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Abstract

Hospital readmission rates vary widely across regions and hospitals, suggest-
ing that improvements are possible. To provide an incentive to improve quality
of care, some jurisdictions have introduced legislation that financially penal-
izes hospitals with high readmission rates, but the models used to implement
the legislation crudely adjusts for patient-mix. Additionally, hospitals have de-
veloped predictive models of readmission risk to better target enhanced tran-
sitional care. In this work, I examined how large healthcare administrative
databases can help build better inferential and predictive models of hospital
readmissions.

To target interventions at those patients with the highest readmission risk, hos-
pitals can develop predictive models of readmission based on their own data
(local models), they can pool their data with other hospitals (global models) or
they can use sophisticated model combination techniques which avoid directly
sharing patient data (combined models). In the first manuscript, I compared
the accuracy of global, combined, and local models in predicting 30-day read-
mission risk, and found that the predictive accuracy of models developed with
the three approaches were similar, suggesting that hospitals can use their own
data to accurately predict hospital readmissions.

Although predictive models of hospital readmissions can be useful to guide re-
sources to individual high-risk cases, inferential models can potentially lead to
population-level interventions. In the second manuscript, I studied how the
day-of-week of discharge affects readmission, and used both empiric (survival
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model) and analytic (Markov model) approaches to study how this effect is con-
founded by the probability of admission on the weekend. I found that not only
are Friday discharges more likely to be readmitted than Wednesday discharges,
but also that the low probability of weekend admissions attenuates this effect
if uncontrolled. Our results suggest that interventions that reduce the effect of
Friday discharge on readmissions, such as increased weekend staffing, are likely
to be more cost-effective than previous work has indicated.

In the third manuscript, I compare two techniques to measure the effect of
twenty Montreal hospitals on readmissions: a standard regression approach
that controls for the major, well-known confounders, and targeted maximum
likelihood estimation (TMLE) where I could control for pre-admission diag-
noses, procedures, and drug prescriptions using a machine learning technique
(random forest). The standard model suggested that there was little differ-
ence between the hospitals, but the TMLE model showed that the confounders,
particularly drug prescriptions, strongly confounded readmission risk, and re-
vealed a wide variation in readmission risk between the hospitals.

My work suggests that: 1) predictive models of readmission are unlikely to be
greatly improved by pooling hospital data or by using complex combination
techniques, 2) inference on the causes of readmissions, particularly the day-
of-week, can be confounded by the admission process, and 3) by using TMLE,
the predictive power of machine learning techniques can be used to improve
inference by reducing bias in our estimates of the effect of hospital care on read-
missions.



Résumeé

Les taux de réadmission a 'hopital sont tres variables selon les régions et les
hopitaux; ce qui suggere que des améliorations sont possibles. Pour les inciter a
améliorer la qualité des soins, certains pays ont introduit une législation qui pé-
nalise financiérement les hopitaux ayant des taux de réadmission élevés, mais
les techniques employées najustement que grossierement pour les caractéris-
tiques des patients. En outre, les hopitaux ont développé des modeles prédic-
tifs du risque de réadmission afin d'améliorer la qualité des soins de transi-
tion entre ’hdpital et la communauté. Dans ce travail, j’ai examiné comment
les grandes banques de données administratives en santé peuvent aider a con-
struire de meilleurs modéles d'inférence et de prédictionn des réadmissions a
'hopital.

Afin de mieux cibler les interventions chez les patients présentant le plus grand
risque de réadmission, , les hopitaux peuvent développer des modéeles prédic-
tifs de réadmission sur la base de leurs propres données (modé¢les locaux), ils
peuvent aussi mettre en commun leurs données (modéles globaux) ou ils peu-
vent encore utiliser des techniques de combinaison faisant appel a des modeles
statistiques sophistiqués qui évitent le partage des données entre les hopitaux
(modéeles combinés). Dans le premier manuscrit, je comparé la précision des
modeleslocaux, globaux et combinés a prédire le risque de réadmission dans les
30 jours suivant le congé, et j’ai trouvé que la valeur prédictive de ces trois mod-
éles était similaire; ce qui suggere que les hopitaux peuvent utiliser leurs pro-
pres données pour prédire les réadmissions a I'hdpital sans significativement
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réduire la précision de leurs estimés. Bien que les modéles prédictifs de réad-
missions a 'hopital peuvent étre utiles pour orienter les ressources vers les cas
présentant un risque élevé de réadmission, les modéles d'inférence peuvent po-
tentiellement conduire a des interventions au niveau de la population. Dans le
deuxieéme manuscrit, j’ étudie comment le jour du congé affecte la réadmission,
etj’utilise a la fois une approche empirique (modé¢le de survie) et une approche
analytique (modéle de Markov) pour étudier comment cet effet est confondu
parlaprobabilité dadmission durant le week-end. Je trouve que non seulement
les départs survenant le vendredi sont plus susceptibles détre réadmis que les
départs survenant le mercredi, mais aussi que la faible probabilité d'admissions
durant les week-ends atténue cet effet si elle n’est pas controlée.

Dans le troisieme manuscrit, je compare deux techniques pour mesurer l'effet
de vingt hopitaux de Montréal sur les réadmissions: une approche standard de
régression qui controdle pour les principaux facteurs confondants, et 'estimation
ciblée du maximum de vraisemblance (ECMV) ou je pouvais controler pour les
diagnostics, les procédures et les prescriptions de médicaments en utilisant une
technique d'apprentissage machine (la forét aléatoire). Le modele standard a
suggéré qu'il y avait peu de différence entre les hopitaux, mais le modele ECMV
a montré que les facteurs de confusion, en particulier les prescriptions médica-
menteuses, confondent fortement le risque de réadmission, et ont révélé une
grande variation du risque de réadmission entre les hopitaux.

En somme, mon travail suggere que : 1) des modeles prédictifs de réadmission
sont peu susceptibles détre grandement améliorés par la mise en commun des
données hospitaliéres ou par I'usage de techniques sophistiquées de combinai-
son, 2) l'inférence sur les causes de réadmission, en particulier le jour de la se-
maine, peuvent étre confondus par le processus d'admission, et 3) en utilisant
I’ECMV, le pouvoir prédictif des techniques d'apprentissage machine peut étre
utilisée pour améliorer I'inférence quant a l'effet des soins hospitaliers sur les
réadmissions.



Statement of originality

This work contains several original contributions to the analysis and under-
standing of hospital readmissions. Using epidemiologic analysis, I have pre-
cisely identified the reasons why the classification of hospital readmissions as
preventable or not preventable is unnecessary, greatly simplifying the analy-
sis of large healthcare databases. I also developed a unique technique to pool
hospital data without breaching patient privacy, but found that pooling data
in general may not significantly improve accuracy, and that in some cases, it
may decrease accuracy. To my knowledge, this work is the first to analytically
and empirically investigate how the differing probability of admission on the
weekend confounds the effect of the day-of-the-week of discharge on readmis-
sion. This work is also the first to combine the predictive accuracy of machine
learning methods with causal inference techniques (using targeted maximum
likelihood estimation) to develop precise, less biased estimates of the effect of
different hospitals on readmission. As a whole, this body of work combines
the latest informatics and epidemiologic methods and applies them to vast data
sources to develop original contributions to the study of hospital readmissions.

Although I have received guidance from my committee members on the sub-
stantive, methodological, and statistical aspects of this thesis, I declare that the
conception, execution, and drafting of the work in this thesis were my own.
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Chapter1
Introduction

“Is it too early to call this the Readmission Decade? Readmissions are on
everybody’s mind—identifying readmissions, preventing readmissions,
considering the financial repercussions of having too many readmis-
sions, lamenting the injustice of being held accountable for readmissions.
Only time will tell whether this is a passing storm or here to stay, but for
the moment the issue of readmissions is having its moment in the sun.”

Karl E. Minges, Living in the Readmission Era, (February 2014) [1]

Recent legislation in both the US [2] and Canada [3] has mandated the pub-
lic reporting of hospital readmission rates, and has introduced financial penal-
ties for hospitals with high readmission rates. Although there is some evidence
that public reporting and financial penalties for readmissions have caused hos-
pitals to develop innovative programs to improve quality of care [4, 5], other
authors [6-8] have suggested that readmissions cannot be meaningfully at-
tributed to hospital quality of care, and that many other factors affect readmis-
sion rates. Hospitals with excellent quality of care may even be penalized for
treating “sicker” patients [9], who are the most likely to be readmitted.

To improve quality of care and reduce readmissions, health systems can ap-
ply transitional care interventions, such as using dedicated transitional care



nurses for discharge planning, medication reconciliation, and telehealth mon-
itoring, but these interventions are costly [10-13]. To help target costly transi-
tional care interventions to those at highest risk of readmission, I investigated
whether hospitals can develop predictive models of hospital readmission, and
whether they can improve these models by combining data from different hos-
pitals. Developing predictive models of readmission can help individual pa-
tients, but inferential models of readmission may help identify systemic health
system changes that will improve quality of care and reduce readmissions. In
this work, I explored how inference on one systemic-level factor, the effect of
Friday discharge on readmissions [14], is complicated by the low probability of
weekend admission. Recent hospital readmission legislation is designed to in-
cent hospitals to improve quality of care and reduce readmissions by financially
penalizing those with high risk-adjusted rates of readmissions, but the risk ad-
justment only accounts for a few well-known confounders. In this work, I ap-
plied targeted maximum likelihood estimation (TMLE) [15], a causal inference
modeling technique, to take advantage of the rich confounder data available in
hospital administrative databases and provide less biased estimates of hospital
readmission risk.

In the following section, I first examine the history of the measurement of hos-
pital readmissions, and trace its development from a cost measure to a measure
of quality of care. I then discuss some of the causes of readmissions and review
interventions that have been implemented to reduce readmissions, followed by
an examination of how the concept of the preventability of readmissions hasin-
fluenced how they are statistically modeled. I also examine how the inferential
capacity of hospital readmission models has been measured by their predictive
accuracy, and argue that while the inferential capacity and predictive accuracy
are valuable, they are unrelated. Finally, I describe the motivation and objec-
tives for three studies (Chapters 3-5), which explore ways to improve the pre-
dictive accuracy and inferential capacity of hospital readmission models.



1.1 Background

1.1.1 History

Although the current study of readmissions is tied to improvements in qual-
ity of care, historically, interest in hospital readmissions has tended to wax
and wane, peaking during proposed or realized changes to the reimbursement
scheme for clinical services [16]. As governments assumed more of the cost of
healthcare, they became interested in measuring rising healthcare utilization.
Hospital readmissions are a particularly useful indicator because they tracked
not only the increases in utilization (and therefore cost) but also quality (people
come back less often with better care). Unfortunately, because governments of-
ten examined readmissions in the context of rising costs, the instrument itself,
which is not a direct measure of health, is often looked at with mistrust.

The standardized collection of data and statistics in these hospitals began with
Florence Nightingale’s seminal work “Notes on Hospitals”’[17]. Nightingale
made specific recommendations to the Statistical Society at the time on the
standardization of hospital statistics, but readmissions were not considered ex-
plicitly in that seminal publication. Given the nature of hospitals at the time,
which were unlikely to provide anything more than palliative care, readmis-
sions would have been rare [18]. However, the focus on Nightingale's work was
to describe differences in mortality in hospitals, which resembles readmissions
in the sense that an easy to measure, but crude proxy for the quality of care was
used to directly compare hospitals.

In the mid to late nineteenth century, a new type of hospital emerged: the for-
profit acute care hospital [18]. But not all those in need of care were able to
make use of the new public hospitals, in particular, those with mental illnesses
were “left behind” in what remained a place of charity. By the early 1900s,
the governments in both Canada and the US had begun to subsidize the men-
tal institutions, further entrenching the differences between hospitals and asy-
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Figure 1.1: An early design for a punchcard to collect routine hospital statistics.
This punchcard design, from Pearl[19], is one of the first direct references to
hospital readmissions in the context of routine hospital statistics.

lums. The mental institution and the acute care hospital had opposing incen-
tives for utilization. Because mental institutions were supported to some extent
by the state, the state was interested in saving money by discharging patients
to the population. For-profit acute care hospitals had a financial incentive to
encourage people to use their services. Although they still had moral and eth-
ical reasons to ensure that their patients received the best possible care, they
were less motivated to explicitly measure what happened to their patients af-
ter discharge. Raymond Pearl first suggested the measurement of readmissions
in 1921 for acute care hospitals (among other statistics), yet those were not im-
plemented at the time[19]. The first careful reporting of readmissions appears
to have been in a study by the New York State Department of Mental Hygiene,
explicitly measuring the readmission rate of mental patients at the state insti-
tutions[20].

When socialized medicine was introduced in the middle of the century, the pay-
ment scheme for physicians changed, and the interest in hospital readmissions



was revived by both opponents and proponents of the new system. Follow-
ing persecution by the Committee on Un-American Activities, Milton Roemer,
a distinguished physician and strong advocate of socialized medicine, fled to
Saskatchewan, Canada, where he helped develop the first hospital insurance
program[21]. After the establishment of the hospital insurance program, Roe-
mer published the first study of hospital readmissions[22]. The study was su-
perficially a study of utilization, but in the context of the recent adoption of
the hospital insurance program (which was vigorously opposed by many physi-
cians), the study can be seen as a defense of the costs of the new program. This
abridged excerpt of the discussion illustrates both viewpoints clearly:

3

.. much attention is being given to methods of reducing so-called
“excessive” hospital utilization. There is much talk of “abuse” of the
hospital by patients and doctors, and a common remedy proposed
is the imposition of “deterrent fees” ... [A] patient who is hospi-
talized... once in five years is [hardly] abusing the privilege. Why
then should he be deterred by a non-insured fee? An undeterred ad-
mission, moreover, can hasten the early detection and prompt treat-
ment of any illness. On the other hand, if he is a hospital-repeater, a
frequent user of hospitals, he is likely to be a sufferer from chronic
disease. If he is asked to pay a deterrent charge—such as a share of
the cost of second or higher admissions in a year—then the chron-
ically ill would bear a disproportionately large share of the over-all
[sic] community costs of hospital service. This would vitiate the very
purpose of hospitalization insurance, which is designed to spread the
risks over the sick and the well alike.”

Acheson and Barr [23] were the first to discuss hospital readmissions as a mea-
sure of quality. The primary concern of their study was to adjust mortality rates;
instead of using simple discharges as the denominator for deaths soon after dis-
charge, they would combine two discharges into a single discharge if they oc-
curred soon after each other (a readmission). They note: “It would be attractive
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if the readmission rate could be used as an index of the quality of medical care,
but further work will be necessary to determine any possible use it may have
for this purpose.”

In the mid-sixties socialized medicine (Medicare) was introduced in the US and
Canada, covering inpatient hospital costs for all people over 65. In the US, rapid
rises in Medicare costs in the seventies led to the utilization review, in which
Medicare would refuse to pay for hospital stays that were deemed “excessive”.
These controversial reviews were replaced with the Professional Standards Re-
view Organization (PSRO) that nominally were about quality of care, but had
essentially the same cost-control function as a utilization review. The PSROs
collected information on every Medicare hospital stay and then developed in-
dicators of performance, such as hospitalization rates, death rates, and read-
mission.

In 1983, the prospective payment system (PPS) was introduced in the US for
hospitals[24]. Instead of being reimbursed for whatever they spent, hospitals
would now receive a fixed sum based on the diagnostic-related group (DRG).
This payment system meant that a single hospital stay would have a fixed reim-
bursement, regardless of the length of stay, making two short stays more lucra-
tive than one long stay. Worried that the reimbursement structure of the PPS
would incent early hospital discharge, in the late eighties, the US government
mandated that the Health Care Financing Administration used early readmis-
sion as a quality indicator [25, 26].

Starting in the early 2000s, Quality Improvement Organizations (QIOs) (the
former PROs), began publishing indicators for the Hospital Compare website
[27], which makes readmission rates available for all hospitals in the US. In
Canada, the Canadian Institutes for Health Information (CIHI) publishes the
readmission rates, along with several other measures of quality of care. For-
mally, both organizations examine readmission rates as a means to measure
quality, but readmissions are the only indicator thatis directly related to health-
care utilization rather than health.



1.1.2 Readmissions in law

In 2010, the Ontario Excellent Care for All Act (ECFAA) received royal assent,
which required all hospitals to submit a Quality Improvement Plan (QIP) to
Health Quality Ontario (HQO)[28]. The legislation also requires that hospital
executive compensation be linked to targets set out in the QIP. For the years
2012/2013, hospitals were required to include an “integrated” dimension in
their QIP, which could include hospital readmissions. Twenty-seven hospitals
chose the 30-day readmission indicator as a priority within their 2011/12 QIP,
and eight more selected a readmission indicator other than the recommended
core indicator [28]. Notably, the executive salary penalty associated with fail-
ing to reach an indicator was assigned by the executives themselves, with the
recommended penalty being from 1 to 3%.

Similarly, also in 2010 the US president signed the Patient Protection and Af-
fordable Care Act, amended by the Health Care and Education Reconciliation
Act. The legislation reduces Medicare payments to hospitals with relatively high
preventable readmission rates for three selected conditions: acute myocardial
infarction, heart failure, and pneumonia. In 2013, the penalty was equal to 1%
of all of the hospital’s total Medicare billings, but has increased to 2% for 2014,
and will increase to 3% in 2015. Additionally, beginning in 2015, two new con-
ditions will be included in the hospital readmissions reduction program: acute
exacerbation of chronic obstructive pulmonary disease, and patients readmit-
ted after total hip arthroplasty or total knee arthroplasty [29]. Notably, while
the CMS calculates a number of health-related indicators (surgical site infec-
tions, deep vein thrombosis, falls and trauma), 30-day readmissions are the
onlyindicator used to reduce payment, and also the only indicator thatis a mea-
sure of health utilization, rather than a direct measure of patient health.

In the United Kingdom, the Department of Health has introduced a system
where the government will not pay for any emergency readmissions that oc-
cur within 30 days of discharge from an acute hospital, following an initial



planned stay. In Australia, the Health Innovation and Reform Council has rec-
ommended that the government consider financial consequences for high read-
mission rates[30].

1.1.3 Financial incentives

Financial penalties for poor readmission rates, especially as implemented in
the US, can lead to perverse incentives that reduce the quality of care [31]. Fol-
lowing an emergency department visit, patients can be discharged or admitted,
but it is also possible for the visit to be continued as an “observation service”,
a practice that has been increasing in the US in recent years[32]. Some authors
have suggested that hospitals may be holding patients in an observation ser-
vice until after 30-day readmission period has elapsed, which would allow the
hospital to both reduce their readmission rate, but continue to charge for the
patient admission[33].

Furthermore, some believe that, unless carefully designed, pay-for-performance
measures will unfairly penalize those who treat underserved patients, increas-
ingracial and ethnic disparities[34, 35]. Some argue that hospitals that do make
improvements on specific measures (like readmissions) may do so at the ex-
pense of other untargeted or charity care [36, 37].

The financial penalty may not be big enough to incentivize better quality of care:
if profit is the only consideration for readmitting patients, then the “loss” in-
curred by not readmitting patients after 30 days may exceed the penalty for
readmitting them[38]. One alternative financial incentive would be a single-
episode price (also called a bundled payment or a warranty system) that revokes
payment for any hospital stay within 30 days of a previous admission[38, 39].

Implementing any financial penalty reinforces the notion that the reason why
government agencies want to reduce readmissions is that they want to reduce
cost. One of the original proposals was to both penalize hospitals with worse
than average readmission rates and give bonuses to hospitals that had better



than average readmission rates[39] — a policy that would have made it clear that
quality of care, rather than cost, was the government’s motivation to reduce
readmissions.

1.1.4 Summary

When considering the indicators of quality of care, hospital readmissions have
a stronger connection to cost than most. Although readmissions may be a use-
ful indicator of quality of care, they could easily be construed as a thinly veiled
method to reduce utilization and therefore cost. In the literature, the argu-
ments against the use of hospital readmissions typically conclude that they are
a poor indicator of quality of care because other causes of readmission unre-
lated to hospital quality of care are more important drivers of readmission than
quality of care. In the next section, I review some of the causes of readmissions,
both related and unrelated to quality of care.

1.2 Causes of readmissions

Hospital readmission laws can incent hospitals to provide better quality of care
and to reduce readmissions. However, since there are other causes of readmis-
sions unrelated to quality of care, these laws can also unfairly penalize hospi-
tals, and even create perverse incentives. Some reasons for hospital readmis-
sion can be connected to quality of care at hospitals, such as hospital discharge
planning and adverse patient safety events, but other causes include patient-
related factors (e.g., the natural deterioration of health), as well as system-
related factors (e.g., the availability and the quality of outpatient care). To un-
derstand the relationship of hospital quality of care and readmissions in obser-
vational data, we must identify confounders of this relationship.

Hospital discharge planning includes the instructions that hospitals provide to
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patients, caregivers, outpatient physicians, and other healthcare workers out-
side the hospital. Discharge planning is designed to help patients and care-
givers manage their care outside of the hospital. In the US, Medicare regula-
tions obligate hospitals to provide discharge planning, and note it in the medi-
cal record. However, despite these legal requirements, studies have found that
discharge planning is often incomplete and untimely, and additionally outpa-
tient providers rarely have access to these plans[40]. By paying greater attention
to these important transitions in outpatient care, it may be possible to prevent
readmissions to acute care.

Adverse patient safety events, which are caused by the medical management
rather than the underlying condition of the patient, can result in a hospital
readmission[41]. Adverse drug events (ADE) in the immediate post-discharge
period is the most common reason for hospital readmission, and studies have
found that medication reconciliation, and important component of the dis-
charge planning process, could significantly reduce the rates of post-discharge
ADEs, further highlighting the importance of high quality discharge planning
[42].

From a system perspective, the variations in bed supply in long-term and acute
care facilities can disrupt patient flow throughout the healthcare system. For
example, if a hospital is overcrowded, it may begin to discharge patients slightly
earlier than usual, which may lead to more readmissions. On the other hand,
an overcrowded hospital might lead to fewer admissions, which would reduce
readmissions. One study found that much of the variation in hospital read-
missions could be attributed to variation in bed supply[43], and another recent
study found that survey-reported admission rates were correlated with read-
mission rates[44]. Additionally, if long-term care services are at maximum ca-
pacity, then discharged patients may be more likely to be readmitted.

The natural deterioration of patients due to their health conditions will lead to
hospital readmissions, but may not be attributable to suboptimal quality of care
within hospitals, as some conditions cannot be treated with current medicine.
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Fig. 1. Conceptual framework for the association between premature discharge and early readmission.

Figure 1.2: Conceptual framework for the association between premature dis-
charge and early readmission. Ashton and Wray[45] schematically describe a
plausible causal framework for the relationship between discharges and read-
missions. A “+” sign indicates a positive relationship, while a “-” sign indicates

an negative relationship.

({32

The differences between hospital readmission rates may be attributable to the
differencesin patient-mix, particularly at academic hospitals, which treat more
complicated patients who are at a higher risk of readmission.

Competing risks, especially mortality, may invert the relationship between
hospital care and readmissions. A hospital with good quality of care might be
preventing in-hospital deaths, but these high-risk patients might be at a greater
risk of readmission[26]. Conversely, patients treated at a hospital with poor
quality of care might be at more risk of dying in 30 days, reducing the probabil-
ity of readmission[26].

Figure 1.2, reproduced from Ashton and Wray[45], provides a useful conceptual
framework that describes several causes of readmissions, both related to and
not related to quality of care. The Figure illustrates how some causes of read-



12

missions may also prevent readmissions. For example, a hospital with good
quality of care can prevent adverse patient events, leading to fewer readmis-
sions, but it can also prevent post-discharge deaths, leading to more readmis-
sions. A crowded hospital may be more likely to discharge its patients prema-
turely (leading to readmission), but also may be less likely to admit patients
from the emergency department (preventing readmission). Some of the causes
could plausibly combine with each other to cause complex dynamics. For exam-
ple, an overcrowded hospital may discharge its patient prematurely to a long-
term care facility, crowding long-term care, leading to a longer length of stay in
other hospitals, preventing premature discharge, leading to fewer readmissions
in the other hospitals.

In the next section, I discuss ways of isolating those readmissions that are at-
tributable to the hospital, that is, those readmissions that were preventable.

1.2.1 Preventability of admissions

The causes of readmission, as listed previously, can be classified as care-related
(adverse patient safety events, effectiveness of patient discharge planning) and
not care-related (natural deterioration of health, outpatient care). In the ear-
liest work on readmissions [19, 20, 22], specific definitions of readmissions are
omitted, suggesting that they assumed that a clinical expert could reliably clas-
sify any single readmission as related to the care of the initial visit (preventable)
or not.

But recent work shows that clinicians cannot reliably classify the preventabil-
ity of admissions[46]. In this study, after having a panel of 35 clinicians review
readmissions, the study authors used latent class analysis to estimate the sensi-
tivity and specificity of preventability classification in the absence of a reference
standard, finding that half of clinicians had a sensitivity less than 50%, and a
specificity of 88%, suggesting that clinicians cannot reliably measure the pre-
ventability of a readmission.
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TABLE 11— Hypothetical comparison of adverse outcomes in two

hospitals
Occurrence of avoidable ) Avoidable
advc rse outcome adverse
— e Readmission  outcome
Yes No Toral rate (%) rate (%)
Hospital A
Readmission:
Yes 50 50 100
No 30 1870 1900  5-0 (100/2000) 4-0 (80/2000)
Total 80 1920 2000
Hospital B
Readmission:
Yes 40 80 120
No 10 1870 1880 6-0(120/2000) 2-5 (50/2000)
Total 50 1950 2000

Figure 1.3: Avoidable readmissions in two hypothetical hospitals. Milne and
Clarke [49] describe two theoretical hospitals A and B, where hospital B has a
higher readmission rate, but a lower avoidable adverse outcome rate. Although
hospital A has a larger proportion of preventable readmissions, it has a lower
overall readmission rate.

Even if clinician review was a reliable instrument to measure avoidable read-
missions, it would be too expensive to apply it to the massive administrative
datasets in which it is now required. A compromise solution was to measure
potentially avoidable readmissions. The 3M Corporation had clinical experts
devise a list of admission/readmission diagnostic code pairs[39] where pre-
ventability was at least plausible, with other authors proposing similar lists[47,
48]. By assuming that potentially avoidable readmissions were a rough proxy
for actually avoidable readmissions, we could easily measure readmission rates
in large administrative databases.

Milne and Clarke[49] identify the critical implicit assumption with using po-
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tentially preventable readmissions to compare hospitals: the proportion of pre-
ventable readmissions among the potentially preventable is the same across
hospitals. Unfortunately, we have theoretical reasons to assume that the pro-
portion of actually preventable readmissions varies greatly: 1) we know that
the severity-of-illness varies across hospitals, especially when you compare aca-
demicto non-academic hospitals, so if you assume that unpreventable readmis-
sions are largely a function of the severity-of-illness, then we know that the un-
preventable proportion is likely to be different across hospitals. 2) The premise
of comparing hospitals by using readmissions was that the quality of care dif-
fers across hospitals which results in different proportions of preventable read-
missions. If this premise is not true, then hospital readmissions would not be
able to discriminate the quality of care between hospitals. Empirical evidence
also makes it clear that the proportion of preventable readmissions is not the
same across hospitals: a meta-analysis of avoidable readmission proportions
found that the actual proportion of avoidable readmissions among all readmis-
sions ranged from 5% to 79% across study sites[46]. Although potentially pre-
ventable admissions were never intended to be a perfect proxy for preventable
readmissions, the evidence suggests that they may be too biased for use as a
financial penalty.

By precisely defining a preventable readmission in terms of counterfactuals, we
do not need to measure the preventability of individual readmissions to draw
inference on hospital rates of preventable readmissions. I define a preventable
readmission as a readmission that would have occurred if a patient was treated
at some hospital A, but would not have occurred if that patient was treated at
hospital B. This definition of readmissions is unique in a few ways:

1) The definition is only valid with respect to a specific pair of hospitals. A read-
mission might be preventable when considering hospitals A and B, but not so
when comparing hospitals A and C.

2) It is a binary outcome; you must specify a certain time frame z (for example,
30 days) for the definition to be complete.
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3) As defined, it is impossible to measure whether any specific readmission is
preventable, since one patient cannot be treated at both hospitals.

4) As defined, in a controlled trial (randomizing patients to two hospitals), we
could estimate the difference in preventable readmissions in a population of
patients. Similarly, in an observational setting, if we have no unadjusted con-
founding, we could estimate the difference in preventable readmissions.

We do not need to identify which individual readmissions were caused by a dif-
ference in treatment at the hospitals; we just wish to identify if there is a differ-
ence in the population rate of readmissions. This is the fundamental argument
of causal inference in an observational setting — we can draw inference about
population rates even when we cannot measure the effect on individuals. For
example, in an observational trial, to understand if smoking causes lung can-
cer, we do not need to identify which individual smokers got lung cancer be-
cause of smoking, and we just need to measure the difference in rates of lung
cancer between smokers and non-smokers. In the same way, we do not need to
identify which individual readmissions were preventable to know that the rate
of preventable admissions was different between hospitals. Given this defini-
tion of preventable readmissions, the main threat to validity when attempting
to draw inference on how different hospitals change the rate of readmissions is
confounding, particularly by severity-of-illness.

1.3 Predictive accuracy and inference

The techniques for estimating and adjusting hospital readmission rates in the
US reflect the history of how they were implemented. Initially, the raw (unad-
justed) rates of 30-day hospital readmissions per discharge were reported as a
tool to measure quality of care. However, these rates reflected both the read-
mission rate and the severity-of-illness of the patients at the hospital. The rates
needed to be adjusted for the patient-mix if they were to be used to infer quality
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of care.

The patient-mix adjustment model now used in the US is essentially standard-
ization technique. Alogistic regression model is used to predict 30-day readmis-
sion risk based on a few well-known risk factors including age and sex, and then
scaled the crude readmission rate at each hospital by the predicted readmission
risk for all the hospital’s patients. The technique is unusual for an inferential
model, but allows the reporting of adjusted readmissions per discharge, rather
than odds ratios (which were presumably considered too obscure for a wide
audience). The Committee of Presidents of Statistical Societies released a re-
port (commissioned by the CMS) which criticized the adjustment technique on
several grounds, noting that further basic demographic variables should be in-
cluded in the model, and more sophisticated techniques such as boosting and
random forest should be considered to properly adjust for confounding [50].

Many analyses and meta-analyses use the predictive accuracy of readmission
risk models to judge how well they can draw inference on hospital quality of
care. In 2011, Kansagara[31] reviews 26 models of hospital readmission risk,
concluding that these models should not be used to compare hospitals because
the classification accuracy was “poor” (AUC below 0.7). There is no way to assess
if there are unmeasured variables which confound the relationship between
any exposure and outcome. The AUC is a measure of goodness-of-fit, and does
not measure that validity of inference. For example, a model of smoking and
lung cancer, even if perfectly adjusted, is unlikely to have a high AUC, because
even among smokers, very few get lung cancer; smoking is not a good predictor
of lung cancer, but we can infer that smoking causes lung cancer. The predictive
accuracy and inferential capacity of a model are unrelated; one cannot be used
to measure the other.
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1.4 Interventions to reduce readmissions

Even if a particular hospital is associated with hospital readmissions, it may not
be immediately obvious how hospitals could improve patient’s health and re-
duce readmissions. The Institute for Healthcare Improvement (IHI) categorizes
readmission interventions into four broad categories: 1) enhanced transition
care 2) patient education 3) multidisciplinary team management and 4) end-
of-life care planning. Several of these interventions, in a variety of forms, have
been adopted in the US[51], and in Canada.

1.4.1 Transitional care models

Transitional care refers to the care designed to 1) coordinate care between hos-
pital and post-hospital providers, 2) temporarily monitor the patient just be-
fore and after the discharge, and 3) educate the patient and caregivers on how
to manage changing needs (pharmaceutical, nutritional, social, et cetera) af-
ter discharge. Several hospital networks have implemented transitional care
strategies that have been shown to reduce readmissions.

At the University of Colorado, the Care Transitions Intervention was developed
as a four-week post-discharge program which provides an advanced practice
nurse who acted as a “transition coach” to patients discharged from the hospital.
The transition coach assists patients with medication self-management, cre-
ates a patient centered health record to facilitate information transfer through-
out different sites of care, ensures timely follow-up with primary or specialty
care, and watches for a series of “red flag” conditions which required immedi-
ate medical attention. In a randomized controlled trial, those patients receiving
the care intervention had significantly lower 30-day and 90-day readmission
rates[11].

In the Transitional Care Model, used at the University of Pennsylvania, a mul-
tidisciplinary team, led by a dedicated transitional care nurse, treats, moni-
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tors and guides patients just before, during and just after hospital discharge.
Specifically, they focus on patient and caregiver education, medication recon-
ciliation, and facilitating access to primary care providers. In a randomized,
controlled trial of older adults hospitalized with heart failure, those random-
ized to transitional care had significantly fewer 52-week readmissions than the
control group, and that the time-to-readmission was also significantly longer
in the intervention group[52].

The Re-Engineered Discharge program, at the Boston University Medical Cen-
ter uses nurses (discharge advocates) to improve transitional care[10]. The dis-
charge advocate nurse works with patients to ensure medication reconcilia-
tion (including contacting the pharmacist 2 to 4 days after follow-up), arranges
follow-up appointments with primary care, and provides individualized in-
struction booklets to help patients manage their treatment outside the hospi-
tal. Arandomized controlled trial found that intervention group patients had a
lower rate of hospital utilization than the control group[10].

In several states in the US, Quality Improvement Organizations (QIOs) also pro-
vide individual interventions similar to those above, but also attempt broader
structural improvements to improve care transitions[53]. Although these inter-
ventions vary widely, and take local needs into consideration, they can broadly
be categorized into 1) interventions that improve the transition processes, which
can include new protocols for transfer from hospitals to long-term care and im-
provement of information technology, and 2) interventions that address access
to services, which can include the provision of new services to palliative care,
and providing better access to nutritious meals.

In Ontario, several interventions are being piloted to reduce readmission. St.
Michael’s Hospital partnered with the Toronto Central Community Care Access
Centre (CCAC) and several hospitals in the region to create the Virtual Ward,
which uses a hospital-like approach to treat patients in their own home. Pa-
tients receive care from a multidisciplinary team that meets daily and share
a common set of notes, all coordinated through dedicated staff at the CCAC.
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The South West Local Health Integration Network (LHIN) implemented a small
pilot project to improve transitions from the hospital in which a nurse practi-
tioner visited the home shortly after discharge to enhance education, reconcile
medications, and develop a focused plan to prevent readmission[54], finding
that readmissions could be reduced. Finally, the “Home at last” program, cur-
rently running in several LHINS, provides a comprehensive transition service
from hospital to home, which may include driving the patient home, picking
up medications and groceries, preparing a small meal, providing personal care
and homemaking services, follow-up phone calls, and referral services to other
community support services.

1.4.2 Hospices, long-term and palliative care

Kaiser Permanente (a major healthcare provider in the United States) has cre-
ated the TriCentral Palliative Care Program Toolkit to help organizations create
palliative care programs. These palliative care programs would have interdisci-
plinary teams help patients to manage both physical pain and other symptoms,
as well as provide emotional support for family and other caregivers. A ran-
domized, controlled trial found that the intervention group had significantly
less hospital days than the control group[55]. Other studies have found that in-
patient palliative care consultation services reduce the likelihood of ICU read-
mission [56—-58], but others found that this was true for only those discharged
to a hospice[59].

1.4.3 Telehealth

One randomized control trial found that three months of telemonitoring (post-
discharge video conferencing with a nurse, and daily transmission of weight,
blood pressure and electrocardiogram) significantly reduced hospital readmis-
sions[60]. Another randomized controlled compared home telemonitoring,
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nurse telephone support, and usual care for high risk heart failure patients,
and found that among both the telemonitoring and nurse telephone support
groups, mortality was decreased, but rehospitalizations were increased[13].

While prior studies have provided some evidence that transitional care inter-
ventions can significantly reduce hospital readmissions, these interventions,
which are people and resource intensive, remain very costly. In the current era
of cost containment and resource scarcity, there is a need for better methods
to identify patients at high risk of hospital readmission so that preventive in-
terventions can be targeted at these individuals. There is also a need to bet-
ter understand the potentially modifiable structural drivers to hospital read-
mission to assist decision-makers in designing more efficient systems and dis-
charge policies that contribute to reduce readmission rates. This purpose of this
doctoral thesis is to address these issues.

1.4.4 Summary

Although there is some evidence that transitional care interventions can re-
duce hospital readmissions, these interventions are costly. In the current era
of shrinking hospital budgets, interventions need to applied to those who need
them the most; predictive readmission risk models can help to target these in-
terventions to those at highest readmission risk. Additionally, inferential mod-
els of readmission could help us to estimate how effective broader structural
level interventions could reduce readmission risk. The purpose of this thesis
was to explore how improvements to predictive and inferential models of read-
mission risk could help to develop cost-effective interventions to improve qual-
ity of care and prevent readmissions.
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1.5 Objectives of this work

An important requirement to target transitional care interventions to highest
risk patients is to have accurate predictive models of hospital readmissions.
Three broad approaches can be used for that purpose. First, hospitals can de-
velop predictive models of readmission based on their own data (local models),
but the accuracy of these models has been questioned. Alternatively, hospitals
could pool data from several geographically distributed sites and take advantage
of the larger variability of the information in this ‘big dataset’ to develop poten-
tially more accurate models of hospital readmission (global models). However,
in practice legal (privacy-related), technical, and administrative issues makes
data pooling very difficult. Lastly, recent research has shown that accurate
models can be developed across hospitals by sharing information about model
fit to proposed parameters rather than directly sharing patient data (combined
models).

We may be able to prevent hospital readmissions through transitional care in-
terventions, but the cost of these interventions makes it infeasible to apply them
to all discharges. To target these interventions at those patients with the high-
est readmission risk, hospitals can develop predictive models of readmission
based on their own data (local models). Ideally, hospitals would pool their pa-
tient data to develop more accurate readmission risk models (global models),
but legal (privacy-related) technical, and administrative issues make pooling
infeasible. Recent research has shown that accurate models can be developed
across hospitals by sharing information about model fit to proposed parameters
rather than directly sharing patient data (combined models) [61-65]. Interest-
ingly, no prior research work has directly compared the relative accuracy of the
three approaches (local, global, combined) to model development. In my first
manuscript, I compared the accuracy of the following models to predict 30-day
readmission risk: 1) an ideal “global” model, fit to data pooled across hospitals,
2) “local” models, fit to individual hospital data, and 3) “combined” models,
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fit to data from an individual hospital, but additionally using coefficients from
local models from other hospitals.

Predictive models of hospital readmissions can be useful guides for resource
allocation to individual high-risk cases, but inferential models can potentially
lead to population-level interventions. One known risk factor for hospital read-
missions is that patients discharged from hospitals on a Friday (Friday dis-
charges) are readmitted sooner than Wednesday discharges. Some authors [66—
68] have suggested that readmissions related to Friday discharges can be de-
creased by increasing weekend staff or allowing admissions into long-term care
on the weekend. However, the effect of differing admission probability by day-
of-week has not been investigated, meaning the estimated effect of interven-
tions may be biased. In my second manuscript, I used analytic (an absorbing
Markov model) and empiric (a time-varying Cox proportional hazards model)
approaches to investigate how admission probability confounds the effect of
Friday discharges on readmission.

The US and other jurisdictions financially penalize hospitals with poor (confounder-
adjusted) 30-day readmission rates. Although hospital administrative data are
information-rich, confounder adjustment tends to be crude. Non-parametric
machine learning techniques can take advantage of these rich data to predict
readmission, but cannot isolate the independent effect of hospitals on read-
mission risk. In my third manuscript, I estimate the effect of care at differ-
ent hospitals on 30-day readmission risk, using targeted maximum likelihood
estimation TMLE, which allowed the use of a non-parametric machine learn-
ing technique (random forest) to take advantage of the rich confounder data. I
developed three models to estimate the marginal readmission risk at each of
the hospitals after hospitalization for heart failure, acute myocardial infarc-
tion (AMI), and pneumonia. I controlled for hundreds of confounders includ-
ing pre-admission drug prescriptions, medical procedures, and diagnoses. We
compared the TMLE-estimated risk to a logistic regression model that only ad-
justed for well-known confounders. Using TMLE, I could use the predictive
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power of machine learning techniques to take advantage of rich confounder
data, and draw inference on the wide differences in quality of care between hos-
pitals.

In this work, I examine how large healthcare administrative databases can help
build better inferential and predictive models of hospital readmissions. In the
first manuscript (Chapter 3), I study how pooling hospital data improves pre-
dictive readmission models. In the second manuscript (Chapter 4), I study how
the day-of-week of discharge affects readmission, and use both empiric and an-
alytic approaches to study how this effect is confounded by the probability of ad-
mission on the weekend. In the third manuscript (Chapter 5), I investigate how
TMLE can be used to improve inference on the effect of hospital quality of care
on readmissions by using machine learning techniques on high-dimensional
confounder data. In all three manuscripts, I analyzed hospital discharges in
a cohort of people 65 years of age or older between 1996 and 2006 (inclusive)
from the Quebec hospital administrative database which included both the in-
hospital procedures and diagnoses, and outpatient diagnoses and dispensed
drug prescriptions (described in detail in Chapter 2).



Chapter 2

Data

In all three studies presented, I used a cohort of patients extracted from the Régie
de lassurance maladie du Québec (RAMQ) to study hospital readmissions. In this
section, I describe these data in detail.

2.1 Cohort selection

This extract includes all Quebec hospitalizations and outpatient visits for those
who ever reported an influenza-like illness (ILI) between the years 1996 and
2006 (inclusive), while living in the census metropolitan area (CMA) of Mon-
treal, as defined by the 2006 Canadian census. Having an ILI was defined as
any of the International Classification of Diseases, 9th revision (ICD-9) codes
listed in the Table 6.1, a relatively broad set of codes, among which there are
several extremely common codes such as cough and fever. This was a dynamic
cohort; a person “entered” the cohort on the day that they met both of these cri-
teria: 1) at least one ILI code was recorded in either the RAMQ or Maintenance et
exploitation des données pour létude de la clientéle hospitaliére (MEDECHO) data
after January 1, 1996 while they were living in the Montreal CMA, and 2) they
were at least 65 years of age. A person who changed residence from the Mon-

24



25

treal CMA to another address inside Quebec would remain in the cohort, but a
person who changed address to outside of Quebec would be removed from the
cohort.

Importantly, the majority of admissions in the following three studies were not
related to influenza. ILI was only used as one of the criteria for cohort entry;
after entry, all hospitalizations for a patient were included into the study.

8e-04 -

6e-04 -

4e-04 -

2e-04 -

Deaths per person in cohort

1 1 1 1 1 1
1996 1998 2000 2002 2004 2006
Year

Figure 2.1: Number of deaths per person in the cohort by time. A GAM smoother
has been applied to the rate to emphasize long-term trends.

The use of ILI codes as a selection criterion is not ideal for this work. This data
source was extracted for a different study; we used it because it included enough
discharges to allow us to measure small effects, was unlikely to have a selection
bias with respect to hospital readmissions, and was readily available. However,
in this cohort, due to the selection by presence of a diagnostic code, a selection
bias has induced a relationship between time and outcomes associated with
severity-of-illness such as death. People with the highest frequency of ILI codes
will also be the most probable to enter the cohort early, meaning that early in
the study, we have a very high proportion of those who have very high ILI code
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frequency. Those with the highest frequency of diagnostic codes are also likely
to be the most severely ill, and those who are severely ill are most likely to die.
This leads to a relationship between the year of discharge and death, as shown
in Figure 2.1. In light of this bias, I cannot draw inference on the relationship
between the year of discharge and hospitals readmissions.

2.1.1 Hospital identification

The hospital'sidentification numbers were anonymized in these data. However,
if a hospital license number changed (which happened roughly one time per
hospital over 1996 to 2006), the anonymized identification number changed,
which was unfortunate because  had no way of identifying pairs of anonymized
hospital license numbers that represented the same hospital. Although I did not
need to deanonymize the hospital identification numbers, because I wanted to
compare hospital's effect on readmissions,  had toidentify which identification
numbers represented the same hospital.

To correct this problem, I identified the times at which each hospital identifi-
cation number started and stopped having visits. Unfortunately, many hos-
pital identification numbers stopped or started on the same day, indicating
that many hospitals changed license numbers on the same day (which I con-
firmed by consulting the website of the Ministére de santé et services sociaux
(MSSS)). However, in the RAMQ data, hospitals changed the license number
on exactly the date indicated by the MSSS, but in the MEDECHO data, the hos-
pitals changed license number at the end of the financial year (March 31). This
created a “gap” which could be exploited; since doctors bill in RAMQ data for
hospitalizations, I could find which hospital number they billed in for a patient
that appeared in MEDECHO. For each major discharging hospital that changed
numbers, I was able to clearly identify one clear candidate as the likely number
it changed to. Finally, to verify that my guess was correct, I plotted a choropleth
map of the addresses of the visitors to each hospital identification number by
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forward sortation area (FSA). In all of the following work, I have used my “es-
timate” (which I believe is exactly accurate) of which hospital license number
paired with which other hospital number.

2.1.2 Hospital selection

Although cohort members must have lived in Montreal at least once, they re-
mained inside the cohort even if they moved to other Quebec locations. This
meant that the database (likely) contained a significant number of hospital dis-
charges from outside the Montreal CMA. To ensure that I selected only hospitals
in the Montreal CMA, I selected the twenty hospitals that discharged the most
65 year old patients. Although I only had selected patients from the top twenty
hospitals, I counted a person who was readmitted to any hospital in Quebec as
readmitted.

2.2 Basic description

2.2.1 Addresses

The RAMQ database does not consistently record whether a person has changed
their residence to a place outside of Quebec. The address of a person is recorded
every year, so a missing address may indicate that a person was no longer in
Quebec. However, the address data can also be missing because RAMQ did not
record that data, and the quality of the address data is known to be poor (often
missing) for the period of 1996-1998.

In this analysis, I took a relatively specific, less sensitive measure of leaving Que-
bec. If a person had a consecutive missing addresses from any year all the way
to the final year (2006), and they had no healthcare utilization in all of those
years, then that person was considered to have left Quebec, and was censored.
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Because I had to censor on a specific day, I picked a random day between the
last day of healthcare utilization and the end of year.

2.2.2 Transfers

If people were transferred between hospitals, it was considered one stay (the
transfer is not counted as a discharge). Transfers are recorded in the database,
but are of dubious quality (it is clear that many transfers go unrecorded). Some
hospitals record transfers within their own hospital. If a person was readmitted
on the same day as discharge, or the next day, then it was considered a transfer.
This means that a person cannot be readmitted in exactly one day. Exactly 4010
discharges (0.6%) were considered a transfer because of a hospital admission
the next day.

If a patient was transferred between hospitals, then only the last hospital that
the patient stayed at was considered the discharging hospital. Some bias could
have resulted from this choice: if a hospital was treating patients particularly
poorly, but then transferred the patient to more specialized care, it may cause
the specialized hospital to be “assigned” more readmissions. Among hospital
stays that resulted in a discharge of someone 65 years of age, 32 121 stays (5.1%)
included at least one transfer. 75% of hospital stays that included a transfer
only included one transfer, while 21% contained two transfers. The maximum
number of transfers was 10.

2.2.3 Death

In these data, we had three sources of information on the date of death. The
MEDECHO data included the day of death for those who died inside a hospi-
tal. The RAMQ data included the year-month (for example, March of the year
2000) of death. Finally, we had the Institut de la statistiques de Québec (ISQ) data
which also included the year-month of death, as well as some cause-of-death
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information. Theoretically, all three sets of death data should be exactly con-
cordant, but practically, there were inconsistencies. When the dates of death
differed in the three datasets, I used the MEDECHO data when possible, and
favoured the RAMQ data over the ISQ data in the small number of cases (374)
when they were inconsistent.

For the survival analyses used in the first and second manuscripts, the time unit
used was the day, and a person was censored if they died outside of the hospital.
Since only the year-month of death was recorded for those who died outside of
the hospital, it was necessary to estimate their day of death. In cases where a
hospital visit or outpatient was recorded in the data during that month, it was
possible to estimate the earliest date of death during the month. I used the date
halfway between the earliest date of death and the end of the month, rounded
down.

2.3 Cohort entry

Figure 2.3 shows the number of people alive in the cohort by time. The rate
of cohort entry slightly accelerates during the winters, because diagnoses of
influenza-like illnesses are more likely in the winter.

Figure 2.3 displays the absolute number of people entering the cohort by time,
smoothed with a Gaussian kernel. Every winter season, the rate of entry in-
creases, because diagnoses of influenza-like illnesses are more likely in the win-
ter. The rate of cohort entry also declines over the long-term. We believe that
the selection criteria was common enough that the majority of 65-year olds in
Montreal were entered into the cohort in the initial few years, and following
this, the rate flattens because our rate of entry is limited by the number of peo-
ple turning 65 in Montreal every year. RAMQ_changed their diagnostic code
system from ICD-9 to ICD-10 in March 2006, but not all hospitals and outpa-
tient clinics adopted this uniformly. The drop in cohort entry after March 2006
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Figure 2.2: People alive in cohort by time. Calculated at a daily resolution.
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Figure 2.3: Number of people entering the cohort by time. The number of peo-
ple entering each day have been smoothed with a Gaussian kernel with an au-
tomated bandwidth selector.
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reflects the diagnostic code system change, as our selection criteria was based
largely on ICD-9 codes.



Chapter 3

Privacy-preserving predictions: a
case study of hospital readmissions

3.1 Preamble

Hospitals can address readmissions through system-level interventions, like in-
creasing staff or improving adherence to clinical guidelines, or they can use
individual-level interventions, like identifying patients with high readmission
risk and improving their individual transitional care. Since these transitional
care interventions can be costly, we can improve their cost-effectiveness by ap-
plying them only to patients at high risk of readmission. To identify patients at
high readmission risk, we can use predictive models of readmission, based on
the rich data available within administrative databases.

A hospital can use their own data to develop predictive readmission risk models,
but for patients with relatively rare illnesses, their statistical power may not be
sufficient to estimate risk accurately. To improve the accuracy of readmission
risk models, hospitals can pool their data and fit models to that pool. How-
ever, typically, hospitals cannot share patient data due to confidentiality agree-
ments, and technical challenges. Recently, privacy-preserving model combi-
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nation techniques have been developed, which allow hospitals to fit models on
pooled data, without directly sharing patient data.

In the following manuscript, I focused on how much we can improve the use
of individual-level transitional care interventions by improving the accuracy of
our predictive readmission risk models by pooling data or combining models.

3.2 Abstract

Introduction: Hospital readmissions may be preventable through transitional
care interventions, but these interventions are costly. To target these interven-
tions at high risk patients, hospitals can develop readmission risk models. Ide-
ally, hospitals would pool patient data to develop risk models, but typically,
private patient data cannot be shared. Privacy-preserving model combination
techniques exist, but require technical expertise, and there is little evidence that
models estimated from pooled data are more accurate than those estimated
from data at a single hospital.

Objectives: To compare the accuracy of the following three models in predict-
ing 30-day readmission risk: 1) an ideal “global” model, fit to data pooled across
hospitals, 2) “local” models, fit to individual hospital data, and 3) “combined”
models, fit to data from an individual hospital, but additionally using coeffi-
cients from local models from other hospitals.

Research Design: We used 11 years of data from 20 hospitals to build the pre-
dictive models. We compared the accuracy (area under the receiver-operating
characteristic curve (AUC)) oflocal, global, and combined models for predicting
readmission following hospitalization for heart failure, AMI, and pneumonia.

Results: Within 30 days of discharge, there were 7 355 (22%) heart failure read-
missions, 4 127 (15%) pneumonia readmissions, and 3 414 (16%) AMI readmis-
sions. For global models, the AUC was 0.65, for local models the AUC was 0.63,
and for the combined models the AUC was between 0.63 and 0.64.
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Conclusion: Hospitals can use their own data to predict hospital readmissions
and achieve similar performance to models that pool data.

3.3 Introduction

Hospital readmissions are both common and costly: in the United States, 13.3%
of discharges end in a potentially preventable readmission within 30 days, cost-
ing an estimated $12 billion per year [39]. Not only does readmission suggest
suboptimal transitional care, but hospitalization itself can pose a health risk,
particularly for older adults who can experience serious functional decline in
hospital that is unrelated to the original admission [69, 70]. Research has iden-
tified substantial variation in readmission rates across regions and hospitals,
suggesting that improvement is possible [39, 71]. Furthermore, some juris-
dictions in United States[2] and Canada[3] have recently introduced legislation
that financially penalizes hospitals with high readmission rates, providing an-
other incentive to prevent readmissions.

To prevent readmissions, transitional and post-discharge care interventions ex-
ist, but they are too costly to be applied to all discharged patients [10-12]. To tar-
get transitional care interventions to patients at-risk of readmission, hospitals
can develop statistical models of readmissions based on their own data (local
models). A hospital with low patient volume may not be able to accurately esti-
mate the effect of rare patient characteristics on readmission, reducing the per-
formance of these local models. Ideally, hospitals would pool their patient data
[72] and develop a “global” readmission risk model, accumulating enough data
to estimate the effect of rare conditions and drug prescriptions on readmission
risk. However, there are many practical barriers to data sharing involving data
ownership, privacy and security.

Recently, much interest has developed in privacy-preserving model learning
techniques, which build models across hospitals without directly sharing any
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patient data (combined models). These systems [61, 62] build models by itera-
tively sharing information about model fit (for example, the residuals) to pro-
posed parameters rather than directly sharing patient data. Although the per-
formance of privacy-preserving model fitting techniques have been shown to be
similar to global models [61-65], the techniques all require significant network
communication infrastructure, hospital coordination, and technical expertise,
making them costly for hospitals to implement.

Global readmission risk models, which need data pooled from multiple hos-
pitals, may be more accurate than local models, but they require data shar-
ing agreements and pose a risk to patient privacy. Combined readmission risk
models can greatly reduce the risk to patient privacy, but require technical ex-
pertise. Local readmission risk models, which are fit only to local hospital data,
are less costly but may also be less accurate than global or combined mod-
els. The main objective of this study was to compare the performance of local,
global, and combined models of hospital readmissions. To our knowledge, this
study will be the first to directly compare these three approaches to model es-
timation. Understanding the relative accuracy of these approaches should help
hospitals to assess the potential benefit of investing in different approaches to
risk modeling.

3.4 Methods

3.4.1 Study Data

We used a cohort extracted from a Canadian provincial (Quebec) administrative
database of hospitalizations, obtained from the Régie de 'assurance maladie du
Québec (RAMQ). We enrolled patients into this cohort on the month that two
conditions were satisfied: 1) they had at least one diagnosis of a respiratory ill-
ness (the exact list of respiratory International Classification of Diseases, 9th
Revision [ICD-9] codes is given in the Appendix) between January 1st, 1996 and
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Figure 3.1: Schematic of local, global, and combined model fit.

March 31, 2006, while living in the 2006 census metropolitan area of Montreal,
and 2) were at least 65 years of age. We used this cohort because it represents the
majority of 65-year olds who were hospitalized in the region during the study
period. We restricted our data to only the discharges from the twenty hospitals
with the most discharges of patients 65 years or older within the study period;
the twenty hospitals accounted for 75% of all such discharges.
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3.4.2 Hospital readmissions

The unit of analysis in all models was the hospital discharge; a single patient
could be discharged multiple times. A hospital readmission was defined as an
emergency hospital admission to any Quebec hospital in the 30 days following
a discharge. A person who died or had a non-emergency readmission in the 30
days following discharge was considered not readmitted (right censored).

3.4.3 Discharge data

For each hospital discharge, we used the following variables to predict readmis-
sion: a) admission type (emergency, semi-emergency, or non-emergency), b)
number of hospital transfers during stay, c) discharge location (home or nurs-
ing home), which may influence the type of post-discharge care and follow-
up, d) length of stay (days), which may act as a proxy for severity-of-illness, €)
demographic characteristics, including birth year-month, sex, and age at dis-
charge (years), f) the number of previous readmissions (within the study pe-
riod), which has been shown to be associated with readmission [73] and, g)
admission diagnosis (major diagnostic category — one of 24 groups of ICD-9
codes). We also included the day of week of discharge, which has been pre-
viously shown to have an association with readmissions [14], and the month of
discharge, because we hypothesized that readmission risk would vary by sea-
sons in Montreal.

Additionally, for each discharge, we used the recorded diagnoses, procedures,
and dispensed drugs at the time of admission to predict hospital readmissions.
The procedures performed were recorded in the Canadian Classification of Di-
agnostic, Therapeutic, and Surgical Procedures (CCP) system. Hospital diagnos-
tic codes were coded using the ICD-9 system. Finally, drugs which were pre-
scribed and dispensed outside the hospital, and were being taken on the day
of admission were also recorded for each patient in the code commune system,
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which records the chemical compound being taken. To ease computation, be-
fore fitting any model, we removed any diagnosis, procedure or drug that oc-
curred less than 30 times among all discharges. We chose 30 because it appeared
to be a natural breakpoint; if the number of variables included is a function f
of the threshold, then the first derivative of f dropped at 30 for all three disease
categories.

3.4.4 Disease types

We selected three high-volume admission diagnoses with high rates of hospital
readmissions: pneumonia, AMI, and heart failure, the three initial conditions
selected by the Centers for Medicare and Medicaid (CMS) to implement the Hos-
pital Readmissions Reduction Program mandated by the Affordable Care Act.
We identified each of the admission diagnoses using ICD-9 codes; for pneumo-
nia we used codes ranging from 480-487, for heart failure we used all 428 codes,
and for AMI we used all 410 codes. We predicted 30-day hospital readmission
in all three disease subsets.

3.4.5 Regularized Cox model

All of the data were fit using a Cox proportional hazards model, with the hospi-
tal discharge as the unit of analysis, and the date of hospital discharge as time
zero. Since Cox's model uses time-to-event as an outcome, we did not classify
each discharge as readmitted or not within 30 days. Instead, we measured the
time-to-readmission of each discharge: if the discharge resulted in an emer-
gency admission the discharge was considered to have the “event”, and if the
discharge resulted in a non-emergency admission, death, or the study ended
before either, the discharge was considered “right-censored”. We did not ac-
count for the variance reduction induced by the correlation between repeated
discharges of the same patient, because we did not estimate the variance of the
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model parameters.

For all analyses, we used a regularized version of the Cox model with the lasso
penalty [74] to both efficiently fit a model to hundreds of covariates (includ-
ing one indicator variable for each drug, procedure, and diagnosis) and to pro-
duce sparse (parsimonious) models. The scale of the penalty was determined by
the parameter \. For each model fit, we optimized the selection of the penalty
scale for the best partial likelihood using a nested a 10-fold cross-validation.
Within each fold we assessed 100 \-values spaced evenly between maz(\)x10~4
and max(\), where max()\) was the smallest \-value that would resultin a model
with no non-zero coefficients.

3.4.6 Local and global data prediction

For each of the 20 hospitals, we fit a “local” readmission model to only the hos-
pital’s data, using 10 fold cross-validation to measure performance. We then fit
a “global” model for each hospital: instead of using just the local hospital’s data,
we fit a model to the data from all hospitals. To measure performance for the
global models, we used 10 fold cross-validation, where each fold excluded '/,
of the local hospital data. Since we had 20 hospitals, and 10 folds each, we fit
200 global models, and 200 local models. We repeated this process for all three
disease types.

3.4.7 Combination model

We then applied a simple, completely privacy-preserving, meta-analysis tech-
nique, which uses only model coefficients to combine the data from all of the
hospitals, described schematically in Figure 3.1, and algorithmically in Algo-
rithm 1. For each of the 20 hospitals, we fit a local model to all of the data within
the hospital, resulting in a set of coefficients for each hospital. This step simu-
lates the usual approach in health care data analysis, where each hospital an-
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alyzes its own data, and publishes summary statistics of the resulting model.
We then had each hospital fit another model to only its own patients, but we
added 19 new variables: the predicted outcome using the other 19 models (sets
of coefficients) fit to the 19 other hospital's data. This step simulates each hos-
pital gathering the model coefficients from other hospitals, and applying it to
their own data. This kind of model only requires access to the final coefficients
of other hospital models that are typically reported in other research articles.

3.4.8 Performance measure

We measured the performance of each model for predicting 30-day readmission
using the AUC. A Cox model estimates the hazard ratio and not a probability
of 30-day readmission. To calculate the AUC, we used the hazard ratio as the
discrimination threshold. For each model, 10 AUCs could be calculated from
each of the 10 folds. We calculated a single AUC on the pooled hazard ratios
from all 10 folds [75].

3.4.9 Software

The models were fit in R using the coxnet [76] function in the glmnet [77] pack-
age.

3.5 Results

The twenty sampled hospitals varied widely in size and scope: teaching hos-
pitals, large regional hospitals, and smaller urban hospitals were all included.
The number of beds ranged from 182 to 571, with a mean of 336 beds. Within
these twenty hospitals, there were 33 696 heart failure discharges among 21 363
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Algorithm 1 Regularized Cox Combination (Hospital k)
forallic {1,...,n}do

P;=set of parameters selected through nested cross validation with Lasso
penalty in a Cox model for hospitals :
end for
let X* = (2}, ..., 2%)) be a set of training data for hospital &
letY* = (y¥, ..., y* ) be a real value outcome in the range (0, oo) indicating time
to event with the Cox model for hospital X*
let C ={8;};i# ke {1,2,..,n}and j € {1, ..., f;} be a set of coefficients from
a set of Cox models H; of all other hospitals
Expand X to have U7, f; features by inserting zeros for missing features
Run each model H; on X* to create hazard ratios R;(X*)

F =A new Cox model fit to X* and R;

Pneumonia AMI Heart failure

Dispensed drug (code commune) 308 258 304
Medical procedure (CCP) 66 86 84
Diagnosis (ICD-9) 616 486 649

Table 3.1: Number of variables present in more than 30 discharges by disease
type and variable category.

patients, 28 121 pneumonia discharges among 22 910 patients, and 21 468 AMI
discharges among 18 876 patients.

In Table 3.1, we describe the number of included variables after excluding diag-
noses, procedures or drugs that occurred fewer than 30 times. Table 3.5 presents
descriptive information about the cohort and compares the average characteris-
tics of the patients who were eventually readmitted and not readmitted. Across
all three disease categories, previous readmissions were correlated weakly with
future readmissions (Pearson’s correlation coefficient was 0.12, 0.15, and 0.14
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Hospital Pneumonia 30-day Local Combined Global
dis- readmis- Model Model Model

charges sion
1 1356 0.15 0.65 0.65 0.67
2 247 0.15 0.63 0.62 0.64
3 1215 0.16 0.63 0.63 0.64
4 1072 0.14 0.63 0.65 0.68
5 1110 0.16 0.62 0.63 0.64
6 945 0.13 0.59 0.61 0.64
7 2618 0.16 0.62 0.62 0.65
8 1705 0.14 0.60 0.64 0.66
9 1266 0.17 0.66 0.69 0.68
10 1451 0.15 0.63 0.63 0.65
11 1 066 0.14 0.62 0.64 0.63
12 1294 0.11 0.59 0.60 0.61
13 2287 0.18 0.62 0.63 0.65
14 2217 0.15 0.66 0.66 0.67
15 1624 0.13 0.59 0.60 0.63
16 737 0.09 0.63 0.67 0.69
17 1575 0.16 0.63 0.63 0.64
18 1544 0.16 0.65 0.65 0.68
19 1355 0.13 0.64 0.64 0.61
20 1437 0.12 0.60 0.59 0.63
All 28 121 0.15 0.63 0.64 0.65

Table 3.2: Pneumonia discharges

for AMI, heart failure, and pneumonia respectively). The number of discharges
increased from Sunday to Friday for all three disease categories, suggesting that
considerations other than health status influenced the decision to discharge.

Tables 3.2-3.4 show the number of discharges, readmission rate, and perfor-
mance of the local, global, and combined models for each of the 20 hospitals,
and a summary of their performance. The hospitals had widely varying number
of discharges: among the pneumonia discharges (Table 3.2) there was a mean
of 1406 discharges, with a standard deviation (SD) of 537 discharges, similar to
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Hospital AMIdis- 30-day Local Combined Global
charges readmis- Model Model Model

sion
1 887 0.16 0.65 0.66 0.68
2 1717 0.13 0.65 0.64 0.65
3 686 0.17 0.64 0.63 0.64
4 1166 0.15 0.59 0.61 0.63
) 855 0.16 0.65 0.66 0.66
6 997 0.15 0.57 0.59 0.60
7 1734 0.18 0.67 0.68 0.68
8 1401 0.14 0.65 0.65 0.67
9 904 0.20 0.63 0.63 0.64
10 884 0.19 0.55 0.57 0.58
11 820 0.16 0.59 0.61 0.63
12 1356 0.16 0.61 0.62 0.63
13 950 0.16 0.61 0.62 0.65
14 1582 0.17 0.68 0.68 0.68
15 1454 0.13 0.59 0.59 0.60
16 487 0.13 0.61 0.64 0.68
17 941 0.19 0.63 0.65 0.66
18 1007 0.15 0.66 0.67 0.68
19 552 0.14 0.58 0.61 0.65
20 1088 0.17 0.60 0.61 0.62
All 21468 0.16 0.63 0.63 0.65

Table 3.3: Acute myocardial infarction (AMI) discharges.

the heart failure discharges, which had a mean of 1 685 discharges, and a SD of
584 discharges; the AMI discharges had a mean 1 073 discharges and SD of 360
discharges.

The performance of the global models was typically higher than the combined
and local models, but there were a few exceptions. In hospital 19, in Table 3.4,
the global model (AUC: 0.61) underperforms the local model (AUC: 0.64), sug-
gesting a heterogeneity of the predictors on readmission in this hospital com-
pared to others. When pooling the performance across all twenty hospitals, the
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Hospital Heart 30-day Local Combined Global
failure readmis- Model Model Model

dis- sion

charges

1 1496 0.23 0.62 0.64 0.65
2 2352 0.22 0.64 0.65 0.65
3 1452 0.25 0.64 0.64 0.65
4 1313 0.21 0.62 0.63 0.64
) 1982 0.22 0.61 0.62 0.64
6 1025 0.18 0.59 0.61 0.63
7 3297 0.26 0.62 0.63 0.63
8 1725 0.18 0.63 0.64 0.66
9 1028 0.22 0.66 0.67 0.68
10 1604 0.24 0.63 0.64 0.66
11 1684 0.22 0.65 0.64 0.66
12 1523 0.16 0.62 0.62 0.61
13 1437 0.22 0.62 0.63 0.64
14 2 502 0.22 0.64 0.65 0.65
15 1722 0.17 0.61 0.62 0.63
16 842 0.18 0.65 0.65 0.66
17 1729 0.23 0.61 0.61 0.62
18 2372 0.24 0.67 0.67 0.68
19 1196 0.21 0.62 0.63 0.65
20 1415 0.20 0.61 0.62 0.65
All 33 696 0.22 0.63 0.64 0.65

Table 3.4: Heart failure discharges.

AUC for heart failure, AMI, and pneumonia was (0.65, 0.65, 0.65) respectively
for the global models, (0.63, 0.63, 0.63) for the local models, and (0.64, 0.63,
0.64) for the combined models.

The receiver-operating characteristic (ROC) is a summary of the trade-off be-
tween sensitivity and specificity; to understand how many more discharges
would have been detected at a discharge level, we must choose a particular sen-
sitivity and specificity pair. If we fix the specificity to the set {0.25, 0.50, 0.75,
0.90}, the sensitivities for the global model are {0.89, 0.71, 0.45, 0.13} respec-
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tively, and for the local model the sensitivities are {0.87, 0.67, 0.41, 0.11}. On an
absolute scale, since there were 7 355 total readmitted over 11 years, the global
model would have detected {18, 28, 31, 10} more 30-day readmissions per year
after heart failure (across all 20 hospitals).

3.6 Discussion

In this study, we compared the performance of three 30-day hospital readmis-
sion risk models: 1) an ideal “global” model, fit to data pooled across hospitals,
2) “local” models, fit to individual hospital data, and 3) “combined” models, fit
to data from an individual hospital, but additionally using coefficients from lo-
cal models from other hospitals. We fit the models to 11 years of administrative
data from 20 hospitals. We found that the local models were nearly as accu-
rate in predicting readmissions as the global and combined models. Although
model combination or pooling all the data may provide some increase in per-
formance, our results suggest that the benefit is small and may not be worth
the cost.

Other model combination studies [61-65] focused on improving effect esti-
mates of a few, common exposures (features) on rare outcomes, while this
study focused on improving predictive accuracy for a relatively common out-
come (readmissions) for many exposures. Both Wang and El Emam developed
model combination techniques that compared well with global models, but did
not provide a comparison to local models. In our study, we found that global
and combined models had similar accuracy, but not meaningfully more accu-
rate than local models. Rassen used propensity scores to combine models, and
compared local and combined models. He found that local models were under-
powered to precisely detect an effect, but that combined models could detect the
expected effect (global model results were not provided). Wiens [78] compared
global and local models in predicting infections, and found a slight improve-
ment in accuracy in the global models, similar to our own study. Our results



46

suggest that for a common outcome, the improvement in accuracy would have
avery small benefit in the number of newly detected cases; for a rarer outcome,
the benefit would be even smaller.

In our study, the outcome was relatively common, but we had many sparse ex-
posures; we had originally hypothesized that local models would have insuffi-
cient statistical power to precisely estimate the effects of the sparse exposure on
the outcome. However, our results suggest that even with many, sparse expo-
sures, local models could achieve similar accuracy to the global model.

One strength of our study was that we used data from hospitals which serve
patient populations with heterogeneous relationships between predictors and
readmission. Model combination studies using real or simulated data tend to
horizontally partition the data into uniform samples [61-63], assuming that
each hospital’s patient population is a random sample from the global popula-
tion of patients. Implicitly, this assumes that the relationship between the ex-
posures and outcome is homogenous across all hospitals. All meta-analyses rely
on the homogeneity of the relationship between exposures and outcome. How-
ever, pooling data across sites with heterogeneous relationships between expo-
sures and readmissions may lead to a decrease in accuracy. Because we used
real data, we could assess the difference in accuracy between local and pooled
models in the presence of heterogeneity in the relationship between exposures
and the outcome.

One limitation of our study is that we assessed model combination within a
dataset where each site had exactly the same features, recorded in the same way,
in the same city, making the data perhaps more homogeneous than might be
expected in other settings. We expect that this homogeneity would have im-
proved the accuracy of combined and global models.

We used the AUC to measure model accuracy, but we did not report variance
because it was irrelevant for our conclusions. Although the AUC concisely sum-
marizes the tradeoff between sensitivity and specificity (making it suitable for
tabulation of the accuracy of a large number of models), it does not convey abso-
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lute differences in correct predictions of readmission. From a clinical perspec-
tive, the absolute difference in the number of correctly identified patients for
different models is more meaningful. Because the point estimates did not result
in a meaningful clinical difference in correctly identified patients, we did not
estimate the variance of these point estimates; whether these estimates were
statistically significant would not have changed our conclusions.

The performance of all models, as measured by the AUC, was generally low, but
very similar to other hospital readmission models [31]. The purpose of hospi-
tal readmission models is to focus transitional care interventions on those who
would most likely benefit from them. If readmissions were often inevitable,
they would likely be easier to predict, but transitional care interventions would
not prevent them. Future work should focus on developing models that pre-
dict not just which patients will be readmitted, but specifically those who can
benefit from a transitional care intervention.

3.6.1 Conclusion

When compared to the performance of locally built models, the improvement
in performance from models built from pooled data was negligible, suggesting
that for hospital readmissions, locally built models may suffice for practical use.

3.6.2 Acknowledgements
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Pneumonia AMI Heart failure
N 30-day N 30-day N 30-day
readmission readmission readmission

F 14183 1918 (13.5) 9703 1660 (17.1) 17526 3754 (21.4)
Sex M 13938 2209 (15.8) 11765 1754 (14.9) 16170 3601 (22.3)
(65,75] 10102 1389 (13.7) 9851 1342(13.6) 12390 2660 (21.5)
Age (75,85] 12244 1872 (15.3) 8536 1461 (17.1) 14737 3325 (22.6)
(vears) (75,85] 12244 1872(15.3) 8536 1461 (17.1) 14737 3325 (22.6)
(85,95] 5375 800(14.9) 2925 580(19.8) 6194 1303 (21.0)
>95 400 66 (16.5) 156 31 (19.9) 375 67 (17.9)
Length (1,5] 8532 1053 (12.3) 6667 843 (12.6) 10009 2076 (20.7)
of stay (5,8] 6330 966 (15.3) 4847 761(15.7) 7600 1586 (20.9)
(days) (8,14] 6544 1035(15.8) 4884 876(17.9) 6831 1557 (22.8)
>14 6398 1036 (16.2) 4997 928 (18.6) 8406 1980 (23.6)
0 346 67 (19.4) 2365 333 (14.1) 903 234 (25.9)
1 80 17 (21.2) 960 134 (14.0) 260 58 (22.3)
Transfers 2 6 2 (33.3) 150 26 (17.3) 47 9 (19.1)
=3 4 0 (0.0) 36 6 (16.7) 11 1(9.1)
1 5280 685(13.0) 4387 680 (15.5) 6163 1080 (17.5)
, 2 3609 569 (15.8) 2532 457(18.0) 4807 957 (19.9)
Previous 3 2550 413(16.2) 1521 286(18.8) 3638 803 (22.1)
read- 4 1824 324 (17.8) 931 211(22.7) 2777 687 (24.7)
mis- 5 1312 253 (19.3) 635 146 (23.0) 2085 548 (26.3)
sions 6 909 203 (22.3) 403 98 (24.3) 1551 465 (30.0)
=7 2760 727(26.3) 1013 313(30.9) 5082 1707 (33.6)
Nursing No 26429 3904 (14.8) 20833 3320 (15.9) 32393 7141 (22.0)
home? Yes 1692 223 (13.2) 635 94 (14.8) 1303 214 (16.4)
Sun 2051 297 (14.5) 1499 234 (15.6) 2431 521 (21.4)
Day of Mon 3744 538(14.4) 2480 404 (16.3) 4291 977 (22.8)
week Tue 4506 679 (15.1) 3261 508 (15.6) 5000 1110 (22.2)
of dis. Wed 4760 693(14.6) 3663 598(16.3) 5500 1159 (21.1)
charge Thu 4597 648 (14.1) 3685 575(15.6) 5699 1243 (21.8)
Fri 5839 907(15.5) 4487 730(16.3) 7056 1525 (21.6)
Sat 2624 365(13.9) 2393 365(15.3) 3719 820 (22.0)
1996 1978 272 (13.8) 1215 227 (18.7) 2582 636 (24.6)
1997 2558 321(12.5) 1533 262(17.1) 3329 778(23.4)
1998 2983 450(15.1) 1807 311(17.2) 3369 757 (22.5)
1999 2857 410(14.4) 1824 327(17.9) 3147 730 (23.2)
Year 2000 2716 393(14.5) 2106 340 (16.1) 3317 704 (21.2)
of dis- 2001 2548 389(15.3) 2133 322(15.1) 3223 692 (21.5)
charge 2002 2367 349 (14.7) 2122 328 (155) 3052 641 (21.0)
2003 2109 314 (14.9) 2227 326(14.6) 2979 618 (20.7)
2004 2574 431(16.7) 2269 343 (15.1) 2831 602 (21.3)
2005 3013 470 (15.6) 2265 343(15.1) 2939 641 (21.8)
2006 2418 328(13.6) 1967 285(14.5) 2928 556 (19.0)

Table 3.5: Selected variables and their distribution by disease and 30-day read-

mission.



Chapter 4

Hospital readmissions and the
day-of-the-week

4.1 Preamble

Individual-level interventions, like transitional care interventions, can reduce
readmissions, but even small system-level interventions have the potential to
reduce readmission significantly. For example, a system-level intervention like
increased weekend staffing may reduce the rate of adverse patient safety events
slightly, but since the intervention affects all patients, the total effect may be
large. But system-level interventions can have complex dynamics that make in-
ference difficult. For example, increased weekend staffing may reduce adverse
patient safety events, but it may also have unexpected effects, like increased
weekend admission.

Previous studies have shown that patients discharged on a Friday tend to be
readmitted sooner than Wednesday discharges. Although the mechanism of
this effect is not clear, several system-level interventions have been proposed,
such as increasing weekend staff or allowing admissions into long-term care on
the weekend. Since over 20% of discharges occur on Friday any systemic change
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to the time-to-readmission of Friday discharges can have large population ef-
fects. However, the probability of admission on the weekend is also much lower
than on weekdays. The effect of discharge day-of-week on readmission may be
complicated by the effect of the day-of-week on admission.

In the following manuscript, I examine how the association between Friday dis-
charge and hospital readmission is modified by the low probability of weekend
admission.

4.2 Abstract

Background: Patients discharged from hospitals on a Friday (Friday discharges)
tend to be readmitted sooner than Wednesday discharges. Some authors have
suggested that readmissions related to Friday discharges can be decreased by in-
creasing weekend staff or allowing admissions into long-term care on the week-
end. However, because the effect of differing admission probability by day-of-
week has not been investigated, the estimated effect of interventions may be
biased.

Objective: To examine how differing healthcare-seeking behaviour and admis-
sion practices by day-of-week influences the effect of discharge day on readmis-
sion.

Methods: We extracted discharges of people 65 years of age or older between
1996 and 2006 (inclusive) from the Quebec hospital administrative database.
We used a Markov model to determine the effect of admission on readmission if
Friday discharges were not at increased risk of readmission. We then used a Cox
proportional hazards model to fit the time-to-emergency-readmission to any
Quebec hospital as a function of the day of week of discharge and readmission.
We then fit another Cox model with an additional time-varying covariate for
the current day of week, to model differing admission probabilities by day-of-
week.
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Results: We identified 619 274 hospital discharges during the study period;
22% were Friday discharges, and 17% were Wednesday discharges. Our Markov
model showed we should expect Friday discharges to be admitter later if ad-
mission probability is lower on the weekends. Using only the discharge and ad-
mission day of week, we found that Friday discharges were readmitted slightly
earlier than Wednesday discharges [HR: 1.03 95% CI: (1.02, 1.05)]. After adding
atime-varying covariate for the current day of week, a Friday discharge was still
readmitted sooner than a Wednesday discharge [HR: 1.04 95% CI: (1.01, 1.07)].

Conclusions: Lower admission probabilities on the weekend increase the time-
to-readmission for Friday discharges, because Fridays occur soon before the
weekend. Not controlling for low weekend admission causes an underestimate
of the effect of Friday discharge on readmission.

4.3 Introduction

Patients discharged on Friday (Friday discharges) have been found to be read-
mitted sooner than Wednesday discharges [14, 79, 80]. Although the relation-
ship between Friday discharges and readmissions is weak, the exposure is com-
mon, so any intervention that ameliorates the effect may prevent many patient-
days in the hospital. However, developing effective interventions requires a
clear understanding of the mechanism through which discharges on different
days of the week affect readmission.

Several mechanisms have been proposed to explain the relationship between
Friday discharges and readmission, including factors that affect patient and
physician preference, and the availability of social and health services on the
weekends. Because hospitals are typically run with fewer, more inexperienced
staff on the weekends, weekday physicians may prefer to discharge patients be-
fore the weekend, while the quality of discharge preparation is under their con-
trol. Furthermore, there may be subtle social pressures to “clean up” the wards
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(by discharging patients -- perhaps before they are completely medically sta-
ble) before a new physician starts their shift on Monday. These factors may ex-
plain why Friday is the most common discharge day. However, the multiple
discharges on Fridays may result in rushed and incomplete discharge prepara-
tion, leading to quicker readmission. Also, if a patient is discharged on a Friday
to their home, then community health and social services may not be available
for the first few critical days after discharge, when readmission risk is high-
est. Indeed, because long-term care services typically do not admit patients
on the weekend, physicians may discharge on Friday to ensure a direct tran-
sition, rather than wait till the following Monday. Finally, patients themselves
may desire to be discharged before the weekend (and before they are completely
medically stable), to spend time with family and friends who are typically more
available on the weekend.

Depending on the true mechanism of the effect of Fridays on readmissions, in-
creasing staff during the weekends in both hospitals and other long-term facil-
ities may help prevent readmissions [66, 67]. Some authors have suggested that
increasing weekend services may also help to reduce congestion in the emer-
gency department [68].

Although patient, physician, and weekend staff levels may underlie the mech-
anism of Friday discharges affecting readmission, differing probabilities of ad-
mission by day-of-week may also influence the probability of readmission by day-
of-discharge. For certain illnesses and conditions, admission is certain, but for
others, the responsible physician has a strong influence in deciding if the pa-
tient is admitted [81-84]. Epstein [44] found that patient readmission rates
and survey-reported hospital admission rates were correlated. If the day-of-
week affects admission probabilities, then the increased time-to-readmission
of Friday discharges may simply be an artifact of the admission probabilities.

If patient behaviours, physician practices, or the availability of weekend ser-
vices lead to quicker readmission of Friday discharges, then we may be able
to identify a health-improving, cost-saving intervention. However, before im-
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plementing such interventions, we need to be sure that they are cost-effective,
meaning that we need to precisely measure the effect of Friday discharge on
readmission. In particular, we need to control for the effect of the differing
probability of admission on different days of the week to estimate the effect of
Friday discharges on readmission. In this study, we used analytic and empiri-
cal methods to study how the probability of admission influences the effect of
discharging on a Friday on readmission.

4.4 Methods

To study the effect of day-of-discharge on hospital readmissions, we extracted a
large cohort from the Quebec administrative database of hospitalization infor-
mation, obtained from the RAMQ. This extract includes all hospitalizations and
outpatient visits on all 3.6 million people who ever reported a respiratoryillness
between the years 1996 and 2006 (inclusive) and lived in the CMA of Montreal,
as defined by the 2006 census. Respiratory illness was defined as any of the ICD-
9 codes listed in Table 6.1, a relatively broad set of codes, among which there are
several extremely common codes. This was a dynamic cohort; a patient entered
the cohort after their first respiratory illness. This data source was extracted
for a different study; we used it because it includes enough discharges to allow
us to measure small effects, is unlikely to have a selection bias with respect to
hospital readmissions, and is readily available.

We extracted all discharges of people who were 65 years of age or older at the
time of discharge. We then calculated the number of admissions by hospital,
and only included the top 20 hospitals.
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4.4.1 Definition of readmission

Notably, any readmission to another hospital on the same day as discharge, or
the next day, was considered a transfer, rather than a readmission. We applied
this rule because we suspect that many transfers are not correctly coded in the
administrative data as a transfer, but simply as a readmission.

An “event” occurred if the discharged patient had an emergency readmission to
any Quebec hospital, including those that were not part of the 20 hospitals de-
scribed in the selection criteria. The time-to-readmission was measured in the
number of days. If the discharged patient died, had a non-emergency hospital
readmission, moved out of Quebec, or if the study ended (December 31st, 2006)
they were considered censored (they did not have the outcome event).

4.4.2 Descriptive analysis

We first developed descriptive summary statistics and visualizations to deter-
mine on which day people tended to be admitted and discharged. We plotted the
Kaplan-Meier survival curves for Friday discharges and Wednesday discharges.
To emphasize failure times by day, we also plotted the probability of readmis-
sion on each day after discharge.

For each year in the cohort, we plotted a heat map of the discharge rate by day,
and arranged the pixels like a calendar. All jours fériés (Quebec statutory holi-
days) were identified on our heat map, namely: New Year’s Day, the day after
New Year’s Day, Easter Monday, Journée nationale des Patriotes, Féte nationale du
Québec, Canada Day, Labour Day, Thanksgiving Day, Christmas Eve, Christmas
Day, Boxing Day, and New Year’s Eve. These heat maps allowed us to visually
inspect how the days of the week affected discharges, and how that effect was
modified by the presence of holidays.
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4.4.3 Analytic model

We suspected that the effect of the day of discharge on time-to-readmission was
modified by the probability of admission on different days of the week. We used
an absorbing Markov model to predict the time-to-readmission for each dis-
charge day, assuming that there was no effect of the day of week on discharge in-
dependent of the varying admission probability on each day. For example, the
Markov model could compare the difference in time-to-readmission for Friday
discharges and Wednesday discharges if the only factor driving readmission was
that weekend admissions were less likely than weekday admissions. This model
was not fit to any data. The purpose of the model was to understand how week-
end admission probabilities change the relationship between discharge day and
readmission time.

Our absorbing Markov model consisted of eight states, seven for the days of the
week, and one “absorbing” state (with zero probability of transitioning into an-
other state) which represented readmission. Each day-of-week state could tran-
sition into two states: the readmission state, and the next day of the week. A
person’s expected time-to-readmission could be calculated by finding the ex-
pected number of transitions before reaching the readmission state, if the start-
ing state was the state associated with the discharge day. For example, a person
discharged on a Friday would begin in the Friday state, and the expected time-
to-readmission (in days) would be the expected number of transitions before
reaching the readmission state.

The expected number of state transitions for any beginning state for an absorb-
ing Markov model can be derived in closed form (see the 4.5 section for de-
tails). Informed by our descriptive analysis, we assumed that the probability of
admission on a weekday was some fixed probability 1 — a, and the probability
of admission on a weekend was some fixed probability 1 — b. We then calcu-
lated the expected time-to-readmission for Friday and Wednesday discharges
as functions of « and b.
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4.4.4 Statistical analysis

We then fit a Cox proportional hazards model to estimate the effect of discharge
day on readmission, only controlling for time-fixed confounders. The exposure,
the day of discharge, was represented in the model using an indicator variable,
except Wednesday, which was the reference category. The outcome was the
time-to-readmission in days, with “time zero” being the day of discharge. The
unit of analysis was the discharge; a single person could have several discharges.

We controlled for several time-fixed confounders, the admission day-of-week,
whether the discharge or admission day was a holiday, whether the discharge
or admission day was the day after a holiday, age, sex, the number of previ-
ous drug prescriptions within the past year, the number of previous discharges
within the past year, and the classification of the admission ICD-9 code into one
of the 24 major diagnostic category (MDC). We did not expect strong confound-
ing by age, sex, previous drug prescriptions, admission class and MDC because
we expected a weak correlation between these variables and our exposure, the
day of discharge. We included these factors mainly as a diagnostic tool to ensure
that our models could reproduce expected effects, such as severe illnesses and
age having strong effects of readmission.

We then fit another Cox proportional hazards model that added a single, time-
varying covariate for the day-of-week after discharge. For example, a single dis-
charge has several time-fixed covariates: they were discharged on a Friday, ad-
mitted on a Monday, and had two previous admissions, etc. But on the next day
after discharge, the day-of-week changes, so the time-varying variable changes
to Saturday, while all of the other time-fixed variables remain the same. This
allows the model to account for a varying hazard of admission by day-of-week.
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4.4.5 Software

The data were prepared for statistical analysis using the Postgres relational
database (version 9.3.6). We implemented our models using the R statistical
package (version 3.1.1), [85] using the “survival” package (version 2.38.1) to fit
the Cox proportional hazards models [86]. We used YACAS (Yet Another Com-
puter Algebra System) 1.3.3 to conduct the linear algebra computations used
in the Markov models [87]. We plotted our figures using the “ggplot2” package
(version 1.0.1) [88].

4.5 Results

4.5.1 Descriptive analysis

In Figure 4.1, the relative proportions indicate that there are both fewer emer-
gency discharges and admissions on the weekend, as compared to weekdays.
During the weekdays, the admissions peak on Monday (16%), and then decline
slowly. However, the Friday was the most common discharge day (22%), while
only 10% were discharged on a Saturday, and only 6% were discharged on Sun-
day.

The calendar plot (Figure 4.2), which plots the discharge rate per day, indicates
that discharge rates are lower on weekends than weekdays, and that Fridays
have a particularly high discharge rate, reflecting the trends in Figure 4.1. Ad-
ditionally, the rate of discharge declines over the study period. Because one
selection criterion for cohort entry was an ILI diagnosis, patients with higher
frequency of diagnoses (the severely ill) tended to enter the cohort earlier in
the study period. Since a greater proportion of the cohort was severely ill in
the early part of the study period, we expected that the discharge rate would be
higher in the early part of the cohort.
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Figure 4.1: Emergency admissions and discharges by day-of-week. The denom-
inator in each proportion is the number of emergency admissions that ended
in live discharges, meaning that those that died during the hospital stay or were
admitted for non-emergency reasons are not counted.

Additionally, holidays that occur on a weekday tend to result in lower discharge
rates. The holiday that occurs on one of the Mondays of the 14th to 18th week
of each year is Easter Monday. In Quebec, some employers give employees the
option to take the Friday preceding Easter Monday as a holiday instead of Easter
Monday. In the plot, it appears that the Friday preceding Easter Monday acts as
a holiday in the sense that it reduces the discharge rate. Additionally, however,
itappears that a holiday on a Friday “displaces” the discharge effect; in the week
preceding Easter Monday, Thursday has the highest discharge rate.

The Kaplan-Meier plot of survival (the probability of not being readmitted) is
shown for Friday and Wednesday discharges in Figure 4.3. The figure suggests
avery slight increase in risk for Friday discharges. The decrease is very smooth;
there is no particular day with a sudden decrease in risk.
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Figure 4.2: Discharge rate by day. Each pixel represents a single day in the study
period. Not all years in the study period are displayed, for aesthetic reasons.
The pixels are arranged to resemble calendars; within each year, each row is a
week and each column is a weekday. The colour of each pixel represents the
proportion of the cohort that was discharged on that day. Holidays have a green

border.

In Figure 4.4, we show, for Friday and Wednesday discharges, the readmission
probability by days after discharge, given survival to that day. For example, if
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Figure 4.3: Probability of not being readmitted by day-of-week. This figure is a
Kaplan-Meier plot of probability of readmission for discharges on a Friday, and
discharges on a Wedensday. Notably, the vertical axis does not display the full
range of probabilities. Only the first 45 days after discharge are displayed, but
patients were not automatically censored after this time.

a patient discharged on a Friday hasn't been readmitted for six days after dis-
charge (a Thursday), the probability of readmission on the seventh day (which
will be a Friday) is 0.8%. The figure shows a marked difference in readmission
probability depending on the day of the week after discharge: regardless of the
day you were discharged, you are much less likely to be readmitted on Saturdays

and Sundays.

4.5.2 Markov models

Informed by our descriptive analysis, we assumed that the probability of ad-
mission on a weekday was some fixed probability «, and the probability of ad-
mission on a weekend was some fixed probability 5. We used a Markov model
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Figure 4.4: Readmission probability by day of discharge. For both Friday and
Wednesday discharges, this figures describes the probability of readmission
given survival for the number of days in the horizontal axis. The horizontal
axis is marked every seven days to emphasize day-of-week trends; for Friday
discharges the seventh day after discharge is a Friday.

to calculate the time-to-readmission for Friday discharges and Wednesday dis-
charges, if the probability of admission was a function of whether the current
day-of-week was a weekend or weekday. The graph G, described schematically
in Figure 4.5 represents such a model of readmission in which the probabil-
ity of admission on the weekdays is 1 — a, and the probability of admission on
weekends is 1 — b.

The graph G can also be described as a matrix of transition probabilities, where
the probability of transition from state s; to state s, is in the row for s; and the
column for s, in the matrix. The matrix M is such a matrix describing G:
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Figure 4.5: An absorbing Markov model of readmission probability.

Sun Mon Tue Wed Thu Fri Sat Hosp

Sun 0 a 0 0 0 0 0 1—-a
Mon 0 0 a 0 0 0 0 1—-a
Tue 0 0 0 a 0 0 0 1—-a
M= Wed 0 0 0 0 a 0 0 1—-a
Thu 0 0 0 0 0 a 0 1—-a
Fri 0 0 0 0 0 0 b 1-b
Sat b 0 0 0 0 0 0 1-9b

Hosp\ 0 0 0 0 0 0 0 1

By representing a Markov model as a matrix M of transition probabilities, M™
represents the probability of starting in position ; and ending on state j by step
n. The sum of each row of M™ is exactly 1, for any value of n=0.
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To find the average number of transitions (days) before reaching the absorption
state (being readmitted), we first find the probability of not being readmitted
after any given number of days n. If @ is the transition matrix M with the row
and column for the absorbing state removed, then the sum of the probabilities
from position i to any other state j in the matrix /Q" represents the probability
of not being absorbed by transition n.
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We can then calculate a matrix N where the expected number of visits to state
j starting in state i before absorption is represented by the ith row and jth col-
umn.

N=Lm([I+Q+Q + - +Q")

=lim(/-Q) (I -QU+Q+Q +--+Q")
=lm(-Q) (I -Q)+(Q@-Q@)+(Q* - Q)+ +(Q"")
= lim (7 - Q)" (1 - ")

= (1-Q7(1-0)

=(1-Q)"

Where 7 is the identity matrix with 7 rows and columns, and N is the inversion
of the matrix (/ — Q):
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We found the inverted matrix to be:
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Since N represents the expected number of visits to state ; starting in state ¢
before absorption, the expected number of visits to all states given a starting
state j is simply the sum of the rows (also given by (I1—Q)~'c) where cis a column
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The absolute difference between the time-to-readmission between Friday and
Wednesday is:

(a? + a®b® + a®b* + ab® + B> + b+ 1) — (a'V? + a0 + a®b* + a®b+ a* +a + 1)

rD = (1 — a®h?)
_abP+ b +b—a’b—ad’—a
N 1 — abb?
_(a+1)(b+1)(b—a)
N a’b? — 1
Since % will always exceed O if a > b (and a« and b are between 0 and 1),

then a lower probability of admission on the weekend implies a longer time-to-
readmission (a lower hazard) for Friday discharges as compared to Wednesday
discharges, the opposite of what we observed in our descriptive analysis.

4.5.3 Survival analysis

Table 4.1 shows the fitted coefficients of both the time-varying and the time-
fixed models. In the time-fixed model, Friday discharges have significantly
higher hazard of readmission than Wednesday discharges [HR:1.03 (1.02-1.05)],
but Monday, Thursday, and holiday discharges also had significantly higher
hazards than Wednesdays. Also, those admitted on the weekend, or on the day
after a holiday, had a significantly higher hazard than Wednesday admissions.

In the model with time-varying variables, the time-varying variables had much
stronger effects than the time-fixed variables. Both weekend variables and hol-
iday variables had lower hazards of readmission, while Mondays and the day af-
ter holidays had a higher rate of admission. Friday discharges continued to have
a higher hazard of readmission than Wednesday discharges, but Saturdays and
the day after holidays also had significant effects on readmission. None of the
admission variables had any effect on readmission in the time-varying model.



Variable

Time-fixed
HR (95% CI)

Time-varying
HR (95% CI)

Admission
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Holiday

Post-holiday

1.01 (1.00—1.03)
1.01 (0.99—1.02)
0.99 (0.98—1.01)
(Reference)
0.99 (0.98—1.00)
1.00 (0.99—1.02)
1.01 (1.00—1.03)
1.01 (0.99—1.03)
1.03 (1.01—1.06)

1.00 (0.97—1.04)
0.99 (0.96—1.02)
0.98 (0.95—1.01)
(Reference)
1.00 (0.97—1.03)
1.00 (0.97—1.03)
1.01 (0.97—1.04)
0.97 (0.93—1.02)
1.00 (0.94—1.06)

Discharge
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Holiday

Post-holiday

0.97 (0.96—0.99)
1.01 (1.00—1.02)
1.00 (0.99—1.01)
(Reference)
1.01 (1.00—1.02)
1.03 (1.02—1.05)
1.01 (0.99—1.02)
1.03 (1.01—1.05)
0.99 (0.96—1.02)

0.98 (0.94—1.01)
1.02 (0.99—1.05)
1.01 (0.98—1.04)
(Reference)
1.02 (1.00—1.05)
1.04 (1.01—1.07)
1.05 (1.01—1.08)
1.04 (0.99—1.10)
1.07 (1.00—1.14)

Time-varying (post-discharge)

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Holiday

Post-holiday

0.76 (0.74—0.79)
1.05 (1.02—1.08)
0.99 (0.96—1.02)
(Reference)
1.00 (0.97—1.03)
0.98 (0.95—1.01)
0.76 (0.73—0.78)
0.91 (0.87—0.95)
1.06 (1.00—1.12)
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Table 4.1: The effect of time-related variables on readmission. The hazard ra-
tios and associated 95% confidence intervals are presented for the day-of-week
variables for two Cox proportional hazards models of readmission. The time-
fixed model includes indicator variables for the day of discharge and the day
of admission, using Wednesday as the reference day of week. The time-varying
model adds a set of time-varying indicator variables to represent the current
day of week after discharge. Each model controlled for the variables described

in table 4.2.
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Variable

Time-fixed
HR (95% CI)

Time-varying
HR (95% CI)

Demographic and healthcare use
Age (years)
Sex (male)
Previous readmissions (each)
Outpatient prescriptions (each)

1.01 (1.01—1.01)
1.12 (1.12—1.13)
1.07 (1.07—1.07)
1.04 (1.04—1.05)

1.01 (1.01—1.02)
1.13 (1.11—1.15)
1.07 (1.07—1.07)
1.05 (1.04—1.05)

Major Diagnostic Category
Alcohol/drug-related disorders
Blood and immunological disorders
Burns
Circulatory system
Digestive system
Ear, nose, mouth and throat
Endocrine system
Eye
Factors influencing health status
Hepatobiliary system and pancreas
Human immunodeficiency virus
Infectious and parasitic diseases
Injuries and poison
Kidney and urinary tract
Mental diseases and disorders
Musculoskeletal system
Myeloproliferative neoplasms
Nervous system
Reproductive system
Respiratory system
Skin and subcutaneous tissue

1.38 (1.28—1.48)
1.47 (1.43—1.51)
0.74 (0.56—0.98)
1.27 (1.25—1.29)
1.20 (1.18—1.22)
1.07 (1.03—1.10)
1.30 (1.27—1.34)
0.89 (0.85—0.94)
1.22 (1.18—1.26)
1.21 (1.18—1.24)
1.76 (0.79—3.92)
1.14 (1.11—1.18)
1.13 (1.09—1.18)
1.24 (1.22—1.27)
1.05 (1.03—1.07)
(Reference)
2.60 (2.51—2.69)
1.04 (1.02—1.06)
1.16 (1.12—1.21)
1.57 (1.55—1.60)
1.19 (1.16—1.22)

1.40 (1.17—1.67)
1.53 (1.43—1.65)
0.76 (0.32—1.84)
1.29 (1.25—1.34)
1.22 (1.17—1.28)
1.04 (0.96—1.12)
1.32 (1.23—1.41)
0.97 (0.86—1.08)
1.24 (1.15—1.34)
1.20 (1.14—1.27)
1.08 (0.15—7.66)
1.22 (1.13—1.31)
1.09 (0.99—1.20)
1.26 (1.20—1.33)
1.07 (1.01—1.13)
(Reference)
2.57 (2.37—2.79)
1.07 (1.02—1.12)
1.19 (1.09—1.31)
1.60 (1.54—1.67)
1.22 (1.15—1.29)

Table 4.2: The effect of non-time-related variables on readmission. The haz-
ard ratios and associated 95% confidence intervals are presented for the demo-
graphic and disease-related variables for two Cox proportional hazards models
of readmission. These models included the variables described in Table 4.1
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Table 4.2 shows the other variables that were fit with the time-varying and
time-fixed models. Nearly all of the included variables were significant. The
coefficients were roughly the same for all non-time related variables in both
the time-fixed and time-varying models.

4.6 Discussion

In this study, we used different modelling techniques applied to empirical data
to estimate the effects of the day of week of discharge (and admission) on read-
mission. In a survival model with only time-fixed covariates, we found that Fri-
day discharges tend to be readmitted sooner than Wednesday discharges. This
association is observed despite there being fewer admissions and discharges
and weekends, which according to our Markov model, should result in Friday
discharges being readmitted later than Wednesday discharges. Using a survival
model with time-varying covariates, we controlled for the varying probability
of admission on different days of the week, and found that controlling for the
effect of the probability of admission enhanced the strength of the effect of Fri-
day discharge on readmission.

Our time-fixed model of the effect of discharge day-of-week was comparable to
the model published by van Walraven and Bell [14] in that Friday discharges ap-
peared to have a shorter time-to-readmission than Wednesday discharges (al-
though we did not censor 30 days after discharge). In the time-fixed model,
perhaps due to the greater precision of our model, we also found that those dis-
charged on Mondays, Thursdays, or holidays, also had a slight but significantly
shorter time-to-readmission than Wednesday discharges.

Our descriptive analysis indicated that patients are discharged preferentially
on weekdays as compared to weekends, and most frequently just before the
weekend. Usually, being discharged just before the weekend means being dis-
charged on Friday, but when other holidays occur near the weekend, the day-
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of-the week can be different. For example, the day before Good Friday, the dis-
charge rate significantly increased, while the Good Friday discharges are very
low, suggesting that patients are being preferentially discharged before holi-
days, to avoid discharge during holidays.

Our descriptive analysis also found that admissions were decreased on the
weekends. There are effectively three categories of hypotheses for the low prob-
ability of admission on weekends:

1) Patient healthcare-seeking behaviour may change on the weekends. Some
patients who have paid sick leave may be motivated to “miss work” by delaying
healthcare until the next weekday. However, in our cohort, we only included
those at least 65 years of age, a mostly retired population. Patients may also
have less access to public transit and other services that would help them access
care on the weekend. Finally, patients have less access to primary care services
on the weekend [89]. On one hand, this should increase healthcare-seeking on
weekends, because of a lack of options. On the other hand, patients may make
the decision to seek healthcare at a hospital after a primary care visit, because
of physician recommendation.

2) Physicians don't admit as often on the weekends. Although for some med-
ical emergencies, admission to a hospital is certain, in most cases, emergency
physicians themselves affect the probability of admission; physician experi-
ence, age, and risk preferences can affect the probability that a patient will be
admitted [81-84]. Also, less staff work on holidays and weekends, and teach-
ing hospitals are typically staffed by medical residents [67]. When the hospital
has less staff in various services (such as radiology), it is difficult to do consul-
tations, which may decrease the probability of admission.

3) Health status worsens on weekends. Finally, it may be possible that certain
activities improve health on the weekends, leading to less emergencies. How-
ever, this seems unlikely because on weekends people over 65 tend to increase
activity, which may lead to more acute changes in health, rather than less. In
fact, mortality due to homicide, suicide, and motor vehicle accidents have been
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shown to increase on the weekends [90, 91].

After controlling for the effect of admissions, the effect of Friday discharges in-
creased. This suggests that Friday discharges do have a shorter time-to-readmission
than Wednesday discharges, and that the effect is reduced if the effect of the
probability of admission on weekends is not controlled. Epstein [44] found a
correlation between readmission and admission, but concluded that this cor-
relation can account for differences in readmission rates between hospitals. In
our study, we found that the differences in admission patterns can attenuate
estimates of differences in care unless they are properly controlled. Because Fri-
day is the most common discharge day, hospital staff may rush the discharges,
leading to less discharge instructions, and perhaps poorer outcomes after dis-
charge [92]. Many patients over 65 years of age depend on long-term care and
social support services, which typically do not accept patients on the weekend.
Also, patients who have their care delayed till the following Monday may have
worse outcomes [14].

The decreased availability of weekend services may be reducing admissions and
discharges on the weekend, but it also may have a more direct effect on patient
outcomes. Other work has found that increased weekend services may amelio-
rate patient flow, perhaps improving care and saving money in the long-term.
Wong [68], using a dynamic simulation model of patient flow, found that in-
creased weekend discharges would lead to decreased congestion at the emer-
gency department. Bell [66] suggested that if hospitals operated at 50% of week-
day capacity on the weekends (they currently operate at about 12%), the total
volume of weekly procedures would increase by 14%. Varnava [93] found that
discharge decisions for those with AMI were affected inappropriately by the day
of the week, leading to clinically unnecessary increased length of stay. Another
study of length of stay [94] found that 24% of medically unnecessary patient-
days involved an inability to access medical services on the weekend. Our work
provides indirect evidence that the lack of weekend services may be disrupting
patient flow, negatively affecting readmissions.
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Our Markov model showed that ignoring admission probabilities can lead to an
underestimate of the effect of discharge day on readmission. But the probability
of admission is just one aspect of the dynamics of patient flow; changes in access
to primary care, long-term care, and social services can all change the time-to-
readmission. In future work, we plan to incorporate access to and care at these
services to understand the dynamics of patient flow.

The admission-discharge-readmission path of patient care is naturally cyclic,
but regression techniques are not best suited for cyclic modeling. Regression
techniques can crudely account for first- or second-order cyclic effects (has re-
cently been readmitted, has recently been readmitted before that readmission),
but there is no way to elegantly model a truly cyclic dynamic. In system dy-
namics modeling, the unit of analysis is a continuous quantity, and is modeled
like fluids moving through a system of pipes and tanks (or like the probabilities
through a Markov model). Some have argued that a system dynamics perspec-
tive in public health, which can incorporate the cyclic nature of patient flow,
may help us to draw inference on patient flow dynamics, and to identify effec-
tive interventions [68, 95, 96]. In future work, we plan on using system dynam-
ics modeling to further explore the dynamics of readmissions.

In our study of the day of week of discharge, we found that a seemingly sim-
ple effect of discharge day on readmissions hides the rather complex dynamics
of patient flow. In future work, we plan to explore the nature of patient flow
between hospital, primary care, and long-term care more closely, to develop
effective interventions that can reduce the risk of readmission associated with
Friday discharge.



Chapter 5

Hospital readmissions and targeted
maximum likelihood estimation

5.1 Preamble

For the US hospital readmission laws to be effective, they must penalize only
those hospitals where high readmission rates can be attributed to poor quality
of care, and not to differences in patient health. Despite the importance of risk
adjustment, and the availability of administrative databases, the risk models
only adjust for a few well-known confounders like age and sex.

In the first manuscript, I developed predictive models of readmission risk to
target transitional care interventions, and in the second manuscript, I focused
on drawing inference about the day-of-week of discharge on readmission. In
the following manuscript, I use TMLE to use predictive models to take advan-
tage of the rich confounder data, and draw inference on the effect of hospital
quality of care on readmission.

72
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5.2 Abstract

Background: Hoping to improving quality of hospital care, the US and other ju-
risdictions financially penalize hospitals with poor (confounder-adjusted) 30-
day readmission rates. Although hospital administrative data are information-
rich, confounder adjustment tends to be crude. Non-parametric machine learn-
ing techniques can take advantage of these rich data to predict readmission, but
cannot isolate the independent effect of hospitals on readmission risk.

Research Design: To estimate the effect of care at different hospitals on 30-day
readmission risk, we used TMLE, which allowed us to use a non-parametric
machine learning technique (random forest) to take advantage of the rich con-
founder data. We used an 11-year cohort of 65-year-old patients from 20 hospi-
tals in Montreal, Canada, and developed three models to estimate the marginal
readmission risk at each of the hospitals after hospitalization for heart failure,
AMI, and pneumonia. We controlled for hundreds of confounders including
outpatient drug prescriptions, medical procedures, and diagnoses. We com-
pared the TMLE-estimated risk to a logistic regression model similar to one cur-
rently used to penalize hospitals.

Results: Within each hospital, crude readmission risk varied widely across the
twenty hospitals for AMI 2 525 /15 746 (16%), heart failure 5 520 / 24 847 (22%),
and pneumonia 3 183 / 20 421 (16%). In the logistic regression model, the odds
ratio ranged from 0.95-1.02 for AMI, 0.92-1.04 for heart failure, and 0.96-1.04
for pneumonia. When we applied TMLE, the odds ratio ranged from 0.57-2.30
for AMI, 0.50-1.85 for heart failure, and 0.47-1.55 for pneumonia.

Conclusion: Our results suggest that currently used techniques to financially
penalize hospitals for readmission risk will underestimate the differences be-
tween hospitals. Using TMLE, we took advantage of rich confounder data, and
revealed wide differences in quality of care between hospitals.
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5.3 Introduction

In the US and other jurisdictions, administrators have sought to improve qual-
ity of care by financially penalizing hospitals with poor readmission rates [25].
To avoid penalizing high quality of care at hospitals that admit sicker (more
likely to be readmitted) patients, readmission rates are adjusted for patient-
level confounding [2]. Although hospital readmission rates are typically only
adjusted for a few well-known confounders such as age, sex, previous readmis-
sions, and summarized comorbidity scores [31], healthcare administrative data
are often information-rich, including drug prescriptions, diagnoses, and med-
ical procedures.

Some epidemiologists have argued for the application of machine learning tech-
niques to handle newly available, information-rich data sources [97]. Non-
parametric machine learning techniques can accurately discriminate patient
readmission risk using hundreds of variables in a computationally efficient
way [77]. Non-parametric models also allow us to avoid specifying a functional
form, making it easier to detect complex relationships like multi-way interac-
tions. However, most machine learning techniques were developed for predic-
tion rather than inference; we cannot use them alone to isolate (target) effect
measures of specific variables, such as care at a particular hospital, on readmis-
sion risk.

TMLE is a doubly-robust causal inference technique that allows the use of ma-
chine learning technique to estimate target parameters of interest [15]. In
TMLE, two (possibly non-parametric) models are developed: one to estimate
the probability of exposure, and another model to estimate the probability of
the outcome. These two probabilities are combined in a parametric model with
only the parameter of interest. In this way, the discriminative power of non-
parametric models can be used to extract estimates of parameters of interest.

Although some studies have used the rich confounder data in combination with
machine learning techniques to predict hospital readmissions [98, 99], no study
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to our knowledge has used these data to draw causal inference on the effect of
quality of care on readmissions. In this study, we sought to estimate the inde-
pendent effect of hospital care on 30-day readmission for twenty Montreal hos-
pitals, within three different admission diagnoses (pneumonia, heart failure,
and acute myocardial infarction). We used a non-parametric machine learn-
ing technique, (random forest [100]), with TMLE to take advantage of the rich
confounder data and minimize bias in our estimate of readmission risk.

5.4 Methods

5.4.1 Study design

We used a cohort extracted from a Canadian provincial (Quebec) administrative
database of hospitalizations, obtained from the RAMQ. We enrolled patients
into this cohort on the month that two conditions were satisfied: 1) they had
at least one diagnosis of a respiratory illness (the exact list of respiratory ICD-
9 codes is given in Table 6.1 in the Appendix) between January 1st, 1996 and
March 31, 2006 (the study period), while living in the 2006 census metropoli-
tan area of Montreal, and 2) were at least 65 years of age. We used this cohort
because it contains the majority of 65-year-old patients who were hospitalized
in the region during the study period.

From among this cohort, we selected hospital discharges for those who had ac-
crued at least one continuous year in the cohort preceding the day of admis-
sion. We restricted our data to only the discharges from the twenty hospitals
with the most discharges of patients 65 years of age or older within the study
period; the twenty hospitals accounted for 75% of all such discharges. We only
selected hospital discharges which resulted from hospital stays of at least one
day. Therefore, the earliest possible hospital discharge was January 2, 1997.

From among the identified hospital discharges, we selected only those with one
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of three high-volume admission diagnoses with high rates of hospital readmis-
sions: pneumonia, AMI, and heart failure. We identified each of the admission
diagnoses using ICD-9 codes; for pneumonia we used codes ranging from 480-
487, for heart failure we used all 428 codes, and for AMI we used all 410 codes.
The following methods were applied individually to all three disease subsets.

5.4.2 Hospital readmissions

The unit of analysis was the hospital discharge; a person could be discharged
multiple times. A hospital readmission was defined as an emergency hospital
admission to any Quebec hospital in the 30 days following a discharge. A per-
son who died or had a non-emergency readmission in the 30 days following
discharge was considered not readmitted.

5.4.3 Confounders and risk factors

For each hospital discharge, we collected plausible confounders that measured
states at the time of, or prior to, admission. We used the demographic charac-
teristics including age at time of admission (in years), sex, birth year-month.
We also used the number of previous readmissions (within the preceding year)
and the admission diagnosis (as measured by the specific ICD-9 code). We also
included the day of week of discharge, which has been previously shown to have
an association with readmissions [14], and the month of discharge, because we
hypothesized that readmission risk would vary by season in Montreal.

Additionally, for each discharge, we collected the Quebec hospital diagnoses,
Quebec hospital procedures, and drugs dispensed outside of the hospital but
inside Quebec, in the year preceding the admission. The hospital procedures
were recorded in the CCP system. Hospital diagnostic codes were coded using
the ICD-9 system. Finally, drugs which were prescribed and dispensed outside
the hospital, and were being taken on the day of admission were also recorded
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for each patient in the code commune system, which categorizes drugs based on
the chemical compound. To ease computation, before fitting any model, we re-
moved any diagnosis, procedure or drug that occurred less than 30 times among
all discharges. We chose 30 because it appeared to be a natural breakpoint; if
the number of variables included is a function f of the threshold, then the first
derivative of f dropped at 30 for all three disease categories.

We believed that residential location would strongly affect the probability of
admission to the hospital nearest that census tract. We included it in our mod-
els because we also expected it to crudely approximate a (expected) confounder:
socio-economic status. We used the residential postal code at the time of admis-
sion to assign each patient in the cohort to a census tract, as defined by the 2006
Canadian census. (Census tracts contain between 2,500 and 8,000 people, and,
at the time of their creation, are demarcated so as to maximize homogeneity of
socioeconomic characteristics.) [101]

5.4.4 Statistical analyses

For each discharge i, we sought to estimate the effect of each of the twenty hos-
pitals A € {ay,...,as} on 30-day readmission (Y’), accounting for the vector of
confounders (7). To estimate this risk, we used targeted maximum likelihood
estimation, which consisted of several steps. We fit a model of the exposure
g = Pr(A|W) (using random forest described below). Next, we estimated of a
model of readmission risk based on the confounders W and the variables for
each of the hospitals Q = Pr(Y = 1]A, W). We then calculated 5, (A, W) (some-
times referred to as the clever covariate) described in equation 5.1.

I(A=a)
ho(A W) = ———= (5.1)

A=)
(where I is the indicator function which evaluates to 1 when its argument is
true, and O otherwise), and estimated all ¢, in the fluctuation function de-
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scribed in equation 5.2.

20
Y; = eapit(logit(Q(Y:|Ai, Wi) + ) _ €a, X ha, (A, W;)) (5.2)
j=1
We estimated all twenty ¢, by regressing the 30-day readmission outcome Y’
(with a logit link function) onto h,(A, W;) (with no intercept) offset by the in-
verse logit of the initial estimate of readmission risk ) = (Y'|A, W). Finally, for
each discharge, we computed the estimated risk of 30-day readmission for all
twenty counterfactual conditions (the risk of readmission for every discharge
as if they had attended different hospital) using Equation 5.3.

€
¥ = expit(logit(Q(Y]a, W;)) + ———— (5.3)
Q pit(logit(Q(Y|a, W;)) g(a,W))
For each hospital, we then calculated the mean readmission risk (Q*) and asso-
ciated odds ratio.

To estimate both models g(A;|W;) and Q(Y;|A,W;), we used a random forest,
a non-parametric model based on decision trees [100]. Decision trees use the
independent variables (17;) to repeatedly split data into partitions that are as
homogeneous as possible with respect to the outcome of interest (specifically
measured with the Gini impurity index [102]). Random forest improves deci-
sion trees by using bootstrap aggregation (bagging); multiple decision trees are
grown on bootstrap replicates (sampled with replacement) to avoid overfitting.
Additionally, within each tree, only a sample of the covariates is used (in our
case we used a square root of the number of variables included in the mode,
rounded down).

For both models g(A;|W;) and Q(Y;|A,W;), we arbitrarily chose to grow 1200
trees, and then measured the accuracy as a function of the number of trees to
ensure that growing further trees would be unlikely to improve accuracy. Be-
cause the model was used solely to estimate the probability of admission to spe-
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cific hospitals (and not to predict exactly which hospital was attended), when
calculating the Gini impurity index to build the trees we configured the model
to favor calibration over discrimination: we weighted each of the twenty pre-
dicted hospitals by the inverse of the proportion of discharges at that hospital.
When measuring the accuracy for each discharge, we only used trees for which
the discharge was “out-of-bag”, that is, we only used trees for which the boot-
strap sample did not include the discharge.

To describe importance of the covariates in both models g(A;|WV;) and Q(Y;| A, W),
for each variable, we measured the decrease in the Gini impurity index for each
partition in which the variable was used, in every tree. A low Gini (i.e. higher
decrease in Gini) means that a particular predictor variable plays a greater role
in partitioning the data into the defined classes. We plotted the densities of vari-
ables with four different classes (census tract, procedure, diagnosis and drug)
at different levels of Gini decreases.

Random forest classifies each item by majority vote: each tree in the forest as-
signs each discharge to a specific class. Although the vote proportion is between
zero and one, it is not calibrated well as a probability. To calibrate the vote pro-
portion, we used Platt scaling [103] (logistic regression of the outcome (Y;) on
to the vote proportion).

When the probability of exposure g(A|WW) is very low, that discharge would re-
ceive a large weight in estimating Q*. For any g(A|W) below some fixed value
5, we set g(A|WW) to 4, a common technique in TMLE [15]. We recomputed our
analyses at 31 different values of §, ranging from 10~2 to 10~°, decreasing the
exponent at intervals of 0.1.

Finally, we compared our results of our analysis with a logistic regression for
30-day readmission. In this model, we included only the age, sex, number of
previous admissions, and the Charlson comorbidity score (Elixhauser version)
[104], along with indicator variables representing the hospitals themselves.
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5.4.5 Software

The data were cleaned and prepared for statistical analysis using the Postgres
relational database (version 9.3.6). We implemented our models using the R
statistical package (version 3.1.1), [85] using the “bigrf” package (version 0.1.11)
to grow the random forests [105]. We plotted our figures using the “ggplot2”
package (version 1.0.1) [88]. All the code to develop used to process our data, fit
our models, and typeset this article is available for download at Github.

5.5 Results

Over the course of January 2, 1996 to March 31, 2006, 482 064 people were en-
tered into our cohort. Among these, 16 521 were ever admitted for pneumonia,
13 884 were ever admitted for AMI, and 15 822 were ever admitted for heart fail-
ure. People ever admitted for pneumonia had a mean (median) 1.2 (1) pneumo-
nia admissions, heart failure patients had a mean (median) 1.6 (1) heart failure
admissions, and AMI patients had a mean (median) 1.1 (1) AMI admissions. In
total, we analyzed 20 421 pneumonia discharges, 15746 AMI discharges, and
24 847 heart failure discharges.

The accuracy of the random forest model (for both models g and ) did not ap-
pear to improve significantly beyond 125 trees (see Figure 5.1). In Figure 5.3 we
plot the importance of variables (as measured by the Gini impurity index) in
the random forest models for four variable classes, for all disease subsets for
both the g and @ model. Although census tracts were found to be important in
prediction of hospital choice, the other three variable classes were had a high
density of important variables as well. The prescription drugs in particular had
a high proportion of important variables, and generally the lowest proportion
of unimportant variables. For the ) model, the variable density appeared bi-
modal within variable importance for all four variable classes. Additionally, the
pre-admission drug prescriptions appeared to be strongly important in predict-
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ing readmission for all pneumonia, heart failure, and AMI admissions.

The predicted probability of admission to any particular hospital (g = Pr(A =
a|W)) was less than 5% in 88% of cases (across all disease subsets and hospi-
tals). We set § (the lower bound of ¢ when used to fit the ¢ values for Q*), to
two different values, 1072 and 1072, Across all disease subsets and hospitals,
39% of discharge/hospital combinations and a g less than 1072, and 4% had a g
less than 1072, Figure 5.2 describes the histogram of ¢ when it is below 0.05 for
each disease/hospital combination separately.

The unadjusted proportion of patients readmitted in 30 days varied across hos-
pitals for each disease subset (Tables 1-3). The linear correlation between the
proportion of deaths during hospital stay and the proportion readmitted was
(0.19, —0.55, —0.28) among AMI, heart failure, and pneumonia admissions re-
spectively. Using a model that adjusts for a few well-known confounders, for
AMI, heart failure, and pneumonia respectively, one, three, and five hospitals
had significantly different odds than the reference hospital. Notably, the signif-
icant odds ratios are all relatively small, with point estimates ranging from 0.92
- 1.04. In contrast, in the TMLE models, at both values of §, for all admission
diagnoses, nearly all of the hospitals had significantly different odds than the
reference hospital.

In some hospitals and disease subsets, the parameter J, (the lower bound on
the probability of exposure g(A|1V)) had a considerable effect on the marginal
risk and the associated odds ratios. For example, for AMI (shown in Table 5.1),
the marginal risk for hospital 17 increases by six percent when ¢ decreases from
1072 to 1072, In Figure 5.4, we display the marginal risk for each of the twenty
hospitals and disease subsets as a function of the parameter §. For many hos-
pitals, the effect was quite strong; for pneumonia admissions, hospital 16 went
from having the second-lowest marginal risk when 6 = 0.1 to having the highest
marginal risk when § = 0.025.
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Figure 5.3: Variable importance by model and variable class. For each ran-
dom forest classifier, the variable importance was measured by the decrease
in the Gini impurity index when that variable splits a node. The horizontal axis
within each panel is displayed on a log. scale. Some variables had exactly zero
importance; to avoid evaluating the logarithm of zero, we added a small con-
stant (e~1?) to the measure of variable importance. The vertical axis in each
panel represents the variable density at the corresponding level of variable im-
portance. To transform the individual variable importances into a continuous
density, we smoothed using a Gaussian kernel density estimator, using Silver-
man's 'rule-of-thumb' [106] to select the bandwidth. The density is measured
separately for each class; the area under each variable class curve is exactly one.



Hsp. Logistic regression TMLE (6 = 1072) TMLE (6 = 1072°)
Admitted  Died  Discharged Readmitted Odds ratio Marginal Odds ratio Marginal Odds ratio Marginal
(%) (%) (95% CI) risk (95% CI) risk (95% CI) risk
1 763 112 (15) 651 105 (16) 0.98 (0.95-1.01) 0.16 0.86 (0.83-0.89) 0.16 0.77 (0.74-0.81) 0.14
2 1557 148 (10) 1409 191 (14) 0.97 (0.95-1.00) 0.15 0.85 (0.82-0.87) 0.15 0.85 (0.82-0.87) 0.15
3 606 83 (14) 523 84 (16) 0.98 (0.95-1.02) 0.16 1.01 (0.97-1.05) 0.18 1.09 (1.04-1.14) 0.19
4 1022 125 (12) 897 136 (15) 0.97 (0.94-1.00) 0.15 0.72 (0.69-0.74) 0.13 0.72 (0.69-0.74) 0.13
5 729 150 (21) 579 98 (17) 0.98 (0.95-1.02) 0.16 0.75 (0.72-0.77) 0.14 0.73 (0.71-0.76) 0.14
6 826 119 (14) 707 106 (15) 0.98 (0.94-1.01) 0.15 0.57 (0.54-0.60) 0.11 0.57 (0.54-0.60) 0.11
7 1491 241 (16) 1250 216 (17) 0.99 (0.96-1.01) 0.16 1.04 (1.01-1.06) 0.18 1.03 (1.01-1.06) 0.18
8 1270 198 (16) 1072 138 (13) 0.95 (0.92-0.98) 0.13 0.69 (0.67-0.71) 0.13 0.69 (0.67-0.71) 0.13
9 780 152 (19) 628 130 (21) 1.01 (0.97-1.05) 0.19 0.54 (0.51-0.56) 0.10 0.52 (0.50-0.54) 0.10
10 778 124 (16) 654 123 (19) 1.01 (0.97-1.05) 0.19 1.19 (1.15-1.23) 0.20 1.27 (1.22-1.31) 0.21
11 705 125 (18) 580 97 (17) 0.99 (0.96-1.03) 0.17 0.89 (0.85-0.92) 0.16 0.90 (0.86-0.94) 0.16
12 1284 266 (21) 1018 166 (16) 0.99 (0.96-1.02) 0.16 0.90 (0.88-0.93) 0.16 0.90 (0.88-0.93) 0.16
13 739 86 (12) 653 110 (17) 0.99 (0.95-1.02) 0.16 1.19 (1.16-1.23) 0.20 1.22 (1.18-1.27) 0.21
14 1307 184 (14) 1123 210 (19) (Reference) 0.18 (Reference) 0.18 (Reference) 0.18
15 1152 168 (15) 984 129 (13) 0.97 (0.95-1.01) 0.15 0.70 (0.68-0.73) 0.13 0.70 (0.68-0.73) 0.13
16 408 70 (17) 338 43 (13) 0.97 (0.93-1.01) 0.15 0.84 (0.80-0.88) 0.15 0.84 (0.80-0.89) 0.15
17 807 123 (15) 684 134 (20) 1.02 (0.99-1.06) 0.20 1.76 (1.72-1.81) 0.27 2.30 (2.23-2.37) 0.33
18 894 144 (16) 750 116 (15) 0.98 (0.95-1.01) 0.16 0.91 (0.87-0.94) 0.16 0.91 (0.87-0.95) 0.16
19 499 94 (19) 405 50 (12) 0.95 (0.91-0.99) 0.13 0.57 (0.53-0.61) 0.11 0.57 (0.53-0.61) 0.11
20 1025 184 (18) 841 143 (17) 0.99 (0.96-1.02) 0.17 1.05 (1.02-1.09) 0.18 1.05 (1.02-1.09) 0.18

Table 5.1: Risk of 30-day readmission after admission for acute myocardial infarction (AMI) in twenty Montreal hospitals. The proportion of those who
were readmitted within 30 days is caluculated using the number discharged alive as the denominator. The confidence intervals for the odds ratios for the
parameters in the logistic regression model were calculated using the profile likelihood method.[107] The marginal risk for the odds ratios was calculated by
using the regression model to calculate the mean predicted probability of readmission for every admission, except individually fixing the hospital attended to
one hospital. The parameter ¢ represents the lower bound on the probability of exposure to that hospital (¢); we display odds ratios and marginal risks for

two versions of the TMLE model with varying levels of § .



Hsp. Logistic regression TMLE (6 = 1072) TMLE (6 = 10-29)
Admitted  Died  Discharged Readmitted Odds ratio Marginal Odds ratio Marginal Odds ratio Marginal
(%) (%) (95% CI) risk (95% CI) risk (95% CI) risk
1 1229 141 (11) 1088 248 (23) 1.00 (0.97-1.03) 0.22 0.61 (0.59-0.63) 0.11 0.50 (0.48-0.53) 0.09
2 2071 166 (8) 1905 441 (23) 1.02 (0.99-1.05) 0.24 1.13 (1.11-1.16) 0.19 1.13 (1.11-1.16) 0.19
3 1243 134 (11) 1109 285 (26) 1.03 (1.00-1.07) 0.25 0.71 (0.69-0.72) 0.13 0.52 (0.50-0.54) 0.10
4 1076 122 (11) 954 214 (22) 1.01 (0.97-1.04) 0.23 1.06 (1.04-1.09) 0.18 0.92 (0.89-0.96) 0.16
5 1550 181 (12) 1369 288 (21) 0.99 (0.96-1.02) 0.21 0.71 (0.69-0.72) 0.13 0.58 (0.56-0.60) 0.11
6 827 107 (13) 720 128 (18) 0.97 (0.94-1.00) 0.19 0.73 (0.70-0.75) 0.13 1.08 (1.03-1.14) 0.18
7 2917 386 (13) 2531 666 (26) 1.04 (1.02-1.07) 0.26 1.63 (1.61-1.66) 0.25 1.67 (1.64-1.71) 0.26
8 1456 197 (14) 1259 232 (18) 0.97 (0.94-1.00) 0.19 0.72 (0.70-0.74) 0.13 0.68 (0.66-0.70) 0.12
9 881 111 (13) 770 157 (20) 0.98 (0.95-1.02) 0.20 1.27 (1.25-1.29) 0.21 1.18 (1.16-1.20) 0.20
10 1410 149 (11) 1261 311 (25) 1.01 (0.99-1.05) 0.23 0.66 (0.65-0.68) 0.12 0.57 (0.55-0.60) 0.11
11 1297 153 (12) 1144 258 (23) 1.01 (0.98-1.04) 0.23 0.90 (0.88-0.92) 0.16 0.86 (0.83-0.88) 0.15
12 1323 162 (12) 1161 192 (17) 0.92 (0.89-0.95) 0.13 0.79 (0.76-0.81) 0.14 0.76 (0.74-0.78) 0.14
13 1231 102 (8) 1129 262 (23) 1.00 (0.97-1.03) 0.22 0.94 (0.93-0.96) 0.16 0.91 (0.87-0.95) 0.16
14 2110 234 (11) 1876 424 (23) (Reference) 0.22 (Reference) 0.17 (Reference) 0.17
15 1389 190 (14) 1199 203 (17) 0.97 (0.94-1.00) 0.19 0.74 (0.72-0.77) 0.13 0.81 (0.79-0.84) 0.14
16 681 94 (14) 587 111 (19) 0.98 (0.94-1.01) 0.20 0.75 (0.73-0.78) 0.14 0.84 (0.80-0.87) 0.15
17 1438 139 (10) 1299 328 (25) 1.04 (1.01-1.07) 0.26 1.50 (1.48-1.53) 0.24 1.85 (1.80-1.90) 0.28
18 1984 212 (11) 1772 438 (25) 1.03 (1.00-1.06) 0.25 0.76 (0.74-0.77) 0.14 0.74 (0.72-0.76) 0.13
19 932 99 (11) 833 163 (20) 0.98 (0.95-1.01) 0.20 0.88 (0.86-0.90) 0.16 0.81 (0.79-0.84) 0.14
20 1048 167 (16) 881 171 (19) 0.99 (0.96-1.02) 0.21 1.25 (1.22-1.27) 0.21 1.20 (1.17-1.23) 0.20

Table 5.2: Risk of 30-day readmission after admission for heart failure in twenty Montreal hospitals. The columns in this table are described in Table 5.1.



Hsp. Logistic regression TMLE (6 = 1072) TMLE (6 = 10-29)
Admitted  Died  Discharged Readmitted Odds ratio Marginal Odds ratio Marginal Odds ratio Marginal
(%) (%) (95% CI) risk (95% CI) risk (95% CI) risk
1 1184 176 (15) 1008 159 (16) 1.00 (0.98-1.03) 0.15 1.23 (1.18-1.27) 0.15 1.21 (1.17-1.26) 0.15
2 199 11 (6) 188 31 (16) 1.02 (0.97-1.08) 0.17 1.09 (1.07-1.12) 0.14 1.25 (1.17-1.34) 0.16
3 1085 132 (12) 953 160 (17) 1.01 (0.98-1.04) 0.16 0.83 (0.80-0.87) 0.11 0.82 (0.78-0.87) 0.11
4 863 91 (11) 772 113 (15) 1.00 (0.97-1.03) 0.15 0.85 (0.81-0.88) 0.11 0.84 (0.81-0.88) 0.11
5 923 147 (16) 776 143 (18) 1.04 (1.01-1.07) 0.19 0.96 (0.93-1.00) 0.12 0.95 (0.91-0.99) 0.12
6 788 136 (17) 652 89 (14) 1.00 (0.96-1.03) 0.14 0.89 (0.85-0.94) 0.12 0.91 (0.86-0.96) 0.12
7 2194 228 (10) 1966 328 (17) 1.03 (1.00-1.05) 0.17 1.33 (1.29-1.37) 0.16 1.33 (1.29-1.37) 0.16
8 1485 243 (16) 1242 173 (14) 0.99 (0.97-1.02) 0.14 0.97 (0.93-1.01) 0.12 0.97 (0.94-1.01) 0.13
9 990 166 (17) 824 158 (19) 1.04 (1.01-1.08) 0.19 1.30 (1.25-1.35) 0.16 1.28 (1.23-1.33) 0.16
10 1214 139 (11) 1075 181 (17) 1.01 (0.99-1.04) 0.16 1.45 (1.40-1.51) 0.18 1.46 (1.40-1.51) 0.18
11 892 147 (16) 745 119 (16) 1.02 (0.98-1.05) 0.16 1.39 (1.34-1.44) 0.17 1.40 (1.35-1.46) 0.17
12 1102 185 (17) 917 91 (10) 0.96 (0.93-0.98) 0.10 0.47 (0.44-0.50) 0.06 0.47 (0.44-0.50) 0.06
13 1914 204 (11) 1710 325 (19) 1.03 (1.00-1.05) 0.18 0.80 (0.77-0.83) 0.10 0.84 (0.79-0.89) 0.11
14 1980 278 (14) 1702 263 (15) (Reference) 0.15 (Reference) 0.13 (Reference) 0.13
15 1365 179 (13) 1186 163 (14) 1.00 (0.97-1.03) 0.15 0.86 (0.83-0.90) 0.11 0.85 (0.81-0.89) 0.11
16 541 77 (14) 464 46 (10) 0.96 (0.93-1.00) 0.11 1.45 (1.39-1.52) 0.18 1.55 (1.46-1.65) 0.19
17 1338 163 (12) 1175 193 (16) 1.02 (0.99-1.05) 0.17 0.86 (0.83-0.89) 0.11 0.79 (0.76-0.82) 0.10
18 1356 168 (12) 1188 200 (17) 1.02 (0.99-1.04) 0.17 1.40 (1.36-1.44) 0.17 1.40 (1.35-1.44) 0.17
19 1020 123 (12) 897 122 (14) 0.99 (0.96-1.02) 0.14 0.94 (0.90-0.98) 0.12 0.98 (0.93-1.03) 0.13
20 1152 171 (15) 981 126 (13) 0.98 (0.95-1.01) 0.13 1.11 (1.07-1.16) 0.14 1.11 (1.07-1.16) 0.14

Table 5.3: Risk of 30-day readmission after admission for pneumonia in twenty Montreal hospitals. The columns in this table are described in Table 5.1.
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5.6 Discussion

Using targeted maximum likelihood estimation (TMLE) to adjust precisely for
measured confounders, we found that the differences in marginal risk of 30-day
hospital readmission in twenty Montreal hospitals were larger than indicated
by a logistic regression model that only adjusted for a few confounders. Addi-
tionally, our study revealed some practical positivity violations for some hospi-
tals, suggesting that the relative readmission risk may not always be estimable
from observed data.

Our study has several strengths. By using a doubly-robust estimation tech-
nique, and by accurately adjusting for thousands of plausible confounders, we
minimized the bias in our estimates of the effect of hospital care on readmis-
sions. Our work suggests that the difference in bias reduction was not trivial; in
assessing the effect of hospitals on readmission, the two models lead us to dif-
ferent conclusions on the differences in quality of care at hospitals. Also, since
we did not have to restrict our cohort to a single healthcare insurance network,
we had a large cohort of patients from all socioeconomic classes. Because we
had complete access to all hospital visits in the province, we could accurately
measure which patients were readmitted.

Other hospital readmission studies have applied statistical and machine learn-
ing algorithms to readmission data to develop predictive models [73, 98], in-
cluding one using the data used in this study [99]. Most studies, including our
own, found relatively poor accuracy. No study to our knowledge has used ma-
chine learning algorithms to draw causal inference on target parameters. Pre-
dictive models of hospital readmissions may not be very accurate, but they can
can improve our ability to draw inference on target parameters.

Some authors [31, 108] believe that by using readmission rates as a quality met-
ric, we assume that readmissions are preventable. Hoping to develop a qual-
ity metric that compares preventable readmissions, some researchers have at-
tempted to identify which individual readmissions were preventable. Some
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studies have clinicians classify individual readmissions as preventable [109-
111], despite evidence that clinicians cannot reliably measure preventability
[46]. Other studies use pairs of admission/readmission diagnosis codes that
identify “potentially preventable” readmissions [48]. However, the propor-
tion of those actually preventable among the “potentially” preventable differs
among hospitals [112], meaning that potentially preventable readmissions are
not an adequate proxy for preventable readmissions [108].

But to estimate the effect of an exposure (like hospital care) on an outcome (like
readmission), we do not need to identify exactly which individuals would not
have had the outcome if they were not exposed [113]. Some readmissions are
unpreventable: no matter where they were treated, they would be readmitted.
If patients were randomized among different hospitals, the number of unpre-
ventable readmissions would be (asymptotically) the same among all hospitals,
and any difference in readmission rates would be the “preventable proportion”.
Since the patients were not randomized to each hospital, we attempted to recre-
ate that situation by controlling for confounding. Assuming that we have ade-
quately controlled for confounding, we have estimated the independent effect
of each hospital on readmission risk, without identifying whether individual
readmissions were preventable.

In this study, practical positivity violations occur when large subgroups of the
hospitalized patients are rarely admitted to specific hospitals. Practical positiv-
ity violations can bias our estimates of the parameter of interest, because our
risk estimates are heavily dependent on the few admitted patients from certain
subgroups, and on the precision of our estimate of the probability of their at-
tendance. For some hospitals, our estimates for marginal risk were sensitive to
the parameter §, which set a lower bound on the probability of exposure g, sug-
gesting practical positivity violations. We believe that the discovery of practical
positivity violations is an important finding: observational data may not pro-
vide us with enough information to meaningfully compare certain hospitals.

To avoid adjusting for a variable that is a component of our exposure (hospital
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care), we did not adjust for hospital length of stay [50]. Similarly we excluded all
diagnoses and procedures that occurred during the hospital admission, because
these covariates were components of our exposure.

The major competing risk for 30-day hospital readmission is death, but others
include moving outside the study area, or admission to a hospital for a non-
emergency reason. In our analysis, we did not account for these competing
risks. If patients died within 30 days of discharge more often at one hospital
than another, we could have biased our estimate of readmission risk. Similarly,
if patients died during the hospitalization more often at some hospitals than
others, it could have created a selection bias (left censorship) in which hospitals
with better care were discharging sicker (but still living) patients, who would
be more likely to be readmitted. Also, there is no special significance of 30 days
in readmission, except for the fact that it is (recently) widely used as a cutoff.
In future work, we plan to account for both left censorship and competing risks
in a model that estimates the effect of hospital care on time-to-readmission.

Entry to our cohort was dependent on having one diagnosis of a respiratory
illness in an inpatient or outpatient setting. Respiratory illness was defined
rather broadly, including extremely common diagnoses such as “cough”. We ex-
pect that the majority of 65-year-old patients who would be hospitalized would
have at least one respiratory illness diagnosis in an outpatient setting. We can-
not, however, exclude the possibility that parameter estimates were affected by
selection bias with respect to the full population of 65-year-old patients.

The effect of hospital care on readmissions is confounded by a vast spectrum
of health-related states of the admitted patients. In the absence of a clear the-
oretical basis of the structure of that confounding, we can 1) identify relatively
few, well-understood and measurable confounders to include in our model, or
2) forgo any theoretical understanding of the structure of confounding, and
attempt to identify the broadest measurable set of even faintly plausible con-
founders. The first option has some advantages: in a situation where data col-
lection is expensive, it may not be plausible to measure thousands of variables.
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Additionally, by reducing the confounders to a well-understood few, the model
gains credibility because it can be shown that the confounders are having the
expected effect. Non-parametric techniques such as random forest don't allow
us to look (easily) at the individual effects of the confounders, and even in a
parametric model it would be difficult to analyze thousands of variables. We
summarized the densities of the effects a few classes of variables in Figure 5.3,
but this still does not allow the variable-by-variable analysis typical in an epi-
demiologic study. Also, by including many confounders we also risk inducing
bias, such as the M-bias [114, 115]. However, the recent availability of large scale
healthcare administrative data has put us into the situation where the cost of
data collection is relatively low. By using machine learning techniques like ran-
dom forest, we also automatically fit multi-way interactions that we would be
unlikely to explore in a model fit “by hand”. Finally, because the structure of
the confounding is unclear, we cannot assess if M-bias is present, and some re-
search suggests that the scale of M-bias may be small when compared to tradi-
tional confounding [116]. We argue that in this situation, where we have a large
data set, thousands of measurable confounders, and little understanding of the
structure of confounding, the second option is more appropriate.

The unit of analysis in this study was the discharge, but each discharge was
“clustered” within a patient. The expected within-cluster homogeneity could
have biased our estimates of variance, and our parameter estimates. How-
ever, because the number of clusters (unique patients) was relatively high when
compared to the sample size (the number of discharges), we do not expect that
our parameter or variance estimates to be biased very strongly.

Beside random forest, we could have used many other machine learning tech-
niques on these data, many of which we explored in other work [99]. Also,
some ensemble machine learning techniques, (in particular SuperLearner [117]
which is commonly used with TMLE), are available, that combine any number
of other machine learning techniques. We found that in these data, ensemble
learning techniques were too computationally expensive. We selected random
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forest because of its relative simplicity, and because our variables were nearly
all binary, for which decision trees are particularly suitable.

Calibration of the random forest vote proportions in the ) model strongly af-
fected estimates of our parameter of interest in the Q* update step. Other ar-
ticles using non-parametric techniques typically combined them with other
models in an ensemble learner (like SuperLearner). The final step in (many)
ensemble learners is to combine all the probability estimates in a parametric
model, which would effectively calibrate the probabilities. In our study, a sin-
gle, non-parametric technique was used, so an additional, separate calibration
step was necessary to convert the ranking scores into a probability estimate.

Hospital readmissions can be a relatively crude proxy for quality of care, but
they can still provide valuable insight. In a seminal research article on quality
of care measures, Donabedian writes: “But how precise do estimates of quality
have to be? At least the better methods have been adequate for the administra-
tive and social policy purposes that have brought them into being. The search
for perfection should not blind one to the fact that present techniques of eval-
uating quality, crude as they are, have revealed a range of quality from out-
standing to deplorable.” [118] Our work suggests that, when finely adjusted for
confounding, hospital readmissions reveal wide differences in hospital quality
of care.
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Figure 5.4: Effect of § (the bound on ¢g(A|W)) on the marginal risk (Q*). The
vertical axis represents the marginal risk as calculated by the TMLE model. The
marginal risk (Q*) was evaluated at 31 levels of ¢, from 10~! to 1075, (the expo-
nent decreasing by 0.1). Note that the scale of the horizontal axis decreases from
left-to-right. The hatched vertical lines mark the two levels of delta displayed
in Tables 5.1,5.2 and 5.3.



Chapter 6
Discussion

In this work, I presented three studies that explored issues in prediction and in-
ference with respect to hospital readmissions. The first manuscript measured
the accuracy of model combination techniques to improve the predictive accu-
racy of hospital readmission risk models. In the second manuscript, I explored
how the effect of the day-of-the-week of discharge on readmissions was mod-
ified by different probabilities of admission on the weekend. Finally, in the
third manuscript, I presented an application of TMLE that allowed me to use
machine learning techniques, typically used for prediction, to draw inference
on how the quality of care at different hospitals affects readmissions. Here I
summarize my most important findings.

Defining readmissions in counterfactual terms was critical for all three manuscripts.
I did not need to measure whether individual readmissions were preventable

to estimate how the quality of care at different hospitals affected preventable
admissions. Because I did not need to measure the individual preventability

of readmissions, it made it feasible to use large administrative databases in all
three studies.

In the first manuscript (Chapter 3), I compared three different methods of pool-
ing hospital data (local, global, and combined) to develop 30-day readmission

94
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risk models. The “global” model represented the ideal case, where all data from
all hospitals were pooled, and a single model was fit to the entire pool. The
“local” model represented the situation where no data pooling took place: hos-
pitals would build models only using their own data. The “combined” model
pools the models instead of the data; the coefficients from each “local” model
are collected and combined into a single model. The “combined” models are ad-
vantageous when compared to the “global” models because they don’t require
hospitals to directly share patient data, which poses a risk to patient privacy,
and they also may be more accurate than the “local” models. I found, as did
others[61-65], that the “combined” model (AUC of 0.63 — 0.64) was nearly as
accurate as the ideal “global” model (AUC of 0.65). However, I found that the
“local” models, which did not pool data at all (AUC of 0.63), were also nearly as
accurate as the global model. Over the 11 years of the study period, 7 355 heart
failure discharges resulted in a 30-day readmission; if specificity was fixed to
75%, the global model would have detected only 31 more readmissions per year
after heart failure than the local model. Our results suggest that a particular
hospital's readmission risk models may not benefit from pooling data; hospi-
tals can use their own data to predict readmissions and achieve nearly the same
accuracy as models that used pooled data.

One of the main purposes of readmission risk modeling for individuals is to
prioritize expensive transitional care interventions. However, existing models
simply predict readmission risk, not the expected outcome of any transitional
care interventions. It is possible that patients at very high risk of readmission
will soon be readmitted even if clinicians apply transitional care interventions.
In future work, I plan to explore how a predictive model of readmissions could
be combined with data on the effect of ongoing transitional care interventions
to better target those interventions. Additionally, if multiple transitional care
interventions are available, a model could be developed that would select the
optimal intervention based on patient characteristics.

Compared to typical diagnostic models, the predictive accuracy of our readmis-
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sion risk models was low (AUC of 0.63 — 0.65). However, prioritizing patients
for transitional care interventions does not require near perfect or even high
model accuracy; we use these models to separate those at higher risk than the
others. Additionally, if we did find a very high accuracy in a readmission risk
model, it would suggest one of two things: 1) the readmissions were easy to
predict because they were inevitable, meaning that transitional care interven-
tions would be of no effect; 2) the readmissions were not inevitable, but they
were easily predictable, suggesting a serious problem in the quality of care. For
example, if patients with a specific diagnosis from a certain hospital nearly al-
ways were readmitted (implying that we could accurately estimate their risk),
but were not admitted at other hospitals (implying that their readmission was
not inevitable), it would suggest a serious problem in the quality of care at that
hospital.

In the second manuscript (Chapter 4), I examined how admission practices on
different days-of-the-week influenced the effect of discharge day on readmis-
sion. Other authors [14, 79, 80] had found that Friday discharges were read-
mitted sooner than Wednesday discharges, and had suggested some targeted
interventions such as increased staff on the weekends or allowing admissions
into long-term care on the weekend [66-68]. However, the effect of the dif-
fering admissions on the weekend had not been investigated. Our descriptive
analysis revealed that the probability of admission is greatly reduced on the
weekend. Using a Markov model, I found that the lower probability of admis-
sion on the weekend would lead to a longer time-to-readmission for Friday dis-
charges. Using a Cox proportional hazards model with only time-fixed covari-
ates, I found that Friday discharges were admitted slightly earlier than Wednes-
day discharges [HR: 1.03 95% CI: (1.02, 1.05)], replicating the findings of oth-
ers. However, after adding time-varying covariates to adjust for the weekend
effect, U found that Friday discharges were readmitted slightly sooner than in
the time-fixed model [HR: 1.04 95% CI: (1.01, 1.07)]. I found that the lower prob-
abilities of admission on the weekend modified the effect of Friday discharges
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on time-to-readmission by increasing the time-to-readmission; any model that
did not account for the lower probability of admission on the weekend would
underestimate the effect of Friday discharge on readmission.

Friday discharges only have a weak (but significant) effect on individual read-
mission time, but because nearly 20% of hospital patients are discharged on
a Friday, an effective intervention has a potentially large population effect. We
found that - over 11 years, in 20 hospitals — roughly 130 000 people in our cohort
were discharged on a Friday. An intervention that improved the mean time-to-
readmission for Friday discharges by 1 day for only 1% of the population would
save rougly 1300 in-hospital patient-days. Compared to expensive individual
patient interventions, systemic interventions can be a potentially cost-effective
means to improve the health care system and patient health.

Systemic interventions on patient flow have the potential to create “virtuous
circles” of improvement at many points of care. For example, an intervention
which improves long-term care access on the weekends might lead to longer
times to readmission, reducing congestion and waiting time in emergency de-
partments, reducing the pressure to discharge patients early, resulting in an
even further increase in times-to-readmission. By understanding the system
dynamics of the healthcare system, we may be able to identify cost-effective in-
terventions that reduce congestion in different parts of the health care system,
reducing waiting times and improving access.

Many jurisdictions financially penalize hospitals with poor readmission rates,
but the adjustment for severity-of-illness relies on only a few well-known con-
founders. In the third manuscript (Chapter 5), I used TMLE in combination
with a machine learning technique (random forest) to estimate the differences
in the effect of different hospitals on readmissions, taking advantage of the rich
confounder data available in administrative databases. The model with only a
few well-known confounders estimated a relatively smaller range of odds ratios
for the effect of the twenty hospitals (0.95-1.02 for AMI, 0.92-1.04 for heart fail-
ure, and 0.96-1.04 for pneumonia) than the TMLE model (0.57-2.30 for AMI,
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0.50-1.85 for heart failure, and 0.47-1.55 for pneumonia). Our results sug-
gested that the crudely adjusted hospital readmission rates underestimate the
differences of a hospital’s effect on quality of care on readmissions.

6.1 Ethics of risk modeling

Although risk models may help target transitional care interventions, and help
us model the health care system, their use in health insurance has troubling
ethical implications. Recently, large cash prizes were offered in a contest to
develop models that accurately predicted the length-of-stay at hospitals [119].
Although hospital administrators could use these models for planning and
staffing purposes, insurers are motivated to use the models to price insurance
policies. Effectively, those who need insurance for hospital care the most (those
at highest risk), will be offered insurance at the highest price. Like other out-
comes, readmission risk models could be used to raise the price of insurance for
those most in need. Similarly, if the financial penalty is strong enough, a hos-
pital has a perverse incentive to refuse patients at high risk of readmission — a
readmission risk model can operationalize these perverse incentives. Some au-
thors suggest that pay-for-performance measures may unfairly penalize those
who treat underserved patients[34, 35]. A readmission risk model which iden-
tifies certain high-risk ethnicities or social classes may incent hospitals to admit
fewer of those groups of people, increasing disparity. In light of these ethical
implications, the effect of risk models on vulnerable groups should be closely
monitored during implementation.

6.2 Conclusion

In this work, I have made several unique contributions to the study of hospital
readmissions. Measuring the preventability of readmissions is costly (requiring
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clinical review) and most instruments are unreliable. By defining preventable
hospital readmissions in counterfactual terms, it was not necessary to measure
the individual preventability of readmissions, making the study of readmis-
sions in administrative databases feasible and valid. In my first manuscript,
I have shown that pooling hospital data from several hospitals may not signif-
icantly improve the accuracy of predicting hospital readmissions. In the sec-
ond manuscript, I have shown that inference of the effect of Friday discharge
on readmission is modified by the probability of admission on the weekend.
In the third manuscript, I have demonstrated that only accounting for a few
well-known confounders of the relationship between hospital care and read-
missions can result in an underestimate in the differences effect of quality of
care on readmissions. Additionally, targeted maximum likelihood estimation
provides an effective way to use the rich data on confounders contained within
administrative databases, reducing bias in the study of hospital readmissions.
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Appendix

Table 6.1: ICD-9 codes for influenza-like illness. The
cohort used in these studies used a diagnosis of an ILI
as a selection criterion. ICD-9 codes typically use a
decimal point, but not in the Quebec administrative
databases. The list presented here refelcts the defi-
nition of ICD-9 codes as they are used in the Quebec
administrative databases.

ICD9 Description

100  Primary tuberculous infection, primary tuberculous complex
101  Tuberculous pleurisy in primary progressive tuberculosis
108  Other primary progressive tuberculosis

109  Primary tuberculous infection, unspecified

110  Tuberculosis of lung, infiltrative

111 Tuberculosis of lung, nodular

112 Tuberculosis of lung with cavitation

113  Tuberculosis of bronchus

114  Tuberculous fibrosis of lung

115  Tuberculous bronchiectasis

116 Tuberculous pneumonia (any form)

117 Tuberculous pneumothorax

118  Other pulmonary tuberculosis

113



Table 6.1: (continued)

114

ICD9 Description
119  Pulmonary tuberculosis, unspecified
203  Plague primary pneumonic
204  Plague secondary pneumonic
205  Plague pneumonic, unspecified
219  Tularaemia
221  Pulmonary anthrax
249  Glanders
259  Melioidosis
320  Faucial diphtheria
321  Nasopharyngeal diphtheria
322  Anterior nasal diphtheria
323  Laryngeal diphtheria
329  Diphtheria, unspecified
330  Whooping cough, bordetella pertussis (B.pertussis)
331  Whooping cough, bordetella parapertussis (B.parapertussis)
338  Whooping cough, other specified organism
339  Whooping cough, unspecified organism
340  Streptococcal sore throat
529  Chickenpox
Chickenpox (varicella), uncomplicated
551  Measles, postmeasles pneumonia
739  Ornithosis
741  Specific diseases due to coxsackie virus, epidemic pleurodynia
790 Adenovirus
793  Rhinovirus
798  Other viral infection
799  Viremia, unspecified

Unspecified viral infection
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Table 6.1: (continued)

ICD9 Description

830  Rickettsioses, Q-fever

1124  Candidiasis, of lung

1149 Coccidioidomycosis

1150 Infection by histoplasma capsulatum

1151 Infection by histoplasma duboisii

1159 Histoplasmosis, unspecified

1309 Toxoplasmosis

1363 Pneumocystosis

3820 Suppurative and unspecified otitis media, acute suppurative otitis media

3824 Unspecified suppurative otitis media

3829 Unspecified otitis media

4609 Acute nasopharyngitis (common cold), acute nasopharyngitis (common cold)

4618 Acute sinusitis, other

4619 Acute sinusitis, unspecified

4629 Acute pharyngitis, acute pharyngitis

4639 Acute tonsillitis, acute tonsillitis

4640 Acute laryngitis

4641 Acute tracheitis

4642 Acute laryngotracheitis

4643 Acute epiglottitis

4644 Acute laryngitis and tracheitis, croup

4650 Acute laryngopharyngitis

4658 Other multiple sites

4659 Acute upper respiratory infections, unspecified site
URTI, unspecified

4660 Acute bronchitis

4661 Acute bronchiolitis

4789 Other and unspecified diseases of upper respiratory tract
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Table 6.1: (continued)

ICD9 Description
4800 Viral pneumonia, pneumonia due to adenovirus
4801 Viral pneumonia, pneumonia due to respiratory syncytial virus
4802 Viral pneumonia, pneumonia due to parainfluenza virus
4808 Viral pneumonia, pneumonia due to other virus, not elsewhere classified
4809 Viral pneumonia, viral pneumonia, unspecified
4819 Pneumococcal pneumonia
4820 Other bacterial pneumonia, pneumonia due to klebsiella pneumoniae
4821 Other bacterial pneumonia, pneumonia due to pseudomonas
4822 Pneumonia due to haemophilus influenzae (h.influenzae)
4823 Other bacterial pneumonia, pneumonia due to streptococcus
4824 Other bacterial pneumonia, pneumonia due to staphylococcus
4828 Other bacterial pneumonia, pneumonia due to other specified bacteria
4829 Other bacterial pneumonia, bacterial pneumonia, unspecified
4839 Pneumonia due to other specified organism
4841 Cytomegalic inclusion disease
4843 Pneumonia in infectious diseases classified elsewhere, whooping cough
4845 Pneumonia in infectious diseases classified elsewhere, anthrax
4846 Pneumonia in infectious diseases classified elsewhere, aspergillosis
4847 Pneumonia in other systemic mycoses
4848 Pneumonia in other infectious diseases
4859 Bronchopneumonia, organism unspecified
4869 Pneumonia, organism unspecified
Pneumonia, unspecified
4870 Influenza, with pneumonia
4871 Influenza (flu) NOS
Influenza, with other respiratory manifestations
4878 Influenza, with other manifestations
4909 Bronchitis, not specified as acute or chronic
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Table 6.1: (continued)

ICD9 Description
4910 Simple chronic bronchitis
4911 Mucopurulent chronic bronchitis
4918 Other chronic bronchitis
4919 Chronic bronchitis, unspecified
5070 Pneumonitis due to solids and liquids, due to inhalation of food or vomit
5071 Due to inhalation of oils and essences
5078 Pneumonitis due to solids and liquids, other
5110 Pleurisy, without mention of effusion or current tuberculosis
5111 With effusion, with mention of a bacterial cause other than tuberculosis
5118 Pleurisy, other specified forms of effusion, except tuberculosis
5119 Pleurisy, unspecified pleural effusion
5130 Abscess of lung
5131 Abscess of mediastinum
5180 Other diseases of lung, pulmonary collapse
5184 Other diseases of lung, acute oedema of lung, unspecified
5188 Other diseases of lung, other diseases of lung, not elsewhere classified
5192 Other diseases of respiratory system, mediastinitis
7806 Chills
General symptoms, pyrexia of unknown origin
General symptoms: fever, not otherwise specified
Hyperthermia
7841 Symptoms involving head and neck, throat pain
7860 Dyspnoea and respiratory abnormalities
Shortness of breath
7861 Symptoms involving respiratory system and other chest symptoms, stridor
7862 Symptoms involving respiratory system and other chest symptoms, cough
7865 Symptoms involving respiratory system and other chest symptoms, chest pain

Pleurodynia
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Table 6.1: (continued)

ICD9 Description

7953 Nonspecific positive culture findings
V018 Other communicable diseases




