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"[T]he diffusion ... 1s left completely to the influence of the molecular forces basic to
the same law...for the spreading of warmth in a conductor and which has already been

applied with great success to the spreading of electricity”

Adolf E. Fick

in Poggendorfr's Annelen der Physik, 94, 59 (1855)



Abstract

The swelling equilibium and kinetics of weakly crosslinked, non-ionic poly(N-
isopropylacrylamide) gels were studied in water at a constant temperature of 298 K.
The gel structure was varied by changing the monomer concentration, the proportion
of crosslinker, and the temperature at gel formation. The relationship between the
fractional approach to equilibrium (F) and the square root of time (‘l 1) was sigmoidal
A model was developed to describe the kinetics of gel volume change for swelling
or collapse The model was based on Fick's first law and accounted for the movement
of the boundary of the gel. Numerical computations for one-dimensional cases
involving planar, cylindrical and spherical geometries were performed with a constant
diffusion coefficient Experimental data for disk-shaped and spherical poly(NI;*A) gels
in water and for spheres of rubber in toluene were well fitted by the model using a
constant mutual diffusion coefficient Composition dependent mutual diffusion
coeflicients including those suggested by the scaling theory, also gave good agreement
with experiments A new categorization of diffusion in polymers based on the F versus

Vi plot is proposed.




Résumeée

Nous avons étudié I'équilibre et la cinétique du gonflement des gels poly(N-
isopropylacrylamide) non-ioniques et faiblement réticulés, dans l'eau a une température
constante de 298 K. Nous avons varié la structure du gel en changeant la
concentration du monomere, la proportion des liens et la température de gélation La
relation entre I'approche fractionnaire a I'équit'bre (F) et la racine carrée du temps (\/l)
s'est avérée sigmoidale.

Nous avons développé un modéle pour décrire la cinétique du changement de
volume du gel lors du gonflement et du dégonflement. Ce modeéle est basé sur la
premiére loi de Fick et tient compte du mouvement des frontiéres du gel Des
évaluations numériques pour les cas unidimensionnels impliquant les géométries
planaire, cylindrique et sphérique ont été réalisées avec un coéfficient de diffusion
constant. Les données expérimentales pour les gels poly(NIPA) a forme de disque -
dans l'eau- et pour les sphéres de caoutchouc -dans le toluéne- se sont révélées en
accord avec le modéle en utilisant un coéfficient de diffusion mutuel constant Les
coéfficients de diffusion mutuels dépendant de la composition, y compris ceux suggérés
par la théorie du "scaling", se sont égalemeni révélés en accord avec les
expérimentations. Une nouvelle catégorisation de la diffusion des polyméres basée sur

Fversus est proposée.
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CHAPTER 1

Introduction

Hydrogels, also known as super-absorbents, are used in infant diapers, the controlled
release of drugs, artificial snow, urban flood control bags, non-drip frozen packaging,
and fire extinguishing agents that remain solid after spraying (Brannon-Peppas ef al.,
1990; Kudela, 1990) Some potential applications of hydrogels are in protein
extraction, dry-farming, dewatering coal-fines, memory elements and as smart chemo-
mechanical systems (Tanaka, 1981; Osada et al.,, 1993) These materials may absorb

from several times to several hundred times their own weight of water

What are gels ? It is easier to recognize gels than to define them. A gel may be
considered as a forth state of matter intermediate between a solid and a liquid. Almdal
et al. (1993) proposed that the term "gel" be limited to systems which have the
following characteristics (a) they consist of two or more components, one of which is
a liquid, present in substantial quantity and (b) they are soft, solid, or solid-like
materials Thus sponges, foams, cotton, wood-pulp and xerogels (i e. dried gels) are
not considered as gels The definition includes both thermoreversible (formed by
physical junctions) and thermoirreversible (formed by chemical bonds) gels. Each
category is further subdivided into polymer and non-polymer gels.

Hydrogels belong to the class of chemically crosslinked organic polymer gels.

Such gels swell in good solvents, i e. solvents having affinity for the polymer, but do
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not dissolve. When the good solvent is water, the gel is called a hydrogel. The
properties of the gel depend strongly on the interaction of the polymer matrix and the
solvent. The liquid prevents the polymer network from collapsing into a compact mass,
and the network, in turn, retains the liquid. Hydrcgels may be crosslinked by covalent
bonds, as in most synthetic gels, or by Van der Waal's forces and hydrogen bonds
Synthetic hydrogels can be made by polymerization or copolymerization of
hydrophilic monomer(s) with a crosslinking agent to produce homopolymer or co-
pelymer hydrogels, respectively When copolymerization is performed with an ionic or
cationic monomer, the resulting gels are called anionic or cationic hydrogels,
respectively. Classification of hydrogels can be made according to the chemical
composition of the main monomer in the polymer network The degree of crosslinking
and the amount of co-monomer are the major factors governing the properties of the
resulting hydrogel. Polymer gels appear to be frozen systems (de-Gennes, 1979) in
which the propertie~ of the overall system during preparation and network formation

determine the properties of the final system

Gel-gel phase transition: One remarkable property of certain hydrogels is that
drastic changes in state can be brought about by small changes in external conditions
The gel can swell and shrink discontinuously by as large as thousandfold (Tanaka,
1981; Illavsky er al., 1982) by bringing about a continuous change in surrounding
conditions such as temperature and solvent composition or, if the gel is ionic, salt
concentration, pH and electric field. Such volume changes result in a dramatic changes
in physical propertics (Illavsky ef al., 1985; Tanaka, 1986; Vasheghani et al , 1992)
For the temperature dependence of gel volume, three types of transitions have been

reported: thermoswelling type (expansion with temperature), thermoshrinking type
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(contraction with temperature), and "convexo" type (a mixture of the other two types)

Thermoswelling hydrogels contain mostly hydrophilic monomers, for example
acrylamide, while thermoshrinking hydrogels are composed of monomers with
hydrophobic substituents which make them less hydrophilic, e.g. N-isopropylacrylamide

or NIPA

1.1. POLY(N-ISOPROPYLACRYLAMIDE) GELS

This work focuses on weakly-crosslinked non-ionic poly(N-isopropylacrylamide)
gels [poly(NIPA)] In water, they undergo a discontinuous thermoshrinking volume
phase transition. There is a parallel between the phase transition of poly(NIPA) gels

and the phase separation of uncrosslinked poly(NIPA) in watcr, as illustrated in the

following figure.
e
- Ll
38" |oymer \ ]
o 36 - L .
° Two Phase ]
2" 34 | Regnon .
8
8. 32 - 1
5
- 30} \\ gg;lgm .
28 | i
01 02 03 0.4 05 06
Polymer volu:ne fraction, ¢,
’ FIGURE 1.1. Gel-gel volume phase transition of poly(NIPA) gels and phase separation of
uncrosslinked poly(NIPA) in water. [Heskins et al., 1968 and Freitas et al., 1987]
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The minimum on the binodal curve for uncrosslinked polymer is a Lower Critical
Solution Temperature (LCST) Below this temperature, 32°C, the polymer and water
are completely miscible, but above it a two-phase region exists, consisting of a water
rich phase and a polymer rich phase. The phase behavior of poly(NIPA) gels in water
is similar, with a transition temperature of 34°C. Below this temperature the gel exists
as macroscopically homogeneous and in highly swollen form, while above it the gel
shrinks drastically by releasing water If poly(NIPA) gels are produced below the
LCST, they are colorless and transparent, indicating good homogeneity If they are
produced above the LCST, they are opaque, possibly due to the formation of
micropores or other inhomogenieties Gehrke ef al. (1991) found that the opaque gels
formed above the LCST expanded 120 times faster and contracted 3000 times faster
than comparable homogeneous gels formed below the LCST They hypothesized that
this fast response is due to a bicontinuous interconnected porous structure arising from

phase separation during gelation.

1.2. MODELS FOR GEL VOLUME CHANGE

The equilibrium aspects of gel volume have been extensively investigated
Although accurate predictions of gel volume as a function of external conditions are
not yet possible, a qualitative physical picture has been established On the other hand,
the kinetics of volume change have received little attention.

From the thermodynamic viewpoint, the driving force for the transport of a
substance relative to bulk flow arises from the gradient of its chemical potential This
phenomenon is known as diffusion and can be formulated phenomenologically by
application of the thermodynamics of the irreversible processes For a binary system at

uniform temperature and pressure, the diffusional flux of component 1 is given by
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i, =-D:Vy [1.1]

where, 4 is the chemical potential of component i and D; is the thermodynamic
diffusion coefficient In most cases, the chemical potential is unknown and Equation

1.1 is rewritten with the concentration gradient as the driving force.
i,=-DVc, [1.2]

where D, the diffusion coefficient, is generally concentration dependent (Crank, 1975).
Two types of models can be developed: molecular models and continuum models
The molecular models aim to predict the diffusion coefficients, from information about
the polymer network So far this approach has not produced accurate predictions of
diffusion coefficients. The continuum models are used in conjunction with the
experimental volume change data to estimate diffusion coefficients, which may then be

related to the polymer composition of the gel. The latter approach is used in this thesis.

1.3. OBJECTIVES

1. To synthesize non-ionic poly(NIPA) gels using different gelation temperatures,
monomer concentrations, and amounts of crosslinker;

2 To investigate the swelling kinetics of these hydrogels;

3. To formulate and test a model of the kinetics of swelling and collapse of hydrogels

under isothermal conditions.
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1.4. ORGANISATION OF THE THESIS

Chapter 2 outlines some general principles and definitions pertinent to the kinetics
of gel volume change Various solvent transport mechanisms in polymers and gels are
described along with a method to distinguish between them "Fickian" transport is
critically examined. A moving boundary kinetic model is developed for highly swelling
gels. Chapter 3 describes the procedures used for gel preparation, and reports the
results of experiments involving gel swelling In Chapter 4, predictions are made using
the model proposed in Chapter 2 for one-dimensional swelling and collapse in planar,
cylindrical and spherical geometries. Diffusion coefficients are obtained by fitting the
model to the experiments of Chapter 3 and other data available in the literature The
composition dependence of the diffusion coefficients is compared to that suggested
from theory. The conclusions of this study and recommendations for further work are

presented in Chapter 5.




CHAPTER 2

Kinetics of Ge! Volume Change: Theoretical Aspects

2.1. INTRODUCTION
According to Stannet et al. (1972), the sorption of small molecules by polymers has
been studied for over 100 years, even before the macromolecular nature of polymers
was recognized. See extensive reviews by Rogers (1965) and Frisch (1980). The
solvent molecules not only penetrate into the polymer, but also swell it Thus the
boundary between the liquid and the swelling polymer changes with time. The sorption
of penetrant is also accompanied by bulk morphological changes and may result in
phenomena such as swelling stress and cracking This work is concerned with free (as
opposed to constrained) volume change of the rubbery polymer network

A polymer may exist in either of two states, namely, the rubbery state and the
glassy state Above the glass transition temperature, 7, a polymer is in the rubbery
state, 1€ it is soft and elastic and can be easily deformed Below T, a polymer is in
the glassy state stiff and hard and difficult to deform. A rubbery polymer readily
changes its configuration in response to the stresses induced by penetrant molecules
because thermal energy is available for doing so above T, . Since glassy polymers
deform with difficulty, their sorption behavior differs from that of rubbery polymers
Sorption mechanisms in glassy polymers can be further complicated by the fact that the
penetration of small molecules may cause a transition from the glassy to the rubbery

state due to increased polymer chain mobility.
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In this chapter various experimentally observed sorption types are discussed The
semantics of various diffusion coefficients used in literature have been cntically
examined. The existing kinetic models are reviewed especially to locate reasons for the
inability to deal with highly swelling gels. A better way to categorize the diffusion in
polymers is proposed And finally a model is developed to describe the kinetics of gel

volume change.

2.2. CHARACTERISTIC FEATURES OF SORPTION BEHAVIOR

Sorption is split into three broad divisions (Rogers, 1965):

{1] Fickian II Diffusion!

[2] Anomalous transport (Non Fickian Diffusion)

[3] Case Il transport
There exists a general empirical equation to describe these different modes of transport
They are usually distinguished by fitting sorption data over approximately the first half

of the sorption curve, to the following equation ( Fujita, 1968; Crank, 1975 )

F=k(t)"/6 [21]

here, F is the fractional approach to equilibrium given by

F = () =mO) [22]
m(o0)-m(0)
where

m(0) = mass of the penetrant present at time 0.
m(f) = mass of the penetrant sorbed at any time £.

m() = mass of the penetrant sorbed at equilibrium.

1Commonly known as "Fickian" or "Case I" diffusion in the literature.

8
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J is the characteristic dimension of the gel at time zero; and, k¥ and n are parameters.
Table 2.1 lists the values of exponent n for various diffusion types. Representative
swelling curves, fractional approach to equilibrium versus square root of time, for

different diffusion types are shown in Figure 2.1.

TABLE 2.1. Exponent n of Equation 2.2 for various diffusion types:

Exponent n Transport Type
0.5 Fickian II Diffusion
05<n<li Anomalous (Non Fickian) Diffusion
1.0 Case Il transport
FICKIAN Il ANOMALOUS CASE I
Sigmoidal Pseudo-Fickian Two-Stage

ORI MO SO A@ﬁ@

LA A S

e //’
Jt Jt /t /t t

Rubbery / Glassy Glassy

FIGURE 2.1. Swelling curves as indicators of transport types. Rogers (1965)

FICKIAN Il TRANSPORT is characterized by a single parameter, the diffusion coefficient.
The molecular relaxation in this case may be either much faster than diffusion (7> T,)
or extremely slow ( 7<T_) and therefore not observed on the experimental time scale.

A gel is regarded as Fickian II (see Figure 2.1.a) if it passes the following test
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[1] The plot of F against Vt is linear in its initial portion (generally 40-60% of
equilibrium).

[2] After the linear portion, the curve is concave to the t axis.

[3] The curves for different gel sizes (i.e. different & values) superimpose on F versus

Vays

ANOMALOUS TRANSPORT is generally observed below T, and has been further
categorized into three subclasses. These are sigmoidal, pseudo-Fickian, and two-stage
behaviors (see Figure 2.1.b, ¢ and d). The sigmoidal behavior of the sorption curve
shows an inflection point around =0 5. Pseudo-Fickian sorption curves show a small
linear region resembling Fickian II, but curves for different gel sizes do not coincide on
the plot of F versus ¥Z The two-stage or dual mode of sorption is characterized by
initial rapid uptake, establishment of a quasi-equilibrium, followed by a slow approach
to final equilibrium.

CASE Il TRANSPORT involves the motion of a boundary between a rubbery shell and a
glassy core in the sample. This boundary moves at a constant velocity The weight
gain is proportional to time (see Figure 2.1.¢). Cases have also been reported where
the mass transfer at the end of the sorption experiment is accelerated. This is usually

referred to as super Case II transport.

Vrentas and Duda (1986) introduced a dimensionless group called the Deborah
number, DEB, to characterize polymer-penetrant systems according to their diffusion

behavior into one of the above categories.

Am
(DEB), = N

D

[2.3]

10
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where 4 is the characteristic time of the fluid and 6, is the characteristic time for the

diffusion process. Table 2.2 shows the use of the Deborah number to anticipate the

type of diffusional behavior.

TABLE 2.2. Classification of various diffusion types. D and u are the difiusion coefficient
and the rubbery/glassy front velocity, respectively.

Deborah Diffusion Characteristics Constitutive Rate T
Number Type Equation Controlling
Parameter
<01 Fickian II Molecular relaxation >> Classical Fick's Law D > Tg
Daffusion transport
~] Anomalous/Non-Fickian Molecular relaxation » no general agreement more than <T8
(Pseudo-Fickian, Sigmoidalor | Diffusion transport one
Two-Stage)
o] Case-1 Molecular relaxation << no general agreement | u < Tg
Diffusion transpoit.
{Relaxation at observable rates)
>10 Fickian 11 Moleculas relaxation << Classical rick's Law D < 7'x
Duffusion transport

2.3. THE DIFFERENCE BETWEEN FICKIAN | AND FICKIAN Il TRANSPORT

The three characteristics of Fickian II, as mentioned in the previous section, are a
direct consequence of the solution of Fick's second law with a fixed boundary (i.e.
volume change is not taken into account). For small times (valid up to F ~ 0.4) these

solutions are approximated by (Crank, 1975):

F=7W

[2.4]
where v is a constant, ¢ is the time, and § is either the initial thickness for a slab, or
radius of a sphere or a cylinder. This result is valid for both a constant and a

composition dependent mutual diffusion coefficient. Two points need tc be clarified

here.

11
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For good solvents diffusing into polymers, the solvent molecules not only
penetrate into the polymer but also swell it. Thus, the volume of the polymer changes
with time, a factor not considered by the Fickian II treatment. Yet, in literature, the
data obtained for swelling and collapse of gels, when found to be consistent with the
three Fickian II characte:istics are interpreted as a signature of Fickian II behavior, i e
Fick's second law coupled with no volume change (Rogers, 1965).

Second, when the experimental F vs \t curve is inconsistent with predictions
based on Fick's second law without volume change, the anomalies are attributed to
polymer relaxation: the finite rate of adjustment of polymer chains in the presence of
the penetrant (Waksman et al., 1990). Some investigators have attempted to explain
these phenomena using the domain of linear irreversible thermodynamics  Others,
while severely criticizing this approach, have proposed a large scale revision of the
diffusion laws According to Perez-Guerrero ef al. (1991) the non-linear effects
indicate the underlying phenomena occur in states which are far from local equilibrium,
thus violating the fundamental assumption of the theory of linear irreversible
thermodynamics. These conclusions overlook the fact that Fick's second law is the
result of combining the species continuity equation with the constitutive equation for
the diffusion flux (Fick's first law), under conditions where the volume average velocity
is zero (Bird et al., 1960). It is possible the diffusion flux to be described by Fick's first
law and also to have a moving boundary such that Ficks second law does not apply.
Such a situation is described in section 2.6.

It is proposed the transport should be called Fickian I if Fick's first law is valid and
the boundary moves. Based on the evidence presented in Chapters 3 and 4, transport is
regarded as Fickian I if the gel remains a rubber throughout the course of swelling or

coliapse and the following experimental features are observed:

12
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[1] The plot of F against Vt is linear or sigmoidal in its initial portion ( generally 40-
60% of equilibrium).

[2] After the linear or sigmoidal portion, the F curve is concave to the square root of
time axis.

[3] The curves for different size gels (i.e. with different 6 values) superimpose on plots

of F versus Nt /8

LINEAR FICKIAN I: Many rubbery polymer networks are known to absorb solvents,
gases or vapors leading to minor swelling, with the ratio of final to initial equilibrium
gel masses, ®, close to 1. Some examples are rubber in benzene and polyethylene in
water vapor (Rogers, 1965). An experimentally obtained initially linear swelling curve
is illustrated in Figure 2.2.a. Such curves are usually denoted as Fickian II transport.
However, the shape of the swelling curves and their overlap on F vs Vt /6 are not
unambiguous criteria for distinguishing Fickian II from Fickian I transport. Consider
the identical looking Figures 2.2.a and 2.2.b. In such situations one needs to know
whether the boundary moved to determine about the type of transport involved. If the

boundary moves (i.e. volume changes) the transport is called linear Fickian I.

FICKIAN Ii FICKIAN | ANOMALOUS
Linear Sigmoidal Sigmoidal
! b ® "G b ®
F F F F
-~
Jt76 Jt76 Jt/8 [t/8
Rubbery / Glassy Rubbery Glassy

FIGURE 2.2. Swelling curves for Fickian I, Fickian Il, and Anomalous transport.
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SIGMOIDAL FicKIAN I: Weakly crosslinked organic polymers in the rubbery state, are
known to absorb good solvents, leading to an appreciable change in volume (® values
as large as 20). The swelling curves show a sigmoidal behavior Furtiiermore, curves
for different values of the characteristic dimensions superimpose on a plot of /' vs Nt 8
(see Figure 2.2.c). Some examples include swelling of poly(NIPA) gels in water and
rubber in toluene. This behavior will be called sigmoidal Fickian I, subsequently Often
the sigmoidal swelling is taken as an indicator of "anomalous” or "non-Fickian"
behavior (Waksman et al., 1990). Some elastomers in the glassy state also show
sigmoidal swelling behavior, but the swelling curves for different characteristic
dimensions do not superimpose on F vs %) (see Figure 2.2.d) Such cases are

classitied as anomalous

Figure 2.3 shows the commonly used classification of transport in polymers At
the lowest level (inside the dotted rectangles) are the shapes of the experimentally
determined swelling curves on ' vs Vtor Fvst The linear and sigmoidal behaviors on
F vs 1 are classified as Fickian II and Anomalous, respectively On the other hand,
the linear behavior on F vs 7 is classified as Case II. This scheme does not account for
any variants of Fick's first law other than Fickian II, does not take into account the
swelling or collapse; and, does not justify the idea to categorize rubbery sigmoida!
swelling along with glassy sigmoidal swelling, therefore, it needs to be modified A
better way to categorize transport in polymers is proposed in Figure 24 The linear
behavior on F vs Vt may be either Fickian I or Fickian II Similarly, the sigmoidal
behavior may be either Fickian I or Anomalous A method to determine the transport

type from the experimental data is proposed in Chapter 4
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Diffusion in Polymers

Fick's | ¥ law vaid
FIXED SOUNDARY
Anomalous or
Fickian It Non-Fickian Case |l

R

Unear Sigmoidal | |Pseudo-Fickian| | Two-Stage Linear

Fvlit Fuvs ¢

FIGURE 2.3. Present classification for diffusion in polymers.

Diffusion in Polymers

Fick's | *law vald

FIXED MOVING
BOUNDARY BOUNDARY
Anomalous or
Fickian || Fickian | Non-Fickian Casell
l l l \i l
Linear Linear Sigmoidal || Sigmoidal || Pseudo-Fickian{| Two-Stage Linear
Fwlt Fovst

FIGURE 2.4. Proposed classification for diffusion in polymers.
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2.4. DIFFUSION COEFFICIENTS
Descriptions of diffusion coefficients in polymers are available in the literature
(Crank, 1975; Rogers, 1965; Vrentas, 1986). For a polymer-solvent system, there are
six commonly used diffusion coefficients:
(1] mutual diffusion coefficient, D,
[2] solvent fixed diffusion coefficient, D,
[3]1 polymer fixed diffusion coefficient, D,
[4] polymer self diffusion coefficient, D",
[S] solvent self diffusion coefficient, D*,

[6] cooperative diffusion Coefficient, D,

The first three, D,, D, and D,, describe a diffusion process in a binary mixture or
in a system composed of two single component phases (Vrentas, 1986). They are
parameters of a binary system, and hence, not assignable to either the polymer or the
solvent component (phase). Usually, they vary with the polymer composition (volume
fraction), temperature, and pressure, although the dependence on the pressure is weak.
For a series of homologous polymers, the molecular weight becomes an additional
parameter (Fujita, 1990).

The reference velocities for D, , D, and D, and the relationships between these
coefficients are given in the Table 2.3. The volumetric average velocity serves as the
reference velocity for D, , thus it is sometimes called the volume fixed diffusion
coefficient Tke solvent-fixed diffusion coefficient, D, , refers to the solvent velocity.
The polymer velocity is chosen as the reference velocity for D, . The three reference

velocities are related by

u,=@u, +o.u [2.5]
s PP
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TABLE 2.3. Relationship between the diffusion coefficients.

Reference velocity Diffusion coefficient Relationship with D,
u, DP ( D, )
Dp ==
Polymer velocity P
u, D, D,
Solvent velocity ?,
um Dﬂl -
Volume average veloctty

The self diffusion coefficients, D°, and D", , measure the mobility of the molecules,
unlike the mutual diffusion coefficient which measures the rate at which concentration
gradients disappear. D°, or D’, are determined by measuring the rate of diffusion of a
small amount of radioactively tagged component (polymer or solvent) in a system
composed of a uniform composition of untagged components (polymer and solvent).

For a binary polymer-solvent solution there are two self diffusion coefficients (Vrentas,

1986):
D, =RT®,=RT/f, [2.6a]
D} =RTO, = RT//, [2.6b]

where @ is the mobility of component i and £ is the friction coefficient which is the
product of the effective viscosity of the medium and the effective diameter of
component i. Most molecular theories derive expressions for D*; rather than D, .

An approximate relationship between the self-diffusion coefficients and D, based
on the combination of statistical mechanics with the phenomenological theory of

irreversible processes, (Loflin ef al., 1969):
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Jdna, . .
D, = ( e ]T p[Dpxp +D}x, [2.7]

where g, represents the activity of the solvent and x, is the mole fraction.
Since the macromolecular D°, is generally much smaller than the small molecule D,
the above expression can be further simplified to the following form (Vrentas, 1986).

D'p V.o, | u
D, =2 r" . 2.8

where 4, is the solvent chemical potential per mole and v, is the partial specific volume
of the polymer. For the concentrated solution regime (i.e up to a solvent volume

fraction of approximately 0.85) the above expression becomes

D, =D 29]
where
0=(1-9¢,)'(1-219,) [2.10]

and y is the polymer solvent interaction parameter from the Flory-Huggins polymer
solution theory.

The cooperative diffusion coefficient, D, describes the relaxation of fluctuations of
the polymer concentration and the collective motion of polymer chains (Vrentas, 1986)
It is measured by the quasi-elastic light scattering techniques. It has been shown
experimentally that D, approaches D, for semi-dilute polymer solutions (Fujita, 1990)

For good solvents, the scaling theory predicts (de-Gennes, 1979)

D, < p}” [2.11]
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2.5. KINETIC MODELS: A LITERATURE SURVEY

Although several mathematical models of the kinetics of gel volume change have
been formulated, so far a consistent treatment does not seem to have been given. The

existing models can be split into three categories:

COLLECTIVE DIFFUSION MODELS

These models are based on the work done by Tanaka et al. (1973), who derived an
equation of motion of the polymer network in a gel in order to describe light scattering
by a hydrogel. Tanaka and Fillmore (1979) applied this equation of motion to the
swelling process of spherical polyacrylamide and poly(NIPA) gels in water They
treated the swelling of a gel as a process where a crosslinked network, initially under
uniform stress, expands by osmotic pressure, sucking in the surrounding fluid. They
criticized previous work, which they believed had incorrectly assumed that gel swelling
was determined by diffusion of solvent molecules into the polymer network They
proposed that the collective diffusion coefficient of the polymer network into water
controls the swelling kinetics.

Peters and Candau (1986) generalized the Tanaka-Fillmore (TF) kinetic model by
including the effect of the shear modulus. In 1990 Li and Tanaka formulated a new
relation to extend the TF model to non-spherical gels. They predicted that the diffusion
coefficients for a long cylinder and for a slab, respectively, 2.5 and 3.0 times sn:aller
than that of a spherical gel Mazich et al. (1992) pointed out the flaws in the
derivations of the TF model and its extended versions (where the divergence of a
gradient was confused with the gradient of the divergence). Moreover, the models
were tested only for volume changes between two highly swollen rubbery states
containing more than 90 % water. In experiments with polyacrylamide gels the gel
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beads were not washed after preparation to remove impurities and unreacted
monomers.

Komori and Sakamoto (1989) proposed an alternative to the TF model Their
model involved a coupled diffusion equation for the excess concentration of penetrant
with an expression for the distribution of local strain. No concentration dependence of
the diffusion coefficient was assumed. Considerable discrepancies were found between
the experimental results and the model predictions
NON-FICKIAN DIFFUSION MODELS

The models proposed by Berrens and Hopfenberg (1979) and further developed by
Joshi and Astarita (1979) are inappropriate for rubbery swelling. Although these
models were proposed to describe Non-Fickian behavior observed in glassy swelling,
they have been widely used to account for sigmoidal swelling in rubbery gels
(Waksman ef al. 1990) These models are based on Fickian Il diffusion and first order
relaxation rate process and do not allow for the movement of the gel boundary The
models involve three to six parameters, including the diffusion coefficient ~When
swelling data are fitted by these models, the resulting diffusion coefficients may show
unusual composition dependence, e.g. a maximum at an intermediate composition
FICKIAN DIFFUSION MODELS

These models make use of Fick's first law as the constitutive equation  As
discussed in Section 2.3, two different behaviors are possible Fickian I and Fickian 11

Fickian II models (Buckley et a/ 1962) are inappropriate for rubbery gels because

[1] The model neglects the movement of the bouncary caused by volume
change.
[2] Even for a concentration-dependent diffusion coefficient the solvent uptake

is initially proportional to the square root of time
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Vasheghani-Farahani (1990) proposed a kinetic model using the chemical potential
of the solvent as the driving force for the diffusion flux and accounting for boundary
movement The chemical potential came from Flory-Huggins theory The swelling
curves did not agree with experimenta! data, probably because of the limitations of the
Flory-Huggins theory and the theory of rubber elasticity, which were used to obtain the
chemical potential of the solvent.

Rossi et al. (1991) proposed a model based on the assumptions similar to those
used in this work. They derived the governing equations only for one dimensional

planar geometry, yet they tested the model (Mazich ef al., 1992) fcr a spheres

2.6. A MODEL FOR SWELLING OF POLYMER GELS

The mathematical model developed here incorporates volume changes due to
penetrant swelling and allows for the concentration dependence of diffusivities The
swelling process was modeled as isothermal two-phase motion of a polymer phase (p)
and a low molecular weight solvent phase (s) Both phases are assumed to have

constant and equal densities. The two continuity equations can be written

Polymer phase’
o0,
=-VJ .
o » [2.12]

Solvent phase’

9 _ vy

= J, [2.13]
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where, g,is the volume fraction of phase 7 , J,is the volumetric flux density (superficial
velocity) of phase 1 with respect to the fixed coordinates, and ¢ is the time The volume

fractions are constrained by

P, o, =1 (2 14]
Adding Equations 2.12 and 2.13

v (J,+3,)=0 [2.15]
Assuming that the solvent and polymer volumetric flux densities are zero at time zero,

one gets

J,+3,=0 [2 16]
The volumetric flux density is divided into two parts the diffusional flux and the
convective flux. Let j,. be the volumetric flux density of the solvent relative to a
reference velocity, u*. Then

J,=j . +ou [217]
Any reference velocity may be chosen, but the most common choices are the mass,
molar, volume average, or the velocity of one of the phases.

If the volume average velocity, u, , is the reference velocity, the solvent

volumetric flux density is

J,=j,, tou, [2 18]
where
u,=gun, +ou, (2 19]

The velocities of the polymer phase and the solvent phase follow from the definitions of

volumetric flux densities and volume fractions:

J

w =2 [2 20]
?

u =3 [2.21]
¢,

22




CHAPTER 2 Kinetics of Gel Volume Change. Theoretical Aspects

Using Equations 2 19, 2.20 and 2.21, Equation 2 18 can be reduced to the following

‘orm

3=, +0.(3,+1) [222]
The description is completed by a constitutive equation, which defines the diffusion

coefTicient"
ia, =—Da Vo, [2.23]

where D, is the mutual diffusion coefficient. Combination of equations 2.13, 2.14, 2.22

and 2 23, gives

o
;’ =v(p,ve,) [2.24]

which will be referred to as the gel diffusion equation, subsequently.
Combining Equations 2.14, 2.16, 2.20, and 2.22 gives
u,=-22vp [2.25)
P»
which will be referred to as the interface equation This equation is used to obtain the

velocity of the polymer at the gel/liquid interface

Gel diffusion and interface equations can also be obtained by choosing the velocity
of the polymer or the solvent as the reference velocity in Equation 2.17 and proceeding
similarly Table 2 4 presents the different forms. The equations are equivalent, since

the three diffusion coefficients are related by

D,=¢,D,=9,D, [2.26]
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TABLE 2.4. Different forms of gel diffusion and interface equations.

Solvent volumetric flux
Reference velocity density Fick's first law Gel diffusion equation Interface equation
. : =v(D, p,Vp
Potymer veloctty J.=la, tom, o, =-D, Ve, ot  9,99,) u,=-D,Vp,
- o D,(1-9,)
. . E=VID, ¢,V _ S\~ 9,
Solvent veloctty JJ = —qu, - ¢pu: .'pu' = _D; pr ot ( ¢P ¢P) r - ¢p v¢
u, 0 D
. . % _v(D,vp,) |u,=-"=vp,
Volume average velocity J, =) toun, jo,=-D, Vo, ot ?,

T YAIIVHO

05y 023004 :25URY D) M| 3D JO SINPUTY




CHAPTER 2 Kinetics of Gel Volume Change: Theoretical Aspects

2.7. GEL VOLUME CHANGE IN ONE DIMENSIONAL GEOMETRIES

For the one dimensional case, Equation 2.24 can be reduced

de, 1|0 9,
“Uilp, » 227
ETINNT [ar [D" s 12.27]

where 1 = 0, 1 and 2 for a slab, a cylinder and a sphere, respectively; 7 is the Eulerian

spatial coordinate and / is the time.

The initial and boundary conditions are :

¢, (r.0)=9, [2.28]

@,[R(1).1]= ¢} (for ¢ > 0) [2.29]

%) -0 (for £ 20) [2.30]
or

r=0

where @2 and g7 are the initial and equilibrium values of the polymer volume fraction in
the gel. The quantity R(f) is the half thickness for a slab and the radius for a cylinder or a
sphere.

It is assumed that at the boundary between the swelling gel and the surrounding fluid,
the equilibrium volume fraction is reached instantaneously. For one-dimensional

geometry, the gel/liquid interface, located at R(#), moves with the polymer velocity:

dR
dt Wol,orey [231]
Equation 2.25 yields the rate of change of R(¢) as
P .
dR __D,o®, [2.32]

dt @, Or

r=R
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Hence the model involves a time dependent moving boundary. The initial condition is
at £1=0 R()=R [2.33]

where R is the initial position of the boundary.
FRACTIONAL APPROACH TO EQUILIBRIUM

The fractional approach to equilibrium, F, is computed using the assumption that the

densities of the polymer and solvent were equal.

sl
¢ @ ? @,

where g@¢ is the initial polymer volume fraction, @, the final polymer volume fraction,

and @, is defined as the instantaneous volumetric-average polymer v olume fraction .

. R(t)

i+1
= [o,(r.yar [2 35]
0

@,(1)=

where i = 0, 1, 2, for slabs, cylinders and spheres, respectively
2.83. COORDINATE TRANSFORMATION FOR THE SLAB GEOMETRY
The coordinates may be transformed to recast Equations 2.27 to 2.33 from the

Eulerian to the Langrangian or material coordinate form, thus fixing the position of the

boundary. This transformation is successful only for the slab geometry (i =0 in Eq 2.27)
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Defining a new coordinate , x (7,7), such that

Ox
ox| . 2.36
( > )‘ ?, [2.36]
and using it along with the definition of the polymer velocity
or
(—ﬁTJx =u, [2.37]

one arrives at the following transformed coordinate form of Equation 2.27 for planar

geometry with a constaat D,

o Je
5: =D, ¢; ﬁxzp [2.38]

In case D, is composition dependent, Equation 2.27 reduces to

e, 3¢, ID(9,)(d9,Y
EYIRL [D"(“”) oxt o, | ox [2.39]

See Appendix I for the detailed derivations. The initial and boundary conditions for both

cases are
?,(x,0)=g, [2.40]
@, (X, 1) = @] (fort>0) [2.41]
l
;:" =0 (for 1 > 0) [2.42]

x=0

here the gel/liquid interface is fixed at

R(0) o
xM=J'0 @,dr [2.43]
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CHAPTER 3

Experimental: Gel Synthesis, Swelling and Analysis of Results

3.1. INTRODUCTION

The present work was primarily with the kinetics of swelling of weakly crosslinked,
highly swelling poly(NIPA) gels over a large range of concentration. The variables
studied included the total monomer content, the temperature at gel formation, the

degree of crosslinking, and the gel thickness.
3.2. DEFINITIONS

GEL COMPOSITION:

The gel composition was specified by the relative amount of monomer(s) and
solvent (water) at preparation The following variables are convenient for defining the
gel composition ( Vasheghani-Farahani, 1990 ):

mass of all monomers (g)

, x 100 [3.1a]
volume of solution (ml)

%T =

mass of crosslinker (g) <100 [3.1b]

%
mass of all monomers (g)

FRACTIONAL APPROACH TO EQUILIBRIUM:

The fractional approach to equilibrium, (), was calculated from

F= M(t)- M(0) [3.2]
M()- M(0)
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where

M(t) = Mass of gel at time ¢,

M(0) = Initial mass of gel (7=0);
M () = Final mass of gel (¢ - =),
Equilibrium Mass Ratio (® ):

The equilibrium mass ratio of the gels was defined as

b= M(x) [3.3a)
M(0)

For constant and equal densities of the solvent and the polymer phases, the above is the

same as equilibrium volume ratio

o=Y® [3.3b]
V(0)

where V(o) and V/(0) are the final and initial volumes of the gel, respectively.

3.3. GEL PREPARATION

Gels were prepared by free radical polymerization of N-isopropylacrylamide in an
aqueous solution, using N,N'- methylenebisacrylamide as the crosslinking agent. All
chemicals were reagent grade and were used without further purification. They were
purchased from Pfaltz and Bauer (USA). Polymerization was initiated using the redox
couple of ammonium persulfate with sodium metabisulfite ( see Table 3.1 and Figure
3.1

The procedure was the following' The weighed monomer and 100 ml of degassed
and deionized water were transferred to a nitrogen filled glove-box. Forty ml of this
water were placed in a 250 ml Erlenmeyer flask and the monomer and the cross-linking
agent were dissolved init Two initiator solutions were prepared with 15 ml of water,

one containing 0.03g of ammonium persulfate and the other 0.03g of sodium
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metabisulfite. To begin the polymerization, 5 ml of each initiator solution were added
to the monomer solution to make a total volume of 50 nil The resulting solution was
mixed with a magnetic stirrer, flushed with nitrogen for 5 minutes and, when the
bubbles in the solution disappeared, it was poured into a mold. The mold was made of
two glass plates (13 cm x 13 cm) separated by a Teflon spacer, as shown in Figure 3.2.

Spacers of two thicknesses were used : 1 58 mm and 2 38 mm.

TABLE 3.1. Gel Materials.

Material Function Mol. Wt.

N-isoprcpylacrylamide or NIPA

Hg C=CHCONHCH(CH3 )5 Monomer 113.18

N.N’- methylenebisacrylamide

(Hz C=CHCONH), CHy Crosslinker 154.17

Sodium metabisulfite

Naj S5 Og Accelerator 190.10

Ammonium persulfate

(NH)4 S, 0, Initiator 228.20

30




CHAPTER }

Experimental: Gel Synthests, Swelling and Analysis of Results

N - sopropylacrylemde CHz =C'H
CH, =CH
2 c=0
C=0 !
| /H NH
H—N—C'—CH C'H
| 3 2
CH }
3 NH
I
c=0
|
7
N.N “methyiene bisscrylamde CH, =CH
— cH _éH — [cHy— CH—] CH, — CH — [CH,~ cH—] CH,—
2 , n CH ' l n
2
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|
NH
NHCH (CHy ), | NHCHICHy ) ,
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CH,
|
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i
— —-cH - — CH— — CH — — CH— -
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- — CH — — CcH—1 CH. — CH —[CcH,—~CH— ] cH_—
CHy —CH —[cH fH 1, ] 2, a2
PP
I
NHCH(CH3 ), 'l‘ NHCH(CHy ) ,

Poly (N - noxopylecrismde) Gel

FIGURE 3.1. Molecular structure of the monomers and the poly(NIPA) gel.
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Glass Plate

Glass Plate

b A1

13an

v e

FIGURE 3.2. Glass plates and the spacer used for the gel mold

| {a) Gel Mold
‘ Melal Clamp
| \ "
|
‘ o —
Lower Glass Flate Uppor Glass Piale
(b ) Gel Mold Cantainer

’ Gol Mold
[ Melal Clamp

O Ring

FIGURE 3.3. (a) Gel mold (for gelation at 15°C and 25°C) and the (b) aluminum gel mold
. container (for gelation at 15°C).
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Polymerizations were carried out for 24 hours at 25°C or 15°C. For polymerization at
25°C, the mold containing the gel solution was pressed with metal clamps (see Figure
3.3.a) and the whole assembly was transferred to an airtight plastic container which
was kept in a constant temperature room. For polymerization at 15°C, the gel mold
was placed in a constant temperature water bath in an aluminum container (see Figure
3.3 b) to provide efficient heat transfer. After the polymerization was complete the gel
sheet was 1emoved from the mold and gel samples in the form of thin circular disks, 1 1
cm in diameter, were cut with a hollow cylindrical stainless steel cutter.

Table 3.2 shows the various gels synthesized at two different gelation

temperatures. The ratio of the mass of accelerator and initiator added to the amount of

total monomer was fixed at a value of one.

TABLE 3.2. Gel disks synthesized using different monomer concentration, percent
crosslinker, gelation temperature and thickness.

Gel GELATION TEMPERATURE
Characteristics T=15°C T = 25°C
%T 156 | 158 | 156 10 10 10 10 10 10
% C 3.85 1.5 1.5 385 | 1.5 25 1.5 1.5 2.5
Thickness at
Preparation(mm) | 2.38 | 238 | 158 { 238 | 238 | 1.58 | 238 | 1.58 | 2.38

Following synthesis, the weight of gel disks at preparation, was measured to +
0.0001 g with an electronic balance. Each gel piece was then dialyzed for 48 hours in
deionized water at 23°C to remove unreacted monomers and oligomers trapped in the
network. The water was replaced every 6-8 hours. The gels so obtained were then

stored in 50 ml sealed glass bottles containing water at the room temperature.
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Gel Collapse: The dialyzed gel pieces were separately immersed in deionized water
contained in 250 ml bottles. To collapse the gels, these bottles were transferred to a
constant temperature bath at 35°C. Following equilibration ( 3-5 days ) the gels were
ready for swelling experiments. The mass of the collapsed gel disks, M(c), was
measured to + 0 0001 g.

Gel Drying: Drying organic polymer gels is extremely difficult since they undergo
considerable shrinkage and can warp or crack if the drying conditions are not carefully
controlled. The gels were dried for 24 hours in a laboratory convective dryer
maintained at 40°C. Only the equilibrated disks at 35°C could be dried without

warping or cracking. The mass of the dry gel disks, AM(d),was measured to + 0.6001 g

3.4. SWELLING EXPERIMENTS

3.4.1 PROCEDURE

The swelling experiments involved determination of transient weight changes of
hydrogels at 25°C in 50 ml of unagitated water The approach to equilibrium was
followed by periodically removing the suspended gel from the so'rion, blotting the
excess water with a J-cloth, weighing it , and then returning it to the solution
Equilibration times between 24 and 48 hours were used Most experiments were done
with the collapsed gel samples equilibrated at 35°C, which is just above the
poly(NIPA)-water phase-transition temperature of 34°C. These gels contained about

50 % water. A few experiment: were carried with dried and preswollen gel samples

3.4.2 REPRODUCIBILITY
Gel disks, equilibrated at 35°C, were used as the starting materials for the swelling

experiments performed ai 25°C. Two tests were run. The first involved repeated
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swelling and collapse of a single gel sample The second involved a single swelling

experiment on three disks cut from the same gel sheet.

Figure 3.4 shows the swelling data for a single gel disk plotted as the fractional
approach to equilibrium, F, versus the square root of time ir minutes. The % axis was
chosen as the abscissa to display more information about the initial portions of swelling,
Two swelling experiments are shown. At the start of Cycle 1 the disk was at 35°C, and
then equilibrated at 25°C  After equilibration, this disk was collapsed by raising the
temperature of the gel-water system to 35°C . While the gel was collapsing, the
solution was replaced every 6-8 hours. The equilibrated gel disk at 35°C marks the end
of Cycle 1 and the beginning of Cycle 2, the second equilibration at 25°C The good
repeatability demonstrates that

{a] The 48 hour dialysis removed the unreacted monomers, oligomers and other

impurities.

[b] There was negligible loss of gel mass during the weighing procedure.

Figures 3 5 shows the swelling curves for three disks cut from the same sheet. The
gel was made with 10 % T and 3.85 % C. Similar data are shown in Figure 3.6 for two
disks cut from a gel sheet having 156 % T and 1.5 % C. The reproducibility of the
swelling curves indicates that gelation was homogeneous throughout the sheet. Figure
3.7 shows swelling curves for two gel disks (15 % T, 3.85 % C) cut from sheets
prepared separately under identical conditions. The reproducibility of the swelling

curves for these replicates was very good.
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FIGURE 3.4. Two swelling cycles for same the gel specimen. Gelation and swelling
temperatures were 15°C and 25°C, respectively. Initial dia. and thickness' 7.5 mm and 1.08

mm. [ @7 =0.59 and @7 = 0.0765 ]
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FIGURE 3.5. Swelling profiles for 3 poly[NIPA] disks (10% T and 3.85% C) cut from the
same sheet. Gelation and swelling temperatures were 15°C and 25°C, respectively. Initial
dia. and thickness: 7 mm and 1.28 mm.[ ¢ = 0.45 and @77 =0 0844 ]
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FIGURE 3.6. Swelling profiles for 2 poly(NIPA) disks (15.6% T and 1.5% C) cut from the
same sheet. Gelation and swelling temperatures were 15°C and 25°C, respectively. Initial
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FIGURE 3.7. Replicate swelling profiles for 2 poly[NIPA] disks (15.6% T and 3.85% C) cut
from different sheets. Gelation and swelling temperatures were 15°C and 25°C, respectively.
Initial dia. and thickness: 7 mm and 1.4 mm. [ @, =062and ps7=0.13]
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3.4.3 EFFECT OF GELATION TEMPERATURE

Figure 38 shows the swelling curves for disks with same thickness and
composition: 10 % T and 1.5 % C, prepared at the two different temperatures The
overlap of the swelling curves demonstrates that gelation temperature had only a small
effect on the swelling kinetics.

The equilibrium mass ratios were expected to be different for the different gelation
temperatures for the following reasons:

[a] Polymerization and crosslinking at lower temperature yields a slower
reaction, which yields more crosslinks compared to a reaction at higher
temperature

[b] At lower temperature the polymerizing chains are stretched out more
(Treolar, 1975) than at higher temperature thus yielding a more
homogeneous gel structure, i e there are fewer clusters of polymer chains
(de-Gennes, 1979). Homogeneous gels swell slower compared to non
homogeneous gels (Gehrke ef al. 1991)

The implication of the above arguments is lower rates of swelling and lower
equilibrium mass ratios for gels prepared at lower temperature The experimental data
in Figure 3.8 show comparable swelling rates and equilibrium mass ratios for gelation
at 25 °C and 15 °C, respectively

Poly(NIPA) gels with 156 % T and 3 85 % C were cloudy when gelation took
place at 25°C, while gels with 10 %T and 1.5 %C were transparent After the first §
minutes of polymerization at 156 % T and 3 85 % C , the forming polymer changed
into a milky latex. Adjusting the % initiator and the % accelerator as suggested by
Gehrke (1986), did not prevent cloudiness. However transparent gels were formed at

15.6 % T and 3.85 % C when the gelation temperature was 15°C The opaqueness of
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gels formed at 25 °C is probably due to slow dissipation of the heat of reaction so that

the temperature inside the mold exceeds the polymer phase separation temperature

(LCST at 32°C).
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FIGURE 3.8. Effect of the gelation temperature on the swelling profiles of poly(NIPA) disks
in water at 25 °C.

Gelation Intial Intial ° « (1))
temperature thickness (mm) diameter (mm) ¢P [

15°C 1.2 65 0.53 0.0433 12.2

25°C 1.2 6.5 0.55 0.0458 12.0
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3.4.4 EFFECT OF %T AND %C

The equilibrium mass ratio, ®, for dry gel materials, is far higher, almost double,
compared to that for collapsed gel materials. Table 3.3 compares ® values for gels
with different % T and % C.
TABLE 3.3. Comparison of equilibium rmass ratios for geis with different monomer

concentration and percent crosslinker. The gelation and the swelling temperatures were 15°C
and 25°C, respectively.

P
%T %C
DRY COLLAPSED
15.6 3.85 1.7 4.8
15.6 1.50 129 8.1
10.0 1.50 23.3 12.2
10.0 3.85 11.7 54

An increase in %T or %C leads to a lower equilibrium mass ratio. Increasing
either %T or %C yields a gel network with more chain entanglements or crosslinks
which limit gel expansion.

Figure 3 9 shows the swelling curves for four gels with different composition and
crosslinker content synthesized at 15°C with the same thickness at preparation The
disks had different diameters and thicknesses in the collapsed state at the start of
swelling. All curves were sigmoidal. The curves with the same % C but different % T
tend to be closer than curves with different % C Higher % T yields a lower

equilibrium mass ratio, but faster equilibration.

40




CHAPTER 3

Expenmental. Gel Synthesis, Swelling and Analysis of Results

Fractional Approach to Equilibilum, F
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FIGURE 2.9. Effect of %T and %C on the swelling profiles of poly(NIPA) disks in water at 25
°C. The gelation temperature was 15°C

%T %C Intial Intial @° P (1)
thickness diameter P P
(mm) {mm)
15.6 385 1.40 7.00 0.62 0.13 4.8
10.0 3.85 128 7.00 0.45 0.0844 54
15.6 1.50 1.46 6.95 0.63 0.0774 81
100 1.50 120 6.50 0.53 0.0433 12.2
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3.4.5 EFFECT OF THICKNESS

Figure 3.10 is a plot of F versus V(t)/ x, for two gels having the same % T and % C

t

but different thicknesses. Here x,is the initial half thickness of the gel disk at time zero.

Scaling the time axis brings the data for these thicknesses together
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FIGURE 3.10. Effect of the initial thickness on the swelling profiles of poly(NIPA) disks in

water at 25 °C.

Inttial Intial Gelation P° e 1]
thickness (mm) diameter (mm) temperature (4 4

1.08 7.50 15 °C 0.59 0.0765 17

1.46 6.95 15 °C 063 00774 81
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3.5. WHY IS THE SWELLING CURVE SIGMOIDAL ?

Figure 3.11 shows the swelling curves for collapsed and dry starting materials. It

indicates sigmoidal swelling behavior.
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FIGURE 3.11. Effect of different starting points on the swelling profiles of poly(NIPA) disks in
water. The gelation and the swelling temperatures were both equal to 25°C.

[¢;¢=0043, Collapsed ¢ =0.5, d=11.6, Dry ¢y =1, 0=233

Following experimental observations may be responsible for the sigmoidal shape

[a] The range of swelling was too large.

[b] The disk geometry changed during swelling. After about five minutes of
swelling, a collapsed disk buckled. It reacquires the disk shape about an hour
later.

[c] The disk did not swell only in one direction; it swelled isotropically. This

increased the gel surface area. Some evidence of isotropic swelling is given in

Table 3.4.
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TABLE 3.4 The mass, diameter, and thickness of various disks. Th
25°C, respectively.

e gelation and swelling temperatures were 15°C and

%T

%C Mass of the Gel (g) o Thickness (mm) Diameter (mm)

M(d) M(c) M(=) M(«)M(c) | Collapsed | Swolien Ratio Collapsed | Swolien Ratio
Dry Coliapsed | Swollen

156 385 00304 00490 02341 48 140 2.28 1.63 7.0 1.5 1.64

156 150 00316 | 00500 | 0.4083 8.1 1.46 280 1.92 6.95 14.0 200

15.6 150 0.0226 | 00383 02954 77 1.08 1.94 1.80 75 140 187

100 385 00207 | 00459 | 02453 54 1.28 2.28 1.70 7.0 115 164

100 150 00209 | 00397 | 04824 122 120 270 225 6.5 145 223
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In addition, scveral other phenomena were hypothesized to explain the sigmoidal

shape of the swelling curves:

[1] The gel did not swell isothermally. The collapsed gel piece at 35°C was

2]

suddenly transferred into water at 25°C at time zero. The gel temperature
decreased as it swelled.

Anatomically the swollen and the collapsed gel pieces are different (See Figure
3.12). The left side of the schematic shows a nearly fully swollen gel piece at
25°C. Notice the macroscopic homogeneity in this case. The gel piece on the
right side of the figure was collapsed at 35°C. The polymer chains, in the
poly(NIPA) gel, form clusters above the phase transition temperature, leaving
large patches of water in between (Gehrke, 1991). In light of these facts, it
must take a finite time for the network to reorient itself topologically when a

collapscd gel piece at 35°C is suddenly introduced into water at 25°C.

o
Fully Swollen 25°C Coliapsed 35 C

FIGURE 3.12. The swollen and the collapsed phases of the gel.
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[3]1 The surface of a collapsed hydrogel is hydrophobic while the interior is
hydrophilic (Peppas, 1986). For the first few minutes the diffusion of water

into the gel is hindered as the polymer chains at the surface realign their

hydrophilic and hydrophobic parts.

Experiments were performed to further investigate [b] and to test [1]. Figure 3.13
shows the swelling curves for three dry gel disks, each at a different temperature, at the
onset of swelling. The swelling curves follow the same path for the initial 50 minutes
All effects due to a different initial temperature of the disk apparently manifest during
the later stages of swelling. An importan: question to be asked is. how long does the
temperature gradient exist and how high is it? Simple calculations show that for a disk

initially at 35°C, in equilibrium with water, when suddenly transferred into water at 25°

C, it takes only 3 minutes for the temperature to fall to 26°C in the center.
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FIGURE 3.13. Effect of the initial temperature of a dry gel disk on the swelling profiles of
poly(NIPA) disks in water. The gelation and swelling temperatures were both equal to 25°C.

[p7=1and pr7=0.043 ]

Square root of time in minutes, \‘t [min )
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Another experiment was designed to investigate whether non-isothermal swelling
was the real cause of the sigmoidal shape of the swelling curve. A collapsed disk at 35
°C, was removed from water and then transferred rapidly into a closed vessel
containing water-saturated air at 25°C. After about 5 minutes, the disk now at
approximately 25°C, was transferred into water at 25°C for swelling. The swelling

curve was again indicated sigmoidal as shown in Figure 3.14.
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FIGURE 3.14. Poly(NIPA) disk at 25 °C at the start of the swelling experiment. The gelation
and the swelling temperatures were both equal to 25°C. [ @, =05 and ¢y7=0.043 ]
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FIGURE 3.15 Swelling curve for starting point close to equilibrium on (a) M (t) versus vt
and on (b) F v <sus vt The gelation temperature and the swelling temperature were 15°C
and 25°C, respectively.
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In another experiment, poly(NIPA) gel disks, prepared as described in section 3.3,
were placed into cylindrical cavities (10 mm dia.), produced by clamping between glass
plates 1 mm thick Teflon sheet through which circular holes were punched. A collapsed
disk was placed in each hole and the remaining volume filled with water. The assembly
was pressed tightly with metal clamps and left in the horizontal position until the gel
disks attained the size of the cavities by sorption of the water. The disks prepared in
this way contained approximately 80 % water. After equilibration at 25°C for 12 hours
the disks were removed and swollen in water at 25°C. The gel was isothermal
throughout the course of swelling.

Figures 3.15a and 3.15b show the swelling curves for one of these disks plotted as
mass and fractional approach to equilibrium versus square root of time. The curves
were sigmoidal, but the sigmoid was less pronounced than for swelling of a collapsed
gel. For the preswollen gel in Figure 3.15b, ® = 2.5, while for the collapsed gel in
Figure 3.6, ® = 77. The preswollen gel did not buckle during swelling, thus

demonstrating that sigmoidal shape of the swelling curve is not due to buckling.
The experimental evidence shows that the sigmoidal swelling behavior of

poly(NIPA) gel disks is not caused by non-isothermal conditions nor the change of

shape due to buckling. The most likely reason is the large range of swelling.
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4.”. INTRODUCTION

The moving boundary model for the kinetics of gel volume change with a constant
D, was solved numerically for the three one-dimensional geometries slabs, cylinders
and spheres. The results are presented in dimensionless form The model with a
constant and a variable D_ is then compared with the experimental results for the
swelling of poly(NIPA) disks in water Comparisons are also made with the data of
Tanaka et al. for the swelling of polyacr, iamide beads (1979) and the collapse of
poly(NIPA) beads (1985) in water Finally, comparisons are made with the data
obtained by Mazich et al. (1992) for the swelling of polyisoprene spheres in toluene
Various theoretical and empirical forms of the composition-dependent diffusion
coefficient were used to fit the experimental data
4.2. METHOD OF SOLUTION

4.2.1 NUMERICAL COMPUTATION OF MOVING BOUNDARY PROBLEM

Coupled gel diffusion and interface motion is solved numerically in a system of
coordinates where the position of the boundary remains fixed The dimensionless

coordinate r* is defined by

oI
ro= RO [4.1]
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where R(r) is the position of the boundary at time ¢, hence the governing equations are

solved within the fixed domain 0<r* <1 The dimensionless time, 7,, is defined by

tD
Rz"’ [4.2]

where R is the initial position of the boundary: half thickness of a disk, the radius of a

cylinder or the radius of a sphere. The dimensionless polymer volume fraction, ¢’ is

. 9,0,
o =2"% [4.3]
Ag,
where
Ao, =¢,- 9] [4.4)

and ¢ and ¢y are the initial and final polymer volume fractions in the gel,
respectively Appendix IlI contains a derivation of the gel volume change equations in

terms of r*, 7, and ¢* for constant D, The final equations are as follows

GEL DIFFUSION EQUATION:
op" _r op 5’°+(i)2 i(o9), e
ér, roror, \rjir\or) s
[4.5]

where
. _ R

= —— 4.6
r R [4.6]

and 1 =0, 1 and 2 for a slab, a cylinder and a sphere, respectively.
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INTERFACE EQUATION:

dr 1 2o’

= [p-1]— == 4.7

el St e I [4.7]

where

O = ‘pj; (48]
)

The boundary and initial conditions for Equation 4.5 are

at 7,=0 =0 for 0<r<il [4 9a)

at r"=1 ¢ =1 for 7,>0 [4 9b]

at r°"=0 22— =0 for 1,20 [4 9c]
or

The initial condition for Equation 4.7 is
at 7,=0 r'=1 [4.10]

Equations 4.5 to 4.10 apply for swelling (97 > @) and collapse (¢, < ¢;4). The only
parameter in these dimensionless equations is @, as given by Equation 4 8 @ can also

be expressed as

o= [3 3b]
V(0)

where V() and ¥(0) are the volumes of the gel at equilibrium and at the start of
swelling (or collapse), respectively For constant and equal polymer and solvent

densities, equilibrium volume ratio is the same as the equilibriumn mass ratio
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The finite difference method of Sparrow and Chuck (1984) was used to solve
Equations 4.5 to 4.10. An implicit scheme was used for the gel-diffusion equation and
an explicit scheme for the interface equation. The discretization, and the convergence
and accuracy of the numerical computations are discussed in Appendices III and IV.

For a composition dependent diffusion coefficient, Equation 4.5 becomes

. L] . ° 2 » > ] » 2
G r o dr) [ L) |Luf2e ) p2¢ ODu (00 )| 4y
ot r or dt r'r, r- \or or” oo \ or

This equation was solved in the dimensional form using the same numerical technique

4.2.2. FRACTIONAL APPROACH TO EQUILIERIUM

The fractional approach to equilibrium, F, was computed from the profiles of ¢-

versus r° by

L ¢/&>—1]
r_( o1 [4.12)

where ® is the ratio of the instantaneous volumetric-average polymer volume fraction,

@, , and the equilibrium polymer volume fraction, I

d= Z" =(i+1)(r°)mj'[d>—{d>—l} o (r",z)] ar [413]

where i = 0, 1, 2, for slabs, cylinders and spheres, respectively. The variable F runs

from zero to one in both swelling and collapse.
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4.3. ONE DIMENSIONAL VOLUME CHANGE WITH CONSTANT D

Figures 4.1, 4.2 and 4.3 show the swelling curves with constant D_ for slabs,
cylinders and spheres, respectively. The fractional approach to equilibrium, F, is
plotted against the square root of dimensionless time, Vr,

The shape of the swelling curves is contingent on the ratio of the final to initial
polymer volume fraction, @, in addition to the the sample geometry For a given ®
value, regardless of the geometry, the plot of F vs V1, yields a single curve The curve
with a @ value of 2, is the solution for all following different initial and final polymer
volume fractions: 1 and 0.5;08 and04;0.6and 03,02 and 0 1, etc The curve for
® — 1 is for sorption without volume change. For this case, called Fickian II in
Chapter 2, the sorption is described by Fick's second law without boundary motion
Appendix IV shows the results of the numerical computations for ® near one

The swelling curves for slabs appear different from those for cylinders and spheres
For slabs the swelling curves are initially linear For cylinders and spheres, curves with
® values above about 2 are sigmoidal. A point of inflection occurs where a change in
the sign of the second derivative of F with respect to Vt_ takes place If the swelling
curve is sigmoidal, the second derivative is positive initially, decreases to zero at the
point of inflection, and then becomes negative The numerical values of the second
derivative, computed by the three point central difference formula, are shown in Figure
4 4 as a function of Vt, for a sphere Computations were made for various ® values
No inflection point was found for swelling curve with ® = 2 For curves with ® > 2,
the infection point appears For the same value of @, the inflection point for a cylinder
occurs at a smaller value of F than for a sphere No inflection points were found for
slabs even for a @ value as high as 100 The increase in surface area for cylinders and
spheres is probably responsible for the sigmoidal shape at ® > 2.
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FIGURE 4.1. Swelling curves for slabs with constant D,, for different vaiues of .
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FIGURE 4.2. Swelling curves for cylinders with constant D, for different values of ®.
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Fractional approach to equilibrium, F

FIGURE 4.3. Swelling curves for spheres with constant D, for different values of .
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spherical swelling curves. The numbers on the curves are the different values of ®.
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The swelling and collapse (sorption and desorption) curves for the three
geometries are presented in Figures 4.5 and 4.6. To compare between the rates of

swelling and collapse more easily, the dimensionless time used in these figures was

tD,
T, = Rf, [4 14]

where R is the radius of the equivalent polymer sphere or a cylinder; or the half
thickness of equivalent polymer disk, i.e. the characteristic dimension of the solvent

free gel. The polymer equivalent radius is related to the initial radius at the start of

swelling or collapse by

R, = [w'_:-'] R [4.15]

1 =0, 1and 2 for a slab, a cylinder and a sphere, respectively For a given gel piece, the

quantity R is fixed , whereas R, is larger for collapse than it is for swelling.

Figures 4.5 an' 4 6, reveal that spheres swell and collapse the fastest and slabs the
slowest. Collapse is faster than swelling for spheres, approximately the same as
swelling for cylinders, and slower than swelling for slabs The swelling and collapse
curves for spheres and cylinders cross; the curves for slabs do not This difference is
attributed to the change in surface area which occurs for spheres and cylinders as

swelling and collapse occur. There is no surface area change for a slab
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FIGURE 4.5. Comparison of swelling and collapse for planar geometry.

[Swelling: 97 = 0.2, 7= 0.1, ® = 2, Collapse: ¢, =01,99=02 0 =0.5]

08}

Swelling ’

Collapt:,

0.6 Cylindncal

04

0.2

Fractional approach to equilibrium, F

H H ! A &

0 1 2 3 4 5 6 7
Square root of dimensionless time, [t

FIGURE 4.6. Comparison of swelling and collapse for sphencal and cylindrical geometries.
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Figures 4.7, 4.8 and 4.9 show the concentration profiles for several dimensionless

times, t,, for spheres, cylinders and slabs, respectively. The volume fraction is plotted

against r° , where from Equations 4.6 and 4.14;

r'=1 at r,=0 [4.16]

For swelling, 7 increases from 1 and for collapse 7 decreases from 1. At short times,

the curves show sharp gradients near the moving boundary.

4.4 ESTIMATION OF THE DIFFUSION COEFFICIENT

The only unknown in the model is the diffusion coefficient, D,. Several equations
were proposed for D, and the parameter(s) were estimated by minimizing the

following objective function:

2

%= Y[R - ] [4.17]

where 7 is the number of experimental points.

A PASCAL program OPTIM, which uses Powell's method of conjugate directions
(Press et al., 1989), was used to obtain the unconstrained minimum of the objective

function.
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(a) Planar Swelling
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FIGURE 4.7. Concentration profiles for slabs at various dimensionless times, T,
(@) Swelling: 9 =02, ¢7=01,®=2 (b) Collapse: @2 =01, =02 ® =05
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(a) Cylindncal Swelling
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FIGURE 4.8. Concentration profiles for cylinders at various dimensionless times, T,

(a) Swelling: g2 =02, @s9=01, ®=2 (b) Collapse: @2 =0.1, g9 =02 © =05
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(a) Spherical Swelling
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FIGURE 4.9. Concentration profiles for spheres at various dimensionless times, T,
(a) Swelling: @0, = 0.2, P = 01, d=2 (b) Collapse: ¢y =01, 0= 0.2, ®=0.5.
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4.5. FITTING THE MODEL TO DATA FOR POLY [NIPA] GEL DISKS

The ratios of-the equilibrium to initial diameters and thicknesses were essentially
equal (See Table 3 4). Therefore, one dimensional planar geometry does not represent
the disks used in the experiments. Since the volume change was isotropic and the
lateral surface of the sample disks represented almost 35 % of the total surface area,
the gel volume change equation for a spherical geometry, was used as an
approximation The diameter of the equivalent sphere was chosen so that the surface-
area-to-volume ratio of the equivalent sphere was equal to that of the disk shaped
sample at the start of swelling.

Figure 4.10 shows the results of fitting constant D,, D,and D, to the experimental
data for swelling of poly(NIPA) gel disks at 25°C. The best fit values are listed in
Table 4 1. As shown in the figure, constant D,and D, provide fair agreement with the
experimental data. The best fit D, was close to the value of 2.2 x 10" m?/ s, reported
by Tanaka (1985) for the poly(NIPA)-water system.

Since the experimental swelling curves were more sigmoidal than the model using

constant D, the following two parameter forms of D, were examined:

D,=D¢; (power law form) [4.18]

and

D, = D'eﬂ(l—w’ ) (exponential form) [4.19]

where D°, D", @ and f are parameters whose values were obtained by fitting the
theoretical curve to the experimental data. Figure 4.11 shows the best fits to the

experimental data of Figure 4.10 using Equations 4.18 and 4.19. The values of the

parameters are listed in Table 4.2.
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FIGIRE 4.10. Best fits of model to the swelling data for poly[NIPA] disks in water at 25°C.
Constant D_(thick curve), constant Dp (thin curve) and constant D, (dotted curve). The initial
diameter and thickness were 7.5 mm and 1.08 mm, respectively

[ @2 =059, pra=0.0765and ®=7.7].

TABLE 4.1. Estimated values of parameters in the constant diffusion coefficients for
swelling of poly (NIPA) gel disks in water :

D 435 10" m¥s
4

D 6 x 10-'' m?/s

D 5.75x 10-" m/s
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FIGURE 4.11 Best fits of model to the swelling data for poly[NiPA] disks in water at 25°C.
Two different forms of composition dependent D, as descnbed by equations 4 18 and 4.19
were used The initial diameter and thickness were 7.5 mm and 1.08 mm, respectively

[ @y =0.59, pra=0.0765, and ® = 7.7

TABLE 4.2. Estimated values of parameters in the composition dependent diffusion
coefficients for swelling of poly (NIPA) gel disks in water :

power law form D’=0.67 x 10" ms

o= -1
D®=0.48 x 10" m¥s

exponential form

p=3




CHAPTER 4 Companson of Model with Expenments

The power law form does not fit well at the later stages of swelling, although it makes
the initial portion of the swelling curve more sigmoidal than a constant D, The
exponential fit better accounts for the swelling process throughout, but it is not a
significant improvement over constant D_. Of the representations in Equations 4 18
and 4.19, the exponential form is more reasonable because D, remains finite as ¢,
approaches zero.

A confirmation for the working hypothesis that thick disks can be represented by an
equivalent sphere is provided by the following. The final equilibrium value of the
surface-area-to-volume ratio of equivalent sphere was 12 (mm)™ | as predicted by the
model. This is close to the experimentally obtained value of 1 3 (mm)' (for a fully
swollen disk with thicknes and diameter of 1.94 mm and 14 mm, respectively)

4.6. DIFFUSION COEFFICIENTS FROM THEORY

4.6.1 FLORY'S POLYMER GEL THEORY

Flory's polymer gel theory (1979) is the most widely used equation of state for
non-ionic gels'

%

B~ M, =RT[ln(1—¢,)+¢,+z¢i+K(¢, -%’pp)] [420]

where

4, = Chemical potential of the solvent in the swollen gel
4, = Standard state chemical potential of the solvent
@, = Polymer volume fraction

R = Gas constant

T = Absolute temperature

x = Polmer / Solvent interaction parameter

K = Parameter of gel elasticity
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This equation incorporates contributions due to rubber elasticity along with the

polymer-solvent affinity The expression for mutual diffusion coefficient can be written

as (Vrentas e/ al., 1986)

D = 2pe¥b, 5"*) [4.21]
" RT ap, .

Using 4 20 and 4 21

D =D [4.22]
where
.« 2 1 1 1
0 =9, [1—21(1—¢p)+/1(;-—1)[5--3¢ %]:! [4.23]

D is the solvent self diffusion coefficient, A is a constant, and y is 0.485 (Heskins ef
al., 1968)

Figure 4 12 shows the 2 parameter (A and D7 ) fit to the data for swelling of poly
(NIPA) gel disks in water at 25°C, using the above form of the mutual diffusion
coefficient in the gel volume change (GVC) model The fit is poor Clearly, the Flory

theory fails to provide even the qualitative form of the swelling curve.

4.6.2 SCALING THEORY

The polymer solutions have been categorized as dilute, semi-dilute or
concentrated In dilute solutions the polymer coils are essentially isolated from each
other, while in concentrated solutions the chains overlap extensively Semi-dilute
solutions lie between these limits The range of @, values in this study falls in the semi-

dilute region
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FIGURE 4.12. Fitting of the model to the same data for swelling of poly (NIPA) disks in
water with D, from Scaling and Flory theones.
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One way of dealing with the diffusional transport in semi-dilute solutions is to use
scaling laws Scaling predicts the exponents in simple power laws obeyed by various
polymer properties, such as the mutual diffusion coefficient, in the limit of high polymer
molecular weight. However, the range of validity and the actual values of the diffusion
coefficients is not predicted by scaling theories.

Weakly crosslinked, highly swollen gels are regarded as an analog of semi-dilute
polymer solutions. also pictured as a transient network structure (de-Gennes, 1986).

The diffusion coefficient in good solvents is given by scaling arguments as

D, (g7 ) % [4 24a]
or
D, x (p2)" (1- ) [4 24b)

where, @79 is the polymer volume fraction at equilibrium swelling at a given
temperature

Experimentaily it has been shown that D, approaches D, in the semi-dilute regime
Takebe ef al. (1989) measured the cooperative diffusion coefficient for isotropically
swollen polyacrylamide gels and found

m®/s [4.25]

r

)0 76003

D, =(34+05)x10™ (g

Figure 4 12 shows the best fit to the experimental data for the swelling of poly

(NIPA) disks at 25°C, using the following form of mutual diffusion coefficient

e
D, = Z—,{(D(;,” _ (ppl 7‘}CXP,:K: (p,;’[%;— ]]J [4.26]

P
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where A% , and X , are parameters. This expression is consistent with Equation 4 24b
because at equilibrium the exponential term vanishes The agreement between theory
and data is excellent. The parameter values were 5.63x10™ m* /s , 2 45 and 0 25,

respectively.

4.7. APPLICATION OF THE MODEL TO SPHERICAL HYDROGELS

The data of Tanaka et al., for swelling of polyacrylamide gel beads (1979) and the
collapse of poly(NIPA) gel beads (1985) in water were analyzed using the moving
boundary model with constant D, . The initial and final conditions and the best fit

diffusion coefficients are given in Table 4.3

The swelling data for polyacrylamide beads are sigmoidal even for a small ® of
1.3, as shown in Figure 4 13 However, the numerical computations for spherical
geometry in Section 4 3 indicate that swelling curves are sigmoidal only for larger
changes in volume (with ® > 2) The best fit to the experimental data does not have
sigmoidal shape. The sigmoidal shape may have been caused by the failure of Tanaka
et al. to remove oligomers, unreacted monomers, and other impurities by dialysis
before swelling. The collapse data for poly(NIPA) beads, shown in Figure 4 14, are
well predicted by a constant D,  The collapse experiments are unaffected by the
oligomers etc. because these materials are removed in the initial swelling step The
fitted values of D, have an order of magnitude agreement with the values of D,
obtained from the cooperative diffusion coefficient, D, , determined by the same

authors using quasielastic light scattering or QELS
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TABLE 4.3. List of information about the data used to fit the model to Tanaka et al. data,
along with the best fit diffusion coefficients

SWELLING COLLAPSE
[
i 0.052 0.080
P9
P 0040 0.09%4
) 1.3 0.85
Inttial Radius (mm) 03130 0.2500
Final Radius (mm) 0.3388 0.2378
D (m?1s) dx107" 85x 107"
m
(Fitted)
D w2s) Ix10™" 2x 10"
c
(from QELS)
D_(m21m)
m 29x10 " 19x 107"
(corresponding to D)
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1 Polyacrylamide spheres swelling in water

Fractional approach to equilibrium, F

1

0 i 1
0 10 20 30 40

Square root of time in minutes, Jt[minT

FIGURE 4.13. Best fit of the model to the data for swelling of polyacrylamide spheres in
water (Tanaka et al., 1979). The parameter values and other equilibnum information are

listed in Table 4.3.

1 |- Poly[NIPA] spheres collapsing in water O
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FIGURE 4.14. Best fit of the model to the data for collapse of poly (NIPA) spheres in water
‘ (Tanaka et al., 1985). The parameter values and other equilibnium information are histed in
Table 4.3.
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4.8, APPLICATION OF THE MODEL TO OTHER SYSTEMS

The model can be applied to any elastomer, provided it swells in a good solvent
and remains rubbery during the swelling. The data of Mazich et a/ (1992) for the
swelling of polyisoprene spheres in toluene were used to test the model. The swelling
curve was sigmoidal for a @ value of 6.4, in agreement with the predictions of the
model with constant D, Figure 4.15 shows best fit to the Mazich ez al. data. The

value of D for this fitis 1.8x10'° m’/s

Polyisoprene spheres swelling in toluene

08|

06|

04|

02}

Fractional approach to equilibrium, F

I

0 o L 1 ! L
0 100 200 300 400 500 600
Square root of time in seconds, \It [ sec]

FIGURE 4.15. Swelling of polyisoprene spheres in toluene (Mazich et al., 1992). Initial
radius = 6 22 mm, 2 = 1, @79 = 0.156, and ® = 6.4. Curve: model with D, of 1.8 x 1010
m?/s
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4.9. DETERMINATION OF DIFFUSION TYPE FROM EXPERIMENTAL DATA

Based on the experimental and theoretical results of this study, a scheme is
proposed in Figure 4.16 to determine the diffusion type from the experimental

fractional approach to equilibrium curves.

EXPERIMENTAL DATA

Unconstrmned volume changs
= .
PlotFvs it
[ k
, ,
1 1
i
INITIALLY " INITIALLY OTHER
LINEAR ! SIGMOIDAL (Casell or
. Anomalous )
1
[ PlotF vs ¢
k Two Stage Linear
Curves No
superimpose on - Pseudo-Fickian
Fuslit/r,
S - ' Anomalous
1
! Yes Curves No Y
' supenmpose on > sigmodal
' Fvs t/r Case i
Y ° A
\~J_MOVING BOUNDARY.. -,
| T
i | Yes
!
|
f Y
No Yes '
| No
® s, D>l MOVING BOUNDARY
{ .
' Yes
" FICKIAN 1l " FICKIAN | * FICKIAN |

g

FIGURE 4.16. Proposed scheme to experimentally identfy the type of diffusion
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Conclusions and Recommendations

The following conclusions and recommendations can be drawn from the work
presented in this thesis

5.1. CONCLUSIONS

Non-ionic poly(NIPA) gels using different gelation temperatures, monomer
concentrations, and amount of crosslinker were synthesized After collapse at 35°C,
these gels undergo an appreciable change in volume when immersed in water at 25°C.
About 5 minutes after immersion, the gel disks buckle, but return to a disk shape after
another hour. The equilibrium swelling was isotropic. the final state of the disk-shaped
samples was a swollen disk with almost same ratios of initial to final thicknesses and
diameters

The maximum swelling was observed for gels with the least total monomer (%T)
and crosslinker (%C) contents The collapsed and the dry gels swelled 12 and 24 times
their original mass, respectively. Both %T and %C had a profound effect on the
swelling equilibrium of these gels. At a fixed %T, decreasing %C by half almost
doubled the equilibrium swelling ratio For a fixed % C, decreasing %T by about 40%
raised the equilibrium swelling ratio by 50% In contrast, diffur nt ge.ation
temperatures of 15°C and 25°C produced the same equilibrium swelling

The water uptake of the gels, followed a sigmoidal curve when plotted ss the
fractional approach to equilibrium versus the square root of time Swelling curves for

different initial disk thicknesses, &, were superimposed on plots of .7 e -Iy&. The
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swelling kinetics of these hydrogels are categorized as Fickian I (sigmoidal). The
commonly used categorization of diffusion in polymers, as shown in Figure 2 3, does
not account for any variants of Fick's first law other than Fickian II A new
categorization is proposed in Figure 2.4. Diffusion is regarded as Fickian 1 if Fick's
first law describes the diffusion flux and the boundary moves A scheme was proposed
in Figure 4.16 to determine the diffusion type from experimental data

A mathematical model was formulated to describe gel volume change (GVC)
under isothermal conditions. The model encompassed the general three-dimensional
geometry and incorporated volume change due to swelling and the concentration
dependence of diffusivity. The model assumed that diffusion was described by Fick's
first law, that a polymer and solvent had constant and equal densities, and that
equilibrium was attained instantaneously at the boundary For a constant D the
fractional approach to equilibrium, F, was a function of the dimensionless time, r,,and
the equilibrium mass ratio, ®

A marked difference was found between the swelling curves for disks and those for
cylinders and spheres For & > 2, the F versus ‘/ra curves were sigmoidal for spheres
and cylinders during the initial portions of swelling In contrast, the curves for disks
were not sigmoidal, even for a ® value of 100

For @ =2, spheres swell and collapse the fastest and slabs the slowest Collapse
was faster than swelling for spheres, approximately the same as swelling for cylinders,
and slower than sweiling for slabs

Good agreement was found between the predictions of the model and the
experimental data for disk shaped poly(NIPA) gels swelling in water at 25 °C for nitial
and final polymer volume fractions of 0 590 and 0 076, respectively (b = 77) A
sphere with a surface area to volume ratio equal to that of the disk at the start of
swelling or collapse was used to represent the disk sample, since the swelling was
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isotropic The data were well fitted by a constant D_. The data of Tanaka et al.
(1979), for swelling of polyacrylamide gel beads in water, were not fitted as well with a
constant D, Collapse data, Tanaka et al. (1985), for poly(NIPA) gel beads in water,
were well fitted with a constant D,

The model can be applied to the swelling and collapse of any elastomer in a good
solvent provided it remains rubbery, throughout. The data of Mazich er al (1992) for

the swelling of polyisoprene spheres in toluene were well predicted with a constant D_.

5.2, RECOMMENDATIONS

As a follow-up to this work, some pertinent areas for further research would be-

[1] Obtain collapse data for poly(NIPA) disks in water and compare with the model.

[2}] Test poly(NIPA) disks with smaller equilibrium mass ratio, ®, to examine the
effect on the sigmoidal portion of the swelling curve

[3] Test undialyzed poly(NIPA) disks to examine the effect on the sigmoidal portion
of the swelling curve.

[4] Investigate the swelling and collapse for poly(NIPA) spheres and cylinders in

w/ater

[5] Study the effect of the shape of different rubbery elastomers on swelling and

collapse kinetics
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Appendix 1

TRANSFORMATION OF EQUATION 2.27 FOR A SLAB
TO MATERIAL COORDINATE FORM

For constant D, Equation 2 27 can be written for a slab (1 = 1) as

é‘¢,(r,t)

2 fp,,(r 1)
51 @, (r ) ——F— [2.27a]

The polymer volume fraction is a function of laboratory-fixed (Eulerian) coordinate, », and

time, ¢

= f(r.0) [Al-1]
Let r be a function of the material coordinate, x, and time, .
r= g( x, t) [AI-2]

Spatial Denvative Transformations;

The total differential of @,can therefore be written as

of of
d -
@, = (ﬁr)dr+(ﬁt)d’ [AI-3]
(Op, of \ g
or \7) -(;«7 \ox A
VA Y
or | 22| (L) 28], (21 [ALS)
ot ) \ or \ ot ot
Now differcntiate [Al-4)

20,) (o1 Y%\ (o) o af
[ ox’ )‘ —(ér )[ﬁx2)+(ﬁx)[3;[ or )] [AL-6]
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Note that

of ..
—E;_f (r’t)

Therefore, 1its totzl differential can be written as
d _a_l. = éi_ dr+ _a_'i‘_ t
or or ot
o (2 [ \s2_[2f )9
ox\ or or ) dx ort )ox
Substitute [Al-9] into [AI-6] to give
o*e,\ _(2£)2%).[221) 2 ’
oxt -\ or ox? ort \ éx

Equation 2.27a can be written as

5f(r,t)

]25f(" )
ot

D,[f(r,1)

The relationship between r and x is

r(x,t)=g(x,t)= Idﬂ (ﬂ D

where B,is a dummy variable. From [Al-13] we obtain

og 1
dx  @,(x1)
then

dg__ -l [5¢(x,t))
[0, L o=
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Combining [Al-4] and [Al-14]

- Jx

af | ’f‘/’_p)
or (ﬁg/&k)[

Combining [AI-10], [AI-14] and [AI-15)

, 2
IS _p| T, L[
ot P oy @,\ Ox

Time Denvative Transformation

The total denvatives of @,and r can be written as

o, 2y
= d Pl dt
vo, (%) ar{ )

dr = -02- dx+ir- dt
&x, ot ;

Use [AI-19] in [AI-18], to get

o b7t
dp, = Oy || or dx+| 2L or dit+ %9, dt
P or )\ ox ) or J\ét ), ot )

or using |Al-4]

o4 174 o
de, = Do \ax+|| e or o e ar
d ox or J\ ot ) ar )
Since both [AlI-21] and

op o9
do = 21d Pl dt

are exact differentials, a companson yields
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() )22
a ) e ) ox)\or)\an),

The polymer velocity is

(%:-) =u, (Al-24]

Substituting {AI-23], gives

op, op, ap,

L | 2] - Al-25
[a:)r(atx%"" ox ), AF21
Use [AI-25] n conjunction with Equations 2.12, 2.13 and [AI-16], to get

dp,) _(%9, 20,\

—_— =| —— +D d Al-26
[ ot ) ( ot ) " e\ ox [ !

Substitute [Al-1], [Al-16}], [Al-17] and [Al-26] into [Al-12], to get

17 L0’
(@)
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Appendix 11

FINITE DIFFERENCE DISCRETISATION OF EQUATION 2.39

The one-dimensional gel diffusion equation in material coordinates for the planar geometry with
composition dependent diffusion coefficient is

r

e, D, d9,\
i @, (%T @JJ (ALL-1]

o9,
= D +
%[ n(0;) ax? o, Ix

This equaiion can be rewritten in the following form

2

9, 30, o (99,)
=K 2+ K (4 : All-Z
ey (9,) 5 T (aﬂp)( or ) [All-Z]

The fimte difference analog of eqn [All-2] using the Crank-Nicolson central difference scheme

1S.

(%&) = K(¢;.n+l/2)[%A2x(¢].n + q’/_ml )] + K.(¢J,n+|/2)[5x ¢1,n+l/..] [;— é‘x(wj,n + ¢1,n+1 )]

[AlI-3]

where @ ;. 1 the polymer volume fraction at grid pointy (7 =1, 2, ..., N+1 ) at time » and

(p +n ¢ ~in
o =Y PSRN L -4
x ¢;,n [ 2Ax ) [AI ]
+i.n - 2 n + =-1.n
A9 = ( & f % B ) [ALL-5]
o At
¢1,ntl/2 = ¢j,’l +( ) (_) [AH-G]
o) \ 2

The resulting equations were linear algebraic equations, and were solved by the Thomas

algonthm
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SOLUTION OF THE MOVING BOUNDARY PROBLEM

For the one dimensional case, the gel diffusion equation 1s

o, 1|2 o
S _|2|p i 227
ey r'[a”r[ " Tor H 1227}

where 1 = 0, 1 and 2 for a slab, a cylinder and a sphere, respectively; r 1s the Eulerian spatial

coordinate and ¢ is the time. The imtial and boundary conditions are given by Equations 2.28 to
2.30 and the interface equation 1s

dR__D, 99,

= (2 32
dt @, or |

r=R

The numerical solution was obtamed using a spatial »* , where the position of the boundary

remains fixed. The coordinate »*1s defined by

re—— 141]
R(1)

The moving boundary is at 7* = 1 and the governing equations arc solved within the fixed

domain 0 < r° < 1.

For constant D, , Equation 2.27 reduces to the following form.

2 2
00y, Dy8P . fy 9% D, [0, [AllL-1]
dt r or " ort Op,\ or
Using
= f(r.t
@, =J(r.1) [AINI-2)
ro=g(r.n

Equation [AIIl-1] is transformed to
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3¢, rdp,dR] 1 [iD,,, 29,), p e,
At R Ior dt *\er " art

Further, using

where Ao, =9, - o]
Equation Alll-3 becomes

iﬂ-iéﬂ'ﬁi,{L)z 1 (89, 2’
r, rrdr dr \r)|r\dr) sy

The nterface equation 1s

o1 2%
T, ror

rf=1

where @ is the equilibrium volume ratio.

The boundary and initial conditions for Equation 4.5 are
at 7, =0 =0 for 0<r<i

at r'=1 ¢ =1 for 7,>0

at r'=0 -=0 for 17,20

88

+aDm a¢l’ i
e, \ ar’

[AIII-3]

[42]

[4.3]

[4.4]

[4.5]

[4.7]

[4.9a]

[4.9b]

[4.9¢]




®

Appendix 1

The initial condition for Equation 4.7 is
at 7,=0 r'=1 (4 10]

DISCRETIZATION:
The above equations were discretised using finite difference techniques with an implicit scheme
for Equation 4 5 and an explicit scheme for Equation 4 7 The coupling between these equations
was treated following a procedure proposed by Sparrow and Chuck (1984) The numencal
approach can be summarnized as follows
The second order centra! difference rcpresentation 1s used to approxmmate the spatial
derivatives. Equation 4 5 can be readily transformed to

) e ) 3

Taei2 1

[Alll-4

where

¢, 1s the normalised polymer volume fraction at gndponty (y=1,2, ,N+l)attimen

5,0, =2rn " Oprin [AHI-5]
. 2Ar
- - 2 L ] + .
Ai. = ¢,+|,n ¢,._n2 ¢j—l,n lA”l"()l
(Arv)

Starting from the discretized Equation 4 7

) _(o- 1)L | Lrora "._?M] |ALIL-T]
dr, r Ar ]
one obtains
dr’) Az
S =T+ —_ AlIl-8
rm-l/2 rn (d z_u J" 2 l l
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to get
[215_) - qi—][¢N+l,n —.¢N,n:, [AIII-9]
dro n+1/2 rn+1/2 Ar

Finally the radius of the gel bead at time 7, 1s calculated from

e

I =r;’+(dr ) A, [AIII-10]
n+l/2

The Thomas algonthm for the tndiagonal matrix is used to solve the linear algebraic equations
for the value of polymer volume fraction at the new time step for various nodal locations. The
singulanity in the first equation of the set, which exists because of the node location at » = 0, is

handled by applying the L' héspital's rule.

PASCAL Program
The PASCAL computer programs used to solve the above equations, are available on a diskette

from Professor M E Weber!

! Department of Chemical Engineering, McGill Unuversity, 3480 University Street
Montréal, CANADA, H3A 2A7
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Appendix IV

CONVERGENCE AND ACCURACY OF NUMERICAL COMPUTATIONS

(a) Convergence

The convergence of the computed solution for the moving boundary problem was checked
with a particular emphasis on the imtial portion of the swelling curve  The foilowing
tables show the numerically computed F values for spheres with a constant /) for
@, =1,¢7 =01 Different step lengths, I/N, and time intervals, At,, were used
Table AIV 1 indicates that good convergence was achieved with 180 space
increments The largest relative deviation between /- values calculated with thus N
and smallest N =200 was 02 % Table A1V 2 gives numencal values of /- for
different time intervals Convergence was satisfactory at At = S«10° | with the

largest relative deviation between F values at this At and At = 10" equal to 0 4 %

TABLE A-IV.1. Companson of the F values computed for three space increments for
Ar,=1075.

F
Dimensioniess
Time T N =160 N =180 N = 200
0 001 0 0233 00233 00232
0.005 0 0535 00533 0 0533
001 00778 00777 00776
0.05 0.1950 01948 0 1947
0.12 0 3287 03284 0 3283
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TABLE A-IV.2. Companson of F values computed for three time intervals for 180 space
increments.

F
Dlme.nsionless Az = 107 Ar, =5x107 Az, = 10°¢
Time T,

0.001 0.0233 0.0232 0.0231
0.005 0.0533 0.0531 0.0531
0.01 00777 0.0776 0.0774
0.05 0.1948 0.1944 0.1944
0.12 0.3284 0.3275 0.3275

(b) Accuracy

The value of @ for swelling (collapse) is restricted by a minimum (maximum) limit of 1.
This case corresponds to diffusion without boundary motion, hence the moving boundary
solution should match the corresponding fixed boundary solution ( i e. the solution of Fick's
second law) as @ — 1. This it was used to check the accuracy of numerical computations.

The analytical solutions to Fick's second law with fixed boundary conditions are (Crank,

1975)
SLABS
—exX 2n+1) 2t AlV-1
; 2n+l) ? p[ ) ] [ :
CYLINDERS
F=1-Y - exp(-riai1)) [AIV-2]
n=1 ’; a;.
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SPHERES

F= 1—-:72;12-exp(—nznzr,) [AIV-3]

n=]

Here r, is either the half thickness for a slab, or radius of a spherc or a cylinder. The terms a,
are the positive roots of
J(a,r)=0 |AIV-4]
where J, is the Bessel function of the first kind of zero order, and a, 7, are the zcros of that
function.

The following tables show the comparison between the numerical and analytical solutions
The percentage relative deviations between the analytical solution for ® = 1 and numenical

solution for ® = 1 0! were less than 0.2 %.

TABLE A-IV.3. Comparison of analytical and numencal F values for a slab.

T, F [SLAB]
@ = 1 (analytical) ® = 1.01 (numenical)
0.001 0 0357 00356
0.005 0.0798 0 0796
0.01 01128 01124
0.05 0.2523 02518
0.1 0.3568 0 3560
05 0.7639 0.7635
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TABLE A-IV.4. ~omparison of analytical and numencal F values for a cylinder.

T, F [CYLINDER]
@ = 1 {(analytical) @ = 1.01 (numerical)
0001 0 0704 0 0702
0.005 0.1546 0.1539
0.01 0.2157 0.2148
003 0.3611 0.3600
0.05 0.4550 0.4540

TABLE A-IV.5. Comparison of analytical and numerical F values for a sphere.

T, F [SPHERE]
® = | (analytical) ® =1.01 (numerical)
0 0005 0.0742 0.0739
0001 0.1040 0.1036
0 005 0.2244 0.2235
001 0.3085 0.3072
0.05 0.6069 0.6060
0.1 0.7705 0.7697
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