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ABSTRACT

Massively Multiplayer Online Games (MMOGs) can be treated as a database

application. Players request actions concurrently to alter the state of objects in the

game. Since the world state is the most valuable asset of MMOGs, it is extremely

important to ensure its consistency. On the other hand, the de�ning feature of such

games is their capacity to support thousands of clients playing simultaneously, thus

requiring scalability.

This thesis proposes a solution which leverages typical game semantics and archi-

tectures to design scalable transaction models for action handling while maintaining

the required levels of consistency. These models vary in their levels of isolation and

atomicity and o�er di�erent consistency guarantees that are suitable for actions of

varying importance and complexity. Action handling protocols are then designed

according to those models and optimized for scalability and e�ciency.

We also present a persistence architecture which is integrated with the transac-

tion models mentioned above. We show how the di�erent consistency guarantees of

each transaction model can be maintained by the persistence structure.

Concrete actions are then implemented and designed using various transaction

models with persistence support. We then evaluate and compare the performance

of the various implementations and discuss the trade-o� between performance and

consistency.

iv



ABRÉGÉ

Les jeux en ligne massivement multijoueur (MMOGs) peuvent être considérés

comme des applications base de données. Les joueurs initient des actions de façon

concurrentielle pour modi�er l'état du jeu. Puisque l'état du monde est le plus

grand atout des MMOGs, il est extrêmement important d'assurer sa consistance.

D'un autre côté, la caractéristique essentielle de ces jeux est leur capacité de sup-

porter plusieurs milliers de clients simultanément, et donc l'habileté de gérer une

charge grandissante.

Cette thèse propose une solution qui est fondée sur des sémantiques et architec-

tures typiques aux jeux pour concevoir des modèles de transaction extensibles à la

charge pour la gestion des actions tout en maintenant les niveaux requis de consis-

tance. Ces modèles varient dans leurs niveaux d'isolation et d'atomicité et o�rent

donc des garanties de consistance variées qui sont adaptées à des actions d'importance

et de complexité di�érente. Des protocoles de gestion des actions optimisés sont alors

conçus selon ces modèles.

Nous présentons aussi une architecture pour la gestion de persistance des don-

nées qui est intégrée aux modèles de transaction mentionnés ci-dessus. Nous mon-

trons comment les garanties de consistance de chaque modèle sont maintenues par

la structure persistante.

Des actions concrètes sont alors mises en ÷uvre et conçues selon les divers mod-

èles de transaction avec persistance. Nous évaluons et comparons la performance de
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chacune des implémentations et discutons du compromis entre la performance et la

consistance.
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CHAPTER 1
Introduction

MMOGs or MMORPGs, short for Massively Multiplayer Online (Role-Playing)

Games, is a genre of online games which emerged in 1997 with Ultima Online. Since

the start of the 21st century, MMOGs have seen tremendous growth and annual

revenues now exceed $1.4 billion [11]. These games typically revolve around creating

large virtual worlds shared by the players. Each player controls their own charac-

ter (also called avatar) and interacts with others and the environment through a

graphical interface. One unique aspect of MMOGs is persistence of game state. Per-

sistence refers to the fact that characters' data spans multiple play sessions and can

be measured in months or years. In other words, a character's data is being read

and updated every time it is being played. Furthermore, the virtual world itself is

constantly evolving whether players are currently logged in or not. The main appeal

of MMOGs is thus character progression: by accomplishing certain tasks (quests), a

player can improve its abilities and acquire more items (to be stored in a personal

inventory).

Not only are MMOGs considered products but they are also services. Customers

typically have to subscribe in order to play by paying a monthly fee (called �pay-to-

play�). The game company is then expected to satisfy the following requirements:
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• Availability : Players must be able to connect to the game and access their

data at any time. Game performance must be acceptable. Any downtime

should be scheduled.

• Maintenance : The game software must be maintained and new content

should be added to the game to keep players interested.

• Correctness : The game software should be bug-free and working. The player

should be able to play the game as intended.

• Security : Clients' personal data should be kept safe and secure.

World of Warcraft, the most popular MMOG currently on the market, has more

than 11.5 millions paying subscribers [12], each paying on average $15 a month.

MMOGs are therefore unique in gaming in the sense that development is required

well after release and has a direct impact on the income of the game.

Challenges. In particular, client data is an important concern. Since the

primary objective of players is to develop their character, it is critical to maintain

consistency and persistence of the game state. Consistency here refers to the game

behaving as intended by the game developers. MMOGs contain numerous non-

deterministic events where desirable outcomes are unlikely to occur. This design

extends the playtime by forcing players to repeat the same tasks several times until

success is achieved. Therefore any data inconsistency or loss of data can be di�-

cult for players to compensate and can result in the loss of several hours or days

of progress. To further highlight the importance of game data, a recent trend in

MMOGs is the purchase of virtual property through micro-transactions. Some game

companies even opt for free access to their games (�free-to-play�). However, players
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desiring to progress further in the game must purchase premium content from the

company. Such micro-transactions have generated $250 millions for the industry in

2009 in the US [29]. It is therefore even more crucial to ensure consistency and

persistence of purchased content.

The other unique aspect of MMOGs is their scale. In addition to creating

a large world �lled with interactive content, the game must also support a large

number of players. The scalability of an MMOG is primarily limited along two

dimensions. The �rst is the content pipeline, which must generate enough content to

keep an increasing number of players occupied. The second is the scalability of the

system itself, which must support an increasing load. Although a game like World of

Warcraft has millions of users, its user base is actually divided into di�erent realms

(also called shards). Realms are copies of the same world that operate independently

and usually only serve players in a certain geographical region. Typically, characters

created on a realm cannot transfer to another one. On average, each realm only has

4000-5000 players connected at any time. Dividing the users is one way of coping

with scale limitations, but as games evolve, the number of concurrent players in each

world should increase.

From a data management point of view, we can therefore establish the following

challenges for MMOGs:

• Consistency : Any operation performed on the world state must be consistent

according to the semantics of the game.

• Persistence : Any operation performed on the world state that was committed

and visible to players must be durable.
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• Scalability : The system must support thousand of simultaneous clients.

• Performance : The system must be e�cient and deliver responses to the

clients within an acceptable delay.

Overview. In this thesis, we will present action models which can satisfy the

requirements above. In other words, the models dictate how consistency can be

achieved for a MMOG while maintaining scalability and performance. By leveraging

game semantics, actions can be categorized according to their complexity and impor-

tance. Each category uses a di�erent transactional model which provides a suitable

level of consistency. We then show how action handling protocols for each model can

be optimized for scalability and performance.

The key observation is that there is a trade-o� between consistency and scalabil-

ity, thus lower consistency models can perform more e�ciently. Furthermore, there

is a larger volume of simpler actions, such as movement [3, 10], relative to more com-

plex ones, such as trading. Relaxing consistency requirements for frequent actions

can signi�cantly improve the performance of the overall system. On the other hand,

we cannot completely relax consistency requirements for higher complexity actions

since they are more critical to the integrity of the game.

We then present how persistence can be achieved in our solution. The state

of the game is monitored in real-time and logged on stable storage for recovery

purpose. Essentially, persistence functions according to the action models, where

higher complexity actions will be monitored more closely. We demonstrate how our

persistence strategies satisfy the consistency requirements of the associated action
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models. We also show how the persistence data can be used for fault-tolerance and

recovery.

MMOGs now commonly use a distributed architecture with multiple servers for

scalability reasons. This introduces more issues, most notably keeping data consistent

across all servers. Distribution concerns will be addressed.

Finally, our solution is implemented in Mammoth [24], a Massively Multiplayer

Online research framework. Experiments using multiple implementations of actions

of varying complexity are used to evaluate the performance of action models and

their corresponding protocol.

Contributions. The main contributions of this thesis are:

• A thorough analysis of the execution model and consistency requirements of

current MMOGs.

• A set of consistency categories that are useful in the context of MMOG se-

mantics. Each category provides di�erent consistency guarantees suitable for

MMOG actions.

• Coordination protocols for each category optimized for performance and scal-

ability.

• Persistence architecture and support for each consistency category and their

extension for each protocol.

• Integration of our solution into the Mammoth framework.

• Performance comparison of the protocols and an assessment on the impact of

consistency on performance and scalability.
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The remainder of this thesis is organized as follow: Chapter 2 presents back-

ground information on massively multiplayer online games and their system archi-

tecture and other proposed solutions. Chapter 3 details the di�erent consistency

categories and transaction models we propose for actions in MMOGs. In Chapter 4,

the solution is extended to consider durability and fault-tolerance. Chapter 5 shows

details on the process of developing actions and our implementation in Mammoth.

The results of our experiments are then discussed in Chapter 6. Finally, Chapter 7

presents some conclusion and outlines future work.
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CHAPTER 2
Background and Related Work

As explained in the introduction, the typical structure of MMOGs have clients

each controlling a single character, or avatar, in the world through a graphical user

interface (similar to Figure 2�1). This game world is populated by various types of

objects: characters that are either controlled by players or arti�cial intelligence, non-

interactive objects (e.g. trees, buildings) which form the environment, and mutable

items which can be used or interacted with by players. Players let their characters

take actions which are the basic mean of interaction in MMOGs. This includes

moving on the game world, picking up items, dropping them from the character's

inventory, and trading with other players. Since the game world is common to all

players, the actions executed by one player should be observable by the other players.

2.1 MMOGs as a Database Application

Essentially, we can treat MMOGs as a database application [18]. The world

objects are the data, where each object type could be represented by a relational

table with various kinds of attributes. Actions are a logical sequence of read and

write operations on the attributes of one or more objects, generally requiring the

transactional ACID properties:

• Actions require atomicity , executing either in their entirety or not at all.
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Figure 2�1: Client interface for the Mammoth MMOG

• Di�erent players can request actions on the same objects concurrently, requiring

some form of concurrency control to provide isolation. In other words, changes

made by concurrent actions should not be visible to one another.

• Durability is essential as these game worlds run for long periods of time and

need to survive various system failures. Upon restart, a game must be restored

to the exact state it was immediately before shutdown.

• Consistency is de�ned in terms of game semantics. Assuming that atomicity,

isolation and durability are provided, actions that are applied to a consistent

8



initial state will result in a consistent �nal state. Game developers must ensure

consistency when designing their actions.

However, there are several reasons why MMOGs cannot simply be implemented

as a set of transactions using a traditional database system. First of all, most actions

are update transactions and the amount of transactions that need to be processed

per time unit can often not be handled by a single database server using traditional

database techniques [10]. Secondly, the system is, by nature, highly replicated. Each

player sees at least part of the game world and the characters residing in this part.

This is typically achieved by having at each client copies of the relevant game objects

that are updated whenever changes occur [24]. Given that such games can have

thousands of players playing at the same time, the update rate and the degree of

replication are huge. Propagating all changes to all copies in an eager fashion, that

is, within transaction boundaries, in order to provide a consistent view to all players

is simply not possible [6]. In many cases, existing game engines restrict the number

of players that can populate a game region or instantiate the game to reduce the

number of updates that are possible [15]. Furthermore, they often simply allow

many inconsistencies to occur, and the players have to accept them [21]. Durability

is often handled in a very optimistic fashion and the game play that happened shortly

before an outage can be lost [18].

2.1.1 Action Complexity

Game actions vary widely in complexity and importance. In general we compare

them along the following factors:
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• Repeatability: an action that is easily repeatable or frequently executed does

not require a high level of consistency because transient faults can be tolerated.

Actions that are irreversible or non-deterministic must be dealt with greater

care.

• Number of objects: Atomicity becomes a greater issue when an action involves

more than one object.

• Number of reads: Some actions have conditional e�ects based on read at-

tributes. Isolation is more di�cult to maintain as the number of reads in-

creases.

• Importance to the integrity and enjoyment of the game: Actions that have an

e�ect on a player's virtual property highly in�uence the player's satisfaction

with the game. Those actions either take a long time to accomplish or require

real currency to perform, and thus, require a high level of consistency.

For instance, moving a character is considered of low complexity because it

only a�ects a single character and is easily repeatable. The player simply selects a

destination and the character will gradually update its position attribute towards

the target. Selecting a new destination will stop current movement and initiate a

new action towards the latest target. Trading items between two players is highly

complex because both parties must agree to exchange precisely the same set of items.

This typically consists of a series of interaction steps between the two players. A

player must send a trade request to another player, who must accept. They must

then both o�er items from their personal inventory to trade. Once both players have
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accepted the conditions of the trade, they must then transfer ownership of the items

they wanted.

In the examples above, consistency is much more important for trading than

moving. This is largely in part due to the repeatability of each action. Should an

moving action fail (e.g., the character is not at the intended location), this failure is

easily tolerated by initiating a new movement action to compensate. For trading, a

possible inconsistency can result in one party retaining ownership of all traded items.

In this situation, it is quite possible that the advantaged player will refuse to rectify

the trade. The impact of inconsistencies in trading actions is thus more important

than moving.

2.2 Game Architecture

In this section, we present a typical game architecture and execution model of

MMOGs which takes into account the requirements of actions described earlier. We

discuss how current systems commonly work and what kind of consistency guarantees

they provide. We �rst focus on a single server system. Section 2.2.3 discusses multi-

servers.

2.2.1 Replication Architecture

Each player hosts the client software of the game. It is able to render the game

world, and receive input from the player. Players control their avatar and can submit

actions. The client software sends them to the server who serializes them, adjusts

the game state and noti�es all players that are a�ected by the game change.

This can be supported using a primary copy replication mechanism with mas-

ter/replica proxy objects [24, 6]. The server holds a master proxy for all objects in
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the world. This master contains the latest and correct state of the object. Clients

hold read-only replicas of objects the client is interested in. Interest here refers to

any object the client may possibly need to read data from and/or interact with from

its character's current location. The process of dynamically adjusting which replicas

a client holds in its replication space is called interest management. There exists

various ways of de�ning what a player might be interested in [7]. For example, one

could de�ne a circle around the player's character; all objects within this range are

declared interesting for the player and thus, the player would have replicas of these

objects. Figure 2�2 shows a possible interaction range of the highlighted character.

The client controlling that character would have a �eld of vision limited to this circle

and would only hold replicas of objects inside its radius. Figure 2�3 shows the repli-

cation architecture. The master objects are represented by dark shapes contained

by the server. Whenever a client wants to perform a write operation on a replica

(represented by light shapes), the call is forwarded to the master (1). The master

then validates the call and propagates the update to all its replicas (2).

Action execution. Actions consist of a sequence of read and write operations

(see Section 2.1). Ideally, an action is executed as a transaction providing all ACID

properties. Basically all actions include at least one write operation and thus have

to be sent to the server for execution at the master copies. In many systems, the

server executes actions serially. However, in order to properly exploit parallel and

multi-core architectures, concurrent execution should be possible. In this case, a

concurrency control mechanism needs to be implemented, e.g., a strict two-phase

locking protocol [27]. For instance, picking an item comprises of reads on the item
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Figure 2�2: Sample game screen and interest radius

followed by a write on the same object. When two players want to pick up the same

object, one action will receive the lock on the item �rst, determine that it is still on

the ground, place it in the inventory of the player's character and then release the

lock. The lock is then granted to the second action which will detect that the item is

no more on the ground and thus abort. Similarly, assume one action breaks a bottle

and another picks it up. If the break is serialized before the pickup, then a broken

bottle is picked up. If the pickup executes before the break, then the break will not

succeed as a bottle that is in the inventory of another avatar cannot be broken. In

13



Figure 2�3: Sample Master/Proxy execution

general, we assume all executions to be serializable at the server, which holds the

latest and correct game state.

Update propagation. Successful updates need to be propagated to all repli-

cas. Such update propagation can be eager (synchronous), that is, within the bound-

aries of the transaction performing the update on the master, or lazy (asynchronous),

that is, only after the transaction at the server commits [16]. Given the sheer amount

of updates and the possibly large number of replicas, eager replication is not feasible

in the general case [6]. Instead, current game engines push the updates only after

commit at the server, but they do so as fast as possible. Nevertheless, the replicas

at the clients are potentially stale, lagging behind the correct state. If an action up-

dates several objects, then the changes should be applied atomically at the clients. If
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updates are propagated on an object basis, then it is possible that the object updates

related to a single action do not occur as one logical action at the client's game world.

This can be avoided by sending all updates related to an action in a single message

and then apply them together. However, this might be ine�cient as some clients

might have replicas of some but not all of the a�ected objects. Alternatively, the

client might defer applying updates to an object until all update messages related to

an action have arrived at which point they are applied to the replicas simultaneously.

Round-based execution. Many games are implemented in a round-based

fashion [32]. At the beginning of a round, clients send their actions to the server.

The server serializes, executes and commits the actions, and then sends all changes

at the end of the round. In order to provide fairness, the server has some mechanism

as to guarantee that in each round all updates have an equal chance to be serialized

�rst. This mechanism avoids that fast clients see changes �rst and react to them

before slower clients would be able to do. Using this round-based approach, the state

at the clients is typically stale by one round as a player, when submitting its own

actions, cannot see the actions that are submitted during the same round.

Optimistic execution. The fact that update propagation is asynchronous

means that a client does not receive immediate feedback after executing an action.

This can be problematic for actions that are not idempotent. For instance, a player

may be trying to buy an item which has several units in stock. If there is no im-

mediate purchase con�rmation, the player may think that the purchase failed, try

again and inadvertently buy multiple copies of the same item. In order to hide the

delay to perform actions, some engines execute actions optimistically at the client
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replica before receiving the successful changes. If the action fails at the server or

has a di�erent e�ect, the optimistic execution is rolled back [18]. Such behavior

might be acceptable for some actions. This also suggests that for certain actions, a

synchronous noti�cation is necessary to ensure that clients get a con�rmation.

2.2.2 Read Operations

Most actions also have read operations, and understanding what objects are

actually read and how the reads are performed is crucial to provide the proper level

of consistency.

Action reads. Consider the following actions:

• Moving an avatar typically �rst reads the current position of the character

to verify the destination is reachable. Generally, only the player owning the

character can move the character, so there are no con�icting updates on the

character position.

• When a player wants to drink water from a bottle, the content attribute of the

bottle is �rst checked: only if there is still water in the bottle, can the action

succeed. The value of the content attribute is reduced, and a player's energy

level is increased (implicitly reading the energy level attribute �rst).

• In order to pick up an item, �rst a read on the item and the inventory of the

avatar is performed, then the position of the item is set to the inventory of the

avatar, and the inventory is extended by one more item.

These read operations are explicitly written into the action code. Hence, we

call them action reads. Typically, they are �rst performed on the replicas residing at

the client side. The action must be locally veri�ed on these (possibly stale) copies
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before it is sent to the masters of involved objects. At the master side, the read

operations have to be repeated, as the state at the server might di�er from the state

at the clients. Thus, the reads at the client can be considered preliminary, simply for

validation purposes and to avoid sending unnecessary actions to the server. However,

an action deemed possible at the client might fail or have a di�erent e�ect at the

server side due to di�erences with the masters state. For instance, although a player

saw an item on the ground, the pick up request might not succeed because the state

at the server indicates that the item is already in the inventory of another avatar.

Similarly, the amount of water actually drunk might be smaller than expected by the

client, as somebody else might have taken water from the bottle in-between. This is

possible because clients can have stale data. Conversely, notice that an action might

fail local validation but in reality be acceptable according to the server state. This

side e�ect is considered tolerable since this more conservative approach cannot result

in inconsistencies.

Thus, while the execution at the server is serializable, from the perspective of

the client we have the problem of non-repeatable reads. This comes from the fact

that each read is executed twice, once on the possibly stale replica at the client and

once on the master at the server.

Understanding the e�ects of changed attribute values is crucial to decide which

level of consistency is actually desirable. In some cases, failure or a di�erent e�ect

of an action is acceptable. For instance, the player has seen another player nearby

on the game �eld and is aware that the other player might be quicker in picking

up the item or taking water from the bottle. In other cases, this might not be
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acceptable and the system needs to ensure that the client can read the current value

of an object. In our approach, we will di�erentiate between actions with various

consistency requirements, optimizing update propagation when possible, being more

stringent when necessary.

Client reads. Action reads are read operations that are explicitly encoded

into the action. However, a player can always observe the state of all its replicas

at any time, whether they are stale or not. The player will use this information

when deciding what action to perform. Essentially, the player is reading certain

semantically relevant attributes before submitting an action. The key aspect is that

any value from any object visible to the player can potentially be read and a�ect the

judgment of the player. These reads are implicit and are not part of the action code.

Therefore, each action has a client read set, determined by the player, which is read

before the action is submitted. For instance, consider a player who decides to move

to a location in order to pick up an item. Clearly, the move action does not read or

update the item but only the position attribute of the player's character. Yet, the

decision to move the character is directly dependent on the position of the item, as

determined by the player. The action read set contains the current position of the

player's avatar, the client read set contains the location of the item.

Because this read set varies depending on the context of the action and also on

the strategy followed by the player, it is not possible for the system to determine it.

There exists many reasons to move a character and it is generally not possible to

determine the set of attributes that in�uenced the player to submit a certain action.

The most conservative approach would be to assume the client read set to contain all
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possible reads, that is the entire observable state by the client with all its replicas.

This would however severely limit concurrency and performance of the system. Thus,

client read sets are ignored by current game engines.

The existence of this client read set complicates the problem of non-repeatable

reads. Consider the transactions T1 and T2 from the Schedule 2�1. T1 is a transac-

tion which writes A and T2 writes A and B. Assuming we are using master locking,

each transaction receives the appropriate locks at the server. With only these writes,

there would be no con�ict since T1 is serialized before T2. Now suppose that the

client's decision to perform T2 is directly dependent on its read value of A. This

client read is local and performed on its replica and therefore does not lock the

server. Note that this read was actually performed before the decision to perform

T2. But since logically, T2 was dependent on A, this client read is considered as

part of T2. In order to preserve isolation, T2 now has a read-write con�ict with

T1. If that client read is performed before T1 is able to commit and propagate its

change to the replica used by the client, then the schedule is non-serializable. In

order to serialize this schedule, we need to treat the client read the same as regular

read operations which are locked within the transaction boundaries. If the client

read on A from T2 is executed before T1, then T2 holds a lock on A which would

serializes T2 entirely before T1. If the client read on A from T2 is executed after T1

has acquired a lock on A, then T2 must wait until T1 has �nished executing before

reading the updated value of A (see Schedule 2�2). The client would then have to

decide if it wants to perform T2 based on this updated value of A.

19



However, as mentioned before, client reads are performed by the client outside of

transaction boundaries. At the moment the read is being made, we cannot determine

whether it will be part of a transaction or not since it is part of the decision-making

process of the player. If it is part of an action, then it must be considered as a read

for that transaction when determining serializability. If it is not, then the read alone

is not considered a transaction. Therefore, if we were to acquire locks on every read

a player makes, there is no guarantee that there will be an accompanying action

which will depend on that read and release the lock. Locking client reads would then

either have a timeout if there is a bound on client reads (i.e. a client does not initiate

actions based on reads performed a long time ago) or that the client can explicitly

declare that it is about to make client reads. In that case, we can lock reads made

from that speci�ed point on and release them when an action has been performed or

when the client explicitly release them.

Our solution will handle client reads accordingly depending on the complexity

of the action.

2.2.3 Distribution

Most current games run on large server clusters and not on a single server.

However, their distribution model is very simple. Each server hosts an individual

instance of the game or a well-de�ned part of the game world. Players can only see

objects and other players that reside in the same game instance or part of the world.

Thus, each client is connected to only one server that hosts all the relevant master

copies. Each server can then implement the above architecture without coordination

with other servers.
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T1 T2
begin begin

C: client-read(A)
S: lock(A)
S: write(A)
S: unlock(A) S: lock(A)

commit S: lock(B)
S: write(A)
S: write(B)
S: unlock(A)
S: unlock(B)

commit

Table 2�1: Transaction schedule with local client reads

T1 T2
begin begin

S: lock(A)
S: write(A) S: lock(A)
S: unlock(A) S: lock(B)

commit C: client-read(A)
S: write(A)
S: write(B)
S: unlock(A)
S: unlock(B)

commit

Table 2�2: Transaction schedule with locking client reads
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Figure 2�4: Cell-based architecture

Recently, several approaches have been developed to treat the world as a con-

tinuous space [9]. Each server holds the master copies of some objects. In particular,

one way to assign distribution of game objects is by using cells. Cells form non-

overlapping regions of the whole game world. The owner of each cell holds the

master copies of objects that are contained in the cell. Clients can host replicas of

objects whose masters reside on di�erent servers. This could be the case, for instance,

if an avatar is close to a cell boundary. Such an architecture allows for a better game

experience due to the continuous world, and is more �exible in regard to load balanc-

ing, as cell size can be adjusted dynamically. Masters are migrated whenever cells

change size or when a player's character moves from one cell to another.

In order to do interest management, each server typically holds replicas of objects

that might be interesting for the avatars it manages. Figure 2�4 shows a cell-based
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architecture centered around one server. The shaded center area is the ownership

area of the server. The masters of the objects in this area (dark triangles) are

managed by the server. The surrounding area delimited by continuous lines is the

interest range of the server. It represents the maximum range for which any object

inside its ownership area can interact with. The server holds a replica of objects in

this range (light triangles). Any object outside of these bounds are not relevant to

the server (dotted area with dotted triangles). Please note that dynamic objects can

change location and therefore change status.

Actions can access distributed objects, i.e., objects whose masters are located

on di�erent nodes. Thus, atomic execution across all servers becomes a deeper issue.

It can be achieved by using two-phase commit but this appears too expensive for

most action types in MMOGs. Instead, we must use our relaxed action models to

handle distributed actions.

2.3 Mammoth: a Multiplayer Game Research Framework

Mammoth is a fully functional MMOG developed in Java [24]. Its main purpose

is to serve as a testbed for experimentation in game-related technologies such as

distributed systems, fault tolerance, databases, arti�cial intelligence, content gener-

ation, networking and concurrency.

2.3.1 Object Hierarchy

Mammoth is a typical MMO game consisting of a continuous game world pop-

ulated with various �world objects� (see Diagram 2�5). Static objects are immutable

and their attributes are initiated at the start of the game. They are also non-

interactive and thus not a concern in the context of this thesis. Static objects are
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Figure 2�5: Simpli�ed object hierarchy

usually background objects or obstacles such as trees and walls. Dynamic objects

are mutable and their data can change during the course of the game. Player char-

acters are considered active since they can be controlled by a client or AI. Items are

objects which are not controllable. Some of them are pickable and can then be put

in an inventory or on the ground. Each character has its own personal inventory and

certain items (such as bags) also have one.

2.3.2 Architecture Overview

In order to facilitate experiments, Mammoth is built as a modular framework.

Each component provides a distinct set of services and multiple implementations of

the same component can be swapped in and out of the system. Components interac-

tion is regulated through interfaces. Figure 2�6 depicts the di�erent components of

Mammoth. Of particular interest is the replication engine which uses master/proxy
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mechanism with interest management (see Section 2.2.1). This replication uses a

network engine for communication between the nodes, which must support pub-

lish/subscribe messaging to accommodate replica updates [24]. The idea is to have

the master of an object publish updates which will be served to its subscribers,

namely the replicas. The replication engine is cell-based and allows for distribution

of the master proxies (see Section 2.2.3). The persistence manager is our implemen-

tation of our solution and is in charge of maintaining a persistent image of the game

state on stable storage. The controller component is in charge of handling actions

and will be directly involved in our solution along with the replication engine.

Note that Mammoth does not make the distinction between clients and servers,

since any node in the system can manage masters. Furthermore, cell owners are

not required to manage the masters of objects in its cells, they are only expected to

perform interest management for players located in its ownership area. For the sake

of clarity, we will continue to refer to nodes holding masters as servers and nodes

requesting actions as clients. Our solution is orthogonal to these properties.

2.4 Other Proposed Solutions

In this section we present related works proposing other solutions for handling

actions and persistence.

Action protocols. The action based protocols employed in [18] also check

consistency at the action level. Their approach relies on optimistically executing

actions locally and reconciling when inconsistencies are detected. Updates can be

omitted in favor of local simulation. Thus, the client requesting the action can

locally update its replica after sending its action to the master. The game-aware
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Figure 2�6: Components of the Mammoth framework

portion of the paper o�ers a reduction on the number of messages sent to clients

by maintaining only an incomplete state of the game required, which is similar to

our concept of interest management. However, our models are orthogonal to this

concern; the models will propagate the updates to all interested parties and can

work with any interest management technique.

SEMMO [19] is another consistency protocol which takes game semantics into

account. The solution relies on clients performing the computations locally and uses

the central server as a coordinator for determining the serialization order of the

actions. The distributed architecture of SEMMO is partitioned as in our cell-based

approach. The protocol is optimistic in that action requests are sent to the server

and replies contain the con�icting reads and actions that the client must evaluate

before executing its action. This protocol does not consider the problem of client

reads. At the time the client decided to perform an action, it may have based its

decision on stale data. Even if con�icting reads and actions will be sent back to
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the client, it still does not give the opportunity for the client to decide whether or

not the action is still desirable to execute. Instead, it will be executed based on the

con�icting data received. Client reads isolation is thus not considered.

Colyseus [6] uses primary-copy replication in its distributed architecture. It

supports a rich query interface used for interest management (determining which

set of replicas each client holds). Colyseus considers the problem of missing replicas

where a client's view is missing an object that should be visible. Such concern is

addressed by interest management. Colyseus also considers missing or late updates

simply by specifying game-speci�c bounds on the staleness of replicas. The paper also

only considers inconsistency at the replica level and not in the context of transactions

and the resulting inconsistencies between the masters involved in an action.

Our solution has similarities with the various degrees of isolation, such as read

committed and serializability, that are o�ered by traditional database systems [4]. In

both cases, the developer is o�ered a trade-o� between performance and consistency.

Our approach goes further as we not only consider isolation but also durability and

the degree of staleness of replicated objects. An interesting analogy exists in the way

the levels are developed. The di�erent levels of isolation were proposed when locking

was the predominant concurrency control mechanism, and each level can easily be

implemented through a certain locking pattern (no, short or long read locks). The

stronger the level of isolation, the more costly is the locking scheme. In our case, we

assume a certain execution model, namely a traditional client/server model where

clients maintain replicas of objects that are interesting for their avatars. Given this
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model, we develop increasingly stronger levels of consistency that can be implemented

using increasingly complex and costly coordination protocols.

Our solution also has similarities with weak consistency models in replicated

databases [13] where read-only replicas have some form of bounded staleness. Such

staleness factors have been explored widely in the database community.

Persistence. Standard checkpointing techniques have been evaluated for per-

sistence in MMOGs [31]. This evaluation does not make use of game semantics and

only considers the rate of updates. Their motivation for persistence stems from the

fact that although only a small subset of actions require transaction guarantees (and

thus durability), persistence is still required for other action types such as movement,

hence the need of global persistence. However, we di�er in that we take into account

game semantics and only o�er durability as required by the action.

Basically all commercial MMORPGs support some form of persistence [23, 33].

In particular, the game EVE Online only logs transactional updates [17]. Guild

Wars periodically stores each character in a database as a BLOB [28]. [30] presents

a platform that logs activities of simulated player characters in MMOGs for data

mining purposes.

Consistency has been widely discussed in the context of distributed server ar-

chitectures [9, 8] or peer-to-peer infrastructures[25, 22] but not in regard to the

interaction between a server and its back-end persistent storage system.
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CHAPTER 3
Transaction Models for Actions

In Section 2.1.1, we have seen that actions vary greatly in complexity and im-

portance. Clearly, given this diversity in action types, there is no one-�ts-all solution

to consistency. Instead, there are ample opportunities to optimize for performance

whenever possible while providing strong consistency whenever needed. The �nal

goal is to provide a system that is scalable, supporting the huge amount of players

of MMOGs, to provide the real-time response times needed for interactive, enjoyable

game play, and to provide the level of consistency needed to support complex game

semantics.

We achieve this by de�ning game-speci�c consistency categories and providing

a suite of protocols to implement them. Game developers can then decide for each

action the appropriate consistency category, and the game engine should ensure that

it is achieved. This will allow them to choose the right trade-o� between performance

and consistency. One key observation is that low complexity actions usually have a

much higher volume than higher complexity actions. For instance, a player frequently

moves his/her character but will seldom execute complex trading transactions. By

executing low complexity actions using e�cient protocols providing low consistency,

the game engine can achieve scalability and performance.
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3.1 Consistency Categories

Games consist of various types of actions with di�erent consistency requirements.

Thus, we believe that a multi-level approach to game consistency provides the best

trade-o� between consistency and performance: some actions can be executed with

less consistency while others need higher levels of consistency. In this section we

present consistency categories that refer to the various levels of transactional prop-

erties possible for actions. Lower categories are more e�cient and scalable while

higher levels o�er more consistency guarantees. Each of the �ve categories have been

designed to serve a di�erent purpose in game semantics. We will explain what each

category provides, its usefulness and examples of actions that require it. We will also

show action handling protocols that can satisfy the requirements of each category

while maximizing its performance and scalability.

The three lowest category levels di�er in the way they handle write operations.

In particular, they de�ne the staleness levels of replicas. The three highest levels

di�er in the way they handle read operations. They di�er in the way in which they

allow stale data to be read and thus di�er in the level of isolation they provide.

Our approach is split into two parts. The �rst discusses how write operations

are handled. In particular, we propose to use lower levels of consistency for some

attribute types in order to increase scalability without signi�cantly reducing the

game play experience. The second part discusses how read operations are handled.

Here, we propose stronger levels of consistency for certain actions in order to better

maintain game integrity.
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Our consistency categories are based on the operations performed by actions

and the degree to which the values read at the client side may di�er from the server

side state. The granularity for operations are object attributes and not entire objects

in order to provide more �ne-grained concurrency. As concurrently executing actions

might belong to di�erent consistency categories one has to be careful that low con-

sistency actions do not negatively a�ect high consistency actions. Thus, attributes

also need to be assigned to consistency categories in order to know the maximum

consistency level that can be provided to an action involving this attribute.

De�nition 1. An attribute x is said to be of category c if c is the lowest category

level for which there exists an action which writes x.

In this section, our de�nition of consistency refers to isolation and replica atom-

icity. Isolation considers the e�ect of stale reads and how they are handled. Atom-

icity here refers to the state of a master and its replicas. An action is considered

atomic at the replica level if all the replicas of all the masters involved will apply

the same state change as its masters. Most commonly, this is maintained by having

the masters send exact state change updates to all of its replicas, as described in

Section 2.2.1. Atomicity can therefore be violated if not all replicas have updated

their state and/or if the replicas did not update their state correctly. We do not

yet consider a server failure in this context. As update propagation is asynchronous,

the failure of the single server can always lead to violation of atomicity as the server

might fail after sending an update to some but not all of the replicas. Fault-tolerance

and durability will be treated separately in Chapter 4 on persistence. The categories
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Category Description Examples
Exact All involved parties must see the same

object versions; synchronous action ex-
ecution and replica propagation.

Trading items between play-
ers.

High Actions have the intended e�ect ac-
cording to speci�ed critical attributes.

Buying an item: item price is
critical.

Medium The e�ect of an action may be di�erent
than intended.

Picking up an item.

Low Action may be successful; replicas see
an approximation.

Player movement.

None Action may be successful; replicas are
not guaranteed to observe the e�ect.

Player turn (orientation).

Table 3�1: Consistency categories

described below also only consider the single server case; the issues speci�c to dis-

tribution will be treated in Section 3.2. The consistency categories are resumed in

Table 3�1.

3.1.1 No Consistency

The lowest consistency category provides no guarantee and follows a �best-e�ort�

maybe semantic model. The action is not guaranteed to be executed and replicas

are not guaranteed to receive and/or apply the update. There is no isolation. This

consistency category should be used for minor actions which usually involve only the

player's character and which other players do not necessarily need to be aware of.

These actions are typically easily repeatable to compensate failures. For instance,

consider the act of rotating a character. Normally, a client's camera view is inde-

pendent of the character, therefore rotation has no importance on gameplay. If the

action fails, it can be repeated until success. This category is also useful for social

actions. MMOGs use di�erent �emotes� that characters can use (such as dancing,
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smiling, etc.). These have no e�ect on the game other than graphically and can be

started and stopped at anytime. Those actions should be handled at the lowest level

to minimize their overhead on the system.

The action read set of a no consistency action is expected to only contain the

attributes that are also written. Furthermore, a no consistency action is expected

to only update those attributes for which the submitting player is the only one who

can change them. Thus, there is no problem with con�icting write operations.

3.1.2 No Consistency Protocol

Actions are sent using an unreliable message channel (e.g., UDP) (see 1 in

Figure 3�1). The server might execute them only if it has enough resources to

do so. No concurrency control is needed for these actions. The state changes can

then be propagated unreliably to the replicas (2).

This is the most e�cient and scalable solution for action handling. With no

guarantee at all on the consistency of the action, the operations are simply sent as

messages through the network.

3.1.3 Low Consistency

Similar to no consistency actions, low consistency actions are expected to only

have attributes in their action read set that are also written. Like no consistency, low

consistency also does not guarantee that all updates are propagated to all replicas,

but it does provide a bound on the staleness of the data. This is useful for large

volume actions that need to provide some guarantee in regard to their visibility.

The most common action type that falls into this category is the movement of

a character leading to a new position value. The idea here is that while clients may
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Figure 3�1: No consistency protocol

not perceive the exact position of a character at any time, they always know its

approximate location, possibly de�ned through a speci�c error bound. For instance,

the position seen at any replica should not be o� by more than x movements or a

distance of y units from the current position at the server.

Another example is the progressive increase of energy points while continuously

drinking from a fountain. A player who drinks from the fountain regains energy at

regular intervals. Replicas for this player do not need to observe every intermediate

energy level while the player is drinking. However, there must be a bound on the

staleness of the energy. Thus, there is a guarantee that the replicas will eventually

match the true energy level once drinking (the energy increase) has stopped.
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In order to provide error bounds between the perceived state of an attribute and

the real state, no actions in the no consistency category may update such attributes

as their propagation is not guaranteed. Thus, low consistency actions can only be

de�ned over attributes that are in the same category level or higher.

3.1.4 Low Consistency Protocols

In order to achieve the requested error bound, it is not possible to only use

unreliable message delivery or drop actions arbitrarily. If the error bound is given

as a percentage of received updates, only a fraction of the updates needs to be sent

reliably. The other updates are sent with unreliable delivery or can be dropped in

overload situations. If the error bound is given as a threshold di�erence from the true

value, then an update is propagated reliably once the di�erence in values between

the master copy and the last reliably propagated value passes the threshold.

A special form of bounded position approximation is provided using dead reck-

oning mechanisms [5]. Instead of sending every position change, the player's �nal

destination and the average speed is sent to the replicas. The client software then

locally generates the individual position changes through dead reckoning. While this

does not guarantee a consistent view on the character's position, the replicas will be

only slightly o� the true position of the character.

Even if a low consistency action changes attributes of more than one object, there

is no need for the remote calls to the masters to be propagated together. Essentially,

the remote calls to each object are treated separately. However, before the server

executes a low consistency action, it requests exclusive locks on all attributes to
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write. This is needed for transactions with higher consistency levels. The locks are

released immediately after the operations and do not span multiple message rounds.

Although only few action types might fall into this category, we expect that

actions of this type build a large portion of all actions in the game. Thus, having

some possibility to optimize that action type and adjust it to the workload of the

system can be of great bene�t. In fact, the most common action type is player

movement.

3.1.5 Medium Consistency

The medium consistency category re�ects the way current systems typically

handle actions as described in Section 2.2. Updates are propagated immediately

after commit, or in round-based approaches, at the end of the round. Thus, replicas

have stale data but it is stale by at most one round.

Actions can contain arbitrary reads and full isolation is provided at the master

level. This means that if we look only at the read and write operations of these

actions at the masters, the execution is serializable. But since clients can read stale

data locally, the outcome at the server might be di�erent to what the client expected

due to the anomaly of unrepeatable reads.

This consistency level is appropriate for actions that a�ect more than one data

item, as it provides consistency at the server and can be implemented fairly easily.

Replica atomicity is achieved as all replicas will receive and apply all necessary

updates from the masters involved.

Stale action reads are usually acceptable. This is because action reads are read

locally only for validation purpose. They are then re-read at the server where they
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must be validated again. Therefore, an action which is invalidated will be rejected at

the server level. This rejection outcome is reasonable for many cases. For instance,

in the case of picking up an object, it will only fail if another player attempts to pick

up the item concurrently. In this case, this player must also be close to the item.

Thus, each player is aware that a con�ict is possible. Even though locally, the client

observed the item as pickable, failure of the action is acceptable due to the nearby

presence of another player. If the stale action reads do not invalidate the action, the

outcome is still acceptable because these reads were only used for validation. Action

reads are not part of the decision-making process of the client and therefore their

staleness can only result in rejection of the server. To put it di�erently, if the value of

an attribute is part of the decision-making process and is read by an action read, it

must mean that another read of the same attribute exists outside of the transaction

boundaries as a client read (see Client Reads in Section 2.2.2).

3.1.6 Medium Consistency Protocol

When a player submits a medium consistency action, the client software per-

forms the action reads locally to check whether the action is possible on the client's

state. If this is the case, the action is forwarded to the masters of the involved ob-

ject (see Figure 3�2, 1). The server executes the action within the boundaries of a

transaction using strict two-phase locking. After transaction commit (or at the end

of the round), each master sends the changes to all replicas (2). Each object sends

its updates separately. The client software ensures that updates executed within one

action are applied together. Concurrent reads either see all or none of the changes

associated with an action. This protocol is simple and keeps the state at the clients
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Figure 3�2: Medium consistency protocol

as accurate as possible. Stale reads occur when replica updates of a previously com-

mitted action are propagated to the client after it has forwarded another action to

the server.

3.1.7 High Consistency

The idea of high consistency is to avoid unrepeatable reads for critical attributes.

That is, for high consistency actions, we want to alleviate the problem of stale reads

for the most important attributes involved in the action.

De�nition 2. An attribute x is a critical attribute if the local value v must be

semantically comparable to the master value w.

De�nition 3. For a given attribute x and a given action A(x), the value v of x is

comparable to a value w of x if the di�erence in outcome from A(v) and A(w) is

acceptable.
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The de�nition of acceptability depends on the priorities of the game developers:

the di�erence could be acceptable only if it is in the player's advantage, for instance.

Note that the comparison is not commutative.

Replica atomicity is provided as for medium consistency actions. In addition,

high consistency actions will contain a set of critical attributes and ensure local read

isolation of said attributes. For instance: consider the action of buying an item for

a certain price. Price is a critical attribute since it is one of the major factors in

deciding whether to purchase the item or not. If the price rises without the client

being aware of it yet, then as a medium consistency action, the client would still be

able to purchase the item if the funds are su�cient. However, the outcome may not be

acceptable because the client has paid more than expected for the item. If buying is

not a revertible action (i.e. selling the item is only possible for less than the purchase

price), then the player will have su�ered a negative consequence which is undesirable.

However, if the price decreased, then the player will have no problem paying less for

the item. On the other hand, an attribute like the item's graphical representation

may be considered non-critical if it does not a�ect the player's appreciation of the

item. Schedule 3�2 illustrates this example: an action T1 raises the price of A

(attribute Ai) to 2. T2 still reads the value 1 locally. This value is compared to the

master read of the same attribute. Since an increase in price is not considered an

acceptable di�erence, the action is aborted: the client should not buy the item at a

higher price unknowingly.

High consistency actions must therefore capture the local reads of critical at-

tributes at the client and compare them to the master reads. If the di�erence is
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T1 T2
(S: Ai = 1)

begin begin
S: lock(Ai)

S: write(Ai,2)
(S: Ai = 2)
unlock(Ai) C: action-read(Ai)
commit (C: Ai = 1)

S: lock(Ai)
S: read(Ai)
(S: Ai = 2)

S: compare(Ai,1,2)
S: unlock(Ai)

abort

Table 3�2: High consistency schedule with an unacceptable stale read

unacceptable, then the action at the server must fail. Note that critical attributes

are de�ned per action. Di�erent actions might have di�erent critical attributes.

Particular attention should be given to the consistency category of critical at-

tributes. In lower consistency levels, updates can be lost or the di�erence of values

between replicas and the master might be very high. Therefore, high consistency

actions with low or no consistency critical attributes require a large threshold of

acceptability relative to any error bounds those attributes might have.

The purpose of high consistency actions is to provide important actions with

certain, clearly de�ned attributes so that the user can reliably perform those actions

with an acceptable outcome. Medium consistency di�ers from high consistency only

in that there are no read operations on critical attributes. Update propagation

to replicas is handled in the same way for both categories, guaranteeing replica

atomicity.
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3.1.8 High Consistency Protocol

The protocol is similar to the medium consistency one. The main di�erence is

that an action submitted to the server contains the client replica values of all critical

attributes. When the server executes the read operations on the master copy, the

master values are compared to the piggybacked client values. If the comparison is

acceptable, the action continues, otherwise it is aborted.

In order to perform the comparison, the action code needs to provide a predicate

that, given as input the replica and master values either returns true (acceptable) or

false (not acceptable).

From a performance point of view, the message exchange is the same as for

medium consistency. However, messages have to carry additional attributes and the

server has to perform extra predicate evaluation.

3.1.9 Exact Consistency

While high consistency guarantees that actions at the server only succeed if

comparable with what the client expects, the client can read stale data, possibly

leading to frequent aborts at the server. Reading stale data at the client and making

decisions on behalf of this stale data can be considered an optimistic approach �

where the �nal validation at the server might fail.

Exact consistency is the level where full isolation and guaranteed fresh data is

provided. Exact consistency is only possible when client con�rmation is integrated

into the action itself. This category is designed speci�cally for complex actions

and typically involves more than one player. An example is trading where items and

money are exchanged between two players. Given the complexity and the importance
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of this type of action for game play, performance is not that crucial. In contrast, all

players need to have the accurate state for decision making and want to be assured

that the action succeeds properly at all involved parties.

During action execution, the involved players are provided with the latest state

of all attributes on which the action performs read operations. Thus, the players

make their decision on the correct state of the attributes, and the write operations

at the server will succeed as expected by the clients. Full serializability considering

all read and write operations is provided. In this context, eagerness also plays a

role. In all lower categories, changes are sent asynchronously to all replicas. In

contrast, with exact consistency, all involved players receive the updates within the

boundaries of the transaction, i.e., eagerly. Thus, eager execution on all replicas of

involved players is provided.

Consider, for example, trading between players. Such an action requires multiple

steps: players must make o�ers to one another and then agree and con�rm the action.

The transaction then takes place and items or currency are updated. Consistency

here is critical because if the trade ends up in one player's favor, it is unlikely that this

player will want to trade back to rectify the mistake. Furthermore, an action like that

is usually isolated from the rest of the game, players will focus their attention entirely

on the information presented and used by the action. We can then synchronize all

those objects during the action and ensure the players accept to �nalize the action.

Exact consistency is only possible for actions that do ask for con�rmation. This

way, we can determine when and what objects need to be synchronized before the

42



player wants to commit. It is also the only way we can guarantee that low or no

consistency attributes will have exact values at the replicas.

Note that we assume that exact consistency actions usually involve multiple

clients and expect client interaction from all involved clients. Such actions must al-

ready wait for the players' input, therefore the impact of the delays incurred from the

consistency mechanisms is lessened. Conversely, using lower consistency categories

for such complex actions would yield small performance bene�ts only.

3.1.10 Exact Consistency Protocol

We use a pessimistic approach consisting of two steps: a request and a con�r-

mation (see Figure 3�3 for an example involving one object and two clients). After

receiving the action request from a client (1), the server sets a long shared lock the

involved object in order to avoid concurrent updates. It then propagates the current

state of the object to the replicas of all clients involved in the action (2). Once the

client(s) have received the latest state, they have to con�rm the action back to the

masters (3). The server then performs the write operations at the master, and the

changes are propagated synchronously to all involved client replicas (arrows #4).

Thus, clients receive immediate con�rmation about the success of the action. Other

replicas are updated asynchronously.

3.1.11 Client Reads

So far, all read operations were restricted to action reads explicitly written into

the action code. The problem is that the system has no means to detect the exact

client read set. In principle, client read sets can be handled by the high and exact

consistency categories. On the other hand, medium and lower consistency categories
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Figure 3�3: Exact consistency protocol

do not take them into account and must therefore be able to tolerate any stale client

read.

The medium or lower consistency categories provide no mechanism for detecting

stale client reads and dealing with them. Any inconsistencies caused by client reads

must therefore be tolerated. Consider Schedule 3�3. A is an object with attributes

Ai and Aj, where Ai is the condition of the object (�broken� or �not broken�) and

Aj is the location of the object (e.g. �on the ground�). T1 and T2 are medium

consistency actions executed concurrently on object A. T1 is an action updating the

object A. The update a�ects the attribute Ai rendering the object �broken�. T2 is a

pickup action on A which updates Aj to put the object into the player's inventory.

In T2, the client makes a local read on Ai and sees that the object is not

broken, since the e�ects of T1 have not been re�ected at the replicas yet. It therefore
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T1 T2
begin begin

S: lock(Ai)
S:write(Ai)

(S: Ai = �broken�)
S: unlock(Ai) C: client-read(Ai)

commit (C: Ai = �not broken�)
update replicas(A) S: lock(Aj)

S: read(Aj)
(S: Aj = �on the ground�)

S: write(Aj)
(S: Aj = �in the player's inventory�)

S: unlock(Aj)
commit

update replicas(A)

Table 3�3: Medium consistency schedule with stale client reads

decides to execute action T2 to pick up the object based on that data. The update

successfully modi�es Aj and sets it to the player's inventory. After the replicas are

updated by both T1 and T2, the client will realize that it picked up a broken object.

This was not intended as the client only wanted to pick up the object based on the

fact that it's not broken. In this situation, this inconsistency is tolerable because the

player can compensate by simply dropping the item. If T1 updated replicas before

the client read from T2, then the client would have not picked up the object in the

�rst place, therefore the di�erence in state between the two possibilities is minimal.

For high and exact consistency, there are mechanisms in place to handle client

read sets. Potentially, every attribute of every replica held by the client is part of the

client read set. With high consistency, one can make all attributes critical requiring

the state at the server to be identical to the state at the client. If one attribute value
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di�ers, the action fails. With exact consistency, the server can lock all attributes of all

objects for which at least one of the involved clients has a replica, and then propagate

the latest state for all these replicas to all involved clients. Although possible, both

approaches seem impractical because clients can host large parts of the game state,

while it is likely that only a small portion actually a�ects their decision.

Thus, what is needed is a mechanism to make the client reads explicit and add

them to the action read set. This can be achieved with a �exible query language that

allows the game developer to specify a reasonable set of objects that could a�ect an

action. The query language must allow for such objects to be detected dynamically

during run-time. For example, for a pickup action, all attributes of the item could be

put into the action read set as critical attributes. They will then be handled properly

via the high consistency protocol. However, such explicit declarations are highly

game-speci�c and will require a proper coding of the corresponding actions. The

development of such a query language is out of the scope of this thesis. For example,

scripting languages used to model AI behavior could be used here to dynamically

determine the read set of an action [32], since AI-controlled characters must make

realistic assessments about the game state before taking actions.

In summary, the set of client reads that should be considered for the execution of

a high or exact consistency action has to be made explicit in one way or the other, and

thus, be included in the action read set. This allows the high consistency category

actions to include those client reads as critical attributes, while exact consistency

category actions will synchronize the client's view of the read replicas. However,

medium or lower consistency actions do not provide any mechanism to deal with
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client reads and must be able to tolerate their staleness. In general, the players have

to be aware of the asynchronous nature of the games and that a large set of their

actions might have a (slightly) di�erent e�ect as what was anticipated.

3.2 Distribution

As explained in Section 2.2.3, object masters can now reside on di�erent sites.

Therefore, additional care is required to deal with distributed actions, i.e. actions

which involve masters on di�erent servers. In particular, the problem of master atom-

icity is introduced with distribution. This form of atomicity relates to the execution

at the master level. Since masters can be located in di�erent servers, synchroniza-

tion between the di�erent masters is now required to ensure atomic execution of the

action. In contrast, replica atomicity refers to the propagation of the action from

one master to all of its replicas (see Section 3.1). We now look how our protocols

can be extended to handle those issues.

Execution model. We distinguish actions of di�erent distribution degree.

First, a simple distributed action may only update objects whose masters all reside

on the same server but it can read objects whose masters reside on di�erent servers.

Nevertheless, we assume that the server holding the masters of all objects in the write

set also holds at least replicas of the objects in the read set. This is a reasonable

assumption as the server needs these replicas for the purpose of interest management.

Simple distributed actions only need to be sent to the server who holds the master

copies of updated objects. The action is completely executed at this server.

Complex distributed actions write objects whose masters reside on di�erent

servers. Thus, these actions require a distributed execution. Each server holding
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a master copy to be updated executes part of the action. The action read set is split

and each server performs the reads needed to execute its updates. The action code

must be written accordingly and specify for each read r the set of write operations

WSr that depends on it. A read operation r must then be executed at each server

that executes a write w ∈ WSr. Again, we assume that a server has replicas of all

objects that it has to read for its sub-action. We assume that the client software

coordinates complex distributed actions sending the individual sub-actions to the

a�ected masters.

Master reads. In a single server system, an action executed at the server is

always guaranteed to read correct values as the server has all master copies. With

distributed actions a read operation might be on an object where a server only has

a replica. As update propagation is lazy, the replica at the server might be stale.

Relying on this stale information can quickly lead to inconsistencies. Assume for

instance two concurrent players want to drink from an originally full water bottle

B. Player P1 has its master on server S1, player P2 on server S2. The master of

the bottle is on S2 (see Figure 3�4). When S1 executes P1's action, it reads its

replica of the water bottle, which is full (2), and gives the avatar the appropriate

energy points (1). At S2, the concurrent action is executed, providing P2 with the

same energy points and changing the state of the water bottle to empty (1' and

#2'). When P1's sub-action of emptying the bottle now arrives at the master, it is

executed (emptying an empty bottle) and succeeds (3). However, the �nal execution

is inconsistent because two players received the full energy points of drinking from
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Figure 3�4: Master reads inconsistencies

the same bottle. In contrast, in a single server system, the action to be serialized

last will �nd an empty bottle and not assign the player any energy points.

This problem is particularly prominent in complex distributed actions, since

di�erent servers may read the same attributes but not agree on the same values due

to stale reads. For simple distributed actions, inconsistencies cannot occur within

an action since reads, even stale, are performed on the same server. However, a

more general problem arises even for simple distributed actions when the game has

assertions which must always be satis�ed. One action might read the energy levels

x and y of two cooperating players, and change x, while another might read x and

y and change y. A general constraint might exist that the sum of x and y should

be above a certain threshold. If the masters of the two players reside on di�erent

servers, each action is executed on one of the servers. As the replicas are stale and
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the concurrent action is not visible, both actions might succeed but the end result

could lead to the sum of the energy levels being below the threshold.

No and low consistency actions make no e�ort to verify that they are applied

consistently across the servers. Masters can perform their required reads on their

server's replicas. Therefore, no and low consistency actions do not guarantee uniform

reads across servers.

This form of inconsistency is much more severe than the optimistic reads at the

clients as the game state as a whole becomes inconsistent. Thus, it has to be avoided

for medium and higher consistency actions. This can be done by requiring master

reads. That is, reads are always performed on the masters, even if they are not being

updated by an action, and the read values provided to servers that require those

reads.

Master atomicity. A second challenge is to guarantee the atomicity at the

master level of complex distributed actions. All or none of the masters need to

commit the action. Low and no consistency categories do not guarantee master

atomicity, which further di�erentiate them from higher consistency categories.

3.2.1 Exact Consistency

In the case of exact consistency actions, the client will request from all servers

the latest state of all objects read (see Figure 3�5). In contrast to a single server

system, the request might now go to several servers. These requests will lock the

master copies at the servers (1). The replicas of all involved parties (servers and

clients) are then synchronized (2). Each client sends its con�rmation to the masters

involved in the action (3) and then receives the updates synchronously (4). Since
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Figure 3�5: Distributed exact consistency protocol

server replicas are synchronized during the action, it is guaranteed that masters read

the latest value of other masters from their server replicas.

3.2.2 High and Medium Consistency

Our solution leaves the action coordination to the client. In the worst case, we

need the same protocol as exact consistency if the latest complete state of each object

has to be transferred to the servers that read the object. However, for a special, but

very common action type, a more e�cient protocol is possible. This is the case when

there is no circular dependency on read operations. Assume the case of picking up a

bottle. This action changes two objects, the bottle and the avatar. A bottle can be
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picked up if it resides on the ground. That only depends on the state of the bottle

itself. That is, the update on the bottle only needs to read the state of the bottle.

In contrast, for an avatar to add the bottle to the inventory, the bottle has to be on

the ground. Thus, the update on the avatar depends on the state of the bottle.

Thus, the sub-actions for the individual write operations of an action are sorted

based on their dependency. First, the client submits a sub-action for objects which do

not depend on the state of other objects. The server acquires the appropriate locks

and executes the sub-action. If it succeeds, it sends the values of read attributes from

its objects needed for other writes to the client. The client then forwards the required

reads with its next sub-action to the corresponding server. The server installs the

changes, requests the locks and executes the sub-action. This repeats until either

all sub-actions succeeded or one has failed. In the �rst case, the client submits the

commit to all servers. In the latter case, the client sends the abort information to

all servers where the sub-action succeeded, which roll back their operations. In this

approach, receiving the latest state is combined with the submission of sub-actions.

Figure 3�6 shows an example using two objects and two servers. Client 1 submits

the sub-action to the �rst object (1), which returns successfully with read values

necessary for the rest of the action (2). Those reads are then sent to the second object

(3). The second master successfully completes the action and sends con�rmation back

to the client (4). Furthermore, it can already start propagating updates to replicas

since it knows it has executed the last sub-action and does not need to wait for other

objects (5'). Meanwhile, the client now sends a commit back to the �rst object (5),

which now proceeds to update its replicas (6).
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Algorithm 1 Distributed linear-locking algorithm
Require: ∀i, j ∈ |O| where i < j : ROj ,Oi

= ∅
V ← ∅
for all x ∈ O do
In← set of Vi,∀i ∈ Rx,y where ∀y, y 6= x
Out← set of Ry,x,∀y ∈ O where x 6= y
if x is the last element of O then
subActionAndCommit(x, In,Out)

else
W ← subActionAndWait(x, In,Out)
for all i ∈ Ry,x where ∀y, y 6= x do
Vi ← Wi

end for
end if

end for
if every call succeeded then
for all x ∈ O except the last element do
send commit to x

end for
else {the action failed}
send rollback to executed x, x ∈ O

end if
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Figure 3�6: Distributed high/medium consistency protocol

The distributed linear-locking protocol in Algorithm 1 details our approach. Rx,y

is a list of attributes from object y necessary for object x to execute its sub-action. O

is a list of objects involved in the action, ordered based on their reads. Vi stores the

read value of attribute i. subActionAndWait is a remote call which locks and execute

the sub-action for a certain object providing an input set of reads necessary and

specifying the output set of reads required. After execution, the object must keep the

lock and wait for commit or rollback from the coordinator. subActionAndCommit

is a remote procedure call sent to the last object in the ordered list which does not

lock the object. Since it is the last object in the list, it can commit right away if

successful. If a call fails, any previous sub-actions must be rolled back and the action

aborted. Otherwise, commit is sent to all waiting objects.
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CHAPTER 4
Persistence

We now look at how durability for actions can be achieved in MMOGs. Dura-

bility is treated separately from the other ACID properties because it is only called

upon during failure scenarios. One desirable property for durability is thus trans-

parency. The game should not be aware of the persistence mechanisms in place. The

basic idea of persistence is to monitor the game state dynamically and store it to

stable storage. When recovery is needed, the persistence data is restored. Ideally,

the recovered data is exactly the same data at the time the game was shut down.

Exact solutions, however, prove to be too expensive and limit the scalability of the

persistence layer, if not the whole system. Our strategy is to handle persistence based

on the semantics of the actions. In particular, each consistency category for action

handling can be augmented with persistence. The protocols used for persistence are

then designed such that any attribute update stored would satisfy the consistency

requirements of the action. Doing so can allow us to use more e�cient and scalable

approximation storage strategies when appropriate.

In a single server environment, the persistence layer monitors the game at the

master level. Changes made to the state of the game are captured by the persis-

tence layer, which sends the updates to stable storage according to the consistency

requirements of the action. Upon restart of the server, the game is recovered using

the persistence data.
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When considering distribution, partial failures are now possible where only spe-

ci�c nodes go down and not the whole system. In those situations, we can use persis-

tence for fault-tolerance purposes. Only the data from the a�ected nodes would need

to be recovered. The challenge here is to reconcile and/or minimize any discrepancies

between the state of the recovered objects and the rest of the game.

For this thesis, we only consider failures for game servers. Scenarios involving

failures of the persistence structure itself will not be considered.

4.1 Persistence Architecture

In order to make persistence transparent to the system, replicas will be used to

track changes in objects. The persistence layer will hold replicas of all objects in the

game. Those replicas are updated normally like any other replicas. Whenever such

an update is received, the persistence layer can decide how to store the update to

stable storage.

To cope with the scalability provided by the distribution of the game, the persis-

tence layer itself must be distributed. Multiple persistence servers can be used, each

monitoring a di�erent set of objects. Each persistence server will then be connected

to some stable storage, which may be distributed as well (see Figure 4�1).

Each persistence server must be assigned non-overlapping and covering sets of

objects to monitor. We employ a central persistence server to coordinate assignment.

One possible strategy is to use the same cells which are employed for distribution and

load balancing (see Section 2.2.3). Each cell is assigned to a persistence server. The

advantage of this strategy is its simplicity: it reuses mechanisms already in place. The

persistence server simply needs to subscribe to the cell and interest management will
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Figure 4�1: Game architecture with persistence

compute which objects are in this cell's boundaries (and thus need to be replicated by

the server). Another strategy is to assign game nodes to each persistence server. The

persistence server must then be in charge of monitoring every object whose master is

located in that server. The advantage here is the ease of recovering a server's content

in a fault-tolerance situation. When a server crashes, one persistence server has all
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the objects this server had. We do not have to �nd this information across multiple

persistence servers.

4.2 Restoring Data

During a complete restore of the game data, it is also likely that the persistence

servers have also been shut down. Therefore recovery must be done from the stable

storage data. First, the central persistence server must have an index on the loca-

tion of each object across its multiple stable storage sites. Another possibility is to

centralize all the persistence data back to the central server. When the game servers

restart, the system must request objects from the central persistence server, which

can then reconstruct the objects from stable storage. Note that it is not necessary for

the game system to request for speci�c objects since objects are created and deleted

during the course of the game. Restarting game servers would not be aware of the

existence or nonexistence of such objects and it is the responsibility of the persistence

service to inform them.

After partial failure of the system, failure detection is needed to determine which

object masters have failed. This failure detection must be provided by the system

and is not covered in this thesis. Once the set of failed masters is known, the failover

procedure can recover those masters from the replicas maintained by persistence

servers and reassign master responsibilities to other servers. The game system must

interact with the central persistence server and request masters for the failed objects.

The central persistence server can then locate the corresponding replicas from its

local persistence servers. Those replicas may need some preparation before they are

suitable for master duty (see Section 4.3.3). Once ready, the persistence layer sends
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Category Description Examples
Exact The persistence replicas must be syn-

chronized with the masters.
Trading items between play-
ers.

High The persistence replicas are consistent
according to the critical attributes

Buying an item: item price is
critical.

Medium Stored but may di�er due to lost ac-
tions

Picking up an item.

Low Stored using an approximation strategy Player movement.
None Does not need to stored Player turn (orientation).

Table 4�1: Consistency categories for persistence

a copy of the new master to the appropriate server. Local persistence servers are not

in charge of masters for the game. The fault-tolerance aspect of persistence will not

be covered in detail in this thesis.

4.3 Persistence for Actions

To maximize scalability and e�ciency of the system with persistence, actions

with varying consistency requirements will be stored di�erently to satisfy such re-

quirements. Another important point to consider is how the persistence replicas can

be reused in case of failure (see Section 4.2). If the persistence replicas are incon-

sistent with the live data, additional mechanisms need to correct the replicas before

they are used as new masters. In terms of performance, our goal is to minimize

load sent to stable storage, which can be a bottleneck for our system. Table 4�1

summarizes the material in this section.

4.3.1 No Consistency

Since no consistency does not guarantee reliable update propagation, it is possi-

ble that the persistence replica will simply not receive an update. If it does however,

it does not need to store it to stable storage, since the minimum requirement of this
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Figure 4�2: No consistency persistence

category is that updates are not received. Therefore recovering a replica that does

not re�ect the updates from a no consistency action is acceptable. After a client has

committed an action on the server (1 in Figure 4�2), the replicas of a�ected objects

will be updated (2). However, the local persistence servers will not write this change

to the stable storage.

4.3.2 Low Consistency

At the low level, a master is not required to send updates atomically to its

replicas. Upon receiving such updates, the persistence server may decide to further

use an approximation strategy on how to store them. As it is acceptable for attributes
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not to be exact after recovery of a low consistency action, only some changes need

to be persisted. For instance on a movement action, the approximation strategy

could ensure that the position is only stored when the last stored position in the

stable storage exceeds a certain distance threshold from the actual position. This is

a distance-based storage strategy for movement [34]. It reduces the throughput to

the stable storage while ensuring an error bound on distance, which is signi�cant in

game semantics.

4.3.3 Medium Consistency

At the medium level (and higher), every update must be stored to stable storage

since replica atomicity must be preserved. In other words, any update visible to any

replica must be re�ected in the persistence data. Consider the following scenario: a

medium consistency action involves a single object. After commit, the master will

propagate the change to all replicas. If the server fails before sending any updates,

replica atomicity would be preserved since no one will have observed the action. If

some updates have been sent, then replica atomicity is violated. However, as long

as a local persistence server replica receives the update, it is possible to recover the

e�ect of the action and later send the missing updates. Therefore, an additional

requirement is necessary on the network engine when delivering updates. The pub-

lisher/subscriber system is required to either have atomic publications (all or none

of the replicas receive the update) or that the persistence replica for a master always

receive the update if any replica for that master has received an update.

We will now expand the scenario to involve multiple objects, with all the mas-

ters residing on the same server (see Figure 4�3). We also assume for now that
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the persistence replicas for those objects are located in the same local persistence

server. Even with the additional network requirement shown above, inconsistencies

can result when updates are not sent completely. After the client has successfully

committed the action (1), one of the masters has successfully updated its persistence

replica (2), which now re�ects its new state on stable storage (3). However, the

server crashes and fails to send the update for another master involved in the same

action (4). Upon recovery, some masters will re�ect the action while others do not.

This is inconsistent and equivalent to a partial execution of the action, which violates

master atomicity.

We solve this problem by piggybacking replay information in the update. In

other words, when a medium (or high) consistency action is sent to a master, it

contains enough information to execute the operations of any objects involved in

that action. In order to determine whether a replica is missing updates or not,

we employ object versioning. Masters increment object versions for each medium

(or high) consistency action they are involved in. The action will keep a vector of

the current version of each master. Replicas update their version every time they

receive an update from such actions as well. When recovering the objects, the local

persistence server can determine which replicas are missing updates by comparing

their version with the ones stored in the actions. The main idea is that if any object

involved in an action has propagated its update to a replica, the action will have been

stored on the local persistence server and accessible for replicas of other objects to

use. If none of the masters have managed to propagate their updates before crashing,
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Figure 4�3: Persistence with no atomicity between the replicas of multiple objects

then the action will be missing and will not be recoverable by any replicas. However,

since no persistence replicas perceived the action, master atomicity is preserved.

In the distributed case, the above solution needs to be further expanded. If mas-

ters can now reside in di�erent sites and be monitored by di�erent local persistence

servers, then the replay information for an action needs to be accessible to any local

persistence server with a missing update for a replica. This is done by replicating

the action on the central server (see Figure 4�4). When an action is sent to the mas-

ters (1), they will each propagate its update (as usual) along with the action itself

(2). Once the persistence replica receives the action, it will forward it reliably to
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the central server (3). The central server may receive the same action several times

from multiple sources; duplicates must be discarded. In case of node failure (2'), the

persistence server holding a replica of a failed master will request any missing action

from the central server (5). The server can then replay those actions on the replica

to bring it to a consistent state suitable for master duty and store the changes to the

local storage (6).

In the example shown in the Figure 4�4, an action involving object A (version 2)

and B (version 3) was successfully committed. However, only the left server holding

the object A has managed to propagate the action to its local persistence server. The

right server, holding B, fails before sending the updates. For fault-tolerance purpose,

a new master of object B must be created. The persistence replica, which is still

at version 2 for B, sends a request to the central persistence server for any missing

action. The replica receives a copy of the action, which it can apply to bring B to

version 3. The replica can now be used as the new master and the action update can

now be logged on the stable storage for the local persistence server holding object B.

Algorithm 2 Medium consistency persistence recovery strategy
Replica of object x sends request(x, vx) to the central persistence server
Upon receiving request(x, vx) at the central persistence server:

Central persistence server replies with A, where a ∈ A ⇐⇒ va > vx
Upon receiving A at replica site:
∀a ∈ A, apply a to x

Algorithm 2 details how recovery is performed. The replica sends its current

version to the central server. The central server then looks for any action containing

this object with a more recent object version. Those missing actions are then sent

back to the replica which must apply them in the correct order.
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Figure 4�4: Medium consistency persistence

4.3.4 High Consistency

High consistency is treated exactly the same way as medium consistency. The

only additional point to consider are the values of critical attributes when replaying

an action. If a critical attribute is low or no consistency, then it is possible that the

value at the persistence replica di�ers from the value read at the client's replica when

the action was �rst executed. In this situation, the attribute of the persistence replica
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must be set to the read value before applying the action. This is possible because

the discrepancies came from a lower consistency action with no replica atomicity

requirement and the read value was one possible value a replica could have had so

it is acceptable to update the persistence replica with that value. If the attribute is

of medium consistency or higher, then the discrepancy must come from an update

which was missing at the persistence replica. In this situation, the persistence replica

should have received another action to apply (from the central server) before applying

the high consistency action.

4.3.5 Exact Consistency

Since the action is treated synchronously, all that is required is for the persistence

replicas to be treated as participants. This means the persistence replicas will be

updated eagerly. No object versioning or replayability is required since the replicas

will be synchronized to the masters.

4.4 Dealing with Lost Actions

Normally if an action is unrecoverable, it is also the last action on the partic-

ipating objects before their masters fail. Therefore having the persistent replicas

takeover while ignoring this action results in no inconsistencies. There is, however,

a situation where the missing action is not the last action on an object. Due to

asynchronous update propagation, it is possible for a medium or high consistency

action, e.g. on an object X, to have committed, but the master has not sent out

its updates yet. A second medium or high consistency action now a�ects the same

object (X) and another object (Y) that was not part of the �rst action. Suppose

now that the node holding the master of X crashes before sending out updates for
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both the �rst and second actions, while the master of Y manages to propagate the

updates to the central server. Recovering X is now problematic because the �rst ac-

tion is unrecoverable but the second action is recoverable. If there is any dependency

between the �rst and second action, it appears that the second action would not be

applicable on the persistence replicas. Figure 4�5 shows an example where the �rst

action A, which a�ects a single object (X) on the left server, has been committed

(1). The second action B a�ects the same object X as A and another object (Y) on

the right server. It is therefore applied on both servers (2). The left server crashes

before the master of X is able to send the updates for A and B (3), while the master

of Y at the right server successfully propagates B to its replicas (3'). Action B can

be propagated to the central server (4) and to the local stable storage (5). When the

left persistence server needs to recover masters from the left server, it is only able to

retrieve action B from the central persistence server (6). Action A is therefore lost.

We want to argue that the lost action can be safely ignored. The reason is that

if changes in regard to A were not re�ected at the persistence layer, they were not

re�ected in any other replicas, including the client performing the action B (see the

additional requirement shown in Section 4.3.3). If the second action is a medium

consistency action, it is acceptable for read values to di�er from the masters to the

replicas of the client. Since the client did not see the updates of the �rst action as

the persistence server itself does not have the update to A, the outcome of B may

have been di�erent from the client's expectations. When recovering, the persistence

replicas will now read values prior to A, which will be similar to the client's view.
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Figure 4�5: Lost action example

If the second action B is a high consistency action, then we must consider the

critical attributes. During the original execution of B, the client has not seen the

updates of the �rst action A as mentioned above. Since action A was executed be-

fore B, any changes made by A at the master of X would have been considered in

the predicate evaluation of the critical attributes of B. Therefore, if A made any
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changes which would have caused the critical attributes reads of B to be unaccept-

able, B would have been rejected and not committed. The situation would have

been avoided since B would have not been propagated in the �rst place to the per-

sistence replica. However, if B is still executed despite the e�ects of A which are

unobserved by the client, it means the outcome of the action is considered accept-

able. Therefore reapplying the action B after losing A is possible since A did not

make any changes with substantial impact on B, as de�ned by the critical attribute

acceptability criterion.
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CHAPTER 5
Action Development and Implementation

Our consistency categories highlight some of the concerns developers must deal

with, such as client reads and replica atomicity. The weight of the concerns de-

pend heavily on the complexity of the actions (see Section 2.1.1) and their volume

(frequency). Furthermore, consistency categories come with increasing levels of con-

sistency which also incur more overhead on the system. However, the relative per-

formance of each consistency model again depends on the action itself. Therefore,

designing and implementing an action can be thought of as a development pro-

cess [26]. Figure 5�1 is a �owchart showing the important phases in the development

cycle of an action:

I Requirements: Requirements for the action need to be collected. In particular,

any performance and consistency requirements must be clearly de�ned.

II Consistency Model Design: Given the requirements, the appropriate consis-

tency model must be applied when designing the action.

III Implementation: The action is implemented within the game.

IV Performance Analysis: The action is tested to meet the requirements.

V Relaxation of Requirements: If the requirements are too stringent for the ac-

tion to match, they could be relaxed. By doing so, the action can possibly be

redesigned with a lower consistency model and yield a more e�cient implemen-

tation.
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Figure 5�1: Action development process

VI Model Re�nement: It is possible to make improvements on the consistency

model itself intended speci�cally for the action, resulting in more improvements

possible on the implementation.

Model re�nement refers to the fact that certain actions may have very speci�c

requirements which do not quite �t any of the consistency requirements. For instance,

an action might require master atomicity but not replica atomicity, which would

classify it between low and medium categories. If applying medium consistency

is not a viable option, then the model must be rede�ned to accommodate these

more speci�c requirements. New optimization possibilities can open up with these

specialized models.
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Figure 5�2: Action components

In this chapter, we will present implementations of a wide variety of actions

within Mammoth. We will �rst introduce the basic framework and architecture nec-

essary to support the actions, as well as persistence. We will then go over three

actions in detail: �Move Player�, �Pickup/Drop Item� and �Activate Item�. We will

show how we can use semantic requirements to �nd the appropriate consistency cat-

egory for each action. This will lead us into the next chapter where our experiments

will compare di�erent implementations of the actions using di�erent consistency cat-

egories.

5.1 Mammoth Integration

The main features of Mammoth are described in Section 2.3.2. We will �rst

show the structure for action handling and later introduce persistence.

5.1.1 Action Initiation and Coordination

Figure 5�2 shows the interaction between the major components required for

creating and executing an action.
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• Command: Mammoth uses the Command pattern to encapsulate information

necessary from the client to execute an action [14]. Command objects are then

locally queued by the client software before execution.

• ActionWrapper: When executed, commands call the appropriate method from

ActionWrapper. This client-side code contains the core of the action logic and

serves as the coordinator. It is in charge of calling the correct sub-actions

on each object, collecting the replies and committing the action. In case of

failure, the ActionWrapper is also able to interpret exceptions and notify the

user appropriately.

• CallContext: In each call to an object, the ActionWrapper piggybacks a Call-

Context object, which contains information necessary for that object to execute

its sub-action. It is also used by the called object to relay back information.

The initial Command data is included in the CallContext.

• ProxyObject: ProxyObjects are in charge of correctly executing sub-actions

received by the ActionWrapper. Its behavior depends on whether it is a master

or a replica as determined by its attached ProxyBehavior.

• ReplicaBehavior: A ReplicaBehavior allows the replica to perform local reads

if desired, but any sub-action with write operations must be sent to the master.

Replicas can create a Remote Procedure Call (RPC) message which instructs

the master to perform the appropriate method.

• MasterBehavior: A MasterBehavior usually tries to acquire a lock on the mas-

ter, perform the necessary operations, wait for commit and then propagate
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updates to the replicas. In Mammoth, locks are granted on a per-object basis,

not per-attribute.

• WorldObject: This is the actual object, used both by replicas and masters,

to store the current state of the object and its attributes as perceived by that

proxy.

• ReplicationSpace: This is a container for all proxies (masters or replicas) cur-

rently held by the node (server or client). The content of the ReplicationSpace

is dictated by interest management and distribution. Replicas are added via

new interest subscriptions while remaining replicas of objects of no interest are

evicted. Load-balancing and fault-tolerance migrate masters from server to

server.

• ReplicationNetworkEngine: The network engine handles communication be-

tween the nodes. It is capable of publishing updates and sending remote calls

between replicas and their master.

For our consistency models, we are mostly concerned with the ActionWrapper,

the CallContext and the ProxyBehaviors. The ActionWrapper can vary depending

on the level of coordination required. Higher consistency categories di�er in that

component in order to produce di�erent master atomicity guarantees. ProxyBehav-

iors can a�ect the way replicas receive updates. It is therefore of interest to lower

consistency categories for replica atomicity. CallContext is used to communicate

critical reads (for high consistency actions) and master reads.
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5.1.2 Persistence Components

Persistence introduces two types of nodes to the system: local persistence server

and central persistence server. Their components and their interaction with the rest

of the system are detailed in Figure 5�3.

For most actions, update propagation is asynchronous (see Section 3.1). After

the action has committed, the master sends updates to all its replicas, including

replicas held by local persistence servers. The CallContext, which includes data on

the action, is piggybacked on the update message. When a local persistence server

has received updates for all of its replicas related to an action, it applies the updates

atomically (see Update Propagation in Section 2.2.1). When doing so, the Object

Listener of each replica is noti�ed and stores the attribute changes on the Local stable

storage using the appropriate strategy for the action type. The action as whole also

noti�es the Action Listener which sends the action data (CallContext) to the Central

stable storage for medium and high consistency actions.

In case of failure, the Fault-Tolerance Layer of a game server must initiate

takeover of failed masters. The fault-detection mechanism and the reassignment of

the masters is outside of the scope of this thesis. Once the set of failed masters has

been determined, the server must request the central persistence server for a copy of

the masters. This request is forwarded to the Persistence Recovery module of the

local persistence server in charge of monitoring those objects. For each object, the

local persistence server sends a request for missing actions to the central persistence

server. Upon receiving those missing actions (if any), the persistence employs a

special Persistence Action Wrapper which can replay actions for the target object.
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Figure 5�3: Persistence components
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The restored object is then migrated to the game server, which can now use it as

master.

System startup. The central persistence server must be started before any

local persistence server since it is in charge of coordination. The local persistence

servers are then started in order to access the data of their stable storage. Once the

persistence layer is running, the game servers can be started. The game servers can

request objects from the persistence data. Furthermore, the central persistence will

assign each game server to a local persistence server. That local persistence server

is then in charge of declaring its interest radius as the cells owned by that game

server. Therefore, each local persistence server contains replicas for the masters

of its monitored server. In other words, each local persistence server is in charge

of monitoring objects from a single game server and storing actions involving any

objects from that server. Currently, the central persistence server only does one-to-

one assignment between game and local persistence servers.

Stable storage. The complete initial state of the world is stored in an XML

�le called a �map�. This includes immutable elements which are not to be monitored

by the persistence layer (see Section 2.3.1). It is loaded �rst when the whole system

starts. Persistence data is loaded subsequently from local persistence servers to bring

this initial state up-to-date.

Persistence data is stored in relational databases. Local persistence servers

employ a two-layered database structure [34]. A generic Object table stores the

entire XML representation of each individual object. Additional tables are then used

for speci�c attributes which are frequently updated, such as position. Changes to
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attributes which are not speci�cally represented must be captured by serializing the

whole object and storing them in the Object table. When an object is restored from

the stable storage, it is �rst constructed from the XML data. Then, any attribute

which is stored in its own table will be updated to the latest state.

The central persistence server uses a relational database to store actions in

serialized form. An additional table is used to link each action with the version of

the objects involved. This is used when comparing a replica version with an action

version to determine missing actions (see Section 4.3.3).

5.2 Action Implementation

Concrete actions have been implemented within the presented framework. Those

actions have been chosen to provide suitable references to a variety of actions com-

monly supported by MMOGs. For each action, we will provide a description, mo-

tivation for choosing this action and requirements. Although we will discuss which

consistency category is suitable for each action, multiple implementations following

di�erent consistency categories will be given for performance comparison purposes.

5.2.1 Player Movement

Player movement is one of the most basic functions available to the client in

MMOGs. Movement usually comes in two types: direction-based and destination-

based. Direction-based movement allows the player to move continuously in a given

direction as long as the client desires. This is for instance done by controlling the

player's character with the keyboard arrow keys. Destination-based progressively

moves the player's character towards the target destination. This target destination

is usually selected by clicking on the location with the mouse.
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Mammoth uses destination-based movement. Selecting a destination is consid-

ered an action, which is sent to the master. The master sets the destination and

publishes the destination to all of its replicas. Once a master has a destination, the

server holding the master computes at regular intervals the next location based on

the master's current location and its destination. If necessary, path �nding is used

to �nd the correct path to the destination. If at any time during the movement,

the master is blocked and cannot reach the destination by following the given path,

movement is stopped.

Player movement is a relatively simple action since it only a�ects two attributes

(destination and position) from the same object. Position updates do read the posi-

tion of other objects and checks for collisions to determine whether the destination

is reachable. However, Mammoth only supports collision detection with immutable

objects, thus eliminating the need to read remote objects. This makes lower consis-

tency categories suitable since master atomicity is not a concern. Client reads can

be a problem, as players tend to move towards locations of interest. If the state of

objects around the intended destination changes, the player may want to move some-

where else. However, player movement is easily repeatable, as players can change

their destination at any time. Therefore, they can compensate for those stale client

reads by moving towards another destination even if the current destination has not

been reached yet.

This makes low consistency the logical choice for player movement. This model

allows for bounded approximation on the replica attributes. In this case, we use dead

reckoning to locally simulate character position at the replicas. This eliminates the
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need to update positions completely. Since player movement is deterministic, the

path computed is the same at the replicas and the master, barring numerical errors

and latency. This will be compared to a medium consistency implementation where

every position update is published, and a high consistency implementation where

position is considered a critical attribute when setting destination.

The implementation for the low consistency action consists of the following steps:

I The player selects a destination.

II This destination is sent as a remote procedure call (RPC) to the master. The

client does not need to wait for a reply.

III The master sets the destination and updates all replicas with the destination

and the master's current position.

IV Replicas update their position and set their destination.

V At regular intervals, the master and all the replicas locally update their position

to progressively advance towards the destination. If the path is blocked and

the player cannot advance, movement stops.

VI When the destination is reached, movement stops.

Therefore, apart from the initial exchange of destination, there is no further

communication from the master to the replicas. Here are the medium and high

consistency implementations:

I The client selects a destination.

II This destination is sent as a remote procedure call (RPC) to the player master.

The client will wait for con�rmation from the master. For high consistency,

position read at the replica's is also added to the message.
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III The master sets the destination and updates all replicas with the destination

and the master's current position. The master also sends a con�rmation to the

client. For high consistency, the master also rejects the action if the position

read at the replica is not within an acceptable threshold of the master's position.

IV Replicas update their position and set their destination.

V At regular intervals, the master updates its position and sends an update con-

taining the position to all replicas. If the path is blocked, the master stops

moving and sends an update to replicas to cancel the destination.

VI Upon receiving the position update, a replica will set its destination. It does

not perform any dead reckoning.

VII When the destination is reached, movement stops.

At the persistence level, position updates can be logged with a distance-based

approximation strategy for the low consistency implementation [34]. For the high

and medium consistency implementations, position changes are expected to be stored

exactly. However, the action does not need to be sent to the central persistence server

since master atomicity is not a concern. Model re�nement is also possible here for

medium and high consistency. Although the client must perceive the correct position

while playing, this is not necessarily the case after recovery of the game. Clients are

able to tolerate some reasonable bounds on its position [34], which suggests the

use of approximation strategies even when storing player movement position for the

medium or high consistency implementations. Our implementations will not consider

this re�nement and exact updates are used for medium and high consistency.
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Moreover, additional model re�nement is possible on the destination attribute

at the persistence level. After a system restore, the players do not expect to continue

moving towards their destination selected before the game was shut down. In fact,

clients expect their player to be still when entering the game. Clients can easily

re-establish their destination if they wish to do so. Therefore, destination is not

an attribute that needs to be re�ected in the persistence data, which mirrors a no

consistency approach.

Note that player movement is not the only way of updating the position at-

tribute. MMOGs frequently support other means of transportation which may re-

quire a di�erent level of consistency.

5.2.2 Pickup/Drop Item

Pickup/Drop Item is a pair of actions commonly found in MMOGs. Picking up

objects represents one of the primary ways of acquiring items in MMOGs since many

events occurring in games result in objects being generated on the ground for players

to take. A client can pick up an object by clicking on it with its mouse. If the object

is too far away, the client will �rst send a move action to put the player closer to

the object. Otherwise, the object will be picked and put in the player's inventory.

Players can drop items from their inventory, which is accessible by the player at any

time. When an item from the inventory is selected, it is �rst transferred to a state

called the �hand�. This transition is not re�ected in the game state and is simply an

intermediate step at the interface level. The drop action is only initiated after the

player has dropped the object from the hand to a selected location on the ground.
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Figure 5�4: Objects and inventory

Figure 5�4 shows an example from Mammoth of a �ower on the ground and a tomato

in the player's inventory.

In Mammoth, both the player and the item are a�ected by a pickup or drop

action. Inventories have a maximum capacity which limits the number of items.

Inventories are also limited by a maximum weight attribute, with each item having

a di�erent weight. Those restrictions must be veri�ed when a player tries to pick up

an item. If successful, the player can then add the item to its inventory. The object

itself must keep a reference to its location (either on the ground or in an inventory).

Pickup action should be a medium consistency action. Since objects on the

ground are visible to all players, concurrent pickup requests are possible. Master

atomicity is therefore required to ensure consistency between the players and the
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items. We want to avoid situations where two players list the same item as being

in their inventory. Replica atomicity is also important to ensure clients perceive

the correct objects on the ground to avoid illegal pickups. Client reads is less of

a factor because the drop action can reverse the e�ect of a pickup with almost no

consequence. High consistency is therefore not necessary.

Drop action has lower requirements than pickup. This is because objects in

the inventory are not visible to other players and can only be interacted with by

the person who owns the object. Therefore, concurrent requests are not possible.

Nevertheless, exact updates must be sent to replicas so that clients can all observe

that the object is now on the ground, so that they can have the opportunity to

pick it up. Furthermore, the drop action requires persistence to maintain master

atomicity in the presence of failures. Otherwise we would get inconsistencies such

as an inventory containing an object which is already on the ground, or an object

still belonging to an inventory which does not contain it anymore. The second

inconsistency in particular is not repairable by the players since the item is not

visible on the ground nor in an inventory. Therefore the drop action must also be

treated as a medium consistency action.

Both pickup and drop actions are implemented in the medium consistency cate-

gory using the linear locking algorithm described in Section 3.2.2. Here are the steps

of the medium consistency implementation:

I The client decides to pickup or drop an object.

II For pickup, the current location of the object is recorded. If the player is too

far away, a movement action is initiated �rst.
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III For drop, the location where the client wants to drop the item is recorded. If

the player is too far away, a movement action is initiated �rst.

IV The client sends an RPC request to the item master, which includes the player's

ID. The client waits for a reply from the item master.

V The object acquires a lock. If it fails, the action is rejected immediately. If

it succeeds, the item veri�es that the action is valid. For pickup, this means

the item is still on the ground. For drop, it means the object is in the player's

inventory.

VI If it passes validation, the item sends a successful reply to the RPC message

after applying the action on the item master. For pickup, the weight value of

the item is returned to the client. The item keeps the lock and waits for a reply

from the client.

VII The client now sends a RPC request to the player master. The player tries to

acquire a lock. If it succeeds, it will validate the action. For pickup, it will

verify that there is enough space under the maximum weight to hold the item,

based on the item master's weight read. For drop, it will verify that the item

is in the inventory.

VIII If successful, the player master sends an RPC return and commits immediately,

publishing an update to replicas. The client then sends a commit to the item,

which can now publish an update.

A low consistency design for pickup is also implemented. In order to reduce

the number of message rounds, we verify weight restriction without requiring master

reads on the player (see Section 3.2). This is done by reading the player's character
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replica held by the item master's server. Doing so allows saves the �nal commit

con�rmation sent back to the item since we already know the action will be suc-

cessful at the item master, thus saving one message round and shortening the lock

on the item. This, however, requires tolerance on weight inconsistencies or tolerable

bound on the staleness of the weight attribute. In Mammoth, weight is currently an

immutable attribute, thus stale weight reads are not possible. However, we have still

implemented both the low and medium consistency actions for comparison.

Step-by-step, the low implementation of pickup and drop work the following

way:

I The client decides to pickup or drop an object.

II For pickup, the current location of the object is recorded. If the player is too

far away, a movement action is initiated �rst.

III For drop, the location where the client wants to drop the item is recorded. If

the player is too far away, a movement action is initiated �rst.

IV The client sends an RPC request to the item master, which includes the player's

ID. The client waits for a reply from the item master.

V The object acquires a lock. If it fails, the action is rejected immediately. If

it succeeds, the item master veri�es that the action is valid. For pickup, this

means the item is still on the ground. For drop, it means the item is in the

player's inventory.

VI In addition, for pickup, the item master reads the maximum weight and ca-

pacity of the local replica of the player's character. If the weight and capacity

restrictions are passed, the item immediately commits and publishes updates,
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sending a success message back to the client. For drop, the player's replica is

read to verify that the player lists the item as being part of its inventory. The

item can then immediately commit, publish updates and a con�rmation to the

client.

VII The client now sends a RPC request to the player master to tell it to add the

item to its inventory (or to remove it from the inventory). The player master

does not do any veri�cation, even if the item puts the inventory overweight for

pickup, or if the player never had the item in its inventory for drop. The client

does not wait for any reply from the player master.

For persistence, this low implementation will not guarantee master atomicity.

The action will not be sent to the central persistence server. We will compare the

low and medium consistency implementations.

5.2.3 Activate Item

Our third action is item activation. MMOGs often contain objects which can be

activated by the player to trigger certain e�ects. In particular, one special mechanism

included in most MMOGs is called �Area of E�ect (AoE)� [20]. State changes with

AoE will a�ect all characters within radius. We wish to study how AoE relates to

our consistency categories; our item activation action will therefore have AoE. In

Mammoth, item activation is an extension of the drop item action; in addition to

dropping the item, all characters within the speci�ed range of the item's dropped

location will increase their maximum weight by one (see the radius around the �ower

in Figure 5�5).
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Figure 5�5: Item activation Area of E�ect radius

Item activation with AoE is normally a medium consistency, if not high consis-

tency action. Clearly master atomicity is required, since the action requires that all

characters within range are a�ected. It could also be considered high consistency,

since the characters' position is an important consideration when deciding on this

action. The client initiating the action not only expects that all perceived characters

within the radius to be a�ected, but also that all perceived characters outside of the

range are not a�ected. Therefore, the client's expected list of a�ected players must

correspond with the actual list of a�ected players. Notice that the exact position of

each character is not necessary, only the information about being in or outside of the

AoE range matters.
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Implementing those models can be expensive. If there is no bound on the stal-

eness of player position, which is likely if sudden position changes are allowed, the

action must obtain master reads of the position of all objects in the game. This is the

only way to ensure that the action is completely consistent. For Mammoth, since the

only way of changing position is through player movement, we make the reasonable

assumption that only players within the interest radius of the client can be a�ected

by the action. The medium and high consistency implementations therefore have

the following steps:

I The client decides to activate an object by dropping the object.

II First, the drop action is initiated and all the steps of the drop action are

executed, except for the �nal commit.

III For each player in the client's interest radius, the client sends an RPC request

to the corresponding master. The RPC request contains the location of the

action e�ect, which is the item's dropped location, and the radius of the action.

After each RPC request, the player waits for a reply before proceeding to the

next player. In the high consistency implementation, the client also locally

computes whether that player is in range of the action. When sending the

RPC request, an additional Boolean variable is included to indicate whether

the client expects that player to be a�ected or not.

IV The player master tries to acquire a lock and veri�es if it is in range of the

action. If it is, it increases its maximum weight by one. If it is not, it does

nothing. In both cases, the player master must send a reply back to the client

and wait for commit. For high consistency, the outcome decided by the player
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master must agree with the expected outcome. Otherwise the action is aborted

immediately.

V Once all players have successfully executed their sub-action, the client can now

send a commit to every locked player and the item.

Persistence-wise the action follows the traditional medium/high consistency

model; actions must be sent to the central persistence server for replayability. The

action will contain the list of players which are a�ected by the action.

A possible low consistency implementation can decide from the client's view

which players will be a�ected. This is done by reading the replicas. After sending

the sub-actions to the selected objects, their master must then verify that they are

in actual range of the e�ect. Only objects who are truly within the radius will be

a�ected. The result is an outcome which is neither completely consistent with the

player's view nor the masters' view. It allows players expected by the client to be

in range not to be a�ected, but it does not allow players not expected by the client

to be a�ected. The advantage of this design is e�ciency of implementation: the

involved masters are decided client-side. The low consistency implementation works

as follows:

I The client decides to activate an object by dropping the object.

II First, the drop action is initiated and all the steps of the drop action are

executed, including the �nal commit.

III For each player in the client's interest radius, the client computes locally

whether that player is in the AoE range of the action. If it is, it sends a
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RPC sub-action to the player master. The client does not wait for any replies

for those RPCs.

IV Each player master veri�es whether it is in the range of the action or not. If it

is not, it ignores the sub-action. Otherwise, it increases its maximum weight

by one.

This implementation is stored under standard low consistency persistence rules,

with no action data. We will compare the low consistency implementation against

the medium and high consistency implementations.
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CHAPTER 6
Performance Evaluation

The implementations presented in Section 5.2 are now compared. Evaluating

the performance of each implementation allows developers to determine if it is ade-

quate in ful�lling the requirements. If not, the developers either have to relax their

consistency requirements to use a lower consistency model, or to re�ne their current

model and optimize further.

6.1 Experimental Setting

Our benchmark application is the Mammoth framework. The network engine

uses a publisher/subscriber system built on top of Apache MINA[2]. The network

engine (called Stern) employs a single hub to which all network messages are for-

warded [24]. The hub runs on a separate machine from the server(s).

Non-Playing Characters (NPC) clients are used to generate load [30]. They will

be instructed to continuously execute the target action being tested. Each NPC

client uses a distance-based interest. The threshold is 6.0, which corresponds to the

whole screen for a regular client. In other words, NPCs are subscribed to all objects

in the visible area of a regular client's screen.

A MySQL database is used for persistence. Every persistence server is connected

to the same database, but for the purpose of these experiments they do not share

any data. For each experiment, the number of persistence servers is equal to the

number of game servers.

92



Clients and servers are ran on various machines in a local area network. Although

the system is heterogeneous, the bulk of the machines are Pentium Core 2 Duo

2.4GHz machines. Each Mammoth application is allowed 512MB of Java heap space

memory.

Speci�c details on the setup is given for each action. Statistics are collected

using the MINA StatCollector and SIGAR [1].

6.2 Player Movement

For player movement, the NPCs used are called �wanderers�. They move around

the world continuously, changing their destination every 1-2 seconds. NPCs do not

use path �nding; they only move in straight lines.

We will �rst compare the rate of messages and throughput. We �rst focus on

the actions without persistence support. Since distribution is not a factor here as

actions only involve a single object, the experiment will run on a single server. High

consistency has been set to accept very large di�erences to maximize the number of

successful actions and provide a suitable comparison with the other implementations.

Rate of messages. There is a clear di�erence in the rate of messages be-

tween low and the two other implementations (see Figure 6�1). This is because

players update their position approximately 10-15 times per second. The rate of

position updates vary due to the non-deterministic nature of the NPCs, which are

not constantly moving since there may be a delay before selecting a new destination

after reaching the current one. In medium and high implementations, each of these

position changes results in an update to all replicas. In contrast, the low implemen-

tation only updates when the NPCs set their destination (since dead reckoning is
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Figure 6�1: Movement: Rate of messages for an increasing number of NPCs

Implementation Size (Bytes)
High 875.48

Medium 873.08
Low 1061.2

Table 6�1: Movement: Messages size per implementation

performed at the replicas), which is only 1-2 times per second. At around 900 mes-

sages per second, the server started to drop messages which resulted in performance

degradation for the medium and high implementations. This occurs at roughly 60

players.

Throughput and message size. The throughput graph (Figure 6�2) shows

similar performance. Messages for the low implementation have an average size of

1061.2 Bytes (see Table 6�1). This is because the majority of the messages sent are

requests to set destination. In contrast, the lower sizes of 873.08 Bytes and 875.48

Bytes for medium and high implementations respectively are attributed to the posi-

tion updates messages, which are smaller than �set destination� requests. This also
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Figure 6�2: Movement: Throughput for an increasing number of NPCs

explains why there is no signi�cant di�erence in size between the high and medium

implementations. Although the high implementation �set destination� messages in-

clude the value of the read position, the relatively low number of such messages

compared to position updates (which are the same size for both implementations)

does not increase the average message size.

CPU load. At the client-side, the CPU load �uctuates between 0.2% and

0.6% for all three implementations at any number of clients. This indicates that the

extra load required on clients to locally update positions for the low implementation

is not signi�cant or is matched by the higher number of updates to process by the two

other implementations. Please note that path �nding is not used in this experiment,

which can make local computations more expensive. At the server-side, the CPU

load reaches 14% at both the medium and high consistency, but only 10% at the
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low consistency implementation. This can be attributed to the higher number of

messages to process.

Persistence. We also run the experiments with added persistence support.

The low consistency implementation uses a distance-based approximation strat-

egy [34], while both the medium and high consistency implementations use an exact

strategy. This exact strategy means every position update results in a database

update which is around 15 updates/second. The low consistency implementation

only triggers 1.5 update/second with a bound of half the game screen. In other

words, position updates are sent to the local persistence database only when the

actual character position di�ers by more than half a game screen from the stored

position. Although the players are moving continuously, they are not necessarily

moving across long distances, which keeps the number of necessary updates for a

distance-based strategy rather small.

Summary. There is a large performance gap between low and the two other

implementations. The reduced number of updates both in the network and per-

sistence improves the scalability of the system. The additional client load remains

negligible.

6.3 Pickup/Drop Item

Since multiple objects are involved, distribution becomes a factor. We will

therefore test under a varying number of servers. Since picking and dropping are

limited by the number of pickable items in the game (in our case, there are 25

items in the game), throughput and rate of messages are not signi�cant metrics since

the rate of actions is bounded by game logic. Instead, we investigate the average
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execution time for pickup and drop actions. Since the implementations di�er in their

communication with masters, we expect to see a di�erence in performance. The

execution time is measured from the time the action is initiated at the client to the

time the action returns at the client. In other words, the execution time is from the

perspective of the client; the player cannot initiate any new actions while an action

is currently being executed.

The NPCs used are called �Random pick up and drop to the ground� NPCs.

These NPCs will move around randomly, similarly to the wanderer used above, until

they �nd an object. They will then have a 75% chance to move to the object to

pick it up (or a 25% chance to ignore it and continue moving). Once they have an

object, they have a 75% chance to drop it on the ground (or a 25% chance to continue

moving). We are using the low consistency version of movement.

Execution time. Experiments show that the execution time stays stable for

an increasing number of players in the system for both implementations. Even though

the number of concurrent requests increases, any request that fails to acquire a lock

on an object is immediately rejected instead of waiting. Figure 6�3 compares the

message delay for the low and medium implementations of pickup and drop using

a single (1) server and a four (4) servers setup. The four servers setup uses static

partitioning of the world, meaning the world is divided into four rectangular cells,

each server being responsible for the masters of their cell. A master is migrated

from one server to another whenever its object's position crosses to a di�erent cell.

Persistence is not included for now as it will be dealt with separately.

97



Figure 6�3: Pickup/Drop: Average execution time

RPC (Remote Procedure Call) refers to the time spent executing a remote pro-

cedure call and receiving a reply. This measures the time from the moment the

request is sent to the moment a reply is received. In the low consistency versions of

pickup and drop, the actions send and wait for one RPC call. Since master atomicity

is not guaranteed, these actions do not wait for con�rmation from the player; as soon

as the item con�rms that the action is possible to the client, the action is considered

complete. For the medium consistency versions, the actions send and wait for two

RPC calls. To preserve master atomicity, the client needs con�rmation from both

objects before sending out commit requests. Therefore, it must wait for the replies

of two masters. The �gure shows that waiting for RPC replies constitutes a large

part of the execution time. Implementations at the medium consistency level have
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longer execution times than their low level counterparts due to the increased RPC

reply waits.

Figure 6�3 also shows that the performance of pickup and drop actions are

almost identical in the single server scenario, which corroborates with the fact that

both actions are very similar. However, in the distributed case, the drop action

is much longer than the pickup action. This is due to actions being executed on

objects while they are being migrated between servers. These actions su�er a heavy

penalty since they have to wait for the migration to be completed before proceeding.

In our setup, when a player moves to the cell of a di�erent server, not only is the

player migrated, but so do all the items the player is currently carrying. Therefore,

since pickup involves an item which was already on the ground (and thus cannot be

migrating), the only way the action can su�er the migration penalty is if the player is

currently moving. For drop, since the action can involve items the player is carrying

and can thus be migrating, it is more likely to incur the additional delay.

In our tests, approximately 1% of the pickup actions measured in the four servers

case had an average execution time of 2000ms, while the rest were similar to the single

server case (∼50ms for low, ∼100ms for medium). In contrast, approximately 9.2%

of the drop actions measured in the four servers case had an average execution time

of 2000ms, while the rest were around the single server average. This suggests that

the more migrating objects an action involves, the longer its execution time.

CPU load. The choice of action implementation has no noticeable e�ect on

the CPU load both at the server(s) and clients. The NPC CPU load is on average
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0.72%, regardless of the implementation used or distribution. The server CPU load

average is 3.9% for the single server case, and 1.8% for the distributed case.

Message size. The average message size for both actions combined is very

similar across implementations, with 1015 Bytes for medium and 1000 Bytes to low.

The additional size is attributed to the master read values passed for verifying the

weight restriction.

Persistence. We also tested the same implementations with persistence sup-

port under the same condition. We want to determine whether persistence will add

any overhead to the medium consistency actions. Low consistency actions are not af-

fected by persistence since no additional data is required; only an persistence replica

for each master is needed. With regards to server CPU load, there is an increase of

0.5%. The average message size for medium consistency pickup and drop increases to

1073 Bytes to take into account the action data. No signi�cant change in execution

time is perceived, since the persistence layer is only contacted asynchronously along

with other replicas.

Summary. The di�erence of performance between low and medium consis-

tency is perceivable in the form of longer execution times and is largely in part due

to the additional number of master replies required. The drop action is also a�ected

in the distributed case by migrating objects, although this issue is speci�c to our

testing environment. Persistence adds no signi�cant overhead to the system.

6.4 Activate Item

Activate Item is tested under the same conditions as pickup and drop actions.

The same NPCs are used to generate the volume of actions. Experiments are ran on
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a single server and then on four servers with migration as before. The same metrics

used for pickup and drop are used here. Namely, the execution time is the most

signi�cant due to the varying number of master replies between implementations.

We �rst test without persistence, which will be considered later.

Impacts of high consistency. The impact of high consistency relative to

medium consistency is minimal. The message size increase is not noticeable, since

it only contains one additional Boolean attribute. It has no perceivable e�ect on

execution time or CPU load. It will therefore not be included in the rest of this

analysis since its performance is almost identical to the medium implementation.

Execution time. In our implementations, the high consistency action sends a

sub-action to all players within the interest range of the player initiating the action.

In the low consistency version, the player locally checks the position of all character

replicas it currently has and sends a sub-action only to eligible players. Therefore,

the number of RPC request messages sent is variable and depends on the number of

players being contacted.

Figure 6�4 shows the average execution time for the low and medium imple-

mentations on a single server per increasing number of players involved. A player

is considered involved in the action if a RPC message has been sent to the player.

Because the medium implementation waits for replies from each RPC message, the

execution time clearly increases with the number of players. The low implementation

can also send a large number of RPC messages, but it does not wait for replies for

any of them. Thus, its execution time stays stable.
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Figure 6�4: Activate Item: Average execution time for an increasing number of
players involved

Figure 6�5: Activate Item: Average execution time for the low consistency imple-
mentation
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Figure 6�6: Activate Item: Average execution time for the medium consistency
implementation

The e�ect of distribution for each implementation is assessed. Figure 6�5 com-

pares the average execution time for the low consistency implementation between the

single server and the four servers setup. The delay incurred by accessing migrating

objects has an impact on the distributed case. Since players can migrate at any time

by moving between the cells of di�erent servers, an action which involves a greater

number of players has a greater chance of encountering migrating objects. Therefore

the execution time increases with the number of players involved. Notice also that

the migrating penalty is applied even if the low consistency implementation does not

wait for RPC return messages. This suggests that the delay occurs at the time of

sending the RPC request.
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The same analysis is now performed for the medium consistency implementa-

tion. Figure 6�6 compares the average execution time for the medium consistency

implementation between the single server and the four servers setup. The penalty

for migrating objects is still present in the distributed case, but its impact is rela-

tively less than for the low consistency implementation. This is because the medium

implementation is already quite expensive, so the penalty does not skew the results

as much.

CPU load. The CPU load at the client is on average 1.14% regardless of

the implementation or the server setup. At the server(s), the load is 6.86% for a

single server, with no signi�cant di�erences between the implementations. In the

distributed case, the CPU load is lowered to 4% since each server has less objects to

manage.

Messages size. The message size for all of the implementations are similar,

being on average 1023 Bytes. Both the low and medium implementations send

exactly the same RPC requests to the character masters.

Persistence. The overhead for persistence support has been measured. In

terms of CPU load and execution time, there are no signi�cant di�erences. The

message size for the medium consistency implementation increases to 1083 Bytes to

accommodate the action data.

Summary. Due to the variable e�ect of the action, the execution time depends

on the number of players involved in the action. The medium consistency action is

much longer and less scalable than the low consistency one. However, the impact of

migration is relatively lessened on the medium consistency implementation relative
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to low consistency. Furthermore, the overhead introduced by high consistence has

very little impact on performance. As for persistence, its impact is mostly based on

the increase of message size.

6.5 Results Analysis

The results support the discussion presented in Section 5.2 concerning the choice

of suitable consistence category for each action. The speci�c properties of each action

really de�ne what consistency level is required.

For actions with a large volume, such as movement, limiting the message rate is

crucial for scalability. Thus, this makes dead reckoning, a low consistency mechanism,

particularly suitable for movement as it eliminates the need to send position updates

to replicas.

For actions involving multiple objects, the execution time is important because

it represents the client's perceived delay after initiating an action. This execution

time mostly consists of delays waiting for replies for RPC requests sent to mas-

ters. Therefore, performance can be improved when we reduce the number of replies

needed from masters. In other words, actions are shorter when they have fewer mes-

sage rounds. However, medium or higher consistency models increase the number of

message rounds to ensure master atomicity and provide master reads. Therefore, it

becomes a direct trade-o� between consistency and performance.

For the pickup/drop actions, since the number of objects involved is low, a

medium consistency implementation is adequate since the number of message rounds

is small. However, an action like activate item which has an Area of E�ect can involve

a larger number of objects, for which it is not acceptable to lock each of them for an
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extended period of time. It must therefore be implemented at the low consistency

level.

In general, the overhead of high consistency is minimal in the actions we have

implemented. This does depend on the nature of the critical attributes, as their

predicate evaluation and size can have an impact on the overall performance of the

action. The decision between medium and high consistency thus depends more on

the semantics of the action rather than performance considerations.

Persistence does not have any impact on execution time, since the core of the

work is done asynchronously after the action has committed. The client therefore

does not perceive any e�ect from persistence. It does however increase the size of the

messages, which must now carry the action information necessary when replaying.
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CHAPTER 7
Conclusion

Good action designs are important for the scalability and consistency of mas-

sively multiplayer games, since actions are the primary mean of interaction for play-

ers. The consistency categories presented in this thesis are integrated in the action

development process. Each category provides a set of consistency guarantees which is

relevant for MMOG semantics. Actions have been designed by following the models

o�ered by these consistency categories and implemented in the Mammoth framework.

The results have shown the major performance considerations each consistency cat-

egory entails.

We analyzed in detail the execution model and architecture found in current

MMOGs. This analysis treats MMOGs as a data management application, where

concepts in database transactions can be applied to actions. We have also shown

that generic solutions cannot fully accommodate for some of the most speci�c aspects

of MMOGs. Namely, the replication architecture uses lazy update propagation and

induces stale replica reads. Players can make client reads which in�uence their

decision to take an action. Distribution of the game state introduces the issue of

uniform master reads, where masters of objects cannot locally access the master state

of objects residing in other servers. All of these challenges can cause inconsistencies

in the game state which cannot be dealt with e�ciently with a standard transactional

model.
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We presented �ve consistency categories which cater to the requirements of

a variety of actions. For each category, we detailed the consistency guarantees it

provides, examples of actions it is suited for, and a coordination protocol optimized

for scalability and e�ciency. We also show how each category can handle or is limited

by distribution and client reads.

Persistence support is integrated to the consistency categories presented. The

persistence architecture monitors the game state via Master/Proxy replication. De-

pending on the consistency category used by an action, the persistence storage pro-

tocol di�ers to provide the same level of consistency the action has during normal

execution. This protocol takes into account game server failures, where masters of

failed sites need to be rebuilt from the persistence layer. Furthermore, these new

masters need to be consistent with the rest of the game state.

Finally, an action development process model is proposed to demonstrate the

use of the consistency categories when designing and implementing actions. Three

actions with varying properties and complexity have been implemented in the Mam-

moth framework. For each action, we described their use and importance, high-

lighting the fact that they will provide a reference point for future action designs.

The requirements of each action is listed and the choice of the proper consistency

category to apply is justi�ed. Multiple implementations for each action following dif-

ferent consistency categories are revealed. In particular, actions with a large volume

rate need to be optimized to reduce the message throughput, making them suitable

for lower consistency categories. For actions involving multiple objects, performance

mostly depends on the number of message rounds the action contains. There is
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therefore a direct trade-o� before performance and consistency. While it may be

acceptable for an action using a low number of objects such as Drop and Pickup to

use medium consistency, actions involving a large number of objects such as Activate

Item with an Area of E�ect are too expensive and must stay at the lower levels. In

the end, the acceptability of the performance of each implementation depends on the

requirements imposed by the game developer.

7.1 Future Work

Our work o�ers a concrete set of transactional models which can be used by

game developers to design actions. The more novel aspects of MMOGs described

in this thesis are subject to additional research. Persistence can be further explored

as well to consider expanded fault scenarios. Here are some of the future work that

could stem from our research:

Determining the client read set. One of the biggest challenges left unan-

swered in this thesis is determining the client read set. Finding the client read set

prevents the player from making unintended decisions based on stale reads. One

possibility is to investigate the thinking process of the AI of NPC characters. It is

plausible that reads performed by an NPC are the same reads a human player would

perform prior to making an action. Another possibility is to look at the interaction

between the human player and its client's interface. Observing patterns in the be-

havior of players can allow us to infer the client reads being made. Finally, a �exible

query language would allow the developers (or even the players) to specify a read set

dynamically generated based on the context of the action.
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Reconciling high consistency actions. High consistency actions function

on the principle that it is more bene�cial for the player to have its action rejected

due to stale critical attribute reads rather than execute with an unintended outcome.

In some situations however, both possibilities are not acceptable for the player. For

instance, this can occur in a time-sensitive situation where the e�ort and time lost

due to a rejected action denies the player other opportunities. In these situations, it

may be possible to intelligently adapt the player's action, which was based on stale

reads, to be suitable for the actual state of the game rather than rejecting it outright.

Action adaptivity based on performance. A �rst idea is to adapt based

on the current load on the system. Actions can lower or raise consistency depending

on the performance currently achievable. Some additional precautions must be taken

during the transition between consistency levels. In particular, replicas will probably

have to be resynchronized with the master when the consistency level is being raised.

Furthermore, any low consistency action with a parametrized approximation update

propagation can be adjusted dynamically. For instance, if player movement sends

only a fraction of the position updates to the replicas, this fraction can be adjusted

in-game. The same idea can be applied for persistence.

Action adaptivity based on context. The consistency requirements for

an action can depend on the context of the action while it is being executed. For

instance, pickup item could be normally considered as a medium consistency action,

but when it is initiated to pickup a very important item, the action must be made

exact instead. Developers could manually support this by developing multiple pickup

actions using di�erent consistency categories and specifying which action is used for
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speci�c situations. However, developing an intelligent mechanism for evaluating the

importance of a speci�c action instance would be more practical to use.

Extended fault-tolerance for persistence. The persistence model pre-

sented in the thesis does not consider failure cases in the persistence engine itself.

Furthermore, faults such as late messaging must be considered as well. For instance,

a local persistence server sends medium and high consistency action data late to the

central server. If another local persistence server requests missing actions from the

central server before it receives the data from the other server, the central persistence

server will not be able to send all missing actions to the requesting server. We assume

right now that the failure detection process of the game allows su�cient time for all

actions involving objects on the failed server to be received by the central persistence

server.
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