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Abstract 

This thesis documents the design and implementation of two enhancements to the Aldat 

database programming language: abstract data types (ADTs) and extensions to the 

domain algebra. 

Utilizing a nested relational model and an improved procedural abstraction facility, 

ADTs are declared as computations encapsulating states with their accessorjmodifier 

methods. Objects of an ADT can be instantiated via a single join. As computation calls 

are embedded into updates and virtual domain actualization, objects are manipulated 

and accessed solely through the methods exported by the ADT. 

The vertical domain algebra empowers Aldat with the capability to combine values 

along a domain using system defined operators. A mechanism has now been installed 

to run user defined computations as well. This, cou pIed with ADTs, opens up the 

opportunity for Aldat to handle applications such as GIS which require at once the 

capacity of a traditional DBMS and the computational power of a modern programming 

language. 
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Résumé 

Ce mémoire illustre la conception et l'implantation de deux perfectionnements apportés 

au langage de programmation de bases de données Aldat : les types de données abstraits 

(TDA) et les extensions de l'algèbre des domaines. 

Lorsqu'on utilise un modèle relationnel imbriqué et une installation perfectionnée 

d'abstraction procédurale, on dit que les TDA sont des calculs qui encapsulent des états 

dans leurs mécanismes d'accès/modification. Les objets d'un TDA peuvent être in

stanciés par une seule jointure. Tandis que les «: computations» (une forme d'appel de 

procédure généralisé propre à Aldat) sont imbriqués dans les mises àjour et l'actualisation 

des domaines virtuels, les objets sont manipulés et sollicités exclusivement par les 

méthodes exportées par le TDA. 

Le domaine algèbre vertical permet à Aldat de combiner des valeurs le long d'un 

domaine en utilisant des opérateurs définis par le système. De nouveaux mécanismes 

ont maintenant été installés pour exécuter également les calculs définis par l'utilisateur. 

Conjugué aux TDA, cela permet à Aldat de recevoir des applications comme les SIG 

qui nécessitent à la fois la capacité d'un SGBD traditionnel et la puissance de calcul 

d'un langage de programmation moderne. 
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Chapter 1 

Introduction 

This thesis describes two enhancements to the Aldat database programming language 

- abstract data types (ADTs) and extensions to the vertical domain algebra. The 

motivation for this work is given in Section 1.1. In Section 1.2, we briefly outline the 

structure of the thesis. 

1.1 Motivation for the Thesis 

The relational data model, first introduced by Codd [Cod70], has attracted mu ch at

tention from both academia and industry. Relational database systems have improved 

the application development pro cess in large data-intensive environments by providing 

a single, uniform view of data expressed in structure-independent terms (Le. relations, 

tuples, domains, etc.). Other benefits inc1ude facilities for controlled sharing of data, 

system controlled data integrity maintenance, and highly tuned routines for data for

matting and access [AR90]. 

The power of the basic relational modellies in its decriptive ability, however, not in its 

computing ability, as admitted by Codd himself in his seminal paper. Codd envisioned a 

"data sublanguage" to be developed on the basis of the relational model and embedded 

in a variety of host languages. Arithmetic functions needed in the qualification for 

data retrieval, for example, were deemed appropriate in the ho st language rather than 

1 



CHAPTER 1. INTRODUCTION 2 

the data sublanguage. One problem in developing database applications using this 

"two-language" approach is the impedance mismatch between the data manipulation 

language (DML) of the database and the general purpose programming language (PL) 

in which the rest of the application is written [BM88]. One aspect of the mismatch is 

the difference between the declarative paradigm of DML and the imperative nature of 

PL. The other aspect is the mismatch of type systems. 

On the other hand, increasingly, requirements have emerged for database systems to 

handle new data types and their associated operations. Many applications, exemplified 

by office automation, computer-aided design and geographic information systems, could 

benefit from databases capable of handling complex objects typically used in program

ming these systems. Such non-business applications not only need a database to archive 

huge amounts of data, but also to provide extensibility to capture domain-specific data 

semantics. The basic model would clearly not be appropriate for such applications 

without sorne enhancements. 

Since the 1980's there has been a significant trend in database research addressing the 

inadequacy of the basic relational model. Various extensions to the base type system of 

databases have been explored. Nested relations [Mak77] were proposed to offer a direct 

mapping from applications with hierarchical structures to databases. More significantly, 

the concept of data abstraction [LZ74, Gut77] was adapted from the programming lan

guage paradigm to the database systems [SRG83, OFS84], thus enabling databases to 

answer the calI of modelling complex objects. 

The problem of impedance mismatch, however, still needs to be addressed. To this 

end, a new breed of languages, database pragramming languages, have been proposed. 

This type of language either incorporates the database types and operations into a 

programming language, or extends a database system with programming language con

structs. However, both of these ways threaten to shift the mismatch from the syntactic 

to the conceptual level [Mer93]. 

At McGill, a project called Aldat (standing for the Algebraic appraach ta data) has 

produced several implementations of a relational database programming language. The 
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approach taken by Aldat researchers is to study the similarities and differences be

tween database and programming language concepts, and then provide generalizations 

to bridge the gap. The earlier versions of the language, under the common name Relix, 

not only fully implemented the relational model proposed by Codd, but also extended 

it with the domain algebra [Mer76], a collection of operations on attribute values, or

thogonal to the relational algebra. This enhancement empowered Relix with versatile 

arithmetic, grouping, ordering, and aggregation capabilities, most of which are not seen 

in commercial SQL implementations. Procedural abstraction facilities (functions and 

procedure) and one level of nesting were also implemented in Relix. A recent incarna

tion of Relix, called jRelix (Relix in Java) [Yua98, Ra098, Bak98, SunOO, Roz02, Cha02, 

Zha02, KanOl], provides full support for the deeply nested relational model by subsum

ing the relational algebra into the domain algebra. It also has integrated support for 

updates and event handlers. The two procedural abstraction facilities in Relix have 

been merged into one, now caUed computation. It is a special case of relation and can 

be manipulated by the relational algebra. 

With the support for nested relations and procedural abstraction in place, what is 

now le ft to be implemented is a mechanism for data abstraction. The introduction of 

user-defined data types to model real-world complex objects, such as bank accounts or 

maps, will make a large or complicated pro gram more manageable to the application 

programmer. This thesis is mainly devoted to the design and implementation of the data 

abstraction mechanism in jRelix. It also discusses extensions to the domain algebra that 

further enhance the flexibility of the system in coping with custom domain types. 

The approach of our work is conservative in that we st rive to keep the characteristics 

of the relational model. Other research groups have started out developing completely 

different models and systems. Object-oriented databases are one of them. Although they 

have been heralded as capable of overcoming aU the obstacles faced by the traditional 

relational model [MS90, AR90, BCG+90, MD90, LRV90], we have found, in the course 

of work on Aldat, that aIl the important features of the object orientation can be 

implemented in our system with few or even no new concepts. A brief discussion of 
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this aspect can be found in the conclusions to this thesis. For this reason, we will not 

elaborate on object-oriented databases in later chapters. Interested readers may consult 

the references listed above. 

1.2 Thesis Outline 

This introductory chapter has indicated the intent and purpose of this thesis. The next 

chapter reviews literature on the relational model, its extensions, and the concept of 

data abstraction. A brief overview of the Aldat project and the two main versions of 

the Relix language is also given. Chapter 3 presents the use of the relational and do

main operations supported by jRelix in a tutorial fashion. Newly incorporated features, 

namely abstract data types and extended domain operations, are illustrated by exam

pIes in Chapter 4. Chapters 5 and 6 describe the implementation details of these new 

features. Finally, a summary of the work presented in this thesis is given in Chapter 7, 

along with suggestions for future work. 



Chapter 2 

Background and Related Work 

This chapter contains a review of the literature on the relational data model, its ex

tensions, and the concept of data abstraction. An overview of the related work in the 

Aldat project will also be given. 

2.1 Relational Model 

2.1.1 Flat Relational Model 

The relational model introduced by Codd [Cod70] represents the database as a collection 

of time-varying relations. The relation is a simple and uniform data structure which 

consists of rows and columns. A relation resembles a table, in which each row contains 

a collection of related data values. The term "tuple" is used to refer to a row, and 

"attribute" refers to the header of a column. The data type of values that can appear 

in a column constitutes a "domain". A relation is formally defined as a subset of the 

Cartesian product of its domains. 

Normal forms have been introduced on relations to reduce storage redundancy and 

miminize the effort of updates. Codd defined the rules for a relation to be in the first

normal-form (lNF), as follows: 

• aIl tuples are distinct, 

• the order of the tuples is immaterial, 

5 



CHAPTER 2. BACKGROUND AND RELATED WORK 6 

• each attribute is unique and the ordering of columns is irrelevant, 

• attribute values are atomic. That is, the values are no decomposable as far as the 

relation is concerned. 

Relations satisfying these requirements are also caUed flat relations. Codd dealt with 

the subject of normalization more vigorously in [Cod72a] and [Cod72b]. A series of 

higher normal forms have been introduced since then, which define increasingly stringent 

requirements. A thorough discussion about normalization techniques can be found in 

[Dat81] and [UU82]. 

The two most widely used prototypes of the relational model were System Rand 

INGRES, according to [SH98]. System R was developed at IBM's San Jose Research 

Laboratory in California during the late 70s [ABCea76]. INGRES was produced by 

a project at the university of California at Berkeley [HSW75]. Much of the current 

commercial landscape shows the influence of these systems. In particular, the query 

optimization architecture and optimization techniques of System Rare generaUy lauded 

and form the basis of the algorithms used in most commercial systems. The Structured 

Query Language (SQU) has its roots in System R. On the other hand, INGRES is 

highly regarded for the cleanliness of its relational sublanguage QUEL and the query 

modification algorithms for views, protection, and integrity control. 

Relational Aigebra 

The relational algebra is first suggested in [Cod70]. It is a collection of operations 

applied on relations. AU operations take relation(s) as operands and return a relation 

in result. This is called the "dosure principle" of the relational algebra. By following 

this principle, it is possible to construct complex relational expressions using a series of 

simple operations. 

TraditionaUy, the relational algebra has five independent operators, some of them 

generalized from the mathematical set operations: set union (U), set difference (-), 

lSQL is now a firmly established relational database query language. 
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relational product (x), relational selection (a), and relational projection (1f). More 

operators have been added by various extensions to the relational model. In general, 

operators can also be categorized according to the number of operands they require. 

Therefore, we can speak of unary operators (e.g. projection) and binary operators (e.g. 

joins) . 

Domain Aigebra 

The need for arithmetic and related operations on the value of attributes has given 

rise to the domain algebra [Mer76] which consists of two categories of operations for 

manipulating attribute values in tuples. They are: 

• horizontal operations: new attribute value is calculated based on other attribute 

values within a tuple 

- constant 

- attribute renaming 

- unary operations, e.g. negation 

- binary operations, e.g. plus, minus, join 

- if-then-else 

- built-in functions 

• vertical operations: new value is generated from values along an attribute 

- reduction 

- equivalenee reduction 

- functional mapping 

- partial functional mapping 

2.1.2 Extensions to the Relational Model 

The relational model proved a great success in the world of business applications. How

ever, it encountered obstacles in modeling complex data objects for non-business appli

cations, such as geographic information systems and computer-aided design. For this 

and other practical reasons, a significant amount of work has been devoted to the ex

tension of the relational model sinee the 1980's. In this section, we review sorne of these 
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extensions in three directions: (1) extensions to base types, (2) extensions to structure, 

and (3) extensions to query languages. 

Extending Data Types 

Traditionally, only a small number of atomic data types (or attribute domains) are 

offered for numbers and strings in a database system. Sorne systems include types for 

date, time and currency. 

The first class of extension to the relational model addresses the base types a tuple 

is constructed from. One direction is to enrich the collection of base types, by including 

types such as those for geometric data (points, polylines and polygons), text and image. 

The other direction is to incorporate more operations on the attribute level. Commercial 

SQL typically allows arithmetic expressions to occur in a projector list, with or without 

aliasing. The domain algebra introduced in the previous section takes this direction 

a step further by establishing an algebra for attributes, orthogonal to the relational 

algebra. 

A special case of the extension to base types is the inclusion of abstract data types 

(ADTs). Several research projects have incorporated ADTs into attribute domains. 

Since ADT is an important concept of its own right, we will discuss this case in Sec

tion 2.2. 

A second class of data type extension concerns providing an extensible database 

system architecture. Sorne well-known projects in this area are documented in [CDRS86, 

DMB+87, LMP87, PSS+87]. Problems regarding access path support and special storage 

for user-defined data types were investigated by [WSSH88, Wo189]. Others explored 

mechanisms to enhance the database optimizer in view of the extended types [Fre87, 

GD87, Loh88]. 

N ested Relations 

Nested relations [Mak77] are an attempt to extend the structure of the relational model 

without introducing new syntax. The First Normal Form restriction for a relation is 
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dropped; attribut es need no longer be atomic, they can also be structured. In other 

words, relations can contain relation-valued attributes. Thus nested relations are also 

known as "non-first-normal-form ((N F)2)" relations. In a sense, the nested relational 

model introduces sorne aspect of the hierarchical data model. The robustness of the 

nested relational model has been proven by [Mak77, 8P82, FT83, AB84, 8886, KK89]. 

Following [Mak77], Jaeschke and 8chek [J882] introduced a generalization of the or

dinary relational model by allowing relations with set-valued attributes and adding two 

restructuring operators, nest and unnest, to manipulate such (one-Ievel) nested rela

tions. Thomas and Fischer [TF86] generalized this model and allowed nested relations 

of arbitrary but fixed depth. The definition of recursively nested relations was discussed 

in [L888]. 

The benefits offered by nested relations include: 

• nested relations improve logical design by means of a more direct mapping of 

application onto the database, 

• nested relations provide an elegant way of physical database design due to the 

possibility of internally materializing frequent joins, 

• the conceptual gap between relational and nested relation al models is minimal, 

and most theories and techniques established for the relational model apply in the 

case of nested relations as weIl. 

[OY85] showed that nested relations provide a way of directly representing certain 

multi-valued dependencies by nesting. Therefore, fewer relations have to be split into 

smaller pieces during logical database design. In contrast, ordinary relational database 

design often ends up in a large number of tables due to the need for decomposition in 

the case of set-valued attributes. As a result, joins that are necessary to present aU data 

in a tradition al relational database become unnecessary with nested relations, as more 

data are contained in one tuple. 

The benefits gained with nested relations in physical database design have been 

investigated by [8P887]. One point of interest is the transformation of queries from the 

logical to the physical level by formaI manipulation with a nested relation al algebra. 
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[Bid87, Sch86] explored ways to recognize and eliminate joins from the users' queries in 

the pro cess of such transformation. Sorne joins are unnecessary since they are internally 

materialized. Optimization problems associated with this type of query transformation 

are also solved in these papers, mainly with relational techniques. 

Besides implementing nested relations in a one-to-one mapping to storage structures, 

there have been a number of attempts at other implementation choices. Due to space and 

time limit, we will not elaborate on them here, but refer the reader to [DKA +86, DvG88]. 

In the meantime, query languages have been enriched or invented for the nested 

relation al model. We will coyer this topic in the next sub-section. 

Extended Query Languages 

A relational query language is said to be relationally complete if it is at least as powerful 

as the relational algebra [Cod70]. However, more expressive power is often needed for 

practical purposes. Commercial DBMS often provides SQL with built-in functions, 

aggregates, ordering, grouping, and updates. Others have come up with recursive query 

facilities which take advantage of nested relations [Sch89, Jia90, Lin90]. 

An enormous amount of work was devoted to nested relational query languages. 

The initial papers on nested relations focused on the addition of two operators: nest 

and unnest [SP82, JS82, FT83]. The nest operator creates partitions based on equiva

lence classes. Tuples having the same value for sorne attributes are equivalent and aU 

equivalent tupI es are replaced with a single tuple in the resulting nested relation. The 

resulting relation is then defined on all the attributes for which equivalence is defined, 

and a nested attribute defined on the rest of the attributes of the original relation. The 

unnest operation reverses the effect of the nest operator. The motivation for adding the 

two operators was that whenever relation-valued attributes are encountered, one could 

first unnest, apply the standard relation al operators and then nest to obtain the final 

result. This approach will not work in general, because the effect of an unnest may 

not be reversible by a nest [JS82, FT83]. The conditions under which a relation can be 

unnested losslessly was investigated by [FvG85]. 
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Another approach to query nested relations is to apply relational algebra on the 

attribute level [AB84, 8886, OOM87, RK888, MerOl]. The rationale is that sin ce the 

nested relational model is a direct extension to the relational model, we do not need 

a new query language. We need, however, to allow relational operators to become 

applicable on the attribute level, as relations may now occur not only at the top-level, 

but also nested within tuples. [8887] found that aIl relational operators can be nested 

into selections or projections. The valid operands of nested operators include sub

relations at each nesting level as weIl as top-level relations. The expressive power of such 

nested relational algebra has been shown in [Bee88]. In contrast to the "nestjunnest" 

approach, a nested algebra expression can be directly executed by a query pro cessor , 

without resorting to extra procedures. 

There have also been extensions made to languages like 8QL. In general, the approach 

is to allow nested 8elect-From-Where blocks in both the projector list and the where 

clause. In particular, the where clause can now also refer to sub-relations. Examples of 

extended 8QL-style languages are given by [Lar88, PA86, RKB87]. 

In jRelix, the database programming language that this thesis builds upon, the sup

port for nested relations requires virtually no new concepts beyond the relational model. 

Our approach to nested relations is to allow attributes ("domains") to be relations and to 

subsume the relational algebra into the domain algebra. Examples arise in 8ections 3.1.3 

and 3.4.2 in Chapter 3, and in Chapter 4. 

2.2 Abstract Data Types 

2.2.1 ADT as a Programming Language Concept 

The concept of data abstraction2 [LZ74, Gut77] is one of the two fundamental kinds of 

abstraction3 in contemporary programming languages. It is a weapon against complex

ity, a means of making large or complicated programs more manageable. An abstract 

2In this thesis, we use data abstraction and abstract data type interchangeably 

3The other is procedural abstraction 
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data type introduces a new type of data object which is deemed useful in the domain 

of the problem being solved. It is formally defined as a data type that satisfies the 

following two conditions (as per [Seb96]): 

• Encapsulation: The representation of the type and the operations on objects of 

the type are contained in a single syntactic unit. AIso, other program units can 

create objects of the defined type. 

• Information hiding: The representation of objects of the type are hidden from the 

program units that use the type, so the only direct operations possible on those 

objects are those provided in the type's definition. 

Encapsulation provides a method of organizing a pro gram into logical units that 

can potentially be compiled separately. In addition, it allows any modifications on the 

representations or operations of the type to be done in a single area of the program. 

One of the advantages of information hiding is that program units that use the 

type cannot "see" the representation details, thus their code cannot depend on that 

representation. As a result, the representation can be changed at any time without 

affecting the program units making use of the typé. Another important benefit of 

information hiding is increased reliability. Program units cannot change the underlying 

representation directly, either intentionally or by accident, therefore the integrity of such 

objects is protected. 

A c1assic example is a stack ADT, which holds an internaI storage for items and a 

memory for the current position of the top item. It also exposes an accessor method, 

top(), which tells what the top item is, and two modifier methods, pop() and push(), to 

make the stack shrink and grow, respectively. Programs using this ADT do not know 

or care whether the internaI storage is an array or a linked list. However, they do rely 

on the abstract interface of the stack ADT, namely the three methods, to accomplish 

their programming tasks. 

SIMULA 67 provided the first construct for encapsulating data objects with their 

operations - the c1ass. However, the c1ass construct do es not support information 

4Such program units may need to recompile, although no code change is involved 
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hiding [Seb96]. Today, most programming languages provide full support of ADTs, 

although the terminology differs from one language to another. For example, the data 

abstraction facility is provided by class in C++ and Java, but package in Ada. 

Note that the notion of state came from the object-oriented paradigm, not from 

data abstraction. It is defined as the qualifiable condition of an object resulting from 

or affecting its behavior or properties [Zam99]. State is hidden together with other 

implementation details of an object and is accessible only through particular interface 

methods. In this sense, state participates in information hiding. The language Smalltalk 

supports objects with a private memory (state) and public behavior acting on that 

memory. The jRelix system described in this thesis provides for ADTs with state. 

2.2.2 ADT in Databases 

The introduction of user-defined abstract data types (ADTs) into the type system of 

a relational database was an evolutionary step toward moving databases beyond the 

traditional realm of business applications. The concept of ADTs was adapted from the 

programming language paradigm to databases in the 1980's in a number of projects. 

ADT-INGRES [SRG83, OFS84], developed at UC Berkeley, was one of the pioneers. 

It allowed ADTs to be defined for domains, and allowed operations to be defined on 

them, including aggregates. To define a new ADT, a user would have to define its 

representation and write its methods in an external programming language (e.g.,C). 

The new type would then be registered with the database system, making the system 

aware of its size and available methods. Among the methods provided would be methods 

to input and output instances of the ADT. Once registered, the ADT could be used to 

define the type of an attribute of a relation, just like any built-in type. ADT methods 

could be used in queries and loaded as needed at run-time. 

RAD [OH86], developed over the same period of time as ADT-INGRES, was an 

experimental database system which resembled INGRES in its approach to ADTs. Op

erations on new data types included primitive operations (for constant definition, com

parison, inserting and updating values, and displaying a value on the screen), aggregates 
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(such as COUNT, SUM, etc.), and transformations (which take a relation as param

eter and return a relation as result). The last type of operation, transformation, had 

no equivalent in ADT-INGRES. RAD also allowed variable-Iength string values and 

functions that take more than two arguments. However, functions in RAD could only 

return values of type BOOLEAN. With RAD, it was not possible to "undefine" data 

types or operations, or to define functions on built-in data types, as could be done in 

ADT-INGRES. 

In the mid-80's, the POSTGRES project started as a follow-on to INGRES, initially 

to provide query optimizers with information about the properties of ADTs and their 

methods [St086a]. Another goal of POSTGRES was to provide support for storing and 

querying complex objects by a "procedure as a data type" approach [St086b]. The idea 

of inter-object reference (as used in object-oriented database systems) was rejected. 

Precomputation and query re-writing techniques used to avoid excess overheads in a 

procedure-centered approach. 

Relational databases extended with data abstraction facilities became known as 

Object-Relational5 Database Systems (ORDBMS) in the 1990's [St096]. Products are 

available from several vendors, including Informix's Universal Server, IBM's DB2 UDB, 

Oracle's ORACLE8, to name a few. They all support user-defined data types. Besides, 

ready-made ADT-based type extension packages have also become available to handle 

data types such as text, spatial data and image. These add-ons come under different 

names: "datablades" for Informix, "data extenders" for DB2, and "data cartridges" for 

Oracle. There are two characteristics of the current support for ADTs in ORDBMS 

[Ses98]: 

• Each ADT is built as a module, so that it can be added or removed without 

affecting the rest of the system. Modularity and extensibility are essential features 

of an ORDBMS. 

• Each ADT is like a black box. It reveals only the name and the signature of a 

function, often written in C, C++ or SQL. 

5 ADTs are also supported by Object-Oriented databases, but they will not be discussed here. 
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The foundation of many ORDBMSs is SQL3, now called SQL:1999 [GP99]. This 

is a third version of the SQL standard, and intended to he a major enhancement over 

the previous version: SQL-92. Ahstract data type in SQL:1999 is termed "structured 

user-defined type". The most important properties of such types are: 

• They can he defined on one or more attrihutes. Each of these attrihutes can he of 

any SQL type, or even another structured user-defined type (nesting). 

• Their hehavior may he specified hy functions, methods, and procedures. 

• Access to their attrihutes is only provided through system-generated "get" and 

"set" methods. 

• Comparisons of their values are accomplished through user defined functions. 

• Type inheritance is allowed. 

Consider the following example of a structured type definition: 

CREATE TYPE emp_type 

UNDER person_type 

AS (EMP_ID INTEGER 

SALARY REAL) 

INSTANTIABLE 

NOT FINAL 

INSTANCE METHDD 

GIVE_RAISE 

(ABS_DR_PCT BDDLEAN, 

AMT REAL} 

RETURNS REAL 

The new type is a suhtype of another structured type used to define a person in general 

(inheritance). It adds two additional attrihutes, employee ID and salary (states). This 

type is instantiahle (can create multiple instances with their own states) and can have 

subtypes defined under it (not final). There is also a method to give an employee a raise 

and return the raised salary, which can he applied to instances of type "emp_type". 

The implementation code of the method can he written in a different language or SQL 

and must he registered with the system. The new ADT "emp_type" can now he used 

to define the type of a column in a relation. The instance method may he invoked 

in a query like this (assuming emp is of type "emp_type" and name is an attrihute of 

"person_type" ): 
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SELECT emp.EMP_ID, emp.GIVE_RAISE(true,3000) 

FROM tblEmployee 

WHERE emp.name LIKE 'John' 

16 

The query will acually raise the salary for employees whose name contains "John" by 

3000 dollars and return a relation that contains these employees' IDs and updated 

salaries. 

Almost all the systems mentioned above require a second language to implement 

the methods of an ADT. This is cumbersome and may exacerbate impedance mismatch 

[AR90]. JRelix takes a different approach by implementing ADTs as computations with 

state and their methods as nested-level computations, all in one language. Further

more, the methds are made first class by being returned by the enclosing ADT, which, 

according to Atkinson and Morrison [AM84], is enough for supporting data abstraction. 

2.3 ALDAT, Relix and jRelix 

Aldat, standing for ALgebraic appraach ta DATa, is the name of a project at McGill Uni

versity by T. R. Merrett. The Aldat project ai ms at unifying the fundamental concepts 

of database systems and general purpose programming languages. Over the years, work 

in this project has established generalizations to the relational algebra and created the 

domain algebra. Several versions of an experimental database programming language 

have been produced incorporating most of the concurrent research and development in 

databases since the 1970's. The work described in this thesis is based on an existing 

Aldat implementation, jRelix. 

2.3.1 A Little History of Relix and jRelix 

Relix 

Relix, a Relational database programming language in Unix, was developed by the 

Aldat laboratory, starting in 1986 [Lal86]. The data manipulation language of Relix 
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is Aldat, proposed by Merrett [Mer77]. Relix was intended to provide an interactive 

environment for exploring the concepts of the relational database model as described in 

[Mer84]. 

Relix is an interpreted language written in C. It supports relational algebra oper

ations incuding selection, projection, j.L-joins and a-joins. j.L-joins are derived from set 

operations such as intersection, union and difference. They are natural join, union join, 

symmetric difference join, left join, right join, left difference join and right difference 

join. a-joins generalize set comparison operators. They include division (superset), 

proper superset, equal set, proper subset, subset, intersection, and the negation of these 

operators (e.g. the negation of intersection is not overlap). 

The domain algebra proposed by Merrett [Mer76] is also implemented in Relix. It 

consists of two sets of operations to manipulate attributes: horizontal and vertical. Hor

izontal operations are mainly used for mathematics, while vertical operations provide 

functionalities for grouping and ordering. Horizontal operations generate new attribute 

values based on the other attributes in a tuple. Expressions used in a horizontal opera

tion are built from mathematic expresions, predefined functions, conditional expressions, 

constants and attribute names. 

Vertical domain operations include reduction, equivalence reduction, functional map

ping and partial functional mapping. Reduction pro duces a single value from the values 

of an attribute across all tuples of a relation. Equivalence reduction applies reduction 

within groups; each group consists of tuples that have the same value for a designated 

set of attributes. Functional mapping pro cesses tuples of a relation in an order deter

mined by sorne control attributes. The last type of vertical operation, partial functional 

mapping, performs functional mapping within groups. 

In addition to the extended relational algebra and the domain algebra, Relix pro

vides facilities for updates (insertion, deletion and modification of tuples), relation and 

domain declarations, and assignments. Control structures for looping and recursion 

are also implemented. A number of commands are provided for the user to examine 

and manipulate relations and domains, and even to run unix shell commands. Other 
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language features of Relix include procedural abstraction in the form of functions and 

procedures, and one-level of nesting in relations [He97]. 

JRelix 

Implemented in Java, jRelix is a second incarnation of Aldat. It inherits most of the 

functionalities from its predecessor Relix. The core concepts of relational algebra and 

domain algebra remain the same, but many new constructs have been added since 1997. 

Among other things, jRelix supports nested relations with arbitrary but definite depth 

by introducing new syntax, adopting a surrogate-based implementation, and subsum

ing the relational algebra into the domain algebra [Hao98, Yua98]. Computations have 

been re-designed and implemented as a means of procedural abstraction [Bak98]. They 

replace functions and procedures in Relix. More recent additions include updates for 

nested relations, active databases [SunOO], and attribute metadata with application to 

data mining [Roz02]. The following have been re-implemented for nested relations: 

functional mapping and partial functional mapping [KanOl], sigma-joins [Cha02], and 

QT-expressions [Zha02]. Besides the data abstraction facilities presented in this the

sis, work is currently underway to incorporate high-precision numerical data type and 

networking capabilities into jRelix. 

It may already have been noticed that many of the past and current issues in database 

research have been addressed in Relix and jRelix. According to our systematics for 

categorizing extensions to the relational model, Relix and jRelix : 

• extend the base type system by introducing the domain algebra and data abstrac

tion. It is worth noting that even without special types for things such as spatial 

and text data, Aldat is powerful enough to handle applications like GIS systems 

[Mar98] and text processors [And99] . 

• provide full support for nested relations by subsuming the relational algebra into 

the domain algebra and special implementation. This, coupled with support for 

abstract data type, ensures the capability of handling complex objects. 
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• achieve more than query languages by connecting relations to programming lan

guage constructs, such as typing (induding type check and metadata), iterative 

abstraction (loops), parametric abstraction (computations and ADTs), event pro

gramming (active data bases) , and· process communication (networ ked databases), 

to name a few. 

2.3.2 Programming Concepts in Computations 

We conclude this chapter with a discussion of the programming concepts adapted in our 

design and implementation of computations. 

The computation is intended as a procedural abstraction facility in jRelix. We regard 

a computation as a "symmetric predicate" , generalized from functions. With a compu

tation, various subsets of its parameters can be used as inputs, and their complements 

as outputs. For example, to calculate the sum of two numbers, a Java function could 

be defined as: 

int Sum (int a, int b) 
{ return a + b;} 

Correspondingly, we could define a jRelix computation, as follows: 

camp Sum (a, b, c) is 
{ c (- a + b;} 
alt 
{ a (- c - b;} 
alt 
{ b (- c - a;}; 

The apparently redundant code of the computation actually achieves what it would 

take three Java functions to do6 : 

• Sum[I,2J gives 1 + 2, 

• Sum[, 1, 2J gives 2 - 1, and 

• Sum[2, , IJ gives 1 - 2 

6We use computation name followed by parameters in square brackets as an invocation syntax in 

jRelix 
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It is therefore obvious that our computation is more flexible than functions in general 

programming languages. 

A second programming concept involved in computations is the referencing envz

ronment. A referencing environment, or environment for short, of a statement, is a 

collection of bindings for the names that are visible in the statement. When a com

putation is invoked, a local environment is created to hold the bindings for the actual 

parameters and local variables defined in the computation. It is discarded when the 

computation exits. The statements in the computation may also reference variables 

defined outside. JRelix assumes that all such non-local variables are to be found in the 

environment in which the computation is declared. This is similar to the binding rules 

used by Pascal and Scheme. 

The last programming concept we discuss here is parameter passing. In general, 

there are three parameter passing methods: pass-by-value, pass-by-reference, and pass

by-name. When a parameter is passed by value, its actual value is used to initialize 

the corresponding formaI parameter, which then acts as a local variable in the called 

subprogram. As jRelix allows relation valued parameters, and relations can get arbi

trarily large, pass-by-value is out of the question. The second method uses the address 

of the actual parameter to initialize the formaI parameter. It is not chosen by jRe

lix either, due to the possibility of unintentional alteration of the actual parameter. 

JRelix uses pass-by-name, which was first introduced by Algol 60 [Seb96]. With this 

method, the actual parameter is, in effect, textually substituted for the corresponding 

formaI parameter in all its occurrences in the subprogram. The main advantage of this 

method is flexibility, particularly in the context of computation invocation. Consider 

the Sum Ca, b, c) computation given earlier in this sub-section. If we invoke it using 

Sum[X, Y], the computation turns into: 

camp Sum (X, Y, c) is 
{ c <- X + Y;} 
alt 
{ X <- c - Y;} 
alt 
{ y <- c - X;}; 

With a little modification to the current implementation, we can also pass compu-
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tations arbitrary expressions without having to evaluate them at parameter binding 

time. 



Chapter 3 

Overview of jRelix 

The purpose of this chapter is to introduce jRelix syntax and features so that the rest 

of the thesis is made intelligible to the reader. Section 3.1 describes how to start the 

jRelix system running and declare and initialize relations and domains. A number of 

frequently used commands are also introduced. Next we show the assignment operation. 

Section 3.3 discusses relational expressions. Domain algebra is the topic of Secion 3.4. 

Section 3.5 briefly describes updates. Finally we introduce computations in Section 3.6. 

In an attempt to make this and subsequent chapters easy reading, we adhere to the 

following conventions: 

• Lanuage Syntax is written in typewriter font and expressed in Backus-Naur 

form as explained in Appendix A . 

• Code Samples are given in small typellriter font within boxes. 

3.1 Getting Started 

3.1.1 Starting the Engine 

JRelix runs on any platform that has the Java Runtime Environment version 1.1 or up. 

A typical installation involves compiling the source files into java class files, creating a 

java archive file (extension .jar) from the class files, and adding the archive file to the 

22 
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Java environment variable CLASSPATH. Supposing the typical installation procedure 

is followed, type the following to start the jRelix interpreter 

java JRelix 

If the environment variable CLASSPATH is not set, one needs to use the following 

command instead 

java -classpath [classpathJ JRelix 

where classpath points to the directory where the class files or jar file are located. 

Upon a successful start-up, a greeting screen appears and jRelix is ready to accept 

commands at the prompt '>'. 

3.1.2 Commonly Used Commands 

The following is a summary of the most frequently used commands in jRelix. Ap

pendix A contains a complete listing of aIl commands. 

quit Quit the interpreter. Information on the database is saved upon exit. 

pr EXPR Display the result of a relational expression evaluation. 

sd (ID)? Show a description of the attribute ID. If ID is omitted, aIl attributes are 

shown. 

sr (ID)? Show a description of the relation ID. Show aIl relations ifID is omitted. 

dd IDList Delete attribut es specified in IDList. 

dr IDList Delete relations, views or computations specified in IDList. 

debug Toggle the debug mode. Used to display the syntax tree of each statement or 

the hidden states of a relation. 

3.1.3 Domain and Relation Declaration 

Domain Declaration 

Domains in jRelix are declared with the keyword "domain", as follows: 

IIdomain ll IDList Type Il. Il , 
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where IDList contains a list of domains being declared, and Type denotes the type 

of these domains. Table 3.1 summarizes the valid domain types in the current jRelix 

system. They come in two categories: atomic and complex. The atomic types are 

primitive types such as double, integer, string, etc. Nested relations (IDList) and 

computations are examples of complex types. Types attribute and uni versaI are 

added to implement attribute meta-data [Roz02] which is out of the scope of this thesis. 

Type Alias Category Corresponding Java Type 

boolean bool atomic true, false 

short atomic signed short int, 2 bytes 
integer intg atomic signed int, 4 bytes 

long atomic signed long, 8 bytes 
float real atomic signed float, 4 bytes 

double atomic signed double, 8 bytes 

string strg atomic String 
attribute attr atomic String 
univers al univ atomic String 

" ( " ID List" ) " complex 
computation "(" IDList") " comp complex 

Table 3.1: Domain Types in jRelix 

Information (name, type, etc.) about a domain can be shown with the sd commando 

A domain may be deleted using the dd command followed by its name. However, any 

existing relation is defined on this domain, the deletion will fail with a warning. 

Relation Declaration and Initialization 

The following syntax is used to de clare and initialize a relation: 

"relation" IDList "("IDList")" (Initialization)? Il .11 , 

The first IDList specifies a list of relations being declared. The second contains the 

domains on which these relations are defined. Initialization, wh en present, consists 

of a number of comma delimited, parenthesized tuples enclosed in a pair of curly braces. 

Three commands commonly used with relations are: sr, pr, and dr. See Section 3.1.2 

for details. 
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Examples 

Example 1. Various do main declarations 

Figure 3.1 shows the dec1aration of four domains. The first is an integer, and the second 

a nested relation defined on the first. The third is another non-primitive typed domain, 

which contains a nested relation as its own domain. Finally we give a computation 

typed domain whose parameter is of primitive type. 

>domain a intg; 
>domain A(a); 
>domain B(a, A); 
>domain C comp(a); 

Figure 3.1: Example: Declaration of Domains 

Example 2. Relation declarations 

In the example presented in Figure 3.2, a nested relation Company is defined on two 

domains, dept and employee. Domain dept is of primitive type string, while employee 

is a relation itself, defined on name and salo The relation is shown in Table 3.2. 

>domain name, dept strg; 
>domain saI float; 
>domain employee(name, saI); 
>relation Company(dept, employee) <-

{("Sales", {("John Manley", 50000), 
( "Allen Smith", 45000)}), 

("HR" , {("Jay Ashman", 44000), 
("Tim Gordon", 33000)}), 

("R&D", {("Albert Einstein", 80000)})}; 

Figure 3.2: Example: Declaration and Initialization of Relations 

dept employee 

(name saI) 

Sales John Manley 50000 
Allen Smith 45000 

HR Jay Ashman 44000 

Tim Gordon 33000 

R&D Albert Einstein 80000 

Table 3.2: The Company Relation 
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N ote if we issue the command 

pr Company; 

The relation will be displayed as in Figure 3.3. This is because for a nested relation, 

surrogates are used to replace the actual values of relation typed domains. The actual 

relation for such a domain is stored in a separate relation whose name is the name of 

the domain prefixed with a dot ('. '). An informaI name for this associated relation is 

"dot relation". The dot relation is defined on an the attribut es that the relation typed 

domain is defined on, plus an additional domain, ".id". The values of ".id" link to the 

surrogates in the parent relation. 

>pr Company; 
+----------------------+----------------------+ 
1 dept 1 employee 

+----------------------+----------------------+ 
1 HR 
1 R&D 
1 Sales 

1 2 
1 3 
1 1 

+----------------------+----------------------+ 
relation Company has 3 tuples 
>pr .employee; 
+-------+----------------------+---------------+ 
1 .id 1 name 1 saI 
+-------+----------------------+---------------+ 
1 1 Allen Smith 45000.0 
1 1 John Manley 50000.0 
1 2 1 Jay Ashman 1 44000.0 
1 2 1 Tim Gordon 1 33000.0 
1 3 1 Albert Einstein 1 80000.0 
+-------+----------------------+---------------+ 
relation .employee has 5 tuples 

Figure 3.3: Representation of Nested Relations 

3.2 Assignments 

jRelix provides two assignment operators, one is assignment «-) and the other is in

cremental assignment ( <+ ). The assignment operator creates a relation with the name 

specified to the left of the operator and with the same domains as the source relation. 

The data of the source relation is copied to the destination relation. If a relation with 

the same name as the destination relation already exists, it is first removed. The incre

mental assignment operator behaves in exactly the same way if there do es not already 
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exist a relation with the name of the left operand. If such a relation exists, the destina

tion relation becomes the union of the source and the destination relations provided that 

both relations are defined on the same set of domains. In any case, the relation on the 

right-hand side of the operator is not affected. The syntax for the assignment operators 

is shown below. The second form is used to rename attributes in ExpressionList to 

the ones specified in IDList. Examples of use are provided in Figure 3.4. 

Identifier (11<_11 111<+11) Expression 
1 

Identifier Il [II IDList (1'<_11 111<+11) ExpressionList 

3.3 

>domain Title strg; 
>domain Priee, Cost float; 
>relation myBook(Title,Price) (-
{("Java 2",68), ("XML Black Book", 60)}; 

>yourBook [Title,Cost (- Title,Priee] myBook; 
>pr yourBook; 
+----------------+---------------+ 
1 Title 1 Cost 
+----------------+---------------+ 
1 Java 2 1 68.0 
1 XML Black Book 1 60.0 
+----------------+---------------+ 
relation yourBook has 2 tuples 
>relation newBooks(Title, Cost) (-
{("SQL in 21 Days", 25)}; 

>yourBook (+ newBooks; 
>pr yourBook; 
+----------------+---------------+ 
1 Title 1 Cost 
+----------------+---------------+ 

Java 2 68.0 
1 SQL in 21 Days 1 25.0 
1 XML Black Book 1 60.0 
+----------------+---------------+ 
relation yourBook has 3 tuples 

Figure 3.4: Example: Assignments 

Relational Algebra 

Il. Il , 

Il] Il Expression Il. Il , 

The relational algebra consists of a set of functional operators which act on either one 

or two relations and pro duce a relation in result. This closure property of relational 

algebra allows complex expressions to be constructed by chaining relational operators. 
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3.3.1 Unary Operators 

jRelix supports six unary operators. These are projection, selection, T-selection, QT

selection, pick, and AttribsOf. In aU cases, the source relation is not affected by the 

operator. 

Projection 

Projection extracts a subset of the source relation consisting of the domains named in 

IDList. Duplicates are removed. If IDList is omitted" the result relation contains just 

one tuple with a boolean domain ". bool". The value of the tuple is true if and only if 

the source relation has at least one tuple. The result of evaluating Expression provides 

the source relation. The syntax for projection is: 

11[11 (IDList)? Il]11 lIin ll Expression 

Example 1. Retrieve the Titles of relation yourBook (see Figure 3.5). 

>yourTitles <- [Title] in yourBook; 
>pr yourTitles; 
+----------------------+ 
1 Title 
+----------------------+ 
1 Java 2 
1 SQL in 21 Days 
1 XML Black Book 
+----------------------+ 
relation yourTitles has 3 tuples 

Figure 3.5: Projection: Example 1 

Example 2. Check whether relation yourBook is empty (see Figure 3.6). 

>pr ([] in yourBook); 
+--------+ 
1 .bool 1 

+--------+ 
1 true 
+--------+ 
expression has 1 tuple 

Figure 3.6: Projection: Example 2 
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Selection 

Selection returns a subset of the source relation which satisfy the conditions specified in 

SelectClause. As with projection, the source relation may be the result of evaluating 

any arbitrary relational Expression. 

"where" SelectClause "in" Expression 

Example 1. Retrieve the tuples of relation yourBook in which the Cast is higher than 

50 dollars (see Figure 3.7). 

T-Selection 

>expensiveBook (- where Cost > 50.0 in yourBook; 
>pr expensiveBook; 
+----------------------+---------------+ 
1 Title 1 Cost 
+----------------------+---------------+ 
1 Java 2 
1 XML Black Book 

1 68.0 
1 60.0 

+----------------------+---------------+ 
relation expensiveBook has 2 tuples 

Figure 3.7: Selection: Example 1 

Projection and selection can be combined into one expression called T -selection. The 

syntax is: 

"[" (IDList)? "]" "where" SelectClause "in" Expression 

Example 1. Retrieve the Titles in relation yourBook for which the Cast is higher than 

50 dollars (see Figure 3.8). 

>costlyTitles (- [Title] where Co st > 50.0 in yourBook; 
>pr costlyTitles; 

+----------------------+ 
1 Title 
+----------------------+ 
1 Java 2 
1 XML Black Book 
+----------------------+ 
relation costlyTitles has 2 tuples 

Figure 3.8: T-Selection: Example 1 
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The array syntax is the syntactic sugar for a special case of the T -selection - when 

the select clause consists of a conjunction of comparisons for equality and the projector 

list contains all domains not mentioned in the select clause. The syntax is: 

Identifier 11[11 (Identifier)? (, (Identifier)?)* Il]11 

For example, the following three statements are equivalent. 

costlyTitles <- [Cost] where Title = IIJava 2 11 in yourBook; 

costlyTitles <- yourBook[IIJava 211]; 

costlyTitles <- yourBook[IIJava 211 ,]; 

Normally there need to be n - 1 commas in the square brackets after the relation 

name, if the relation has n domains. The first comma cornes after the value of the first 

attribute, the second comma after the second attribute, and so forth. If the attribute 

to appear in the projector list happens to be the last in the source relation, the comma 

before it can be omitted. 

The array syntax proves to be useful in the implementation of abstract data types. 

QT -Selection 

QT -Selectors are extensions to T -Selectors by ad ding quantifiers such as QT -Count 

(#), QT -Proportion (.), and QT -Percent age (%). These remove from T -selection the 

restriction that the select clause must evaluate to true or false on each tuple of the 

relation. The syntax for QT-selection is: 

(II [II (ExprList)?II] Il)? II quant ll QTList (1'where ll Condition)? lIin ll 

Expression 

where ExprList is a list of domains on which to define the result relation. If nothing 

precedes quant, the QT-Selection results in a relation defined on all the domains of the 

source relation. QTList is a list of conditions which the resulting tuples must satisfy. 

The interested reader can find examples of QT-Selection in [Zha02]. 



CHAPTER 3. OVERVIEW OF JRELIX 31 

Pick 

The pick operator randomly selects a tuple from a source relation and assigns its value 

to the destination relation. The destination relation is thus guaranteed to be singleton. 

The syntax of piek operation is: 

"pick" Expression 

where Expression evaluates to the source relation. 

Example 1. (see Figure 3.9). 

AttribsOf 

>RandomR <- pick SUPPLY; 
>pr RandomR; 
+--------+---------+-------+-------+ 
1 ITEM 1 CaMP 1 DEPT 1 VOL 
+--------+---------+-------+-------+ 
1 String 1 Playsew 1 Toy 1 10 
+--------+---------+-------+-------+ 
relation RandomR has 1 tuple 

Figure 3.9: Pick: Example 1 

This operator creates a relation of aIl the domains of the operand. The syntax of the 

AttribsOf operation is as follows: 

IAttribsOf" Expression 

where Expression evaluates to a relation. The output relation is defined on a single 

domain of type attribute and its values are the names of aIl the domains of the source 

relation. Details of this operation can be found in [Roz02]. 

3.3.2 Binary Operators 

jRelix supports 19 binary relational operators. They come in two categories: p,-joins and 

a-joins. p,-joins are set operations generalized for relations, and a-joins are generalization 

of logical operations [Mer84]. These operators satisfy the alge braie closure property. The 

syntax for the join operations are as follows: 
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Expression JoinOperator Expression 
1 

Expression Il [IExprList": Il JoinOperator" : Il ExprList "] Il Expression 

In the first production, the two operands join on their cornrnon dornains. When there 

is no cornrnon dornain, the second production can be used to explicitly narne the join 

dornains; the dornains in the first ExprList match those in the second on a by position 

basis. JoinOperator rnay be any one of the 19 operators discussed shortly. 

p,-joins 

This category of join operators extend the rnathernatical set operations including union, 

intersection and difference. With the exception of the difference joins, the result of their 

application is a relation which has as its dornains the union of the dornains frorn the 

two input relations. p,-joins are surnrnarized in Table 3.3. 

The p,-joins can be defined in terrns of three parts: the left wing, the center wing, 

and the right wing. The definitions of the three wings are: 

• For relations R(X, Y) and S(Y, Z) sharing a cornrnon attribute set, Y 

center {(x, y, z)l(x, y) E R /\ (y, z) E S} 

left {(x, y, DG) I(x, y) E R /\ \lz, (y, z) rt S} 

right {(DG, y, z)l(y, z) ES /\ \Ix, (x, y) rt R} 

• For relations R(W, X) and S(Y, Z) sharing no cornrnon attribute set 

center {(w,x,y,z)l(w,x) E R/\ (y,z) E S /\x = y} 

left {(w, x, y, DG)I(w, x) E R /\ x = Y /\ \lz, (y, z) rt S} 

right {(DG, x, y, z) I(y, z) E S /\ x = Y /\ \Ix, (x, y) rt R} 

Note here the symbol DG stands for one of the null values in jRelix. The other is DK. 

Details of the null values can be found in [Mer84]. 

The following exarnples of p,-joins are based on the two relations shown in Figure 3.10. 

Example 1. Find the items each agent is responsible for and the location of the 

agent (see Figure 3.11). 
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/-L-join Operator Description 

natural join ijoin or natjoin center 

union join ujoin left U center U right 

left join ljoin left U center 

right join rjoin center U right 

left difference join djoin or dljoin left 

right difference join drjoin right 

symmetric difference join sjoin le ft U right 

Table 3.3: Summary of tL-joins 

>pr Responsibility; 
+----------------------+----------------------+ 
1 Agent 1 Item 
+----------------------+----------------------+ 

Hung 
Raman 
Raman 
Smith 

Micro 
Micro 
Terminal 
VeR 

+----------------------+----------------------+ 
relation Responsibility has 4 tuples 
>pr Location; 
+----------------------+-------------+ 
1 Item 1 Floor 
+----------------------+-------------+ 

Micro 
Terminal 
Terminal 
Videodisk 

1 
1 
2 
2 

+----------------------+-------------+ 
relation Location has 4 tuples 

Figure 3.10: Relations Used in tL-join Examples 

>AgentInfo (- Responsibility ijoin Location; 
>pr AgentInfo; 
+----------------------+----------------------+-------------+ 
1 Item 1 Agent 1 Floor 
+----------------------+----------------------+-------------+ 

Micro Hung 1 1 
Micro Raman 1 1 
Terminal Raman 1 1 
Terminal Raman 1 2 

+----------------------+----------------------+-------------+ 
relation AgentInfo has 4 tuples 

Figure 3.11: tL-join: Example 1 
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Example 2. Find all items that don't have an agent (see Figure 3.12). 

a-joins 

>NoAgent <- Responsibility drjoin Location; 
>pr NoAgent; 
+----------------------+-------------+ 
1 Item 1 Floor 
+----------------------+-------------+ 
1 Videodisk 1 2 
+----------------------+-------------+ 
relation NoAgent has 1 tuple 

Figure 3.12: ft-join: Example 2 
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The a-joins extend the truth-valued comparison operations on sets to relations by ap

plying them to each set of values of the join domain for each of the other values in the 

two operand relations. The result of their application is a relation whose domains are 

the symmetric difference of the two sets of domains of the operands. The JoinOperator 

in the production shown earlier can also be any of the sigma-joins given in Table 3.41 . 

sigma-join Operator Description Set Operator 

natural composition icomp or natcomp overlap fjY, 

equal join eqjoin equal --

greater than or equal join gejoin or sup or div superset :J -

greater than join gtjoin proper superset :J 

less than or equal join lejoin or sub subset C -
less than join ltjoin proper subset C 

empty intersection join iejoin or sep not overlap 61 

Table 3.4: Summary of a-joins 

We can define the a-joins using the following notation. In relations R(W, X) and 

IThe table lists only 7 of the 12 a-joins. The five that are not shawn correspond ta the logical 

negation of the entries except icomp and sep. They can be formed by prefixing a "!" or "not" to the 

operators of their negation. For example, "! eqj oin" or "not eqj oin" is the negation of "eqj oin". 

sep is the negation of icomp. The tuples from one operator complement those of its negation. 



CHAPTER 3. OVERVIEW OF JRELIX 35 

S(Y, Z), Rw is the set of values of X associated by R with a given value, w of W, and 

Sz is the set of values of Y associated by S with a given value, z of Z. If W and X are 

disjoint sets of the attributes of R, and Y and Z are disjoint sets of the attributes of 

S, the following definitions hold. (X and Y must be at least compatible attribute sets, 

but they may be the same set of attributes.) 

• R icomp S - {(w, z)IRw n Sz =1- 0} 

• R sep S {(w, z)IRw n Sz = 0} 

• R sup S {(w, z)IRw ;2 Sz} 

• R gtjoin S - {(w, z)IRw => Sz} 

• R lejoin S {(w, z)IRw ç Sz} 

• R ltjoin S {(w, z)IRw c Sz} 

• R eqjoin S {(w, z)IRw = Sz} 

The negations of these are defined accordingly. 

The following examples use the relations defined in Figure 3.10 in the previous sub-

section. 

Example 1. Find the agents for all items on a floor (see Figure 3.13). 

Nop 

>VersatileAgents (- Responsibility sup Location; 
>pr VersatileAgents; 
+----------------------+-------------+ 
1 Agent 1 Floor 
+----------------------+-------------+ 
1 Raman 1 1 

+----------------------+-------------+ 
relation VersatileAgents has 1 tuple 

Figure 3.13: a-join: Example 1 

When applied to two operand relations, the nop operation assigns one of them to the 

result relation provided the two are defined on the same set of attributes. For example, 

in the following example 

Ri <- A nop B; 
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Relation Ri has a 50% chance of being a copy of A and a 50% chance of being a copy of 

B. Consider the next example 

R2 <- A nop B nop C; 

This time, R2 still has a 50% chance to be a copy of C. But its odds of becoming A or B 

are just 25% each. That is, the nop operator is left associative. 

In Section 3.4.2, we will see how the nop operator can be used in combination with 

reduction to implement level lifting of a special kind of nested relation. 

3.4 Domain Aigebra 

The do main algebra [Mer77, Mer84] is an algebra on attributes and it fills the gap in the 

relational algebra with its ability to do, among other things, arithmetic. The two main 

components to the domain algebra are: scalar operations and aggregate operations. In 

view of the table representation of a relation, these can be thought of as "horizontal" 

and "vertical", respectively. Horizontal domain operations work within the tuples and 

vertical operations work across the tuples. A taxonomy of the domain algebra was given 

in Section 2.1.1. 

The domain algebra is used by associating an expression with a virtual domain at 

the declaration time of the latter. This expression can be anything from a constant 

value to a relational expression that instructs the system on how to build the value of 

the virtual domain when needed. The domain expression can be defined in terms of 

the actual domains or other virtual domains. Recursive definition is not permitted. A 

virtual domain may appear anywhere an actual domain is expected. It is actualized 

only when referred to through the relational algebra. The syntax for virtual domain 

declaration is: 

IIlet ll Identifier IIbe ll Expression Il;11 

The following sub-sections briefly discuss the two types of operations with examples. 

An in-depth coverage of this topic can be found in [Yua98]. 
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3.4.1 Horizontal Operations 

A virtual domain can be defined as a constant or as an alias of another domain, as 

shown in Example 1. 

Example 1. Constant and renaming (see Figure 3.14). 

>Iet ONE he 1; 
>Iet FALSE he faIse; 
>Iet UNE he ONE; 

Figure 3.14: Constant Virtual Domain and Renaming 

The most frequently used unary operators in the domain algebra are "-" for nu

mericals, "not" for truth values, and the unary relational operators for domains of type 

IDList. See Example 2 below. 

Example 2. Unary operations (see Figure 3.15). 

>Iet AGE he -Age; 
>Iet TRUE he not FALSE; 

Figure 3.15: Virtual Domain with Unary Operation 

Examples 3 shows the declaration of virtual domains defined on binary operations. 

For domains of atomic types (see Table 3.1), binary operators normally include binary 

arithmetic operators and logical operators. For those of complex types, this usually 

means the relation al operators such as ij oin, uj oin, etc. 

Example 3. Binary operations (see Figure 3.16). 

>Iet TotalCost he UnitCost * Quantity; 
>let AIIEmpIoyee he Staff ujoin Professor; 

Figure 3.16: Virtual Domain with Binary Operation 

Declaring a virtual domain based on conditions is also possible. Example 4 gives a 

definition of absolute value by means of the domain algebra. However, jRelix has its 

own built-in function to handle this. This is shown in Example 5. 

Example 4. Conditional expression (see Figure 3.17). 

Example 5. Built-in functions (see Figure 3.18). 
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I>let ABSX be if X >= 0 then X else -X; 

Figure 3.17: Virtual Domain with a Condition al Expression 

1 >let ABSX be abs(X); 1 

Figure 3.18: Virtual Domain with Built-in Functions 

3.4.2 Vertical Operations 

The vertical operations work across tuples, which permits, for example, summing aIl 

the values of a domain. The two main classes of vertical operations are reduction and 

functional mapping. What distinguishes the two main classes is order. Within each 

class, there are two subclasses: one with a grouping facility and the other without. Thus 

a total of four vertical operations are available in jRelix. The examples given next are 

aIl based on the relation given in Figure 3.19, except when noted otherwise. 

>domain Dept, Name, Gender strg; 
>domain Salary float; 
>relation Company(Dept,Name,Gender,Salary) (-
{("Accounting","J. White" ,"F" ,45000) , 

("Accounting" , "M. Scholl" , "M" ,45500) , 
("Accounting","K. Holmes", "M",39000) , 
("Sales","J. Cioffy" , "M" ,60000) , 
("Sales","E. Malon" , "F" ,50000) , 
("HR","D. Johns" ,"F" ,48000) , 
("HR", "N. Lovejoy", "F" ,50000)}; 

>pr Company; 
+-------------+--------------+---------+----------+ 
1 Dept 1 Name 1 Gender 1 Salary 
+-------------+--------------+---------+----------+ 

Accounting J. White 1 F 45000.0 
Accounting K. Holmes 1 M 39000.0 
Accounting M. Scholl 1 M 45500.0 
HR D. Johns 1 F 48000.0 
HR N. Lovejoy 1 F 50000.0 
Sales E. Malon 1 F 50000.0 
Sales J. Cioffy 1 M 60000.0 

+-------------+--------------+---------+----------+ 
relation Company has 7 tuples 

Figure 3.19: Relation Company Used in the Examples for Vertical Operations 

Reduction 

The following statement creates a sum of aIl salaries by using the reduction operation: 

let TotSalary be red + of Salary; 
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If we replace the "+" with "min", we get the minimum salary. An aggregate virtual 

domain (such as TotSalary) obtained by reduction is a constant in that it will have the 

same value for aIl tuples of the relation in which it is actualized. Consider the example 

in Figure 3.20. Note that we can combine two aggregate virtual attributes by means of 

a horizontal operator, division. Indeed, complex domain expressions can be built due 

to the fact that domains are c10sed under the domain algebra. 

Example 1. Reduction operation (see Figure 3.20). 

>let TotSalary be red + of Salary; 
>let TotHeadCnt be red + of 1; 
>let AvgSalary be TotSalary 1 TotHeadCnt; 
>CompSalaryStats <- [TotSalary,TotHeadCnt,AvgSalary] in Company; 
>pr CompSalaryStats; 
+---------------+-------------+---------------+ 
1 TotSalary 1 TotHeadCnt 1 AvgSalary 
+---------------+-------------+---------------+ 
1 337500.0 1 7 1 48214.285 
+---------------+-------------+---------------+ 
relation CompSalaryStats has 1 tuple 

Figure 3.20: Example: Reduction Operation 

There are ten built-in operators that may follow the red keyword in a reduction 

or partial reduction operation: +, *, min, max, and, or, nop, ijoin, ujoin, sjoin. 

The first six are for primitive typed domains. The last three are for relation typed 

domains. The operator nop works with both types. To qualify in reduction operations, 

an operator must be associative and commutative. This requirement stems from the 

orderlessness of tuples in a relation. 

A new mechanism has been introduced to allow user-defined computations to be 

used in vertical operations. One sim ply needs to place a computation call after the red 

keyword. Details on this feature will be given in Chapter 4. 

Reduction and Level Lifting 

If we define a relation typed domain Employee and inc1ude Name,Gender and Salary as 

its attributes, the Company relation becomes the nested relation, NewCompany, as shown 

in Figure 3.21. Notice now there are only three tuples, with one tuple each for the three 

departments. The staff in each department is represented by an Employee sub-relation. 



CHAPTER 3. OVERVIEW OF JRELIX 

+-------------+-----------------------------------+ 
Employee 1 Dept 

1 1--------------+---------+----------1 
1 1 Name 1 Gender 1 Salary 1 
+-------------+--------------+---------+----------+ 
1 Accounting 1 J. White 
1 1 K. Holmes 
1 1 M. Scholl 

1 F 
1 M 
1 M 

1 45000.0 1 
1 39000.0 1 

1 45500.0 1 

+-------------+--------------+---------+----------+ 
1 HR 1 D. Johns 1 F 1 48000.0 1 
liN. Lovejoy 1 F 1 50000.0 1 
+-------------+--------------+---------+----------+ 
1 Sales 
1 

1 E. Malon 
1 J. Cioffy 

1 F 

1 M 
1 50000.0 1 

1 60000.0 1 

+-------------+--------------+---------+----------+ 

Figure 3.21: Relation NewCompany 
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To find out about all the employees in the company, we could use the code in Fig

ure 3.22. However, sinee allEmployees is itself a relation nested inside the result, we 

have to refer to the associated dot relation for final answers. This inconvenience can be 

eliminated by means of "levellifting". 

>let allEmployees be red ujoin of Employee; 
>Result <- [allEmployeesJ in NewCompany; 
>pr Result; 
+----------------------+ 
1 allEmployees 
+----------------------+ 
1 12 
+----------------------+ 
relation Result has 1 tuple 
>pr .allEmployees; 
+-----+----------------------+----------------------+---------------+ 
1 .id 1 Name 1 Gender 1 Salary 
+-----+----------------------+----------------------+---------------+ 

12 D. Johns 1 F 48000.0 
12 E. Malon 1 F 50000.0 
12 J. Cioffy 1 M 60000.0 
12 J. White 1 F 45000.0 
12 K. Holmes 1 M 39000.0 
12 M. Scholl 1 M 45500.0 
12 N. Lovejoy 1 F 50000.0 

+-----+----------------------+----------------------+---------------+ 
relation .allEmployees has 7 tuples 

Figure 3.22: AH Employees: Version 1 

Level lifting is a jRelix technique to bring subrelationsjattribute values one level 

up the nesting hierarchy via anonymity. As illustrated in Figure 3.23, a red uj oin 

expression replaces the allEmployees virtual domain in the previous example. Because 

no name has been given to the attribute of the result relation, the attributes of Employee 

are used directly, thus achieving level lifting. It is important to note that level lifting 
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only applies to a subrelationjattribute that has the same value for aIl tuples (singleton 

condition). In the example, allEmployees satisfies the singleton condition due to the 

use of a reduction operation. In general, reduction combined with anonymity provides 

a useful implementation of level lifting in certain nested relations. We have seen the 

use of "red ujoin" to lift the level of a relation typed domain. Similarly "red max" or 

"red min" can be used for level lifting on a numeric domain. A more general technique 

that applies to any type of domain is through the combination of reduction and the nop 

operator. This technique is especiaIly useful when the intention is to lift the level of 

one particular instance of a subrelation or one particular value of an attribute, with the 

instance or value picked indeterministicaIly. When a relation contains only one tuple, 

"red nop" has the same effect as other level lifting means. Chapter 4 contains many 

examples of levellifting using "red nop". 

>Result <- [red ujoin of Employee] in NewCompany; 
>pr Result; 
+----------------------+----------------------+---------------+ 
1 Name 1 Gender 1 Salary 
+----------------------+----------------------+---------------+ 
1 D. Johns 1 F 48000.0 
1 E. Malon 1 F 50000.0 
1 J. Cioffy 1 M 60000.0 
1 J. White 1 F 45000.0 
1 K. Holmes 1 M 39000.0 
1 M. Scholl 1 M 45500.0 
1 N. Lovejoy 1 F 50000.0 
+----------------------+----------------------+---------------+ 
relation Result has 7 tuples 

Figure 3.23: All Employees: Version 2 

Equivalence Reduction 

Equi valence reduction allows reduction to be applied to groups of tuples within a 

relation. These groups are equivalent based on having the same value for a specified set 

of domains. For example, we can continue from the previous example and ask for the 

average salary in each department. 

Example 2. Equivalence reduction operation (see Figure 3.24). 

The ten operators for reduction also apply to equivalence reduction. User-defined 

computations are applicable as weil. 
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>let DeptTotSal be equiv + of Salary by Dept: 
>let DeptHeadCnt be equiv + of 1 by Dept: 
>let DeptAvg be DeptTotSal / DeptHeadCnt; 
>DeptSalStats <- [Dept, DeptAvgJ in Company: 
>pr DeptSalStats: 
+----------------------+---------------+ 
1 Dept 1 DeptAvg 
+----------------------+---------------+ 
1 Accounting 43166.668 
1 HR 1 49000.0 
1 Sales 1 55000.0 
+----------------------+---------------+ 
relation DeptSalStats has 3 tuples 

Figure 3.24: Example: Equivalence Reduction Operation 

Funetional Mapping 
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Reductions are not sufficient in occasions such as calculating the cumulative sumo To 

introduce order into vertical operations, we need functional mapping. Consider Example 

3 in which the salaries are ordered and each employee is given a pay rank. We would 

like to have the highest paid employee to be ranked number one, therefore the order 

clause uses the negation of Salary. 

Example 3. Functional mapping operation (see Figure 3.25). 

>let PayRank be fun + of 1 order -Salary: 
>CompRanks <- [Dept,Name,Salary,PayRankJ in Company; 
>pr CompRanks: 
+--------------+-------------+----------+---------+ 
1 Dept 1 Name 1 Salary 1 PayRank 1 
+--------------+-------------+----------+---------+ 

Accounting J. White 45000.0 1 5 
Accounting K. Holmes 39000.0 1 6 
Accounting M. SchOll 45500.0 1 4 
HR D. Johns 48000.0 1 3 
HR N. Lovejoy 50000.0 1 2 
Sales E. Malon 50000.0 1 2 
Sales J. Cioffy 60000.0 1 1 

+--------------+-------------+----------+---------+ 
relation CompRanks has 7 tuples 

Figure 3.25: Example: Functional Mapping Operation 

In addition to the associative and commutative operators discussed in the previous 

sub-sections, funtional mapping allows the following as well: eat (string concatenation), 

-, l, mod (modulo), ** (power), pred (cyclic predecessor), suce (cyclic successor). The 

last two operators are yet to be implemented in jRelix. 
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Partial Functional Mapping 

Partial functional mapping adds a grouping facility to functional mapping in the same 

way that equivalence reduction does for reduction. Example 4 shows the use of partial 

functional mapping to calculate the pay rank within each department. 

Example 4. Partial functional mapping operation (see Figure 3.26). 

3.5 

>let DeptRank be par + of 1 order -Salary by Dept; 
>DeptRanks <- [Dept,Name,Salary,DeptRankJ in Company; 
>pr DeptRanks; 

+----------------------+----------------------+---------------+-------------+ 
1 Dept 1 Name 1 Salary 1 DeptRank 

+----------------------+----------------------+---------------+-------------+ 
Accounting J. White 45000.0 1 2 
Accounting K. Holmes 39000.0 1 3 
Accounting M. Scholl 45500.0 1 1 
HR D. Johns 48000.0 1 2 
HR N. Lovejoy 50000.0 1 1 
Sales E. Malon 50000.0 1 2 
Sales J. Cioffy 60000.0 1 1 

+----------------------+----------------------+---------------+-------------+ 
relation DeptRanks has 7 tuples 

Figure 3.26: Example: Partial Functional Mapping Operation 

Update 

Update provides the mechanism for changing a relation. There are three basic update 

operations on relation: add, delete and change. The syntax for update is: 

"update" Identifier ("add"l"delete") Expression ";" 
1 

"update" Identifier "change" StatementList (UsingClause)? 

where UsingClause is defined as: 

"using" JoinOperator Expression 
1 

Il.11 , 

"using" "["IDList":IJoinOperator(I:I)?ExpressionListl]" Expression 

The semantics of add is the same as that of the incremental assignment. The 

semantics of delete is the same as that of the djoin. A relation can also be updated 

in part by the change operation. Changes to perform are specified in StatementList. 

Assignment is the most common type of change statement. In later chapters, we will see 
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examples of issuing computation calls in an update statement. The part of the relation 

to be updated is the result of join (specified by JoinOperator) between the relation 

being updated and the relation resulting from UsingClause. If the UsingClause is 

absent, the whole relation is updated. The default JoinOperator is ijoin. 

Example 1. Updating fiat relations (see Figure 3.27). 

>domain Item, Type strg; 
>relation Class(Item, Type) (- {("Yarn", "a"), 

("String lt
, "a") , 

("Ball", "b ll
) , 

("Sandal", "c")}; 
>relation ReClass(Item,Type) (- {("Yarn", "a"), 

>update Class add ReClass; 
>pr Class; 

("String", "b"), 
(IITopll, "a")}; 

+----------------------+----------------------+ 
1 Item 1 Type 
+----------------------+----------------------+ 

Ball 1 b 
Sandal 1 c 
String 1 a 
String 1 b 
Top 1 a 
Yarn 1 a 

+----------------------+----------------------+ 
relation Class has 6 tuples 

>update Class change Type (- "B" 
using ijoin ReClass; 

>pr Class; 
+----------------------+----------------------+ 
1 Item 1 Type 
+----------------------+----------------------+ 

Ball 1 b 

Sandal 1 c 
String 1 B 
String 1 a 
Top 1 B 
Yarn 1 B 

+----------------------+----------------------+ 
relation Class has 6 tuples 

Figure 3.27: Example: Updating Flat Relations 

Example 2. Updating nested relations (see Figure 3.28 and Figure 3.29). 

3.6 Computation 

Computations [Mer93, Bak98] are the procedural abstraction mechanism provided by 

jRelix. They can be regarded as potentially infinite relations containing tuples which 
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>domain Major, Name strg; 
>domain Mark intg; 
>domain Student(Name, Mark); 
>relation Records(Major,Student) <- {("CS", {("J. Doe" , 80), 

("G. Ford", 56), 
("H. Canning", 88)}) , 

("EE" , {("B. Martin", 99), 
("P. Fisher", 45)})}; 

>relation NewCSRec(Name, Mark) <- {("A. Wood", 77)}; 

«add the new student to CS major 
>update Records change 

(update Student add NewCSRec) 
using ijoin where Major = "CS" in Records; 

>pr Records; 
+----------------------+----------------------+ 
1 Major 1 Student 
+----------------------+----------------------+ 
1 cs 
1 EE 

1 1 
1 2 

+----------------------+----------------------+ 
relation Records has 2 tuples 
>pr .Student; 
+-------------+----------------------+-------------+ 
1 .id 1 Name 1 Mark 
+-------------+----------------------+-------------+ 

A. Wood 77 
G. Ford 56 
H. Canning 88 

1 J. Doe 80 
2 B. Martin 99 
2 P. Fisher 45 

+-------------+----------------------+-------------+ 
relation .Student has 6 tuples 

Figure 3.28: Example: Updating Nested Relations, part 1 

«reduce mark by 5 for EE students 
>update Records change 

(update Student change Mark <- Mark - 5) 
using ijoin where Major = "EE" in Records; 

>pr Records; 
+----------------------+----------------------+ 
1 Major 1 Student 
+----------------------+----------------------+ 
1 CS 
1 EE 

1 1 
1 2 

+----------------------+----------------------+ 
relation Records has 2 tuples 
>pr .Student; 
+-------------+----------------------+-------------+ 
1 .id 1 Name 1 Mark 
+-------------+----------------------+-------------+ 

1 A. Wood 72 
1 G. Ford 51 

H. Canning 83 
J. Doe 75 

2 B. Martin 94 
2 P. Fisher 40 

+-------------+----------------------+-------------+ 
relation .Student has 6 tuples 

Figure 3.29: Example: Updating Nested Relations, part 2 
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satisfy the semantic constraints embodied by the code in the computations. Compu

tation domains are the elements exported through the parameter list. A parameter 

can serve either as input or output, depending on how the computation is called. A 

computation can have more than one alternative blocks, each representing one of the 

views of the same constraint. However, it is the programmer's responsibility to ensure 

the consistency among the blocks. Computations employ the pass-by-name parameter 

passing mechanism [Seb96], which results from the design choice of modelling them after 

relations. 

Advanced uses of computations include stateful computations, packages, abstract 

data types, constraint verification, and recursive computations. The first three have 

been made available by this implementation2. Examples of using packages and stateful 

computations will be given shortly. Abstract data types are treated thoroughly in 

Chapters 4 and 5. [Bak98] shows examples of constraint verification and recursive 

computation in Chapter 3. 

At the end of this section, we present sorne commands commonly used with compu

tations. For details please refer to [Bak98]. 

3.6.1 Defining and Invoking a Computation 

The syntax for declaring a computation can be found in Appendix A. It is possible to 

declare computations at two levels: top levelor nested lev el. Top level computations are 

not declared inside the code block of any other computations whereas nested ones are. 

Top level computations can be invoked from anywhere in the code after its definition. 

On the other hand, nested level computations are only available in two places: 

• In the computation code block where the nested level computation is defined, 

or 

• In a relation resulting from instantiating an Abstract Data Type which 

exports the nested level computation as an ADT method. 

2Stateful computations were mentioned in [Bak98]; however, a working model was not available 

then. 
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In addition, a nested level computation becomes top-Ievel if it is exported from a package. 

We'U see an example in Section 3.6.3. 

Apart from this distinction in scope, the calling syntax used with the two types of 

computations differs slightly. There are four forms of invocation syntax for computations 

in jRelix: 

1. Stand-alone invocation: invoking a computation by means of a top-Ievel caU 

statement, with specified input and output arguments. 

2. Selectjarray syntax: invoking a computation by me ans of a select expression. 

The select predicate provides the values of the input parameters, whereas the 

result relation contains the outputs of a computation as its attributes values.An 

array syntax may be used instead as a syntactic sugar. 

3. Natural join syntax: joining a computation with a relation. Each tuple of the 

relation provides the input value for the computation and the result relation will 

contain both the input and the output values for aU tuples that satisfy the con

straint represented by the computation.In the implementation given by [Bak98], 

the name of the formaI parameter must match that of the actual parameter. This 

restriction has been eliminated. More on this in 5.2.1. 

4. Vertical syntax: using a user-defined computation to systematicaUy pro cess the 

values of a domain in a relation. 

The last syntax will be discussed in Chapters 4 and 6. Top level computations may be 

invoked using any syntax form. If a nested level computation is invoked from withing 

the code block in which it is defined, aU forms of syntax apply. Computations intended 

as accessors3 of an ADT normaUy use syntax 2, while those intended as modifiers4 use 

syntax 1 within an update statement. 

Examples showing the use of computations in ADTs will be given in Chapter 4. The 

foUowing examples illustrate the use of stateless computations. 

3 Accesor methods are functional. 
4 Modifier methods change the state. 
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Example 1. Computation declaration 

Figure 3.30 shows the declaration of a computation named CircArea. The first block 

of code calculates the area of a circle given the radius r. The second block does the 

inverse. A constant pi is defined using the domain algebra before the computation 

declaration. 

>Iet pi be 3.14: 
>domain r, area float: 

>comp CircArea(area, r) is 
{ are a (- pi * r * r:} 
aIt 
{ r (- sqrt(area / pi):}; 

Figure 3.30: Declaration of a Simple Computation 

Note that this computation can be thought of as the infinite relation shown in Fig

ure 3.31. 

CircArea 
area r 
3.14 1 
12.56 2 

38.5 3.5 

Figure 3.31: Relation Associated with Computation CircArea 

Every tuple of this relation satisfies the constraint area = pi * r * r. Further more, 

aIl tuples satisfying this constraint are included in the relation. The parameters of the 

computation become the domains of its associated relation. 

Full support for nested relations in jRelix means that an attribute of a relation can 

itself be a relation. Thus a computation can take on relational parameter as weIl. 

Example 2. Invoking a computation using the select/ array syntax 

In Figure 3.32, the first CircleA stores the result of the are a calculation using the array 

syntax. The second uses a select relational expression instead. The semantics of both 
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is to calculate the area of a circle given the radius. As the array syntax is meant to be 

syntactic sugar for the relational select, the two CircleAs contain the same answer, as 

expected. Note the use of a comma in the first invocation of CircArea. This comma 

is necessary as it indicates that the 1 after it is the second parameter value for the 

computation. Thus the system will run the second block which requires the second 

parameter as input. Without the comma, the select expression equivalent would be: 

Cr] where area = 1 in CircArea. 

>CircleA <- CircArea[,l]; 
>pr CircleA; 
+---------------+ 
1 area 
+---------------+ 
1 3.14 
+---------------+ 
relation CircleA has 1 tuple 

>CircleA <- [are a] where r = 1 in CircArea; 
>pr CircleA; 
+---------------+ 
1 area 
+---------------+ 
1 3.14 

+---------------+ 
relation CircleA has 1 tuple 

Figure 3.32: Computation Invocation: Selectjarray Syntax 

Example 3. lnvoking a computation using the natural join syntax 

Computations are a special kind of relation. Therefore computations can be used in join 

expressions. In Figure 3.33, we first declare and initialize a relation named MoreCircs. 

Wh en natual joined (i.e. ij oin) with the CircArea computation, this relation provides 

the input values of r, and the computation returns both the calculated area and the 

input values. The system considers r to be the input parameter since it is the only 

common domain between MoreCircs and CircArea. Whatever parameter is left in the 

computation is regarded as output from the computation. Even if MoreCircs is defined 

neither on r nor on area, we can still explicitly name the join domain (see Figure 3.34). 

Example 4. lnvoking a computation using a stand-alone caU 

The computation used in the previous examples has primitive typed parameters. In this 

example we will look at a computation whose parameters are relations. As a matter of 
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>relation MoreCircs(r) <- {(1),(2),(3),(4)}; 
>MoreArea <- MoreCircs ijoin CircArea; 
>pr MoreArea; 
+---------------+---------------+ 
1 area 1 r 
+---------------+---------------+ 
1 3.14 1 1.0 
1 12.56 1 2.0 
1 28.26 1 3.0 
1 50.24 1 4.0 
+---------------+---------------+ 
relation MoreArea has 4 tuples 

Figure 3.33: Computation Invocation: Natural-Join Syntax 

>domain R float; 
>relation MoreCircs(R) <- {(1),(2),(3),(4)}; 
>MoreArea <- MoreCircs [R:ijoin:rJ CircArea; 
>pr MoreArea; 
+---------------+---------------+ 
1 area 1 R 
+---------------+---------------+ 

3.14 1 1.0 
1 12.56 1 2.0 
1 28.26 1 3.0 
1 50.24 1 4.0 
+---------------+---------------+ 
relation MoreArea has 4 tuples 

Figure 3.34: Computation Invocation: Natural-Join with Named Join Domain 
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fact, a parameter can be of any type, even computation. Computation SuperSet, as 

defined in Figure 3.35, contains only one block which assigns relation groupl or group2 

or nothing to super according to the following rules: 

• If groupl contains every name of group2, then assign groupl to super; 

• If group2 contains every name of groupl, then assign group2 to super; 

• If the above two conditions both fail, don't assign anything to super. 

Figure 3.36 shows three stand-alone instances of invocation of the computation each 

followed by its results. The direction of the arguments being passed are indicated by in 

for input or out for output. 

3.6.2 Stateful Computations: a Simple Example 

Computations come with a facility to create objects with state. It is also possible to 

define accessor and modifier methods on the state. Figure 3.37 shows a computation, 

Counter. The state is _curVal, of type integer. This computation has one parameter 
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>domain name string; 
>domain groupl. group2(name); 
>domain super(name); 

>comp SuperSet(groupl.group2.super) is 
{if (groupl sup group2) 
then 

else 

}; 

super (- groupl 

if (group2 sup groupl) 
then 

super (- group2; 

Figure 3.35: Declaration of a Computation with Relation Typed Parameters 

>relation Gl(name) (- {("Andy"). ("George"). 
>relation G2(name) (- {("Andy"). ("Hans")}; 
>relation G3(name) (- {("Andy"). ("Chuck")}; 
>relation super(name); 
>relation super1(name) ; 

>SuperSet(in Gl. in G2. out super); 
>pr super; 
+----------------------+ 
1 name 
+----------------------+ 

Andy 
1 George 
1 Hans 
+----------------------+ 
relation super has 3 tuples 

>SuperSet(in G2. in Gl. out super); 
>pr super; 
+----------------------+ 
1 name 
+----------------------+ 

Andy 
1 George 
1 Hans 
+----------------------+ 
relation super has 3 tuples 

>SuperSet(in G2. in G3. out superl); 
>pr superl; 
+----------------------+ 
1 name 
+----------------------+ 
+----------------------+ 
relation superl has 0 tuple 

("Hans")}; 

Figure 3.36: Computation Invocation: Stand-alone CaUs 
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curVal, which is used as input in the first block and as output in the second block. 

Wh en the first block is invoked, the input parameter curVal passes its value on to the 

state _curVal, thus resetting the value of the state. When the second block is invoked, 

the state _curVal first increments its own value by one and then assigns the value to 

the output parameter curVal. Figure 3.38 demonstrates the use of this computation. 

In this case only one object is created. 

>domain curVal intg; 

>comp Counter(curVal) is 
state _curVal intg; 
{ _curVal (- curVal;} 
alt 
{ _curVal (- _curVal + 1; 

curVal (- _curVal; 
}; 

Figure 3.37: Declaration of a Computation with State 

>ACounter (- Counter[O]; 
>ACounter (- Counter[]; 
>pr ACounter; 
+-------------+ 
1 curVal 
+-------------+ 
1 1 

+-------------+ 
relation ACounter has 1 tuple 

>BCounter (- Counter[]; 
>pr BCounter; 
+-------------+ 
1 curVal 
+-------------+ 
1 2 

+-------------+ 
relation BCounter has 1 tuple 

>CCounter (- Counter[9]; 
>CCounter (- Counter[]; 
>pr CCounter; 
+-------------+ 
1 curVal 
+-------------+ 
1 10 

+-------------+ 
relation CCounter has 1 tuple 

Figure 3.38: Using a Computation with State 

In order to initialize a Counter object, the computation should be invoked with a 

single input parameter. Invoking it without a parameter will fire the second block and 
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return the value of the incremented state. 

3.6.3 Packages 

JRelix supports the notion of packages with no new syntax. A package is a computation 

designed ta export other computation(s) defined inside its body. This makes it possible 

to switch between different implementations of the same computation on the fly, as 

long as each implementation of the computation is included in a different package and 

the signature of the computation remains the same5 across aIl packages in which it is 

defined. In the example we give in Figures 3.39 and 3.40, two packages are defined, each 

exporting computation CalcArea. CalcArea in package1 calculates the area of a circle 

given radius, while the one in package2 gives the are a of a square. Sinee CalcArea is a 

parameter and domain of the package computations, it has to be declared beforehand 

as a computation-typed domain. 

domain CalcArea comp(area, r); 

Area is declared to be a viewon CalcArea when the second parameter's value is 2. The 

view materializes when used in a relational expression or or as a command argument, 

such as in 

pr Area; 

To export a computation from a package, sim ply invoke the package with a stand-alone 

caU and prefix the name of the computation being exported with keyword out. The 

exported computation is then ready for use as any other top level computation.In our 

example, the pr command forees the view Area to be evaluated which in turn caUs 

CalcArea using the array syntax (see 3.6.1 for calling syntax for computations). The 

relation resulting from the evaluation has one domain area, the value of which reflects 

the package being used. 

Sinee packages are top level compuations that are persistent on secondary stor

age, once defined, packages can be used over and over again without the need for 

5This means same name and same parameters. Parameter type counts. 
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>let pi be 3.14; 
>domain r, area float; 
>domain CalcArea comp(area, r); 
>Area is CalcArea[,2]; 

>comp package1 (CalcArea) is 
{comp CalcArea(area,r) is 

{ 

area <- pi * r * r; 
}; 

}; 

>comp package2 (CalcArea) is 
{comp CalcArea(area,r) is 

{ 

area (- r * r; 
}; 

}; 

Figure 3.39: Declaration of Packages 

>package1(out CalcArea); 
>pr Area; 
+---------------+ 
1 area 
+---------------+ 
1 12.56 
+---------------+ 
expression has 1 tuple 

>package2(out CalcArea); 
>pr Area; 
+---------------+ 
1 area 
+---------------+ 
1 4.0 
+---------------+ 
expression has 1 tuple 

Figure 3.40: Use of Packages 
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re-declaration. This opens up the opportunity for packages to be used as libraries. 

Packages are more useful when they contain commonly used utility computations, such 

as the ones shown in the example. 

3.6.4 Commands 

JRelix commands that are useful for computations are summarized as follows: 

pr prints the source code of the computation. 

dr deletes a relation, view or computation. 

sc displays information about the 'aIt' blocks of a computation. The format of the 

output from this command is 

[Input Parameter List] - > [Output Parameter List] 

All the above mentioned commands take the name of a computation as the sole argu

ment. 



Chapter 4 

User's Manual 

Computations not only provide support for procedural abstraction, as demonstrated in 

the previous chapter, but they also can be used to implement data abstraction. The 

key ideas of an abstract data type (ADT) are encapsulation and information hiding. In 

Section 4.1 we will discuss the declaration and use of abstract data types. The reader 

is encouraged to review the basic concepts of computations presented in Section 3.6. 

The domain algebra (see Section 3.4) complements the relational algebra by providing 

mu ch expressive power to jRelix. However, such power is limited to a predefined set of 

operations, be it arithmetic or relational joins. To allow for user-defined operations on 

arbitrary data types, an extension to the domain algebra is necessary. The power of 

such an extension is illustrated in Section 4.2. 

4.1 User's Manual on ADT 

4.1.1 Introduction 

An abstract data type (ADT) in jRelix is declared using the same syntax as a com

putation. The reader is referred to Appendix A for the BNF syntax of a complete 

computation declaration. The structure of a computation is show in Figure 4.1. Square 

brackets include optional elements, such as ParameterList. Items that may appear zero 
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or more times are delimited by 0*. Key words and all mandatory delimiters are shown 

in bold face. A vertical bar separates alternative items. 

comp CompName ([ParameterList]) is 
[ComputationVariableDeclaration 
[redoplfunopl 
{ 
(Statement 1 Command) * 

} 
( aIt 

[redop 1 funop 1 
{ 
(Statement 1 Command) * 

} 
) * 

Figure 4.1: The Structure of a Computation 

An ADT has hidden information 1 that is declared as state variables. Operations on 

the states are given by the nested-Ievel compuations inside the ADT, thus the support 

for encapsulation. Two types of operations are normally supplied for an ADT: accessor 

methods and modifier methods. In most cases, an accessor method reveals the value of 

the hidden state while a modifier method provides a means of changing its value. It 

is however also possible for an accessor method to be defined otherwise, as long as it is 

purely functional (i.e. not modifying the state). Methods whose name appears in the 

parameter list of the ADT become public methods. 

Once an ADT has been declared, objects of that type can be instantiated via an 

intersection join (ijoin). The relation that joins with the ADT may contain initial 

values for the hidden state(s). The result of the join is a relation, which contains the 

hidden state(s). Its domains include the associated public methods. The hidden state 

can only be manipulated through the methods defined in the ADT. Each tuple of the 

result relation constitutes an object of the ADT. Since the result relation is by aH means 

a normal relation, the relational algebra and domain algebra operations introduced in 

IThe original concept of information hiding applies to hiding the method implementation as weIl. 

This is not supported by jRelix. 
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Chapter 3 still apply. 

In the following sub-sections, we will see two examples of using ADTs. The first one 

illustrates object instantiation, and the use of accessorjmodifier methods on a float 

state variable. The second is a more realistic application that involves almost aIl aspects 

of the jRelix language we have seen so far. 

4.1.2 Example 1: Car Racing 

Declaration and Instantiation 

In this example, we define a RaceCar ADT as shown in Figure 4.2. There are three 

state variables defined in the ADT: _vO, _a, and _v. In view of the motion of uniform 

acceleration, these represent the initial velocity, the acceleration, and the current veloc

ity, in their standard units respectively. The two modifier methods, ACCELERATE and 

STOP, apply the rules of uniform acceleration to the state variables. ACCELERATE accel

erates the race car for t seconds whereas STOP brings the car to a total stop. The only 

accessor method for this ADT is GETSPEED which is meant to reveal the current velocity 

of a car. AlI three methods are public, as they are present in the parameter list. The 

other two variables in the parameter list are vO and a. They specifiy the initial values 

for states _vO and _a. Obviously their values need to be provided when the RaceCar 

ADT is instantiated. This example also shows how domains of type computation are 

declared. It is important to declare aIl domains in the parameter list of an ADT before 

the declaration of the ADT itself. 

The input and output relationship among the parameters can be displayed ~y an sc 

command, as in Figure 4.3. The result of this command provides clue as to what inputs 

are expected by the ADT and what outputs are available. 

Figure 4.4 declares a relation Racers which contains two racers each with his own 

name, initial velocity, and acceleration. 

To instantiate two RaceCar objects, we simply ij oin the relation Racers and the 

ADT RaceCar (see Figure 4.5). The Racers relation could contain thousands of tuples 
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>domain vO, vt, a, t, curSpeed float; 
>domain ACCELERATE comp(t); 
>domain STOP comp(); 
>domain GETSPEED comp(curSpeed); 
>comp RaceCar(vO,a,ACCELERATE,STOP,GETSPEED) is 
state _vO, _a, _v float; 
{_vO <- vO; _a <- a; _v <- vO; 

comp ACCELERATE(t) is 
{ _v <- _vo + _a * t; vO <- _v;}; 

comp STOPO is 
{ _v <- 0; _vo <- _v;}; 

comp GETSPEED(curSpeed) is 
{ curSpeed <- _v; }; 

}; 

Figure 4.2: Example ADT: RaceCar 

>sc RaceCar; 
RaceCar (vO, a, ACCELERATE, STOP, GETSPEED) 

[ vO a ] -> [ ACCELERATE STOP GETSPEED ] 

Figure 4.3: RaceCar Input and Output 

>domain name string; 
>domain vO', a' float; 
>relation Racers(name, vO', a') <- {("James Bond", 0,6000), 

("Michael Schumacher", 0, 5500)}; 

Figure 4.4: The Racers 
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instead, and the instantiation would still require just one join operation. This way 

of object instantiation is easier than in other languages such as C++ or Java, where 

only one new object at a time can be instantiated. This form of instantiation is thus 

appropriate for databases which normally contain large amounts of data. 

>TopRacers <- [name,ACCELERATE,STOP,GETSPEED] in (RaceCar[vO,a:ijoin:vO',a']Racers); 
>pr TopRacers; 
+----------------------+-------------+-------+-----------+ 
1 name 1 ACCELERATE 1 STOP 1 GETSPEED 1 

+----------------------+-------------+-------+-----------+ 
1 James Bond 1 1 1 2 1 3 
1 Michael Schumacher 1 1 1 2 1 3 
+----------------------+-------------+-------+-----------+ 
relation TopRacers has 2 tuples 

Figure 4.5: Instantiating the RaceCar ADT 

Consider the join syntax used in Figure 4.5. Were the relation Racers defined on 

narne, vO, and a, the following join syntax could be used: 

TopRacers <- [narne,ACCELERATE,STOP,GETSPEED] in (RaceCar ijoin Racers); 

In this case, the common domains of RaceCar and Racers, i.e. vO and a, become the 

join domains which, in turn become the input parameters of the RaceCar ADT. The 

remaining parameters become outputs. However, in our example, the relation Racers 

are defined on domains not in the parameter list of the ADT. Therefore the extended 

join syntax is used to explicitly name the join domains. This may seem a bit lengthy, 

but in return we gain the freedom of defining Racers on any domains as long as they 

are compatible with the types of the ADT's input parameters. 

The projector list in the T-Selection in Figure 4.5 contains the domains we want 

in the result, TopRacers. Since the initializers (vO and a) are no longer needed, they 

are omitted from the list. Though not shown, there are yet three hidden variables in 

TopRacers: the three states in the RaceCar ADT. Thus the result of an ijoin between 

an ADT and a relation is defined on a set of domains consisting of the union of the 

domains of its two operands and the hidden states of the ADT. To show these hidden 

states, we can turn on the debug switch as in Figure 4.6. The names of the hidden states 

are quoted in '*'. Although hidden states can be displayed this way, they cannot be 
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used anywhere normal domains are expected. This restriction ensures the information 

hiding aspect of an abstract data type. 

>debug; 
Note: debug mode is on 
>pr TopRacers; 
+--------------------+------------+------+----------+--------+-------+--------+ 
1 name 1 ACCELERATE 1 STOP 1 GETSPEED 1 *_a* 1 *_v* 1 *_vO* 1 

+--------------------+------------+------+----------+--------+-------+--------+ 
1 James Bond 1 1 
1 Michael Schumacher 1 1 

1 2 
1 2 

1 3 
1 3 

1 6000.0 1 0.0 1 0.0 
1 5500.0 1 0.0 1 0.0 

+--------------------+------------+------+----------+--------+-------+--------+ 
relation TopRacers has 2 tuples 

Figure 4.6: Showing Hidden Attributes 

Figure 4.6 also proves that the assignment statements in the beginning of the com

putation block of RaceCar have been executed correctly. It is only in a computation 

block that assignment to a scalar typed variable is aIlowed .. The numbers in the columns 

titled ACCELERATE, STOP and GETSPEED are what we calI "surrogates". They function 

like pointers to the three public methods exported by the ADT. Although each tuple2 

in TopRacers has its own states, the methods are the same for aIl tuples. 

Method Invocation 

Now we discuss how the accessor methods are used. The foIlowing statement cannot be 

used to examine the current velocity of the car because _v is a hidden state: 

pr ([name, _vJ in TopRacers); 

Instead we must use the accessor method GETSPEED. Figure 4.7 shows how. 

First we declare a virtual attribute speed' to hold the result of the computation calI 

GETSPEED [J. This invocation uses the array syntax (see Section 3.6.1 for a discussion 

of calling syntax) and pro duces a relation defined on curSpeed. Thus it is unary. In 

addition, the relation speed' has only one tuple, i.e., the value of _v. So speed' is also 

singleton. However, it is cumbersome to have a nested relation in the result when aIl 

we need is the value of the tuple in the unary singleton relation. Thus the second let 

2 A tuple here can be thought of as an object, but we prefer the term tuple in this relation al database 

context 
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>let speed' be GETSPEED[]; 
>let speed be [red nop of curSpeed] in speed'; 
>AllSpeeds is [name, speed] in TopRacers; 
>pr AllSpeeds; 
+----------------------+---------------+ 
1 name 1 speed 
+----------------------+---------------+ 
1 James Bond 1 0.0 
1 Michael Schumacher 1 0.0 
+----------------------+---------------+ 
expression has 2 tuples 

Figure 4.7: Using the Accessor Method 

statement is employed to give a float value: speed. The expression 

[red nop of curSpeed] in speed' 
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pro duces the value of curSpeed in relation speed' 3. And this value will be assigned 

to speed when speed is actualized. The pr command in Figure 4.7 triggers such an 

actualization. (We define AllSpeeds as a view in anticipation of its repeated use in 

later code. More details on views, computed relations, can be found in [Hao98]). 

A more succinct way of defining speed is: 

let speed be [red nop of curSpeed] in GETSPEED[] ; 

To start the cars racmg, the modifier method ACCELERATE cornes into play. As 

it actually changes the state of the "race cars", an update statement is involved, as 

illustrated in Figure 4.8. The method ACCELERATE works on each tuple in TopRacers 

in turn. As a result, each racer has been accelerating for 3 seconds. 

>update TopRacers change ACCELERATE(in 3); 
>pr AllSpeeds; 
+----------------------+---------------+ 
1 name 1 speed 
+----------------------+---------------+ 
1 James Bond 1 18000.0 
1 Michael Schumacher 1 16500.0 
+----------------------+---------------+ 
expression has 2 tuples 

Figure 4.8: Using the Modifier Method: Example 1 

Of course we can choose to accelerate James Bond's car only, and even stop Michael 

Schumacher aU together (see Figure 4.9). 

3 see Section 3.3.2 for a discussion on the operator nop and Section 3.4.2 on its role with reduction 
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>update TopRacers change ACCELERATE(in 2) 
using ijoin where name = "James Bond" in TopRacers; 

>pr AllSpeeds; 
+----------------------+---------------+ 
1 name 1 speed 
+----------------------+---------------+ 
1 James Bond 1 30000.0 
1 Michael Schumacher 1 16500.0 
+----------------------+---------------+ 
expression has 2 tuples 

>update TopRacers change STOP() 
using ijoin where name = "Michael Schumacher" in TopRacers; 

>pr AllSpeeds; 
+----------------------+---------------+ 
1 name 1 speed 
+----------------------+---------------+ 
1 James Bond 1 30000.0 
1 Michael Schumacher 1 0.0 
+----------------------+---------------+ 
expression has 2 tuples 

Figure 4.9: Using the Modifier Method: Example 2 
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States in jRelix are persistent on secondary storage. This means we can quit the 

current session, restart in the same database directory, and continue with the car race 

example as if no interruption has occurred. Figure 4.10 illustrates this point. Note in 

particular the value of the state variables for James Bond and Michael Schumacher. 

The surrogates for the three public methods remain the same as in the previous run as 

weIl. 

The mechanism ofinstantiation and method invocation introduced in this sub-section 

is generaUy applicable to aU ADTs. In the next example, we will focus on the integration 

of various database operations into an ADT's methods in a more realisitc application. 

4.1.3 Example 2: A Banking Application 

Declaration and Instantiation 

Consider a banking application that involves multiple banks, each with its own cus

tomers. Here is a list of possible requirements for such an application: 

1. The banks are distinguished from each other by their name. 

2. Each bank has a number of customers identified by their account number. 

3. There is a non-negative balance in each account. 
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>quit; 
[sta,rt a new session] 
>relation NewRacers(name, vO, a) <- {("Spiderman", 0, 4000)}; 
>NewTopRacer <- [name,ACCELERATE,STOP,GETSPEED] in (RaceCar ijoin NewRacers); 
>update TopRacers add NewTopRacer; 
>pr TopRacers; 
+----------------------+-------------+-------+-----------+ 
1 name 1 ACCELERATE 1 STOP 1 GETSPEED 1 

+----------------------+-------------+-------+-----------+ 
James Bond 1 1 

1 Michael Schumacher 1 1 
1 Spiderman 1 1 

1 2 
1 2 
1 2 

1 3 
1 3 
1 3 

+----------------------+-------------+-------+-----------+ 
relation TopRacers has 3 tuples 

>update TopRacers change ACCELERATE(in 4) 
using ijoin where name = "Spiderman" in TopRacers; 

>pr AllSpeeds; 
+----------------------+---------------+ 
1 name 1 speed 
+----------------------+---------------+ 
1 James Bond 1 30000.0 
1 Michael Schumacher 1 0.0 
1 Spiderman 1 16000.0 
+----------------------+---------------+ 
expression has 3 tuples 

Figure 4.10: Persistent State 

64 

4. The customer can see his/her balance and make deposits or withdrawals as long 

as the account is in good standing (not overdrawn). 

5. The bank needs to tally the sum of the balances in aIl acounts. It also needs to 

know how many open accounts it has. 

6. The bank should be able to open and close accounts. 

7. The bank can transfer money from one account to another. 

We devise two ADTs: one for the bank account (called BA) and the other for the 

bank (named BANK). The BA ADT stores the current balance of an account in (bal) and 

also remembers the last balance (oldbal). It provides one accessor method (BALANCE) 

and one modifier method (DEPOSIT). The method BALANCE consists of two 'aIt' blocks: 

the first returns the current balance while the second gives the amount of the most 

recent deposit. The modifier method can actually be used to withdraw money when the 

parameter value is negative. It also prevents any attempt to overdraw an account. The 

complete definition of the BA ADT is shown in Figure 4.11. 



CHAPTER 4. USER'S MANUAL 

>domain Dep,Bal,InitBal intg; 
>domain DEPOSIT comp(Dep); 
>domain BALANCE comp(Bal); 
>comp BA(InitBal,DEPOSIT,BALANCE) is 
state bal,oldbal intg; 
{ bal <- InitBal; 

}; 

comp DEPOSIT(Dep) is 
{ oldbal <- bal; bal <- bal + Dep;} 
alt 
{ Dep <- bal - oldbal;}; 

comp BALANCE(Bal) is 
{ Bal <- bal;}; 

Figure 4.11: The BA ADT 
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To satisfy requirements 5 to 7, we define the BANK ADT as in Figures 4.12 and 4.13. 

Since this is a lengthy definition, we break it down into two pieces and number the lines 

continuously (Figures 4.13 gives the complete definition of the ADT). The line numbers 

will be referred to wh en we explain this example in detail. 

1 >let BA' be BA; 
2 >domain Acct strg; 
3 >domain CUST(Acct,InitBal); 
4 >domain Tot Bal intg; 
5 >domain Amount intg; 
6 >let FromAcct be Acct; 
7 >let ToAcct be Acct; 
8 >domain TOCLOSE(Acct); 
9 >domain Cnt intg; 
10 
11 >domain SUM comp(TotBal); 
12 >domain TRANSFER comp(Amount,FromAcct,ToAcct); 
13 >domain OPENACCT comp(CUST,BA'); 
14 >domain CLOSEACCT comp(TOCLOSE); 
15 >domain ACCTCNT comp(Cnt); 

Figure 4.12: The BANK ADT: Part 1 

Let's first see how we can instantiate five BANK objects. The names and initial 

customer accounts of our banks are given by relation BIG5_CUST in Figure 4.14. The 

domain corp serves as the primary key while CUST is a relation typed domain defined 

on Acct, the account number, and InitBal, the initial balance, as shown on line 3 of 

Figure 4.12. 

The instantiation of the BANK ADT involves an ijoin between the ADT and an ini

tializing relation. In order to initialize the state variable custorners upon instantiation 

(line 18 in Figure 4.13), the initializing relation must contain at least two domains com-
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16 >cornp BANK(CUST,BA',SUM,TRANSFER,OPENACCT,CLOSEACCT,ACCTCNT) is 
17 state custorners(Acct,DEPOSIT,BALANCE); 
18 {custorners <- [Acct,DEPOSIT,BALANCE] in (CUST ijoin BA'); 
19 
20 cornp SUM(TotBal) is 
21 {let CustBal be [red nop of Bal] in BALANCE[]; 
22 TotBal <- [red + of CustBal] in custorners; 
23 }; 
24 
25 cornp TRANSFER(Arnount,FrornAcct,ToAcct) is 
26 {let FBa12 be [red nop of Bal] in BALANCE[]; 
27 let FBal be FBa12-Amount; 
28 FA <- where Acct=FromAcct in custorners; 
29 TA <- where Acct=ToAcct in custorners; 
30 FAS <- where FBal>=O in FA; 
31 if ([ ] in FAS) and ([ ] in TA) 
32 then 
33 {let nArnount be O-Amount; 
34 update custorners change DEPOSIT (in nAmount) 
35 using ijoin where Acct=FromAcct in custorners; 
36 update custorners change DEPDSIT(in Amount) 
37 using ijoin where Acct=ToAcct in custorners; 
38 } 
39 else 
40 print "Error in TRANSFER" 
41 }; 
42 
43 cornp OPENACCT(CUST, BA') is 
44 {new_custorners <- [Acct,DEPOSIT,BALANCE] in (CUST ijoin BA'); 
45 update custorners add new_custorners; 
46 }; 
47 
48 cornp CLOSEACCT(TOCLOSE) is 
49 {update custorners delete TOCLOSE;}; 
50 
51 cornp ACCTCNT(Cnt) is 
52 {Cnt <- [red + of 1] in custorners;}; 
53 }; 

Figure 4.13: The BANK ADT: Part 2 

>dornain corp strg; 
>relation BIG5_CUST(corp, CUST) <- {("BMO" ,{("SOOl", 100), 

("C002", 20), 
("S003", 300)}), 

("RBC" ,{("SOOl" , 30000), 
("S002", 2000)}), 

("TD" ,{("C003", 30)}), 
("CIBC",{("SOOl", 30000), 

("C002", 100), 
("C003", 20000), 
("C004", 90)}), 

("Scotia" ,{("COOl", 40), 
("C002", 500), 
("S003", 90000)}) 

}; 

Figure 4.14: The Big 5 Banks and Their Customers 
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patible with the input parameters of BANK: CUST and BA' . The latter is a virtual domain 

defined on the top-Ievel computation BA (see line 1). The relation BIG5_CUST contains 

CUST already, but it do es not have any computation typed domain. Since BA' is a virtual 

domain, we include it by the following T-selection: 

BIG5_BANK <- [corp,CUST,BA'J in BIG5_CUST; 

The relation BIG5_BANK can now be used to instantiate the bank objects, as shown in 

Figure 4.15. The ijoin between BANK and BIG5_BANK on corn mon domains leads the 

system to run the only 'aIt' block of BANK for each tuple of BIG5_BANK. The first statement 

(line 18) in the block instantiates BA objects and stores them in customers. The rest 

of the statements are computation declarations which are simply parsed and kept in 

memory for future use. Next, the state customers becomes the hidden variable of the 

relation BIG5 while its accessor and modifier methods are exported as visible domains of 

the same relation. Note the debug mode is on so that we can observe the internaI states 

(quoted in '*') directly. The "dot relation" that holds the contents of customers shows 

the two states of the bank account (bal and oldbal) and their associated methods. 

Method Invocation 

In this sub-section, we will carry out a series of transactions4 on behalf of the banks. 

The examples are cumulative and therefore ought to be followed in sequence. Line 

numbers refer to those that appear in Figures 4.12 and 4.13 in the previous sub-section. 

Surrogate values can be linked to bank names via Figure 4.15. 

Example 1. Transfer 40 dollars from account "COOl" to "C002" of the Scotia Bank. 

This operation will change the state of the bank objects, therefore an update statement 

is used. Figure 4.16 illustrates the invocation of the method TRANSFER on the tuple that 

corresponds to the Scotia bank. Three input parameters are provided, as indicated by 

the in keyword before each actual parameter. 

4This has nothing to do with database transactions which are concerned about maintaining consis

tency and integrity during updates. 
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>BIG5 (- [corp,SUM,TRANSFER,oPENACCT,CLoSEACCT,ACCTCNT] in (BIG5_BANK ijoin BANK); 
>debug; 
Note: de bug mode is on 
>pr BIG5; 
+--------+------+----------+----------+-----------+---------+-------------+ 
1 corp 1 SUM 1 TRANSFER 1 OPEN AC CT 1 CLoSEACCT 1 ACCTCNT 1 *customers* 1 

+--------+------+----------+----------+-----------+---------+-------------+ 
BMo 10 
CIBC 10 
RBC 10 
Scotia 10 
TD 10 

11 12 
11 12 
11 12 
11 12 
11 12 

13 
13 
13 
13 
13 

14 
14 
14 
14 
14 

9 
15 
16 
17 
18 

+--------+------+----------+----------+-----------+---------+-------------+ 
relation BIG5 has 5 tuples 
>pr .customers; 
+-----+------+---------+---------+-------------+-------------+ 
1 .id 1 Acct 1 DEPoSIT 1 BALANCE 1 *bal* 1 *oldbal* 
+-----+------+---------+---------+-------------+-------------+ 

9 C002 7 8 20 0 
9 SOOl 7 8 100 0 
9 S003 7 8 300 0 
15 C002 7 8 100 0 
15 C003 7 8 20000 0 
15 C004 7 8 90 0 
15 SOOl 7 8 30000 0 
16 SOOl 7 8 30000 0 
16 S002 7 8 2000 0 
17 COOl 7 8 40 0 
17 C002 7 8 500 0 
17 S003 7 8 90000 0 
18 C003 7 8 30 0 

+-----+------+---------+---------+-------------+-------------+ 
relation .customers has 13 tuples 

Figure 4.15: Instantiating 5 BANK objects 

>update BIG5 
change TRANSFER(in 40,in IC001",in IC002") 

using ijoin where corp=IScotia" in BIG5; 
>pr .customers; 
+-----+------+---------+---------+-------------+-------------+ 
1 .id 1 Acct 1 DEPoSIT 1 BALANCE 1 *bal* 1 *oldbal* 
+-----+------+---------+---------+-------------+-------------+ 

17 
17 
17 

COOl 7 
C002 7 
S003 7 

8 
8 
8 

o 
540 
90000 

40 
500 
o 

+-----+------+---------+---------+-------------+-------------+ 
relation .customers has 13 tuples 

Figure 4.16: Transfer Money between Two Accounts 
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The statements in the computation block of TRANS FER are executed in sequence. 

Line 21 defines a virtual domain FBa12 to hold the return value from the computation 

caU BALANCE [J . The use of reduction and the nop operator has been discussed in 

Section 4.1.2 and will not be repeated here. FBal holds the difference between the 

current balance and the amount to transfer. Lines 28 to 30 define three relations. FA 

holds the tuple of the account to be transferred from; TA holds that of the account 

to be deposited into; and finaUy FAS is the same as FA if there is sufficient funds for 

withdrawal, otherwise it is empty. If the conditions in line 31 hold, that is, if both 

accounts exist and the source account has enough money, the code in the 'then' block 

is executed. Otherwise an error message is printed on the screen. The actual transfer 

involves withdrawing money from the source account and depositing the same amount 

in the destination account. This is achieved by using the DEPOSIT method exported 

by the BA ADT. Note here we are strictly observing the rule of information hiding by 

not revealing the states (bal and oldbal) of the bank account. 

The result shows only the tuples of customers related to the Scotia bank (surrogate 

value 17). As expected, the execution of the DEPOSIT method results in the oldbals 

of the affected accounts taking on the previous values of bal and the bals of accounts 

"COOl" and "C002" have been updated according to the amount of transfer. 

Example 2. Add new accounts to bank BMO. 

An update statement is needed in this case. Figure 4.17 shows the details of the new 

accounts and illustrates the result of invoking the method OPENACCT. This time, the 

computation BA is supplied as an input parameter. The code (line 44) in the method 

OPENACCT resembles that of the first statement of BANK. Line 45 actuaUy adds the new 

accounts by an update add operation. 

Example 3. Delete some accounts from BMO. 

Again, since this operation will change the state of the bank objects, an update state

ment is used. Figure 4.18 shows the statement and the result. The relation CLOSE 

designates the accounts to be closed. An update delete operation is aU that is needed 

in the method CLOSEACCT. 
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>relation NEW_BMO_CUST(Acct,InitBal) <- {(IC004", 900), (IS005", O)}; 
>update BIG5 

change OPENACCT(in NEW_BMO_CUST,in BA) 
using ijoin where corp=IBMO" in BIG5; 

>pr .customers; 
+------+------+---------+---------+-------------+-------------+ 
1 .id 1 Acct 1 DEPOSIT 1 BALANCE 1 *bal* 1 *oldbal* 
+------+------+---------+---------+-------------+-------------+ 

9 
9 
9 
9 
9 

C002 7 
C004 7 
5001 7 
S003 7 
5005 7 

8 
8 
8 
8 
8 

20 
900 
100 
300 
o 

o 
o 
o 
o 
o 

+------+------+---------+---------+-------------+-------------+ 
relation .customers has 15 tuples 

Figure 4.17: Open New Accounts 

>relation CLOSE(Acct) <- {("C004"), ("SOOl")}; 
>update BIG5 

change CLOSEACCT(in CLOSE) 
using ijoin where corp="BMO" in BIG5; 

>pr .customers; 
+-----+------+---------+---------+-------------+-------------+ 
1 .id 1 Acct 1 DEPOSIT 1 BALANCE 1 *bal* 1 *oldbal* 
+-----+------+---------+---------+-------------+-------------+ 

9 
9 
9 

C002 7 
S003 7 
S005 7 

8 
8 
8 

20 
300 
o 

o 
o 
o 

+-----+------+---------+---------+-------------+-------------+ 
relation .customers has 13 tuples 

Figure 4.18: Close Accounts 
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Example 4. Tally the sum of balances and total number of accounts for every bank. 

This transaction do es not change the state of the banks. Figures 4.19 and 4.20 show the 

statements and the results. The use of reduction with the nop operator was covered in 

Section 4.1.2. 

>let banksum be [red nop of TotBal] in SUM[]; 
>Big5Sum <- [corp, banksum] in BIG5; 
>pr Big5Sum; 
+----------------------+-------------+ 
1 corp 1 banksum 
+----------------------+-------------+ 

BMO 
CIBC 

1 RBC 
1 Scotia 
1 TD 

320 
50190 

1 32000 
1 90540 
1 30 

+----------------------+-------------+ 
relation Big5Sum has 5 tuples 

Figure 4.19: Tally Sum of Balances 

>let AcctCnt be [red nop of Cnt] in ACCTCNT[]; 
>Big5Cnt <- [corp, AcctCnt] in BIG5; 
>pr Big5Cnt; 
+----------------------+-------------+ 
1 corp 1 AcctCnt 
+----------------------+-------------+ 

BMO 
CIBC 

1 RBC 
1 Scotia 
1 TD 

1 3 
1 4 
1 2 
1 3 
1 1 

+----------------------+-------------+ 
relation Big5Cnt has 5 tuples 

Figure 4.20: Tally Total Counts of Accounts 

4.1.4 Summary 

The properties of ADTs in jRelix are summarized as follows: 

• An ADT is declared as a computation with state(s). 

• An ADT contains the accessor or modifier methods for the state(s). 

• The state variable in an ADT can be of any domain type except computation. 

• Objects of an ADT are instantiated by an ijoin between the ADT and an initial

izing relation. It is customary for the initializing relation to supply intial values 

for the state(s) via the join domains. It may also contain object identifiers. 
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For example, corp may be regarded as an abject identifier for the bank abjects in 

the bank account example. 

• The result of an instantiation is a normal relation containing the hidden state(s) 

of the ADT. It also contains the methods exported through the parameter list of 

the ADT. 

• The hidden state(s) in the result of an instantiation may not be used as ordinary 

domains. But they exist in relations derived from the resuIt by means of a selection, 

projection, or T-seleetion. 

For example, after executing Corps < - [corp] in BIG5, relation Corps also has 

the hidden state customers. This is merely a design choice, as one cannat specify 

the state in the projection list; sa if the state is not retained, it will never be usable 

beyond the initial result of an instantiation. 

• Modifier methods must be invoked with an update change statement. 

• Accessor methods are used in the domain algebra. Sinee they produce relation 

typed results, it is recommended to use reduction and the nop operator to unnest 

a unary singleton relation. 

4.2 User's Manual on Extended Domain Aigebra 

4.2.1 Introduction 

This section diseusses an extension to the vertical domain algebra. The four classes of 

vertical operations (reduction, equivalence reduction, functional mapping, and partial 

functional mapping) can be used to combine values of a domain across tuples in a 

systematic way. The typieal applications are to calculate the grand total, sub-totals, or 

generate ranks of certain numerical domains. They are more powerful than the corn mon 

aggregate funetions in SQL and more intuitive to use as weIl. 

Nevertheless, the capability of these vertical operations is limited to the few system 

defined operators compatible in such operations. Take reduction as an example: only 
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seven operators are aUowed on scalar operands and four for relation typed operands 

(see Section 3.4.2). Should there arise a need to include in reduction another associative 

commutatitve operator, the implementation of the domain algebra would have to be 

changed and the whole system affected. To aUeviate this restriction, we introduce a 

mechanism to embed computation caUs in the vertical operations. Such computations 

may be defined to carry out any legitimate operations not pre-defined by the system. 

4.2.2 New Syntax 

The syntax change to support extended vertical domain operations cornes in two parts. 

First, the sytax for computation declaration is enhanced with the keywords, "redop" 

and "funop". An 'ait' block intended for use in reduction must be prefixed with "redop". 

However, this does not prevent it from being used in functional mapping. On the other 

hand, "funop" is used to decorate blocks that are available for functional mapping only. 

It is common for a computation to have one "redop" block and several "funop" blocks, 

but this is not mandatory. For example, a computation describing the behavior of the 

logic operator "xor" may have three "redop" blocks. It is also possible for a computation 

to have, at the same time, non-decorated blocks and decorated blocks. Invoking a block 

not decorated with "redop" or "funop" in a vertical operation will generate an error. 

The only change in syntax for vertical domain declaration is that the operator OP 

may now be replaced with a computation caU in the following format: 

CompName [" (" InOutList ")"] 

where CompName is the name of a computation, and InOutList consists of a sequence 

of two "in" and one "out", separated from each other by a comma. The parenthesized 

list may be omitted, in which case it is syntactic sugar for: 

CompName "(" "in" "," "in" "," "out" ")" 

The InOutList specifies the position of the input and output parameters. It is used 

to determine which block of the computation is targeted. For example, the foUowing are 

legal invocations of the cplx1 computation defined in Figure 4.23 (equivalence reduction 

and partial functional mapping now shown): 



CHAPTER 4. USER'S MANUAL 74 

• red cplx1(in,in,out) of R 

• red cplx1 of R (syntactic sugar for the previous one) 

• fun cplx1(in,out,in) of R order id 

• fun cplx1 of R order id 

The first two are used for calculating the sum of complex numbers stored in R; the last 

two are for the calculation of the alternating sum and the cumulative sum, respectively. 

Note that examples 1, 2 and 4 invoke the same block of the cplx1 computation, namely 

the one decorated with "redop". The third example invokes the second "funop" block. 

Although aU "redop" blocks are available for use with functional mapping, none of 

the "funop" blocks can be invoked in reduction. This is because the "redop" blocks 

are intended for operations that are commutative and associative, whereas there is no 

such restriction on the "funop" blocks. This being said, it is still the programmer's 

responsibility to obey these rules while writing the computation. It is impossible for 

the system to deduce or verify whether the operation described by a "redop" block is 

indeed commutative and associative. 

4.2.3 Example 1: Vertical String Concatenation 

Consider the relation in Figure 4.21. Each word is foUowed by a space and is numbered 

according to its position in the text. 

>pr Text; 

+-------------+----------------------+ 
1 index 1 word 

+-------------+----------------------+ 
1 1 1 Aldat 
1 2 1 is 
1 3 1 fun 
+-------------+----------------------+ 
relation Text has 3 tuples 

Figure 4.21: A Relation Containing Ordered Strings 

We would like to have a string to represent the text as a whole: "Aldat is fun". 

jRelix has a binary string operator cat, but unfortunately it currently cannot be used 
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in functional mapping5 . So we need something to mimic the foUowing statement: 

let WholeText be fun cat of word order index; 

With extended domain algebra, we have a solution as shown in Figure 4.22. 

>domain s1,s2,s3 strg; 
>comp STRCAT(s1,s2,s3) is 
funop {s3 (- s1 cat s2;}; 
>let WholeText' be fun STRCAT(in, in, out) of word order index; 
>let WholeText be red max of WholeText'; 
>Temp (- [index,word,WholeText',WholeTextJ in Text; 
>pr Temp; 
+-------+--------+---------------+--------------+ 
1 index 1 word 1 WholeText' 1 WholeText 
+-------+--------+---------------+--------------+ 
1 1 Aldat Aldat Aldat is fun 
1 2 1 is 1 Aldat is 1 Aldat is fun 1 

1 3 1 fun 1 Aldat is fun 1 Aldat is fun 1 

+-------+--------+---------------+--------------+ 
relation Temp has 3 tuples 
>R (- [WholeTextJ in Text; 
>pr R; 
+----------------------+ 
1 WholeText 
+----------------------+ 
1 Aldat is fun 
+----------------------+ 
relation R has 1 tuple 

Figure 4.22: Extended Vertical String Concatenation 
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First of aU, we define a computation with three string parameters. The block of 

the computation is decorated with the keyword funop, indicating its candidacy for 

use with functional mapping or partial functional mapping. The only statement in the 

block assigns the concatenation of the first two parameter values to the third. Next, 

a virtual domain WholeText' is defined, in much the same way as we would in any 

ordinary functional mapping. The difference is that the keyword fun is now foUowed 

by a computation caU. This caU identifies the computation (STRCAT) and the block 

within by giving the directions of its parameters. The results of actualizing this virtual 

attribute are shown in the relation Temp. As we are only interested in the longest of the 

accumulated texts, a second virtual domain WholeText is defined. FinaUy, relation R 

contains the result we want. 

5This is an omission in the implementation 



CHAPTER 4. USER'S MANUAL 76 

4.2.4 Example 2: Sum of Complex Numbers 

The previous example illustrates an extension to the scalar vertical operation. In the 

next, we show how to calculate the sum of some complex numbers represented by nested 

relations. This can be regarded as extending 

let Total be red + of Part; 

Only that in our case Part is a relation typed domain. See Figures 4.23 and 4.24 for 

two alternative ways of declaring the computation for complex numbers. The reason for 

having alternatives will be explained shortly. 

>domain r,i intg; 
>domain Ri,R2,R3(r,i); 
>comp cplxi(Ri,R2,R3) is 
redop { let r' be r; let i' be i; 

let r" be r+r'; let i" be i +i ' ; 
R3' (- [r" ,i"] in (Ri ijoin ([r' ,i'] in R2)); 
let r be r"; let i be i"; 
R3 <- [r,i] in R3'; 

}alt 
funop {let r' be r; let i' be i; 

let r" be r-r'i let i" be i-i'j 
Ri' (- [r" ,i' '] in (R3 ijoin ([r' ,i'] in R2)); 
let r be r"; let i be i"; 
Ri (- [r,i] in Ri'; 

}alt 
funop {let r' be r; let i' be i; 

}; 

let r" be r-r'; let i" be i-i'j 
R2' (- [r" ,i' '] in (R3 ijoin ([r' ,i'] in Ri)); 
let r be r"; let i be i' J ; 

R2 (- [r, i] in R2'; 

Figure 4.23: The Computation for Complex Numbers: Alternative 1 

Both of the two alternatives take three relation typed parameters, each defined on r 

and i. Think of r as the real part of a complex number and i the imaginary part. We 

assume that each parameter stands for one complex number only, i.e., Ri, R2 and R3 are 

aU singleton relations. There are three 'aIt' blocks to each alternative computation. The 

first is decorated with the keyword redop and the rest with funop. Thus the first block 

is designed to be used as an associative and commutative operator while the other two 

are to be used in order-dependent operations. The code in the first block calculates the 

sum of the complex numbers represented by two of the parameters and assigns the result 
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>comp cplx2(Ri,R2,R3) is 
redop { let r' be r: let i' be i: 

let r" be r+r'; let i" be i+i'; 
R2' (- [r" ,i' '] in (Ri ijoin ([r' ,i'] in R3»; 
let r be r": let i be i"; 
R2 (- [r,i] in R2': 

}alt 
funop { let r' be r: let i' be i; 

let r" be r-r'; let i" be i-i'; 
Ri' (- [r" ,i' '] in (R2 ijoin ([r' ,i'] in R3»: 
let r be r": let i be i": 
Ri (- [r, i] in Ri': 

}alt 
funop { let r' be r: let i' be i: 

}; 

let r" he r-r'; let i" be i-i'; 
R3' (- [r",i"] in (R2 ijoin ([r',i'] in Ri»: 
let r be r"; let i be i"; 
R3 (- [r,i] in R3'; 

Figure 4.24: The Computation for Complex Numbers: Alternative 2 
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to the third parameter. The second and third blocks subtract one complex number from 

another and assign the difference to the third parameter. 

The only difference between the computation cplx1 and cplx2 is that in the former, 

R3 represents the sum while in the latter, R2 takes its place. This difference affects 

the way the computation is invoked in vertical operations. The example in Figure 4.25 

shows that Sum1 and Sum2 are exactly the same, but they are each produced by a 

different computation call in a reduction. The call that generates Sum1 specifies the 

third parameter as output, corresponding to R3, whereas in the case of Sum2 the second 

parameter is designated as output. Semantically the two computations are exactly the 

same, but this example illustrates the folIowing points: 

• For a computation to be used in vertical operations, it must have exactly three 

parameters, all of the same type. 

• Each 'aIt' block must have two input parameters and one output parameter, as 

the operators allowed in vertical operations must be binary. But the order of the 

three parameters is up to the programmer defining the computation. 

• The order of the keywords in and out in the computation calI of the vertical 

domain operation must match that of the parameters' direction of the intended 

'alt' block. 
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Figure 4.25 also shows the the reduction operation in the projector list of a T

Selection. Sinee the reduction operation always produees a unary singleton relation, 

enclosing it directly in the square brackets has the effect of lifting the value of its tuple 

to the top level. Had we defined a virtual domain on the same operation and used that 

attribute in the T-selection, we would have ended up with Sum1 (or Sum2) being a nested 

relation. 

>domain id intg; 
>domain R(r, i); 
>relation CNumbers(id,R) <- {(1,{(2,-2)}), 

(2,{(3,2)}) , 
(3,{(l,O)}) , 
(4,{(-1,1)})}; 

>Suml <- [red cplxl of RJ in CNumbers; 
>pr Suml; 
+---------------+---------------+ 
1 r 1 i 

+---------------+---------------+ 
1 5 1 1 

+---------------+---------------+ 
relation Sum1 has 1 tuple 

>Sum2 <- [red cplx2(in,out,in) of RJ in CNumbers; 
>pr Sum2; 
+---------------+---------------+ 
1 r 1 i 
+---------------+---------------+ 
1 5 1 1 

+---------------+---------------+ 
relation Sum2 has 1 tuple 

Figure 4.25: The Sum of Complex Numbers 

The funop blocks of cplx1 or cplx2 can be used to calculate the alternating sum of 

complex numbers. Figure 4.26 shows an alternating sum ordered by id. 

The values of aSum are the sequence: 2 - 2i, (3 + 2i) - (2 - 2i), 1- (3 + 2i) + (2 - 2i), 

and (-1 + i) - 1 + (3 + 2i) - (2 - 2i). The usual alternating sum would be 2 - 2i, 

(2 - 2i) - (3 + 2i), (2 - 2i) - (3 + 2i) + 1, and (2 - 2i) - (3 + 2i) + 1 - (-1 + i). But it 

is easy to convert the former to the latter using domain algebra. 

Computations usable in vertical operations are still normal computations that can 

be called using the syntax introduced in Section 3.6. Sorne examples are given in Fig

ure 4.27. 
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>let aSum be fun cplx1(out,in,in) of R order id; 
>aSum1 <- [id,aSum] in CNumbers; 
>pr aSum1; 
+-------------+----------------------+ 
1 id 1 aSum 
+-------------+----------------------+ 
1 1 1 27 
1 2 1 31 
1 3 1 35 
1 4 1 39 

+-------------+----------------------+ 
relation aSum1 has 4 tuples 
>pr .aSum; 
+--------+---------------+---------------+ 
1 .id 1 r 1 i 

+--------+---------------+---------------+ 
1 27 
1 31 
1 35 
1 39 

1 2 
1 1 
1 0 
1 -1 

1 -2 
1 4 
1 -4 
1 5 

+--------+---------------+---------------+ 
relation .aSum has 4 tuples 

Figure 4.26: The Alternating Sum of Complex Numbers 

4.2.5 Summary 
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Computations have been adapted to enhance the vertical domain algebra. JRelix pro

gram mers can now add appropriate user-defined vertical operators as long as the fol

lowing rules are observed: 

• The computation that defines the operation must have exactly three parameters 

of the same type: two for input and one for output. 

• An 'ait' block may be decorated with redop if it is to be used in reduction or 

equivalence reduction. Blocks intended for functional mapping or partial func

tional mapping must be labelled funop. It is the programmer's responsibility to 

ensure the semantic consistency among blocks and to verify that a redop block is 

truly commutative and associative. 

• To call the computation in a vertical operation, simply place the computation's 

signature after the relevant keyword (red, fun, equiv, or par). The signature is 

the computation's name optionally followed by a comma-delimited, parenthesized 

list of "in" and "out". The order of these directional keywords must match that of 

the in/out parameters of the intended block. By default, the first two parameters 

are in, and the third out. 
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>relation enl(r,i) <- {(1,2)}; 
>relation cn2(r,i) <- {(1,-2)}: 
>eplxl(in enl,in en2,out en3): 
>pr en3: 
+---------------+---------------+ 
1 r 1 i 
+---------------+---------------+ 
1 2 1 0 
+---------------+---------------+ 
relation cn3 has 1 tuple 

>eplxl(in enl,out en2',in en3); 
>pr cn2': 
+---------------+---------------+ 
1 r 1 i 
+---------------+---------------+ 
1 1 1 -2 
+---------------+---------------+ 
relation cn2' has 1 tuple 

>relation BigR(Rl,R2) <- {({(l,2)},{(l,-2)}), 
({(2,4)},{(-2,4)})}: 

>BigR3 <- [R3] in (BigR ijoin eplxl): 
>pr BigR3: 
+----------------------+ 
1 R3 
+----------------------+ 
1 58 
1 57 
+----------------------+ 
relation BigR3 has 2 tuples 
>pr .R3: 
+----------+---------------+---------------+ 
1 .id 1 r 1 i 
+----------+---------------+---------------+ 
1 
1 57 
1 58 

1 
1 2 
1 0 

1 

1 0 
1 8 

+----------+---------------+---------------+ 
relation .R3 has 14 tuples 

Figure 4.27: Other Uses of the Complex Number Computation 
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Chapter 5 

Implementation of Abstract Data 

Type 

In this and the next chapter, we present the implementation details of the new features 

as seen in User's Manual. Abstract data type forms the main topic of this chapter. We 

start with a brief overview of the system architecture and the development environment 

of jRelix, followed by descriptions of components relevant to our implementation. With 

the background laid out, we discuss in Section 5.2 the implementation of the three 

aspects of ADT: state, accessor method and modifier method. 

5.1 System Overview 

5.1.1 Development Environment 

JRelix is implemented in Java (JDK 1.2.2 and up). It runs on Windows platform as 

well as on Unix, as long as a compatible version of the Java run-time environment is 

installed. 

The parser for the language is generated by two tools: JJTree and JavaCC. JavaCC, 

a java compiler compiler, is a utility written in Java which automatically generates a 

parser by compiling a high-level grammar specification stored in a text file and converts 
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it to a Java program which can recognize matches in the grammar. JJTree, on the 

other hand, is a preprocessor for JavaCC utility that inserts parse tree building actions 

at various places in the JavaCC source. Figure 5.1 depicts the pro cess of generating 

the parser file (Parser.java). Please refer to the JavaCC and JJTree documentation in 

[SDVOl J for more details. 

JavaCC source 

(e.g. Parser.jj) 

jRelix Grammar Spec. 

(e.g. parser.jjt) 

Command: 
javacc Parser.jj 

Parser for jRelix 

(e.g. Parser.java) 

Figure 5.1: Generating the Parser Using JJTree and JavaCC 

5.1.2 JRelix Storage Format and Architecture 

JRelix Storage Format 

A relation is stored as a file with the name of the relation on the hard disk. In the 

case of a computation, the syntax tree of the computation is saved under a name of the 

form CompName.comp where CompName is the computation's name. Event handlers 

are also stored by their names1 . 

The information about aIl relations and domains (which we calI database metadata) 

in a jRelix database is maintained in memory while a user session is in progress and 

dumped onto the hard disk when the user logs out. On hard disk, the metadata is 

split into several system files, including . rel, . dom, . rd, and . expr. . expr is used to store 

a serialized form of the definition of views and virtual domains in the system. The 

other three are themselves relations. Table 5.1 describes these system relations. For 

1 An event handler's name contains ':', which causes problems on the Windows platform. 
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more information on the st orage and maintenance of database entities, please refer to 

[Yua98]. 

1 Relation 1 Domain Description 

.rel .reLname name of a relation 

.rel .tuples number of tuples in the relation 

.rel .attributes number of attributes in the relation 

.rel .rve is a relation, view or computation 

.rel . sort number of attributes the relation is sorted on 

.dom .domJlame name of an attribute 

. dom . type type of the attribute (see Table 3.1) 

. dom .eount reference count for attribute 

. dom .isState is a hidden state (new ta this implementation) 

.rd .relJlame name of a relation 

.rd .domJlame name of an attribute 

.rd .position index of the attribute in the relation 

Table 5.1: System Relations 

JRelix Architecture 

The jRelix database system is composed of three conceptual modules: a front-end in

terface, a database engine and a database maintainer. The overall architecture of the 

jRelix system is shown in Figure 5.2 . As its name implies, the front-end interface mod

ule serves as an interface between the user and the database engine. At the beginning 

of each interpretation cycle, it accepts a user command and performs syntax analysis. 

It then converts these commands into a tree-like structure called a syntax tree, per

forms error checking and finally invokes appropriate functions in the database engine 

to execute the necessary operations. At the heart of jRelix, the database engine im

plements the relational and domain algebras as well as computation. The intermediate 

and final outputs of the database engine (in the form of relations) is then passed to the 

database maintainer which updates the database system on the hard-disk as appropri

ate. The database maintainer is also responsible for loading relations into memory when 

necessary. 
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Figure 5.2: JRelix System Architecture 
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Each of the conceptual modules is made up of several components, or classes in 

Java parlance. Appendix B shows aIl the classes in the system and their categoriza

tion. The following sub-section highlights sorne of them that are most relevant to our 

implementation. 

5.1.3 Synopses of Selected Components 

The implementation of abstract data type and extended domain operations has been 

built on an existing system. It follows the philosophy of maximizing code reuse. As a 

result, only one new class has been created. Most new functionalities have been achieved 

through augmenting and glueing code in the classes to be described shortly. The in

terested reader may find a summary of aIl the enhancements by this implementation in 

Appendix C. 

The SimpleN ode Class 

Every jRelix statement or command input by the user is parsed and transformed into 

a syntax tree. The syntax tree can be decomposed recursively from top down into a 

number of sub-trees, each of which represents a jRelix expression, statement or operator. 

At the extreme end of such decomposition are nodes . Figure 5.3 shows the syntax tree 

of the following virtual domain dec1aration found in Figure 4.7 of the Car Racing example 

(each circ1e is anode): 

let speed be [red nop of curSpeedJ in speed'; 
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Figure 5.3: Syntax Tree Example 

The SimpleNode class desribes a node in the syntax tree. Since anode contains 

references to both its children and its parent, it is possible to traverse a syntax tree (or 

part of it) in both ways. The information kept with anode object is frequently used 

by the Interpreter class and other classes. The SimpleNode class is therefore one of 

the most important classes of jRelix. Table 5.2 gives the most important members and 

methods of this class. 

The Interpreter Class 

A single Interpreter object is instantiated and used throughout a user session of jRelix. 

The role of this object is to take over the syntax tree from the parser, descend the tree 

in a top-down fashion and dispatch function caUs into the database engine based on the 

type and op code information of the node at hand. This class also provides methods that 

perform basic validity check, such as traverseNode and traverse Type. Several methods 

in this class have been augmented to support ADT and extended domain operations. 

The Relation Class 

This class implements the relational algebra [Ha098]. Its most frequently accessed public 

members are (Java type in parentheses): 

• name (String) The name of the relation. 
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SimpleN ode Members 

Name Description 

type* Code of operation represented by the node 

op co de Sub code of the operation 

name Name of a node of type OP .lDENTIFIER 

(null otherwise) 

info Value of a node of type OP _CONSTANT; 

placeholder for an accumulator in vertical operations 

(null otherwise) 

bits Special information on anode 

SimpleN ode Methods 

Name Description 

jjtCreateN ode Creates a SimpleNode object 

jjtGetParent Returns the reference to the parent node 

jjtSetParent Sets the reference the parent no de 

jjtGetChild Returns the child node with a given index 

jjtG etN um Children Returns the child node count 

jjtAddChild Appends a child node to the parent 

jjtReplace Replaces this no de with another 

jjtRemove Child Removes a child with a given index 

setBit Set the bits field to a specifie value 

isBitSet Check if a certain bit is set 

*Type and opcode are defined in Constants.java 

Table 5.2: The SimpleNode Class 
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• rvc (int) RELATION, VIEW or COMPUTATION. 

• numtuples (int) The tuple count. 

• numattrs (int) The attribute count. 

• tree (SimpleNode) The syntax tree for a view or computation. 

• myEnv (Environment) The environment the relation is declared in. 

• domains (Domains!j) The array of Domain objects; each element holds the infor

mation about a domain2
• 

• data (Object!}) The data held in a relation, one column per element; each element 

is itself an array. 

The public methods in the Relation class are readily available in the subclass Com

putation for the purpose of relational evaluations. No change has been made in this 

implementation. 

The Domain Class 

An object of the Domain class represents a domain, virtual or not. Its public members 

are: 

• name (String) The name of the domain. 

• type (int) The type code of the domain. 

• numref (int) The reference count of the domain (i.e. how many relations are 

defined on this domain). 

• tree (SimpleNode) The syntax tree of a virtual domain. 

New members have been added to the class to implement new features. These will be 

described in later Section 5.2. 

2The difference between an attribute and a domain is subtle. Attribute can be thought of the name 

of a column in a relation, while a domain is a set of values allowed in a column. In this thesis, the two 

are used interchangeably 
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The Actualizer Class 

The Actualizer class handles the actualization of virtual domains. A virtual domain dec

laration leads to the creation of a Domain object3 . To materialize this virtual domain 

in a relation, an Actualizer object must be created and initialized. The initialization 

pro cess involves a series of validity checks to ensure that the virtual domain is "actual

izable". SpecificaIly, it detects cases where a virtual domain is defined on non-existing 

actual domain(s), is recursively defined on itself, or is impossible because the syntax 

tree of its declaration contains semantic errors. Once the validity checks are passed, the 

programmer needs to explicitly invoke the actualize() method of the Actualizer object 

for the actualization pro cess to be complete. In jRelix, a virtual domain is actualized 

with a tuple-by-tuple approach. 

Here are sorne important methods which were first implemented by [Yua98] and 

[KanOl] . 

• buildTree() This is a self-recursive routine for the virtual tree building process. 

It accepts a SimpleNode object representing the syntax tree of a virtual domain. 

Besicles the validity checks mentioned previously, it also performs tree expansion 

to make sure that aIl identifier nodes in the final syntax tree are actual domains 

from the source relation. For instance, if we have: 

let x be A + B; let y be C; let z be x * y; 

The virtual domain tree of z will be expanded to represent: 

CA + B) * C; 

A third task that the buildTree() method accomplishes is tree truncation in the case 

of virtual domains defined on vertical operations such as reduction or functional 

mapping. For example, given the definition: 

let A be red + of B * C; 

3In the case of a relation typed domain, a Relation object containing the dot relation is created and 

registered into the environment as weIl 
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The subtree corresponding to B*C will be truncated and actualized first, before 

the reduction can be evaluated . 

• the iicell methods" If we think of a virtual domain in a relation as a column of 

empty cells, actualizing the virtual domain is like filling in the cells with the values 

calculated from the data in the tuple according to the rule given by the definition 

of the domain. There are a number of methods in the Actualizer class for cell data 

calculation, as listed in Table 5.3. We will refer to them as the "cell methods", 

a term borrowed from [Yua98]. A cell method may invoke other cell methods or 

itself to evaluate a subtree. When cell methods are used for horizontal domain 

operations, the calculated data isdirectly put into the corresponding cell. When 

they are invoked by methods dealing with vertical operations, the data is combined 

with an accumulator value first and then stored back to the accumulator. 

Method JRelix Type of Domain to Actualize 

actBoolCell BOOLEAN 

actlntCell SHORT,INTEGER 
actLongCell LONG 
actDoubleCell FLOAT,DOUBLE 

actStrCell STRING 
actRelCell IDLIST 

Table 5.3: Cell Methods in the Actualizer Class 

• the vertical actualize methods These are methods involved in actualizing virtual 

domains defined on vertical operations. Reduction is actualized in actualizing(), 

equivalence reduction in actualizeEquiv(), functional mapping in actualizeFun(), 

and finally, partial functional mapping in actualizeParFun(). Aigorithms of verti

cal domain actualization will be given in the next Chapter where we discuss the 

extension to allow user-defined operations. 

The implementation of ADT and extended vertical domain operation has brought 

quite a few additions to the Actualizer class. 
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The Environment Class 

An environment is an object that holds bindings of variables to their specifie informa

tion (such as value or type). In jRelix, an object of the Environment class maintains 

the bindings for various types of variables, including relations, domains, state variables, 

parameters and local variables. The last three are unique to computations. An Environ

ment object stores these bindings in hashtables for fast lookup. It also exposes public 

methods to add or delete a binding, or to look up the information of a variable. 

The specifie information about a state, a parameter, or a local variable is encapsulated 

in objects of class StateInfo, ParamInfo, or LocalInfo, respectively. Thesé are all 

subclasses of IDInfo, an abstract base class used to name the return types of the general 

lookup routines. For example, the method Environnment.lookup() is declared to return 

an object of type IDinfo, but it may actually return an instance of Statelnfo at run time. 

Such implementation takes advantage of the late-binding facility of the Java language, 

thus avoiding repeated co ding for different subtypes. The subtypes are distinguished by 

their kind member. They also contain information such as the type, value and position 

of the variable. 

Computations are bound in their declaration environment. Upon invocation, a new 

temorary environment is created to hold bindings for the parameters, local and state 

variables. The code of the computation is then evaluated with regard to this new envi

ronment and its parent (the declaration environment). Upon exit from the computation, 

the temporary environment is discarded. The Environment class is therefore particularly 

relevant to the implementation of ADT, a special form of computation. 

The NREnvironment Class 

In jRelix, each level of a deeply nested relation may itself consist of nested relations. It 

is possible to write domain algebra expressions involving domains from different levels of 

such a nested relation. To relieve the system programmer of the burden of remembering 

4They were created by [Bak98], but underwent significant changes in this implementation. 
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these levels while implementing virtual domain actualization, the NREnvironment class 

was invented. 

An NREnvironment object is created for each level of a deeply nested relation as the 

relation's hierarchy is descended in the actualization process. It holds the bindings for 

the domains found at its own level. The current row number of the relational domain 

being scanned is also kept track of. The domain algebra expression to be actualized is 

th en evaluated in the context of the NREnvironments as well as the global Environment 

that holds the bindings for everything else. The NREnvironment objects are attached 

to the Environment object and are al ways checked first for bindings upon a look-up, 

before any other hash table in the same Environment. 

Instantiation of an ADT often results in deeply nested relations. With a little ad

justment of the NREnvironment class, implementation of ADT facilities becomes mu ch 

more manageable. 

The Constants Interface 

This Java interface class defines all the operation and type codes used by jRelix. A 

node in a syntax tree always has an associated type and an opcode. For example, a 

no de representing the identifier A (the name of a relation) will have both of these set 

as OP _IDENTIFIER, which is defined to be the value 230 in the Constants interface. 

Whenever a new operation is added to the language syntax, the Constants class needs 

to be updated. We will encounter such an addition in the next chapter. 

5.2 Implementation of ADT 

An abstract data type features encapsulation and information hiding. In jRelix, encap

sulation is achieved by defining an ADT using the same syntax as a computation with 

state. That is, the information to hide is represented by the state variable(s), while 

the computations defined inside the ADT implement the operations on objects of the 

type. JRelix allows the programmer to instantiate by joining the ADT to an appropri-
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ate relation. This removes the need for a new operator, which would be cumbersome 

in the database context of possibly millions of instantiations. JRelix employs special 

implementation to ensure that states are only accessible through the operations of an 

ADT, thus information hiding. 

[Bak9S] first described stateful computations and proposed a static environment 

model in which states and associated methods can be exported to become computa

tion typed (COMP) domains of a relation. However, the issue of information hiding was 

neglected and no working implementation of stateful computation was available. Later, 

[SunOO] gave a short section on how computation calls may be invoked in update change 

operations. The example involves a single assignment statement in the computation 

body and all variables are integers. 

To provide a sound foundation for the implementation of ADT, a number of compu-

tation related enhancements have been made, including: 

• a flexible pass-by-name parameter passing mechanism, 

• a broader range of statements that work in a computation block, and 

• an updated set of rules for the calculating a block type. 

Details of these improvements are given in Section 5.2.1. 

The rest of this chapter covers the implementation of support for ADT. Among other 

things, the system has been modified to handle states of any type (with the exception 

of computation5) and provide appropriate storage for them in memory. For the sake 

of hiding information, states are made inaccessible to normal relational and domain 

operations. The algorithms for virtual domain actualization and updates have been 

augmented to provide controlled access and modification to states. 

Although aimed at implementing ADT, the enhancements and modifications men

tioned above also lead to non-ADT related features such as packages (see examples given 

in Section 3.6.3) and level lifting in the case of unary singleton relations (see examples 

5We have not found a good reason for astate to be a computation; therefore it is not supported as 

of this writing 
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in Section 4.1 on the use of ADT). The latter is available for use even outside of the 

context of computations. 

5.2.1 General Enhancements Related to Computation 

In this section, we first summarize the implementation of computation given by [Bak98], 

hereafter referred to as the "previous implementation". Next we describe sorne enhance

ments that make computations more flexible and powerful. 

Summary of Previous Implementation 

The three classes most closely related to computation are Computation, CompBlock and 

EvalExpr. The Computation class contains the following public methods (parameters 

are omitted): 

• Camputatian() for instantiating a Computation object 

• applyInOut(), applySelect(), applyljain() for invoking a top-Ievel computation us

ing the first three forms of syntax as described in Section 3.6.1 

• sc() for use with the sc command (see Section 3.6.4) 

• print() for use with the pr command (see Section 3.6.4) 

A reference to the environment in which a computation is declared is stored in the 

declEnv member. The computation's 'aIt' blocks, represented by CompBlock objects, 

are referenced by the blacks array. The tree member holds a reference to the compu

tation declaration. AlI these references are intialized when a Computation object is 

instantiated. 

The 'aIt' blocks of a computation are distinguished from each other by their type. 

When a computation is created, the types of its blocks are calculated and stored with the 

CompBlock objects. This way, re-calculation of the type upon computation invocation 

is avoided. The type of a block is calculated based on the input/output status of 

computation parameters upon their first use, as follows: 
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If the computation has n parameters, the type of a block is represented 

by an n-digit base-2 number.The most significant digit of that number cor

responds to the last parameter (the rightmost in the parentheses after the 

computation name) , and the least significant digit corresponds to the first. 

Each digit takes on a value of 1 if the corresponding parameter is input, or 

o if otherwise. 
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Consider the computation given in Figure 5.4. It has two blocks. The type of the 

first block is 102 (decimal 2), because r, the second parameter, is used as input, while 

area is the output. The second block has exactly the opposite situation, therefore its 

block type is 012 (decimaI1). 

>let pi be 3.14; 
>domain r, area float; 
>comp CircArea(area, r) is 
{ area <- pi * r * r;} 
alt 
{ r <- sqrt(area / pi);}; 

Figure 5.4: Computation CircArea 

The findBlockType() method of the CompB1ock class implements the rules that de

termine the input/output status of a parameter. 

Expressions encountered while executing a computation block are evaluated by the 

methods in the EvalExpr class. One method each has been provided for expressions 

of the following jRelix types: boolean, short, integer, long, fioat, double, and string. 

Relational expression evaluation is accomplished via calls to methods implemented in 

the Relation class. 

Other classes that support the implementation of computation include IDInfo, State

Info, ParamInfo and LocalInfo, as mentioned in Section 5.1.3. They are mainly used by 

the Environment class to abstract over the details of different variables associated with 

a computation. 
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Enhancement 1: Pass-by-name Parameter Passing in Natural Join Syntax 

With the previous implementation, if a programmer joins a computation with a relation 

and expects the relation to pass input values to the computation, he or she has no choice 

but to name the input domain in the relation according to the input parameter. For 

example, given the declaration of CircArea(area, r) in Figure 5.4, we can use the 

relation A(r) or B(area) to invoke it, but not C(radius) , nor D(AREA)6. 

Such restriction has been eliminated by using the pass-by-name parameter passing 

method for our implementation. With this method, whenever a computation is in

voked, its syntax tree is traversed and the formaI parameters are substituted by their 

corresponding actual parameters in an occurrences. Back to our CircArea(area, r) 

computation: if it is invoked with C (radius), the syntax tree of the computation will 

be transformed as if the declaration was: 

>comp CircArea(area, radius) is 
{ area <- pi * radius * radius;} 
alt 
{ radius <- sqrt(area / pi);}; 

The implementation of the pass-by-name mechnism is given by the modified ap

plyljoin method and a number of newly added methods, as listed in Table 5.4. The 

step number in the second column refers to the number listed in the pseudo code for 

applyljoin (see Figure 5.5). 

Steps in the pseudo-code without a ,*, have been inherited from [Bak9S], so we will 

skip them here. Step 3 in the new algorithm has two possible execution paths. If the 

ijoin does not involve explicitly named domains (i.e. domsr and domsc are empty) , 

the common domains between the relation and the computation will be used as the 

input domains. On the other hand, when there is no common domain between the 

invoking relation and the computation (such as when CircArea(area, r) is joined 

with C (radius»), we can specify the join domains from the computation in domsc and 

those from the relation in domsr. In our example, domsc contains rand domsr contains 

radius. Join domains in this case are given by either domsr or domsc, but we still 

6 JRelix is case sensitive 
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Relation applyljoin(Relation rel. Domain[] domsc. 

{ 

Domain[] domsr, String filename, Environment callEnv) 

1. Create an Environment object (env) and set its parent 

to be the declaration environment of this computation. 

2. Back up the original domains of the computation into 

originalDomains. 

3*. Determine join domains (joinAttrs) and extra domains 

(extraAttrs). 

4*. Transform the syntax tree of the computation. 

4.1. Get a copy of the syntax tree (tempTree). 

4.2. if named join domains (domsc, domsr) are specified 

then 

4.2.1. For each domain in domsc (computation domain), 

substitute its occurrences in tempTree for 

the corresponding domain in domsr (relation domain). 

4.2.2. Re-generate the CompBlock array (blocks) from 

tempTree. 

5. Register the parameters, local variables and states 

into the current environment (env). 

6. Find the computation block based on the join domains. 

7. Load the data of the input relation (rel) into memory. 

8. For each tuple of the input relation do 

8.1. Execute the statements in the selected block with 

reference to the current environment (env). 

8.2. Append the output to the relation. 

9. Project rel on aIl its domains to eliminate duplicates. 

10. Restore the original domains from originalDomains. 

11*. Restore the original CompBlock array. 

12. Detach the Environment (env) for garbage collection. 

} 

Figure 5.5: Pseudo-code for applyljoin() 
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need to find out what "extra domains" are - these domains do not participate in the 

computation, but they need to be in the resuIt relation. The method extraDomains2() 

is provided for this purpose. The example we looked at would not pro duce any extra 

domains. Had we invoked the computation with E(radius, index) instead, index 

would be regarded as extra. 

The code that fiUs in step 4 performs a textual substitution of the names in domsc 

for the names in domsr position by position. For instance, aU occurrences of r in com

putation CircArea(area, r) will be replaced by radius in our example. Then the 

CompBlock objects referenced by the blocks member of the Computation object are 

regenerated based on the transformed syntax tree. After these steps, the input par am

et ers of the computation block to be run exactly match the input domains provided by 

the invoking relation. Further more, aU the existing code for executing the 'aIt' block 

in applyIjoin still works, unaware of the use of a different join syntax. 

The only extra step left is to revert the input parameter names in the CompBlock 

objects to their original at the end of the method. This is necessary to ensure the success 

of subsequent invocations on the same computation. 

Method Step Description 

extraDomains2 3 returns the union of domains of the computation 
and the invoking relation except the join domains 

renameParamslnTree 4 replaces the input parameter name with the actual 

argument name in the computation's syntax tree 
replaceJ oinAttrs 4 renames the join do mains according to the actual 

argument names 
reGenerateBlocks 4 generates the CompBlock objects from the renamed 

syntax tree of the computation; the domain names of 
the computation are modified accordingly 

Table 5.4: New Methods to Support Flexible Pass-by-name Mechanism 
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Enhancement 2: Statements and Commands in Computation Blocks 

In the previous implementation, the only statement type allowed in a computation block 

was the assignment statement. This is no longer the case. AlI jRelix statements and 

commands that have been implemented at the top-Ievel can now also appear inside a 

computation block. 

The central place for handling different types of statements and commands is the 

runSingleStmt() method of the Computation class. A sketch of the code in this method 

is given in Figure 5.6. (Note that not aU statement types are shown. For a complete 

listing of the types please refer to Appendix A). 

The runSingleStmt() method is invoked each time a statement of a computation block 

is to be executed. It accepts two parameters, one is the syntax tree of the statement 

to be executed (stmt), and the other is the Environment object that contains aIl the 

bindings known to the computation (env). Based on the type of the statement, specific 

actions are taken subsequently. These actions can be categorized as foUows: 

• caU runSingleStmt() recursively The case of OP _CONDITIONAL (if-then-else) 

is in this category. Whenever a statement contains sub-statements, the sub

statements are evaluated first using the same method. 

• call a delegate method in the Interpreter class Case OP _COMMAND deals with 

commands in computations. Instead of re-implementing the logic for executing 

different types of commands, it simply calls the executeCompCommand() method 

in Interpreter. This method in turn invokes executeCommand() which was im

plemented by [Hao98]. executeCompCommand() is just one of several delegate 

methods added by this implementation. They are simple public methods used to 

direct calls from methods in the Computation class into the private methods of 

the Interpreter class. Their names aU start with "executeComp". 

• call a public method in the Interpreter class The purpose of this approach is to 

promote code-reuse, just as in the case of calling a delegate method. Methods 

such as evaluateTLExpress() in the Interpreter class are public, thus they can 

be accessed freely from other classes. To obtain the relation resulting from the 
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void runSingleStmt(SimpleNode stmt. Environment env) 

{ 

switch (stmt.type) 

{ 

} 

} 

case OP_ASSIGNMENT: 

SimpleNode left 

SimpleNode expr 

(SimpleNode) stmt.jjtGetChild(O); 

(SimpleNode) stmt.jjtGetChild(l); 

IDlnfo id = env.lookup(left.name. true); 

Ilcode to find out the jRelix type of id and assign it to stmtType 

switch (stmtType) 

{ 

} 

case SHORT: 

short shortResult = EvalExpr.evalShortExpr(expr. env); 

Ilcode to store shortResult in appropriate place 

Ilbased on whether id.kind is PARAMETER. LOCAL. or STATE 

case mLIST: 

transformExpr(expr. env); 

Relation relResult = 
interpreter.evaluateTLExpression(expr •...• env); 

Ilcode to store relResult in appropriate place 

Ilbased on id.kind 

case OP_STATEMENT: 

switch (stmt.opcode) 

{ 

} 

case OP_CONDITIONAL: 

if (EvalExpr.evalBooleanExpr(if_node. env)) 

runSingleStmt(then_node. env); 

else ... 

case 

case OP_COMMAND: 

interpreter.executeCompCommand(stmt. env); 

case OP_UPDATE: 

Figure 5.6: Pseudo-code for runSingleStrnt() 
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right hand side of an assignment statement, we simply let evaluateTLExpression() 

handle it. There is a tricky issue here. Since the methods in the Interpreter class 

have no notion of parameters or local variables that are bound in the environment 

inside a computation, we cannot simply hand over the expression encountered in 

a computation as is. Instead, we must first transform the expression so that aU 

references to computation specifie variables are replaced with the values of these 

variables (relational variables are treated differently, for they are still recognized 

in a non-computation environment). The recursive method transformExpr() is 

provided for this purpose. A similar method, transformStmt(), is also available for 

transforming a statement. 

• caU a method in the EvalExpr class This approach is taken when there is a need to 

evaluate an expression of atomic type, such as INTEGER or FLOAT. EvalExpr is 

the only class in the jRelix implementation that provides methods for evaluating 

atomic types. Therefore it is frequently used by the implementation of computa

tion, the only place where atomic typed variables are aUowed on the left hand side 

of expressions. The enhancement made to the EvalExpr class includes support for 

the evaluation of state varriables and of built-in functions (OP _FUNCTION)7 . 

• reproduce some of the code in the Interpreter class This is the most extreme case. 

The only such case is OP _UPDATE. As the logic for handling updates was imple

mented in the Interpreter class itself (see [SunOO]) and cou pIed tightly with the 

method evaluateTLExpression(), there is no single method to caU to handle just 

updates. In addition, the environment inside a computation is quite different from 

that of the top-level. It turns out that reproducing sorne of the flow-control code 

in evaluateTLExpression() and adjusting it for use within the environment of a 

computation is the most convenient way in this case. 

7The support for built-in functions such as absO or ceilO is based on corresponding methods offered 

by the Java Math package. Built-in functions are also supported at the top-level. Relevant code can 

be found in the act*Cell methods of the Actualizer class. Due to space limit, we will not discuss them 

any further. 
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In the code sketch for the runSingleStmt() method, we also mentioned that the 

result of evaluation will be put into appropriate places based on whether the destination 

variable is a parameter, a local variable, or a state variable. When a computation is 

invoked, an output parameter becomes one of the domains of the resulting relation. 

Therefore, we can refer to the output parameter by its position in the result relation. 

At any time of interpretation, we also keep track of the row of the relation being affected 

by the computation. Thus the result of evaluating an output parameter can always to 

put directly into its place in the result relation. The case of a local variable is even 

simpler. Since a local variable is valid only within the scope of the computation block 

for which it is defined, there is no need for its value to persist in the result relation. 

Storing its value in the LocalInfo object is sufficient. The storage of state variables will 

be discussed in Section 5.2.2. The basic mechanism is similar to that of the parameters. 

Enhancement 3: Calculating the Block Type 

It cornes as no surprise that the rules to determine the type of a computation block 

in the Computation.findBlockType() method needs adjustment as new statement types 

are introduced into the computation block. We now give the updated rules for jRelix 

statements and commands that affect the block type, as foIlows (note that these rules 

apply only when a variable is first used in a block): 

Assignment ID "<-" EXPR 

Input: aIl variables in EXPR 

Output: ID 

Exception: Variables in the projector list of a selection or T-select expression are ex

cluded from considerations. 

Example: 

Statement 

R <- [A] in S ijoin T 

R <- where A = 4 in S 

Input 

S, T 

S, A 

(only if A is a parameter) 

Output 

R 

R 

8This is true even if they appear in the parameter list, as of this implementation 
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IncrementaI Assignment ID "<+" EXPR 

Input: aU variables in the statement 

Output: none 

Exception: same as those for Assignment 

Statement 

Example: 
R <+ [A] in S ijoin T 

R <+ where A = 4 in S 

Input 

S, T, R 

S, R, A 

(only if A is a parameter) 

View Declaration ID "is" EXPR 

Input: aU variables in EXPR 

Output: ID 

Exception: same as those for Assignment 

Statement 

Example: 
R is [A] in S ijoin T 

R is where A = 4 in S 

Input 

S, T 

S, A 

(only if A is a parameter) 

U pdate AddjDeIete "update" ID "add" l "delete" EXPR 

Input: ID and an variables in EXPR 

Output: none 

Exception: same as those for Assignment 

Output 

Output 

R 

R 

Statement Input Output 

Example: update Sadd T ijoin R S, T, R 

update Sadd ([A, B] in T ijoin R) S, T, R 

Update Change "update" ID "change" STMTLIST "using" JOINOP EXPR 

Input: ID, aU inputs in STMTLIST and aU variables in EXPR 

Output: none 
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Exception: Variables in a projector list are ignored; outputs of the STMTLIST are ig

nored as weU, as they are considered attributes of ID 
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Statement Input Output 
Example: 

update S change A <- C + 3 using ijoin T S, C, T 

Conditional Statement "if" EXPR "then" STMTl "else" STMT2 

Input: aIl variables in EXPR, aIl inputs in STMTl and STMT2 

Output: aIl outputs in STMTl and STMT2 

Exception: Variables in a projector list are ignored 

Example: 
Statement Input Output 

if [] in R then S <- T else S <- U R, T, U S 

Computation CalI COMPNAME "(" PARAMLIST ")" 

Input: aIl variables in PARAMLIST 

Output: none 

Statement Input Output 
Example: 

Cir Area( A) A 

Selected Commands "pr" l "sr" l "dr" l "sc" EXPR 

Input: aIl variables in EXP 

Output: none 

Statement Input Output 
Example: 

sr R R 
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Note that if a nested-Ievel computation is caIled inside the block of its declaration, 

the system will run findBlockType() on this computation and propagate the result up 

to its enclosing computation block. [Bak98] provides an example in this case. 

5.2.2 Implementation of State 

The keyword "state" is used to declare a special variable in a computation, which we 

refer to as a state variable, or a state for short. JRelix uses states to represent hidden 

information inside an ADT. States are special in that they retain their values between 

computation caIls, which distinguish them from local variables. In addition, states are 
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hidden, in the sense that they can only be accessed and manipulated by code from within 

the same computation for which they are defined. For instance, the state _curVal of 

the Counter computation (Figure 3.37) is only accessible to the statements in the two 

'aIt' blocks of Counter. As another example, states of an ADT can only be accessed or 

modified by the ADT's methods. We begin the topic of implementing state, with with a 

discussion of the storage of state variables in main memory. Next we describe the process 

of state creation. A related issue, state persistence, is discussed as weU. FoUowing that, 

we present, from a system programmer's point of view, methods to retrieve and modify 

the value of a state. The implementation of state hiding is described at the end of this 

sub-section. 

Storage of aState 

Depending on what syntax is used for a computation invocation, astate may be stored 

in two different ways in main memory. In the case of instantiating objects of an ADT 

using an ijoin syntax, aU states of the ADT are exported as domains of the resuIting 

relation, thus no special data structure is needed to hold the values of the states. Like 

any normal domain, the value of astate is stored in the data member of the Relation 

object that represents the result of ijoin. The relation TopRacers as shown in Figure 4.6 

illustrates this point. 

When a computation is invoked by a stand-alone caU or a select expression, the sit

uation is quite different. The state of the computation is not exported to the resuIt 

relation (see the Counter example in Figure 3.38). As a result, the computation itself 

must "remember" the value of its state. For this purpose, we implemented the State

Info class9 , as shown in Figure 5.7. The diagram in Figure 5.7 depicts the inheritance 

relationship among three classes: IDInfo, StateInfo_2002, and StateInfo. It also 

shows the members and methods of each class. We already covered the IDlnfo class in 

9 [Bak9S] also mentioned this class, but it did not provide storage for astate; therefore this imple

mentation added the Statelnfo_2002 class. We could have modified the Statelnfo class directly, but it 

was a design choice not to do so. 
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IDlnfo 
+kind: int 
+type: int 

_S 
Statelnfo 2002 -

+intVal: int ~ +longVal: long 
+floatVal: float Typee onstants 
+doubleVal: double 
+stringVal: String 
+reIVal: Relation 
+setVal(type:int,val:Object) : void 
+getVal(type:int) : Object 

~ 

Statelnfo 
+index: int 
+env: Environment 
+Statelnfo(index:int,type:int) 

Figure 5.7: Class Diagram of StateInfo 

Section 5.1.3. StateInfo_2002 is new to the system. Its purpose is to provide st orage 

for various types of state variables and public methods for accessing and modifying the 

value of the state. The StateInfo class extends StateInfo_2002 by adding its own data 

members such as index and env. Since aIl data members of StateInfo_2002 are public, 

they are readily available to the subclass. The meaning of index and env will become 

clear in the next sub-sections. 

In summary, states are stored like domains when the ijoin syntax is used to invoke 

a stateful computation. In this case many values of the same state co-exist, as long as 

they belong to different tuples of the ijoin result. Any other types of invocation result in 

states being stored in StateInfo objects. Consequently there can be only one StateInfo 

object, and thus one value, for any given state in this case. 

Computation Initialization 

The declaration of a computation leads to the instantiation of a Computation object. 

The Computation class constructor is caIled by the interpreter and performs the follow

ing tasks: 

1. Store a reference to the declaration environment in declEnv. 
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2. Store the syntax tree of the computation declaration in tree. 

3. Create a new Environment (stateEnv) for handling persistent states. 

4. Parse the syntax tree to deduce parameters, local variables and states; store such 

information in a temporary Environment object. 

5. Generate the CompBlock array blocks and calculate the block types at the same 

time, based on the information obtained in the previous step; store the block type 

of an 'aIt' block in its corresponding CompBlock object. 

The interpreter then adds an entry for the Computation object to its declaration envi

ronment, so that it can be looked up by name. Up until this point, no storage has been 

allocated for states or other variables in memory. It is only when the computation is 

invoked that these variables come into existence. 

State Creation and Persistence 

We now discuss how states are created and made persistent between invocations in the 

case of stand-alone computation caUs and invocation using a select expression. The 

StateInfo object for astate is created the first time the computation is invoked. This 

object will be used to hold the value of the state. It is then added to both the en

vironment for computation evaluation and the special environment, stateEnv. Every 

Computation object has an associated stateEnv which holds references to the Statelnfo 

objects of that particular computation. Therefore, wh en further invocations of the same 

computation occur, there is no need to re-create StateInfo objects, as they are already in 

stateEnv. In addition, the value of astate from the most recent invocation can always 

be found by looking up the relevant StateInfo object from stateEnv. This is how a 

state persists between computation caUs. 

The creation of states upon an ijoin invocation is exactly the same as that described 

in the previous case. Only in this case, the actual values of states are stored in the 

resulting relation, not in the Statelnfo objects. Since data of a relation is persistent 

even on secondary storage, the issue of state persistency is trivial. 
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The algorithms described above are coded in the initializeEnvironment() method, as 

follows: 

1. Extract components such as computation name, parameter list etc. from the 

syntax tree (retrieved from the tree member of the Computation object). 

2. Process the parameter list: create a ParamInfo object for each parameter and add 

bindings for them to the environment being initialized. The type and index10 of 

each parameter is recorded with its ParamInfo object. 

3. Pro cess localjstate variable declaration: 

• If this is a local variable declaration, create a LocalInfo object li and add a 

binding for it to the environment being initialized; then, 

- If the declared type is IDLIST, 

(1) set li.relVal to be a new empty relation, 

(2) add a binding for this new relation to the environment. 
- If the declared type is an atomic one, 

(1) create a new domain with the name and type of the local variable, 

(2) add a binding for this new domain to the environemnt . 

• If this is a state variable declaration, 

(a) Look up the state by name in stateEnv, 

- If no binding is found, this must be the first time the state is pro-

cessed, then, 

(1) create a StateInfo object (si), set its type and indexl1
, 

(2) add a binding for si to both the environment and sta~eEnv, 

(3) if the type of the state is IDLIST, set si.relVal to a new empty 

relation and add the new relation to the environment; otherwise, cre-

ate a new domain with the name and type of the state and add this 

--::-------~nHJel;!J'W.~T4d'"o,Um!!<;l"ÉuH· n~toJ_..lthe environment. 
lOThe first parameter on the left has an index value of 0 

llThe first state encountered has an index value of n, if there are n parameters in the computation 
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- If a binding is found (oldSi), then, 

(1) add the existing Statelnfo object (oldSi) to the environment, 

(2) if the type of the state is IDLIST, add oldSi.relVal to the 

environment. 

(b) Export the state as a domain to the caller's Environment, if it is not 

already there. Set the isStateDom flag of the Domain object to 1. 

The pseudo code for initializeEnvironment() also shows that support for relation (i.e. 

IDLIST) typed local and state variables has been built in as of this implementation. The 

last step of the code (3.b) sets isStateDom to 1 for the exported state. This step is 

important for the ijoin invocation, as this is how the environment holding the result 

relation becomes aware of the states. We will present the rest of the implementation 

details of hidden states in Hiding States on page 109. 

Accessing and Modifying States 

Modification to astate typically occurs when executing an assignment statement in a 

computation block where the left-hand side is a state variable. The first case (OP _ASSIGNMENT) 

in the code sketch given for runSingleStmt() on page 99 illustrates the first three steps 

of state modification: 

1. Look up the IDlnfo object that represents the variable on the left-hand side of 

the assignment operator. Note this object is actually an instance of one of the 

sub-types of IDlnfo (Paramlnfo, Statelnfo, LocalInfo, etc.). 

2. Check the type field of the IDlnfo object. 

3. CalI an appropriate method in the EvalExpr class to evaluate the right-hand si de 

of the assignement. For example, if type is INTEGER, the method evalIntExpr() 

should be called. 

The next step is to place the result of evaluation in the storage for the state. There are 

two possibilities: 

• If the computation was invoked using an ijoin syntax, the new value of the state 

should go to a slot in the data array of the result relation. The exact position 
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of the slot is determined by the current row number of the relation while the 

column number is the index stored in the Statelnfo object. Where do we get the 

row number? It can be found in the row field of the current environment. Not 

coincidentally, we stored a pointer to the current environment in the Statelnfo 

object when it was first created. In fact, any Statelnfo object and its hosting 

environment cross reference each other. And this is true of objects of aIl sub-types 

derived from IDlnfo. 

• If the computation was invoked using other types of syntax, we sim ply store the 

new value within the Statelnfo object itself. 

Accessing a state for its value is normally encountered in the EvalExpr class. AlI it 

takes is to look up the Statelnfo object and retrieve the value from either the object 

itself or the data of the resuIt relation (in the case of an ijoin invocation). 

Hiding States 

States are meant to be internaI to the computation in which they are defined. In the 

case of a stand-alone invocation or an invocation using a select expression, the states 

are not exported to the calling environment; therefore they are always invisible except 

in the computation's 'aIt' blocks. An ijoin invocation, on the other hand, do es export 

the states to the resuIt relation. U nless sorne special actions are taken, the states will 

be accessible like any other normal domains. These special actions form the topic of 

this sub-section. 

A new data member isStateDom has been added to the Domain class. For an 

exported state, its value is 1. Like other data members of this class (name, type and 

numref), its value is saved in the system file .dom when a jRelix session finish es and 

restored upon the start of a new session in the same database. Therefore, states are 

recognized even across sessions. 

To prevent states from being accessed directly, we first consider where a normal 

domain can appear. Table 5.5 gives a summary of such places. In aIl these cases, an 

error message should be issued if astate is encountered. 
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Usage Example Handling Method 

In projector list [A] in R ExpressionListToDomains 

In select predicate where A in R evaluateSelect 

where (A - 1) > 0 in R traverseNode 

In assignment RI [Al <- A2] R2 ID List Todomains 

ExpressionListToDomains 

In join expression RI [A1:ijoin:A2] R2 ExpressionListToDomains 

In virtual domain declaration let A be red + of B traverseNode 

In relation declaration relation R(A) RelationalDeclaration 

In domain declaration domain B (A) executeDeclaration 

domain B comp(A) 

A stands for domain; all methods are in the Interpreter class 

Table 5.5: Uses of Domains in jRelix 

We already know that wh en astate is exported, a hint is given to the destination 

environment - its isStateDom field is set to 1. Therefore, the solution for hiding states 

is quite straight-forward: In the methods (column 3) that handle the situations listed in 

Table 5.5, we perform a check on the isStateDom field of a Domain object and throw an 

exception if its value is 1. The exception will result in the system aborting the attempt 

to access states illegally. 

5.2.3 Implementation of Accessor Method 

We saw how states are accessed and manipulated in main memory in Section 5.2.2. 

However, an application programmer making use of an ADT (a special form of stateful 

computation) would have to rely on methods provided by the ADT to gain indirect access 

to the state. Examples of using such methods were given in Chapter 4. We distinguish 

between two kinds of ADT methods in general: accessor methods and modifier methods. 

The former can be any purely functional computation which does not modify states, 

although in most cases an accessor method sim ply returns the current value of astate. 

The latter are non-functional and, as the name suggests, are intended to change the 

value of states. Therefore a programmer is obliged to invoke a modifier method only 

within an update statement. This section presents the implementation of the accessor 
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method mechanism in ADT. 

Surrogate Based Representation and CompTable 

As the examples in Chapter 4 illustrate, a public method (i.e. a method whose name 

appears in the parameter list) of an ADT is exported via an ijoin operation between the 

ADT and a relation. The method becomes a computation typed domain of the result 

relation, and is stored as a surrogate in the column titled with its name. Internally, 

the method is still represented by a Computation object. To link a surrogate to the 

Computation object it stands for, we use the CompTable object in the global environ

ment. The CompTable class in this implementation has been augmented such that the 

mapping between a surrogate and a Computation object is two-way. That is, we can 

look up the Computation object by giving its surrogate. Or, we can give the name of a 

computation and get its surrogate. 

The contents of the CompTable are dumped to the system file . expr upon exit. 

Therefore all information on the exported methods of an ADT is retained across jRelix 

sessions. 

Transforming a Unary Singleton Relation 

Wh en computation was first introduced into Aldat, it was designed to be invoked at the 

top-Ievel, i.e., the result of a computation invocation is always a relation. This is still 

true in this implementation. However, when it cornes to using an accessor method, this 

principle complicates our life a little bit. In the example we gave in Figure 4.7, had we 

skipped the declaration of speed and plunged into the following statement instead: 

AllSpeeds is [name, speed'J in TopRacers; 

we would have obtained AllSpeeds as a nested relation, with speed' being a relation 

typed domain. The values stored in the column headed by speed' would have been 

surrogates that point to the entries in the dot relation . speed'. Another ijoin would 

be needed to pro duce the neat result as seen in the given example. 
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There are two special properties of an accessor method such as GETSPEED [] that we 

can exploit to avoid the complication. First, such method has only one parameter, thus 

the result relation has only one domain (Le., unary). Second, the method works on one 

state at a time, which implies that the result is a singleton. Intuitively, we can just 

take the value of the tuple to be the value of the state. Although accessor methods 

can behave differently, what we have just described is by far the most common case. 

For this reason, we have implemented the machinery to lift the level of the tuple in 

a unary singleton relation, hereafter referred to as "level-lifting". It actuaIly consists 

of two mechanisms: one to select a value among a column of data via a vertical nop 

operation; and the other to lift the level of the selected value through anonymity. 

Vertical domain operations (reduction, equivalence reduction, functional mapping, 

and partial functional mapping) are handled in the Actualizer class. Although differerent 

in several ways, the actualization processes for these operations share sorne corn mon 

attributes. They aIl use an accumulator to store intermediate results and they invoke 

the horizontal "ceIl methods" to calculate the new value of the accumulator based on its 

old value and the actual value of the virtual domain for the current tuple. To make the 

nop12 operator available in vertical domain algebra, we just modify the "ceIl methods" 

so that they treat nop the same way as they do operators like + or max. ConceptualIy, 

the algorithm for red nop goes like this (note that net effect of such an implementation 

is to pick a value in the column pseudo-randomly): 

1. Evaluate the virtual domain for the first tuple. Store the result in accumulator. 

2. Evaluate the virtual domain for the next tuple, calI the result act Val; randomly 

select between the value in the accumulator and act Val; store the selected value 

in the accumulator. 

3. Repeat the previous step until aIl tuples are exhausted; copy the value in the 

accumulator to aIl the slots in the column for the virtual domain. 

12The nop operation can also he used as a hinary domain operator or ajoin operator hetween relations; 

due to the space limit, the implementation details for these cases will not he given in here. Appendix C 

contains pointers to the code in the system. 
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When there is only one tuple to begin with, the red nop operation is trivial. As a 

matter of fact, we could even have used fun nop in the car race example and the result 

would be the same. 

Level-lifting is intended for use with the reduction operations only, as aIl the tupI es 

have the same value for the virtual domain and no ambuiguity results. The syntax for 

level lifting resembles 

let newDom be [red OP of DEXPR] in REXPR 

where OP is a commutative and associative operator, DEXPR is a domain algebra expres

sion, and REXPR is a relational expression that pro duces a unary singleton result. 

To implement level-lifting, we modified both the Interpreter and the Actualizer class, 

in the following methods: 

• Interpreter.traverseType() This method is responsible for deducing the type of 

newDom upon its declaration. When the syntax tree of type OP _PROJECT or 

OP _TSELECT is received, the method performs a check to see if there is only one 

element in the projector list, and if the element is a reduction expression. If either 

of these conditions fails, the normal routine is resumed and a type of IDLIST will 

be returned. Otherwise, it calls itself to recursively deduce the type of DEXPR and 

use that as the type of newDom . 

• Actualizer. buildTree() This method performs run-time type checking to make sure 

the result agrees with the declared type as found by the interpreter. It also trun

cates the virtual domain syntax tree as appropriate. In the case of newDom, the 

no de representing red OP of DEXPR will be taken off the syntax tree (because it 

does not have a name) and used as the declaration syntax for a temporary domain 

reddom. In its place, a no de of type OP _IDENTIFIER will be substituted in the 

original syntax tree for newDom. The name of the identifier is "reddom". Thus in 

effect, two virtual domains will be actualized: reddom and newDom (see Figure 5.8). 

In addition, the Domain object representing reddom will have its isRedTemp flag 

set to 1. The run-time type checker will use the type found for reddom as the type 

of newDom, which should agree with the conclusion reached by the interpreter. 



CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 114 

Figure 5.8: Syntax Tree Change for Level-Lifting 

• Actualizer. act *Cell() These are the "ceIl methods" mentioned III Section 5.1.3. 

Special handling is needed when a no de of type OP _PROJECT or OP _TSELECT 

is encountered and the isRedTemp flag for the only domain in the projector list 

has a value of 1. The node will be evaluated using actRelCell() as if the virtual 

domain were relational. The value of the tuple in the resulting relation is then 

used as the return value of the "ceIl method". In the case of a nested relation, 

tupI es are extracted from the dot relation of reddom and placed into reddom itself 

(except for the ".id" domain). 

Declaring and Exporting a Method 

Declaring an accessor method takes no more than writing the code for the method as 

a nested-Ievel computation in the ADT and listing its name in the parameter list. A 

method declaration inside an ADT is a jRelix statement, which is processed in the 

runSingleStmt() method. Wh en a relation is ijoined with an ADT, aIl the statements 

in the 'ait' block of the ADT are executed in sequence for every tuple in the relation. 

Thus the method declaration statement is also processed once for each tuple. When the 

declaration is encountered for the first tuple, two cases need to be distinguished: 

• Case 1. This is the first time the ADT is instantiated. Therefore the global 

CompTable object is ignorant of the method being declared. In this case, a new 

surrogate is generated and its value stored in the result relation. A new Com

putation object is also created to represent the method. Next, we add to the 

CompTable object a mapping from the surrogate to the Computation object. We 
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also add a reverse mapping, from the fully qualified name of the method to its 

surrogate. The fully qualified name is obtained by concatenating the parent com

putation's fully qualified name to an "!" mark, followed by the method's name. 

For example, the fully qualified name for the GETSPEED method in the RaceCar 

ADT (Figure 4.2) is "RaceCar!GETSPEED". The use of fully qualified names in 

CompTable makes it possible for different ADTs to have methods of the same 

name. It also benefits the implementation of packages . 

• Case 2. A previous instantiation of the ADT exists. In this case, the CompTable 

object already has mappings for the method in question. Therefore, we can sim ply 

look up its surrogate value and put it in the result relation. 

As the system pro cesses other tuples, it will find that aIl the methods to be exported 

can be found in the global CompTable, and thus the action to be taken is similar to 

to that in Case 2 above. Therefore, aIl surrogates in a relation resulting from an ADT 

instantiation point to the same instance of the method. Furthermore, later instantiations 

of the same ADT also share this method instance. 

Invoking an Accessor Method 

Let us now review how the accessor method in the car race example (see Section 4.1.2) 

was invoked by a user. To save the reader going back and forth, the code is re-produced 

as follows: 

>pr TopRacers; 
+--------------------+------------+------+----------+-------+-----+------+ 
1 name 1 ACCELERATE 1 STOP 1 GETSPEED 1 *_a* 1 *_v*1 *_vO*1 
+--------------------+------------+------+----------+-------+-----+------+ 
1 James Bond 1 1 
1 Michael Schumacher 1 1 

1 2 
1 2 

1 3 
1 3 

1 6000.01 0.0 1 0.0 1 
1 5500.01 0.0 1 0.0 1 

+--------------------+------------+------+----------+-------+-----+------+ 
relation TopRacers has 2 tuples 

1 >let speed' be GETSPEED[]; 
2 >let speed be [red nop of curSpeed] in speed'; 
3 >AllSpeeds is [name, speed] in TopRacers; 
4 >pr AllSpeeds; 
+----------------------+---------------+ 
1 name 1 speed 
+----------------------+---------------+ 
1 James Bond 1 0.0 
1 Michael Schumacher 1 0.0 
+----------------------+---------------+ 
expression has 2 tuples 
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In the code ab ove , TopRacers is a relation which holds two instantiated RaceCar ob

jects. Upon instantiation, methods defined in the RaceCar ADT (Figure 4.2) became 

computation typed domains of TopRacers, represented by their surrogates. GETSPEED 

is the accessor method we would like to invoke in order to get the current speed (value 

of the hidden state) for each racer. From the definition of the ADT , we see that it has 

one parameter, curSpeed, which is intended as the output. 

The lin es numbered 1 to 4 in the code illustrate the typical steps involved in using 

an accessor method. We now go over each of them and explain how jRelix has been 

implemented to respond in each step. The following discussion is generally applicable 

to aIl use cases of an accessor method. 

Step 1. Declare a virtual domain to hold the result of GETSPEED(curSpeed) 

e.g. let speed' be GETSPEED [] ; 

Since GETSPEED is functional, we can use it in the domain algebra. Wh en the virtual 

domain declaration for speed' is received by the interpreter, it first performs validity 

checks and deduces the type of the new domain. Methods tmverseNode() and tm

verse Type() , which are invoked in this step, have been augmented to recognize that 

GETSPEED [] is a computation invocation using the array syntax and as such, the type 

of speed' should be IDLIST - a relation. In addition, this relation is found to contain 

just one domain, curSpeed. Next, the interpreter records the new domain in a system 

table for future use. Meanwhile, a dot relation for speed', namely . speed " is created 

and recorded as weIl. 

Step 2. Declare a virtual domain to hold the result of level-lifting 

e.g. let speed be [red nop of curSpeed] in speed'; 

As per the discussion in the subsection Tmnsforming a Unary Singleton Relation 

on page 111, the effect of this statement is to put the value of the tuple in the unary 

singleton relation represented by speed' into speed. However, this will happen only 

wh en speed is actualized. For now, the interpreter treats it like a normal virtual domain 

declaration, although sorne special action is needed to deduce the type of speed. Again 
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in the traverseType() method, code has been added to handle the case where a virtual 

domain is defined on a projection, the projector list of which consists of a reduction. 

The type of the virtual domain, in this case, is taken to be the type of the expression 

after the "of" keyword. speed is thus found to be of type FLOAT. 

It is actually more succinct to combine steps 1 and 2 as: 

let speed be [red nop of curSpeed] in GETSPEED[] ; 

JRelix will respond in the same way as in the case of two separate declarations. 

Step 3. Actualize the virtual domain(s) 

e.g. AllSpeeds is [name, speed] in TopRacers; pr AllSpeeds; 

These two statements could have been written as one, if AllSpeeds would no longer 

be used in the program: 

pr ([name, speed] in TopRacers); 

The interpreter evaluates the view AllSpeeds before executing the "pr" commando 

name is an actual domain of TopRacers, so it needs no further processing. To actual

ize the virtual domain speed, the interpreter first creates and initializes an Actualizer 

object, and then invokes its actualize() method. These two simple steps abstracts away 

all the details buried inside the actualizer, which we will discover now. 

The most important step involved in the initialization process of an Actualizer object 

is transforming the syntax tree of speed according to the rules of level-lifting (covered 

in Transforming a Unary Singleton Relation on page 111). As a result, the declaration 

of speed turns into two: 

let redtemp be red nop of curSpeed; 
let speed be [redtemp] in speed'; 

where redtemp is a special temporary domain usded exclusively by the level-lifting 

algorithms. 

When the actualize() method is called subsequently, it performs the following initial

ization steps: 

1. Create an NREnvironment object (say nrObj) to hold the bindings for the domains 

of TopRacers. Thus nrObj knows that GETSPEED is a computation typed domain, 

whose surrogate is available as data in the Relation object for TopRacers. 
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2. Set the current row number memory (curRow) to O. 

Next, actualization begins for speed in the first tuple of TopRacers. Since speed 

is of type FLOAT, the "cell method" actDoubleCell() is called and passed the syntax 

tree for [redtemp] in speed'. Recognizing the expression as a relational projection, 

actDoubleCell() delegates the task to the evaluateTLExpression() method of the inter

preter. 

The interpreter looks up the name speed' and finds that it contains a computation 

call to GETSPEED. Based on information found in the NREnvironment object (nrObj), 

it obtains the surrogate value for GETSPEED as 3. This value is then used as a key to 

look up the CompTable object for the computation representing GETSPEED. FinalIy, the 

interpreter invokes the appropriate method in of the Computation object to han dIe the 

calI. 

The GETSPEED computation takes over and executes its code on the first tuple of the 

relation TopRacers. In the end, it creates and returns a unary singleton relation defined 

on curSpeed. The value of the tuple is the value of the hidden state _v for "James 

Bond". 

The interpreter passes along the result of the computation to the actualizer. Af

ter performing level-lifting, the actualizer finally puts the value of curSpeed into the 

appropriate spot of the relation TopRacers. 

Every tuple of TopRacers goes through the same pro cess as the first. That is, the 

accessor method GETSPEED is executed once per tuple. 

In order to make the above algorithm work, adjustments have been made to the 

following classes: NREnvironment, Computation, Interpreter and Actualizer. Among 

other things, the look-up routines of the NREnvironment class have been modified to 

accomodate computations nested inside a relation. In addition, a new applySelect 0 

method has been created in the Computation class. This method allows a Computation 

object to handle invocation on a nested computation. 



CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 

5.2.4 Implementation of Modifier Method 

119 

To use a modifier method of an ADT, we must use the update statement on the relation 

that contains the method, as the internaI states will be changed by the execution of the 

method, and thus the relation will also be modified. Consequently, the modifier method 

is implemented mainly by enhancing the routines in the Interpreter class that handle 

updates. Two such methods have been modified, as follows: 

• lookUpdate() This routine generates the three parts of a trigger (see [SunOO]). 

In order to create the new part, the statements after the keyword change in an 

update statement are executed in turn. To support the invocation of a modifier 

method, the case of a computation call (OP _COMPCALL) must be handled. The 

solution is actually pretty straight-forward. First we extract the pure data part of 

the affected relation (not including computation typed domain) and put it into a 

temporary relation. Then we run the requested computation on each tuple of the 

temporary relation. The Computation object representing the modifier method 

is found via an NREnvironment object, in the same that an accessor method 

is located. Finally, we combine the result with data for the computation typed 

domains and create the new part of the trigger. 

• do Trigger() This routine reassembles the three parts of a trigger and puts a new 

version of the affected relation in the appropriate environment. The original 

method was implemented with the assumption that the outer most relation af

fected by an update is a top-Ievel one. However, in the case of ADT, this need 

not be the case. An update issued from within the body of a modifier method 

can affect a relational domain at any level of nesting of the relation holding the 

method. Therefore, sorne code changes have taken place to make the do Trigger() 

routine more flexible. In addition, efforts have been made to ensure that the new 

relation resulting from the update is always put in the same environment where 

the old one is found. This is crucial in view of deeply nested relations, as we allow 

domains of the same name to exist at different levels of nesting. 
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For the same reason that justifies an overloaded applySelect() method, we added 

an overloaded applyInOut() method to the Computation class. The update routine 

do Trigger() caUs this overloaded method. This takes care of the issues that arise when 

a computation nested inside a relation is invoked. In particular, the computation not 

only needs to know the parameter values, it also must know where to find the data in 

its enc10sing relation. This is because the modifier method is meant to modify hidden 

states, which are implemented as special domains in the relation resulting from an ijoin 

instantiation of an ADT. 



Chapter 6 

Implementation of Extended 

Domain Operation 

This chapter describes the computation based extension to vertical domain operations. 

The reader is encouraged to consult the section "System Overview" (Section 5.1) to gain 

sorne knowledge of the system components, especially the Actualizer class. 

6.1 Vertical Domain Actualization: Overview 

A virtual domain is declared with a let statement and actualized when used in a rela

tional algebra expression. The task of virtual domain actualization is accomplished by 

the Actualizer class. The methods in this class fall into two categories, those that handle 

horizontal operations (which we call "cell methods"), and those that work with vertical 

operations. As of the most recent version of jRelix prior to this writing, all four' types of 

vertical domain operations (reduction, equivalence reduction, functional mapping and 

partial functional mapping) have been implemented. The operators that appear after 

the keyword ("red" or "equiv") in reductions must be commutative and associative. A 

broader range of operators are available in functional mappings1
. However, in either 

case, the selection of operators is limited to the ones built into the system. For example, 

lsee Section 3.4.2 for a description of operators used in vertical operations 

121 
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the data in an integer typed domain can only be processed with the common mathemat

ical operators; vertical operations on relation typed domains can involve nothing else 

than ijoin, ujoin and sjoin. This restriction has been lifted with the introduction 

of a computation based extension. Before plunging into the implementation details, we 

first give a brief review of the pro cess of vertical domain actualization. Such background 

knowledge is intended to help the reader understand how the extension fits in with an 

existing system. 

6.1.1 Aigorithms 

Reduction 

The syntax for declaring a virtual domain with reduction is: 

IIlet li newDom IIbeli IIred li OP lIofli DEXPR Il. Il , 

where newDom is the name of the virtual domain; OP stands for the operator used in 

reduction; DEXPR is a domain expression. 

An example of actualizing a virtual domain defined on red nop was given in Sec

tion 5.2.3. For the sake of completeness, we give the algorithm for a generic reduction 

as follows2
: 

1. Load the source relation, srcRel (i.e. the relation the virtual domain is actualized 

in). 

2. Initialize the destination relation, destRel. 

(a) Create destRel, defined on the domains of srcRel and the virtual domain. 

(b) Copy the data from srcRel into destRel. 

3. Initialize the accumulator. 

4. Set current row number, curRow, to o. 
5. If there are more tuples in destRel, then 

(a) Evaluate newDom based on the current tuple data. 
2From now on, we assume only one virtual domain is being actualized. 
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(b) If curRow = 0, assign the result of evaluation (actVal) to the accumulator. 

Otherwise, do accumulator OP actVal; store the result back into the accu

mulator. 

6. Repeat step 4 until an tuples are exhausted. 

7. For each tuple in the destination relation, set the value of the virtual domain to 

be the value in the accumulator. 

Equivalence Reduction 

The syntax for declaring a virtual domain with equivalence reduction is: 

1I1et ll newDom IIbe ll lI equiv ll OP lIofll DEXPR IIby" BY-LIST 

where BY-LIST is a comma delimited domain list. 

Il.11 , 

The algorithm for actualizing equivalence reduction needs to take grouping into ac

count. Tuples that have the same value for the domains in the BY-LIST belong to the 

same group. Within the group, it is essentially similar to the algorithm of reduction. 

Here is the complete algorithmic description: 

1. Load the source relation (srcRel) without sorting. 

2. Initialize the destination relation (destRel). 

(a) Create destRel on the domains of srcRel and the virtual domain. 

(b) Copy the data from srcRel into destRel. 

(c) Sort destRel on the domains in BY-LIST. 

3. Initialize the accumulator. 

4. Set the current row number, curRow, to O. 

5. Initialize the start row number, start, with curRow. 

6. If there are more tuples in destRel, then 

(a) Evaluate newDom for the current tuple to obtain actVal. 

(b) Check curRow. 

1. If curRow = 0, assign (actVal) to the accumulator. 
ii. If this is the last tuple, then 

A. do accumlator OP actVal, 
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B. update the data (between start and curRow) of destRel for the 

virtual domain with the accumulator, 
C. set start to be (current row + 1). 

111. If this is a tuple in the middle, then 
A. Check if grouping has changed. If so, then 

(1) update destRel (between start and curRow) with the accumu

lator, 

(2) set start to be (current row + 1). 
B. Do accumulator OP actVal; store the result back into the accumula-

tor. 

7. Repeat step 6 until an tuples are exhausted. 

Functional Mapping 

The syntax for declaring a virtual domain with functional mapping is: 

"let" newDom "be" "fun" OP "of" DEXPR "order" OROER-LIST 

where OROER-LIST is a comma delimited domain list. 

". " , 

With functional mapping, the operation (OP) is applied to the domain (DEXPR) in an 

order induced from the domains in OROER-LIST. The algorithm to actualize functional 

mapping is: 

1. Load the source relation (srcRel) without sorting. 

2. Initialize the destination relation (destRel). 

(a) Create destRel on the domains of srcRel and the virtual domain. 

(b) Copy the data from srcRel into destRel. 

(c) Sort destRel on the domains in OROER-LIST. 

3. Initialize the accumulator. 

4. Set the current row number, curRow, to O. 

5. If there are more tuples in destRel, then 

• if curRow = 0 or if order has changed, then 

(a) calculate actVal by evaluating newDom based on the current tuple data, 
(b) do accumulator OP actVal; assign the result to the accumulator, 
(c) update destRel with the accumulator. 
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• Otherwise, update destRel with the current value in the accumulator (by

pass). 

6. Repeat step 5 until aIl tuples are exhausted. 

Partial Functional Mapping 

The syntax for declaring a virtual domain with partial functional mapping is: 

1I1et ll newDom IIbe ll 
Il par Il OP Il of Il DEXPR lIorder ll OROER-LIST IIbt' BY-LIST 

Il.11 , 

Partial functional mapping is the most complicated among the four types of vertical 

operations. It adds grouping on top of functional mapping. The algorithm to actualize 

partial functional mapping is as follows: 

1. Load the source relation (srcRel) without sorting. 

2. Initialize the destination relation (destRel). 

(a) Create destRel on the domains of srcRel and the virtual domain. 

(b) Copy the data from srcRel into destRel. 

(c) Sort destRel on the domains in BY-LIST. 

(d) Sort destRel on the domains in OROER-LIST. 

3. Initialize the accumulator, group memory3, and order memory4. 

4. Set the current row number, curRow, to o. 
5. If there are more tuples in destRel, then 

• if curRow > 0 and grouping has changed, re-initialize group memory and 

order memory, 

• otherwise, 

- if curRow = 0 or if order has changed, then 
(a) calculate actVal by evaluating newDom based on the current tuple 

data, 
(b) do accumulator OP actVal; assign the result to the accumulator, 
(c) update destRel with the accumulator. 

3Grouping memory tracks the current value of domains in BY-LIST. 

40rder memory tracks the current value of domains in OROER-LIST. 
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Otherwise, update destRel with the current value in the accumulator 

(bypass). 

6. Repeat step 5 until aIl tupI es are exhausted. 

6.1.2 Previously Implemented Methods 

Most of the initialization steps for vertical domain actualization (load the source rela

tion, create the destination relation, copy data from source to destination) are performed 

by the actualizing() method of the Actualizer class. This method also implements the 

control flow for reduction. There is, however, a separate method for each of the remain

ing three types of vertical operations. They are actualizeEquiv() [Yua98], actualizeFun() 

[KanDI], and actualizeParFun() [KanOl]. Apart from handling grouping and ordering, 

two other important tasks accomplished by these methods are: (1) evaluating the verti

cal domain expression for the current tuple, and (2) updating the accumulator. The first 

task is delegated to the "ceIl methods" (see Table 5.3 for a list of these methods), while 

the second is handled separately in each of the four methods for vertical operations. 

6.2 Computation Based Extension 

The extension to the vertical domain operations described in this thesis is based on com

putation. We know from the previous section that the process of actualization involves, 

at sorne point, updating the accumulator with the result of executing accurnulator OP actVal, 

where actVal cornes from the "ceIl methods" and OP from the virtual domain declara-

tion. Extending the vertical domain operations means aIlowing user defined operators to 

be used as OP. That is to say, OP is no longer limited to the built-in operators such as "+" 

or "ijoin". It can be any computation (or the operation carried out by a block of com

putation, to be precise) that satifies the constaints imposed by reduction or functional 

mapping. 

To support this kind of extension, we have enhanced the existing system with new 

syntax, which was introduced in Section 4.2.2. Consequently, the code in several classes 
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has been modified to recognize the new syntax and react accordingly. 

6.2.1 Additions to the Constant Class and Parser Actions 

To distinguish an extended vertical operation from an ordinary one, we defined a new 

opcode for the extended operation in the Constant c1ass: OP _REDFUNCALL. Wh en 

the parser encounters a virtual domain dec1aration compliant with the extended syntax, 

it sets the opcode field of the SimpleNode object for the declaration to OP -.REDFUNCALL. 

In the ordinary case, this opcode field holds a constant corresponding to a system defined 

operator, such as OP _PLUS. 

A second parser action has been added to mark a "redop" or "funop" computation 

block during the parsing process. The bits field of the SimpleNode (see Section 5.1.3) 

object representing a "redop" block has a value of 1; the value of bits of a "funop" 

block node is 2. 

6.2.2 Additions to the CompBlock Class 

Two new boolean data members have been added to the CompBlock class: redop and 

funop. Wh en the CompBlock class constructor is invoked to create a new CompBlock 

object from a SimpleNode object, it checks the bits field and sets redop to true if its 

value is 1. If the bits field has a value of 2, both redop and funop are set to true. 

AU other cases result in both being false. The redop and funop fields will be used for 

validity check purposes in the virtual domain actualization process. 

6.2.3 Additions to the Actualizer Class 

In view of the vertical domain actualization pro cess given in Section 6.1, the extension 

theoretically only affects the way the accumulator is updated. In reality, the change of 

syntax necessitates corresponding code changes in the Actualizer class in general. 
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General Impact 

A number of methods of the Actualizer class have been slightly modified to handle the 

syntax change. For example, the code in actualizeEquiv(} to extract the BY-LIST from 

an equivalence reduction expression has been augmented with a test for OP _REDFUNCALL, 

as shown in Figure 6.1. The position index of the child node corresponding to the BY

LIST is incremented by one, due to the addition of an extra no de for the computation 

calI (see Figure 6.2 for an illustration). AlI general changes to the Actualizer class are 

of this nature. 

SimpIeNode orderby = null; 
if(virtree.opcode != OP_REDFUNCALL) 

orderby = (SimpIeNode)virtree.jjtGetChild(l); 
else 

orderby = (SimpIeNode)virtree.jjtGetChild(2); 

Figure 6.1: Example of General Code Change in the Actualizer Class 

Figure 6.2: Syntax Tree of Extended Vertical Operation 

The RedFunCallAccumNode Method 

A new method, RedFunCallAccumNode(}, has been added to the Actualizer class. AlI 

the methods for vertical domain actualization call this method when the accumulator 

needs to be updated in the extended case. This method accepts three arguments: the 

accumulator, the current value of the virtual domain (actVal), and the type of the 

virtual domain. The algorithm for this method is as folIows: 

1. If the accumulator is empty, assign actVal to the accumulator and exit. 

2. Find the Computation object whose name is specified in the computation calI. If 

no such computation is found, throw an exception. 

3. Calculate the type of the target block. 
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• If no parameter list is present, assume the block type to be 0112 (decimaI3) . 

• Otherwise calculate the block type from the parameter list. Specifically, 

(in, in, out) ==> block type is 0112 (decimal 3) 
(in, out, in) ==> block type is 1012 (decimal 5) 
(out, in, in) ==> block type is 1102 (decimaI6) 

Any other combination of "in" and "out" results in an exception. 

4. Find the computation block according to the block type calculated in the previous 

step. If no mat ching block is found, throw an exception. 

5. Check the redop and funop fields of the found block and verify the selected block 

is suit able for the vertical operation requested. That is, reduction and qui valence 

reduction require redop == true; functional mapping and partial functional map

ping require (redop 1 1 funop) == true. 

6. Verify that the type of the parameters of the computation matches that of the 

virtual domain being actualized. 

7. Find out the names of the two "in" parameters (call them firstIn and secondIn) 

and the position of the "out" parameter (outPos). 

8. Construct a syntax tree that corresponds to: 

where firstIn=firstVal and secondIn=secondVal. 

firstVal is the value of the accumulator and secondVal is the current value of 

the virtual domain. In the case of an IDLIST typed virtual domain, two tempo

rary relations are created and registered into the environment; the names of the 

relations replace firstVal and secondVal. 

9. CalI the applySelect() method of the Computation object with the select predicate 

constructed in the previous step. 

10. Extract the value of the output from the result of the computation invocation. 

The position of the output is indicated by outPos, found in step 7. 

11. Place the extracted value (or relation, in the case of an ID LIST typed virtual 

domain) into the accumulator. 



Chapter 7 

Conclusions 

This chapter begins with a summary and discussion of the work that has been accom

plished. This is followed by suggestions for potential extensions and en han cements to 

the jRelix system in the future. 

7.1 Conclusions 

7.1.1 Summary of Present Work 

This thesis documents the design and implementation of two new features to the database 

programming language, jRelix. Utilizing a nested relational model and an improved pro

cedural abstraction facility, ADTs are declared as computations encapsulating states 

with their accessorjmodifier methods. Objects of an ADT can be instantiated via a 

single join. As computation caUs are embedded into updates and virtual domain actual

ization, objects are manipulated and accessed solely through the methods exported by 

the ADT. 

The vertical domain algebra empowers jRelix with the capability to combine values 

along a domain using system defined operators. A mechanism has now been instaUed to 

run user defined computations as well. As a matter offact, aU built-in vertical operations 

can be similated by user-defined operations. 

130 



CHAPTER 7. CONCL USIONS 131 

With these new features, application programmers of jRelix can now handle complex 

data objects on a higher conceptuallevel, using a modular approach. 

7.1.2 Discussion 

The database programming language described in this thesis has been built upon general 

purpose formalisms. As such, it is theoretically capable of supporting any application 

without special syntax or semantics. For example, it can handle geo-spatial computa

tions required by a Geographic Information System (GIS). This is significantly different 

from the practices in the commercial world where GIS has grown independently of 

database languages. 

To illustrate, we now give a code sketch for map overlay, a typical operation of GIS. 

An ADT, MAP, encapsulates the quad-edge representation [GS85] of a map and its 

associated spatial operations (e.g. splice). The quad-edge representation consists of 

three relations [MBC+01]: QuadEdge, VertFace, and Geom. The ADT is placed in a 

package, Spatial, together with other ADTs, as shown below1: 

comp Spatial (MAP, EnumSeqADT) is 
{ comp MAP(init,splice,makeEdge,delEdge) is 

state QuadEdge(el,dl,e2,d2): 
state VertFace(e,orig,dest,l,r): 
state Geom(vf,x,y): 
{ comp init(q,v,f) is 

{ QuadEdge (- q; 
VertFace <- V; 

Geom <- f; 

}: 

}; 

comp splice (pair) is 
{ ... }; 

comp makeEdge (pnts) is 
{ ... }: 

comp delEdge (edges) is 
{ ... }: 

Suppose that the above code has been given in a library. Furthermore, the library 

also supplies an overlay computation which consists of a redop block for calculating the 

overlay of two maps (map overlay is associative and commutative). 

IThe details of the ADT methods are not shown, as our intention is to show how the overlay problem 

can be tackled using jRelix constructs. The ensueing code adopts the same approach. 
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let Qi be MAP; 
let Q2 be MAP; 
let Q3 be MAP; 
comp overlay(Q1,Q2,Q3) is 
redop 
{ «code to calculate the overlay of Qi and Q2 

«and assign the result to Q3 

}; 
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When an application programmer needs to perform map overlay, he or she will first 

include the spatial library code, then instantiate and initialize map objects as foUows 

(Q, V, T are initial values for the quad-edge representation): 

relation InitRel(ID,Q,V,T) (-
{(101,{ ... },{ ... },{ ... }), 

(102,{ ... },{ ... },{ ... }), 
(103,{ ... },{ ... },{ ... })}; 

Maps <- InitRel ijoin ([MAP] in Spatial); 
update Maps change 

(update MAP change init(in Q,in V,in T); 
Maps <- [ID,MAP] in Maps; 

In order to calculate the overlay of aU three maps, the application programmer just 

needs one statement, taking advantage of the extended reduction and the level-lifting 

facility: 

OverLayMap (- [red overlay of MAP] in Maps; 

What we have just seen is an example of jRelix handling domain-specific application 

without special extensions. This capability is beyond any commercial relational database 

systems known as of this writing. 

7.2 Future Work 

7.2.1 Object Orientation and jRelix 

JRelix supports encapsulation by ADT and instantiation by joining an ADT with an ap

propriate relation. The other main feature of object-orientation that is not yet available 

is inheritance. 

The term inheritance describes mechanisms in which type definitions or implemen

tations can be related to one another through a partial order [AR90]. The basic notion 
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is that we can modify type definitions incrementaIly by adding subtype definitions to 

enhance or override the original type. The combination of the supertype definition and 

the subtype modifications produces a completely defined new type. 

A model of inheritance in jRelix could be built upon a special implementation of 

joining ADTs. Consider the following definition for a persan ADT: 

comp pers on (init_name, init_age, getName, getAge) is 
state name strg; 
state age intg; 
{ name <- init_name; 

age <- init_age; 

}; 

comp getName(myName) is 
{ myName <- name;}; 
comp getAge(myAge) is 
{ myAge <- age;}; 

We can define a student ADT as a subtype of persan: 

comp student(init_ID, getID) is 
state ID long; 
{ ID <- init_ID; 

}; 

comp getID(myID) is 
{ myID <- ID;}; 

student <- student ijoin person; 

The first part of the code above gives the special information and operation on a 

student. The second part specifies student as a subtype of persan by means of an ijoin. 

The semantics of this assignment are special in that 

• the join operation produces the complete definition of the subtype, and 

• the name of the subtype must appear to the left of the assignment operator. 

An alternative notation could be used as syntactic sugar for the assignment statement, 

as foIlows: 

student isa person; 

From this point on, we may instantiate student objects in the usual way (e.g. via ijoin). 

The instantiated objects would have name, age and ID as hidden states, as weIl as aIl 

three methods of the student type. 
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To implement this, the Interpreter class and the Computation class will need 

adjustments to handle the special semantics of inheritance. One possible solution is to 

add a supertype field to the Computation class. In the previous example, we could set 

student . supertype to person upon the "isa" operation. Then, given the statement 

Class <- initRel ijoin student; 

the interpreter should be able to 

• recognize student as a subtype of persan by checking student. supertype 

• interpret the assignment as if it were: 

Class <- (initRel ijoin person) ijoin student; 

7.2.2 red ujoin vs. red UJOIN 

With the support for user-defined computations in vertical domain operations, we may 

actually simulate any of the built-in vertical operations. Consider the following definition 

of UJOIN: 

comp UJOIN(Rl,R2,R3) is 
{ R3 <- Rl ujoin R2; 
}; 

Given a nested relation A(a, R) where R is a relation typed attribute, the expression 

[AllR] in A would pro duce the same result, whether we define 

let AllR be red ujoin of R; 

or 

let AllR be red UJOIN of R; 

However, when speed is a concern, the second form of virtual domain declaration 

should be avoided. The current implementation relies on the user-defined computation 

being called once for each tuple, not a very efficient solution. Future work may explore 

ways to improve execution efficiency in such cases. 
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7.2.3 Computation Implementation: Loose Ends 

JRelix currently employs the pass-by-name parameter passing method for computation. 

With this method, the actual parameter is substituted for the corresponding formaI 

parameter in aU its occurrences upon invocation using the ijoin syntax. TheoreticaUy 

speaking, any expression could be used as input parameters in a computation caU. For 

example, given the declarations in Figure 3.35 and Figure 3.36, we could say 

SuperSet (in where name> "G" in G2, in [name] in G3, out supt) 

However, in reality the parse will report an error, as it has been programmed to accept 

either a constant or an identifier as a parameter. 

A second case of the imperfect implementation of computation is illustrated as fol

lows: 

comp Select(field,relln,relOut) is 
{ relOut <- [field] in relln; 
}; 

relation R(a,b) <- { ... }; 
Select(in b, in R, out B); 
Select(in a, in R, out A); 

The intention of the last two statements is for A to evaluate to 

[a] in R 

and B to 

[b] in R 

However, this cannot be achieved with the current implementation. This is because aU 

domains of a computation must be unambiguously defined before the computation itself. 

But in our example, the domain that relOut is defined on is unknown until irivocation 

time. It may be desirable to change the implementation such that the output parameters 

of a computation are aUowed to be left undefined until invocation. 

FinaUy, the so-caUed "multi-valued computation" [Bak98] using an "also" syntax has 

not been implemented. Future work is needed to provide support for this functionality. 



Appendix A 

Backus-N aur Form for the Parser 

This appendix shows the Backus-Naur form (BNF) of the grammar in our implementa

tion. The convention of the BNF definition is shown in Table A.l. 

Form Meaning 

<SYMBOL> SYMBOL is a definition of token and must be substituted 

"SYMBOL" SYMBOL is reserved word or symbol and must be typed as it is 

SI 1 S2 either SI or S2 can be used 

(SYMBOL)? SYMBOL is optional 

(SYMBOL)* SYMBOL may appear zero or more times 

(SYMBOLS) grouping SYMBOLS as one unit for high precedence 

Table A.l: BNF convention. 

The grammar is created from the grammar specification (in file Parser.jjt), using the 

JavaCC documentation generator called jjdoc. Because JavaCC is a top-down parser, 

left-recursion is not allowed in the grammar. 

There are five token definitions: <EOF> for end-of-file; <IDENTIFIER> for identi

fier; <INTEGER_LITERAL> for integer constants; <FLOAT _LITERAL> for floating 

constants; and <STRING_LITERAL> for string constants. The formaI definitions of 

identifier and constants are given in [Hao9S]. 
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Start :: = Command n; n 1 Statement n; n 
1 n;n 1 <EDF> 

Command :: = nhelpn «IDENTIFIER»? 
1 nquit n 

1 ninput n <STRING_LITERAL> 
1 ndebugn 

1 lit ime It 
l "trace" 
1 nddn IDList 
1 ndr n (IDList 

1 EventName (n [n 
IIprll (Expression 

1 EventName (n [n 
IIsdll «IDENTIFIER»? 
II sr" «IDENTIFIER»? 
"sen <IDENTIFIER> 
"srd" 
nprint n <STRING_LITERAL> 
"ssd" 
"ssr ll 

"undo ll 

IDList 

IDList 

n]n)?) 

n]n)?) 

neventonn EventName (n[n IDList n]n)? 
neventoffn EventName (n[n IDList n]n)? 

Statement ::= SequentialStatement 
SequentialStatement ::= ParallelStatement 

(n __ n ParallelStatement)* 
ParallelStatement ::= ChoiceStatement 

(ni ln ChoiceStatement)* 
ChoiceStatement ::= PrimaryStatement 

(n??n PrimaryStatement)* 
PrimaryStatement ::= Declaration 

1 Assignment 
1 Update 
1 ComputationCall 
1 Conditional 
1 ForLoop 
1 WhileLoop 
1 Exit 
1 DeadLock 
1 Exec 
1 n(n Statement n)n 
1 StatementBlock 

StatementBlock ::= n{n Statement 
(II;n Statement)* (n in)? n}n 

Conditional ::= nif n Expression 
nthenn (Statement 

(nelse n (Statement 
ForLoop ::= (nforn Identifier)? 

(nfromn Expression)? 
(nto n Expression)? 
(nbyn Expression)? 
ndo n Statement 

Command) 
Command»? 

WhileLoop ::= n"hile n Expression ndo n Statement 
Exit ::= nexit n 

DeadLoek ::= ndeadlockn 
Exee ::= nexec n Identifier 
Declaration::= nrelation n IDList n(n IDList n)n 

(Initialization)? 
Identifier (ninitialn Expression)? 
nisn Expression (ntarget n Expression)? 
ndomainn IDList Type 
nlet n (Identifier 1 Eval) 
(ninitialn Expression)? 
"be" Expression 
(ncompn 1 ncomputationn) CompName 

n(n (ParameterList)? n)n 
nisn ComputationBody 

Initialization ::= n<_n (n{n ConstantTupleList n}n 
Identifier 1 FilePath) 

1 "repn (Identifier 1 FilePath) 
1 nisn (Identifier 1 FilePath) 

ConstantTupleList ::= (ConstantTuple 
(n,n ConstantTuple)*)? 

ConstantTuple :: = n (n Constant (n, n Constant) * n) n 
Constant ::= LiteraI 1 n{n ConstantTupleList n}n 
Identifier ::= <IDENTIFIER> 
FilePath ::= <STRING_LITERAL> 
Assignment ::= Identifier 

(AssignDperator Expression 
1 n[nIDList AssignDperator 

ExpressionListn]n Expression) 
AssignDperator ::= n<_n 1 n<+n 
Update ::= nupdate n Identifier 

(UpdateDperator Expression 
nchange n (StatementList)? 

(nusingn UsingClause)? 
n[nIDList UpdateDperator ExpressionListn]n 
Expression) 

UpdateOperator ::= naddn 1 ndelete n 

StatementList ::= Statement (n, n Statement)* 
UsingClause ::= Identifier 
1 n(n Expression n)n 
1 JoinDperator Expression 
1 n [n ExpressionList n: n JoinDperator 

(n:n)? ExpressionList n]n Expression 
IDList ::= Identifier (n, n Identifier)* 
ExpressionList ::= Expression (n, n Expression)* 
Expression ::= Disjunction 
Disjunction Conjunction 

«nln 1 norn) Conjunction)* 
Conjunction ::= Comparison 

«n8i:n 1 nandn) Comparison)* 
Comparison ::= Concatenation 

(ComparativeDperator Concatenation)? 
Concatenation ::= MinMax (ncat n MinMax)* 
MinMax ::= Summation 

(MinMaxDperator Summation)* 
Summation ::= JoinExpression 

(AdditiveDperator JoinExpression)* 
JoinExpression ::= Projection ( 

(JoinDperator Projection 
n[nExpressionList n:n JoinDperator (n:n)? 
ExpressionListn]n Projection»* 

Projection ::= Projector 
«ninn 1 nfromn) Projection 

Projector ngedit n Expression 
ngedit n Expression 
Selection) 
Selection 

Projector ::= (QuantifierOperator)? 
n[" (ExpressionList)? n]n 

Selection ::= Selector 1 QSelector 1 Term 
Selector ::= (n"here n 1 n"henn) Expression 

(ninn 1 nfromn) Projection 
1 nedit n (Projection)? 
1 nzordern Projection 

QSelector ::= nquantn QuantifierList 
«n"heren 1 n"henn) Expression)? 
(ninn 1 nfrom") Projection 

QuantifierOperator ::= n n 1 n%n 1 n#n 
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QuantifierList ::= Quantifier ("," Quantifier)* 
Quantifier::= "(" Expression ")" Expression 
Terrn ::= Factor (MultiplicativeOperator Factor)* 
Factor ::= UnaryOperator Factor 1 Power 
Power::= Primary ("**" Power)* 
Primary ::= LiteraI 

QuantifierOperator 
ArrayElement 
PositionalRename 
Identifier 
Cast 
"(" Expression ")" 
Pick 
AttribsOf 
Quote 
Transpose 
Function 
IfThenElseExpression 
VerticalExpression 

ArrayElement ::= Identifier "[" ArrayIndexList "]" 
ArrayIndexList ::= (Expression)? 

("," (Expression)?) * 
Pos i t ionalRename :: = Ident if ier "(" (IDList)? ")" 
Cast::= "(" Type ")" Primary 
Pick ::= "pick" Selection 
AttribsOf ::= "AttribsOf" Selection 
Eval ::= "eval" Expression 
QuoteIdentifier ::= (Quote 1 Identifier) 
Quote ::= "quote" Identifier 
Transpose ::= "transpose" ExpressionList 
Function ::= FunctionOperator "(" Expression ")" 
Li teral :: = "null" 

l "de" 
l "dk" 
l "true" 
l "false" 
1 (SignOperator)? 

«INTEGER_LITERAL> 1 <FLOAT_LITERAL» 
<NUMERIC_LITERAL> 
<STRING_LITERAL> 

SignOperator ::= "+,, l "-,, 
IfThenElseExpression ::= "if" Expression 

"then" Expression 
"else" Expression 

VerticalExpression ::= "red" 
(ComputationCall 1 AssoCommuOperator) 
"of" Expression 

l "equiv" 
(ComputationCall 1 AssoCommuOperator) 
"of" Expression "by" ExpressionList 

l "fun" 
(ComputationCall 1 OrderedOperator) 
"of" Expression 
"order" ExpressionList 

1 II par" 
(ComputationCall 1 OrderedOperator) 
"of" Expression 
("order" ExpressionList "by" ExpressionList 

l "by" ExpressionList "order" ExpressionList) 
Type::= ("univ" l "universal") 

1 ("attr" l "attribute") 
1 ("bool" l "boolean") 
l "short" 
1 ("intg" "integer") 
l "long" 

("float" l "real") 
"double" 
II number" 
("strg" "string") 
"text" 
("stmt" "statement") 
("expr" "expression") 
("comp" "computation") "(" (IDList)? ")" 
"(" IDList ")" 

AssoCommuOperator ::= (" 1" l "or") 
1 ("&;" l "and") 
1 I1min" 
1 "max" 
l "+11 

1 ("ijoin" l "natjoin") 
l "ujoin" 
l "sjoin" 
1 "*" 
l "nop" 

OrderedOperator AssoCommuOperator 
l "catit 
1 "_11 

l "/" 
l "mod" 
1 11**" 
l "pred" 
1 flsuce" 

ComparativeOperator ::= "substr" 
l "=" 
1 Il!=" 
1 ")" 

1 11<" 
l ")=" 
l "<=,, 
MinMaxOperator ::= "min" l "max" 
AdditiveOperator ::= "+" l "-" 
JoinOperator ::= "nop" 1 MuJoin 

1 CC"!" l "not"))? SigmaJoin 
MuJoin ::= ("ijoin" l "natjoin") 

l "ujoin" 
l "djoin" 
l "sjoin" 
l "ljoin" 
l "rjoin" 
l "dljoin" 
l "drjoin" 

SigmaJoin ::= ("icomp" l "natcomp") 
l "eqjoin" 
l "gtjoin" 
1 ("gejoin" "sup" l "div") 
l "ltjoin" 
1 ("lejoin" "sub") 
1 ("iejoin" "sep") 

MultiplicativeOperator ::= "*" l "/" l "mod" 
UnaryOperator ::= 11+" l "_fi 1 ("!" l "not") 
FunctionOperator ::= "abs" 

l "sqrt" 
1 "sin" 
1 lIasinli 
1 "COS" 

l "acos" 
l "tan" 
1 "atan" 
l "sinh" 
l "cosh" 
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"tanh l1 

"log" 
"log10" 
Il round" 
"ceilll 
"floor ll 

lIisknown" 
IIchr" 
lIord" 

ParameterList :: = Parameter ("," Parameter) * 
Parameter ::= <IDENTIFIER> (":" "seq")? 
ComputationBody ::= ComputationVariableDeclaration 

ComputationBlock 
("aIt" ComputationBlock)* 

ComputationBlock ::= ("redop" l "funop")? 
"{" ComputationStatements "}" 

ComputationVariableDeclaration 
::= (LocalVariableDeclaration 

1 StateVariableDeclaration)* 
LocalVariableDeclaration ::= "local" IDList Type ";" 
StateVariableDeclaration ::= "state" IDList Type";" 
ComputationStatements ::= CompStatement «";" CompStatement 

l "also" CompStatement))* (";")? 
CompStatement ::= Statement 1 Command 
ComputationCal1 ::= Identifier "(" (CaIIParameterList)? ")" 
CallParameterList ::= CallParameter ("," CaIIParameter)* 
CallParameter ::= ( "in" (LiteraI 1 Identifier)?) 

1 ( "out" ( LiteraI 1 Identifier )? ) 
CompName ::= CompIdentifier 1 EventName (" [" IDList "] ")? 
CompIdentifier ::= <IDENTIFIER> 
EventName ::= (Prefix ":")? Action ":" (Identifier)? 
Prefix ::= "pre" l "post" 
Action ::= "add" l "delete" l "change" l "contains" 

"cmpcontains" l "cmpwithin" l "intersect" l "within" 
l "withindist" 
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JRelix System Class Map 

Class Name Description Category 
JRelix Main Program Front-end 
JRelixInputStream Extends BlockInputStream Front-end 
JRelixParser Extends Parser Front-end 
Parser* Language Parser Front-end 
ParserTokenManager* Supports Parser Front-end 
ParserConstants* Supports Parser Front-end 
ParserTreeConstants* Supports Parser Front-end 
ParseException * Supports Parser Front-end 
ParseError Supports Parser Front-end 
ASCILCharStream* Supports Parser Front-end 
Token* Supports Parser Front-end 
TokenMgr Error* Supports Parser Front-end 
Node* Syntax Tree Node Structure Front-end 
SimpleNode Enhanced Node Structure Front-end 
Interpreter Interprets Syntax Trees Front-end 
Pretty Print Formats Display Output Front-end 
Constants Operation Constants Front-end, DB Engine 
InterpretError Supports Interpreter Front-end, DB Engine 
Global Global VariablesjMethods Front-end, DB Engine 
Relation Implements Relational Algebra DB Engine 
RelTable Supports Relation Lookup DB Engine 
RelInfo Extends IDInfo for Relation DB Engine 
Domain Implements Domain Algebra DB Engine 
DomTable Supports Domain Lookup DB Engine 
DomInfo Extends IDInfo for Domain DB Engine 
Actualizer Implements Virtual Domain Actualization DB Engine 
Actualizer76 Supplements Actualizer DB Engine 
Note: Files with "'l''' are machine generated; Gedit'l"l' are aIl the classes 
the name of which begin with "Gedit" 

Table B.1: Map of JRelix Classes, Part 1 
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Class Name Description Category 
Environment System Environment DB Engine 
SemanticChecker Semantic Check of User Input DB Engine 
SemanticCheckError Supports Semantic Check DB Engine 
TypeConstants Data Type Constants DB Engine 
Surrogate Surrogate Values DB Engine 
Utility Various Utilities DB Engine 
NREnvironment Nested Relations Environment DB Engine 
NRInfo Extends IDInfo for Nested Environment DB Engine 
Computation Implements Computation DB Engine 
CompBlock Supports Computation DB Engine 
CompTable Supports Computation DB Engine 
ID Info Stores Variable Information DB Engine 
LocalInfo Extends IDInfo for Local Variables DB Engine 
ParamInfo Extends IDInfo for Parameters DB Engine 
StateInfo Extends IDInfo for States DB Engine 
StateInfo_2002 Supplements StateInfo DB Engine 
EvalExpr Evaluation of Expressions DB Engine 
Gedit** GIS Editor Related Classes DB Engine 
AddLayersDialog Supports GIS DB Engine 
CvDraw Supports GIS DB Engine 
Legend Supports GIS DB Engine 
TriggerNode Supports Active Database DB Engine 
CTrigger Supports Active Database DB Engine 
number Implements Numerical Data Type DB Engine 
ExprEntry Entry for .expr System File DB Engine, DB Maintainer 
ExprTable Supports .expr Maintenance DB Engine, DB Maintainer 
BlockInputStream Disk Input Operations DB Maintainer 
BlockOutputStream Disk Output Operations DB Maintainer 
Note: Files with "*,, are machine generated; Gedit** are aU the classes 
the name of which begin with "Gedit" 

Table B.2: Map of JRelix Classes, Part 2 
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Summary of Enhancements 

Class Significance 
StateInfo_2002 (new) Provides storage for states 
Actualizer Supports OP -FUNCTION 

Supports OP ~OP 
Supports level lifting of anonymous domain 
Supports accessor method caU in ADT 
Supports extended vertical domain operation 

CompB1ock Supports extended vertical domain operation 
CompTable Supports nested computation lookup 
Computation Supports hidden states 

Supports enhanced set of statements and commands 
Supports invocation of nested accessor method 
Supports invocation of nested modifier method 

Constants Supports OP -REDFUNCALL 
Domain Supports hidden states 

Supports level lifting of anonymous domain 
EvalExpr Supports OP -FUNCTION 

Supports states 
Global Supports hidden state serialization 
ID Info Supports type of subclass object 
Interpreter Supports top level OP ~OP 

Supports hidden states 
Supports levellifting of anonymous domain 
Supports executing statements and commands 
from inside a computation 
Supports update with computation caU 

LocalInfo Supports relation typed local variable 
NREnvironment Supports lookup of nested computation 
Parser Supports new syntax related to extended domain operation 
StateInfo Supports states 

Table C.l: New and Modified Classes 
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