deterministic equivalent for

ÂAT (AAT + δIntrain
)−1.
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The linearization in (4.3) yields the superoperator

S : M : Cℓ×ℓ 7→


tr(M2,2)KAAT 0 0 tr(M2,2)KAÂT

0 ρ(M)Id 0 0

0 0 0 0

tr(M2,2)KÂAT 0 0 tr(M2,2)KÂÂT

 ∈ Cℓ×ℓ

where ρ(M) := tr(KAATM1,1 +KAÂTM4,1 +KÂATM1,4 +KÂÂTM4,4). Then, S(M) = E[(L−
EL)M(L− EL)]− S̃(M) holds with

S̃(M) := E


0 KAATMT

2,1 +KAÂTMT
2,4 0 0

MT
1,2KAAT +MT

4,2KÂAT 0 0 MT
1,2KAÂT +MT

4,2KÂÂT

0 0 0 0

0 KÂATMT
2,1 +KÂÂTMT

2,4 0 0

 .

By Theorem 3.3.1, there exists a unique solution M ∈ M such that M(z) solves (3.2)

for every z ∈ H. Plugging-in the expression for the superoperator above and using block

inversion lemma, we find that

M(z) =


((δ−z)Intrain−tr(M2,2)KAAT )−1 0 −tr(M2,2)M1,1KAÂT 0

0 d−1 tr(M2,2)Id 0 0

− tr(M2,2)KÂAT M1,1 0
(tr(M2,2))2KÂAT M1,1KAÂT

+tr(M2,2)KÂÂT
−Intest

0 0 −Intest 0

 (4.4)

with M2,2 = −(1 + z + tr(KAATM1,1))
−1Id.

A key observation that greatly simplifies both the theoretical analysis of the MDE and

enables us to derive an iterative procedure for computing its solution is the fact that we can

treat the upper-left ntrain + d block of the MDE as a separate MDE. This insight allows us

to effectively break down the problem and focus on a smaller sub-MDE. Let L(sub) denote

the upper-left ntrain + d block of L, define a new superoperator

S (sub) : X ∈ C(ntrain+d)×(ntrain+d) 7→

[
tr(X2,2)KAAT 0

0 tr(KAATX1,1)

]
∈ C(ntrain+d)×(ntrain+d)
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and a new sub-MDE mapping

F (sub) : f ∈ M (sub)
+ 7→ (EL(sub) − S (sub)(f(·))− (·)Intrain+d)

−1 ∈ M (sub)
+ .

Here, the set M (sub)
+ = Hol(H,A (sub)) and A (sub) = {N ∈ C(ntrain+d)×(ntrain+d) : ℑ[N ] ≻ 0}.

Given that the sub-MDE has a spectral parameter spanning its diagonal, the iteration scheme

Nk+1 = F (sub)(Nk) converges to the unique solution of the sub-MDE M (sub) = F (sub)(M (sub))

for any N0 ∈ M (sub)
+ , as per Lemma 3.3.2.

We will extensively use the MDE in (4.4) and the sub-MDE to establish Theorem 4.1.1.

To apply our theoretical framework, it is necessary to demonstrate that ∥∆(L, τ ; z)∥, as
defined in (3.18), vanishes as n → ∞ for every regularization parameter τ ∈ R>0. To achieve

this, we employ a leave-one-out method. While the ensuing argument involves detailed

and intricate calculations, it is tedious and differs heavily from the rest of the argument.

Therefore, we will establish that ∥∆(L, τ ; z)∥ is vanishing in Section 4.3.1. Then, we will use

the matrix Dyson equation for linearization framework to derive a deterministic equivalent

for the matrix ÂAT (AAT+δIntrain
)−1 in Section 4.3.2, and subsequently derive a deterministic

equivalent for its square in Section 4.3.3.

4.3.1 Universality

Fix z ∈ H, let {aj}dj=1, {âj}dj=1 denote the columns of A and Â respectively. Suppose

that lTj = (aTj , 0, 0, â
T
j ) and Lj = lje

T
ntrain+j + entrain+jl

T
j for every j ∈ {1, 2, . . . , d}, where

{ej}ℓj=1 is the canonical basis of Rℓ. In particular, we may write the linearization in (4.3)

as L = EL +
∑d

j=1 Lj. For every j ∈ {1, 2, . . . , d}, let Pj ∈ Rℓ×ℓ be the orthogonal matrix

permuting the first and ntrain + jth entries exclusively and Cj ∈ R(ℓ−1)×(ℓ−1) be the matrix

cycling from position ntrain + j − 1 to 1. For instance, if v = (vk)
ℓ−1
k=1, then

vTC−1
j = (v2, v3, . . . , vj−1, v1, vj, vj+1, . . . , vℓ−1).

We will rely heavily on a Schur complement decomposition of (PjLPj − zIℓ)
−1. For every

j ∈ {1, 2, . . . , d}, let l−j ∈ Rℓ−1 be obtained by removing the ntrain + jth entry of lj and

L−j ∈ R(ℓ−1)×(ℓ−1) be obtained by removing the ntrain + jth columns and ntrain + jth row
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from L. Define the scalar ξj := (1 + z + lT−j(L−j − zIℓ−1)
−1l−j)

−1 and the matrix

Ξj := Cj(L−j − zIℓ−1)
−1Cj − ξjCj(L−j − zIℓ−1)

−1ljl
T
j (L−j − zIℓ−1)

−1Cj.

We have the following block inversion formula.

Lemma 4.3.1. For every j ∈ {1, 2, . . . , d} and z ∈ H,

(PjLPj − zIℓ)
−1 =

[
−ξj ξjl

T
−j(L−j − zIℓ−1)

−1Cj

ξjCj(L−j − zIℓ−1)
−1l−j Ξj

]
.

Proof. The lemma follows directly from the observation

PjLPj =

[
−1 lT−jC

−1
j

C−1
j l−j C−1

j L−jC
−1
j

]

and an application of Lemma 2.2.11.

For every j ∈ {1, 2, . . . , d}, let qj = lT−jR−jl−j and R−j := (L−j − zIℓ)
−1. Concentration

of bilinear forms is a central ingredient of many random matrix theory proof. We obtain a

concentration result for qj by adapting [LLC18, Lemma 4].

Lemma 4.3.2. Under the settings of Theorem 4.1.1, limn→∞ E[max1≤j≤d |qj−Eqj|2] = 0 for

every z ∈ H.

Proof. Adapting [LLC18, Lemma 4], there exists some absolute constants c1, c2 ∈ R>0 such

that

P (|qj − Eqj| > t) ≤ c1e
−c2nmin{t,t2}

for every t ∈ R≥0. Then, E[max1≤j≤d |qj − Eqj|2] ≤ n− 1
2 +

∫ 1

n− 1
2
P(max1≤j≤d |qj − Eqj|2 >

t)dt+
∫∞
1

P(max1≤j≤d |qj − Eqj|2 > t)dt. Using a union bound,∫ 1

n− 1
2

P
(
max
1≤j≤d

|qj − Eqj|2 > t

)
dt ≤ c1d

∫ 1

n− 1
2

e−c2ntdt =
c1d

c2n

(
e−c2

√
n − e−c2n

)
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Also, ∫ ∞

1

P
(
max
1≤j≤d

|qj − Eqj|2 > t

)
dt ≤ c1d

∫ ∞

1

e−c2n
√
tdt = 2c1d

∫ ∞

1

te−c2ntdt

=
2c1d

c2n
e−c2n

(
1 +

1

c2n

)
Taking n → ∞ and using the fact that d ∝ n concludes the proof.

We need one additional tool in order to show universality, which we state here. We omit

the proof, as it follows directly from Hölder’s inequality.

Lemma 4.3.3. If lim supn→∞ max{E[∥A∥4],E[∥Â∥4]} < ∞ then lim supn→∞ E[∥L−EL∥4] <
∞.

We are ready to show universality using a leave-one-out approach.

Lemma 4.3.4. Fix z ∈ H. Let L be the linearization defined in (4.3) and ∆(L, τ) be defined

as in (3.18). Under the settings of Theorem 4.1.1, limℓ→∞ ∥∆(L, τ)∥ = 0 for every τ ∈ R>0.

Proof. For simplicity, we will demonstrate that limn→∞ ∥E[(L − EL)(L − zIℓ)
−1] + E[(L̃ −

EL)(L − zIℓ)
−1(L̃ − EL)(L − zIℓ)

−1]∥ = 0 for every z ∈ H, where L̃ is an i.i.d. copy of

L. This adjustment streamlines notation without altering any steps in the proof. For every

j ∈ {1, 2, . . . , d},

PjLjPj =

[
0 lT−jC

−1
j

C−1
j l−j 0

]
and, by Lemma 4.3.1,

E
[
(L− EL)(L− zIℓ)

−1
]
=

d∑
j=1

PjE
[
PjLjPj(PjLPj − zIℓ)

−1
]
Pj

=
d∑

j=1

PjE

[
ξjl

T
−jR−jl−j lT−jR−jCj − ξjl

T
−jR−jl−jl

T
−jR−jCj

−ξjC
−1
j l−j ξjC

−1
j l−jl

T
−jR−jCj

]
Pj

=
d∑

j=1

PjE

[
ξjl

T
−jR−jl−j −ξjl

T
−jR−jl−jl

T
−jR−jCj

−ξjC
−1
j l−j ξjC

−1
j l−jl

T
−jR−jCj

]
Pj
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where we recall that R−j = (L−j − zIℓ−1)
−1. On the other hand,

E
[
(L̃− EL)(L− zIℓ)

−1(L̃− EL)(L− zIℓ)
−1
]

=
d∑

j=1

PjE
[
PjL̃jPj(PjLPj − zIℓ)

−1PjL̃jPj(PjLPj − zIℓ)
−1
]
Pj

=
d∑

j=1

PjE

[
ξj l̃

T
−jR−jl−j l̃T−jR−jCj − ξj l̃

T
−jR−jl−jl

T
−jR−jCj

−ξjC
−1
j l̃−j ξjC

−1
j l̃−jl

T
−jR−jCj

]2
Pj.

Thus,

E
[
(L− EL)(L− zIℓ)

−1
]
+E

[
(L̃− EL)(L− zIℓ)

−1(L̃− EL)(L− zIℓ)
−1
]
=

d∑
j=1

PjE[ξjΨj]Pj

where qj = lT−jR−jl−j, q̃j = l̃T−jR−j l̃−j, rj = l̃T−jR−jl−j and

Ψj =

[
qj − q̃j + 2ξjr

2
j rj l̃

T
−jR−jCj − 2ξjr

2
j l

T
−jR−jCj + (q̃j − qj)l

T
−jR−jCj

−2ξjrjC
−1
j l̃−j − C−1

j l−j C−1
j (l−jl

T
−j − l̃−j l̃

T
−j)R−jCj + 2ξjrjC

−1
j l̃−jl

T
−jR−jCj

]
.

We will consider the upper blocks of
∑d

j=1 PjE[ξjΨj]Pj separately.

First, for the upper-left corner, the sum along with the permutation matrices Pj are

simply tiling the diagonal. Furthermore, by Lemma 2.2.5, both |ξj| and ∥Rj∥ are bounded

by (ℑ[z])−1 for every j ∈ {1, 2, . . . , d}. Then,∥∥∥∥∥
d∑

j=1

PjE

[
ξj(qj − q̃j) + 2ξ2j r

2
j 0

0 0

]
Pj

∥∥∥∥∥ ≤ max
1≤j≤d

|E[ξj(qj − q̃j) + 2ξ2j r
2
j ]|

≤ 1

ℑ[z]
E[|q − q̃|] + 2|E[ξ21 lT−1R−1KR−1l−1]|

≤ 2

ℑ[z]
E[|q − Eq|] + 2E[∥L− EL∥2]∥K∥

(ℑ[z])4
.

Here, we introduced the correlation matrix K = E[l−1l
T
−1]. Using Jensen’s inequality and
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Cauchy Schwarz,

∥K∥ ≤ ∥E[a1aT1 ]∥+ ∥E[â1aT1 ]∥+ ∥E[a1âT1 ]∥+ ∥E[â1âT1 ]∥

= d−1(∥E[AAT ]∥+ ∥E[ÂAT ]∥+ ∥E[AÂT ]∥+ ∥E[ÂÂT ]∥)

≤ d−1(E[∥A∥2] + 2

√
E[∥Â∥2]E[∥A∥2] + E[∥Â∥2]) ≲ d−1. (4.5)

Here, we used the fact that E[∥A∥2] and E[∥Â∥2] are bounded by assumption. Additionally,

by Lemma 4.3.2, it is clear that E[|q − Eq|] → 0 as n → ∞.

We now turn our attention to the upper-right 1 × (ℓ − 1) corner of
∑d

j=1 PjE[ξjΨj]Pj.

For every unit vector x ∈ Cℓ,∥∥∥∥∥
d∑

j=1

PjE

[
0 ξjrj l̃

T
−jR−jCj − 2ξ2j r

2
j l

T
−jR−jCj + ξj(q̃j − qj)l

T
−jR−jCj

0 0

]
Pjx

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥E

(
0 ξ1r1l̃

T
−1R−1C1 − 2ξ21r

2
1l

T
−1R−1C1 + ξ1(q̃1 − q1)l

T
−1R−1C1

)
P1x

...(
0 ξdrdl̃

T
−dR−dCd − 2ξ2dr

2
dl

T
−dR−dCd + ξd(q̃d − qd)l

T
−dR−dCd

)
Pdx


∥∥∥∥∥∥∥∥∥
2

≤
√
ℓ max
1≤j≤d

∥E[ξjrj l̃T−jR−j − 2ξ2j r
2
j l

T
−jR−j + ξj(q̃j − qj)l

T
−jR−j]∥2.

On one hand,

E[ξjrj l̃T−jR−j − 2ξ2j r
2
j l

T
−jR−j] = E[ξjlT−jR−jKR−j − 2ξ2j l

T
−jR−jKR−jl−jl

T
−jR−j]

and, since |ξj| ≤ (ℑ[z])−1,

max
1≤j≤d

∥E[ξjrj l̃T−jR−j − 2ξ2j r
2
j l

T
−jR−j]∥ ≤ E[∥l−1∥]∥K∥

(ℑ[z])3
+

2E[∥l−1∥3]∥K∥
(ℑ[z])5

.
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Furthermore, by Cauchy-Schwarz for complex random variables,

∥E[ξj(q̃j − qj)l
T
−jR−j]∥2 = sup

∥y∥≤1

|E[ξj(q̃j − qj)l
T
−jR−jy]|

≤ (ℑ[z])−1 sup
∥y∥≤1

√
E[|q − q̃|2]E[|lT−jR−jy|2]

= (ℑ[z])−1 sup
∥y∥≤1

√
E[|q − q̃|2]E[y∗R∗

−jKR−jy] ≤
√
E[|q − q̃|2]∥K∥

(ℑ[z])2
.

Combining everything, we obtain that the upper-right 1×(ℓ−1) corner of
∑d

j=1 PjE[ξjΨj]Pj

is bounded, in norm, by

√
ℓE[∥l−1∥]∥K∥

(ℑ[z])3
+

2
√
ℓE[∥l−1∥3]∥K∥
(ℑ[z])5

+

√
ℓE[|q − q̃|2]∥K∥

(ℑ[z])2
.

We conclude that this bound vanishes as n increases using (4.5), E[∥l−1∥] ≤ E[∥L−EL∥] as
well as lemmas 4.3.2 and 4.3.3.

We consider the two lower blocks together. For notational convenience, let

¯
Ψj =

[
0 0

−2ξjrjC
−1
j l̃−j − C−1

j l−j C−1
j (l−jl

T
−j − l̃−j l̃

T
−j)R−jCj + 2ξjrjC

−1
j l̃−jl

T
−jR−jCj

]

for every j ∈ {1, 2, . . . , d}. Since we expect qj to concentrate around its mean, we write

ξj = (1 + z + qj)
−1 = (1 + z + Eqj)−1 +

Eqj−qj
(1+z+Eqj)ξj and

d∑
j=1

PjE[ξj
¯
Ψj]Pj = (1 + z + Eq)−1

d∑
j=1

PjE[
¯
Ψj]Pj − (1 + z + Eq)−1

d∑
j=1

PjE[(qj − Eqj)ξj
¯
Ψj]Pj.

Using independence of R−j, l−j and l̃−j,

E
¯
Ψj =

[
0 0

−2ξjC
−1
j KR−jl−j 2ξjC

−1
j KR−jl−jl

T
−jR−jCj

]
.
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Using a similar argument as above,∥∥∥∥∥
d∑

j=1

PjE

[
0 0

−2ξjC
−1
j KR−jl−j 0

]
Pj

∥∥∥∥∥ ≤ 2
√
ℓE[∥l−1∥]∥K∥
(ℑ[z])2

n→∞−−−→ 0.

Moreover, further decomposing the lower-right corner,

d∑
j=1

PjE

[
0 0

0 2ξjC
−1
j KR−jl−jl

T
−jR−jCj

]
Pj

= (1 + z + Eq)−1

d∑
j=1

PjE

[
0 0

0 2C−1
j KR−jKR−jCj

]
Pj

− (1 + z + Eq)−1

d∑
j=1

PjE

[
0 0

0 2(qj − Eqj)ξjC−1
j KR−jl−jl

T
−jR−jCj

]
Pj

with |(1 + z + Eq)−1| ≤ (ℑ[z])−1,∥∥∥∥∥
d∑

j=1

PjE

[
0 0

0 2C−1
j KR−jKR−jCj

]
Pj

∥∥∥∥∥ ≤ 2d∥K∥2

(ℑ[z])2

and∥∥∥∥∥
d∑

j=1

PjE

[
0 0

0 2(qj − Eqj)ξjC−1
j KR−jl−jl

T
−jR−jCj

]
Pj

∥∥∥∥∥ ≤
2d∥K∥

√
E[|q − Eq|2]E[∥l−1∥4]

(ℑ[z])3
.

In particular, ∥(1 + z + Eq)−1
∑d

j=1 PjE[
¯
Ψj]Pj∥

n→∞−−−→ 0. It only remains to show that

∥(1+z+Eq)−1
∑d

j=1 PjE[(qj−Eqj)ξj
¯
Ψj]Pj∥ vanishes. To this end, we undo the decomposition

and notice that

d∑
j=1

PjE[(qj − Eqj)ξj
¯
Ψj]Pj = E

[
(
¯
L− E

¯
L)Ω(L− zIℓ)

−1
]

+ E
[
(˜
¯
L− E

¯
L)Ω(L− zIℓ)

−1(L̃− EL)(L− zIℓ)
−1
]
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where

¯
L =


δIntrain

A 0 0

0 −Id×d 0 0

0 0 0 −Intest

0 Â −Intest 0


and

Ω = diag{0ntrain×ntrain
, diag{qj − Eqj}dj=1, 02ntest×2ntest}.

Using the bound ∥(L − zIℓ)
−1∥ ≤ (ℑ[z])−1, it follows from Jensen’s and Cauchy-Schwarz

inequalities that

∥∥E [(
¯
L− E

¯
L)Ω(L− zIℓ)

−1
]∥∥ ≤

√
E[∥L− EL∥2]E[max1≤j≤d |qj − Eqj|2]

ℑ[z]

and

∥∥∥E [(˜
¯
L− E

¯
L)Ω(L− zIℓ)

−1(L̃− EL)(L− zIℓ)
−1
]∥∥∥ ≤

√
E[∥L− EL∥4]E[max1≤j≤d |qj − Eqj|2]

(ℑ[z])2
.

This term gives us the bottleneck conditions on the norm of the matrix L− EL and the

concentration of q around its mean. By lemmas 4.3.2 and 4.3.3, both of the RHS bounds

vanish as n diverges to infinity.

4.3.2 First Deterministic Equivalent

With the computational leave-one-out argument out of the way, we now focus on establishing

a deterministic equivalent for the random matrix ÂAT (AAT + δIntrain
)−1. As mentioned

above, this will be established by showing that the solution to the MDE given in (4.4) is

a deterministic equivalent for the pseudo-resolvent (L − zΛ)−1 in a neighborhood of z = 0.

Hence, the key lies in establishing control over M(z) in the proximity of z = 0. This control

is secured through the insights provided by the following lemma.

Lemma 4.3.5. Let z ∈ H with |z| < 1 ∧ δ and M ∈ M be the unique solution to (4.4).

Then, ℜ[M1,1(z)] ≻ 0 and ℜ[M2,2(z)] ≺ 0. Additionally, ∥M1,1(z)∥ ≤ (δ − ℜ[z])−1 and

∥M2,2(z)∥ ≤ (1 + ℜ[z])−1.
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Proof. Let N be any (ntrain+d)× (ntrain+d) matrix-valued analytic function on H such that

ℑ[N(z)] ≻ 0, N1,2(z) = N2,1(z) = 0 for every z ∈ H. Further assume that ℜ[N1,1(z)] ⪰ 0

and ℜ[N2,2(z)] ⪯ 0 for every z ∈ H with |z| < 1 ∧ δ. By Lemma 2.2.1,

ℜ[F (sub)(N)] = F (sub)(N)

[
(δ−ℜ[z])Intrain

− tr(ℜ[N2,2])KAAT
0

0 −(1+ℜ[z]+tr(K
AAT ℜ[N1,1]))

]
(F (sub)(N))∗ (4.6)

where we omit the dependence of N on z. Thus, ℜ[F (sub)
1,1 (N)] ≻ 0 and ℜ[F (sub)

2,2 (N)] ≺ 0 for

every z ∈ H with |z| < 1 ∧ δ. Additionally, F (sub)
1,2 (N) = F (sub)

2,1 (N) = 0. Since the iterates

Nk+1 = F (sub)(Nk) converges to the unique solution to the sub-MDE, it must be the case

that ℜ[M (sub)
1,1 (z)] ≻ 0 and ℜ[M (sub)

2,2 (z)] ≺ 0 for every z ∈ H with |z| < 1 ∧ δ. In fact, by

uniqueness of the solution to (3.2), ℜ[M1,1(z)] ≻ 0 and ℜ[M2,2(z)] ≺ 0 for every z ∈ H with

|z| < 1 ∧ δ. Using the fact that F (sub)(M (sub)) = M (sub) and (4.6), we get

ℜ[M1,1] ⪰ (δ −ℜ[z])M1,1(M1,1)
∗ and ℜ[M2,2] ⪯ −(1 + ℜ[z])M2,2(M2,2)

∗

for every z ∈ H with |z| ≤ 1∧δ. Since the spectral norm maintains the Loewner partial order-

ing, it follows from Lemma 2.2.4 that ∥M1,1∥ ≥ (δ−ℜ[z])∥M1,1(M1,1)
∗∥ = (δ−ℜ[z])∥M1,1∥2

and ∥M2,2∥ ≥ (1 + ℜ[z])∥M2,2∥2. Rearranging yields the desired result.

It will be useful later to not only have a deterministic equivalent for (L− zΛ)−1, but also

for (L(sub) − zIntrain
)−1.

Lemma 4.3.6. Let z ∈ H with |z| < δ ∧ 1 and M ∈ M be the unique solution to the sub-

MDE. Under the settings of Theorem 4.1.1, tr(U((L(sub) − zIntrain+d)
−1 − M (sub)(z))) → 0

almost surely as n → ∞ for every sequence U ∈ C(ntrain+d)×(ntrain+d) with ∥U∥∗ ≤ 1.

Proof. We first check that assumptions 1 to 3 are satisfied in this context. Indeed, it follows

from Hölder’s inequality that lim supℓ→∞ E∥(L− zΛ)−1∥2 < ∞. In particular, Assumption 1

is satisfied. Since there is a spectral parameter spanning the entire diagonal in the sub-

MDE, it follows from the stability properties of the MDE or [Alt+19, Corollary 3.8] that

Assumption 2 is satisfied for the sub-MDE. Because both A and Â are centered, and their

norm have bounded fourth moments, it is clear that lim supℓ→∞(∥S∥∨∥EL∥) < ∞. Finally,

Assumption 3 is evidently satisfied. Hence, the assumptions are satisfied.
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Let D(sub) = E[(EL(sub) − L(sub) − S (sub)(E(L(sub) − zIntrain+d)
−1))(L(sub) − zIntrain+d)

−1]

be the perturbation matrix, as defined in (3.17), associated with the linearization L(sub). In

particular, (EL(sub)−S(E(L(sub)−zIntrain+d)
−1)−zIntrain+d)E(L(sub)−zIntrain+d)

−1 = Intrain+d+

D(sub). As a consequence of Lemma 4.3.4 with Â = 0, ∥∆(L(sub), τ ; z)∥ → 0 as n → ∞ for

every τ ∈ R>0. Hence, to show that the perturbation matrix is vanishing as the dimension

increases, we only have to establish that the term involving the Lipschitz constant and the

term involving the norm of S̃ (sub) in Lemma 3.4.8 are asymptotically negligible.

We derive some useful norm bounds. Recall that R = ((1 + z)−1AAT + (δ − z)Intrain
)−1.

For |z| < 1∧δ, ℜ[(1+z)−1] ≥ |1+z|−2(1−|z|) ≥ (1−|z|)/4 > 0 and ℜ[δ−z] ≥ δ−|z|. Hence,
ℜ[R] ≥ (δ − |z|)RR∗ which implies that ∥R∥ ≤ (δ − |z|)−1. A similar argument applied to

R̄ = −((1 + z)Id + (δ − z)−1ATA)−1 gives ∥R̄∥ ≤ (1 − |z|)−1. Furthermore, we know that

∥RA∥2 = ∥RAATR∗∥ ≤ ∥RAAT∥∥R∥. By definition, RAAT = (1+z)Intrain
−(1+z)(δ−z)R.

Thus, ∥RAAT∥ ≤ 2(2 + δ)(δ − |z|)−1 and ∥RA∥ ≤
√

2(2 + δ)(δ − |z|)−1.

Based on Assumption 3, write L(sub) ≡ L(sub)(Z) = C(Z) + EL(sub) for Z ∈ Rn0×d a

matrix of i.i.d. standard normal entries and let λ be the Lipschitz constant associated to the

function Z ∈ (Rn0×d, ∥ · ∥F ) 7→ S (sub)((L(sub)(Z)− zIntrain+d)
−1) ∈ (C(ntrain+d)×(ntrain+d), ∥ · ∥2).

As mentioned in Remark 3.4.2, λ ≤ (ℑ[z])−2∥S (sub)∥F 7→2λC where λC is the Lipschitz constant

associated with map C : Z ∈ (Rn0×d, ∥ · ∥F ) 7→ C(Z) ∈ (R(ntrain+d)×(ntrain+d), ∥ · ∥F ). For every
N ∈ C(ntrain+d)×(ntrain+d), we can use Cauchy-Schwarz inequality to obtain

∥S (sub)(N)∥ ≤ ∥KAAT ∥| tr(N2,2)|+ | tr(KAATN1,1)| ≤ (
√
d+

√
ntrain)∥KAAT ∥∥N∥F .

By Jensen’s inequality, ∥KAAT ∥ = ∥d−1E[AAT ]∥ ≤ d−1E∥A∥2. In fact, by a similar argument,

∥KAAT ∥ ∨ ∥KÂAT ∥ ∨ ∥KAÂT ∥ ∨ ∥KÂÂT ∥ ≲ n−1. Since we assumed that E∥A∥4 is bounded,

and we are working in the proportional limit, ∥S (sub)∥F 7→2 ≲ n−1/2. Next, let Z1, Z2 ∈ Rn0×d

and notice that ∥C(Z1)− C(Z2)∥F ≤ n−1/2λσλφ∥X∥∥Z1 − Z2∥F . Since λσ, λφ and ∥X∥ are

all bounded by assumption, λ ≲ (ℑ[z])−2n−1. Finally, for every N ∈ C(ntrain+d)×(ntrain+d),

S̃ (sub)(N) = E

[
0 KAATNT

2,1 +KAÂTNT
2,4

NT
1,2KAAT +NT

4,2KÂAT 0

]
.

Since ∥KAAT ∥ ∨ ∥KÂAT ∥ ∨ ∥KAÂT ∥ ∨ ∥KÂÂT ∥ ≲ n−1, ∥S̃ (sub)∥ ≲ n−1. Combining everything
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along with concentration of linear functional of the resolvent around their mean, the result

follows from Theorem 3.4.2.

The final prerequisite needed to establish that the solution to (4.4) acts as a deterministic

equivalent for (L−zΛ)−1, where L is defined in (4.3), for every z ∈ H within a neighborhood

of the origin, is to confirm that Assumption 2 holds. We demonstrate this in the following

lemma.

Lemma 4.3.7. Suppose that M ∈ M is the unique solution to (4.4) and M (τ) is the unique

solution to the regularized version of the same equation. Then, M and M (τ) satisfy Assump-

tion 2 for all z ∈ H with |z| < δ ∧ 1.

Proof. Fix z ∈ H with |z| < 1 ∧ δ and let τ ∈ R>0. Expanding (3.6), we have ((δ − z −
iτ)Intrain

− tr(M
(τ)
2,2 )KAAT )M

(τ)
1,4 = tr(M

(τ)
2,2 )KAÂTM

(τ)
4,4 , −iτM

(τ)
3,4 − M

(τ)
4,4 = 0 and −M

(τ)
3,4 −

(tr(M
(τ)
2,2 )KÂÂT + iτIntrain

)M
(τ)
4,4 − tr(M

(τ)
2,2 )KÂATM

(τ)
1,4 = Intest . Using those equations, we may

solve for M
(τ)
4,4 and M

(τ)
1,4 . In particular, we have

M
(τ)
1,4 = tr(M

(τ)
2,2 )((δ − z − iτ)Intrain

− tr(M
(τ)
2,2 )KAAT )−1KAÂTM

(τ)
4,4

and (Intest − iτΞ)M
(τ)
4,4 = iτIntest with Ξ = (tr(M

(τ)
2,2 )KÂÂT + iτIntrain

)− (tr(M
(τ)
2,2 ))

2KÂAT ((δ−
z − iτ)Intrain

− tr(M
(τ)
2,2 )KAAT )−1KAÂT . Since ∥M (τ)

2,2 ∥ ≤ (ℑ[z])−1 and ℑ[M (τ)
2,2 ] ⪰ 0 for every

τ ∈ R>0, it follows that ∥Ξ∥ is bounded as τ → 0. Consequently, for every τ small enough,

∥iτΞ∥ < 1 and Intest−iτΞ is invertible. In particular, using the fact that ∥KAAT ∥∨∥KÂAT ∥∨
∥KAÂT ∥ ∨ ∥KÂÂT ∥ ≲ n−1, M

(τ)
4,4 approaches 0 as τ → 0 uniformly in n. The same argument

can be applied to M
(τ)
1,4 .

We turn our attention to (3.6) again. Expanding, it is straightforward to see that M
(τ)
1,2 =

M
(τ)
2,1 = M

(τ)
2,4 = M

(τ)
4,2 = 0. Furthermore, we can write

(EL(sub) − S (sub)(diag{M (τ)
1,1 ,M

(τ)
2,2 })− (z + iτ)Intrain+d) diag{M (τ)

1,1 ,M
(τ)
2,2 } = Intrain+d +D(sub)

with D(sub) = diag{tr(M (τ)
2,2 )KAÂTM

(τ)
4,1 , tr(KAÂTM

(τ)
4,1 + KÂATM

(τ)
1,4 + KÂÂTM

(τ)
4,4 )M

(τ)
2,2 }. In

particular, diag{M (τ)
1,1 ,M

(τ)
2,2 } almost solves the sub-MDE up to an additive perturbation

term D(sub) which vanishes as τ → 0 uniformly in n. Using the stability properties of the
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sub-MDE, it follows that ∥M (τ)
1,1 − M1,1∥ → 0 and ∥M (τ)

2,2 − M2,2∥ → 0 as τ → 0 uniformly

in n. Expanding (3.6), we can pass this convergence to the remaining blocks. Hence, M (τ)

converges to M as τ → 0 uniformly in n. This completes the proof.

Lemma 4.3.8. Let z ∈ H with |z| < δ ∧ 1 and M ∈ M be the unique solution to (4.4).

Under the settings of Theorem 4.1.1, tr(U((L− z)−1 −M(z))) → 0 almost surely as n → ∞
for every U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1.

Proof. Utilizing a similar argument as in the proof of Lemma 4.3.6, we observe that As-

sumption 1 is satisfied, limn→∞
√
nλ = 0, and lim supn→∞ ∥S̃∥ = 0, where λ is the Lipschitz

constant defined in Lemma 3.4.8. In particular, since ∥∆(L, τ ; z)∥ → 0 as n → ∞ for every

τ ∈ R>0 by Lemma 4.3.4, it follows from Lemma 3.4.8 that ∥D(τ)∥ → 0 as n → ∞ for every

τ ∈ R>0. By Lemma 4.3.7, Assumption 2 holds. The application of Theorem 3.4.2 yields

the desired result.

Having established that the solution to (4.4) acts as a deterministic equivalent for the

pseudo-resolvent (L − zΛ)−1 linked to (4.3), we aim to retrieve the expression in (4.2) by

taking the spectral parameter to 0. To accomplish this, we need further control over the

MDE near the origin.

Lemma 4.3.9. Let z ∈ H with |z| < δ ∧ 1 and M ∈ M the unique solution to (4.4). Then,

for every ϵ ∈ (0, 2−1] with (2(δ −ℜ[z])−2d2∥KAAT ∥2 − 1−ℜ[z])ϵ ≤ 2−1(1 + ℜ[z]),

1− d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F∥M2,2(z)∥2 ≥ ϵ.

In particular, under the settings of Theorem 4.1.1, there exists ϵ ∈ (0, 2−1] depending on

0 < η < 1 ∧ δ such that

lim sup
n→∞

d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F∥M2,2(z)∥2 < 1− ϵ

for all z ∈ H with |z| ≤ η.

Proof. Fix z ∈ H with |z| < 1 ∧ δ and write M ≡ M(z). Let ϵ ∈ (0, 2−1] such that

(2(δ −ℜ[z])−2d2∥KAAT ∥2 − 1−ℜ[z])ϵ ≤ 2−1(1 + ℜ[z])
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and assume, by contradiction, that d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F∥M2,2(z)∥2 > 1 − ϵ. Using the

definition of M1,1 and M2,2 and repeatedly applying (4.6),

tr(KAATℜ[M1,1]) = (δ −ℜ[z]) tr(KAATM1,1M
∗
1,1)− tr(ℜ[M2,2]) tr(KAATM1,1KAATM∗

1,1)

= (δ −ℜ[z]) tr(KAATM1,1M
∗
1,1)

+ d∥M2,2∥2∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F (1 + ℜ[z])

+ d∥M2,2∥2∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F tr(KAATℜ[M1,1])

≥ (δ −ℜ[z]) tr(KAATM1,1M
∗
1,1) + (1− ϵ)(1 + ℜ[z])

+ (1− ϵ) tr(KAATℜ[M1,1]).

Solving for tr(KAATℜ[M1,1]), we obtain that tr(KAATℜ[M1,1]) = tϵ−1 with

t := (δ −ℜ[z]) tr(KAATM1,1M
∗
1,1) + (1− ϵ)(1 + ℜ[z]).

In particular, taking the real part of M2,2, we have

−ℜ[M2,2] = ∥M2,2∥2(1 + ℜ[z] + tr(KAATℜ[M1,1]))Id ⪰ ∥M2,2∥2(1 + ℜ[z] + tϵ−1)Id.

By taking the norm on both sides and leveraging the properties that the spectral norm

preserves the Loewner partial ordering and that the spectral norm of the real and imaginary

parts of a complex matrix are bounded above by the spectral norm of the matrix itself, we

obtain

∥M2,2∥2(1 + ℜ[z] + tϵ−1) ≤ ∥ℜ[M2,2]∥ ≤ ∥M2,2∥.

Rearranging, this implies that ∥M2,2∥ ≤ (1 + ℜ[z] + tϵ−1)−1. By Lemma 4.3.5 and the

definition of ϵ,

d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F∥M2,2(z)∥2 ≤
(δ −ℜ[z])−2d2∥KAAT ∥2

1 + ℜ[z] + tϵ−1
≤ 2−1.
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This is a contradiction. Thus, it must be the case that

1− d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F∥M2,2(z)∥2 ≥ ϵ

for every ϵ ∈ (0, 2−1] with (2δ−2d2∥X∥4 − 1−ℜ[z])ϵ ≤ 2−1(1+ℜ[z]). The result follows.

The statement of Lemma 4.3.9 is intricate because the left-hand side of the inequality

(2δ−2d2∥KAAT ∥2 − 1−ℜ[z])ϵ ≤ 2−1(1 +ℜ[z]) may be negative. Nevertheless, the essence of

Lemma 4.3.9 lies in the fact that the quantity 1− d∥K1/2

AATM1,1(z)K
1/2

AAT ∥2F∥M2,2(z)∥2 can be

consistently bounded away from 0 regardless of the dimension.

Now that we have some control on the solution of the MDE when the spectral parameter

is close to the origin, we still need to continuously extend the function M to its boundary

point 0. To do so, we analytically extend M by reflection to the lower complex plane

{z ∈ H : ℑ[z] < 0} through an open interval containing the origin.

Lemma 4.3.10. The unique solution M to (3.2) can be extended analytically to the lower-

half complex plane through the open interval (−(1 ∧ δ), 1 ∧ δ).

Proof. Using the definition of matrix imaginary part and the resolvent identity, we obtain

the system of equations ℑ[M1,1] = M1,1(ℑ[z] + tr(ℑ[M2,2])KAAT )(M1,1)
∗ and tr(ℑ[M2,2]) =

d∥M2,2∥2(ℑ[z]+tr(KAATℑ[M1,1])). Combining the two equalities, we get d−1 tr(ℑ[M2,2])(1−
∥
√
dK

1/2

AATM1,1K
1/2

AAT ∥2F∥M2,2∥2) = ∥M2,2∥2ℑ[z](1 + ∥
√
dK

1/2

AATM1,1∥2F ). By Lemma 4.3.9, 1−
d∥K

1
2

AATM1,1K
1
2

AAT ∥2F∥M2,2∥2 > 0 uniformly on {z ∈ H : |z| ≤ ϵ} for every 0 < ϵ < 1 ∧ δ.

Using Lemma 4.3.5,

d−1 tr(ℑ[M2,2]) ≤
ℑ[z](1 + ∥

√
d(δ −ℜ[z])−1K

1
2

AAT ∥2F )

1− ∥
√
dK

1
2

AATM1,1K
1
2

AAT ∥2F∥M2,2∥2
.

Thus, we observe that ℑ[M2,2(z)] ↓ 0 uniformly as ℑ[z] → 0 on (−ϵ, ϵ) and similarly for

∥ℑ[M1,1]∥. Since M1,1 and M2,2 fully define the solution of the MDE, ∥ℑ[M(z)]∥ vanishes

uniformly for ℜ[z] ∈ (−ϵ, ϵ) as ℑ[z] → 0. By Lemma 2.2.9, the positive semidefinite measure

in Theorem 3.3.1 has no support in (−ϵ, ϵ). The result follows from Lemma 2.2.10.

We may now remove the spectral parameter in Lemma 4.3.8.
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Corollary 4.3.1. Let M ∈ M be the unique solution to (4.4). Under the settings of The-

orem 4.1.1, tr(U(L−1 −M(0))) → 0 almost surely as n → ∞ for every sequence U ∈ Cℓ×ℓ

with ∥U∥∗ ≤ 1.

The solution to (4.4) is fully defined by the scalar tr(M2,2). By fully defined, we mean that

we may explicitly construct the full solution of the MDE using only knowledge of tr(M2,2).

Using the sub-MDE defined above, we get the following numerical result.

Lemma 4.3.11. Suppose that M(0) solves (4.4) when z = 0. Let

T : x ∈ R<0 7→ −(1 + tr(KAAT (δIntrain
− dxKAAT )−1))−1 ∈ R<0

and consider the iterates {αk}k∈N0 obtained via αk+1 = T (αk) for every k ∈ N with arbitrary

α0 ∈ R≤0. Then,

M(0) =


(δIntrain

− dαKAAT )−1 0 −dαM1,1(0)KAÂT 0

0 αId 0 0

−dαKÂATM1,1(0) 0 (dα)2KÂATM1,1(0)KAÂT + dαKÂÂT −Intest

0 0 −Intest 0


where α := d−1 tr(M2,2(0)) = limk→∞ αk.

Proof. In order to use Theorem 2.1.1, we consider the set S of complex matrices N ∈
C(ntrain+d)×(ntrain+d) with N1,2 = N2,1 = 0, ℜ[N1,1] ≻ 0 and ℜ[N2,2] ≺ 0 and denote

F (sub) : N ∈ S 7→ (EL(sub) − S (sub)(N))−1 ∈ S .

Using an argument analogous to the one in lemmas 3.3.1 and 4.3.5, we see that

ℜ[F (sub)
1,1 (N)] ⪰ δF (sub)

1,1 (N)(F (sub)
1,1 (N))∗ ⪰ δ(δ + d∥KAAT ∥∥N∥)−2

and

ℜ[F (sub)
2,2 (N)] ⪯ −F (sub)

2,2 (N)(F (sub)
2,2 (N))∗ ⪯ −(1 + d∥KAAT ∥∥N∥)−2

for every N ∈ S . This implies that F (sub) is well-defined. Furthermore, by Lemma 2.2.4,
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∥F (sub)
1,1 (N)∥ ≤ δ−1 and ∥ℜ[F (sub)

2,2 (N)]∥ ≤ 1 for every N ∈ S . Let Sb = S ∩ Bb(0). Then,

for every b > δ ∨ 1, F (sub) is strictly holomorphic on Sb. By Theorem 2.1.1, there exists

a unique N ∈ Sb such that F (sub)(N) = N . Furthermore, the sequence {Nk}k∈N0 with

Nk+1 = F (sub)(Nk) for every k ∈ N converges to N for every N0 ∈ Sb. Since S =
⋃

b>0 Sb,

it follows that there exists a unique N ∈ S such that F (sub)(N) = N . Also, the sequence

{Nk}k∈N0 with Nk+1 = F (sub)(Nk) for every k ∈ N converges to N for every N0 ∈ S .

Choosing N0 = diag{Intrain
, α0Id} gives the result.

4.3.3 Second Deterministic Equivalent

We now consider the squared matrix (AAT + δIntrain
)−1AÂT ÂAT (AAT + δIntrain

)−1. Notice

that (L−2)1,1 = R2+RATAR+RAÂT ÂAR and (L(sub))−2
1,1 = R2+RATAR for R := (AAT +

δIntrain
)−1. Rearranging, we get that

(AAT + δIntrain
)−1AÂT ÂA(AAT + δIntrain

)−1 = (L−2)1,1 − (L(sub))−2
1,1. (4.7)

Therefore, it suffices to find deterministic equivalents for (L(sub))−2 and L−2 to obtain a

deterministic equivalent for the random matrix (AAT + δIntrain
)−1AÂT ÂA(AAT + δIntrain

)−1.

Lemma 4.3.12. Under the settings of Theorem 4.1.1, let α = d−1 tr(M2,2(0)) as in Lemma 4.3.11,

R = (AAT + δIntrain
)−1 and define

β =
α2 tr (KÂÂT + dαKÂATM1,1(0)(Intrain

+ δM1,1(0))KAÂT )

1− ∥
√
dαK

1
2

AATM1,1(0)K
1
2

AAT ∥2F
∈ R≥0.

Then, trU(RAÂT ÂATR − dβM1,1(0)KAATM1,1(0) − M1,3(0)M3,1(0)) → 0 almost surely as

n → ∞ for every sequence U ∈ Cntrain×ntrain with ∥U∥∗ ≤ 1.

Proof. First, as stated in Lemma 3.3.3, we note that iτ 7→ (L− iτ)−1 is an analytic function

with ∂iτ (L−iτ)−1 = (L−iτ)−2. Overloading notation, let M (ζ) ∈ M+ be the unique solution

to the MDE (EL−S(M (ζ))− ζIℓ)M
(ζ) = Iℓ where ζ ∈ H. By the proof of [EKN20, Theorem

2.14], the function ζ 7→ M (ζ) is analytic on H. Adapting a general argument resembling to
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the one in [Sch+23, equation (174)], it follows from Cauchy’s integral formula that

(L− iτ)−2 − ∂iτM
(τ)(0) = ∂iτ

(
(L− iτ)−1 −M (τ)(0)

)
=

1

2π

∮
γ

(L− ζ)−1 −M (ζ)

(ζ − iτ)2
dζ

where γ forms a counterclockwise circle of radius τ/2 around iτ . We know that M (ζ) is

a deterministic equivalent for (L − ζ)−1 for every fixed ζ ∈ H. By the resolvent identity,

ζ 7→ (L − ζIℓ)
−1 is 4/τ 2-Lipschitz on {z ∈ H : ℑ[z] ≥ τ/2}. Similarly, by the proof

of [EKN20, Theorem 2.14], the function ζ 7→ M (ζ) is (2/τ)12-Lipschitz on {z ∈ H : ℑ[z] ≥
τ/2}. Therefore, we obtain tr(U((L − iτ)−2 − ∂iτM

(τ)(0))) → 0 almost surely as n → ∞
for every τ ∈ R>0 and U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1. Taking the derivative of (3.6), we obtain

∂iτM
(τ)(0) = M (τ)(0)(S(∂iτM (τ)(0)) + Iℓ)M

(τ)(0) or, relating this equation to the stability

operator, L(τ)(∂iτM
(τ)(0)) = (M (τ)(0))2 with L(τ) : N ∈ Cℓ×ℓ 7→ N −M (τ)(0)S(N)M (τ)(0).

In what follows, we omit the argument of M (τ) and write M (τ) ≡ M (τ)(0). Using simple

but tedious computations, we decompose ∂iτM
(τ)
j,k = Cj,k +Dj,k tr(∂iτM

(τ)
2,2 ) for every (j, k) ∈

{(1, 1), (1, 4), (4, 4)} with

C1,1 := M
(τ)
1,4M

(τ)
4,1 + (M

(τ)
1,1 )

2 +M
(τ)
1,3M

(τ)
3,1 ,

D1,1 := M
(τ)
1,1KAATM

(τ)
1,1 +M

(τ)
1,1KAÂTM

(τ)
4,1 +M

(τ)
1,4KÂATM

(τ)
1,1 +M

(τ)
1,4KÂÂTM

(τ)
4,1 ,

C4,4 := M
(τ)
4,1M

(τ)
1,4 + (M

(τ)
4,4 )

2 +M
(τ)
4,3M

(τ)
3,4 ,

D4,4 := M
(τ)
4,1KAATM

(τ)
1,4 +M

(τ)
4,1KAÂTM

(τ)
4,4 +M

(τ)
4,4KÂATM

(τ)
1,4 +M

(τ)
4,4KÂÂTM

(τ)
4,4 ,

C1,4 := M
(τ)
1,1M

(τ)
1,4 +M

(τ)
1,4M

(τ)
4,4 +M

(τ)
1,3M

(τ)
3,4 , and

D1,4 := M
(τ)
1,1KAATM

(τ)
1,4 +M

(τ)
1,1KAÂTM

(τ)
4,4 +M

(τ)
1,4KÂATM

(τ)
1,4 +M

(τ)
1,4KAATM

(τ)
4,4 .

Taking the trace of the 2, 2 block of ∂iτM
(τ)(0), we get

tr(∂iτM
(τ)
2,2 ) = tr((M

(τ)
2,2 )

2)(ρ(∂iτM
(τ)) + 1)

= tr((M
(τ)
2,2 )

2)(tr(KAATC1,1 +KAÂTC
T
1,4 +KÂATC1,4 +KÂÂTC4,4) + 1)

+ tr(∂iτM
(τ)
2,2 ) tr((M

(τ)
2,2 )

2) tr(KAATD1,1 +KAÂTD
T
1,4 +KÂATD1,4 +KÂÂTD4,4).

By the proof of Lemma 4.3.8, we observe that there exists a function f : R>0 7→ R≥0 with
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limτ↓0 f(τ) = 0 such that ∥D4,4∥ ≤ f(τ) + on(1), ∥D1,1 − M1,1KAATM1,1∥ ≤ f(τ) + on(1),

∥D1,4∥ = ∥DT
4,1∥ ≤ f(τ) + on(1) and ∥M (τ)

2,2 −M2,2∥ ≤ f(τ) + on(1). By Lemma 4.3.9,

|1− tr((M
(τ)
2,2 )

2) tr(KAATD1,1 +KAÂTD4,1 +KÂATD1,4 +KÂÂTD4,4)|

is bounded away from 0 for every n ∈ N large enough and τ ∈ R>0 small enough. In

particular, the limit limτ→0 ∂iτM
(τ) exists and satisfies

lim
τ→0

d−1 tr(∂iτM
(τ)
2,2 ) =

α2(tr(KAATM2
1,1 +KAATM1,3M3,1 −KAÂTM3,1 −KÂATM1,3 +KÂÂT ) + 1)

1− ∥
√
dαK

1
2

AATM1,1K
1
2

AAT ∥2F

= β +
α2(1 + tr(KAATM2

1,1))

1− ∥
√
dαK

1
2

AATM1,1K
1
2

AAT ∥2F

where we recall that α = d−1 tr(M2,2) as defined in Lemma 4.3.11. Plugging this into the

expression for ∂iτM
(τ)
1,1 and taking the limit as τ ↓ 0, we get that

dβM1,1KAATM1,1 +M1,3M3,1 +M2
1,1 +

dα2(1 + tr(KAATM2
1,1))

1− ∥
√
dαK

1
2

AATM1,1K
1
2

AAT ∥2F
M1,1KAATM1,1

is an asymptotic deterministic equivalent for (L−2)1,1.

Using a similar argument, we note that ∂zM
(sub)(0) is a deterministic equivalent for

(L(sub))−2 and

∂zM
(sub)
1,1 = M2

1,1 +
dα2(1 + tr(KAATM2

1,1))

1− ∥
√
dαK

1
2

AATM1,1K
1
2

AAT ∥2F
M1,1KAATM1,1.

We obtain the result by (4.7).
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5
Conclusions and Future Work

In this thesis, our objective was to develop analytical tools to better understand the behavior

of machine learning models. Given the inherent complexity of these models, characterized by

their large size and non-linearities, direct analysis proves challenging. To circumvent these

obstacles, we adopt the strategy of modeling a portion of the machine learning process using

random matrices. By doing so, we can study various aspects of machine learning through

the analysis of rational expressions involving random matrices. This approach allows us to

use tools from random matrix theory to analyze machine learning models. In that regard,

our particular focus lies in extending the matrix Dyson equation to correlated linearizations.

One key advantage of the matrix Dyson equation framework, as opposed to alternative tech-

niques for finding deterministic equivalents, is its ability to streamline analysis by offering a

candidate deterministic equivalent and identifying natural quantities that must be bounded

to establish deterministic equivalence. We have expanded this framework by demonstrating

the existence of a unique solution to the matrix Dyson equation for linearizations under gen-

eral settings. Additionally, we have established multiple properties such as effective support
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bounds and shown that the solution to the fixed-point equation serves as an asymptotic

deterministic equivalent for a pseudo-resolvent. Our methodology is novel, offering potential

applications to a range of other problems. For instance, the utilization of the Carathéodory-

Riffen-Finsler pseudometric to establish stability properties of the matrix Dyson equation

represents a methodological innovation with broader applicability.

Our work diverges from existing literature on the matrix Dyson equation in two sig-

nificant ways. Firstly, recognizing that global information about the spectral properties of

random objects often suffices to draw conclusions about machine learning problems, we con-

centrate solely on the properties of the matrix Dyson equation and pseudo-resolvents on a

macroscale. This contrasts with much of the existing literature concerning the matrix Dyson

equation, which primarily focuses on the mesoscale and microscale. While local convergence

results on the mesoscale and microscale offer greater precision, they are often unnecessary

for understanding machine learning model behavior. By operating on the macroscale, we are

able to relax distributional assumptions on the random matrices and consider linearizations

with more general correlation structures, thereby improving the fidelity of our modeling of

real-world datasets. Nevertheless, there remain numerous avenues for further exploration

in this field. For example, we believe that the implicit assumptions on the matrices B and

Q, imposed by the requirement of ∥S̃∥ vanishing as n → ∞, could be relaxed. This would

significantly expand the applicability of the matrix Dyson equation framework to even more

general linearizations. Additionally, several questions regarding the matrix Dyson equation

itself remain open. In particular, it is unclear what minimal assumptions are necessary to

ensure the validity of the matrix Dyson equation, a question of considerable importance as

it relates to a form of universality. These areas represent promising directions for future

research.

To demonstrate the potential of our framework, we applied our theory to derive a de-

terministic equivalent for the empirical test error of random features ridge regression. The

random features model, incorporating a non-linear activation and the potential to be over-

parameterized, is of particular interest due to its simplicity for theoretical analysis while

capturing key aspects of more complex machine learning models. We considered the random

features model with a general Lipschitz activation function and last-layer weights trained by

fitting a regularized linear model. Our main result establishes that the norm squared error

101



of the trained random features model on a test dataset concentrates around a deterministic

quantity. We provide a simple characterization of this deterministic quantity, which involves

solving a single scalar fixed-point equation. Additionally, we offer a numerical result guaran-

teeing the convergence of an algorithm to solve this fixed-point equation, enabling efficient

computation of the deterministic equivalent. Having a deterministic equivalent enables us

to simplify the analysis of the generalization error of the random features model by focusing

on the analysis of the conjugate kernel. This approach allows us to characterize implicit

regularization, which is crucial for understanding the generalization properties of a model.

Additionally, we offer a Gaussian equivalence theorem, extending previous similar results to

the empirical test error. This theorem simplifies the analysis of more intricate networks by

reducing them to the analysis of a simpler surrogate Gaussian network.

Importantly, our approach does not rely on any specific distributional assumptions about

the data, unlike many other results studying the test error of random features ridge regres-

sion. This generality broadens the applicability of our result to a wider range of datasets,

including those like the MNIST dataset [Den12], which do not conform to simple isotropic

Gaussian assumptions as shown in Figure 1.2. This flexibility opens up promising avenues

for future research in privacy, where the distribution of the test data could be chosen ad-

versarially. Furthermore, our result accommodates a wide range of activation functions,

although theoretical proof is lacking for non-Lipschitz activation functions, warranting fur-

ther investigation. Future research directions could include extending our result to more

general architectures, such as deep random features. While the random features model has

served as a proxy for the theoretical analysis of machine learning models, its exact rela-

tionship with neural networks remains unclear. For example, it is uncertain whether deep

structured random features networks are as expressive as deep neural networks. Address-

ing this question could offer valuable insights and directions for future research endeavors.

Moreover, one of the primary motivations behind studying the empirical test error of ran-

dom features ridge regression is the necessity of data anisotropy to surpass the kernel lower

bound. This requirement acknowledges that data is typically non-isotropic, contrary to the

common assumption in many theoretical results in machine learning. It also reflects the pro-

cess of feature learning, which involves learning a meaningful representation of the data, a

fundamental aspect of useful machine learning models. Another avenue to surpass the kernel
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lower bound is to move beyond the linear scaling regime, which presents another intriguing

direction for future research.

In conclusion, this thesis adds to the growing body of literature dedicated to elucidating

the behavior of machine learning models. However, there is still much work to be done to

achieve a full understanding of the inner workings of those models. Bridging the gap be-

tween theory and practice will require collaborative efforts across diverse communities. This

understanding holds crucial importance in safeguarding fairness and privacy, comprehending

when the output of machine learning models can be trusted. This pursuit will become in-

creasingly important as machine learning models become increasingly intertwined with our

daily routines.
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