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Cap and cap-binding proteins
in the control of gene expression
Ivan Topisirovic,1 Yuri V. Svitkin,1 Nahum Sonenberg1∗
and Aaron J. Shatkin2∗

The 5′ mRNA cap structure is essential for efficient gene expression from yeast to
human. It plays a critical role in all aspects of the life cycle of an mRNA molecule.
Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from
the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs
from degradation by exonucleases and promotes transcription, polyadenylation,
splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition,
the cap structure is required for the optimal translation of the vast majority of
cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic,
viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap
structure and mediate its functions in the cell. Two major cellular cap-binding
proteins have been described to date: eukaryotic translation initiation factor 4E
(eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear
complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and
an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role
in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and
nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation.
In this review, we highlight recent findings on the role of the cap structure and cap-
binding proteins in the regulation of gene expression. We also describe emerging
regulatory pathways that control mRNA capping and cap-binding proteins in
the cell.  2010 John Wiley & Sons, Ltd. WIREs RNA 2011 2 277–298 DOI: 10.1002/wrna.52

INTRODUCTION

The 5′ cap structure (m7GpppN, where m7G is 7-
methylguanosine and N is the first nucleotide

of mRNA) plays a critical role in the life cycle
of eukaryotic mRNA and is necessary for efficient
gene expression and cell viability from yeast to
human. The cap structure is required for the optimal
translation of the vast majority of cellular mRNAs
and is also a prominent functional feature of most
eukaryotic viral and parasite mRNAs.1–3 In addition,
the cap structure stabilizes mRNAs by protecting them
against exonucleases and promotes transcription,
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polyadenylation, splicing, and nuclear export of
mRNAs.4,5 The cap is added co-transcriptionally to
the 5′ end of nascent pre-mRNA molecules when they
reach a length of 22–25 nucleotides and emerge from
the RNA exit channel of RNA polymerase II (PolII).6,7

The 5′ N7-methyl guanosine is linked by an inverted
5′-5′ triphosphate bridge to the first nucleotide of the
nascent transcript.1,6 Capping occurs in a series of
three enzymatic steps. The first reaction is the removal
of the 5′-γ -phosphate group from the first transcribed
nucleotide of pre-mRNA by an RNA triphosphatase
(RT), which is followed by a guanylyltransferase
(GT)-catalyzed transfer of guanine monophosphate
(GMP) nucleotide to the RNA 5′-diphosphate end.
This results in the formation of a guanosine cap
(GpppN), which is subsequently methylated by RNA
(guanine-N7-) methyltransferase (RNMT) to produce
the 7-methylguanosine cap (m7GpppN). These three
catalytic activities, collectively referred to as ‘capping
enzymes’, are encoded by separate genes in yeast,
whereas in metazoans the first two steps of capping
are catalyzed by a single enzyme consisting of two
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functional domains, the N-terminal RT and the
C-terminal GT.8–13 During transcription, capping
enzymes are recruited to the 5′ end of nascent
transcripts, through an interaction with the C-terminal
domain (CTD) of the large subunit of PolII, as
they emerge from the transcribing complex.13–15 This
interaction is stimulated by the phosphorylation of
Ser 5 in the CTD YSPTSPS heptad repeats by the
core transcription factor II H (TFIIH) subunit cyclin-
dependent kinase 7 (CDK7).16–21 Capping can also
be stimulated in vitro by transcription factor hSPT5
(21). m7GpppN (referred to as cap 0) can be further
modified by cap-specific 2′-O RNA methytransferases
in the nucleus and cytoplasm that add a methyl group
to ribose 2′-hydroxyl positions of the first and second
nucleotides, giving rise to m7GpppNm (cap 1) and
m7GpppNmNm (cap 2) structures, respectively.

The cap is recognized by cap-binding proteins
that mediate its effects in the cell. In this review, we
highlight recent findings pertinent to the role of the
cap structure and cellular cap binding proteins in the
regulation of gene expression. In depth description
of the molecular mechanisms underlying capping
and decapping, the role of the cap in regulating
mRNA stability and strategies developed by viruses to
modify cellular cap-dependent processes can be found
elsewhere in this issue.

CAP-BINDING PROTEINS:
MOLECULAR ASPECTS OF THE
RECOGNITION OF mRNA CAP
STRUCTURES

Cap-binding proteins mediate the effects of cap on
gene expression. Two major cellular cap-binding pro-
teins have been described to date: eukaryotic transla-
tion initiation factor 4E (eIF4E) in the cytoplasm and
nuclear cap binding complex (nCBC), a nuclear com-
plex consisting of a cap-binding subunit CBP 20 and
an auxiliary protein CBP 80.2,5 Although these pro-
teins have strikingly different overall structures, the
molecular architecture of their cap-binding pockets is
remarkably similar. In both cases, this pocket consists
of two aromatic amino acids (Trp 56 and Trp 102 in
mammalian eIF4E and Tyr 20 and Tyr 43 in CBP 20),
surrounded by basic and acidic areas which accommo-
date the negatively charged 5′-5′ triphosphate bridge
and the positively charged π -ring system of the m7G,
respectively22–27 (Figure 1) . The purine ring of m7G
is sandwiched between the indole and phenyl rings
of the Trp and Tyr residues on eIF4E and CBP 20
resulting in a nearly perfect alignment and the opti-
mal interplanar distance between the stacked aromatic
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FIGURE 1 | Diagrams representing the similarities in molecular
architecture of the cap-binding pockets of eIF4E, CBC20, and VP39. In
each protein, aromatic residues that intercalate the cap are shown in
red, residues binding the functional groups of the guanine base are
shown in green, residues interacting with the 5′-5′ triphosphate bridge
are shown in purple, and residues that stabilize the 7-methyl group are
shown in blue. Cap analogs are shown in white. Diagrams were
generated using PyMOL software (http://www.pymol.org). eIF4E-PDB
accession number 1L8B; CBP 20-PDB accession number 1H2T;
VP39-PDB accession number 1AV6.

rings22–25,27,28 (Figure 1). Delocalized positive charge
arising from the methyl group of the m7G base further
strengthens the interactions between the π -electrons
of the stacked aromatic rings, explaining the low
affinity of eIF4E and nCBC for the nonmethylated cap
analogs (>100-fold difference in affinity compared
to the N7-methylated cap).28,29 The affinity of cap-
binding proteins for the cap as well as their ability to
discriminate between methylated and nonmethylated
cap analogs are abolished when the aromatic residues
in the cap-binding site are mutated to either Leu or
Ala residues.24,25,30 The interaction of cap-binding
proteins with the cap is further stabilized by hydrogen
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bonds and salt bridges formed between N1 and N2
of the m7G base and the carboxyl groups of Glu 103
or Asp 116 of eIF4E and CBP 20, respectively22–27

(Figure 1). Similarly to mutation of aromatic cap-
binding residues, mutations of these amino acids to
Ala decreases the affinity as well as specificity of the
cap-binding proteins.24,25,30 The 5′-5′ triphosphate
bridge of the cap structure is located in a cavity com-
posed of the residues which form salt bridges with oxy-
gen atoms of phosphate groups (Arg 157 and Lys 162
of eIF4E and Arg 127, Glu 133, Val 134 and Arg135 of
CBP 20)25,27,31,32 (Figure 1). The interactions between
the first base of the transcript with Tyr 138 in CBP 20
and Tyr 205, Lys 206 and Ser 207 in eIF4E also con-
tribute to binding.22–28,32 The only slight discordance
between the molecular underpinnings of CBP 20 and
eIF4E binding to the cap is that in the latter case the
methyl group of m7G is additionally stabilized by van
der Waals interactions with Trp 166.22,23,27,28,31

The cap-binding pocket of the vaccinia virus cap-
binding protein VP39 and the molecular mechanism
which it utilizes to bind to the cap are strikingly similar
to that of the cellular cap-binding proteins,33–37

suggesting that the cellular and viral binding
mechanisms evolved convergently.31 Moreover, this
specific binding to purine residues is common to the
family of nucleotidyltransferases (e.g., ligases, capping
enzymes) that also recognize the purine residues of
adenosine 5′-triphosphate (ATP) or guanosine 5′-
triphosphate (GTP) by formation of a hydrophobic
sandwich between a conserved aromatic and a
conserved aliphatic residue.38

MECHANISMS OF CAP BINDING

Structural studies have provided insights on the
molecular architecture of the cap-binding pockets
of eIF4E, CBP 20 and VP39 and determined the
interactions between the cap and the residues present
in the cap-binding pocket of each of these proteins.
However, the kinetics and thermodynamics of cap
binding are less well understood. eIF4E, nCBC, and
VP39 have different affinities for m7GTP, with nCBC
having the strongest (∼10 nM),39 eIF4E intermediate
(260–280 nM),28 and VP39 the lowest affinity (in
the µM range).34 Although these differences correlate
with the number of hydrogen bonds formed (nCBC
has the highest number and VP39 the lowest number
of hydrogen bonds in complexes with m7GTP), these
findings also suggest that cap-binding proteins might
utilize modified mechanisms to bind the cap. This
is further corroborated by studies involving different
cap analogs. For instance, eIF4E and VP39 bound to
m7GpppG and m7GTP with a similar affinity.28,34,40

In stark contrast, nCBC had a 100-fold higher
affinity for m7GpppG than for m7GTP,29 which is
thought to be due to stacking of the second G
with Tyr 138 of CBP 20.31 Increasing the length
of the oligonucleotide (>20) dramatically increased
the affinity of VP39 (∼100-fold)41 but had only a
modest effect on the cap binding of eIF4E and CBP 20
(∼6-fold).25,42 Moreover, experiments using m7GTP,
m7 guanosine 5′-diphosphate (GDP), m7 guanosine
5′-monophospate (GMP), and m7 guanosine (G)
revealed that the triphosphate bridge stimulates and
contributes to the binding of eIF4E to the cap, but
not to VP39.28,34 These data are in accordance with
the initially proposed two-step binding mechanism for
formation of the m7GTP:eIF4E complex, where the
binding of the 5′-5′ triphosphate moiety serves as a
primary, rate-limiting step enabling the subsequent
specific interactions with the m7G base.28,43,44 In
contrast, a simple one-step binding mechanism was
proposed for VP39 where it was suggested that
the interactions of m7G with the two aromatic
residues is not preceded by binding of the 5′-5′
triphosphate bridge.36 Based on stopped flow kinetics
measurements, Slepenkov et al. recently challenged
the ‘two-step’ binding model by showing that the
association between eIF4E and cap analogs or capped
oligoribonucleotides is a simple one-step process.45

According to this model, the fast phase of change
in fluorescence is due to m7GpppG binding to
monomeric eIF4E, while the slow phase is caused
by the dissociation of eIF4E oligomers yielding
reactive monomers, thereby enabling them to react
with the cap analog.45 Accordingly, in this study,
the slower second phase was observed only at high
eIF4E concentrations, where concentration-dependent
protein self-association would be expected.45

NUCLEAR CAP-BINDING COMPLEX:
RELATING CAP TO mRNA SPLICING,
EXPORT MACHINERY AND
NONSENSE MEDIATED DECAY

As explained in molecular detail in the previous
section, the cap-binding subunit (CBP 20) of the het-
erodimeric nCBC utilizes its ribonucleoprotein (RNP)
domain to bind the cap.24,25 The resulting complex is
stabilized by the interactions of the CBP 20 N-terminal
tail with the CBP 80 subunit.24,25 In addition, CBP 80
interacts with PolII CTD46 and the REF (RNA and
export factor binding protein)/Aly protein,47,48 a com-
ponent of Transcription/Export complex (TREX).49

nCBC joins the mRNP simultaneously with capping of
the transcript and facilitates pre-mRNA splicing and
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nuclear export of mRNAs and PolII synthesized small,
nuclear capped RNAs.50,51 It also has an important
role in pre-mRNA 3′ end processing52 and nonsense
mediated decay (NMD).53

Cap plays a pivotal role in pre-mRNA splicing.
The presence of the m7G cap structure on pre-
mRNA stimulates splicing reactions in vitro,54,55

and pre-mRNAs containing m7GpppN caps are
more efficiently spliced than in vitro transcripts
containing an ApppN cap when injected into
Xenopus oocytes.56 Experiments in which splicing
was abolished by immunodepletion of nCBC from
HeLa cell extracts57 and microinjection of Xenopus
oocytes with antibodies raised against CBP 20,
which block binding of CBP 20 to the cap,58,59

demonstrated that nCBC is essential for mediating
the effects of the cap on the splicing reaction.
nCBC stimulates binding of the core components
of the small nuclear RNPs (snRNPs) to nascent
transcripts, thereby promoting the assembly of the
splicing-commitment complex on the cap-proximal
intron of the pre-mRNA.57,60 Concomitant with
transcription and splicing, nascent transcripts become
coated by proteins that ensure RNA integrity
and participate in mRNA export and downstream
cytoplasmic events, such as polyadenylation.51 One
of the protein complexes recruited to mRNA during
splicing is the THO/TREX complex.61–63 The complex
is tetrameric in budding yeast and composed of Tho2,
Hpr1, Mft1, and Thp264 or pentameric in human
and consisting of hTho2, hHpr1, fSAP79, fSAP24,
and fSAP35.61 In Drosophila, the THO complex
contains HPR1, THO2, THOC5, THOC6, and
THOC765 and functions in transcription elongation
and transcript-dependent recombination as well as
REF/Aly RNA recognition motif (RRM)-containing
RNA binding protein (Yra1 in yeast) and UAP56
RNA-dependent ATPase (Sub2 in yeast).61–63 The
nCBP 80 subunit of nCBC recruits THO/TREX
complex to a region proximal to the 5′ end of
mRNA through a direct interaction with REF/Aly.49

THO/TREX complex in turn bridges the interaction
of mRNA with nuclear export receptor NXF1/(TAP)
which results in the cytoplasmic export of bulk
cellular mRNA.49 Accordingly, nucleo-cytoplasmic
export of bulk mRNA is strongly facilitated by
the deposition of the THO/TREX complex, which
requires the cap and is dependent on splicing.49 These
findings are further corroborated by studies which
show that the export of spliced but not intronless
mRNA depends on the cap and the presence of
nCBC.66 Interaction of nCBC with Ref/Aly also
promotes the positioning of the THO/TREX complex
at the 5′-end of spliced mRNAs which appears

to impart 5′ → 3′ directionality to mRNA export,
enabling efficient engagement of the translation
apparatus.49 Indeed, this directionality of nuclear
export was observed by electron microscopy for giant
Balbiani ring mRNPs of Chironomus tentans.67 In
addition to the THO/TREX complex, the shuttling
serine/arginine-rich (SR) and SR-like proteins (i.e.,
ASF/SF2, SRp20, and 9G8) have also been suggested
to act as mRNA export adaptors through binding
of the general export receptor NXF1/TAP.68 Finally,
nucleo-cytoplasmic transport of a subset of mRNAs
(e.g., transcripts exported from the nucleus in HuR-
or eIF4E-dependent manner), appears to be mediated
by the karyopherin chromosome region maintenance
1 (CRM1), but not by NXF1/TAP.69–71

In addition to mRNA, the nCBC-bound
monomethylated cap represents a common export
signal for PolII transcribed snRNAs.58,72 In meta-
zoans functional snRNPs including major spliceo-
somal U snRNAs are assembled in the cytoplasm
where the snRNA 5′ cap structure is dimethy-
lated on the 2-amino group and where they
associate with Sm proteins.73 In the cytoplasm, 2,2,7-
trimethylguanosine cap binds snurportin1 and mature
snRNPs are then re-imported into the nucleus where
they function in pre-mRNA processing.74 During the
export of snRNAs, nCBC interacts with the phospho-
rylated adaptor for RNA export protein (PHAX) that
mediates the association of CBC/snRNA complex with
the CRM1 exporter.75 In the nucleus, the phospho-
rylation of PHAX promotes assembly of the export
complex.75 Once snRNAs are exported to the cyto-
plasm, PHAX is dephosphorylated which causes the
disassembly of the export complex, whereas the inter-
action of nCBC with importin α releases snRNAs from
the complex.75 This is followed by PHAX and nCBC
being reimported to the nucleus for a subsequent
round of snRNA export.75,76

In addition to mRNA export and splicing, nCBC
plays a major role in NMD (Figure 2). NMD is
a translation-dependent mRNA degradation process
that targets nCBC-bound mRNAs containing a pre-
mature termination codon (PTC) (i.e., an in-frame
stop codon).53,77 NMD provides an important quality
control mechanism to eliminate any errors introduced
into individual mRNA molecules during transcription
or pre-mRNA processing. NMD prevents produc-
tion of truncated proteins whose expression might be
deleterious for the cell.53 In addition, NMD can mod-
ulate the expression of wild type genes. For instance,
several pre-mRNA splicing factors appear to con-
trol their own levels via targeting their mRNAs for
NMD.78 This is achieved through the induction of
alternative splicing to generate transcripts with an
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FIGURE 2 | Schematic representation of cap-dependent processes
governed by cap-binding proteins. Capping occurs co-transcriptionally
where capping enzyme (CE) consisting of the RNA triphosphatase and
guanylyltransferase and RNA (guanine-N7-) methyltransferase (MT) are
recruited to nascent transcripts through interaction with the
TFIIH-phosphorylated C-terminal domain (CTD) of polymerase II (Pol II).
After the cap formation, nuclear cap binding complex (nCBC) consisting
of cap-binding proteins CBP 20 and 80 binds the mRNA and with other
protein complexes mediates its effects on the subsequent steps of
mRNA metabolism. After mRNA is exported from the nucleus, eIF4E
binds the cap and recruits it to the small ribosomal subunit. In addition,
eIF4E was suggested to export a subset of mRNAs from the nucleus and
to play a role in Staufen-mediated decay (SMD). Finally, cap is removed
by decapping enzyme (Dcp1 and 2), after which mRNA is rapidly
degraded. Abbreviations: TFIIH, transcription factor II H; NXF1, nuclear
export factor 1; REF, RNA and export factor binding protein; TREX,
transcription/export complex; EJC, exon junction complex; PABP,
poly(A) binding protein; eIF, eukaryotic translation initiation factor; 43S,
43S pre-initiation complex; Dcp, decapping protein complex.

exon junction complex (EJC) downstream of the stop
codon and rendering them substrates for degradation
by NMD machinery.78 Similarly, the expression of
mRNAs containing constitutively spliced introns in
their 3′ untranslated region (UTR) (e.g., Arc), is also
regulated in an NMD-dependent manner.79 The effi-
ciency of NMD is significantly increased if an EJC
is located 50 or more nucleotides downstream of a
PTC.80,81 EJC is deposited on the mRNA during splic-
ing, but unlike THO/TREX complex which is found
only proximal to the 5′ end of the mRNA, EJC is found
20–24 nt upstream of every exon–exon junction.53

In metazoans, EJC consists of Magoh, RNPS1,

Y14, SRm160, REF1/Aly,82 and the DEAD-box
RNA-dependent ATPase eIF4AIII (DDX48).83 EJC
is anchored to the mRNA through eIF4AIII. DEAD-
box family members exhibit helicase activity and play
a well-established role in mRNP remodeling.84 How-
ever, within the EJC core, eIF4AIII ATPase activity
is inhibited by Y14 and Magoh, whereas MLN51
increases its RNA binding affinity.85 This locks
eIF4AIII into a stable RNA binding configuration.

EJCs which are deposited downstream of the
stop codon stimulate NMD by facilitating the associa-
tion of the NMD-specific factors UPF1 and UPF2 with
mRNA. UPF1 is a RNA helicase, which together with
SMG1 kinase, eRF1 and eRF3 forms a surveillance
complex (SURF).86 Binding of the SURF complex
to UPF2 bound to an EJC activates SMG1, which
in turn phosphorylates UPF1.86,87 Phosphorylated
UPF1 inhibits further rounds of translation most
likely through an interaction with eIF3 and pro-
motes recruitment of the RNA decay machinery by
yet unknown mechanism(s), thus targeting the bound
RNA for rapid exonucleolytic degradation.87 Alter-
natively, degradation of the transcripts targeted to
NMD can be initiated via SMG6-mediated endonu-
cleolytic cleavage in the vicinity of the premature stop
codon.88,89

In addition to NMD, EJC-independent, Staufen-
mediated decay (SMD) targeting both eIF4E and CBC
bound mRNAs has been described.90

CAP-DEPENDENT TRANSLATION:
eIF4E RECRUITS mRNAs TO THE
RIBOSOME VIA THE CAP

In eukaryotes, the vast majority of mRNAs are trans-
lated in a cap-dependent manner, with the exception
of a subset of mRNAs translated through an internal
ribosome entry site (IRES)-dependent mechanism. The
first cap-dependent step of translation initiation is the
assembly of the eIF4F complex on the cap structure2

(Figure 2). eIF4F complex consists of the cap-binding
protein eIF4E, which recruits other components of
the complex to the cap.2 These are the DEAD-box
RNA helicase eIF4A and the large scaffolding protein
eIF4G.2,91–93 In addition to eIF4E and eIF4A, eIF4G
binds poly(A)-binding protein (PABP) and eIF3.2,91

eIF3 recruits the 43S pre-initiation complex consisting
of a 40S subunit, eIF2-GTP-Met-tRNAi, eIF1, eIF1A,
and eIF5 to the mRNA, resulting in the formation of
48S ribosomal initiation complex.2,91,94 Cooperative
binding of the eIF4E/eIF4G complex and PABP to the
mRNA engenders a more effective association with the
cap and effectively counteracts the inhibitory effects
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of general RNA-binding proteins on translation.95,96

In addition, PABP-eIF4G association is predicted to
circularize mRNA. This ‘closed-loop’ mRNA configu-
ration is believed to stimulate translation by enhancing
recycling of the ribosomes on the mRNA.2,91,94,95

The 48S initiation complex scans the 5′ untrans-
lated region (5′ UTR) in the 5′ → 3′ direction to
the initiation codon.2,91,94,97 During the scanning, the
eIF4A subunit of the eIF4F complex unwinds sec-
ondary structure in the 5′ UTR, a process stimulated
by two auxiliary proteins eIF4B and eIF4H.98–102

Because a great number of eIF4A mutants exhibit a
dominant-negative effect on translation, it is generally
believed that eIF4A participates in RNA unwinding
as a subunit of the eIF4F complex, rather than as
a singular polypeptide.99 Binding of eIF4G induces
conformational changes which increase the proces-
sivity of eIF4A by aligning its DEAD-box motifs,
whereas eIF4H and eIF4B prevent re-annealing of
mRNA structures, thereby promoting unidirectional
5′ → 3′ movement of eIF4A toward the initiation
codon.103,104 It is thought that eIF4A periodically
dissociates from mRNA. However, its association
with the 5′ end of the transcript via the eIF4E–cap
interaction enables it to resume subsequent cycles of
unwinding.104 After reaching the initiation codon,
eIF5 and eIF5B promote the hydrolysis of eIF2-bound
GTP,105–107 which results in the displacement of eIFs
and the joining of a 60S subunit.108,109 This is followed
by a codon–anticodon base pairing accompanied by
the displacement of eIF1.108,110–112 The latter event
switches the ribosome from open ‘latch’ to a ‘closed’
conformation that is locked onto the mRNA, which
marks the end of translation initiation and the start of
elongation.91,94

eIF4E: NOT ALL mRNAs ARE TREATED
EQUALLY

eIF4E is a general translation initiation factor
necessary for efficient cap-dependent translation of
all cellular mRNAs.2 Nonetheless, its overexpression
affects global protein synthesis only modestly,
while strongly increasing translation of a subset of
mRNAs referred to as ‘eIF4E-sensitive’.113–116 These
mRNAs are generally characterized by long, highly
structured 5′ UTRs that render these transcripts
strongly dependent on the unwinding activity of
the eIF4A subunit of eIF4F.117,118 mRNAs bearing
short, unstructured 5′ UTRs, such as mRNAs
encoding housekeeping proteins [e.g., glyceraldehyde
3-phosphate dehydrogenase (GAPDH), actin] do
not strongly depend on the unwinding activity of
eIF4A and are thus only marginally sensitive to

the alterations in cellular eIF4E levels.113–115 ‘eIF4E-
sensitive’ mRNAs generally encode proto-oncogenic,
proliferation, and survival promoting proteins such
as cyclins, c-Myc, vascular endothelial growth
factor (VEGF), and Bcl-xl.113,115,116 Accordingly,
overexpression of eIF4E results in the neoplastic
transformation of rodent and human immortalized
cells and leads to tumorigenesis in mice.119,120

Notably, in both cases the cap-binding activity of
eIF4E is essential, as an eIF4E mutant in which
one of the cap-stacking Trp residues (Trp56) is
mutated to alanine did not exhibit proto-oncogenic
properties.121,122 Consistent with the data obtained in
cell culture and animal models, upregulation of eIF4E
expression and/or activity has been documented in
a plethora of human malignancies including colon,
breast, bladder, lung, prostate, gastrointestinal, head
and neck squamous cell carcinoma, lymphomas,
leukemias, and neuroblastomas, where high eIF4E
levels correlate with disease progression and poor
clinical outcome.113,115,116,123,124

REGULATION OF eIF4E ACTIVITY

As eIF4E plays a pivotal role in regulating the
expression of the proliferation and survival-promoting
proteins, its activity in the cell is tightly regulated
(Figure 3). In the last decade, several cellular mech-
anisms that control levels and/or activity have been
described. These include the mammalian target of
rapamycin (mTOR) signaling toward eIF4E-binding
proteins (4E-BPs), phosphorylation of eIF4E by Mnk
and the activation of transcription of the eIF4E gene
by Myc.

mTOR AND 4E-BPs

The best-characterized regulators of eIF4E activity
to date are the eIF4E-binding proteins (4E-BPs).2 In
mammals 4E-BP1, 2 and 3 comprise a family of low
molecular weight proteins, which act as repressors
of cap-dependent translation. 4E-BPs suppress eIF4F
complex assembly by blocking eIF4G binding to
eIF4E.125 Namely, 4E-BP and eIF4G utilize the eIF4E
binding motif [Tyr(X)4Leu�, where � is hydrophobic,
and X any amino acid] to bind to the dorsal surface
of eIF4E.126 In the case of mammalian eIF4E, this
interaction occurs primarily through hydrophobic
interactions between Val 69 and Trp 73 residues
on the dorsal surface of eIF4E and Tyr and a
hydrophobic residue in the eIF4E- binding motif.28

eIF4G enhances eIF4E’s affinity for the cap.23,127,128 It
has been proposed that binding of eIF4G to the dorsal
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FIGURE 3 | The regulation of eIF4E activity. The activity of eIF4E is regulated by proteins that compete for binding to its dorsal surface (residues
V69-W73 in mammalian eIF4E). There is an allosteric communication between dorsal surface and cap binding pocket which are on opposite sides of
the eIF4E molecule (red arrow). Proteins that bind to dorsal surface either stimulate (eIF4G) or inhibit [eIF4E-binding proteins (4E-BPs), Cup and
Maskin] translation. Although 4E-BPs inhibit translation of bulk cellular mRNAs, they preferentially affect ‘eIF4E-sensitive’ mRNAs which harbor long
and structured 5′ UTRs. Activity of 4E-BPs in the cell is regulated by the mammalian target of rapamycin complex 1 (mTORC1) pathway. In contrast,
Maskin and Cup inhibit translation of a limited number of specific mRNAs, where specificity is determined by the presence of the cytoplasmic
polyadenylation element (CPE) or bruno response element (BRE) in the mRNA 3′ UTR, respectively. In addition, several homeobox proteins have been
shown to interact with the dorsal surface of eIF4E family memebrs. eIF4E activity is also regulated via phosphorylation at residue S209 by the MAP
kinase integrating kinases 1 and 2 (Mnk1 and 2). The effects of eIF4E phosphorylation on its translational activity and cap binding are still unclear.
eIF4E is a transcriptional target of c-myc, whereas c-myc is regulated by eIF4E at the level of translation. Abbreviations: CPEB, cytoplasmic
polyadenylation element binding protein; p38MAPK, mitogen-activated protein kinase; Erk1/2, extracellular signal-regulated kinase 1 and 2; AMPK,
adenine monophosphate-activated protein kinase; LKB1, serine/threonine kinase 11; REDD1, DNA-damage-inducible transcript 4; PI3K,
Phosphoinositide 3-kinase; Rags, ras-related GTP-binding proteins; eIF, eukaryotic translation initiation factor.

surface of eIF4E induces structural changes in the
loops surrounding the cap-binding site, therein locking
Trp56 and Trp102 residues in the optimal orientation
for cap binding.129,130 It was also proposed that eIF4G
binding to the mRNA stabilizes the eIF4E interaction
with the cap.131

Binding of 4E-BPs to eIF4E is regulated by
phosphorylation via the mTOR pathway.132–135

Stimuli, such as amino acids, insulin, growth factors
and nutrients activate mTOR signaling, leading to
phosphorylation of Thr 37 and 46 on 4E-BP1.136,137

They act as priming sites for the phosphorylation of
residues Thr 70 and Ser 65, leading to dissociation
of 4E-BP1 from eIF4E.136,137 Intriguingly, expression
of a nonphosphorylatable mutant of 4E-BP1, which
constitutively binds eIF4E or deletion of genes
encoding 4E-BP1 and 2 only modestly affects global
translation levels.138 This is consistent with the
experiments in which eIF4E overexpression increased

translation of only a subset of ‘eIF4E-sensitive’
mRNAs.118 Indeed, selected mRNAs [e.g. interferon
regulatory factor 7 (IRF-7), growth arrest-specific
protein 2 (Gas2)] are translated more efficiently in
4E-BP double knockout (DKO) mouse embryonic
fibroblasts (MEFs) as compared to wild type
MEFs.139,140

Similar to eIF4E expression, mTORC1 signaling
is frequently dysregulated in cancer.133 This is caused
by mutations inactivating tumor suppressors [e.g.
LKB1, phosphatase and tensin homolog (PTEN) and
tuberous sclerosis complex (TSC)1/2] that antagonize
PI3K-dependent activation of mTORC1.133 Aberrant
mTOR signaling in cancer results in increased phos-
phorylation of 4E-BPs, diminishing their inhibitory
effect on eIF4E and contributing to dysregulation of
eIF4E activity in cancer.133,141 Indeed, several studies
suggested that increased phosphorylation of 4E-BPs in
tumors correlates with poor clinical outcome.142,143
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Mnks

In mammals, eIF4E is phosphorylated at Ser 209 by
the mitogen-activated protein kinase (MAPK) signal-
integrating kinases 1 and 2 (Mnk1 and Mnk2).144,145

Mnk1 is activated by growth factors and phorbol
esters via an extracellular signal-regulated kinase
(Erk) or by cytokines and stress via a p38 MAPK
pathway.146,147 In contrast, Mnk2 is constitutively
active, and its activity is not further increased by
the aforementioned stimuli.147 Mnks are recruited
to eIF4E through an interaction with the C-terminal
part of eIF4G.148 Phosphorylation of eIF4E seems
to be restricted to metazoans as yeast lack Mnk
homologs and a Mnk interaction domain in eIF4G.149

Mnk 1/2 knock out mice develop normally and do
not exhibit any major phenotypic changes, indicat-
ing that eIF4E phosphorylation is not essential for
translation.150 Nonetheless, the phosphorylation of
eIF4E contributes to its oncogenic potential as the
ability of the nonphosphorylatable mutant of eIF4E to
induce transformation in cell culture and lymphoma-
genesis in mice is severely reduced.122,151 Similarly,
transgenic flies that express a nonphosphorylatable
form of eIF4E are smaller, have morphological defects,
and are less viable then wild type flies.152

Effects of eIF4E phosphorylation on its cap
binding activity are still being debated. Ser 209 is
located at the entrance to the cap-binding pocket.22,23

Initially, based on eIF4E structure, a ‘clamping’ model
was proposed according to which a salt bridge is
formed between the negatively charged phosphate
group of Ser 209 and positively charged Lys 159,
forming a ‘clamp’ which stabilizes cap in the cap
binding slot.22,28 Molecular dynamics simulations
suggested a similar model in which hydrogen-bonded
clusters of water molecules could form around the
phosphorylated Ser 209, thereby blocking the release
of the cap from the cap binding pocket.23 Both of
these models envision that eIF4E phosphorylation
leads to a closure of the cap-binding pocket.
Accordingly, the phosphorylation of eIF4E would be
expected to decrease the dissociation rate of eIF4E:cap
complex if cap-bound eIF4E is phosphorylated, or
decrease the eIF4E:cap association rate if apo-eIF4E
is phosphorylated. Scheper et al., who deployed
surface plasma resonance (SPR) to reveal that the
phosphorylation of eIF4E accelerates dissociation of
eIF4E from the cap, challenged these models.153

They speculated that phosphorylation occurs after
translation is initiated, which leads to the dissociation
of eIF4E from the cap and enables it to engage
in a subsequent round of translation initiation.153

Using stopped-flow kinetic studies, Slepenkov et al.,
obtained an opposite result where the phosphorylation

of eIF4E decreased the association rate but did not
affect the dissociation rate of the eIF4E:cap complex.45

These authors proposed that the phosphorylation of
Ser-209 decreases the association of cap with eIF4E
due to charge repulsion.45 The latter model is further
corroborated by the finding that the effect of eIF4E
phosphorylation is diminished in high-salt buffer
under conditions that shield the negative charge of
phospho-Ser 209.45

The effects of the eIF4E phosphorylation on cap-
dependent translation are also largely elusive. It has
been reported that increased eIF4E phosphorylation
results in increased rates of protein synthesis in
studies where Mnk inhibitors154,155 and growth
factor stimulation were used in cell cultures.156,157

In contrast, studies in which cells were recovering
from hypotonic shock158,159 or where Mnk levels were
modulated160 argued that eIF4E phosphorylation
reduces or does not affect rates of global protein
synthesis, respectively. Alternatively, it is plausible
that the phosphorylation of eIF4E modulates the
translation of only a subset of the ‘eIF4E-sensitive’
mRNAs. This possibility is corroborated by recent
findings identifying anti-apoptotic protein Mcl-1 as a
translational target of phosphorylated eIF4E.122

c-Myc

c-Myc is a proto-oncogene and a member of the
Myc/Max/Mad family of transcription factors.161

Myc is upregulated in response to growth factors
and is essential for the proliferative response.162 In
addition to stimulating proliferation, overexpression
of c-Myc results in apoptosis.163–165 The first evidence
that eIF4E and c-Myc act in the same biological
pathway came from experiments where the apoptotic
effect of c-Myc on cell survival was abolished when
eIF4E and c-Myc were simultaneously overexpressed
in mouse fibroblasts.166 This study was followed by
several reports which demonstrated that eIF4E is a
bona fide transcriptional target of c-Myc.167,168 c-Myc
has also been shown to stimulate transcription of two
other components of the eIF4F complex, eIF4G and
eIF4A.168 Thus, the effects of Myc on cell proliferation
could at least in part be mediated via increased
levels of the eIF4F complex. Indeed, high eIF4F levels
are detected in a lymphoma model characterized by
increased c-Myc activity.168 Taken together, these
data demonstrate that the levels of eIF4F are regulated
by c-Myc. On the other hand, c-Myc mRNA is one
of the first identified ‘eIF4E-sensitve’ mRNAs.113,169

As mentioned before, translation of these mRNAs
critically depends on the availability of the eIF4F
complex.2 Thus, increased levels of c-Myc elevate
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levels of the eIF4F complex, which in turn upregulates
translation of c-Myc mRNA. How do cells control
this potentially oncogenic feed-forward loop? One
possibility is that the stimulatory effect of Myc on
the eIF4F complex activity is antagonized by cellular
factors which impair its assembly and/or function,
such as 4E-BPs125 and eIF4A-inhibitory programmed
cell death 4 protein (PDCD4).170 Notably, both of
these factors are regulated via mTORC1 pathway,171

suggesting that switching off mTORC1 signaling
could be a mechanism by which cells control the
proto-oncogenic c-Myc-eIF4E feed-forward loop.172

ADDITIONAL MECHANISMS
PROPOSED TO REGULATE
THE ACTIVITY OF eIF4E

Several other eIF4E binding proteins were recently
identified. These proteins include Maskin,173 Cup,174

and several homeobox proteins175–177 which all
contain an eIF4E-binding motif (notably, Maskin has
a motif in which Tyr is substituted for Thr). 4E-BPs,
Maskin and Cup prevent association of eIF4E with
eIF4G.178 However, in contrast to 4E-BPs, Maskin
and Cup repress translation of specific mRNAs
which is achieved through binding to the Maskin
and Cup adapter proteins associated with specific
elements present in the 3′ UTR of their target
mRNAs.178 In Xenopus, Maskin distinguishes its
targets through an association with a cytoplasmic
polyadenylation element (CPE)-binding protein that
interacts with a CPE present in mRNAs such as
cyclin B1.173 In Drosphila, Cup inhibits translation
of Bruno response element (BRE)-containing oskar
mRNA via association with Bruno.174,179 Similarly,
in Drosophila it has been demonstrated that caudal
mRNA is translationally repressed by a homeobox
protein, Bicoid, which in this case associates with
the cap-bound 4EHP.180 4E-HP is an eIF4E family
member that does not bind to eIF4G and thus
cannot engage the translational machinery.181,182 In
contrast to Maskin and Cup, Bicoid directly associates
with caudal mRNA via Bicoid-binding region (BBR)
present in its 3′ UTR.183 Recently, it has been reported
that Prep1 homeobox protein represses translation of
4EHP-bound HoxB4 mRNA, suggesting that a similar
mechanism exists in mammalian cells.184

In addition to the aforementioned mecha-
nisms of control of eIF4E, several other factors
have been proposed to control transcription of
the eIF4E gene (e.g., p53,185 hnRNP K186). It
has also been speculated that the post-translational
modifications, other than phosphorylation (e.g.,

ubiquitination,187 sumoylation188), are implicated in
control of eIF4E’s activity.

VIRUSES AND THE CAP-DEPENDENT
REGULATION OF GENE EXPRESSION

Expression of viral genes requires the components of
the translational machinery of the host. Viruses deploy
different mechanisms to efficiently outcompete cellular
mRNAs for the available translational machinery to
enhance translation of their own mRNAs. A subset
of viruses (e.g., picornaviruses) evolved a strategy
to translate uncapped viral mRNAs via an inter-
nal ribosome entry mechanism.189,190 The internal
ribosome entry mechanism circumvents requirement
for the cap structure, eIF4E and, depending on the
virus type, additional initiation factors for translation
initiation.2,91 This is achieved via direct recruitment
of ribosomal subunits through cis-acting internal
ribosome entry site (IRES) elements present in the
5′ UTRs of viral RNAs.189 Some viruses developed
cap-independent mechanisms to translate their own
RNAs by covalently linking a translational regulator
protein to the 5′-end of their RNA. In caliciviruses and
potiviruses a virus-encoded Viral Protein, genome-
linked, (VPg) is covalently attached to the first
nucleotide of the RNA and simultaneously interacts
with eIF4E, therein ensuring efficient translation of
viral mRNAs.191,192

In contrast to the latter cap-independent
mechanisms, the cap structure is essential for the
life cycle of a significant number of viruses. Thus,
viruses had to develop mechanisms to adjust cap-
dependent regulation of gene expression to their
specific needs. Some viruses (e.g., retroviruses), utilize
the capping enzymes of the host cell,193 but the
majority of viruses evolved their own, virus-specific,
capping mechanism which acts independently of the
cellular capping enzymes. For example, capping by
Semliki Forest virus involves methylation of GTP
followed by transfer of m7GMP to viral mRNA
5′ termini.194 Vaccinia virus utilizes cap-dependent
2′-O-ribose methyltransferases to distinguish between
viral and host transcripts41,195 (Figure 4(a)). Late gene
of vaccinia virus, viral protein 39 (VP39) binds to the
5′ end of the viral mRNAs and catalyzes the transfer
of a methyl group to the 2′ position of the ribose
moiety of the first nucleotide of the transcript to
form cap 1 ends.41 Vesicular stomatitis virus (VSV)
RNA-dependent RNA polymerase (viral L protein)
possesses polyribonucleotidyltransferase activity and
mediates capping of VSV transcripts196 (Figure 4(b)).
Intriguingly, in the VSV case, 2′-O-methylation
apparently precedes guanine N7 methylation, which
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FIGURE 4 | Viruses developed mechanisms to
utilize cap structure to ensure efficient expression of
their genes. (a) Vaccinia virus viral protein 39 (VP39)
binds the cap and functions as 2′-O-ribose
methyltransferase, catalyzing the transfer of a methyl
group to the first transcribed nucleotide (N1) of mRNA
and converting cap 0 to cap 1. (b) RNA-dependent
RNA polymerase of vesicular stomatitis virus (VSV),
viral protein L, forms the cap by a mechanism distinct
from cellular capping enzymes and VP39, adding GDP
to monophosphate ends before 2′-O and then m7G
methylation. (c) Flu virus RNA polymerase utilizes a
‘cap-snatching’ mechanism to prime synthesis of flu
mRNA with host capped mRNA fragments.
(d) Cytomegalovirus (CMV) developed strategies to
overtake the host’s translational machinery by
stabilizing the eIF4F complex (via pUL69) and by
activating the mTORC1 pathway (via pUL38). (e) N
protein of hantavirus appears to act as a substitute for
eIF4F activity in the cell. Abbreviations: eIF4E-binding
proteins (4E-BPs); mammalian target of rapamycin
complex 1 (mTORC1); PABP, poly(A) binding protein;
eIF, eukaryotic translation initiation factor.

(a) (b)

(c)

(d) (e)

is opposite to capping reactions catalyzed by cellular
enzymes and VP39, where N7 of guanine is methylated
first197,198 (Figure 4(b)). Also, L transfers GDP
onto a 5′-monophosphate RNA, in contrast to the
cellular capping enzymes which transfer GMP to
a 5′-diphosphate RNA197,198 (Figure 4(b)). Finally,
negative-strand RNA viruses including influenza virus
which do not possess their own capping enzymes,
‘snatch’ the cap structure from host cell mRNAs199

(Figure 4(c)). Cap ‘snatching’ is mediated by the
multifunctional RNA-dependent RNA polymerase
binding to cellular capped pre-mRNAs, cleaving the
capped oligonucleotides and subsequently utilizing
them as primers to initiate viral transcription.199

The flu RNA polymerase is composed of three
subunits, PB1, PB2, and PA.200 The PB2 subunit
binds to the cap structure,201 whereas the PA subunit
mediates endonucleolytic cleavage202 (Figure 4(c)).
Albeit structurally distinct, PB2 subunit shares
common features with other cap-binding proteins
where similarly to eIF4E, CBP 20, and VP39, the m7G
base is stacked in a ‘cation–π -sandwich’.201 A slight

difference in cap-stacking between PB2 and other cap-
binding proteins (where the planes of cap intercalating
aromatic residues are parallel to the plane of m7G
base) is that in type A influenza PB2, the m7G base is
stacked between Phe 404 which is tilted ∼30◦ relative
to the plane of the m7G base and the side chain of His
357 serves as the second stacking group.201

In addition to developing unique capping
strategies, viruses evolved a mechanism to regulate
cap-dependent translation via modulation of eIF4F
complex activity. Inhibition of host-cell protein
synthesis by polioviruses, rhinoviruses and aph-
tohoviruses is accompanied by the cleavage of
eIF4G that effectively uncouples cap-binding and
RNA helicase activities of eIF4F.203 In contrast, in
encephalomyocarditis virus (EMCV) infected cells
eIF4G is not cleaved. In this case, the shut-off
of host translation is believed to be triggered by
the dephosphorylation and subsequent activation of
4E-BP1.204 Under both scenarios the translation of
the picornaviral mRNAs is not inhibited because
it occurs via the cap-independent mechanism. That
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eIF4F-mediated translational control plays an impor-
tant role in the antiviral response is further under-
scored by the finding that 4E-BPs inhibit type-I
interferon (IFN) production through suppression of
IRF-7 mRNA translation.139 Recently, it has also
been revealed that cytomegalovirus pUL69 protein
stimulates translation of viral mRNAs via direct inter-
action with the eIF4A component of the eIF4F com-
plex and PABPC1205 (Figure 4(d)). pUL69 appears
to stabilize eIF4F complexes possibly by abrogating
4E-BP1 binding to eIF4E.205 In addition to pUL69,
another cytomegalovirus (CMV) protein, pUL38, acti-
vates mTORC1, leading to the phosphorylation and
inactivation of 4E-BPs and further diminishing the
ability to interfere with eIF4F complex assembly206

(Figure 4(d)). In addition to eIF4A and PABC1 bind-
ing, pUL69 interacts with viral mRNAs,207 sug-
gesting that it could remodel the eIF4F complex
to accommodate optimal translation of viral tran-
scripts (Figure 4(d)). Importantly, ICP27, the herpes
simplex virus (HSV) homolog of pUL69208 that like
pUL69 stimulates nuclear export and translation of
mRNA,209 has been shown to interact with PABPC1
and eIF4G.210 This raises the possibility that this
mechanism is not limited to CMV and may be shared
by other herpes viruses. Nucleocapsid protein (N) of
hantavirus plays an essential role in the viral genome
replication and encapsidation211 and has also been
shown to act as a substitute for the cellular eIF4F
complex212 (Figure 4(e)). Namely, N binds to the cap
structure and 43S pre-initiation complex and alleviates
the requirement for unwinding of secondary structure
present in RNA 5′ UTR, thereby mimicking the activ-
ity of eIF4E, eIF4G, and eIF4A, respectively.212 The
molecular underpinnings of this phenomenon are not
completely clear, but it appears that N associates
with capped mRNA primer immediately after it is
‘snatched’ from cellular mRNA and annealed to the
3′ end of viral RNA.212 Binding to the cap induces
conformational changes in N which stimulates its
binding to a conserved 3′ stretch of nine nucleotides
of viral RNA.212 In addition to its role in transla-
tion of viral RNA, N stimulates bound capped primer
annealing at the 3′ terminus of viral RNA and in con-
junction with viral RNA dependent RNA polymerase
ensures efficient transcription and replication of the
viral genome.213

EMERGING MECHANISMS
CONTROLLING GENE EXPRESSION
VIA CAP STRUCTURE

In contrast to the enzymology of capping, structural
aspects of cap binding by cap-binding proteins and the

role of the cap in the post-transcriptional regulation
of gene expression, little is currently known about the
cellular mechanisms that control capping and whether
cellular factors could have an impact on the fates
of specific mRNA molecules. Thus, it is not clear
whether capping plays a ‘passive’ role in regulating
gene expression by preventing degradation of mRNAs
and enabling cap-binding proteins to recruit cellular
factors necessary for cap-dependent steps of mRNA
metabolism, or if capping can be modulated to
‘actively’ regulate the fate of bulk or a selected subset
of mRNAs. Recent studies provide pioneer evidence
for the latter scenario as they identify the cellular
factors that regulate cap methylation and suggest the
presence of cellular cytoplasmic capping mechanisms.

REGULATION OF CAP METHYLATION

As mentioned above, methylation of the cap struc-
ture on N7 of the guanine base is essential for
its recognition by cap-binding proteins and thus its
function in the cell.7 Emerging data suggest that
cap methylation, which is catalyzed by RNMT, is
actively regulated (Figure 5(a)). For instance, in yeast
ubiquitin-conjugase cdc34 was demonstrated to inter-
act with yeast RNMT, Abd1, and stimulate its activity.
S-adenosylmethionine (SAM) serves as the methyl
donor in the capping reaction.214 Yeast SAM
synthetase was shown to be a critical activator
of Abd1.214 Accordingly, in Xenopus, Xenopus
S-adenosyl homocysteine hydrolase (xSAHH), the
enzyme that hydrolyzes S-adenosyl homocys-
teine (SAH), was shown to bolster mRNA cap
methylation.215 SAH is a major by-product of cel-
lular methylation reactions and potently inhibits
methyltransferases.216 Mammalian importin α was
identified as an RNMT interacting partner in a yeast-
two hybrid screen.217 Moreover, importin α increases
RNMT activity in vitro, which is inhibited by importin
β.217 It is well established that importin α/β complexes
form in the cytoplasm and rapidly dissociate once they
are imported to nucleus and exposed to high concen-
tration of RanGTP.218 Thus, importin α is positioned
to selectively stimulate RNMT activity in the nucleus
upon dissociation from importin β.

The latter findings shed light on the cellular
mechanisms which could explain how cap methylation
of bulk pre-mRNA is regulated. In contrast, a recent
study suggested an intriguing link between Myc
and E2F1 transcription factors and cap methylation
wherein Myc and E2F1 were found to stimulate
cap methylation mainly on their own transcriptional
targets.219 Surprisingly, at least in the case of c-Myc,
this stimulatory effect on mRNA cap methylation
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(a)

(b)

FIGURE 5 | Emerging mechanisms of the regulation of capping.
(a) Efficiency of cap methylation is increased by stimulation of RNA
(guanine-N7-) methyltransferase (MT) activity by ubiquitin-conjugase
Cdc34 in yeast, Xenopus S-adenosyl homocysteine hydrolase (xSAHH)
which eliminates the inhibitory by-product of cap methylation,
S-adenosyl homocysteine (SAH), by interaction with importin α (Impα),
which is inhibited by importin β (Impβ), and by c-myc and E2F1
transcription factors. It was suggested that c-myc stimulates
transcription of SAHH. Abbreviations: SAM, S-adenosyl methionine.
(b) Upon decapping, most mRNAs are rapidly degraded by 5′ → 3′

exonucleases. Several transcripts, including β globin mRNA from the
erythroid cells of β thalassemia patients has been shown to produce
stable degradation products. It is thought that these fragments are
capped by 140 KDa cytoplasmic capping complex that exhibits
polynucleotide 5′-monophosphate RNA kinase (PMRK),
guanylyltransferase (GT) and RNA (guanine-N7-) methyltransferase
(MT) activities.

appeared to be independent of its transcriptional
activity.220 However, the exact mechanism of how
Myc and E2F1 stimulate cap methylation is yet to
be discovered. Intriguingly, S-adenosyl homocysteine
hydrolase (SAHH) was identified as a Myc target
gene in mammals as the gene whose expression
was upregulated by increased transcription and
cap methylation.221 In turn, the increased SAHH
expression appeared to be necessary to permit
Myc-induced cap methylation. These findings suggest

the presence of a positive feedback loop, consisting
of c-Myc and SAHH, which stimulates mRNA cap
methylation.

IS DECAPPING THE END OF THE
ROAD? CYTOPLASMIC RE-CAPPING

Much evidence suggests that the cap accompanies
mRNA throughout its life cycle and that once the
cap is removed by decapping enzymes, mRNA is
rapidly degraded.4,51 Removal of the cap is thus con-
sidered to be an irreversible early step in mRNA
degradation.222,223 However, stable transcripts lack-
ing sequences from their 5′ ends have been described,
suggesting that these mRNAs contain a cap or cap-
like structure. For instance, degradation intermediates
of PTC-containing β globin mRNAs isolated from
the erythroid cells of β thalassemia patients are
stable,224,225 can be immunoprecipitated with an anti-
m7G cap antibody and exhibit sensitivity to TAP
which hydrolyzes the 5′ -5′ triphosphate bridge of the
cap structure.226 Thus, the 5′ end modification of β

globin mRNAs with truncated 5′ termini appears to
be identical to the 5′ cap of the parental β globin
transcripts and suggests that these fragments are
re-capped. Interestingly, β globin mRNA fragments
are generated in the cytoplasm by endonucleolytic
cleavage,227 which results in products that have a
single phosphate group on the 5′ end. However, the
5′-monophosphate mRNA is not a suitable substrate
for the cellular capping enzyme which transfers GMP
to the 5′-diphosphate mRNA.7 Furthermore, the cap-
ping enzyme is almost exclusively confined to the
nucleus.228 In a recent study, Schoenberg et al. set out
to resolve the conundrum of how β globin mRNAs
fragments are re-capped and identified a cytoplas-
mic activity that is identical to the nuclear-capping
enzyme.228 These authors isolated a putative 140 kDa
cytoplasmic capping complex which also included a
polynucleotide 5′-monophosphate RNA kinase activ-
ity which catalyzes conversion of 5′-monophosphate
to 5′-diphosphate mRNA228 (Figure 5(b)). Thus
the enzymology of nuclear and cytoplasmic cap-
ping appear to differ in the first step wherein
5′-diphosphate mRNA is generated by removal of the
5′-γ -phosphate group from 5′-triphosphate RNA ver-
sus addition of 5′-β-phosphate to 5′-monophosphate
RNA, respectively. Components of the cytoplasmic
capping complex still await cloning and identifica-
tion. Nonetheless, these findings suggest a hitherto
unknown mechanism in which a subset of mRNAs
could be stored in an uncapped, translationally inac-
tive state and, when cells are stimulated, are swiftly
capped by cytoplasmic capping complex and recruited
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to the translational machinery. Shortening of the
5′ UTR of a given mRNA could increase its trans-
lational efficiency, which could in turn serve as a
mechanism by which cells could regulate the levels of
the protein encoded by such a mRNA.

CONCLUSION AND PERSPECTIVES

The m7G cap structure and cap-binding proteins
play a central role in mRNA, snRNA, and viral
RNA metabolism. In this review we highlighted the
known aspects of the role of the m7G cap structure
of mRNA and cap-binding proteins in the regu-
lation of gene expression. However, there is an
emerging body of data suggesting that the impact
of cap-dependent mechanisms on gene expression
might be much broader than what is considered
today. Namely, recent studies indicated that m7G
cap could play transcript-, tissue- and/or species-
specific roles and that proteins other than eIF4E
family members and CBC act as cap-binding pro-
teins (e.g., Dcp2 which is a catalytic subunit of
decapping enzyme4,229; Snuportin1 which recognizes
trimethylated caps of snRNAs74 and poly(A)-specific
ribonuclease (PARN) which deadenylates mRNA and

utilizes a seemingly unique mechanism to bind the
cap in which the m7G base is not sandwiched
between two aromatic residues but rather stacks on
a single tryptophan230,231). Cap or cap-like struc-
tures were also detected on a subset of noncoding
RNAs, which are emerging as major regulators of
gene expression.232 A plethora of new studies suggest
that cap-binding proteins regulate multiple steps of
mRNA metabolism; taken together with the finding
that c-Myc regulates both N7-methylation of the cap
and the levels of eIF4F complex, these data suggest
that these factors could modulate gene expression
through orchestration and coordination of different
cap-dependent processes. Finally, it is important to
stress that the overexpression of eIF4E and, as recently
shown, RNMT233 leads to the malignant transforma-
tion of the cell and metastasis and correlates with
poor prognosis of cancer patients.91,113,115,124 Tar-
geting cap-dependent gene expression could serve as
a valid strategy to curb dysregulated gene expres-
sion in cancer. Indeed, today several therapeutic
approaches, including the mTOR inhibitors,234 eIF4E
antisense–oligonucleotides,235 and ribavirin,236 which
directly or indirectly aim at cap-dependent gene
expression, are in clinical use or in clinical trials.
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