
INFORMAnON TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the tex! directly from the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face. while ethers may be from any type of

computer printer.

The quality of this reproduction la dependent upon the quality of the

copy submitted. Broken or indistinct print. coIored or poor quality ïtlustrations

and photographs. print bleedthrough, substandard margins. and improper

alignment can actversely affect reproduction.

ln the unlikely event 1hat the author did not send UMI a complete manuscnpt

and there are missing pages. these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, begiming at the upper Ieft·hand corner and continuing

from left to right in equal sections with small over1aps.

Photographs included in the original manuscript have been reproduœd

xerographically in this copy. Higher quality 6- x 9- black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contad UMI direclly to order.

Bell & Howell Information and Leaming
300 North Zeeb Raad, Ann Arbor. MI 48106-1346 USA

800-521-0600

•

•

COMPUTATIONAL GEOMETRY

WITHTHE

ROTATING CALIPERS

by

Hormoz Pirzadeh

School of Computer Science

McGill University

Montréal, Québec

Canada

May 1999

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

OF MCGILL UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER Of SCIENCE

Copyright © 1999 by Hormoz Pirzadeh

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON KtA 0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue wellington
OIIawa ON KtA 0N4
Canada

The author bas granted a non
exclusive licence allowing the
NationaI Library of Canada to
reproduce, lom, distribute or seO
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
pennission.

L'auteur a accordé une licence non
exclusive pennettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fatmat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-50856-0

Canadi

•

•

Abstract

The Rotating Calipers is a paradigm used to solve a number of problems in the field of

Computational Geometry. The original algorithm was presented by Shamos in 1978

in order to find the diameter of a convex polygon; a few years later, Toussaint showed

that the essence of the algorithm cao he used to solve a number of other problems. In

the past twenty years, research done by Toussaint and others has shown the Rotating

Calipers to be a paradigm in ComputationaI Geometry! applicable to a variety of

problems. The resulting algorithms are often optimal in their time complexity, and

always efficient and easy to implement.

This work is an e>..-tensive collection of these results, including aH those obtained

at ~IcGill University. It is the first time such a collection has been done, and would

therefore be viewed as an important asset by many researchers around the world.

The results in question are reviewed, and proofs lacking in their original articles

are provided. Furthennore, a new result is obtained. The problems studied in this

work include the diameter and width of convex polygons, the maximum and mini

mum distance between convex polygons, the minimum area and minimum perimeter

enclosing rectangles for convex polygons, onion and spiral triangulations, quadran

gulations, merging convex hulls, intersecting convex polygons, common tangents and

critical support lines, and vector sums of convex polygons.

To supplement the theoretical aspect of this work, a synthesis of this work is

provided on the Internet, as weil as an interactive applet demonstrating the use of

the Rotating Calipers in solving many of the above mentioned problems.

ii

•

•

RéSUnlé

Le paradigme des "Rotating Calipers" permet de trouver la solution à plusieurs

problèmes en Géométrie Algorithmique. Cet algorithme a été proposé initialement par

Shamos en 19ï8 pour trouver le diamètre d'un polygone convexe. En 1983, Toussaint

démontra que le même algorithme sert à résoudre d'autres problèmes géométriques.

Depuis lors, Toussaint ainsi que d'autres chercheurs dans le domaine ont déterminé

que l'algorithme est en fait un paradigme pouvant être appliqué à plusieurs autres

problèmes. Toujours simple à implémenter, l'algorithme offre souvent une complexité

optimale.

Cette thèse est un recueil de la plupart de ces résultats, et en particulier tous ceux

obtenus à l'université NfcGill. Cet ouvrage sera utile aux chercheurs du domaine de la

Géométrie Algorithmique, puisque c'est le premier recueil de son genre. Les résultats

en question sont ré-étudiés, les preuves manquant dans les articles originaux sont

fournis, et un nouveau résultat est présenté. Les problèmes étudiés sont: le diamètre

et la largeur de polygones convexes, la distance minimale et la distance maximale

entre deux polygones convexes, les rectangles d'aire et de périmètre minimaux d'un

polygone convexe, les triangulations "oignon" et "spirales", les quadrangulations,

l'union et l'intersection de polygones convexes, les lignes tangentes communes et les

lignes de support critiques, ainsi que la somme vectorielle de polygones convexes.

Pour complémenter le côté théorique, une synthèse de ces résultats est presentée

sur l'Internet, ainsi qu'un "applet" interactif montrant la résolution de la plupart des

problèmes ci-dessus avec le paradigme des "Rotating Calipers" .

iii

•

•

Ackno",ledglllents

First and foremost, 1 would like to thank my thesis supervisor, Prof. Godfried Tous

saint, for accepting me as his student, and providing everything 1 needed in order to

complete this work. Like many of his colleagues at the School of Computer Science,

Prof. Toussaint loves to teach and this aspect makes him wonderful to work with.

The School, is in my mind an ideal environment for studies in Computer Science.

The atmosphere is wonderful, thanks to the faculty and staff. Among the professors,

Luc Devroye and Prakash Panangaden stand out, as they are two of the greatest

teachers 1 have ever had, and 1 am certain 1 share this opinion with many students.

1 extend my gratitude to the administrative staff of SOCS, whose help, patience,

and friendliness have always impressed me. A special thank you goes out to the

graduate secretary, rvIs. Franca Cianci, whom 1 probably bothered too many times

about my thesis!

1 thank the technical staff and systems administrators of the School and the Com

putational Geometry Laboratory for providing wonderful tools to work with, and for

their quick and thorough help whenever needed.

Many people have contributed to this work on a more personal level. 1 thank

my family for their support, encouragement, understanding, and basically for being

\Vonderful people! Special thanks go out to my new family for everything they have

done to help me finish this work. Although one furry little member of this family

\Vas sometimes disruptive on long nights of programming, l'm sure he couldn't help

it. Still, 1 already miss little Sacha.

iv

•

•

1 would like to thank a wonderful group of friends 1 am lucky to have. Among the

"best" , 1 thank Lorenzo, Seth and Riccardo. Sadly, 1 did not get to see much of Seth,

but he always had his special words of encouragement to keep me going. Lorenzo and

Riccardo had a more direct contribution. Lorenzo helped me a great deaI with the

applet; he introduced me to Sun Java (there can aoly be one), and probably spent

too rnuch time testing the applet! Ta complement this, Riccardo helped with the

theoretical work, and the actual thesis. His input is always helpful, and somehow he

managed to make time for me in his busy new lire. 1 hope 1 can repay my debt to

each one.

Finally, there remains my treasured bride, whom 1 could not thank in mere words...

Ta my dearest Elizabeth, 1 dedicate this thesis.

v

•

•

Contents

Abstract

Résumé

Aeknowledgments

1 Introduction and Preliminaries

1.1 Introduction......

1.2 Review of Literature

1.3 Geometrie preliminaries

1.4 Analysis of algorithms

2 Computing Distances

2.1 The diameter of a convex polygon

2.1.1 Introduction

2.1.2 Theor'etieal results and algorithm analysis

2.2 The width of a convex polygon

2.2.1 Introduction .

vi

ii

iii

iv

1

- 1

2

4

5

8

8

8

9

15

15

•
2.2.2 Theoretical results and algorithm analysis 16

2.3 The maximum distance between two convex polygons 19

2.3.1 Introduction. · . 19

2.3.2 Theoretical results 20

2.3.3 l\lgorithm and analysis .. · .. 22

2.4 The minimum distance between two convex polygons 24

2.4.1 Introduction. · 24

2.4.2 Theoretical results 25

2.4.3 Aigorithm and analysis . 30

3 Enclosing Rectangles 33

3.1 The minimum-area enclosing rectangle 33

3.1.1 Introduction . · 33

3.1.2 Theoretical results 34

3.1.3 Aigorithm and analysis . . · . . 38

3.2 The minimum-perimeter enclosing rectangle 39

3.2.1 Introduction. · 39

3.2.2 Minimum-perimeter versus

minimum-area enclosing rectangles 40

3.2.3 Theoretical results ... 42

3.2.4 Algorithm and analysis . 45

3.3 Width-determined enclosing rectangle. · . . 46

• 3.3.1 Bounds on the error 49

vii

•
4 Triangulations 52

4.1 Introduction 52

4.2 Onion Triangulations 53

4.2.1 Introduction. 53

4.2.2 Theoretical results 54

4.2.3 Aigorithm and analysis 56

4.3 Spiral Triangulations 60

4.3.1 Introduction 60

4.3.2 Aigorithm and analysis . 62

4.4 Quadrangulations 68

5 Properties of Convex HuUs 72

5.1 Nlerging convex hulls 72

.5.1.1 Introduction. 72

5.1.2 Theoretical results 74

5.1.3 Aigorithm and analysis . 76

5.2 Cornmon tangents. 78

5.3 Intersecting convex polygons 80

5.4 Critical support Hnes 81

5.4.1 Introduction . 81

5.4.2 Theoretical results 81

5.5 Vector SUffiS of convex polygons 85

5.5.1 Introduction . . . 85

• 5.5.2 Theoretical results 86

viii

•

•

6 Thinnest Transversals

6.1 Thinnest Strip Transversal

7 Conclusion

A Rotating Calipers homepage

B Rotating Calipers applet

Bibliography

LX

100

100

106

108

109

118

•

List of Figures

2.1 The diameter of P is determined byan anti-podal pair. Il

2.2 Decomposing Pinto convex chains. .. 13

2.3 Illustrating the proof of Lemma 2.1.3.. 13

2.4 Illustrating the proof of Lemma 2.1.3.. 14

? - Illustrating the width of a convex polygon. 16_.0

2.6 Illustrating the proof of Lemma 2.2.1. . 18

2.7 IIIustrating the proof of Theorem 2.3.1. 21

2.8 Illustrating Aigorithm lVIAXDIST2POLY .. 22

2.9 Illustrating the proof of Theorem 2.4.1. ... 26

2.10 The three cases for the minimum distance between P and Q. 2ï

2.11 Illustrating the proof of Theorem 2.4.3. 28

2.12 Illustrating the proof of Theorem 2.4.3. 28

2.13 Illustrating the proof of Theorem 2.4.3. 29

2.14 Illustrating the proof of Theorem 2.4.3. 30

3.1 An example of a rectangle endosing P. 35

• 3.2 A polygon and its enclosing rectangles. 40

x

•
3.3 A polygon with corresponding R min •4 and Rw . 48

4.1 The onion-peeling of a set of points. 54

4.2 The onion triangulation of a set of points. 55

4.3 Illustrating the annulus of P and Q... 56

4.4 Illustrating the proof of Theorem 4.2.l. 58

4.5 A set of points (a) and its convex spiral (b). 61

4.6 Illustrating the initialization of Algorithm TRI-CS. 63

4.7 The inner polygonal and outer spiral regions 64

4.8 The outer spiral region. 64

4.9 An example of a quadrangulation 70

5.1 IvIerging two convex hulls by adding "bridges". . . 73

- ? An example of two vertices forming a co-podal pair.. 75;).-

5.3 An example of a common tangent.. . 78

5.4 An example of Critical Support Hnes. 82

5.5 Illustrating the proof of Theorem 5.5.2. 88

5.6 Illustrating the proof of Theorem 5.5.2. 89

5.7 Illustrating the proof of Theorem 5.5.2. 89

5.8 Illustrating the proof of Theorem 5.5.3.. 91

5.9 (a) Polygon P and its associated star diagram (b) .. 91

5.10 Illustrating the proof of Theorem 5.5.4. 92

5.11 Illustrating the proof of Theorem 5.5.5. 93

• 5.12 Illustrating the first case of Theorem 5.5.5.. 94

Xl

•

•

5.13 Illustrating the second case of Theorem 5.5.5.

5.14 Illustrating the third case of Theorem 5.5.5. ..

5.15 Illustrating the proof of the first two cases of Theorem 5.5.5.

5.16 Illustrating the proof of the third case of Theorem 5.5.5.

6.1 Illustrating Lemma 6.1.1. .

6.2 The minimum-width strip with orientation (J••

xii

94

95

96

97

103

104

•

•

Chapter 1

Introduction and PreliDlinaries

1.1 Introduction

Computational Geometry is the study of geometric problems and the algorithms to

solve them. Problems range from the straightfonvard to the very complex in their

concept. However, even the least complicated problems rarely have simple algorithms

to solve them efficiently. Usually, the best algorithm to solve a given problem is

·~tailor-made" to suit that specifie problem. It is therefore rare to find a paradigm

in computational geometry, i.e., a general method or approach to solve a variety of

problems. The Rotating Calipers is snch a paradigrn. As weIl as being polyvalent,

this method's other advantages are its simplicity in concept and its efficiency.

Invented along with the field by Shamos twenty years ago for computing the

diameter of a convex polygon [74], Toussaint, who also coined the term "Rotating

Calipersl'. was the first to show its polyvalence five years later [81]. Since then, many

problems have been solved with the Rotating Calipers paradigrn, either directly, or

as part of an algorithm.

Yet, to date, the only paper dedicated to the Rotating Calipers is the conference

paper by Toussaint [81], which contained no proofs of the results, and the journal

1

•

•

article never appeared. Due to the many requests over the years by researchers from

around the world, this project has been revived in this thesis.

The purpose of this work is to collect aIl the results involving the Rotating Calipers

obtained at lVlcGill University~ analyze them, and supply missing details and proofs.

Such a collection has never been done, and would be a welcome and useful addition

to the Computational Geometry literature.

However ~ this only constitutes the theoretical aspect of the work. In addition ta

this, an on-lïne source for information on the Rotating Calipers is provided in the form

of a homepage on the Internet, with the purpose of providing the basics on how the

paradigm works, its applications, and references ta papers on the subject. Further

more, an interactive on-line applet was developed to demonstrate various applications

of the Rotating Calipers. Because the paradigm is very intuitive, it has great ped

agogical value in Computational Geometry. Such an interactive applet would he an

invaluable tool for anyone interested in the Rotating Calipers or in Computational

Geometry. Please refer to Appendices A and B for more details on the experimental

component of this work.

1.2 Review of Literature

In 1978, M.I. Shamos started the field of Computational Geometry witbin theoretical

Computer Science with his Ph.D. thesis bearing the same title [74]. In his work, he

discusses the problem of finding the diameter of a convex polygon (see section 2.1)

and gjves a fast and efficient algorithm as a solution. This algorithm is the basis for

the Rotating Calipers paradigm.

Toussaint, in 1983, showed that Shamos' idea can be generalized to solve a variety

of problems [81], such as the minimum-area rectangle enclosing a convex polygon,

the maximum distance between two convex polygons, the vector sum of two convex

polygons, mergjng convex hulIs, linear separability of convex polygons, and many

visibility problems. Since then, the Rotating Calipers have been used ta obtain

2

•

•

many results, mostly by Toussaint. The paradigm has also been generalized to three

dimensions, although we limit the scope of this work to the study of two-dimensional

problems.

For this work, the results have been grouped according to the nature of the problem

in order to provide sorne continuity to the texte The following is the set of problems

studied:

1. Computing distances

(a) The diameter of a convex polygone

(b) The width of a convex polygone

(c) The maximum distance between two convex polygons.

(d) The minimum distance between two convex polygons.

2. Enclosing rectangles

(a) The minimum area enclosing rectangle.

(b) The minimum perimeter enclosing rectangle.

3. Computing triangulations and quadrangulations

(a) Onion triangulations.

(b) Spiral triangulations.

(c) Quadrangulations.

4. Properties of convex polygons

(a) Merging two convex hulls.

(b) Critical Support Hnes.

(c) Cornmon tangents.

(d) Vector surns.

3

•

•

(e) Intersecting two convex polygons.

5. Thinnest transversals

As the purpose of this work is ta study each of these problems, it would he

redundant to discuss here the previous results leading to them and the more recent

solutions to these. Thus, we prefer to leave these discussions in the introductions ta

each problem.

Let us now review sorne preliminary concepts in geometry and analysis of algo..

rithms. For a more elaborate discussion of these topics, consult the text by Preparata

and Shamos [65].

1.3 Geometrie preliminaries

The geometric objects studied lie in R 2
, which we shaH refer to as the plane. We use

the Cartesian coordinate system, defining a point 0 on the plane as the origin, and

the x and y axes which farm the coordinate system. Thus a point .4. on the plane

can be defined by its coordinates ax and ay. Given two points A and B, the distance

between them (denoted dist(A, Bn is determined using the usual Euclidean metric,

i.e., dist(A, B) = J(bx - ax)2 + (by - ay)2. The distance between a point and a Hne

refers to the perpendicular distance. In other words, given a point A and a line L,

dist(A, L) = dist(A, B) such that BEL, [A, B] 1.. L. Finally, the distance between

two parallel lines LI and L2 refers ta the distance between a point A E LI and L2 .

Given a set of n distinct points Pl, ... ,Pn on the plane, the set of line segments

[Pi, Pi+l] i = 1, ... , n - 1 together with (Pn,PI] form a closed path B. Let 1 be the

closed region bounded by B (but excluding B). Let P = B u l, the union of B

and 1. P is referred to as a polygon, B as its boundary and 1 its interior, and we

say that Pl, ... ,Pn determines P. A point Pi is a vertex of P, and a line segment

e = (Pi, Pi], e C B is an edge. A polygon \Vith n vertices can also he referred ta

4

•

•

as an n-gon. In this work, a polygon includes its interior. For ease of notation, the

boundary of a polygon P is often denoted 8P.

A simple polygon is such that its edges never intersect, except for adjacent edges

sharing a common vertex.

\Ve define a convex polygon to he any (simple) polygon P satisfying the following

property:

Vp, q E P, fp,q] ç P.

Finally, to avoid sorne degeneracies, the following constraint is assumed to be

respected in aIl geometric data studied: aIl points are distinct, and no three points

can be collinear. These constraints often occur in the field, and geornetric input

respecting these is often referred to as heing given in standard form.

This forms the geornetric basis for this work. AlI other abjects, tenns, and prop

erties will he defined as the need arises.

1.4 Analysis of algorithms

As this work deals essentially with the analysis of solutions to computational geomet

ric problems, Le., algorithms, it is necessary to define sorne basic concepts.

The model of computation assumed for this work is a randorn-access machine

(RArvI) using real numbers. This means that the algorithms are assumed to be

implemented on a machine with no restrictions on memory, but constrained by the

fact that it can only perform one operation at a time on finite data. The memory is

essentially an array of storage locations, each capable of holding one real number.

Renee, points (the simplest geometric data dealt with) will he stored in an array

of two real numhers, containing the x and y coordinates. Line segments and polygons

will be stored as arrays of points. This enables us to directly access a polygon's vertex

if the vertex index is known.

5

•

•

The time taken by an algorithm-its running time- is the number of primitive

operations executed. In the RAM modeI, the following operations are considered to

he primitive, and assumed to take a constant amount of time to execute (referred to

as unit time cost):

1. Arithmetic operations +, -, x, 1.

2. Real number comparisons <, >, =, <, >, #=.

3. Indirect memory addressing.

This set can be expanded to include k-th root computations, trigonometric, exponen

tial and logarithmic functions as weil as Hoor and ceiling operations.

UsuaIly, the running time of an algorithm will depend on the size of the input

given. In computational geometry, the input usually consists of points, or line seg

ments. For an input size of n, the running time is denoted T(n).

Furthermore, because the running time depends not only on the size of the input

but the input itself, we are (usually) interested in the worst-case behaviour of the

algorithme Rence, when the running time is discussed, the worst-case scenario is

implied, unless otherwise specified.

Since running times are quite complicated to compute exactly (even for uncom

plicated algorithms), the asymptotic behaviour of T(n) is determined instead of its

exact value. Therefore, running times of algorithms are classified and compared in

terms of their order of growth. For instance, if a given aIgorithm's running time can

be expressed as T(n) = Co + cin + C2n2 (where CO,Cr,C2 are real numhers and C2 > 0)

then T(n) is asymptotically quadratic and we write: T(n) = 8(n2
). Formally,

If f(n) = 8(g(n», g(n) is said to he an asymptotic tight bonnd for f(n) .

6

•

•

Based on this, we define the sets of functions O(g(n» and Q(g(n» for the asymp

totic upper and lower bounds, respectively:

O(g(n)) = {f(n) 1 3 Cl, no 0 < f(n) < clg(n) TIn > no},

O(g(n» = {f(n) 1 3 Cl, no 0 ~ clg(n) < f(n) 'tin ~ no}.

In describing the worst-case behaviour of an algorithm, O(n) is used more frequently

than its counterparts.

Finally, an algorithm'5 efficiency is often referred to as its time complexity. For

instance, an algorithm whose running time is O(n) will be said to have linear time

complexity.

Bibliographical note

For the RA.M model of computation, we refer the reader to Cook and Reckhow's

paper where the concept is formally introduced [23]. The text by Aho, Hopcroft

and Ullman [1] also offers a good description of the mode!. However, any good book

introducing algorithms [2, 24J discusses models of computation, as weIl as the e, O.

and n function sets. \Ve invite the reader to consult Knuth's papers where he formally

introduces the e notation [50] and the history behind this abstraction [49]. Finally,

Preparata and Shamos' excellent text [65] offers a heautiful introduction to the field

of Computational Geometry and the necessary preliminaries.

7

•

•

Chapter 2

COlDputing Distances

The problem of finding the diameter of a convex polygon \Vas at the origin of the

Rotating Calipers paradigm. Hence it is only natura! to start our work with a close

look at this result before moving on to other problems. Since the essence of the

problem is distance computation, we dedicate the rest of the chapter ta results of a

similar nature.

2.1 The diameter of a convex polygon

2.1.1 Introduction

The diameter of a convex polygon is the greatest distance between any two points

of the polygon. We let diam(P) denote the diameter of a polygon P and formally

define:

diam(P) = max {dist(p, q)}.
"tp,qEP

Note that it is possible for multiple pairs of points to determine the diameter of a

convex polygon; consider for example an equilateral triangle, a square, or a rectangle.

Intuitively, the pair (p, q) determining the diameter cannot belong to the interior of P

8

•

•

(otherwise we could extend the Hne through p and q, intersect it with the boundary of

P and the intersection points would have greater distance hetween them). Thus, if one

wanted to compute the diameter of a given convex n-gon P, one would already restrict

the search for p and q to the boundary of the polygon. It can also be established

that p and q must he vertices of P (assume q helongs ta an edge e = [a, b] but is

not a vertex. Then either a or b (or both) are farther from p than q is). Hence,

a quick look at the problem reveals already that we need only he concemed with

the n vertices of P. A simple algorithm immediately cornes ta mind: compute all

n(n + 1)/2 pairwise distances and keep the maximum. This is the brute-force way

and is the easiest method for determining the diameter. However its running time is

O(n2).

In 1978, Shamos presented a much more efficient yet simple algorithm for deter

mining the diameter [74]. His method was later described by Toussaint [81] as:

[...] rotating a pair of dYDamically adjustable calipers once around the

polygon.

Thus did Toussaint label Shamos' idea the "Rotating Calipers" . This algorithm

funs in O(n) time, which is in fact optimal: in sorne cases, O(n) pairs of vertices

determine the diameter. Consider for example a regular n-gon (n odd): n diameters

are determined. One could slightly perturb one of the vertices such that one single

new diameter is deterrnined. In that case, an algorithm that does oot check aIl anti

padai pairs might oot take in account the diameter determining pair of points.

Let us now analyze the result, as presented by Preparata aod Shamos [65].

2.1.2 Theoretical results and algorithm analysis

Let P = {Pl!])2, ... , Pn} be a convex polygon with n vertices in standard form, Le.,

the vertices are specified according to Cartesian coordinates in a clockwise order and

no three consecutive vertices are collinear.

9

•

•

Theorem 2.1.1 [90J further constrains our search for the diameter determining pair

of vertices. Let us however define a few terms first.

Definition 2.1.1 Aline Lisa Hne of support for a convex polygon P if it intersects

P and the interior of P lies on one side of L.

If L intersects P at a vertex v (or an edge e), we will say that v (or e) admits L.

Definition 2.1.2 Given a convex polygon P, a pair of vertices p, q EPis called an

anti-podal pair if p and q admit paTaUel lines of support.

Theorem 2.1.1 The diameter of a convex polygon P is the greatest distance between

paraUel lines of support of P.

Proof: Given P = {qll ... ,qn}. Suppose that the pairofvertices {qa,qb}

determines the diameter of P. Let dab = dist(qa, qb), let Ca be the circle

of radius dab centered at qa and Cb the circle of radius dab centered at qb.

Define the Hnes La as the tangent to C b at qa, and Lb as the tangent line

to Ca at qb, and finally let L he the Hne through qa and qb. See Figure 2.1.

By definition of tangent Hnes, we have La J.. L, and Lb ..L L. Therefore,

La is parallel to Lb. Now we daim La and Lb are Hnes of support (LS) of

P.

Pick any point pEP, p =1= qa. p is on or inside Cb since dist(qb, p) < dab ,

by the definition of diameter. Therefore p tt La. Since this is true for aIl

points of P except qa, La n P = qa, thus La is a Hne of support for P.

Similarly, Lb is a Hne of support for P.

Since La, Lb are parallel and bath Hnes of support for P, and

we have that the diameter of Pis detennined by parallellines of support.

10

•

•

L.

Figure 2.1: The diameter of P is determined by an anti-podal pair.

Finally, suppose there exist parallellines of support LI and L 2 such that

dist(Lr, L2) > dab• Say LI and L2 intersect P at vertices ql and q2,

respectively. Then dist(qII q2) ~ dist(Lr, L2) > dab , which contradicts our

assumption that dab = diam(P).

Renee, dist(La ! Lb) is the maximal distance between parallellines of sup

port for P, and we have that the diameter of P is the greatest distance

between parallel Hnes of support. _

Corollary 2.1.2 The diameter of a convex polygon P is the greatest distance between

an anti-podal pair of P.

Proof: It has already been established that any diameter pair is an anti

podai pair. Since no anti-podal pair can have a distance between its

vertices greater than the diameter, the diameter is the greatest distance

between an anti-podal pair. _

The following is an aigorithm for generating aIl anti-podai pairs of a gjven convex

polygon P = {Pl!'" ,Pn}, as presented by Preparata and Shamos [65]. Note the

addition of Hnes 10a and 12a. While 10a is a mere detail, 12a is absolutely necessary.

Il

•
Aigorithm ANTI-PODAL-PAIRS

1. begin p := Pn;

2. q := N EXT[P];

3. while (Area(p, lVEXT[P] , N EXT[q])

> Area(p, NEXT[P], q» do

q := N EXT[q];

4. qo := q;

5. while (q =1 Po) do

6. begin p:= ~NEXT[P];

Î. Print(p, q);

8. while (Area(p, N EXT[P] , N EXT[q])

> Area(p, N EXT(P], q, » do

9. begin q:= NEXT[q];

10. if «(P, q) =1 (qo, Po» then Print(p, q)

IDa. else return

end;

11.

12.

12a.

end.

end

if (Area(p, N EXT[p]' N EXT[qJ)

= .4rea(p, N EXT[p], q» then

if «p,q) =1 (qo,Pn» then Print(p,NEXT[qJ)

else Print(lVEXT[P] , q)

•

Now, to the proof of correctness. We will show that Aigorithm ANTI-PODAL

PAIRS does indeed generate aIl anti-podal pairs of P.

Suppose we want to generate aIl the points forming an anti-podal pair with a

given vertex Pi. Let q- be the furthest vertex from the edge Pi-lPi and q+ the

furthest vertex from PiPi+l. Consider Figure 2.2 where edges are shown in thick lines

and the polygon's bounds in thin lines. Vertices in the convex chains Pi+ 1q- and q-q+

must lie in triangles A and B, respectively.

12

•

•

P.

Figure 2.2: Decomposing Pinto convex chains.

Lemma 2.1.3 AU vertices forming an anti-podal pair with Pi are in the q-q+ convex

chain.

Praof: Suppose a vertex Po outside the q-q+ chain forms an anti-podal

pair \Vith Pi. (\Vithout 10ss of generality, say it is between Pi+l and q-).

See Figure 2.3. Therefore Po must lie in A (see Figure 2.3). The dark grey

Figure 2.3: Illustrating the proof of Lemma 2.1.3.

area shows the range of possible Hnes of support at Po. The light grey area

shows the range of directions possible for Pi- (Note this range is always

13

•

•

delimited by Hoes parallel to the Hnes delimiting A). These areas do oot

intersect, showing the impossibility of parallellines of support for Po and

Pi - This is true for any point in A. Heoce no point in A can have a line

of support parallel to a line of support at Pi- Similarly, no point in the

q+Pi-l convex chain can fonn an anti-podal pair with Pi.

Now suppose we take a point q in the q-q+ convex chain. Then q must

lie in B. See Figure 2.4. The grey area (Sq) shows the possible range of

Figure 2.4: Illustrating the proof of Lemma 2.1.3.

directions for a Hne of support at q. The light grey area (Sp) shows the

range of directions possible for Pi. (Note this range is always delimited

by lines parallel ta the Hnes delimiting B). The non-empty intersection of

these areas (Sp n Sq) is shown in darker grey. Since this does not depend

on the location of q, it is always possible to find parallellines of support

for any point q E B and Pi.

Therefore, aIl points forming an anti-podal pair \Vith Pi are in the q-q+

convex chain. _

Algorithm ANTI-PODAL-PAIRS determines q- and q+ for a given vertex, and by

the result above, it counts aIl vertices in this convex chain as forming anti-podal pairs

with Pi. This procedure is repeated for the vertices following Pi, until the original

pair is reached. Therefore, aIl anti-podal pairs of Pare generated.

14

•

•

Theorem 2.1.4 Algorithm ANTI-PODAL-PAIRS generates ail anti-podal pairs of a

convex polygon P in 0 (n) time.

Proof: Note first that Pis determined by Po, ... , pn. The algorithm starts

with an initialization step consisting of finding q- for Po. 50 each vertex,

starting \Vith PL is checked unti! the farthest from PnPO is found. This

vertex is denoted qo. This consists of a comparison, so the initialization

time is O(n).

Once the initialization done, the algorithm keeps track of two points:

p, the main vertex, and q, the vertices in the q-q+ convex chain of p.

For a given p, and knowing that q is at q- for p, the aIgorithm outputs

(p, q) as an anti-podaL pair, and "increments" q until q+ is reached. It

then "increments" p, at which point the old q+ automatically becomes

the new q-, so no recalculation is needed. This process is repeated until

the original pair (Po, qo) is reached. At the end of the main Loop, p or q

have been incremented. Since the algorithm never backtracks and stops

without ever counting any point t,vice, it must run in O(n) time. _

Using the results above, the diameter of a given convex polygon can be deter

rnined in D(n) time using the "rotating calipers" as a basis: the anti-podal pairs

are determined, each pair's distance computed, the maximum updated until ail pairs

have been checked.

Note that the algorithm outputs one anti-podal pair at each step, and two only if

the polygon has parallel edges. The number of anti-podal pairs for a convex n-gon is

then bound by 3n/2 [65].

2.2 The width of a convex polygon

2.2.1 Introduction

Let us start by stating the problem formally.

15

•

•

Definition 2.2.1 Given a convex polygon P, the width of P is the minimum distance

between paraUeI Unes of support of P.

As its definition suggests, the concept of width is closely related to that of the

diameter. Intuitively, one can think of the width of P as the smallest-size opening

through which one could slide the "object" Pesee Figure 2.5). In fact, the notion of

Figure 2.5: The width w of P is determined by lines of support through p and qiqj'

width is often used in collision-avoidance problems [82]. Other applications include

approximating polygonal curves and line fitting [43, 44, 51J. Often, the general proh

lem of computing the width of a set of points is discussed, but the '.;onvex hull of

points must be determined in any case, so the two problems are essentially the same.

Results dating back to 1975 [43] help characterize the problem by constraining

the possible 'candidates' for the width. In 1982, Kurozomi and Davis gÏve two algo

rithms for computing the width of a convex n-gon [51J. The algorithms rUll in O(n2)

and O(n logn) (using binary search). Houle and Toussaint [42J reduce the time com

plexity to O(n), providing two algorithms: one is based on the Rotating Calipers,

and the other on previous work by Brown for determining the diameter of a convex

polygon [11]. Our interest lies in Houle and Toussaint's Rotating Calipers solution.

2.2.2 Theoretical results and algorithm analysis

Houle and Toussaint [42] present the following result, obtained by Ichida and Kiy

ono [43]:

16

•

•

Lemma 2.2.1 The width of a polygon P is the minimum distance between paraUel

lines of support passing through a vertex-edge pair of P.

Before proving this result, let us refine our notion of anti-podal pairs. As discussed

in Section 2.1, an anti-podal pair is a pair of vertices admitting parallel Hnes of

support. But what happens if one or both Hnes coincide with edges of the polygon?

\Ve define three "types' of anti-podal pairs:

1. The anti-podal vertex-vertex case.

2. The anti-podal edge-edge case, where both Hnes of support coincide with edges

of the polygon.

3. The anti-podal vertex-edge case, where one Hne of support coincides \Vith an

edge of the polygon.

Lemma 2.2.1 states that we need only be concerned with the third case in order

to compute the width. Here is the proof:

Praof: Let us analyze cases 1 and 2.

1. vertex-vertex: Given any two points p and q and distinct parallellines

LI, [2 passing through them, we can always decrease the distance

d separating the two Hnes by rotating them about p and q in the

prefe7Ted direction of rotation. The example in Figure 2.6 shows

that by rotating II and {2 countercIockwise about p and q, d will

decrease. Thus, for this case, the distance between the parallel Hnes

of support can always be decreased until one of the Hnes hits an edge.

Therefore, the original Hnes of support determining a vertex-vertex

anti-podal pair could not determine the width.

17

•

•

Figure 2.6: Illustrating the proof of Lemma 2.2.1.

2. edge-edge: In this case, the distance hetween the lines of support is

the same as the distance hetween a vertex of one edge and the Hne

of support through the other edge. Therefore, it can he considered

as a special case of the vertex-edge case.

•

\iVith this result, the width can now be easily determined using the idea of sec

tion 2.1. Houle and Toussaint [42] describe a linear-time procedure for obtaining the

width.

Theorem 2.2.2 Using the Rotating Calipers, it is possible to determine the width of

a convex polygon P in O(n) time.

Proof: Given a convex polygon P, Algorithm ANTI-PODAL-PAïRS (see

section 2.1) outputs aIl anti-podal pairs of P. We have to determine aIl

vertex-edge cases. Vertex p and edge qq' admit lines of support if and only

if (p, q) and (P, Q') are both anti-podal pairs of P. Given our list of anti

podai pairs for P, we can go through the list in O(n) time, and determine

aIl vertex-edge pairs. Every time a vertex-edge pair is found, we calculate

the vertex-edge distance (0(1) time) and compare it to our "minimum

so-far'~ (0(1) time). When aU pairs have been found, we output the

18

•

•

"minimum-so-far" as the wirlth of the polygon. The whole process cannot

take more than O(n) time since there are only O(n) pairs to begin with.

•

2.3 The maximum distance between two convex

polygons

2.3.1 Introduction

This problem arises from the computation of the ma.ximum distance between two fi

nite planar sets. Given two sets of points on the plane, the maximum distance between

them is the greatest distance determined by a pair of points, one from each set. This

probLem occurs often in pattern recognition [26], more specifically in c1ustering prob

lems. One procedure in particular, the furthest neighbour clustering algorithm [26]

uses the maximum distance between sets. Hence an efficient algorithm for solving

this problem is essential. Of course, the brute force method (given n points in to

tal) is the easiest but yields an O(n2) algorithm. Bhattacharya and Toussaint [9]

presented a somewhat complicated O(n log n) algorithm in a paper that appeared

in 1983. Improving on this, Toussaint and McAlear [86] presented a much simpler

O(n log n) algorithm as a successor 1.

Given the two point sets, the algorithm proposed in [86] determines the convex

hulls~ and computes the maximum distance between the poLygons, using a procedure

based on the Rotating Calipers but appLied on two polygons. Despite the modifica

tions on the paradigm, the main algorithm remains very simple.

As our interest lies in the use of the Rotating Calipers, the problem studied in

this work is that of determining the distance between two convex polygons. It cao be

easily shown that the maximum distance between two sets of points on the plane is

1Ironically, this paper appeared before its predecessor

19

•

•

the maximum distance between their convex huUs. Let us then begin with a formai

definition of the problem:

Definition 2.3.1 Given two convex polygons P and Q, the maximum distance be

tween P and Q (denoted dmax(P, Q») is given by:

dmax(P,Q) = max {dist(p,q), Vp E P, Vq E Q}

2.3.2 Theoretical results

The main result, Theorem 2.3.1 by Toussaint and McAlear [86] introduces the con

cept of an anti-podal pair between two polygons to characterize the solution to the

maximum distance problem.

Definition 2.3.2 Vertices pEP and q E Q detennine an anti-podal pair between

polygons P and Q if there exist directed lines Lp and Lq through p and q respectively

such that:

• Lp is a fine of support for P and Plies to the right of Lp ,

• Lq is a fine of support for Q and Q lies to the right of Lq ,

• Lp and L q are parallel and have opposite direction.

Note that P and Q neecl not lie to the right of their respective Hnes of support,

for they could both lie to the left of the lines.

Theorem 2.3.1 Given two convex polygons P and Q, the maximum distance betweef1.

P and Q is determined by anti-podal pair between P and Q.

20

•

•

Proof: Suppose the maximum distance between P and Q is determined

by points p and q, with pEP and q E Q. \Ve will show that p and q

detennine an anti-podal pair between P and Q.

Let dpq = dist(p, q). Construct the discs Cp and Cq, both of radius dpq

and centered at p and q respectively. Obviously pECq and q E Cp.

Since p and q determine the maximum distance between P and Q, then

all points of Q are inside Cp:

Vu E Q, dist(u,p) :5 dpq ~ U E Cp

Similarly, aU points of Pare inside Cq • Let us now construct Lp and L q ,

the tangent Hnes to Cq and Cp through p and q, respectively~ and L pq, the

Hne through p and q. See Figure 2.7. Since Lp and L q are tangent Hnes,

Figure 2.7: Illustrating the proof of Theorem 2.3.1.

we have:

21

•

•

Furthermore, Lp is a line of support for P at p since it is tangent to Cq

and P is inside Cq • Similarly, Lq is a line of support for Q at q. Now

assign directions to Lp and L q such that P and Q lie to the right of

their respective lines of support. Therefore, L p and L q are parallellines of

support in opposite directions, making p and q an anti-podal pair between

P and Q. •

2.3.3 Algorithm and analysis

Using theorem 2.3.1, Toussaint and McAlear [86] present an algorithm that determines

the maximum distance between two convex polygons P and Q. By checking aIl anti

podal pairs between P and Q, the algorithm's correctness is ensured. 50, given

polygons P and Q (in standard) form with m and n vertices (in clockwise arder)

respectively, let lV = m+n and consider the following algorithm along \Vith Figure 2.8:

Figure 2.8: Illustrating Algorithm MAXDIST2POLY

Algorithm NIAXDIST2POLY

22

•

•

1. Compute the vertex with minimum y-coordinate for P (cali it Ymin(P)) and the

one with maximum y-coordinate for Q (calI it Ymax(Q). This takes G(lV) time.

2. Start with two Hnes of support(i.e. calipers) parallel to the x-axis, touching P

and Q at Ymax(P) and Ymin(Q). Choose a direction of rotation (say clockwise).

The Hnes of support determine two angles (Ji, (Ji' which are computed. (AlI of

this takes 0(1) time).

3. Since the lines of support already determine an anti-podal pair between P and

Q, compute the distances between the vertices and keep it as the maximum.

(0(1) time cost).

4. Compute 8 = min(8i , Bi)' (unit time cost).

5. Rotate clockwise by 8, thus making one Hne of support flush with one edge.

Since We have hit a new vertex, one new anti-podal pair between is considered

(in the case of parallel edges between P and Q, a maximum of three new anti

porlal pairs between the polygons can be considered). Compute aIl relevant

distances, and compare them to our "ma.ximum-sû-far". This step is also done

in 0(1) time.

6. Repeat steps 4-5 until calipers return to original position (or until our total

rotation angle is greater than 21r). After each rotation, a new vertex must be

hit. Since we ooly have N vertices, and since steps 4 and 5 are bath 0(1), This

step takes 0 (N) time.

ï. Output the "maximum-sû-far" as dmaxCP, Q).

Now to prove the correctness of the algorithm: two parallel Hnes of support for

P and Q are used. By rotating them by the minimum angle, it is ensured that the

next edge (or vertex) is not overlooked. Therefore, the next possible anti-podal pair

is always taken in account. Since the Hnes are rotated until their original position is

23

•

•

reached, it is ensured that aU anti-podal pairs are considered. Hence, since the maxi

mum distance between anti-podal pairs between P and Q is output, by Theorem 2.3.1,

dmax(P, Q) is output.

The running time of the algorithm is dominated by finding tlle extrema, and by

rotating the lines. Each of these processes takes O(lV) time. Hence, the total running

time is 0(1'1), and we have:

Theorem 2.3.2 Given two convex polygons P and Q of m and n vertices~ respec

tively, the maximum distance between P and Q can be computed in O(m + n) time.

2.4 The minimum distance between two convex

polygons

2.4.1 Introduction

Analogous to the previous problem, the purpose is now to find the minimum distance

between two convex polygons. Applications of this problem are found in pattern

recognition and collision avoidance [71, 27].

This problem, unlike the maximum distance, does not stern from computing the

minimum distance between two sets of points. In 1981, Avis proved an n(N log N)

lower bound for computing the minimum distance between point sets with a total of

lV points [5]. Optimal algorithrns for this problem were obtained by Toussaint and

Bhattacharya [85].

For polygons, the problern has two versions. First: given two convex polygons

(which include their interiors), find the minimum distance between them. The second

version restricts the minimum distance to occur between vertices of the polygons.

The unrestricted problem is the easier of the two. If the polygons intersect,

then the distance is zero. A possible intersection can be detected in 0 (log(m + n))

24

•

•

time [12, 16]. If the polygons are disjoint, then we are looking for a pair of points

on the boundaries of the polygons. In 1981, Schwartz provided a O(log m log n) time

aIgorithm to solve the problem [71]. Edelsbrunner later proved a n(logm + logn)

lower bound, and described an optimal algorithm [27J.

The vertex-restricted version is somewhat more complicated. First, the intersect

ing case must he studied as weIl as the disjoint case, and even in the overlapping

case if one polygon is contained within the other then that case must he studied sep

arately. Toussaint and Bhattacharya applied their algorithm for point sets to solve

the non-intersecting case, yielding a O«m + n) log(m + n» time algorithm. Optimal

Iinear-time algorithms for this case were later indepeodently obtained by McKenna

and Toussaint [57] and by Chin and Wang [21]. Toussaint later solved the problem

for intersecting convex polygons, obtaining an optimallinear-time algorithm [77, 78].

The minimum distance between convex polygons cao be solved using a very elegant

application of the Rotating Calipers, which we study here. AIthough the aIgorithnl

has linear time complexity (and is therefore not optimal), its simplicity and ease of

implementation still make it a viable solution for this problem, if the input size is

not too large. For a reasonable input size, this algorithm should run faster than

Edelsbrunner's logarithmîc-time solution.

2.4.2 Theoretical results

Let us start as usuaI \Vith a formaI definition of the problem:

Definition 2.4.1 Given two convex polygons P and Q, the minimum distance be

tween P and Q is given by:

dmin(P, Q) = min {dist(p, q), 'rIp E P, 'rIq E Q}

We assume that the polygons have been checked for intersections, and are disjoint.

25

•

•

Theorem 2.4.1 Given two convex polygons P and Q and a given pair of points (P, q)

(p E P, q E Q) such that dmin(P, Q) = dist(p, q), p and q must either be vertices of

P and Q (respectively) or belong to edges of P and Q (respectively).

Proof: Let us assume without loss of generality that q is an interior

point of Q, and that dmin(P, Q) is detennined hy the pair (P, q). Refer

ta Figure 2.9. Consider the Hne segment [P, q]. Since q is an interior

Figure 2.9: Illustrating the proof of Theorem 2.4.1.

point, then [P, q] must intersect Q in a suhsegment [qe, q] C [p, q]. We

have dist(p, r) ~ dist(p, q) \:Ir E [qe, q]. And in particular, dist(p, qe) <
dist(p, q). Since qe E Q, this contradicts our assumption that dist(p, q) =
dmin(P, Q). Hence, q cannat he an interior point of Q, sa it must either he

a vertex of q or belong ta an edge of Q. By symmetry of the argument,

the same can he established for p. •

The next result follows directly, as illustrated in Figure 2.10:

Corollary 2.4.2 Given two convex polygons P and Q, the minimum distance between

P and Q determined by a pair of points (P, q) occurs in three different cases:

1. The vertex-vertex case where p, q are both vertices of P and Q respectively.

(Bee Figure 2.10 (a)).

2. The vertex-edge case where one ofp, q is a vertex while the other is not a vertex.

(Bee Figure 2.10 (b)) .

26

•
(a) (b)

•

(c)

Figure 2.10: The three cases for the minimum distance between P and Q.

3. The edge-edge case where neither p not q are vertices of P and Q. (See Fig

ure 2.10 (c)).

Theorem 2.4.3 Given two convex polygons P and Q, with the minimum distance

between P and Q determined by a pair of points (p, q) then p and q admit paraUel

fines of support in opposite directions.

Proof: Using Corollary 2.4.2 we proceed case by case.

Vertex-vertex case: p and q are vertices of P and Q respectively. Construct

the dises Cp eentered at p and Cq eentered at q, both of radius dist(p, q) =

dmin(P, Q). Therefore, there exists no point of P inside the disc Cq , and

there exists no point of Q inside Cp (the existence of such points would

eontradict (p, q) determining the minimum distance). Hence, aIl of P

(except for p) lies outside of Cq and aIl of Q (exeept for q) lies outside of

Cp.

Consider L p , a directed Hne tangent to Cq at p such that q lies to its

left. We daim that Lp is a Hne of support for P: Lp and P intersect at

p. Suppose there exists a point r E P lying outside Cq but lying left of

27

•

•

Figure 2.11: Illustrating the proof of Theorem 2.4.3, vertex-vertex case.

Lp • See Figure 2.11. Since P is convex, the segment [Pl Tj must lie inside

P. Now, L p is also tangent to Cq at p. Therefore, part of [P, TJ must lie

inside Cq • This implies that there exits a point of P other than p inside

Cq , which contradicts our original assumptions. Since no point of Pean

lie to the left of Lp , ail of P lies to the right of Lp • Hence, Lp is a line of

support for P at p.

Similarly, consider L q , a directed Hne tangent to Cp at q, and such that p

lies to its left. As above, we can prove that L q is a Hne of support for Q
at q and that aIl of Q lies to the right of L q • Now l since both L p and L q

are perpendicular to the segment fp, qj, L p and L q are parallel.

Therefore, we cao say that p and q admit parallel Hnes of support in

opposite directions. See Figure 2.12.

Figure 2.12: Illustrating the proof of Theorem 2.4.3, vertex-vertex case.

28

•

•

Verlex-edge case: assume without loss of generality that p is a vertex of

P while q belongs to an edge. Again, by the fact that (P, q) determines

dmin(P, Q), there exists no point in the interior of P inside the disc Cq and

there exists no point in the interior of Q inside the disc Cp. Thus, all of P

lies ontside of Cq and aIl of Q lies outside Cp (again \Vith the exceptions of

p and q respectively). As above, let L p be the directed Hne tangent to Cq

at p and snch that q lies to its left, and let L q be the directed line tangent

to Cp at q \Vith P lYing ta its left. See Figure 2.13.

Figure 2.13: Illustrating the proof of Theorem 2.4.3, vertex-edge case.

The argument used above can be applied again in this case ta show that

Lp is a line of support for P. Now, since dmin(P, Q) represents the distance

from the point p to the edge eq that q lies on, the segment [P, q] must be

perpendicular to eq • Since Lq is tangent to Cq at q, then Lq must also

be perpendicular ta [p, q]. Therefore, Lq and eq must be parallel. And

since they bath include q, then eq lies on L q • This means L q is flush \Vith

an edge of Q. Then L q is a Hne of support for Q at q. And since Lp is

perpendicular to [P, q] 1 L p and Lq are parallel.

Thus, in this case, we can also say that the points determining the mini

mum distance between P and Q admit parallel Hnes of support.

Edge-edge case: in this case both p and q lie on edges ep and eq of P and

Q respectively. We repeat the construction of Cp, Cq, Lp and Lq as in the

previous cases. See Figure 2.14.

29

•

•

Figure 2.14: Illustrating the proof of Theorem 2.4.3, edge-edge case.

As above, it can easily be shown that Lp and Lq are flush with the edges

where p and q lie respectively, thus making them lines of support for P

and Q. Furthermore, as previously discussed, Lp and L q are parallei and

have opposite direction.

Hence, p and q admit parallel !ines of support.

•

2.4.3 Algorithm and analysis

Theorem 2.4.3 restricts the pair determining the minimum distance to an anti-podal

pair of points. Thus, the Rotating Calipers can be used very much the same way

as in Aigorithm M.AXDIST2POLY. The only subtlety is the fact that anti-podal

vertex-vertex, edge-vertex and edge-edge cases must aIl be considered. Othenvise we

have a very similar algorithm. Again, let us assume we are given two disjoint convex

polygons P and Q (in standard from), with m and n vertices each (given in clockwise

order), and N = m + n.

Aigorithm MINDIST2POLY

1. Compute the minimum and maximum y-coordinate extreme points Ymin(P) and

Ymax(Q) for P and Q respectively. This takes O(N) time.

30

•

•

2. Start with two Hnes of support (i.e. calipers) parallel to the x-axis, touching P

and Q at Ymax(P) and Ymin(Q), and directed such that P and Q lie to the right

of their respective lines of support. The Hnes of support lie on vertices Pi E P

and qi E Q, and determine two angles (Ji, (Ji' which are computed. (AH of this

takes 0(1) time).

3. Since the Hnes of support already determine an anti-podal pair between P and

Q, compute the distance between the vertices and keep it as the minimum.

(0(1) time).

4. Compute (J = min«(Ji' (Ji). (0(1) time).

5. Rotate the Hnes of support clockwise about Pi and qi by an angle (), thus making

one Hne of support flush with one edge.

Say we have only hit vertex ql E Q. Compute dist(Pi, if) and compare it to

our "minimum-sO-far" (0(1) time). Now, consider a point p.l. such that line

segment [P, p.l.] and edge [Qi, q'] are orthogonal. Compute the intersection of

Hnes L(Pi'P.l.) and L(qi!if)· Ifit exists and is equal to qint, qint =1= qj,ql, then

compute dist(pù qintl and also compare it to our "minimum-so-far". A similar

procedure is used if a vertex p' EPis hit instead. If, on the other hand, we

have parallel edges between P and Q, in which case both vertices pl and ql are

hit, then the following procedure must be used: as above, points pol and qol are

considered to compute the possible intersections qint = L(pù p.l.) n L(qi' ql) and

Pint = L(qj, q.l.) n L(Pi,P'). If one intersection is found, then the other need not

be computed. If an intersection exists, then the relevant distance qint or Pint

(this distance is the [Pi, pl] - [qj, q'] edge-edge orthogonal distance) is considered

as a possible new minimum. Of course, the usual dist(Pi, if) and dist(qj, p') must

be computed as compared to our "minimum-sO-far". Furthermore, (p', if) also

forms an anti-podal vertex-vertex pair and thus dist(p', q/) is also computed and

considered. Finally, when all distances are obtained and necessary comparisons

done, Pi, qj, or both might need to be updated to p' and q' respectively.

31

•

•

The time complexity of this step remains 0(1) no matter which case is con

sidered Ca ma.ximum of four distance computations are necessary in the case of

parallel edges, still a 0(1) operation). Updates are of course 0(1), so the total

cost of this step is unit-time.

6. Repeat steps 4-5 until calipers return to original position (or until our total

rotation angle is greater than 211"). After each rotation, a new vertex must he

hit. Since we only have iV vertices, and since steps 4 and 5 are both 0(1), This

step takes O(JV) time.

7. Output the ~'minimum-so-far"as dmin(P, Q).

The correctness of the algorithm follows from Theorem 2.4.3. The running time

is dominateà by steps 1 and 6. Both are O(N), as discussed in the description of

the algorithm. Hence NIINDIST2POLY has linear time complexity. vVe conclude this

section with the following result:

Theorem 2.4.4 Given convex polygons P and Q with m and n vertices respectively,

Algorithm MINDIST2POLY computes the minimum distance between P and Q in

O(m + n) time.

32

•

•

Chapter 3

Enclosing Rectangles

This chapter is devoted to the study of the "smallest-box" problem. Given a convex

palygon, the goal is ta compute an enclosing rectangle, minimizing the area or the

perimeter. Theoretical results and algorithms are given for both these problems, as

weIl as a specific case highlighting their difference. Finally, a new problem is studied

in detail: the width-determined enclosing rectangle.

3.1 The minimum-area enclosing rectangle

3 .1.1 Introduction

The first and most commonly known version of the "smallest-box" problem involves

finding the minimum area rectangle enclosing a convex polygone !vIany applications

can be round in packing and optimallayout problems [32, 35]. Consider for instance

trying ta find the minimum volume box (with fixed horizontal orientation) for an

objecte A bird's eye ,,;ew picture is taken of the object, and its height is detennined.

A two-dimensional convex-hull is computed, and using the minimum-area rectangle,

one can compute a minimal-volume box encasing the objecte

33

•

•

Freeman and Shapira [32] studied the more general problem of encasing an arbi

trary closed curve. The process is divided into first determining a minimum-perimeter

convex polygon enclosing the curve, and then computing the enclosing rectangle for

that polygon. The algorithm for the latter part has quadratic time complexity. In

1980, Toussaint provided a first O(n) algorithm [80] and presented a second solu

tion [81] using a result from Freeman and Shapira's paper. The latter, which we will

focus on, uses a variation on the original Rotating Calipers, in which two pairs of

orthogonallines of support are used.

3.1.2 Theoretical results.

Let us first give a definition of the problem at hand. As usual, we assume polygons

include their interior.

Definition 3.1.1 Given a convex polygon P, a rectangle R, such that Vp E P, p E

R is calIed an enclosing rectangle for P. If area(R) :::; area(R') for aU enclosing

rectangles R' 1 then R is an minimum-area enclosing rectangle for P.

Intuitively, in order to minimize the area, the rectangle's edges would have to

touch the polygone Freeman and Shapira [32] give a result further constraining the

possible minimal area rectangles to a finite set:

Theorem 3.1.1 The rectangle of minimum area enclosing a convex polygon has a

side collinear with one of the edges of the polygone

Proof: Let us say we are given a convex polygon P, and let us assume

the smallest-box is given and that it does not have one side collinear with

one of p's edges. Therefore it only touches P at four vertices Pi! Pi' Pb

and Pl- Refer to Figure 3.1. We claim that it is always possible to find a

smaller enclosing rectangle.

34

•

•

Figure 3.1: An example of a rectangle enclosing P.

Let us first define A as the area of the enclosing rectangle. \Ve have

.4 = lll2- Furthermore, let ~k = dist(Pi,Pk), and d jl = dist(pj,pd. \Ve

have

Ll = djl cos(C;?j)

12 = ~k cos(C;?k)

As we saw in section 2.2, both Ll and l2 can be decreased by rotating

their corresponding Hnes of support in their respective preferred direction

of rotation. Hence two cases emerge: case 1~ where II and [2 cao be

decreased by rotating aIl Hnes of support in the same direction (they have

the same preferred direction of rotation); and case 2, where rotating in

a given direction decreases one length but increases the other (different

preferred directions of rotation).

Case 1: an example of this case is shown in Figure 3.1. By rotating aIl

Hnes of support counterclockwise by sorne (positive) angle TI, both Il and

l2 are decreased. After rotating, we have a new box of area A' determined

35

•
by edges of length l~ and l~ where

l~ = d;lcos(cpj + q) => l~ < II

l; = ~kCOS(CPk + q) => l; < l2

=> A' = l~L; < A

Hence in this case it is always possible to find a smaller enclosing box.

Case 2: here the preferred directions of rotation are different. Let us

define t5; as the maximum angle we can rotate the Hnes of support in LI 's

preferred direction of rotation before we hit an edge, and similarly we

define 6k for [2- Let 6 = min (I5j l, Idk!). Assume without loss of generality

that the preferred direction of rotation for II is clockwise and the preferred

direction of rotation for [2 is counterclockwise.

If we rotate clockwise, we obtain new lengths l~, l~ and a new area Ac,

given by:

If we rotate counterclockwise, we have:

1/ 1/ {l~ = d;l cos(({Jj - 5)
Ace = ll l2

l~ = f4k cos(({Jk + a)

Let us compare A \Vith both Ac and Acc, recalling that

•

Ac
.4

caseCP; + a) cose ({Jk - 5)
cos CP; cos <Pk

ecos ({J; cos a- sin <P; sin 6) ecos CPk cos 8 + sin <Pk sin 6)
cos CPj cos ({Jk

cos CP; cos CPk; cos2 5 + cos CP; sin C{)k; cos 8 sin 5
cos C{)j cos C{)k;

36

•

Aee
A

sin 'Pi cos <Pk cos 8 sin ~ + sin 'P; sin 'Pk sin2 8
cos <Pi cos <Pk

- cos2 <5 + tan !.pk cos <5 sin 8 - tan <Pi cos 8 cos <5

- tan CPi tan <Pk sin2 8

- cos2 8 + (tan <Pk - tan <Pi) cos 8 sin 8 - tan <Pj tan CPk sin2 8

cos(cpj - 8) COS(CPk + 8)

cos CPj cos <Pk

(cos CP; cos 8 + sin CPi sin 8) (cos 'Pk COS 8 - sin CPk sin 8)
cos <Pj cos <Pk

cos CPi cos CPk cos2 <5 - cos CPi sin CPk cos 8 sin <5

cos cpj cos <Pk

sin 'Pj cos 'Pk cos 8 sin 8 - sin <Pj sin CPk sin2 8+--...:=-----------...;;;....-----
cos CPi cos 'Pk

- cos2 8 - tan 'Pk cos <5 sin <5 + tan CPi cos 8 sin <5

- tan 'Pj tan 'Pk sin2 <5

- cos2 c5 + (tan 'Pi - tan 'Pk) cos <5 cos <5 - tan 'Pj tan 'Pk sin2 <5

•

If Ac/A. < 1 then we rotate clockwise and we can obtain a smaller enclos

ing rectangle, and we are done. However, if Ac/A ~ 1, then we have:

Ac > 1
.4 -

<=> cos2 8 + (tan <Pk - tan <Pj) cos 8 sin <5 - tan <Pj tan CPk sin2 8 > 1

<=> (tan <Pj - tan 'Pk) cos c5 sin <5 < cos2 8 - tan <Pj tan CPk sin2 c5 - 1

=* Ace < 2(cos2 c5 - tan CPj tan 'Pk sin2 8) - 1
.4

< 2(1 - sin2 8 - tan <'oi tan <Pk sin2 8) - 1

< 1 - 2(1 + tan lpj tan <Pk) sin2 c5

< 1

since 0 < 'Pi, <Pk < 1T'/2 =* tan CPi tan 'Pk > o. And hence we have AcelA. <
l, meaning that by rotating counterclockwise, we can obtain a smaller

enclosing rectangle.

37

•
Therefore, in both cases, it is possible to find a smaller enclosing box,

which contradicts our starting assumption that the rectangle had mini-

mum area.

3.1.3 Algorithm and analysis

•

•

Theorem 3.1.1 implies that for a given n-vertex polygon, the number of candidates

for smallest enclosing rectangle is at most n. This greatly simplifies our task of trying

ta solve the smallest-box problem.

Freeman and Shapira [32] use this result and determine ail n rectangles (assuming

no pair of edges is parallel). Their procedure takes O(n) time for each rectangle, Yield

ing a O(n2
) algorithm in the end. Toussaint [81] did away with lengthy calculations

by using a modified algorithm based on the Rotating Calipers.

Indeed, theorem 3.Ll implies that two (parallel) edges of the rectangle are deter

rnined by a vertex-edge anti-podal pair, while the two other edges are determined by

anti-podal pairs. This is obvious since any enclosing rectangle with edges tangent to

the polygon determines two sets of parallellines of support.

Toussaint [81] presents the following algorithm applied to a convex polygon P

(assume it is given in standard fonn, as usual):

1. Find the vertices of P with minimum and maximum x and y-coordinates. These

determine two sets of "calipers" (in other words, two sets of parallel Hnes of

supportL parallel ta the x and y a.xes, thus fonning a rectangle enclosing P.

These lines determine four angles, Bi, Bi, Bb and (Ji. See Figure 3.1.

3. Rotate by (J, thus making the rectangle flush with one edge.

4. Compute the area of the rectangle. If the area is smaller than the previous

rectangle's, keep the new rectangle as our new "minimum" .

38

•

•

6. Repeat steps 2-5, until we have rotated calipers a total angle greater than 1f/ 4.

Theorem 3.1.2 The smallest enclosing rectangle of a polygon can be found in D(n)

time.

Proof: After each rotation, the "box" is flush with one edge~ and the area

of that rectangle is considered. Every rectangle flush with P is considered:

since we rotate an angle greater than 1r / 4. Furthermore, no rectangle is

considered twice, since any rotation past the 1r/ 4 limit only yields previ

ously considered rectangles. This is due to the fact after rotating an angle

equal to 'Ir/ 4, one set of calipers will be in the original position of the other

set~ and vice versa. Finally, since there are n edges, there can be at most

n such rectangles, and thus the algorithm runs in D(n) time. _

3.2 The minimum-perimeter enclosing rectangle

3.2.1 Introduction

Similar to the above, this problem consists of finding the rectangle of minimum

perimeter enclosing a given convex polygon. In fact, the rectangles often coincide.

This is not always true and a polygon exemplifying this is provided in section 3.2.2.

Continuing \Vith the sampIe application of the previous section, one could use the con

cept of smallest-perimeter enclosing rectangle (in conjunction with the smallest-area

rectangle) to minimize the surface area of a box encasing an object.

This problem has been much less studied in the literature than its area counter

part. In 1987, DePano presents an algorithm for this problem [25], using the Rotating

Calipers paradigm much in the same way as Toussaint had with the minimum-area

version. Due to the similarity of the problems and the solutions, it is important at

this point to differentiate these problems by giving a concrete example.

39

•
3.2.2 Minimum-perimeter versus

minimum-area enclosing rectangles

Since decreasing the area of a rectangle usually aIso decreases its perimeter, for many

polygons, the two versions of enclosing rectangles coincide. But this is not always

true. Consider the polygon shown in Figure 3.2(a). !ts minimum-area enclosing

(a)

c

(h)

•

(c)

Figure 3.2: A polygon and its enclosing rectangles.

rectangle is shown in Figure 3.2(b) and its minimum-perimeter endosing rectangle in

(c). Finally, the dimensions are constrained such that

a a
- <b<-.
2 v'2

Let .4A and A p denote the respective areas and PA, Pp the respective perimeters of

the minimum-area and minimum-perimeter enclosing rectangles. First,

b a
c = v'2' d = .;2'

40

•
Let us determine aIl areas and perimeters.

.4A - 2c(a + 2c)

- 2ac + 4c2

- hab + 2b2

PA - 2a+8c

2a + 4v2b

A p - (b + d)2

- (b+ ~)2

a 2

- 2+v'2ab+b2

Pp - 4(b+ d)
a

- 4(y'2+b)

- 2v2a +4b

Note that the polygon only has two distinct enclosing rectangles that are Bush

with at least one edge (Theorems 3.1.1 and 3.2.1 require thisL so that only these two

rectangles need to be considered. We show now that .4.4 < A p and Pp < PA if the

bounds for b are respected.

a2

- 2 + hab + b2
- V2ab - 2b2

2
_ ~_b2

2
a2 a2 a

> "2 -"2 (b < y'2)

> 0

•
For the perimeters, we have:

PA - Pp - 2a + 4v'2b - 2V2a - 4b

41

•

•

- 2a(1 - h) - 4b(1 - J2)
- 2(1 - v'2)(a - 2b)

- 2(\1'2 - 1)(2b - a)

- 4(\1'2 - l)(b - ~)
2

a
> 0 (b>2")

=> p.-t - Pp > 0

=> PA> Pp

Let us now analyze DePano's results and algorithm.

3.2.3 Theoretical results

Definition 3.2.1 Given a convex polygon P and a rectangle R enclosing P, if we

have perimeter(R) < perimeter(R') for all enclosing rectangles R', then R is a

minimum-perimeter enclosing rectangle for P.

DePano [25] shows that the smaLIest-perimeter endosing rectangle holds the same

property as its area counterpart:

Theorem 3.2.1 The rectangle of minimum perimeter enclosing a convex polygon has

a side collinear with one of the edges of the polygon.

Proof: Suppose we are given a convex polygon P and its minimum

perimeter enclosing rectangle such that none of the polygon's sides is

flush (or collinear) with the rectangle's. Again~ we refer to Figure 3.1,

where P touches the rectangle at vertices Pl, Pi' Pk and Pl. Wc daim that

it is possible to find an enclosing rectangle of smaller perimeter.

42

'lio< 1/). enk <
- Tl'T 2

•

•

Referring to Figure 3.1, let us define D as the perimeter of the enclosing

rectangle. We have D = 2(11 + 12)' Let l1.ïk = dist(Pi, Pk) and dil =
dist(pj, Pl)' We have

LI = dil cos(cpj) }

L2 = dik cas(f{)1c)

Again, by rotating the !ines of support determining LI and l2 (in their

preferred direction of rotation), it is possible to decrease their values, and

we have two cases to consider:

Case 1: LI and L2 have the same preferred direction of rotation (for exam

pIe, in Figure 3.1, counterclockwise) and by rotating the Hnes of support

in this direction by sorne positive angle 11 we can find a new enclosing

rectangle, with sides L~ and L~, and perimeter D' where

l~ = l4k COS(f{)k + 11) ~ L~ < L2

=> D' = 2(L~ + L;) < D

Thus in this case, we can find an enclosing rectangle with smaller perime

ter.

Case 2: LI and L2 have opposite preferred direction of rotation. Defioe 8j

as the ma.~mum angle we can rotate the lines of support in LI 's preferred

direction of rotation before we're flush with an edge, and similarly define

6" for [2. Let 8 = min(lt5i l, 16kl). Without loss of generality, assume that

the preferred direction of rotation for LI is clockwise and the preferred

direction of rotation for L2 is counterclockwise.

Rotating the Hoes of support clockwise, we obtain new lengths l~, L~ and

a new perimeter De given by:

{
L~ = djl cos(f{)j + 8)

De = 2(L~ + L;)
L~ = l1.ï1c cos(f{)k - 8)

43

•

•

And rotating counterclockwise, we obtain:

D = 2(l" + l") {l~ = djl cos (<pj - 6)
ee 1 2 l" ()

2 = ~k cos <Pk + 8

Let us now rewrite the perimeters in function of ~ and simplify, keeping

in rnind cos 'Pj, cos <Pk =1= 0:

Dc 2(l~ + l;)

- 2(dil cas(CPi + 8) + dik cos(CPk - ~»

- 2 (lt)(cos 'Pi cos 5 - sin 'Pi sin 5)
cos cPj

+ l2 (cos cp" cos 8 + sin !Pk sin ~»)
cos CPk

- 2(ll (cos ~ - tan <Pj sin 6) + l2(cos ~ + tan CPk sin (5»

2(ll + l2) cos 8 + 2(12 tan 'Pk - II tan 'Pj) sin 8

Let C = 2(ll tan 'Pj - l2 tan CPk)

'.oVe have

De = Dcos8 - Csin8

As for Dcc:

Dcc - 2(l~ + l~)

- 2(dil cas(CPi - 8) + c4k cos('Pk + 8»

- 2 (lt)(cos 'Pi cos 5 + sin 'Pi sin 5)
cos CPj

+ [2 (cos 'Pk cos ~ - sin CPk sin 8»)
cos 'Pk

- 2(ll (cos 8 + tan 'Pj sin 6) + l2 (cos 8 - tan 'Pk sin 8»

- 2(l1 + l2) cos 8 + 2(lt tan 'Pi - [2 tan 'Pk) sin 6

- Dcos6 + Csin8

If DelD < 1 we are done. Now, suppose DelD 2:: 1. '.oVe have:

D cos 8 - C sin 8 > 1
D -

44

•

•

Let K = C / D. Note that D =ft o. The above inequality simplifies to:

cos <5 - K sin d > 1

<=> K sin 8 ~ cos 8 - 1

Keeping io mind our assumptioo, let us now turo to Dcc:

Dcc Dcos8 + Csin8
D

-
D

- cos 8 + Ksin8

< 2cos8 - 1

< 2-1=1 (cos c5 < 1)
Dcc

< 1=>--
D

Heoce, either Dc or Dcc ends up beiog smaller than D. In other words,

we cao always rotate the lines of support to find an enclosing rectangle

\Vith smaller perimeter.

In bath cases, our assumption leads to a contradiction. Hence, the min

imum perimeter enclosing rectangle must have an edge flush \Vith the

polygon. _

3.2.4 Aigorithm and analysis

Paralleling Toussaint [81], DePano gives an algorithm using the Rotating Calipers for

finding the minimum area enclosing rectangle, which we present here. Given a convex

n-gon P in standard form:

1. Find vertices of P with minimum and maximum x and y-coordinates. These

determine two sets of "calipers " (in other words, two sets of parallel Hnes of

support), parallel to the x and y axes, thus fonning a rectangle enclosing P.

These lines determine four angles, (Ji, (Ji, Ok, and 8[- See Figure 3.1.

45

•

•

3. Rotate by 8, thus making the rectangle flush with one edge.

4. Compute the perimeter of the rectangle. If the perimeter is smaller than the

previous rectangle's, keep the new rectangle as our new "'minimum".

6. Repeat steps 2-5, until we've rotated calipers a total angle greater than 1r/4.

ï. Output minimum perimeter enclosing rectangle.

Hence the main result:

Theorem 3.2.2 The minimum perimeter enclosing rectangle of a convex polygon can

be found in O(n) time.

Proof: After each rotation, the rectangle is Bush \Vith one edge of the

polygon, and its perimeter is determined. Since the algorithm performs

a total rotation \Vith angle greater than 1r/ 4, every rectangle flush \Vith

P is considered. Furthermore, no rectangle is considered twice, since

the algorithm stops right after the rectangle's original position is reached

(rotation with an angle equal to 1r/4 yields one set ofcalipers in the original

position of the other set). Finally, since there are n edges, there can be

at most n distinct rectangles flush with edges of P. Thus the algorithm

runs in O(n) time. _

3.3 "Width-determined enclosing rectangle

1t has already been shown that the width of a convex polygon P is determined by a

vertex-edge pair of that polygon (see section 2.2, Lemma 2.2.1). This pair is equivalent

46

•

•

to two paraHel !ines of support LI and L2 • Let us consider the Hnes of support of

P in the direction perpendicular to LI and L2 • Call these Lf and Li. Together,

these four Hnes determine an enclosing rectangle for P which is flush with one of the

polygon's edges.

Thus, to every polygon Q is associated the width-determined enclosing rectan

gle, which shaH be denoted R w , the minimum-area enc10sing rectangle, which shaH

be denoted Rmin.-t, and the minimum perimeter enclosing rectangle, which shaH he

denoted Rmin p.

For many polygons, in fact, these three rectangles coincide. D.T. Lee [52] raised

the following interesting question:

Question 3.3.1 Given a convex polygon Q, are R minA and R w the sarne'?

Naturally, this question raises another:

Question 3.3.2 Are Rminp and Rw the same'?

If yes, then computing the minimal enclosing rectangles for a convex polygon

might become a much simpler task.

The answer to both questions, however, is no, as the following case demonstrates.

Consider Q, a convex polygon, with the following vertices: (0,0), (0, 1), (a,I),

(1, aL and (1,0). See Figure 3.3.

The polygon Q is a square with a corner cut off, whose size is determined by the

parameter a, and that has width w = b+ c. We need w < 1 for our example to make

sense. Ohviously, w depends on a, and this restriction on w is what determines the

ranges of possible values for a. First, we have b2 + b2 = l, or

1
b= y'2"

47

•

•

Figure 3.3: A polygon with corresponding R min A and R w .

\Ve also have c2 + c2 = a2
, or

a
c = v'2.

Finally, w = b + c < 1, in other words

a+1
V2 ~ l,

Note that only two rectangles Bush with one of Q's edges exist: the unit square

(corresponding to R minA), and the rectangle flush with the slanted edge (correspond

ing ta R w).

RminA always has an area of one, while R w has an area .4 = 2b(b + c), which

ranges from 1 (for a = 0) to

2~ (_1_ + v'2 -1) = V2.
v'2 v'2 Y2

Thus for 0 < a ~ V2 -1, Rw and R minA are distinct, thus answering Question 3.3.1.

In this case, RminP coïncides with R minA . The perirneter of RminP is four, while

perimeter(Rw) = 3V2 + Y2a, which ranges from 3v'2 ~ 4.243 (for a = 0) to

3Y2 + 2 - v'2 = 2{~+ 1) ~ 4.828

48

•

•

Thus R w and R min p are distinct for 0 < a ~ Y2 - 1.

3.3.1 Bounds on the error

Cansider for a given convex polygon Q, the minimum-area rectangle RminA, the

minimum-perimeter rectangle R min p and the width-determined enclosing rectangle

R w . Consider the ratios
éA(Q) = area(Rw)

area(Rmin A)

and

(Q)
= perim(R w)

ép . (R)'perIm minP

Finally, let

and

E p = max€p(Q).
VQ

In other words, E A and Ep describe the errors in the worst-case scenario when using

the width of a polygon to determine its enclosing rectangles.

These ratios are meaningful in that they give a prelimioary idea of how significant

the error cao be if one decides to use the width-determined eoclosing rectangle.

Finding the exact value of E.-\ and Ep would imply findiog every possible polygoo

for which R w has greater area than R min and comparing their areas and perimeters.

It is much more practical to find bounds 00 EA and E p to get at least a range for its

value. We first detennine the bounds 00 EA •

1. Bounds on E A : A lower bound for E A has already been determined. Our initial

example polygoo described above had area(RminA) = land area(Rw) = V2.
Thus, in that case, €A(Q) = V2. We know therefore, that E A > Y2.

49

•

•

Now to find an upper bound. Consider for arbitrary polygon Q the associated

êA(Q). Let RminA have sides ft and l2 (with l2 ~ ld, and let R w have sides

l~ = width(Q) and l~. Then we have:

area(Rw)
area(RminA)

width(Q)l~

l1 l 2

II and l~ are both determined by pairs of parallei Iines of support for Q. There

fore l~ < diam(Q) (by Theorem 2.1.1). Furthermore, width(Q) is the minimum

distance between parallellines of support (Definition 2.2.1), so II ~ width(Q)

and
width(Q) 1--......;;....,;,.....;..< .

II -
Hence

width(Q)l;
ll[2

< diam(Q)
[2

Now, consider RminA(Q). Since the rectangle encloses Q, the maximum distance

between any pair of points of Q is no greater than the diagonal distance of

RminA(Q). Therefore, diam(Q) ~ Jl12 + [2
2

. \Ve have:

êA(Q) < diam(Q)
12

In conclusion, we have:

50

•

•

2. Bounds on E p: The example in Figure 3.3 provides a good lower bound

for Ep. No matter what the value of a is, the perimeter of R w is always

greater than that of R min p. The difference is greatest when a = V2 - 1 and

perim(Rw) = 2(V2 + 1). Thus in that case,

cp(Q) = 2(v'2 + 1) = V2 + 1 ~ 1.207
4 2

Hence E p 2:: (v'2 + 1)/2.

For the upper bound, consider as above Rmin p having sides II and l2 (\Vith

lr ::; l2), and Rw \Vith sides l~ = width(Q) and l~. '\Te have:

cp(Q)
perim(Rw)

-
perimeRmin p)
2(width{Q) + l;)

-
2(ll + l2)

width{Q) + l;
-

lL + l2

<
width(Q) + diam(Q)

(l; :s; diam(Q»
II + l2

<
width(Q) + Vlr2 + l22

lL + l2

<
width(Q) Vl12 + l2 2

+
lL + l2 iL + l2

<
width(Q) VOL + [2)2

(lI ::; l2)+
211 lL + l2

1 3 (Wid~~(Q) < 1)< -+1 =-
2 2

In conclusion, we have:

V2+1 E 3
2 :s; p < 2 or 1.207:S; E p ::; 1.5

51

•

•

Chapter 4

Triangulations

Our study of the Rotating Calipers leads us to examine the use of this paradigm in

computing triangulations of a set of points. Two specifie triangulations are examined:

the "onion" triangulation, and the "spiral" triangulation, which can be used in arder

to obtain a quadrangulation.

4.1 Introduction

Definition 4.1.1 Given S, a set of points in the plane, a triangulation T(S) is a

graph G(S, E) such that:

• The points of Sare its nodes.

• Nodes are connected by edges E.

• Edges intersect only at nodes.

• Every node is connected to at least two other nodes.

• As many triangles as possible are created.

52

•

•

The triangulation graph occurs very often in computational geometry due to its

many applications. It is used often in graphies, pattern recognition, statistics, scat

tered data interpolation~ finite element methods, medieal imaging, GIS (Geographie

Information Systems), to give a few examples. And of course, the graph has its

applications in eomputational geometry itself. We refer the reader to the following

papers [3, 4, 7, 6, 59, 70, 83, 87, 88, 91].

The problem of triangulating a simple n-gon has existed for almost a century.

Lennes [53J gives a first algorithm achieving the computation in O(n2) time. In the

last two decades, the complexity bas been gradually reduced to linear-time (thanks

to Chazelle [15]) due to a tremendous amount of research on the problem. We invite

the reader to consult the following papers for many of the intermediate results [33,

41, 19. 84, 75, 22, 48].

Given a set of points, often certain constraints are added to yield special tri

angulations. Perhaps the best known is the Delaunay Triangulation [65]. Another

interesting class of triangulations are Hamiltonian triangulations. A Hamiltonian tri

angulation is such that its dual graph is a chain. This is a great advantage, since

the triangulation graph can he easily maintained as a list of adjacent triangles, and

every triangle can he easily "reached". Two specifie Hamiltonian triangulations are

the '~onion" and the "spiral" triangulation [83].

4.2 Onion Triangulations

4.2.1 Introduction

Consider a set of n points on the plane. By computing the eonvex hull, a smaller

set of points remains in the interior of the hull. If one successively computes the

hulls of the remaining points, the onion-peeling of S is obtained. An example of an

onion-peeling of a set S is gjven in Figure 4.1 .

53

•

•

Figure 4.1: The anion-peeling of a set of points.

This structure has, among others, applications in statistics. Consider the last hull

generated. The average of the points of that hull is referred to as the Tukey median.

Intuitively, one can see that the onion-peeling of a set gives sorne information about

the "layering". \Ve refer the reader to [83, 89, 14].

The onion triangulation of a set S is a triangulation of S including the onion

peeling of S as a subset. Apart from the fact that it maintains the useful layered

structure, this triangulation is also hamiltonian. Furthermore, once the anion-peeling

of a set has been obtained, the triangulation can be easily obtained using an algorithm

by Toussaint, based on the Rotating Calipers [83]. Let us now carefully examine this

procedure.

4.2.2 Theoretical results

Before proceeding to the results, let us give formaI definitions of the graph structures:

Given a set of points S, the anion-peeling of S, denoted OpeS), is the graph

resul ting from the following procedure:

1. Let S' = S.

2. Compute Ps = CH(S'). Add CH(S') to OpeS) .

54

•

•

3. Let st = S' \ V(Ps }, that is, remove the vertices of Ps from S'.

4. Repeat steps 2-3 until S' = 0.

Definition 4.2.1 The onion triangulation of a set of points S is a triangulation graph

G of S such that OP(S) cG.

Figure 4.2 illustrates the onion triangulation of the same set of points as in Fig

ure 4.1.

Figure 4.2: The onion triangulation of a set of points.

Definition 4.2.2 The annulus of two convex polygons P and Q (such that Q lies in

the interior of P), denoted ANN(P, Q) is defined as the union of 8P, 8Q and the

region of the plane interior to P and exterior to Q.

An exarnple of an annulus of two convex polygons is given in Figure 4.3 (the

annulus is shown in grey).

The onion-peeling of a set S is then a series of nested annuli. This is obvious from

the procedure defining DP(S).

Thus, the onion triangulation of a set Scan be obtained by computing the tri

angulations of its annuli. This is the main idea behind Toussaint's triangulation

algorithm [83], which we now present.

55

•
P:: p

Pl
P.

•

Figure 4.3: nIustrating the annulus of P and Q.

4.2.3 Algorithm and analysis

Let P = {Pl,P2,'" ,Pm} and Q = {QI, Q2,"" qn} he two convex snch that Q lies in

the interior of P and let T he the desired triangulation of ANJ.V(P, Q). We assume

that P and Q are given in clockwise order and in standard form.

Algorithm TRI-ANNULUS

1. Insert vertices of P and Q as nodes into T.

2. Insert edges of P and Q as edges into T.

3. Find vertices Xmin(P) and Xmin(Q). Re-index vertices of P and Q such that

Pl = Xmin(P) and ql = Xmin(Q).

4. Insert edge (P11 ql) into T.

5. Let Pi =Ph qi = ql·

6. Let L p and LQ be two directed verticallines passing through Pl and qI, respec

tively and such that P and Q lie to the right of L p and LQ , respectively. These

two Hnes of support will be the calipers.

7. Rotate the calipers until one of the Hnes "hits" a vertex.

• if the vertex helongs ta P add a new edge Pi+1qi ta T, set Pi := Pi+ l'

56

•

•

• if the vertex belongs ta Q add a new edge Piqi+l to T, set qi := qi+l .

• if bath lines have hit vertices, add new edge Pi+lqi+l and either of edges

Piqi+l or Pi+lqi to T, set Pi := Pi+l and qi := qi+l·

8. Repeat previous step until bath Pl and ql have been reached.

Theorem 4.2.1 Algorithm TRI-ANNULUS computes the triangulation of

.41VIV(P, Q) in O(m + n) time.

Proof: We begin by first showing that the output of the algorithm (the

graph T) is indeed a valid triangulation of ANN(P~Q). The first two

steps add P and Q into T. This is valid since no edges of P or Q cao

intersect, and since Q lies within P, no edge of Q can intersect an edge

of P. We proceed by first showing the validity of the first triangle, and

applying the same argument to others. First, we claim that the creation

of the first triangle (the first two edges added) is valid.

The first edge added is el = (Pl, qI). No edge of Q cao intersect eh since

ql is the '~left-most" point of Q by definition. Furthermore, any edge

e = (Pl~ Pl+d of P cannat intersect el either, since e' must have aIl points

of P and Q (thus Pl and qI) lie to its right.

The second edge added, e2, is either (Pb q2) (see Figure 4.4(a» or (p2' qd
(Figure 4.4(b» (the parallel case can be separated into two steps, first

adding one of the above, then adding ÛJ2, q2». Suppose e2 is not a valid

edge. 1t cannot intersect (Pb qd. Therefore, it must interseet an edge of

P or Q. But no edge e = (p',PI+d of P could interseet e2 sinee Pl, P2, qi

and q2 must aIl lie ta its right. That leaves an edge e = (ql, ql+d of Q,

whieh is also impossible sinee one of e's vertices would have to lie to the

left of (QI,q2). Renee, e2 is always valid.

This argument applies for subsequent triangles: each time an edge is

added, it consists of a pair of points admitting parallel Hnes of support.

57

•
We have thus shown that the first triangle created is valid. Suppose now

that k triangles have been created (all valid) and the algorithm is in the

process of adding the next edge. Thus, CUITent points are Pi and qi (edge

(Pi 1qi) is already in T) 1and again, we have two cases for the next edge e:

(Pi+11 Qi) or (Pi 1qi+t}. Suppose e is not valid. By the argument above~ no

P.

(a)

q.

(b)

P.. I

•

Figure 4.4: Illustrating the proof of Theorem 4.2.1.

edge of P or Q could intersect e. So it must be an edge eT = (Pb qz) E T.

However, there are restrictions on eT. Because aIl the previous triangles

are valid, CT (belonging ta two previous triangles) cannot intersect (Pi, Qi),

nor any edge of P or Q. Furthermore, Pk must lie ta the right of (Pi, Pi+ l),

and qi must lie to the right of (qi, qi+d. Now, if Pk lies to the right of

(qi, qi+d then we have no intersection. Thus Pk lies to the left of (qi, qi+d

and qi to its right. But since Q lies ta the right of (qi, qi+1L then eT must

intersect 8Q, which contradicts our assumption that eT \Vas a valid edge.

Thus, by induction~ aIl edges (or triangles) added are valid.

vVe now show that the algorithm has linear time complexity. At each step

of the loop1 a vertex of P or Q is hit by the calipers. Each time a vertex

is hit, an edge (thus a triangle) is added. In the parallel case, two vertices

are hit and two triangles added. No vertex can be skipped and no vertex

is checked twice except for Pl and ql. Since we have m + n vertices in

total, the algorithm's laop mns in O(m+n) time. Initialization also takes

58

•
O(m + n) time due to finding the minima. Thus, the whole algorithm

runs in linear time. •

•

Now, the complete algorithm for triangulating a set S of n points has only main

steps:

Aigorithm TRI-ONION

1. Compute OpeS).

2. Use algorithm TRI-ANNULUS to triangulate each annulus in OpeS).

Theorem 4.2.2 Given a set S ofn points, algorithm TRI-ONION computes a hamil

tonian triangulation of S in O(n logn) time.

Proof: Let us first prove the correctness and establish the fact that the

resulting graph is hamiltonian. Since two consecutive annuli only share

edges, triangles can only intersect at edges and vertices. Rence the union

of two annulus triangulations remains a valid triangulation, and algorithm

TRI-ONION yields a valid triangulation.

Now, consider a triangulated annulus. Since we started \Vith two nested

polygons (\Vith the vertices and edges already in the triangulation), the

only edges added to the triangulation graph \Vere edges connecting a vertex

of the outer polygon to a vertex of the inner (a "cross-polygon" edge, so to

speak). Therefore, each triangle can be viewed as determined by an edge

belonging to one of the polygons and a vertex belonging to the other.

But then two triangles cao only intersect at those cross-polygon edges

(and vertices). Since triangles \Vere added one by one, each sharing a

cross-polygon edge with the previous, the triangulation's dual must be a

chain: i.e., the triangulation is hamiltonian. Now, since this is truc for aH

annuli, aU chains (meaning duals) cao be trivially concatenated, yielding

59

•

•

a new chain for the triangulation of the whole set. Hence, algorithm

TRl-ONION yields a hamiltonian triangulation.

Let us now analyze the time complexity of the algorithm. Step 1 can be

accomplished in O(n logn) time using the procedure by Chazelle [13, 14].

Step 2 must be looked at a bit more carefully. Suppose our set of points

yields h layers Hl through H h (Hl = CH(S», the union of which is

OpeS). Suppose each layer (polygon) has Ttï points, with n = nl +.. .+nh

So far, we know that TRI-ANNULUS must he used h - 1 times, first on

the ANN(Hb H 2), then on ANN(H2 , H 3), and so on. The running times

are therefore O(ni + n2), O(n2 + n3), etc. "Adding" these running times

together yields a total running time of O(n) for step 2. Therefore, the

running time for the algorithm is dominated by step 1, and algorithm

TRl-ONION runs in O(n logn) time. _

Corollary 4.2.3 Computing the onion triangulation of a set of n points has a

n(n logn) lower bound.

ProoC: If one computes the onion triangulation of a set S, then CH(S)

is obtained trivially. Since computing the convex hull of n points has a

n(n logn) lower bound [61] then so does the onion triangulation problem.

-
Hence we conclude that algorithm TRI-aNION is optimal.

4.3 Spiral Triangulations

4.3.1 Introduction

Given a set S of n points on the plane, consider the procedure of attaching a string to

one of the pointsl(call it ~) and wrapping the string (say clockwise) around the set of

1Sorne restrictions apply here, and are discussed below.

60

•

•

points, ignoring those the string already touches. This procedure resembles that for

obtaining the convex bull, the loop is never closed and keeps spiraling inwards. The

resulting graph is called the convex spiral of S, and is denoted CS(S). An example

is illustrated in Figure 4.5.

• • •
• • • ••

••• • •
• • • •

• • • ••
(a) (b)

Figure 4.5: A set of points (a) and its convex spiral (b).

The convex spiral also has applications ta statistics, and it is not surprising - due

ta the similarities between CS and OP - that the structure is also used ta define

the median for two..dimensional data [10]: in this case, the last point on the spiral.

The convex spiral structure is, in fact, closely related ta the onion-peeling graph.

They bath give some information as ta the layering structure of the set of points, and

the convex spiral maintains the annulus structure (locally). Finally, given one graph,

the other can he obtained in O(n) time [74, 65].

Sorne important differences exist. Given S, OpeS) is unique since CH(S) is

unique. CS(S), however isn't: it depends on the starting point (referred to above

as hi), and the direction of the graph (clockwise or counterclockwise). Restrictions

apply to hi, however. Gnly a vertex of the convex hull of S may be chosen (otberwise

the procedure for obtaining CS(S) fails). Thus, if CH(S) has h vertices, 2h distinct

convex spirals exist.

Finally, similar ta the anion triangulation, the spiral triangulation of a set S

is a triangulation graph containing CS(S) as a subgraph [83, la]. One interesting

61

•

•

application of this graph is its use in obtaining quadrangulations [10]. This will he

discussed in the next section.

Bose and Toussaint [10} present an algorithm yielding a spiral triangulation of a set

of points, and show that the triangulation is hamiltonian. We study their procedure,

which they refer to as the Spiraling Rotating Caliper AIgorithm.

4.3.2 Algorithm and analysis

First, let us give formaI definitions for the structures so far introduced.

Given a set of n points S in the plane, the convex spiral of S is a polygonal chain

resulting from the following procedure when applied to S:

1. Find Xmin, the point in S with minimum x-coordinate. If two such points exists,

then let Xmin be the one with smaller y-coordinate. Let Pl := Xmin, and initialize

a chain index i at 2.

2. Construct L, a vertical directed line through Xmin pointing in the positive y

direction.

3. Rotate L clockwise until the Hne ~'hits" a point x of S. Let Pi := x, and i := i+1.

Remove x frorn S.

4. Repeat previous step until S = 0.

5. Output CS(S) = {Pl, ... ,Pn}.

Definition 4.3.1 The spiral triangulation of a set of points S is a triangulation graph

G of S such that CS(S) c G.

The algorithm itselfis somewhat more complex than those previously studied in its

initialization steps. Nevertheless, the core -of the procedure is quite straightforward,

as it is based on the Rotating Calipers paradigm.

62

•

•

Given a set of n points S in the plane given in standard fonn, and its convex spiral

P = {Pl, 112, •.. ,Pn} given in clockwise order, the goal is to compute the corresponding

triangulation T.

Algorithm TRl-CS

1. !nitialization

(a) Insert Pinto T.

(h) Find point Ph of P (in order, starting with P2) such that Ph-IPhPl is a right

tum but PhPh+lPl is a left-turn. The first few points of P define its convex

hull (this is guaranteed by the Spiraling Procedure used to create the convex

spiral); Ph is the last snch point. In other words, CH(P) = {Pl, P2, ... , Ph}'

(c) Extend edge (Pn-ll Pn) until it intersects P and label that point as q'.

(d) Construct a Hne L locally tangent to P at q', and rotate it counterclockwise

until it meet the first point q of P such that L " (Pn-}, Pn). Refer to

Figure 4.6.

Figure 4.6: Illustrating the initialization of Algorithm TRI-CS.

(e) Insert (Pn, q) inta T.

The above construction splits the region of the convex spiral (in other

words the interior of CH(P» in two, as is illustrated in Figure 4.7: the

63

•
PI

Figure 4.7: The inner polygonal and outer spiral regions

outer spiral regioD Po (shown in light grey) and the inner polygonal region

Pi (shown in dark grey). Furthermore, the spiral regioD Po can itself he

viewed as the outer polygonal chain Co = {Pl, P2, ... , q} and the inner

polygonal chain Ci = {Ph, Ph+ l, ... , q, ... , Pn-l, Pn}. See Figure 4.8.

(a) (b)

•

Figure 4.8: The outer spiral region, split in two: (a) the outer chain and (h) the ioner
chain.

2. Triangulation

The triangulation of P is done in two steps, by first triangulating Po, then l{.

64

•

•

3. Po is triangulated similarly ta an annulus. The triangulation is as follows:

(a) Construct directed lines (calipers) L o and Li passing through Pl and Ph,

respectively and both flush with (Ph, pd. Lo and Li are associated with Co

and Ci, respectively. Let qo := Pb qi := Ph· Add (Ph, pd to T.

(b) Rotate calipers La and Li clockwise, until a vertex v is hit: if it is by La,

add edge (qi, v) and let qo := v. If it is by Li, add edge (qo, v) and let

qi := v. In the case of parallel edges in the two chains, Lo and Li will

hit va and Vi respectively. In that case, we add either of edges (qo, vd or

(va' qd, along with edge (Va' Vi), and we update: qo := Vo, qi := Vi·

(c) Repeat previous step until qi = Pn-l and v = Pn.

4. Pi, by the construction above is a star-shaped polygone A triangulation of

the inner polygonal region is thus obtained by adding ail adding aIl diagonals

(Pn' v) 'Vv E Pi, v #: Pn-b q.

The union of the two triangulations yields T, the triangulation of P.

Theorem 4.3.1 Given a set S of n points, Algorithm TRI-CS yields the triangula

tion of CS(S) in D(n) time.

Proof: First, we prove the correctness of the algorithme Triangulating Po,

as previously mentioned is quite similar to triangulating an annulus (see

section 4.2. This is true because viewed locally, it is an annulus, consisting

of two non-intersecting convex chains, like the convex spiral. Since the

algorithm used to triangulate Po is essentially the same as the annulus

triangulation algorithm, we claim that Po is corrcctly triangulated.

The triangulation of Pi requires only for us ta prove that the inner polyg

onal region is indeed star-shaped. By our construction, Pi is split by

the segment (Pn, q'). This segment extend the edge (Pn-l' Pn) until we

intersected the convex spiral. Consider RPï, that region of Pi such that

65

•

•

every point lies to the right of (Pn-l' Pn), and LPï, the region such that

every point lies to the left of that edge. Now, Pi = RPi U LPi, and

RPi = {q', ... ,Pn-l,Pn}. By our construction, it is obvious that RPi is a

convex polygon. Thus every point is visible from every other, in partic

ular from Pn· Consider LPï. By our construction, follo\\'ing P's vertices

counterclockwise from q', q is the first vertex admitting a line of support

parallel ta edge en = (Pn-l' Pn). Let d = dist(en, q), the distance from q

to en. We have \fx E LPi , dist(en, x) < d. Rence aIl points of L~ must

lie within the sector qPnq'. Rence aIl points of LPi are visible from Pn.

This implies all points of Pi are visible from Pn, therefore Pï is star-shaped

from Pn.

We now show the algorithm runs in linear time. The initialization steps

take 0 (n) time: ail that is involved is finding Ph (this is a walk through

the vertices, in order), and the construction of q' and q. The linearity

triangulation of Po follows from the linearity of the annulus triangulation

algorithm (Theorem 4.2.1). Since at most 2n points are involved in both

chains Ci and Co, this part takes O(n) time as weIl. Finally, triangulating

Pi is trivial since Pi is star-shaped. Hence, this part can a1so easily he

done in D(n) time. The algorithm therefore runs in linear time. _

Corollary 4.3.2 The triangulation obtained using algorithm TRI-CS is hamiltonian.

Proof: Consider first the triangulation of Pi. We have shown already

that the inuer polygon is star-shaped. And by adding aIl diagonals, its

triangulation must he hamiltonian.

POl as mentioned above is triangulated in the same manner as an annulus.

In the triangulation of Po, all edges added to the graph connected one

chain to the other. Since no edge connecting two vertices of the same

chain was ever added, the triangles succeed each other in order, each

66

•

•

sharing one cross-chain edge with the next. Hence, the dual of this graph

must he a chain, and the triangulation must he hamiltonian.

Finally, since q and Pn are the last vertices of chains Ci and Co, [q, PnJ must

be an edge in the triangulation of Po. Since it also belongs to Pi, and both

triangulations are hamiltonian, the union (Le., the whole triangulation) is

hamiltonian as weIl. _

Using the above procedure, given CS(S), a triangulation is easily obtained. But

how can CS(S) be obtained? Although the Rotating Calipers can be used (achieving

the result in O(n2) time), this is not the most efficient way. The most efficient ways

are by obtaining OpeS) first (using Chazelle's algorithm (13, 14J, or the procedure

given by Hershberger and Suri (39, 40J) and then using OpeS) to obtain CS(S) as

has been previously discussed [74, 65J. Obtaining OpeS) takes Oen logn) time and

CS(S) takes O(n) time subsequently. Hence this first step dominates the running

time of the algorithm; the total running time is O(n logn).

Let us summarize these results:

Aigorithm TRl-SPIRAL

1. Given S, compute OpeS).

2. Obtain a CS(S) using OpeS).

3. Use algorithm TRl-CS to compute a spiral triangulation of S.

And we have:

Theorem 4.3.3 Given a set S of n points on the plane, the spiral triangulation of

Scan be obtained in O(n logn) time.

As in the onion triangulation, the convex hull of the point set Scan easily be

obtained (in O(n) time) from the triangulation (or the convex spiral). Thus algorithm

TRl-SPIRAL is optimal.

67

•

•

Corollary 4.3.4 Computing the anion triangulation of a set of n points has a

o(n log n) lower bound.

4.4 Quadrangulations

vVhile triangulations may be a widely used structure, some cases have been recentlv

pointed out where quadrangulations (Definition 4.4.1) might be a better structure.

Bose and Toussaint [10] mention finite element methods and scattered data interpo

lation in particular.

Definition 4.4.1 A quadrangulation of a set of points S is a subdivision such that:

• Ils vertices corresponding ta points of S,

• Its outer face is the convex hull of S,

• Each face (except the outer face) is a quadrilateral.

Because of this, efficient, straightforward algorithms solving this problem are

needed. Results and algorithms (for varieties of inputs) have been obtained in

the past twenty years or so. The earlier results often dealt with restricted class

of polygons, such as orthogonal polygons (whose edges are parallel to the coordinate

axes) [68, 46, 56,69], and an O(n logn) optimal algorithm was obtained [56,69]. Vari

ations of the problem included minimizing the SUffi of the length of diagonals [47, 56],

and decomposing orthogonal polygons into rectangles, a procedure of great use in

VLSI [54, 58]. Trapezoidalizations are another variation often used in order to obtain

polygon triangulations [30].

General algorithms, however, are more difficult to obtain: the concept of quadran

gulations is somewhat more complicated than for triangulations. For instance, sorne

polygons do not admit quadrangulations. In these cases, additional points (called

68

•

•

Steiner points) must be added. The existence of quadrangulations and the necessity

for Steiner points are discussed in several papers; we invite the reader to consult [56]

and [29]. The following result discussed in [10], however, is noteworthy:

Theorem 4.4.1 A set of points S admits a quadrangulation if and only if CH(S)

has an even number of points.

Several quadrangulation algorithms exist. One relatively easy approach is to con

vert a triangulation into a quadrangulation by adding up to O(n) Steiner points (for

a set of n points) [38, 45, 29J. Many algorithms construct a quadrangulation for a

few points (such as the convex hull) and insert points into the structure, maintaining

and updating the quadrangulation [8, 64, 20, 3, 4J. The most efficient (and optimal)

of these Sequential Insertion (SI) algorithms was presented by O'Rourke [61], with a

time complexity of O(n logn).

The algorithm studied in this work was presented by Bose and Toussaint [10]. The

authors point out the drawbacks of the SI algorithms: the quadrilaterals produced

are often long and non-convex; Bose and Toussaint then present an optimal algorithm

yielding "nicer" quadrangulations. Interestingly, the essence of the algorithm consists

of finding the spiral triangulation (see section 4.3). Once this \s done, obtaining the

quadrangulation is trivial.

Consider then a set S of n points, and Ts the spiral triangulation of S, obtained

by using the algorithm described in section 4.3 (see Figure 4.9(a».

Let Ds denote the sequence of k diagonals that were added in the process, Ds =
{dl, ... , dt}, with dl = [Pl, Ph]' The procedure is quite straightforward:

• if k is even: remove diagonals d2 , d4.,"" dm .

• if k is odd:

1. remove diagonals dt, dk - 2 , ••• , d3 •

69

•

(a) Cb)

•

Figure 4.9: (a): The spiral triangulation of a set of points and (b): the corresponding
quadrangulation

2. add one Steiner point S outside CH(S), near [Pl,Ph].

3. Connect s to Pl and Ph.

4. remove dl.

vVe daim this procedure yields a quadrangulation (as in Figure 4.9(b». If k is

even, since the triangulation is hamiltonian, the triangles form a chain, attached to

each other, 50 to speak, by the diagooals. Thus each two consecutive triangles form a

quadrilateral. Removing the shared diagonal therefore is sufficient to convert it ioto

a quadrangle. Since this is done for every second diagonal, each consecutive triangle

pair is ~'converted" and the resulting graph is a proper quadrangulation.

If k is odd, we start from the last diagonal, and also remove each second diagonal.

Again, each pair of consecutive triangles is converted into a quadrilateral. However,

the very first triangle (it is either 6.(Pl,P2,Ph) or .6.(Ph,Ph+l,pd) is left out. This is

why a Steiner point is needed, and by adding it, the last triangle is trivially converted.

The tirne complexity of this procedure is D(n), since the removal of ail diagonals

takes at most O(n) time, and if needed, adding the Steiner point and making the

necessary update is 0(1). Therefore, in either the even or odd diagonals case, the

70

•

•

above procedure has Iinear time complexity. Recalling that the TRI-SPIR-~L alg~

rithm had O(n logn) running time (Theorem 4.3.3), the complete quadrangulation

algorithm keeps the same time complexity. We thus conclude:

Theorem 4.4.2 Given a set S of n points, the quadrangulation of S is obtained in

o (n log n) time, with the addition of at most one Steiner point.

71

•

•

Chapter 5

Properties of Convex Hulls

This chapter focuses on problems involving convex hulls. Many well-known problems

are studied: merging and intersecting convex huUs, finding the common tangents and

critical support Hnes of two convex polygons, computing the vector SUffi of convex

polygons. We study the use of the Rotating Calipers paradigm in sohing each of

these problems in an efficient way.

5.1 Merging convex hulls

5 .1.1 Introduction

Suppose two convex polygons (or their hulls) are gjven, and it is required to find the

convex hull of the union of these. Of course, the problem could easily be solved by

computing the convex hull for the set of points consisting of aIl involved vertices.

But, by simple experimentation, one notes that sections of the previous huBs are

maintained in the end of the merge operation (see Figure 5.1). Therefore, it would

be better to use the information already given in the hulls.

The main application of this operation is in computing convex huUs: aU "divide

and-conquer" convex hull algorithms need a merging procedure. In such algorithms,

72

•

•

the original point set is divided in two balves and the convex bull for each half is

recursively obtained. When the subsets considered are small enough (three points),

the convex hull is easily obtained in 0(1) time. Then, it remains to merge aIl the

smaller huBs, two by two, until only one remains. The first divide-and-conquer convex

hull algorithm is due to Preparata and Hong [63] and dates back to 1977. Thanks to

a linear time complexity merge step, their algorithm (for an input size n) has optimal

O(n logn) complexity. Other optimal divide-and-conquer algorithms exist, notably

by Shamos [74] and Toussaint [80, 76, 81, 83].

Figure 5.1: !vlerging two convex hulls byadding "bridges".

Nferging two huUs consists, in essence, of finding the bridge points between the

two (refer to Definition 5.1.1 and Figure 5.1). This consists of finding Hnes of support

cornmon ta both hulls. The brute force way consists of trying each pair of points

between the hulls and testing their validity as bridge points. But a quadratic number

of such pairs exists. Preparata and Hong's method computes the desired pairs of

points for disjoint hulls; in order to make sure aIl pairs of huUs considered during

their algorithm are disjoint, the points are initially sorted by their x-coordinates.

In 1983, Toussaint [81, 83] presents another algorithm performing the merge step.

The idea is to use the Rotating Calipers to compute tbe bridge points. The algorithm

is just as straightforward and efficient, and has a main advantage: the huUs need not

he disjoint; even in the case of intersecting huUs, aIl bridge points are computed.

73

•

•

This in turn enables one to dismiss the initial sort operation needed in Preparata and

Hong's procedure. Furthermore, no backtracking is involved, another advantage over

sorne optimal algorithms mentioned above [74, 80, 76]. Toussaint's algorithm [81, 83]

is therefore more efficient while at the same time providing a general merge procedure.

The details and analysis of this beautiful algorithm are provided in the rest of this

section.

5.1.2 Theoretical results

vVe start \Vith the definition of sorne key concepts discussed. First, a formai definition

of bridge points.

Definition 5.1.1 Given two convexpolygons P = {Pl, ... ,Pm} andQ = {Qll ... , qn}.

Suppose R = CH(PuQ). Then R is formed by convex chains belonging ta P and Q:

joined by new edges called bridges, made up by vertices called bridge points.

Definition 5.1.2 Given two convexpolygons P = {Pl, ... ,Pm} andQ = {qI'.·· ,qn},

two vertices Pi and qj are said to form a co-podal pair if P and Q admit parallel lines

of support in the same direction at Pi and qj.

The above definition complements the concept of anti-podal pairs. An example

of a co-podal pair is illustrated in Figure 5.2.

The following result is the heart of the merge procedure. 1t characterizes the

necessary and suflicient conditions for a pair of points to determine a bridge between

two polygons.

Theorem 5.1.1 Given two convex polygons P = {Pl! ... ,Pm} and Q = {qI'.··' qn}'

two vertices Pi and qk are bridge points if, and only if they form a co-podal pair and

the vertices Pi-I,Pi+l,qk-l,qk+l ail lie on the same side of L(Pi, qk) .

74

•

•

Figure 5.2: An example of two vertices forming a co-podal pair.

Proof:

=::}: Assume Pi and qk are bridge points. Therefore they forro an edge of

the merged convex hull. Renee, aIl points of P and Q must lie on one side

of this edge. Let f. = L(Pi' qk). From the above, we have that l! is a line

of support for P at Pi1 and f. is a1so a line of support for Q at qj. Now,

because aH points of P and Q lie on the same side of e, Pi and qk form a

co-podal pair.

{=: Let e= L(pùqk) once again. f. is such that Pi-b PHl, qk-l, qk+l lie on

the same side of f.. Therefore, eis a Hne of support for P and for Q. Since

Pi and qk are co-podal, P and Q must He on the same side of f.. Therefore,

Piqk is a Hne segment with aH points of P and Q Iying to one of its sides.

This can only be if Piqk is an edge of CH(P u Q) (by the definition of a

convex hull). Hence, we have that Pi, qk are bridge points. _

75

•

•

5.1.3 Algorithm and analysis

Using Theorem 5.1.1, Toussaint [81, 83] suggests the following algorithm based on

the Rotating Calipers. 1t is assumed, again, that P and Q are both convex polygons

\Vi th m and n vertices each, and that N = m + n.

Aigorithm: MERGE-HULLS

1. Compute the maximum y coordinates for both P and Q.

2. Start with the two Hnes of support (i.e., calipers) parallel to the x-axis, touching

P and Q at Ymax(P), and Ymax(Q). Choose a direction of rotation, say clockwise.

The two Hnes of support determine the angles 8i , 8i .

4. Rotate clockwise by 8, thus making one line of support flush with one edge.

Since we have hit a new vertex, one new co-podal pair between P and Q is

considered. In the case of parallel edges between P and Q, a maximum of three

new co-podal pairs between the polygons can be considered.

0. Let Pi and qi be the new vertices where the lines of support are touching P

and Q, and let e= L(Pi' Qi)' Since the Hnes of support determine at least one

co-podal pair between P and Q, check if Pi-Il Pi+b qi-h qi+l alilie on the same

side of e(each "check" can be done in 0(1) time using a signed area calculation).

If aIl four points lie on one side of e, label Pi, qi as bridge points.

In the case of parallel edges, it is not sufficient to check the new vertices hit.

If (Pi, qj) is the old vertex pair and (p~, qj) the new one~ the pairs (Pi, qj) and

(p~, qj) are also co-podal, and thus the same set of computations applied to

(Pi, qj) must be applied to (pi, qj) and (p~, Qi)·

6. Repeat steps 3-5 until the total rotation angle is greater than 21r.

76

•

•

7. Given our list of aIl bridges

the merged hull is obtained as follows: we start with the highest of the maximum

y-coordinates (obtained in step 1), say it is equal to Pi. Then the merged hull

is {Pi, .. . ,PbI, qbb ..• ,qb2, Pb2, ••. }. In other words, either of the two polygons

vertices are just added in order until the vertex coincides \Vith a bridge point,

at which point we switch between polygons.

Theorem 5.1.2 Given two convex polygons P and Q (with m and n vertices each) ,

algorithm MERGE-HULLS determines the merged convex hull CH(PuQ) in O(m+n)

lime.

Proof: Let us first prove the correctness of the algorithme The pair of

Hnes of support are rotated an angle of at least 27i. Hence aIl possible

co-podal pairs between P and Q are analyzed. From Theorem 5.1.1, aIl

bridge points are correctly determined. It then remains to output the

correct list of vertices for the merged hull. Since the algorithm starts

with the maximum y-coordinates for P and Q, the maximum between

these must be a vertex. Since the bridge pairs connect convex chains

between the two polygons, each vertex along the CUITent chain is added

until a bridge is encountered. Then the same procedure is continued with

the other polygon, and so on, until the first vertex (\Vith maximum y

coordinate) is encountered again. The merged hull is therefore correctly

output.

The running time analysis is also straightforward. Step 1 takes 0 (IV)

time (J.V = m + n). Step 2 is initialization, and thus takes constant

time 0(1). The combination of steps 3 to 5 is essentially a finite (fixed)

number of calculations, and thus takes 0(1) time. This same combination

is repeated (step 6) until every vertex has been "hit" by the Hnes of

77

•

•

support. Repeating N times an 0(1) set of operations has a D(N) time

cast. Finally, step 7 depends on the number of bridge pairs we have. If

the polygons are disjoint and this is known, then we have two bridge pairs

and a special procedure (for that case) can output the vertex list of the

rnerged hull in 0(1) time. Otherwise, we may have up to N bridge pairs,

and the worst-case time is therefore D(N). We therefore conclude that

algorithm MERGE-HULLS has linear time cornplexity. _

5.2 Common tangents

Cornmon tangents for two polygons are exactly what their name indicates: lines which

are lines of support for both polygons. We restrict the notion however: both polygons

must lie on the same side of a cornmon tangent l . For an example, refer to Figure 5.3

where line e is a common tangent for P and Q. Note that Pi, qi forro a bridge. The

Figure 5.3: An example of a cornmon tangent.

concept of cornmon tangents is in fact very sirnilar to that of bridge points. Indeed,

they are equivalent:

Theorem 5.2.1 Given two convex poLygons P 1 Q, a line i = L(Pi, qj) (Pi E P,

qj E Q) is a common tangent for P and Q if, and only if Pi and qj are bridge points.

I,",Yhen they lie on opposite sicles, the line is called a Critical Support Hne. We study this in
Section 5.4.

78

•

•

Proof: =>: Let l = L(pj, Qi) be a common tangent of P and Q. Therefore,

P and Q lie on the same side of l, and f. is a Hne of support for both P

and Q at Pi and qj respectively. Hence, Pi-b Pi+ll qi-l, qi+l must alilie on

the same of i, and (Pi, qi) must form a co-podal pair. By theorem 5.1.1,

we have that Pi and qi are bridge points.

.ç::::: Suppose Pi-l, Pi+b qi-l, qi+l alilie on the same side of l = L(pj, Qi),

and assume that (Pi, qj) fonn a co-podal pair.

Since Pi-l, Pi+l lie on the same side of l, and e is tangent to P at Pi, aIl

of P must lie to one side of e. This is due to the fact that P is convex

(therefore P lies in the Pi-lPiPi+l sector). Hence we have that e is a line

of support for P at Pi. By symmetry, e is a line of support for Q at qi.

Therefore, P and Q must both lie on the same of e (since Pi-l and qi-l

lie on the same side).

Since e is a line of support for both P and Q and these lie on one side of

it, eis a common tangent for P and Q. •

Using theorem 5.2.1, finding common tangents between two polygons P and Q
boils clown to finding bridge points. Therefore, we refer to algorithm MERGE

HULLS, described in section 5.1 which does exactly that. The only change is that

the last step of the algorithm is removed.

Hence, we have the equivalent of Theorem 5.1.2 in the following:

Theorem 5.2.2 Given two convex polygons P and Q, with m and n vertices respec

tively, the common tangents for P and Q can he determined in O(m + n) time.

79

•

•

5.3 Intersecting convex polygons

Suppose we are given two convex polygons P and Q (with m and n vertices respec

ti\rely), with the purpose to compute their intersection2 •

Before proceeding to the computation of the intersecion, whether the polygons

intersect or not should he known. Chazelle (with Dobkin) [12, 16J provides us with

efficient O(log(m + n)) time algorithms. If P and Q do indeed intersect, we can

proceed to the computation.

~[any algorithms exist: Shamos [72, 74] 1 and earlier \Vith Hoey [73] give linear

time (O(m + n)) algorithms. Although efficient, these methods are quite complex

and elaborate. Later O'Rourke et al· [62] presents a much less complicated algorithm,

without sacrificing performance.

Our interest lies in an algorithm by Toussaint [79, 83] which uses the Rotating

Calipers. Indeed, a result by Guibas et al. [37] establishes a one-to-one correspondence

between the intersections of the polygons' boundaries 8P and ôQ and the bridges

between P and Q. Toussaint provides a proof of this result [79].

Based on this, given the bridge points, intersection points are computed (this is

the key to the whole procedure). When these are joined together by convex chains

of P and Q, P n Q is determined. Thus we have another application of algorithm

~IERGE-HULLS (Section 5.1). Since it is beyond the scope of this \Vork to present

details of that algorithm we invite the reader to consult Toussaint's papers [79, 83]

for aIl the details.

2\Ve assume that the data is given in standard fonn, thus implying that P and Q intersect if,
and only if their interiors intersecte

80

•

•

5.4 Critical support lines

5.4.1 Introduction

A critical support (CS) line of two polygons is a common Hne of support with the

polygons on opposite sides (see Definition 5.4.1 for a formaI definition). This problem

has a multitude of applications, such as visibility, collision avoidance, range fitting

and linear separability to name a few [81]. Such problems occur frequently in path

planning in robotics. Critical support Hnes are also often referred to as separating

tangents.

For instance, the CS Hnes for two disjoint polygons determine the proper visibility

regions. They determine separability lines between polygons. They cao be used to

determine how much one cao translate one polygon without colliding with the other.

Finally, Grenander defines a method for measuring the distance between disjoint

COllvex polygons [34]. We refer the reader to the following papers for more information

on these problems [28, 36, 60].

1t is therefore desirable to have an algorithm to compute the CS Hnes given two

convex polygons. The brute-force way is easy to implement, but the procedure has

quadratic time complexity, since aIl vertex pairs between polygons need to be checked.

Toussaint provides yet another application of the Rotating Calipers [81], to corn

pute the CS lines. Given two disjoint polygons with a total of N vertices, his algorithm

efficiently computes the CS Hnes in O(N) time.

\Ve present his results in detail in the remainder of this section.

5.4.2 Theoretical results

Let us forrnalize our previous definition of CS lines.

81

•

•

Definition 5.4.1 Given two disjoint convex polygons P and Q, a Critical Support

Line (CS line) is a line l. = L(Pil qi) (Pi E P, qi E Q) such that: it is a fine of support

for P at Pi, it is a line of support for Q at qi' and such that P and Q lie on opposite

sides of l..

An example is shawn in Figure 5.4: vertices Pi and qi determine the Critical

Support line l.. Pi and qi form an anti-podaI pair between P and Q; in addition, Pi-b

PHl and qi-b qi+l lie on opposite sicles of l. \Ve will see these are necessary and

sufficient conditions for l to he a CS line.

Figure 5.4: An example of Critical Support Hnes.

Theorem 5.4.1 Two vertices Pi EPand qi E Q determine a CS line l. = L(Pi' qi)

if, and only if they form an anti-podal pair and Pi-l, Pi+l lie on one side of l while

qi-l, qi+l lie on the ot/ter side of l.

Proof: ~: Assume Pi, qi determine a CS Hne l = L(pi' qj). Therefore,

by definition, we have:

• e is a Hne of support for P at Pi .

82

•

•

• l is a Hne of support for Q at qi.

• P and Q lie on opposite sides of l.

Since l is a line of support for both P and Q, and since P and Q lie on

opposite sides of l, then Pi and qi form an anti-podal pair. The case is

peculiar since the two parallellines of support usually considered happen

to coincide in this case.

Since P and Q lie on opposite sides of l, then Pi-h Pi+l must lie on one

sicle of e, while qj-b qi+L lie on the other side.

<=:: We know that (Pi, qi) form an anti-podai pair, Pi- Land Pi+ Llie on one

side of l while qi-b qi+l lie on the other side of f..

Pi- L, Pi+ L lie on one side of f.. Hence aIl of P must lie on the same side,

since e touches P at Pi and P must lie in the Pi-lPiPi+ Lsector (since it is

convex). Similarly, aIl of Q must lie on one side of l.

NOW, since e intersects P at Pi and Q at qi, we have that e is a Hne of

support for both P and Q, at Pi and qi respectively.

Furthermore, since Pi-L and qi-L lie on opposite sides of e, then P and Q

must lie on opposite sides as weIl. _

Using theorem 5.4.1, the determination of a CS Hne now becomes very easy. The

Rotating Calipers can be used in a similar way as in the ~IERGE-HULLS proce

dure 5.1. Toussaint [81] suggests an aigorithm similar to CS-LINES below. The

input is two convex, disjoint polygons P and Q (in standard form) \Vith m and n

vertices respectively given in clockwise order.

Aigorithm CS-LINES

1. Determine the vertex with maximum y coordinate for P and the vertex with

minimum y coordinate for Q.

83

•

•

2. Start with the two Hnes of support (Le., the caliper) parallel to the x-axis,

touching P and Q at Ymax(P), and Ymin(Q), and directed sucb tbat the polygons

lie to their right. The two Hnes of support determine angles 9i , (Jj.

4. Rotate clockwise by 9, thus making one Hne of support flush with one edge.

Since we have hit a new vertex, one new anti-podal pair between P and Q is

considered. In the case of parallel edges between P and Q, three new anti-podal

pairs between the polygons are considered.

5. Let Pi and qj be the new vertices where the Hnes of support are touching P

and Q, and let e= L(Pi,%). Since the Hnes of support determine at least one

anti-podai pair between P and Q, check if:

• Pi-1 and Pi+ l lie on the same side of e
• qj -1 and qj+ l lie on the same side of e

• Pi-l and qj-1 lie on opposite sides of e.

Each "check" cau be done in 0(1) time using a signed area calculation. If all

checks are true, Pi, qj determine a CS Hne.

In the case of parallel edges, it is not sufficient to check the new vertices hit. If

Pi, qj is the oid vertex pair and P~,qj the new one, the pairs (Pi, qj) and (p~, qj)

are also anti-podal, and thus the same set of computations applied to (Pi! qi)

must be applied to (Pi, qj) and (P~, Qi)'

6. Repeat steps 3-5 uutil the total rotation angle is greater than 21T, i.e., until the

lines return to their original position.

ï. Output the pairs of points determining the CS lines.

As a consequence, we have the following theorem:

84

•

•

Theorem 5.4.2 Given two convex polygons P and Q (with m and n vertices re

spectively), algorithm CS-LINES computes the CS lines for P and Q in O(m + n)

time.

Proof: The correctness of the algorithm follows from Theorem 5.4.1: aH

possible anti-podal pairs between the polygons are checked. Therefore,

the output is correct.

The running time analysis is straight-fonvard: Step 1 consists of two

computations of O(m) and O(n) for a total of O(m + n). Step 2 is just

initialization and takes constant time. Steps 3 to 5 make up the main

"'loop" of the procedure. Essentially, they consist of a fixed and finite

number of computations, each taking up 0(1) time. The total time cost

through one interation of the loop is thus 0 (1) . These three steps are

repeated while the calipers are rotated around the polygons until their

original positions is reached. Since at each iteration at least one new

vertex is "hit" or checked, and subsequently never checked again, there

are at most as many iterations as there are vertices. Therefore, step 6

takes O(m + n) time. FinaHy, the result is output in step 7, which takes

unit time. Therefore, the running time of the algorithm is dominated by

steps 1 and 6, both of which take 0 (m + n) time. Hence the total running

time of CS-LINES is O(m + n). _

5.5 Vector SUIIlS of convex polygons

5.5.1 Introduction

Computing the vector SUffi of two convex polygons, aiso referred to as the ~linkowski

SUffi, is a fundamental problem occurring in motion planning and collision-avoid

ance [81]. The problem considered is the following: suppose one has a convex object

85

•

•

that can be translated anywhere on the plane, but avoiding a given obstacle (i.e.,

they cannat collide). What region of the plane determines where one can translate

the object to? The vector SUffi is used to answer this question. Lozano-Perez and

vVesley [55] present an algorithm based on this, while O'Rourke's text offers a good

introduction to the subject [61].

The formai definition of the vector sum is as follows:

Definition 5.5.1 Given two convex polygons P and Q, the vector 8um of P and Q,

denoted by P Ef) Q is given by:

5.5.2 Theoretical results

Toussaint proposes using the Rotating Calïpers to compute the vector sum of two con

vex polygons [81]. His suggested algorithm is efficient, having linear time complexity,

and is easy to implement.

The following basic results (Theorems 5.5.1 to 5.5.5) characterize many aspects of

the problem, necessary for the algorithm [81].

Theorem 5.5.1 Given two convex polygons P and Q, p Ef) Q is a convex polygon.

Proof: Definition 5.5.1 can be rewritten as:

Pœ Q = U {t = (Xt, Yt) IXt = Xr + X$' Yt = Yr + YS7 'ifs E Q}, r = (Xr , Yr)
rEP

Note that in the above equation, X r and Yr are fixe<! inside the braces. Let

us call the set inside the braces Q (f) r. Therefore, P (f) Q can be rewritten

as:

P Ef) Q = U (Q œr) = U (P Ef) s)
rEP sEQ

86

•
Now, suppose P EB Q is not convex.

Therefore, 3 t l = (XI, yd, t2 = (X2, Y2), t b t2 E P EB Q and a third point

to = (xo l Yo), with

In other words, there exists a point along the segment (t b t 2) that does

Dot beloog to P EB Q though t land t2 do.

Now, t 17 t2 E P EB Q

~{ t l - (PXl + qXl ,PYl + qYl)

t2 - (PX2 + qX2' PY2 + qY2)

with

Pl - (pXllPyJ E P

P2 - (PX2l PY2) E P

ql - (qxl l qYl) E Q
q2 (qx2,qY2) E Q

so wc cao rewrite the coordinates for t l and t2 as:

Xl - PXl + qXl

YI - PYl + qYl

X2 - PX2 + qX2

Y2 - PY2 + qY2

::::} {xo = (PXl + qXl) + (PX2 + qX2 - PXl - qXl) To
yo = (PYl + qYl) + (PY2 + qY2 - PYl - qYl) 'To

::::} {xo -
Yo -

[PXl + (PX2 - PXl) Ta] + [qXl + (QX2 - qXl) Ta]

[PYl + (PY2 - PYl) Ta] + [qYl + (qY2 - qYl) Ta]

•
Now, let

87

•

•

We have to = Po + qo- NOW, Po is a point on the line segment (Pl, P2),

and PhP2 E P. Furthermore, qo is a point on the line segment (qi, q2),

and qI, q2 E Q. Since P and Q are convex, we have Po EPand qo E Q.
Therefore, to = Po + qo E P E9 Q. This contradicts our assumption: pœ Q
is therefore convex. _

Theorem 5.5.2 Given two convex polygons P and Q, the vertices of pœQ are vector

surns of vertices of P and Q.

Proof: We have established that R = Pœ Q is a convex polygon. Let

RH = CH(R), PH = CH(P), QIl = CH(Q). The vertices of R are

the same as the vertices of RH, Take a vertex r = (xr , Yr) of R. Then

:3 pEP, q E Q such that r = p + q. Assume that p (say) is fiot a vertex

of P.

Create a new axis cS along the plane (we will say that a point x in the

plane have a certain "<5-value" ~ denoted by x 5). \Ve pick <5 such that:

In other words~ of aIl points of R~ let <5 be such that r has the smallest

<5-value. See Figure 5.5. For example, <5 could be the angle bisector at

Figure 5.5: Illustrating the proof of Theorem 5.5.2.

r. Furthermore, and without loss of generality, we assume that cS is not

88

•

•

perpendicular to any edge of P or Q (it is always possible to find 8 to

satisfy this condition).

Now, getting back to our assumption: if p is not a vertex of P, then it

either:

1. belongs on an edge of P

2. is an interior point of P.

Let us analyze each case:

1. lfp belongs to an edge e, then consider the 8-value of the points on

this edge. Since e is not perpendicular to 8, then one of its endpoints

must have minimum 8-value. Since p is not an endpoint of e (because

pis not a vertex), then pick the endpoint pl of e \vith smallest 8-value.

See Figure 5.6: part of polygon P is shown, with edge e is shown as

a thick Line. Let ri = pl + q. We have a new point ri E pœ Q = R

Figure 5.6: Illustrating the proof of Theorem 5.5.2.

but r l6 < rrS, which contradicts our original assumption.

2. If p is an interior point of P, construct a line ethrough p and parallel

to 8. I!. intersects the P in a segment [a, bl. See Figure 5.7 Along [a, bl,

Figure 5.7: Illustrating the proof of Theorem 5.5.2.

89

•

•

the <5-value of points increase monotonically. Furthermore: since p =F

a and p =1 b (p being an interior point), p does not have the minimum

8-value aIong [a, hl. As in case l, we can construct r' = a + q,

r' E R with r/d < rd. This leads to the same contradiction of our

assumption.

Therefore, we have that p must be a vertex of P. By symmetry of argu

ment, q must also he a vertex of Q. Since r was chosen arbitrarily, the

vertices of P œQ are aIl sums of vertices of P and Q. •

Theorem 5.5.3 Given two convex polygons P and Q, the vertices of PœQ are sums

of co-podal pairs of P and Q.

Proof: Take a vertex r of R = PEl) Q. Similarly to the proof of theo

rem 5.5.2, it is possible to construct an axis <5 in the plane (with 8 not

perpendicular to any edge of P or Q) such that of aU the points in R, T

has minimal <5-value. Since r E R, there exist pEP and q E Q such that

T = P + q. Now, p and q must be the points with minimal <5-value for

P and Q respectively. Furthermore, by theorem 5.5.2, p and q must be

vertices of P and Q respectively.

Construct the two directed Hnes L p and Lq , parallei ta t5 and having same

direction as 8. Construct the directed Hnes L; and L;, perpendicular

to 8, and passing through p and q, respectively. As for the direction of

these lines, let us have the +00 of <5 lie to the right of L; and L;. See

Figure 5.8.

Now, since p and q are the points of P and Q with minimal a-value, we

have L; and L;, two directed Hnes passing through exactly one point of P
and Q, and such that P and Q lie ta the right of L; and L;, respectively.

Therefore, L; is a line of support for Pat p, and L; is a Hne of support

for Q at q. Since L; and L; are parallel and have the same direction,

then p and q are co-podal. •

90

•

Figure 5.8: Illustrating the proof of Theorem 5.5.3.

Theorem 5.5.4 Given two convex polygons P and Q with m and n vertices respec

tively, P œQ has no more than m + n vertices.

Proof: We have P = {Pl, ... ,Pm} and Q = {qll"" qn}' Let us represent

these polygons using star-diagrams, showing (only) the direction of their

edges.

P has m edges el, ... , em, so we may represent P as shown in Figure 5.9.

(a) (h)

•

Figure 5.9: Ca) Polygon P and its associated star diagram (b).

The vertices of P lie at the intersection of edges. Thus Pl lies at the

intersection of eTn and el l 'Pl lies at the intersection of el and e21 and

so on. A given vertex Pi accepts Hnes of support in a range of directions

determined by the edges ei-l and Ci - except for Pl (for which the Hnes of

support determined by em and ed. Refer to Figure 5.10 (a). If we extend

91

•
(a) (b)

•

Figure 5.10: Illustrating the proof of Theorem 5.5.4.

edge ei-L, the new-formed line makes an angle (Ji with edge ei· Vertex Pi

can only have lines of support in this range of directions. (Symmetrically,

we could extend ei and it would also make an angle (Ji with ei- L. The

same could he said in that case).

So to each vertex Pi is associated two edges ei-l and ei, and each pair of

consecutive edges determines an angle «(Jd, which in turn determines the

possible line of support at that vertex.

In the star-diagram representation of P, the disc is divided inta sectars,

each sector determined by two edges. In essence, each sector is associated

to a vertex. The angle of the sector determines the possible lines of support

for that vertex (refer again ta Figure 5.10 (b». In the case of P, there are

m sectors, with angles (JI, ••• ,9m , satisfying:

Now, by theorem 5.5.3, the vertices of Pœ Q are SUffiS of co-podal ver

tices of P and Q. Suppose Pi, qj, (Pi E P, qi E Q) form a co-podal pair

between P and Q. Therefore, Pi and qi admit parallel lines of support.

Consider the star-diagrams for P and Q: if Pi and qj admit parallel lines

of support, then the sectors for Pi and qi must intersect. Therefore, each

co-podal pair between P and Q must correspond to an intersection of

sectors for P and Q. How many sector intersections are there? Sector

intersections are obtained by "superimposing" the two star-diagrams, in

92

•
other words, by adding the sectors of one polygon in the star diagram to

the other. Suppose we take the star-diagram for P and add Q's sectors:

the first time a sector is added, a maximum of two new sectors are cre

ated. Every subsequent time a sector of Q is added, one new sector is

created. However, the Iast sector to be added is already present in the

combined star diagram. Hence, the total number of combined sectors in

the combined star diagram is bound by:

m+2+1+1+ ... +1=m+n.. "

'"'n-2

Since there can onIy he up to m + n intersections, the number of co-podal

pairs between P and Q is bound by m + n. Therefore, P œQ can have at

most m + n vertices. •

•

Finally, the following theorem enables the incremental construction of P EB Q.

Refer to Figure 5.11.

Figure 5.11: Illustrating the proof of Theorem 5.5.5.

93

•

•

Theorem 5.5.5 Given two convex polygons P and Q. Consider the vertex z"

Pi œqj of P œQ. Then, the succeeding vertex Z"+l is given by:

1
Pi+l œqj (Ji < 4>j

Z"+l = Pi œqj+l 4Jj < Bi

Pi+l œqj+l Bi = 4>j

where Oi and 4Jj are the angles of the edges at Pi and qj~ respectively.

Proof: It has already been determined in Theorem 5.5.3 that z" and Zk+l

must be SUffiS of co-podal pairs of P €a Q. Therefore, Pi and qj must be

co-podal. Construct parallellines of support Lp and Lq at Pi and qj, and

consider the angles (Ji and 4>j, as in Figure 5.11. There are three cases to

be considered:

1. (Ji < 4Jj. See Figure 5.12. In this case, Pi+l and qj are co-podal.

Figure 5.12: Illustrating the first case of Theorem 5.5.5.

2. 4Ji < Oi. See Figure 5.13. In this case, Pi and qj+l are co-podal.

Figure 5.13: Illustrating the second case of Theorem 5.5.5.

94

•

•

Figure 5.14: Illustrating the third case of Theorem 5.5.5.

3. ifJj = (Ji' See Figure 5.14. In this case, Pi+l and qj, Pi and qj+b Pi+l

and qj+l aIl form co-podal pairs, and the edges of P and Q considered

are parallel.

Now, in cases 1 and 2, when we are not dealing witb parallel edges for

P and Q, we daim that if Pa EPand qb E Q Corm a co-podal pair then

Pa Ef:) qb must be a vertex of P œQ.

Proof: Pa and qb fonn a co-podal pair. Therefore, Pa and qb admit parallel

Unes of support in the same direction. Assume without loss of generality

that we have two directed lines La and Lb, Hnes of support for P and Q

at Pa and qb, respectively, and sucb that P and Q both lie to the right of

their respective Unes of support. Construct the directed Hnes L; and LI;,
perpendicular to La and Lb, passing through Pa and Pb, respectively, and

directed such that their +00 side lies to the right of La and Lb' Thus L;

is parallel to LI;. Finally, construct an axis 6, parallel to and in the same

direction as L; and LI;. See Figure 5.15. As in the proof of theorem 5.5.2,

we shall consider the d-value of various points. Now, Pa and qb are points

of minimal d-value for their respective polygons. Let r = Pa ffi qb' Then

r must the point of minimal d-value for Pœ Q. Again it is assumed that

no edge of any polygon considered is perpendicular to d, a condition that

cao always be satisfied.

Now, by theorem 5.5.1, pœ Q is a convex polygone As seen in the proof

of Theorem 5.5.2, a given minimum 6-value point of a convex polygon

can only be one of the vertices of the polygone Therefore r is a vertex of

95

•

•

Figure 5.15: Illustrating the proof of the first two cases of Theorem 5.5.5.

PœQ. Q.E.D.

Hence, for cases 1 and 2, we have:

1. if Bi < f/Jj (Pi+l and qj co-podal) => z = Pi+l œqj is a vertex.

2. if Bi > f/Jj (Pi and qj+l co-podal) => z = Pi œqj+l is a vertex.

In either case, we still have Zk = Pi œqj a vertex of P œQ as weIl. Now,

there cannot be any other possible sum of co-podal pairs forming a vertex

between Zk and z, therefore Z = Zk+l in both cases.

Case 3: Bi = f/Jj' We have (Pi, qj), (Pi+l' Qi)' (Pi, qi+d, (Pi+l' qj+d aIl

forming co-podal pairs. Therefore each pair's sum can he considered as a

potential vertex for pœ Q. Now, we have:

[Pi, Pi+d Il [qj, qj+d

=> [Pi œqj, Pi+l œqj] Il [Pi œqj, Pi œqj+d Il [Pi EV qj, Pi+l œqi+d

Therefore, Pi œqj, Pi œqj+b Pi+l Et) qi' and Pi+l œqj+l are aIl collinear.

Furthermore, they aIl Lie on the [Pi œqj,Pi+l œqj+d segment. The order

of the two other points depends on the lengths of the edges [Pi, Pi+d and

[Qi, Q;+d· See Figure 5.16.

These four collinear points aIl belong to pœ Q. A doser look reveals that

Piffiqj+l and Pi+l œqj cannot be vertices of PœQ since they helong to the

interior of a segment of P œQ (the segment heing [Pi œqj, Pi+l œqi+d)·

96

•

•

Figure 5.16: Illustrating the proof of the third case of Theorem 5.5.5.

\Ve daim that Pi+l œ qi+l must be a vertex of P EB Q. First, note that

Pi, Pi+l, and Pi+2 cannot be colIinear. The same can be said for Qi' qj+l,

and qj+2. Hence Pi+l and qi+l are not only co.podal, but they can have

parallellines of support in a range of directions. Therefore, it is (as above)

possible to pick a direction d in v:hich Pi+l and qi+l are minimaI6-values.

Hence z = Pi+l EB qi+l is the point with minimal d-value for pœ Q, and

(as seen above), this implies that z is a vertex.

Finally, we know now that Zk = PiEBqi and Z = Pi+1EBqi+l are both vertices.

But since all co.podal pairs between the pairs (Pi, Qi) and (Pi+h qi+d have

already been considered, then there cannot be any vertices between Zk

and z. Therefore, Zk+l = Z. •

Theorem 5.5.5 describes a straightforward incremental aJgorithm for computing

the vector sum of two convex polygons P and Q. The result suggests the use of the

Rotating Calipers. AlI that is needed is a starting point, which can be the extrema

of the polygons in a given direction.

Consider then the folIowing algorithme The input is two convex polygons P (m

vertices) and Q (n vertices) given in standard forme The output is the list of vertices

of PœQ.

Aigorithm VECTüR-SUM

1. Compute the vertices with minimum y-coordinate for P and Q. Denote these

Ymin(P) and Ymin(Q). If these are not unique, pick the leftmost ones. Let these

97

•

•

vertices he our starting points, with two horlzontallines of support (calipers)

through Ymin(P) and Ymin(Q). In other words let Pi := YminP and qj := Ymin(Q).

2. Let k = 1. Z", the first vertex of R = Pœ Q is equal to Pi + qj.

3. Compute the angles (Ji and 4Jj determined between the calipers and the edges

of the polygons. Let d = min(8i , rPj).

4. Rotate the Hnes by angle a, thus 'hitting' a new vertex. The new co-podal pair

then deterrnines a new vertex of R. In other words, if a vertex of P was hit,

then Zk+l = Pi+l + qj. The two other cases are as described in Theorem 5.5.5.

5. Update k, Pi, qi to the new 'current' vertices.

6. Repeat 3-5, until Ymin(P) and Ymin(Q) are both 'hit' again.

7. Output R = {Zl'.'.' Zk}.

vVe conclude with the following:

Theorem 5.5.6 Given convex polygons P and Q with m and n vertices respectively,

algorithm VECrOR-SUM computes Pœ Q in O(m + n) time.

Proof: The correctness follows from Theorem 5.5.5, and from the fact

that the first vertex output is the sum of extreme points (and is therefore

a vertex of the vector sum).

The time complexity analysis is straightforward. Step 1 consists of two

operations of O(m) and O(n) respectively, along with sorne constant tirne

initialization. The total running time for this step is therefore O(m + n).

Step 2 has 0(1) cost. Steps 3-5 make up the main loop. Since there is

a fixed nurnber of simple computations for one iteration of these three

steps, we cao say one iteration takes 0(1) time. Since at each iteration a

new vertex of either polygon is hit, and the loop stops when the original

98

•

•

vertices are reached, the loop is iterated O(m+n) times. Therefore, steps

3-5 take 0(1) time and step 6 takes O(m + n) time. Finally, the vector

SUffi is output (with a unit time cost) in step 7. We conclude the total

running time orthe aIgorithm, dominated by steps 1 and 6 is O(m+n). _

99

•

•

Chapter 6

Thinnest Transversals

6.1 Thinnest Strip Transversal

The thinnest strip transversal is essentially a facility location problem, in which a

number of "facilities" exist for a given number of "customers". The goal is to find the

best location for the facilities to minimize for instance the maximum distance from a

customer to a facility, or to minimize the sum of the customer-facility distances [31].

Such problems occur often in transportation and management sciences. Many ver

sions of the problem exist in the field of computational geometry. The customers can

be points, Hne segments, or simple CODvex objects, as can the facilities. Furthermore,

the custamers can also have a weight associated to them, so that the minimum sum

of distances ta customers becomes a weighted sumo In the case of the facility being

a liue, the problem is analogous to that of linear approximation, which bas applica

tion in statistics, computer vision, computer graphies, and pattern recognition [67].

Algorithms exist to suit each version.

The specifie problem we focus on in this work is as follows: the facility is a Hne

on the plane and the customers are convex polygons. Thus the problem can either

be viewed as a linear approximation problem, or a facility location one. In either

100

•

•

case, the algorithm studied is one presented by Robert and Toussaint [66, 67J. Their

papers study the problem from both points ofview, along with sorne different versions

mentioned above.

The goal in this specifie problem is to find a Hne l minimizing the maximum

distance from l to any polygon. We define this distance as follows: suppose we have

a polygon P and a Hne l lying on the plane. Then

dist(P, l) = min {dist(p, L)} .
'VpEP

Robert and Toussaint show this problem is equivalent to finding the strip - the

region in the plane bounded by parallellines - of minimum width intersecting aIl

polygonal customers. Once the strip has been found, the medial axis of this strip is

the desired Hne l. The medial axis of a polygon is the set of points in the interior that

have more than one closest point to the boundary. In the case of a strip, the medial

axis is the line equidistant from the strip's boundaries.

'Ne present the authors' algorithrn, which involves the use of the Rotating Calipers.

Before we proceed, however, we rnust define sorne concepts:

Definition 6.1.1 Given a line l in the plane, defined by the equation ax + by +
c = 0 (constrained by either b > D or a = -1). L detennines the upper hal/

plane Hu(l) = {p = (px,py)llapx + bpy + c ~ D} and the lower hal/-plane He(l) =
{p = (px,py)lapx + bpy + c < D}.

The constraints on a and b in the above definition are ta ensure that:

1. the equation is valid, e.g. we cannot have a = b = 0 and c =1 o.

2. the concepts of upper and lower half planes are well-defined in case the Hne is

vertical (Le., when b = 0). In that case, the upper half-plane is defined as the

region containing the negative infinity side of the x-axis.

101

•

•

Definition 6.1.2 Given two parallel lines lt and [2, the strip S is defined as the

region of the plane bounded by II and [2.

In other words, supposing that [2 c Hu(ld, S = Hu(ld n Hl([2).

Definition 6.1.3 The width of a strip S bounded by lines LI and L2 is the orthogonal

distance between II and 12. The orientation of S is defined as the angle between LI and

the positive x-axis.

Definition 6.1.4 Given a polygon P, for a given orientation (), the lower tangent of

P is the line tdP, 0) with angle () such that tl(P, O)np #- 0 and P C Hu(tl(P, 0». The

lower point Pl(P,O) of P is a point p belonging to tl(P,O) n P. We similarly define

the upper tangent of p~ tu(P,O), such that tu(P, 0) n P #- 0 and P = Hl(tl(P, ()) and

the upper point Pu(P,9), belonging to tu(P, 0) n P.

In our case, we are dealing with a set of polygons, called a family. For a given

family F, the set of lower points and upper points of aIl members of F are denoted

LP(F,O) and U P(F, (), respectively. The following result is the key to finding the

minimum width strip for a family of polygons.

Lemma 6.1.1 Given a family F of convex polygons, and an orientation 9, a strip

S = Hu (ld n Hl (l2) of width greater than 0 is the minimum width strip for F if and

only if:

Proof: ~: Suppose we are given a strip S' that is the minimum width

strip intersecting all members of F. See Figure 6.l.

Suppose then that such polygons P and Q do not exist. Since S' intersects

aU members of F, it must be that at least one polygon farthest from S'

102

•

•

Figure 6.1: Illustrating Lemma 6.1.1.

intersect the interior of the strip (i.e., the region of the strip excluding its

boundary Hnes). But then the width of the strip can he decreased, while

maintaining the intersection. This implies S' is not the minimum width

strip.

~: Suppose a strip S is defined such that two polygons P, Q, exist

satisfying the conditions in Lemma 6.1.1. Then (keeping in IDind the

orientation is fixed), since P and Q only intersect the strip at its boundary,

decreasing the width of the strip implies that sn P = 0 or Sn Q = 0 or

both. In any case, this implies a strip of smaller width cannot he found

to intersect aH members of F, including P and Q. Therefore~ S must he

the minimum width strip. •

From Lemma 6.1.1 it can deduced that:

II = ti(CH(UP(F, 8», 8)

and

l2 = tu(CH(LP(F, 8», (J)

See Figure 6.2. Given F and an orientation 8, the optimum strip is obtained by lines

II = tl(CH(UP(F, 8»,8) and l2 = tu(CH(LP(F, 8}), 8). With this construction,

S = Hu(ld n H,(l2) is the minimum-width strip with orientation 8 for F.

Given this criterion for finding the optimum strip for a given orientation, the al

gorithm yielding the minimum width strip (independent of direction) directiy follows:

103

•

II
• upper-points

c lower-points

~CH(UP(F,(J))

~

//,·'/,---CH(LI'(F,9))
...•...•.•.

•

Figure 6.2: The minimum-width strip with orientation O.

because the number of relevant orientations to be considered is limited, if one finds

the optimum strip for each relevant 0, the minimum width strip for Fis subsequently

found.

Since the focus of this work is the analysis of the role of the Rotating Calipers

in the procedure, we do not deal with the correctness and the complexity of the

algorithm, but merely explain the idea behind it. The Rotating Caliper algorithm is

used essentially to find the sequence of lower and upper points for a given polygon in

the family.

The following is the detailed procedure for finding the lower and upper points

sequences for a polygon P.

1. Find the vertices with minimum and maximum y-coordinates, caU them p and

q, respectively, and set the calipers in horizontal position passing through P and

q.

2. Rotate the calipers counterc1ockwise, say by an angle B, until a new vertex r is

hit. If two vertices are bit (in the case of parallel edges), let r = Pnext, r' = qnext .

104

•

•

3. Add [0, Bl to the range of angles for whieh p and q are lower and upper points,

respectively.

4. Update p and q (unless two vertiees were hit, only one gets updated, becoming

r).

5. Repeat steps 2-4, until we have rotatOO hyan angle greater than 'iL

Thus, for any direction (J, we know the lower and upper points for P. At this

angle, the tangents to P pass through these points. The points are unique unless the

tangents coincide with an edge of P. The orientations at which this case oceurs are

called critical directions. In those cases, the lower (or upper) point will he the next

tangent point when rotating the calipers counterclockwise.

Two other important factors need to be considered. First, not aIl orientations need

ta be considered in arder to find the minimum width strip. Consider the sequence

of critical directions for aIl members of F, and take two consecutive orientations BI

and (J2. \Vithin this range of directions, the upper and lower points are the same:

they only change at the critical directions. Therefore, given the minimum width strip

for orientation (J, with (JI < (J < (J2, it is always possible to rotate the strip about

its tangent points, keeping (J within that range, and maintaining the strip's validity.

Then the strip cannot be optimum for such an orientation, for it is always possible

ta rotate it such that its \\;dth decreases. For this reason, only strips with critical

directions should he considered in the algorithm. So, given the strip for (JI, we rotate

it until the orientation is (J2' at which time we need to update. This is easily done~

since only one point will he updated unless we have parallel edges among members of

F, and because ofthis, CH(LP(F,82)) and CH(UP(F,82)) need not he recomputed,

but merely updated. Again, if we are Dot dealing with parallel edges, then the update

involves removing one point and adding another.

If these steps are followed for aIl relevant directions, the optimum strip is output.

The complete algorithm, its correctness and complexity analysis are given in [66] .

105

•

•

Chapter 7

Conclusion

Throughout this work, many applications of the Rotating Calipers paradigm have

been studied. The variety and extent of the various problems suggests that the algo

rithm exploits key properties that aIl these problems hold in cornmon. Furthermore,

the paradigm's ease of implementation makes it an ideal candidate to solve a prohle~n

(or a suhproblem) whenever it can he applied. When should one think of using the

Rotating Calipers? In many cases - e.g., when anti-podal pairs or co-podal pairs are

involved - the algorithm comes to rnind due to sorne characterization of the solu

tion. vVhen this is not the case, e.g., for the spiral triangulation, use of the Rotating

Calipers is intuitive because the algorithm can be so easily ";sualized.

Sorne problems discussed in this work warrant a more detailed study. A possible

connection was suggested between the minimum area enclosing rectangle and the

width for a convex convex polygon. Although counterexamples exist, the connection

cannot he dismissed; it would be interesting to study the family of polygons for which

the sarne edge-vertex pair determine both the width and the minimum area enclosing

box. Can similar parallels be drawn between other problems?

Other areas of study include possible improvements to existing algorithms. Con

sicler the problem of finding the maximum distance between two convex polygons.

The Rotating Calipers solution has linear time complexity. 1s it possible to improve

106

•

•

this, by further characterizing the solution? In the case of finding the minimum dis

tance between convex polygons, optimal algorithms already exist. We know then that

it is possible ta improve on the O(n) running time of the algorithm proposed in this

work.

Finally, we remind the reader that this work is not an exhaustive collection of

aIl the problems solved using the Rotating Calipers. An equivalent of the paradigm

exists in three dimensions, with applications to a variety of problems.

The extent of the paradigm, its conceptual simplicity and its ease of implemen

tation make the Rotating Calipers a highly useful and versatile tool that deserves

further research.

lOï

•

•

Appendix A

Rotating Calipers hornepage

As mentioned in the introduction to this work, a summarised version of aIl the prob

lems has been prepared, and is available on the Internet. The information is in the

form of a webpage, and can he found at

http:f f cgm .cs.mcgill.caf -ormfrotcaI.htm 1

Although proofs and details are missing, this webpage can serve as a pedagogi

cal tool to anyone interested in Computational Geometry, or the Rotating Calipers

paradigm specifically.

108

•

•

Appendix B

Rotating Calipers applet

To demonstrate the Rotating Calipers paradigm "at work" 1 an interactive Java applet

is provided. The user can input one or two convex polygons on a drawing acea, and

then select for a problem to be solved using the Rotating Calipers algorithm. The

problems are separated for practicality according to whether they are "one-polygon"

or ~4two-polygon" problems.

The applet, as weIl as aIl information pertaining to its use and installation (where

necessary) is provided in the author's Rotating Calipers webpage. The applet can he

accessed at the following address:

http:j jcgm .cs.mcgill.caj - orm jrotcal.html

109

•

•

Bibliography

[1] A.V. Aho, J.E. Hopcroft, and J.O. Ullman. The Design and Analysis of Com

puter ALgorithms. Addison-Wesley, Reading, Mass., 1974.

[2] A.V. Aho and J.O. Ullman. Foundations of Computer Science. W.H. Freeman

and Company, New York, 1992.

[3] E.l\1. Arkin, !vI. Held, J .S.B. Mitchell, and S.S. Skiena. Hamiltonian triangula

tions for fast rendering. In J. van Leeuwen, editor, Algorithms - ESA '94, volume

855 of Lecture Notes Comput. Sei., pages 36-47, September 1994.

[4] E.M. Arkin, !vI. ReId, J .S.B. Mitchell, and S.S. Skiena. Hamiltonian triangula

tions for fast rendering. Visual Comput., 12(9):429-444, 1996.

[5] D. Avis. Lower bounds for geometric problems. In Proc. Allerton Conference,

pages 35-40, Urbana, IL, October 1980.

[6] G. Barequet and M. Sharir. Piecewise-linear interpolation between polygonal

slices. Comput. Vision Graph. Image Process., 63, 1996. In press.

[7] G. Barequet and M. Sharir. Piecewise-linear interpolation between polygonal

slices. In Proc. lOth Annu. ACM Sympos. Comput. Geom., pages 93-102, 994.

[8] H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic point location in general

subdivisions. J. Algorithms, 17:342-380, 1994.

110

•

•

[9] B.K. Bhattacharya and G.T. Toussaint. Efficient algorithms for computing the

maximum distance between two finite planar sets. Journ.al of Algorithms, 4,

1983.

[10] Prosenjit Bose and Godfried Toussaint. Characterizing and efliciently computing

quadrangulations ofplanar point sets. Comput. Aided Geom. Design, 14:763-785,

1997.

[11] K.Q. Brown. Geometrie transforms for Case geometric algorithms. Teehnical

report, Dep. Comput. Sei., Carnegie-Mellon Univeristy, 1979.

[12] B. Chazelle. Computational geometry and convexity. PhD thesis, Carnegie

~Iellon University, 1980.

[13] B. Chazelle. Algorithms for computing depths and layers. In Proc. Allerton

Conf Commun. Control Comput., pages 427-436, 1983.

[14] B. Chazelle. On the convex layers of a planar set. IEEE Trans. Inform. Theory,

IT-31:509-517, 1985.

[1.:>] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput.

Geom., 6:485-524, 1991.

[16] B. Chazelle and D. P. Dobkin. Detection is easier than computation. In Proc.

12th Annu. ACM Sympos. Theory Comput., pages 146-153, 1980.

[17] B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir. Diameter, width,

closest Hne pair, and parametric searching. In Proc. 8th Annu. ACM Sympos.

Comput. Geom., pages 120-129, 1992.

[18] B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir. Diameter, width,

closest Hne pair and parametric searching. Discrete Comput. Geom.. 10:183-196,

1993.

[19] Bernard Chazelle and J. Incerpi. Triangulation and shape-complexity. ACM

Trans. Graph., 3(2):135-152, 1984.

111

•

•

[20] S. W. Cheng and R. Janardan. New results on dynamic planar point location.

SIAM J. Comput., 21:972-999, 1992.

[21] F. Chin and C. A. Wang. Optimal algorithms for the intersection and the min

imum distance problems between planar polygons. IEEE Trans. Comput., C

32(12):1203-1207, 1983.

[22] K. L. Clarkson, R. E. Tarjan, and C. J. Van Wyk. A fast Las Vegas algorithm

for triangulating a simple polygon. Di3crete Comput. Geom., 4:423-432, 1989.

[23] S.A. Cook and R.A. Reckhow. Time bounded random access machines. J.

Computer and Systems Sciences, 7(4):354-375, 1973.

[24] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT

Press, Cambridge, r..1assachusetts, 1990.

[25] A.A.N. DePano. Rotating Calipers revisited: optimal polygonal enclosures in

optimal time. In Proc. A CM South Central Regional Conference, Lafayette, LA,

November 1987.

[26] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. \Viley,

New York, 1973.

[27] H. Edelsbrunner. On computing the extreme distance between two convex poly

gons. Technical Report F96, Inst. Informationsverarb., Tech. Univ. Graz, Graz,

Austria, 1982.

[28] H. Edelsbrunner, M. H. Overmars, and D. Wood. Graphies in Flatland: A case

study. In F. P. Preparata, editor, Computational Geometry, volume 1 of Adv.

Comput. Res., pages 35-59. JAl Press, London, England, 1983.

[29] H. Everett, W. Lenhart, M. H. Overmars, T. Shermer, and J. Urrutia. Strictly

convex quadrilateralizations of polygons. In Proc. 4th Canad. Conf. Comput.

Geom., pages 77-83, 1992.

112

•

•

[30] A. Fournier and O. Y. Montuno. Triangulating simple polygons and equivalent

problems. ACJ\1 Trans. Graph., 3(2):153-174, 1984.

[31] R. L. Francis and J. A. White. Facility Layout and Location. Prentice Hall,

Englewood Cliffs, NJ, 1974.

[32] H. Freeman and R. Shapira. Determining the minimum-area encasing rectangle

for an arbitraI)' closed curve. Comm. A.C.M., 18:409-413, July 1975.

[33] NI. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Triangulating a

simple polygon. Inform. Process. Lett., 7:175-179, 1978.

[34j U. Grenander. Pattern Synthesis. Springer-Verlag, New York, 1976.

[35] F. C. A. Groen, P. W. Verbeek, N. DeJong, and J. W. Klumper. The smallest

box around a package. Pattern Recogn., 14(1-6):173-178, 1981.

[36] Leonidas J. Guibas and F. F. Yao. On translating a set of rectangles. In F. P.

Preparata, editor, Computational Geometry, volume 1 of Adv. Comput. Res.,

pages 61-77. JAL Press, London, England, 1983.

[37] L.J. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational

geometry. In Proe. 24th Annu. IEEE Sympos. Found. Comput. Sei., pages 100

111, 1983.

[38] E. Heighway. A mesh generator for automatically subdividing irregular polygons

into quadrilaterals. IEEE Trans. Magn., 19(6):2535-2538, 1983.

[39] .J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algo

rithm. In Proc. 2nd Scand. Workshop Algorithm Theory, volume 447 of Lecture

Notes Comput. Sei., pages 380-392. Springer-Verlag, 1990.

[40] .J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algo

rithm. BIT, 32:249-267, 1992.

113

•

•

[41] S. Hertel and K. Mehlhom. Fast triangulation of simple polygons. In Proc. 4th

Internat. Conf. Found. Comput. Theory, volume 158 of Lecture Notes Comput.

Sei., pages 207-218. Springer-Verlag, 1983.

[42] M. E. Houle and G.T. Toussaint. Computing the width of a set. IEEE Trans.

on Pattern Analysis and Machine Intelligence, 10(5):761-765, September 1988.

[43] K. Ichida and T. Kiyono. Segmentation of plane curves. Trans. Elec. Commun.

Eng., Japan, 58-D:689-696, 1975.

[44J H. Imai and ~1. Iri. Polygonal approximations of a curve: Formulations and so

lution algorithms. In G.T. Toussaint, editor, Computational Morphology. North

Holland, Amsterdam, The Netherlands, 1988.

[45] B. P. Johnston, J. M. Sullivan, and A. Kwasnik. Automatic conversion of trian

gular finite meshes to quadrilateral elements. Internat. J. Numer. Methods Eng.,

31(1):67-84, 1991.

[46] J. Kahn, M. M. Klawe, and D. Kleitman. Traditional galleries require fewer

watchmen. SIAM J. Algebraic Discrete Methods, 4:194-206, 1983.

[47] .1. NI. Keil and J.-R. Sack. Minimum decompositions of polygonal objects.

In G. T. Toussaint, editor, Computational Geometry, pages 197-216. North

Holland, Amsterdam, Netherlands, 1985.

[48] O. G. Kirkpatrick, ~1. M. Klawe, and R. E. Tarjan. Polygon triangulation in

O(n log log n) time with simple data structures. In Proc. 6th Annu. ACM Sympos.

Comput. Geom., pages 34-43, 1990.

[49] O.E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Pro

gramming. Addison-Wesley, second edition, 1973.

[50] O.E. Knuth. Big omicron and big omega and big theta. ACM SIGACT News,

8(2):18-23, 1976.

114

•

•

[51] Y. Kurozumi and W.A. Davis. Polygonal approximation by the minimaxmethod.

Comput. Graphies Image Proeessing, 19:248-264, 1982.

[52] D.T. Lee. Personal communication, 1998.

[53] N. J. Lennes. Theorems on the simple finite polygon and polyhedron. Amer. J.

Math., 33:37-62, 1911.

[54] \V. Lipski, Jr., E. Lodi, F. Luccio, C. lvIugnai, and L. Pagli. On two-dimensional

data organization , Part II. Fundam. Inform., 2:245-260, 1979.

[55] T. Lozano..Pérez and M.A. Wesley. An algorithm for planning collision-Cree paths

among polyhedral obstacles. Commun. AGM, 22:560-570, 1979.

[56] A. Lubiw. Decomposing polygonal regioos ioto convex quadrilaterals. In Proe.

Ist Annu. AGM Sympos. Comput. Geom., pages 97-106, 1985.

[57] NI. NIcKenna and G. T. Toussaint. Finding the minimum vertex distance be

tween two disjoint convex polygons in linear time. Comp. & Maths. with Appls.,

11(12):1227-1242, 1985.

[58] T. Ohtsuki. Minimum dissection of rectilinear polygons. In Proe. IEEE Symp.

on Circuits and Systems, pages 1210-1213, 1982.

[59] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellation.s: Concepts and Ap

plications of Voronoi Diagrams. John \Viley & Sons, Chichester, UK, 1992.

[60] J. Q'Rourke. An on-Hne algorithm for fitting straight Hnes between data ranges.

Commun. A CM, 24:574-578, 1981.

[61] J. O'Rourke. Gomputational Geometry in G. Cambridge University Press, 1994.

[62] J. O'Rourke, C.-B. Chien, T. Oison, and D. Naddor. A new linear algorithm

for intersecting convex polygons. Comput. Graph. Image Process., 19:384-391,

1982.

115

•

•

[63J F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and

three dimensions. Commun. ACM, 20:87-93, 1977.

[64J F. P. Preparata and R. Tamassia. Fully dynamic point location in a monotone

subdivision. SIAM J. Comput., 18:811-830, 1989.

[65J F.P. Preparata and M.I. Shamos. Computational Geometry: an Introduction.

Springer-Verlag, New York, 1985.

[66J J. Robert and G.T. Toussaint. Computational geometry and facility location.

Technical Report SOCS 90.20, McGill University, Sehool of Computer Science,

i\1ontreal, PQ, 1990.

[67] .J .-NI. Robert and G. Toussaint. Linear approximation of simple objects. Comput.

Geom. Theory Appl., 4:27-52, 1994.

[68] J.-R. Sack and G. T. Toussaint. A linear-time algorithm for decomposing rectilin

ear polygons into convex quadrilaterals. In Proc. 19th Allerton Conf Commun.

Control Comput., pages 21-30, 1981.

[69] J.-R. Sack and G. T. Toussaint. Guard placement in rectilinear polygons. In G. T.

Toussaint, editor, Computational Morphology, pages 153-175. North-Rolland,

Amsterdam, Netherlands, 1988.

[70] W. J. Schroeder and NI. S. Shephard. Geometry-based fully-automatic mesh

generation and the Delaunay triangulation. Internat. J. Numer. Methods Eng.,

26(11):2503-2515, 1988.

[71] J. T. Schwartz. Finding the minimum distance between two convex polygons.

Inform. Process. Lett., 13:168-170, 1981.

[72] M. 1. Shamos. Problems in computational geometry. Technical report, Dept.

Comput. SeL, Camegie-Mellon Uoiv., Pittsburgh, PA, 1977.

[73] NI. I. Shamos and D. Hoey. Geometrie intersection problems. In Proc. 17th

Annu. IEEE Sympos. Found. Comput. Sei., pages 208-215, 1976.

116

•

•

[74] 1\1.1. Shamos. Computational geometry. PhD thesis, Yale University, 1978.

[75] R. E. Tarjan and C. J. Van Wyk. An O(nloglogn)-time algorithm for triangu

Iating a simple polygon. SIAM J. Comput., 17:143-178, 1988.

[76] G. T. Toussaint. Computational geometric problems in pattern recognition. In

J. Kittler, K. S. Fu, and L. F. Pau, editors, Pattern Recognition Theory and

Application, pages 73-91. O. Reidel Publishing Company, Boston, MA, 1982.

[77] G. T. Toussaint. An optimal algorithm for computing the minimum vertex

distance between two crossing convex polygons. In Proc. IEEE Internat. Conf.

Pattern Recogn., pages 465-467, 1984.

[78] G. T. Toussaint. An optimal algorithm for computing the minimum vertex

distance between two crossing convex polygons. Computing, 32:357-364, 1984.

[79] G. T. Toussaint. A simple linear algorithm for intersecting convex polygons.

Visual Comput., 1:118-123, 1985.

[80] G.T. Toussaint. Pattern recognition and geometrical complexity. In Proc.

Fifth International Conference on Pattern Recognition, pages 1324-1347, Miami

Beach, December 1980.

[81] G.T. Toussaint. Solving geometric problems with the 'rotating calipers'. In Proc.

MELECON, Athens, Greece, 1983.

[82] G.T. Toussaint. Movable separability of sets. In G.T. Toussaint, editor, Computa

tional Geometry, pages 335-375. North-Holland, Amsterdam, The Netherlands,

1985.

[83] G.T. Toussaint. New results in computational geometry relevant to pattern

recognition in practice. In E.S. Gelsema and L.N. Kanal, editors, Pattern Recog

nition in Practice II, pages 135-146. North-Holland, Amsterdam, Netherlands,

1986.

117

•

•

[84] G.T. Toussaint. An output-sensitive polygon triangulation algorithm. In Proc.

of the 8th Internat. Conf. on Computer Graphies, pages 443-446, 1990.

[85] G.T. Toussaint and B.K. Bhattacharya. Optimal algorithms for computing the

minimum distance between two finite planar sets. In Proc. Fifth International

Congress of Cybernetics and Systems, lvlexico City, August 1981.

[86] G.T. Toussaint and J.A. McAlear. A simple O(n logn) algorithm for finding the

maximum distance between two finite planar sets. Pattern Recognition Letters,

1:21-24, October 1982.

[8i] T. Wang. A C 2-quintic spline interpolation scheme on triangulation. Comput.

Aided Geom. Design, 9:379-386~ 1992.

[88] Y. F. Wang and J. K. Aggarwal. Surface reconstruction and representation for

3-d scenes. Pattern Recognition, 19:197-207, 1986.

[89] S. K. Wismath. Triangulations: An algorithmic study. M.Sc. thesis, Dept.

Comput. Infonn. ScL, Queen's Univ., Kingston, ON, July 1980. Report 80-106.

[90] LNI. Yaglom and V.G. Boltyanskii. Convex Figures. HoIt, Rinehart and \Vinston,

New York, 1961.

[91] P. Yoeli. Compilation of data for computer-assisted relief cartography. In J. C.

Davis and M.J. lvIcCullagh, editors, Display and Analysis of Spatial Data, pages

352-367. \Viley, New York, 1995.

118

