
Controlling False Alarm/Discovery Rates in
Online Internet Traffic Classification

Daniel Nechay

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

November 2009

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Engineering.

c© 2009 Daniel Nechay

i

Abstract

Classifying Internet traffic flows online into applications or broader classes without in-

specting the packet payloads or without relying on port numbers has become a necessity

for network operators. The operators can use this information to monitor their networks

and provide per-class quality of service. There has been a great deal of research done on

Internet traffic classification recently and numerous techniques have been proposed. While

the current techniques can obtain a high accuracy classifying Internet traffic, providing

performance guarantees for particular classes of interest has never been addressed. In this

thesis, we provide two novel types of online Internet traffic classifiers that can provide per-

formance guarantees on the false alarm and false discovery rates, respectively. These guar-

antees can be for an entire class (class-wise) or between two classes (pair-wise). Controlling

false alarm rates is well-suited for application prioritization (i.e. prioritizing time-sensitive

applications like VoIP over HTTP) whereas controlling false discovery rates is better suited

for blocking or rate-limiting a targeted class of traffic (i.e. Peer-to-Peer). The classifier that

provides false alarm rate guarantees is based on a Neyman-Pearson classification framework

while the classifier that provides false discovery rate guarantees is based on the Learning

to Satisfy (LSAT) framework. Both of these classifiers are implemented using a machine

learning technique, namely, the 2-nu Support Vector Machine (SVM). Moreover, all pre-

vious work done with these two statistical methodologies focused on binary classification

only; we extend these statistical methodologies to a multi-class setting. In addition to the

regular application classification problem, we also present preliminary work on a binary

LSAT classifier that can detect, after the reception of only a handful of packets, whether

a flow will be large, as defined by a network operator. This large flow detector can act as

a preprocessor for regular application classifiers. By allowing only large flows to pass to

the classifier, this allows the classifier to focus on the more resource-intensive flows. We

validated our Internet traffic classifiers by testing our approaches using data provided by

an ISP.

ii

Abrégé

Identifier l’application (ou autre classe plus générale) qui génère un flux de trafic Internet,

sans compter sur le numéro du port ou inspecter la charge des paquets, est devenu une

nécessité pour les opérateurs de réseau. Les opérateurs peuvent utiliser cette information

pour surveiller leurs réseaux et fournir une qualité de service propre à chaque classe. Il y a

eu beaucoup de travaux de recherche portant sur la classification du trafic Internet effectué

récemment et de nombreuses techniques ont été proposées. Bien que les techniques actuelles

puissent obtenir une grande précision pour classer le trafic Internet, offrir des garanties de

performance pour des catégories particulières est un problème encore inexploré.

Dans ce mémoire, nous proposons deux nouvelles techniques de classement du trafic

Internet en ligne capables de fournir des garanties de performance sur le taux de fausses

alarmes et le taux de fausses découvertes, respectivement. Ces garanties peuvent être

sur une classe entière (class-wise) ou entre deux classes (pair-wise). Contrôler le taux de

fausses alertes est bien adapté à prioriser les applications (VoIP via HTTP), tandis que

le contrôle des taux de fausses découvertes est mieux adapté pour bloquer ou limiter le

débit de certaines classes (Peer-to-Peer). Le classificateur qui fournit les garanties de taux

de fausses alarmes est basé sur le cadre de classification Neyman-Pearson, tandis que le

classificateur qui fournit les garanties sur le taux de fausses découvertes est basé sur le

cadre Learning to Satisfy (LSAT). Ces deux classificateurs sont mis en oeuvre en utilisant

une technique d’apprentissage automatique nommé 2-nu SVM (Support Vector Machine).

De plus, tous les travaux antérieurs réalisés avec ces deux méthodes statistiques mettaient

l’accent sur la classification binaire uniquement, nous les adaptons à un environnement

supportant plusieurs classes.

En plus de l’application au problème de classification, nous présentons aussi des travaux

préliminaires sur un classificateur binaire LSAT qui permet de détecter, à l’aide de seule-

ment quelques paquets, si un flux de trafic sera important, selon l’opérateur de réseau. Ce

détecteur de flux de trafic importants peut agir comme un préprocesseur pour l’application

de classification. En ne permettant que d’importants flux de se rendre au processus de clas-

sification, le classificateur peut se concentrer sur les flux qui utilisent plus de ressources.

Nous validons notre classificateur de trafic Internet par des essais en utilisant des

données fournies par un FAI.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor, Mark Coates, for all his knowledge,

insight and patience for the duration of my thesis. I also would like to thank Yvan Pointurier

for his expertise in helping me set up my experiments. I would like to thank OmniGlobe

Networks for giving me the inspiration for my thesis and for providing me with data to use

in my experiments. I would also like to thank Bradford Stimpson, Frederic Thouin and

Laura Leong for taking the time in reviewing my thesis and providing valuable feedback.

Finally, I would like to thank my family for their love and support.

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Problem Statement . 4

1.3 Thesis Contribution and Organization . 4

1.4 Published Work . 5

2 Literature Review 6

2.1 Port-based Classification . 7

2.2 Deep-Packet Inspection . 8

2.3 Shallow Packet Inspection . 11

2.3.1 Feature Selection . 11

2.3.2 Clustering . 12

2.3.3 Machine Learning Algorithms . 19

2.3.4 Behavioural-based Classifiers . 26

2.4 Our Contribution . 27

3 Background 29

3.1 Support Vector Machines (SVM) . 29

3.1.1 C-SVM . 32

3.1.2 2ν-SVM . 33

3.2 Learning Satisfiability . 35

4 Methodology 39

4.1 Problem Statements . 39

4.1.1 Problem Statement 1: FAR-constrained classifier 40

Contents v

4.1.2 Problem Statement 2: FDR-constrained classifier 41

4.1.3 Problem Statement 3: Large flow detector 42

4.2 Network Operations Management Algorithms 43

4.2.1 Internet Traffic classification . 44

4.2.2 Large flow detector . 50

5 Results 52

5.1 Data and processing . 52

5.2 Performance Evaluation . 54

5.2.1 Feature Selection . 58

5.2.2 Classification with FAR constraints 59

5.2.3 Classification with FDR constraints 60

5.2.4 Online classification complexity for the Internet Traffic Classifiers . 63

6 Conclusion 67

6.1 Summary . 67

6.2 Discussion . 69

6.3 Future Work . 71

A Signatures Used for Bro 73

References 79

vi

List of Figures

4.1 An overview of how our Internet traffic classifiers are implemented. 45

5.1 The total number of flows that have more than six packets per hour for our

24 hour data trace. 55

5.2 The total number of HTTP flows that have more than six packets per hour

for our 24 hour data trace. 56

5.3 The total number of MSN Messenger, POP3, HTTPS and unknown flows

that have more than six packets per hour for our 24 hour data trace. . . . 57

5.4 The overall accuracy for hours 2-24 for the three classifiers discussed. . . . 60

5.5 The False Alarm Rate (FAR) of HTTP for the baseline classifier and for the

NP classifier when the FAR for HTTP is set to .4%. 61

5.6 The pairwise FAR for HTTP flows being misclassified as HTTPS for the

baseline classifier and the NP classifier where the FAR{HTTPS,HTTP} is

set to .02%. 62

5.7 The overall accuracy for hours 2-24 for the three classifiers discussed. . . . 64

5.8 The False Discovery Rate (FDR) of HTTPS for the baseline multiclass

SVM classifier, unconstrained LSAT binary-chain classifier and for the FDR-

constrained classifier where the FDR for HTTPS is set to 5% 65

vii

List of Tables

1.1 Example FARs for a network with 900 HTTP flows, 100 VoIP flows and 100

P2P flows . 3

3.1 Four common kernel functions: linear, polynomial, radial basis function

(RBF) and sigmoid . 30

4.1 Values for ν+, ν−, σ and γ . 45

5.1 Application breakdown . 54

5.2 Application breakdown for flows > 6 packets 54

5.3 Features selected for the different packet milestones. Note that ‘a2b’ means

it is a client to server statistic while ‘b2a’ is a server to client statistic. . . . 59

viii

List of Acronyms

ISP Internet Service Provider

SVM Support Vector Machine

LSAT Learning to Satisfy

QoS Quality of Service

FAR False Alarm Rate

FDR False Discovery Rate

1

Chapter 1

Introduction

As the number of applications on the Internet is increasing, Internet traffic classifiers are

becoming an important tool for Internet Service Providers (ISPs) to help monitor their

networks. Internet traffic classification involves the automatic association of a user-defined

class to a traffic flow. Online Internet traffic classification can be an especially powerful tool

for ISPs as they can, in real time, use the classification results to provide different levels

of service to various applications (a form of Quality of Service; QoS). To provide a better

overall level of service, ISPs can decide, based on their classification results, to prioritize

time-sensitive flows (VoIP, video-conferencing, etc.) and to throttle bandwidth-intensive

applications like Peer-to-Peer file sharing, which are known to consume a large portion of

the network’s resources [1] and therefore degrade the overall performance for everyone on

the network. The classification results can also be used for network security and network

provisioning.

Classifying Internet traffic is not a trivial task. In the Internet’s earlier days one could

have compared the port numbers of traffic flows to the port numbers assigned by the

Internet Assigned Numbers Authority (IANA) [2] to determine what type of application

it is (an example is the common use of port 80 for HTTP traffic). The problem with

classifying Internet traffic exclusively with port numbers is that Internet developers are not

bound to follow the port number mapping by IANA and can choose whichever port they

wish for their application. This can lead to security risks as malicious or unwanted traffic

could try to pass through trusted ports. Therefore, additional measures need to be taken

in order to accurately classify Internet traffic. In this thesis, we propose two online Internet

1 Introduction 2

traffic classifiers with the added constraints that certain performance guarantees must be

met for classes of interest. We also propose a large flow detector that predicts whether an

Internet traffic flow will become a “large” flow or not (with “large” being defined by the

user) based on just the first few packets of a flow. We implement this “large” flow detector

as a pre-processor for the Internet traffic classifiers.

1.1 Motivation

In this thesis, we propose two online Internet traffic classifiers. What makes these two

classifiers different from existing classifiers that have been proposed is that we set hard

performance guarantees for the classifier to adhere to. While current Internet traffic classi-

fiers that have been proposed can classify traffic with little error, none have provided hard

performance guarantees [3]. The two performance guarantees that we focus on are the False

Alarm Rate (FAR) and the False Discovery Rate (FDR). Our classifier that controls the

FAR is based on a multi-class generalization of Neyman-Pearson (NP) classification [4–8]

while our classifier that controls the FDR is based on the Learning to Satisfy framework [9].

These performance guarantees can be applied to a single class against all the other classes

or between two specific classes.

The false alarm rate for class i (FARi) refers to the expected fraction of the flows that

do not belong to traffic class i that are incorrectly classified as belonging to i. This concept

can be extended to a pairwise false alarm rate FARij for classes i and j, which specifies the

expected proportion of the flows belonging to class j that are incorrectly labeled as class

i by the classifier. The false alarm rate differs from the false discovery rate, FDRi, which

is the expected fraction of incorrectly classified flows among all traffic flows classified as

class i. This can also be extended to a pairwise false discovery rate, FDRij, which is the

expected fraction of all flows classified as class i which do in fact belong to class j.

The reason we propose using a classifier with performance guarantees is that while the

overall accuracy of the classifier is important, sometimes it is more critical to focus on a

particular application. This is while still maximizing the overall accuracy for the classifier.

The following example illustrates this difference. Consider a network that has 1100 flows

which are broken down as follows: 900 HTTP flow, 100 VoIP flows and 100 P2P flows.

The network administrator wishes to prioritize all VoIP traffic and limit (or block) the

P2P traffic. In this network, HTTP is the dominant application so the overall accuracy of

1 Introduction 3

an Internet traffic classifier will be biased towards how many flows of HTTP the classifier

classifies correctly (classifying all flows as HTTP still gives an overall accuracy of over

80%). While the overall accuracy is still high in this case, for the two classes of interest to

the administrator, the accuracy is 0%. That is why having a classifier with performance

guarantees (either class-wise or pairwise) is more beneficial for a situation like this.

The classifier with FAR constraints is better suited for dealing with prioritizing traffic

(in this case, VoIP) as the FAR constraint limits the number of non-prioritized traffic

being classified as the prioritized traffic. This allows the administrator to save on network

resources as he does not have to allocate additional resources to non-prioritized traffic.

If the administrator sets the FARVoIP at 5%, there would be at most 50 non-VoIP flows

classified as VoIP. Also, by setting the FARHTTP,VoIP and FARP2P,VoIP at 5%, this ensures

that at most 10 VoIP flows are misclassified. Table 1.1 shows some examples of possible

FARs for this network and their impact on the network.

Table 1.1 Example FARs for a network with 900 HTTP flows, 100 VoIP
flows and 100 P2P flows

FARi or FARij Maximum threshold
for FAR (%)

Maximum allowable number of
flows misclassified as class i

FARHTTP 5 10 (= (100 + 100)× 0.05)
FARVoIP 5 50
FARP2P 10 100
FARHTTP,VoIP 5 5
FARP2P,VoIP 5 5
FARP2P,HTTP 10 90

The classifier with FDR constraints is better suited for dealing with limiting/blocking

traffic (in this case, P2P) because if a drastic action like blocking the traffic is taken, the goal

should be to minimize the number of flows that are incorrectly blocked. In our example,

setting the FDRP2P at 1%, means that for every 99 flows that are correctly identified as

P2P, there would be a maximum of 1 flow misclassified as P2P.

We also propose using a “large” flow detector as a pre-processor as this allows the

classifiers to focus on the more important flows. The reason is that on high-speed routers,

the routers are dealing with a high volume of traffic that could possibly overload the

classifiers. Therefore by having a “large” flow detector act as a pre-processor for the

classifiers, we allow the classifier to focus on the flows that are likely to consume most of

1 Introduction 4

the network resources. Addressing these flows will have the greatest impact on network

performance. For example, if the user wishes to prioritize traffic, he/she needs to focus on

flows that would stay on the network for a while after the classification is made rather than

flows that would end a short time after the classification is made.

1.2 Thesis Problem Statement

Since this thesis proposes two new online Internet traffic classifiers and a large flow detector,

there are three problem statements that we address. For the classifier with FAR constraints,

the goal is to minimize the overall misclassification rate while still meeting all the FAR

constraints set. Similarly, the goal for the classifier with FDR constraints is to minimize

the overall misclassification rate while still meeting all the FDR constraints set. Finally, for

the large flow detector, after the user defines what a large flow is, the classifier maximizes

the number of large flows classified correctly while minimizing the number of small flows

that are classified as large. This is done so the classifier does not have to waste time

classifying these small flows.

1.3 Thesis Contribution and Organization

This thesis is divided into six chapters. In Chapter 2, we review the existing techniques

used to for Internet traffic classification. We separate the techniques proposed into three

main categories (port-based classification, deep packet inspection and shallow packet in-

spection) and elaborate on the methods and the results obtained in the papers.

In Chapter 3, we provide background for the algorithms that we use. Since all of our

algorithms are based on Support Vector Machines (SVMs) we first provide an introduction

on what a SVM is and how it is formulated. The Internet traffic classifier with FAR

constraints is implemented using a 2ν-SVM so we show how a SVM is transformed into a

2ν-SVM. The Internet traffic classifier with FDR constraints and the large flow detector

are implemented using the Learning to Satisfy (LSAT) framework. We first show how the

LSAT framework is formulated. This algorithm is implemented using the 2ν-SVM and we

show how 2ν-SVM can be extended to implement LSAT.

In Chapter 4, we give a detailed description of the two Internet traffic classifiers and

the large flow detector that we propose. We first formalize the three problems we are

1 Introduction 5

trying to solve — Internet traffic classifier with FAR constraints, Internet classifier with

FDR constraints and a large flow detector. Then we discuss how the algorithms we selected

(2ν-SVM and LSAT) can be used to solve our problems. This includes for the two Internet

traffic classification algorithms showing how we transformed the binary classifiers of 2ν-

SVM and LSAT to handle our multi-class setting.

In Chapter 5, we tested our proposed algorithms on Internet traces provided by a

Canadian ISP and provide the results. We examine the steps taken to process the trace

so the data can be used by our algorithms. Also discussed is how all the parameters were

selected when running our experiments. Finally we show interesting results for the Internet

traffic classifiers from the data trace.

In Chapter 6, we summarize our work and discuss in more detail the results presented

in the previous chapters and conclude with proposed future work.

1.4 Published Work

Our proposed algorithms that were discussed in Chapter 4 and the accompanying results

from Chapter 5 have been published and were presented at the IEEE Conference on Com-

puter Communications (IEEE INFOCOM).

• D. Nechay, Y. Pointurier and M.J. Coates, Controlling False Alarm/Discovery Rates

in Online Internet Traffic Flow Classification, in Proc. IEEE INFOCOM, Rio de

Janeiro, Brazil, April 2009. [9 pages]

6

Chapter 2

Literature Review

In the past decade, there has been significant research addressing Internet traffic classifica-

tion. One of the biggest reasons for this is that Internet Service Providers (ISPs) are more

interested in exactly what kind of traffic is passing through their routers. By knowing what

kind of traffic is passing through their network the ISPs are able to perform an appropriate

action depending on their policy. A common example is providing Quality of Service (QoS)

for certain applications. If the ISP is able to identify time-sensitive applications (i.e. VoIP,

video conferencing) they can then prioritize this traffic to improve its performance. For

example, latency can be improved by assigning more bandwidth to these time-sensitive

applications if they can be identified. Other uses for Internet traffic classification include

network provisioning and security measures.

Current Internet traffic classification techniques can be grouped into three main cate-

gories: port-based, deep-packet inspection and shallow-packet inspection. Port-based clas-

sification is the simplest approach in which classification is done simply based on which

port the application is using. For example, if the application is using Transmission Con-

trol Protocol (TCP) port 80 then it is classified as HTTP. Deep-packet inspection consists

of looking inside the payload of a TCP packet to find a signature to match to an appli-

cation. Finally, shallow-packet inspection (such as our work) involves applying machine

learning techniques (clustering, decision trees, Bayesian learning) to statistics derived from

the packet headers of the TCP packet to classify traffic. The following subsections of this

chapter explain these three categories in more detail. Also note that all classifiers discussed

deal with classifying TCP traffic flows only unless otherwise stated. Therefore, packet clas-

2 Literature Review 7

sifiers [10, 11] (classifiers that attempt to classify every packet rather than every flow) are

out of the scope of this literature review. We also do not discuss anomaly detectors as this

is a different subset of Internet traffic classification than what we are pursuing [12–15].

2.1 Port-based Classification

Port-based classification is one of the simplest forms of Internet traffic classification. An

incoming flow is classified based on the port number it is using and classification is done

by finding which application is matched to this port number on the Internet Assigned

Numbers Authority’s (IANA) [2] known port numbers list. CoralReef [16] is a software

suite that can provide port-based classification. The port number of a TCP flow can be

found by looking at the header of the SYN packet, which is the first packet sent in the TCP

handshake communication. Common examples include TCP port 80 for HTTP, TCP port

25 for SMTP and TCP port 443 for HTTPS. The drawback to this type of classification

is that this mapping by IANA is just a suggestion and developers do not have to follow it.

As a result, applications that do not wish to be identified on the network generally do not

follow this mapping. These applications can (i) choose their port numbers dynamically by

changing the port number every time the application runs, (ii) employ port hopping (if the

port the application is using is blocked, attempt to find another an unblocked port), (iii)

use a common port to camouflage their application. For example, Skype (a popular VoIP

program) is an application that is known to use port 80 to try to disguise itself as HTTP

traffic if the other ports it commonly uses are blocked [17].

One of the biggest reasons that port-based classification has become ineffective is the

increased usage of Peer-to-Peer (P2P) applications. In 2004, Karagiannis et al. [1] showed

that the volume of P2P in networks is not decreasing as previously thought [18, 19] but

maintaining its presence on the network or in some cases increasing significantly. Some

thought that P2P usage was decreasing but Karagiannis et al. found it was still present

but it was disguising itself using the techniques mentioned above. In 2006, Madhukar

et al. [20] believed that 30-70% of all traffic from their data set (from the University of

Calgary network) was P2P. As a result, port-based classification on their network was

useless; at least 30-70% of all traffic would be misclassified because most P2P applications

nowadays use dynamic port numbering. Studies done by Sen et al. [21] and Moore et

al. [22] also demonstrated that port-based classification is ineffective. Sen et al. examined

2 Literature Review 8

various P2P protocols and found that three popular P2P protocols (KaZaA, Gnutella and

DirectConnect) use anywhere between 35-70% of non-standard ports which could not be

classified by IANA’s mapping. Moore et al. found that 30% of all bytes collected from their

campus network could not be classified using IANA’s mapping. Due to these limitations

of port-based classification, more complex classifiers are necessary to accurately identify

Internet applications.

2.2 Deep-Packet Inspection

Deep-Packet Inspection (DPI) searches the payload of a TCP packet to find a signature to

map to an application class. Most commercial Internet traffic classifiers use some sort of

DPI to classify traffic [23–25]. DPI is also popular for intrusion detection systems [12,26,27],

which look for harmful or malicious traffic trying to enter the network.

In [21], Sen et al. looked to find signatures for five popular P2P applications (Gnutella,

eDonkey, DirectConnect, KaZaA and BitTorrent). Each P2P application has its own spe-

cific protocol it uses to communicate and Sen et al. looked to find a signature on this

protocol in the payload of a single TCP packet (most of their signatures were found in the

HTTP request header). They did not look for signatures that spanned multiple packets

as they chose to ignore these as a tradeoff for performance. The signatures they propose

can be either fixed length or variable length. Their results showed that their approach was

much more effective than port-based classification in classifying P2P.

Karagiannis et al. [28] also examined signatures for popular P2P applications but they

used this just as a ground truth for the non-payload approach they developed in their

research. Their non-payload approach will be discussed in the next section. Karagiannis

et al. search the payload for bit strings to identify the different P2P flows. In addition to

this they also keep track of the destination/source IP addresses and port numbers as they

use the past history of these addresses and port numbers to aid in classifying their flows.

In [29], Haffner et al. provide a method to automate the construction of application

signatures. Only the first N bytes of the flow were used as input for the classifier (for

their paper N is between 64 and 256). They experimented with three different statistical

machine learning techniques as the classifier: Näıve Bayes, AdaBoost and Regularized

Maximum Entropy. They were able to classify over 99% of all applications correctly with

their approach and showed that they could still use their signatures months later.

2 Literature Review 9

Ma et al. [30] also attempted to construct a signature based on the first 64 bytes of a

traffic flow. In these bytes, they were interested in the statistical and structural aspects of

the messages exchanged in the protocol of an application. They experimented with three

classifiers: product distributions, Markov models and common substring graphs. Using

data collected from their campus network they showed that all three classifiers were able

to correctly classify between 90-98% of network traffic.

In [22], Moore et al. use a combination of port-based classification and signatures to

classify traffic. They propose a nine-stage classifier for classifying traffic flows. The first

stage classifies the flow based on the port number it uses. The classifier then verifies the

classification and if it is confident with the classification, it skips the other stages and

uses this classification. If it is not confident with this result the classifier proceeds to the

second stage which looks at the packet headers. This process continues iteratively through

the final seven stages, until the classifier is confident in its prediction. Stages 3-8 of the

classifier involve trying to identify a signature inside of the flow. In each stage, the search

for a signature becomes more complex from searching just the first packet to searching the

entire flow for a signature. The final stage of the classifier keeps a record of the combinations

of IP addresses and port numbers and the applications associated with them. The classifier

then uses these records to try a find a match for classifying the flow. Classification accuracy

approached 100% in the later stages of this classifier.

Choi et al. [31] also use a combination of port numbers and signatures to classify traf-

fic. The goal of their classifier is to monitor the usage of all the users on a network (if

an ISP switches its billing system to usage-based accounting). Their approach states that

there are four main types of Internet flows: Type FP (Fixed Port-based), Type PI (Pay-

load Inspection-based), Type DP (Dynamic Port-based) and Type RR (Reverse Reference-

based). Type FP are applications that always use a fixed port (i.e. FTP or SMTP) and

can be classified using port classification. Type PI are applications that can share a port

number with other applications so payload analysis is required to determine the applica-

tion. Type DP are applications that use dynamic port numbers. Payload inspection is

done on flows that share similar flow characteristics to the Type DP flows and already

have already been classified and this classification is used to identify the flow the Type

DP flow. Type RR are generally TCP control flows. If a flow from host X to host Y has

already been identified, there may be a reverse flow between host Y to host X (with the

source/destination IP addresses and port numbers reversed with the previous flow).

2 Literature Review 10

To find a signature inside the packet, Choi et al. propose the Application Configuration

Recognition Language (ACRL). The syntax of ACRL is divided into 3 levels. The top level

is the actual application. The next hierarchy is port numbers that this application uses.

The last level is based on signatures in the payload for this application. This last level

can be very specific as which packet(s) and where inside of these packet(s) to search for

the signature can be specified. They implemented their approach into WiseTrafView and

tested it on campus and enterprise networks. With their approach they found that not all

applications that use port 80 are HTTP.

Another classifier that uses a hybrid approach is the one proposed by Won et al. [32].

The first stage of their classifier looks for signatures inside the payload. Won et al. use

the Karp-Rabin algorithm [33] for the string matching inside the payload. If the classifier

cannot find a signature for the flow, the classifier then examines the behaviorial aspects of

the flow to try to identify the flow. This includes looking at the IP address and port number

pair and verifying if any applications have already used that IP address and port number

combination. If so, these flows are probably the same application. Other behaviorial-based

classifiers will be discussed in the next section (Section 2.3.4). To validate their approach

they used synthetic and real traffic traces. For the synthetic traces, they collected a single

application per trace. On these traces they were able to obtain 99% accuracy so they were

confident that their classifier was able to distinguish between the different applications.

Then they tested their classifier on a real traffic mix. The real traffic was collected from

their campus network. They also apply the Flow Relationship Map (FRM) [34] on the real

traffic as a comparison. They found that their approach produced more unknown flows

than FRM but was able to have a higher accuracy than FRM.

While all the aforementioned methods can classify traffic confidently, there are draw-

backs to DPI. The main problem is that if the flow is encrypted this approach is rendered

useless as it cannot look inside the packets. P2P applications are starting to encrypt their

traffic and any traffic behind a VPN connection can not be identified as well. Another

drawback is that even slight changes to a protocol could require a change for the signa-

ture. This means signatures need to be monitored so that they are kept up-to-date, a time

consuming but necessary task. Designers also need to consider that there may be multiple

signatures inside of a payload. For example, P2P applications are known to run over HTTP

so a P2P and HTTP signature could be found in the payload. Payload inspection is also

computationally expensive and requires a lot of overhead. Finally, DPI is in a gray area

2 Literature Review 11

in regards to legal and privacy concerns. Arguments have been made that it is illegal for

ISPs to look at what users are sending over the network as it is an invasion of their privacy.

For these reasons, Shallow-Packet Inspection (SPI) has become a popular alternative to

DPI. SPI does not require any information from the payload and derives its information

from either the behavior of a flow or statistics collected from a flow’s packet header. The

following section elaborates on all the techniques used in SPI.

2.3 Shallow Packet Inspection

Claffy [35] was one of the first people to show that Internet applications can be separated

by their statistical properties. Other work [36–39] has also shown that statistical properties

of a flow can be mapped to an application class. Recent research (known as Shallow-Packet

Inspection (SPI)) has focused on developing classifiers that can classify traffic flows based

on the statistical properties of a flow. From information derived just from the packet

headers (without inspecting the payload), Moore et al. [40] were able to find over 200

statistics related to a flow. Note that this method is not an intrusive method like DPI.

Rather, all the statistics can be collected just from observing the flow on a network (a

program like NetFlow [41] could be used to collect information about the flow) and does

not involve looking at exactly what is being sent. More generally, we define SPI as any

classifier that does not need to look at the payload to classify the traffic or that looks at

the behavioural aspects of a traffic flow. When using SPI, two important decisions need

to be made — which of the available statistics are relevant (generally done using a feature

selection method) and what kind of classifier to use. This section discusses all the classifiers

that have been used to classify Internet traffic using SPI.

2.3.1 Feature Selection

When working with a classifier, one of the most important things is to make sure relevant

inputs are being sent to the classifier. If irrelevant or redundant features are being sent,

this can lead to a decrease in accuracy (as the classifier can become biased), an increase in

the build time of the classifier and a decrease in classification speed (as the dimensionality

of the input space is increased). Feature selection algorithms can be divided into two main

categories — filter methods or wrapper methods. Filter methods performs the feature

selection based on the characteristics of the feature themselves and can be used with any

2 Literature Review 12

classifier. On the other hand, wrapper methods find the best set of features for a specific

algorithm.

The WEKA toolbox [42] provides many different types of filter methods. Examples

of filter methods are consistency-based feature selection [43] and correlation-based feature

selection [44]. Consistency-based feature selection tries to find the optimal subset of features

that performs consistently as well as the full feature set. Correlation-based feature selection

looks at the inter-correlation between the features then finds the optimal subset of features.

The optimal subset of features excludes the redundant features that are not relevant for

classification. Williams et al. compare these two methods extensively in [45].

The alternative is to use wrapper methods which can provide a higher accuracy than

filter methods since they are tailored for a specific classifier. The drawback is that over-

fitting can occur. Over-fitting is when the classifier is trained to perform well on just the

training set and performs poorly when new points are introduced. Also, this approach

is more computationally expensive as the classifier needs to be trained and tested for

each subset of features. An example of a wrapper method is the backward greedy feature

selection used in [46]. This method starts by training and testing the classifier with n

features. Then the algorithm looks to find the best n − 1 features that results in the

highest accuracy for the classifier. This process is repeated until the optimal subset of

features is found (i.e. the subset that gives the highest accuracy).

2.3.2 Clustering

Clustering is an unsupervised method in which the clustering algorithm simply groups

similar data points together without labeling them. A heuristic then needs to be applied

to map the cluster to a particular class. The simplest heuristic is to map a cluster to the

dominant class inside of the cluster (assuming the training set has data points which have

already been mapped to classes). Clustering is a logical choice for classifying Internet traffic

as it has been shown that traffic flows that share similar traffic characteristics are believed

to be the same application [35–39], so a clustering algorithm can group these flows together.

A clustering classifier would function by first performing clustering on a training set and

then mapping all the clusters to an application class based on an appropriate heuristic.

Then incoming flows would be classified by which cluster it is the closest to based on the

distance metric chosen (e.g., Euclidean distance). Then the flow is labeled based on which

2 Literature Review 13

application class the cluster has been mapped to.

In early work on clustering, Hernandez-Campos et al. [47] found that they could classify

traffic flows by observing the number of bytes being transferred in the flow. The authors

construct an abstract communication model that uses a three-dimensional vector for every

flow. The dimensions consist of the number of bytes sent from the client to the server in the

given time period, number of bytes sent from the server to the client in the given time period

and the amount of time since the last data exchange. From this vector, they derive statistics

about the flow such as total bytes sent, minimum number of bytes sent in a time period and

average number of bytes in a time period. Then agglomerative and divisive hierarchical

clustering is performed using the flow statistics they selected. The authors demonstrated

that the clusters that are formed separate the flows well with examples where web traffic

(ports 80, 443, 8080 and 8443) were all clustered together based just on the flow statistics.

Unfortunately, Hernandez-Campos et al. did not provide a heuristic to map clusters to an

application type (clustering groups similar data together, it does not provide a label), nor

do they provide any quantitative results on how well they classify traffic. Nonetheless, this

early work showed that traffic flows can be separated based on flow statistics.

Erman et al. have proposed different types of clustering methods [46, 48]. In [48],

Erman et al. experimented with the K-Means, Density Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) and AutoClass [49] (which uses Expectation Maximization

(EM)) traffic clustering algorithms. They chose these three clustering algorithm as they

were able to compare three different types of clustering algorithms: a partition-based (K-

Means), density-based (DBSCAN) and probabilistic model-based (AutoClass). To validate

the algorithms they chose, they used a publicly available trace, the Auckland IV trace [50]

(which contained only packet headers) and collected their own trace from their campus at

the University of Calgary (from March 2006). To provide a base truth for these traces,

port-based classification was used for the Auckland trace and payload-based classification

for their campus trace. Erman et al. believed that using port-based classification was valid

for the Auckland trace as it was from the early 2000s when applications that used dynamic

ports were not as prevalent as they are now.

In testing their algorithms, Erman et al. noticed that HTTP was by far the most preva-

lent application in their traces. To ensure that they were able to test all the applications,

Erman et al. chose to construct their data set had the same amount of flows for each

application. This may have biased their classifier as they were not inputting a representa-

2 Literature Review 14

tive mix of the applications from the traces. To calculate their results, the data was split

up into multiple sets and the average was taken across all the data sets. For K-Means

clustering, the authors needed to specify the value K (how many clusters to use). They

found that the overall accuracy increased when the number of clusters increased. After 150

clusters, though, the increase in accuracy was minimal and Erman et al. noted that when

K increases, the likelihood of over-fitting the classifier to the training set increases as well.

For K = 100, the average overall flow accuracy was 79% and 84% for the Auckland IV and

campus data sets respectively.

For DBSCAN clustering, clusters are formed in areas with a high density of points

(note that with this algorithm, outliers may not be placed in any cluster — these points

are considered noise). This algorithm required Erman et al. to specify the radius around

a given point (eps) to look for neighboring points and the minimum number of points

(minPts) inside this radius for a cluster to be formed. The cluster is then formed by taking

all of these points plus all the neighbors of these points. From their results, Erman et al.

found that the overall accuracy was better when minPts was lower, as smaller clusters were

formed thereby decreasing the probability that multiple applications were inside the cluster.

For the eps parameter, Erman et al. found that the overall accuracy was increasing when

eps was increased until it reached a certain threshold where increasing eps caused a drastic

decrease in overall accuracy. Erman et al. found that smaller clusters (that contained

different applications) were being merged to form one larger cluster when eps was getting

too large. In their optimal configuration of DBSCAN, the average overall flow accuracy

was 76% and 72% for the Auckland IV and campus trace, respectively. One reason for the

low accuracy is that all the points that are considered noise are misclassified. While the

average accuracy was low, Erman et al. found that the average precision for seven of the

nine applications they measured was over 95% for the Auckland IV data sets. This showed

that DBSCAN produced highly accurate clusters for their data sets.

For the AutoClass classifier, nothing had to be configured as all the parameters are

automatically determined. For these data sets, AutoClass was able to obtain the highest

overall flow accuracy out of the three classifiers — 92% and 89% for the Auckland IV and

campus trace, respectively. The drawback to AutoClass, though, is the long training time.

The other two classifiers took a matter of minutes to train while AutoClass took close to

five hours to train.

Erman et al. compared their AutoClass implementation to a supervised machine learn-

2 Literature Review 15

ing algorithm, the Näıve Bayes classifier in [51]. Based on their results on the Auckland

IV & VI traces they found that the AutoClass had a higher overall flow accuracy than

the Näıve Bayes classifier (91% to 83%) for these traces. Given this result, the authors

argue then that an unsupervised learning algorithm can perform just as well as a supervised

learning algorithm with the added bonus that the training set does not need to be labeled.

Rather, if proper clusters are formed, the user needs to look at only a couple flows in each

cluster to determine which application to map the cluster to.

In [46], Erman et al. expanded their work on K-Means clustering. The first thing

that they expanded on is changing the problem from a supervised problem to a semi-

supervised one. The problem was originally a supervised one as all the flows inside the

training set had to be labeled. This was because the heuristic Erman et al. chose to map

a cluster to an application class was based on the dominant application class inside the

cluster. The drawback to this is that labeling the entire data set is arduous. There are not

many instances of labeled traffic traces available. Generally, some sort of payload-based

classifier [26,27] is applied to label the traces but the signatures still need to be determined.

Instead they experiment with two approaches in their paper. In the first approach, they

first perform clustering on the data set, then after the clusters were formed, they chose a

handful of random points inside each cluster and labeled them. Then the cluster is mapped

to the dominant application from these labeled points. Erman et al. found that labeling

as few as 2 flows per cluster, they were able to obtain 94% accuracy with K = 400. In the

alternative approach, Erman et al. mix labeled and unlabeled flows in the data set then

applied clustering. By carefully choosing the labeled flows, they will be evenly distributed

between all the clusters, and all the clusters will have a proper mapping. An advantage

with this approach is that if a cluster has no labeled flows inside it, this may signify that

a new application has been found. Erman et al. also found that the precision can be

increased simply by adding more unlabeled flows to the data set. Precision is defined by

the percentage of flows correctly identified excluding all unknown flows. Since unlabeled

flows are relatively inexpensive to obtain, this is a simple yet effective way to increase

precision.

Erman et al. also considered the importance of byte accuracy. Byte accuracy is the

proportion of bytes that are correctly classified relative to all the bytes in the network [52].

Byte accuracy is important to measure as it shows what fraction of network data is being

correctly classified. Flow accuracy does not show if large flows are being classified correctly

2 Literature Review 16

and if these flows are misclassified this could signify that a large proportion of network data

is being misclassified (even with a high flow accuracy). Using randomized or sequential

sampling to construct their data sets, Erman et al. found that they were able to obtain

over 90% flow accuracy for all their traces but their byte accuracy varied from 50-85% for

these traces. The reason for this was that large flows were not being represented equally

in the data set. To remedy this, Erman et al. used weighted bytes (or duration) sampling.

For this sampling, they chose 50% of the flow above the 95th percentile (and 50% below)

for the flow transfer size (or flow duration). With these approaches, flow accuracy stayed

the same but they were able to increase byte accuracy.

Another task that Erman et al. undertook was to develop an online classifier. They

constructed a separate classifier for every packet milestone of a flow that they specified.

They chose a one hour trace from their campus on April 2006 to test. After the first packet

milestone (8 packets), 78% of all flows were classified correctly but the byte accuracy was

only 40%. The reason for such a low byte accuracy is that Erman et al found it is hard

to distinguish the large flows after so few packets. It was only at their last milestone

(16K packets) when their classifier was able to start identifying the large flows as the byte

accuracy was able to reach 78% (the flow accuracy was 82%).

Erman et al. applied their K-Means clustering algorithm to classify traffic at the network

core as well [53]. This poses a different challenge than their previous work as at the network

core, flows are generally unidirectional due to routing asymmetries. As a result, there is

only half of the information about the flow. Erman et al. propose a method to estimate

the missing half of the flow given the available information. They looked to estimate the

duration, number of bytes and number of packets for the missing half of the flow as most

of the other flow statistics can be derived from these. They found that server-to-client

flows were better for classifying traffic than client-to-server flows as the server-to-client

flows generally contained more information about the flow. As a result, they obtained a

flow accuracy of 95% and byte accuracy of 79% for a server-to-client flows only data set

while with a client-to-server flows only data set they obtained a flow accuracy of 94% and

byte accuracy of 67%. Erman et al. found that if they used their estimation technique

to estimate the server-to-client statistics on the client-to-server flows only data set, the

flow and byte accuracy approached the same results as the server-to-client flows only data

set. This validated their estimation technique as Erman et al. were able to increase the

accuracy of client-to-server flows only data set to the accuracy of the server-to-client flows

2 Literature Review 17

only data set which had the higher accuracy of the two.

In [54–56], Bernaille et al. applied different clustering algorithms in classifying traffic

but their work focused on classifying after the first P packets of a flow. In [54], the cluster-

ing algorithms that they applied were K-Means and Gaussian Mixture Models (GMM) in

Euclidean space and spectral clustering on Hidden Markov Models (HMM). The features

used for their classifiers are the packet size and direction of the first P packets. They found

there was enough distinction between applications using just these two features. Bernaille

et al. also produce a new way to classify flows based on a cluster called cluster & port. The

common approach is when a flow is assigned to a given cluster, this flow is mapped to the

dominant application of the cluster. Their approach involves looking at the port number of

the flow. They define a list of applications that still use standard ports like HTTP, POP3

and SMTP. Then when a flow is assigned to a cluster, if the flow is using a port from the

standard list and there are flows inside the cluster already using this port number the flow

is mapped to the standard application that uses that port number. If there are no other

flows inside the cluster that uses the flow’s port number then the flow is labeled as a mas-

querade flow as this flow is trying to disguise itself as a common application. Similarly, if

the flow is using a non-standard port, the flow is labeled as the dominant application from

the flows that do not use standard ports inside of the cluster. If there are no applications

that use non-standard ports inside the cluster, the flows are labeled as a masquerade flow

as this is probably a standard service using a non-standard port. In their experiments on

a campus and enterprise trace they were able to identify 98% of all flows with all three of

their clustering methods (with P = 4). This was an improvement over mapping flows to

the dominant application of a flow as the flow accuracy varied from 74-95% for the clus-

tering algorithms. GMM and HMM have the advantage that they have a high likelihood

of classifying new applications (applications that were not in the training set) as unknown.

Therefore if there is an increase in the unknown class, the network administrator can look

through these flows to see if there is a new application that needs consideration. Their

work is similar to our work as we are also trying to classify traffic based on only the first

P packets of a flow. Similarly, our classifier is designed to classify previously undiscovered

applications as unknown as well.

Bernaille et al. extend their work in [56] by looking at how their classifier works on

encrypted flows. For this work only SSL traffic was considered. To obtain SSL traffic, they

filtered HTTPS and POPS flows from a campus network. They also chose to manually

2 Literature Review 18

encrypt non-encrypted traffic by replaying these flows through a secure tunnel. They were

able to identify over 85% of all encrypted flows using their approach. This was an expected

result because if flow statistics are used as inputs, it does not matter if the traffic flow is

encrypted (it is irrelevant). This is assuming that the packet header is not encrypted.

While most of the work reviewed so far has been about partition-based clustering

(K-Means), there has been significant work done with probabilistic-based clustering as

well. We have already mentioned one type of probabilistic clustering (AutoClass) in [48].

Probabilistic-clustering differs from partition-based clustering by the number of clusters to

which a data point can belong. In partition-based clustering, a given data point can only

belong to one cluster. On the other hand, probabilistic-based clustering yields the proba-

bility of a data point belonging to a given cluster, so it is possible for the data point to be

associated with more than one cluster. This better models a real-world situation given that

it may not be accurate to associate a given data point to one exclusive cluster based on the

training set. McGregor et al. [57] used the Expectation Maximization (EM) algorithm to

classify flows. The authors believed Internet traffic flows can be clustered by application

as they were able to see distinct applications based on the packet size and inter-arrival

time of packets. Using these statistics and other flow statistics gathered from traces from

Auckland-VI and the University of Waikato, they created clusters using the EM algorithm.

These clusters separated flows by separate type such as bulk transfer, multiple transaction

and small transactions. While it performed well on this high-level classification, it per-

formed poorly on the application-level as they saw HTTP flows in multiple clusters. This

made sense, though, as HTTP flows have many different characteristics — for example,

HTTP can be used for simple web browsing or for downloading large files. As a result,

the authors are looking for ways to improve on the application-level but their approach

is applicable if only high-level information about the flows is needed (i.e. if it is a bulk

transfer flow, multimedia flow, etc.)

Preceding Erman et al. [48], Zander et al. also used AutoClass to classify Internet traffic

flows using flow statistics. AutoClass is an unsupervised Bayesian classifier that uses EM

to find the best cluster set. AutoClass was also used to determine the number of clusters

needed. Using their method, the authors were able to classify over 86% of the flows on

the public traces Auckland and NLANR [58]. It is worth noting that for public traces,

only the packet headers are available, so to provide a ground truth, flows are classified by

port number. Most of the public traces are from the early 2000s though, where dynamic

2 Literature Review 19

port numbers were not as commonly used so port numbers can provide a fairly accurate

representation of the application being used. Zander et al. propose another metric for

evaluating their clusters — a homogeneity metric. The homogeneity metric is defined as

the fraction of the dominant application of a cluster to all the flows in the cluster. The goal

is to have this metric as close to one as possible as this shows that quality clusters are being

made (the majority of the class is only one application). For their traces the intra-class

homogeneity was between 0.85 and 0.89 which showed their approach was able to separate

classes effectively. They also investigated the homogeneity of Internet applications. They

found that certain applications have high homogeneity (online games were an example)

and can separate from the other applications easily while other applications had a lower

homogeneity and could be found in multiple clusters like FTP. They attributed this to

there being many diverse uses for FTP.

2.3.3 Machine Learning Algorithms

Another subset of Internet traffic classifiers uses popular machine learning techniques to

classify traffic. The machine learning algorithms described here use supervised learning in

which all training flows need to be labeled by their application type. Below are the different

types of machine learning algorithms that have been used.

Probabilistic Machine Learning Methods

Probabilistic machine learning methods do not assign a given traffic flow to just one discrete

class. Instead they assign a probability for a traffic flow to belong to a given class. Moore

et al. [59] believe this is the proper approach to take for Internet traffic classification as it

allows the classifier to be robust to measurement errors that arise from collecting statistics

about the flows on a network. Also, a network flow could belong to two classes, as, for

example, there are many applications that are tunneled over HTTP.

In [59], Moore et al. constructed a Näıve Bayes classifier to classify Internet traffic flows

into broad classes (i.e. WWW, BULK, DATABASE, etc.). They collected a traffic trace

from their campus network and were able to extract 248 statistics (or discriminators) about

each flow. With Näıve Bayes classifiers it is important to only input flows that are relevant

in helping to separate the application classes. Otherwise, the classifier can act poorly with

irrelevant or redundant information. Inputting all the discriminators into the classifier,

2 Literature Review 20

they obtained only a 65% flow accuracy. Moore et al. used two techniques to improve the

accuracy: kernel estimation for Näıve Bayes which provides a generalization of Näıve Bayes,

and the Fast Correlation-Based Filter (FCBF) which determines which discriminators are

relevant. With these two methods, they were able to obtain a flow accuracy of 96% on

the same trace. The byte accuracy for these traces was measured and oddly enough, the

byte accuracy was around 84% for both implementations. The authors attribute this to

the discriminators being poor for a certain type of flow present in their trace. Moore et al.

showed that their classifier has temporal stability by using this classifier to classify a flow

that was taken a year later and the classifier was still able to achieve a flow accuracy of

93% with the two techniques. All the techniques for their experiments were obtained from

the WEKA toolbox [42]. Erman et al. [51] based their Näıve Bayes classifier on the work

done by Moore et al. here.

In [60], Auld et al. improve on the Näıve Bayes classifier by implementing a Bayesian

trained Neural Network instead. Their Neural Network had 246 flow features as inputs and

there were n outputs, where n was the number of classes in their data set (there was one

hidden layer as well). Auld et al. looked for ways to reduce the number of inputs in order

to reduce the computation time. The classes divided the applications into broad categories

as in [59]. They compared their procedure to [59] and found that their classifier was able to

outperform the optimized Näıve Bayes classifier. They were able to obtain a flow accuracy

of 99% for a data set that was collected on a 24-hour period from their campus network.

Using this trained classifier on a traffic trace gathered 8 months later, the flow accuracy was

still 95%. Auld et al. observe that both classifiers compared find some features that they

deem important for classifying traffic flows but use different features as well. This shows

that some features may be universally used, while other features could be classifier-specific.

Jiang et al. [61] demonstrated an inexpensive way of doing online traffic classification by

using only information that was gathered by Cisco NetFlow. This included deriving features

based on the information gathered by NetFlow as well. By using the symmetric uncertainty

measure to rank the relevance of the features gathered by NetFlow and inputting the

relevant features into a Näıve Bayes classifier (with Kernel Estimation), they were able

to classify applications into broad classes with a flow accuracy of 88%. Their work shows

that using statistics that are inexpensive to obtain and readily available to most network

operators (as most operators use NetFlow) can provide the means for an accurate network

classifier.

2 Literature Review 21

In [45], Williams et al. compared three different Bayesian algorithms (Näıve Bayes with

kernel density estimation, Näıve Bayes with discretization, Bayesian network and Näıve

Bayes tree algorithms) with a deterministic machine learning algorithm (C4.5 decision

tree). All of these classifiers were implemented from the WEKA toolbox. They selected

22 flow statistics for their classifiers and experimented with either the consistency-based or

correlation-based feature selection techniques inside of the WEKA toolbox to reduce the

number of features needed. Williams et al. were able to reduce the features required to

seven and nine for the correlation-based and consistency-based feature selection algorithms,

respectively, and there was only a minimal drop in flow accuracy when compared to using

all the features. This minimal decrease in flow accuracy, they argue, is a good trade-off for

a significant decrease in training. In comparing all the algorithms, Williams et al. found

that they all performed similarly for their data sets from the NLANR trace (all classifiers

had a flow accuracy of over 80%). As a result of this, the authors looked at the time taken

to train the classifier and the classification speed. The Näıve Bayes tree was by far the

slowest classifier to train, while the other four classifiers were comparable in their build

time. C4.5 had the fastest classification speed of all the classifiers. Our classifiers were

designed to be able to classify flows online so classification speed is critical for us. We will

show in Chapter 4 why implementing our classifiers with a 2ν-SVM will allow for quick

classifications.

Deterministic Machine Learning Algorithms

The alternative to probabilistic machine learning algorithms is deterministic machine learn-

ing algorithms. These algorithms map the input traffic flow to only one possible output.

The work done by Roughan et al. [62] attempts to separate traffic flows into four broad

classes (interactive, bulk data transfer, streaming and transactional) for Quality of Service

(QoS) guarantees. The three classifiers that were used were k-Nearest Neighbour (k-NN),

Linear Discriminant Analysis and Quadratic Discriminant Analysis. Roughan et al. col-

lected traces from five different locations to validate their algorithms. Interestingly, when

constructing their training sets they did not include any HTTP traffic as they felt it did

not belong to any of their four classes. Roughan et al. found that they need only three

features to separate applications into these three classes: average flow duration, average

packet size and inter-arrival variability metric. The inter-arrival variability metric is the

2 Literature Review 22

average ratio of the standard deviation of the inter-arrival time of a flow to the mean inter-

arrival time of a flow. All of the classifiers performed well with the flow accuracy ranging

from 92-95%. For the k-NN the best results were for when k was small, either 3 or 5. The

reason they chose to classify the flows into broad classes was because for QoS only the class

of an application matters and not the type. But Roughan et al. still tested their classifiers

to classify on an application level (they identified 7 applications in their traces) and they

found the flow accuracy for their classifiers ranged from 88-90%.

Roughan et al. observed that an application needs to be in the training set otherwise

the classifier might have difficulties classifying the flow. The error rate when they tried to

classify a new application to one of their four broad classes ranged from 14-57% for their

classifiers. Our approach is more robust to a new application because if our classifier does

not believe the flow belongs to one of the applications we specified, the classifier marks

this flow as unknown rather than try to map it to an application. As such, if we see the

unknown class rapidly increasing, the goal then is to investigate these flows to see if there

is a new application present on our network.

In [63], Li et al. evaluate the temporal and spatial stability of the C4.5 decision tree

and 3 other types of Internet traffic classifiers — port-based classification, DPI using a

l7-filter [64] and Näıve Bayes with kernel estimation. Näıve Bayes with kernel estimation

was previously worked on by one of the authors, Moore, in [59]. For their work, Li et al.

consider both TCP flows and UDP traffic. Li et al. collected traces from two sites (Site A

and B). From Site A, Li et al. collected traces from 3 separate weekdays in 2003, 2004 and

2006 and the Site B trace was collected from a weekday in 2007. Li et al.’s classifiers are

online classifiers so they experiment with the number of packets received in a flow before

attempting to classify a flow (they vary between 4-10). For the rest of the experiments Li

et al. settle on classifying after 5 packets of a flow have been received. To examine the

temporal stability, Li et al. trained the classifier on one day from Site A and examined

how the classifier performed on the other days. To evaluate the spatial stability, a classifier

would be trained on one site and then evaluated on the other site. In all their experiments,

the C4.5 classifier had the highest overall accuracy which shows that the C4.5 decision

tree is robust to temporal and spatial changes. The C4.5 classifier also had a high overall

accuracy for UDP traffic when trained and tested on one site and day, but the performance

degraded for the temporal and spatial changes. The issues mostly were from the P2P

and multimedia classes as these classes have changed in the past couple of years as new

2 Literature Review 23

application are always emerging and different sites potentially use different applications.

Support Vector Machines (SVMs)

A Support Vector Machine (SVM) constructs an optimal hyperplane that separates two

classes [65]. We use a generalization of the 2ν-SVM [8] for both of our classifiers. We do not

use a SVM directly to classify Internet traffic flows. Rather, we use Neyman-Pearson (NP)

classification and the LSAT framework to do so. The NP classifier provides the ability to

set a maximum threshold for the false alarm rate for a given application class (or classes)

while the LSAT classifier provides the ability to set a maximum threshold for the false

discovery rate for a given application class (or classes). Note that we chose to not include

SVMs as either a probabilistic or deterministic machine learning algorithm. The reason

being that although all the approaches described below use a deterministic approach, SVMs

can be implemented using a probabilistic approach as well [66].

In [67, 68], the authors focus on classifying P2P traffic only. In [67], the authors ac-

complish this by inputting transport-level flow statistics to a two stage classifier. The first

stage is a binary SVM that determines whether or not the flow is P2P or not. If the flow is

determined to be P2P, a multi-class SVM is used in the second stage to determine the type

of P2P application. The multi-class SVM that they use is different than ours. In their work,

they extended a binary classifier into a multi-class one as proposed in [69]. Our approach

is different as we use a chain of binary classifiers to solve the multi-class problem. Using a

set of binary SVMs is known to perform as well as a single multi-class SVM, without the

severe scalability issues incurred by multi-class SVMs [65]. Chapter 4 will elaborate more

on how our classifiers were implemented and why. Another requirement specified by Yang

et al. was that the classifier needed to be online. In a real-time environment based on a

traffic trace from their campus network, the first stage of the classifier was able to correctly

identify approximately 99% of the flows while the second stage was able to successfully

identify approximately 85% of the P2P applications.

In [68], González-Castaño et al. propose a solution to identify P2P on high speed

routers. They argue that even when you sample packets you can achieve a high accuracy

rate for identifying P2P traffic using a SVM. They also demonstrated that by adjusting a

parameter inside their SVM they can achieve higher accuracy on P2P flows over other flows

by giving P2P flows a higher penalty when they are misclassified. This is the coarse-grained

2 Literature Review 24

approach for assessing penalties on a particular application as there are no other restrictions

imposed on this classifier — the higher penalty simply tells the classifier which class to

emphasize but does not guarantee any performance level for this class. Our approach

takes a more fine-grained approach by setting a restriction on the maximum tolerable

misclassification and forcing the classifier to adhere to it. Unlike [67,68], our classifiers can

classify multiple application types and not just P2P.

In [70,71], these authors divide the Internet traffic applications into broad classes. For

example, the multimedia class contained all streaming applications while the bulk class

contained file-transferring applications like FTP. Then Li et al. [70] use a multi-class SVM

to classify incoming flows into one of these classes while Liu et al. [71] convert binary

classifiers into an online multi-class classifier but did not specify how. Li et al. [70] was

able to achieve over 99% flow accuracy on the campus trace they collected (or a flow

accuracy of 96% when they biased the classifier to have equal mix of all the applications)

while the classifier Liu et al. [71] used was able to achieve a flow accuracy of approximately

80% on the Auckland IV trace.

In [72], Kim et al. compared the performance of a port-based classifier (CoralReef),

BLINC [73] (discussed in behavioural-based classifiers subsection below), three probabilistic

classifiers (Näıve Bayes, Näıve Bayes with Kernel Estimation and Bayesian Network), three

deterministic algorithms (k-NN, Neural Networks and C4.5 decision trees) and a Support

Vector Machine (SVM). The SVM consistently outperformed all the other classifiers they

tested on their traces (from backbone and edge networks in the US, Japan and Korea

in 2004). To expand on these findings, they used the SVM in designing a robust traffic

classifier that can be trained with data from one network and still classify well on another.

By ensuring that the SVM had a complete training set (i.e., it contained all relevant

applications), the SVM was able to achieve 94% flow accuracy on unseen traces.

Another finding from the Kim et al.’s work was that ports could still be relevant in

classification for applications that are known to use IANA’s port number mapping. For

example, an input for their SVM was the port number and removing this feature caused

a drastic decrease in flow accuracy. Note though that their traces were from 2004 so

the application mix on networks can be different now with more applications using non-

standard ports, especially since Karagiannis et al. have stated that P2P (an application

that is known to use non-standard ports) use is not declining [1].

Este et al. [74] use a collection of SVMs to classify Internet traffic. Each SVM in their

2 Literature Review 25

work is a ν-SVM (which will be described in greater detail in the next chapter). The

ν-SVM is a one-class SVM where only one class is inputted to the SVM and the SVM

determines the spatial region that this class occupies in the input space. The input to the

classifier is the packet size for the first n packets of a flow. To account for who is sending

the packet, the value is positive when sent by the client and negative when sent by the

server. The classifier they use has 2 stages. The first stage is the c ν-SVMs. If none

of the SVMs determine that an incoming flow belong to their application then the flow

is classified as unknown. If exactly one SVM determines that an incoming flow is in the

region of its classifier then it is classified as that application. If multiple SVMs believe that

the incoming flow belong in the region of their application, then the incoming flow is passed

onto the second stage. The second stage is a multi-class SVM which is similar to ours as

it consists of c binary classifiers. The difference is the heuristic chosen in selecting a class

(also they use a regular SVM and we use 2ν-SVM which provides performance guarantees).

The SVMs are “one vs all” classifier where each SVM determines whether the incoming

flow belongs to a particular application or not. For their heuristic, if multiple SVMs believe

that an incoming flow belongs to their class, Este et al. select the class where the incoming

flow is the furthest away from the decision boundary while our approach consists of placing

the classifiers in a chain and selecting the first class that identifies a flow as its own. We

consider all possible ordering to find the optimal ordering.

Este et al. experiment on three different data sets: a trace from their faculty network

and two public traces from the Lawrence Berkeley’s National Laboratory (LBNL) [75] and

Cooperative Association for Internet Data Analysis (CAIDA) [76]. For their trace, they

had access to the payload so they used a Deep-Packet Inspection technique to establish

the ground truth, while for the public traces, port numbers had to be used to identify

applications. For each data set, six applications were chosen for classification (varied from

data set to data set). The accuracy of almost all the selected classes were over 85%. The

classes where the class accuracy was below 85% were found in the public traces and they

were classes associated with port 80 and 443 (ports associated with HTTP and HTTP

respectively). The problem is that port 80 is also known to be used by a variety of other

applications (Skype for example) so without being able to look at the payload, Este et al.

are classifying multiple applications as one class which leads to a low accuracy. Este et al.

found that the port 443 class had a low accuracy due to having similar characteristics to

flows that use port 993 (IMAPS) making it difficult for the classifier to distinguish between

2 Literature Review 26

the two. Este et al. also inputted into the classifier classes that they did not train on to

see if they would be classified as unknown. This worked to a varying degree, depending on

the class and how closely it resembled other classes.

2.3.4 Behavioural-based Classifiers

Karagiannis et al. [73] propose a classifier that they call BLINd Classification (BLINC)

that investigates the behavior of network hosts and present a heuristical approach to traffic

classification in which classification is done on a social, functional and application level.

Their classifier can handle TCP and UDP traffic. The social level examines the popularity

of a host: how many other hosts does this host interact with. In particular, it is important

to determine which of the hosts are servers, because if these hosts can be identified, all the

flows from a client to this host can be identified. Also at this level, they determine that if

IPs in the same subnet are using the same port, they are likely providing the same service

(part of a server farm). The functional level determines whether the host is a client or

server. Generally they found that if the host is using 2 or fewer ports it is a server. The

application level examines the 4-tuple of the flow - source/destination IP address and port

numbers to determine the application. Karagiannis et al. visualize this with graphlets.

Heuristics using flow statistics are applied as well to aid in the classification. One example

of a heuristic is that they found that the average packet size in a flow for gaming applications

is constant, so this knowledge can be used to classify these flows. One drawback to their

approach is that the classifier needs to be exposed to several flows from a host before it

can decide what it is. This can lead to low byte accuracy if these large flows are sent

infrequently from a host.

To assess BLINC, the authors measured the flow accuracy and the completeness of

their classifier. Completeness is the fraction of flows they try to classify compared to

the total number of flows in the trace; the classifier can classify a flow as unknown if it

does not know what it is. They tested their classifier on two different campus traces and

found the completeness ranged from 80-90% and the flow accuracy was over 95% for both

traces. The performance of their algorithm is coarsely tunable. Kargiannis et al. can

tune their classifier to balance between flow accuracy and the completeness of the classifier.

Higher completeness compromises accuracy because the classifier will try to classify flows

more aggressively. The authors argue that tuning the classifier for a higher accuracy is

2 Literature Review 27

more desirable as it is easier to examine flows in the unknown class rather than have a

misclassified flow mixed into an application class. We go further than this by providing

finer-grained constraints, both in terms of false alarm and false discovery rates.

Another approach that examines the social behavior of hosts is the work done by Ilio-

fotou et al. [77]. The authors create traffic dispersion graphs to monitor the interactions

of all the hosts. In the graph, the hosts are the nodes and edges are formed between two

nodes when the hosts communicate with each other. These edges can be either directed or

undirected depending on how the graphs are implemented. For TCP flows, they applied an

additional filter to only add an edge if the flow is using a specific port number. For UDP

flows, they only added an edge for the first packet sent in a flow. From their preliminary

results they were able to use graph metrics to see what type of application is present in

the graph (client-server, P2P or malware). Future work involves finding heuristics for these

graphs so that they can be mapped to applications.

2.4 Our Contribution

Although numerous traffic classification methodologies have been proposed, none provide

strict guarantees on performance, particularly false alarm/discovery rates (a claim vali-

dated by Nguyen et al. in [3]). Such guarantees are essential if a network operator wishes

to employ traffic flow control procedures based on the classification labels. The primary

contribution of this work is the proposal of two novel online classifiers that provide class-

specific performance guarantees. The first classifier controls false alarm rates, and is based

on a multi-class generalization of Neyman-Pearson (NP) classification [4–8]. The second

controls false discovery rates, and is based on a multi-class generalization of the Learning

Satisfiability framework (LSAT) [9]. The FAR/FDR constraints are the parameters that

must be specified by the operator. Both classifiers are implemented as generalizations of

the 2ν-Support Vector Machine (2ν-SVM) [78], which implies that classification can be

performed online with a small number of elementary arithmetic operations. The 2ν-SVM

was chosen over other methods because this SVM provides the opportunity to tune perfor-

mance guarantees and the classifier can be run online. Deep Packet Inspection just looks

for patterns inside the payload so this method is limited to what it can do with performance

guarantees. Clustering only groups similar flows together so a proper heuristic would need

to be developed to provide performance guarantees (which has not yet been developed in

2 Literature Review 28

the Internet traffic classification field for clustering). We could have chosen other machine

learning techniques but we found the 2ν-SVM is the best fit for our needs due to its ro-

bustness (can be used as basis for both the NP and LSAT classifiers). Behavioural-based

classifiers that were mentioned are not able to provide any strict performance guarantees.

Our classifiers operate solely on statistics derived from packet headers, which are relatively

easy to obtain.

29

Chapter 3

Background

This chapter lays the foundation for the algorithms that we use to solve the three problem

statements. We provide background for the two algorithms we use to solve our three

problems — Neyman-Pearson classification [4–8] and the Learning to Satisfy framework [9].

Since both algorithms use Support Vector Machines (SVM) (and more specifically the 2ν-

SVM [8,78]) as their foundation, we describe what SVMs are and how they are implemented.

We also detail the changes that must be made to a SVM to modify it to a 2ν-SVM which

is required for our problems. Then, we describe how NP classification and the LSAT

framework can be implemented with a 2ν-SVM.

3.1 Support Vector Machines (SVM)

Support Vector Machines (SVMs) [79] are a popular and robust method for classification.

The goal for a SVM is to find the optimal hyperplane that separates two classes (if this

hyperplane exists). The optimal hyperplane in this case is the hyperplane that maximizes

its margin from the nearest point from both classes (the max-margin principle1). The

margin is the distance from the closest data point of a class to the hyperplane. If there

is no hyperplane that can separate the two classes, we discuss later in this section two

methods to deal with this — (i) using a kernel function which maps the input space into a

higher-dimensional space where the two classes are separable and (ii) introducing a slack

parameter to the SVM which allows some points to be misclassified. We discuss two types

1The max-margin principle defines a hyperplane that is maximum equidistance from points in the two
classes.

3 Background 30

of SVMs with a slack parameter — C-SVM (Section 3.1.1) and 2ν-SVM (Section 3.1.2).

To construct a SVM, a training set with m points, T = (xi, yi),xi ∈ Rn, yi ∈ {−1, 1}, i =

1, . . . ,m, is required. The first step in constructing the SVM is transforming the input

features xi via a kernel function which is a mapping, Φ : Rn → H, where H is a high-

dimensional Hilbert space. This step is necessary as it can be difficult to separate the

classes in the given input space, but when they are mapped to a higher-dimensional space

the classes become easier to separate. Table 3.1 shows common examples of kernel functions.

Generally, when constructing a SVM, different kernel functions are considered to find the

optimal SVM. We selected the radial basis function (RBF) as our kernel for all of our

evaluations as this kernel provided the best results.

Table 3.1 Four common kernel functions: linear, polynomial, radial basis
function (RBF) and sigmoid. The parameters r, γ and d need to be tuned in
order to find the optimal SVM.

Kernel Type Kernel Function (k(x,x′))
linear xTx′

polynomial (σxTx′ + r)d, σ > 0

radial basis function e−σ||x−x′||2 , σ > 0
sigmoid tanh(σxTx′ + r)

After the mapping has been made, the optimal hyperplane needs to be constructed to

separate the points. The hyperplane takes the form,

f(x) = wx + b (3.1)

where w is the normal vector to the hyperplane and b is the affine shift. We set the

hyperplane to wx + b = 0. We then normalize w and b so that the closest point from each

class is 1
||w|| . Then we can deduce that the margin for the classifier is 2

||w|| where minimizing

||w|| will maximize the margin. Since there are no points from the y = 1 class inside the

margin of the classifier, the decision boundary for the y = 1 class is all the points where

wx + b ≥ 1. Similarly, the decision boundary for the y = −1 class is all the points where

wx + b ≤ −1. As stated previously, the optimal separating hyperplane is the hyperplane

that maximizes the margin between itself and the two classes so the optimization problem

for support vector machines is:

3 Background 31

min
w,b

1

2
||w||2 (3.2)

s.t. yi(〈w,xi〉+ b) ≥ 1, ∀i = 1, . . .m

The optimization problem described in (3.2) consists of the objective function to maxi-

mize the margin and one constraint that is used to provide a boundary between the classes.

These type of problems are known as constrained optimization problems and can be solved

with Langrangian multipliers θi > 0. Then the optimization problem can be re-written as:

L(w, b, θ) =
1

2
||w||2 −

m∑
i=1

θi(yi(〈w,xi〉+ b)− 1) (3.3)

Solving this Lagrangian requires maximizing L with respect to the primal variables w and

b while minimizing L with respect to the dual variables θi. This is the same as looking

for the saddle point2. Note that since we are trying to maximize L with respect to θ, if

yi(〈w,xi〉+b)−1 > 0 then θi = 0 so only points that are on the boundary of the margin are

of interest. To solve this problem, the Karush-Kuhn-Tucker (KKT) conditions are applied

which state that at the saddle point the primal variables must vanish, i.e.,

∂

∂b
L(w, b, θ) = 0 and

∂

∂w
L(w, b, θ) = 0 (3.4)

which leads to

m∑
i=1

θiyi = 0 and w =
m∑
i=1

θiyixi (3.5)

Substituting these two variables back into (3.3) gives the dual optimization problem

which is easier to solve:

W (θ) =
m∑
i=1

θi −
1

2

m∑
i,j=1

θiθjyiyj〈xi,xj〉 (3.6)

s.t. θi ≥ 0, ∀i = 1, . . .m and
∑m

i=1 θiyi = 0

2A saddle point is a point that is a stationary point (L′(w, b, θ) = 0) and a point of inflection (a point
in L where the sign of the second derivative changes).

3 Background 32

Therefore only a fraction of the points from the training set are relevant (the points on

the margin, θi > 0). These points are known as the support vectors. These support vectors

are used to classify new points by creating a decision function,

h(x) = sign

(
m∑
i=1

yiθi〈x,xi〉+ b

)
(3.7)

which determines which side of the hyperplane the point is on. Note that the sign function

returns +1 for a positive number and −1 for a negative number.

Note that the kernel function aids to reduce the computational complexity of this deci-

sion function. The kernel function has the following property,

k(x,x′) = 〈Φ(x),Φ(x′)〉 = 〈x,x′〉2 (3.8)

(3.8) shows what is known as the kernel ‘trick’. This ‘trick’ shows that when comparing

two vectors, instead of mapping both of the vectors into their higher-dimensional space

and then calculating the inner product, the inner product can be calculated directly (and

squared). This significantly reduces the computational complexity and saves from mapping

the features to sometimes infinite-dimensional spaces. To be a valid kernel function, the

kernel function needs to be continuous, symmetric and positive semi-definite.

3.1.1 C-SVM

In practice, it is not always possible to find a hyperplane that can separate the two classes.

Therefore a slack parameter, ξi > 0 is introduced at the margin which provides a tolerance

for misclassification. This allows points to be inside the margin. This type of SVM is

known as a soft-margin SVM. Then the new optimization problem is shown in (3.9) where

C > 0 is the misclassification penalty. The parameter C is used to find a trade-off between

minimizing the training set error and maximizing the margin. The issue with this parameter

is that it is not intuitive to find the optimal value for this parameter.

min
w,b,ξ

||w||2

2
+ C

∑
i

ξi (3.9)

s.t. yi(k(w,xi) + b) ≥ 1− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

3 Background 33

3.1.2 2ν-SVM

Scholkopf et al. [80] re-formulated a soft-margin SVM so that the parameter to tune is more

intuitive — the ν-SVM. Scholkopf et al. show that this ν term provides more interesting

properties about the SVM than C. The optimization problem changes from the one found

in (3.9), to:

min
w,b,ξ

||w||2

2
− νρ+

∑
i

ξi (3.10)

s.t. yi(k(w,xi) + b) ≥ ρ− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0

ν ∈ [0, 1].

Another parameter is introduced in (3.10), ρ. This parameter is used to tune the

margin of the classifier. Note that if ξi = 0, ∀i then the margin is simply 2ρ
||w|| . Using this

implementation, the parameter ν provides a lower bound on the fraction of support vectors

used and an upper bound on the margin errors. Therefore tuning ν provides a method to

control the error rate as opposed to the parameter C in the original implementation, (3.9),

which just provides a penalty for misclassification.

Chew et al. [78] take this one step further by giving each class its own parameter ν, (ν+

and ν−) to tune and call their approach 2ν-SVM. This form of cost-sensitive classification

allows there to be different penalties for the separate classes. Another advantage of 2ν-SVM

is that it addresses a training set bias as if there is a dominant class inside the training set,

this will not bias the classifier towards this class as both classes are treated separately in

this implementation. The optimization problem for the 2ν-SVM is:

min
w,b,ξ,ρ

(ν+ + ν−)||w||2

2
− 2ν+ν−ρ+

ν−
n+

∑
i∈I+

ξi +
ν+

n−

∑
i∈I−

ξi (3.11)

s.t. Zi(k(w,xi) + b) ≥ ρ− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0.

Two new variables are introduced in (3.11) — n+ and n−. These variables state the number

of data points in both classes.

Davenport et al. [8] extend this work by introducing a way to control false alarm rates

3 Background 34

with the 2ν-SVM. Minimizing the overall misclassification rate while setting a maximum

allowable threshold on the false alarm rate is known as Neyman-Pearson (NP) classifica-

tion [4–7]. Two advantages of NP-classification are that it is more intuitive to deal with

false alarm constraints than to arbitrarily assign penalties to a class (or data point) as is

done with other classification methods. The second advantage is that NP classification does

not assume a priori class probabilities. This is advantageous because it does not matter

if the class mix in the training set corresponds to the real class mix in the input space.

This is an important fact when the training set does not necessarily reflect the entire input

space.

The 2ν-SVM can be used for NP classification as follows. Let PM and PF be the

misclassification rate and false alarm rate, respectively, and P̂M and P̂F be the estimated

values of these rates from the data set. Then a grid search is performed to find the optimal

values of ν+ and ν− in [0, 1]2 that minimizes P̂M while keeping P̂F ≤ α, where α is the

maximum allowable false alarm rate. Davenport et al. show that this process can be sped

up by using coordinate descent instead of a grid search.

When constructing a 2ν-SVM, the optimal combination of the 2ν-SVM parameters

(ν−, ν+ and the kernel parameter σ) need to be found. Davenport et al. [8] provide a risk

function to assess what is the optimal combination of the 2ν-SVM parameters. The risk

function is required as one classifier could have a lower misclassification rate while the other

classifier could have a lower false alarm rate so it can be difficult to decide which is the

better one to use. Davenport et al. use a risk function from [81] to assess the classifiers.

The risk function for the classifier f is:

r(f) =
1

α
max{PF (f)− α, 0}+ PM (3.12)

This risk function takes into account both the false alarm and the misclassification

rates. Here, the false alarm rate is class specific so it is chosen between one of the two

classes while the misclassification rate is the overall misclassification rate of the classifier.

In our work, we use a chain of these binary classifiers where each classifier inside the chain

is responsible for classifying a particular application class (a one-versus-all type classifier).

For our work, the false alarm constraint will always be chosen for the application class that

the classifier is responsible for. If the false alarm constraint is satisfied there is no penalty

for that term. If the constraint is not satisfied, the relative error is measured PF (f)−α
α

.

3 Background 35

Therefore, for stricter constraints, if the classifier does not satisfy the constraint set, a

larger penalty is induced due to the 1
α

term. The reason we have a penalty for the false

alarm constraint and do not just reject all classifiers that violate the false alarm constraint

is because we are estimating the false alarm rate through the training set. As a result of

this, we allow classifiers that exceed α by a small margin that may be attributed to the

noise from estimating the false alarm rate. Another reason this risk function was chosen

is because this risk function favours classifiers that minimize the PM while satisfying the

false alarm constraint which is exactly the problem statement we specified for this classifier.

Note that future work can involve adding a weight to PM if more emphasis wants to be

added to the misclassification rate.

3.2 Learning Satisfiability

The binary version of the Learning to Satisfy framework, recently proposed in [9], introduces

a novel learning method where the goal is to create the largest set in the input space that

satisfies certain output constraints based on expected values or event probabilities. LSAT

distinguishes itself from other classifiers by assessing the output behaviour on only the

solution set rather than over the entire input space. This differentiates LSAT from other

learning frameworks as for example, Neyman-Pearson (NP) learning assesses the output

behaviour over the entire input space [8].

The LSAT framework is formulated as follows [9]. Let X be the random vector inside the

input space X (with d features) and Y the corresponding output vector in Y . Let the data

(Xi, Yi); i = 1, . . . , N be independent and identically distributed (i.i.d.) according to an

unknown probability measure P ∈ P (where P is the collection of all probability measures

in this space) on the space X ×Y . Assume that there are k + 1 constraints, each with the

form Cj(G,P) ≥ 0, where G is the collection of all sets that satisfy the constraint function

mapping C : G × P → Rk+1, where C is the set of the constraints {Cj}j=0,..,k. Therefore,

for a probability measure P , the goal of LSAT is to then find the largest set G ∈ G that

satisfies the constraint C(G,P) ≥ 0. This inequality is applied element-by-element within

the set on constraints. By letting µ(G) be a positive measure of choice then the LSAT

optimization problem can be re-written as:

max
G∈G

µ(G) subject to C(G,P) ≥ 0 (3.13)

3 Background 36

Note that there does not necessarily need to be a solution to this optimization problem.

This can occur when the constraints specified are too strict. In this case, the solution would

be the empty set.

An alternative way to pose this optimization problem is to find a risk function, R0,

such that minimizing R0 (under the constraints C1, . . . , Ck) is equivalent to maximizing

the volume of the set µ(G) subject to satisfying C0 and the remaining constraints. Then

the optimization problem can be re-written as:

min
G∈G

R(G,P) subject to Cj(G,P) ≥ 0, j = 1, . . . k (3.14)

Particular care is required in identifying a risk function, as the risk function needs to

have two properties. The first property is that if there is a non-empty solution to the

optimization problem in (3.13) then the solution from this optimization problem should

coincide with it. The second property is that if the empty set is the only possible solution,

then the empty set must have a smaller risk than any set failing to satisfy C0.

The LSAT framework can use two type of constraints — point-wise constraints and set-

average (class-wise) constraints. Point-wise constraints are a function on the input variable

x, so C(G,P) ≥ 0 becomes C(x, G, P) ≥ 0, ∀x ∈ G. On the other hand, set-average

constraints are a function of the entire set G and involve constraints that need to satisfy

the average output of the set.

We illustrate the different types of constraints with examples from the classifier with

FDR constraints and the large flow detector. The classifier with FDR constraints only

needs set-average constraints as this classifier requires only false discovery rate guarantees.

This can be expressed mathematically for each classifier in the chain (where each classifier

is trying to create the largest set for a particular application) as Pr(Y = 0|Ŷ = 1) ≤ β

where β is the FDR constraint specified for the set of points with Y = 1 and Ŷ is the

output of the classifier. Here, the classifier has two possible values — 1 if the input flow

belongs to the set, G and 0 otherwise.

The large flow detector requires both point-wise constraints and set-average constraints.

The point-wise constraint is expressed mathematically as, E[Z|X = x]−U ≥ 0, ∀x ∈ G,

where Z is the number of bytes in the flow (which is a random quantity, i.e. Pr(Z = z|X =

x)), and U is a threshold defining a large flow. The set-average constraint for the large flow

detector is Pr(Z ≥ L|X ∈ G)−(1−ω) ≥ 0, where L is a threshold specifying the maximum

3 Background 37

size of a small flow and 1 − ω is a probability threshold and ω is the false discovery rate

constraint. These two constraints are used in tandem as the point-wise constraint states

that the expected number of bytes in a flow that is in the set is above U (i.e. a large flow).

On the other hand, the set-average constraint gives the maximum allowable threshold for

small flows that are allowed to be in the set G.

In practice, since the probability measure, P , is unknown, it needs to be estimated.

A training set, T = 〈xi, yi〉, i = 1, . . . ,m is used to estimate P̂ . Using this P̂ , estimated

versions of the constraint function C(G, P̂) and the risk function R(G, P̂) are calculated.

Also 1� ε > 0 is introduced as a tolerance for the constraint functions so small violations

of the constraints can be tolerated. Then the optimization problem for the estimated set

Ĝ is:

Ĝ = min
G∈G

R̂(G, P̂) subject to Ĉj(G, P̂) ≥ −εj, j = 1, . . . k (3.15)

The LSAT framework is implemented by adapting the 2ν-SVM described earlier. LSAT

has been previously implemented using Dyadic Decision Trees (DDT) [82] but we chose the

2ν-SVM approach as it is more robust for higher dimensional input spaces. The LSAT

framework can be implemented using the 2ν-SVM by introducing a penalty (γi) for (i)

leaving a point out of the set G that should be in the set; (ii) including a point in the set

that can contribute towards the violation of any of the constraints specified. With these

penalties and the other 2ν-SVM parameters, we can control the size of the set G where the

tradeoff is between a larger set or a smaller set that has less chance of violating any of the

constraints. (3.16) shows the new problem formulation for LSAT with the 2ν-SVM.

The following method is the general way to calculate γi. Every data point (xi, yi) has an

artificial label Di,j and misclassification penalty γi,j for every constraint j. This artificial

label Di,j states whether xi positively or negatively contributes to satisfying the given

constraint j; Di,j = 1 if xi positively contributes to affecting the constraint (i.e. including

this point in the set will help to satisfy the constraint j) and Di,j = 0 if xi does not (i.e.

including this point in the set will hinder the ability to satisfy the constraint j). The

misclassification penalty γi,j gives the penalty for violating constraint j. However, all these

labels need to be converted to one single label so the point xi can be classified. Therefore we

use the following mapping to determine the label Di for every xi and the misclassification

penalty γi. If Di,j = 1,∀j then Di = 1 and γi =
∑

Di,j=1 λjγi,j where λj provides a weight

3 Background 38

for the constraint j. Similarly, if Di,j = 0,∀j then Di = 0 and γi =
∑

Di,j=0 λjγi,j.

Extra care needs to be taken if for a data point xi, Di,j 6= 1, ∀j or Di,j 6= 0, ∀j. In this

case, an auxiliary point is created. The auxiliary point is created to examine both cases

for xi: Di = 1 and Di = 0. The data point xi, considers all the constraints that have

been satisfied so Di = 1 and γi =
∑

Di,j=1 λjγi,j. On the other hand, the auxiliary point xĩ
considers all the constraints that have been violated so Dĩ = 0 and γĩ =

∑
Dĩ,j=0 λjγĩ,j.

min
w,b,ξ,ρ

(ν+ + ν−)||w||2

2
− 2ν+ν−ρ+

ν−
n+

∑
i∈I+

ξiγi +
ν+

n−

∑
i,̃i∈I−

ξiγi (3.16)

s.t. Di(k(w,xi) + b) ≥ ρ− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0.

39

Chapter 4

Methodology

In this chapter, we elaborate on the algorithms we propose to perform Internet traffic

classification and large flow detection. We use multi-class versions of Neyman-Pearson

(NP) classification [4–8] and the Learning to Satisfy (LSAT) [9] framework for Internet

traffic classification and a binary LSAT classifier for the large flow detector. The rest of the

chapter is organized as follows. We first elaborate on the three problems we are trying to

solve. Then we discuss how these algorithms are adapted for Internet traffic classification,

which includes transforming the classifiers to a multi-class setting. We use a chain of binary

classifiers for this transformation. We also describe how the binary LSAT is suited for the

large flow detector.

4.1 Problem Statements

This section describes the three problem statements that this thesis addresses. These

problem statements can be categorized as belonging to the field of network operation man-

agement. For Internet traffic classification, we classify flows not packets. For this work,

we focus on only TCP flows. A TCP flow has three stages: (i) establishing the connection

which involves a 3-way handshake1. (ii) After the connection is setup, the data transfer

1To establish a connection, the client first sends a synchronize (SYN) packet to the server which is
done by setting the SYN field in the packet header. In establishing the connection, flow properties such as
maximum segment size are also specified. The server acknowledges receiving this packet by replying with
a SYN-ACK packet which sets the synchronize field (SYN) in the packet header again to show that it is
still in the connection phase and acknowledges (ACK) receiving the synchronize packet from the client.
To complete the 3-way handshake, the client acknowledges receiving the SYN-ACK packet from the server

4 Methodology 40

between the client and server begins. (iii) The final stage is terminating the flow. After

the client (or server) is finished sending data it sends a packet to the server (or client) with

the finished (FIN) bit set and the server (or client) acknowledges receiving this packet.

The flow is terminated when the other device also completes this procedure. Flows can

also be terminated because of a timeout (if no packet is sent in a given time interval). All

packets belonging to a flow are characterized by having the same source IP address/TCP

port number and the same destination IP address/TCP port number.

The task of the two Internet traffic classifiers is to assign a user-defined label corre-

sponding to an application to each flow. From the i-th TCP flow, we derive a feature

vector xj, which contains d1 relevant flow statistics which will be the input to the Internet

traffic classifiers and d2 relevant flow statistics which while be input into the large flow de-

tector. Let x ∈ Rd be the statistics from a sample flow. Note that the statistics are derived

after only k packets in the flow have been transmitted as the classification needs to be done

online. The traffic classifiers then map this input to a discrete, finite output variable Ŷ ,

where Ŷ is one of the (c+1) application classes. Of the c+1 application classes, there are c

known application classes (i.e. classes that we are training the classifier to classify) and the

(c+ 1)th class is the “unknown” class (or a catch-all class). If the classifier does not think

the flow is one of the c other application classes, the flow is then classified as “unknown”.

For the large flow detector, Z is the number of bytes when the flow is completed. Then,

if Z is greater than a user-defined threshold, the flow will be considered large. Let z be

the output of a sample flow. Note that Y and Z are random variables, that is, for any X

the output is a probabilistic quantity. We denote Q1 as the unknown probabilistic measure

on Rd1 ×R and we assume that every pair (X, Y) is independently, identically distributed

(i.i.d.) according to Q1. Similarly, we denote Q2 as the unknown probabilistic measure

on Rd2 ×R and we assume that every pair (X, Z) is independently, identically distributed

(i.i.d.) according to Q2.

4.1.1 Problem Statement 1: FAR-constrained classifier

The first problem statement deals with the Internet traffic classifier with false alarm rate

(FAR) constraints. The goal of this classifier is to assign a user-defined label for each flow

that enters the classifier while adhering to false alarm constraints for some classes and

with an ACK packet.

4 Methodology 41

minimizing the overall misclassification rate. The maximum allowable FAR constraint for

class i, αi, is determined by the user. Recall that the FAR for class i is the expected

fraction of flows that do not belong to class i that are classified as being part of class i.

Mathematically, this is expressed as Pr(Ŷ = i|Y 6= i) where Ŷ is the output of the Internet

traffic classifier and Y is the true underlying class. This is the general (classwise) definition

of the FAR. The FAR can also be considered between just two classes, where there is a

FAR constraint for misclassifying flows belonging to class j as class i (i.e. a pairwise FAR).

The definition of the pairwise FAR is the expected fraction of flows that belong to class j

which are classified as belonging to class i. Here, the maximum allowable FAR constraint

is denoted by αij. Mathematically, the pairwise FAR is denoted as Pr(Ŷ = i|Y = j) where

Y is the output of the Internet traffic classifier. Note that if the FAR constraints are too

strict or there are too many constraints this may degrade the overall performance of the

classifier. This is because the classifier might then classify everything as unknown to ensure

that all the constraints are met (if you do not classify anything as class i you ensure that

the FAR for class i is zero). The user then needs to find the right balance between FAR

constraints and the overall performance. It is possible that there are no constraints set for

a given class (the class may not be important) and in this case αi (or αij) would be simply

set to 100%. Then the goal for this class would be to minimize the misclassification rate.

Summing up this problem statement, the goal is to find the classifier, f ∗ such that,

f ∗ = arg min
f
Pr(Ŷ 6= Y) where Ŷ = f(X) (4.1)

with either FAR classwise constraints,

Pr(Ŷ = i|Y 6= i) ≤ αi, i = 1, . . . , c (4.2)

or FAR pairwise constraints,

Pr(Ŷ = i|Y = j) ≤ αij, i, j = 1, . . . c, i 6= j (4.3)

4.1.2 Problem Statement 2: FDR-constrained classifier

The problem statement for the false discovery rate (FDR) constrained classifier is similar

to the FAR-constrained classifier as the only difference is that this classifier minimizes the

4 Methodology 42

overall misclassification rate while adhering to FDR constraints instead of FAR constraints.

The maximum allowable FDR constraint, βi for class i is set by the user. The classwise

FDR for class i is the expected fraction of flows classified as class i that do not belong to

class i. Mathematically, this is expressed as Pr(Y 6= i|Ŷ = i) where Ŷ is the output of

the Internet traffic classifier and Y is the true underlying class. A pairwise FDR can also

be measured (for classes i and j) which is the expected fraction of flows that are classified

as class i but belong to class j which can be denoted mathematically as Pr(Y = j|Ŷ = i)

where Y is the output of the Internet traffic classifier. Let the user-defined maximum

allowable pairwise FDR constraint be βij. Again, the same caveat is specified where the

Internet traffic classifier’s performance can degrade if the constraints are too strict or if

there are too many constraints. Also if no constraints are required for class i, then simply

set βi = 100%. Then the considerations for designing the optimal classifier f ∗ are,

f ∗ = arg min
f
Pr(Ŷ 6= Y) where Ŷ = f(X) (4.4)

with either FDR classwise constraints,

Pr(Y 6= i|Ŷ = i) ≤ βi, i = 1, . . . , c (4.5)

or FDR pairwise constraints,

Pr(Y = j|Ŷ = i) ≤ βij, i, j = 1, . . . c, i 6= j (4.6)

4.1.3 Problem Statement 3: Large flow detector

The large flow detector is the pre-processor for Internet traffic classifiers. By being able to

identify if a flow is going to be large after only k packets of the flow have been transmitted,

we can send to the Internet traffic classifiers only the large flows. This allows the classifiers

to focus on flows that have a greater impact on the network (as thee flows use more network

resources as they stay on the network longer and use more bandwidth) and allows the

classifier to ignore the inconsequential flows. For this detector, we also provide a maximum

allowable FDR such that there is a maximum threshold of small flows being classified as

large, thereby ensuring the Internet traffic classifier does not waste time classifying the

small flows. We denote L as the maximum number of bytes an entire flow can have to be

4 Methodology 43

considered small and U is the minimum number of bytes an entire flow must have to be

considered large.

The detector is posed as a constrained level set estimation problem. We denote Q′2

as the marginalization of the probability measure, Q2 in Rd. Then the problem is to find

the largest subset G inside the feature space, which is the a subset of the feature space

that maximizes the measure Q′ and that all the constraints are met. For the “large” flow

detector, we set two constraints. The first constraint, C0, (a pointwise constraint) states

that for a given flow x, the expected value of Z (the total number of bytes in the flow)

should be greater than U . The second constraint, C1, (a set-average constraint) sets a

maximum allowable FDR threshold, ω for the large flows. Then the constrained level set

estimation problem becomes finding G∗ such that,

G∗ = arg max
G⊆Rd

Q′2(G) (4.7)

such that:

C0 : E[Z|X = x] ≥ U ∀x ∈ G, (4.8)

C1 : P(Z < L|X ∈ G) < ω. (4.9)

4.2 Network Operations Management Algorithms

This section describes how the 2ν-SVM and LSAT framework are applied to our network

operation management problems from Section 4.1. We chose classifiers based on SVMs for

our approach as once the SVM is trained it requires few operations to make a prediction

on incoming data points and this is perfect for an online classifier [65]. Particular care is

provided in discussing how both of the binary classifiers are adapted for our multi-class

setting. Previous work with SVM-based Internet traffic classifiers show that they perform

comparably to any other classifier used [3] so our approach should perform just as well

with the added advantage of having performance guarantees. Also for the Internet traffic

classifiers, we discuss the feature selection tool that we used so that only relevant features

are sent to the classifiers.

4 Methodology 44

4.2.1 Internet Traffic classification

For both of our Internet traffic classifiers, we use a chain of the respective binary classifier to

provide multi-class classification, f = (fs(1), . . . , fs(c)) (for Neyman-Pearson classification,

2ν-SVM and for the FDR-constrained classifier, LSAT). Here s(·) is a permutation of the

c application classes and s(i) corresponds to the i-th application class in the permutation.

This chain is illustrated in Figure 4.1 along with the “large” flow detector acting as the

pre-processor. For many classification tasks, a chain of binary SVM classifiers has been

shown to perform as well as a multiclass SVM [65, 83]. Multiclass SVMs are much more

computationally demanding and do not scale well as the number of classes increases. Each

binary classifier inside the chain is responsible for determining if the flow is one of the c

application classes. For example, for class i, the classifier fs(i)(x) produces an output of 1

if the feature vector x belongs to class i and 0 otherwise. Mathematically, this is expressed

as,

ẑ = arg min
s(1)≤i≤s(c)

{s(i) : fs(i)(x) = 1} (4.10)

Note that in our implementation the ordering in the chain is important as the first classifier

that detects a match, determines the label. This is a simple approach in deciding which

label to choose but there are other possible approaches as well. For example, Este et

al. [74] used another approach where they chose the class that maximizes the margin from

the deciding hyperplane. Since the first classifier that detects a match, determines the label,

we need to consider all possible permutations to find the best classifier. If all the binary

classifiers inside the chain determine the flow does not belong to the class it is classifying,

then the flow is labeled as unknown (the (c + 1) class). If the number of flows that are

being classified as unknown is increasing, this may signify a new application class on the

network. Then the user can train a new classifier for this class and add it to the chain.

For every classifier inside the chain (for both types of Internet traffic classifiers) we

need to find the optimal parameters for the 2ν-SVM parameters — ν+ and ν− and a kernel

parameter for the RBF kernel, σ (the LSAT classifiers have an additional parameter γ).

Also as mentioned, the ordering of the classifiers inside the chain need to be considered.

Each classifier in the chain has their own set of labels, Y ′i = δY=s(i). We train the classifiers

on a training set and perform a grid search over all the parameters. To perform a grid

search, possible values for all the parameters are given, then the grid search searches all

4 Methodology 45

Input flow, x fs(1)(x) = 1?

Yes

Label x as
Class 1

No"Large"
Flow

Detector

"Large" Flow

"Small" Flow

Discard

fs(2)(x) = 1?

Yes

Label x as
Class 2

No ... No fs(c)(x) = 1?

Yes

Label x as
Class c

No Label as
"Unknown"

Fig. 4.1 An overview of how our Internet traffic classifiers are implemented.

possible combinations of these parameters to find the optimal combination. Table 4.1 shows

the possible values we selected for ν+, ν−, σ and γ. We found that the resolution of the

grid shown in Table 4.1 was able to effectively represent the input space of the parameters.

Having a finer resolution will not cause a significant increase in the performance of the

SVMs. k-fold cross-validation is applied on the training set to reduce the variability of the

performance of the Internet traffic classifier. The training time is in the order of hours (on

a Pentium IV 3.4 GHz with 2 GB of RAM), and is dependent on the number of features in

the input space and the training set size. In order to compare different classifiers, a metric

needs to be established in order to determine the better one. A risk function is used for

the comparison where the classifier that minimizes the risk function is chosen.

Table 4.1 Values for ν+, ν−, σ and γ

Variable Possible Values for the Variables
ν+, ν− [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]
σ [10−410−2.410−.810.8102.4104]
γ [0.001 0.01 0.1 1 10]

This risk functions for both the FAR-constrained and FDR-constrained classifier can

be broken up into a sum of class-specific costs. Using this information, to find the chain

with the lowest value, we employ a branch and bound search over the SVM parameters

we have to tune. Let s be the ordering of the classes inside the chain. Then for s(1),

we find f ∗s(1) that is the minimizer of the risk function R̂(fs(1)). Then the classifier for

s(2), we search for f ∗s(2) that minimizes R̂(fs(1)) + R̂(fs(2)). This process is repeated for the

remaining classes and the overall value for the risk function is found and we call this κ.

The parameter κ is the current minimum achieved by greedy search. We still explore the

4 Methodology 46

various other branches to see if a lower risk function can be found. A lower risk function

is still possible as the performance of classifiers later in the chain is dependent on what

the classifiers earlier in the chain do. Therefore, it could be possible that having a higher

risk function for the classifiers early in the chain can lower the overall risk of the Internet

traffic classifier. Therefore we try a different branch (i.e., for the classifier fs(1) we choose

the classifier that has the second lowest value for R(fs(1))) and apply the same procedure

as before. We terminate this branch once its risk exceeds κ. If it does not then this branch

minimizes the risk function and is the new κ. This search is reasonably efficient, because

evaluation of the partial costs is a very simple calculation, and the nature of the cost

function means that many candidate classifier chains do not need to be evaluated because

their partial costs grow very rapidly compared to the bound on the minimum cost. For

example, any chain that violates one or more FAR constraints automatically has a much

higher cost than a chain that can meet all constraints for the FAR-constrained classifier.

For the FDR-constrained classifier, a violation of the FDR constraint eliminates the chain

from consideration.

Now that the optimal classifier has been found for one ordering, we need to determine

which ordering is the best ordering. When c < 6, it is feasible to search all possible

permutations of the chain to find the optimal Internet traffic classifier. When c ≥ 6, it

begins to become computationally prohibitive to search over all the possible permutations.

For this case, we use three heuristics to help reduce the number of orderings we explore.

The first is to keep classes with strict FAR constraints at the beginning of the chain. The

second heuristic is after an evaluation of an ordering, if we see that a class has a high

partial cost, we promote this class in all future orderings. Both of these heuristics use the

fact that classifiers at the beginning of the chain have more flexibility as fewer flows have

already been classified. By being able to view a greater number of unlabeled flows, the

classifiers at the beginning of the chain have more control over their performance. These

classifiers can decide whether the unlabeled flows belong to their class or not. Classifiers

near the end of the chain see fewer unlabeled flows so these classifiers might miss flows that

belong to their class and this can negatively affect their performance. The final heuristic

is to place classes that have a small share of the application mix early in the chain so that

classes with a larger share do not “swallow” these flows into their class.

For our problems, using a chain of binary classifiers instead of selecting the classifier

with the largest margin (as was done by Este et al. [74]) is better suited. If we had

4 Methodology 47

chosen to do classification based on the largest margin, it is then harder to control our

performance guarantees. With our approach, when a classifier is chosen, the class-specific

cost associated to this classifier is fixed. It does not matter which classifiers are chosen

later in the chain; these classifiers do not affect the cost of classifiers already chosen. If we

had chosen the largest margin approach, controlling the performance guarantees is more

difficult as changing any classifier can affect the previous classifiers that have already been

chosen. This is because if a larger margin is found, labels for flows will be changed and

this can change the performance guarantees of the classifiers.

With our approach, we find the optimal set of parameters for the first classifier in

the chain and then move onto the next classifier. If we had chosen the largest margin

approach, we need to find the optimal set of parameters for all the classifiers at once. This

is a much larger space to search in than ours. For example, let t be the number of possible

combinations of the possible values for the parameters for one classifier. With our approach,

this search is done c times, for a total of c × t searches. For the largest margin approach,

all the parameters need to be considered at the same time. Therefore we need to consider

all possible combinations of all the parameters, so tc searches are required, which is a much

larger number of searches. Also even with small values of c it might not be feasible to

find the optimal parameters for the largest margin approach as the value tc, can increase

rapidly making it difficult to search over the entire space. Note that from our work that

it is important to search over the entire space due to the unpredictability that we found

changing parameters (even slightly) has on the performance of the classifier. The largest

margin approach may have a slightly higher overall performance than our approach due

to a more exhaustive search but our approach is faster to train and better suited for our

problems. Also an issue with using the largest margin as the method of determining which

class a flow belongs to is that if not all the classifiers are using the same inputs then it is

not a fair comparison to compare the classifiers’ margins [65].

The rest of the chapter is organized as follows. First, we discuss the feature selection

method that we used to select the relevant features as inputs to the Internet traffic classi-

fiers. Then we discuss the risk functions chosen for the FAR-constrained classifier and the

FDR-constrained classifier.

4 Methodology 48

Feature Selection

In [45], Williams et al. examined different feature selection methods. We chose the

Correlation-based feature selection [84] (with Best First Forward as its subset search) for

our feature selection tool as it performed marginally better than their Consistency-based

counterparts in [45]. Correlation-based feature selection measures the correlation between

features and the class labels and eliminates the redundant features that are not correlated

in mapping a class label. The correlation between two features, A and B is measured by

the symmetric uncertainty,

U(A,B) = 2
H(A) +H(B)−H(A,B)

H(A) +H(B)
(4.11)

where H() is the entropy function. The entropy measures the uncertainty associated with

a random variable. The entropy function is defined in (4.12) where p(A) is the probability

mass function of the random variable A.

H(A) = −
∑
i

p(ai)log(p(ai)) (4.12)

Then to measure the goodness of a set of features for a class C, the following equation is

used, ∑
j U(Aj, C)√∑
i

∑
j U(Ai, Aj)

(4.13)

and the values of this equation can range from 0 to 1. The goal is then to find the best set

of features that maximizes (4.13) thereby removing all redundant features that are poor

predictors of a class. To search for the optimal subset of features, the Best First Forward

search is used. Best First Forward is based on a greedy search where the process starts

with an empty set (when it is a forward search) and features are added one by one that best

correlate to the class labels and features are added to the set until it is not worthwhile to do

so ((4.13) starts to decrease). Best First Forward search allows backtracking to see if there is

a better possible subset. Backtracking is done when a feature that is added decreases (4.13)

so another feature is selected (the second-best feature of the features not yet selected that

best correlates to the class labels). We use the software package WEKA [42] to perform

feature selection. WEKA has a parameter that controls the number (N) of consecutive

4 Methodology 49

features that are attempted to be added to the set without increasing (4.13) before the

program terminates. The default value for N is 5 and that is what we kept it at. This is a

classifier independent feature selection tool (a filter method) so the same features can be

used for both the FAR-constrained and FDR-constrained classifiers.

FAR-constrained classifier

The metric the FAR-constrained classifier uses, is the risk function from (3.12). For each

chain, the sum of all the risk functions of the classifiers inside the chain are taken (and the

Internet traffic classifier that minimizes this risk is chosen),

R(f) =
∑
s(i)

1

αs(i)
max(PF (s(i))− αs(i), 0) + PM(s(i)). (4.14)

Since we cannot measure this quantity directly, it is estimated from the training set,

R̂(f) =
∑
s(i)

R̂(fs(i)) (4.15)

=
∑
s(i)

1

αs(i)
max(P̂F (s(i))− αs(i), 0) + P̂M(s(i))

FDR-constrained classifier

The FDR-constrained classifier follows the same procedure as the FAR-constrained classifier

but with slightly different notation. Since we are using the LSAT framework, each classifier

i in the chain looks to create the largest set of flows of class i while meeting the FDR

constraints. Re-writing this in LSAT notation, for every class s(i) in the chain, let Gs(i) ⊂
Rd be the set of feature vectors for which class s(i) is detected, that is fs(i)(x) = 1 if and

only if x ∈ Gs(i). Then we are looking for the optimal classifier, f ∗s(i), that can find the

largest set G∗s(i),

G∗s(i) = arg max
Gs(i)⊂Rd

Q′(Gs(i)) (4.16)

4 Methodology 50

such that the FDR constraint for class s(i) is met:

C0 : Pr(Y = 0|Ŷ = 1) < βs(i). (4.17)

C0 is equivalent to Pr(Y = 1|X ∈ G)− (1−βs(i)) > 0, which is in the form of a set-average

constraint. Then the branch and bound method is used to find the optimal classifier inside

a chain and various permutations of the ordering are explored. Here, the risk function deals

with all the points that are misclassified. The further a misclassified point is away from

the threshold U the greater the risk will be. The risk function is formalized in (4.18) as,

R(f) =
∑
s(i)

∑
misclassified j

|yj − U | (4.18)

which can be estimated through the training set as,

R̂(f) =
∑
s(i)

∑
misclassified j

|ŷj − U | (4.19)

The misclassification penalty γi for every classifier inside the chain is separated for the

points that are included in the set and the points that are excluded from the set. For all

points that are inside the set (Y = 1), the risk of exclusion, r+
i , is,

γi = r+
i = |yi − U |1yi>U + λ1 (4.20)

while for the points that are excluded from the set (Y = 0) the risk of inclusion, r−i , is,

γi = r−i = |yi − U |+ λ11yi<L (4.21)

where 1condition is the indicator function. The risk of exclusion attempts to ensure that

points that should be included in the set are included by making the risk higher for the

points that are further away from the threshold U . The risk of inclusion, on the other

hand, increases the risk for the points that are below the threshold L.

4.2.2 Large flow detector

The large flow detector problem is a direct application of the binary LSAT framework in [9].

For this problem, every input vector X has an associated output scalar value Z, which is

4 Methodology 51

the number of bytes in the flow at completion. Here the user needs to specify L and U

which are the lower bound threshold of a large flow and the upper bound threshold of a

small flow respectively (in terms of bytes). Then the detector creates the largest set of large

points possible while minimizing the number of small flows inside the set and adhering to

a FDR constraint, ω — Pr(Z < L|X ∈ G) < ω.

The large flow detector has two constraints — C0 = minx∈GE[Z|X = x] − U and

C1 = Pr(Z > L|X ∈ G)−ω. Re-writing this problem as an optimization problem, we now

attempt to minimize the estimated risk function R̂0,

R̂0(G) =
∑

misclassified i

|zi − U | (4.22)

with the temporary class label Di,0 = 1Zi>U and the misclassification penalty γi,0 = |Yi−U |.
For the second constraint, C1, we assign a temporary class label Di,1 = 1Zi>L and γi = 1.

Combining these two constraints, we assign the label Di = 1 if Zi > U and if Zi < L then

Di = 0. If L < Zi < U then a duplicate point (as described in the previous chapter) is

created so this point will have a label of 0 and 1. The misclassification penalty for both

classes is the same as the one found in (4.20) and (4.21).

52

Chapter 5

Results

In this chapter, we test our algorithms on a real-world 24-hour trace provided by a Cana-

dian ISP. In the first section we discuss how the raw data collected from the trace was

transformed and inputted into our algorithms. This involved, identifying the packets of a

flow, collating the packets into a flow and finally calculating statistics about the flow. To

evaluate the accuracy of our approach, we generated a ground truth which was simply a

class label assigned to each flow. Finally, in Section 5.2, we present the results for our In-

ternet traffic classifiers using a multiclass SVM as a baseline classifier for comparison. Our

experiment consisted of training the classifier with one hour of trace data and evaluating

the performance with the remaining 23 hours.

5.1 Data and processing

We obtained a traffic trace from OmniGlobe Networks, a Canadian ISP that specializes

in providing satellite-link Internet service, corresponding to 24 consecutive hours of traffic

on April 15 and 16, 2008. For this work, we only consider TCP flows. We define a flow

as packets that have the same 4-tuple (source IP address, destination IP address, source

TCP port, destination TCP port). For each TCP flow in the trace, we extracted a large

number of features (or statistics). We also derived a notion of “ground truth” for the class

and number of total bytes of a flow which will be the output of the Internet traffic classifier

and the large flow detector respectively. The features and ground truth were used to train

our classifiers, and to assess their performance in a validation step.

We used tcpdump [85] to capture up to the first 100 bytes for each packet including the

5 Results 53

MAC, IP and TCP layer headers. We sliced our full trace into 24 single-hour traces, and

for each hour of traffic, we identified the flows. We ignored flows which did not start or did

not end within the considered hour. We verified that these flows crossing hour boundaries

represented a negligible amount of traffic. Each flow was processed individually to extract

the features and ground truth of the class and number of bytes.

To extract features from each flow, we use the tcptrace tool [86]. This tool can provide

142 different statistics for a flow, including the IP addresses and TCP ports for source and

destination, given only the captured headers. The tool is also able to give the same set of

statistics for truncated flows, that is, flows for which we only process the first k packets.

This is important in our context, because we are striving to classify traffic in real-time.

We exclude the 4 statistics that define a flow from the default 142 statistics returned by

tcptrace and we use our feature selection tool (as discussed in Chapter 4) to find a subset

of the remaining 138 statistics to train and evaluate our classifiers.

To associate an application to each flow, we use Bro, an intrusion detection tool capable

of deep packet inspection [87]. The signatures we used to establish our ground truth can

be found in Appendix A. Most of the signatures we used were based from the ones found

in [88]. From these signatures we found four dominant applications inside our data trace.

We show the complete application breakdown in terms of flows and bytes in Tables 5.1

and 5.2. In Table 5.1 we show the breakdown for all the flows in the 24 hour trace while

Table 5.2 shows flows that have more than 6 packets. Note that about two thirds of

the “Other” flows have fewer than six packets. Furthermore, over 80% of the “Other”

class are smaller than 10 packets so these flows disappear from the network rather quickly.

Typical applications that we found in the “Other” class included port scans and broken

TCP connections. These type of flows are known as “background radiation” [89] as they

represent fundamentally unproductive traffic on the network.

For this network, HTTP traffic is dominating the traffic mix. We also notice that the

users of this network do not engage in P2P file exchange as P2P traffic is blocked by the

ISP through a firewall. Figure 5.1 shows the number of flows that have more than six

packets per hour in our data trace. Our data trace is from 2 p.m. on April 15 to 2 p.m.

on April 16. Therefore it makes sense that hours 11 — 19 have fewer flows than the other

hours as these hours correspond to midnight to 8 a.m. where most people are sleeping or

not using the Internet. Figures 5.2 and 5.3 show the application breakdown per hour for

flows that have more than six packets. The HTTP class has its own graph (Figure 5.2) due

5 Results 54

to it having a greater number of flows than the other classes. Notice that in the night time

hours (midnight to 8 a.m.) there are few MSN messenger, POP3 and HTTPS flows and

the number of HTTP flows are drastically reduced compared to the other hours. For these

hours, every misclassification has a greater impact on the FAR or FDR due to the reduced

number of flows. In the next section, we evaluate our classifiers after the 6th packet for

each flow has been received.

Table 5.1 Application breakdown
Flows Size

Application Number Percentage GB Percentage
HTTP 341907 62.9% 4.4 75.4%
HTTPS 22934 4.2% 0.31 5.3%

MSN 3529 0.7% 0.04 0.7%
POP3 1466 0.2% 0.01 0.1%

OTHER 173719 32.0% 1.1 18.5%

Table 5.2 Application breakdown for flows > 6 packets
Flows Size

Application Number Percentage GB Percentage
HTTP 315375 78.3% 4.1 74.6%
HTTPS 20736 5.2% 0.29 5.4%

MSN 3364 0.8% 0.04 0.7%
POP3 1311 0.3% 0.01 0.2%

OTHER 61870 15.4% 1.05 19.1%

5.2 Performance Evaluation

Our main goal is to assess whether we are able to provide performance guarantees on classes

of interest while still achieving a high overall flow accuracy. We first reduce the input feature

space so only relevant features are sent to our classifiers. To reduce the features in this

work, we used the so-called “correlation-based with best first search (forward)” [90]. The

previous chapter describes this algorithm while Section 5.2.1 provides more detail on how

we selected the features. The resulting features for our data set are: (1) total number of

5 Results 55

0 4 8 12 16 20 24
0

4k

8k

12k

16k

20k

24k

28k

32k

N
um

be
r

of
 F

lo
w

s

Hour

Fig. 5.1 The total number of flows that have more than six packets per hour
for our 24 hour data trace.

5 Results 56

0 4 8 12 16 20 24
0

5k

10k

15k

20k

25k

30k

N
um

be
r

of
 F

lo
w

s

Hour

HTTP

Fig. 5.2 The total number of HTTP flows that have more than six packets
per hour for our 24 hour data trace.

5 Results 57

0 4 8 12 16 20 24
0

1k

2k

3k

4k

5k

6k

Hour

N
um

be
r

of
 F

lo
w

s

MSN Messenger
POP3
HTTPS
UNKNOWN

Fig. 5.3 The total number of MSN Messenger, POP3, HTTPS and unknown
flows that have more than six packets per hour for our 24 hour data trace.

5 Results 58

bytes sent from the client to the server; (2) number of packets with the FIN field set sent

from the client to the server; (3) the window scaling factor used in packets from the client

to the server; (4) total number of bytes truncated in the packet capture from the client to

the server; and (5) total number of packets truncated in the packet capture from the server

to the client (shown in Table 5.3). The fifth feature comes as a direct result of truncating

our trace as we only recorded the first 100 bytes of every packet due to space limitations.

We refer the reader to [86] for a full description of these features.

After the features are selected, we train our classifiers, choosing the best-performing

parameters. These parameters include ν+, ν−, σ, λ and the order of the binary classifiers

in the classifier chain. We use 1000 randomly chosen flows for the training set (chosen from

hour 1) and we start classification after six packets of a flow are detected (parameter p).

For all our work, we will be focusing on classifying the four dominant applications in our

data set: HTTP, HTTPS, MSN messenger and POP3. All other flows will be classified as

“Other”. To emulate a real-time environment, we ignored flows smaller than the milestone

of p packets (since such flows are never classified).

5.2.1 Feature Selection

To select the features relevant to our traffic classification problem, we used a correlation

based feature selection algorithm found in the WEKA toolbox [42] (discussed in Chap-

ter 4.2.1). A ten-fold cross-validation technique was applied, selecting only the features

identified in all ten-folds as being relevant. The ten-fold cross validation partitioned hour

one of our data set into ten validation sets and the feature selection algorithm we chose

was applied to each set. Table 5.3 shows the features that were selected after six packets

of a flow were received. For our data set, features rendered from the client to server statis-

tics (a2b) dominate the final feature space. Intuitively, this makes sense because in a flow

the majority of client packets are simple content requests which diverge slightly from one

packet to the next regardless of the content. For example, the server to client packets sent

by a multimedia server may differ greatly from a file transfer server but the client to server

packets are relatively similar in both cases. Therefore, application profiling using client

to server statistics is more consistent hence the reasoning for why they dominate the final

feature space.

5 Results 59

Table 5.3 Features selected for the different packet milestones. Note that
‘a2b’ means it is a client to server statistic while ‘b2a’ is a server to client
statistic.

Features
actual data bytes a2b

FIN pkts sent a2b
adv wind scale a2b
truncated data a2b

truncated packets b2a

5.2.2 Classification with FAR constraints

Our first experiment explores the performance of our algorithm for traffic classification

under FAR constraints. In this experiment, the flows comprising the training set were

selected randomly from the first hour (1000 in total) and the remaining 23 hours were used

as test data. We compare the performance of three classifiers: (i) a baseline multiclass

SVM classifier, as described in [67]; (ii) our proposed FAR-constrained classifier with a

single-class FAR constraint on the HTTP class (α{HTTP} = 0.4%) and (iii) our proposed

FAR-constrained classifier with a pairwise FAR constraint on the HTTP and HTTPS classes

(α{HTTPS,HTTP} = 0.05%). Since there were only 4 classes, our algorithms searched

over all possible orderings (4! = 24) of the classifiers in the binary chain.

We initially evaluate performance based on the remaining flows from the first hour,

for which the classifier is best matched. The baseline classifier achieves the highest overall

accuracy (lowest misclassification rate) at 98.5%, but the accuracies of the FAR-constrained

classifiers are only marginally lower at 97.7% and 97.6%, respectively. In terms of single-

class FAR for the HTTP class, the baseline classifier has an FAR of 3.7%, whereas the single-

class FAR-constrained classifier reduces this below the threshold to 0.3%. The pairwise FAR

constrained classifier achieves a pairwise FAR of 0.02%, which is at the threshold of 0.02%;

the baseline classifier is at 0.07%.

Figures 5.4- 5.6 displays the results of the experiment for hours 2-24. As indicated in

Figure 5.4, the accuracy of the classifiers varies over the different periods, ranging from

89.3% to 99.1%, but no classifier achieves a consistently superior accuracy. Figure 5.5

shows that our proposed single-class FAR constrained classifier consistently achieves a FAR

below 1.0%, whereas the FAR for the baseline multi-class SVM is much larger and reaches

5 Results 60

values as large as 30%. Our proposed classifier does not always achieve a FAR below the

specified constraint of 0.4%, which may be partially due to discrepancies between the first

hour of traffic and the remaining 23 (the training data may not sufficiently represent the

later flows). Figure 5.6 examines the pairwise HTTPS-HTTP FAR, and indicates that the

pairwise constrained classifier achieves a pairwise FAR consistently lower than that of the

baseline multi-class SVM classifier; again the pairwise FAR constraint is not always met.

0 4 8 12 16 20 24
84

86

88

90

92

94

96

98

100

A
cc

ur
ac

y
(%

)

Hour

Baseline Classifier
FAR(HTTP) = .4%
FAR(HTTPS,HTTP) = .02%

Fig. 5.4 The overall accuracy for hours 2-24 for the three classifiers dis-
cussed.

5.2.3 Classification with FDR constraints

Our second experiment examines the performance of our proposed algorithms for traffic

classification under FDR constraints. We compare the performance of three classifiers:

5 Results 61

0 4 8 12 16 20 24
0

5

10

15

20

25

30

F
A

R
(H

T
T

P
)

(%
)

Hour

Baseline Classifier
FAR(HTTP) = .4%

Fig. 5.5 The False Alarm Rate (FAR) of HTTP for the baseline classifier
and for the NP classifier when the FAR for HTTP is set to .4%.

5 Results 62

0 4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

F
A

R
(H

T
T

P
S

,H
T

T
P

)
(%

)

Hour

Baseline Classifier
FAR(HTTPS,HTTP) = .02%

Fig. 5.6 The pairwise FAR for HTTP flows being misclassified as HTTPS
for the baseline classifier and the NP classifier where the FAR{HTTPS,HTTP}
is set to .02%.

5 Results 63

(i) the baseline multiclass SVM classifier; (ii) an unconstrained binary-chain classifier (in

which we set β = 100% for all classes) and (iii) our proposed FDR-constrained classifier

with a single class FDR constraint on the HTTPS class (β{HTTPS} = 5%). Training

is again performed using 1000 flows randomly selected from the first hour. We conduct

performance evaluation using the remaining flows in the first hour, and then examine the

stability of the performance over the remaining 23 hours.

For the first hour, the baseline multiclass SVM classifier achieves the highest overall

accuracy at 98.5%, but the accuracies of the other two classifiers are only marginally lower,

with the unconstrained binary-chain classifier achieving 98.0% and the FDR-constrained

classifier achieving 97.9%. The FDR for the remaining flows of the first hour for the

unconstrained binary chain classifier is 7.0% while with our proposed classifier we were

able to reduce the FDR to 4.2%.

Figures 5.7 & 5.8 shows the results of the experiment for hours 2-24. In Figure 5.7,

the overall accuracies for all three classifiers are comparable, although the accuracy of the

multiclass SVM drops significantly for hours 10-13 and hour 17. In Figure 5.8, the FDR

achieved by our proposed constrained classifier is comparable to the baseline multiclass

SVM classifier and significantly lower than that of the unconstrained binary chain classifier

(which exceeds 20% for several hours and reaches 44.6% for hour 12). The FDR-constrained

classifier meets the specified constraint (or marginally exceeds it) for hours 1-2 and 8-24,

but the FDR for hours 3-7 all exceed 10%. This indicates that there may be a need to train

several classifiers for different periods of the day. The results do indicate that a binary-

chain classifier can achieve performance comparable to that of a multiclass SVM, with the

advantage that it is significantly more scalable as the number of classes increases.

5.2.4 Online classification complexity for the Internet Traffic Classifiers

One other area that needs to be addressed is whether our classifiers can predict incoming

flows fast enough to function in an online environment. Running a single SVM for a

sample flow requires extracting the features x, and computing the quantity h(x) as in (3.7).

Note that the dot-product 〈w, x〉H is actually computed through a kernel evaluation, i.e.

〈w, x〉H = k(w, x). Evaluating (3.7) thus requires summation of the results of Nv (where

Nv is the number of support vectors of the considered SVM) kernel evaluations. The full

classifier may require to go through up to c SVMs, leading to a computational cost of Nvc

5 Results 64

0 4 8 12 16 20 24
86

88

90

92

94

96

98

100

A
cc

ur
ac

y
(%

)

Hour

Multiclass SVM Baseline
Unconstrained Binary Chain
FDR(HTTPS) = 5%

Fig. 5.7 The overall accuracy for hours 2-24 for the three classifiers dis-
cussed.

5 Results 65

0 4 8 12 16 20 24
0

10

20

30

40

50

F
D

R
(H

T
T

P
S

)
(%

)

Hour

Multiclass SVM Baseline
Unconstrained Bin. Chain
FDR(HTTPS) = 5%
5% FDR Threshold

Fig. 5.8 The False Discovery Rate (FDR) of HTTPS for the baseline mul-
ticlass SVM classifier, unconstrained LSAT binary-chain classifier and for the
FDR-constrained classifier where the FDR for HTTPS is set to 5%

5 Results 66

kernel evaluations. In our simulation work, Nv was typically in the order of a few hundreds

and c = 4, leading to the computation of a few thousands kernel functions — chosen here

to be the exponential of the norm of a d-dimensional vector (d = 5). We observe that

adding classes to the classifier only increases the computational complexity linearly. In our

experiments, classifying a flow took around 1 ms on a modern general purpose computer.

This indicates that the flow classification problem is well-suited to implementation in high-

speed routers with dedicated hardware.

67

Chapter 6

Conclusion

6.1 Summary

In this thesis, we provided a network operator valuable resources for network operations

management. Specifically we proposed two Internet traffic classifiers with performance

guarantees and a large flow detector. These applications will help the network operator

better manage their network. By being able to assess what type of Internet traffic is passing

through their network the operator can now perform actions on the traffic to improve the

overall efficiency (or performance) of the network.

In the second chapter, we present a literature review of all the current Internet traffic

techniques. The current techniques can be divided into three main categories — Port-based,

Deep-Packet Inspection and Shallow-Packet Inspection. Port-based Internet traffic classi-

fication is the simplest type of classification as an application is mapped to the application

associated to the port number it is using based on the known ports list from the Internet

Assigned Numbers Authority. The drawback to this approach is that there is no one to

enforce that an application uses the correct port number — an application just needs to use

a different port number to avoid detection. Another problem is that some applications use

a different application to operate (for example, MSN messenger can be run over the HTTP

protocol and uses HTTP’s assigned port number, 80) and port-based classification is not

able to distinguish between the two applications. The next type of Internet traffic classifier,

Deep-Packet Inspection, searches the payload of a packet for a pattern (or signature) to

identify the type of application. This approach has shown to be effective — looking into the

payload for application-specific messages generally produces a high accuracy in classifying

6 Conclusion 68

Internet traffic. Deep-Packet Inspection has drawbacks though, as if the payload of the

packet is encrypted this process is rendered ineffective as there is not much DPI can do if

it can not look inside the payload. Also, Deep-Packet Inspection is in a bit of a gray area

at the moment because of legal and privacy concerns concerning who has the right to look

inside someone’s payload, especially if an Internet Service Provider uses this information

to hinder a user on their network (for example, throttling the bandwidth of people using

P2P). The final category of Internet traffic classification is Shallow-Packet Inspection where

flow statistics or the behaviour of a flow are used for classification. This approach is less

intrusive than the Deep-Packet Inspection because the only information from the packet

header or how the flow behaves on the network is used. Currently there are many different

techniques used to classify Internet traffic using Internet traffic. They include clustering,

Support Vector Machines (SVMs) and various machine learning techniques such as C4.5

decision trees, Näıve Bayes and k-Nearest Neighbour (k-NN). For behavioural-based Inter-

net classifiers, the classifiers looks at the behaviour of flows and hosts on the network. For

example, if they find a web (HTTP) server then all flows that are associated with this web

server would be classified as HTTP. While most of the Deep and Shallow-Packet Inspection

are able to achieve a high overall accuracy, none are able to provide a hard performance

guarantee on a class. This is important, as in practice, not all classes have the same level

of importance for network operators. Therefore, while it is great to have a high overall

accuracy, there are times where ensuring a particular class meet certain performance guar-

antees is more beneficial for the user. With that in mind, we provide two Internet traffic

classifiers that provide false alarm rate and false discovery rate constraints.

In Chapter 3, we provide background information about the algorithms that are used for

the Internet traffic classifiers and the large flow detector. The Internet traffic classifier with

false alarm constraints is implemented by a 2ν-SVM while the Internet traffic classifier with

false discovery constraints and the large flow detector are implemented by the Learning to

Satisfy (LSAT) framework which can be extended from the 2ν-SVM. In order to better

understand these two algorithms, we first explain what a Support Vector Machine is and

how it is implemented. Then we show how a SVM can be extended to handle false alarm

constraints (2ν-SVM). Finally, we show how the 2ν-SVM can be used for the Learning to

Satisfy framework which allows the user to set false discovery constraints.

In Chapter 4, we first formulated mathematically the three problems we are trying to

solve. For the two Internet traffic classifiers, the goal is to minimize the overall misclas-

6 Conclusion 69

sification while adhering to false alarm (or false discovery) rate constraints. For the large

flow detector, the goal is to find the largest set of large flows that satisfies the constraints

set. We showed how the algorithms we discussed in the previous chapter are implemented

to fit our problem. For the Internet traffic classifiers, we discussed how we transformed

the binary classifiers to become multi-class classifiers. We proposed a novel methodology

where we used a chain of binary classifiers to classify the Internet traffic. Each binary

classifier in the chain is responsible for identifying whether a flow belongs to a particular

application class. The first classifier in the chain that identifies a flow as belonging to its

class is what the flow is classified as. This approach was chosen over other approaches that

transform binary classifiers to a multi-class classifiers as we found this is the best method

to control our performance guarantees. We also discussed the risk functions used to assess

both classifiers. Finally, we discussed how the large flow detector is implemented using the

binary LSAT framework. This involves setting thresholds on what a large and small flow

is and specifying the false discovery rate threshold.

In Chapter 5, we presented our results from experiments on a 24-hour trace from a

Canadian ISP. We first discussed how we processed the data trace to extract the features

we need. We then showed the application breakdown of our data trace which had four major

classes: HTTP, HTTPS, MSN Messenger and POP3. In the next section, we evaluated

our Internet traffic classifiers on this Internet traffic trace. We first used a feature selection

tool so only relevant features are inputted to the classifiers. Then we trained the classifiers

on the first hour of the trace and tested the classifiers on the remaining 23 hours. We also

used a multi-class SVM and an unconstrained binary chain classifier (for LSAT only) as a

baseline classifier for our classifiers. From our results, we found that our classifiers had a

comparable accuracy to the baseline classifiers but generally was able to outperform them

on the performance guarantees that we were measuring.

6.2 Discussion

From the results, we see that there were limitations with the data set that we used. Un-

fortunately, the data set that we processed had only four dominant application present so

it was difficult to test our classifiers extensively. For instance, having more time sensitive

traffic (i.e., VoIP or video streaming) inside the data set allows us to examine how our

classifiers can perform as the first step in prioritizing Internet traffic for QoS. Another

6 Conclusion 70

traffic class that was missing was Peer to Peer (P2P) traffic which is of particular interest

to Internet Service Providers due to the high volume of traffic this class occupies in most

networks. Therefore, while our classifier was able to identify the applications in our data

set well, further tests are required to see how our classifiers handle a broader range of

applications.

Another issue with this data set was that we were unable to perform any large flow

detector experiments with it. The reason is that the flows inside the data set are too

similar to each other in size. For example, if we decided that the top 20% of the flows

(in terms of size) inside this network were to be considered large then we are dealing with

flows that are 7 kB and greater. With such a small threshold in terms of size for a flow

to be considered large, it is difficult for a detector to distinguish between the two classes

(only a couple of bytes distinguish between a small flow and a large flow). Generally, the

flow characteristics of a 7 kB flow are not much different that the flow characteristics of

a 5 kB flow. Also increasing the threshold of what constitutes a large flow (to say only

the top 10% of flows in terms of size) does not help either because then there are too few

flows inside the large class to train on. Just as we needed a data set with a diverse set of

applications, we also need a data set that has a more broad distribution of flows in terms

of size.

Overall, from our results we see that our classifier is aptly capable of distinguishing

between different types of applications while being able to provide performance guarantees.

If the training set properly represents all the network traffic our classifiers are able to provide

performance guarantees on unknown data that enters our classifiers. This in contrast to the

baseline classifiers that we used as they false alarm rate (or false discovery rate) fluctuated

hour by hour depending on the traffic mix. Therefore our classifiers are then beneficial for

network operators as by having these performance guarantees in place for applications they

can more confidently perform actions on unknown traffic.

One final aspect of our classifiers that we wish to discuss is whether it is feasible to use

our classifiers in a real-life setting. Our experiments consisted of capturing a network traffic

trace and inputting our classifiers flows from this trace. There is a bigger time constraint

if the flows need to be classified in real-time on a router. To provide some insight to this,

refer to Figure 5.1 which shows that at most, there are 35 000 flows in a hour (or roughly

10 flows per second). Recall from Section 5.2.4, that online classification can be done in

under 1 ms. Therefore, if we have dedicated hardware that is in the path (or parallel) of

6 Conclusion 71

the router our classifiers can handle 3.6 million flows per hour1. Therefore our classifiers

are more than capable of handling the traffic load from the network where we collected

our data. The network that we collected our data from is from a rural area in Canada

though so the network load is not that high. For networks that have a higher capacity,

there are ways to increase the number of flows that the classifiers can handle. For one, we

can parallelize the classifiers in one of two ways. One way is to have every classifier in the

chain run in parallel. The alternative is to have multiple classifiers running at the same

time so that multiple flows can be handled at the same time. Either method increases the

throughput of the classifiers and allows the classifiers to scale to larger networks. Also it

is important to remember that the large flow detector can have a greater impact on larger

network as the detector can reduce the load of the classifiers by filtering out the smaller

flows of the networks.

6.3 Future Work

Future work with our classifiers is to create a hybrid classifier of both of our classifiers that

were proposed. The hybrid classifier’s chain of classifiers consists of classifiers with both

false alarm and false discovery constraints. This allows the classifier to be more practical

for a real-life setting as this classifier can handle applications that require false alarm

constraints (i.e. applications that need to be prioritized) and applications that require

false discovery constraints (i.e. harmful applications that need to be limited or blocked).

Creating a hybrid classifier requires a new risk function to assess the performance of the

classifier. Currently, the risk functions of the classifier with FAR constraints and FDR

constraints measure two entirely different types of risk so a new risk function is required

to incorporate the goals of both classifiers — minimizing the overall misclassification while

adhering to the FAR constraints for the FAR-constrained classifier and creating the largest

set of a given application while adhering to FDR constraints for the FDR-constrained

classifier.

In this thesis we briefly examined the temporal stability of our classifiers but further

work is required to examine the temporal and spatial stability of our classifiers. From

our results we saw that training on one hour can provide accurate results for the next 23

hours. Future work can examine the temporal stability to see how far in the future our

11000 flows
sec × 60 sec

min × 60 min
hour

6 Conclusion 72

classifier can still provide accurate results. Alternatively, future work can examine the

spatial stability of our classifiers which is to see if our classifiers that are trained on one

network can accurately classify traffic on another network. The more temporal and spatial

stability that our classifiers exhibit means the less time the classifier needs to be re-trained

which is advantageous characteristic for any classifier to have.

Future work can also try to implement our classifiers in a real-time setting rather than

just collecting flows from a trace and simulating an online setting so as to see the new

challenges this poses. Classifying traffic in an online setting brings up new problems. The

first thing that needs to be decided is where to place the classifier in the network. For

instance, it is logical to put the classifier on the router but then it needs to be verified if

the router has the hardware capabilities to accommodate the classifier. If not, the classifier

needs dedicated hardware placed before or after the router in the network path. Another

solution is for the classifier to be in parallel with the router, where the traffic from the router

is mirrored to the classifier. Then the classifier can send back its results to the router and

the router can take the appropriate action. Another issue that arises in a real-time setting

is dealing with live network traffic. In any network, packets can be dropped or received

out of order. Future work then needs to decide how our classifiers handle these issues. As

we stated earlier, the classifiers provide classification after the first p packets of a flow are

received. If the p packets received are not actually the first p packets of a flow this can

skew the statistics collected from the flow as the same sequence of packets are not being

used every time. Therefore future work needs to investigate whether using out of order

packets radically effects the classifier’s performance.

73

Appendix A

Signatures Used for Bro

signature skype_bootstrap {

ip-proto == udp

src-ip == local_nets

dst-ip != local_nets

src-port >= 1024

src-port <= 65535

dst-port == 33033

}

signature udp1 {

ip-proto == udp

event "UDP" }

signature bittorrent_id {

payload/.*(BitTorrent|BT_CHOKE|BT_UNCHOKE|BT_UNINTERESTED|BT_HAVE|BT_BITFIELD|

BT_REQUEST|BT_PIECE|BT_CANCEL|BT_HAVE|BT_KEEP_ALIVE|AZ_PEER_EXCHANGE)/

event "BitTorrent" }

signature http_id {

A Signatures Used for Bro 74

ip-proto == tcp

payload /.*(HTTP|GET.\/|POST |HEAD |HTTP\/1|GET)/

event "HTTP" }

signature bb_id {

dst-port = 1984

payload /(server|ack|page)/

event "BB" }

signature directconnect_id {

payload /\$(Send|Get|Dir|ConnectT|Supports|Hello|MyINFO|Search|MyNick|Quit|

Key|RevConn|Version |Lock|HubName)/

event "DirectConnect" }

signature edoneky_id {

ip-proto = tcp

payload /(\xe3|\xc5)/

event "eDonkey" }

signature ftp_id {

ip-proto = tcp

dst-port = 21

payload /.*(FTP)/

event "FTP" }

signature ftp2_id {

dst-port = 21

payload /.*(PASS|USER|CWD|PASV|PORT|250 OK|220)/

event "FTP" }

signature gnutella_id {

payload /GNUTELLA CONNECT/

event "Gnutella" }

A Signatures Used for Bro 75

signature gotomypc_id {

payload /GET \/jedi\?reques/

event "GoToMyPC" }

signature kazaa_id {

payload /.*KazaaClient/

event "Kazaa" }

signature icq_id {

dst-port = 5190

payload /.*ICQ/

event "ICQ" }

signature ident_id {

dst-port = 113

payload /[0-9]*,.*25/

event "IDENT" }

signature imap_id {

dst-port = 143

payload /.*(CAPABILITY|LOGIN|login)/

event "IMAP" }

signature jetdirect_id {

dst-port = 9100

payload /.*(PJL.SET.PAGEPROTECT=OFF|PJL.JOB)/

event "JetDirectProtocol" }

signature msnmessenger_id {

dst-port = 1863

payload /.*(CAL|JOI|XFR|RINGING|USR|ANS|VER|MSG|QRY|CHL|NLN|ILN|CHG|LST|INF)/

event "MSN" }

A Signatures Used for Bro 76

signature msnwebcam_id{

payload /recipientid=[0-9]*&sessionid=[0-9]*/

event "MSNWEBCAM" }

signature mssql_id {

dst-port = 1433

payload /.*(\0S\0E\0R\0V\0E\0R|\0S\0Q\0L)/

event "MSSQL" }

signature mysql_id {

payload /.*\x03(SELECT|select|INSERT|insert|SHOW|show|UPDATE|update)/

event "MySQL" }

signature nntp_id {

dst-port = 119

payload /.*(mode.stream|MODE.STREAM|CHECK <|TAKETHIS <|check <|takethis

<|LISGROUP|ARTICLE |\x0d\x0a=ybegin |mode.reader|MODE.READER)/

event "NNTP" }

signature otherp2p_id {

payload /.*(LimeWire|BearShare|Gnucleus|Morpheus|XoloX|gtk-gnutella|Mutella|

MyNapster|Qtella|AquaLime |NapShare|Comback|PHEX|SwapNut|FreeWire|Openext|

Toadnode|GnucDNA|morph500|morph460|Shareaza)/

event "P2P" }

signature otherp2p2_id {

payload /.*(CONNECT BACK)/

event "P2P" }

signature otherp2p3_id {

payload /.*GIV.*(mp3|avi|mpg|zip|iso|img|rar|file)/

event "P2P-other" }

A Signatures Used for Bro 77

signature pop3_id {

dst-port = 110

payload /.*(POP3|Mail|mail|\+OK|ok|Ok|sender|recipient|RCPT TO|INBOX|DONE|* OK|

USER|PASS|APOP |AUTH|CAPA|STAT)/

event "POP3" }

signature real_id {

dst-port = 3077

payload /.*GET/

event "GETSon3077" }

signature rtsp_id {

dst-port = 554

payload /.*(rtsp)/

event "RTSP" }

signature samba_id {

dst-port = 873

payload /.*RSYNCD/

event "Samba" }

signature sip_id {

payload /.*(REGISTER|INVITE).*SIP/

event "SIP" }

signature smtp2_id {

ip-proto = tcp

payload /^(ELHO|elho|HELO|ELH0|EHLO|ehlo)/

event "SMTP" }

signature spamassassin_id {

dst-port = 2703

payload /.*(cn=razor|a=(c|g)\x26|-nsl)/

A Signatures Used for Bro 78

event "SpamAssassin" }

signature ssh_id {

dst-port = 22

payload /.*SSH/

event "SSH" }

signature vnc_id {

dst-port = 5900

payload /.*RFB/

event "VNC" }

signature z3950_id {

payload /.*(Mike Taylor|Net::Z3950.pm|MetaStar Search SDK|BookWhere)/

event "Z3950Client" }

signature afs3callback_id {

dst-port = 7001

event "AFS3" }

signature locsrv_id {

dst-port = 135

event "loc-srv" }

signature ymsg_id {

payload /^(YMSG)|.*\<Ymsg/

event "YMSG" }

79

References

[1] T. Karagiannis, A. Broido, and N. Brownlee, “Is P2P dying or just hiding?” in Proc.
IEEE GLOBECOM, Dallas, TX, USA, Nov. 2004.

[2] “IANA port numbers.” [Online]. Available: http://www.iana.org/assignments/
port-numbers

[3] T. T. T. Nguyen and G. Armitage, “A survey of techniques for Internet traffic classi-
fication using machine learning,” IEEE Communications Surveys & Tutorials, vol. 10,
no. 4, pp. 56–76, 2008.

[4] C. D. Scott and R. D. Nowak, “A Neyman-Pearson approach to statistical learning,”
IEEE Trans. Inform. Theory, vol. 51, no. 11, pp. 3806–3819, 2005.

[5] D. Casasent and X. W. Chen, “Radial basis function neural networks for nonlinear
Fisher discrimination and Neyman-Pearson classification,” Neural Networks, vol. 16,
no. 5, pp. 529–535, 2003.

[6] A. Cannon, J. Howse, D. Hush, and C. Scovel, “Learning with the Neyman-Pearson
and min-max criteria,” Los Alamos National Laboratory, Tech. Rep., Jun. 2002, lA-UR
02-2951.

[7] T. Landgrebe and R. Duin, “On Neyman-Pearson optimisation for multiclass classi-
fiers,” in Proc. Pattern Recognition Assoc. of South Africa, Langebaan, South Africa,
Nov. 2005.

[8] M. A. Davenport, R. G. Baraniuk, and C. D. Scott, “Controlling false alarms with
support vector machines,” in Proc. Int. Conf. Acoustics, Speech, and Signal Proc.
(ICASSP), Toulouse, France, May 2006.

[9] F. Thouin, M. J. Coates, B. Erikkson, R. Nowak, and C. Scott, “Learning to Satisfy,”
in Proc. Int. Conf. Acoustics, Speech, and Signal Proc. (ICASSP), Las Vegas, NV,
USA, Apr. 2008.

References 80

[10] D. Sab, S. Hauger, and M. Köhn, “Architecture and scalability of a high-speed traffic
measurement platform with a highly flexible packet classification,” Computer Net-
works, vol. 53, no. 6, pp. 810–820, 2009.

[11] P.-C. Wang, “Scalable packet classification with controlled cross-producting,” Com-
puter Networks, vol. 53, no. 6, pp. 821–834, 2009.

[12] C. Kreibich and J. Crowcroft, “Honeycomb — creating intrusion detection signatures
using honeypots,” in Proc. Hot Topics in Networks, Boston, MA, USA, Nov. 2003.

[13] X. Li, B. Crovella, C. Diot, R. Govindan, G. Iannaccone, and A. Lakhina, “Detec-
tion and identification of network anomalies using sketch subspaces,” in Proc. ACM
Internet Measurement Conf., Rio de Janeiro, Brazil, Oct. 2006.

[14] M. Marsono, M. El-Kharashi, and F. Gebali, “Targeting spam control on middleboxes:
spam detection based on layer-3 email content classification,” Computer Networks,
vol. 53, no. 6, pp. 864–881, 2009.

[15] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “McPAD: A multiple classifier
system for accurate payload-based anomaly detection,” Computer Networks, vol. 53,
no. 6, pp. 864–881, 2009.

[16] D. Moore, K. Keys, R. Koga, E. Lagache, and K. Claffy, “Coralreef software suite as a
tool for system and network administrators,” in Proc. Usenix Sys. Admin., San Diego,
CA, USA, Dec. 2001.

[17] E. P. Freire, A. Ziviani, and R. M. Salles, “On metrics to distinguish Skype flows from
HTTP traffic,” in Proc. Latin American Network Operations and Management Symp.,
Petropolis, Brazil, Sep. 2007.

[18] J. Borland, “RIAA threat may be slowing file swapping.” [Online]. Available:
http://news.cnet.com/2100-1027-1025684.html

[19] “Pew internet & american life project. sharp decline in music file swappers: Data
memo from pip and comscore media metrix,” Jan. 2004. [Online]. Available: http:
//www.pewinternet.org/Reports/2004/Sharp-decline-in-music-file-swappers.aspx

[20] A. Madhukar and C. Williamson, “A longitudinal study of P2P traffic classification,”
in Proc. IEEE/ACM Modeling, Analysis, and Simulation of Computer and Telecom
Sys., Monterey, CA, USA, Sep. 2006.

[21] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network identification of
P2P traffic using application signatures,” in Proc. World Wide Web Conf., New York,
NY, USA, May 2004.

References 81

[22] A. W. Moore and K. Papagiannaki, “Toward the accurate identification of network
applications,” in Proc. Passive and Active Measurement Workshop, Boston, MA, USA,
Apr. 2005.

[23] “QOSMOS - Deep Packet Inspection - Information Extraction.” [Online]. Available:
http://www.qosmos.com

[24] “Packeteer.” [Online]. Available: http://www.packeteer.com

[25] “Arbor Networks.” [Online]. Available: http://www.arbornetworks.com

[26] V. Paxson, “Bro: A system for detecting network intruders in real-time,” in Proc.
USENIX Security Symp., San Antonio, TX, USA, Jan. 1998.

[27] M. Roesch, “Snort - lightweight intrusion detection for networks,” in Proc. Systems
Administration Conf., Seattle, WA, USA, Nov. 1999.

[28] T. Karagiannis, A. Briodo, M. Faloutsos, and K. C. Claffy, “Transport layer identifi-
cation of p2p traffic,” in Proc. ACM SIGCOMM Internet Measurement Conf., Sicily,
Italy, Oct. 2004.

[29] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: Automated Construction
of Application Signatures,” in Proc. ACM SIGCOMM Workshop on Mining Network
Data, Philadelphia, PA, USA, Aug. 2005.

[30] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker, “Automatic proto-
col inference: unexpected means of identifying protocols,” in Proc. ACM SIGCOMM
Conf. on Internet measurement, Rio de Janeriro, Brazil, Oct. 2006.

[31] T. Choi, C. Kim, S. Yoon, J. Park, B. Lee, H. Kim, and H. Chung, “Content-aware
Internet application traffic measurement and analysis,” in Proc. IEEE/IFIP Network
Operations & Management Symp., Seoul, South Korea, Apr. 2004.

[32] Y. J. Won, B.-C. Park, H.-T. Ju, M.-S. Kim, and J. W. Hong, “A hybrid approach for
accurate application traffic identification,” in Proc. IEEE/IFIP End-to-End Monitor-
ing Tech and Services, Vancouver, BC, Canada, Apr. 2006.

[33] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”
IBM Journal of Research and Development, vol. 31, no. 2, pp. 249–260, 1987.

[34] M. S. Kim, Y. J. Won, and J. W.-K. Hong, “Application-level traffic monitoring and
analysis on IP networks,” Electronics and Telecom. Research Inst., vol. 27, no. 1, pp.
22–42, 2005.

References 82

[35] K. Claffy, “Internet traffic characterization,” Ph.D. dissertation, University of Califor-
nia San Diego, 1994.

[36] V. Paxson, “Empirically derived analytic models of wide-area TCP connections,”
IEEE/ACM Trans. on Networking, vol. 2, no. 4, pp. 316–336, 1994.

[37] T. Lang, G. Armitage, P. Branch, and H.-Y. Choo, “A synthetic traffic model for half-
life,” in Proc. Int. Australian Telecom. Networks and Applications Conf., Melbourne,
Australia, Dec. 2003.

[38] T. Lang, P. Branch, and G. Armitage, “A synthetic traffic model for quake 3,” in
Proc. ACM/SIGCHI Int. Conf. on Advances in Computer Entertainment Technology,
Singapore, Jun. 2004.

[39] C. Dewes, A. Wichmann, and A. Feldmann, “An analysis of Internet chat systems,”
in Proc. ACM/SIGCOMM Internet Measurement Conf., Miami, FL, USA, Oct. 2003.

[40] A. W. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based classi-
fication,” Dept. of Comp. Sci., Queen Mary, University of London, Tech. Rep., Aug.
2005, tech. Report, RR-05-13.

[41] “Cisco IOS NetFlow.” [Online]. Available: http://www.cisco.com/en/US/products/
ps6601/products ios protocol group home.html

[42] “Waikato Environment for Knowledge Analysis (WEKA) 3.4.” [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka

[43] M. Dash and H. Liu, “Consistency-based search in feature selection,” Artificial Intel-
ligence, vol. 151, no. 1–2, pp. 155–176, 2003.

[44] M. Hall, “Correlation-based feature selection in feature selection,” Ph.D. dissertation,
Waikato University, 1998.

[45] N. Williams, S. Zander, and G. Armitage, “A preliminary performance comparison of
five machine learning algorithms for practical IP traffic flow classification,” SIGCOMM
Comput. Commun. Rev., vol. 36, no. 5, pp. 5–16, 2006.

[46] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Offline/Realtime
network traffic classification using semi-supervised learning,” Performance Evaluation,
vol. 64, pp. 1194–1213, 2007.

[47] F. Hernendez-Campos, A. Nobel, K. Jeffay, and F. D. Smith, “Statistical clustering
of Internet communication patterns,” in Proc. Interface of Comp. Sci and Statistics,
Salt Lake City, UT, USA, Jul. 2003.

References 83

[48] J. Erman, M. Arlitt, and A. Mahanti, “Traffic clustering using clustering algorithms,”
in Proc. ACM SIGCOMM MineNet Workshop, Pisa, Italy, Sep. 2006.

[49] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman, “AutoClass: A
Bayesian classification system,” in Proc. Int. Conf. on Machine Learning, Ann Arbor,
MI, USA, Jun. 1988.

[50] J. Micheel, I. Graham, and N. Brownlee, “The Auckland data set: an access link
observed,” in Proc. Int. Teletraffic Cong.: Specialists Seminar on Access Networks
and Systems, Barcelona, Spain, Apr. 2001.

[51] J. Erman, A. Mahanti, and M. Arlitt, “Internet traffic identification using machine
learning,” in Proc. IEEE GLOBECOM, San Francisco, CA, USA, Nov. 2006.

[52] ——, “Byte me: a case for byte accuracy in traffic classification,” in Proc. ACM
workshop on Mining Data, San Diego, CA, USA, Jun. 2007.

[53] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson, “Identifying and discriminating
between web and Peer-to-Peer traffic in the network core,” in Proc. World Wide Web
Conference, Banff, AB, Canada, May 2007.

[54] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian, “Traffic clas-
sification on the fly,” ACM SIGCOMM Computer Communications Review, vol. 36,
no. 2, pp. 23–26, 2006.

[55] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identification,” in
Proc. CoNEXT Int. Conf. Emerging Networking Experiments and Technologies, Lis-
boa, Portugal, Dec. 2006.

[56] L. Bernaille and R. Teixeira, “Early recognition of encrypted applications,” in Proc.
Passive and Active Measurement Conf., Louvain-la-neuve, Belgium, Apr. 2007.

[57] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using machine
learning techniques,” in Proc. Passive and Active Measurement Workshop, Antibes
Juan-les-Pins, France, Apr. 2004.

[58] “NLANR Network traffic traces.” [Online]. Available: http://pma.nlanr.net/Traces/

[59] A. W. Moore and D. Zuev, “Internet traffic classification using Bayesian analysis
techniques,” in Proc. ACM SIGMETRICS, Banff, AB, Canada, Jun. 2005.

[60] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet traffic
classification,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 223–239,
2007.

References 84

[61] H. Jiang, A. W. Moore, Z. Ge, S. Jin, and J. Wang, “Lightweight application classifi-
cation for network management,” in Proc. SIGCOMM Workshop on Internet Network
Management: The Five-Nines Workshop, Kyoto, Japan, Aug. 2007.

[62] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-Service mapping for
QoS: A statistical signature-based approach to IP traffic classification,” in Proc. ACM
SIGCOMM Internet Measurement Conf., Sicily, Italy, Oct. 2004.

[63] W. Li, M. Canini, A. W. Moore, and R. Bolla, “Efficient application identification
and the temporal and spatial stability of classification schema,” Computer Networks,
vol. 53, no. 6, pp. 790–809, 2009.

[64] “Application Layer Packet Classifier for Linux.” [Online]. Available: http:
//l7-filter.sourceforge.net

[65] B. Schölkopf and A. J. Smola, Learning with kernels. Cambridge, MA, USA: MIT
Press, 2002.

[66] A. Madevska-Bogdanova, D. Nikolik, and L. Curfs, “Probabilistic SVM outputs for
pattern recognition using analytical geometry,” Neurocomputing, vol. 62, pp. 293–303,
2004.

[67] Y. Yang, Y. Liu, S. Li, and X. Zhou, “Solving P2P traffic identification problems using
Support Vector Machines,” in IEEE/ACS Int. Conf. Comp. Syst. and Applications,
Amman, Jordan, May 2007.

[68] F. J. González-Castaño, P. S. Rodŕıguez-Hernández, R. P. Mart́ınez-Álvarez, and
A. Gómez-Tato, “Support vector machine detection of peer-to-peer traffic in high-
performance routers with packet sampling,” in Int. Conf. Adaptive and Natural Com-
puting Algorithms, Warsaw, Poland, Apr. 2007.

[69] K. Crammer and Y. Singer, “On the learnability and design of output codes for multi-
class problems,” in Proc. Computational learning theory, Palo Alto, CA, USA, Jun.
2000.

[70] Z. Li, R. Yuan, and X. Guan, “Accurate classification of the Internet traffic based on
the SVM method,” in Proc. IEEE Int. Conf. Comm., Glasgow, Scotland, Jun. 2007.

[71] Y. Liu, H. Liu, H. Zhang, and X. Luan, “The Internet traffic classification an online
SVM approach,” in Proc. IEEE Int. Conf. Information Networking, Busan, South
Korea, Jan. 2008.

[72] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee, “Internet
traffic classification demystified: myths, caveats and the best practices,” in Proc. ACM
Int. Conf. on emerging Networking Experiments and Tech., Madrid, Spain, Dec. 2008.

References 85

[73] T. Karagiannis, D. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel traffic clas-
sification in the dark,” in Proc. ACM SIGCOMM, Philadelphia, PA, USA, Aug. 2005.

[74] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector machines for TCP traffic
classification,” to appear, Computer Networks, 2009.

[75] “Lawrence Berkeley’s National Laboratory traces.” [Online]. Available: http:
//ita.ee.lbl.gov/html/traces.html

[76] “Cooperative Association for Internet Data Analysis traces.” [Online]. Available:
http://www.caida.org/data/

[77] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and G. Varghese,
“Network monitoring using traffic dispersion graphs,” in Proc. ACM Internet Mea-
surement Conf., San Diego, CA, USA, Oct. 2007.

[78] H. G. Chew, R. E. Bogner, and C. C. Lim, “Dual-ν support vector machine with error
rate and training size biasing,” in Proc. Int. Conf. Acoustics, Speech, and Signal Proc.
(ICASSP), Salt Lake City, UT, USA, May 2001.

[79] C. Cortes and V. Vapnik, “Support-Vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995.

[80] B. Scholkopf, R. C. Williamson, and P. L. Bartlett, “New support vector algorithms,”
Neural Computation, vol. 12, no. 5, pp. 1083–1121, 2000.

[81] C. Scott, “Performance measures for Neyman-Pearson classification,” IEEE Transac-
tions on Information Theory, vol. 53, no. 8, pp. 2852–2863, 2007.

[82] M. J. Coates, B. Erikkson, R. Nowak, and C. Scott, “Learning to satisfy,” Department
of Electrical and Computer Engineering, McGill University, Tech. Rep., Nov. 2006.

[83] R. Rifkin and A. Klautau, “In defense of one-versus-all classification,” Machine Learn-
ing Research, vol. 5, pp. 101–141, 2004.

[84] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and tech-
niques, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann, 2005.

[85] “tcpdump.” [Online]. Available: http://www.tcpdump.org

[86] “tcptrace - Official Homepage.” [Online]. Available: http://www.tcptrace.org/

[87] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Comput.
Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

References 86

[88] J. Erman, “Offline/realtime network traffic classification using semi-supervised learn-
ing,” Ph.D. dissertation, University of Calgary, Apr. 2007.

[89] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson, “Characteristics
of Internet background radiation,” in Proc. ACM SIGCOMM Internet Measurement
Conference, Sicily, Italy, Oct. 2006.

[90] M. A. Hall and L. A. Smith, “Feature subset selection: a correlation based filter
approach,” in Proc. Int. Conf. on Neural Inf. Processing and Intelligent Inf. Sys.,
Dunedin, New Zealand, Nov. 1997.

