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Abstract 

Converging evidence points to the significant involvement of the immune system in autism 

spectrum disorders (ASD). Positron emission tomography (PET) can quantify translocator 

protein 18 kDa (TSPO), a marker with increased expression mainly in microglia and, to some 

extent astroglia during neuropsychiatric diseases with inflammation. This preliminary analysis 

explored, for the first time, whether TSPO binding was altered in male and female participants 

with ASD in-vivo using full kinetic quantification. 

Thirteen individuals with ASD (IQ>70 [n=12], IQ=62 [n=1]), 5F, 25±5 years) were scanned with 

[18F]FEPPA PET. Data from 13 typically developing control participants with matching age and 

TSPO rs6971 polymorphism (9F, age 24±5 years) were chosen from previous studies for 

comparison. The two tissue compartment model (2-TCM) was used to determine the total 

volume of distribution ([18F]FEPPA VT) in four previously identified regions of interest (ROI): 

prefrontal, temporal, cerebellar, and anterior cingulate cortices.  

We observe no significant difference in [18F]FEPPA VT relative to controls (F(1,26)= 1.74, p = 

0.20). However, 2 ASD participants with higher VT had concurrent major depressive episodes 

(MDE), which has been consistently reported during MDE. After excluding those 2 ASD 

participants, in a post-hoc analysis, our results show lower [18F]FEPPA VT in ASD participants 

compared to controls (F(1,24)= 6.62, p = 0.02). This preliminary analysis provides evidence 

suggesting an atypical neuroimmune state in ASD. 



 

INTRODUCTION       

       Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with an onset early in 

development and is defined by social communication deficits and repetitive and restricted 

behaviors and interests[1]. Individuals with ASD often portray difficulties with nonverbal 

communication involving decreased eye contact, facial expression, and body movements[2]. 

ASD is more prevalent among boys [3], highly heritable [4] with a significant genetic component [5], 

and relatively common, with 1 in 40 children diagnosed in the United States[6,7]. 

      Although genetic studies have suggested more than 100 ASD[8] related genes, and 

neuroimaging studies have shown widespread anomalies in brain structure, function, and 

connectivity[9], we have yet to identify active disease brain biomarkers that could be used to 

develop disease-modifying interventions. Convergent evidence strongly indicates the role of 

neuroinflammation as an etiopathogenic pathway to ASD[10]. Numerous findings indicate that 

peripheral immune dysregulation and neuroinflammation remain in adulthood in ASD[10]. 

Biological evidence of immune activation has led to several immune-modulating agents being 

examined as potential disease-modifying treatments for ASD[9]. For example, celecoxib, a 

cyclooxygenase-2 (COX-2) inhibitor nonsteroidal anti-inflammatory drug,  documented to be 

effective in a small clinical trial, and to improve symptoms in children with ASD when 

administered as an adjunct to risperidone[11]. 

      Recent data indicate that ASD-linked human leukocyte antigen (HLA) genes (involved in 

immune processes) may contribute to ASD risk through their role in the regulation of synapse 

density and neural connectivity in the developing brain[12]. Convergent lines of evidence, 

therefore, indicate that certain genetic and environmental factors may mediate the risk for ASD 

through immune activation and microglial activation. Individuals with ASD are reported to have 

elevated serum levels of major cytokines, including interleukins (IL-1, IL-6, IL-1ra), interferon-Δ 



(IFN-γ), tumour necrosis factor-α (TNF-α) and soluble TNF receptor (sTNFRII)[13,14], which are 

associated with the severity of core ASD symptoms including social impairments and repetitive 

behaviours[15].  A postmortem report indicated microglial activation in 5 of 13 ASD cases in the 

region sampled, the dorsolateral prefrontal cortex[16]; and another postmortem study of 15 cases 

reported greater area of HLA-DR and GFAP immunostaining (of the former inclusive of 

reflecting microglial activation and the latter indicative of astroglial activation respectively) in the 

cerebellum (CER), anterior cingulate cortex (ACC), and middle frontal gyrus in ASD, along with 

selective proinflammatory cytokine upregulation[17]. 

Translocator protein (TSPO) PET imaging may be applied to measure gliosis in 

neuropsychiatric disease. TSPO expression is increased in microglia and, to a lesser extent 

astroglia, in neuropsychiatric diseases in humans[18,19].  In the healthy brain, TSPO is largely 

found in endothelial cells [20] and the differential level of TSPO in neuropsychiatric disease is 

mainly attributed to gliosis [21]. To date, there has not been a TSPO imaging study in ASD 

sampling both males and females, nor has there been such a study applying a second 

generation TSPO radioligand with full kinetic modeling. Presently, there are two studies that 

have investigated TSPO binding in ASD. The first study reported higher regional expression of 

TSPO in adults with ASD, using the first-generation radioligand [11C]PK11195 (ASD [n=20], 

control [n=20]) [22]. Although [11C]PK11195 was once the only radioligand available for PET, it 

has some disadvantages, mainly low specific binding relative to free and non-specific binding for 

TSPO[23]. The other PET study applied a second generation radioligand ([11C]PBR28) and 

reported reduced TSPO expression in several brain regions in 15 ASD adults compared with 18 

controls [24]; however, an arterial input function was not used to quantify TSPO VT in the brain. 

Both studies restricted their cohort to males with ASD. The present study addresses these gaps 

in the literature by sampling males and females, and applies full kinetic modelling to quantify 

TSPO VT with a second generation radiotracer in the high resolution research tomograph 

(HRRT). On the basis of the postmortem reports, we hypothesized that TSPO VT would be 



elevated in ASD in the prefrontal cortex (PFC), ACC, Temporal Cortex and CER compared to 

healthy, age-matched controls. The PFC, CER and ACC were chosen because they showed 

elevated microglia activation in the described postmortem studies[16,17] and higher TSPO as 

measured with [11C](R)-PK11195 BPnd[22]. The temporal cortex was also included as it showed 

a significant difference in the [11C](R)-PK11195 study[22]. 

 
METHODS 

Participants  

Participants with ASD were recruited from the community and the Centre for Addiction 

and Mental Health (CAMH), Toronto, Ontario. Data from thirteen controls, approximately 

matching the mean and standard deviation of age and genotype (TSPO rs6971 polymorphism) 

of thirteen ASD participants, were selected from previously published works of our group[25-27]. 

As previous studies have reported sex-dependent differences in ASD[28] and TSPO[29], both 

male and female participants were included in the current work. This study was approved by the 

Research Ethics Board at CAMH. All participants provided written informed consent after all 

procedures were explained thoroughly.   

To be eligible for the study, ASD participants had to have a diagnosis of ASD according 

to The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [1], 

confirmed using the Autism Diagnostic Observation Schedule-II (ADOS-II)[30]. The intelligent 

quotient (IQ) was assessed with either the Wechsler Adult Intelligence Scale- Fourth Edition 

(WAIS-IV)[31] or the Wechsler Abbreviated Scale of Intelligence (WASI-II)[32]. The presence of 

psychiatric disorders in the control group was assessed using the Structured Clinical Interview 

for DSM-IV Axis I Disorders[33], since data from this group was collected from a previously 

acquired dataset [25-27]. Control volunteers were excluded if they had a first-degree family history 

of psychotic disorders (e.g., schizophrenia) due to significant overlap with ASD-genetic risk 

factors in these conditions [34]. All participants were excluded for any of the following reasons: 



being classified as a low-affinity binder for [18F]FEPPA based on the TSPO rs6971 

polymorphism (see below), taking any anticoagulation or anti-inflammatory medications; history 

of seizures; pregnancy or currently breastfeeding; current or past substance use disorder of any 

recreational drugs (cannabis, cocaine, etc.); and the presence of metal implants precluding a 

Magnetic Resonance Imaging (MRI) scan. 

        In ASD participants, comorbidity was evaluated using MINI International Neuropsychiatric 

Interview[35] . Severity of ASD symptoms was assessed using the Adult Autism Spectrum 

Quotient (AQ, score range: 0-50, higher scores indicating more autistic traits)[36] the Adaptive 

Behavior Assessment System, Third Edition (ABAS-3, score range: 70-120, higher scores 

indicating better adaptive functioning)[37], the Repetitive Behavior Scale-Revised (RBS-R, score 

range: 1-129, higher scores indicating greater repetitive behaviors)[38], the Social 

Responsiveness Scale for adults (SRS-A, score range: 0-195, higher scores indicating greater 

social impairment)[39], the Behavior Rating Inventory for Executive Functions- Adult version 

(BRIEF-A, score range: 30-100, higher scores indicating greater executive functioning)[40] and 

the MATRICS Consensus Cognitive Battery (MCCB, score range: 10-100, higher scores 

reflecting better cognitive performance) [41]  

 

DNA extraction and polymorphism genotyping 

 Each participant was genotyped for the TSPO rs6971 polymorphism, as previously 

described[42], and classified as high, mixed, or low affinity binders (HAB, MAB, and LAB, 

respectively). Only HABs and MABs were included in the study, as LABs cannot be reliably 

quantified with [18F]FEPPA. While ASD participants were genotyped using saliva samples 

(Oragene DNA, DNA Genotek Inc., Ottawa, Canada)[43], the controls were genotyped using 

blood DNA[44].  



PET and MRI acquisition 

       Details of PET and MRI data acquisition have been described thoroughly elsewhere[45]. 

Briefly, all [18F]FEPPA PET scans were performed using a high-resolution PET scanner (CPS 

HRRT; Siemens) for 120 minutes following an intravenous bolus injection of 180±15 MBq of 

[18F]FEPPA. All participants underwent a structural (PD- proton density weighted) MRI scan 

using a 3T MR-750 scanner (General Electric Medical Systems, Milwaukee, WI, USA) with the 

following parameters (2D/FSE-XL/ASSET, echo time (TE)≈15ms, repetition time (TR)≈6000ms, 

FOV=22 cm, matrix=256 × 256, Slices=86, spacing interleave, slice thickness=2 mm, number of 

excitations (NEX) = 1. These images were then co-registered with the averaged PET images for 

the delineation of individual regions of interest (ROI). 

Arterial Sampling 

 Arterial sampling was withdrawn continuously for the first 22 minutes from a radial artery 

cannula and counted using an automatic blood sampling system (ABSS, Model # PBS-101 from 

Veenstra Instruments, Joure, Netherlands). Additional manual samples were collected at 

specific time points from the same arterial cannula. Blood samples were centrifuged and the 

fraction of parent compound in the resulting plasma was determined using Oasis HLB cartridge 

(Waters, 6 cc) similarly as we described previously [46]. This method was validated using high-

performance liquid chromatography (HPLC) analytical analysis. Radioactivity was counted with 

either a Packard Cobra II (Perkin-Elmer, Waltham, MA, USA), or a Wizard 2480 gamma counter 

cross-calibrated with the PET system. The delay and dispersion corrected input function was 

created as previously described [47].  

Image analysis 

Time-activity curves (TACs) were extracted for the bilateral prefrontal cortex (PFC), 

temporal cortex, cerebellar cortex, anterior cingulate cortex (ACC), and the gray matter as a 

whole using a validated in-house imaging pipeline (ROMI)[48]. All ROIs were delineated using 



individual PD-weighted MRI[48]. We restricted our initial analyses for this study to those four 

specific regions because they show strong evidence of pronounced neuropathology in ASD 

(including signs of inflammation) [16,17,22,49]. Kinetic parameters of [18F]FEPPA were derived from 

the TACs using a two-tissue compartment model (2TCM) and plasma input function to obtain 

the total distribution volume (VT) for each ROI, which has been validated for [18F]FEPPA 

quantification and described elsewhere[45,47]. The kinetic analysis of the radioligand was 

performed using in-house software (fMOD). 

Statistical analysis 

Statistical analyses were performed using SPSS Statistics (version 27.0, IBM, Armonk, 

NY, USA). Demographic and clinical characteristics were compared between ASD and control 

participants using independent sample t-tests for continuous variables, and chi-square tests for 

categorical variables. Group differences in [18F]FEPPA total distribution volume (VT) were 

analyzed using random effects mixed model analysis, with prioritized ROI, group and TSPO 

genotype as fixed factors, participant identification number as a random effect (including the 

intercept), and regional [18F]FEPPA VT as the dependent variable. In a mixed model analysis, all 

results were controlled for four brain regions: PFC, temporal cortex, cerebellar cortex, and ACC. 

Gray matter as a whole was analyzed separately using analysis of variance, controlling for 

TSPO genotype. Effect size (Cohen’s d) was calculated as the difference between the 

estimated marginal means from SPSS divided by the mean SD across all prioritized brain 

regions. As described by Cohen, effect sizes were interpreted as follows: Cohen’s d = 0.2 a 

small effect, Cohen’s d=0.5 a medium effect, and Cohen’s d=0.80 a large effect[50].  

RESULTS 

Demographics and injection parameters 

 A total of 21 ASD participants were enrolled in the study. Of those, five did not meet the 

inclusion criteria or withdrew consent and 3 were not scanned with [18F]FEPPA because either 



radiochemistry, or arterial or venous catheterization was unsuccessful. The remaining 13 ASD 

participants were scanned with [18F]FEPPA and included in the study ( sdx  ; 24.9±5.2 years 

old, 5 females, 8 males,  8 HABS, 5 MABS). However, we could not find an identifiable solution 

for the 2TCM for the TAC of the ACC of one ASD subject, consequently, the associated VT 

value was unreliable and not used. A patient left the scanner earlier, at 90 min after injection. 

The inclusion or exclusion of this subject did not change the results following analyses to 

account for this methodological deficiency. The clinical measurement is presented in Table 1. 

While taking any anticoagulation or anti-inflammatory medications was part of the exclusion 

criteria, six participants from the ASD cohort were taking other medications: subject a: 

lorazepam (PET and MRI); subject b: Sertraline (PET) and citalopram (MRI), subject c: 

fluoxetine and methylphenidate (PET and MRI), subject d: lisdexamfetamine and vitamin D 

(PET and MRI), subject e: acetaminophen (PET) and pantoprazole (MRI), subject f: bupropion 

and methylphenidate (MRI). The MINI International Neuropsychiatric Interview revealed the 

presence of comorbidities which included concurrent Major Depressive Episode (n=2), 

Dysthymia (1), Manic Episode (1), Agoraphobia, current w/o history of panic disorder (n=3), 

Generalized Anxiety Disorder (4). Thirteen typically developing controls approximately matching 

age and genotype of the ASD participants (25.0+5.2 years old, 9 females, 8 HABS, 5 MABS) 

were selected from previously published works of our group[25-27]. While there were no significant 

group differences in [18F]FEPPA activity injected, there was a significant group difference in the 

mass injected (1.6±0.7 vs 0.9±0.6 μg) due to a difference in specific activity (Table 1).  

Differences in [18F]FEPPA VT between ASD participants and Controls 

         There was no effect of group (ASD participants vs controls) on [18F]FEPPA VT (main group 

effect: F(1,26)= 1.74, p = 0.20; ROI effect: F(3,77)= 9.94, p<0.001) (Figure 1). However, two ASD 

participants who had the highest [18F]FEPPA VT values (Figure 1) were also diagnosed with 

major depressive episode, based on the MINI international Neuropsychiatric interview. Re-



analysis of the data excluding those participants revealed a significant effect of group, such that 

ASD participants had lower [18F]FEPPA VT compared to controls (main group effect: F(1,24)= 

6.62, p = 0.02; ROI effect: F(3,71)= 8.57, p<0.001; Cohen’s d= 0.85, large effect size; 27% lower 

in the temporal cortex and cerebellar cortex, 28% lower in the PFC, 29% lower in the ACC). 

Similar results were observed using the whole gray matter region: main group effect F(1,23)=1.46, 

p=0.24 and in the post-hoc analysis excluding the ASD participants with MDE F(1,21)=6.66, 

p=0.017 with [18F]FEPPA VT 28% lower in ASD. 

 

DISCUSSION 

 
To our knowledge, this is the first in vivo quantification of brain TSPO in ASD 

participants with a second-generation radiotracer and full kinetic modelling using state of the art 

methodology (arterial input function in HRRT) that includes both female and male participants. 

Contrary to our hypothesis, participants with ASD either had no significant differences when 

compared to typically developing controls, or significantly lower levels of TSPO in the brain 

(when excluding participants with MDE).  To a greater extent this contrasts postmortem studies, 

and to a lesser extent previous neuroimaging findings. 

Many studies have suggested that neuroinflammation plays a role in the pathogenesis of 

ASD. For example, post-mortem studies [16,17,51-54] have shown a significant higher microglial 

activation in patients with ASD. Additionally, other studies have reported a higher expression of 

microglial marker genes in post-mortem brains of ASD subjects relative to controls[55,56]. 

Cerebrospinal fluid (CSF)[17] also revealed higher concentrations of the proinflammatory marker 

MCP-1. Peripheral blood studies have also shown higher activation of microglia cells in ASD 

subjects [57,58]. However, there are also post-mortem studies that showed no difference in 

microglial activation between ASD subjects and controls [59,60]. At the cellular level the present 

study argues against a gliosis labelled with TSPO in high functioning ASD, but would not rule 



out a gliosis with different characteristics that does not overexpress TSPO. For example gliosis 

with overexpression of GFAP, which is often reported in ASD, is largely reflective of astroglial 

activation, not microglial activation and does not typically correlate with TSPO binding[61]. 

While imaging methods differ because the present study applied full kinetic modeling, 

the conclusions of the present study are more in line with Zurcher et al.[24] , who applied a 

second generation TSPO PET radiotracer in autism. Using [11C]PBR28, Zurcher et al. found an 

undisclosed, but significant, lower SUVR60-90min (whole brain normalization) in a voxelwise 

analysis in the insular cortex, precuneus/posterior cingulate cortex, and the temporal, angular, 

and supramarginal gyri in adult males with high and low functional ASD compared to controls 

[24]. While lower SUVR may represent a decrease in TSPO levels, this quantification approach is 

problematic. Using the whole brain as a reference region includes the uptake of the region of 

interest in both the numerator and denominator, and other factors can confound changes in 

SUVR (eg. the clearance of radioligand from plasma[62] ). It should be mentioned that analyzing 

the regional TACs of the present work (prefrontal, temporal, cerebellar and anterior cingulate 

cortices) with SUVR (100-120 min) using the gray and white matter as reference region, we did 

not observe any significant group difference, either including or not the subjects with MDE. The 

SUVR of the ASD participants with concurrent MDE were not higher than the SUVR of the rest 

of the HAB ASD participants. Our current study addresses previous methodological issues and 

in a post-hoc analysis, when excluding subjects with MDE (n=2), showed lower TSPO binding in 

ASD relative to controls. The 2 participants with MDE were HABs and showed higher VT than 

the rest of the subjects. A previous study from our group showed that individuals with MDE have 

a higher [18F]FEPPA VT (about 30%) compared to controls (44,54), and six studies across four 

different sites report higher TSPO binding in the grey matter regions sampled during MDE [21,63-

69]. We focused on MDE based on our previous works, however there were other comorbidities 

present in this population and the same 2 participants presented generalized anxiety disorder.  



The reasons for a lower [18F]FEPPA VT in ASD (after excluding ASD participants with 

MDE) are unknown but could be related to the time in the stage of illness in which the sampling 

was done. A similar issue has been raised in previous studies in TSPO in patients with 

psychosis [70] and a first episode psychosis [71] also have shown lower in TSPO binding contrary 

to the prevalent hypothesis of increased neuroinflammation. Newer results from animal models 

of schizophrenia showed that while TSPO is upregulated after a severe neuroinflammatory 

insult, TSPO is downregulated in adult animals with a prenatal induced infection in a 

neurodevelopmental mouse model of schizophrenia which presented increased inflammatory 

cytokine expression [72]. Our study focuses on ASD participants older than 18 years of age, 

however, it is well-known that this neurodevelopmental disorder begins very early in 

development [73]. Environment and genetic factors are involved in the etiology of ASD [74].  One 

of the best examples of known environmental risk factors for ASD is prenatal exposure to the 

antiepileptic and mood stabilizer drug valproic acid (VPA). When this drug is taken during 

pregnancy, it can result in children displaying autistic-like features, such as impaired 

communication, reduced sociability, and stereotyped behaviors [75,76]. Thus, when considering 

the participants without MDE, our study could be an analog situation to the Notter et al. study 

[72]: we could have observed a lower TSPO levels in adult ASD participants as a consequence of 

the exposure to a neuroimmune alteration earlier in life. On the contrary, the ASD participants 

with MDE, who present a current neuroinflammatory process, consequently presented higher 

TSPO levels. This hypothesis needs to be addressed in future studies. A study comparing ASD 

participants with and without depression could shed light on this suggestion as well.   

When interpreting the results, the limitations of this study should be considered. First, 

although [18F]FEPPA VT is mostly attributed to microglial function, studies show that TSPO is 

also expressed by astrocytes and vascular endothelial cells. However, both astrocytes and 

endothelial cells are known to be key factors in brain immunity, and our conclusion is not 

undermined by the potential role these cells play in the [18F]FEPPA VT signal. Second, the 



sample size is admittedly small, and it included both male and female participants. The number 

of females with ASD in this cohort was an over-representation of its actual proportion in the 

general population, where ASD is more prevalent in males than in females. A significant 

association between sex and TSPO has been previously reported [77]; although, this was not 

found in all previous studies. In our cohort, sex had no significant effect on [18F]FEPPA VT (with 

MDE: main sex effect: F (1,26) = 1.23, p=0.28; without MDE: main sex effect: F (1,24) = 0.01, p= 

0.92). This may be related to small sample sizes of each group by sex. Third, the control group 

(n=13, age 25±5.2, M=4, 8 HABs) is a subset of a greater sample (n=27, age 23.6±4.2 , 9 

males, 19 HABs) published previously [25]. The 13 subjects were selected based on the 

demographic variables (age 24.8±5.2), and genotype (8 HABs) following the order in which they 

appeared in our database. It should be noted that, the means and variability of the 13 control 

subjects selected match very well the mean and variability of [18F]FEPPA VT of the larger 

population (For example, for the whole gray matter for HABs [18F]FEPPA VT =10.8±3.7 

(n=19[25]) vs. [18F]FEPPA VT =11.6±3.5 (n=8, here)  and for MABs [18F]FEPPA VT =8.6±2.9 

(n=8[25]) vs  [18F]FEPPA VT =8.4±2.9 (n=5, here)). Thus, the 13 selected control cases very well 

match the ASD cases and do not differ from the larger sample. For consistency, the matched 

cases (n=13) were kept for statistical testing. Fourth, some of the ASD participants were not 

drug-free: while participants were excluded for anti-inflammatory medications, some of them 

were prescribed antidepressants, anxiolytics, or stimulants as part of their clinical care that 

could potentially affect the uptake of [18F]FEPPA[68,78]. One of the participants with MDE was 

taking Zoloft (50 mg) when the PET scan was acquired, and greater TSPO VT has also been 

reported in MDE treated with serotonin reuptake inhibitor antidepressants[69]. In order to 

investigate the effect of specific drugs on [18F]FEPPA uptake in ASD, further within participant 

studies are required. Fifth, most ASD participants in this study are high-functioning and it is 

unknown whether these preliminary findings apply to low functioning ASD individuals. Sixth, the 

mass of radioligand injected in the ASD group was greater than in the control groups. While a 



non-tracer dose effect is unlikely (see calculation below) and there has never been an apparent 

mass effect on [18F]FEPPA VT, it cannot be completely ruled out. Using the maximum mass 

injected (2.9 μg), a typical subject weight of 70 Kg, a mean [18F]FEPPA plasma free fraction 

fp=5% (unpublished) and the in-vitro Ki affinity for HABs=0.5 nM[79], a maximum of  1% of 

TSPO would be bound to [18F]FEPPA [80]. A mass effect would reduce the VT, however the 

subject with the maximum mass injected, is the ASD subject with concurrent MDE and highest 

VT of the study (Figure 1). Seventh, in this study we did not measure [18F]FEPPA fp. It has been 

difficult to obtain reliable fp measurements [81] and it is known that VT /fp for [11C]PBR28 

increase its variability (eg [82] ); thus, consistent with previous studies with [18F]FEPPA, VT/fp 

was not used as outcome measure in this study 

Contrary to the hypothesis of elevated levels of TSPO in ASD, we conclude that 

participants with ASD present either no significant difference in TSPO concentration when 

compared to matched controls, or significantly lower levels of TSPO when excluding concurrent 

MDE. 
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Table 1. Characteristics for autism spectrum disorder (ASD) participants and controls. 

Demographic and 
clinical variables 

 
Controls 

(n=13) 
ASD 

(n=13) 
 

Age (years)  25.0 ± 5.2 24.9 ± 5.2 t= 0.04, p= 0.97 

Sex Male/Female 4/9 8/5 X2= 2.48, p= 0.12 

Genotype HAB/MAB 8/5 8/5 X2= 0.00, p=1.00 

Pharmacological 
Drugs 

Antidepressant 0 6  

Anxiolytics 0 2  

Stimulants 0 4  

Atypical Antipsychotics 0 1  

PET measures 

Amount injected, mCi 5.0 ± 0.3 5.0 ± 0.2 t= -1.14, p=0.27 

Specific activity, 
mCi/μmol  

3153 ± 3220 1493 ± 802 t= 2.41, p= 0.03 

Mass injected, μg 0.9 ± 0.6 1.6 ± 0.7 t= -3.04, p= 0.006 

Neuropsychiatric  
Scores 

WASI II FSIQ-4 or 
WAIS-II  FSIQ-CS 

- 98.5 ± 18.8  

ADOS-2  - 11.0 ± 2.8  

AQ                       - 26.2 ± 8.5  

ABAS-3 
General Adaptive 
Composite                       

- 69.3 ± 24.6  

RBS-R                                                             - 22.4 ± 16.4  

SRS-A                                                   - 63.4 ± 9.8  

BRIEF-A                                                                                            
Global executive 
composite 

- 64.5 ± 7.4  

Matrics composite T-
score 

- 44.4 ± 6.7  

 

Abbreviations: Results are expressed as sdx  ; HAB, high affinity binder; MAB, mixed 

affinity binder; ADOS-2, Autism Diagnostic Observation Schedule-II; AQ, Autism Spectrum 
Quotient; ABAS-3, Adaptive Behavior Assessment system, Third Edition; RBS-R, Repetitive 
Behavior Scale-Revised; SRS-A, Social Responsiveness Scale for adults; BRIEF-A, Behavior 
Rating Inventory for Executive Functions- Adult version; Wechsler Adult Intelligence Scale- 
Fourth Edition (WAIS-IV)[31] or  Wechsler Abbreviated Scale of Intelligence (WASI-II)[32]. 

 

 

 

 



 

 

 

 

 

Figure 1. [18F]FEPPA VT in typically developing control (TD, open symbols) and ASD 

participants (solid symbols) for the prefrontal cortex, temporal cortex, cerebellar cortex, anterior 

cingulate cortex and whole gray matter. Groups were classified according to their TSPO rs6971 

genotype as high affinity binders (HABs) or mixed affinity binders (MABs). ASD participants with 

a concurrent major depressive episode (MDE) were both HABs, and are highlighted with a 

square symbol (n=2). The individual data-points show the original [18F]FEPPA VT values and the 

horizontal bars indicate group means adjusted for TSPO rs6971 genotype using the estimated 

marginal means of each region (including ASD participants with a concurrent MDE). 
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