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To derive the critical density for exposure-path prevention in three-dimensional wireless sensor networks (3D WSNs), a bond-
percolation-based scheme is proposed, which can generate the tighter lower and upper bounds of critical density. Firstly, the
exposure-path prevention problem and system models based on Gaussian distribution are introduced in this paper. Then, according
to percolation theory, we present a bond-percolation model to put this problem into a 3D uniform lattice. With this model, the
lower and upper bounds of critical density for 3D WSNs are derived in the light of our scheme. Extensive simulations and contrast
experiments also validate our developed models and evaluate the performance of the proposed schemes. Therefore, our scheme
can be applied to determine a practically reliable density and detect intruders in sensor networks.

1. Introduction

Over the past decades, wireless sensor networks (WSNs)
have represented one of the most outstanding technologies,
and several research disciplines, such as communication
protocols, and hardware platforms, have appeared to cover
the special requirements of these systems. Many applications
of WSNs need the intrusions being detected by sensor
nodes in the interested region [1], like military applications,
healthy environment monitoring, seism surveillance, and
so on. The intrusion detection problem belongs to node
coverage issue that is vital in the area of WSNs. Moreover, if
nodes detect intrusion paths, the intrusions can be detected.
Namely, coverage of intrusion paths has important influence
in detecting intrusions.

Generally, coverage reflects QoS (quality of service) pro-
vided by sensor nodes of networks [2]. It creates collabo-
rations among the nodes in covering an interested region
for monitoring specific information. The researchers have
studied the coverage problem from many different perspec-
tives based on different requirements [3, 4]. As shown in
the majority of references [2-4], if each point in the region

is sensed by at least one sensor node, this region is defined
as covered region. However, if the objective of coverage is
to detect moving targets or phenomena, the traditional full
coverage model [2-4] may be unnecessary. Full coverage
means that everywhere in the deployment area is covered
by nodes, which is at the cost of resource wastes and high
complexity [5]. But coverage for intrusion detection only
needs partial coverage ensuring that no moving targets or
phenomena can pass through the interested region without
being detected [6]. If an intruder can traverse through the
deployment area and the resulting path is not covered by
nodes, we name the traversed path as the exposure path.
It reflects the ability of intrusions moving through the
deployed area [7]. Preventing the exposure paths belongs to
the exposure-path prevention problem. On account of the full
coverage, network coverage is rather poor if there exists an
exposure path in WSNs [8]. Hence, this paper considers the
problem of no exposure path in 3D WSN.

To address the exposure-path problem, this paper adopts
percolation theory [9-11] to compute the optimal density in
order to make the probability of an exposure path existing
converge to 0 and satisfy the minimum density of sensor
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nodes. In [12], Broadbent and Hammersley first introduced
percolation theory to model the disordered media and sim-
ulate the percolation process of immersed rocks. Since this
theory reveals the vital relationships between probabilistic
and topological characteristics of graphs, it is attractive to
researchers [13] and has been used to study connectivity of
WSNs [14-16]. In this paper, we exploit the percolation theory
to obtain the optimal density for coverage inomnidirectional
sensor networks.

On the basis of percolation theory [10, 13], if p is the
average degree of connectivity between various subunits of
some arbitrary system, there exists a percolation threshold,
denoted by p,. When p > p,, there is no exposure path from
one side to the other side of this system, and not vice versa.
Deriving the critical density to achieve regional coverage
for random network deployment process is a fundamentally
important problem in the area of WSNs. Based on percolation
theory, most existing studies [14-16] apply the continuum-
percolation theory to derive the optimal density for coverage.
However, the studies suffer from the loose lower and upper
bounds of critical density and cannot be applied to determine
a practically useful density for network deployment. In this
paper, a bond-percolation scheme is proposed in 3D WSNs
to conquer the above problem and make percolation theory
more suitable for the exposure-path problem. We assume
sensor nodes deployed under a 3D Gaussian process, and the
rigorous derivation analyses and simulation results indicate
that the proposed method can generate much tighter upper
and lower bounds of critical density.

The remainder of our paper is structured as follows.
Section 2 introduces the related works, and based on Gaus-
sian distribution, Section 3 presents the system models and
problem formulation about exposure-path prevention in 3D
WSNs. Section 4 describes the bond-percolation theory to
derive and analyze the optimal critical density for exposure-
path problem. In addition, the mutual dependence among
edges of the proposed scheme is dealt with in this section.
In Section 5, extensive simulation results evaluate the models
and schemes we proposed, and the last section concludes this

paper.

2. Related Works

In this section, we introduce the related works of percolation
theory and exposure-path problem in WSNs. Due to coverage
of exposure paths belonging to barrier coverage, this section
also presents recent results about barrier coverage.

The coverage of WSNs can be classified into three types:
area coverage, barrier coverage, and point coverage in terms
of the different covered objects [17]. Area coverage is full
coverage, while barrier coverage and point coverage are
partial coverage. Area coverage needs every point within
the target area covered by at least one node [18]; barrier
coverage measures the detection ability [19]; point coverage
requires the coverage of several discrete targets [20]. In this
paper, barrier coverage contains the mentioned exposure-
path problem. Next, we introduce the related researches on
exposure-path problem.
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In [21], the authors provided formal yet intuitive for-
mulations, established the complexity of the exposure-path
problem and developed practical algorithms for exposure cal-
culation. They also investigated the relationship and interplay
of exposure problem with other fundamental wireless sensor
network tasks and in particular with location discovery
and deployment. After elucidating the importance of the
exposure problem, Megerian et al. [22] formally defined
exposure paths and studied exposure-path properties. Mean-
while, they developed an eflicient-effective algorithm for
exposure calculations in sensor networks, specifically for
finding minimum exposure paths. Veltri et al. [23] proposed
an efficient localized algorithm enabling a sensor network to
determine its minimum exposure path. Theoretical highlight
of this reference is the closed-form solution for minimum
exposure in the presence of a single sensor node. Moreover,
they introduced a new coverage problem, the maximum
exposure path, which was proved NP-hard and could be
resolved by heuristics to generate approximate solutions. The
concept of information exposure was came up in [24], and an
approximation algorithm was presented to solve the problem
of finding the worst (best) information exposure path in
WSNs. In [25, 26], an approximation algorithm was suggested
by Djidjev to solve the minimum exposure-path problem and
guaranteed the network performance. Ferrari and Foderaro
[27] introduced an artificial-potential approach that designed
the minimum exposure paths of multiple mobile objects
(including sensor nodes) in dynamic networks. In addition,
this approach can be used in heterogeneous wireless sensor
networks (HWSNs). The authors of [28] exploited a new
optimization algorithm, the physarum optimization, for solv-
ing the shortest path problem. This algorithm is with low
complexity and high parallelism. Liu et al. [29] applied the
percolation theory to solve the exposure-path problem with
a two-dimensional (2D) Poisson process in Internet of Things
(IoT).

Using percolation theory to find the critical density of net-
works could date back to 1961. Gilbert [30] firstly raised the
concept of continuum percolation to find the critical density
of a Poisson point process. This model is the foundation of
wireless networks with continuum percolation. Percolation
threshold is also applied to investigate the connectivity of
wireless networks. In [31], Penrose indicated that the critical
range for the probability of establishing overall connectivity is
close to 1, as the number of nodes goes to infinity. This range
results in every node connecting to its neighbors on average.
Gupta and Kumar of [32] adopted the correlation percolation
results to derive the sufficient condition on communication
distance for asymptotic connectivity in wireless networks.
However, the loose lower and upper bounds on the critical
density impose restrictions on the applications of continuum-
percolation theory.

Bertin et al. [33] put forward the existence of site and
bond percolation for both Poisson and hard-core stationary
point processes in the Gabriel graph. Besides, the simulation
results demonstrated the critical bounds corresponding to
the existence of two paths—open sites and open bounds,
respectively. In [34], the authors determined the critical
densities of a Poisson point process in different classes of
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coverage algorithms. Furthermore, based on the ratio of
the connectivity range of base stations to the clients, they
showed the almost sure existence of an unbounded connected
component. Glauche et al. [35] raised a distributed protocol
to guarantee strong connectivity and find the critical com-
munication range of mobile devices in ad hoc networks. An
ad hoc network graph could be surely connected above this
range. For efficient topology control of wireless networks, Liu
and Towsley [36] recommended the concept of monotone
percolation based on the local adjustment of communication
radii of sensor nodes. Simultaneously, they illuminated some
algorithms to guarantee the existence of relatively short paths
between any pairs of source and destination nodes. The
authors considered both Boolean and probabilistic sensing
models to characterize fundamental coverage properties of
large-scale sensor networks in [37]. Due to the dependency
between coverage and connectivity, Ammari and Das [38]
proposed an integrated concentric-sphere model to address
coverage and connectivity of 3D WSNs in an integrated
way. In [39], through some assumptions and simplifications,
Deng et al. gave a simple formula to estimate the minimum
number of sensor nodes that the system needed to ensure
opportunistic encounter between nodes and made the data
forwarded. Khanjary et al. [40] proposed an approach to
calculate the density of nodes at critical percolation by using
continuum percolation in aligned-orientation directional
sensor networks.

However, from the above pieces of literature, we can con-
clude that most existing percolation-based schemes [34-40]
apply the common continuum-percolation theory, enduring
the loose lower and upper bounds on the critical density.
The tight asymptotic expressions for individual and system
outage probabilities are presented in closed form through
investigating the performance of time division broadcast
(TDBC) protocol in bidirectional cloud networks in the
presence of channel estimation errors (CEEs) [41, 42]. To
obtain the tighter lower and upper bounds of critical density
and make percolation theory more apt to 3D WSNs, we
propose a bond-percolation-based scheme that maps the
exposure-path prevention problem into a bond-percolation
model in a 3D WSN. Depending on the deployment of sensor
nodes obeying a 3D Gaussian process, the lower and upper
bounds of critical density for 3D omnidirectional WSNs are
derived.

3. System Models

Firstly, this section introduces the deployment and sensing
models of 3D omnidirectional sensor networks. Then, we
adopt the continuum-percolation theory [43] to formulate
exposure-path prevention problem. Meanwhile, a bond-
percolation scheme is proposed to map the proposed problem
into a bond-percolation model.

3.1. System Models

3.1.1. Deployment Model. In a vast 3D WSN, sensor nodes
are deployed randomly and their locations are uniformly

(B, 7, A) AN

FIGURE 1: Omnidirectional sensing model.

and independently distributed, modeled as a stationary 3D
Gaussian distribution [44] with a random variable X and
X ~ N(u,0%). p is the mathematical expectation, that is,
the average value. o represents the standard deviation, and
o denotes the covariance. Then, from [45], we have the
probability density function of X; namely,

1 (x-w’
(Vo) exp<_ 207 ) v

In any subregion V, the number of sensor nodes N(V) =
k follows the Gaussian distribution with mean value y =
AV ||, where ||V is the volume of V. We assume that o is the
standard deviation and o? is the covariance. Therefore, the
probability intensity function of N(V') is

Ge= Ay )

1
(\/27102)3 exp< 20°

p(X) =

p(N(V)=k)= 2)

3.1.2. Sensing Model. In this paper, we adopt the sphere model
(B,r,A) [16] as the sensing model in a 3D omnidirectional
sensor network, as shown in Figure 1. B denotes the node
sensing range, a spherical region, and its sensing radiusis . A
is the deployment density of sensor nodes in the 3D WSN. If
s: (x5, ¥, z,) denote the location of one sensor node, a target
point t: (x,, ¥,, z,) is covered when the Euclidean distance |st|
satisfies [38]

|St| = \/(xs - xt)2 + (ys - yt)2 + (Zs - Zt)z ST (3)

This paper just considers the omnidirectional sensing
model other than the directional sensing model [40]. The
directional sensing model in 3D WSNss is the circular cone
with one offset angle. Future works of our research focus
on the study of the directional sensor network that is more
commonly in practice.

3.2. Problem Formulation. Ina 3D WSN R’, the deployment
space is divided into two parts, the vacant region W covered
by no sensor node and the covered region C covered by at
least one sensor node. The exposure path in a 3D network is
defined in the following.

Definition 1 (exposure path). A continuous strip S (or curve
S) from one side to the other side of the deployment region is
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FIGURE 2: Relationship between exposure path S and sensor node density A.

said to be an exposure path if it belongs to any vacant region
W; see Figure 2(a).

Sensor nodes may be spread in an arbitrary pattern,
such as certain sensor deployment strategies, airdropped or
launched via artillery in battlefields or unfriendly environ-
ments. As shown in Figure 2(a), there exists an exposure path
in the 3D network if A is not larger than the critical threshold
Ao, whereas, in Figure 2(b), if A > A, no exposure path exists
in this network. Additionally, the exorbitant density will cause
vast redundancy, high implementation complexity and cost.
In conclusion, A of no exposure paths and no redundancy
existing in the network is the optimal density.

As a result, we formulate the exposure-path prevention
problem as the calculation of the critical density A, in a 3D
network. In [46], if the lower and upper bounds of A are
very loose, they cannot be applied to determine a practically
useful density for nodes deploying process. Concurrently, we
summarize from [43] that the bounds on A are very loose,
and this scheme of [43] is suitable only for the Poisson model.
To get the tighter bounds of A and make the appropriate
model in this paper, a bond-percolation model is proposed
for the 3D sensor networks based on the bond-percolation
theory. We will introduce it in Section 3.3. According to
the Limit theory, strip S can be seen as the countless lines
superposition. Then, we just consider the condition of lines
for simplicity.

3.3. Bond-Percolation Model. In this section, to resolve the
exposure-path prevention problem, the 3D sensor network is
partitioned into a 3D uniform lattice, as shown in Figure 3.
Then, we define the number of lattices in the regions C and W
as the sizes of C and W, d(C, A) and d(W, 1), respectively. To
formulate this problem, the critical densities [13] are defined
as Ao = inf{d : p(d(C,A) = oo) > 0}. From the above
discussion, it is clear that if A < A, there exists an exposure
path in the network.

Virtual :
vertex
e ]

Edge

FIGURE 3: The unit cube region with a virtual lattice.

For simplicity, in Figure 3, let one unit cube region
contain n vertexes, M = {m,,m,,...,m,}, and form a </n x
{/n x ~/n lattice. n vertexes do not contain the ones that lie
on the edges of this cube. ¢; ;, i, j € [1,n] denotes the edge
between vertex m; and vertex m;. Therefore, the length of
edge e; ; between neighbor vertexes is k = 1/~/n. We give
the following definitions to identify the relationship between
edge e; ; and the bounds of Ac..

Definition 2 (closed/open edge). For edge e; ;, we define two

i,j°
different indicator functions as follows:
L(e;;)
_ |1, if at least one point on ¢; ; is covered; (4)

0, if all points on e; ; are not covered,

J

B (1, if all points on e;j are covered; )

0, if at least one point on ¢; ; is not covered.
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Then, (1) if L(e; ;) = 1, € is defined as L-closed edge; if
L(e; :) i) = 0,¢; ;s callled L- open edge; (2) e; jis named as U-
closed edge if Ule;;) = 1; ¢ is denoted as U-open edge if
Ule;, j) =0

Definition 3 (coverage lattice). In a 3D lattice Z* with its
vertex set M (|[M| = n) and edge set E, if an arbitrary edge
j between two neighbor vertexes is L-open/L-closed edge,

Z3 is an L-coverage lattice; if e; ; is U-open/U-closed edge, z?
is a U-coverage lattice.

Definition 4 (closed/open path). In a 3D lattice Z> with its
vertex set M (M| = n) and edge set E, a path S passes via a
sequence of edges e 5,€;3,...,€;;,1,..., i = 1. If all the edges
(€;;41>i = 1) of path S are L-open/U-open, S is named as the
L-open/U-open path; if all the edges are L-closed/U-closed,
S is called the L-closed/U-closed path.

According to Definitions 2-4, it is simple to conclude that
(a) if edge ¢, ; is the U-closed edge, it must be the L-closed
edge in terms of coverage, and not vice versa; (b) the lower
bound A; of the critical density A could be derived by L-
coverage lattice and the upper bound A(; by U-coverage lattice
for 3D sensor networks.

4. Bounds of Critical Density

In this section, since the probability p of an arbitrary edge in
the 3D lattice is closed, there exists a threshold value p, €
[0,1] resulting in the differences of the global behavior of
the system in two regions C and W. Generally speaking, one
closed path from one side to the other of the 3D network
exists for all p > p, [47]. Conversely, no closed path exists for
all p < p,. For the sake of clearness, we define P = p{L(e; ;) =
1}, Py = p{U(e;;) = 1 and Ap = sup{A : P, < p}, Ay =
inf{A : P; > p,}. Thus, p{the exposure path exists} > 0 if
P, < p,, and p{the exposure path exists} = 0if P; > p,. From
[47], we can see that the probabilities of all edges being open
or closed are independent in the bond-percolation theory.
In Section 4.2, the dependence of P (P;) on neighbor edges
will be discussed in 3D omnidirectional sensor networks in
detail.

4.1 Critical Density Ac. Firstly, a new operation A; U A; =
Uvs, ce,; An 18 defined in this section, where s, is an arbitrary

point on edge ¢; ; of the L-coverage lattice, and A, is the
sphere centered at s,, with radius r, as shown in Figure 4(a). In
the 3D coordinate system, we adopt edge ¢; ; on y-axis as an
example and draw some conclusions. In thlS ﬁgure, m; andm;
are the two endpoints of edge ¢; ;. Therefore, A; U A is a set
that contains all the coverage spheres centered at the points
of edge ¢; ;. Based on the definition of A; U A, it is easy to

have the followmg theorem.

Theorem 5. No sensor node within A; U A is a sufficient and
necessary condition of all points on edge e; ; being not covered
by any sensor nodes in the network.

Proof. There are two steps to prove the theorem as follows.

(1) From the concept of A;UA ; at the start of this section,
we know that A; U A; contains the overall coverage
space of all pomts on ¢; ;. Consequently, it is obvious
that if no sensor nodes ex1st in A; U A}, all points on

e; ; are not covered by any sensor nodes

(2) On the contrary, if one point on edge ¢; ; is covered by
a sensor node in the network, this sensor node locates
within A; UA on account of the definition of A;U A

So, obv1ously, 'if all points on edge e; ; are not covered

by any sensor nodes in the network, there is no sensor
node within A; UA ;.

To sum up, the proof of Theorem 5 is finished. O

Theorem 6. In a 3D omnidirectional sensor network, we have

{—202 In [(27102)3/2 (1- pt)] }1/2

(4/3) nr® + nrix

{—202 In [(27:02)3/2 (1- pt)] }1/2

(27/3) 2r + x/2) (r — k/2)*

(6)

c
wherex = 1/</n.

Proof. There are three processes to demonstrate this theorem.
(1) Based on (2), we have

pIN(4,04) =0}

1 AV
()
(Varo?) 20 ?)
- 1 A2 ((4/3) nr + 7T1’2K)2

where |V is the volume of the 3D omnidirectional sensor
network, A is the deployment density of sensor nodes in this
network, and x = 1/+/n. o is the covariance of the Gaussian

distribution, and r is the sensing radius of sensor nodes.
Then,

Po=1-p{L(e;;) = 0}

1 1 ox _/\2 ((4/3) e + 7rr2;c)2 (8)
T (V) T 20° |

Therefore, it is clear that P; increases monotonously as
A increases. Because A; = sup{A : P, < pl, 1 - (1/
(V27r0?)?) e><p(—/\2((4/3)7rr3 + k) 20%) = p;- As aresult,
we can get A; = {-20° 111[(27‘[0'2)3/2(1 - pt)]}l/z/((4/3)71r3 +
7r’k) in (6).

(2) By the above analysis, we can know that it is difficult
to compute the explicit expression of the probability that
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FIGURE 4: Covered region division of the edge ; ;.

all points on edge e; ; are covered. Consequently, finding an

ij
approximation of Py is necessary in this paper. We assume

P, is the probability of all points on e;; being covered by

one sensor node, and P, is the probability of all points on
i being covered by one sensor network. According to the

deﬁnltlon of P; and P, we have P; = P, > P,. Namely,

are covered by one sensor node}
)
if and

Py > P{all points on e, ;

Clearly, one sensor node covers all points on e; ;
only if some sensor node exists in A; (] A ;. From (2),

PN (44>
L (Fanap) o
=l-——Fexp| ————5— |-
(V2ne?) 20

Let the volume of A, ﬂAj be [|A; ﬂAjII =
Figure 4(a), we have

V'; then in

P;>1-

(\/27102)3

2 ([ - ) = (v - x/2)2d6)2

xexp| -
P 202 ’

(1)

where (x', y',z') denotes an arbitrary point within A; () A i
R: (x')2 + (y')2 = (r —«/2)% and do = dx'dy'. It is simple
to obtain V' = (271/3)(2r + /2)(r — /2)*.

In conclusion, we choose P, as the approximation of
Py in this paper. Let A, = inf{d : P, > p,}; then A, =
{—20% In[(276®)**(1 - p)1}/* /(27 /3) (2r +x/2)(r —1/2)* can
be achieved in (6).

(3) Equation (5) can be turned into

U ={y

otherwise.

is covered by one sensor node;

(12)

If P, < p, pldW) = co} > 0.Let A, = supf} :
pld(W) = oo} > 0}; then it is easy to have A; < /\'C. From
10), if 1 — (1/(\2702)*) exp(~(AV")?/207) > p,, Py > p,.
Consequently, pid(C) = oo} > 0. According to the concept
of Aey ({=20% In[(V2702)* (1 = p)1}?/V") > Ag. From (1)
and (2), we obtain Theorem6 O

4.2. Dependence among Neighbor Edges. On the basis of (6)
and Gaussian distribution, the different values of x and r
can generate the different bounds. The probabilities of all
edges ¢; ; being open or closed are independent in the bond-
percolation theory [47]. However, P, (P;) of a given edge is
dependent on the neighbor edges but independent of most
edges in this paper. As a consequence, we can use the bond-
percolation model to approximate the coverage percolation
in this paper.

In this section, we illustrate the quantitative measure of
the dependence between e, , and e, ; as an example.

(1) Firstly, the mutual information in information theory
[48] is employed to measure the mutual dependence between
A =1L(e,,) and B = L(e, ); that is,

P,z (a,b)
I(A,B) = Pys (@)1 AB—>
45 ae%l}be%:l} as (1) og( (a) Py (b) (13)

where Pyp(a,b) = p{l(e;,) = a, L(e;3) = b}, Py(a) =
pil(e,,) = a}, and Py(b) = p{L(e, ;) = b}.

In 3D omnidirectional sensor networks, we discuss the
mutual dependence between e, , and e, 3, shown in Figure
4(b). I(A, B) reveals the relationships among «, r and the
mutual dependence in this section. From (2), we have

P, (0) = Pz (0)
1 ( AZL ((4/3) r + rrrzx)z )
=—exp| - ,
702) 202
(V2ro?) w
P, (1) = Pg(1)
1 /\2L ((4/3) r + r[rzk)z
=1-——sexp| - 5
(Vana?) 20

(15)
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What is more,

P5(0,0) = p{N (A, UA;) =0}

1 ( AZL ((4/3) r + 2711’21()2 >
=——exp| - ,
02)

( 27T 20'2
(16)
P,p(1,0)
=P,5(0,1)
=P, (0) = P,5(0,0)
-t
(\/27102)3
( AZL ((4/3) e+ m’zx)z )
x [exp| - =
)LZL ((4/3) e+ 27'tr2K)2
—exp| - oy ,
17)
P,z (1,1)
=1-Psp(0,1) = Pyp(1,0) = P45 (0,0)
=1+ !
( 27102)
I: ( AZL ((4/3) e+ 27rr2;c)2 >
x [exp| - =
< AZL ((4/3) e+ 7'[1’21()2 )]
—-2exp| — Y .
(18)

Putting these above equations (14)-(18) into (13), we can
obtain I(L(e, ,), L(e, 3))-

(2) Similarly, the case of I(U(e;,),U(e,3)) can be
achieved in this section. We also adopt the mutual informa-
tion [48] to measure the mutual dependence between C =
Ul(e,,) and D = Ule, 3); namely,

Pep (6, d) >

1cn= >y % PCD(C’d)l°g<PC(c)PD(d)

cef{0,1}de{0,1}
(19)

where Pep(c,d) = p{U(e;,) = ¢, Uley3) = d}, Polc) =
plU(e;,) = ¢}, and Py(d) = p{U(e, ;) = d}.

In Figure 4(b), we use I(C, D) to indicate the relation-
ships among the mutual dependence, «, and r. Based on

7
formula (2), we have
Pc (0) = Py (0)
1
=] —
(\/27‘[02)3
( X2 (@rf3) @r+x/2) (r = /27 >
xexp| - 25 >
(20)
Pc (1) = Py (1)
__
( 2n02)3
( X2 (@nf3) @r+x/2) (r = /27 ) >
xexp| - 35 .
(21)
Moreover,
Pep(1,1)
=p{N(A;nA;) =0}
1
N ( zﬂazf (22)
( X2 (@rf3) @r+ 1) (r 1)) >
xexp| — 5 )
20
Pcp (1,0)
=Pep(0,1) = P (1) - Pop (1, 1)
N S
( 27102)3
[ ( X2, (@n/3) @r +x/2) (r - /2)) >
x |exp| - 5
20
< X2 (@nf3) @r +x0) (r =) > ]
—exp| - 5 >
20
(23)
Pep (0,0)

! X (@nf3) @r+x0) (r =)
=1+ m exp| — 202
DY S
(\/27102)3
X2 (@n/3) @r +x/2) (r —/2))
xexp| — = .

(24)
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Putting the formulas (20)-(24) into formula (19), IU e, ,),
Ul(e,3)) can be obtained.

(3) Finally, when r = 4, x = 1 or 2, the curves of I(L(e, ,),
L(e,3)) and I(U(e,,),U(e,3)) are depicted in Figure 5. As
A increases, the mutual dependence between neighbor edges
decreases and it gets more close to 0. When A > 0.03,
I(L(e ), L(e, 3)) and I(U(e; »), U(e, 3)) are equal to 0 in this
figure. I(A, B) = 0 and I(C, D) = 0 mean that the two edges
are independent of each other [48]. From the observation
of this figure, it is tempting to infer that the dependence
between neighbor edges is so weak that it can be ignored in
this paper. Therefore, we can use the bond-percolation model
to approximate the coverage percolation.

5. Simulation Evaluations

In this paper, plentiful simulations are conducted to evaluate
the effectiveness and characterize the performance of our
models and analytical analyses by MATLAB (version 7.7). In
a 3D omnidirectional sensor network, we set the deployment
space as a 100 x 100 x 100m’ cube and deploy all the
homogeneous sensor nodes under a stationary 3D Gaussian
process. Based on the covered space of sensor nodes, L-
coverage lattice and U-coverage lattice are built, and we
analyze the experimental critical densities in the two kinds
of lattice, respectively.

Let r = 10 and p, = 0.5. The number of sensor nodes
that we deploy in this network varies from 100 to 1000 per
20 steps. That is to say, the deployment density A varies from
0.0001 to 0.001 per 0.00002 steps. 50 different (B,7, 1) are
randomly generated with each different A. Let the probability
of no exposure path existing be Py. Then, we obtain three
different Py’s of the continuum percolation, the L-coverage
lattice, and the U-coverage lattice for each (B,r, ), that is,
Py ¢ Py 1> and Py, respectively.

In the experiments, we calculate the ratio N(closed
edges)/N(all edges) for each (B, r, 1), where N(closed edges)
means the number of closed edges and N(all edges) denotes
the number of all edges. As a result, 50 ratios for each different
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A are obtained, which mean the probability P, of any edge e; ;
in the lattice being closed. In Figure 6, we plot the relationship
between A and the probablhty P, = ple;; is closed}. P, =
piL(e;;) = 1}, and P, = pfall points on e ;,j are covered by
one sensor node} is an approximation of P; = p{U(e; J) =1}

P; and P, are the analytical values based on Definitions 2-
4. P}, P(;, and P, are the simulation values in this figure. As
A increases, the analytical values P; and P, are more close to
the simulation values P, and P,, respectively. It is clear that P;
and P, are larger than P, and P,. Besides, the simulation value
P/, is slightly larger than P! and less than P;. In consequence,
the results of the analytical values very close to the simulation
values indicate that our scheme is very effective. Furthermore,
we can choose P, as the approximation of P, in this paper.

Let » = 10 and x = 2. To get the analytical values, we put
the known parameters into formula (6) and obtain the bound
0.00020743 < A < 0.00065816. Meanwhile, the simulation
results are A} = 0.00020, A;; = 0.000580, and A, = 0.000470.
The theoretical values are very close to the simulation values.
As shown in Figure 7(a), Py ¢, Py 1, and Py increase with
the increase of A, respectively. In conclusion, the simulation
results of A are consistent with the analytical results given by
Theorem 6.

Similarly, we conduct the experiments with different r
and x and get the corresponding curves of Py, Py, and
Py as shown in Figures 7(b)-7(c). In Figure 7(b), when
r = 10 and k = 4, we also substitute the known parameters
in formula (6) and get the range 0.00014618 < A, <
0.00074137. In the meantime, the simulation results are A, =
0.000140, Ay, = 0.0006310, and Ai; = 0.000580, which are
consistent with the analytical results shown in Theorem 6. As
A increases, Py ¢, Py, and Py, increase, as shown in this
figure.

In Figure 7(c), we set r = 15, k = 2 and put these param-
eters into formula (6). Then, the bound 0.00015974 < Ao <
0.00037121 of A is derived based on the theoretical analysis.
Simultaneously, the simulation results A} = 0.0001490, A;, =
0.000370, and A'C = 0.000320 are consistent with the ana-
Iytical results derived from Theorem 6. What is more, as
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A get larger, Pyc, Pyp, and Py also are in the rising
trend.

If the lower and upper bounds of critical density A are
very loose, we cannot use them to determine a practically
useful density for the network deployment [29]. Generally
speaking, all of these above results imply that

(1) the lower and upper bounds of A5 become looser as
increases; that is, the difference between A; and A, is
enhanced as x increases;

(2) the lower and upper bounds of A get tighter as r
increases; namely, the difference between A; and A,
decreases with the increase of 7.

Furthermore, in order to demonstrate the effectiveness
of our scheme, we compare the proposed scheme with the
existing scheme [16]. For simplicity, we adopt the scheme of
[16] into our proposed 3D omnidirectional network model
and denote it by CDWMN (critical density of wireless

multihop networks). Our scheme is abbreviated to CDE-
PWSN (critical density for exposure-path prevention in
wireless sensor networks). When » = 10 and ¥ = 2, Figure
8 compares the lower and upper bounds of critical density
between CDWMN and CDEPWSN. In this figure, A; and
Ay are the lower and upper bounds of CDEPWSN, while
the lower and upper bounds of COWMN are A; and A,
respectively. Thus, the corresponding curves are Py ;, Py
and Py, Py,, of CDEPWSN and CDWMN, respectively.

In Figure 8, we have 1; = 0.20743x 107>, A; = 0.65816 x
10°,1, =01x107,and A, = 0.8 x 107°. As A increases,
Py 1, Pyy and Py, Py, increase. It can be concluded that
the lower and upper bounds of critical density, A; and A,,
given by CDWMN are very loose such that we cannot
use them to determine a practically useful density for the
network deployment. However, the bounds of CDEPWSN are
tighter than CDWMN and could be applied to determine
a practically useful density for sensor nodes deployment
process in 3D WSNEs.
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6. Conclusions and Future Works

In this paper, we consider the exposure-path problem that
an intruder traverses through a deployment region and the
resulting path is not covered by sensor nodes. The network
coverage is rather poor if there exists an exposure path in
WSNs. To address this problem, we put exposure path into
a 3D uniform lattice and propose a bond-percolation-based
scheme to calculate the lower and upper bounds of critical
density. The proposed models and simulation results show
that our scheme can generate reliable and tighter bounds of
critical density in 3D wireless sensor networks.

In a practical application, the sensing model of sensor
nodes is not omnidirectional but directional. Consequently,
our research is still in relatively ideal circumstances. In 3D
directional sensor networks, the sensing area of a sensor node
is a circular cone, which can be available for consultation
in literature [49]. There are lots of difficulties to study the
exposure-path prevention in a directional sensing model,
such as the setting conditions, distributions, and multifarious
calculation. However, this study has a practical significance.
Based on the existing works, our future work is to solve the
exposure-path prevention in 3D directional sensor networks.
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