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Abstract

The fractional quantum Hall effect (FQHE) is well understood in within the com-

posite fermions picture: in 2+1 dimensions, a change in the topology of electron config-

uration space leads to the emergence of anyons, quasiparticles with fractional exchange

statistics ranging between Bose-Einstein and Fermi-Dirac. These composite fermions,

made of electrons bound to magnetic flux quanta in a ratio expressed by the filling fac-

tor ν, act as charge carriers in two-dimensional electron gases (2DEG) and give rise to

exotic Hall magnetoresistance quantization. However, the elusive ν = 5/2 state of the

FQHE seems to contain additional structure from which an even more peculiar behavior

could arise. The excitations of this state are speculated to display non-abelian braid-

ing statistics, an aspect which raised significant interest due to possible Majorana-like

quantum computing applications.

In order to probe the statistics of the 5/2 state and verify if it has a non-abelian

nature, it has been suggested to conduct interferometry experiments in which quasipar-

ticles are undergoing braiding operations. Such experiments have been used in other

states of the FQHE, confirming the existence of anyons and fractional statistics. Despite

sustained effort, it has not yet been possible to achieve convincing interference measure-

ments in the 5/2. The difficulty of this task is explained by the extreme fragility of

the state, which appears only in pure ultra-high mobility 2DEG samples. It is believed,

in addition, that the nanofabrication of interferometers on these substrates can induce

impurities, notably through e-beam lithography, making it difficult to observe strong

5/2 features.

To tackle the fragility of the 5/2 state, this research proposed to implement a flip-

chip Fabry-Perot interferometer. The idea behind the flip-chip method is to fabricate

the interferometers on separate substrates and to flip them on the 2DEG samples, as if

they had originally been patterned on them. This approach leaves the 2DEG in pristine

condition, hopefully increasing the chances of conducting convincing interferometry ex-

periments. At this point, it has been possible to demonstrate that the flip-chip method

works for low-dimensional transport experiments. Quantum point contacts (QPCs)

mounted in flip-chip configuration could reproduce the characteristic 2DEG conduc-

tance pinch-off and quantization (2e2/h). Interferometers could be unmounted and

retested on different 2DEGs, maximizing the nanofabrication yield. Signs of what could

possibly be quantum interference of electrons have also been observed, although not on

2DEGs of high enough mobility to study the 5/2 state.
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Abrégé

L’effet Hall quantique fractionnaire (EHQF) est aujourd’hui bien compris dans le

cadre du modèle des fermions composites: en 2+1 dimensions, la topologie de l’espace

de configuration des électrons change et entrâıne l’émergence de ce que l’on nomme des

anyons, des quasiparticules dont l’interversion est décrite par des statistiques fraction-

naires à mi-chemin entre les statistiques de Bose-Einstein et Fermi-Dirac. Ces fermions

composites, faits d’électrons attachés à un certain nombre de quanta de flux magnétique

dans un ratio ν, agissent à titre de porteur de charge dans les gaz d’électrons bidimen-

sionnels (2DEG) et donnent lieu à une quantification exotique de la magnétorésistance

de Hall. Néanmoins, l’énigmatique état ν = 5/2 de l’EHQF semble détenir une struc-

ture additionnelle, de laquelle surgirait une propriété encore plus particulière. Il est

spéculé que les quasiparticules de l’état 5/2 soient régies par des statistiques d’échange

non-abéliennes, un aspect qui a soulevé l’attention en raison de la possibilité d’effectuer

des opérations de calcul quantique au même titre qu’avec les particules théoriques de

Majorana.

Dans le but d’étudier les statistiques d’échange de l’état 5/2 et de vérifier si celles-ci

sont de nature non-abélienne, il a été suggéré d’entreprendre des expériences d’interféro-

métrie au cours desquelles les quasiparticules sont soumises à des opérations de tressage.

De telles expériences ont été réalisées dans d’autres états de l’EHQF, et ont confirmé

l’existence des anyons et statistiques fractionnaires. En dépit d’efforts soutenus, il n’a

toujours pas été possible d’effectuer des mesures d’interférométrie dans l’état 5/2 de

manière convaincante. La difficulté de cette tâche s’explique par l’extrême fragilité de

l’état, qui ne se manifeste que dans les échantillons 2DEG de grande pureté et mo-

bilité. De plus, nous croyons que certaines étapes impliquées dans la nanofabrication

d’interféromètres, notamment la lithographie à faisceau d’électrons, introduit des im-

puretés qui rendent difficile l’observation de l’état 5/2.

Pour surmonter cette difficulté, ce projet de recherche propose de mettre en place

des interféromètres de Fabry-Pérot en utilisant une configuration de puce retournée.

L’idée derrière la puce retournée est de fabriquer des interféromètres sur un substrat à

part, et de les retourner sur la surface des échantillons 2DEG comme s’ils avaient été

créés sur ceux-ci à l’origine. Cette approche offre l’avantage de laisser les échantillons

2DEG dans une condition impeccable, ce qui, nous l’espérons, augmente les changes de

pouvoir observer des interférences quantiques. À ce jour, il a été possible de démontrer

que la méthode de la puce retournée fonctionne pour réaliser des expériences de trans-
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port électronique à basse dimension. Un point de contact quantique (QPC) retournée

a pu reproduire avec succès les caractéristiques pincement et quantification (2e2/h) de

la conductance d’un 2DEG. Certains interféromètres ont pu être démontés et testés de

nouveau sur différents échantillons, maximisant ainsi le taux de succès de la nanofabri-

cation. De plus, des indices de ce qui pourrait s’avérer être des interférences d’électrons

ont été observés, quoique ceux-ci se manifestent dans des échantillons 2DEG de qualité

inférieure qui ne permettent pas l’étude de l’état 5/2.
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Chapter 1

Introduction

1.1 Experimental context

The fractional quantum Hall effect (FQHE) is a fertile research ground to ob-

serve a number of phenomena that arise from topological principles: in two dimensions,

fermions can behave in a quite unconventional and novel way, as the topology of their

configuration space plays a major role on the nature of their exchange statistics. The

FQHE involves anyons [2], quasiparticles carrying fractional charges and obeying frac-

tional statistics (ranging between bosonic and fermionic statistics). By now, the role

of anyons in the FQHE is well understood within the composite fermions model [3].

However, this model only allows for odd denominator filling fractions. Since its first

observation in 1987 by Willett et al. [4], the ν = 5/2 state of the FQHE stood up as

the exception to this rule, and has remained one of the most persistent problems in

condensed matter physics.

Among the theoretical models proposed to explained the 5/2 state, the Moore-Read

Pfaffian [5] attracted considerable attention. The model predicts that the excitations of

the state contain additional structure from which an even more exotic behavior could

emerge. In fact, the 5/2 quasiparticles should not only obey anyonic statistics, but non-

abelian exchange statistics. A. Y. Kitaev later suggested [6], in addition, that it would be

possible to take advantage of the non-abelian nature of the state to build a fault-tolerant

topologically protected quantum computer. Briefly, excitations obeying non-abelian
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statistics refers to the fact that an exchange of identical particles would not result in

a statistical phase factor, but in a completely different state. The quasiparticles found

in the 5/2 state are for that reason referred to as anyonic Majorana bound states [7].

Observing such particles would be a great discovery in itself, irregardless of the possible

quantum computing applications.

In order to probe the statistics of the 5/2 state, many suggested to proceed through

anyon interferometry [8–12]. Such experiments have been realized in other states of

the FQHE, demonstrating the existence of fractional statistics [13–16]. Investigations

of that nature have also be undertaken in the 5/2 state [17, 18], however the outcome

is insufficient to confirm or infirm the non-abelian nature of the quasiparticles found

in this FQH state. The main problem is that the 5/2 state is extremely fragile, and

appears only in the highest purity two-dimensional electron gas (2DEG) samples. Also,

it is believed that the processes involved in the fabrication of anyon interferometers,

notably e-beam lithography, can introduce impurities that will tarnish irreparably the

quality of the 2DEGs, making it impossible to observe strong 5/2 features.

In response to this problem, this research proposes to tackle the fragility of the

5/2 state by implementing a flip-chip electron (and eventually anyon) interferometer

in order to probe the statistics of the quasiparticles it contains. The idea behind the

flip-chip method is to create the interferometer on a separate substrate, and to flip it

on the surface of a 2DEG sample as if it had initially be created on it. By doing so,

the damaging processes are carried out on less delicate substrates, leaving the 2DEGs

as pristine as possible. The results of our flip-chip method were presented recently [1].

Other groups have also been working on similar techniques, confirming that electron

interference can be observed using flip-chip Fabry-Perot geometries [19].

1.1.1 Outline

In the first chapter, the basics of low-dimensional physics will first be presented in

order to give an idea of the importance of topology in condensed matter physics. With

the concept of anyon in mind, the theory behind the FQHE will be exposed, starting

from the classical Hall effect. Interferometry experiments will then be explained, with
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a focus on how a non-abelian signature could be detected. In the second chapter, the

fundamental novelty of the flip-chip method will be presented. The third chapter will

then be a technical description of the fabrication and testing of the flip-chip interfer-

ometers. Finally, chapter four will discuss the results obtained and the actual status of

the flip-chip method, and then address the main issues encountered.

1.2 Low-dimensional physics

Low-dimensional physics constitute an active field of research in condensed mat-

ter physics. It is therefore important to understand how making experiments in lower

dimensions is possible, and what happens to the physics of such systems. One of the

reasons behind the interest for lower dimensions is rooted in highly mathematical con-

cepts (whose details are beyond the scope of this research). In short, the heart of the

problem lies in the fundamental importance of topology when comes time to under-

stand certain aspects of quantum mechanics. As one reduces the number of spacial

dimensions, the notion of indistinguishability of identical particles must be rethought.

This has consequences on quantum statistics, hence on how elementary particles are

categorized. Concurrently, the interaction effects between spatially confined particles

become more important, which enables the emergence of new many-body phenomena.

1.2.1 Topology and statistics

In quantum mechanics, three-dimensionality of space is at the heart of the spin-

statistics theorem. In three (or higher) space dimensions, all particles must either have

spin n� or (2n+1)�/2 with n = 0, 1, 2..., known respectively as bosons or fermions [20].

The spin-statistics theorem relates the spin of these particles to their quantum statistics:

bosons obey Bose-Einstein statistics and fermions obey Fermi-Dirac statistics, meaning

that the wavefunction of a system of identical bosons remains unchanged upon exchange

of two particles, while the wavefunction of a system of identical fermions changes sign

upon exchange of two particles.

In the context of quantum mechanics, the term exchange is rather delicate to use.
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One should only remember that quantum statistics refer to the phase picked up by the

wavefunctions (0, ±1) upon an adiabatic transport of particles which really creates an

exchange. This precaution ensures that we treat the exchange not only as a swap of the

particles coordinates, but rather as a path dependent process which effectively relates

the particle statistics to the topology of the configuration space.

The possible phase factors acquired by the wavefunction along different interchange

paths must define a representation of the first homotopy group of the configuration

space [20]. In three dimensions, the configuration space is a doubly connected sphere,

whose first homotopy group is the permutation group SN . The permutation group has

only two one-dimensional representations: identical and alternating, corresponding to

Bose-Einstein and Fermi-Dirac statistics [20]. In short, three-dimensional space imposes

wavefunctions to describe particles as either being bosons or fermions.

1.2.2 Anyons and fractional statistics

In two dimensions, the topology of the configuration space changes, and one must

rethink how the exchange of identical particles operates. This has drastic consequences

on the statistics of the confined particles: while only bosons and fermions can exist in

three dimensions, two-dimensional particles are not restricted to these categories. In

fact, one finds that the first homotopy group of the two-dimensional configuration space

is the braid group BN , which admits a continuous range of one-dimensional representa-

tions [20]. In other words, the phase factor picked up by a wavefunction upon exchange

of those particles can range continuously from -1 to 1, giving rise to statistics in-between

Bose-Einstein and Fermi-Dirac. Wilczek coined the term anyons in 1982 [2] to describe

these two-dimensional particles obeying “any” statistics, or fractional statistics.

For a two-particle wavefunction |ψ1ψ2�, a three-dimensional exchange yields a plus

or minus sign

|ψ1ψ2� = ± |ψ2ψ1� (1.1)

such that the wavefunction is symmetric for bosons and antisymmetric for fermions.
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The two-dimensional anyonic exchange relation is represented by

|ψ1ψ2� = eiθ |ψ2ψ1� (1.2)

with phase angle θ between 0 and π. As a result, three-dimensional exchange opera-

tions become, in two dimensions, topologically protected braiding operations which are

‘impossible to untangle’.

The most prominent realization of anyons is in the fractional quantum Hall effect [20–

22], which will be explained in details later. For now, it suffices to say that the effect is

due to quasiparticles —composite fermions— existing only in two dimensions, composed

of electrons bound to magnetic flux quanta (vortices) in a ratio represented by the filling

factor ν. Those composite fermions fit the requirements for being anyons [21], with

fractional phase angle given by

θ = νπ. (1.3)

1.2.3 Two-dimensional systems

One could express doubts about the physical meaning of lower spacial dimensions

beyond sole theoretical speculation. Indeed, the mathematical language is rich enough

to describe a space of arbitrary dimensions. It is therefore possible to play with this

parameter and explore this avenue in theory. It is however known that, that despite

living in a three-dimensional world, it is effectively possible to constrict systems of

particles to two, one or zero spacial dimensions. The possibility to physically create

“true” lower dimensional systems represents another trick played by quantum mechanics

under confining potentials at ultra-low temperatures.

In some materials, it is possible to tightly confine a gas of electrons in a 2D-like sheet.

At very low temperature, those confined electrons will populate the lowest available

energy states, effectively entrapping them into a narrow quantum well. As all degrees of

freedom tend to freeze out in the limit of zero temperature, one can in fact “completely

freeze” a dimension. Physical two-dimensionality can be properly achieved provided that

the temperature is low enough so the average thermal energy of the electrons is lower
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than the excitation energy to move along the confined direction [20]. Such systems

are notoriously realized in cooled heterostructures of semiconductors, and constitute

what is called two-dimensional electron gases, or 2DEG. A more detailed explanation

of the heterostructures used for this research will be given in a subsequent section (see

chapter 3).

1.2.4 One-dimensional systems

Starting from a 2DEG, one can also think of systems of lower dimensions. Applying

electrostatic potentials can constrict the mobile electrons into one-dimensional quantum

wires [23, 24], by forcing them through quantum point contacts (QPC). A QPC is a

narrow constriction in a conducting material, of width in the nanometer scale, created

by narrow electrostatic gating electrodes. The role of the gates is to deplete underlying

electrons and to constrict their flow to a narrow channel/point. Figure 1.1 shows how

depletion of the 2DEG works. A current passed through a QPC can be gradually

pinched off by augmenting the (negative) gating voltage. In the quantum regime, the

QPC acts as a one-dimensional waveguide for electrons. The conductance across such

quantum wire is thereby quantized in units of the fundamental quantum of conductance

2e2/h ≈ 7.748 ·10−5S [24]. Increasing the gate voltage results in quantized conductance

plateaus due to a depopulation of one-dimensional conducting subbands through the

QPC.

As will be shown later, another example of one-dimensional structure can be found

in the quantum Hall effect. In the quantum Hall regime, one-dimensional edge channels

arise at the border of a 2DEG sample as a perpendicular magnetic field is turned on.

Those edge states, analogous to the conducting states of a topological insulator [25],

have special properties which are essential to conduct interferometry experiments.

1.3 Hall effects

As previously stated, the most famous realization of anyons is the fractional quan-

tum Hall effect (FQHE). Thus, an investigation of fractional statistics and composite
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2DEG QPC
V-‐

V-‐

Figure 1.1: Quantum point contact (QPC) formed by depleting electrons of a
2DEG. The gates (yellow) are not in contact with the electrons of the 2DEG; an
electrostatic potential repels the electrons underneath the gates, leaving only a
narrow constriction for current flow. It is important to note that the gates are on
top of the sample, so they are insulated from the electrons residing in the underlying
2DEG (Schottky barrier).

fermions first involves bringing a system of electrons in the fractional quantum Hall

regime. In order to understand the role of anyons in the FQHE, we should first re-

view the basics of the classical Hall and quantum Hall effects. It will then be easier

to understand how anyons, and especially the ν = 5/2 state, can be studied through

interferometry experiments taking place in the FQHE.

1.3.1 Classical Hall effect

In 1879, Edwin Hall discovered that, while applying a current through a thin foil

in the presence of a magnetic field, a voltage develops in the direction perpendicular to

the current flow [26]. Figure 1.2 illustrates the so called classical Hall effect, in which

the charges deviate towards one side of the sample, giving rise to the a net transverse

potential difference. The Hall voltage is now easily understood in terms of the Lorentz

force that deviates electrons as they move inside a magnetic field. The torque on the

moving charges is expressed

FB = e(v ×B), (1.4)
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where FB is the Lorentz force, e is the elementary charge, v the electron velocity and

B the magnetic field vector. As a result of the internal charge imbalance, this Lorentz

force is compensated by an electrostatic force

Fe =
eVH

w
, (1.5)

where w is the width of the sample and VH is the Hall voltage. For a strictly perpen-

dicular magnetic field, equating the two forces yields

eVH

w
= evB. (1.6)

Then, the current flowing in the sample can be expressed

I = NevA (1.7)

where A is the sample’s cross section area and N is the electron density. We can then

rearrange and express the Hall voltage as

VH =
wIB

eNA
. (1.8)

For thin samples, it is conventional to use a planar electron density, defined n = NA/w.

The Hall voltage is therefore proportional to B and I, and related to the planar density

n in the following way:

VH =
IB

ne
. (1.9)

As VH builds up across the sample, the current I remains unaffected, meaning that

the longitudinal resistance is still described by Ohms’ law:

Rxx =
Vxx

I
(1.10)

where Vxx is the voltage drop along the x -axis of the sample (see Figure 1.2). One should

note that the Hall resistance RH , being perpendicular to Rxx, is very often denoted Rxy.
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Figure 1.2: Schematic representation of the classical Hall effect. As electrons move,
their direction is shifted by the perpendicular magnetic field. Their accumulation
on one side of the sample gives rise to an electric field, which compensates the
charge imbalance. This transverse voltage is the Hall voltage VH . [26]

Using Ohm’s law and equation 1.9, it is expressed

RH = Rxy =
B

ne
. (1.11)

Another useful quantity is the the Hall conductance, simply defined as

σH =
1

RH

=
ne

B
. (1.12)

In sum, the classical Hall effect describes the strictly linear relationship that exists

between RH and the applied magnetic field. The effect is present in normal room tem-

perature and conditions, and does not require to be explained using quantum mechanics.

The effect is incidentally put to use in magnetometers, which are probes designed to de-

tect and measure magnetic fields. However, as presented in the next section, the linear

relationship between RH and B breaks at low temperature and in the two-dimensional
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limit, where quantum phenomena start to play a significant role.

1.3.2 Integer quantum Hall effect

The integer quantum Hall (IQHE) effect was first observed in 1980 by Klaus von

Klitzing [27]. At low temperatures, the Hall resistance of a 2D system starts to ex-

hibit anomalous plateaus as a function of applied magnetic field. Von Klitzing found

that those plateaus coincide with vanishing resistance in the longitudinal direction (See

Figure 1.3), and that they appear at values described by the relation

RH =
1

i

h

e2
(1.13)

where h is the Planck constant, e the charge of the electron, and i is called the filling

factor (ν in the FQHE). The quantum Hall conductance, expressed

σH = i
e2

h
(1.14)

is therefore quantized in units of e2/h (half the fundamental quantum of conductance).

Understanding the IQHE necessitates a two-dimensional picture, but its mechanism

does not require anyons. It is rather understood as a single particle effect involving

the Landau levels of the 2D system [28]. In the presence of a magnetic field, electrons

confined in the x-y plane will see their energy states collapse onto quantized orbits, called

the Landau levels (LLs). When solving the two-dimensional Schrödinger equation for a

single electron in a magnetic field, one finds that the Hamiltonian spectrum resembles

that of a harmonic oscillator

EN = �ωc

�
N +

1

2

�
(1.15)

with N being the energy level index and ωc the cyclotron frequency, expressed

ωc =
eB

m∗ (1.16)

where B is the magnetic field and m∗ is the effective electron mass in the material.

In free space, the Landau levels have an infinite-fold degeneracy, meaning that contain
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any number of states. This is however different for finite-size samples, such as those in

which the IQHE is observed. For a sample of area A (area perpendicular to the applied

magnetic field), one finds that the degeneracy of each Landau level is given by

d =
AB

he/c
=

Φ

Φ0
(1.17)

where AB = Φ is the total magnetic flux through the sample, and Φ0 is the magnetic

flux quantum [20]. Thus, there exists one energy state per flux quantum going through

the sample [26]. We also notice from equation 1.17 that the degeneracy increases with

magnetic field, meaning that more and more electrons are required to fill the LLs. At

low temperatures, electrons occupy the lowest available energy levels, and for low B-

field, the LLs are continuously filled up to the Fermi energy. But as one sweeps the

B-field, the degeneracy changes, and the higher LLs gradually unload until only the

lowest ones contain electrons. For some values of magnetic field, given by

Bi =
1

i

dh

e
, (1.18)

an integer number of LLs are exactly filled. The filling factor i can be seen as the ratio

between the number of electrons and available states for each LL (literally how filled

the levels are). In the integer quantum Hall effect, i is integer valued.

When the B-field has a value equal to Bi values, all lower LLs are completely filled,

while higher are separated by an energy gap ∆ = �ωc. At temperatures low enough

such that kBT < ∆, there are really no available scattering states, meaning that the

transport becomes dissipationless and the longitudinal resistance Rxx vanishes [26]. At

exact filling, the Hall resistance becomes

RH =
Bi

ne
=

1

i

h

e2
≈ 25.813 kΩ

i
(1.19)

as expressed in equation 1.13

In real systems, the LL energies are not exactly quantized. Temperature and disorder

broaden the energy spectrum of each LL, and leave room for a range of states. As shown
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in Figure 1.3, RH is not a perfect step function, and the conduction region of Rxx are

diffuse (not spikes) [26, 29].
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Figure 1.3: Snapshot from a Mathematica applet illustrating the quantization of
Hall resistance RH and vanishing of longitudinal resistance Rxx in the quantum
Hall regime (after work by G. Jelbert and N. Walet). We see that the plateaus
correspond to an integer number of Landau levels filled. As the B-field is increased,
the Fermi energy sweeps across the density of states, creating a new plateau each
time it crosses a new LL.

Another important feature of the quantum Hall effect is the emergence of chiral edge

states at the borders of the sample. This feature is of primary importance since it pro-

vides a path through which particles can be guided, allowing for electronic interferometer

geometries. Since the sample has finite dimensions, the borders act as a potential wall,

forcing the Landau levels to bend upward, as illustrated in Figure 1.4. At the edges,

the LLs are forced to intersect with the Fermi energy, creating one-dimensional chan-

nels along which particles are free to move. The chirality of the channels comes for

the orientation of the external B-field, which forces the electrons to move in a single

direction (clockwise or counterclockwise). Since the edge channels are chiral, there is
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a strong suppression of backscattering, which is accountable for the extremely precise

conductance/resistance quantization [29].

N	  =	  ...	  	  3	  2	  1	  0
E

sample	  width

EF

Figure 1.4: Edge channels formed at the borders of a 2DEG sample. The Landau
levels (indexed N), are forced to bend upwards at the edges of the sample (it becomes
increasingly difficult to push an electron “outside” the sample). As the filled LLs
intersect the Fermi energy (red), conducting edge states are formed (white dots).

1.3.3 Fractional quantum Hall effect

Two year after the discovery of the IQHE, D. C. Tsui and H. L. Stormer and

A. C. Gossard discovered that the quantization of the Hall conductance was in fact

not limited to integer multiples of e2/h [30]. Using samples with improved quality

(higher mobility and density), they observed a fractional quantum Hall effect, as a

plateau occurred at ν = 1
3 , i.e. while the first LL was only one-third filled. The

appearance of a plateau at fractional filling could not be explained using the usual

single electron picture. The phenomenon had to be understood as a consequence of

many-body interactions. Figure 1.5 shows a recent measurement of longitudinal and

transverse resistances in the fractional quantum Hall regime, illustrating how plateaus

emerge at fractional filling [31].
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E ¼ h
e2m

ẑ" j ð4Þ

where both vectors lie in the x% y plane. As the electric field and the current are perpen-
dicular to one another, the vanishing longitudinal resistivity (commonly denoted by qxx)
implies also a vanishing longitudinal conductivity rxx, and the quantized Hall resistivity
qxy ¼ h=e2m implies a quantized Hall conductivity rxy ¼ e2m=h.

These universal values are the zero temperature limit of the experimental observations.
The deviations at finite temperatures are a rich issue by itself, which we touch only briefly:
at least within a certain range of temperatures, the deviation of rxx; rxy from their zero tem-
perature value follows an activation law, i.e., is proportional to e%

T0
T , with T being the

temperature and T 0 being a temperature scale that depends on many details. This temper-
ature dependence, which is familiar also from other contexts, such as low temperature con-
ductance of intrinsic semi-conductors or low temperature dependence of the heat capacity
of super-conductors, indicates the existence of an energy gap between the ground state and
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Fig. 1. The quantum Hall effect. When the Hall resistance is measured as a function of magnetic field plateaus at
quantized values are observed. In regions of the magnetic field where the Hall resistance is in a plateau, the
longitudinal resistance vanishes (Sample grown by L.N. Pfeiffer (Lucent-Alcatel) and measured by W. Pan
(Sandia)).

A. Stern / Annals of Physics 323 (2008) 204–249 207

Figure 1.5: Measurements of longitudinal Rxx and transverse Hall resistance Rxy

in the fractional quantum Hall regime. Plateaus in Rxy at integer or half filling
correspond to vanishing (or minimal) Rxx. (Data: W. Pan, Sandia. Sample: L. N.
Pfeiffer, Princeton).

To explain the FQHE, original theoretical contributions were made by Laughlin [32],

Haldane [33] and Halperin [34]. The many-body ground state wavefunction suggested

by Laughlin

Ψm(zj , ..., zk) =
N�

j<k

(zj − zk)
mexp



− 1

4l2
B

N�

j

|zi|2


 (1.20)

where m = 1, 3, 5..., zj = xi+iyj is the location of the jth particle and lB is the magnetic

length, describes quasiparticles carrying fractional charges, and explained successfully

the the principal filling factors ν = 1/3, 1/5, 1/7...1/m. However, a much richer set of ν

values were observed (Figure 1.5), requiring a more general understanding. Haldane and
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Halperin later contributed to establish the hirarchical model. Starting from the Laughlin

states, secondary states emerge with filling factors described by the hierarchical sequence

ν =
1

m+ α1

p1+
α2

p2+
α3

p3+
...

(1.21)

where m = 1, 3, 5..., αi = ±1 and pi = 2, 4, 6... The major upshot of the hierarchical

model is that, as pointed by Halperin [34], the fractionally charged quasiparticles found

in the FQHE should also obey anyonic (fractional) statistics.

The current picture, proposed by Jain [3], relies on the concept of composite fermions

(CFs). A composite fermion consists of a combination of electrons and flux quanta.

Recall that, in the quantum Hall regime, there is as many available states are there are

flux quanta penetrating the sample. Also ν can be seen as the ratio between the number

of electrons and available states for each LL. At complete filling, we had the IQHE, in

which all electrons can be seen as being paired with a single flux quantum. However, in

high purity 2DEGs, intermediate stable pairings can occur, corresponding to different

filling fractions representing the ratio of electrons to flux quanta.

The key of the CF picture is that the FQHE can be seen as an IQHE of non-

interacting composite particles in the presence of an effective B-field, which is different

from the external applied B-Field [26]. The model interprets the FQH states as being

a sequential filling of CF Landau levels around principal filling factors ν = 1
2m , yielding

a general condition for strictly odd denominator FQH filling factors

ν =
p

2mp± 1
(1.22)

with integer m and p. In short, the FQHE contains fractionally charged quasi-particles

obeying anyonic statistics. The anyons are two-dimensional composite fermions formed

by a pairing between electrons and magnetic flux quanta.
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1.3.4 FQHE at ν = 5/2

The discovery of a ν = 5/2 state by R. Willett et al. [4] challenged the compos-

ite fermions model by violating its odd denominator restriction. The occurrence of a

plateau at even denominator would rather indicate a composite boson nature [29, 35].

The state was observed in high density and high mobility heterostructures, as a result

of further improvements in sample quality [36]. In response to the discovery of the 5/2

state, the principal models suggested were the Haldane-Rezayi state [37], Moore-Read

Pfaffian state [5], 331 state and later the anti-Pfaffian state [36]. Among these mod-

els, the Moore-Read Pfaffian and anti-Pfaffian have received special interest since they

described a state whose excitations are expected to carry a fractional charge e/4, and

to obey non-abelian braiding statistics. This second aspect attracted a lot of attention

since Kitaev explained, in 1997, that it could be possible to use the non-abelian braid-

ing properties of the quasiparticles of the 5/2 states to built a fault tolerant topological

quantum computer [6, 38]. Non-abelian braiding statistics refers to a drastically differ-

ent two-dimensional order or matter, in which an exchange of particles does not only

yield an arbitrary phase shift, but a completely different state. Observing non-abelian

particles would constitute a major discovery in itself, irregardless of the possible quan-

tum computing applications.

To date, none of the previously mentioned models has been conclusively confirmed

experimentally. However, using interferometry to probe the quasiparticles found in the

5/2 state could provide the elements that would confirm (or infirm) the Moore-Read

Pfaffian model, depending if the observed interference patterns depict abelian or non-

abelian braiding statistics. Interferometry being at the heart of this research, a detailed

description will be given the following section.

The premise of the Moore-Read Pfaffian state is that the 5/2 state constitutes a

Cooper-paired state of composite fermions forming a spin-polarized system [36]. Remi-

niscent of the Laughlin wavefunction, the Moore-Read Pfaffian wavefunction is expressed

ΨMR =
�

j<k

(zj − zk)
2Pf

1

(zi − zj)
· exp

�
− 1

4l2
B

�

i

|zi|2
�

(1.23)
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where the Pfaffian,

Pf
1

(zi − zj)
≡ 1

z1 − z2

1

z3 − z4

1

z5 − z6
...

− 1

z1 − z3

1

z2 − z4

1

z5 − z6
...+ ...− ... (1.24)

is used here to represent the Coulomb interactions [36].

In short, the 5/2 state of the FQHE could be explained in different ways. De-

spite being strongly challenged and debated, the Moore-Read Pfaffian model remains

particularly intriguing since the excitations of the wavefunction are expected to obey

non-abelian braiding statistics. This feature could possibly be verified via interferometry

experiments.

1.4 Anyon interferometry

In order to probe the statistics of the quasiparticles found in the ν = 5/2 sate,

many suggested to proceed via interferometry [8–12]. A number of experiments showed

that it is possible to build anyon interferometers and measure interference, revealing

the existence of fractional statistics in various states of the FQHE [13–16]. Similar

investigation has already been undertaken in the ν = 5/2 state [17, 18]. However, these

experiments are still insufficient to rule the state as non-abelian or not, as the validity

of the interference results is debated among the community.

Interference of anyons requires performing a braiding exchange operation, along

which a phase is acquired between charges following two different current channels. In

two-dimensions, braiding is the only exchange operation possible. A braiding is realized

by ‘winding’ anyons one around the other in space and time.

1.4.1 Fabry-Perot geometry

The Fabry-Perot optical interferometer consists of a slab (etalon) of semi-transparent

material, through which coherent light is sequentially transmitted and reflected, leading
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to interference. The phase picked up by the reflected light depends on the wavelength,

incident angle and thickness of the slab. Tuning any of these parameters has an inci-

dence on the interference pattern.

In a similar way, one can think of an electronic Fabry-Perot interferometer (FPI).

Consider the device presented in Figure 1.6. The main idea is to use three quantum

point contacts (QPCs) to deplete the electrons of an underlying 2DEG, and reshape

the edge currents into an interferometer. Recall that in the quantum Hall regime, one-

dimensional edge currents arise at the borders of the sample. In fact, the ‘borders’ of

the sample are displaced by the electrostatic repulsion and we should really think of the

borders as being those of the 2DEG.

S

Figure 1.6: Interference between reflected (green, leftmost) and transmitted (red,
encircling the central area) edge currents. The phase accumulated by the transmit-
ted current can be tuned by a modification of the central area S. The constriction
of the edge currents is achieved by QPC that deplete the 2DEG beneath the surface.

The applied voltage depletes the electrons under the gates, which can ultimately

result in a characteristic ‘pinch-off’ of the conductance across the QPCs. If the QPCs

are pinching just right (the exact value of the voltage will depend on each sample due to
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nanoscale geometry differences), the edge currents have a statistical probability of being

either reflected or transmitted. Interference happens when the current transmitted to

the central surface S recombines with the originally reflected current. Through this

process, the current that encloses the area S accumulates a phase with respect to the

reflected current.

The possibility to tune the interferometer by changing the phase accumulated around

S is a consequence of the Aharonov-Bohm (AB) effect [36]. The AB effect describes

phase shift that results from the coupling of the electromagnetic vector potential �A with

the complex phase of charged particles. In a magnetic field, the phase accumulated by

a particle with effective charge e∗ traveling along a path P is

φ =
e∗

�

�

∂P

�A · d�r. (1.25)

If P defines a closed loop around an area S, then the phase difference between the

transmitted and reflected currents is

∆φ =
e∗

�

�

∂P

�A · d�r =
e∗

�

�

S

∇× �A · d�S (1.26)

making use of Stokes’ theorem. In the simplest case, where �A represents a uniform

perpendicular magnetic field B, the integration becomes trivial and

∆φ =
e∗

� B · S. (1.27)

Therefore, sweeping the perpendicular magnetic field and changing the flux enclosed in

S affects the AB phase. The oscillations in measured resistance (or conductance) will

have a period

∆B =
�(2π)
e∗S

=
h

e∗S
. (1.28)

Measuring the oscillation period ∆B can therefore indicate the charge of the quasipar-

ticles found in the system. A second way to change the flux through area S is to change

the length of the path taken by the transmitted current. Applying a more negative

electrostatic potential at the central gates will deplete the central region and alter the
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position of the edge channel.

Reducing the area of S also offers the possibility to expel quasiparticles from the

interferometer. Changing the number of quasiparticles encircled by the central edge

current is understood as a modification of the braiding process, and has and influence

on the global statistical phase acquired around S. Removing (or adding) a quasiparticle

should induce a phase shift θ equal to νπ in the resistance oscillation pattern. Thus,

as the area S is continuously constricted, one should observe a discontinuity in the

resistance oscillations [36]. Changing the external B-field also has an incidence on the

number of enclosed quasiparticles. At filling factor ν = p/q, there are p electrons for q

flux quanta. Therefore a change ∆B will result in (∆B)(S)× (pe)/(qφ)× (e∗/e) change

in the number of quasiparticles within the enclosed area S [36].

1.4.2 Expected non-abelian signature

Interference of charged particles results in oscillation of measured Hall resistance,

with period revealing their effective fractional charge. If the ν = 5/2 state is indeed

described by the Moore-Read wavefunction, then a sweep of the flux through the area

S will produce oscillations corresponding to a fractional charge e∗ = e/4. Note that

this condition is necessary but not sufficient to determine whether the Moore-Read is

correct, since other abelian models also predict a fractional charge e/4 [36].

Then, in order to verify if they obey non-abelian statistics, it is believed that one

must look at the oscillation pattern as the number of quasiparticles enclosed in S is

changed. In the orthodox view, if the total number (Ntot) of enclosed quasiparticles

is even, then a sweep in enclosed flux will produce oscillations in the conductance cor-

responding to a fractional charge e∗ = e/4. If the area S allows for a supplemental

quasiparticle and Ntot becomes odd, then the oscillations should be suppressed due to

the non-abelian properties (see Figure 1.7). If the quasiparticles are not non-abelian,

then the oscillations should be observed at all time, independently of the parity of

Ntot [36].
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Figure 1.7: Illustration of expected aternation between oscillating and linear
regimes depending on the parity of Ntot. As the central gate voltage (repulsive)
reduces the surface S around which the AB phase is acquired, the total number of
quasiparticles encircled decreases, affecting the braiding operations, in case the 5/2
state is indeed non-abelian.
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Chapter 2

Technical Motivation

As stated previously, observing interference of anyons, and especially at filling factor

ν = 5/2, is a laborious task mostly due to the extreme fragility of the states. The most

important element motivating the development of the flip-chip method is that electronic

density uniformity plays a key role in the formation of robust 5/2 features [36]. Yet, the

fabrication of devices (such as interferometers) to probe the 5/2 state involves several

processing steps, which are likely to contaminate and alter the properties of the 2DEG.

In particular, electron-beam (e-beam) lithography is susceptible to tarnish the mobility

and density uniformity of the 2DEG, by trapping charges in the crystalline heterostruc-

ture. The flip-chip approach is implemented to avoid e-beam processes done directly

on the 2DEG. Hence, the idea is to create an interferometer on a separate substrate,

and to then flip it against the high quality 2DEG sample, as if it had initially been

patterned on the latter. The following sections will review the conventional approach

to fabricate gating devices on top of 2DEGs, and then illustrate the advantages offered

by our innovative flip-chip method.

2.1 Electrostatic gating

Electrostatic gating is probably the most widely used technique in the modern

electronics industry as it plays a role in the functioning of field-effect transistors (FETs).

Gating refers to the application of a voltage (gating voltage) that is meant to affect the
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conductivity of the charge carriers in a semiconductor material. This principle is put

to use in low-dimensional physics as well to control the flow of electrons in a 2DEG.

When doing experiments to probe quantum phenomena, the scale of the gating devices

(such as QPCs) must go down to micro or nanometers. To build such small devices,

physicists can take advantage of nanofabrication technologies that were developed in the

past decades, and perfected thoroughly thanks to the requirements of the evergrowing

semiconductor industry.

2.1.1 Conventional fabrication approach

Integrated circuits composed of nanoscopic components (e.g. transistors on a CPU)

are usually made via a series of lithographic interventions on a resist-coated substrate.

Lithography is done by ‘burning’ a pattern in a very thin and uniformly spread resist,

after which it is possible to develop a negative stencil of the desired device. Evaporating

metal through the stencil leaves the device as if it had been printed and integrated on

the substrate. In general, optical UV light is convenient and widely used for lithographic

processes (photolithography). However, its main disadvantage is that the writing reso-

lution is limited by the wavelength of light (no smaller than a few hundred nanometers).

To pattern smaller devices, one has to use e-beam lithography (EBL), reportedly reach-

ing resolutions below 5 nm [39].

EBL uses a focused beam of electrons to burn patterns in thin layers of electron-

sensitive resists. The advantages comes from the fact that the de Broglie wavelength of

electrons is much smaller than that of UV photons. Indeed, some EBL writing systems

have accelerating voltages going up to 100 kV, meaning that electrons have a kinetic

energy of about Ek ∼ 100 keV. With rest mass of 0.511 MeV, the de Broglie wavelength

of these electrons is

λ =
hc

pc
=

hc�
2× Ek ×mec2

=
hc√

2× 100000× 0.511× 106
≈ 3.9 pm. (2.1)

Such resolution is in practice never achieved (for lithography or imaging), due to the

size of the electron beam, to the size of atoms and resist molecules, diffusion, and
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other noise-inducing limiting factors. The point is that EBL is required to push the

limits of top-down nanofabrication techniques, and that most groups [13–18] working

on Fabry-Perot anyon interferometers take advantage of this method in order to produce

devices with small enough features (area S and QPCs precise to tens of nanometers, see

Figure 1.6).

The conventional method for nanofabricating gating electrodes is illustrated in Fig-

ure 2.1. First, the pattern is exposed through EBL directly on the surface of a resist-

coated heterostructure, after which metal is evaporated to create the gates. But by

performing e-beam lithography directly on the surface of the 2DEG, very energetic

electrons might be introduced and trapped in the substrate, causing a perturbation of

the 2DEG uniformity that is likely to make the 5/2 state harder −if not impossible−

to observe.

Resist

Gate

(QPC)

2DEG GaAs/AlGaAs

a. b. c.

conventional 

Figure 2.1: Conventional electrostatic gates fabrication method. a. the resist for
electron-beam lithography is deposited directly on the surface of the GaAs/AlGaAs
heterostructure. b. The metal deposition is done directly on top of the substrate. [1]

2.2 The flip-chip method

In order to avoid direct e-beam writing on the 2DEG substrates, the flip-chip

method proposes to create interferometers on a separate substrate. The method, par-

ticularly suited for experiments involving ultra-high mobility samples, is currently in a

patent application process, co-invented by K. Bennaceur and G. Gervais. The novelty
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resides in the sample assembly, where devices are held mechanically on the surface of

the substrate, as opposed to being patterned directly on it.

d. e.

f.

h.

Sapphire

Ohmic

contacts

!ip chip

a. b.

c.

Figure 2.2: Illustration of the flip-chip concept. a. The metallic gates (here a
simple QPC) are patterned using e-beam lithography on a piece of sapphire. b.
The gates are then flipped on top of the 2DEG sample. c. The final assembly
showing depletion of the underlying 2DEG. [1]

2.2.1 Concept and requirements

The idea of the flip-chip is, as illustrated in Figure 2.2, to fabricate the gating

devices on a slab of artificial sapphire and to hold it against the 2DEG, as if it had

originally been created on it. Although sapphire substrates were retained, it is relevant

to say that several other candidates have also been tested in previous development

phases (silicon, gallium arsenide, mica). Sapphire was kept because of its rigidity and

very good electrical insulation. Moreover, using transparent materials turned out to

be helpful for the assembly and testing of the flip-chip devices. Apart from making

the alignment of the interferometers easier, a transparent sapphire substrate makes it
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possible to illuminate the underlying heterostructure with an LED during the cooldown

process, which is known to improve the mobility and density of the 2DEG.

To make the flip-chip work properly, the biggest challenge comes from the fact that

applying the gates mechanically on the 2DEG requires both surfaces to be absolutely

clean and flat. Indeed, any dust could tilt the substrates, introduce a gap between

the gates and the heterostructure and prevent the electrostatic voltages from correctly

reshaping the 2DEG into an interferometer. The distance between the gates and the

underlying 2DEG is crucial, for the dimensions of the QPC are adjusted so that the

2DEG depletion can lead to tunable narrow constrictions (see Figure 1.6). The flatness

constraint also implies that the surface (top) of the metal evaporated on the sapphire

has to be extremely uniform. This is only possible if the whole device is patterned at

once, in a single e-beam lithography process. This fabrication challenge has been solved

by using a judicious sequence of e-beam writing routines, allowing to expose both large

and fine areas in a reasonable time (details in the following section).

2.2.2 Advantages

The ongoing efforts invested in the development of the flip-chip method are mo-

tivated by a series of advantages it has over the conventional fabrication technique

(mentioned above). Despite the technical challenges associated with the implementa-

tion of the method, the the flip-chip has many positive upshots [1], the principal ones

being the following:

i. It avoids degradation of the electron mobility and density uniformity

during e-beam lithography.

The bottom line argument for avoiding e-beam lithography is to preserve good

2DEG quality. Here, quality refers to ultra-high electron mobility (in excess of

30·106 cm2/Vs for some of the best samples), and high density (up to 3·1011 cm−3).

Those features are achieved by a meticulous layout of atomically flat semiconduc-

tors (heterostructure) grown by molecular beam epitaxy, creating the conditions

for electrons to populate and move freely in a narrow quantum well. Usually,

the 2DEG is situated only a few tens of nanomemters below the surface of the
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heterostructore sample, hence anything done on the surface of the substrate is

potentially risky. It is believed that damages can be done to the heterostructure

by e-beam lithography due to radiation from heating, electrostatic charging and

ionization. Those risks are eliminated by doing the lithography on a separate

substrate, leaving the 2DEG in pristine conditions.

ii. It avoids degradation of the electron mobility and density uniformity

during metal evaporation.

Metal evaporation (sputtering or physical vapor deposition) is a process through

which metal atoms such as gold, aluminum, titanium or nickel are deposited on the

surface of a substrate in order to create contacts or gates. The evaporated atoms

are ejected from nearly boiling metal (in vacuum) and thus reach the surface of

the sample with a relatively high velocity. The atoms deposited on the surface

of the heterostructure can possibly disturb the delicate semiconductor layout,

introduce impurities and cause density and mobility variations in the 2DEG. Those

impurities, being in the neighborhood of the mobile electrons, could also interfere

with the edge channels of the interferometer.

iii. It avoids contamination by chemicals throughout the nanofabrication

processes.

The fabrication of gating devices involves steps during which various chemicals

are put in contact with the substrate. The chemicals, such as resist (PMMA)

and solvents (acetone, isopropyl alcohol, methyl isobutyl ketone) can be hard

to remove completely (that is to say, with absolutely no molecules left on the

surface of the substrate). The residues, if any left, could trap charges and cause

fluctuations in the 2DEG electron density, and interfere with the interferometer

QPCs fine-tuning.

iv. It reduces strain and stress caused by differential thermal contractions.

The bulk of the heterostructures, made out of GaAs, and the various metals used

for the gating devices have different coefficients of thermal contraction. When
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cooling down the samples, this difference can cause strain in the materials and

possibly alter the performance of gating devices (phenomenon known as differential

contraction). Once again, flatness is of prime importance, and it is safer to avoid

strain on the heterostructure in order to preserve the integrity and quality of the

2DEG.

v. It makes it possible to reuse the 2DEG materials and interferometers.

Nanofabrication of complex devices often has a low yield and requires many tests

before reaching success. By fabricating the devices on a separate substrate, it is

possible to save the precious 2DEG material. Furthermore, the flip-chip method

makes it possible to easily test different regions of a same 2DEG sample. This is a

great advantage since it is known that the electronic density of ultra-high mobility

samples can vary between different parts of the wafer.
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Chapter 3

Methodology

Although anyon interferometry opens a door through which intriguing new physics

could be observed, the challenges behind the flip-chip interferometers are firstly techni-

cal. Indeed, the heart of the project resides in the implementation of a new technique

for probing ultra-high mobility samples in a non-invasive manner, in order to keep the

delicate 2DEGs in pristine condition. This chapter will present the fabrication steps

of the flip-chip Fabry-Perot electron interferometers, and provide a description of the

equipment used to test them. Purposefully technical and detailed, the following sec-

tions are intended to document the elaboration of the devices as well as possible, thereby

allowing future researchers to keep moving forward in line with this project.

The fabrication of the flip-chip interferometers contains three main steps: the nanofab-

rication of the interferometers themselves, the preparation of the contacts on the 2DEG

samples, and finally the assembly of the two previous elements onto a flip-chip sample

holder. The samples are then tested via standard low-noise measurements taking place

at cryogenic temperatures.

3.1 Nanofabrication

The Fabry-Perot interferometers are fabricated by e-beam lithography and metal

evaporation on sapphire substrates. In order to avoid contamination from dust particles,

all nanofabrication steps are accomplished in a cleanroom (class 1000). Beyond standard
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nanofabrication procedures, the cleanness of the samples is of paramount importance

for the flip-chip devices since two surfaces (interferometer and 2DEG) will have to be

put in contact perfectly. Flatness is a key factor and contamination should be avoided

at all costs.

3.1.1 Interferometer design

The first step of the fabrication process is to draw the interferometer using a CAD

software. The e-beam lithography software interprets the CAD drawings and traces it

by controlling the beam of and electronic microscope. Even at minimum magnification,

the writing field of most electronic microscope is limited to a few mm2. As stated above,

the flip-chip method requires to expose the whole pattern at once, so the metal must

be evaporated uniformly over the whole interferometer. The drawing must therefore be

broken into many layers, which will be exposed sequentially, at different magnifications

and beam intensities.

2	  um

1.5	  um

0.5	  um

Figure 3.1: Schematic drawing of the central part of the top-gated interferometer.

The most important part of the interferometer consists of three central QPCs with a

topgate (Figure 3.1 and 3.2). The QPCs (with separation of 500 nm) are followed by long

tracks leading to contacts (300µm×300µm), on which wires will later be bonded (see
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whole pattern in Figure 3.6). The role of the top gate is to apply a uniform electrostatic

potential on top of the area S of the interferometer, allowing for a fine tuning of the

electronic density within S and, importantly, to ensure that the interference of charged

particles happens in the Aharonov-Bohm regime by screening coulomb interactions.

!

Figure 3.2: Schematic drawing of the edge currents interference in the Fabry-Perot
design. The edge current arriving at the leftmost QPC is either reflected (green)
or transmitted (red). The area S encircled by the transmitted edge current can be
adjusted by changing the voltage applied on the central gate.

In order to have enough resolution to draw the smaller features of the interferom-

eter, the central pattern is done first, followed by a succession of increasingly bigger

patterns. The bigger layers (Figure 3.5-3.6) are written with higher beam current and

lower magnification, as the resolution of the contact leads is not critical (they only have

to carry voltage to the QPCs).

The rationale behind the actual dimensions of the Fabry-Perot interferometers stems

from the ultimate goal to observe interference of quasiparticles in the 5/2 state of the
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FQHE. Indeed, from equation 1.28, one expects to measure oscillations in B-field with

period ∆B = h/e∗S. The 5/2 state contains quasiparticles with fractional effective

charge e∗ = e/4. Furthermore, the “width” of the 5/2 Rxx dip is relatively narrow

compared to other fractional states. Estimating that it would be convenient to observe

around 20 periods ∆B within that dip of ∼ 0.2 T, one can extract that an approximate

surface S of ∼ 1.6 × 106 nm2 is required at the center of the interferometer. This is

approximately the half the dimensions of the central area depicted in Figure 3.2, which

leaves enough room to tune the dimensions of S to the right value.

3.1.2 Electron-beam lithography

As stated above, the flip-chip method requires the whole interferometer to be flat,

so the metal evaporation must be done at once on the whole surface. This is a bit

unconventional since e-beam lithography (EBL) is usually employed to achieve high

resolution, and not to expose large surfaces. The critical parts are normally fabricated

using through EBL and metal evaporation. The contacts are then created using align-

ments masks and photolithography. Using both EBL and photolithography forces the

evaporated metal layers to overlap oven some small area. This method cannot be use

in the flip-chip case. The solution is to use extremely high beam current settings on the

microscope in order to expose large areas in a short time. Since the lithography is done

on separate substrate, a high beam intensity will not damage the 2DEG.

The substrate chosen to support the interferometer is sapphire (Al2O3), because of

its great insulating properties which avoid leaks and shorts as gating voltage is applied,

its flatness, its rigidity, and its transparency. The latter property is used to check

the flatness of the flip-chip, align the interferometers on the 2DEG and illuminate the

heterostructure with an LED during cooldowns. However, performing high resolution

EBL on a very well insulating substrate is not an easy task. Indeed, charges from the

beam accumulate in the substrate if they are not evacuated properly during the writing,

resulting in disastrous distortions of the drawing. To prevent charge accumulation

during the e-beam writing (and later accidental electrostatic discharges between the

gates), a 45 nm sacrificial layer of chromium is first deposited on the sapphire substrate
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(Figure 3.3 and 3.4). The layer will be etched after the metal evaporation step, otherwise

the gates would remained electrically connected.

PMMA

EL11

Sapphire

e-beam

during exposition

after development

chromium

Figure 3.3: Illustration of a bi-layer EBL process with underlying chromium layer.
The EL11 resist is more sensitive than the PMMA, meaning that it will be more
affected by the same exposure dose. This facilitates the lift-off after metal deposi-
tion. The chromium layer (45nm) helps to evacuate the charges during the e-beam
writing.

Then, the sapphire substrate is coated with an electron-sensitive resist. For di-

rect write e-beam, a superposition of poly(methyl methacrylate) (PMMA) and poly

(methacrylamide) copolymer (PMMA-co-PMAA) of type EL11 are used. The latter is

slightly more sensitive than PMMA, which means that a same exposure dose will have

a stronger effect on it. By spreading EL11 under PMMA, the development of exposed

areas will leave a cavity, making it easier to detach the residual metal and resist after-

wards. Figure 3.3 illustrates this layered technique. The resist spin-coating recipe is

the following, resulting in a final thickness of approximately 1400 nm.

• Sapphire wafer is cut into samples of 11×10 mm, then cleaned with water.

• In the cleanroom, a 45nm layer of chromium is deposited using a NexDep Ebeam

Evaporator.
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Figure 3.4: Picture of a 11 × 10 mm sapphire substrate before (left) and after
(right) the 45 mm chromium layer deposition.

• The samples are cleaned in acetone, isopropyl alcohol (IPA) and then water.

• The samples are prebaked (dehydrated) for 5 minutes at 150◦C.

• The samples are spin-coated with MMA(8.5)MAA EL11 at 2000 rpm for 45 sec-

onds, then immediately softbaked for 90 seconds at 180◦C on a hot plate.

• The samples are spin-coated again, this time with PMMA A7 at 4000 rpm for 45

seconds, and immediately softbaked for 90 seconds at 180◦C.

The EBL writing routine is implemented in a software (eLine Plus) controlling the

beam and stage of a 30kV Raith Gemini electron microscope (operated at Polytech-

nique Montreal). Figure 3.5 and 3.6 illustrate how the pattern is divided. The layers

of the CAD pattern are independently treated, with customized magnification, beam

settings and doses ranging between 150 and 250µC/cm2. The central region of the inter-

ferometer (requiring highest resolution) is done at high magnification (1000x) and low

beam current (110 pA). Then, the microscope zooms back to fit the successive layers,

using increasing beam currents to accelerate the process. For large areas, the doses are

purposefully higher than required to make sure that they are exposed sufficiently. The
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largest layers are done in wide-field mode (∼50x) using the highest available beam cur-

rent (∼10 nA). In this last step, the software needs to move the stage of the microscope,

as even the lowest magnification limits the field of view to about 3×3 mm, which is still

too small to fit the 8 mm long interferometers. The total exposition routine takes about

15 minutes per interferometer, most of the time being used to expose the large contacts

and leads.

Figure 3.5: Drawing of the central region of the interferometer, showing the dif-
ferent layers used to link the contacts to the QPCs and topgate. The overlap of the
different layers is purposefully exaggerated since offsets between layers can occur
within the lithography writing routine.

8mm

Figure 3.6: Complete drawing of the Fabry-Perot interferometer (real proportions),
showing all contacts and leads going to the QPCs. The whole interferometer is 8mm
long. Again, overlap regions are introduced to prevent offsets.
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3.1.3 Metal deposition

Once EBL is done, the resist is developed in order to create a “stencil” through

which metal can be deposited (see Figure 3.7). The development of PMMA and EL11

takes place in methyl isobutyl ketone (MIBK), an organic solvent that dissolves the

resist where the patterns were exposed to the e-beam. The method is the following:

• In the cleanroom, a mixture of 1:3 MIBK/IPA is prepared.

• The samples are immersed in the mixture and agitated for 30 seconds (or slightly

longer if needed).

• The development is stopped in water.

• The samples are dried using a delicate nitrogen gun.

Figure 3.7: Pictures of a sapphire substrate on which was applied electron-sensitive
resists (EL11 and PMMA). The left picture shows a sample just after spin coating,
before EBL. The sample on the right has EBL patterns, visible after development.

After development, the samples are ready for metal deposition. The interferometers

are made from a superposition of titanium and gold. Applying a fine layer of titanium
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will improve the adherence between the sapphire and metal. The bulk of the interfer-

ometers consists of a thin layer of gold, a good conductor immune to oxidation. The

deposition steps are:

• Deposition of 7 nm of Ti, once a good vacuum is reached in the chamber of the

NexDep Evaporator

• Deposition of 150 nm of Au.

After metal evaporation, the whole samples are covered in metal. To leave only the

interferometers on the surface of the sapphire pieces, another solvent is used to dissolve

the resist that remains underneath, thereby washing away all undesired metal. The

lift-off process is done in a bath of heated (70◦C) Microposit Remover 1165 without

ultrasounds as those can damage the finest parts of the interferometers, in which the

samples are left for about one hour. The interferometers are then delicately washed

with IPA/water and dried with nitrogen.

3.1.4 Chromium etching and cleaning

At this point, the interferometers rest on top of the thin chromium layer. The

chromium must be removed in order to disconnect the gates. To do so, the samples

are cut and immersed individually in Transene Chromium Etchant 1020, until it disap-

pears from the sapphire substrate. A constant monitoring is primordial, since leaving

the samples in the solution for too long could etch the chromium underneath the in-

terferometers and detach them from the sapphire. After etching the chromium, the

interferometers are rinsed in water. This final etching also ensures that the samples

are deprived of any residual resist and dust particles. Figure 3.8 shows an example of

finished interferometer.

3.1.5 Atomic layer deposition

Leaks are a problem often encountered when using electrostatic gates: once the

flip-chip are assembled and tested, the applied electrostatic voltage can produce a small

current through the heterostructure and reach the 2DEG. Furthermore, shorts can occur
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Figure 3.8: Optical microscope pictures of a completed interferometer. a. Whole
interferometer after chromium etching. b. Zoom of the central region of an inter-
ferometer (no top-gate design). c. Zoom of the central region of the interferometer
shown in a. (sample by K. Bennaceur.)

between the gates themselves, being separated by only a few hundreds of nanometers.

In order to prevent any leakage, the devices are covered with an insulating substance.

Each interferometer receives between 30 and 100 nm of Al2O3 through atomic layer

deposition (ALD). This is effectively entrapping the interferometers in a shield of sap-

phire, preventing electric discharges and leaks. This sapphire coating should not alter

the flatness of the interferometers as the layer is grown evenly, conforming to the shape

of the devices.
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3.2 Two-dimensional electron gases

The second part of the fabrication process is the preparation of the 2DEG samples.

This research was conducted using various 2DEG materials. Most of the preliminary

tests and proofs of concept were made on 2DEGs fabricated at Sandia National Labora-

tories (NM), supplied by our collaborator J. L. Reno. These 2DEGs have a great electron

mobility (∼ 2× 106cm2/V · s), but still not high enough to allow for the emergence of

the ν = 5/2 state. The ultra-high mobility 2DEGs (in excess of 30 × 106cm2/V · s)

used to study the 5/2 state are obtained through a collaboration with L. N. Pfeiffer

(Princeton). The rarity of those 2DEG samples is part of the motivation behind the

development of the flip-chip method, hoping to be able to reuse the precious materials.

3.2.1 Heterostructures

The 2DEG materials used for this study are gallium arsenide (GaAs) and aluminum

gallium arsenide (AlGaAs) heterostructures grown by molecular beam epitaxy (MBE).

MBE is a slow growing process through which atoms are gradually incorporated to the

surface of a substrate. Under the right conditions, this growing technique yields nearly

perfect crystals (defect-free), with atomically flat precision. The heterostructures are

engineered by means of a judicious superposition of semiconductor and dopant layers,

which produces an alteration of the band structure that confines electrons into a narrow

quantum well. At low temperatures, all mobile charges are trapped in this planar

well, creating a two-dimensional gas of electrons. Sophisticated growing recipes yield

2DEGs with phenomenal mobility (up to 35 × 106 cm2/Vs for the best samples from

L. N. Pfeiffer).

3.2.2 Ohmic contacts

The 2DEG wafers are first cut into pieces of about 5×8 mm. The pieces are cleaved

manually without using a rotating blade, being careful not to scratch their surface. This

precaution ensures that there is no contamination by microscopic GaAs dusts. Indeed,

those can be nearly impossible to remove due to Van der Waals interactions with the
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crystal’s surface. Once again, flatness is primordial for the proper functioning of the

flip-chips.

Rxx

RH

RD

current

Figure 3.9: Drawing of ohmic contacts (grey) evaporated on top of the heterostruc-
ture. The number of contacts on each sides of the 2DEG sample multiplies the
possible measurement configurations. Current is flown for any contact on the left
of the sample (so, to the left of the interferometer). Ground is connected to any
contact on the right.

The contacts are disposed according to the standard design shown in Figure 3.9,

leaving room for different combinations of Rxx, RH or Rxx +RH = RD measurements.

They are created by metal evaporation through a shadow mask, a fine metallic stencil

placed delicately on top of the 2DEG samples. The shadow mask method is used to

avoid performing UV lithography on the 2DEG samples, leaving them as pristine as

possible. The contact recipe goes as follows:

• Evaporation of Germanium/Gold/Nickel/Gold with thicknesses of 26/54/14/100 nm.

• Annealing (JetFirst 200) in forming gaz, mixture of hydrogen and nitrogen, for 60

seconds at 420◦C.

The annealing step is essential to diffuse the metals through the GaAs surface. In-

deed, since the 2DEG is below the surface in the heterostructure, the conducting metal

atoms must be forced through about 50 nm of semiconductor material. By ramping up
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the temperature, the atoms can diffuse and reach the 2DEG, effectively creating ohmic

contacts. Figure 3.10 shows a picture of completed 2DEG sample, with contacts, ready

to receive a flip-chip interferometer.

Figure 3.10: Picture of a typical 2DEG sample with ohmic contacts created by
metal deposition and diffusion.

3.3 Flip-chips

3.3.1 Assembly

The interferometers are held on top of the 2DEGs substrates using very soft mechan-

ical springs made of BeCu pressing on a sapphire top plate, as illustrated in Figure 3.11.

Screws are passed through the springs before being inserted in threaded holes made in

the G10 epoxy laminate printed circuit board (PCB). Apart from the customized bor-

ders leaving space for the screws, the holder is a normal 16-pins PCB.

Since flatness is of critical importance, the assembly is done in cleanroom environ-

ment to prevent any dust from contaminating the surfaces that will be put together.

First, gold wires are connected to all contacts of the 2DEG and interferometer using
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Figure 3.11: Photo of a flip-chip interferometer mounted on a PCB sample holder.
The springs maintain the sapphire top plate against the back of the interferometer,
holding all the pieces mechanically. [1]

silver epoxy. To protect the samples, the PCB holder is maintained on a custom made

grounded copper mass, whose role is to evacuate charges in case of accidental electro-

static discharges. While the 2DEG is resting flat on the PCB, the interferometer is

then delicately placed on top, followed by the top plate and screws. The gold wires are

finally soldered with indium to the contacts of the PCB.

3.3.2 Flatness verification

Using a transparent material (sapphire) for the flip-chips offers two advantages

during the assembly: it is easier to align the interferometers on the 2DEGs, and it is
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possible to verify the flatness of the flip-chip using light interference. Indeed, placing

two plates of transparent material one against the other will result in Newton rings, as

illustrated in Figure 3.12.

Figure 3.12: Newton rings pattern formed by the interference of light reflected
by two surfaces separated by a very thin layer of air in the assembled flip-chip.
Multiple stripes indicates that the flip-chip is not perfectly flat, but it can be fixed
by delicately balancing the pressure through the four screws and springs.

The periodicity of the pattern is related to the wavelength of the light reflected,

and indicates a tilt between the surfaces. If there is no tilt, then the color of the

interference pattern should be uniform everywhere between the plates. This principle

can be applied to the thin interstice between the 2DEG and the interferometer. If there

is no dust and the interferometer is completely flat, then there should be no fringes (only

one uniformly distributed color). It is possible to tune the flatness by gently adjusting

the screws holding the flip-chip in place. If a dust particle is detected (a point causing

many small Newton rings), then the flip-chip must be unmounted and cleaned.
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3.4 Electronic transport measurements

Fractional quantum Hall and anyon interference measurements must be performed

at ultra low-temperatures and require using low-noise techniques. Before attempting

anyon interferometry, the first step is to verify that all three quantum point contacts of

the interferometers can produce a characteristic pinch-off in conductance. This feature

is essential, as explained above, to make the interferometers work. Before a complete

pinch-off, the QPCs should behave like quantum wires, in which conductance is quan-

tized in units of 2e2/h. Observing this behavior is important to ensure that the QPCs

function properly in the quantum regime, where a fine tuning of gate voltage will be

essential for the interferometry experiments.

3.4.1 Measurement circuit

The main difficulty when measuring quantum wires or QPCs comes from the fact

that the resistance of these devices usually varies over a very large range during the

course of an experiment. At low temperatures, the 2DEG offers very little resistance.

But as the gate voltage constricts the flow of electrons, the conductance across the

QPC enters the quantized regime, meaning that resistance reaches values up to h/2e2 ≈

12.9 kΩ. The usual approach for such measurements is to use low frequency AC signals

from lock-in amplifiers.

Figure 3.13 shows a diagram of a 2-point probe circuit used to measure conductance

across interferometer QPCs. The lock-in amplifiers being operated at 5 V, it is possible

to measure the voltage drop across a resistor in series with the sample, from where

the conductance through the sample can be calculated. Measurement of the voltage

drop across the 2DEG is accomplished using Stanford Research Systems SR830 lock-in

amplifiers at a frequency of about 100 Hz or below. (An additional lock-in can also

be added for 4-point probe measurements.) The gating voltage that will pinch the

conductance is applied by a Keithley 2400 general purpose sourcemeter.
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Figure 3.13: Circuit used to measure the voltage drop across the 2DEG as the
gates constrict the flow of electrons (2-points). [40]

3.4.2 Low temperature fridges

Low temperatures are required to observe both the quantization of conductance

and the FQHE. The measurements are conducted mainly in two cryostats: the Variable

Temperature Insert (VTI) and a Janis JDR-150 dilution refrigerator. The VTI is

a smaller refrigerator designed for preliminary testing, usually employed with liquid

nitrogen (LN2). It is used in order to verify if the samples work, i.e. if the QPCs

can pinch-off the conductance across the 2DEG. Working samples are then moved to

the Janis dilution refrigerator where a magnetic field can be applied, cooling down to

temperatures below 20 mK .

The VTI works with liquid helium or nitrogen, and offers working temperatures

ranging between 1.5 and 300K [40]. It is particularly convenient insofar as the insert

(holder connecting the sample to the external instruments through wiring) can be re-

moved and replaced while the cryogenic liquid is still inside. Efficient testing of multiple

samples can therefore be achieved during a single LN2 transfer. The VTI cooling is done

by pumping on nitrogen gas flowing through the sample chamber. The LN2 reservoir

is in contact with the sample chamber only though a needle valve (see Figure 3.14).

While pumping on the chamber, LN2 is slowly allowed through the valve. As it fills
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the vacuumed space, the high energy molecules are evacuated, resulting in a drop in

temperature (evaporative cooling).

LN2
needle valve

insert

vacuum pump

gas 
nitrogen

samples

breakout box

Figure 3.14: Schematic drawing of the VTI cryostat. The samples, situated at
the base of the insert, are bathing in gas nitrogen. The communication from the
samples to the external apparatus (lock-ins, sourcemeters, etc) is established via
wiring passing through the insert rod and connected to a breakout box.

3.4.3 Data taking software

Data is acquired using a Python software written by actual and former members of

the lab (B. A. Schmidt, P.-F. Duc, with initial contributions by B. Evert). The software

communicates simultaneously with all connected instruments via a GPIB interface. The

execution of an experiment requires the creation of a Python script, according to which
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the software sends instructions and reads from the desired instruments. For instance,

a typical conductance pinch-off measurement requires reading voltage from a lock-in

amplifier while sweeping (negative) voltage through a Keithley.
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Chapter 4

Results

When developing a new experimental approach, effective fabrication methods and

challenges encountered are results in themselves. This chapter will first present examples

of successful measurements, and then address the difficulties encountered throughout

the project along the step-by-step improvement of the flip-chip method.

The ultimate goal of this research project was, and remains, to observe interference

between the quasiparticles found in the 5/2 state of the fractional quantum Hall ef-

fect in order to determine if they show signs of non-abelian exchange properties. The

flip-chip method has proven successful in a number preliminary steps and benchmark

measurements, indicating that sustained efforts along this road will likely lead to useful

and repeatable observations of quantum oscillations. Flip-chip devices therefore have

great potential for probing the 5/2 state via interferometry, and further investigations

of other sensitive quantum Hall states.

At this point, the principal accomplishment of this project was to observe a charac-

teristic pinch-off and quantized conductance through a flip-chip QPC. This result lead

to a first scientific publication [1] in which the flip-chip was presented as a method for

ultra-high mobility devices with emphasis put on the novelty of the technique. Along

with quantized conductance, customary quantum Hall resistance measurements were

taken “through” an interferometer in order to verify if the flip-chip architecture affected

negatively the properties of the 2DEG. As a further matter, one flip-chip Fabry-Perot

interferometer showed signs of field-dependent quantum interference of electrons. The
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reliability of this observation will however be discussed, since the oscillations could not

be retrieved by a sweep of the central gate of the interferometer. A change in the central

enclosed area of the interferometer should also, in theory, result in oscillations in the

conductance across an interferometer.

Despite great advances in the fabrication method and a proof that the flip-chip

method can reproduce landmark low-dimensional conductance measurements, the nanofab-

rication yield remains low. Even if the method offers the possibility to reuse samples,

the number of working devices is limited by the difficulty to produce absolutely flat

surfaces and ensure that the interferometers are in contact equally everywhere. The

issue of flatness will be discussed in time, and improvements will be proposed in light of

recently published efforts from an independent research group also working on flip-chip

devices [19].

4.1 1D conductance quantization

4.1.1 Conventional versus flip-chip QPCs

Conductance pinch-off and quantization can be routinely achieved on moderate

mobility AlGaAs/GaAs 2DEG samples (from Sandia National Laboratories, ∼ 2 ×

106 cm2/Vs). Furthermore, working interferometers and QPCs can usually be conserved

and tested again, thus fulfilling one of the project’s original goals. Indeed, most flip-chip

devices show good resilience to successive cooldown and warm-up cycles, and can be

reused and remounted at will. Importantly, within a single cooldown, the gate voltage

can be varied without causing significant hysteresis. The absence of hysteresis indicates

that charges accumulated in the gates are properly evacuated from the devices. This

behavior will be required later to tune the interferometer in a reliable manner.

To observe conductance quantization, the devices are cooled to ∼25 mK in our

Janis dilution refrigerator and measured via four-point probe low-noise techniques. An

example of successful measurement is shown in Figure 4.1, on which quantization of

conductance in a flip-chip QPC is compared to that of a conventional integrated QPC [1].

One can notice that the flip-chip QPC reproduces the same plateaus as the con-
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Figure 4.1: Log-scale quantized conductance across a conventional QPC (blue)
and flip-chip QPC (red) at 25 mK. The plateaus coincide at even multiples of e2/h,
as expected. Electronic density and mobility are indicated for each 2DEG samples
used in this measurement [1].

ventional QPC, although at a much higher pinch-off gating voltage. In the flip-chip

case, the QPC pinches off completely just before -13 V, compared to about -2 V for

the conventional QPC. Also, the flip-chip QPC plateaus are visibly not defined as well

as in the conventional QPC. The observations of “blurred” plateaus at higher gating

voltages is attributed to the disposition the devices when mounted in flip-chip, where

the distance between the metal gates and 2DEG is globally increased and plausibly

non-uniform. Indeed, conventional gates deposited directly on top of the heterostruc-

ture are typically separated by about 50 nm (quantum well depth) from the underlying

mobile electrons. The metal is evaporated everywhere evenly hence there is no flatness

issues, as the gates are in contact with the heterostructure over the whole surface of the
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devices. In the flip-chip case, the QPCs are necessarily further away due to the appli-

cation of an insulating ALD coating (∼20-80 nm). It is also difficult to get the flip-chip

flat over the whole contact area. The presence of air (vacuum) gaps between the ALD

and the heterostructure [1] adds more distance between the gates and the 2DEG, which

necessarily augments the voltage required to deplete it.

4.1.2 Ultra-high mobility pinch-off

Being able to reproduce QPC conductance quantization using the flip-chip method

is a first step towards the measurement of quasiparticles interference in the fractional

quantum Hall regime. However, to reach that goal, it is primordial to be capable of

transposing these measurements onto ultra-high mobility 2DEG samples (in excess of

35× 106 cm2/Vs). It turns out that working with such samples is trickier than working

with moderate mobility ones.

The elaboration of ultra-high mobility samples is complex, contains a large number

of steps and require intensive monitoring. The samples are in some sense “handcrafted”.

Although the growth technique yields 2DEGs of exceptional quality and mobility, it in-

troduces many known complications. During molecular beam epitaxy (MBE), the wafers

do not grow in a perfectly flat manner. The resulting electron density and mobility is

thus not uniform: a sample cut from the center of a wafer can have exceptional prop-

erties, while another taken further away has risks of not being as good. The flip-chip

method solves this problem, but creates another one. Indeed, the reusable flip-chips

can always be remounted at a slightly different location on a same sample, which gives

the possibility to “browse” for a sweet spot in the 2DEG. With that said, the flip-chip

requires absolute surface flatness in order to work optimally. Even a slight warp can

prevent the gates from conforming to the surface of the heterostructure over the whole

contact area. This issue is a possible explanation for why it has been consistently harder

to even simply pinch-off conductance across most ultra-high mobility 2DEG samples. In

the conventional fabrication technique, flatness was not a problem since the evaporated

metal will always conform to the surface of the substrate, no matter how irregular it is.

Despite the previously mentioned difficulties, it has been possible to use the flip-chip
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Figure 4.2: Two-point measurement of conductance pinch-off through a flip-chip
QPC measured at 4 K on a ultra-high mobility 2DEG (∼ 1.0× 107cm2/V · s) from
L. N. Pfeiffer [1].

method on our ultra-high mobility samples. Figure 4.2 shows an example of conduc-

tance pinch-off achieved on a ultra-high mobility 2DEG. A large distance between the

electrostatic gates and 2DEG explains the particularly high pinch off voltage between

−24 and −25 V. Conductance plateaus of 2e2/h are not present here since the 2DEG is

at liquid helium temperature (4 K), which is too warm. At sufficiently low temperatures,

no flip-chip devices (ordinary QPCs or interferometers) mounted on ultra-high mobility

2DEG samples could reproduce a quantization of conductance as shown in Figure 4.1.

4.2 Hall resistance in a flip-chip

In order to verify the robustness of flip-chip interferometers, and to see if they had

an effect on the quality of the 2DEG samples, they were also tested in the quantum Hall

regime. The devices themselves have been shown to withstand temperatures of 25 mK

and magnetic fields up to 9 T without being damaged. Furthermore, resistance mea-
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surements done in various configurations indicated that the main quantum Hall features

were preserved in the 2DEG in the presence of an overlaying flip-chip interferometer.
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Figure 4.3: Hall resistance (RHall, red), diagonal resistance (RD, blue), longitu-
dinal resistance outside (Rxx, black) and through the interferometer (RxxT , green)
versus transverse magnetic field in a 2DEG sample from Sandia. Obvious inte-
ger and fractional (5/3) quantum Hall hallmarks are present through the pinched
QPCs, a feature that is essential for interferometry experiments.

Figure 4.3 shows resistances taken in the quantum Hall regime in different configu-

rations, using a moderate mobility 2DEG (Sandia). RHall (red) was necessarily taken

outside the interferometer with all gates grounded (the disposition of the interferom-

eter, perpendicular to the current flow, does not give access directly to RHall). The

expected quantization of IQH plateaus is noticeable, as well as the 5/3 plateau, ex-

pected for 2DEGs of comparable mobility. However, RD (blue), which is a combination

of RHall and Rxx, provides information about the Hall resistance under the interferome-

ter. Despite a large longitudinal contribution, it is still possible to observe the resistance

maxima arising at the center of the normal RHall plateaus. Then, two versions of lon-
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gitudinal resistance were looked at: Rxx (black) taken under the interferometer gates,

and RxxT (green) taken through the interferometer while the QPCs were pinching the

2DEG. The small magnitude of Rxx is caused by the relative proximity of the contacts

used to test this geometry. The contacts being closer result in a smaller voltage drop,

hence the lower resistance. Finally, the usual characteristics are preserved in RxxT ,

with (almost completely) vanishing longitudinal resistance at allowed filling values. In

sum, the method preserves the quality of the 2DEG samples, which confirms another

expectation of the flip-chip project.

4.3 Quantum oscillations

Apparent quantum oscillations were observed while testing a Sandia (moderate

mobility) flip-chip interferometer. While the QPCs are partially pinching the 2DEG,

they enter a regime where they act like beam splitters for electrons. In the IQHE,

the electrons circulating in edge currents are then either reflected or transmitted, re-

sulting in interference and diagonal conductance oscillations as the B field is changed

(see chapter 1). The field-dependent oscillations that were obtained with our flip-chip

interferometers are not very well defined. However, when extracting an average oscilla-

tion period ∆B of ≈ 0.018T, using equation 1.28 reveals that the effective central loop

area S is be about 450× 450 nm2, which is not unreasonable considering the design of

our interferometer. The plausible interference of electrons in the integer quantum Hall

regime is presented in Figure 4.4.

An additional element which makes those oscillations ambiguous is that they could

not be reproduced by sweeping the central gate voltage. Theory predicts that pinching

the central gate will decrease the size of S, resulting in a change of accumulated phase

between the transmitted and reflected electrons (analogous to sweeping the B field

and changing the flux through S ). Such behavior could not be produced, which raises

questions concerning the first obtained oscillation results. A deeper investigation will

have to be undertaken to determine if our flip-chip method is currently suitable for

observation of electron and quasiparticle interference.
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Figure 4.4: Possible field dependent diagonal conductance (∝ lockin voltage) os-
cillations due to interference of electrons in the integer quantum Hall regime. The
dimensions of the central box of the Fabry-Perot interferometer is 2× 1.5 = 3µm2.
Extracting the period∆B and making use of equation 1.28 yields an effective central
loop of area S ≈ 0.2µm2, a result consistent with electron interference.

4.4 Main issues

The principal fabrication challenge is to ensure the flatness of the two surfaces of

the flip-chip (2DEG and interferometer). In spite of all taken precautions (cleanroom

processing, cleaning, etc), it is difficult to make sure that there is absolutely no dusts on

the 2DEG and on the interferometer. Recall that the thickness of the metal layer of the

interferometers is about 150nm. Any contamination from a dust particle with dimen-

sions larger than that could tilt the flip-chip and thereby introduce an air gap (vacuum)

between two surfaces. Such a gap increases drastically the gate voltage required to
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pinch-off the 2DEG due to the dielectric constants of air, possibly trapped water vapor

and helium/nitrogen gas, which makes it hard to have all three interferometer QPCs

working correctly. The flatness issue could be improved by reducing the contact area be-

tween the surfaces that are mechanically held in contact [1]. Solutions such as creating

large pillars lifting slightly but evenly the interferometer, or etching the heterostructure

to reduce the contact area, were tried and shown successful by Kouwenhoven’s research

group working on similar flip-chip devices [19].

Next, current leaks were found to be regular source of struggle when testing the

flip-chip devices. Our solution was to apply an insulating ALD (Al2O3) of about 30 to

100nm to enclose the interferometers, thus preventing charges from escaping the electro-

static gates. However, the mobile electrons of Pfeiffer’s ultra-high mobility 2DEGs are

already situated at a few tens of nanometers below the sample’s surface (various depths

depending on the sample). Adding ALD increases significantly the distance between

the gates and the gas, which once again increases the voltage required to deplete it. We

often observed that the conductance pinch-off never occurred, even at gating voltage as

high a -60V. In comparison, some samples on Sandia 2DEGs could be totally pinched

before reaching -10V. As reported by Willett [36], one of the challenges in the study

of the 5/2 state is that the ultra-high mobility wafers must be designed such that the

2DEG is deeper below the surface. This is part of the reasons why flip-chips mounted

on Sandia wafers are easier to use. In sum, while preventing leaks, our approach also

brings the interferometers very far away from the 2DEG, requiring extremely high gat-

ing voltages. This situation could be avoided by leaving out ALD and engineering

the flip-chips such as to purposefully leave a small air gap between the interferometers

and heterostructures. Again, this strategy was recently employed by Kouwenhoven to

conduct successful flip-chip interferometry measurements [19].
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Chapter 5

Conclusion

5.1 Closing remarks

The ultimate objective of the flip-chip anyon interferometer project was to observe

interference of quasiparticles in the 5/2 state of the fractional quantum Hall effect. In

two dimensions, the exchange properties of particles are not limited to fermionic or

bosonic behaviors. Instead, changing the topology of the configuration space opens

up a continuous range of anyonic statistical phases governed by braiding operations,

ranging between Fermi-Dirac and Bose-Einstein exchange statistics. Anyons are now

well understood within the composite fermions picture of the fractional quantum Hall

effect, and consist of electrons bound to flux quanta in a ratio described by the filling

factor ν. The 5/2 state, however, remains a mystery because of its even denominator,

and stands as the exception to the composite fermion rule governing allowed ν values.

Among the models proposed to explain the seemingly incompatible nature of the state,

the Moore-Read Pfaffian attracted attention among the community since it described

the 5/2 quasiparticles as Majorana bound states with non-abelian exchange properties.

In order to probe the statistics of the 5/2 states, a promising approach is to attempt

interferometry manipulations through which quasiparticles are braided one around an-

other. Interferometry experiments were used to demonstrate the existence of anyons and

fractional statistics in the FQHE. Yet, it appears that transposing these experiments in

the 5/2 state is a harder task due to its extreme fragility, making it observable only in
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the highest mobility 2DEG samples. Furthermore, it is suspected that some nanofabri-

cation steps performed directly on the 2DEG, notably e-beam lithography, can tarnish

irreparably its quality and make strong 5/2 features very difficult to observe. In order

to tackle the fragility of the 5/2 state, this research project proposed to implement a

flip-chip Fabry-Perot interferometer. In this method, the interferometers are fabricated

independently on a sapphire substrate, and then flipped against the heterostructure as

if the devices had initially been patterned on it. The hope was that the method would

leave the 2DEG in pristine conditions, thus allowing to probe robust 5/2 states via

interferometry.

Interferometers were successfully fabricated by e-beam lithography on sapphire sub-

strates. Mounted in flip-chip configuration, those interferometers were tested on mod-

erate and ultra-high mobility 2DEG samples. The expected QPC quantization of con-

ductance could be observed through samples of moderate mobility, with efficiency com-

parable to QPCs fabricated by conventional metal evaporation methods. It was also

possible to pinch-off the conductance of an ultra-high mobility 2DEG, although further

investigations must be done in order to understand why it is harder to operate flip-

chips on these samples. Still, the flip-chip devices did not seem to affect the quality of

the underlying 2DEG, as demonstrated by quantum Hall resistance measurements in

different configurations. This result indicates that the flip-chip fulfills one of its main

goal, that is: to preserve the 2DEG mobility by avoiding damaging processing steps.

Furthermore, flip-chip devices were resilient to multiple cooldown cycles and could ef-

fectively be reused and remounted on different samples. This facilitates sample testing,

increases the fabrication yield and allows to preserve the precious 2DEG materials.

The flip-chip method has however one main drawback: the flatness of the devices

and samples becomes absolutely crucial. Indeed, conventional metal deposition methods

will conform to any surface. This flip-chip requires joining and holding mechanically

two separate pieces and obtain a device that should be equivalent. This is difficult

mainly due to the imperfection of the ultra-high mobility 2DEG samples, chemical

contamination and dust particles. Solutions for the flatness issue are currently being

elaborated. Those propose to reduce the contact area by etching the heterostructures

58



and leaving only a thin strip on which a small fraction of the interferometers would be

touching, or to purposefully create a gap between the devices and the heterostructures

by using ‘pillars’ surrounding the gates (idea implemented by [19]).

In sum, although it has not yet been possible to observe anyon interferometry using

our flip-chip devices, the method itself seems promising. The possibility to reuse devices

on different samples is particularly suited for further study of the sensitive fractional

quantum Hall effect and its 5/2 state, which appears only in the highest quality 2DEG

samples.

59



References

[1] K. Bennaceur, B. A. Schmidt, S. Gaucher, D. Laroche, M. P. Lilly, J. L. Reno, K. W. West, L. N.

Pfeiffer, and G. Gervais. Mechanical Flip-Chip for Ultra-High Electron Mobility Devices. Scientific

Reports, 5(13494), September 2015.

[2] Frank Wilczek. Quantum Mechanics of Fractional-Spin Particles. Physical Review Letters,

49(14):957–959, Octobe 1982.

[3] J. K. Jain. Composite-fermion approach for the fractional quantum Hall effect. Physical Review

Letters, 63(2):199–202, July 1989.

[4] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and J. H. English. Obser-

vation of an even-denominator quantum number in the fractional quantum Hall effect. Physical

Review Letters, 59(15):1776–1779, October 1987.

[5] N. Read and G. Moore. Fractional Quantum Hall effect and Nonabelian Statistics. Progress of

Theoretical Physics Supplements, 107:157–166, Januray 1992.

[6] Michael H. Freedman, Alexei Kitaev, Michael J. Larsen, and Zhenghan Wang. Topological quantum

computation. Bull. Amer. Math. Soc., 40:31–38, October 2003.

[7] Bernd Rosenow, Bertrand I. Halperin, Steven H. Simon, Bernd Rosenow, Bertrand I. Halperin,

Steven H. Simon, and Ady Stern. Exact Solution for Bulk-Edge Coupling in the Non-Abelian

ν = 5/2 Quantum Hall Interferometer. arXiv, page 12, June 2009.

[8] C. de C. Chamon, D. E. Freed, S. A. Kivelson, S. L. Sondhi, and X. G. Wen. Two point-contact

interferometer for quantum Hall systems. Phys. Rev. B, 55(4), January 1997.

[9] A. Stern and B. I. Halperin. Proposed experiments to prove the ν = 5/2 quantum Hall state.

Physical Review Letters, 96:016802, January 2006.

[10] Parsa Bonderson, Alexei Kitaev, and Kirill Shtengel. Detecting Non-Abelian Statistics in the

ν = 5/2 Fractional Quantum Hall State. Phys. Rev. Lett., 96(1):016803, Januray 2006.

[11] Roni Ilan, Eytan Grosfeld, and Ady Stern. Coulomb Blockade as a Probe for Non-Abelian Statistics

in Read-Rezayi States. Phys. Rev. Lett., 100(8):086803, February 2008.

[12] Bertrand Halperin, Ady Stern, Izhar Neder, and Bernd Rosenow. Theory of the Fabry-Pérot
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