
ln compliance with the
Canadian Privacy Legislation

sorne supporting forms
may have been removed fram

this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

Abstract Data Types and Extended Domain
Operations in a Nested Relational Aigebra

Yi Zheng

Department of Computer Science, McGill University
Montréal, Québec, Canada

August, 2002

A thesis submitted to the

Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

T. H. Merrett, Advisor

Copyright © Yi Zheng 2002

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-88338-8

Our file Notre référence
ISBN: 0-612-88338-8

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Contents

Abstract

Résumé

Acknowledgments

1 Introduction
1.1 Motivation for the Thesis .
1.2 Thesis Outline

2 Background and Related Work
2.1 Relational Model

2.1.1 Flat Relational Model
2.1.2 Extensions to the Relational Model

2.2 Abstract Data Types
2.2.1 ADT as a Programming Language Concept
2.2.2 ADT in Databases

2.3 ALDAT, Relix and jRelix
2.3.1 A Little History of Relix and jRelix .. .
2.3.2 Programming Concepts in Computations

3 Overview of jRelix
3.1 Getting Started

3.1.1 Starting the Engine
3.1.2 Commonly Used Commands
3.1.3 Domain and Relation Declaration

3.2 Assignments
3.3 Relational Algebra .. .

3.3.1 Unary Operators
3.3.2 Binary Operators

3.4 Domain Algebra
3.4.1 Horizontal Operations
3.4.2 Vertical Operations

3.5 Update

11

IX

X

xi

1
1
4

5
5
5
7

11
11
13
16
16
19

22
22
22
23
23
26
27
28
31
36
37
38
43

CONTENTS

3.6 Computation
3.6.1 Defining and Invoking a Computation. . .
3.6.2 Stateful Computations: a Simple Example
3.6.3 Packages..
3.6.4 Commands

4 User's Manual
4.1 User's Manual on ADT

4.1.1 Introduction.......
4.1.2 Example 1: Car Racing .
4.1.3 Example 2: A Banking Application
4.1.4 Summary

4.2 User's Manual on Extended Domain Aigebra .
4.2.1 Introduction
4.2.2 New Syntax
4.2.3 Example 1: Vertical String Concatenation
4.2.4 Example 2: Sum of Complex Numbers
4.2.5 Summary

5 Implementation of Abstract Data Type
5.1 System Overview

5.1.1 Development Environment
5.1.2 JRelix Storage Format and Architecture
5.1.3 Synopses of Selected Components

5.2 Implementation of ADT
5.2.1 General Enhancements Related to Computation
5.2.2 Implementation of State
5.2.3 Implementation of Accessor Method .
5.2.4 Implementation of Modifier Method .

6 Implementation of Extended Domain Operation
6.1 Vertical Domain Actualization: Overview .

6.1.1 Aigorithms
6.1.2 Previously Implemented Methods .

6.2 Computation Based Extension
6.2.1 Additions to the Constant Class and Parser Actions.
6.2.2
6.2.3

Additions to the CompBlock Class
Additions to the Actualizer Class

7 Conclusions
7.1 Conclusions

7.1.1 Summary of Present Work
7.1.2 Discussion

7.2 Future Work.

III

44
46
50
53
55

56
56
56
58
63
71
72
72
73
74
76
79

81
81
81
82
84
91
93

103
110
119

121
121
122
126
126
127
127
127

130
130
130
131
132

CONTENTS

7.2.1
7.2.2
7.2.3

Object Orientation and jRelix
red uj oin vs. red UJOIN
Computation Implementation: Loose Ends

A Backus-N aur Form for the Parser

B JRelix System Class Map

C Summary of Enhancements

Bibliography

IV

132
134
135

136

140

142

143

List of Figures

3.1 Example: Declaration of Domains
3.2 Example: Declaration and Initialization of Relations.
3.3 Representation of Nested Relations
3.4 Example: Assignments
3.5 Projection: Example 1
3.6 Projection: Example 2
3.7 Selection: Example 1 .
3.8 T-Selection: Example 1 .
3.9 Pick: Example 1
3.10 Relations Used in IL-join Examples
3.11 IL-join: Example 1 .
3.12 IL-join: Example 2
3.13 a-join: Example 1
3.14 Constant Virtual Domain and Renaming
3.15 Virtual Domain with Unary Operation .
3.16 Virtual Domain with Binary Operation.
3.17 Virtual Domain with a Conditional Expression.
3.18 Virtual Domain with Built-in Functions
3.19 Relation Company Used in the Examples for Vertical Operations
3.20 Example: Reduction Operation
3.21 Relation NewCompany ...

3.22 AlI Employees: Version 1
3.23 AlI Employees: Version 2
3.24 Example: Equivalence Reduction Operation
3.25 Example: Functional Mapping Operation . .
3.26 Example: Partial Functional Mapping Operation
3.27 Example: Updating Flat Relations
3.28 Example: Updating Nested Relations, part 1
3.29 Example: Updating Nested Relations, part 2
3.30 Declaration of a Simple Computation
3.31 Relation Associated with Computation CircArea

3.32 Computation Invocation: Selectjarray Syntax ..
3.33 Computation Invocation: Natural-Join Syntax ..
3.34 Computation Invocation: Natural-Join with Named Join Domain

v

25
25
26
27
28
28
29
29
31
33
33
34
35
37
37
37
38
38
38
39
40
40
41
42
42
43
44
45
45
48
48
49
50
50

LIST OF FIGURES

3.35 Declaration of a Computation with Relation Typed Parameters
3.36 Computation Invocation: Stand-alone Calls
3.37 Declaration of a Computation with State
3.38 Using a Computation with State .
3.39 Declaration of Packages
3.40 Use of Packages

4.1 The Structure of a Computation.
4.2 Example ADT: RaceCar . .
4.3 RaceCar Input and Output. . .
4.4 The Racers
4.5 Instantiating the RaceCar ADT
4.6 Showing Hidden Attributes. . .
4.7 Using the Accessor Method ..
4.8 Using the Modifier Method: Example 1
4.9 Using the Modifier Method: Example 2 .
4.10 Persistent State
4.11 The BA ADT
4.12 The BANK ADT: Part 1
4.13 The BANK ADT: Part 2
4.14 The Big 5 Banks and Their Customers
4.15 Instantiating 5 BANK objects
4.16 Transfer Money between Two Accounts .
4.17 Open New Accounts .
4.18 Close Accounts
4.19 Tally Sum of Balances
4.20 Tally Total Counts of Accounts
4.21 A Relation Containing Ordered Strings
4.22 Extended Vertical String Concatenation
4.23 The Computation for Complex Numbers: Alternative 1
4.24 The Computation for Complex Numbers: Alternative 2
4.25 The Sum of Complex Numbers
4.26 The Alternating Sum of Complex Numbers
4.27 Other Uses of the Complex Number Computation

5.1 Generating the Parser Using JJTree and JavaCC
5.2 JRelix System Architecture
5.3 Syntax Tree Example
5.4 Computation CircArea ...
5.5 Pseudo-code for applyljoin()
5.6 Pseudo-code for runSingleStmt() .
5.7 Class Diagram of StateInfo
5.8 Syntax Tree Change for Level-Lifting

VI

51
51
52
52
54
54

57
59
59
59
60
61
62
62
63
64
65
65
66
66
68
68
70
70
71
71
74
75
76
77
78
79
80

82
84

85
94
96
99

105
114

LIST OF FIGURES

6.1 Example of General Code Change in the Actualizer Class .
6.2 Syntax Tree of Extended Vertical Operation

vii

128
128

List of Tables

3.1 Domain Types in jRelix 24
3.2 The Company Relation 25
3.3 Summary of f-l-joins . 33
3.4 Summary of a-joins. 34

5.1 System Relations .. 83
5.2 The Simple Node Class 86
5.3 CeU Methods in the Actualizer Class 89
5.4 New Methods to Support Flexible Pass-by-name Mechanism 97
5.5 U ses of Domains in j Relix 110

A.1 BNF convention 136

B.1 Map of JRelix Classes, Part 1 140
B.2 Map of JRelix Classes, Part 2 141

C.1 New and Modified Classes .. 142

viii

Abstract

This thesis documents the design and implementation of two enhancements to the Aldat

database programming language: abstract data types (ADTs) and extensions to the

domain algebra.

Utilizing a nested relational model and an improved procedural abstraction facility,

ADTs are declared as computations encapsulating states with their accessorjmodifier

methods. Objects of an ADT can be instantiated via a single join. As computation calls

are embedded into updates and virtual domain actualization, objects are manipulated

and accessed solely through the methods exported by the ADT.

The vertical domain algebra empowers Aldat with the capability to combine values

along a domain using system defined operators. A mechanism has now been installed

to run user defined computations as well. This, cou pIed with ADTs, opens up the

opportunity for Aldat to handle applications such as GIS which require at once the

capacity of a traditional DBMS and the computational power of a modern programming

language.

IX

Résumé

Ce mémoire illustre la conception et l'implantation de deux perfectionnements apportés

au langage de programmation de bases de données Aldat : les types de données abstraits

(TDA) et les extensions de l'algèbre des domaines.

Lorsqu'on utilise un modèle relationnel imbriqué et une installation perfectionnée

d'abstraction procédurale, on dit que les TDA sont des calculs qui encapsulent des états

dans leurs mécanismes d'accès/modification. Les objets d'un TDA peuvent être in

stanciés par une seule jointure. Tandis que les «: computations» (une forme d'appel de

procédure généralisé propre à Aldat) sont imbriqués dans les mises àjour et l'actualisation

des domaines virtuels, les objets sont manipulés et sollicités exclusivement par les

méthodes exportées par le TDA.

Le domaine algèbre vertical permet à Aldat de combiner des valeurs le long d'un

domaine en utilisant des opérateurs définis par le système. De nouveaux mécanismes

ont maintenant été installés pour exécuter également les calculs définis par l'utilisateur.

Conjugué aux TDA, cela permet à Aldat de recevoir des applications comme les SIG

qui nécessitent à la fois la capacité d'un SGBD traditionnel et la puissance de calcul

d'un langage de programmation moderne.

x

Acknow ledgments

This thesis is not possible without the support from many individuals. First, l wish to

thank my thesis supervisor Professor Tim Merrett for his guidance, advice, encourage

ment and financial support throughout the research and preparation of this thesis. l

have benefited enormously from his valuable insights and mentoring on a great number

of occasions. Under an impossibly tight time schedule, he scrutinized every aspect of

the text and made countless suggestions for improving the accuracy and quality of this

thesis.

Many thanks to my colleagues in Aldat lab who have provided consultation and

comments to my research. Andrey Rozenberg kindly answered many of my questions

about the system with extreme patience. Hongyu Zhao devoted long hours to testing

and partial integration, which made my life much easier. l am fortunate to have worked

with a talented group of graduate students in CS 617, the seminar course that led to the

conception of this thesis. Zongyan Wang, Xuechun Lu, Yiyong Pan, and Qifang Zheng

aIl offered precious suggestions and constructive criticism during my presentations of

the topics covered by this thesis.

l wish to thank the School of Computer Science for the graduate courses and the

research environment. Thanks to Diti Anastasopoulos, Vicki Keirl, Lise Minogue, and

Lucy St-James, for easing the procedures of dealing with the school.

Last but not least, l owe special thanks to my loving husband Wei Xu, for his un

conditional support, understanding and sacrifice during my study.

Xl

Chapter 1

Introduction

This thesis describes two enhancements to the Aldat database programming language

- abstract data types (ADTs) and extensions to the vertical domain algebra. The

motivation for this work is given in Section 1.1. In Section 1.2, we briefly outline the

structure of the thesis.

1.1 Motivation for the Thesis

The relational data model, first introduced by Codd [Cod70], has attracted mu ch at

tention from both academia and industry. Relational database systems have improved

the application development pro cess in large data-intensive environments by providing

a single, uniform view of data expressed in structure-independent terms (Le. relations,

tuples, domains, etc.). Other benefits inc1ude facilities for controlled sharing of data,

system controlled data integrity maintenance, and highly tuned routines for data for

matting and access [AR90].

The power of the basic relational modellies in its decriptive ability, however, not in its

computing ability, as admitted by Codd himself in his seminal paper. Codd envisioned a

"data sublanguage" to be developed on the basis of the relational model and embedded

in a variety of host languages. Arithmetic functions needed in the qualification for

data retrieval, for example, were deemed appropriate in the ho st language rather than

1

CHAPTER 1. INTRODUCTION 2

the data sublanguage. One problem in developing database applications using this

"two-language" approach is the impedance mismatch between the data manipulation

language (DML) of the database and the general purpose programming language (PL)

in which the rest of the application is written [BM88]. One aspect of the mismatch is

the difference between the declarative paradigm of DML and the imperative nature of

PL. The other aspect is the mismatch of type systems.

On the other hand, increasingly, requirements have emerged for database systems to

handle new data types and their associated operations. Many applications, exemplified

by office automation, computer-aided design and geographic information systems, could

benefit from databases capable of handling complex objects typically used in program

ming these systems. Such non-business applications not only need a database to archive

huge amounts of data, but also to provide extensibility to capture domain-specific data

semantics. The basic model would clearly not be appropriate for such applications

without sorne enhancements.

Since the 1980's there has been a significant trend in database research addressing the

inadequacy of the basic relational model. Various extensions to the base type system of

databases have been explored. Nested relations [Mak77] were proposed to offer a direct

mapping from applications with hierarchical structures to databases. More significantly,

the concept of data abstraction [LZ74, Gut77] was adapted from the programming lan

guage paradigm to the database systems [SRG83, OFS84], thus enabling databases to

answer the calI of modelling complex objects.

The problem of impedance mismatch, however, still needs to be addressed. To this

end, a new breed of languages, database pragramming languages, have been proposed.

This type of language either incorporates the database types and operations into a

programming language, or extends a database system with programming language con

structs. However, both of these ways threaten to shift the mismatch from the syntactic

to the conceptual level [Mer93].

At McGill, a project called Aldat (standing for the Algebraic appraach ta data) has

produced several implementations of a relational database programming language. The

CHAPTER 1. INTRODUCTION 3

approach taken by Aldat researchers is to study the similarities and differences be

tween database and programming language concepts, and then provide generalizations

to bridge the gap. The earlier versions of the language, under the common name Relix,

not only fully implemented the relational model proposed by Codd, but also extended

it with the domain algebra [Mer76], a collection of operations on attribute values, or

thogonal to the relational algebra. This enhancement empowered Relix with versatile

arithmetic, grouping, ordering, and aggregation capabilities, most of which are not seen

in commercial SQL implementations. Procedural abstraction facilities (functions and

procedure) and one level of nesting were also implemented in Relix. A recent incarna

tion of Relix, called jRelix (Relix in Java) [Yua98, Ra098, Bak98, SunOO, Roz02, Cha02,

Zha02, KanOl], provides full support for the deeply nested relational model by subsum

ing the relational algebra into the domain algebra. It also has integrated support for

updates and event handlers. The two procedural abstraction facilities in Relix have

been merged into one, now caUed computation. It is a special case of relation and can

be manipulated by the relational algebra.

With the support for nested relations and procedural abstraction in place, what is

now le ft to be implemented is a mechanism for data abstraction. The introduction of

user-defined data types to model real-world complex objects, such as bank accounts or

maps, will make a large or complicated pro gram more manageable to the application

programmer. This thesis is mainly devoted to the design and implementation of the data

abstraction mechanism in jRelix. It also discusses extensions to the domain algebra that

further enhance the flexibility of the system in coping with custom domain types.

The approach of our work is conservative in that we st rive to keep the characteristics

of the relational model. Other research groups have started out developing completely

different models and systems. Object-oriented databases are one of them. Although they

have been heralded as capable of overcoming aU the obstacles faced by the traditional

relational model [MS90, AR90, BCG+90, MD90, LRV90], we have found, in the course

of work on Aldat, that aIl the important features of the object orientation can be

implemented in our system with few or even no new concepts. A brief discussion of

CHAPTER 1. INTRODUCTION 4

this aspect can be found in the conclusions to this thesis. For this reason, we will not

elaborate on object-oriented databases in later chapters. Interested readers may consult

the references listed above.

1.2 Thesis Outline

This introductory chapter has indicated the intent and purpose of this thesis. The next

chapter reviews literature on the relational model, its extensions, and the concept of

data abstraction. A brief overview of the Aldat project and the two main versions of

the Relix language is also given. Chapter 3 presents the use of the relational and do

main operations supported by jRelix in a tutorial fashion. Newly incorporated features,

namely abstract data types and extended domain operations, are illustrated by exam

pIes in Chapter 4. Chapters 5 and 6 describe the implementation details of these new

features. Finally, a summary of the work presented in this thesis is given in Chapter 7,

along with suggestions for future work.

Chapter 2

Background and Related Work

This chapter contains a review of the literature on the relational data model, its ex

tensions, and the concept of data abstraction. An overview of the related work in the

Aldat project will also be given.

2.1 Relational Model

2.1.1 Flat Relational Model

The relational model introduced by Codd [Cod70] represents the database as a collection

of time-varying relations. The relation is a simple and uniform data structure which

consists of rows and columns. A relation resembles a table, in which each row contains

a collection of related data values. The term "tuple" is used to refer to a row, and

"attribute" refers to the header of a column. The data type of values that can appear

in a column constitutes a "domain". A relation is formally defined as a subset of the

Cartesian product of its domains.

Normal forms have been introduced on relations to reduce storage redundancy and

miminize the effort of updates. Codd defined the rules for a relation to be in the first

normal-form (lNF), as follows:

• aIl tuples are distinct,

• the order of the tuples is immaterial,

5

CHAPTER 2. BACKGROUND AND RELATED WORK 6

• each attribute is unique and the ordering of columns is irrelevant,

• attribute values are atomic. That is, the values are no decomposable as far as the

relation is concerned.

Relations satisfying these requirements are also caUed flat relations. Codd dealt with

the subject of normalization more vigorously in [Cod72a] and [Cod72b]. A series of

higher normal forms have been introduced since then, which define increasingly stringent

requirements. A thorough discussion about normalization techniques can be found in

[Dat81] and [UU82].

The two most widely used prototypes of the relational model were System Rand

INGRES, according to [SH98]. System R was developed at IBM's San Jose Research

Laboratory in California during the late 70s [ABCea76]. INGRES was produced by

a project at the university of California at Berkeley [HSW75]. Much of the current

commercial landscape shows the influence of these systems. In particular, the query

optimization architecture and optimization techniques of System Rare generaUy lauded

and form the basis of the algorithms used in most commercial systems. The Structured

Query Language (SQU) has its roots in System R. On the other hand, INGRES is

highly regarded for the cleanliness of its relational sublanguage QUEL and the query

modification algorithms for views, protection, and integrity control.

Relational Aigebra

The relational algebra is first suggested in [Cod70]. It is a collection of operations

applied on relations. AU operations take relation(s) as operands and return a relation

in result. This is called the "dosure principle" of the relational algebra. By following

this principle, it is possible to construct complex relational expressions using a series of

simple operations.

TraditionaUy, the relational algebra has five independent operators, some of them

generalized from the mathematical set operations: set union (U), set difference (-),

lSQL is now a firmly established relational database query language.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

relational product (x), relational selection (a), and relational projection (1f). More

operators have been added by various extensions to the relational model. In general,

operators can also be categorized according to the number of operands they require.

Therefore, we can speak of unary operators (e.g. projection) and binary operators (e.g.

joins) .

Domain Aigebra

The need for arithmetic and related operations on the value of attributes has given

rise to the domain algebra [Mer76] which consists of two categories of operations for

manipulating attribute values in tuples. They are:

• horizontal operations: new attribute value is calculated based on other attribute

values within a tuple

- constant

- attribute renaming

- unary operations, e.g. negation

- binary operations, e.g. plus, minus, join

- if-then-else

- built-in functions

• vertical operations: new value is generated from values along an attribute

- reduction

- equivalenee reduction

- functional mapping

- partial functional mapping

2.1.2 Extensions to the Relational Model

The relational model proved a great success in the world of business applications. How

ever, it encountered obstacles in modeling complex data objects for non-business appli

cations, such as geographic information systems and computer-aided design. For this

and other practical reasons, a significant amount of work has been devoted to the ex

tension of the relational model sinee the 1980's. In this section, we review sorne of these

CHAPTER 2. BACKGROUND AND RELATED WORK 8

extensions in three directions: (1) extensions to base types, (2) extensions to structure,

and (3) extensions to query languages.

Extending Data Types

Traditionally, only a small number of atomic data types (or attribute domains) are

offered for numbers and strings in a database system. Sorne systems include types for

date, time and currency.

The first class of extension to the relational model addresses the base types a tuple

is constructed from. One direction is to enrich the collection of base types, by including

types such as those for geometric data (points, polylines and polygons), text and image.

The other direction is to incorporate more operations on the attribute level. Commercial

SQL typically allows arithmetic expressions to occur in a projector list, with or without

aliasing. The domain algebra introduced in the previous section takes this direction

a step further by establishing an algebra for attributes, orthogonal to the relational

algebra.

A special case of the extension to base types is the inclusion of abstract data types

(ADTs). Several research projects have incorporated ADTs into attribute domains.

Since ADT is an important concept of its own right, we will discuss this case in Sec

tion 2.2.

A second class of data type extension concerns providing an extensible database

system architecture. Sorne well-known projects in this area are documented in [CDRS86,

DMB+87, LMP87, PSS+87]. Problems regarding access path support and special storage

for user-defined data types were investigated by [WSSH88, Wo189]. Others explored

mechanisms to enhance the database optimizer in view of the extended types [Fre87,

GD87, Loh88].

N ested Relations

Nested relations [Mak77] are an attempt to extend the structure of the relational model

without introducing new syntax. The First Normal Form restriction for a relation is

CHAPTER 2. BACKGROUND AND RELATED WORK 9

dropped; attribut es need no longer be atomic, they can also be structured. In other

words, relations can contain relation-valued attributes. Thus nested relations are also

known as "non-first-normal-form ((N F)2)" relations. In a sense, the nested relational

model introduces sorne aspect of the hierarchical data model. The robustness of the

nested relational model has been proven by [Mak77, 8P82, FT83, AB84, 8886, KK89].

Following [Mak77], Jaeschke and 8chek [J882] introduced a generalization of the or

dinary relational model by allowing relations with set-valued attributes and adding two

restructuring operators, nest and unnest, to manipulate such (one-Ievel) nested rela

tions. Thomas and Fischer [TF86] generalized this model and allowed nested relations

of arbitrary but fixed depth. The definition of recursively nested relations was discussed

in [L888].

The benefits offered by nested relations include:

• nested relations improve logical design by means of a more direct mapping of

application onto the database,

• nested relations provide an elegant way of physical database design due to the

possibility of internally materializing frequent joins,

• the conceptual gap between relational and nested relation al models is minimal,

and most theories and techniques established for the relational model apply in the

case of nested relations as weIl.

[OY85] showed that nested relations provide a way of directly representing certain

multi-valued dependencies by nesting. Therefore, fewer relations have to be split into

smaller pieces during logical database design. In contrast, ordinary relational database

design often ends up in a large number of tables due to the need for decomposition in

the case of set-valued attributes. As a result, joins that are necessary to present aU data

in a tradition al relational database become unnecessary with nested relations, as more

data are contained in one tuple.

The benefits gained with nested relations in physical database design have been

investigated by [8P887]. One point of interest is the transformation of queries from the

logical to the physical level by formaI manipulation with a nested relation al algebra.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

[Bid87, Sch86] explored ways to recognize and eliminate joins from the users' queries in

the pro cess of such transformation. Sorne joins are unnecessary since they are internally

materialized. Optimization problems associated with this type of query transformation

are also solved in these papers, mainly with relational techniques.

Besides implementing nested relations in a one-to-one mapping to storage structures,

there have been a number of attempts at other implementation choices. Due to space and

time limit, we will not elaborate on them here, but refer the reader to [DKA +86, DvG88].

In the meantime, query languages have been enriched or invented for the nested

relation al model. We will coyer this topic in the next sub-section.

Extended Query Languages

A relational query language is said to be relationally complete if it is at least as powerful

as the relational algebra [Cod70]. However, more expressive power is often needed for

practical purposes. Commercial DBMS often provides SQL with built-in functions,

aggregates, ordering, grouping, and updates. Others have come up with recursive query

facilities which take advantage of nested relations [Sch89, Jia90, Lin90].

An enormous amount of work was devoted to nested relational query languages.

The initial papers on nested relations focused on the addition of two operators: nest

and unnest [SP82, JS82, FT83]. The nest operator creates partitions based on equiva

lence classes. Tuples having the same value for sorne attributes are equivalent and aU

equivalent tupI es are replaced with a single tuple in the resulting nested relation. The

resulting relation is then defined on all the attributes for which equivalence is defined,

and a nested attribute defined on the rest of the attributes of the original relation. The

unnest operation reverses the effect of the nest operator. The motivation for adding the

two operators was that whenever relation-valued attributes are encountered, one could

first unnest, apply the standard relation al operators and then nest to obtain the final

result. This approach will not work in general, because the effect of an unnest may

not be reversible by a nest [JS82, FT83]. The conditions under which a relation can be

unnested losslessly was investigated by [FvG85].

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Another approach to query nested relations is to apply relational algebra on the

attribute level [AB84, 8886, OOM87, RK888, MerOl]. The rationale is that sin ce the

nested relational model is a direct extension to the relational model, we do not need

a new query language. We need, however, to allow relational operators to become

applicable on the attribute level, as relations may now occur not only at the top-level,

but also nested within tuples. [8887] found that aIl relational operators can be nested

into selections or projections. The valid operands of nested operators include sub

relations at each nesting level as weIl as top-level relations. The expressive power of such

nested relational algebra has been shown in [Bee88]. In contrast to the "nestjunnest"

approach, a nested algebra expression can be directly executed by a query pro cessor ,

without resorting to extra procedures.

There have also been extensions made to languages like 8QL. In general, the approach

is to allow nested 8elect-From-Where blocks in both the projector list and the where

clause. In particular, the where clause can now also refer to sub-relations. Examples of

extended 8QL-style languages are given by [Lar88, PA86, RKB87].

In jRelix, the database programming language that this thesis builds upon, the sup

port for nested relations requires virtually no new concepts beyond the relational model.

Our approach to nested relations is to allow attributes ("domains") to be relations and to

subsume the relational algebra into the domain algebra. Examples arise in 8ections 3.1.3

and 3.4.2 in Chapter 3, and in Chapter 4.

2.2 Abstract Data Types

2.2.1 ADT as a Programming Language Concept

The concept of data abstraction2 [LZ74, Gut77] is one of the two fundamental kinds of

abstraction3 in contemporary programming languages. It is a weapon against complex

ity, a means of making large or complicated programs more manageable. An abstract

2In this thesis, we use data abstraction and abstract data type interchangeably

3The other is procedural abstraction

CHAPTER 2. BACKGROUND AND RELATED WORK 12

data type introduces a new type of data object which is deemed useful in the domain

of the problem being solved. It is formally defined as a data type that satisfies the

following two conditions (as per [Seb96]):

• Encapsulation: The representation of the type and the operations on objects of

the type are contained in a single syntactic unit. AIso, other program units can

create objects of the defined type.

• Information hiding: The representation of objects of the type are hidden from the

program units that use the type, so the only direct operations possible on those

objects are those provided in the type's definition.

Encapsulation provides a method of organizing a pro gram into logical units that

can potentially be compiled separately. In addition, it allows any modifications on the

representations or operations of the type to be done in a single area of the program.

One of the advantages of information hiding is that program units that use the

type cannot "see" the representation details, thus their code cannot depend on that

representation. As a result, the representation can be changed at any time without

affecting the program units making use of the typé. Another important benefit of

information hiding is increased reliability. Program units cannot change the underlying

representation directly, either intentionally or by accident, therefore the integrity of such

objects is protected.

A c1assic example is a stack ADT, which holds an internaI storage for items and a

memory for the current position of the top item. It also exposes an accessor method,

top(), which tells what the top item is, and two modifier methods, pop() and push(), to

make the stack shrink and grow, respectively. Programs using this ADT do not know

or care whether the internaI storage is an array or a linked list. However, they do rely

on the abstract interface of the stack ADT, namely the three methods, to accomplish

their programming tasks.

SIMULA 67 provided the first construct for encapsulating data objects with their

operations - the c1ass. However, the c1ass construct do es not support information

4Such program units may need to recompile, although no code change is involved

CHAPTER 2. BACKGROUND AND RELATED WORK 13

hiding [Seb96]. Today, most programming languages provide full support of ADTs,

although the terminology differs from one language to another. For example, the data

abstraction facility is provided by class in C++ and Java, but package in Ada.

Note that the notion of state came from the object-oriented paradigm, not from

data abstraction. It is defined as the qualifiable condition of an object resulting from

or affecting its behavior or properties [Zam99]. State is hidden together with other

implementation details of an object and is accessible only through particular interface

methods. In this sense, state participates in information hiding. The language Smalltalk

supports objects with a private memory (state) and public behavior acting on that

memory. The jRelix system described in this thesis provides for ADTs with state.

2.2.2 ADT in Databases

The introduction of user-defined abstract data types (ADTs) into the type system of

a relational database was an evolutionary step toward moving databases beyond the

traditional realm of business applications. The concept of ADTs was adapted from the

programming language paradigm to databases in the 1980's in a number of projects.

ADT-INGRES [SRG83, OFS84], developed at UC Berkeley, was one of the pioneers.

It allowed ADTs to be defined for domains, and allowed operations to be defined on

them, including aggregates. To define a new ADT, a user would have to define its

representation and write its methods in an external programming language (e.g.,C).

The new type would then be registered with the database system, making the system

aware of its size and available methods. Among the methods provided would be methods

to input and output instances of the ADT. Once registered, the ADT could be used to

define the type of an attribute of a relation, just like any built-in type. ADT methods

could be used in queries and loaded as needed at run-time.

RAD [OH86], developed over the same period of time as ADT-INGRES, was an

experimental database system which resembled INGRES in its approach to ADTs. Op

erations on new data types included primitive operations (for constant definition, com

parison, inserting and updating values, and displaying a value on the screen), aggregates

CHAPTER 2. BACKGROUND AND RELATED WORK 14

(such as COUNT, SUM, etc.), and transformations (which take a relation as param

eter and return a relation as result). The last type of operation, transformation, had

no equivalent in ADT-INGRES. RAD also allowed variable-Iength string values and

functions that take more than two arguments. However, functions in RAD could only

return values of type BOOLEAN. With RAD, it was not possible to "undefine" data

types or operations, or to define functions on built-in data types, as could be done in

ADT-INGRES.

In the mid-80's, the POSTGRES project started as a follow-on to INGRES, initially

to provide query optimizers with information about the properties of ADTs and their

methods [St086a]. Another goal of POSTGRES was to provide support for storing and

querying complex objects by a "procedure as a data type" approach [St086b]. The idea

of inter-object reference (as used in object-oriented database systems) was rejected.

Precomputation and query re-writing techniques used to avoid excess overheads in a

procedure-centered approach.

Relational databases extended with data abstraction facilities became known as

Object-Relational5 Database Systems (ORDBMS) in the 1990's [St096]. Products are

available from several vendors, including Informix's Universal Server, IBM's DB2 UDB,

Oracle's ORACLE8, to name a few. They all support user-defined data types. Besides,

ready-made ADT-based type extension packages have also become available to handle

data types such as text, spatial data and image. These add-ons come under different

names: "datablades" for Informix, "data extenders" for DB2, and "data cartridges" for

Oracle. There are two characteristics of the current support for ADTs in ORDBMS

[Ses98]:

• Each ADT is built as a module, so that it can be added or removed without

affecting the rest of the system. Modularity and extensibility are essential features

of an ORDBMS.

• Each ADT is like a black box. It reveals only the name and the signature of a

function, often written in C, C++ or SQL.

5 ADTs are also supported by Object-Oriented databases, but they will not be discussed here.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

The foundation of many ORDBMSs is SQL3, now called SQL:1999 [GP99]. This

is a third version of the SQL standard, and intended to he a major enhancement over

the previous version: SQL-92. Ahstract data type in SQL:1999 is termed "structured

user-defined type". The most important properties of such types are:

• They can he defined on one or more attrihutes. Each of these attrihutes can he of

any SQL type, or even another structured user-defined type (nesting).

• Their hehavior may he specified hy functions, methods, and procedures.

• Access to their attrihutes is only provided through system-generated "get" and

"set" methods.

• Comparisons of their values are accomplished through user defined functions.

• Type inheritance is allowed.

Consider the following example of a structured type definition:

CREATE TYPE emp_type

UNDER person_type

AS (EMP_ID INTEGER

SALARY REAL)

INSTANTIABLE

NOT FINAL

INSTANCE METHDD

GIVE_RAISE

(ABS_DR_PCT BDDLEAN,

AMT REAL}

RETURNS REAL

The new type is a suhtype of another structured type used to define a person in general

(inheritance). It adds two additional attrihutes, employee ID and salary (states). This

type is instantiahle (can create multiple instances with their own states) and can have

subtypes defined under it (not final). There is also a method to give an employee a raise

and return the raised salary, which can he applied to instances of type "emp_type".

The implementation code of the method can he written in a different language or SQL

and must he registered with the system. The new ADT "emp_type" can now he used

to define the type of a column in a relation. The instance method may he invoked

in a query like this (assuming emp is of type "emp_type" and name is an attrihute of

"person_type"):

CHAPTER 2. BACKGROUND AND RELATED WORK

SELECT emp.EMP_ID, emp.GIVE_RAISE(true,3000)

FROM tblEmployee

WHERE emp.name LIKE 'John'

16

The query will acually raise the salary for employees whose name contains "John" by

3000 dollars and return a relation that contains these employees' IDs and updated

salaries.

Almost all the systems mentioned above require a second language to implement

the methods of an ADT. This is cumbersome and may exacerbate impedance mismatch

[AR90]. JRelix takes a different approach by implementing ADTs as computations with

state and their methods as nested-level computations, all in one language. Further

more, the methds are made first class by being returned by the enclosing ADT, which,

according to Atkinson and Morrison [AM84], is enough for supporting data abstraction.

2.3 ALDAT, Relix and jRelix

Aldat, standing for ALgebraic appraach ta DATa, is the name of a project at McGill Uni

versity by T. R. Merrett. The Aldat project ai ms at unifying the fundamental concepts

of database systems and general purpose programming languages. Over the years, work

in this project has established generalizations to the relational algebra and created the

domain algebra. Several versions of an experimental database programming language

have been produced incorporating most of the concurrent research and development in

databases since the 1970's. The work described in this thesis is based on an existing

Aldat implementation, jRelix.

2.3.1 A Little History of Relix and jRelix

Relix

Relix, a Relational database programming language in Unix, was developed by the

Aldat laboratory, starting in 1986 [Lal86]. The data manipulation language of Relix

CHAPTER 2. BACKGROUND AND RELATED WORK 17

is Aldat, proposed by Merrett [Mer77]. Relix was intended to provide an interactive

environment for exploring the concepts of the relational database model as described in

[Mer84].

Relix is an interpreted language written in C. It supports relational algebra oper

ations incuding selection, projection, j.L-joins and a-joins. j.L-joins are derived from set

operations such as intersection, union and difference. They are natural join, union join,

symmetric difference join, left join, right join, left difference join and right difference

join. a-joins generalize set comparison operators. They include division (superset),

proper superset, equal set, proper subset, subset, intersection, and the negation of these

operators (e.g. the negation of intersection is not overlap).

The domain algebra proposed by Merrett [Mer76] is also implemented in Relix. It

consists of two sets of operations to manipulate attributes: horizontal and vertical. Hor

izontal operations are mainly used for mathematics, while vertical operations provide

functionalities for grouping and ordering. Horizontal operations generate new attribute

values based on the other attributes in a tuple. Expressions used in a horizontal opera

tion are built from mathematic expresions, predefined functions, conditional expressions,

constants and attribute names.

Vertical domain operations include reduction, equivalence reduction, functional map

ping and partial functional mapping. Reduction pro duces a single value from the values

of an attribute across all tuples of a relation. Equivalence reduction applies reduction

within groups; each group consists of tuples that have the same value for a designated

set of attributes. Functional mapping pro cesses tuples of a relation in an order deter

mined by sorne control attributes. The last type of vertical operation, partial functional

mapping, performs functional mapping within groups.

In addition to the extended relational algebra and the domain algebra, Relix pro

vides facilities for updates (insertion, deletion and modification of tuples), relation and

domain declarations, and assignments. Control structures for looping and recursion

are also implemented. A number of commands are provided for the user to examine

and manipulate relations and domains, and even to run unix shell commands. Other

CHAPTER 2. BACKGROUND AND RELATED WORK 18

language features of Relix include procedural abstraction in the form of functions and

procedures, and one-level of nesting in relations [He97].

JRelix

Implemented in Java, jRelix is a second incarnation of Aldat. It inherits most of the

functionalities from its predecessor Relix. The core concepts of relational algebra and

domain algebra remain the same, but many new constructs have been added since 1997.

Among other things, jRelix supports nested relations with arbitrary but definite depth

by introducing new syntax, adopting a surrogate-based implementation, and subsum

ing the relational algebra into the domain algebra [Hao98, Yua98]. Computations have

been re-designed and implemented as a means of procedural abstraction [Bak98]. They

replace functions and procedures in Relix. More recent additions include updates for

nested relations, active databases [SunOO], and attribute metadata with application to

data mining [Roz02]. The following have been re-implemented for nested relations:

functional mapping and partial functional mapping [KanOl], sigma-joins [Cha02], and

QT-expressions [Zha02]. Besides the data abstraction facilities presented in this the

sis, work is currently underway to incorporate high-precision numerical data type and

networking capabilities into jRelix.

It may already have been noticed that many of the past and current issues in database

research have been addressed in Relix and jRelix. According to our systematics for

categorizing extensions to the relational model, Relix and jRelix :

• extend the base type system by introducing the domain algebra and data abstrac

tion. It is worth noting that even without special types for things such as spatial

and text data, Aldat is powerful enough to handle applications like GIS systems

[Mar98] and text processors [And99] .

• provide full support for nested relations by subsuming the relational algebra into

the domain algebra and special implementation. This, coupled with support for

abstract data type, ensures the capability of handling complex objects.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

• achieve more than query languages by connecting relations to programming lan

guage constructs, such as typing (induding type check and metadata), iterative

abstraction (loops), parametric abstraction (computations and ADTs), event pro

gramming (active data bases) , and· process communication (networ ked databases),

to name a few.

2.3.2 Programming Concepts in Computations

We conclude this chapter with a discussion of the programming concepts adapted in our

design and implementation of computations.

The computation is intended as a procedural abstraction facility in jRelix. We regard

a computation as a "symmetric predicate" , generalized from functions. With a compu

tation, various subsets of its parameters can be used as inputs, and their complements

as outputs. For example, to calculate the sum of two numbers, a Java function could

be defined as:

int Sum (int a, int b)
{ return a + b;}

Correspondingly, we could define a jRelix computation, as follows:

camp Sum (a, b, c) is
{ c (- a + b;}
alt
{ a (- c - b;}
alt
{ b (- c - a;};

The apparently redundant code of the computation actually achieves what it would

take three Java functions to do6 :

• Sum[I,2J gives 1 + 2,

• Sum[, 1, 2J gives 2 - 1, and

• Sum[2, , IJ gives 1 - 2

6We use computation name followed by parameters in square brackets as an invocation syntax in

jRelix

CHAPTER 2. BACKGROUND AND RELATED WORK 20

It is therefore obvious that our computation is more flexible than functions in general

programming languages.

A second programming concept involved in computations is the referencing envz

ronment. A referencing environment, or environment for short, of a statement, is a

collection of bindings for the names that are visible in the statement. When a com

putation is invoked, a local environment is created to hold the bindings for the actual

parameters and local variables defined in the computation. It is discarded when the

computation exits. The statements in the computation may also reference variables

defined outside. JRelix assumes that all such non-local variables are to be found in the

environment in which the computation is declared. This is similar to the binding rules

used by Pascal and Scheme.

The last programming concept we discuss here is parameter passing. In general,

there are three parameter passing methods: pass-by-value, pass-by-reference, and pass

by-name. When a parameter is passed by value, its actual value is used to initialize

the corresponding formaI parameter, which then acts as a local variable in the called

subprogram. As jRelix allows relation valued parameters, and relations can get arbi

trarily large, pass-by-value is out of the question. The second method uses the address

of the actual parameter to initialize the formaI parameter. It is not chosen by jRe

lix either, due to the possibility of unintentional alteration of the actual parameter.

JRelix uses pass-by-name, which was first introduced by Algol 60 [Seb96]. With this

method, the actual parameter is, in effect, textually substituted for the corresponding

formaI parameter in all its occurrences in the subprogram. The main advantage of this

method is flexibility, particularly in the context of computation invocation. Consider

the Sum Ca, b, c) computation given earlier in this sub-section. If we invoke it using

Sum[X, Y], the computation turns into:

camp Sum (X, Y, c) is
{ c <- X + Y;}
alt
{ X <- c - Y;}
alt
{ y <- c - X;};

With a little modification to the current implementation, we can also pass compu-

CHAPTER 2. BACKGROUND AND RELATED WORK 21

tations arbitrary expressions without having to evaluate them at parameter binding

time.

Chapter 3

Overview of jRelix

The purpose of this chapter is to introduce jRelix syntax and features so that the rest

of the thesis is made intelligible to the reader. Section 3.1 describes how to start the

jRelix system running and declare and initialize relations and domains. A number of

frequently used commands are also introduced. Next we show the assignment operation.

Section 3.3 discusses relational expressions. Domain algebra is the topic of Secion 3.4.

Section 3.5 briefly describes updates. Finally we introduce computations in Section 3.6.

In an attempt to make this and subsequent chapters easy reading, we adhere to the

following conventions:

• Lanuage Syntax is written in typewriter font and expressed in Backus-Naur

form as explained in Appendix A .

• Code Samples are given in small typellriter font within boxes.

3.1 Getting Started

3.1.1 Starting the Engine

JRelix runs on any platform that has the Java Runtime Environment version 1.1 or up.

A typical installation involves compiling the source files into java class files, creating a

java archive file (extension .jar) from the class files, and adding the archive file to the

22

CHAPTER 3. OVERVIEW OF JRELIX 23

Java environment variable CLASSPATH. Supposing the typical installation procedure

is followed, type the following to start the jRelix interpreter

java JRelix

If the environment variable CLASSPATH is not set, one needs to use the following

command instead

java -classpath [classpathJ JRelix

where classpath points to the directory where the class files or jar file are located.

Upon a successful start-up, a greeting screen appears and jRelix is ready to accept

commands at the prompt '>'.

3.1.2 Commonly Used Commands

The following is a summary of the most frequently used commands in jRelix. Ap

pendix A contains a complete listing of aIl commands.

quit Quit the interpreter. Information on the database is saved upon exit.

pr EXPR Display the result of a relational expression evaluation.

sd (ID)? Show a description of the attribute ID. If ID is omitted, aIl attributes are

shown.

sr (ID)? Show a description of the relation ID. Show aIl relations ifID is omitted.

dd IDList Delete attribut es specified in IDList.

dr IDList Delete relations, views or computations specified in IDList.

debug Toggle the debug mode. Used to display the syntax tree of each statement or

the hidden states of a relation.

3.1.3 Domain and Relation Declaration

Domain Declaration

Domains in jRelix are declared with the keyword "domain", as follows:

IIdomain ll IDList Type Il. Il ,

CHAPTER 3. OVERVIEW OF JRELIX 24

where IDList contains a list of domains being declared, and Type denotes the type

of these domains. Table 3.1 summarizes the valid domain types in the current jRelix

system. They come in two categories: atomic and complex. The atomic types are

primitive types such as double, integer, string, etc. Nested relations (IDList) and

computations are examples of complex types. Types attribute and uni versaI are

added to implement attribute meta-data [Roz02] which is out of the scope of this thesis.

Type Alias Category Corresponding Java Type

boolean bool atomic true, false

short atomic signed short int, 2 bytes
integer intg atomic signed int, 4 bytes

long atomic signed long, 8 bytes
float real atomic signed float, 4 bytes

double atomic signed double, 8 bytes

string strg atomic String
attribute attr atomic String
univers al univ atomic String

" (" ID List") " complex
computation "(" IDList") " comp complex

Table 3.1: Domain Types in jRelix

Information (name, type, etc.) about a domain can be shown with the sd commando

A domain may be deleted using the dd command followed by its name. However, any

existing relation is defined on this domain, the deletion will fail with a warning.

Relation Declaration and Initialization

The following syntax is used to de clare and initialize a relation:

"relation" IDList "("IDList")" (Initialization)? Il .11 ,

The first IDList specifies a list of relations being declared. The second contains the

domains on which these relations are defined. Initialization, wh en present, consists

of a number of comma delimited, parenthesized tuples enclosed in a pair of curly braces.

Three commands commonly used with relations are: sr, pr, and dr. See Section 3.1.2

for details.

CHAPTER 3. OVERVIEW OF JRELIX 25

Examples

Example 1. Various do main declarations

Figure 3.1 shows the dec1aration of four domains. The first is an integer, and the second

a nested relation defined on the first. The third is another non-primitive typed domain,

which contains a nested relation as its own domain. Finally we give a computation

typed domain whose parameter is of primitive type.

>domain a intg;
>domain A(a);
>domain B(a, A);
>domain C comp(a);

Figure 3.1: Example: Declaration of Domains

Example 2. Relation declarations

In the example presented in Figure 3.2, a nested relation Company is defined on two

domains, dept and employee. Domain dept is of primitive type string, while employee

is a relation itself, defined on name and salo The relation is shown in Table 3.2.

>domain name, dept strg;
>domain saI float;
>domain employee(name, saI);
>relation Company(dept, employee) <-

{("Sales", {("John Manley", 50000),
("Allen Smith", 45000)}),

("HR" , {("Jay Ashman", 44000),
("Tim Gordon", 33000)}),

("R&D", {("Albert Einstein", 80000)})};

Figure 3.2: Example: Declaration and Initialization of Relations

dept employee

(name saI)

Sales John Manley 50000
Allen Smith 45000

HR Jay Ashman 44000

Tim Gordon 33000

R&D Albert Einstein 80000

Table 3.2: The Company Relation

CHAPTER 3. OVERVIEW OF JRELIX 26

N ote if we issue the command

pr Company;

The relation will be displayed as in Figure 3.3. This is because for a nested relation,

surrogates are used to replace the actual values of relation typed domains. The actual

relation for such a domain is stored in a separate relation whose name is the name of

the domain prefixed with a dot ('. '). An informaI name for this associated relation is

"dot relation". The dot relation is defined on an the attribut es that the relation typed

domain is defined on, plus an additional domain, ".id". The values of ".id" link to the

surrogates in the parent relation.

>pr Company;
+----------------------+----------------------+
1 dept 1 employee

+----------------------+----------------------+
1 HR
1 R&D
1 Sales

1 2
1 3
1 1

+----------------------+----------------------+
relation Company has 3 tuples
>pr .employee;
+-------+----------------------+---------------+
1 .id 1 name 1 saI
+-------+----------------------+---------------+
1 1 Allen Smith 45000.0
1 1 John Manley 50000.0
1 2 1 Jay Ashman 1 44000.0
1 2 1 Tim Gordon 1 33000.0
1 3 1 Albert Einstein 1 80000.0
+-------+----------------------+---------------+
relation .employee has 5 tuples

Figure 3.3: Representation of Nested Relations

3.2 Assignments

jRelix provides two assignment operators, one is assignment «-) and the other is in

cremental assignment (<+). The assignment operator creates a relation with the name

specified to the left of the operator and with the same domains as the source relation.

The data of the source relation is copied to the destination relation. If a relation with

the same name as the destination relation already exists, it is first removed. The incre

mental assignment operator behaves in exactly the same way if there do es not already

CHAPTER 3. OVERVIEW OF JRELIX 27

exist a relation with the name of the left operand. If such a relation exists, the destina

tion relation becomes the union of the source and the destination relations provided that

both relations are defined on the same set of domains. In any case, the relation on the

right-hand side of the operator is not affected. The syntax for the assignment operators

is shown below. The second form is used to rename attributes in ExpressionList to

the ones specified in IDList. Examples of use are provided in Figure 3.4.

Identifier (11<_11 111<+11) Expression
1

Identifier Il [II IDList (1'<_11 111<+11) ExpressionList

3.3

>domain Title strg;
>domain Priee, Cost float;
>relation myBook(Title,Price) (-
{("Java 2",68), ("XML Black Book", 60)};

>yourBook [Title,Cost (- Title,Priee] myBook;
>pr yourBook;
+----------------+---------------+
1 Title 1 Cost
+----------------+---------------+
1 Java 2 1 68.0
1 XML Black Book 1 60.0
+----------------+---------------+
relation yourBook has 2 tuples
>relation newBooks(Title, Cost) (-
{("SQL in 21 Days", 25)};

>yourBook (+ newBooks;
>pr yourBook;
+----------------+---------------+
1 Title 1 Cost
+----------------+---------------+

Java 2 68.0
1 SQL in 21 Days 1 25.0
1 XML Black Book 1 60.0
+----------------+---------------+
relation yourBook has 3 tuples

Figure 3.4: Example: Assignments

Relational Algebra

Il. Il ,

Il] Il Expression Il. Il ,

The relational algebra consists of a set of functional operators which act on either one

or two relations and pro duce a relation in result. This closure property of relational

algebra allows complex expressions to be constructed by chaining relational operators.

CHAPTER 3. OVERVIEW OF JRELIX 28

3.3.1 Unary Operators

jRelix supports six unary operators. These are projection, selection, T-selection, QT

selection, pick, and AttribsOf. In aU cases, the source relation is not affected by the

operator.

Projection

Projection extracts a subset of the source relation consisting of the domains named in

IDList. Duplicates are removed. If IDList is omitted" the result relation contains just

one tuple with a boolean domain ". bool". The value of the tuple is true if and only if

the source relation has at least one tuple. The result of evaluating Expression provides

the source relation. The syntax for projection is:

11[11 (IDList)? Il]11 lIin ll Expression

Example 1. Retrieve the Titles of relation yourBook (see Figure 3.5).

>yourTitles <- [Title] in yourBook;
>pr yourTitles;
+----------------------+
1 Title
+----------------------+
1 Java 2
1 SQL in 21 Days
1 XML Black Book
+----------------------+
relation yourTitles has 3 tuples

Figure 3.5: Projection: Example 1

Example 2. Check whether relation yourBook is empty (see Figure 3.6).

>pr ([] in yourBook);
+--------+
1 .bool 1

+--------+
1 true
+--------+
expression has 1 tuple

Figure 3.6: Projection: Example 2

CHAPTER 3. OVERVIEW OF JRELIX 29

Selection

Selection returns a subset of the source relation which satisfy the conditions specified in

SelectClause. As with projection, the source relation may be the result of evaluating

any arbitrary relational Expression.

"where" SelectClause "in" Expression

Example 1. Retrieve the tuples of relation yourBook in which the Cast is higher than

50 dollars (see Figure 3.7).

T-Selection

>expensiveBook (- where Cost > 50.0 in yourBook;
>pr expensiveBook;
+----------------------+---------------+
1 Title 1 Cost
+----------------------+---------------+
1 Java 2
1 XML Black Book

1 68.0
1 60.0

+----------------------+---------------+
relation expensiveBook has 2 tuples

Figure 3.7: Selection: Example 1

Projection and selection can be combined into one expression called T -selection. The

syntax is:

"[" (IDList)? "]" "where" SelectClause "in" Expression

Example 1. Retrieve the Titles in relation yourBook for which the Cast is higher than

50 dollars (see Figure 3.8).

>costlyTitles (- [Title] where Co st > 50.0 in yourBook;
>pr costlyTitles;

+----------------------+
1 Title
+----------------------+
1 Java 2
1 XML Black Book
+----------------------+
relation costlyTitles has 2 tuples

Figure 3.8: T-Selection: Example 1

CHAPTER 3. OVERVIEW OF JRELIX 30

The array syntax is the syntactic sugar for a special case of the T -selection - when

the select clause consists of a conjunction of comparisons for equality and the projector

list contains all domains not mentioned in the select clause. The syntax is:

Identifier 11[11 (Identifier)? (, (Identifier)?)* Il]11

For example, the following three statements are equivalent.

costlyTitles <- [Cost] where Title = IIJava 2 11 in yourBook;

costlyTitles <- yourBook[IIJava 211];

costlyTitles <- yourBook[IIJava 211 ,];

Normally there need to be n - 1 commas in the square brackets after the relation

name, if the relation has n domains. The first comma cornes after the value of the first

attribute, the second comma after the second attribute, and so forth. If the attribute

to appear in the projector list happens to be the last in the source relation, the comma

before it can be omitted.

The array syntax proves to be useful in the implementation of abstract data types.

QT -Selection

QT -Selectors are extensions to T -Selectors by ad ding quantifiers such as QT -Count

(#), QT -Proportion (.), and QT -Percent age (%). These remove from T -selection the

restriction that the select clause must evaluate to true or false on each tuple of the

relation. The syntax for QT-selection is:

(II [II (ExprList)?II] Il)? II quant ll QTList (1'where ll Condition)? lIin ll

Expression

where ExprList is a list of domains on which to define the result relation. If nothing

precedes quant, the QT-Selection results in a relation defined on all the domains of the

source relation. QTList is a list of conditions which the resulting tuples must satisfy.

The interested reader can find examples of QT-Selection in [Zha02].

CHAPTER 3. OVERVIEW OF JRELIX 31

Pick

The pick operator randomly selects a tuple from a source relation and assigns its value

to the destination relation. The destination relation is thus guaranteed to be singleton.

The syntax of piek operation is:

"pick" Expression

where Expression evaluates to the source relation.

Example 1. (see Figure 3.9).

AttribsOf

>RandomR <- pick SUPPLY;
>pr RandomR;
+--------+---------+-------+-------+
1 ITEM 1 CaMP 1 DEPT 1 VOL
+--------+---------+-------+-------+
1 String 1 Playsew 1 Toy 1 10
+--------+---------+-------+-------+
relation RandomR has 1 tuple

Figure 3.9: Pick: Example 1

This operator creates a relation of aIl the domains of the operand. The syntax of the

AttribsOf operation is as follows:

IAttribsOf" Expression

where Expression evaluates to a relation. The output relation is defined on a single

domain of type attribute and its values are the names of aIl the domains of the source

relation. Details of this operation can be found in [Roz02].

3.3.2 Binary Operators

jRelix supports 19 binary relational operators. They come in two categories: p,-joins and

a-joins. p,-joins are set operations generalized for relations, and a-joins are generalization

of logical operations [Mer84]. These operators satisfy the alge braie closure property. The

syntax for the join operations are as follows:

CHAPTER 3. OVERVIEW OF JRELIX 32

Expression JoinOperator Expression
1

Expression Il [IExprList": Il JoinOperator" : Il ExprList "] Il Expression

In the first production, the two operands join on their cornrnon dornains. When there

is no cornrnon dornain, the second production can be used to explicitly narne the join

dornains; the dornains in the first ExprList match those in the second on a by position

basis. JoinOperator rnay be any one of the 19 operators discussed shortly.

p,-joins

This category of join operators extend the rnathernatical set operations including union,

intersection and difference. With the exception of the difference joins, the result of their

application is a relation which has as its dornains the union of the dornains frorn the

two input relations. p,-joins are surnrnarized in Table 3.3.

The p,-joins can be defined in terrns of three parts: the left wing, the center wing,

and the right wing. The definitions of the three wings are:

• For relations R(X, Y) and S(Y, Z) sharing a cornrnon attribute set, Y

center {(x, y, z)l(x, y) E R /\ (y, z) E S}

left {(x, y, DG) I(x, y) E R /\ \lz, (y, z) rt S}

right {(DG, y, z)l(y, z) ES /\ \Ix, (x, y) rt R}

• For relations R(W, X) and S(Y, Z) sharing no cornrnon attribute set

center {(w,x,y,z)l(w,x) E R/\ (y,z) E S /\x = y}

left {(w, x, y, DG)I(w, x) E R /\ x = Y /\ \lz, (y, z) rt S}

right {(DG, x, y, z) I(y, z) E S /\ x = Y /\ \Ix, (x, y) rt R}

Note here the symbol DG stands for one of the null values in jRelix. The other is DK.

Details of the null values can be found in [Mer84].

The following exarnples of p,-joins are based on the two relations shown in Figure 3.10.

Example 1. Find the items each agent is responsible for and the location of the

agent (see Figure 3.11).

CHAPTER 3. OVERVIEW OF JRELIX

/-L-join Operator Description

natural join ijoin or natjoin center

union join ujoin left U center U right

left join ljoin left U center

right join rjoin center U right

left difference join djoin or dljoin left

right difference join drjoin right

symmetric difference join sjoin le ft U right

Table 3.3: Summary of tL-joins

>pr Responsibility;
+----------------------+----------------------+
1 Agent 1 Item
+----------------------+----------------------+

Hung
Raman
Raman
Smith

Micro
Micro
Terminal
VeR

+----------------------+----------------------+
relation Responsibility has 4 tuples
>pr Location;
+----------------------+-------------+
1 Item 1 Floor
+----------------------+-------------+

Micro
Terminal
Terminal
Videodisk

1
1
2
2

+----------------------+-------------+
relation Location has 4 tuples

Figure 3.10: Relations Used in tL-join Examples

>AgentInfo (- Responsibility ijoin Location;
>pr AgentInfo;
+----------------------+----------------------+-------------+
1 Item 1 Agent 1 Floor
+----------------------+----------------------+-------------+

Micro Hung 1 1
Micro Raman 1 1
Terminal Raman 1 1
Terminal Raman 1 2

+----------------------+----------------------+-------------+
relation AgentInfo has 4 tuples

Figure 3.11: tL-join: Example 1

33

Set Operator

n
U

-

+

CHAPTER 3. OVERVIEW OF JRELIX

Example 2. Find all items that don't have an agent (see Figure 3.12).

a-joins

>NoAgent <- Responsibility drjoin Location;
>pr NoAgent;
+----------------------+-------------+
1 Item 1 Floor
+----------------------+-------------+
1 Videodisk 1 2
+----------------------+-------------+
relation NoAgent has 1 tuple

Figure 3.12: ft-join: Example 2

34

The a-joins extend the truth-valued comparison operations on sets to relations by ap

plying them to each set of values of the join domain for each of the other values in the

two operand relations. The result of their application is a relation whose domains are

the symmetric difference of the two sets of domains of the operands. The JoinOperator

in the production shown earlier can also be any of the sigma-joins given in Table 3.41 .

sigma-join Operator Description Set Operator

natural composition icomp or natcomp overlap fjY,

equal join eqjoin equal --

greater than or equal join gejoin or sup or div superset :J -

greater than join gtjoin proper superset :J

less than or equal join lejoin or sub subset C -
less than join ltjoin proper subset C

empty intersection join iejoin or sep not overlap 61

Table 3.4: Summary of a-joins

We can define the a-joins using the following notation. In relations R(W, X) and

IThe table lists only 7 of the 12 a-joins. The five that are not shawn correspond ta the logical

negation of the entries except icomp and sep. They can be formed by prefixing a "!" or "not" to the

operators of their negation. For example, "! eqj oin" or "not eqj oin" is the negation of "eqj oin".

sep is the negation of icomp. The tuples from one operator complement those of its negation.

CHAPTER 3. OVERVIEW OF JRELIX 35

S(Y, Z), Rw is the set of values of X associated by R with a given value, w of W, and

Sz is the set of values of Y associated by S with a given value, z of Z. If W and X are

disjoint sets of the attributes of R, and Y and Z are disjoint sets of the attributes of

S, the following definitions hold. (X and Y must be at least compatible attribute sets,

but they may be the same set of attributes.)

• R icomp S - {(w, z)IRw n Sz =1- 0}

• R sep S {(w, z)IRw n Sz = 0}

• R sup S {(w, z)IRw ;2 Sz}

• R gtjoin S - {(w, z)IRw => Sz}

• R lejoin S {(w, z)IRw ç Sz}

• R ltjoin S {(w, z)IRw c Sz}

• R eqjoin S {(w, z)IRw = Sz}

The negations of these are defined accordingly.

The following examples use the relations defined in Figure 3.10 in the previous sub-

section.

Example 1. Find the agents for all items on a floor (see Figure 3.13).

Nop

>VersatileAgents (- Responsibility sup Location;
>pr VersatileAgents;
+----------------------+-------------+
1 Agent 1 Floor
+----------------------+-------------+
1 Raman 1 1

+----------------------+-------------+
relation VersatileAgents has 1 tuple

Figure 3.13: a-join: Example 1

When applied to two operand relations, the nop operation assigns one of them to the

result relation provided the two are defined on the same set of attributes. For example,

in the following example

Ri <- A nop B;

CHAPTER 3. OVERVIEW OF JRELIX 36

Relation Ri has a 50% chance of being a copy of A and a 50% chance of being a copy of

B. Consider the next example

R2 <- A nop B nop C;

This time, R2 still has a 50% chance to be a copy of C. But its odds of becoming A or B

are just 25% each. That is, the nop operator is left associative.

In Section 3.4.2, we will see how the nop operator can be used in combination with

reduction to implement level lifting of a special kind of nested relation.

3.4 Domain Aigebra

The do main algebra [Mer77, Mer84] is an algebra on attributes and it fills the gap in the

relational algebra with its ability to do, among other things, arithmetic. The two main

components to the domain algebra are: scalar operations and aggregate operations. In

view of the table representation of a relation, these can be thought of as "horizontal"

and "vertical", respectively. Horizontal domain operations work within the tuples and

vertical operations work across the tuples. A taxonomy of the domain algebra was given

in Section 2.1.1.

The domain algebra is used by associating an expression with a virtual domain at

the declaration time of the latter. This expression can be anything from a constant

value to a relational expression that instructs the system on how to build the value of

the virtual domain when needed. The domain expression can be defined in terms of

the actual domains or other virtual domains. Recursive definition is not permitted. A

virtual domain may appear anywhere an actual domain is expected. It is actualized

only when referred to through the relational algebra. The syntax for virtual domain

declaration is:

IIlet ll Identifier IIbe ll Expression Il;11

The following sub-sections briefly discuss the two types of operations with examples.

An in-depth coverage of this topic can be found in [Yua98].

CHAPTER 3. OVERVIEW OF JRELIX 37

3.4.1 Horizontal Operations

A virtual domain can be defined as a constant or as an alias of another domain, as

shown in Example 1.

Example 1. Constant and renaming (see Figure 3.14).

>Iet ONE he 1;
>Iet FALSE he faIse;
>Iet UNE he ONE;

Figure 3.14: Constant Virtual Domain and Renaming

The most frequently used unary operators in the domain algebra are "-" for nu

mericals, "not" for truth values, and the unary relational operators for domains of type

IDList. See Example 2 below.

Example 2. Unary operations (see Figure 3.15).

>Iet AGE he -Age;
>Iet TRUE he not FALSE;

Figure 3.15: Virtual Domain with Unary Operation

Examples 3 shows the declaration of virtual domains defined on binary operations.

For domains of atomic types (see Table 3.1), binary operators normally include binary

arithmetic operators and logical operators. For those of complex types, this usually

means the relation al operators such as ij oin, uj oin, etc.

Example 3. Binary operations (see Figure 3.16).

>Iet TotalCost he UnitCost * Quantity;
>let AIIEmpIoyee he Staff ujoin Professor;

Figure 3.16: Virtual Domain with Binary Operation

Declaring a virtual domain based on conditions is also possible. Example 4 gives a

definition of absolute value by means of the domain algebra. However, jRelix has its

own built-in function to handle this. This is shown in Example 5.

Example 4. Conditional expression (see Figure 3.17).

Example 5. Built-in functions (see Figure 3.18).

CHAPTER 3. OVERVIEW OF JRELIX 38

I>let ABSX be if X >= 0 then X else -X;

Figure 3.17: Virtual Domain with a Condition al Expression

1 >let ABSX be abs(X); 1

Figure 3.18: Virtual Domain with Built-in Functions

3.4.2 Vertical Operations

The vertical operations work across tuples, which permits, for example, summing aIl

the values of a domain. The two main classes of vertical operations are reduction and

functional mapping. What distinguishes the two main classes is order. Within each

class, there are two subclasses: one with a grouping facility and the other without. Thus

a total of four vertical operations are available in jRelix. The examples given next are

aIl based on the relation given in Figure 3.19, except when noted otherwise.

>domain Dept, Name, Gender strg;
>domain Salary float;
>relation Company(Dept,Name,Gender,Salary) (-
{("Accounting","J. White" ,"F" ,45000) ,

("Accounting" , "M. Scholl" , "M" ,45500) ,
("Accounting","K. Holmes", "M",39000) ,
("Sales","J. Cioffy" , "M" ,60000) ,
("Sales","E. Malon" , "F" ,50000) ,
("HR","D. Johns" ,"F" ,48000) ,
("HR", "N. Lovejoy", "F" ,50000)};

>pr Company;
+-------------+--------------+---------+----------+
1 Dept 1 Name 1 Gender 1 Salary
+-------------+--------------+---------+----------+

Accounting J. White 1 F 45000.0
Accounting K. Holmes 1 M 39000.0
Accounting M. Scholl 1 M 45500.0
HR D. Johns 1 F 48000.0
HR N. Lovejoy 1 F 50000.0
Sales E. Malon 1 F 50000.0
Sales J. Cioffy 1 M 60000.0

+-------------+--------------+---------+----------+
relation Company has 7 tuples

Figure 3.19: Relation Company Used in the Examples for Vertical Operations

Reduction

The following statement creates a sum of aIl salaries by using the reduction operation:

let TotSalary be red + of Salary;

CHAPTER 3. OVERVIEW OF JRELIX 39

If we replace the "+" with "min", we get the minimum salary. An aggregate virtual

domain (such as TotSalary) obtained by reduction is a constant in that it will have the

same value for aIl tuples of the relation in which it is actualized. Consider the example

in Figure 3.20. Note that we can combine two aggregate virtual attributes by means of

a horizontal operator, division. Indeed, complex domain expressions can be built due

to the fact that domains are c10sed under the domain algebra.

Example 1. Reduction operation (see Figure 3.20).

>let TotSalary be red + of Salary;
>let TotHeadCnt be red + of 1;
>let AvgSalary be TotSalary 1 TotHeadCnt;
>CompSalaryStats <- [TotSalary,TotHeadCnt,AvgSalary] in Company;
>pr CompSalaryStats;
+---------------+-------------+---------------+
1 TotSalary 1 TotHeadCnt 1 AvgSalary
+---------------+-------------+---------------+
1 337500.0 1 7 1 48214.285
+---------------+-------------+---------------+
relation CompSalaryStats has 1 tuple

Figure 3.20: Example: Reduction Operation

There are ten built-in operators that may follow the red keyword in a reduction

or partial reduction operation: +, *, min, max, and, or, nop, ijoin, ujoin, sjoin.

The first six are for primitive typed domains. The last three are for relation typed

domains. The operator nop works with both types. To qualify in reduction operations,

an operator must be associative and commutative. This requirement stems from the

orderlessness of tuples in a relation.

A new mechanism has been introduced to allow user-defined computations to be

used in vertical operations. One sim ply needs to place a computation call after the red

keyword. Details on this feature will be given in Chapter 4.

Reduction and Level Lifting

If we define a relation typed domain Employee and inc1ude Name,Gender and Salary as

its attributes, the Company relation becomes the nested relation, NewCompany, as shown

in Figure 3.21. Notice now there are only three tuples, with one tuple each for the three

departments. The staff in each department is represented by an Employee sub-relation.

CHAPTER 3. OVERVIEW OF JRELIX

+-------------+-----------------------------------+
Employee 1 Dept

1 1--------------+---------+----------1
1 1 Name 1 Gender 1 Salary 1
+-------------+--------------+---------+----------+
1 Accounting 1 J. White
1 1 K. Holmes
1 1 M. Scholl

1 F
1 M
1 M

1 45000.0 1
1 39000.0 1

1 45500.0 1

+-------------+--------------+---------+----------+
1 HR 1 D. Johns 1 F 1 48000.0 1
liN. Lovejoy 1 F 1 50000.0 1
+-------------+--------------+---------+----------+
1 Sales
1

1 E. Malon
1 J. Cioffy

1 F

1 M
1 50000.0 1

1 60000.0 1

+-------------+--------------+---------+----------+

Figure 3.21: Relation NewCompany

40

To find out about all the employees in the company, we could use the code in Fig

ure 3.22. However, sinee allEmployees is itself a relation nested inside the result, we

have to refer to the associated dot relation for final answers. This inconvenience can be

eliminated by means of "levellifting".

>let allEmployees be red ujoin of Employee;
>Result <- [allEmployeesJ in NewCompany;
>pr Result;
+----------------------+
1 allEmployees
+----------------------+
1 12
+----------------------+
relation Result has 1 tuple
>pr .allEmployees;
+-----+----------------------+----------------------+---------------+
1 .id 1 Name 1 Gender 1 Salary
+-----+----------------------+----------------------+---------------+

12 D. Johns 1 F 48000.0
12 E. Malon 1 F 50000.0
12 J. Cioffy 1 M 60000.0
12 J. White 1 F 45000.0
12 K. Holmes 1 M 39000.0
12 M. Scholl 1 M 45500.0
12 N. Lovejoy 1 F 50000.0

+-----+----------------------+----------------------+---------------+
relation .allEmployees has 7 tuples

Figure 3.22: AH Employees: Version 1

Level lifting is a jRelix technique to bring subrelationsjattribute values one level

up the nesting hierarchy via anonymity. As illustrated in Figure 3.23, a red uj oin

expression replaces the allEmployees virtual domain in the previous example. Because

no name has been given to the attribute of the result relation, the attributes of Employee

are used directly, thus achieving level lifting. It is important to note that level lifting

CHAPTER 3. OVERVIEW OF JRELIX 41

only applies to a subrelationjattribute that has the same value for aIl tuples (singleton

condition). In the example, allEmployees satisfies the singleton condition due to the

use of a reduction operation. In general, reduction combined with anonymity provides

a useful implementation of level lifting in certain nested relations. We have seen the

use of "red ujoin" to lift the level of a relation typed domain. Similarly "red max" or

"red min" can be used for level lifting on a numeric domain. A more general technique

that applies to any type of domain is through the combination of reduction and the nop

operator. This technique is especiaIly useful when the intention is to lift the level of

one particular instance of a subrelation or one particular value of an attribute, with the

instance or value picked indeterministicaIly. When a relation contains only one tuple,

"red nop" has the same effect as other level lifting means. Chapter 4 contains many

examples of levellifting using "red nop".

>Result <- [red ujoin of Employee] in NewCompany;
>pr Result;
+----------------------+----------------------+---------------+
1 Name 1 Gender 1 Salary
+----------------------+----------------------+---------------+
1 D. Johns 1 F 48000.0
1 E. Malon 1 F 50000.0
1 J. Cioffy 1 M 60000.0
1 J. White 1 F 45000.0
1 K. Holmes 1 M 39000.0
1 M. Scholl 1 M 45500.0
1 N. Lovejoy 1 F 50000.0
+----------------------+----------------------+---------------+
relation Result has 7 tuples

Figure 3.23: All Employees: Version 2

Equivalence Reduction

Equi valence reduction allows reduction to be applied to groups of tuples within a

relation. These groups are equivalent based on having the same value for a specified set

of domains. For example, we can continue from the previous example and ask for the

average salary in each department.

Example 2. Equivalence reduction operation (see Figure 3.24).

The ten operators for reduction also apply to equivalence reduction. User-defined

computations are applicable as weil.

CHAPTER 3. OVERVIEW OF JRELIX

>let DeptTotSal be equiv + of Salary by Dept:
>let DeptHeadCnt be equiv + of 1 by Dept:
>let DeptAvg be DeptTotSal / DeptHeadCnt;
>DeptSalStats <- [Dept, DeptAvgJ in Company:
>pr DeptSalStats:
+----------------------+---------------+
1 Dept 1 DeptAvg
+----------------------+---------------+
1 Accounting 43166.668
1 HR 1 49000.0
1 Sales 1 55000.0
+----------------------+---------------+
relation DeptSalStats has 3 tuples

Figure 3.24: Example: Equivalence Reduction Operation

Funetional Mapping

42

Reductions are not sufficient in occasions such as calculating the cumulative sumo To

introduce order into vertical operations, we need functional mapping. Consider Example

3 in which the salaries are ordered and each employee is given a pay rank. We would

like to have the highest paid employee to be ranked number one, therefore the order

clause uses the negation of Salary.

Example 3. Functional mapping operation (see Figure 3.25).

>let PayRank be fun + of 1 order -Salary:
>CompRanks <- [Dept,Name,Salary,PayRankJ in Company;
>pr CompRanks:
+--------------+-------------+----------+---------+
1 Dept 1 Name 1 Salary 1 PayRank 1
+--------------+-------------+----------+---------+

Accounting J. White 45000.0 1 5
Accounting K. Holmes 39000.0 1 6
Accounting M. SchOll 45500.0 1 4
HR D. Johns 48000.0 1 3
HR N. Lovejoy 50000.0 1 2
Sales E. Malon 50000.0 1 2
Sales J. Cioffy 60000.0 1 1

+--------------+-------------+----------+---------+
relation CompRanks has 7 tuples

Figure 3.25: Example: Functional Mapping Operation

In addition to the associative and commutative operators discussed in the previous

sub-sections, funtional mapping allows the following as well: eat (string concatenation),

-, l, mod (modulo), ** (power), pred (cyclic predecessor), suce (cyclic successor). The

last two operators are yet to be implemented in jRelix.

CHAPTER 3. OVERVIEW OF JRELIX 43

Partial Functional Mapping

Partial functional mapping adds a grouping facility to functional mapping in the same

way that equivalence reduction does for reduction. Example 4 shows the use of partial

functional mapping to calculate the pay rank within each department.

Example 4. Partial functional mapping operation (see Figure 3.26).

3.5

>let DeptRank be par + of 1 order -Salary by Dept;
>DeptRanks <- [Dept,Name,Salary,DeptRankJ in Company;
>pr DeptRanks;

+----------------------+----------------------+---------------+-------------+
1 Dept 1 Name 1 Salary 1 DeptRank

+----------------------+----------------------+---------------+-------------+
Accounting J. White 45000.0 1 2
Accounting K. Holmes 39000.0 1 3
Accounting M. Scholl 45500.0 1 1
HR D. Johns 48000.0 1 2
HR N. Lovejoy 50000.0 1 1
Sales E. Malon 50000.0 1 2
Sales J. Cioffy 60000.0 1 1

+----------------------+----------------------+---------------+-------------+
relation DeptRanks has 7 tuples

Figure 3.26: Example: Partial Functional Mapping Operation

Update

Update provides the mechanism for changing a relation. There are three basic update

operations on relation: add, delete and change. The syntax for update is:

"update" Identifier ("add"l"delete") Expression ";"
1

"update" Identifier "change" StatementList (UsingClause)?

where UsingClause is defined as:

"using" JoinOperator Expression
1

Il.11 ,

"using" "["IDList":IJoinOperator(I:I)?ExpressionListl]" Expression

The semantics of add is the same as that of the incremental assignment. The

semantics of delete is the same as that of the djoin. A relation can also be updated

in part by the change operation. Changes to perform are specified in StatementList.

Assignment is the most common type of change statement. In later chapters, we will see

CHAPTER 3. OVERVIEW OF JRELIX 44

examples of issuing computation calls in an update statement. The part of the relation

to be updated is the result of join (specified by JoinOperator) between the relation

being updated and the relation resulting from UsingClause. If the UsingClause is

absent, the whole relation is updated. The default JoinOperator is ijoin.

Example 1. Updating fiat relations (see Figure 3.27).

>domain Item, Type strg;
>relation Class(Item, Type) (- {("Yarn", "a"),

("String lt
, "a") ,

("Ball", "b ll
) ,

("Sandal", "c")};
>relation ReClass(Item,Type) (- {("Yarn", "a"),

>update Class add ReClass;
>pr Class;

("String", "b"),
(IITopll, "a")};

+----------------------+----------------------+
1 Item 1 Type
+----------------------+----------------------+

Ball 1 b
Sandal 1 c
String 1 a
String 1 b
Top 1 a
Yarn 1 a

+----------------------+----------------------+
relation Class has 6 tuples

>update Class change Type (- "B"
using ijoin ReClass;

>pr Class;
+----------------------+----------------------+
1 Item 1 Type
+----------------------+----------------------+

Ball 1 b

Sandal 1 c
String 1 B
String 1 a
Top 1 B
Yarn 1 B

+----------------------+----------------------+
relation Class has 6 tuples

Figure 3.27: Example: Updating Flat Relations

Example 2. Updating nested relations (see Figure 3.28 and Figure 3.29).

3.6 Computation

Computations [Mer93, Bak98] are the procedural abstraction mechanism provided by

jRelix. They can be regarded as potentially infinite relations containing tuples which

CHAPTER 3. OVERVIEW OF JRELIX

>domain Major, Name strg;
>domain Mark intg;
>domain Student(Name, Mark);
>relation Records(Major,Student) <- {("CS", {("J. Doe" , 80),

("G. Ford", 56),
("H. Canning", 88)}) ,

("EE" , {("B. Martin", 99),
("P. Fisher", 45)})};

>relation NewCSRec(Name, Mark) <- {("A. Wood", 77)};

«add the new student to CS major
>update Records change

(update Student add NewCSRec)
using ijoin where Major = "CS" in Records;

>pr Records;
+----------------------+----------------------+
1 Major 1 Student
+----------------------+----------------------+
1 cs
1 EE

1 1
1 2

+----------------------+----------------------+
relation Records has 2 tuples
>pr .Student;
+-------------+----------------------+-------------+
1 .id 1 Name 1 Mark
+-------------+----------------------+-------------+

A. Wood 77
G. Ford 56
H. Canning 88

1 J. Doe 80
2 B. Martin 99
2 P. Fisher 45

+-------------+----------------------+-------------+
relation .Student has 6 tuples

Figure 3.28: Example: Updating Nested Relations, part 1

«reduce mark by 5 for EE students
>update Records change

(update Student change Mark <- Mark - 5)
using ijoin where Major = "EE" in Records;

>pr Records;
+----------------------+----------------------+
1 Major 1 Student
+----------------------+----------------------+
1 CS
1 EE

1 1
1 2

+----------------------+----------------------+
relation Records has 2 tuples
>pr .Student;
+-------------+----------------------+-------------+
1 .id 1 Name 1 Mark
+-------------+----------------------+-------------+

1 A. Wood 72
1 G. Ford 51

H. Canning 83
J. Doe 75

2 B. Martin 94
2 P. Fisher 40

+-------------+----------------------+-------------+
relation .Student has 6 tuples

Figure 3.29: Example: Updating Nested Relations, part 2

45

CHAPTER 3. OVERVIEW OF JRELIX 46

satisfy the semantic constraints embodied by the code in the computations. Compu

tation domains are the elements exported through the parameter list. A parameter

can serve either as input or output, depending on how the computation is called. A

computation can have more than one alternative blocks, each representing one of the

views of the same constraint. However, it is the programmer's responsibility to ensure

the consistency among the blocks. Computations employ the pass-by-name parameter

passing mechanism [Seb96], which results from the design choice of modelling them after

relations.

Advanced uses of computations include stateful computations, packages, abstract

data types, constraint verification, and recursive computations. The first three have

been made available by this implementation2. Examples of using packages and stateful

computations will be given shortly. Abstract data types are treated thoroughly in

Chapters 4 and 5. [Bak98] shows examples of constraint verification and recursive

computation in Chapter 3.

At the end of this section, we present sorne commands commonly used with compu

tations. For details please refer to [Bak98].

3.6.1 Defining and Invoking a Computation

The syntax for declaring a computation can be found in Appendix A. It is possible to

declare computations at two levels: top levelor nested lev el. Top level computations are

not declared inside the code block of any other computations whereas nested ones are.

Top level computations can be invoked from anywhere in the code after its definition.

On the other hand, nested level computations are only available in two places:

• In the computation code block where the nested level computation is defined,

or

• In a relation resulting from instantiating an Abstract Data Type which

exports the nested level computation as an ADT method.

2Stateful computations were mentioned in [Bak98]; however, a working model was not available

then.

CHAPTER 3. OVERVIEW OF JRELIX 47

In addition, a nested level computation becomes top-Ievel if it is exported from a package.

We'U see an example in Section 3.6.3.

Apart from this distinction in scope, the calling syntax used with the two types of

computations differs slightly. There are four forms of invocation syntax for computations

in jRelix:

1. Stand-alone invocation: invoking a computation by means of a top-Ievel caU

statement, with specified input and output arguments.

2. Selectjarray syntax: invoking a computation by me ans of a select expression.

The select predicate provides the values of the input parameters, whereas the

result relation contains the outputs of a computation as its attributes values.An

array syntax may be used instead as a syntactic sugar.

3. Natural join syntax: joining a computation with a relation. Each tuple of the

relation provides the input value for the computation and the result relation will

contain both the input and the output values for aU tuples that satisfy the con

straint represented by the computation.In the implementation given by [Bak98],

the name of the formaI parameter must match that of the actual parameter. This

restriction has been eliminated. More on this in 5.2.1.

4. Vertical syntax: using a user-defined computation to systematicaUy pro cess the

values of a domain in a relation.

The last syntax will be discussed in Chapters 4 and 6. Top level computations may be

invoked using any syntax form. If a nested level computation is invoked from withing

the code block in which it is defined, aU forms of syntax apply. Computations intended

as accessors3 of an ADT normaUy use syntax 2, while those intended as modifiers4 use

syntax 1 within an update statement.

Examples showing the use of computations in ADTs will be given in Chapter 4. The

foUowing examples illustrate the use of stateless computations.

3 Accesor methods are functional.
4 Modifier methods change the state.

CHAPTER 3. OVERVIEW OF JRELIX 48

Example 1. Computation declaration

Figure 3.30 shows the declaration of a computation named CircArea. The first block

of code calculates the area of a circle given the radius r. The second block does the

inverse. A constant pi is defined using the domain algebra before the computation

declaration.

>Iet pi be 3.14:
>domain r, area float:

>comp CircArea(area, r) is
{ are a (- pi * r * r:}
aIt
{ r (- sqrt(area / pi):};

Figure 3.30: Declaration of a Simple Computation

Note that this computation can be thought of as the infinite relation shown in Fig

ure 3.31.

CircArea
area r
3.14 1
12.56 2

38.5 3.5

Figure 3.31: Relation Associated with Computation CircArea

Every tuple of this relation satisfies the constraint area = pi * r * r. Further more,

aIl tuples satisfying this constraint are included in the relation. The parameters of the

computation become the domains of its associated relation.

Full support for nested relations in jRelix means that an attribute of a relation can

itself be a relation. Thus a computation can take on relational parameter as weIl.

Example 2. Invoking a computation using the select/ array syntax

In Figure 3.32, the first CircleA stores the result of the are a calculation using the array

syntax. The second uses a select relational expression instead. The semantics of both

CHAPTER 3. OVERVIEW OF JRELIX 49

is to calculate the area of a circle given the radius. As the array syntax is meant to be

syntactic sugar for the relational select, the two CircleAs contain the same answer, as

expected. Note the use of a comma in the first invocation of CircArea. This comma

is necessary as it indicates that the 1 after it is the second parameter value for the

computation. Thus the system will run the second block which requires the second

parameter as input. Without the comma, the select expression equivalent would be:

Cr] where area = 1 in CircArea.

>CircleA <- CircArea[,l];
>pr CircleA;
+---------------+
1 area
+---------------+
1 3.14
+---------------+
relation CircleA has 1 tuple

>CircleA <- [are a] where r = 1 in CircArea;
>pr CircleA;
+---------------+
1 area
+---------------+
1 3.14

+---------------+
relation CircleA has 1 tuple

Figure 3.32: Computation Invocation: Selectjarray Syntax

Example 3. lnvoking a computation using the natural join syntax

Computations are a special kind of relation. Therefore computations can be used in join

expressions. In Figure 3.33, we first declare and initialize a relation named MoreCircs.

Wh en natual joined (i.e. ij oin) with the CircArea computation, this relation provides

the input values of r, and the computation returns both the calculated area and the

input values. The system considers r to be the input parameter since it is the only

common domain between MoreCircs and CircArea. Whatever parameter is left in the

computation is regarded as output from the computation. Even if MoreCircs is defined

neither on r nor on area, we can still explicitly name the join domain (see Figure 3.34).

Example 4. lnvoking a computation using a stand-alone caU

The computation used in the previous examples has primitive typed parameters. In this

example we will look at a computation whose parameters are relations. As a matter of

CHAPTER 3. OVERVIEW OF JRELIX

>relation MoreCircs(r) <- {(1),(2),(3),(4)};
>MoreArea <- MoreCircs ijoin CircArea;
>pr MoreArea;
+---------------+---------------+
1 area 1 r
+---------------+---------------+
1 3.14 1 1.0
1 12.56 1 2.0
1 28.26 1 3.0
1 50.24 1 4.0
+---------------+---------------+
relation MoreArea has 4 tuples

Figure 3.33: Computation Invocation: Natural-Join Syntax

>domain R float;
>relation MoreCircs(R) <- {(1),(2),(3),(4)};
>MoreArea <- MoreCircs [R:ijoin:rJ CircArea;
>pr MoreArea;
+---------------+---------------+
1 area 1 R
+---------------+---------------+

3.14 1 1.0
1 12.56 1 2.0
1 28.26 1 3.0
1 50.24 1 4.0
+---------------+---------------+
relation MoreArea has 4 tuples

Figure 3.34: Computation Invocation: Natural-Join with Named Join Domain

50

fact, a parameter can be of any type, even computation. Computation SuperSet, as

defined in Figure 3.35, contains only one block which assigns relation groupl or group2

or nothing to super according to the following rules:

• If groupl contains every name of group2, then assign groupl to super;

• If group2 contains every name of groupl, then assign group2 to super;

• If the above two conditions both fail, don't assign anything to super.

Figure 3.36 shows three stand-alone instances of invocation of the computation each

followed by its results. The direction of the arguments being passed are indicated by in

for input or out for output.

3.6.2 Stateful Computations: a Simple Example

Computations come with a facility to create objects with state. It is also possible to

define accessor and modifier methods on the state. Figure 3.37 shows a computation,

Counter. The state is _curVal, of type integer. This computation has one parameter

CHAPTER 3. OVERVIEW OF JRELIX

>domain name string;
>domain groupl. group2(name);
>domain super(name);

>comp SuperSet(groupl.group2.super) is
{if (groupl sup group2)
then

else

};

super (- groupl

if (group2 sup groupl)
then

super (- group2;

Figure 3.35: Declaration of a Computation with Relation Typed Parameters

>relation Gl(name) (- {("Andy"). ("George").
>relation G2(name) (- {("Andy"). ("Hans")};
>relation G3(name) (- {("Andy"). ("Chuck")};
>relation super(name);
>relation super1(name) ;

>SuperSet(in Gl. in G2. out super);
>pr super;
+----------------------+
1 name
+----------------------+

Andy
1 George
1 Hans
+----------------------+
relation super has 3 tuples

>SuperSet(in G2. in Gl. out super);
>pr super;
+----------------------+
1 name
+----------------------+

Andy
1 George
1 Hans
+----------------------+
relation super has 3 tuples

>SuperSet(in G2. in G3. out superl);
>pr superl;
+----------------------+
1 name
+----------------------+
+----------------------+
relation superl has 0 tuple

("Hans")};

Figure 3.36: Computation Invocation: Stand-alone CaUs

51

CHAPTER 3. OVERVIEW OF JRELIX 52

curVal, which is used as input in the first block and as output in the second block.

Wh en the first block is invoked, the input parameter curVal passes its value on to the

state _curVal, thus resetting the value of the state. When the second block is invoked,

the state _curVal first increments its own value by one and then assigns the value to

the output parameter curVal. Figure 3.38 demonstrates the use of this computation.

In this case only one object is created.

>domain curVal intg;

>comp Counter(curVal) is
state _curVal intg;
{ _curVal (- curVal;}
alt
{ _curVal (- _curVal + 1;

curVal (- _curVal;
};

Figure 3.37: Declaration of a Computation with State

>ACounter (- Counter[O];
>ACounter (- Counter[];
>pr ACounter;
+-------------+
1 curVal
+-------------+
1 1

+-------------+
relation ACounter has 1 tuple

>BCounter (- Counter[];
>pr BCounter;
+-------------+
1 curVal
+-------------+
1 2

+-------------+
relation BCounter has 1 tuple

>CCounter (- Counter[9];
>CCounter (- Counter[];
>pr CCounter;
+-------------+
1 curVal
+-------------+
1 10

+-------------+
relation CCounter has 1 tuple

Figure 3.38: Using a Computation with State

In order to initialize a Counter object, the computation should be invoked with a

single input parameter. Invoking it without a parameter will fire the second block and

CHAPTER 3. OVERVIEW OF JRELIX 53

return the value of the incremented state.

3.6.3 Packages

JRelix supports the notion of packages with no new syntax. A package is a computation

designed ta export other computation(s) defined inside its body. This makes it possible

to switch between different implementations of the same computation on the fly, as

long as each implementation of the computation is included in a different package and

the signature of the computation remains the same5 across aIl packages in which it is

defined. In the example we give in Figures 3.39 and 3.40, two packages are defined, each

exporting computation CalcArea. CalcArea in package1 calculates the area of a circle

given radius, while the one in package2 gives the are a of a square. Sinee CalcArea is a

parameter and domain of the package computations, it has to be declared beforehand

as a computation-typed domain.

domain CalcArea comp(area, r);

Area is declared to be a viewon CalcArea when the second parameter's value is 2. The

view materializes when used in a relational expression or or as a command argument,

such as in

pr Area;

To export a computation from a package, sim ply invoke the package with a stand-alone

caU and prefix the name of the computation being exported with keyword out. The

exported computation is then ready for use as any other top level computation.In our

example, the pr command forees the view Area to be evaluated which in turn caUs

CalcArea using the array syntax (see 3.6.1 for calling syntax for computations). The

relation resulting from the evaluation has one domain area, the value of which reflects

the package being used.

Sinee packages are top level compuations that are persistent on secondary stor

age, once defined, packages can be used over and over again without the need for

5This means same name and same parameters. Parameter type counts.

CHAPTER 3. OVERVIEW OF JRELIX

>let pi be 3.14;
>domain r, area float;
>domain CalcArea comp(area, r);
>Area is CalcArea[,2];

>comp package1 (CalcArea) is
{comp CalcArea(area,r) is

{

area <- pi * r * r;
};

};

>comp package2 (CalcArea) is
{comp CalcArea(area,r) is

{

area (- r * r;
};

};

Figure 3.39: Declaration of Packages

>package1(out CalcArea);
>pr Area;
+---------------+
1 area
+---------------+
1 12.56
+---------------+
expression has 1 tuple

>package2(out CalcArea);
>pr Area;
+---------------+
1 area
+---------------+
1 4.0
+---------------+
expression has 1 tuple

Figure 3.40: Use of Packages

54

CHAPTER 3. OVERVIEW OF JRELIX 55

re-declaration. This opens up the opportunity for packages to be used as libraries.

Packages are more useful when they contain commonly used utility computations, such

as the ones shown in the example.

3.6.4 Commands

JRelix commands that are useful for computations are summarized as follows:

pr prints the source code of the computation.

dr deletes a relation, view or computation.

sc displays information about the 'aIt' blocks of a computation. The format of the

output from this command is

[Input Parameter List] - > [Output Parameter List]

All the above mentioned commands take the name of a computation as the sole argu

ment.

Chapter 4

User's Manual

Computations not only provide support for procedural abstraction, as demonstrated in

the previous chapter, but they also can be used to implement data abstraction. The

key ideas of an abstract data type (ADT) are encapsulation and information hiding. In

Section 4.1 we will discuss the declaration and use of abstract data types. The reader

is encouraged to review the basic concepts of computations presented in Section 3.6.

The domain algebra (see Section 3.4) complements the relational algebra by providing

mu ch expressive power to jRelix. However, such power is limited to a predefined set of

operations, be it arithmetic or relational joins. To allow for user-defined operations on

arbitrary data types, an extension to the domain algebra is necessary. The power of

such an extension is illustrated in Section 4.2.

4.1 User's Manual on ADT

4.1.1 Introduction

An abstract data type (ADT) in jRelix is declared using the same syntax as a com

putation. The reader is referred to Appendix A for the BNF syntax of a complete

computation declaration. The structure of a computation is show in Figure 4.1. Square

brackets include optional elements, such as ParameterList. Items that may appear zero

56

CHAPTER 4. USER'S MANUAL 57

or more times are delimited by 0*. Key words and all mandatory delimiters are shown

in bold face. A vertical bar separates alternative items.

comp CompName ([ParameterList]) is
[ComputationVariableDeclaration
[redoplfunopl
{
(Statement 1 Command) *

}
(aIt

[redop 1 funop 1
{
(Statement 1 Command) *

}
) *

Figure 4.1: The Structure of a Computation

An ADT has hidden information 1 that is declared as state variables. Operations on

the states are given by the nested-Ievel compuations inside the ADT, thus the support

for encapsulation. Two types of operations are normally supplied for an ADT: accessor

methods and modifier methods. In most cases, an accessor method reveals the value of

the hidden state while a modifier method provides a means of changing its value. It

is however also possible for an accessor method to be defined otherwise, as long as it is

purely functional (i.e. not modifying the state). Methods whose name appears in the

parameter list of the ADT become public methods.

Once an ADT has been declared, objects of that type can be instantiated via an

intersection join (ijoin). The relation that joins with the ADT may contain initial

values for the hidden state(s). The result of the join is a relation, which contains the

hidden state(s). Its domains include the associated public methods. The hidden state

can only be manipulated through the methods defined in the ADT. Each tuple of the

result relation constitutes an object of the ADT. Since the result relation is by aH means

a normal relation, the relational algebra and domain algebra operations introduced in

IThe original concept of information hiding applies to hiding the method implementation as weIl.

This is not supported by jRelix.

CHAPTER 4. USER'S MANUAL 58

Chapter 3 still apply.

In the following sub-sections, we will see two examples of using ADTs. The first one

illustrates object instantiation, and the use of accessorjmodifier methods on a float

state variable. The second is a more realistic application that involves almost aIl aspects

of the jRelix language we have seen so far.

4.1.2 Example 1: Car Racing

Declaration and Instantiation

In this example, we define a RaceCar ADT as shown in Figure 4.2. There are three

state variables defined in the ADT: _vO, _a, and _v. In view of the motion of uniform

acceleration, these represent the initial velocity, the acceleration, and the current veloc

ity, in their standard units respectively. The two modifier methods, ACCELERATE and

STOP, apply the rules of uniform acceleration to the state variables. ACCELERATE accel

erates the race car for t seconds whereas STOP brings the car to a total stop. The only

accessor method for this ADT is GETSPEED which is meant to reveal the current velocity

of a car. AlI three methods are public, as they are present in the parameter list. The

other two variables in the parameter list are vO and a. They specifiy the initial values

for states _vO and _a. Obviously their values need to be provided when the RaceCar

ADT is instantiated. This example also shows how domains of type computation are

declared. It is important to declare aIl domains in the parameter list of an ADT before

the declaration of the ADT itself.

The input and output relationship among the parameters can be displayed ~y an sc

command, as in Figure 4.3. The result of this command provides clue as to what inputs

are expected by the ADT and what outputs are available.

Figure 4.4 declares a relation Racers which contains two racers each with his own

name, initial velocity, and acceleration.

To instantiate two RaceCar objects, we simply ij oin the relation Racers and the

ADT RaceCar (see Figure 4.5). The Racers relation could contain thousands of tuples

CHAPTER 4. USER'S MANUAL

>domain vO, vt, a, t, curSpeed float;
>domain ACCELERATE comp(t);
>domain STOP comp();
>domain GETSPEED comp(curSpeed);
>comp RaceCar(vO,a,ACCELERATE,STOP,GETSPEED) is
state _vO, _a, _v float;
{_vO <- vO; _a <- a; _v <- vO;

comp ACCELERATE(t) is
{ _v <- _vo + _a * t; vO <- _v;};

comp STOPO is
{ _v <- 0; _vo <- _v;};

comp GETSPEED(curSpeed) is
{ curSpeed <- _v; };

};

Figure 4.2: Example ADT: RaceCar

>sc RaceCar;
RaceCar (vO, a, ACCELERATE, STOP, GETSPEED)

[vO a] -> [ACCELERATE STOP GETSPEED]

Figure 4.3: RaceCar Input and Output

>domain name string;
>domain vO', a' float;
>relation Racers(name, vO', a') <- {("James Bond", 0,6000),

("Michael Schumacher", 0, 5500)};

Figure 4.4: The Racers

59

CHAPTER 4. USER'S MANUAL 60

instead, and the instantiation would still require just one join operation. This way

of object instantiation is easier than in other languages such as C++ or Java, where

only one new object at a time can be instantiated. This form of instantiation is thus

appropriate for databases which normally contain large amounts of data.

>TopRacers <- [name,ACCELERATE,STOP,GETSPEED] in (RaceCar[vO,a:ijoin:vO',a']Racers);
>pr TopRacers;
+----------------------+-------------+-------+-----------+
1 name 1 ACCELERATE 1 STOP 1 GETSPEED 1

+----------------------+-------------+-------+-----------+
1 James Bond 1 1 1 2 1 3
1 Michael Schumacher 1 1 1 2 1 3
+----------------------+-------------+-------+-----------+
relation TopRacers has 2 tuples

Figure 4.5: Instantiating the RaceCar ADT

Consider the join syntax used in Figure 4.5. Were the relation Racers defined on

narne, vO, and a, the following join syntax could be used:

TopRacers <- [narne,ACCELERATE,STOP,GETSPEED] in (RaceCar ijoin Racers);

In this case, the common domains of RaceCar and Racers, i.e. vO and a, become the

join domains which, in turn become the input parameters of the RaceCar ADT. The

remaining parameters become outputs. However, in our example, the relation Racers

are defined on domains not in the parameter list of the ADT. Therefore the extended

join syntax is used to explicitly name the join domains. This may seem a bit lengthy,

but in return we gain the freedom of defining Racers on any domains as long as they

are compatible with the types of the ADT's input parameters.

The projector list in the T-Selection in Figure 4.5 contains the domains we want

in the result, TopRacers. Since the initializers (vO and a) are no longer needed, they

are omitted from the list. Though not shown, there are yet three hidden variables in

TopRacers: the three states in the RaceCar ADT. Thus the result of an ijoin between

an ADT and a relation is defined on a set of domains consisting of the union of the

domains of its two operands and the hidden states of the ADT. To show these hidden

states, we can turn on the debug switch as in Figure 4.6. The names of the hidden states

are quoted in '*'. Although hidden states can be displayed this way, they cannot be

CHAPTER 4. USER'S MANUAL 61

used anywhere normal domains are expected. This restriction ensures the information

hiding aspect of an abstract data type.

>debug;
Note: debug mode is on
>pr TopRacers;
+--------------------+------------+------+----------+--------+-------+--------+
1 name 1 ACCELERATE 1 STOP 1 GETSPEED 1 *_a* 1 *_v* 1 *_vO* 1

+--------------------+------------+------+----------+--------+-------+--------+
1 James Bond 1 1
1 Michael Schumacher 1 1

1 2
1 2

1 3
1 3

1 6000.0 1 0.0 1 0.0
1 5500.0 1 0.0 1 0.0

+--------------------+------------+------+----------+--------+-------+--------+
relation TopRacers has 2 tuples

Figure 4.6: Showing Hidden Attributes

Figure 4.6 also proves that the assignment statements in the beginning of the com

putation block of RaceCar have been executed correctly. It is only in a computation

block that assignment to a scalar typed variable is aIlowed .. The numbers in the columns

titled ACCELERATE, STOP and GETSPEED are what we calI "surrogates". They function

like pointers to the three public methods exported by the ADT. Although each tuple2

in TopRacers has its own states, the methods are the same for aIl tuples.

Method Invocation

Now we discuss how the accessor methods are used. The foIlowing statement cannot be

used to examine the current velocity of the car because _v is a hidden state:

pr ([name, _vJ in TopRacers);

Instead we must use the accessor method GETSPEED. Figure 4.7 shows how.

First we declare a virtual attribute speed' to hold the result of the computation calI

GETSPEED [J. This invocation uses the array syntax (see Section 3.6.1 for a discussion

of calling syntax) and pro duces a relation defined on curSpeed. Thus it is unary. In

addition, the relation speed' has only one tuple, i.e., the value of _v. So speed' is also

singleton. However, it is cumbersome to have a nested relation in the result when aIl

we need is the value of the tuple in the unary singleton relation. Thus the second let

2 A tuple here can be thought of as an object, but we prefer the term tuple in this relation al database

context

CHAPTER 4. USER'S MANUAL

>let speed' be GETSPEED[];
>let speed be [red nop of curSpeed] in speed';
>AllSpeeds is [name, speed] in TopRacers;
>pr AllSpeeds;
+----------------------+---------------+
1 name 1 speed
+----------------------+---------------+
1 James Bond 1 0.0
1 Michael Schumacher 1 0.0
+----------------------+---------------+
expression has 2 tuples

Figure 4.7: Using the Accessor Method

statement is employed to give a float value: speed. The expression

[red nop of curSpeed] in speed'

62

pro duces the value of curSpeed in relation speed' 3. And this value will be assigned

to speed when speed is actualized. The pr command in Figure 4.7 triggers such an

actualization. (We define AllSpeeds as a view in anticipation of its repeated use in

later code. More details on views, computed relations, can be found in [Hao98]).

A more succinct way of defining speed is:

let speed be [red nop of curSpeed] in GETSPEED[] ;

To start the cars racmg, the modifier method ACCELERATE cornes into play. As

it actually changes the state of the "race cars", an update statement is involved, as

illustrated in Figure 4.8. The method ACCELERATE works on each tuple in TopRacers

in turn. As a result, each racer has been accelerating for 3 seconds.

>update TopRacers change ACCELERATE(in 3);
>pr AllSpeeds;
+----------------------+---------------+
1 name 1 speed
+----------------------+---------------+
1 James Bond 1 18000.0
1 Michael Schumacher 1 16500.0
+----------------------+---------------+
expression has 2 tuples

Figure 4.8: Using the Modifier Method: Example 1

Of course we can choose to accelerate James Bond's car only, and even stop Michael

Schumacher aU together (see Figure 4.9).

3 see Section 3.3.2 for a discussion on the operator nop and Section 3.4.2 on its role with reduction

CHAPTER 4. USER'S MANUAL

>update TopRacers change ACCELERATE(in 2)
using ijoin where name = "James Bond" in TopRacers;

>pr AllSpeeds;
+----------------------+---------------+
1 name 1 speed
+----------------------+---------------+
1 James Bond 1 30000.0
1 Michael Schumacher 1 16500.0
+----------------------+---------------+
expression has 2 tuples

>update TopRacers change STOP()
using ijoin where name = "Michael Schumacher" in TopRacers;

>pr AllSpeeds;
+----------------------+---------------+
1 name 1 speed
+----------------------+---------------+
1 James Bond 1 30000.0
1 Michael Schumacher 1 0.0
+----------------------+---------------+
expression has 2 tuples

Figure 4.9: Using the Modifier Method: Example 2

63

States in jRelix are persistent on secondary storage. This means we can quit the

current session, restart in the same database directory, and continue with the car race

example as if no interruption has occurred. Figure 4.10 illustrates this point. Note in

particular the value of the state variables for James Bond and Michael Schumacher.

The surrogates for the three public methods remain the same as in the previous run as

weIl.

The mechanism ofinstantiation and method invocation introduced in this sub-section

is generaUy applicable to aU ADTs. In the next example, we will focus on the integration

of various database operations into an ADT's methods in a more realisitc application.

4.1.3 Example 2: A Banking Application

Declaration and Instantiation

Consider a banking application that involves multiple banks, each with its own cus

tomers. Here is a list of possible requirements for such an application:

1. The banks are distinguished from each other by their name.

2. Each bank has a number of customers identified by their account number.

3. There is a non-negative balance in each account.

CHAPTER 4. USER'S MANUAL

>quit;
[sta,rt a new session]
>relation NewRacers(name, vO, a) <- {("Spiderman", 0, 4000)};
>NewTopRacer <- [name,ACCELERATE,STOP,GETSPEED] in (RaceCar ijoin NewRacers);
>update TopRacers add NewTopRacer;
>pr TopRacers;
+----------------------+-------------+-------+-----------+
1 name 1 ACCELERATE 1 STOP 1 GETSPEED 1

+----------------------+-------------+-------+-----------+
James Bond 1 1

1 Michael Schumacher 1 1
1 Spiderman 1 1

1 2
1 2
1 2

1 3
1 3
1 3

+----------------------+-------------+-------+-----------+
relation TopRacers has 3 tuples

>update TopRacers change ACCELERATE(in 4)
using ijoin where name = "Spiderman" in TopRacers;

>pr AllSpeeds;
+----------------------+---------------+
1 name 1 speed
+----------------------+---------------+
1 James Bond 1 30000.0
1 Michael Schumacher 1 0.0
1 Spiderman 1 16000.0
+----------------------+---------------+
expression has 3 tuples

Figure 4.10: Persistent State

64

4. The customer can see his/her balance and make deposits or withdrawals as long

as the account is in good standing (not overdrawn).

5. The bank needs to tally the sum of the balances in aIl acounts. It also needs to

know how many open accounts it has.

6. The bank should be able to open and close accounts.

7. The bank can transfer money from one account to another.

We devise two ADTs: one for the bank account (called BA) and the other for the

bank (named BANK). The BA ADT stores the current balance of an account in (bal) and

also remembers the last balance (oldbal). It provides one accessor method (BALANCE)

and one modifier method (DEPOSIT). The method BALANCE consists of two 'aIt' blocks:

the first returns the current balance while the second gives the amount of the most

recent deposit. The modifier method can actually be used to withdraw money when the

parameter value is negative. It also prevents any attempt to overdraw an account. The

complete definition of the BA ADT is shown in Figure 4.11.

CHAPTER 4. USER'S MANUAL

>domain Dep,Bal,InitBal intg;
>domain DEPOSIT comp(Dep);
>domain BALANCE comp(Bal);
>comp BA(InitBal,DEPOSIT,BALANCE) is
state bal,oldbal intg;
{ bal <- InitBal;

};

comp DEPOSIT(Dep) is
{ oldbal <- bal; bal <- bal + Dep;}
alt
{ Dep <- bal - oldbal;};

comp BALANCE(Bal) is
{ Bal <- bal;};

Figure 4.11: The BA ADT

65

To satisfy requirements 5 to 7, we define the BANK ADT as in Figures 4.12 and 4.13.

Since this is a lengthy definition, we break it down into two pieces and number the lines

continuously (Figures 4.13 gives the complete definition of the ADT). The line numbers

will be referred to wh en we explain this example in detail.

1 >let BA' be BA;
2 >domain Acct strg;
3 >domain CUST(Acct,InitBal);
4 >domain Tot Bal intg;
5 >domain Amount intg;
6 >let FromAcct be Acct;
7 >let ToAcct be Acct;
8 >domain TOCLOSE(Acct);
9 >domain Cnt intg;
10
11 >domain SUM comp(TotBal);
12 >domain TRANSFER comp(Amount,FromAcct,ToAcct);
13 >domain OPENACCT comp(CUST,BA');
14 >domain CLOSEACCT comp(TOCLOSE);
15 >domain ACCTCNT comp(Cnt);

Figure 4.12: The BANK ADT: Part 1

Let's first see how we can instantiate five BANK objects. The names and initial

customer accounts of our banks are given by relation BIG5_CUST in Figure 4.14. The

domain corp serves as the primary key while CUST is a relation typed domain defined

on Acct, the account number, and InitBal, the initial balance, as shown on line 3 of

Figure 4.12.

The instantiation of the BANK ADT involves an ijoin between the ADT and an ini

tializing relation. In order to initialize the state variable custorners upon instantiation

(line 18 in Figure 4.13), the initializing relation must contain at least two domains com-

CHAPTER 4. USER'S MANUAL

16 >cornp BANK(CUST,BA',SUM,TRANSFER,OPENACCT,CLOSEACCT,ACCTCNT) is
17 state custorners(Acct,DEPOSIT,BALANCE);
18 {custorners <- [Acct,DEPOSIT,BALANCE] in (CUST ijoin BA');
19
20 cornp SUM(TotBal) is
21 {let CustBal be [red nop of Bal] in BALANCE[];
22 TotBal <- [red + of CustBal] in custorners;
23 };
24
25 cornp TRANSFER(Arnount,FrornAcct,ToAcct) is
26 {let FBa12 be [red nop of Bal] in BALANCE[];
27 let FBal be FBa12-Amount;
28 FA <- where Acct=FromAcct in custorners;
29 TA <- where Acct=ToAcct in custorners;
30 FAS <- where FBal>=O in FA;
31 if ([] in FAS) and ([] in TA)
32 then
33 {let nArnount be O-Amount;
34 update custorners change DEPOSIT (in nAmount)
35 using ijoin where Acct=FromAcct in custorners;
36 update custorners change DEPDSIT(in Amount)
37 using ijoin where Acct=ToAcct in custorners;
38 }
39 else
40 print "Error in TRANSFER"
41 };
42
43 cornp OPENACCT(CUST, BA') is
44 {new_custorners <- [Acct,DEPOSIT,BALANCE] in (CUST ijoin BA');
45 update custorners add new_custorners;
46 };
47
48 cornp CLOSEACCT(TOCLOSE) is
49 {update custorners delete TOCLOSE;};
50
51 cornp ACCTCNT(Cnt) is
52 {Cnt <- [red + of 1] in custorners;};
53 };

Figure 4.13: The BANK ADT: Part 2

>dornain corp strg;
>relation BIG5_CUST(corp, CUST) <- {("BMO" ,{("SOOl", 100),

("C002", 20),
("S003", 300)}),

("RBC" ,{("SOOl" , 30000),
("S002", 2000)}),

("TD" ,{("C003", 30)}),
("CIBC",{("SOOl", 30000),

("C002", 100),
("C003", 20000),
("C004", 90)}),

("Scotia" ,{("COOl", 40),
("C002", 500),
("S003", 90000)})

};

Figure 4.14: The Big 5 Banks and Their Customers

66

CHAPTER 4. USER'S MANUAL 67

patible with the input parameters of BANK: CUST and BA' . The latter is a virtual domain

defined on the top-Ievel computation BA (see line 1). The relation BIG5_CUST contains

CUST already, but it do es not have any computation typed domain. Since BA' is a virtual

domain, we include it by the following T-selection:

BIG5_BANK <- [corp,CUST,BA'J in BIG5_CUST;

The relation BIG5_BANK can now be used to instantiate the bank objects, as shown in

Figure 4.15. The ijoin between BANK and BIG5_BANK on corn mon domains leads the

system to run the only 'aIt' block of BANK for each tuple of BIG5_BANK. The first statement

(line 18) in the block instantiates BA objects and stores them in customers. The rest

of the statements are computation declarations which are simply parsed and kept in

memory for future use. Next, the state customers becomes the hidden variable of the

relation BIG5 while its accessor and modifier methods are exported as visible domains of

the same relation. Note the debug mode is on so that we can observe the internaI states

(quoted in '*') directly. The "dot relation" that holds the contents of customers shows

the two states of the bank account (bal and oldbal) and their associated methods.

Method Invocation

In this sub-section, we will carry out a series of transactions4 on behalf of the banks.

The examples are cumulative and therefore ought to be followed in sequence. Line

numbers refer to those that appear in Figures 4.12 and 4.13 in the previous sub-section.

Surrogate values can be linked to bank names via Figure 4.15.

Example 1. Transfer 40 dollars from account "COOl" to "C002" of the Scotia Bank.

This operation will change the state of the bank objects, therefore an update statement

is used. Figure 4.16 illustrates the invocation of the method TRANSFER on the tuple that

corresponds to the Scotia bank. Three input parameters are provided, as indicated by

the in keyword before each actual parameter.

4This has nothing to do with database transactions which are concerned about maintaining consis

tency and integrity during updates.

CHAPTER 4. USER'S MANUAL 68

>BIG5 (- [corp,SUM,TRANSFER,oPENACCT,CLoSEACCT,ACCTCNT] in (BIG5_BANK ijoin BANK);
>debug;
Note: de bug mode is on
>pr BIG5;
+--------+------+----------+----------+-----------+---------+-------------+
1 corp 1 SUM 1 TRANSFER 1 OPEN AC CT 1 CLoSEACCT 1 ACCTCNT 1 *customers* 1

+--------+------+----------+----------+-----------+---------+-------------+
BMo 10
CIBC 10
RBC 10
Scotia 10
TD 10

11 12
11 12
11 12
11 12
11 12

13
13
13
13
13

14
14
14
14
14

9
15
16
17
18

+--------+------+----------+----------+-----------+---------+-------------+
relation BIG5 has 5 tuples
>pr .customers;
+-----+------+---------+---------+-------------+-------------+
1 .id 1 Acct 1 DEPoSIT 1 BALANCE 1 *bal* 1 *oldbal*
+-----+------+---------+---------+-------------+-------------+

9 C002 7 8 20 0
9 SOOl 7 8 100 0
9 S003 7 8 300 0
15 C002 7 8 100 0
15 C003 7 8 20000 0
15 C004 7 8 90 0
15 SOOl 7 8 30000 0
16 SOOl 7 8 30000 0
16 S002 7 8 2000 0
17 COOl 7 8 40 0
17 C002 7 8 500 0
17 S003 7 8 90000 0
18 C003 7 8 30 0

+-----+------+---------+---------+-------------+-------------+
relation .customers has 13 tuples

Figure 4.15: Instantiating 5 BANK objects

>update BIG5
change TRANSFER(in 40,in IC001",in IC002")

using ijoin where corp=IScotia" in BIG5;
>pr .customers;
+-----+------+---------+---------+-------------+-------------+
1 .id 1 Acct 1 DEPoSIT 1 BALANCE 1 *bal* 1 *oldbal*
+-----+------+---------+---------+-------------+-------------+

17
17
17

COOl 7
C002 7
S003 7

8
8
8

o
540
90000

40
500
o

+-----+------+---------+---------+-------------+-------------+
relation .customers has 13 tuples

Figure 4.16: Transfer Money between Two Accounts

CHAPTER 4. USER'S MANUAL 69

The statements in the computation block of TRANS FER are executed in sequence.

Line 21 defines a virtual domain FBa12 to hold the return value from the computation

caU BALANCE [J . The use of reduction and the nop operator has been discussed in

Section 4.1.2 and will not be repeated here. FBal holds the difference between the

current balance and the amount to transfer. Lines 28 to 30 define three relations. FA

holds the tuple of the account to be transferred from; TA holds that of the account

to be deposited into; and finaUy FAS is the same as FA if there is sufficient funds for

withdrawal, otherwise it is empty. If the conditions in line 31 hold, that is, if both

accounts exist and the source account has enough money, the code in the 'then' block

is executed. Otherwise an error message is printed on the screen. The actual transfer

involves withdrawing money from the source account and depositing the same amount

in the destination account. This is achieved by using the DEPOSIT method exported

by the BA ADT. Note here we are strictly observing the rule of information hiding by

not revealing the states (bal and oldbal) of the bank account.

The result shows only the tuples of customers related to the Scotia bank (surrogate

value 17). As expected, the execution of the DEPOSIT method results in the oldbals

of the affected accounts taking on the previous values of bal and the bals of accounts

"COOl" and "C002" have been updated according to the amount of transfer.

Example 2. Add new accounts to bank BMO.

An update statement is needed in this case. Figure 4.17 shows the details of the new

accounts and illustrates the result of invoking the method OPENACCT. This time, the

computation BA is supplied as an input parameter. The code (line 44) in the method

OPENACCT resembles that of the first statement of BANK. Line 45 actuaUy adds the new

accounts by an update add operation.

Example 3. Delete some accounts from BMO.

Again, since this operation will change the state of the bank objects, an update state

ment is used. Figure 4.18 shows the statement and the result. The relation CLOSE

designates the accounts to be closed. An update delete operation is aU that is needed

in the method CLOSEACCT.

CHAPTER 4. USER'S MANUAL

>relation NEW_BMO_CUST(Acct,InitBal) <- {(IC004", 900), (IS005", O)};
>update BIG5

change OPENACCT(in NEW_BMO_CUST,in BA)
using ijoin where corp=IBMO" in BIG5;

>pr .customers;
+------+------+---------+---------+-------------+-------------+
1 .id 1 Acct 1 DEPOSIT 1 BALANCE 1 *bal* 1 *oldbal*
+------+------+---------+---------+-------------+-------------+

9
9
9
9
9

C002 7
C004 7
5001 7
S003 7
5005 7

8
8
8
8
8

20
900
100
300
o

o
o
o
o
o

+------+------+---------+---------+-------------+-------------+
relation .customers has 15 tuples

Figure 4.17: Open New Accounts

>relation CLOSE(Acct) <- {("C004"), ("SOOl")};
>update BIG5

change CLOSEACCT(in CLOSE)
using ijoin where corp="BMO" in BIG5;

>pr .customers;
+-----+------+---------+---------+-------------+-------------+
1 .id 1 Acct 1 DEPOSIT 1 BALANCE 1 *bal* 1 *oldbal*
+-----+------+---------+---------+-------------+-------------+

9
9
9

C002 7
S003 7
S005 7

8
8
8

20
300
o

o
o
o

+-----+------+---------+---------+-------------+-------------+
relation .customers has 13 tuples

Figure 4.18: Close Accounts

70

CHAPTER 4. USER'S MANUAL 71

Example 4. Tally the sum of balances and total number of accounts for every bank.

This transaction do es not change the state of the banks. Figures 4.19 and 4.20 show the

statements and the results. The use of reduction with the nop operator was covered in

Section 4.1.2.

>let banksum be [red nop of TotBal] in SUM[];
>Big5Sum <- [corp, banksum] in BIG5;
>pr Big5Sum;
+----------------------+-------------+
1 corp 1 banksum
+----------------------+-------------+

BMO
CIBC

1 RBC
1 Scotia
1 TD

320
50190

1 32000
1 90540
1 30

+----------------------+-------------+
relation Big5Sum has 5 tuples

Figure 4.19: Tally Sum of Balances

>let AcctCnt be [red nop of Cnt] in ACCTCNT[];
>Big5Cnt <- [corp, AcctCnt] in BIG5;
>pr Big5Cnt;
+----------------------+-------------+
1 corp 1 AcctCnt
+----------------------+-------------+

BMO
CIBC

1 RBC
1 Scotia
1 TD

1 3
1 4
1 2
1 3
1 1

+----------------------+-------------+
relation Big5Cnt has 5 tuples

Figure 4.20: Tally Total Counts of Accounts

4.1.4 Summary

The properties of ADTs in jRelix are summarized as follows:

• An ADT is declared as a computation with state(s).

• An ADT contains the accessor or modifier methods for the state(s).

• The state variable in an ADT can be of any domain type except computation.

• Objects of an ADT are instantiated by an ijoin between the ADT and an initial

izing relation. It is customary for the initializing relation to supply intial values

for the state(s) via the join domains. It may also contain object identifiers.

CHAPTER 4. USER'S MANUAL 72

For example, corp may be regarded as an abject identifier for the bank abjects in

the bank account example.

• The result of an instantiation is a normal relation containing the hidden state(s)

of the ADT. It also contains the methods exported through the parameter list of

the ADT.

• The hidden state(s) in the result of an instantiation may not be used as ordinary

domains. But they exist in relations derived from the resuIt by means of a selection,

projection, or T-seleetion.

For example, after executing Corps < - [corp] in BIG5, relation Corps also has

the hidden state customers. This is merely a design choice, as one cannat specify

the state in the projection list; sa if the state is not retained, it will never be usable

beyond the initial result of an instantiation.

• Modifier methods must be invoked with an update change statement.

• Accessor methods are used in the domain algebra. Sinee they produce relation

typed results, it is recommended to use reduction and the nop operator to unnest

a unary singleton relation.

4.2 User's Manual on Extended Domain Aigebra

4.2.1 Introduction

This section diseusses an extension to the vertical domain algebra. The four classes of

vertical operations (reduction, equivalence reduction, functional mapping, and partial

functional mapping) can be used to combine values of a domain across tuples in a

systematic way. The typieal applications are to calculate the grand total, sub-totals, or

generate ranks of certain numerical domains. They are more powerful than the corn mon

aggregate funetions in SQL and more intuitive to use as weIl.

Nevertheless, the capability of these vertical operations is limited to the few system

defined operators compatible in such operations. Take reduction as an example: only

CHAPTER 4. USER'S MANUAL 73

seven operators are aUowed on scalar operands and four for relation typed operands

(see Section 3.4.2). Should there arise a need to include in reduction another associative

commutatitve operator, the implementation of the domain algebra would have to be

changed and the whole system affected. To aUeviate this restriction, we introduce a

mechanism to embed computation caUs in the vertical operations. Such computations

may be defined to carry out any legitimate operations not pre-defined by the system.

4.2.2 New Syntax

The syntax change to support extended vertical domain operations cornes in two parts.

First, the sytax for computation declaration is enhanced with the keywords, "redop"

and "funop". An 'ait' block intended for use in reduction must be prefixed with "redop".

However, this does not prevent it from being used in functional mapping. On the other

hand, "funop" is used to decorate blocks that are available for functional mapping only.

It is common for a computation to have one "redop" block and several "funop" blocks,

but this is not mandatory. For example, a computation describing the behavior of the

logic operator "xor" may have three "redop" blocks. It is also possible for a computation

to have, at the same time, non-decorated blocks and decorated blocks. Invoking a block

not decorated with "redop" or "funop" in a vertical operation will generate an error.

The only change in syntax for vertical domain declaration is that the operator OP

may now be replaced with a computation caU in the following format:

CompName [" (" InOutList ")"]

where CompName is the name of a computation, and InOutList consists of a sequence

of two "in" and one "out", separated from each other by a comma. The parenthesized

list may be omitted, in which case it is syntactic sugar for:

CompName "(" "in" "," "in" "," "out" ")"

The InOutList specifies the position of the input and output parameters. It is used

to determine which block of the computation is targeted. For example, the foUowing are

legal invocations of the cplx1 computation defined in Figure 4.23 (equivalence reduction

and partial functional mapping now shown):

CHAPTER 4. USER'S MANUAL 74

• red cplx1(in,in,out) of R

• red cplx1 of R (syntactic sugar for the previous one)

• fun cplx1(in,out,in) of R order id

• fun cplx1 of R order id

The first two are used for calculating the sum of complex numbers stored in R; the last

two are for the calculation of the alternating sum and the cumulative sum, respectively.

Note that examples 1, 2 and 4 invoke the same block of the cplx1 computation, namely

the one decorated with "redop". The third example invokes the second "funop" block.

Although aU "redop" blocks are available for use with functional mapping, none of

the "funop" blocks can be invoked in reduction. This is because the "redop" blocks

are intended for operations that are commutative and associative, whereas there is no

such restriction on the "funop" blocks. This being said, it is still the programmer's

responsibility to obey these rules while writing the computation. It is impossible for

the system to deduce or verify whether the operation described by a "redop" block is

indeed commutative and associative.

4.2.3 Example 1: Vertical String Concatenation

Consider the relation in Figure 4.21. Each word is foUowed by a space and is numbered

according to its position in the text.

>pr Text;

+-------------+----------------------+
1 index 1 word

+-------------+----------------------+
1 1 1 Aldat
1 2 1 is
1 3 1 fun
+-------------+----------------------+
relation Text has 3 tuples

Figure 4.21: A Relation Containing Ordered Strings

We would like to have a string to represent the text as a whole: "Aldat is fun".

jRelix has a binary string operator cat, but unfortunately it currently cannot be used

CHAPTER 4. USER'S MANUAL

in functional mapping5 . So we need something to mimic the foUowing statement:

let WholeText be fun cat of word order index;

With extended domain algebra, we have a solution as shown in Figure 4.22.

>domain s1,s2,s3 strg;
>comp STRCAT(s1,s2,s3) is
funop {s3 (- s1 cat s2;};
>let WholeText' be fun STRCAT(in, in, out) of word order index;
>let WholeText be red max of WholeText';
>Temp (- [index,word,WholeText',WholeTextJ in Text;
>pr Temp;
+-------+--------+---------------+--------------+
1 index 1 word 1 WholeText' 1 WholeText
+-------+--------+---------------+--------------+
1 1 Aldat Aldat Aldat is fun
1 2 1 is 1 Aldat is 1 Aldat is fun 1

1 3 1 fun 1 Aldat is fun 1 Aldat is fun 1

+-------+--------+---------------+--------------+
relation Temp has 3 tuples
>R (- [WholeTextJ in Text;
>pr R;
+----------------------+
1 WholeText
+----------------------+
1 Aldat is fun
+----------------------+
relation R has 1 tuple

Figure 4.22: Extended Vertical String Concatenation

75

First of aU, we define a computation with three string parameters. The block of

the computation is decorated with the keyword funop, indicating its candidacy for

use with functional mapping or partial functional mapping. The only statement in the

block assigns the concatenation of the first two parameter values to the third. Next,

a virtual domain WholeText' is defined, in much the same way as we would in any

ordinary functional mapping. The difference is that the keyword fun is now foUowed

by a computation caU. This caU identifies the computation (STRCAT) and the block

within by giving the directions of its parameters. The results of actualizing this virtual

attribute are shown in the relation Temp. As we are only interested in the longest of the

accumulated texts, a second virtual domain WholeText is defined. FinaUy, relation R

contains the result we want.

5This is an omission in the implementation

CHAPTER 4. USER'S MANUAL 76

4.2.4 Example 2: Sum of Complex Numbers

The previous example illustrates an extension to the scalar vertical operation. In the

next, we show how to calculate the sum of some complex numbers represented by nested

relations. This can be regarded as extending

let Total be red + of Part;

Only that in our case Part is a relation typed domain. See Figures 4.23 and 4.24 for

two alternative ways of declaring the computation for complex numbers. The reason for

having alternatives will be explained shortly.

>domain r,i intg;
>domain Ri,R2,R3(r,i);
>comp cplxi(Ri,R2,R3) is
redop { let r' be r; let i' be i;

let r" be r+r'; let i" be i +i ' ;
R3' (- [r" ,i"] in (Ri ijoin ([r' ,i'] in R2));
let r be r"; let i be i";
R3 <- [r,i] in R3';

}alt
funop {let r' be r; let i' be i;

let r" be r-r'i let i" be i-i'j
Ri' (- [r" ,i' '] in (R3 ijoin ([r' ,i'] in R2));
let r be r"; let i be i";
Ri (- [r,i] in Ri';

}alt
funop {let r' be r; let i' be i;

};

let r" be r-r'; let i" be i-i'j
R2' (- [r" ,i' '] in (R3 ijoin ([r' ,i'] in Ri));
let r be r"; let i be i' J ;

R2 (- [r, i] in R2';

Figure 4.23: The Computation for Complex Numbers: Alternative 1

Both of the two alternatives take three relation typed parameters, each defined on r

and i. Think of r as the real part of a complex number and i the imaginary part. We

assume that each parameter stands for one complex number only, i.e., Ri, R2 and R3 are

aU singleton relations. There are three 'aIt' blocks to each alternative computation. The

first is decorated with the keyword redop and the rest with funop. Thus the first block

is designed to be used as an associative and commutative operator while the other two

are to be used in order-dependent operations. The code in the first block calculates the

sum of the complex numbers represented by two of the parameters and assigns the result

CHAPTER 4. USER'S MANUAL

>comp cplx2(Ri,R2,R3) is
redop { let r' be r: let i' be i:

let r" be r+r'; let i" be i+i';
R2' (- [r" ,i' '] in (Ri ijoin ([r' ,i'] in R3»;
let r be r": let i be i";
R2 (- [r,i] in R2':

}alt
funop { let r' be r: let i' be i;

let r" be r-r'; let i" be i-i';
Ri' (- [r" ,i' '] in (R2 ijoin ([r' ,i'] in R3»:
let r be r": let i be i":
Ri (- [r, i] in Ri':

}alt
funop { let r' be r: let i' be i:

};

let r" he r-r'; let i" be i-i';
R3' (- [r",i"] in (R2 ijoin ([r',i'] in Ri»:
let r be r"; let i be i";
R3 (- [r,i] in R3';

Figure 4.24: The Computation for Complex Numbers: Alternative 2

77

to the third parameter. The second and third blocks subtract one complex number from

another and assign the difference to the third parameter.

The only difference between the computation cplx1 and cplx2 is that in the former,

R3 represents the sum while in the latter, R2 takes its place. This difference affects

the way the computation is invoked in vertical operations. The example in Figure 4.25

shows that Sum1 and Sum2 are exactly the same, but they are each produced by a

different computation call in a reduction. The call that generates Sum1 specifies the

third parameter as output, corresponding to R3, whereas in the case of Sum2 the second

parameter is designated as output. Semantically the two computations are exactly the

same, but this example illustrates the folIowing points:

• For a computation to be used in vertical operations, it must have exactly three

parameters, all of the same type.

• Each 'aIt' block must have two input parameters and one output parameter, as

the operators allowed in vertical operations must be binary. But the order of the

three parameters is up to the programmer defining the computation.

• The order of the keywords in and out in the computation calI of the vertical

domain operation must match that of the parameters' direction of the intended

'alt' block.

CHAPTER 4. USER'S MANUAL 78

Figure 4.25 also shows the the reduction operation in the projector list of a T

Selection. Sinee the reduction operation always produees a unary singleton relation,

enclosing it directly in the square brackets has the effect of lifting the value of its tuple

to the top level. Had we defined a virtual domain on the same operation and used that

attribute in the T-selection, we would have ended up with Sum1 (or Sum2) being a nested

relation.

>domain id intg;
>domain R(r, i);
>relation CNumbers(id,R) <- {(1,{(2,-2)}),

(2,{(3,2)}) ,
(3,{(l,O)}) ,
(4,{(-1,1)})};

>Suml <- [red cplxl of RJ in CNumbers;
>pr Suml;
+---------------+---------------+
1 r 1 i

+---------------+---------------+
1 5 1 1

+---------------+---------------+
relation Sum1 has 1 tuple

>Sum2 <- [red cplx2(in,out,in) of RJ in CNumbers;
>pr Sum2;
+---------------+---------------+
1 r 1 i
+---------------+---------------+
1 5 1 1

+---------------+---------------+
relation Sum2 has 1 tuple

Figure 4.25: The Sum of Complex Numbers

The funop blocks of cplx1 or cplx2 can be used to calculate the alternating sum of

complex numbers. Figure 4.26 shows an alternating sum ordered by id.

The values of aSum are the sequence: 2 - 2i, (3 + 2i) - (2 - 2i), 1- (3 + 2i) + (2 - 2i),

and (-1 + i) - 1 + (3 + 2i) - (2 - 2i). The usual alternating sum would be 2 - 2i,

(2 - 2i) - (3 + 2i), (2 - 2i) - (3 + 2i) + 1, and (2 - 2i) - (3 + 2i) + 1 - (-1 + i). But it

is easy to convert the former to the latter using domain algebra.

Computations usable in vertical operations are still normal computations that can

be called using the syntax introduced in Section 3.6. Sorne examples are given in Fig

ure 4.27.

CHAPTER 4. USER'S MANUAL

>let aSum be fun cplx1(out,in,in) of R order id;
>aSum1 <- [id,aSum] in CNumbers;
>pr aSum1;
+-------------+----------------------+
1 id 1 aSum
+-------------+----------------------+
1 1 1 27
1 2 1 31
1 3 1 35
1 4 1 39

+-------------+----------------------+
relation aSum1 has 4 tuples
>pr .aSum;
+--------+---------------+---------------+
1 .id 1 r 1 i

+--------+---------------+---------------+
1 27
1 31
1 35
1 39

1 2
1 1
1 0
1 -1

1 -2
1 4
1 -4
1 5

+--------+---------------+---------------+
relation .aSum has 4 tuples

Figure 4.26: The Alternating Sum of Complex Numbers

4.2.5 Summary

79

Computations have been adapted to enhance the vertical domain algebra. JRelix pro

gram mers can now add appropriate user-defined vertical operators as long as the fol

lowing rules are observed:

• The computation that defines the operation must have exactly three parameters

of the same type: two for input and one for output.

• An 'ait' block may be decorated with redop if it is to be used in reduction or

equivalence reduction. Blocks intended for functional mapping or partial func

tional mapping must be labelled funop. It is the programmer's responsibility to

ensure the semantic consistency among blocks and to verify that a redop block is

truly commutative and associative.

• To call the computation in a vertical operation, simply place the computation's

signature after the relevant keyword (red, fun, equiv, or par). The signature is

the computation's name optionally followed by a comma-delimited, parenthesized

list of "in" and "out". The order of these directional keywords must match that of

the in/out parameters of the intended block. By default, the first two parameters

are in, and the third out.

CHAPTER 4. USER'S MANUAL

>relation enl(r,i) <- {(1,2)};
>relation cn2(r,i) <- {(1,-2)}:
>eplxl(in enl,in en2,out en3):
>pr en3:
+---------------+---------------+
1 r 1 i
+---------------+---------------+
1 2 1 0
+---------------+---------------+
relation cn3 has 1 tuple

>eplxl(in enl,out en2',in en3);
>pr cn2':
+---------------+---------------+
1 r 1 i
+---------------+---------------+
1 1 1 -2
+---------------+---------------+
relation cn2' has 1 tuple

>relation BigR(Rl,R2) <- {({(l,2)},{(l,-2)}),
({(2,4)},{(-2,4)})}:

>BigR3 <- [R3] in (BigR ijoin eplxl):
>pr BigR3:
+----------------------+
1 R3
+----------------------+
1 58
1 57
+----------------------+
relation BigR3 has 2 tuples
>pr .R3:
+----------+---------------+---------------+
1 .id 1 r 1 i
+----------+---------------+---------------+
1
1 57
1 58

1
1 2
1 0

1

1 0
1 8

+----------+---------------+---------------+
relation .R3 has 14 tuples

Figure 4.27: Other Uses of the Complex Number Computation

80

Chapter 5

Implementation of Abstract Data

Type

In this and the next chapter, we present the implementation details of the new features

as seen in User's Manual. Abstract data type forms the main topic of this chapter. We

start with a brief overview of the system architecture and the development environment

of jRelix, followed by descriptions of components relevant to our implementation. With

the background laid out, we discuss in Section 5.2 the implementation of the three

aspects of ADT: state, accessor method and modifier method.

5.1 System Overview

5.1.1 Development Environment

JRelix is implemented in Java (JDK 1.2.2 and up). It runs on Windows platform as

well as on Unix, as long as a compatible version of the Java run-time environment is

installed.

The parser for the language is generated by two tools: JJTree and JavaCC. JavaCC,

a java compiler compiler, is a utility written in Java which automatically generates a

parser by compiling a high-level grammar specification stored in a text file and converts

81

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 82

it to a Java program which can recognize matches in the grammar. JJTree, on the

other hand, is a preprocessor for JavaCC utility that inserts parse tree building actions

at various places in the JavaCC source. Figure 5.1 depicts the pro cess of generating

the parser file (Parser.java). Please refer to the JavaCC and JJTree documentation in

[SDVOl J for more details.

JavaCC source

(e.g. Parser.jj)

jRelix Grammar Spec.

(e.g. parser.jjt)

Command:
javacc Parser.jj

Parser for jRelix

(e.g. Parser.java)

Figure 5.1: Generating the Parser Using JJTree and JavaCC

5.1.2 JRelix Storage Format and Architecture

JRelix Storage Format

A relation is stored as a file with the name of the relation on the hard disk. In the

case of a computation, the syntax tree of the computation is saved under a name of the

form CompName.comp where CompName is the computation's name. Event handlers

are also stored by their names1 .

The information about aIl relations and domains (which we calI database metadata)

in a jRelix database is maintained in memory while a user session is in progress and

dumped onto the hard disk when the user logs out. On hard disk, the metadata is

split into several system files, including . rel, . dom, . rd, and . expr. . expr is used to store

a serialized form of the definition of views and virtual domains in the system. The

other three are themselves relations. Table 5.1 describes these system relations. For

1 An event handler's name contains ':', which causes problems on the Windows platform.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 83

more information on the st orage and maintenance of database entities, please refer to

[Yua98].

1 Relation 1 Domain Description

.rel .reLname name of a relation

.rel .tuples number of tuples in the relation

.rel .attributes number of attributes in the relation

.rel .rve is a relation, view or computation

.rel . sort number of attributes the relation is sorted on

.dom .domJlame name of an attribute

. dom . type type of the attribute (see Table 3.1)

. dom .eount reference count for attribute

. dom .isState is a hidden state (new ta this implementation)

.rd .relJlame name of a relation

.rd .domJlame name of an attribute

.rd .position index of the attribute in the relation

Table 5.1: System Relations

JRelix Architecture

The jRelix database system is composed of three conceptual modules: a front-end in

terface, a database engine and a database maintainer. The overall architecture of the

jRelix system is shown in Figure 5.2 . As its name implies, the front-end interface mod

ule serves as an interface between the user and the database engine. At the beginning

of each interpretation cycle, it accepts a user command and performs syntax analysis.

It then converts these commands into a tree-like structure called a syntax tree, per

forms error checking and finally invokes appropriate functions in the database engine

to execute the necessary operations. At the heart of jRelix, the database engine im

plements the relational and domain algebras as well as computation. The intermediate

and final outputs of the database engine (in the form of relations) is then passed to the

database maintainer which updates the database system on the hard-disk as appropri

ate. The database maintainer is also responsible for loading relations into memory when

necessary.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE

User
Input

: ~.~:::.~.:: ... ~.~~=:~.~~: ".! •• :~.: • .. ••• ··jj~t·;;b~~·;;··Ë-;;;ïi;;;;-· l
i,: ! Sys tem !

~--..,! Call !
Parser Interpreter

: :~.~~.~~J
, , ,

[... ...

rê§~ê§1
l ~~~ ~u~n~ i
t1

Figure 5.2: JRelix System Architecture

84

Each of the conceptual modules is made up of several components, or classes in

Java parlance. Appendix B shows aIl the classes in the system and their categoriza

tion. The following sub-section highlights sorne of them that are most relevant to our

implementation.

5.1.3 Synopses of Selected Components

The implementation of abstract data type and extended domain operations has been

built on an existing system. It follows the philosophy of maximizing code reuse. As a

result, only one new class has been created. Most new functionalities have been achieved

through augmenting and glueing code in the classes to be described shortly. The in

terested reader may find a summary of aIl the enhancements by this implementation in

Appendix C.

The SimpleN ode Class

Every jRelix statement or command input by the user is parsed and transformed into

a syntax tree. The syntax tree can be decomposed recursively from top down into a

number of sub-trees, each of which represents a jRelix expression, statement or operator.

At the extreme end of such decomposition are nodes . Figure 5.3 shows the syntax tree

of the following virtual domain dec1aration found in Figure 4.7 of the Car Racing example

(each circ1e is anode):

let speed be [red nop of curSpeedJ in speed';

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 85

Figure 5.3: Syntax Tree Example

The SimpleNode class desribes a node in the syntax tree. Since anode contains

references to both its children and its parent, it is possible to traverse a syntax tree (or

part of it) in both ways. The information kept with anode object is frequently used

by the Interpreter class and other classes. The SimpleNode class is therefore one of

the most important classes of jRelix. Table 5.2 gives the most important members and

methods of this class.

The Interpreter Class

A single Interpreter object is instantiated and used throughout a user session of jRelix.

The role of this object is to take over the syntax tree from the parser, descend the tree

in a top-down fashion and dispatch function caUs into the database engine based on the

type and op code information of the node at hand. This class also provides methods that

perform basic validity check, such as traverseNode and traverse Type. Several methods

in this class have been augmented to support ADT and extended domain operations.

The Relation Class

This class implements the relational algebra [Ha098]. Its most frequently accessed public

members are (Java type in parentheses):

• name (String) The name of the relation.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 86

SimpleN ode Members

Name Description

type* Code of operation represented by the node

op co de Sub code of the operation

name Name of a node of type OP .lDENTIFIER

(null otherwise)

info Value of a node of type OP _CONSTANT;

placeholder for an accumulator in vertical operations

(null otherwise)

bits Special information on anode

SimpleN ode Methods

Name Description

jjtCreateN ode Creates a SimpleNode object

jjtGetParent Returns the reference to the parent node

jjtSetParent Sets the reference the parent no de

jjtGetChild Returns the child node with a given index

jjtG etN um Children Returns the child node count

jjtAddChild Appends a child node to the parent

jjtReplace Replaces this no de with another

jjtRemove Child Removes a child with a given index

setBit Set the bits field to a specifie value

isBitSet Check if a certain bit is set

*Type and opcode are defined in Constants.java

Table 5.2: The SimpleNode Class

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 87

• rvc (int) RELATION, VIEW or COMPUTATION.

• numtuples (int) The tuple count.

• numattrs (int) The attribute count.

• tree (SimpleNode) The syntax tree for a view or computation.

• myEnv (Environment) The environment the relation is declared in.

• domains (Domains!j) The array of Domain objects; each element holds the infor

mation about a domain2
•

• data (Object!}) The data held in a relation, one column per element; each element

is itself an array.

The public methods in the Relation class are readily available in the subclass Com

putation for the purpose of relational evaluations. No change has been made in this

implementation.

The Domain Class

An object of the Domain class represents a domain, virtual or not. Its public members

are:

• name (String) The name of the domain.

• type (int) The type code of the domain.

• numref (int) The reference count of the domain (i.e. how many relations are

defined on this domain).

• tree (SimpleNode) The syntax tree of a virtual domain.

New members have been added to the class to implement new features. These will be

described in later Section 5.2.

2The difference between an attribute and a domain is subtle. Attribute can be thought of the name

of a column in a relation, while a domain is a set of values allowed in a column. In this thesis, the two

are used interchangeably

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 88

The Actualizer Class

The Actualizer class handles the actualization of virtual domains. A virtual domain dec

laration leads to the creation of a Domain object3 . To materialize this virtual domain

in a relation, an Actualizer object must be created and initialized. The initialization

pro cess involves a series of validity checks to ensure that the virtual domain is "actual

izable". SpecificaIly, it detects cases where a virtual domain is defined on non-existing

actual domain(s), is recursively defined on itself, or is impossible because the syntax

tree of its declaration contains semantic errors. Once the validity checks are passed, the

programmer needs to explicitly invoke the actualize() method of the Actualizer object

for the actualization pro cess to be complete. In jRelix, a virtual domain is actualized

with a tuple-by-tuple approach.

Here are sorne important methods which were first implemented by [Yua98] and

[KanOl] .

• buildTree() This is a self-recursive routine for the virtual tree building process.

It accepts a SimpleNode object representing the syntax tree of a virtual domain.

Besicles the validity checks mentioned previously, it also performs tree expansion

to make sure that aIl identifier nodes in the final syntax tree are actual domains

from the source relation. For instance, if we have:

let x be A + B; let y be C; let z be x * y;

The virtual domain tree of z will be expanded to represent:

CA + B) * C;

A third task that the buildTree() method accomplishes is tree truncation in the case

of virtual domains defined on vertical operations such as reduction or functional

mapping. For example, given the definition:

let A be red + of B * C;

3In the case of a relation typed domain, a Relation object containing the dot relation is created and

registered into the environment as weIl

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 89

The subtree corresponding to B*C will be truncated and actualized first, before

the reduction can be evaluated .

• the iicell methods" If we think of a virtual domain in a relation as a column of

empty cells, actualizing the virtual domain is like filling in the cells with the values

calculated from the data in the tuple according to the rule given by the definition

of the domain. There are a number of methods in the Actualizer class for cell data

calculation, as listed in Table 5.3. We will refer to them as the "cell methods",

a term borrowed from [Yua98]. A cell method may invoke other cell methods or

itself to evaluate a subtree. When cell methods are used for horizontal domain

operations, the calculated data isdirectly put into the corresponding cell. When

they are invoked by methods dealing with vertical operations, the data is combined

with an accumulator value first and then stored back to the accumulator.

Method JRelix Type of Domain to Actualize

actBoolCell BOOLEAN

actlntCell SHORT,INTEGER
actLongCell LONG
actDoubleCell FLOAT,DOUBLE

actStrCell STRING
actRelCell IDLIST

Table 5.3: Cell Methods in the Actualizer Class

• the vertical actualize methods These are methods involved in actualizing virtual

domains defined on vertical operations. Reduction is actualized in actualizing(),

equivalence reduction in actualizeEquiv(), functional mapping in actualizeFun(),

and finally, partial functional mapping in actualizeParFun(). Aigorithms of verti

cal domain actualization will be given in the next Chapter where we discuss the

extension to allow user-defined operations.

The implementation of ADT and extended vertical domain operation has brought

quite a few additions to the Actualizer class.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 90

The Environment Class

An environment is an object that holds bindings of variables to their specifie informa

tion (such as value or type). In jRelix, an object of the Environment class maintains

the bindings for various types of variables, including relations, domains, state variables,

parameters and local variables. The last three are unique to computations. An Environ

ment object stores these bindings in hashtables for fast lookup. It also exposes public

methods to add or delete a binding, or to look up the information of a variable.

The specifie information about a state, a parameter, or a local variable is encapsulated

in objects of class StateInfo, ParamInfo, or LocalInfo, respectively. Thesé are all

subclasses of IDInfo, an abstract base class used to name the return types of the general

lookup routines. For example, the method Environnment.lookup() is declared to return

an object of type IDinfo, but it may actually return an instance of Statelnfo at run time.

Such implementation takes advantage of the late-binding facility of the Java language,

thus avoiding repeated co ding for different subtypes. The subtypes are distinguished by

their kind member. They also contain information such as the type, value and position

of the variable.

Computations are bound in their declaration environment. Upon invocation, a new

temorary environment is created to hold bindings for the parameters, local and state

variables. The code of the computation is then evaluated with regard to this new envi

ronment and its parent (the declaration environment). Upon exit from the computation,

the temporary environment is discarded. The Environment class is therefore particularly

relevant to the implementation of ADT, a special form of computation.

The NREnvironment Class

In jRelix, each level of a deeply nested relation may itself consist of nested relations. It

is possible to write domain algebra expressions involving domains from different levels of

such a nested relation. To relieve the system programmer of the burden of remembering

4They were created by [Bak98], but underwent significant changes in this implementation.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 91

these levels while implementing virtual domain actualization, the NREnvironment class

was invented.

An NREnvironment object is created for each level of a deeply nested relation as the

relation's hierarchy is descended in the actualization process. It holds the bindings for

the domains found at its own level. The current row number of the relational domain

being scanned is also kept track of. The domain algebra expression to be actualized is

th en evaluated in the context of the NREnvironments as well as the global Environment

that holds the bindings for everything else. The NREnvironment objects are attached

to the Environment object and are al ways checked first for bindings upon a look-up,

before any other hash table in the same Environment.

Instantiation of an ADT often results in deeply nested relations. With a little ad

justment of the NREnvironment class, implementation of ADT facilities becomes mu ch

more manageable.

The Constants Interface

This Java interface class defines all the operation and type codes used by jRelix. A

node in a syntax tree always has an associated type and an opcode. For example, a

no de representing the identifier A (the name of a relation) will have both of these set

as OP _IDENTIFIER, which is defined to be the value 230 in the Constants interface.

Whenever a new operation is added to the language syntax, the Constants class needs

to be updated. We will encounter such an addition in the next chapter.

5.2 Implementation of ADT

An abstract data type features encapsulation and information hiding. In jRelix, encap

sulation is achieved by defining an ADT using the same syntax as a computation with

state. That is, the information to hide is represented by the state variable(s), while

the computations defined inside the ADT implement the operations on objects of the

type. JRelix allows the programmer to instantiate by joining the ADT to an appropri-

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 92

ate relation. This removes the need for a new operator, which would be cumbersome

in the database context of possibly millions of instantiations. JRelix employs special

implementation to ensure that states are only accessible through the operations of an

ADT, thus information hiding.

[Bak9S] first described stateful computations and proposed a static environment

model in which states and associated methods can be exported to become computa

tion typed (COMP) domains of a relation. However, the issue of information hiding was

neglected and no working implementation of stateful computation was available. Later,

[SunOO] gave a short section on how computation calls may be invoked in update change

operations. The example involves a single assignment statement in the computation

body and all variables are integers.

To provide a sound foundation for the implementation of ADT, a number of compu-

tation related enhancements have been made, including:

• a flexible pass-by-name parameter passing mechanism,

• a broader range of statements that work in a computation block, and

• an updated set of rules for the calculating a block type.

Details of these improvements are given in Section 5.2.1.

The rest of this chapter covers the implementation of support for ADT. Among other

things, the system has been modified to handle states of any type (with the exception

of computation5) and provide appropriate storage for them in memory. For the sake

of hiding information, states are made inaccessible to normal relational and domain

operations. The algorithms for virtual domain actualization and updates have been

augmented to provide controlled access and modification to states.

Although aimed at implementing ADT, the enhancements and modifications men

tioned above also lead to non-ADT related features such as packages (see examples given

in Section 3.6.3) and level lifting in the case of unary singleton relations (see examples

5We have not found a good reason for astate to be a computation; therefore it is not supported as

of this writing

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 93

in Section 4.1 on the use of ADT). The latter is available for use even outside of the

context of computations.

5.2.1 General Enhancements Related to Computation

In this section, we first summarize the implementation of computation given by [Bak98],

hereafter referred to as the "previous implementation". Next we describe sorne enhance

ments that make computations more flexible and powerful.

Summary of Previous Implementation

The three classes most closely related to computation are Computation, CompBlock and

EvalExpr. The Computation class contains the following public methods (parameters

are omitted):

• Camputatian() for instantiating a Computation object

• applyInOut(), applySelect(), applyljain() for invoking a top-Ievel computation us

ing the first three forms of syntax as described in Section 3.6.1

• sc() for use with the sc command (see Section 3.6.4)

• print() for use with the pr command (see Section 3.6.4)

A reference to the environment in which a computation is declared is stored in the

declEnv member. The computation's 'aIt' blocks, represented by CompBlock objects,

are referenced by the blacks array. The tree member holds a reference to the compu

tation declaration. AlI these references are intialized when a Computation object is

instantiated.

The 'aIt' blocks of a computation are distinguished from each other by their type.

When a computation is created, the types of its blocks are calculated and stored with the

CompBlock objects. This way, re-calculation of the type upon computation invocation

is avoided. The type of a block is calculated based on the input/output status of

computation parameters upon their first use, as follows:

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE

If the computation has n parameters, the type of a block is represented

by an n-digit base-2 number.The most significant digit of that number cor

responds to the last parameter (the rightmost in the parentheses after the

computation name) , and the least significant digit corresponds to the first.

Each digit takes on a value of 1 if the corresponding parameter is input, or

o if otherwise.

94

Consider the computation given in Figure 5.4. It has two blocks. The type of the

first block is 102 (decimal 2), because r, the second parameter, is used as input, while

area is the output. The second block has exactly the opposite situation, therefore its

block type is 012 (decimaI1).

>let pi be 3.14;
>domain r, area float;
>comp CircArea(area, r) is
{ area <- pi * r * r;}
alt
{ r <- sqrt(area / pi);};

Figure 5.4: Computation CircArea

The findBlockType() method of the CompB1ock class implements the rules that de

termine the input/output status of a parameter.

Expressions encountered while executing a computation block are evaluated by the

methods in the EvalExpr class. One method each has been provided for expressions

of the following jRelix types: boolean, short, integer, long, fioat, double, and string.

Relational expression evaluation is accomplished via calls to methods implemented in

the Relation class.

Other classes that support the implementation of computation include IDInfo, State

Info, ParamInfo and LocalInfo, as mentioned in Section 5.1.3. They are mainly used by

the Environment class to abstract over the details of different variables associated with

a computation.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 95

Enhancement 1: Pass-by-name Parameter Passing in Natural Join Syntax

With the previous implementation, if a programmer joins a computation with a relation

and expects the relation to pass input values to the computation, he or she has no choice

but to name the input domain in the relation according to the input parameter. For

example, given the declaration of CircArea(area, r) in Figure 5.4, we can use the

relation A(r) or B(area) to invoke it, but not C(radius) , nor D(AREA)6.

Such restriction has been eliminated by using the pass-by-name parameter passing

method for our implementation. With this method, whenever a computation is in

voked, its syntax tree is traversed and the formaI parameters are substituted by their

corresponding actual parameters in an occurrences. Back to our CircArea(area, r)

computation: if it is invoked with C (radius), the syntax tree of the computation will

be transformed as if the declaration was:

>comp CircArea(area, radius) is
{ area <- pi * radius * radius;}
alt
{ radius <- sqrt(area / pi);};

The implementation of the pass-by-name mechnism is given by the modified ap

plyljoin method and a number of newly added methods, as listed in Table 5.4. The

step number in the second column refers to the number listed in the pseudo code for

applyljoin (see Figure 5.5).

Steps in the pseudo-code without a ,*, have been inherited from [Bak9S], so we will

skip them here. Step 3 in the new algorithm has two possible execution paths. If the

ijoin does not involve explicitly named domains (i.e. domsr and domsc are empty) ,

the common domains between the relation and the computation will be used as the

input domains. On the other hand, when there is no common domain between the

invoking relation and the computation (such as when CircArea(area, r) is joined

with C (radius»), we can specify the join domains from the computation in domsc and

those from the relation in domsr. In our example, domsc contains rand domsr contains

radius. Join domains in this case are given by either domsr or domsc, but we still

6 JRelix is case sensitive

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE

Relation applyljoin(Relation rel. Domain[] domsc.

{

Domain[] domsr, String filename, Environment callEnv)

1. Create an Environment object (env) and set its parent

to be the declaration environment of this computation.

2. Back up the original domains of the computation into

originalDomains.

3*. Determine join domains (joinAttrs) and extra domains

(extraAttrs).

4*. Transform the syntax tree of the computation.

4.1. Get a copy of the syntax tree (tempTree).

4.2. if named join domains (domsc, domsr) are specified

then

4.2.1. For each domain in domsc (computation domain),

substitute its occurrences in tempTree for

the corresponding domain in domsr (relation domain).

4.2.2. Re-generate the CompBlock array (blocks) from

tempTree.

5. Register the parameters, local variables and states

into the current environment (env).

6. Find the computation block based on the join domains.

7. Load the data of the input relation (rel) into memory.

8. For each tuple of the input relation do

8.1. Execute the statements in the selected block with

reference to the current environment (env).

8.2. Append the output to the relation.

9. Project rel on aIl its domains to eliminate duplicates.

10. Restore the original domains from originalDomains.

11*. Restore the original CompBlock array.

12. Detach the Environment (env) for garbage collection.

}

Figure 5.5: Pseudo-code for applyljoin()

96

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 97

need to find out what "extra domains" are - these domains do not participate in the

computation, but they need to be in the resuIt relation. The method extraDomains2()

is provided for this purpose. The example we looked at would not pro duce any extra

domains. Had we invoked the computation with E(radius, index) instead, index

would be regarded as extra.

The code that fiUs in step 4 performs a textual substitution of the names in domsc

for the names in domsr position by position. For instance, aU occurrences of r in com

putation CircArea(area, r) will be replaced by radius in our example. Then the

CompBlock objects referenced by the blocks member of the Computation object are

regenerated based on the transformed syntax tree. After these steps, the input par am

et ers of the computation block to be run exactly match the input domains provided by

the invoking relation. Further more, aU the existing code for executing the 'aIt' block

in applyIjoin still works, unaware of the use of a different join syntax.

The only extra step left is to revert the input parameter names in the CompBlock

objects to their original at the end of the method. This is necessary to ensure the success

of subsequent invocations on the same computation.

Method Step Description

extraDomains2 3 returns the union of domains of the computation
and the invoking relation except the join domains

renameParamslnTree 4 replaces the input parameter name with the actual

argument name in the computation's syntax tree
replaceJ oinAttrs 4 renames the join do mains according to the actual

argument names
reGenerateBlocks 4 generates the CompBlock objects from the renamed

syntax tree of the computation; the domain names of
the computation are modified accordingly

Table 5.4: New Methods to Support Flexible Pass-by-name Mechanism

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 98

Enhancement 2: Statements and Commands in Computation Blocks

In the previous implementation, the only statement type allowed in a computation block

was the assignment statement. This is no longer the case. AlI jRelix statements and

commands that have been implemented at the top-Ievel can now also appear inside a

computation block.

The central place for handling different types of statements and commands is the

runSingleStmt() method of the Computation class. A sketch of the code in this method

is given in Figure 5.6. (Note that not aU statement types are shown. For a complete

listing of the types please refer to Appendix A).

The runSingleStmt() method is invoked each time a statement of a computation block

is to be executed. It accepts two parameters, one is the syntax tree of the statement

to be executed (stmt), and the other is the Environment object that contains aIl the

bindings known to the computation (env). Based on the type of the statement, specific

actions are taken subsequently. These actions can be categorized as foUows:

• caU runSingleStmt() recursively The case of OP _CONDITIONAL (if-then-else)

is in this category. Whenever a statement contains sub-statements, the sub

statements are evaluated first using the same method.

• call a delegate method in the Interpreter class Case OP _COMMAND deals with

commands in computations. Instead of re-implementing the logic for executing

different types of commands, it simply calls the executeCompCommand() method

in Interpreter. This method in turn invokes executeCommand() which was im

plemented by [Hao98]. executeCompCommand() is just one of several delegate

methods added by this implementation. They are simple public methods used to

direct calls from methods in the Computation class into the private methods of

the Interpreter class. Their names aU start with "executeComp".

• call a public method in the Interpreter class The purpose of this approach is to

promote code-reuse, just as in the case of calling a delegate method. Methods

such as evaluateTLExpress() in the Interpreter class are public, thus they can

be accessed freely from other classes. To obtain the relation resulting from the

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE

void runSingleStmt(SimpleNode stmt. Environment env)

{

switch (stmt.type)

{

}

}

case OP_ASSIGNMENT:

SimpleNode left

SimpleNode expr

(SimpleNode) stmt.jjtGetChild(O);

(SimpleNode) stmt.jjtGetChild(l);

IDlnfo id = env.lookup(left.name. true);

Ilcode to find out the jRelix type of id and assign it to stmtType

switch (stmtType)

{

}

case SHORT:

short shortResult = EvalExpr.evalShortExpr(expr. env);

Ilcode to store shortResult in appropriate place

Ilbased on whether id.kind is PARAMETER. LOCAL. or STATE

case mLIST:

transformExpr(expr. env);

Relation relResult =
interpreter.evaluateTLExpression(expr •...• env);

Ilcode to store relResult in appropriate place

Ilbased on id.kind

case OP_STATEMENT:

switch (stmt.opcode)

{

}

case OP_CONDITIONAL:

if (EvalExpr.evalBooleanExpr(if_node. env))

runSingleStmt(then_node. env);

else ...

case

case OP_COMMAND:

interpreter.executeCompCommand(stmt. env);

case OP_UPDATE:

Figure 5.6: Pseudo-code for runSingleStrnt()

99

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 100

right hand side of an assignment statement, we simply let evaluateTLExpression()

handle it. There is a tricky issue here. Since the methods in the Interpreter class

have no notion of parameters or local variables that are bound in the environment

inside a computation, we cannot simply hand over the expression encountered in

a computation as is. Instead, we must first transform the expression so that aU

references to computation specifie variables are replaced with the values of these

variables (relational variables are treated differently, for they are still recognized

in a non-computation environment). The recursive method transformExpr() is

provided for this purpose. A similar method, transformStmt(), is also available for

transforming a statement.

• caU a method in the EvalExpr class This approach is taken when there is a need to

evaluate an expression of atomic type, such as INTEGER or FLOAT. EvalExpr is

the only class in the jRelix implementation that provides methods for evaluating

atomic types. Therefore it is frequently used by the implementation of computa

tion, the only place where atomic typed variables are aUowed on the left hand side

of expressions. The enhancement made to the EvalExpr class includes support for

the evaluation of state varriables and of built-in functions (OP _FUNCTION)7 .

• reproduce some of the code in the Interpreter class This is the most extreme case.

The only such case is OP _UPDATE. As the logic for handling updates was imple

mented in the Interpreter class itself (see [SunOO]) and cou pIed tightly with the

method evaluateTLExpression(), there is no single method to caU to handle just

updates. In addition, the environment inside a computation is quite different from

that of the top-level. It turns out that reproducing sorne of the flow-control code

in evaluateTLExpression() and adjusting it for use within the environment of a

computation is the most convenient way in this case.

7The support for built-in functions such as absO or ceilO is based on corresponding methods offered

by the Java Math package. Built-in functions are also supported at the top-level. Relevant code can

be found in the act*Cell methods of the Actualizer class. Due to space limit, we will not discuss them

any further.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 101

In the code sketch for the runSingleStmt() method, we also mentioned that the

result of evaluation will be put into appropriate places based on whether the destination

variable is a parameter, a local variable, or a state variable. When a computation is

invoked, an output parameter becomes one of the domains of the resulting relation.

Therefore, we can refer to the output parameter by its position in the result relation.

At any time of interpretation, we also keep track of the row of the relation being affected

by the computation. Thus the result of evaluating an output parameter can always to

put directly into its place in the result relation. The case of a local variable is even

simpler. Since a local variable is valid only within the scope of the computation block

for which it is defined, there is no need for its value to persist in the result relation.

Storing its value in the LocalInfo object is sufficient. The storage of state variables will

be discussed in Section 5.2.2. The basic mechanism is similar to that of the parameters.

Enhancement 3: Calculating the Block Type

It cornes as no surprise that the rules to determine the type of a computation block

in the Computation.findBlockType() method needs adjustment as new statement types

are introduced into the computation block. We now give the updated rules for jRelix

statements and commands that affect the block type, as foIlows (note that these rules

apply only when a variable is first used in a block):

Assignment ID "<-" EXPR

Input: aIl variables in EXPR

Output: ID

Exception: Variables in the projector list of a selection or T-select expression are ex

cluded from considerations.

Example:

Statement

R <- [A] in S ijoin T

R <- where A = 4 in S

Input

S, T

S, A

(only if A is a parameter)

Output

R

R

8This is true even if they appear in the parameter list, as of this implementation

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE

IncrementaI Assignment ID "<+" EXPR

Input: aU variables in the statement

Output: none

Exception: same as those for Assignment

Statement

Example:
R <+ [A] in S ijoin T

R <+ where A = 4 in S

Input

S, T, R

S, R, A

(only if A is a parameter)

View Declaration ID "is" EXPR

Input: aU variables in EXPR

Output: ID

Exception: same as those for Assignment

Statement

Example:
R is [A] in S ijoin T

R is where A = 4 in S

Input

S, T

S, A

(only if A is a parameter)

U pdate AddjDeIete "update" ID "add" l "delete" EXPR

Input: ID and an variables in EXPR

Output: none

Exception: same as those for Assignment

Output

Output

R

R

Statement Input Output

Example: update Sadd T ijoin R S, T, R

update Sadd ([A, B] in T ijoin R) S, T, R

Update Change "update" ID "change" STMTLIST "using" JOINOP EXPR

Input: ID, aU inputs in STMTLIST and aU variables in EXPR

Output: none

102

Exception: Variables in a projector list are ignored; outputs of the STMTLIST are ig

nored as weU, as they are considered attributes of ID

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE

Statement Input Output
Example:

update S change A <- C + 3 using ijoin T S, C, T

Conditional Statement "if" EXPR "then" STMTl "else" STMT2

Input: aIl variables in EXPR, aIl inputs in STMTl and STMT2

Output: aIl outputs in STMTl and STMT2

Exception: Variables in a projector list are ignored

Example:
Statement Input Output

if [] in R then S <- T else S <- U R, T, U S

Computation CalI COMPNAME "(" PARAMLIST ")"

Input: aIl variables in PARAMLIST

Output: none

Statement Input Output
Example:

Cir Area(A) A

Selected Commands "pr" l "sr" l "dr" l "sc" EXPR

Input: aIl variables in EXP

Output: none

Statement Input Output
Example:

sr R R

103

Note that if a nested-Ievel computation is caIled inside the block of its declaration,

the system will run findBlockType() on this computation and propagate the result up

to its enclosing computation block. [Bak98] provides an example in this case.

5.2.2 Implementation of State

The keyword "state" is used to declare a special variable in a computation, which we

refer to as a state variable, or a state for short. JRelix uses states to represent hidden

information inside an ADT. States are special in that they retain their values between

computation caIls, which distinguish them from local variables. In addition, states are

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 104

hidden, in the sense that they can only be accessed and manipulated by code from within

the same computation for which they are defined. For instance, the state _curVal of

the Counter computation (Figure 3.37) is only accessible to the statements in the two

'aIt' blocks of Counter. As another example, states of an ADT can only be accessed or

modified by the ADT's methods. We begin the topic of implementing state, with with a

discussion of the storage of state variables in main memory. Next we describe the process

of state creation. A related issue, state persistence, is discussed as weU. FoUowing that,

we present, from a system programmer's point of view, methods to retrieve and modify

the value of a state. The implementation of state hiding is described at the end of this

sub-section.

Storage of aState

Depending on what syntax is used for a computation invocation, astate may be stored

in two different ways in main memory. In the case of instantiating objects of an ADT

using an ijoin syntax, aU states of the ADT are exported as domains of the resuIting

relation, thus no special data structure is needed to hold the values of the states. Like

any normal domain, the value of astate is stored in the data member of the Relation

object that represents the result of ijoin. The relation TopRacers as shown in Figure 4.6

illustrates this point.

When a computation is invoked by a stand-alone caU or a select expression, the sit

uation is quite different. The state of the computation is not exported to the resuIt

relation (see the Counter example in Figure 3.38). As a result, the computation itself

must "remember" the value of its state. For this purpose, we implemented the State

Info class9 , as shown in Figure 5.7. The diagram in Figure 5.7 depicts the inheritance

relationship among three classes: IDInfo, StateInfo_2002, and StateInfo. It also

shows the members and methods of each class. We already covered the IDlnfo class in

9 [Bak9S] also mentioned this class, but it did not provide storage for astate; therefore this imple

mentation added the Statelnfo_2002 class. We could have modified the Statelnfo class directly, but it

was a design choice not to do so.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 105

IDlnfo
+kind: int
+type: int

_S
Statelnfo 2002 -

+intVal: int ~ +longVal: long
+floatVal: float Typee onstants
+doubleVal: double
+stringVal: String
+reIVal: Relation
+setVal(type:int,val:Object) : void
+getVal(type:int) : Object

~

Statelnfo
+index: int
+env: Environment
+Statelnfo(index:int,type:int)

Figure 5.7: Class Diagram of StateInfo

Section 5.1.3. StateInfo_2002 is new to the system. Its purpose is to provide st orage

for various types of state variables and public methods for accessing and modifying the

value of the state. The StateInfo class extends StateInfo_2002 by adding its own data

members such as index and env. Since aIl data members of StateInfo_2002 are public,

they are readily available to the subclass. The meaning of index and env will become

clear in the next sub-sections.

In summary, states are stored like domains when the ijoin syntax is used to invoke

a stateful computation. In this case many values of the same state co-exist, as long as

they belong to different tuples of the ijoin result. Any other types of invocation result in

states being stored in StateInfo objects. Consequently there can be only one StateInfo

object, and thus one value, for any given state in this case.

Computation Initialization

The declaration of a computation leads to the instantiation of a Computation object.

The Computation class constructor is caIled by the interpreter and performs the follow

ing tasks:

1. Store a reference to the declaration environment in declEnv.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 106

2. Store the syntax tree of the computation declaration in tree.

3. Create a new Environment (stateEnv) for handling persistent states.

4. Parse the syntax tree to deduce parameters, local variables and states; store such

information in a temporary Environment object.

5. Generate the CompBlock array blocks and calculate the block types at the same

time, based on the information obtained in the previous step; store the block type

of an 'aIt' block in its corresponding CompBlock object.

The interpreter then adds an entry for the Computation object to its declaration envi

ronment, so that it can be looked up by name. Up until this point, no storage has been

allocated for states or other variables in memory. It is only when the computation is

invoked that these variables come into existence.

State Creation and Persistence

We now discuss how states are created and made persistent between invocations in the

case of stand-alone computation caUs and invocation using a select expression. The

StateInfo object for astate is created the first time the computation is invoked. This

object will be used to hold the value of the state. It is then added to both the en

vironment for computation evaluation and the special environment, stateEnv. Every

Computation object has an associated stateEnv which holds references to the Statelnfo

objects of that particular computation. Therefore, wh en further invocations of the same

computation occur, there is no need to re-create StateInfo objects, as they are already in

stateEnv. In addition, the value of astate from the most recent invocation can always

be found by looking up the relevant StateInfo object from stateEnv. This is how a

state persists between computation caUs.

The creation of states upon an ijoin invocation is exactly the same as that described

in the previous case. Only in this case, the actual values of states are stored in the

resulting relation, not in the Statelnfo objects. Since data of a relation is persistent

even on secondary storage, the issue of state persistency is trivial.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 107

The algorithms described above are coded in the initializeEnvironment() method, as

follows:

1. Extract components such as computation name, parameter list etc. from the

syntax tree (retrieved from the tree member of the Computation object).

2. Process the parameter list: create a ParamInfo object for each parameter and add

bindings for them to the environment being initialized. The type and index10 of

each parameter is recorded with its ParamInfo object.

3. Pro cess localjstate variable declaration:

• If this is a local variable declaration, create a LocalInfo object li and add a

binding for it to the environment being initialized; then,

- If the declared type is IDLIST,

(1) set li.relVal to be a new empty relation,

(2) add a binding for this new relation to the environment.
- If the declared type is an atomic one,

(1) create a new domain with the name and type of the local variable,

(2) add a binding for this new domain to the environemnt .

• If this is a state variable declaration,

(a) Look up the state by name in stateEnv,

- If no binding is found, this must be the first time the state is pro-

cessed, then,

(1) create a StateInfo object (si), set its type and indexl1
,

(2) add a binding for si to both the environment and sta~eEnv,

(3) if the type of the state is IDLIST, set si.relVal to a new empty

relation and add the new relation to the environment; otherwise, cre-

ate a new domain with the name and type of the state and add this

--::-------~nHJel;!J'W.~T4d'"o,Um!!<;l"ÉuH· n~toJ_..lthe environment.
lOThe first parameter on the left has an index value of 0

llThe first state encountered has an index value of n, if there are n parameters in the computation

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 108

- If a binding is found (oldSi), then,

(1) add the existing Statelnfo object (oldSi) to the environment,

(2) if the type of the state is IDLIST, add oldSi.relVal to the

environment.

(b) Export the state as a domain to the caller's Environment, if it is not

already there. Set the isStateDom flag of the Domain object to 1.

The pseudo code for initializeEnvironment() also shows that support for relation (i.e.

IDLIST) typed local and state variables has been built in as of this implementation. The

last step of the code (3.b) sets isStateDom to 1 for the exported state. This step is

important for the ijoin invocation, as this is how the environment holding the result

relation becomes aware of the states. We will present the rest of the implementation

details of hidden states in Hiding States on page 109.

Accessing and Modifying States

Modification to astate typically occurs when executing an assignment statement in a

computation block where the left-hand side is a state variable. The first case (OP _ASSIGNMENT)

in the code sketch given for runSingleStmt() on page 99 illustrates the first three steps

of state modification:

1. Look up the IDlnfo object that represents the variable on the left-hand side of

the assignment operator. Note this object is actually an instance of one of the

sub-types of IDlnfo (Paramlnfo, Statelnfo, LocalInfo, etc.).

2. Check the type field of the IDlnfo object.

3. CalI an appropriate method in the EvalExpr class to evaluate the right-hand si de

of the assignement. For example, if type is INTEGER, the method evalIntExpr()

should be called.

The next step is to place the result of evaluation in the storage for the state. There are

two possibilities:

• If the computation was invoked using an ijoin syntax, the new value of the state

should go to a slot in the data array of the result relation. The exact position

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 109

of the slot is determined by the current row number of the relation while the

column number is the index stored in the Statelnfo object. Where do we get the

row number? It can be found in the row field of the current environment. Not

coincidentally, we stored a pointer to the current environment in the Statelnfo

object when it was first created. In fact, any Statelnfo object and its hosting

environment cross reference each other. And this is true of objects of aIl sub-types

derived from IDlnfo.

• If the computation was invoked using other types of syntax, we sim ply store the

new value within the Statelnfo object itself.

Accessing a state for its value is normally encountered in the EvalExpr class. AlI it

takes is to look up the Statelnfo object and retrieve the value from either the object

itself or the data of the resuIt relation (in the case of an ijoin invocation).

Hiding States

States are meant to be internaI to the computation in which they are defined. In the

case of a stand-alone invocation or an invocation using a select expression, the states

are not exported to the calling environment; therefore they are always invisible except

in the computation's 'aIt' blocks. An ijoin invocation, on the other hand, do es export

the states to the resuIt relation. U nless sorne special actions are taken, the states will

be accessible like any other normal domains. These special actions form the topic of

this sub-section.

A new data member isStateDom has been added to the Domain class. For an

exported state, its value is 1. Like other data members of this class (name, type and

numref), its value is saved in the system file .dom when a jRelix session finish es and

restored upon the start of a new session in the same database. Therefore, states are

recognized even across sessions.

To prevent states from being accessed directly, we first consider where a normal

domain can appear. Table 5.5 gives a summary of such places. In aIl these cases, an

error message should be issued if astate is encountered.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 110

Usage Example Handling Method

In projector list [A] in R ExpressionListToDomains

In select predicate where A in R evaluateSelect

where (A - 1) > 0 in R traverseNode

In assignment RI [Al <- A2] R2 ID List Todomains

ExpressionListToDomains

In join expression RI [A1:ijoin:A2] R2 ExpressionListToDomains

In virtual domain declaration let A be red + of B traverseNode

In relation declaration relation R(A) RelationalDeclaration

In domain declaration domain B (A) executeDeclaration

domain B comp(A)

A stands for domain; all methods are in the Interpreter class

Table 5.5: Uses of Domains in jRelix

We already know that wh en astate is exported, a hint is given to the destination

environment - its isStateDom field is set to 1. Therefore, the solution for hiding states

is quite straight-forward: In the methods (column 3) that handle the situations listed in

Table 5.5, we perform a check on the isStateDom field of a Domain object and throw an

exception if its value is 1. The exception will result in the system aborting the attempt

to access states illegally.

5.2.3 Implementation of Accessor Method

We saw how states are accessed and manipulated in main memory in Section 5.2.2.

However, an application programmer making use of an ADT (a special form of stateful

computation) would have to rely on methods provided by the ADT to gain indirect access

to the state. Examples of using such methods were given in Chapter 4. We distinguish

between two kinds of ADT methods in general: accessor methods and modifier methods.

The former can be any purely functional computation which does not modify states,

although in most cases an accessor method sim ply returns the current value of astate.

The latter are non-functional and, as the name suggests, are intended to change the

value of states. Therefore a programmer is obliged to invoke a modifier method only

within an update statement. This section presents the implementation of the accessor

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 111

method mechanism in ADT.

Surrogate Based Representation and CompTable

As the examples in Chapter 4 illustrate, a public method (i.e. a method whose name

appears in the parameter list) of an ADT is exported via an ijoin operation between the

ADT and a relation. The method becomes a computation typed domain of the result

relation, and is stored as a surrogate in the column titled with its name. Internally,

the method is still represented by a Computation object. To link a surrogate to the

Computation object it stands for, we use the CompTable object in the global environ

ment. The CompTable class in this implementation has been augmented such that the

mapping between a surrogate and a Computation object is two-way. That is, we can

look up the Computation object by giving its surrogate. Or, we can give the name of a

computation and get its surrogate.

The contents of the CompTable are dumped to the system file . expr upon exit.

Therefore all information on the exported methods of an ADT is retained across jRelix

sessions.

Transforming a Unary Singleton Relation

Wh en computation was first introduced into Aldat, it was designed to be invoked at the

top-Ievel, i.e., the result of a computation invocation is always a relation. This is still

true in this implementation. However, when it cornes to using an accessor method, this

principle complicates our life a little bit. In the example we gave in Figure 4.7, had we

skipped the declaration of speed and plunged into the following statement instead:

AllSpeeds is [name, speed'J in TopRacers;

we would have obtained AllSpeeds as a nested relation, with speed' being a relation

typed domain. The values stored in the column headed by speed' would have been

surrogates that point to the entries in the dot relation . speed'. Another ijoin would

be needed to pro duce the neat result as seen in the given example.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 112

There are two special properties of an accessor method such as GETSPEED [] that we

can exploit to avoid the complication. First, such method has only one parameter, thus

the result relation has only one domain (Le., unary). Second, the method works on one

state at a time, which implies that the result is a singleton. Intuitively, we can just

take the value of the tuple to be the value of the state. Although accessor methods

can behave differently, what we have just described is by far the most common case.

For this reason, we have implemented the machinery to lift the level of the tuple in

a unary singleton relation, hereafter referred to as "level-lifting". It actuaIly consists

of two mechanisms: one to select a value among a column of data via a vertical nop

operation; and the other to lift the level of the selected value through anonymity.

Vertical domain operations (reduction, equivalence reduction, functional mapping,

and partial functional mapping) are handled in the Actualizer class. Although differerent

in several ways, the actualization processes for these operations share sorne corn mon

attributes. They aIl use an accumulator to store intermediate results and they invoke

the horizontal "ceIl methods" to calculate the new value of the accumulator based on its

old value and the actual value of the virtual domain for the current tuple. To make the

nop12 operator available in vertical domain algebra, we just modify the "ceIl methods"

so that they treat nop the same way as they do operators like + or max. ConceptualIy,

the algorithm for red nop goes like this (note that net effect of such an implementation

is to pick a value in the column pseudo-randomly):

1. Evaluate the virtual domain for the first tuple. Store the result in accumulator.

2. Evaluate the virtual domain for the next tuple, calI the result act Val; randomly

select between the value in the accumulator and act Val; store the selected value

in the accumulator.

3. Repeat the previous step until aIl tuples are exhausted; copy the value in the

accumulator to aIl the slots in the column for the virtual domain.

12The nop operation can also he used as a hinary domain operator or ajoin operator hetween relations;

due to the space limit, the implementation details for these cases will not he given in here. Appendix C

contains pointers to the code in the system.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 113

When there is only one tuple to begin with, the red nop operation is trivial. As a

matter of fact, we could even have used fun nop in the car race example and the result

would be the same.

Level-lifting is intended for use with the reduction operations only, as aIl the tupI es

have the same value for the virtual domain and no ambuiguity results. The syntax for

level lifting resembles

let newDom be [red OP of DEXPR] in REXPR

where OP is a commutative and associative operator, DEXPR is a domain algebra expres

sion, and REXPR is a relational expression that pro duces a unary singleton result.

To implement level-lifting, we modified both the Interpreter and the Actualizer class,

in the following methods:

• Interpreter.traverseType() This method is responsible for deducing the type of

newDom upon its declaration. When the syntax tree of type OP _PROJECT or

OP _TSELECT is received, the method performs a check to see if there is only one

element in the projector list, and if the element is a reduction expression. If either

of these conditions fails, the normal routine is resumed and a type of IDLIST will

be returned. Otherwise, it calls itself to recursively deduce the type of DEXPR and

use that as the type of newDom .

• Actualizer. buildTree() This method performs run-time type checking to make sure

the result agrees with the declared type as found by the interpreter. It also trun

cates the virtual domain syntax tree as appropriate. In the case of newDom, the

no de representing red OP of DEXPR will be taken off the syntax tree (because it

does not have a name) and used as the declaration syntax for a temporary domain

reddom. In its place, a no de of type OP _IDENTIFIER will be substituted in the

original syntax tree for newDom. The name of the identifier is "reddom". Thus in

effect, two virtual domains will be actualized: reddom and newDom (see Figure 5.8).

In addition, the Domain object representing reddom will have its isRedTemp flag

set to 1. The run-time type checker will use the type found for reddom as the type

of newDom, which should agree with the conclusion reached by the interpreter.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 114

Figure 5.8: Syntax Tree Change for Level-Lifting

• Actualizer. act *Cell() These are the "ceIl methods" mentioned III Section 5.1.3.

Special handling is needed when a no de of type OP _PROJECT or OP _TSELECT

is encountered and the isRedTemp flag for the only domain in the projector list

has a value of 1. The node will be evaluated using actRelCell() as if the virtual

domain were relational. The value of the tuple in the resulting relation is then

used as the return value of the "ceIl method". In the case of a nested relation,

tupI es are extracted from the dot relation of reddom and placed into reddom itself

(except for the ".id" domain).

Declaring and Exporting a Method

Declaring an accessor method takes no more than writing the code for the method as

a nested-Ievel computation in the ADT and listing its name in the parameter list. A

method declaration inside an ADT is a jRelix statement, which is processed in the

runSingleStmt() method. Wh en a relation is ijoined with an ADT, aIl the statements

in the 'ait' block of the ADT are executed in sequence for every tuple in the relation.

Thus the method declaration statement is also processed once for each tuple. When the

declaration is encountered for the first tuple, two cases need to be distinguished:

• Case 1. This is the first time the ADT is instantiated. Therefore the global

CompTable object is ignorant of the method being declared. In this case, a new

surrogate is generated and its value stored in the result relation. A new Com

putation object is also created to represent the method. Next, we add to the

CompTable object a mapping from the surrogate to the Computation object. We

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 115

also add a reverse mapping, from the fully qualified name of the method to its

surrogate. The fully qualified name is obtained by concatenating the parent com

putation's fully qualified name to an "!" mark, followed by the method's name.

For example, the fully qualified name for the GETSPEED method in the RaceCar

ADT (Figure 4.2) is "RaceCar!GETSPEED". The use of fully qualified names in

CompTable makes it possible for different ADTs to have methods of the same

name. It also benefits the implementation of packages .

• Case 2. A previous instantiation of the ADT exists. In this case, the CompTable

object already has mappings for the method in question. Therefore, we can sim ply

look up its surrogate value and put it in the result relation.

As the system pro cesses other tuples, it will find that aIl the methods to be exported

can be found in the global CompTable, and thus the action to be taken is similar to

to that in Case 2 above. Therefore, aIl surrogates in a relation resulting from an ADT

instantiation point to the same instance of the method. Furthermore, later instantiations

of the same ADT also share this method instance.

Invoking an Accessor Method

Let us now review how the accessor method in the car race example (see Section 4.1.2)

was invoked by a user. To save the reader going back and forth, the code is re-produced

as follows:

>pr TopRacers;
+--------------------+------------+------+----------+-------+-----+------+
1 name 1 ACCELERATE 1 STOP 1 GETSPEED 1 *_a* 1 *_v*1 *_vO*1
+--------------------+------------+------+----------+-------+-----+------+
1 James Bond 1 1
1 Michael Schumacher 1 1

1 2
1 2

1 3
1 3

1 6000.01 0.0 1 0.0 1
1 5500.01 0.0 1 0.0 1

+--------------------+------------+------+----------+-------+-----+------+
relation TopRacers has 2 tuples

1 >let speed' be GETSPEED[];
2 >let speed be [red nop of curSpeed] in speed';
3 >AllSpeeds is [name, speed] in TopRacers;
4 >pr AllSpeeds;
+----------------------+---------------+
1 name 1 speed
+----------------------+---------------+
1 James Bond 1 0.0
1 Michael Schumacher 1 0.0
+----------------------+---------------+
expression has 2 tuples

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 116

In the code ab ove , TopRacers is a relation which holds two instantiated RaceCar ob

jects. Upon instantiation, methods defined in the RaceCar ADT (Figure 4.2) became

computation typed domains of TopRacers, represented by their surrogates. GETSPEED

is the accessor method we would like to invoke in order to get the current speed (value

of the hidden state) for each racer. From the definition of the ADT , we see that it has

one parameter, curSpeed, which is intended as the output.

The lin es numbered 1 to 4 in the code illustrate the typical steps involved in using

an accessor method. We now go over each of them and explain how jRelix has been

implemented to respond in each step. The following discussion is generally applicable

to aIl use cases of an accessor method.

Step 1. Declare a virtual domain to hold the result of GETSPEED(curSpeed)

e.g. let speed' be GETSPEED [] ;

Since GETSPEED is functional, we can use it in the domain algebra. Wh en the virtual

domain declaration for speed' is received by the interpreter, it first performs validity

checks and deduces the type of the new domain. Methods tmverseNode() and tm

verse Type() , which are invoked in this step, have been augmented to recognize that

GETSPEED [] is a computation invocation using the array syntax and as such, the type

of speed' should be IDLIST - a relation. In addition, this relation is found to contain

just one domain, curSpeed. Next, the interpreter records the new domain in a system

table for future use. Meanwhile, a dot relation for speed', namely . speed " is created

and recorded as weIl.

Step 2. Declare a virtual domain to hold the result of level-lifting

e.g. let speed be [red nop of curSpeed] in speed';

As per the discussion in the subsection Tmnsforming a Unary Singleton Relation

on page 111, the effect of this statement is to put the value of the tuple in the unary

singleton relation represented by speed' into speed. However, this will happen only

wh en speed is actualized. For now, the interpreter treats it like a normal virtual domain

declaration, although sorne special action is needed to deduce the type of speed. Again

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 117

in the traverseType() method, code has been added to handle the case where a virtual

domain is defined on a projection, the projector list of which consists of a reduction.

The type of the virtual domain, in this case, is taken to be the type of the expression

after the "of" keyword. speed is thus found to be of type FLOAT.

It is actually more succinct to combine steps 1 and 2 as:

let speed be [red nop of curSpeed] in GETSPEED[] ;

JRelix will respond in the same way as in the case of two separate declarations.

Step 3. Actualize the virtual domain(s)

e.g. AllSpeeds is [name, speed] in TopRacers; pr AllSpeeds;

These two statements could have been written as one, if AllSpeeds would no longer

be used in the program:

pr ([name, speed] in TopRacers);

The interpreter evaluates the view AllSpeeds before executing the "pr" commando

name is an actual domain of TopRacers, so it needs no further processing. To actual

ize the virtual domain speed, the interpreter first creates and initializes an Actualizer

object, and then invokes its actualize() method. These two simple steps abstracts away

all the details buried inside the actualizer, which we will discover now.

The most important step involved in the initialization process of an Actualizer object

is transforming the syntax tree of speed according to the rules of level-lifting (covered

in Transforming a Unary Singleton Relation on page 111). As a result, the declaration

of speed turns into two:

let redtemp be red nop of curSpeed;
let speed be [redtemp] in speed';

where redtemp is a special temporary domain usded exclusively by the level-lifting

algorithms.

When the actualize() method is called subsequently, it performs the following initial

ization steps:

1. Create an NREnvironment object (say nrObj) to hold the bindings for the domains

of TopRacers. Thus nrObj knows that GETSPEED is a computation typed domain,

whose surrogate is available as data in the Relation object for TopRacers.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 118

2. Set the current row number memory (curRow) to O.

Next, actualization begins for speed in the first tuple of TopRacers. Since speed

is of type FLOAT, the "cell method" actDoubleCell() is called and passed the syntax

tree for [redtemp] in speed'. Recognizing the expression as a relational projection,

actDoubleCell() delegates the task to the evaluateTLExpression() method of the inter

preter.

The interpreter looks up the name speed' and finds that it contains a computation

call to GETSPEED. Based on information found in the NREnvironment object (nrObj),

it obtains the surrogate value for GETSPEED as 3. This value is then used as a key to

look up the CompTable object for the computation representing GETSPEED. FinalIy, the

interpreter invokes the appropriate method in of the Computation object to han dIe the

calI.

The GETSPEED computation takes over and executes its code on the first tuple of the

relation TopRacers. In the end, it creates and returns a unary singleton relation defined

on curSpeed. The value of the tuple is the value of the hidden state _v for "James

Bond".

The interpreter passes along the result of the computation to the actualizer. Af

ter performing level-lifting, the actualizer finally puts the value of curSpeed into the

appropriate spot of the relation TopRacers.

Every tuple of TopRacers goes through the same pro cess as the first. That is, the

accessor method GETSPEED is executed once per tuple.

In order to make the above algorithm work, adjustments have been made to the

following classes: NREnvironment, Computation, Interpreter and Actualizer. Among

other things, the look-up routines of the NREnvironment class have been modified to

accomodate computations nested inside a relation. In addition, a new applySelect 0

method has been created in the Computation class. This method allows a Computation

object to handle invocation on a nested computation.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE

5.2.4 Implementation of Modifier Method

119

To use a modifier method of an ADT, we must use the update statement on the relation

that contains the method, as the internaI states will be changed by the execution of the

method, and thus the relation will also be modified. Consequently, the modifier method

is implemented mainly by enhancing the routines in the Interpreter class that handle

updates. Two such methods have been modified, as follows:

• lookUpdate() This routine generates the three parts of a trigger (see [SunOO]).

In order to create the new part, the statements after the keyword change in an

update statement are executed in turn. To support the invocation of a modifier

method, the case of a computation call (OP _COMPCALL) must be handled. The

solution is actually pretty straight-forward. First we extract the pure data part of

the affected relation (not including computation typed domain) and put it into a

temporary relation. Then we run the requested computation on each tuple of the

temporary relation. The Computation object representing the modifier method

is found via an NREnvironment object, in the same that an accessor method

is located. Finally, we combine the result with data for the computation typed

domains and create the new part of the trigger.

• do Trigger() This routine reassembles the three parts of a trigger and puts a new

version of the affected relation in the appropriate environment. The original

method was implemented with the assumption that the outer most relation af

fected by an update is a top-Ievel one. However, in the case of ADT, this need

not be the case. An update issued from within the body of a modifier method

can affect a relational domain at any level of nesting of the relation holding the

method. Therefore, sorne code changes have taken place to make the do Trigger()

routine more flexible. In addition, efforts have been made to ensure that the new

relation resulting from the update is always put in the same environment where

the old one is found. This is crucial in view of deeply nested relations, as we allow

domains of the same name to exist at different levels of nesting.

CHAPTER 5. IMPLEMENTATION OF ABSTRACT DATA TYPE 120

For the same reason that justifies an overloaded applySelect() method, we added

an overloaded applyInOut() method to the Computation class. The update routine

do Trigger() caUs this overloaded method. This takes care of the issues that arise when

a computation nested inside a relation is invoked. In particular, the computation not

only needs to know the parameter values, it also must know where to find the data in

its enc10sing relation. This is because the modifier method is meant to modify hidden

states, which are implemented as special domains in the relation resulting from an ijoin

instantiation of an ADT.

Chapter 6

Implementation of Extended

Domain Operation

This chapter describes the computation based extension to vertical domain operations.

The reader is encouraged to consult the section "System Overview" (Section 5.1) to gain

sorne knowledge of the system components, especially the Actualizer class.

6.1 Vertical Domain Actualization: Overview

A virtual domain is declared with a let statement and actualized when used in a rela

tional algebra expression. The task of virtual domain actualization is accomplished by

the Actualizer class. The methods in this class fall into two categories, those that handle

horizontal operations (which we call "cell methods"), and those that work with vertical

operations. As of the most recent version of jRelix prior to this writing, all four' types of

vertical domain operations (reduction, equivalence reduction, functional mapping and

partial functional mapping) have been implemented. The operators that appear after

the keyword ("red" or "equiv") in reductions must be commutative and associative. A

broader range of operators are available in functional mappings1
. However, in either

case, the selection of operators is limited to the ones built into the system. For example,

lsee Section 3.4.2 for a description of operators used in vertical operations

121

CHAPTER 6. IMPLEMENTATION OF EXTENDED DOMAIN OPERATION 122

the data in an integer typed domain can only be processed with the common mathemat

ical operators; vertical operations on relation typed domains can involve nothing else

than ijoin, ujoin and sjoin. This restriction has been lifted with the introduction

of a computation based extension. Before plunging into the implementation details, we

first give a brief review of the pro cess of vertical domain actualization. Such background

knowledge is intended to help the reader understand how the extension fits in with an

existing system.

6.1.1 Aigorithms

Reduction

The syntax for declaring a virtual domain with reduction is:

IIlet li newDom IIbeli IIred li OP lIofli DEXPR Il. Il ,

where newDom is the name of the virtual domain; OP stands for the operator used in

reduction; DEXPR is a domain expression.

An example of actualizing a virtual domain defined on red nop was given in Sec

tion 5.2.3. For the sake of completeness, we give the algorithm for a generic reduction

as follows2
:

1. Load the source relation, srcRel (i.e. the relation the virtual domain is actualized

in).

2. Initialize the destination relation, destRel.

(a) Create destRel, defined on the domains of srcRel and the virtual domain.

(b) Copy the data from srcRel into destRel.

3. Initialize the accumulator.

4. Set current row number, curRow, to o.
5. If there are more tuples in destRel, then

(a) Evaluate newDom based on the current tuple data.
2From now on, we assume only one virtual domain is being actualized.

CHAPTER 6. IMPLEMENTATION OF EXTENDED DOMAIN OPERATION 123

(b) If curRow = 0, assign the result of evaluation (actVal) to the accumulator.

Otherwise, do accumulator OP actVal; store the result back into the accu

mulator.

6. Repeat step 4 until an tuples are exhausted.

7. For each tuple in the destination relation, set the value of the virtual domain to

be the value in the accumulator.

Equivalence Reduction

The syntax for declaring a virtual domain with equivalence reduction is:

1I1et ll newDom IIbe ll lI equiv ll OP lIofll DEXPR IIby" BY-LIST

where BY-LIST is a comma delimited domain list.

Il.11 ,

The algorithm for actualizing equivalence reduction needs to take grouping into ac

count. Tuples that have the same value for the domains in the BY-LIST belong to the

same group. Within the group, it is essentially similar to the algorithm of reduction.

Here is the complete algorithmic description:

1. Load the source relation (srcRel) without sorting.

2. Initialize the destination relation (destRel).

(a) Create destRel on the domains of srcRel and the virtual domain.

(b) Copy the data from srcRel into destRel.

(c) Sort destRel on the domains in BY-LIST.

3. Initialize the accumulator.

4. Set the current row number, curRow, to O.

5. Initialize the start row number, start, with curRow.

6. If there are more tuples in destRel, then

(a) Evaluate newDom for the current tuple to obtain actVal.

(b) Check curRow.

1. If curRow = 0, assign (actVal) to the accumulator.
ii. If this is the last tuple, then

A. do accumlator OP actVal,

CHAPTER 6. IMPLEMENTATION OF EXTENDED DOMAIN OPERATION 124

B. update the data (between start and curRow) of destRel for the

virtual domain with the accumulator,
C. set start to be (current row + 1).

111. If this is a tuple in the middle, then
A. Check if grouping has changed. If so, then

(1) update destRel (between start and curRow) with the accumu

lator,

(2) set start to be (current row + 1).
B. Do accumulator OP actVal; store the result back into the accumula-

tor.

7. Repeat step 6 until an tuples are exhausted.

Functional Mapping

The syntax for declaring a virtual domain with functional mapping is:

"let" newDom "be" "fun" OP "of" DEXPR "order" OROER-LIST

where OROER-LIST is a comma delimited domain list.

". " ,

With functional mapping, the operation (OP) is applied to the domain (DEXPR) in an

order induced from the domains in OROER-LIST. The algorithm to actualize functional

mapping is:

1. Load the source relation (srcRel) without sorting.

2. Initialize the destination relation (destRel).

(a) Create destRel on the domains of srcRel and the virtual domain.

(b) Copy the data from srcRel into destRel.

(c) Sort destRel on the domains in OROER-LIST.

3. Initialize the accumulator.

4. Set the current row number, curRow, to O.

5. If there are more tuples in destRel, then

• if curRow = 0 or if order has changed, then

(a) calculate actVal by evaluating newDom based on the current tuple data,
(b) do accumulator OP actVal; assign the result to the accumulator,
(c) update destRel with the accumulator.

CHAPTER 6. IMPLEMENTATION OF EXTENDED DOMAIN OPERATION 125

• Otherwise, update destRel with the current value in the accumulator (by

pass).

6. Repeat step 5 until aIl tuples are exhausted.

Partial Functional Mapping

The syntax for declaring a virtual domain with partial functional mapping is:

1I1et ll newDom IIbe ll
Il par Il OP Il of Il DEXPR lIorder ll OROER-LIST IIbt' BY-LIST

Il.11 ,

Partial functional mapping is the most complicated among the four types of vertical

operations. It adds grouping on top of functional mapping. The algorithm to actualize

partial functional mapping is as follows:

1. Load the source relation (srcRel) without sorting.

2. Initialize the destination relation (destRel).

(a) Create destRel on the domains of srcRel and the virtual domain.

(b) Copy the data from srcRel into destRel.

(c) Sort destRel on the domains in BY-LIST.

(d) Sort destRel on the domains in OROER-LIST.

3. Initialize the accumulator, group memory3, and order memory4.

4. Set the current row number, curRow, to o.
5. If there are more tuples in destRel, then

• if curRow > 0 and grouping has changed, re-initialize group memory and

order memory,

• otherwise,

- if curRow = 0 or if order has changed, then
(a) calculate actVal by evaluating newDom based on the current tuple

data,
(b) do accumulator OP actVal; assign the result to the accumulator,
(c) update destRel with the accumulator.

3Grouping memory tracks the current value of domains in BY-LIST.

40rder memory tracks the current value of domains in OROER-LIST.

CHAPTER 6. IMPLEMENTATION OF EXTENDED DOMAIN OPERATION 126

Otherwise, update destRel with the current value in the accumulator

(bypass).

6. Repeat step 5 until aIl tupI es are exhausted.

6.1.2 Previously Implemented Methods

Most of the initialization steps for vertical domain actualization (load the source rela

tion, create the destination relation, copy data from source to destination) are performed

by the actualizing() method of the Actualizer class. This method also implements the

control flow for reduction. There is, however, a separate method for each of the remain

ing three types of vertical operations. They are actualizeEquiv() [Yua98], actualizeFun()

[KanDI], and actualizeParFun() [KanOl]. Apart from handling grouping and ordering,

two other important tasks accomplished by these methods are: (1) evaluating the verti

cal domain expression for the current tuple, and (2) updating the accumulator. The first

task is delegated to the "ceIl methods" (see Table 5.3 for a list of these methods), while

the second is handled separately in each of the four methods for vertical operations.

6.2 Computation Based Extension

The extension to the vertical domain operations described in this thesis is based on com

putation. We know from the previous section that the process of actualization involves,

at sorne point, updating the accumulator with the result of executing accurnulator OP actVal,

where actVal cornes from the "ceIl methods" and OP from the virtual domain declara-

tion. Extending the vertical domain operations means aIlowing user defined operators to

be used as OP. That is to say, OP is no longer limited to the built-in operators such as "+"

or "ijoin". It can be any computation (or the operation carried out by a block of com

putation, to be precise) that satifies the constaints imposed by reduction or functional

mapping.

To support this kind of extension, we have enhanced the existing system with new

syntax, which was introduced in Section 4.2.2. Consequently, the code in several classes

CHAPTER 6. IMPLEMENTATION OF EXTENDED DOMAIN OPERATION 127

has been modified to recognize the new syntax and react accordingly.

6.2.1 Additions to the Constant Class and Parser Actions

To distinguish an extended vertical operation from an ordinary one, we defined a new

opcode for the extended operation in the Constant c1ass: OP _REDFUNCALL. Wh en

the parser encounters a virtual domain dec1aration compliant with the extended syntax,

it sets the opcode field of the SimpleNode object for the declaration to OP -.REDFUNCALL.

In the ordinary case, this opcode field holds a constant corresponding to a system defined

operator, such as OP _PLUS.

A second parser action has been added to mark a "redop" or "funop" computation

block during the parsing process. The bits field of the SimpleNode (see Section 5.1.3)

object representing a "redop" block has a value of 1; the value of bits of a "funop"

block node is 2.

6.2.2 Additions to the CompBlock Class

Two new boolean data members have been added to the CompBlock class: redop and

funop. Wh en the CompBlock class constructor is invoked to create a new CompBlock

object from a SimpleNode object, it checks the bits field and sets redop to true if its

value is 1. If the bits field has a value of 2, both redop and funop are set to true.

AU other cases result in both being false. The redop and funop fields will be used for

validity check purposes in the virtual domain actualization process.

6.2.3 Additions to the Actualizer Class

In view of the vertical domain actualization pro cess given in Section 6.1, the extension

theoretically only affects the way the accumulator is updated. In reality, the change of

syntax necessitates corresponding code changes in the Actualizer class in general.

CHAPTER 6. IMPLEMENTATION OF EXTENDED DOMAIN OPERATION 128

General Impact

A number of methods of the Actualizer class have been slightly modified to handle the

syntax change. For example, the code in actualizeEquiv(} to extract the BY-LIST from

an equivalence reduction expression has been augmented with a test for OP _REDFUNCALL,

as shown in Figure 6.1. The position index of the child node corresponding to the BY

LIST is incremented by one, due to the addition of an extra no de for the computation

calI (see Figure 6.2 for an illustration). AlI general changes to the Actualizer class are

of this nature.

SimpIeNode orderby = null;
if(virtree.opcode != OP_REDFUNCALL)

orderby = (SimpIeNode)virtree.jjtGetChild(l);
else

orderby = (SimpIeNode)virtree.jjtGetChild(2);

Figure 6.1: Example of General Code Change in the Actualizer Class

Figure 6.2: Syntax Tree of Extended Vertical Operation

The RedFunCallAccumNode Method

A new method, RedFunCallAccumNode(}, has been added to the Actualizer class. AlI

the methods for vertical domain actualization call this method when the accumulator

needs to be updated in the extended case. This method accepts three arguments: the

accumulator, the current value of the virtual domain (actVal), and the type of the

virtual domain. The algorithm for this method is as folIows:

1. If the accumulator is empty, assign actVal to the accumulator and exit.

2. Find the Computation object whose name is specified in the computation calI. If

no such computation is found, throw an exception.

3. Calculate the type of the target block.

CHAPTER 6. IMPLEMENTATION OF EXTENDED DOMAIN OPERATION 129

• If no parameter list is present, assume the block type to be 0112 (decimaI3) .

• Otherwise calculate the block type from the parameter list. Specifically,

(in, in, out) ==> block type is 0112 (decimal 3)
(in, out, in) ==> block type is 1012 (decimal 5)
(out, in, in) ==> block type is 1102 (decimaI6)

Any other combination of "in" and "out" results in an exception.

4. Find the computation block according to the block type calculated in the previous

step. If no mat ching block is found, throw an exception.

5. Check the redop and funop fields of the found block and verify the selected block

is suit able for the vertical operation requested. That is, reduction and qui valence

reduction require redop == true; functional mapping and partial functional map

ping require (redop 1 1 funop) == true.

6. Verify that the type of the parameters of the computation matches that of the

virtual domain being actualized.

7. Find out the names of the two "in" parameters (call them firstIn and secondIn)

and the position of the "out" parameter (outPos).

8. Construct a syntax tree that corresponds to:

where firstIn=firstVal and secondIn=secondVal.

firstVal is the value of the accumulator and secondVal is the current value of

the virtual domain. In the case of an IDLIST typed virtual domain, two tempo

rary relations are created and registered into the environment; the names of the

relations replace firstVal and secondVal.

9. CalI the applySelect() method of the Computation object with the select predicate

constructed in the previous step.

10. Extract the value of the output from the result of the computation invocation.

The position of the output is indicated by outPos, found in step 7.

11. Place the extracted value (or relation, in the case of an ID LIST typed virtual

domain) into the accumulator.

Chapter 7

Conclusions

This chapter begins with a summary and discussion of the work that has been accom

plished. This is followed by suggestions for potential extensions and en han cements to

the jRelix system in the future.

7.1 Conclusions

7.1.1 Summary of Present Work

This thesis documents the design and implementation of two new features to the database

programming language, jRelix. Utilizing a nested relational model and an improved pro

cedural abstraction facility, ADTs are declared as computations encapsulating states

with their accessorjmodifier methods. Objects of an ADT can be instantiated via a

single join. As computation caUs are embedded into updates and virtual domain actual

ization, objects are manipulated and accessed solely through the methods exported by

the ADT.

The vertical domain algebra empowers jRelix with the capability to combine values

along a domain using system defined operators. A mechanism has now been instaUed to

run user defined computations as well. As a matter offact, aU built-in vertical operations

can be similated by user-defined operations.

130

CHAPTER 7. CONCL USIONS 131

With these new features, application programmers of jRelix can now handle complex

data objects on a higher conceptuallevel, using a modular approach.

7.1.2 Discussion

The database programming language described in this thesis has been built upon general

purpose formalisms. As such, it is theoretically capable of supporting any application

without special syntax or semantics. For example, it can handle geo-spatial computa

tions required by a Geographic Information System (GIS). This is significantly different

from the practices in the commercial world where GIS has grown independently of

database languages.

To illustrate, we now give a code sketch for map overlay, a typical operation of GIS.

An ADT, MAP, encapsulates the quad-edge representation [GS85] of a map and its

associated spatial operations (e.g. splice). The quad-edge representation consists of

three relations [MBC+01]: QuadEdge, VertFace, and Geom. The ADT is placed in a

package, Spatial, together with other ADTs, as shown below1:

comp Spatial (MAP, EnumSeqADT) is
{ comp MAP(init,splice,makeEdge,delEdge) is

state QuadEdge(el,dl,e2,d2):
state VertFace(e,orig,dest,l,r):
state Geom(vf,x,y):
{ comp init(q,v,f) is

{ QuadEdge (- q;
VertFace <- V;

Geom <- f;

}:

};

comp splice (pair) is
{ ... };

comp makeEdge (pnts) is
{ ... }:

comp delEdge (edges) is
{ ... }:

Suppose that the above code has been given in a library. Furthermore, the library

also supplies an overlay computation which consists of a redop block for calculating the

overlay of two maps (map overlay is associative and commutative).

IThe details of the ADT methods are not shown, as our intention is to show how the overlay problem

can be tackled using jRelix constructs. The ensueing code adopts the same approach.

CHAPTER 7. CONCLUSIONS

let Qi be MAP;
let Q2 be MAP;
let Q3 be MAP;
comp overlay(Q1,Q2,Q3) is
redop
{ «code to calculate the overlay of Qi and Q2

«and assign the result to Q3

};

132

When an application programmer needs to perform map overlay, he or she will first

include the spatial library code, then instantiate and initialize map objects as foUows

(Q, V, T are initial values for the quad-edge representation):

relation InitRel(ID,Q,V,T) (-
{(101,{ ... },{ ... },{ ... }),

(102,{ ... },{ ... },{ ... }),
(103,{ ... },{ ... },{ ... })};

Maps <- InitRel ijoin ([MAP] in Spatial);
update Maps change

(update MAP change init(in Q,in V,in T);
Maps <- [ID,MAP] in Maps;

In order to calculate the overlay of aU three maps, the application programmer just

needs one statement, taking advantage of the extended reduction and the level-lifting

facility:

OverLayMap (- [red overlay of MAP] in Maps;

What we have just seen is an example of jRelix handling domain-specific application

without special extensions. This capability is beyond any commercial relational database

systems known as of this writing.

7.2 Future Work

7.2.1 Object Orientation and jRelix

JRelix supports encapsulation by ADT and instantiation by joining an ADT with an ap

propriate relation. The other main feature of object-orientation that is not yet available

is inheritance.

The term inheritance describes mechanisms in which type definitions or implemen

tations can be related to one another through a partial order [AR90]. The basic notion

CHAPTER 7. CONCLUSIONS 133

is that we can modify type definitions incrementaIly by adding subtype definitions to

enhance or override the original type. The combination of the supertype definition and

the subtype modifications produces a completely defined new type.

A model of inheritance in jRelix could be built upon a special implementation of

joining ADTs. Consider the following definition for a persan ADT:

comp pers on (init_name, init_age, getName, getAge) is
state name strg;
state age intg;
{ name <- init_name;

age <- init_age;

};

comp getName(myName) is
{ myName <- name;};
comp getAge(myAge) is
{ myAge <- age;};

We can define a student ADT as a subtype of persan:

comp student(init_ID, getID) is
state ID long;
{ ID <- init_ID;

};

comp getID(myID) is
{ myID <- ID;};

student <- student ijoin person;

The first part of the code above gives the special information and operation on a

student. The second part specifies student as a subtype of persan by means of an ijoin.

The semantics of this assignment are special in that

• the join operation produces the complete definition of the subtype, and

• the name of the subtype must appear to the left of the assignment operator.

An alternative notation could be used as syntactic sugar for the assignment statement,

as foIlows:

student isa person;

From this point on, we may instantiate student objects in the usual way (e.g. via ijoin).

The instantiated objects would have name, age and ID as hidden states, as weIl as aIl

three methods of the student type.

CHAPTER 7. CONCLUSIONS 134

To implement this, the Interpreter class and the Computation class will need

adjustments to handle the special semantics of inheritance. One possible solution is to

add a supertype field to the Computation class. In the previous example, we could set

student . supertype to person upon the "isa" operation. Then, given the statement

Class <- initRel ijoin student;

the interpreter should be able to

• recognize student as a subtype of persan by checking student. supertype

• interpret the assignment as if it were:

Class <- (initRel ijoin person) ijoin student;

7.2.2 red ujoin vs. red UJOIN

With the support for user-defined computations in vertical domain operations, we may

actually simulate any of the built-in vertical operations. Consider the following definition

of UJOIN:

comp UJOIN(Rl,R2,R3) is
{ R3 <- Rl ujoin R2;
};

Given a nested relation A(a, R) where R is a relation typed attribute, the expression

[AllR] in A would pro duce the same result, whether we define

let AllR be red ujoin of R;

or

let AllR be red UJOIN of R;

However, when speed is a concern, the second form of virtual domain declaration

should be avoided. The current implementation relies on the user-defined computation

being called once for each tuple, not a very efficient solution. Future work may explore

ways to improve execution efficiency in such cases.

CHAPTER 7. CONCLUSIONS 135

7.2.3 Computation Implementation: Loose Ends

JRelix currently employs the pass-by-name parameter passing method for computation.

With this method, the actual parameter is substituted for the corresponding formaI

parameter in aU its occurrences upon invocation using the ijoin syntax. TheoreticaUy

speaking, any expression could be used as input parameters in a computation caU. For

example, given the declarations in Figure 3.35 and Figure 3.36, we could say

SuperSet (in where name> "G" in G2, in [name] in G3, out supt)

However, in reality the parse will report an error, as it has been programmed to accept

either a constant or an identifier as a parameter.

A second case of the imperfect implementation of computation is illustrated as fol

lows:

comp Select(field,relln,relOut) is
{ relOut <- [field] in relln;
};

relation R(a,b) <- { ... };
Select(in b, in R, out B);
Select(in a, in R, out A);

The intention of the last two statements is for A to evaluate to

[a] in R

and B to

[b] in R

However, this cannot be achieved with the current implementation. This is because aU

domains of a computation must be unambiguously defined before the computation itself.

But in our example, the domain that relOut is defined on is unknown until irivocation

time. It may be desirable to change the implementation such that the output parameters

of a computation are aUowed to be left undefined until invocation.

FinaUy, the so-caUed "multi-valued computation" [Bak98] using an "also" syntax has

not been implemented. Future work is needed to provide support for this functionality.

Appendix A

Backus-N aur Form for the Parser

This appendix shows the Backus-Naur form (BNF) of the grammar in our implementa

tion. The convention of the BNF definition is shown in Table A.l.

Form Meaning

<SYMBOL> SYMBOL is a definition of token and must be substituted

"SYMBOL" SYMBOL is reserved word or symbol and must be typed as it is

SI 1 S2 either SI or S2 can be used

(SYMBOL)? SYMBOL is optional

(SYMBOL)* SYMBOL may appear zero or more times

(SYMBOLS) grouping SYMBOLS as one unit for high precedence

Table A.l: BNF convention.

The grammar is created from the grammar specification (in file Parser.jjt), using the

JavaCC documentation generator called jjdoc. Because JavaCC is a top-down parser,

left-recursion is not allowed in the grammar.

There are five token definitions: <EOF> for end-of-file; <IDENTIFIER> for identi

fier; <INTEGER_LITERAL> for integer constants; <FLOAT _LITERAL> for floating

constants; and <STRING_LITERAL> for string constants. The formaI definitions of

identifier and constants are given in [Hao9S].

136

APPENDIX A. BACKUS-NAUR FORM FOR THE PARSER 137

Start :: = Command n; n 1 Statement n; n
1 n;n 1 <EDF>

Command :: = nhelpn «IDENTIFIER»?
1 nquit n

1 ninput n <STRING_LITERAL>
1 ndebugn

1 lit ime It
l "trace"
1 nddn IDList
1 ndr n (IDList

1 EventName (n [n
IIprll (Expression

1 EventName (n [n
IIsdll «IDENTIFIER»?
II sr" «IDENTIFIER»?
"sen <IDENTIFIER>
"srd"
nprint n <STRING_LITERAL>
"ssd"
"ssr ll

"undo ll

IDList

IDList

n]n)?)

n]n)?)

neventonn EventName (n[n IDList n]n)?
neventoffn EventName (n[n IDList n]n)?

Statement ::= SequentialStatement
SequentialStatement ::= ParallelStatement

(n __ n ParallelStatement)*
ParallelStatement ::= ChoiceStatement

(ni ln ChoiceStatement)*
ChoiceStatement ::= PrimaryStatement

(n??n PrimaryStatement)*
PrimaryStatement ::= Declaration

1 Assignment
1 Update
1 ComputationCall
1 Conditional
1 ForLoop
1 WhileLoop
1 Exit
1 DeadLock
1 Exec
1 n(n Statement n)n
1 StatementBlock

StatementBlock ::= n{n Statement
(II;n Statement)* (n in)? n}n

Conditional ::= nif n Expression
nthenn (Statement

(nelse n (Statement
ForLoop ::= (nforn Identifier)?

(nfromn Expression)?
(nto n Expression)?
(nbyn Expression)?
ndo n Statement

Command)
Command»?

WhileLoop ::= n"hile n Expression ndo n Statement
Exit ::= nexit n

DeadLoek ::= ndeadlockn
Exee ::= nexec n Identifier
Declaration::= nrelation n IDList n(n IDList n)n

(Initialization)?
Identifier (ninitialn Expression)?
nisn Expression (ntarget n Expression)?
ndomainn IDList Type
nlet n (Identifier 1 Eval)
(ninitialn Expression)?
"be" Expression
(ncompn 1 ncomputationn) CompName

n(n (ParameterList)? n)n
nisn ComputationBody

Initialization ::= n<_n (n{n ConstantTupleList n}n
Identifier 1 FilePath)

1 "repn (Identifier 1 FilePath)
1 nisn (Identifier 1 FilePath)

ConstantTupleList ::= (ConstantTuple
(n,n ConstantTuple)*)?

ConstantTuple :: = n (n Constant (n, n Constant) * n) n
Constant ::= LiteraI 1 n{n ConstantTupleList n}n
Identifier ::= <IDENTIFIER>
FilePath ::= <STRING_LITERAL>
Assignment ::= Identifier

(AssignDperator Expression
1 n[nIDList AssignDperator

ExpressionListn]n Expression)
AssignDperator ::= n<_n 1 n<+n
Update ::= nupdate n Identifier

(UpdateDperator Expression
nchange n (StatementList)?

(nusingn UsingClause)?
n[nIDList UpdateDperator ExpressionListn]n
Expression)

UpdateOperator ::= naddn 1 ndelete n

StatementList ::= Statement (n, n Statement)*
UsingClause ::= Identifier
1 n(n Expression n)n
1 JoinDperator Expression
1 n [n ExpressionList n: n JoinDperator

(n:n)? ExpressionList n]n Expression
IDList ::= Identifier (n, n Identifier)*
ExpressionList ::= Expression (n, n Expression)*
Expression ::= Disjunction
Disjunction Conjunction

«nln 1 norn) Conjunction)*
Conjunction ::= Comparison

«n8i:n 1 nandn) Comparison)*
Comparison ::= Concatenation

(ComparativeDperator Concatenation)?
Concatenation ::= MinMax (ncat n MinMax)*
MinMax ::= Summation

(MinMaxDperator Summation)*
Summation ::= JoinExpression

(AdditiveDperator JoinExpression)*
JoinExpression ::= Projection (

(JoinDperator Projection
n[nExpressionList n:n JoinDperator (n:n)?
ExpressionListn]n Projection»*

Projection ::= Projector
«ninn 1 nfromn) Projection

Projector ngedit n Expression
ngedit n Expression
Selection)
Selection

Projector ::= (QuantifierOperator)?
n[" (ExpressionList)? n]n

Selection ::= Selector 1 QSelector 1 Term
Selector ::= (n"here n 1 n"henn) Expression

(ninn 1 nfromn) Projection
1 nedit n (Projection)?
1 nzordern Projection

QSelector ::= nquantn QuantifierList
«n"heren 1 n"henn) Expression)?
(ninn 1 nfrom") Projection

QuantifierOperator ::= n n 1 n%n 1 n#n

APPENDIX A. BACKUS-NAUR FORM FOR THE PARSER

QuantifierList ::= Quantifier ("," Quantifier)*
Quantifier::= "(" Expression ")" Expression
Terrn ::= Factor (MultiplicativeOperator Factor)*
Factor ::= UnaryOperator Factor 1 Power
Power::= Primary ("**" Power)*
Primary ::= LiteraI

QuantifierOperator
ArrayElement
PositionalRename
Identifier
Cast
"(" Expression ")"
Pick
AttribsOf
Quote
Transpose
Function
IfThenElseExpression
VerticalExpression

ArrayElement ::= Identifier "[" ArrayIndexList "]"
ArrayIndexList ::= (Expression)?

("," (Expression)?) *
Pos i t ionalRename :: = Ident if ier "(" (IDList)? ")"
Cast::= "(" Type ")" Primary
Pick ::= "pick" Selection
AttribsOf ::= "AttribsOf" Selection
Eval ::= "eval" Expression
QuoteIdentifier ::= (Quote 1 Identifier)
Quote ::= "quote" Identifier
Transpose ::= "transpose" ExpressionList
Function ::= FunctionOperator "(" Expression ")"
Li teral :: = "null"

l "de"
l "dk"
l "true"
l "false"
1 (SignOperator)?

«INTEGER_LITERAL> 1 <FLOAT_LITERAL»
<NUMERIC_LITERAL>
<STRING_LITERAL>

SignOperator ::= "+,, l "-,,
IfThenElseExpression ::= "if" Expression

"then" Expression
"else" Expression

VerticalExpression ::= "red"
(ComputationCall 1 AssoCommuOperator)
"of" Expression

l "equiv"
(ComputationCall 1 AssoCommuOperator)
"of" Expression "by" ExpressionList

l "fun"
(ComputationCall 1 OrderedOperator)
"of" Expression
"order" ExpressionList

1 II par"
(ComputationCall 1 OrderedOperator)
"of" Expression
("order" ExpressionList "by" ExpressionList

l "by" ExpressionList "order" ExpressionList)
Type::= ("univ" l "universal")

1 ("attr" l "attribute")
1 ("bool" l "boolean")
l "short"
1 ("intg" "integer")
l "long"

("float" l "real")
"double"
II number"
("strg" "string")
"text"
("stmt" "statement")
("expr" "expression")
("comp" "computation") "(" (IDList)? ")"
"(" IDList ")"

AssoCommuOperator ::= (" 1" l "or")
1 ("&;" l "and")
1 I1min"
1 "max"
l "+11

1 ("ijoin" l "natjoin")
l "ujoin"
l "sjoin"
1 "*"
l "nop"

OrderedOperator AssoCommuOperator
l "catit
1 "_11

l "/"
l "mod"
1 11**"
l "pred"
1 flsuce"

ComparativeOperator ::= "substr"
l "="
1 Il!="
1 ")"

1 11<"
l ")="
l "<=,,
MinMaxOperator ::= "min" l "max"
AdditiveOperator ::= "+" l "-"
JoinOperator ::= "nop" 1 MuJoin

1 CC"!" l "not"))? SigmaJoin
MuJoin ::= ("ijoin" l "natjoin")

l "ujoin"
l "djoin"
l "sjoin"
l "ljoin"
l "rjoin"
l "dljoin"
l "drjoin"

SigmaJoin ::= ("icomp" l "natcomp")
l "eqjoin"
l "gtjoin"
1 ("gejoin" "sup" l "div")
l "ltjoin"
1 ("lejoin" "sub")
1 ("iejoin" "sep")

MultiplicativeOperator ::= "*" l "/" l "mod"
UnaryOperator ::= 11+" l "_fi 1 ("!" l "not")
FunctionOperator ::= "abs"

l "sqrt"
1 "sin"
1 lIasinli
1 "COS"

l "acos"
l "tan"
1 "atan"
l "sinh"
l "cosh"

138

APPENDIX A. BACKUS-NAUR FORM FOR THE PARSER

"tanh l1

"log"
"log10"
Il round"
"ceilll
"floor ll

lIisknown"
IIchr"
lIord"

ParameterList :: = Parameter ("," Parameter) *
Parameter ::= <IDENTIFIER> (":" "seq")?
ComputationBody ::= ComputationVariableDeclaration

ComputationBlock
("aIt" ComputationBlock)*

ComputationBlock ::= ("redop" l "funop")?
"{" ComputationStatements "}"

ComputationVariableDeclaration
::= (LocalVariableDeclaration

1 StateVariableDeclaration)*
LocalVariableDeclaration ::= "local" IDList Type ";"
StateVariableDeclaration ::= "state" IDList Type";"
ComputationStatements ::= CompStatement «";" CompStatement

l "also" CompStatement))* (";")?
CompStatement ::= Statement 1 Command
ComputationCal1 ::= Identifier "(" (CaIIParameterList)? ")"
CallParameterList ::= CallParameter ("," CaIIParameter)*
CallParameter ::= ("in" (LiteraI 1 Identifier)?)

1 ("out" (LiteraI 1 Identifier)?)
CompName ::= CompIdentifier 1 EventName (" [" IDList "] ")?
CompIdentifier ::= <IDENTIFIER>
EventName ::= (Prefix ":")? Action ":" (Identifier)?
Prefix ::= "pre" l "post"
Action ::= "add" l "delete" l "change" l "contains"

"cmpcontains" l "cmpwithin" l "intersect" l "within"
l "withindist"

139

Appendix B

JRelix System Class Map

Class Name Description Category
JRelix Main Program Front-end
JRelixInputStream Extends BlockInputStream Front-end
JRelixParser Extends Parser Front-end
Parser* Language Parser Front-end
ParserTokenManager* Supports Parser Front-end
ParserConstants* Supports Parser Front-end
ParserTreeConstants* Supports Parser Front-end
ParseException * Supports Parser Front-end
ParseError Supports Parser Front-end
ASCILCharStream* Supports Parser Front-end
Token* Supports Parser Front-end
TokenMgr Error* Supports Parser Front-end
Node* Syntax Tree Node Structure Front-end
SimpleNode Enhanced Node Structure Front-end
Interpreter Interprets Syntax Trees Front-end
Pretty Print Formats Display Output Front-end
Constants Operation Constants Front-end, DB Engine
InterpretError Supports Interpreter Front-end, DB Engine
Global Global VariablesjMethods Front-end, DB Engine
Relation Implements Relational Algebra DB Engine
RelTable Supports Relation Lookup DB Engine
RelInfo Extends IDInfo for Relation DB Engine
Domain Implements Domain Algebra DB Engine
DomTable Supports Domain Lookup DB Engine
DomInfo Extends IDInfo for Domain DB Engine
Actualizer Implements Virtual Domain Actualization DB Engine
Actualizer76 Supplements Actualizer DB Engine
Note: Files with "'l''' are machine generated; Gedit'l"l' are aIl the classes
the name of which begin with "Gedit"

Table B.1: Map of JRelix Classes, Part 1

140

APPENDIX B. JRELIX SYSTEM GLASS MAP 141

Class Name Description Category
Environment System Environment DB Engine
SemanticChecker Semantic Check of User Input DB Engine
SemanticCheckError Supports Semantic Check DB Engine
TypeConstants Data Type Constants DB Engine
Surrogate Surrogate Values DB Engine
Utility Various Utilities DB Engine
NREnvironment Nested Relations Environment DB Engine
NRInfo Extends IDInfo for Nested Environment DB Engine
Computation Implements Computation DB Engine
CompBlock Supports Computation DB Engine
CompTable Supports Computation DB Engine
ID Info Stores Variable Information DB Engine
LocalInfo Extends IDInfo for Local Variables DB Engine
ParamInfo Extends IDInfo for Parameters DB Engine
StateInfo Extends IDInfo for States DB Engine
StateInfo_2002 Supplements StateInfo DB Engine
EvalExpr Evaluation of Expressions DB Engine
Gedit** GIS Editor Related Classes DB Engine
AddLayersDialog Supports GIS DB Engine
CvDraw Supports GIS DB Engine
Legend Supports GIS DB Engine
TriggerNode Supports Active Database DB Engine
CTrigger Supports Active Database DB Engine
number Implements Numerical Data Type DB Engine
ExprEntry Entry for .expr System File DB Engine, DB Maintainer
ExprTable Supports .expr Maintenance DB Engine, DB Maintainer
BlockInputStream Disk Input Operations DB Maintainer
BlockOutputStream Disk Output Operations DB Maintainer
Note: Files with "*,, are machine generated; Gedit** are aU the classes
the name of which begin with "Gedit"

Table B.2: Map of JRelix Classes, Part 2

Appendix C

Summary of Enhancements

Class Significance
StateInfo_2002 (new) Provides storage for states
Actualizer Supports OP -FUNCTION

Supports OP ~OP
Supports level lifting of anonymous domain
Supports accessor method caU in ADT
Supports extended vertical domain operation

CompB1ock Supports extended vertical domain operation
CompTable Supports nested computation lookup
Computation Supports hidden states

Supports enhanced set of statements and commands
Supports invocation of nested accessor method
Supports invocation of nested modifier method

Constants Supports OP -REDFUNCALL
Domain Supports hidden states

Supports level lifting of anonymous domain
EvalExpr Supports OP -FUNCTION

Supports states
Global Supports hidden state serialization
ID Info Supports type of subclass object
Interpreter Supports top level OP ~OP

Supports hidden states
Supports levellifting of anonymous domain
Supports executing statements and commands
from inside a computation
Supports update with computation caU

LocalInfo Supports relation typed local variable
NREnvironment Supports lookup of nested computation
Parser Supports new syntax related to extended domain operation
StateInfo Supports states

Table C.l: New and Modified Classes

142

Bibliography

[ABS4] S. Abiteboul and N. Bidoit. Non first normal form relations to represent hier
archically organized data. In Proceedings of the 2nd ACM SIGACT/SIGMOD
Symposium on Principles of Database Systems, pages 191-200, 1984.

[ABCea76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, and et al. System r: Relational
approach to database management. ACM Trans. Database Systems, 1(2):97-137,
1976.

[AH90] Timothy Andrews and Craig Harris. Combining language and database advances
in an object-oriented development environment. In Stanley B. Zdonik and David
Maier, editors, Readings in Object-Oriented Database Systems. Morgan Kaufmann
publishers, 1990.

[AM84] M. P. Atkinson and R. Morrison. Persistent first class procedures are enough.
Lecture Notes in Computer Science, 181:223-240, 1984.

[And99] Maxim Andreev. Operations on text in a database programming language. Mas
ter's thesis, McGill University, Montreal, Canada, 1999.

[Bak98] Patrick Baker. Design and implementation of database computations in Java.
Master's thesis, McGill University, Montreal, Canada, 1998.

[BCG+90] Jay Banerjee, Hong-Tai Chou, Jorge F. Garza, Won Kim, Darrell Woelk, Nat Bal
lou, and Hyoung-Joo Kim. Data model issues for object-oriented applications. In
Stanley B. Zdonik and David Maier, editors, Readings in Object-Oriented Database
Systems. Morgan Kaufmann publishers, 1990.

[Bee88] C. Beeri. Data models and languages for databases. In ICDT '88: 2nd Interna
tional Conference on Database Theory. Springer-Verlag, Bruges, Belgium, 1988.

[Bid87] N. Bidoit. The verso algebra or how to answer queries with fewer joins. Journal
of Computer and System Sciences, 35(3):321-364, 1987.

[BM88] F. Bancilhon and D. Maier. Multilanguage object-oriented systems: Newanswer
to old database problems? In K. Fuchi and L. Kott, editors, Future Generation
Computer Il. North Holland, Amsterdam, 1988.

[CDRS86] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita. Object and file
management in the EXODUS extensible database system. In Proceedings of the
International Conference on Very Large Databases, Kyoto, Japan, 1986.

143

BIBLIOGRAPHY 144

[Cha02] Andy S. Chang. Implementation of sigma-joins in a nested relational algebra, 2002.
Master's Report, McGill University, Montreal, Canada.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Communica
tions of the ACM, 13(6):377-387, June 1970.

[Cod72a] E. F. Codd. Database systems: Further normalization of the data base relational
model. In R. Rustin, editor, Courant Computer Science Symposium 6. Prentic
Hall, 1972.

[Cod72b] E. F. Codd. Database systems: Relational completeness of data base sublanguages.
In R. Rustin, editor, Courant Computer Science Symposium 6. Prentic-Hall, 1972.

[Dat81] C. J. Date. An Introduction to Database Systems, 3rd Edition. Addison-Wesley,
Reading, MA, 1981.

[DKA +86] P. Dadam, K. Küspert, F. Andersen, H. Blanken, R. Erbe, J. Günauer, V. Lum,
P. Pistor, and G. Walch. A DBMS prototype to support extended nf2 relations:
An integrated view on fiat tables and hierarchies. In Proc. ACM SIGMOD Conf.
on Management of Data, pages 356-366, Washington, 1986. ACM.

[DMB+87] U. Dayal, F. Manola, A. Buchmann, U. Chakravarthy, D. Goldhirsch, S. Heiler,
J. Orenstein, and A. Rosenthal. Simplifying complex objects: The PROBE ap
proach to modelling and querying them. In H. J. Schek and G. Schlageter, editors,
Proc. GI Conf. on Database Systems for Office, Engineering an d Scientific Ap
plications, pages 17 - 37. Springer Verlag, 1987.

[DvG88] A. Deshpande and D. van Gucht. An implementation of nested relations. In Proc.
Int. Conf. on Very Large Databases, pages 76-87, Los Angeles, 1988. Morgan
Kaufmann.

[Fre87] J. C. Freytag. A rule-based view of query optimization. In Proc. ACM SIGMOD
Conf. on Management of Data, pages 173 - 180, San Francisco, 1987. ACM.

[FT83] P. C. Fischer and S. J. Thomas. Operations on non-first-normal-form relations. In
Proceedings of IEEE COMPSAC'83, pages 464-475, 1983.

[FvG85] P. C. Fischer and D. van Gucht. Determining when a structure is a nested relation.
In Proceedings of the International Conference on Very Large Databases, pages
171-180, Stockholm, 1985.

[GD87] G. Graefe and D. J. DeWitt. The EXODUS optimizer generator. In Proc. ACM
SIGMOD Conf. on Management of Data, pages 160 - 172, San Francisco, 1987.
ACM.

[GP99] Peter Gulutzan and Trudy Pelzer. SQL-99 Complete, Really. R & D Books, 1999.

[GS85] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74-123,
April 1985.

BIBLIOGRAPHY 145

[Gut77] John Guttag. Abstract data types and the development of data structures. Com
munications of the ACM, 20(6):396-404, June 1977.

[Hao98] Biao Hao. Implementation of the nested relational algebra in Java. Master's thesis,
McGill University, Montreal, Canada, 1998.

[He97] Hongbo He. Implementation of nested relations in a database programming lan
guage. Master's thesis, McGill University, Montreal, Canada, 1997.

[HSW75] G. D. Held, M. R. Stonebraker, and E. Wong. INGRES: a relational database
system. In Proc. AFIPS National Computer Conference, pages 409 - 416. AFIPS
Press, 1975.

[Jia90] B. Jiang. A suit able algorithm for computing partial transitive clos ures in
databases. In Proceedings of the IEEE Conference on Data Engineering, Los An
geles, 1990.

[JS82] G. Jaeschke and H. J. Schek. Remarks on the algebra of non-first-normal-form
relations. In Proceedings of the First ACM SIGACT/SIGMOD Symposium on
Principles of Database Systems, pages 124-138, Los Angeles, 1982.

[KanOl] Sungsoo Kang. Implementation of functional mapping in nested relation algebra,
2001. Master's Report, McGill University, Montreal, Canada.

[KK89] H. Kitagawa and T. L. Kunii. The Unnormalized Relational Data Model for Office
Form Processor Design. Springer-Verlag, Tokyo, 1989.

[LaI86] N. Laliberté. Design and implementation of a primary memory version of aldat.
Master's thesis, McGill University, Montreal, Canada, 1986.

[Lar88] P. A. Larson. The data model and query language of LauRel. IEEE Database
Engineering Bulletin, 11(3):23-30, September 1988.

[Lin90] V. Linnemann. Recursive functions in database language for complex objects.
Information Systems, 15(6):627-645, 1990.

[LMP87] B. Lindsay, J. McPherson, and H. Pirahesh. A data management extension archi
tecture. In Proc. ACM SIGMOD Conf. on Management of Data, pages 220 - 226,
San Francisco, 1987.

[Loh88] G. M. Lohman. Grammar-like functional rules for representing query optimization
alternatives. In Proc. ACM SIGMOD Conf. on Management of Data, pages 18 -
27, Chicago, 1988. ACM.

[LRV90] Christophe Lécluse, Philippe Richard, and Fernando Velez. O2 : An object-oriented
data model. In Stanley B. Zdonik and David Maier, editors, Readings in Object
Oriented Database Systems. Morgan Kaufmann publishers, 1990.

[LS88] R. Lorie and H. J. Schek. On dynamically defined objects and SQL. In Proceedings
of the 2nd Workshop on Object-Oriented Database Systems, 1988.

BIBLIOGRAPHY 146

[LZ74] B. H. Liskov and S. N. Zilles. Programming with abstract data types. ACM
SIGPLAN Notices, 9(4):50-59, April 1974.

[Mak77] A. Makinouchi. A consideration on normal form of not-necessarily-normalized
relation in the relational data model. In Proceedings of the 3rd International Con
ference on Very Large Data Bases, pages 447 - 453, Tokyo, Japan, 1977.

[Mar98] Angelica Valdivia Martinez. Implementing G.I.S. spatial operations in a database
system. Master's thesis, McGill University, Montreal, Canada, 1998.

[MBC+01] T. H. Merrett, Y. Bédard, D. J. Coleman, J. Han, B. Moulin, B. Nickerson, and
C. V. Tao. A tutorial on database technology for geospatial applications. to be
published, 2001. CS 617 course material of McGill University, Winter 2001.

[MD90] Frank Manola and Umeshwar Dayal. PDM: An object-oriented data model. In
Stanley B. Zdonik and David Maier, editors, Readings in Object-Oriented Database
Systems. Morgan Kaufmann publishers, 1990.

[Mer76] T. H. Merrett. MRDS: An algebraic relational database system. In Canadian
Computer Conference, pages 102-124, Montreal, Canada, 1976.

[Mer77] T. H. Merrett. Relations as programming language elements. Information Pro
cessing Letters, 6(1):29-33, 1977.

[Mer84] T.H. Merrett. Relational Information Systems. Reston Publishing Co., Reston,
VA, 1984.

[Mer93] T. H. Merrett. Computations: Constraint programming with the relational al
gebra. In A. Makinouchi, editor, International Symposium on Next Gereration
Database Systems and Their Applications, pages 12-17, Fukuoka, Japan, Septem
ber 1993.

[Mer01] T. H. Merrett. Attribute metadata for relational OLAP and data mining. In
Proceedings of the Eighth Biennial Workshop on Data Bases and Programming
Languages, pages 65-76, Monteporzio Catone, Roma, ltaly, September 2001.

[MS90] David Maier and Jacob Stein. Development and implementation of an object
oriented dbms. In Stanley B. Zdonik and David Maier, editors, Readings in Object
Oriented Database Systems. Morgan Kaufmann publishers, 1990.

[OFS84] J. Ong, D. Fogg, and M. Stonebraker. Implementation of data abstraction in the
relational database system INGRES. SIGMOD Records, 14(1):1-14, March 1984.

[OH86] S. L. Osborn and T. E. Heaven. The design of a relational database system with ab
stract data types for domains. ACM Transactions on Database Systems, 11(3):357-
373, September 1986.

[OOM87] G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos. Extending relational algebra and
relational ca1culus with set-valued attributes and aggregate functions. ACM Trans
actions on Database Systems, 12(4):566-592, 1987.

BIBLIOGRAPHY 147

[OY85] Z. M. Ozsoyoglu and L. Y. Yuan. A normal form for nested relations. In Proc.
ACM SIGACT/SIGMOD Symp. on Principles of Database Systems, pages 251 -
260, Portland, 1985. ACM.

[PA86] P. Pistor and F. Andersen. Designing a generalized nj2 model with an SQL-type
language interface. In Proceedings of the International Conference on Very Large
Databases, pages 278-285, Kyoto,Japan, August 1986.

[pSS+87] H. B. Paul, H. J. Schek, M. H. Scholl, G. Weikum, and U. Deppisch. Architecture
and implementation of the Darmstadt Database Kernel System. In Proc. A CM
SIGMOD Conf. on Management of Data, San Francisco, 1987.

[RKB87] M. A. Roth, H. F. Korth, and D. S. Batory. SQLjNF: A query language for -,lNF
relational database. Information Systems, 12(1):99-114, 1987.

[RKS88] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended algebra and calculus for
nested relational databases. ACM Transactions on Database Systems, 13(4):389-
417, 1988.

[Roz02] Andrey Rozenberg. Implementation of attribute metadata with application to data
mining, 2002. Master's Report, McGill University, Montreal, Canada.

[Sch86] M. H. Scholl. Theoretical foundation of algebraic optimization utilizing unnormal
ized relations. In Proc. Int. Conf. on Database Theory, pages 380 - 396, Rome,
Italy, 1986. Springer Verlag.

[Sch89] H. Schôning. Integrating complex objects and recursion. In Proceedings of the
lst International Conference on Deductive and Object-Oriented Databases, pages
535-554, Kyoto, Japan, 1989. North-Holland.

[SDVOl] Sriram Sankar, Rob Duncan, and Sreenivasa Viswanadha. Java Com
piler Compiler (JavaCC)-The Java Parser Generator. JavaCC web site at:
www.webgain.comjproductsjjavaccjdocumentation.html, 2001. The web site con
tains documentation softwares for JavaCC and JJTree.

[Seb96] Robert W. Sebesta. Concepts of Programming Languages. Addison-Wesley, third
edition, 1996.

[Ses98] Praveen Seshadri. Enhanced abstract data types in object-relational databases.
The VLDB Journal, pages 130-140, July 1998.

[SH98] M. Stonebraker and J. M. Hellerstein. The roots. In M. Stonebraker and J. M.

[SP82]

[SPS87]

Hellerstein, editors, Readings in Database Systems, 3rd Edition. Morgan Kaufmann
publishers, 1998.

H. J. Schek and P. Pistor. Data structures for an integrated database manage
ment and information retrieval system. In Proceedings of the 8th International
Conference on Very Large Data Bases, pages 197-207, 1982.

M. H. Scholl, H. B. Paul, and H. J. Schek. Supporting fiat relations by a nested
relational kernel. In Proc. Int. Conf. on Very Large Databases, pages 137 - 146.
Morgan Kaufmann publishers, 1987.

BIBLIOGRAPHY 148

[SRG83] M. Stonebraker, B. Rubenstein, and A. Guttman. Application of abstract data
types and abstract indices to CAD databases. In Proceedings of Database Week,
Engineering Design Applications, pages 107-114, San Jose, May 1983.

[SS86] H. J. Schek and M. H. Scholl. The relational model with relation-valued attributes.
Information Systems, 11(2):137-147, 1986.

[SS87] M. H. Scholl and H. J. Schek. Theory and applications of nested relations and
complex objects. In International Workshop on Theory and Applications of Nested
Relations and Complex Objects, Darmstadt, West Germany, 1987.

[Sto86a] M. Stonebraker. Inclusion of new types in relational database systems. In Pro
ceedings of the 2nd IEEE Data Engineering Conference, Los Angeles, 1986.

[Sto86b] M. Stonebraker. Object management in POSTGRES using procedures. In Pro
ceedings of the lst International Workshop on Object-Oriented Database Systems,
Pacific Grove, CA, 1986.

[St096] M. Stonebraker. Object-Relational DBMSs: The Next Great Wave. Morgan Kauf
mann Publishers, 1996.

[SunOO] Weizhong Sun. Updates and events in a nested relational programming language.
Master's thesis, McGill University, Montreal, Canada, 2000.

[TF86] S. J. Thomas and P. C. Fischer. Nested relational structures. In P. C. Kanellakis,
editor, Advances in Computing Research III, The Theory of Databases, pages 269-
307. JAL Press, 1986.

[U1l82] J. D. Ullman. Principles of Database Systems, 2nd Edition. Computer Science
Press, Rockville, MD, 1982.

[WoI89] A. Wolf. The DASDBS-geo kernel: Concepts, experiences, and the second step.
In Proc. Int. Symp. on the Design and Implementation of Large Spatial Databases.
Springer Verlag, 1989.

[WSSH88] P. F. Wilms, P. M. Schwartz, H. J. Schek, and L. M. Haas. Incorporating data
types in an extensible database architecture. In Proc. Int. Conf. on Data and
K nowledge Bases: Improving Usability and Responsiveness. Morgan Kaufmann
publishers, 1988.

[Yua98]

[Zam99]

[Zha02]

Zhongxia Yuan. Implementation of the domain algebra in Java. Master's thesis,
McGill University, Montreal, Canada, 1998.

Saba Zamir. Handbook of Object Technology. CRC Press, 1999.

Hongyu Zhao. Implementation of QT -Expressions in a database programming
language, 2002. Master's Report, McGill University, Montreal, Canada.

