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Abstract 

We define the notion of relative sectional curvature for 2-complexes, and prove that 

a compact angled 2-complex that has negative sectional curvature relative to planar 

sections has coherent fundamental group. We analyze a certain type of 1-complex 

that we call flattenable graphs r —* X for an compact angled 2-complex X, and 

show that if X has nonpositive sectional curvature, and if for every flattenable graph 

71"! (r) 7Ti(X) is finitely presented, then X has coherent fundamental group. Finally 

we show that if X is a compact angled 2-complex with negative sectional curvature 

relative to 7r-gons and planar sections then Tt\{X) is coherent. Some results are 

provided which are useful for creating examples of 2-complexes with these properties, 

or to test a 2-complex for these properties. 
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Resume 

Nous definissons la notion de la courbure sectionelle relative sur les 2-complexes 

et prouvons qu'un 2-complexe compacte avec angles qui a une courbure sectionelle 

negative relativement aux sections planaires a un groupe fondamental cohrent. Nous 

analysons un certain type de 1-complexe qu'on appelle un "flattenable graph" r —> X 

pour un 2-complexe compacte avec angles X et demontrons que si X a une cour-

bure sectionelle non-positive et si pour tout "flattenable graphe" 7Ti(r) —> K\(X) est 

de presentation finie alors X a un groupe fondamental coherent. Finalement nous 

montrons que si X est un 2-complexe compacte avec angles et avec une courbure sec-

tionelle negative relative aux 7r-gones et les sections planaires alors i^i{X) est coherent. 

Quelques resultats sont fournis qui sont utiles pour creer des exemples de 2-complexes 

avec ces proprietes ou pour tester si un 2-complexe a ces proprietes. 
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Introduction 

The concept of sectional curvature for 2-complexes was introduced by D. Wise in 

[11] by considering more general sections as apposed to the usual planar sections. To 

require that an angled 2-complex X has negatively or nonpositively curved general 

sections is a stronger condition than negative or nonpositive planar sectional curva-

ture. These stronger conditions, however, allowed him to prove many theorems about 

these 2-complexes and their fundamental groups. 

It was independently shown by Scott and Shalen that fundamental groups of 3-

manifolds are coherent (Definition 4.1.1) [10]. Freighn-Handel proved that ascending 

HNN extensions of free groups are coherent [2] and McCammond-Wise showed that 

what they called perimeter groups were coherent [7]. 

Wise showed in [11] that any cover X of a compact angled 2-complex X with 

negative sectional curvature had what he referred to as the compact core property 

(for any compact subcomplex C of X there exists a compact 2-complex T containing C 

such that the inclusion T ^ X is a 7Ti-isomorphism). As a consequence we know that 

7Ti(X) is coherent. He showed that the compact core conclusion can fail for a compact 

angled 2-complex that has nonpositive sectional curvature. The counterexample he 

provided had an angle assignment that contained negative angles. He postulated that 

the compact core property will hold for a compact nonnegatively angled 2-complex 

that has nonpositive sectional curvature. 

In this paper we focus on coherence and the fundamental group of a 2-complex with 
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nonpositive sectional curvature. We begin by defining the notion of relative negative 

sectional curvature, allowing 2-cells to have nonpositive curvature and requiring that 

general sections have negative curvature except for certain sections which we allow 

to have nonpositive curvature. It is an assumption that is stronger than nonpositive 

sectional curvature but weaker that negative sectional curvature. It allows "us to 

prove Theorem 4.1.2 which says that an angled 2-complex that has negative sectional 

curvature relative to planar sections has coherent fundamental group. 

By analyzing a sequence of 2-complexes that is constructed in the proof of Theorem 

4.1.2 we identify a special class of 1-complexes which we refer to as flattenable graphs. 

Corollary 4.3.2 states that if flattenable graphs have finitely presented image in a 

compact angled 2-complex X with nonpositive sectional curvature then 7Ti(X) is 

coherent. 

Finally we introduce a type of graph that we call a 7r-gon and show, in Theorem 

4.4.1, that an compact angled 2-complex that has negative sectional curvature relative 

to 7r-gons and planar sections has coherent fundamental group. 
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Chapter 1 

Angled 2-Complexes and Sectional 

Curvature 

1.1 Angled 2-Complexes 

We will be concerned with the category of 2-complexes. We use the notation Xn to 

denote the set of n-cells of X and \Xn\ to denote the number of n-cells of X. 

A map / : X —> Y between 2-complexes is a combinatorial map if when / is 

restricted to a cell C E X it is a homeomorphism onto f(C). We say that a 2-complex 

is combinatorial if (possibly after a suitable subdivision) the attaching maps of each 

of the cells is combinatorial. A map between 2-complexes Y —• X is an immersion if 

it is locally injective. A map between 2-complexes Y —> X is an near-immersion if 

(Y — Y°) —> X is an immersion. The spaces discussed will be connected combinatorial 

2-complexes and the maps between them will be combinatorial immersions unless 

otherwise stated. 

Definition 1.1.1. We say that two immersions Y\ —> X and Y2 X are equivalent 

if there exists and isomorphism Y\ —> I2 such that the following diagram commutes: 
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If this is not the case we say that the immersions are distinct. 

Lemma 1.1.2 (Finitely many immersions). Let X be a compact 2-complex and 

n € N. There are finitely many distinct immersions Y —» X such that |F°| < n and 

Y is compact. 

Proof. Consider a collection of < n 0-cells to be the 0-skeleton Y° of a 2-complex Y. 

Since X is compact there are only exponentially many ways of completing Y° to a 

complex Y which immerses in X and exponentially many different immersions from 

Definition 1.1.3 (Angled 2-Complex). Let X be a 2-complex. X is called an angled 

2-complex if for each v G X° there is an assigned real number Zc for every every 

corner c of X at v. We say that X is positively or nonnegatively angled if all such 

angles are positive or nonnegative respectfully. 

Definition 1.1.4 (Link). Let X be a 2-complex. The link of a 0-cell v e X° is the 

graph link(f) that corresponds the the "epsilon sphere" about t; in J . The 0-cells 

in X are in one-to-one correspondence with the vertices in link(w) and the 1-cells 

in X are in one-to-one correspondence with the edges in link(w). If X is an angled 

2-complex then each edge in link(w) will have an angle associated with it. 

Definition 1.1.5 (Curvature). Let X be an angled 2-complex, let / be a 2-cell in 

X and let \df\ denote the length of the attaching map of / . The curvature of f is 

defined by 

Y to X. • 

7T 
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or in other words the actual angle sum of the 2-cell / minus the expected Euclidian 

angle sum. 

Let v be a 0-cell in X. The curvature of v is defined by 

Let V denote the number of vertices in link(t;) and def(c) = IT — Zc. Then this 

definition is equivalent to 

The following theorem was first proved in [1] and then observed in [8]. 

Theorem 1.1.6 (Combinatorial Gauss-Bonnet.). Let X be an angled 2-complex. 

Then the sum of the 2-cell curvatures and the 0-cell curvatures is equal to the Euler 

characteristic of X times 2n. In symbols: 

It will be also useful to talk about the curvature of a graph or link instead of the 

curvature of a 0-cell. 

Definition 1.1.7. Let T be a graph with angles assigned to the edges. We call T an 

angled graph. Let V, and E denote the number of vertices and edges in T respectively 

and let A denote the set of edges in T. The curvature of T is defined by 

cecorners(u) 

£ « ( / ) + ^ K(V) = 2n • X(X) 
/€2-cells(x) ueo-cells(A:) 

K 
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Given a 2-complex X it will be useful to consider a subdivided 2-complex where we 

subdivide certain 2-cells in X by adding new 0-cells and 1-cells. A useful subdivision 

of a 2-cell c will be the square subdivision in which a 0-cell is added to the interior 

(usually the center) of c and added to the center of each bounding 1-cell. We then add 

a 1-cell connecting each new boundary 0-cell to the new interior 1-cell. The resulting 

2-cells are all squares (as long as c has more than one side). The square subdivision 

of the resulting cells of a square subdivision is called the second square subdivision. 

If we perform the square subdivision to every 2-cell in X we call the resulting space 

the square subdivision of X and if we perform the square subdivision to every 2-cell 

in the square subdivision of X we call this space the second square subdivision of X. 

Example 1.1.8. The following is the square subdivision and second square subdivi-

sion of a six sided 2-cell c: 

o c 

Lemma 1.1.9. The total number of 0-cells obtained from a n-sided 2-cell after the 

second square subdivision is 6n + 1. 

Proof. Let c be an n-sided 2-cell, c be the first square subdivision of c, and c be the 

second square subdivision. Then c has n 0-cells. After the first square subdivision of 

c a new 0-cell is added for each boundary 1-cell and one 0-cell is added to the centre of 

c resulting in n + 1 new 0-cells and 2n + 1 0-cells in total. After the first subdivision c 

is divided into n 2-cells to each of which we perform the square subdivision to obtain 

the second square subdivision of c. There are 2n 1-cells along the boundary of c to 

6 
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each of which we add a 0 cell, n 1-cells connecting the boundary to the centre 0-cell 

to each of which we add a 0-cell, and n 2-cells in c to each of which we add a 0 cell 

in the centre. This results in An new 0-cells being added when going from c to c and 

so c has 6n + 1 0-cells. • 

1.2 Sectional Curvature 

Definition 1.2.1 (Sections). We say that a graph T is regular if it is compact, 

connected, spur less (does not contain an edge ending in a valence 1 vertex), and 

contains at least one edge. We note that, in this paper, regular refers to the above 

property and not the graph theory definition of a regular graph stating that all vertex 

degrees are equal. 

Let X be an angled 2-complex. A section of X at the 0-cell x G XQ is a based 

immersion (S, s) —> (X, x). A section is regular if link(s) is a regular graph. 

We consider S to be an angled 2-complex by assigning a corner in S the angle of 

the corner to which it is mapped, pulling back the angle assignment of X to an angle 

assignment of S. The curvature of the section (S, s) —> (X , x) is defined to be K(S). 

We say that X has sectional curvature < r at x if all regular sections (S, s) —> 

{X, x) have curvature < r. We say that X has sectional curvature < r if all regular 

sections (S, s) —• (X, x) have curvature < r and and each 2-cell / € X has curvature 

k{J) < r. We use the term nonpositive sectional curvature when r = 0 and the term 

negative sectional curvature when r = 0 and the inequality is strict. 

A section (S, s) —> (X, x) is called planar if link(s) is a circle. We say that X has 

planar sectional curvature < r if all planar sections (S, s) —» (X , x) have curvature 

< r and each 2-cell / 6 X has curvature n ( f ) < r. 

It is clear that there is a correspondence between sections and subgraphs of links 

so often we may refer to an angled graph as having sectional curvature < r if every 
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regular subgraph has curvature < r. 

Example 1.2.2. The 2-complex construction of the connected sum of n-tori has 

negative sectional curvature for n > 2. Let X be the 2-complex constructed from 

a bouquet of 2n circles which we call Bin, labeled oi, bi, a2, &2> • • •, an, bn, and one 

2-cell W\ with edge attaching map given by AIBIA^B^1 A^B^A^B^1... dnhnCL^B^1. We 

assign an angle of n/n to each corner of W\. 

W\ B2n 

Then k(Wi) = 4n(n/n) - (4n-2)7r = 67r-4n7r < 0. The link of the one 1-cell x is 

a cycle with 4n edges. Since there are no proper subgraphs of link(x) that correspond 

to regular sections we need only check the curvature of x. We have that 

k(X) = 2-K - 7r • 0 - 4n(7r/n) < 0. 

This proves that X has negative sectional curvature. 

Definition 1.2.3. We say that a graph is a 7r-gon if it contains two vertices, at least 

two edges and each edges is adjacent to both vertices. We say that a graph is a bigon 

if it is a subdivided (possibly trivially) 7r-gon. 
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A 7r-gon With 5 Edges 

If X is an angled two complex with nonpositive sectional curvature and (S, s) —> 

(X, x) is a section such that link(s) is a 7r-gon then each edge in link(s) must be 

assigned an angle of at least -k. 

Definition 1.2.4 (Relative Sectional Curvature). We will be concerned with special 

cases of angled 2-complexes that have nonpositive sectional curvature. We say that 

X has negative sectional curvature relative to planar sections if X has nonpositive 

sectional curvature and has the property that any regular section (S, s) —> (X, x) with 

K(S) = 0 is planar. We say that X has negative sectional curvature relative to n-gons 

if X has nonpositive sectional curvature and has the property that if (S, s) —> (X, x) 

is a regular section with K{S) = 0 then link(s) is a 7r-gon. We define negative sectional 

curvature relative to bigons and negative sectional curvature relative to ir-gons and 

planar sections similarly. 

We now mention a remark originally from [11]. 

Remark 1.2.5. If X is compact, all regular sections at 0-cells of X have negative 

sectional curvature and all 2-cells have nonpositive curvature then we may assume 

that X has negative sectional curvature since we may decrease the angles slightly so 

that all 0-cells have negative sectional curvature and all 2-cells have negative sectional 

curvature. If X is compact with nonpositive sectional curvature and all 2-cells have 

negative curvature then we may increase the angles slightly so that all 0-cells have 

negative sectional curvature and all 2-cells have negative sectional curvature. 



Definition 1.2.6 (Standard 2-complex). Let G be a group with presentation 

(aua2,... Ta^Wx^Wi,... ,Wk). 

We construct the standard 2-complex for G as follows: Let Bn be the bouquet of n 

circles. Label the circles Oi to an and give each circle a direction. For each relator Wi 

we define a 2-cell with \ Wi\ sides which we will call C\. Label and direct the boundary 

1-cells of Ci via the word Wi. For example, if Wi = a2a^a^2a4 then the boundary of 

Ci would read 02, 03, a\, a\, 04 but the direction of the ai 1-cells would be reversed. 

We now attach the 2-cells C\,..., Ck to Bn using the labeling as the attaching map 

and call the resulting space X. The Seifert-van Kampen Theorem [6] tells us that 

n1(X) = G. 

When unambiguous we may refer to the 2-cell Ci as Wi. 

Example 1.2.7. Let G = (ai,02,03,04 | aia^af, a2aia23a3). Let i?4 be the bouquet 

of 4 circles, G\ be a four sided 2-cell and C2 be a six sided 2-cell. Label and direct 

the edges of B4 as a2, a3, a4, the edges of C\ as 01,04,01,01, and the edges of C2 

as 02, ai, a2
l, a2 \ a2

 1, 03. The spaces C\ and C2 look like the following: 

Oi A w 04 

Ci 

We glue the spaces together with the attaching map given by the labeling to obtain 

X, the standard 2-complex for G, with ~K\{X) = G. 

We present the following generalization of Theorem 9.1 from [11]. We will state 
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Theorem 9.1 as Corollary 1.2.10 of the following theorem: 

Theorem 1.2.8. Let G = {<n, a2,... \WU W2,... Wn) and let X be the standard 2-

complex for the G. Let X be an angled 2-complex with all angles < % and K,(Wi) < 0 

for i — 1,... ,n. 

Suppose all regular sections (S, s) —• (X, x) with the property that link(s) has 

< 2(n + 1) verticies have nonpositive sectional curvature. Then X has nonpositive 

sectional curvature. 

If instead all regular sections (S, s) —> (X , x) such that link(s) has < 2(n + 1) + 1 

verticies have negative sectional curvature then X has negative sectional curvature. 

Proof. First we will prove the nonpositive case. By assumption we need only concern 

ourselves with regular sections with > 2(n + 1) 0-cells. Let (S, s) —• (X, x) be such a 

section and let V denote the number of vertices in link(s). If n(Wi) < 0 then we may 

increase the angles in Wi so that we may assume that «(Wj) = 0 for alH = 1, . . . n 

and all regular sections with < 2(n + 1) 0-cells will still have nonpositive sectional 

curvature. 

Since each edge e G link(s) comes from a corner in one of W\,..., Wn we have 

that 

For each Wl we have that 
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giving us that 

K(Wi) = 4 c ) - ( | W i | - 2 ) 7 T 
VceCorners(Wi) / 

= 2 t t - | WI\N+( Y1 Z(C) 
\ce Corners(Wi) 

= 2n-( £ 
\ce Corners(W;) 

= 2?r - [ ^ def(c) 
\ce Corners(Wi) 

def(c) =2tv-K(Wi) . 
ce Corners(VKi) 

Therefore, since n(Wi) = 0 for each i, 

def(e) < (2tr - k(Wi)) + . . . + (2tt - k(WH)) 

eelink(s) 
= 2mr 

and so since V > 2(n + 1), 
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= 
< 
< 
< 

This implies that X has nonpositive sectional curvature. 

We will now discuss the negative case. As above we may increase the angles in 

Wi so that we may assume that «(Wj) = 0 for alH = 1, . . . n and all regular sections 

with < 2(n + 2) 0-cells will still have negative sectional curvature. This implies that 

all of the above inequalities hold except since V > 2(n +1) the last inequality is strict 

implying that all sections have negative curvature. Again we may decrease the angles 

in Wi for i — 1 , . . . , n slightly retaining strict negative curvature on the sections but 

also obtaining N(WI) < 0. This implies that X has negative sectional curvature. 

• 

The following lemma was proven by wise in [11]. 

Lemma 1.2.9. Let T be obtained from the finite angled graph A by adding edges 

ei,... ,er such that / (e j ) > n for each i. Then k(T) < k(A). 

Corollary 1.2.10. Let X be the standard 2-complex of a one-relator group (AI} a 2 , . . . \W) 

Suppose that X is an angled 2-complex with nonpositive planar sectional curvature, 

and each angle is < 7r. Then X has nonpositive sectional curvature. 

Proof. First we prove the nonpositive case. Suppose (S, s) —» (X, x) is a section such 

that link(s) has < 4 vertices. Any pair of edges with the same endpoints form a 

13 
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2{n + 1)tt -Vtt 

0. 



cyclic subgraph representing a cyclic section and so must each have angle 7r by our 

assumptions. By removing duplicate edges of angle it we obtain a graph that is either 

a bigon, a triangle, or a pair of bigon meeting at a vertex. A loop is ruled out since it 

would require an edge to have an angle of > 27r. The first two cases have angle sum 

> 2n ensuring curvature of < 0 and the third case has curvature < —7r. Therefore 

K(S) < 0 by Lemma 1.2.9. The corollary follows from Theorem 1.2.8. 

The negative case is similar. All graphs are already reduced since multiple edges 

do not occure since they would need an angle sum > 27r. We also need to examine 

graphs with 4 vertices. All graphs have curvature < 0 and so K(S) < 0 by Lemma 

1.2.9. • 

We will see that the assumptions of angles < ir and nonpositive sectional curvature 

are not enough in the more general case of a group with more than one relator. 

Example 1.2.11. Let G = (a, b, c | a262c -16 -1, cacbca~lcb-1). Let X be the standard 

2-complex for G. Then X has one 1-cell x and two 2-cells W\ and We assign 

angles to X by assigning angles to W\ and W2 as follows: 

Wx 

Then k{WX) = 4tt - (6 - 2)tt = 0 and k(W2) = 6tt - (8 - 2)tt 

that link(x) is the following graph: 

0. We observe 
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Notice that all angles are < 7r and that every cycle in link(x) has curvature 

< 0 meaning that X has nonpositive sectional curvature. However, curvature of 

the section (S, s) —> (X, x) corresponding to the following subgraph has curvature 

k(S) = 2?r - TT(5 - 10) - 10(27r/3)7r > 0: 

1.3 Weight Test and Embedded Links 

For further backround on the nonpositve and negative weight tests we refer the reader 

to [9] and [3]. We present these definitions and strengthen them slightly. 

Definition 1.3.1 (Weight test). Let X be a an angled 2-complex. We say that X 

satisfies the a weight test if for each x G X° the sum of the angles in any immersed 

cycle a —• link(x) is > a. Similarly, X satisfies the strict a weight test if this 

inequality is strict. 
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We say that X satisfies the nonpositive weight test if for each x G X° the sum of 

the angles in any immersed cycle a —> link(x) is > 2ir. X satisfies the negative weight 

test if this inequality is strict. 

This concept is similar to planar sectional curvature. Wise showed that if an an-

gled 2-complex has nonpositive angles and nonpositive (negative) sectional curvature 

then it satisfies the nonpositive (negative) weight test but that the converse doesn't 

hold in general ([11], Lemma 2.11, Example 2.12). 

Wise also showed that a 2-complex X that satisfies the nonpositive (negative) 

weight test and has the property that for each x £ X link(x) that can be embedded 

in the 2-sphere (which he calls having spherical links) has nonpositive (negative) 

sectional curvature ([11], Theorem 10.2). We present the following generalization: 

Theorem 1.3.2. Let X be an angled 2-complex with links that can be embedded into 

compact surfaces. Let Sx be a surface such that link(:r) embeds into Sx. Suppose that 

X satisfies the (strict) 3(2 — x(Sx))'K weight test. Then X has nonpositive (negative) 

sectional curvature. 

We note that the condition that there exists a surface Sx such that link (a;) embeds 

into Sx is satisfied if X is compact. 

Proof. Let k = x(Sx)- Let (S,s) be a regular section and let T = link(s). Then 

T is a connected spurless nontrivial subgraph of link(x) C Sx. Notice that T is the 

1-skeleton of a cell structure of Sx. Let V, E, and F denote the number of 0-cells, 

1-cells and 2-cells in this cell structure. Each edge e in T is labeled by the angle 

/.(e) inherited from the corresponding corner in X at x. Notice that each 2-cell in 

Sx determines a cycle in T and each edge in T appears twice amongst the cycles. 

Therefore 

2 E Z ( e ) = E E Z ( e ) ^ E 2 ( 3 - = 2 ( 3 - k ) * - F 
eer f eef f 



where / is a 2-cell in Sx. Therefore X^eer — — ' F a n d so we have that 

k(S) = 27r-7rx(r)-^Z(e) 
eer 

< 2tt - v{V - E) - (3 - k)w • F 

= 2Tr - ir(V - E + F)- 2TrF + /cttF 

< kirF — nx{Sx) 

< kn — kn 

= 0 

as required. 

The negative case is similar with strict inequalities. 

• 

1.4 Torsion Free 

Definition 1.4.1. A 2-complex is aspherical if it is not possible to embed a sphere 

Lemma 1.4.2. Let X be an compact angled 2-complex with nonpositive sectional 

curvature. Then X is aspherical. 

Proof. Suppose that X is not aspherical. Let S X be an embedded sphere. Give S 

the induced angled 2-complex structure. Since x(S) = 2 Theorem 1.1.6 tells us that 

S has a 2-cell or 0-cell that has positive curvature. But both of these cases contradict 

that X has negative sectional curvature. • 

Lemma 1.4.3. Let X be a connected aspherical 2-complex. Then ir\(X) is torsion 

free. 

17 



Proof. Let X be the universal cover of X . We know that TTQ(X) = TR\(X) = 0 

and since X is aspherical so is X. This means that any sphere embedded in X is 

contractable to a point in X . Since TT\{X) = 7t2(X) = 7t3(X) = 0 we have that 

7R4(X) = H4(X) = 0 but H4(X) = 0 since X is a 2-complex. Inductively we have that 

7r n (X) = 1 for every n £ N since 

TTi-l(X) = 7Ti(X) = 7Ti+i(X) = 0 7TI+2(X) = HI+2(X) = 0. 

This implies that X is contractable and so the group Zn cannot act freely on X. 

Therefore tti(X) is torsion free. • 

Corollary 1.4.4. Let X be an compact angled 2-complex with nonpositive sectional 

curvature. Then K\{X) is torsion free. 
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Chapter 2 

Boundary and Disc Diagrams 

2.1 The Boundary of a Complex 

The following definitions are originally from [11], 

Definition 2.1.1. Let X be a combinatorial complex. We call an n-cell / of X a 

free face of an (n + l)-cell c if it is adjacent to c in only one way and no other cell 

of dimension > n + 1. We say that an n-cell is isolated if it is not adjacent to any 

(n + l)-cells. 

We define dX to be the closure of the set of free faces of X. We call the set dX 

the boundary of X. We define £X to be the closure of the set of isolated 1-cells in X. 

We use the notation \dX\ and to refer to the number of 1-cells in dX and £X 

respectfully. 

2.2 Disc Diagrams 

Definition 2.2.1. A Disc Diagram D is a simply connected planar 2-complex. Often, 

for a 2-complex X, we may also refer to a map D —> X as a disc diagram. 
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Let P —» X be a be a closed path that factors as P —> D —> X. If P maps onto 

3D and the preimage of each 1-cell e in dD is one 1-cell in P (or two 1-cells in P if e 

is not adjacent to a 2-cell) then P is a boundary path for D. If P is a boundary path 

for D we say the disc diagram D —> X is a disc diagram for P —> X. 

If a pair of 2-cells C\, C2 in D meet along a 1-cell e and have boundary cycles 

that, beginning with e, are sent to identical paths in X by D —> X then we call C\ 

and C2 a cancellable pair. A disc diagram is called reduced if it has no cancellable 

pairs. 

It is clear that a path P —> X that has a disc diagram is null-homotopic. It is a 

theorem of Van Kampen that a reduced disc diagram exists for any null-homotopic 

closed path [5]. For more backround on disc diagrams we refer the reacher to [7] and 

[5], 

The following lemma is from lemma 6.4 in [11]. 

Lemma 2.2.2. Let A —> X be an immersion. Let D —> X be a near-immersion 

of a disc diagram with boundary path P, and suppose the following disc diagram 

commutes: 

Form the 2-complex A Up D by attaching D to A along P. Let AUp D —> C be & 

surjective combinatorial map such that we have the following commutative diagram: 
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Then |£C| < \£A\ and |£C| + \dC\ < + \dA\. 
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Chapter 3 

Factoring Through Immersions 

3.1 Tower Lifts 

In this section we will examine towers and present some backround due to Howie [4]. 

Originally towers were presented as maps between CW-complexes. In our definitions 

they will be maps between 2-complexes. 

Definition 3.1.1 (Tower, tower lift). A map T —• X of connected 2-complexes is a 

tower if it can be expressed as a decomposition 

T = Bn_ i —> Bn_ i ^ ... ^ B2 —*• B2 ^ Bi —> B\ ^ X 

where the maps Bi i are inclusion maps and the maps Bi —> Bi are covering 

maps. 

Let F ^ X b e a map between connected 2-complexes. A map Y —> T is a tower 

lift of Y —> X if there is a tower T —• X such that the following diagram commutes: 
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We call a tower lift Y —> T maximal if for any tower lift Y —> T" of Y —• T, the 

map T' —• T is an isomorphism. 

The following lemma was proven by Howie in [4] with respect to CW-complexes. 

Lemma 3.1.2. Let S be a compact connected 2-complex and S —> K be a combina-

torial map. Then S —> K has a maximal tower lift. 

Lemma 3.1.3. Let / : Y —> X be a combinatorial map between 2-complexes with 

Y compact. Then there exist a combinatorial immersion Y' —> X such that the map 

Y —> X factors as Y —• Y' —> X, and Y —* Y' is surjective and TTpSurjective. 

Proof. Let Y —> Y' be a maximal tower lift of Y —• X. Then Y —> X factors as Y —» 

Y' —> X. We know that Y' X can be decomposed as a composition of alternating 

inclusion maps and covering maps both of which are immersions. Therefore Y' —> X 

is an immersion as required. • 

3.2 Folding 

We now present an alternate proof to Lemma 3.1.3. This method of factoring called 

folding will later be utilized in Theorem 4.1.2. The tower lift method is useful when 

dealing with the compact core property. 

Proof. If / is an immersion setting Y' — Y completes the proof, otherwise there is 

a vertex v G Y° such that the induced map link(u) —> link(/(t>)) is not injective. 
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Specifically, there is a pair of edges or vertices in link(w) that map to one edge or 

vertex in l i nk ( f ( v ) ) , respectively. We select a vertex v of the second type. The pair 

of vertices in link(-u) correspond to a pair 1-cells, ei,e2, in Y adjacent to v that are 

mapped to the same 1-cell in X. Let Yx be the quotient space Y/(ex = e2). 

It is clear that the map Y —> Y\ is continuous and surjective and we claim that it 

is 7Ti-surjective. Let v be the image of v in Y\ and P be a path in Yi1. We want to 

show that there is a path P in Y1 whose image is path homotopic to P. Let vi and 

v2 be the endpoints of e\ and e2 respectively. If the image of v\ and v2 is the same 

0-cell in Y then there is nothing to prove since we may let P be the pre-image of P 

in Y, possibly without e2. Indeed, P is a path and P —> P. If V\ and v2 are mapped 

to different 0-cells then the pre-image of P may be a path that is separated between 

Vi and v2 for every instance of which we add to the preimage the edges e\e2
 1 or e2ej"1 

to obtain a path P whose image is path homotopic to P. Indeed, for each e\e2
 1 or 

e2e^1 in P contributes one backtrack in the image, ee - 1 or e_ 1e where e is the image 

of e\ and e2. 

We repeat this process for every instance of a vertex v that has a pair of vertices 

in link(w) that map to the same vertex in link(/(t>)) and obtain the space Yj. 

If Yj —> X is not and immersion then there must be is a vertex v G Y° such that 

a pair of edges in link(i>) that map to one edge in link(/(u)) which means there is a 

pair of 2-cells, c\ and c2, adjacent to v and are mapped to the same 2-cell via / . Let 

Yi+i = Yj/(ci = c2). Then Yj —> Yi+1 is continuous, surjective and 7Ti-surjective since 

it is a homeomorphism of 1-skeletons. Repeating this process we obtain a space Y' 

with the desired properties. 

• 
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Chapter 4 

Relative Sectional Curvature and 

Coherence 

4.1 Negative Sectional Curvature Relative to Pla-

nar Sections 

Definition 4.1.1. A group G is called coherent if every finitely generated subgroup 

is finitely presented. 

Theorem 4.1.2. Let X be a compact angled 2-complex with negative sectional 

curvature relative to planar sections. Then tti(X) is coherent. 

We apologize for the length of the proof of the Theorem 4.1.2, although the ideas 

are not complicated there are many details. We will give an outline of the important 

points to simplify the reading. 

We begin with a finitely generated subgroup of tt\{X) and a finite immersed graph 

B —> X such that G. We see that the map B —• X 7Ti-surjects but most 

likely does not 7Ti-inject, if this were the case we would be done. We move closer to 

this goal by attaching a disc diagram to B for a path in B whose image in X is null 

25 



homotopic. For now call this space T2. We see that the kernel of the map T2 —> X 

is smaller than that of T\ = B —> X in fact if we construct a sequence Ti, T2, T3,..., 

where each space is obtained from the previous by attaching a disc diagram for a 

path whose image in X is null homotopic, then the kernel of the maps Ti —> X are 

decreasing as i increases. If at some Tn we were unable to attach a disc diagram 

we would have that Tn —• X is 7Ti-injective, •K\(Tn) = G, and Tn would be compact 

thus completing the proof. Unfortunately there is no guarantee the sequence must 

terminate. However, if the maps Tj —> X were immersions and we had an upperbound 

on the number of 0-cells in any Ti Lemma 1.1.2 would tell us that the sequence would 

have to terminate. 

We can insure that the maps are immersions by folding at each stage of the 

construction. The euler characteristic of B provides us with an upperbound on the 

number of all the 0-cells in any Ti except the regular ones with zero curvature. If there 

are no such 0-cells, as in the negative sectional curvature case, then we would be done. 

In our case we deal with the zero curvature 0-cells by adjusting our construction of 

the sequence {Tj} slightly. 

Step 1. Adding a disc: Let Ti = B. We begin in the same way, adding a disc 

diagram to Tj for a path whose image is null homotopic. We then fold and call the 

resulting complex Zi 

Analysis of Flat Subcomplexes. We identify F, the subcomplex of Zi that 

contains only regular zero curvature 0-cells, which we call the "flat part" of Zj. By 

subdividing Zj to Zi we ensure that each component Si of F — {image of B} is a 

surface and that their boundary components are circles. It will be shown that each 

component of dSj lies in a distinct component of Zj — int(Sj). 

Step 2. Adjustment: We call L the component of Zj — UjS'j that contains 

the image of B. It turns out that L contains all "relavent" information about the 

fundamental group of Zj and that we are able to remove the subspaces Ki = Zj — L 
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which contain all of the zero curvature 0-cells and replace them with subspaces that 

have upper bounds on the number of 0-cells and, in particular, the number of zero 

curvature 0-cells. We either remove these subspaces from Zi entirely (Chopping) 

if 7Ti(Ki) = (Z) or replace them with disc diagrams (Capping) if 7Ti(Ki) = 1. We 

fold the resulting space to obtain T i+1 such that 7ri(Ti+1) = 7r1(Zj), we have an upper 

bound on the 0-cells of Ti+1, and Ti+1 —> X is an immersion. This guarantees that 

the sequence {T^} terminates at some Tn such that Tn is compact and iti{Tn) — G as 

required. 

Proof. Let G be a finitely generated subgroup of 7Ti(X). Let B —> X be a finite 

immersed graph such that ni(B) G. 

Let T\ = B. We shall construct a sequence of 2-complexes 

TI,T2 ,T3 , . . . 

of immersed 2-complexes Ti —> X such that itx{Ti) -» G, ker(ni(Ti) —> tti(X)) is 

decreasing, and there is a number N such that < N for every i. We will use the 

properties listed above and the finiteness of X to show that the sequence will terminate 

at some Tn —> X where 7Ti(Tn) —> 7Ti(X) is injective. Assuming ir\(Ti) —> tti(X) is 

not injective we will demonstrate how to produce T i+1 —> X using the following two 

steps. 

Step 1. Adding a disc: Let Pi —> Ti be an essential path whose projection 

Pi —> X is null-homotopic. Let Di X be a reduced disc diagram whose boundary 

path is Pi —> X. Let Yi = TiiJpi D^ and Yi —> X be the induced map. Fold Yi —> X 

to obtain an immersion Zi —* X. Note that the map from Ti —• Zi is 7Ti-surjective 

but not 7Ti-injective. 

Analysis of Flat Subcomplexes. Let V be the set of all 0-cells in Zi with zero 

curvature, let E be the set of all 1-cells in Z* with both adjacent 0-cells in V, and let 
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C be the set of 2-cells in Zj whose adjacent 1-cells lie in E. Let F = VUELiCbe 

the "flat part" of Zi. 

Let N be the smallest open cellular neighbourhood of the image of B in Zj. If 

F — N — 0 then define Tj+1 = Zi and skip step 2. Otherwise let Ai, ...,Ak be the 

components of F — N, and we examine these components more closely. 

Let j € {1,..., k}. For each a E A° we have that link a, (a) C l ink^a) = S1. Thus 

while Aj is a "singular surface" it may not actually be a surface. We may correct this 

by subdividing Zi and thickening Aj to a surface S3. 

Let Zi be the second square subdivision of Zj. Let Aj be Aj after the subdivision 

and let Sj be the smallest closed cellular neighbourhood of Aj (including Aj). Note 

that both Sj and its smallest closed cellular neighbourhood are surfaces. Since Sj is 

both a surface and a subset of a surface its boundary components are circles. 

Let Uj = Zi — int(Sj). A homological argument will show that distinct compo-

nents of dSj lie in distinct components of Uj. Indeed, we will show that the induced 

inclusion homomorphism H0(95'j) Ho(Uj) is injective. Note that UjliSj = Zi and 

Uj D Sj = dSj. Consider the Mayer-Vietoris sequence for complexes: 

. . . - H ̂ Uj) e H .(Sj) ± Hi(Zi) A Ho (dSj) ^ Ho (Uj) © H 0 ( ^ ) - H0(Z*) - 0 

Since the image of B —> Zj factors as B —> Uj —> Zj we see that n\(Uj) 7rx(Zj) 

and since Zj is connected H i (Uj) -» Hi(Zj). This implies that g is surjective and 

so im(g) = Hx(Zj) = ker(h) and so im(h) = 0 = ker(£) by exactness. Therefore 

Ho(dSj) —> Ho(Uj) is injective as claimed. 

We have shown that each circle in dSj lies in a distinct component of Uj. Since 

N and Sj are disjoint, the image of B must lie in one component of Uj. In fact, the 

image of B must lie in one component L of Zj — UjSj. By relabeling, let {5i,..., Sm}he 
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the relabeled subset of {S^, ...,Sk} whose elements intersect with L. For j = 1, ...,m 

let Qj be the circle in Sj D L, and let Kj be the component of Zi — Qj that does not 

Step 2. Adjustment: Let Z h = Zi. We will now construct a sequence 

Zii:..., Zim at each step, j = 1 ,...,m replacing Kj with a complex Rj in such a way 

that we will be able to bound the number of 0-cells in Rj. This will allow us to bound 

the number of 0-cells in Ti. There will be two cases to consider. If n~\(Qj) —> ni(Zi) is 

injective we will be able to replace Kj with Qj itself (chopping). If -K\(Qj) —> iri(Zi) 

is not injective we will replace K j with a disc diagram (capping). 

We begin with j = 1. 

Chopping. If 7Ti(Qj) —> ^(Z^) is injective then -K\(Zij — Kj) —• -K\(Zis an 

isomorphism. Indeed, 

mCZ^^n^Zij-Kj) *_ tti(Kj)• 
Tl (Qj) 

Since B factors through Zij — Kj we see that ni(Zij — Kj) i^(Z^) which is 

impossible unless ni(Qj) 7Ti(Kj). 

Since 0-cells in Qj are new 0-cells obtained from the subdivisions there is a natural 

way to push Qj onto original 0-cells defining a deformation retraction of Zij — Kj 
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onto a subspace, Z i j + 1 . Indeed Qj can be pushed along a cylinder to a (possibly 

degenerate) boundary circle Qj of Zij+1 where Qj contains only original 0-cells not 

obtained from the subdivisions. Then iri(Zij+1) = 'K\(Zij — Kj). This means that 

Kl(Z i j+1) = 7Ti(Zj). 

The 2-complex Zij+1 After Chopping 

Capping. If 7Ti(Qj) —> ni(Zij) is not injective we choose a base point to lie on 

Qj. We regard Qj —> Zij as a closed based path we see that Q™ = 1 for some 

n > 0. By Corollary 1.4.4, •K\(Zij) is torsion free and so Qj is null-homotopic in Zir 

Attaching a 2-cell to Zi} by gluing its boundary to Qj we obtain a space M such that 

7Ti(M) ~ 7ri(Zij). Calling this new 2-cell D we see that 

TTi ^ 7ri(Zi, - K j ) U D) * Tn ( K j U D). 

Now, Zi;j — Kj contains the image of B therefore 7Ti(Kj U D) — 1 and 7Ti((Z^ — 

Kj)UD)^7rl(M)^n1(Zi). 

If instead of a 2-cell D we attached a reduced disc diagram Dj for Qj we still have 

that •ni((Zij — Kj) U Dj) ~ iii(Zi). Unfortunately, — Kj) U Dj contains new 
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0-cells obtained from the subdivisions. As was the case in the chopping procedure, 

we may obtain a subspace where the induced boundary circle (possibly degenerate) 

Qj contains only old 0-cells, and attach a reduced disc diagram Dj for Qj to this 

subspace. We call the resulting space Zij+1. Then 

We have now ensured that after both the capping or chopping procedures only 

original 0-cell remain in Qj. 

We move on to Q 1 and perform the capping or chopping procedure again to 

obtain the space Zi} . We repeat this process, obtaining spaces Z^,...Zim until we 

exhaust the set , . . . , Qm}. Since all chopping or capping was preformed on origi-

nal 0-cells we may now disregard these new 0-cells obtained in the subdivision passing 

to a space Z[. Folding Z[ we obtain Ti+\. 

If Ti+1 —> X is 7Ti-injective then we the procedure terminates, otherwise we return 

to step one. 

Upper Bound on 0-cells. We now return to the discussion of an global upper 

bound for the number of 0-cells in Ti+X. We will show that the number of 0-cells 

in Z[ are bounded and since folding does not increase, and possibly decreases, the 

7Tl (Zij+1) ^TTi (Zi.). 

The 2-complex Zi .+1 After Capping 
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number of 0-cells this will imply that the number of 0-cells in Ti+i is bounded. There 

are going to be three classes of 0-cells v E Z[ that we have to bound: Nonregular: 

0-cells such that (Z't, v) —> (X, x) is not a regular section, Negative: 0-cells such 

that (Z[, v) —> (X, x) is a regular section and K(V) < 0, and Zero: 0-cells such that 

(Z-, v) —> (X, x) is a regular section and K(V) = 0. 

Nonregular: Suppose (Z[,v) —> (X,x) is not a regular section. This means that 

v G 5Z'i or v £ iZ[. But \8Z[\ + \£Z<\ < |<JTX| + | by Lemma 2.2.2 and because 

folding reduces the number of vertices. Therefore there is an upper bound for the 

number of 0-cells in Z[ that yield non-regular sections. 

Negative: Since it\(B) -» 7Tx(Z-) we have that Pi(B) > (3i(Z-) where Pi is the 

z-th betti number. The Euler characteristic is given by 

x(Z'i) = 1 - PxiZl) + p2(Zl) > -P(Zl) > -/3(B). 

The Combinatorial Gauss-Bonnet Theorem yields the following inequality: 

-27r A (B) < mx(Zl) - k ( f ) + E ^ Z 

with the last inequality holding because k ( f ) < 0 for all faces, / , of Z[. X is compact 

so there exists an M £ R such that k(v) < M < 0 for all v G Z\ with negative cur-

vature. Therefore the number of vertices v G Z[ with negative curvature is bounded 

above for all %. 

Zero. Suppose v G Z[ such that K(V) = 0 and (Z[, v) —> (X, x) is a regular section. 

Then v must be in the image of B, a 0-cell in a disc diagram added in the capping 

procedure onto a circle Qj, or be on a circle Qj. 

The number of 0-cells in the image of B are bounded above since B is finite. 

Each vertex in Qj is at most one edge away from a 0-cell from the set of 0-cell 

already bounded in one of the above cases since it lies on the boundary of a set Sj. 
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Since X is finite and Z[ —> X is an immersion the valence of each 0-cell is bounded 

above by a real number n\. This bounds the number of 0-cells in Qj. Let n2 be this 

upper bound. 

By construction the set {Qx,..., Qm} embeds into Zi. In particular, it embeds into 

the set of 0-cells obtained in the subdivisions of Zj which we will call Vsub- Since X is 

finite and Z- —> X each 2-cell in Z[ has at most 77.3 sides which means that each 2-cell 

contains at most 6n3 + 1 after the by Lemma 1.1.9. We observe that each subdivided 

2-cell is adjacent to at least one 0-cell in {Qi,..., Qm} and so 

\Vsub\ < ni • n2 • (6n3 + 1) = n4. 

Therefore, the number of 0-cells in the set {Qi,..., Qm} is bounded above by n4. The 

length of Qj can at most be n3 times the length of Qj and so the number of 0-cells 

in the set {Qi1,..., Qm} is bounded above by n3 • n4. 

X is compact and so it has an isoperimetric function. Since the length of all of 

Qj are bounded the number of 2-cells in all of the Dj is bounded. Consequently the 

number of 0-cells in all of the Dj are bounded since each 2-cell has at most n3 0-cells. 

Terminating Sequence. We have constructed the sequence 

7 \ , r 2 , T 3 , . . . 

each of which immerses into X and the total number of vertices in Ti is bounded 

above for all i. This means there are finitely many distinct Tj that immerse into X 

by Lemma 1.1.2. The spaces are distinct since step one in our procedure guarantees 

that the the kernel of the maps Tj —• X are a strictly increasing sequence of sets. 

This implies that the sequence terminates at some Tn with the property Tn —> X is 

7Ti-injective which completes the proof. 

• 
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We notice that Example 1.2.2 showed that the direct product of n tori had neg-

ative sectional curvature for n > 2 meaning that it has negative sectional curvature 

relative to planar sections. Theorem 4.1.2 allows us to concluded that 

7Ti (Tn) = (ai, b\, a2, b2,... On, bn \ axMi \ la2b2a2 \ 1... a^a^1^1) 

is coherent. We will construct a more interesting example that has negative sectional 

curvature relative to planar sections but does not have negative sectional curvature. 

Example 4.1.3. Let G be the group given by the presentation 

G = 
al> a2, O3, 

b, C 

aif^a-L la2
 laA 

ba\b 1a1 ca^c laA
 1 

Let X be the standard 2-complex for G. We give the 2-cells the following angle 

assignment and observe that they have the following attaching maps: 

' <24 

a 3 

The link of the one 0-cell x G X is the following graph: 
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By exhaustion it is evident that any subgraph of link(x) that corresponds to a 

regular section has negative curvature unless it is one of the two 4-cycles containing 

all 7r/2 edges obtained from the relators ba\b~lai — 1 and ca^c" 1 ^ 1 in which case it 

has zero curvature. This shows that X has negative sectional curvature relative to 

planar sections. 

For some examples of spaces that have negative sectional curvature relative to 

planar sections it is possible to changes the angle assignment slightly by redistributing 

the angles in 2-cells so that the resulting angle assignment yields negative sectional 

curvature, or at least only negative regular sections. This is not possible to do with 

Example 4.1.3, however, since the two cycles with zero curvature in link(a;) that form 

the zero curvature subsections each inherit their angles from one 2-cell. Redistributing 

the angles in these 2-cells does not change the angle sum in these cycles and so X 

does not have negative sectional curvature. 

The method of embedding links from Theorem 1.3.2 can be used to identify an-

other class of examples. 

Lemma 4.1.4. Let T be a regular angled graph such that T embeds in S2 and all 

cycles have angle sum > 2ir except one cycle with angle sum = 2n. Then T has 

negative sectional curvature with isolated flats. 

Proof. Let 7 be a regular subgraph of T. Then 7 is the 1-skeleton of a cell structure 

of S2. Let V, E, and F denote the number of 0-cells, 1-cells and 2-cells in this cell 
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structure respectively. Each 2-cell corresponds to a cycle in 7 and each edge appears 

in exactly two 2-cells. Each edge e in 7 is labeled by the angle /.(e). If 7 is the cycle 

with angle sum = 2ir then ^(7) = 0. Otherwise we have that 

2 E Z ( e ) = E E <ae) > £ 27T = 27T • F 
eG7 / e€f f 

where / is a 2-cell in the cell structure. Therefore, 

k(7) = 2n -n(V - E) - ^ / ( e ) 
e 

< 2ir - 7r(V - E) - nF 

= 2tt - n(V - E + F) 

= 27T-7T -x(S2) 

= 0 

as required. • 

It is possible to strengthen Lemma 4.1.4. We can assume that the graph has as 

many cycles with angle sum = 2n as we wish as long as for each subgraph 7 the 

induced cell structure on S2 has at least one 2-cell whose boundary has angle sum 

> 2vr. 

The following lemma is also useful for constructing examples of angled 2-complexes 

with negative sectional curvature relative to planar sections. 

Lemma 4.1.5 (Adding a > 7r edge.). Suppose T is an finite angled graph with 

negative sectional curvature and positive angles. Let T' be a graph obtained from 

r by adding an edge e with an assigned angle > 7r and let a and (3 be initial and 
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terminal vertices of e. Then T' has negative sectional curvature relative to planar 

sections if all paths in T from a to /? have angle sum > 7r (and has negative sectional 

curvature if the inequality is sharp or if a = (3). 

Proof. We need to show that all regular subgraphs of T' have negative curvature or 

zero curvature in the case of a cycle. Let 7' be a subgraph of T'. If e ^ 7' then we 

are done, otherwise let 7 = 7' — e. If 7 C T is regular then At(7) < 0 and so the effect 

of adding e on the curvature is 

k(i) = k ( 7 ) + 7r - Z(e) < k ( j ) < 0. 

This is the case if a = (3 unless 7 is a single point in which case the result still holds. 

If 7 is not regular then it must contain spurs to which e is attached, or it is not 

connected and becomes connected when e is added, or both. 

Suppose 7 only contains spurs but is connected. A spur contributes negatively 

to the curvature of the graph, equal to the angle assigned to the edge since a spur 

is one edge and one vertex. If we remove all spurs from 7 we are left with a graph 

that is regular, in which case it has negative curvature, or it is a single vertex. If it 

is regular graph, then with the negatively contributing spurs we have that k(7) < 0 

and so ^(7') < 0 after adding e, as we saw above. If it was a single vertex then 7 was 

a path with angle sum > 7r (> it) and so 7' is a cycle with curvature ^(7') < 0 (< 0). 

Suppose 7 is disconnected but does not contain spurs. Then 7 must contain 

exactly two connected components 71 and 72 both of which are regular. This means 

that k(7i) < 0 and k(72) < 0 implying that 

«(y) = -Ti" + K(7i) + «(7i) - A e ) < 0-

The case where 7 contains spurs and is disconnected is handled by combining the 
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above two cases ensuring that k(Y) < 0. 

• 

Notice that the finiteness of X allows us to bound the number of 0-cells within 

a bounded distance from nonregular 0-cells and positively curved 0-cells due to the 

upper bound on number of these two types of 0-cells. Suppose X is a compact angled 

2-complex with nonpositive sectional curvature and let T —> X be an immersion. If 

every 0-cell in T is no more that n 1-cells from a 0-cell that is not regular or has 

negative curvature then we know the total number of 0-cells in T is bounded. In 

fact, if this is the case for every immersion then the global bound on the number of 

nonregular 0-cells and negatively curved 0-cells in the sequence Tj bounds the total 

number of 0-cells in Tj ensuring that the sequence must terminate. This leads us to 

the following theorem: 

Theorem 4.1.6. Let X be a compact angled 2-complex with nonpositive sectional 

curvature. Suppose that for every immersion T —> X every 0-cell is at most n 1-cells 

away from a nonregular or negatively curved 0-cell. Then 7t"i(X) is coherent. 

4.2 Transition Graphs 

Let us examine the procedure described in the proof of Theorem 4.1.2 more closely. 

The key to the proof was the chopping or capping of the subspaces K j which relied on 

the circles Qj being "manageable" or more precisely the fundamental group of each 

circle was trivial or Z. More generally we will have the notion of a transition graph 

and if this graph is again "manageable" we will have coherence. 

Let X be a compact angled 2-complex with nonpositive sectional curvature. Let 

G be a finitely generated subgroup of 7Ti(X). Let B —> X be a finite immersed graph 

such that 7Ti (B) G. 
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Much of the material presented here is almost identical to that of the proof of 

Theorem 4.1.2 with the main exception that the subdivision used to ensure compo-

nents of the flat part of Zi are surfaces is not used which simplifies the procedure 

slightly. 

Let us begin to generate the sequence of spaces Tj as before. Let T\ — B. Assume 

we have constructed the space Ti and perform step 1. 

Step 1. Adding a disc: Let Pi —> Ti be an essential path whose projection 

Pi —> X is null-homotopic. Let Di —» X be a reduced disc diagram whose boundary 

path is Pi —> X. Let Yi = TiUpi Di and Yi —> X be the induced map. Fold Yi —> X 

to obtain an immersion Zi —> X. 

Analysis of Flat Subcomplexes. Let V be the set of all 0-cells in Zi with zero 

curvature, let E be the set of all 1-cells in Zt with both adjacent 0-cells in V, and let 

C be the set of 2-cells in Zi whose adjacent 1-cells lie in E. Let F = VUEL)C be 

the "flat part" of 

Let N be the smallest open cellular neighbourhood of the image of B in Zj. If 

F — N = 0 then we are able to bound the number of 0 cells in Ti we will define 

Ti+1 = Zi. Otherwise let Si,..., Sk be the components of F — N. 

Let j G {1, ...,&}. As stated before, Sj is a singular surface but may not be 

a surface. This means that the boundary components are not circles but instead 

graphs made up of boundary 0-cells and 1-cells. 

Let Uj = Zi-int(Sj). A homological argument will show that distinct components 

of dSj lie in distinct components of Uj. Indeed, we will show that the induced 

inclusion homomorphism Ho(dSj) —> Ho(Uj) is injective. Note that Uj U Sj = Zi and 

Uj fl Sj = dSj. Consider the Mayer-Vietoris sequence for complexes: 

Hi(Uj) © Hi(Sj) ^ Hi(Zi) ± H 0 (dSj) ± H0(Uj) © Hq^-) - H0(Z<) 0 
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Since the image of B —» Zj factors as B —> —• Zj we see that 7Ti(£/j) 7Ti (Zj) 

and since Zj is connected Hi(£/_,-) -» Hi(Zj). This implies that g is surjective and 

so im(g) = Hx(Zj) = ker(h) and so im(h) = 0 = ker(£) by exactness. Therefore 

Ho(dSj) —> H0(Uj) is injective as claimed. 

We have shown that each graph in dSj lies in a distinct component of Uj. Since 

N and Sj are disjoint, the image of B must lie in one component of Ur In fact, the 

image of B must lie in one component L of Zj — USj. By relabeling, let {Si,..., Sm} be 

the relabeled subset of {Si,..., S/J whose elements intersect with L. For j = 1,..., m 

let Tj be the graph in Sj fl L. We are now ready for the following definition. 

Definition 4.2.1 (Transition Graph). We call the graph P,- obtained by the above 

process a transition graph. 

Step 2. Adjustment: Let K j be the component of (Zj — Tj) that does not 

contain the image of B union Qj. In order to cap or chop Kj with a space Rj as 

before we must insure that the chop or cap preserves or at improves the fundamental 

group of Zj relative to G. In other words we need the the 7Ti-image of Rj to be equal 

to the 7Ti-image of K j and 

ker(7Ti (Rj ) ->G) C k e r ( 7 r i ( K j ) G). 

In most cases it may be easier for us to examine 7Ti(rj) instead of n(Kj). The 

following allows us to so. 

Same 7Ti-image. The image of ^ ( T j ) —> 7Ti(X) is the same as the image of 

Indeed, let x be a base point on Y and Pi a path in K j starting at a and ending 

at b. Since the maps B —> L —• Zj are 7Ti-surjective there is a path P2 in L that is 

path homotopic to Pi in Zj. Therefore the path P\P2 is null homotopic and so there 

is a reduced disc diagram D such that P\P2 —> Zi factors as P1P2 —> D —> Zj. 



Let a' be the preimage of a in D and b' be the preimage of b in D. Then a' and 

b' are in the same component of the preimage of T in D. If this were not the case 

there would be a path (possibly passing through 2-cells) from the preimage of Pi to 

P2 that does not intersect the preimage of T. The image of this path in Zi would be 

a path intersecting both L and Kj but not intersecting Tj, a contradiction. 

This situation ensures that there is a path P3 in D that starts at the initial point 

a' and ends at terminal point b' and contains only 1-cells mapped to Tj. Let P3 be 

the image of P3 —• Z^ Then P3 is path homotopic to Pi and is a path in Tj. 

Chopping/Capping Let us suppose for the moment that the image of Tj —> X 

is finitely presented for j = 1,..., k. Then the preceding discussion implies that Kj is 

finitely presented and we may proceed with the capping and chopping procedure as 

before because each disconnecting graph Tj requires only finitely many disc diagrams 

to replace Kj. 

For j = 1 , A ; glue to Tj the finitely many reduced disc diagrams, Di,...,Dn, 

required to make the fundamental group of the resulting space ^ ( T j Um=i Dm) iso-

morphic to the image of ^(T^) —> 7Ti(X). We will call the resulting space Rj. 

Let 

Zir, = L U P i . . . U Rf~. Ti rk 

Increasing Kernel. The map B —* X factors as B —> Zi —> X and B —> Zi2 —> X. 

The adjustments made to Zi are only beneficial if 

k e r ( P -»• Zi) C k e r ( P Z h ) . 

We will show that this is indeed the case. 

Let P be a path in B such that P —» Ti is nullhomotopic. There exists a reduced 

disc diagram, D, for P —* Ti. There is a set of maximal cycles, P^.,...,PT., each in 

a distinct component of the preimage of Tj, that bound all cells mapped to Tj. For 
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qj = 1 j,..., Tj let Jqj be the image of Pqj in Tj. Then the image of Pqj —> Jq. —> X is 

nullhomotopic which implies that Jqj is nullhomotopic in Zi2 by construction and so 

there is a disc diagram Dqj for Jqj —> Zi2. If we replace the interior of Pqj in D with 

Dqj for j = 1, ...m and q3 = l j , . . . , r3 we get a disc diagram for P —> Zl2 proving that 

the image of P in Zi2 is nullhomotopic and that ker(P —> Zi) C ker(B —> Zi+1). 

B 7Ti-surjects. To bound the number of 0-cells it will be important that 7Ti(P) -» 

ni(Zi2). Let Pi be a (directed) path in Zi2. In Zi2 the path Pi is homotopic to a 

path P2 which lies in the subspace L since 7Ti(Fj) ^(r.,- U Rj). This path P2 can 

be viewed as a path in Zi which contains L as a subspace. We know already that 

7Ti (B) -» 7Ti (.Zj) so there is a path P3 in the image of B Zi that is homotopic 

to P2 in Zi. Let D be the disc diagram for the null homotopic path P2P%1. Let 

j G {1,..., k] and look at the preimage of Tj in D. As above, here is a set of maximal 

cycles, Ji3,..., Jrp each in a distinct component of the preimage of Tj, that bound all 

cells mapped to T.,-. Each of these cycles are trivial in Zi since they are inside of a 

disc diagram and so their image Jqj —> X are trivial implying that their image in Zi2 

is trivial. There exist a disc diagram Dqj for Jqj —> Zi2. If we replace the interior 

of Jqj in D with Dqj for j = 1 ,...m and qj = lj,...,rj we get a disc diagram for 

P2P3 1 —• Zi2. This implies that P3 is homotopic to P2 and is therefore homotopic to 

Pi in Zi2 proving that ^i(B) iXi(Zi2). 

We fold Zj2 X to obtain T i+1. 

Upper Bound on 0-cells. As before, we would like to have an upper bound on 

the number of 0-cells in Tj for and i e Z and we will show this by showing there is an 

upperbound on Zi2. There are going to be three classes of 0-cells v G Zi2 that we have 

to bound: Nonregular: 0-cells such that (Zi2,v) (X,x) is not a regular section, 

Negative: 0-cells such that (Zi2,v) —> (X,X) is a regular section and K(V) < 0, and 

Zero: 0-cells such that (Zi2,v) (X,X) is a regular section and K(V) = 0. The 

nonregular and negative cases are exactly the same as above. 
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Zero. Suppose v € Zi2 such that K(V) = 0 and (Zi2,v) —> (X,X) is a regular 

section. Then v must be in the image of B, a 0-cell in a disc diagram added in the 

capping procedure onto a circle T*. or be on a circle . 

The number of 0-cells in the image of B are bounded above since B is finite. 

Each vertex in Tj is at most one edge away from a 0-cell from the set of 0-cell 

already bounded in one of the above cases since it lies on the boundary of a set Sj. 

Since X is finite and Ti X is an immersion the valence of each 0-cell is bounded 

above by a real number, n\. This bounds the number of 0-cells in (Jj=i ^V Let n2 be 

this upper bound. 

This means that each transition graph Tj can have at most n2 0-cells each of which 

has bounded valence so its image in X has a bounded number of generators and is 

by assumption finitely presented. The finiteness of X ensures that there is an upper 

bound, n3, on the number of disc diagrams (relators) required to attach to Tj and an 

upper bound 77,4 on the maximum number of 0-cells in each disc diagram. There are 

also finitely many graphs that can be made up of n2 0-cells with maximum valence 

ni and we will call this number 715. This means that the number of 0-cells added by 

attaching the UjLi Rj most n5 • n3 • 71,4. 

Terminating Sequence. We use the described method above to construct the 

sequence of spaces 

Ti ,T 2 ,T 3 , . . . 

each of which immerses into X and the total number of vertices in Ti is bounded 

above for all i. This means there are finitely many distinct Ti that immerse into X 

by Lemma 1.1.2. The spaces are distinct since step one in our procedure guarantees 

that the the kernels of the maps Tj —» X are a strictly increasing sequence of sets. 

This implies that the sequence terminates at some Tn with the property Tn —> X is 

7Ti-injective. This implies the following result: 
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Theorem 4.2.2. Let X be a compact angled 2-complex with nonpositive sectional 

curvature. Suppose that the 7Ti-image of transitions graphs in the sequence Z\, Z2, ... 

are finitely presented. Then ni(X) is coherent. 

4.3 Flattenable Graphs 

The definition of a transition graph is not very convenient since one would have to 

construct the sequence of spaces Tj and check to see if each transition graph had 

finitely presented image. 

Let £ be an e-neighbourhood of Tj in L. Essentially the same proof we used to 

show that the graph Tj has the same 7Ti-image as K j in X shows that the 7Tx-image 

of e in X is that same as the 7Ti-image as Tj in X. 

This leads us to the following definition: 

Definition 4.3.1 (Flattenable Graph). Let X be an angled 2-complex and let : 

T —> X be an 1-complex. We say that T is flattenable if there exists a an immersed 

2-complex 0 : E —> X such that 

1. T X factors as T -> E -> X, 

2. (E, 0(a)) is regular for each a G T°, 

3. KE(4>(a)) = 0 for each a G T0 and 

4. There is an e-neighbourhood of 4>{T) lying in one of the components of E — ift(T) 

that has the same 7Ti-image as T in X. 

The discussion above showed us that transition graphs satisfy the definition of a 

flattenable graph and so the following corollary to Theorem 4.2.2 is immediate. 
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Corollary 4.3.2. Let X be a compact angled 2-complex with nonpositive sectional 

curvature. Suppose that the 7Ti-image of all flattenable graphs in X are finitely 

presented. Then 7Ti(X) is coherent. 

We present a corollary which provides a situations which ensures that the 7Ti-image 

of flattenable graphs are finitely presented. First we will need the following Lemma. 

Lemma 4.3.3. Let X be an angled 2-complex with nonpositive sectional curvature. 

Let F —> X be such that for each 0-cell y G F, (F, y) —> (X, x) is a regular section 

and K,p(y) = 0. Then -K\(F) —> ir\(X) is injective. 

Proof. Suppose (F) —> 7Ti(X) is not injective. Let P C F be an essential path 

whose image in X is trivial. Let D —» F be a reduced disc diagram for P. Since 

x(D) > 0 and since 2-cells in D with inherited angles from X have curvature < 0, 

Theorem 1.1.6 gives us that there is a 0-cell v G D such that K(V) > 0. Each 2-cell 

in the interior of D corresponds to a regular section mapped to X so v must lie on 

the boundary of v that is mapped to P. Attach v and it's adjacent boundary 1-cells 

to F via the map D F and call the resulting space F'. Let v' denote the image 

of v in D —> F' and let a be the image of v in D —» F. Then (F1, v') —> (X, x) is a 

regular section, where x is the image of v' in X. Let V, V, and A denote the number 

of vertices in link(w), link(u') and link(a) respectively. Then V' = V + A — 2. The 

curvature of v' is given by 
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k{v') = (2-V')n+ Y def(c) 
ceCorners(i/) 

= (2 ~(V + A - 2))tt + I Y d e f ( c ) 

\ceCorners(i;)uCorners(a) 

(2 - V)n + Y d e f( c) ] + ( (2 - A)n + Y def(c) 
ceCorners(u) / \ ceCorners(a) 

= k(V) + K,(a) 

= K(V) + 0 

> 0. 

But this is a contradiction since X has nonpositive sectional curvature. 

• 

At first glance Lemma 4.3.3 seems to prove that nonpositive sectional curvature 

in X implies coherence of 7Ti (X) since for each y G of a transition graph (y) = 0 

and so it would seem like —• X is 7Ti-injective which would mean that we may chop 

Kj and no capping is required. This is not necessarily the case since in order to apply 

Lemma 4.3.3 we would require all 0-cells in Zi to have zero curvature or each 0-cell 

in Tj to have zero curvature in some subspace of Zi containing only zero curvature 

0-cells. Even Kj is not necessarily a good candidate for such a subspace since there 

is no guarantee boundary 0-cells have zero curvature when removed from Zi. 

Corollary 4.3.4. Let X be a compact angled 2-complex with nonpositive sectional 

curvature. Suppose there is a family of immersions Fi —> X, i G I, satisfying the 

following properties: 
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1. For each 0-cell y G Fi: (Fi,y) —> (X, x) is a regular section and /c(y) = 0. 

2. For each regular section (S, s) —» X the zero cell s factors locally (zero cell and 

adjacent 1-cells) through Fi to X. 

3. For each regular section (S, s) —> X each 2-cell e G S such that the adjacent 

0-cells have zero curvature factor through a unique Fi to X. 

4. For each i, iri(Fi) is coherent. 

Then it\(X) is coherent. 

Proof. Let T be a flattenable graph. The second property ensures that each 0-cell 

from T factors through an Fj on it's way to X while the third property ensures that 

all of the 0-cells and 1-cells from T factor through the same Fi. This means that the 

7r-image of T is a subgroup of the 7Ti-image of Fi in X. Since all 0-cells in Fi have zero 

curvature Lemma 4.3.3 tells us that the 7Ti-image of Fi in X is coherent implying that 

the 7Ti-image of T in X is finitely presented. The result now follows from Corollary 

4.2.2. • 

Surfaces and spaces with trivial fundamental groups would work as members Fi 

of this family since both have coherent fundamental group. 

4.4 Negative Sectional Curvature Relative to 7r-

gons 

In the proof of Theorem 4.1.2 the transition graphs turned out to have finitely pre-

sented 7Ti-image in X since they were circles. If the complements of flattenable graphs 

were circles, or at least e-neighbour hoods of flattenable graphs in the complement 

were circles, we would know that their 7Ti-images in X were finitely presented as well. 
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We use the idea of locally analyzing compliments of flattenable graphs to prove the 

following result. 

Theorem 4.4.1. Let X be a compact angled 2-complex with negative sectional 

curvature relative to 7r-gons and planar sections. Then tti{X) is coherent. 

Proof. Let G be a finitely generated subgroup of 7Ti(X). Let B —» X be a finite 

immersed graph such that (B) G. 

Let Ti = B. We will again construction a sequence 

Tx.T2.T3,... 

of immersed 2-complexes Tj —> X as in Theorem 4.2.2. We perform Step 1: Adding 

a Disc and construct the space Zj. Define L, Kj and Tj for j = 1,..., k as in Theorem 

4.2.2. 

We would like to ensure that T̂  does not contain any spurs which are inconse-

quential since spurs do not contribute to the iti-image of Tj anyway. We make the 

following adjustment to the definition of Tj. 

Let Lj be the union of all closed cells intersecting Z,L — Kj and let be the 

component of the boundary graph of Lj that is a subset of Tj. This ensures that any 

spur in comes from an isolated 1-cell in Zj but since all 0-cells in Tj yield regular 

sections this does not occur. 

We recall from the proof of Theorem 4.2.2 that it is enough to show that the 7Ti-

image of in X is finitely presented. This is because we may perform the adjustment 

process of Theorem 4.2.2 by chopping along j = 1,..., k and we will require only 

finitely many disc diagrams for capping The Upper Bound on 0-cells and 

Terminating Sequence parts of the proof still hold. We will now show that the 

Tivimage of in X is finitely presented. 

We examine the link of each 0-cell s G (as a 0-cell in Zi). Since K(S) = 0 
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we know that link(s) is either a circle or a 7r-gon. Suppose link(s) is a 7r-gon. The 

fact that is spurless ensures that it contains the two edges associated with the two 

vertices in the link. Removing these two vertices disconnects the link into single edges 

which means that locally at s the complements of have the same homotopy type as 

lines. This implies that for a small enough e all components of the e-neighbourhood 

of in the complement of locally have the same homotopy type as a line implying 

that all components of the e-neighbourhood of in the complement of ^ have the 

same homotopy type as a line or a circle. We know that one of the components of 

the e-neighbourhood of in the complement of has the same 7Ti-image in X as 

and since they all have same homotopy type as a line or a circle we know that the 

7Ti-image of it is finitely presented (since we know that X is torsion free). 

If link(s) is a circle then removing the vertices in the link associated with the edges 

of disconnects link(s) into line segments implying, as above, that the 7Ti-image of 

in X is finitely presented. 

• 

We make use of Theorem 4.4.1 by presenting the following class of examples. 

Example 4.4.2. Let G= (oi,..., an\W\,..., Wn) and let X be the standard 2 complex 

for G. Suppose X is an angled 2-complex with an angle assignment that has n 

assigned to the corner between each repeated edge in the words Wn. Suppose 

that X has nonpositive sectional curvature. We define a new group G' by replacing 

each instance of of with a" for any n > 2 we choose (n need not be the same for each 

instance of a?) in the words Wi,..., Wn. We will show-that G' is coherent. 

Let X' be the standard 2-complex for G'. We give X' the same angle assignment 

as X and assign an angle of 7r to the newly created corners. This process has the effect 

of increasing multiple edges in the link of vertices creating 7r-gons as subgraphs. We 

give X' the same angle assignment as X and assign an angle of 7r to the newly created 
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corners which means that the newly created edges in the links have angle n assigned 

to them. We see that regular sections for X' have negative sectional curvature except 

sections whith 7r-gon links which have nonpositive sectional curvature. Let W[,..., W^ 

denote the new two cells in X'. Increasing af to a" in Wj adds n — 2 edges and adds 

and (n — 2)ir to the angle sum in Wj and so these changes do not affect the curvature 

of the two cell, that is k(W/) = K(Wi). Therefore X' has negative sectional curvature 

relative to 7r-gons thus G' is coherent by Theorem 4.4.1. 
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Conclusion 

Our method for proving Theorem 4.4.1 does not allow us to conclude the compact 

core condition for a compact angled 2-complex X with relative nonpositive sectional 

curvature. Indeed, Wise showed in [11] that if the angle assignment contains negative 

angles the conclusion may not hold. 

If we attempted to prove the compact core condition using this method we would 

begin with the union of the compact subcomplex C of X and a compact subcomplex 

that generates the finitely presented subgroup G. We attach disc diagrams for each 

essential path with nullhomotopic image in X to this space and form the sequence 

Tj. At each stage in the proof where we fold to obtain immersions we would instead 

take tower lifts so that theses immersions were covering maps. The method fails at 

the adjustment step in our proof: when we chop or cap, the resulting space need no 

longer be a cover. If instead of folding we then take a tower lift we no longer have a 

bound on the number of zero curvature regular 0-cells which we use to conclude that 

the sequence Tj terminates. An adjustment in this method however may yield fruitful 

results toward proving the conjecture put forth by Wise in [11]: 

Conjecture 4.4.3. Let X be a compact nonnegatively angled 2-complex with non-

positive sectional curvature. Let I be a based cover with it\{X) finitely generated. 

Then every compact subcomplex of X is contained in a compact core of X. 

We have shown that is coherent when X has negative sectional curvature 
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relative to 7r-gons or planar sectionals. I suspect that this result can also be improved 

to allow bigons to have O-curvature and that this can be shown by analyzing compli-

ments of 0-cells locally as in Theorem 4.4.1, however this requires the examination of 

many cases. If it is possible to classify the links of 0-cells which occur in transition 

graphs for 2-complexes with nonpositive sectional curvature we may be able to handle 

these 0-cells in the same manner. This leads us to the following conjecture: 

Conjecture 4.4.4. Let X be a compact angled 2-complex with nonpositive sectional 

curvature. Then n\{X) is coherent. 
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