
Assisting Vehicles Automated Locomotion via

ML-Aided Edge-Twin Paradigm

Tianzi Yang

Department of Computer Science

McGill University

Montréal, Québec, Canada

August 15, 2023

A thesis presented for the degree of Masters of Computer Science

©2023 Author

i

Abstract

In response to escalating traffic demands, the innovative centralized Edge Twin (ET)

paradigm offers a significant shift from traditional traffic management systems. This

research explores the ET’s capacity for real-time cooperative driving decisions and

advanced traffic oversight from an external perspective. By developing a novel graph-based

data architecture specifically designed for our scheduling platform, we’ve broadened the

scope of the ET model to encompass a variety of traffic scenarios, including highways and

non-signalized intersections. Using the computational power of edge servers and a vast

traffic data repository, our focus is on understanding unique traffic patterns to improve

decision-making and traffic flow. For non-signalized intersections, we introduce a

groundbreaking Machine Learning (ML)-aided priority policy that accounts for immediate

and anticipated traffic conditions, significantly boosting traffic efficiency. On the highway

front, our model’s core lies in data analytics. We construct a step-by-step predictive model

that anticipates the behavior of non-connected, traditional human-driven vehicles. This

model is crucial for encouraging cooperative driving between Connected and Autonomous

Abstract ii

Vehicles (CAVs) and their non-connected vehicles. Lastly, validation through the CARLA

simulator underscores these advancements, revealing up to 16% enhancement in traffic flow

on congested highways compared to conventional methods and up to 8.5% improvement at

non-signalized intersections relative to prior research.

iii

Abrégé

En réponse à l’escalade des exigences de trafic, le modèle innovant Centralized Edge Twin

(ET) propose un changement significatif par rapport aux systèmes traditionnels de gestion

du trafic. Cette recherche explore la capacité de l’ET à prendre des décisions de conduite

coopérative en temps réel et à exercer une supervision avancée du trafic depuis une

perspective externe. En développant une architecture de données basée sur des graphes

spécialement conçue pour notre plateforme de planification, nous avons élargi la portée du

modèle ET pour englober une variété de scénarios de trafic, y compris les autoroutes et les

intersections non signalisées. En utilisant la puissance de calcul des serveurs Edge et un

vaste répertoire de données sur le trafic, notre objectif est de comprendre les modèles de

trafic uniques pour améliorer la prise de décision et le flux de trafic. Pour les intersections

non signalisées, nous introduisons une politique de priorité assistée par Machine Learning

(ML) révolutionnaire qui prend en compte les conditions de trafic immédiates et anticipées,

augmentant significativement l’efficacité du trafic. Sur le front des autoroutes, le cœur de

notre modèle réside dans l’analyse de données. Nous construisons un modèle prédictif

Abrégé iv

étape par étape qui anticipe le comportement des véhicules traditionnels non connectés. Ce

modèle est crucial pour encourager la conduite coopérative entre les Véhicules Connectés et

Autonomes (CAVs) et leurs homologues non connectés. Enfin, la validation à travers le

simulateur CARLA souligne ces avancées, révélant jusqu’à 16 % d’amélioration du flux de

trafic sur les autoroutes congestionnées par rapport aux méthodes conventionnelles et

jusqu’à 8,5 % d’amélioration aux intersections non signalisées par rapport aux recherches

précédentes.

v

Acknowledgements

As I reflect on the journey of crafting this dissertation, I am deeply grateful for the extensive

support and assistance I’ve received. My foremost gratitude goes to my supervisor, Professor

Muthucumaru Maheswaran. His expertise was invaluable in shaping the research questions

and methodology. His insightful feedback was pivotal in refining my thought process and

elevating the quality of my work.

I am also thankful for the collaboration and encouragement from my colleagues and

friends. In particular, I want to highlight the sincere and supportive contributions of Ibrahim

Sorkhoh and Xiru Zhu, whose suggestions and help were invaluable.

Moreover, a special thanks goes to my parents. Their wise advice and empathetic support

have been a constant source of strength and comfort. Their presence has been an anchor

through this academic voyage.

vi

Contents

1 Introduction 1

1.1 Thesis contributions . 3

1.1.1 Thesis organization . 4

2 Background 6

2.1 Edge computing based cooperative traffic scheduling 6

2.1.1 Reservation-based scheduling algorithm 7

2.2 Future traffic predictors . 10

2.2.1 Traffic flow prediction . 10

2.2.2 Vehicle motion prediction . 15

3 System architecture 18

3.1 Time-based topology graph(TG) . 20

3.2 System workflow . 26

Contents vii

4 Path planning 28

4.1 Time-based search algorithm . 28

4.2 Priority-based planning strategy . 31

5 Future traffic prediction 35

5.1 Traffic flow predictors for non-signalized intersection 35

5.2 Intention and motion prediction for highway 37

5.2.1 Destination predictor . 38

5.2.2 Location predictor for non-connected vehicles 40

6 Simulation 43

6.1 The CARLA environment . 43

6.2 PID based vehicle . 44

6.3 Non-signalized intersection experiment . 45

6.4 Highway experiment with blockage . 46

6.5 Experiment set-up in CARLA simulator . 47

7 Results 50

7.0.1 Results on high-way . 51

7.0.2 Results on non-signalized intersection 53

8 Related works 61

viii

9 Conclusion and future work 65

ix

List of Figures

3.1 Abstract graph of ET paradigm . 18

3.2 At a sample two-lane highway TG, the red squares ranging from A1 to A5

and B1 to B5 represent traditional grid boxes. In contrast, the green nodes

and edges from N1 to N5 and M1 to M5 showcase our TG approach. 23

3.3 System workflow . 27

5.1 Traffic flow prediction model for non-signalized intersection 36

5.2 Destination prediction model for highway . 38

5.3 Location predictor for highway . 40

5.4 A representative sub-graphs SGi:i+9 as the graph attention network input . . 41

6.1 Non-signalized intersection at Map03 . 45

6.2 Non-signalized intersection at Map03 . 47

x

6.3 This image depicts a connected vehicle navigating through a non-signalized

intersection. The red geometrical figures demarcate the vehicle’s space

estimated by our system, whereas the green lines delineate the area

specifically reserved for it. 49

7.1 Arrive ratio for different magnitudes of traffic flows at highway 51

7.2 Average traveling time for different magnitudes of traffic flows at highway . . 52

7.3 Arrive ratio for different magnitudes of traffic flows at blocked highway . . . 53

7.4 Average travelling time for different magnitudes of traffic flows at blocked

highway . 54

7.5 Traffic ratio for different strategies at non-signalized intersection 55

7.6 Average travelling time for different strategies at non-signalized intersection . 56

7.7 Arrive ratio for different magnitudes of traffic flows at non-signalized intersection 57

7.8 Average travelling time for different magnitudes of traffic flows at

non-signalized intersection . 58

7.9 Arrive ratio for varying proportion of human-driven vehicles at non-signalized

intersection . 59

7.10 Average travelling time for varying proportion of human-driven vehicles at

non-signalized intersection . 60

xi

List of Tables

5.1 Categorical and numerical features for destination prediction 39

5.2 Categorical and numerical features for location estimation 42

5.3 Settings for data pre-processing & training & Results 42

6.1 Settings for CARLA simulator . 48

1

Chapter 1

Introduction

Recent advancements in the realm of autonomous driving have been significant, attributed

largely to the substantial improvements in artificial intelligence, wireless communication

and computing technologies. Pioneers in the industry, like Tesla and Google, along with

academic researchers, have significantly advanced the essential technologies such as

computer vision, networking, signal processing and machine learning within this field [1].

These technological breakthroughs promise to deliver safer, more friendly, and efficient

automated vehicles. Such advancement should help tackling tangible problems including

traffic congestion, energy consumption and car accidents. However, a critical hurdle

remains unresolved: autonomous vehicles must coexist with traditional, human-driven

vehicles on public roads for a considerable time before a full transition to autonomous

driving is feasible.

1. Introduction 2

The coexistence of fully-automated, semi-automated and human-driven cars increases the

failure risk, mainly because human-driven vehicles lack effective communication methods and

a plausible response time. To mitigate the consequences of such coexistence, Edge Computing

(EC) can provide a suite of solutions that assist the three kinds of cars to cooperatively

accomplish on-the-road tasks safely and effectively. An EC agent can orchestrates the real-

time cars interaction by providing a broader perspective for the vehicles and a long-term

sequence of decisions that will make the car-to-car interplay more agile and robust.

Our research introduces a centralized Edge Twin (ET) which replicates real-world

traffic scenarios within roadside edge servers. Our ET agent is equipped with ML

predictors and path planning procedures, enabling it to simulate future traffic. By

leveraging these simulations, the ET framework aims to provide real-time cooperative

driving decisions, enhanced data processing, and advanced traffic surveillance. In earlier

works, digital twin technology has shown significant potential in improving intelligent

traffic management and Connected and Automated Vehicle (CAV) research, as supported

by various studies such as those by Kumar (2018) and Deren (2021).

To develop this centralized ET paradigm, we propose a novel integrated data platform

called Topology Graph (TG), for aggregating diverse traffic data. This platform encompasses

road configurations and real-time vehicle movements and is tailored for diverse environments

including non-signalized intersections and highways. our ET agent also leverages external

sensors to provide perspectives distinct from in-car sensors, often yielding higher clarity.

1. Introduction 3

This is particularly effective when integrated with AI-enhanced traffic cameras, as noted by

Muthu [2]. These edge computing tools continuously monitor drivers and pedestrians, thus

enriching the traffic data available for ET.

For future traffic simulation, we focus on two fronts. For human-driven vehicles, we

employ ML predictors to anticipate driver intentions and project future vehicle locations

within TG, capitalizing on the data amassed from external sensors. Conversely, for

autonomous vehicles, we utilize reservation-based path planning procedures, which leverage

TG to navigate free space and prevent collisions.

In our study, we assess the performance of a centralized ET paradigm in scenarios such

as a non-signalized intersection and a highway, utilizing the CARLA simulator [3] for our

assessment. We demonstrate that this system can improve the traffic flow at non-signalized

intersections and foster cooperative driving among CAVs and human-driven vehicles on

highways.

1.1 Thesis contributions

The main contribution of this work is the following:

• We introduce the Topology Map, denoted as TG, a graph-based data structure tailored

for our scheduling platform. Drawing from unique geographical features and diverse

traffic regulations, the TG offers adaptability across multiple traffic environments.

1. Introduction 4

• We propose an ML-based policy that enhances traffic flow efficiency at a

non-signalized intersection by analyzing historical traffic data patterns on each entry

lane. With the predictive insights gained, we have devised a sophisticated priority

strategy for vehicle scheduling. This approach strategically prioritizes vehicles by

carefully evaluating their immediate and future traffic impact. Our evaluations

underscore its superior performance, particularly at non-signalized intersections,

accommodating both symmetrical and asymmetrical traffic flows. The simulation was

conducted through the CARLA simulator.

• We provide a novel prediction model combined with TG to assist cooperative driving

on highways by facilitating interaction between CAVs and conventional human-driven

vehicles. By utilizing a sophisticated step-by-step prediction model, we can anticipate

the positions of human-driven vehicles and integrate them into the TG. Then,

employing a time-based path-searching algorithm, we efficiently allocate space for

CAVs. Our approach markedly surpasses conventional traffic management methods in

improving traffic efficiency. We conducted the experiment through the CARLA

simulator.

1.1.1 Thesis organization

Chapter 2 provides background information on edge computing-based cooperative traffic

scheduling and future traffic predictions. Chapter 3 introduces the overall architecture of the

1. Introduction 5

Edge-Twin(ET) paradigm. Chapter 4 introduces the essential module in the ET paradigm,

the path planning procedure, and the priority policy. Chapter 5 covers the fundamental

architectures of deep-learning models we used and how they have been trained. Chapter 6

discusses how to implement the entire ET paradigm inside the CARLA simulator. Chapter

7 presented simulated experimental results at non-signalized intersections and highways.

Chapter 8 presents related research of edge computing on traffic scheduling at non-signalized

intersections and highways. Chapter 9 concludes the thesis with a discussion of future

research for extending the presented work.

6

Chapter 2

Background

2.1 Edge computing based cooperative traffic

scheduling

In modern traffic management, a centralized traffic scheduling system is enhanced by

leveraging edge computing capabilities, particularly through Vehicle-to-Everything (V2X)

communication. Typically, such systems operate on a reservation-driven mechanism.

Within this framework, vehicles dynamically communicate their intent to traverse a specific

region at particular times using V2X. The edge devices, placed strategically near

intersections or critical regions, quickly process these requests due to their proximity and

computational power. A central authority, aided by these edge devices or functioning as an

overarching management system, evaluates and prioritizes these requests. This

2. Background 7

orchestration of movement schedules, powered by the swift processing capabilities of edge

computing, ensures that safety and throughput are optimized.

2.1.1 Reservation-based scheduling algorithm

Ensuring collision-free movement is paramount for traffic scheduling, particularly within

networks of autonomous vehicles. This can be achieved through the following four

components:

1. Vehicles as Agents: Treat each vehicle as an agent with a distinct start and end

point. In our research, this includes both CAVs and non-connected human-driven

vehicles.

2. Road Network as Grid: Consider the road network as a grid, with waypoints as

nodes. The Grid Box method divides an area into a grid of smaller boxes or cells.

Each box represents a portion of the intersection that a vehicle might occupy at any

given moment. In essence, the region becomes a two-dimensional grid, where each cell

or box has unique coordinates.

3. Time Expansion: Integrate time into the grid box above, transforming it into a

space-time grid.

4. Avoiding Collisions: Ensure that no two vehicles occupy the same node at the same

time in the space-time grid.

2. Background 8

The A* algorithm is a widely used pathfinding and graph traversal method known for

its efficiency and accuracy [4]. It combines features of the best-first search and Dijkstra’s

algorithm, prioritizing nodes based on a cost function that includes both the distance from

the start node and an estimated distance to the goal. This heuristic approach allows A*

to efficiently find the shortest path in various settings, from game development to robotics.

However, when traditional A* search is applied to determine routes for multiple connected

agents, it often overlooks the intentions of other vehicles, treating them as static obstructions.

This limitation emerges because A* focuses on finding a single optimal path from a start

point to an endpoint without considering dynamic interactions between multiple agents.

Consequently, when a collision occurs (i.e., the computed minimal distance between any two

agents falls below the safety margin), it necessitates a rerun of the path calculation. In

situations with a high number of units or limited roadway space, the algorithm may enter

a repetitive cycle of collisions and subsequent recalculations, highlighting the need for an

enhanced or alternative approach for cooperative pathfinding in complex environments.

The Cooperative Path Search algorithm as shown in Algorithm 1, provides an elegant

solution to multi-agent pathfinding problems [5]. Its primary objective is to identify paths

for multiple agents, ensuring they reach their destinations without colliding with one

another. The relevance of this algorithm becomes evident in vehicle scheduling, where

ensuring non-colliding paths for vehicles is paramount. It addresses this issue by

decoupling path computations into a series of path searches and sharing the units’

2. Background 9

intentions by storing computed paths in a reservation table.
Algorithm 1: Cooperative path search for vehicle scheduling [5]

Input: V ehicles, RoadNetwork

1 SpaceT imeGrid← InitializeSpaceTime(RoadNetwork)

2 Paths← EmptyList()

3 foreach vehicle in V ehicles do

4 start← vehicle.startPosition

5 goal← vehicle.endPosition

6 path← FindPath(start, goal, SpaceT imeGrid)

7 if path is not null then

8 Paths.append(path)

9 UpdateSpaceTimeGrid(SpaceT imeGrid, path)

10 else

11 return No valid path found for a vehicle

12 return Paths

In conclusion, by adapting the Cooperative Path Search algorithm, we can achieve

efficient vehicle scheduling that guarantees non-colliding paths for vehicles, ensuring safer

and smoother vehicular movement.

2. Background 10

2.2 Future traffic predictors

Traffic predictions have always been pivotal for traffic management. With advancements

in computational power and data acquisition, traffic predictions have evolved significantly.

They now range from predicting broader traffic flows in urban environments to the precise

motion of individual vehicles.

2.2.1 Traffic flow prediction

Traffic flow prediction involves forecasting the quantity and movement patterns of vehicles

in a given area or along a particular route. Traditional methods, such as time series analysis

(e.g., ARIMA), have been employed for years to model and predict traffic flows. However,

such models have been restricted to linearity assumption, stationary requirement on data

statistical properties, and accurate only on short-term forecasting.

With the surge in available traffic data and the power of neural networks, deep learning

has made its mark on traffic flow prediction. Long Short-Term Memory (LSTM) networks, a

type of recurrent neural network, are particularly apt for sequence prediction tasks. LSTM

consists of a cell state and three gates: Forget Gate, Input Gate, and Output Gate. These

gates control the flow of information into, within, and out of the cell. For a given input xt

at time t and the previous LSTM state ht−1:

2. Background 11

1. Forget Gate:

ft = σ(Wf · [ht−1, xt] + bf)

This gate decides which information from the cell state should be thrown away or kept.

It outputs a number between 0 (completely forget) and 1 (completely remember).

2. Input Gate:

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

The input gate updates the cell state. It first decides which values will be updated

using it. Then, a tanh layer creates a vector of new candidate values.

3. Update of Cell State:

Ct = ft × Ct−1 + it × C̃t

The previous state Ct−1 is updated to the new cell state Ct. It’s a combination of

the old state (as controlled by the forget gate) and the newly proposed state from the

input gate.

4. Output Gate:

ot = σ(Wo · [ht−1, xt] + bo)

2. Background 12

ht = ot × tanh(Ct)

It decides what information from the cell state is sent as output.

Where:

• σ is the sigmoid function.

• W and b are the weights and biases for each gate, respectively.

• [ht−1, xt] denotes the concatenation of ht−1 and xt.

LSTMs are designed to recognize patterns over time intervals and are intrinsically suited

for sequence patterns for the following reasons:

1. Cell State: The cell state acts as a ”memory” of the LSTM, storing relevant historical

information. The controlled addition or removal of information through gates allows

LSTMs to keep long-term dependencies.

2. Gating Mechanism: The gates (specifically the forget and input gates) control when

information is ”remembered” or ”forgotten.” This means LSTMs can learn to recognize

patterns over varying time intervals.

3. Vanishing Gradient Problem: Traditional RNNs suffer from the vanishing (or

exploding) gradient problem, making them forget long-term dependencies. LSTMs,

due to their architecture, can mitigate this problem. The cell state’s design, with

2. Background 13

multiplicative gate values, ensures that the gradient can pass through many time steps

without vanishing or exploding as quickly as in basic RNNs.

In conclusion, LSTMs are adept at recognizing and ’remembering’ temporal patterns in

sequences, a capability that proves particularly valuable in traffic prediction tasks involving

long-term dependencies. To enhance this ability, the attention mechanism is often

integrated with LSTM-based models. This mechanism, initially introduced by Vaswani et

al. [6], fundamentally alters the way in which the model processes input sequences. Unlike

traditional LSTM models that treat all parts of the input sequence equally, an

attention-augmented LSTM can ’focus’ on specific segments of the input more intensely at

different stages of processing. This is achieved by assigning varying attention weights to

different elements of the input sequence.

These attention weights play a crucial role in determining the influence of each input

element on the output at any given time. Essentially, the model learns to pay more ’attention’

to certain parts of the input that are more relevant for making predictions. The computation

of attention weights is typically a multi-step process: it involves scoring each input element

based on its importance to the current output context, normalizing these scores to form

a probability distribution (using functions like softmax), and then applying these weights

to create a weighted combination of the input features. This mechanism allows the LSTM

to dynamically adjust its focus on different parts of the input sequence throughout the

prediction process, leading to improved handling of long sequences and complex patterns.

2. Background 14

In conclusion, LSTMs are designed to both recognize and ”remember” temporal patterns

in sequences, making them especially powerful for traffic prediction tasks with long-term

dependencies.

In addition, the attention mechanism was introduced to help the LSTM-based model learn

better on long sequences. It provides a way for the model to ”focus” on different parts of the

input sequence dynamically while producing an output. Given an input sequence, attention

allows the model to assign different attention weights to each input element. These weights

dictate how much focus the model should give to each input while generating the output.

Mathematically, the attention weights are often computed using the following steps:

1. Calculate the alignment scores between the current decoder state (in seq2seq models)

or the current state in attention-based LSTMs and each encoder state.

et = align(ht, hs)

where ht is the current state and hs are all the states in the sequence.

2. Compute the attention weights using a softmax:

αt = softmax(et)

2. Background 15

3. The context vector is computed as a weighted sum of the input states:

ct =
∑
s

αt,s · hs

This context vector ct is then used along with the original state ht to make decisions. In

an attention-based LSTM, instead of just using the LSTM’s hidden state for decisions, the

context vector (from the attention mechanism) is also used. This allows the LSTM to focus

on different parts of the input sequence based on the attention weights, effectively giving

it a dynamic view of the input data. In essence, the attention mechanism augments the

capabilities of LSTMs, enabling them to handle longer sequences and providing a form of

interpretability to their predictions.

2.2.2 Vehicle motion prediction

Vehicle motion prediction plays a pivotal role in a centralized scheduling system, helping the

system anticipate the behavior of entities and make plans accordingly. Historically, vehicle

motion prediction relied on mathematical models based on physics and kinematics. One

most common models is the Constant Velocity Model (CVM) with the following formula:

xt+1 = xt + vt∆t

2. Background 16

where xt is the position at time t and vt is the velocity and it assumes that the vehicle

maintains a constant velocity. Leveraging its computational efficiency, we will employ the

CVM to estimate the positions of connected vehicles as they traverse a specified path.

Despite their real-time prediction advantages, these models often falter in dynamic

environments, lacking adaptability in complex traffic scenarios. Sequence-to-sequence

models heralded a paradigm shift in vehicle motion prediction. Leveraging deep learning

architectures, especially attention-based LSTM mentioned above, they can recognize

temporal patterns in data sequences. By treating past trajectories as input sequences and

predicting future trajectories as output sequences, the encoder encapsulates the context,

while the decoder projects the future path. Yet, even with their adaptability, Seq2Seq

models can sometimes overlook intricate interactions between vehicles in dense traffic.

Building upon the foundations set by prior methods, Graph Neural Networks (GNNs)

offer a more nuanced approach. They envisage a traffic scene as a graph: nodes symbolize

vehicles, and edges denote spatial inter-relationships and interactions.

The core idea behind GNNs can be distilled into iterative node updates based on their

neighbors, which allows the model to capture intricate traffic scene dynamics.

Mathematically, the GNN update rule is often formulated as:

h(l+1)
v = σ

(
W · AGGREGATE(l)

(
{h(l)

u ,∀u ∈ Neighbors(v)}
))

2. Background 17

Where:

• h(l)
v is the feature vector of node v at layer l.

• σ represents a non-linear activation function.

• W is a weight matrix.

• AGGREGATE is an aggregation function, like mean, sum, or max, that compiles

information from neighboring nodes.

In our study, we utilize a Graph Neural Network (GNN) to serve as an input encoder,

which captures the spatial relationships between vehicles. This encoded information is then

fed into an attention-based LSTM, allowing us to accurately understand temporal

dependencies between sequential data points.

Lastly, we integrate the aforementioned model using a step-by-step prediction

methodology. Unlike Seq2Seq models that predict the entire future trajectory in one go,

the Step-by-Step prediction method, as the name suggests, forecasts one step at a time.

After predicting the immediate next step, the model uses this prediction as part of the

input for forecasting the subsequent step, and this process continues iteratively.

18

Chapter 3

System architecture

Figure 3.1: Abstract graph of ET paradigm

In this work, illustrated in Figure 3.1, we delve into two specific traffic scenarios. In both

scenarios, we assume the availability of Roadside Units (RSUs) and enhanced edge

computing capabilities. We operate under the premise that the edge server can efficiently

3. System architecture 19

handle real-time data aggregation and decision-making for its designated region,

subsequently communicating instructions to vehicles. As corroborated by Ebrahim et

al. [7], this setup excels in supporting cooperative driving, ensuring optimal Age of

Information (AoI). For our experimental procedures, we break down the scheduling into

individual time units, denoted by t ∈ T .

In the non-signalized intersection scenario, we assume all vehicles v ∈ V are connected,

periodically relaying their information (location (vl), speed (vs), driving intent (vi), and

surrounding information (ve)) to the local RSU. Autonomous vehicles natively interface

with the RSU through V2I, while we assume human-driven vehicles also have integrated

network systems, receiving our system’s guidance via onboard displays or smartphone apps

[8]. These vehicles can input the driver’s intended destination via an onboard interface,

allowing our system to provide tailored maneuvering instructions.

In contrast in the highway scenario, we do not assume all vehicles are connected to

the system. Instead, our system gleans their statuses via road surveillance, as shown in

Figure 3.1. The main challenge is predicting non-connected vehicles’ behaviors, such as

lane changing. We’ve integrated a highway merging into an intersection, prompting many

vehicles to seek lane change. An introduced obstruction, like an accident, further encourages

additional lane changes. Against this setting, we deploy two deep learning models: the first

forecasts non-connected vehicles’ ultimate lane choices using past traffic data, and the second

predicts their immediate movements based on the first model’s output.

3. System architecture 20

The edge server processes incoming data, updating the data platform with the current and

predicted statuses of all agents using ML models. It then identifies vehicles requiring path

planning and ranks them based on a given policy, which encompasses both registered vehicles

deviating from or lacking assigned paths and new requests. The server then sequentially plans

paths for these vehicles and dispatches decisions to them.

The primary goal of this system is to manage vehicle speeds effectively. This aspect

of speed management is crucial for two reasons. Firstly, by controlling speeds, we aim to

maximize the throughput of the intersection – that is, to increase the number of vehicles

passing through the intersection in a given time frame. Secondly, efficient speed management

minimizes the overall time vehicles spend at the intersection, thereby reducing congestion

and improving traffic flow. In high-traffic scenarios, particularly where intersections lack

signals, the challenge is to allocate the limited space resourcefully. Our system prioritizes

vehicles based on various factors, such as their arrival time at the intersection and urgency,

to optimize the flow and ensure safe, efficient travel for all road users. This approach not

only enhances traffic efficiency but also plays a significant role in reducing the likelihood of

conflicts at these intersections.

3.1 Time-based topology graph(TG)

Our foremost challenge is efficiently representing diverse traffic scenarios in a digital twin.

Previous studies [8–10] often adopted the grid box method, segmenting each lane into

3. System architecture 21

squares. Yet, these methods don’t account for lane changes; vehicles are presumed to strictly

follow their lanes, including at intersections. The TG method offers several advantages over

the grid box approach:

1. Rich Data Storage: Unlike the grid box method that primarily captures occupancy

status, the TG serves as a comprehensive data platform for the road’s Digital Twin.

Owing to its structure, it can house a wealth of real-world information. Each TGt

reflects the scene at time step t, with nodes representing real-world waypoints and

edges indicating possible movements. Specifically, edges within a lane indicate lane-

following, while those between lanes imply lane changes. Moreover, each TG edge

can encompass additional information such as geometric data, speed limits, driving

directions, and future reservations. This rich data infrastructure aids rapid data access

and processing in subsequent stages.

2. Efficiency in Machine Learning: When it comes to machine learning, particularly

with Graph Neural Network (GNN) based motion prediction, working with TG is more

streamlined. Given that GNNs inherently work with graph structures, utilizing data

from nodes in TGt and adjacent edge data as node features for input becomes seamless.

Additionally, we can easily formulate adjacency matrices based on distances between

connected nodes. There’s a notable efficiency in data conversion and pre-processing

when using TG compared to the grid box method.

3. System architecture 22

3. Balancing Accuracy and Computation: The grid box method struggles with a

trade-off between computational efficiency and the precision of the space

representation. Denser grids capture detailed events, like lane drifting, but demands

more computational power both for occupancy determination and subsequent

processing. On the other hand, coarser grids might oversimplify the occupied space,

leading to unnecessary blockages. As depicted in Figure 3.2, consider a vehicle

slightly deviating at A2. For grid box method, both A2 and B2 get occupied,

potentially causing unnecessary traffic impediments. However, the TG method

employs edges to signify traffic availability. When matched for equivalent node/grid

box count, TG is more precise. In the earlier example, only Node N2 and its

proximate edges, like N2-N3 and N1-M4, get occupied, preserving the M2 to M3

route for other vehicles.

3. System architecture 23

Figure 3.2: At a sample two-lane highway TG, the red squares ranging from A1 to A5 and
B1 to B5 represent traditional grid boxes. In contrast, the green nodes and edges from N1
to N5 and M1 to M5 showcase our TG approach.

Next, to accurately pinpoint a vehicle’s location on our TG, we adopt 2D Rotation

Transformations. These transformations help to derive the exact coordinates of the four

corners of the vehicle, providing a more precise representation of its presence on the TG.

For example, the front-left corner of the vehicle can be determined using:

x1 = x+ w

2 cos(θ)− h

2 sin(θ) (3.1)

y1 = y + w

2 sin(θ) + h

2 cos(θ) (3.2)

3. System architecture 24

Here, (x, y) stands for the center coordinates of the vehicle. The parameters w and h

denote the vehicle’s width and height, respectively, and θ is the vehicle’s yaw angle, or its

rotation relative to a reference direction.

After determining the four corner coordinates, the next step is to align our reference frame

with the vehicle’s orientation. This is done by rotating our coordinate system around the

vehicle’s center by the inverse of its yaw angle, −θ. With this adjusted frame of reference,

it becomes straightforward to determine which nodes and edges of the TG the vehicle’s

rectangle intersects with.

While this approach is adept at capturing the real-time location of any vehicle on the

TGt, projecting future positions introduces further complexity. For vehicles that strictly

follow their lanes, predicting the future center position is relatively simple and relies on

initial coordinates, speed, and a predictive model we’ll delve into subsequently.

Yet, predicting the yaw angle, θ, for lane-changing vehicles presents a tougher challenge.

A vehicle’s trajectory during a lane change can vary based on factors such as speed, vehicle

mass, steering input, and the state of the road, which makes determining every possible

trajectory in our TG a Herculean task. As a pragmatic solution, we’ve chosen a standardized

lane change trajectory that applies to all vehicles and is represented as an edge on the

TG. This edge incorporates a hyper-parameter, dictating the overall distance of the lane

change, ensuring that despite its standardized nature, there’s still a degree of flexibility in

its representation.

3. System architecture 25

By simplifying the lane-changing trajectory to an edge between an entry and an exit node

on the TG, estimating the yaw angle, θ, becomes a straightforward geometric problem. Given

two points, namely the entry and exit nodes on our edge, we can calculate the difference in

their x and y coordinates as:

∆x = exit.x− entry.x (3.3)

∆y = exit.y− entry.y (3.4)

These differences, ∆x and ∆y, effectively represent the horizontal and vertical changes,

respectively, between the two points. The yaw angle, θ, represented by the angle between the

vehicle’s heading and the x-axis, can be derived by calculating the arctangent of the ratio of

these differences. The arctangent function (often denoted as arctan or tan−1) gives the angle

whose tangent is the quotient of the two specified numbers. The equation to determine θ is:

θ = arctan
(

∆y
∆x

)
× 180

π
(3.5)

With this geometric approach, predicting θ becomes uncomplicated and precise,

eliminating the need for complicated dynamic modeling for lane-changing maneuvers.

3. System architecture 26

3.2 System workflow

Figure 3.3 demonstrates the flow for a vehicle request. The edge servers capture requests,

holding them in a waitList until a dynamically determined waitingperiod elapses. In this

interval, vehicles use autopilots for motion management, while the server updates the T G

with incoming vehicle data.

The system continuously tracks connected vehicles via RSU. For non-connected vehicles,

strategically placed sensors, like surveillance cameras, detect their status. These cameras use

deep learning to extract vehicle data from video streams. When cameras detect connected

vehicles, this serves to cross-validate their reported data.

In path planning, movements of non-connected vehicles are predicted and slots are

reserved in TGi+1:i+n, where n is the maximum future reservation span. Next, connected

vehicles are prioritized and assigned paths within this span. If a path is found, vehicles are

alerted. Ongoing monitoring ensures path adherence. If a vehicle strays notably from its

path, it’s placed back in the waitList with an updated starting point. Meanwhile, those

without a path are advised to maintain a consistently lower speed and added to the

waitlist. In the next waitingperiod, the system reattempts path allocation, giving these

vehicles higher priority.

3. System architecture 27

Figure 3.3: System workflow

28

Chapter 4

Path planning

The primary goal of path planning is to determine a reliable route for each connected vehicle

to adhere to, extending from its initial location to its targeted destination. This path is

represented by a series of interconnected nodes from the TG. Concurrently, the system

should recommend appropriate maneuvers for each vehicle at each node, ensuring that the

vehicle can reach the anticipated location within the scheduled timeframe.

4.1 Time-based search algorithm

Our principal algorithm draws from the Cooperative A* algorithm [5], a highly reputed

method for tackling cooperative path planning dilemmas, enabling the calculation of

collision-free routes for multiple connected agents. In our path planning algorithm, this

strategy is employed with the TG serving as the reservation table. Furthermore, we have

4. Path planning 29

developed a unique time-based path search algorithm that not only identifies a sequence of

nodes as a path but also suggests suitable maneuvers at each node. Individual path

computations for each autonomous vehicle are conducted using customized strategies that

consider the surrounding traffic environment.

Utilizing the traditional A* search algorithm, we manage four core structures: openSet,

a priority queue storing nodes prioritized by their proximity to the end goal; cameFrom,

a map detailing the optimal predecessor of each node, aiding in tracing the shortest path;

gScore, a map denoting the start node’s journey cost to each subsequent node; and fScore,

estimating the complete journey cost from start to end, passing through each node. The

algorithm kicks off by initializing the start node’s gScore and fScore, adding it to the openSet.

It then iteratively selects the node with the minimal fScore, evaluating its neighbors. The

algorithm gauges a provisional gScore for each neighbor, contemplating reaching it from the

current node. Should this new gScore undercut the existing gScore or if the node remains

unexplored, we recalibrate cameFrom, gScore, and fScore for that neighbor, introducing it

to openList if absent. This cycle persists till the openList is drained or the goal is achieved.

An empty openList implies all paths are exhausted with no viable route to the goal, thus

returning Failure. Reaching the goal enables the retracing of the optimal path using the

cameFrom linkage.

4. Path planning 30

Algorithm 2: Time-based search algorithm
Input: Time-based Topology Graph TG, Ego vehicle i’s localized starting node Start, i’s

longitudinal speed vi, localized destination node Goal, road speed limit lmax and lmin,
starting time t

Output: Return a list of connected waypoints from Start to Goal, each waypoints with a suggest
speed value v or Failure if valid path couldn’t be found

1 historySpeed← set with vi

2 openSet← set with (Start, t, historySpeed)
3 cameFrom← ∅
4 gScore[(Start, t)]← 0
5 fScore[(Start, t)]← heuristic cost(Start, Goal)
6 fScore[(Start, t)]← heuristic cost(Start, Goal)
7 while openSet 6= ∅ do
8 current, currentT ime, historySpeed←

pop the node in openSet with the lowest fScore value
9 currentSpeed← get the last value from historySpeed

10 if current = Goal then
11 return reconstruct path with speed()

12 foreach neighbor of current do
13 Edge← T.get edge(current, neighbor)
14 availableSpeed← available speeds(historySpeed, lmax, lmin)
15 foreach newSpeed ∈ availableSpeeds do
16 newTime← estimate arrival time()
17 if ∀t ∈ [currentT ime, newTime], t /∈ T.get egde occupid time(Edge) then
18 if newTime /∈ openSet or new gScore < gScore[(neighbor, newTime)] then
19 cameFrom[(neighbor, newTime)]← (current, currentT ime, historySpeed)
20 gScore[(neighbor, newTime)]← new gScore

21 fScore[(neighbor, newTime)]← new gScore + heuristic cost(neighbor, Goal)
22 if (neighbor, newTime) /∈ openSet then
23 openSet.add((neighbor, newTime))

24 return Failure

Differing from the traditional A*, our refined version incorporates anticipated arrival

times at nodes based on agent speed. As shown in Algorithm 2, our elements, like openSet

4. Path planning 31

and gScore, use both the node and expected arrival time as distinct identifiers. We employ

an enhanced gScore to consider the agent’s speed from the start, resulting in a final path

composed of (node, speed) pairs.

Two critical functions support our approach. availablespeeds identifies viable speeds

between linked nodes using past data and speed limits, lmin and lmax. Next,

estimatearrivaltime forecasts the travel time between nodes based on speeds at each end.

Assuming constant acceleration changes, we determine the travel time between nodes with

estimatearrivaltime, as given by:

ti = 2s
vi + vi+1

(4.1)

Here, di represents the distance between nodes for vehicle i, while vi and ui signify initial

and final speeds. We utilize the Euclidean Distance as our heuristic, incorporating a penalty

for lane deviations to promote timely lane changes.

4.2 Priority-based planning strategy

Using our aforementioned search algorithm, each vehicle iteratively reserves its spot on the

reservation table TG. While many existing solutions [8–10] for non-signalized intersections

process vehicles based on their arrival time, we argue their methods tend to fall short in

complex, real-world scenarios. For instance, during peak hours, intersections can witness

unbalanced traffic, with one direction bearing a heavier load. To navigate this, we introduce

4. Path planning 32

an approach that prioritizes vehicle servicing, optimizing space allocation in high-demand

situations, and ensuring smoother traffic flow.

We propose the Estimated Priority-Based (E-PB) method to effectively rank vehicles

considering the traffic density of their entry lanes. In essence, vehicles from busier lanes get

precedence. Imagine a situation where two vehicles, A and B, approach an intersection from

a vertical direction, with B trailing A. Concurrently, vehicle C approaches from a horizontal

direction. In an arrival time-based priority system, both A and C would be prioritized,

possibly sidelining B. This could cause B to slow down, ensuring C’s uninterrupted passage.

Yet, in congested lanes like B’s, vehicles tend to be closely spaced. So, by decelerating B,

we risk impeding a chain of vehicles behind it, which might outnumber those affected by

4. Path planning 33

slowing down C. This can hamper the intersection’s overall efficiency.
Algorithm 3: Priority algorithm

Input: waitList

Output: pathReserve, newWaitList

1 newWaitList← ∅
2 for vehicle ∈ waitList do
3 frontV ehicles← get front vehicles(vehicle)
4 backV ehicles← predict the number of vehicles that will come after vehicle

5 weight← frontV ehicles + backV ehicles

6 waitList← sort waitList by the weight

7 for vehicle ∈ waitList do
8 path← apply Algorithm 1 on vehicle

9 if path is a valid path then
10 pathReserve[vehicle]← path

11 T.update(vehicle, path)

12 else
13 newWaitList.add(vehicle)

14 return pathReserve, newWaitList

We present the implementation of this method in Algorithm 3. This approach accepts a

’waitlist’ as input, which stores all the vehicles that have applied since the last waiting period

as well as those that have yet to be assigned a valid path. To prioritize a target vehicle,

we take into account the traffic conditions both in front and behind it. For assessing the

front traffic of the target vehicle, we employ the function get front vehicles. This function

quantifies the vehicles within a 15-meter radius in front of the target vehicle that has not yet

approached the intersection zone. For the rear traffic, we forecast the number of vehicles that

will enter the same lane as our target vehicle in the near future. Subsequently, we adjust the

order of the waitlist by summing up the traffic data from the front and rear. Vehicles with

4. Path planning 34

higher combined traffic are prioritized. Subsequently, Algorithm 2 is applied to the vehicles

in this new order, and their paths are preserved if a valid one is found. If a valid path cannot

be found, the vehicles are returned to the waitlist and instructed to maintain a consistently

slower speed.

35

Chapter 5

Future traffic prediction

A standout feature of our Edge Twin is its capacity to forecast traffic conditions, enhancing

subsequent path-planning algorithms. While prediction priorities differ across traffic

settings, they generally fall into two categories: single-vehicle prediction and overall traffic

flow estimation. Here, we delve into the prediction models tailored for non-signalized

intersections and highways.

5.1 Traffic flow predictors for non-signalized

intersection

Building on our previous chapter, our planning strategy requires predicting future traffic

following a target vehicle. Specifically, we aim to anticipate how many vehicles will soon

5. Future traffic prediction 36

join the same lane. For this, we’ve developed a deep learning model that predicts the vehicle

count set to traverse a lane’s delay zone at the next time point i+ 1, based on history data

from times i− 9 to i. Notably, the time gap between i and i+ 1 is adjustable; in our tests,

it’s fixed at 30 seconds.

Figure 5.1: Traffic flow prediction model for non-signalized intersection

Figure 5.1 illustrates the architecture of our model. In addressing the challenge of

managing long-term dependencies in time series data, we opted for an LSTM-based

approach, a method well-established for its effectiveness in time series traffic

forecasting [11–13]. This choice was influenced by the superior ability of LSTMs in

capturing temporal dependencies and handling variable-length input sequences, compared

to traditional methods such as ARIMA. While ARIMA is a powerful tool for linear time

series forecasting, it often falls short in traffic prediction scenarios that exhibit non-linear

5. Future traffic prediction 37

patterns and require the processing of large datasets with complex temporal dynamics.

To further refine our time series predictions, we incorporated attention-based biLSTMs

[14]. This enhancement allows our model to not only capture the sequential data efficiently

but also to focus on the most relevant parts of the input sequence, a feature not available

in ARIMA or similar linear models.The input layer takes a series represented as

(N t−9
li

, ..., N t−1
li

, N t
li
), where each component indicates the vehicle count in lane li’s delay

zone from time t − 1 to t. With two bidirectional LSTM layers, the model captures rich

historical and anticipated context. An attention layer then assigns weights to these LSTM

outputs, emphasizing crucial parts of the sequence. The weighted results are processed by

subsequent fully connected layers to yield the prediction (N̂ t+1
li

).

We sourced our dataset from a CARLA simulator’s six-lane intersection spanning an

hour. Traffic flow variations arise from different traffic types created by an exponential

random generator with scale values between 50 to 300, each lasting 2 to 5 minutes. The time

gap between t and t + 1 is 100 simulator time units. The dataset is split 70:30 for training

and validation. Refer to Table 5.3 for model specifics and outcomes.

5.2 Intention and motion prediction for highway

Highways differ from intersections due to the presence of non-connected vehicles that our

system can’t directly communicate with. Therefore, we must predict their driving intentions,

including final lane choice and real-time positioning. Our approach is twofold: first, we

5. Future traffic prediction 38

identify which lane the vehicle will occupy by the end of the highway segment; next, we

estimate its position at every time step.

5.2.1 Destination predictor

In the initial phase, non-connected vehicles are classified into one of five destination points.

Considering our earlier assumption of the experimental highway’s tendency for rightward

lane shifts, we need a model to discern this pattern from historical highway traffic data.

Figure 5.2: Destination prediction model for highway

The model architecture, shown in Figure 5.2, adopts a dual-input system. The first

5. Future traffic prediction 39

input is a time-series data stream, (N t−9
l0−5 , ..., N

t
l0−5), capturing vehicle counts from similar

start points to the target vehicle reaching all lanes between l0 to l4 within the interval

t − 1 to t. This input uses a bidirectional LSTM structure, attention mechanisms, and a

connected layer, mirroring our prior model but excluding the final output layer. The second

input includes the target vehicle’s observed state, represented as (F0, ..., F7) and detailed in

Table 5.1.

Feature Description Unit Feature Type
Instantaneous longitudinal velocity m/s numerical
Instantaneous longitudinal acceleration m/s2 numerical
Instantaneous lateral acceleration m/s2 numerical
Yaw angle rad numerical
Entry lane index None categorical
Vehicle at the front 0/1 categorical
Vehicle at the front left lane 0/1 categorical
Vehicle at the front right lane 0/1 categorical

Table 5.1: Categorical and numerical features for destination prediction

The resultant outputs from the primary and secondary inputs are subsequently integrated

and channeled into a fully connected layer, and a softmax layer determines the vehicle’s

category, ranging from (Ĉ0, ..., Ĉ4).

The training data, sourced from a CARLA-simulated hour-long highway scenario with

five parallel lanes, establishes a 30-second interval between t and t+ 1. We split the dataset

into training and validation sets at a 70:30 ratio. Refer to Table 5.3 for model specifics and

outcomes.

5. Future traffic prediction 40

5.2.2 Location predictor for non-connected vehicles

In the next phase, we aim to determine the non-connected vehicle’s position and, when

needed, identify its lane change point. While trajectory forecasting usually favors sequence-

to-sequence (seq2seq) models [15–18], we sidestep them due to their constraints. Our system

requires predicting a vehicle’s entire trajectory, often surpassing a seq2seq model’s maximum

time frame. Misjudgments in distant predictions could misalign with our Traffic Grid (TG).

Instead, we adopt a step-by-step prediction utilizing a Multi-Task Learning Network.

Tailored for the highway’s three possible forward moves (lane changes left or right and lane

following), our model predicts the vehicle’s next node and arrival time. The classification

sub-network results in three outcomes, while a regression sub-network estimates the arrival

time.

Figure 5.3: Location predictor for highway

5. Future traffic prediction 41

Figure 5.3 showcases our model, grounded on the interplay between a vehicle’s movements

and the conditions of the vehicles ahead. Within this context, our topology map TGi:i+9

incorporates reservations from the previous timestep.

Figure 5.4: A representative sub-graphs SGi:i+9 as the graph attention network input

Using TGi:i+9’s graph structure, we extract a local subgraph from it as sequence-type

input, each focusing on the target vehicle’s front nodes and edges up to a depth of 10, as

illustrated in Figure 5.4. To capture the spatial and temporal nuances in TGi:i+9, we employ

a Graph Attention Network (GAT) paired with LSTM, an approach validated by previous

traffic studies [11,13].

To feed subgraphs TGi:i+9 into the model, we extract data from each node and nearby

edge data as node features for the GAT, then construct adjacency matrices from the TG

5. Future traffic prediction 42

structure. These matrices record distances between connected nodes. Relevant node features

are detailed in 5.2. Subsequently, a graph attention network is deployed as an encoder to

convert each subgraph into an embedding vector. LSTM further processes these vectors and

is trained as a multi-task learning model to concurrently predict the sequence of the next

three arriving nodes D̂i+1and their anticipated arrival times T̂i+1.

Feature Description Optimizer Feature Type
Occupancy state None categorical
Instantaneous longitudinal velocity m/s numerical
Location predictor None categorical

Table 5.2: Categorical and numerical features for location estimation

The model is trained with vehicle travel data from CARLA simulation, where each

vehicle’s records are transformed into adjacency and feature matrices from TGi:i+9. With

the data spread across an hour, we split it 70:30 for training and validation. Using this

model, we predict the next node a non-connected vehicle will inhabit, reserving space in

TGi+1. By iterating with subsequent TG datasets, we trace the vehicle’s trajectory to its

endpoint. Refer to Table 5.3 for model specifics and outcomes.

Model Description Loss Function Optimizer
Evaluation
Function

Validation
Results

Traffic Flow predictor Mean square error RMSprop Mean square error 0.5574
Destination predictor Categorical Cross-entropy Adam Accuracy 74.5%

Location predictor Categorical Cross-entropy &
Mean Square Error

Adam &
RMSprop

Accuracy &
Mean square error

89.2% &
0.127

Table 5.3: Settings for data pre-processing & training & Results

43

Chapter 6

Simulation

6.1 The CARLA environment

CARLA (Car Learning to Act) [3] is an open-source simulator built specifically for

autonomous driving research. It is a highly flexible and realistic simulator that allows

researchers to test their self-driving algorithms in a wide range of scenarios. Meanwhile,

CARLA is designed to simulate real-world driving conditions with high fidelity. It provides

a rich set of sensors including cameras, LiDARs, radars, and GPS, which are essential tools

for both autonomous driving and smart traffic. Lastly, CARLA allows researchers to add

various dynamic objects into the simulation, such as other vehicles, pedestrians, and traffic

lights. Overall, CARLA provides us with an ideal and customizable environment that can

be used to test and develop our Edge Twin systems with autonomous driving.

6. Simulation 44

6.2 PID based vehicle

CARLA operates with an in-built autopilot system that permits vehicles to adhere to

predefined paths. This autopilot system relies on the principles of a PID controller, an

acronym that encapsulates Proportional, Integral, and Derivative. The PID controller is a

prevalent feedback controller used across numerous control systems. Within CARLA’s

environment, a PID controller regulates various attributes of a vehicle, such as velocity or

steering angle. The desired setpoint could be a particular speed or a designated waypoint

on the roadway, with the controller manipulating the vehicle’s throttle, brake, and steering

to minimize the difference between the current state and the desired state.

Simultaneously, CARLA also furnishes a Traffic Manager (TM), a more sophisticated

interface for researchers to supervise vehicles in autopilot mode. This Manager also

incorporates an in-built collision detection mechanism, so vehicles operating in autopilot

mode actively circumvent vehicle collisions even when the suggested path entails conflict.

Furthermore, the Traffic Manager imprints some human-like behaviour onto the autopilot

system - for instance, vehicles invariably decelerate slightly before navigating an

intersection. These behaviours allow us to create complex, realistic scenarios to test the

robustness of our system.

6. Simulation 45

6.3 Non-signalized intersection experiment

In this research, we employ ’map03’, a large town with features of a downtown urban area.

The map exhibits intriguing elements of a road network such as a rotary intersection,

underpasses, and flyovers. The town also incorporates a raised metro track and a

considerable construction site. We chose one of its cross-intersections for our non-signalized

experimental environment. This intersection sees traffic from both horizontal and vertical

directions. It accommodates six entry lanes, four vertical and two horizontal. Similarly,

there are six exit lanes, with a vehicle regarded as leaving the monitor region once it enters

any of these lanes. We have excluded any built-in traffic lights within this zone. Figure 6.1

illustrates the intersection we chose.

Figure 6.1: Non-signalized intersection at Map03

6. Simulation 46

6.4 Highway experiment with blockage

We opt for ’map06’, a sparse town nestled in a pine-laden environment, featuring an array

of wide 4-6 lane roads and unique junctions like the Michigan Left. This map is used to

simulate traffic congestion on highways. For this purpose, we select a segment of a five-lane

road with an intersection at its terminus for our highway simulation. We then designate five

endpoints, one at the end of each lane, considering a vehicle to have exited the monitored

region once it surpasses these points. Assigning destinations for vehicles within the highway

segment enables us to observe more instances of lane changing, thereby increasing the overall

complexity of the system. To introduce a temporary obstruction, we place a stationary,

overturned truck in the middle of the road segment, effectively blocking the central three

lanes and leaving only the outermost lanes open. Figure 6.2 illustrates the highway we chose.

6. Simulation 47

Figure 6.2: Non-signalized intersection at Map03

6.5 Experiment set-up in CARLA simulator

Within CARLA simulator, we model traffic data collection, flow prediction, motion

prediction, and path planning for each connected vehicle. The experimental settings in

CARLA are detailed in 6.1.

All experiments spanned 36,000 CARLA time units, roughly equating to 30 real-world

minutes, and were replicated on 30 occasions. We adopted an exponential random generator

for a randomized vehicle spawning approach. This generator excels at crafting numbers

fitting the exponential distribution, described mathematically as:

6. Simulation 48

Setting Description Map03 Map06
Location Non-signalized Intersection Highway
Number of of entry lanes 6 5
Entry lanes direction 2 horizontal & 4 vertical 5 vertical
Speed limit 30 - 50 km/h 50 - 70 km/h

Table 6.1: Settings for CARLA simulator

f(x|λ) = λe−λx, for x ≥ 0, and 0 otherwise, (6.1)

where λ acts as the rate parameter while β performs the role of the scale parameter

(essentially the inverse of the rate). Here, β determines the decay rate of the probability of

an event as the inter-event time increases. Specifically, a larger β implies that longer

inter-event times are more probable, resulting in a slower decay of the distribution, and

vice versa. This choice is motivated by its common use in scenarios where the time

between occurrences of successive events follows an exponential distribution. This strategy

is a reasonable approximation of real-world traffic patterns, where vehicle arrivals are often

”bursty”. Lastly, we evaluate on different scale values to generate varied forms of traffic

flows.

The CARLA simulator provides real-time data on all active vehicles, including

locations, speed, deviation, etc. As mentioned in the previous chapter, we employ 2D

Rotation Transformations to determine the vehicle’s four corner coordinates. Then, we

6. Simulation 49

rotate the coordinate system around the rectangle’s center by the negative of the vehicle’s

yaw. Subsequently, we identify all nodes and edges from the TG that overlap with this

rotated rectangle. Figure 6.3 illustrates a vehicle traveling at the non-signalized

intersection and its reserved occupancy space.

Figure 6.3: This image depicts a connected vehicle navigating through a non-signalized
intersection. The red geometrical figures demarcate the vehicle’s space estimated by our
system, whereas the green lines delineate the area specifically reserved for it.

50

Chapter 7

Results

In this section, we’ll discuss simulating the Edge-Twin on two CARLA simulator maps. We

assess its performance using Average Travel Time and Average Traffic Ratio metrics from 30

repeated experiments.

1. Average Travel Time: This metric measures the average time taken for a vehicle,

whether connected or not, to traverse from entry to exit of the monitoring zone.

2. Traffic Ratio: This calculates the percentage of vehicles that passed through the

monitoring area over a specified duration. It’s normalized against the total vehicles

spawned to account for the generator’s uneven vehicle creation in different runs.

7. Results 51

Figure 7.1: Arrive ratio for different magnitudes of traffic flows at highway

7.0.1 Results on high-way

Figure 7.1 and Figure 7.2 showcase the average traffic ratio and travel time on a highway with

free flow, under various traffic demands. These demands are adjusted using the scale value,

with choices of 100, 120, 140, and 160; here, 100 indicates the maximum traffic demand.

The Y-axis distinguishes results based on the share of non-connected vehicles, with the far

right denoting an all-non-connected vehicle scenario.

As observed from Figure 7.1, the traffic ratio drops with an increase in non-connected

7. Results 52

Figure 7.2: Average traveling time for different magnitudes of traffic flows at highway

vehicles, irrespective of traffic demand. A greater number of non-connected vehicles tends

to amplify prediction errors about future traffic states, leading to unexpected traffic clashes

and slowing down the flow. Overall, this approach outperforms traditional scenarios with

only non-connected vehicles by about 7% to 10% across all demands. Similarly, Figure 7.2

shows that travel times increase with a rise in non-connected vehicles.

Figures 7.3 and 7.4 reflect the metrics at the same highway spot but with a traffic

hindrance from an accident. Although the trends align with the clear highway scenario,

both the traffic ratio and travel times fare worse, given the reduced lane availability due

7. Results 53

Figure 7.3: Arrive ratio for different magnitudes of traffic flows at blocked highway

to the accident. Moreover, the traffic ratio differences between varying percentages of non-

connected vehicles are more pronounced (10% - 15%) than in the free-flowing scenario (7%

- 10%). This hints at our system’s heightened efficacy as traffic density nears road capacity.

7.0.2 Results on non-signalized intersection

In our examination of non-signalized intersections, we assess our system under various traffic

flow conditions, including balanced and unbalanced inflows between horizontal and vertical

paths. For consistent inflows, a uniform scale value is used. Unbalanced flows start with

7. Results 54

Figure 7.4: Average travelling time for different magnitudes of traffic flows at blocked
highway

equal scale values for both directions, then diverge by +/- 40. Every 2000 time units, the

horizontal scale value shifts by 20 if within the acceptable range, followed by a similar change

in the vertical scale. If no change occurs, the process repeats after 2000 units; otherwise, a

6000-unit pause ensues.

Our analysis of the non-signalized intersection hinges on three primary elements:

1. Three distinct sorting strategies: First Come First Serve (FCFS) [9], Time-Based

Priority (T-PB) [8], Collision Potential-Based Priority (C-PB) [10]„ and our method,

7. Results 55

Estimation-Based Priority (E-PB).

2. E-PB’s performance across four traffic flow intensities, defined by scale values of 100,

120, 140, and 160.

3. The efficacy of E-PB when factoring in varying ratios of human drivers: 0%, 25%, 50%,

and 75%.

Figure 7.5: Traffic ratio for different strategies at non-signalized intersection

Figure 7.5 and Figure 7.6 display the average traffic ratio and travel time at a non-

signalized intersection for different priority strategies. All methods were assessed under the

7. Results 56

Figure 7.6: Average travelling time for different strategies at non-signalized intersection

same traffic volume with a scale value of 140. The Y-axis differentiates between balanced

and unbalanced traffic conditions. Clearly, E-PB consistently leads, with its advantage

being more evident in unbalanced traffic. Using FCFS as a benchmark, it consistently trails,

with C-PB surpassing T-PB in balanced conditions but losing this advantage in unbalanced

situations. This is consistent with our anticipation since earlier methods were gauged in

balanced conditions, while our method is designed for unbalanced situations. The trends in

travel time (Figure 7.6) reflect these findings.

We assessed the traffic ratio and travel time using the E-PB method across different

7. Results 57

Figure 7.7: Arrive ratio for different magnitudes of traffic flows at non-signalized
intersection

traffic volumes, as shown in Figure 7.7 and Figure 7.8. This involved varying the scale

values from 100 to 160. Generally, a drop in traffic volume leads to an increase in the traffic

ratio. This parallels the highway scenario where fewer vehicles mean less conflict, allowing

more seamless intersection passage. Notably, the difference between scale values of 120 and

140 is more distinct than others, indicating the traffic ratio improvements might taper off

near the intersection’s limit or when vehicle count isn’t high enough to cause conflicts.

Lastly, We probed the E-PB method’s performance considering varying proportions of

7. Results 58

Figure 7.8: Average travelling time for different magnitudes of traffic flows at non-signalized
intersection

human-driven vehicles. While these vehicles are connected through onboard systems, their

behavior deviates from autonomous vehicles. Specifically, human drivers have longer

reaction times to system directives, mainly because of inherent human response delays and

multitasking. Within the CARLA simulator, we emulated this by adding a reaction delay

of 0.5ms to 1s for human-driven vehicles after they receive system directions. Additionally,

human-driven vehicles might not strictly follow system-recommended speeds. We simulated

this by introducing a random speed deviation of 0% to 20% for these vehicles.

7. Results 59

Figure 7.9: Arrive ratio for varying proportion of human-driven vehicles at non-signalized
intersection

Figure 7.9 and Figure 7.10 show that as human-driven vehicles (HV) increase,

performance wanes in both balanced and unbalanced traffic conditions. Yet, this drop in

performance seems to stabilize once HV cross the 50% mark, implying the system’s

adaptability may peak when a majority of vehicles don’t strictly adhere to directions.

Interestingly, comparing 0% to 25% HV reveals that the system is more resilient in

unbalanced traffic situations.

7. Results 60

Figure 7.10: Average travelling time for varying proportion of human-driven vehicles at
non-signalized intersection

61

Chapter 8

Related works

The versatility of edge computing makes it a viable solution for supporting autonomous

driving [19]. In this realm, Tang et al. [20] proposed π−Edge for various autonomous

driving services in low-speed and limited traffic scenarios, such as university campuses.

This approach demonstrates the potential of energy-efficient and affordable edge solutions

in autonomous vehicular applications. Meanwhile, guaranteeing ultra-reliable low latency

remains a challenge for autonomous vehicles relying solely on limited onboard

intelligence [21]. To address this, Lu et al. proposed a cognitive Internet-of-Vehicles

system, leveraging technologies like edge computing, IoT, and AI [21]. Additionally, other

studies have explored areas like edge-based smart parking [22], the efficient placement of

edge computing devices [23], and utilizing vehicle on-board computers as edge devices [24].

Expanding on these findings, recent studies by Hashash et al. [25] and Wang et al.

8. Related works 62

[26] delve deeper into the application of Edge-based digital twin systems for autonomous

vehicles. Hashash et al. [25] focus on a novel edge continual learning framework to maintain

synchronization and accuracy in digital twins, which aligns with our research in real-time

traffic simulation. Their approach explicitly minimizes desynchronization time, a critical

aspect of real-time responsiveness. On the other hand, Wang et al. [26] demonstrate the

practical application of digital twins in real-world autonomous driving, particularly in route

planning to avoid heavy traffic for long-distance journeys. While Wang et al. focus on

general route optimization, our research targets explicitly distinct traffic environments, such

as highways and non-signalized intersections, extending the applicability of digital twins in

more varied and complicated traffic scenarios.

A wealth of research has tried to pave the way for more efficient intersections in a

future with a high penetration of CAVs. Pioneering work by Dresner et al. [9] introduced a

reservation-based cooperative driving concept, deploying a First-Come-First-Serve (FCFS)

strategy at non-signalized intersections. Their approach surpasses traditional intersection

designs in terms of efficiency. Following this work, researchers yielded various types of

scheduling schemes for adaptive traffic signals [27], centralized resource reservation [28]

[10] [29] [30], distributed protocols [31] [8], optimized by platooning strategy [32].

For centralized resource reservation, the paramount challenge lies in optimizing the

limited space at intersections to facilitate the maximum number of vehicles to pass through

both safely and efficiently. For example, Dresner et al. [9] evaluated the effectiveness of the

8. Related works 63

First-Come-First-Serve (FCFS) method in reducing delay compared with signal-based

controls. Wang et al. [8] proposed an improved FIFO slot reservation algorithm that ranks

vehicles based on their projected arrival times, prioritizing those predicted to arrive earlier.

Furthermore, Chen et al. [10] developed a system that prioritizes vehicles according to their

potential trajectory conflicts with others, allowing those without conflicts to pass through

the intersection simultaneously.

Pioneering studies in cooperative driving on highways have primarily evolved from the

lane change models tailored for individual vehicles [33,34]. Tackling the more intricate task

of high-level cooperative lane change decision-making, Sun et al. [35] introduced a

comprehensive model focused on lane transitions between neighboring highway lanes,

emphasizing vehicular efficiency spanning both lanes. Meanwhile, Zhou et al. [36] presented

varied cooperative driving tactics for mixed four-lane highway traffic, illustrating that

amplifying the CAV penetration rate can effectively temper traffic congestion while

amplifying traffic capacity and stability.

Our work expanded the applicability of centralized scheduling paradigm to include both

non-signalized intersections and highways. Unlike the grid box method that is widely used

in recent works, TG offers a more adaptable representation of diverse geographical traffic

scenarios and streamlines subsequent processes. The TG-powered system can extract more

sophisticated traffic patterns and, hence, accurately predict future flows in non-signalized

intersection. This prediction capability allowed us to introduce an advanced priority-based

8. Related works 64

scheduling policy. Our findings highlight this policy superiority over previous methods such

as FCFS, arrival time-based, and potential conflict-based approaches. On highways, unlike

many studies that focus solely on CAVs with fixed behaviors, our strategy is built to

handle mixed traffic that include both CAVs and human-driven vehicles. We emphasized

the effectiveness of our approach on a five-lane highway environment facing central

obstructions, demonstrating noticeable improvements in the traffic flow efficiency.

65

Chapter 9

Conclusion and future work

We introduced a new traffic scheduling system that leverages concepts from digital twins,

edge computing, and machine learning. One of the core elements of the new traffic

scheduling system is the topology graph (TG) that represents vehicle and road states. This

thesis shows the adaptability of TG for various traffic settings like highways and

non-signalized intersections. For non-signalized intersections, LSTM-based traffic flow

predictors were used to effectively handled diverse traffic flows, prioritizing vehicles by

considering both current and upcoming traffic. This approach improved traffic flow

efficiency in non-signalized intersections. Our experiments using the CARLA simulator

demonstrated this approach surpassing previous research approaches. On highways, we

demonstrated that cooperative driving between CAVs and traditional vehicles is feasible.

We achieved this by predicting human driver intentions and making reservations through

9. Conclusion and future work 66

TG. Our step-by-step motion predictor accurately forecasts human-driven vehicle

movements, avoiding accumulated error issues commonly associated with prior

sequence-to-sequence predictions. This approach also enhanced traffic efficiency surpassing

traditional traffic management as shown by the experiments carried out in the CARLA

simulator.

The research presented in this thesis work can be improved in many different ways.

One avenue of future work is to investigate how to integrate an autopilot system based

on reinforcement learning. The autopilot will work with a traffic generator to mimic real-

world traffic under different scenarios. This will allow us to capture a wider range of traffic

patterns, enhancing the precision of our predictions. Specifically, on highways, we aim to

simulate real-world scenarios, including emergency situations, and refine vehicle localization

with more realistic lane-changing trajectories.

67

Bibliography

[1] “How Tesla and Google autonomous car technologies differ.” https://

analyticsindiamag.com/tesla-google-autonomous-car-technologies-different/.

Accessed: 2019-04-14.

[2] M. Maheswaran, T. Yang, and S. Memon, “A fog computing framework for autonomous

driving assist:architecture, experiments, and challenges,” in CASCON ’19: Proceedings

of the 29th Annual International Conference on Computer Science and Software

EngineeringNovember, p. 24–33, ACM, 2019.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban

driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning,

pp. 1–16, 2017.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination

of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,

no. 2, pp. 100–107, 1968.

https://analyticsindiamag.com/tesla-google-autonomous-car-technologies-different/
https://analyticsindiamag.com/tesla-google-autonomous-car-technologies-different/

Bibliography 68

[5] D. Silver, “Cooperative pathfinding,” in Proceedings of the aaai conference on artificial

intelligence and interactive digital entertainment, vol. 1, pp. 117–122, 2005.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” Advances in neural information processing

systems, vol. 30, 2017.

[7] I. Sorkhoh, C. Assi, D. Ebrahimi, and S. Sharafeddine, “Optimizing information

freshness for mec-enabled cooperative autonomous driving,” IEEE Transactions on

Intelligent Transportation Systems, vol. 23, no. 8, pp. 13127–13140, 2022.

[8] Z. Wang, K. Han, and P. Tiwari, “Digital twin-assisted cooperative driving at non-

signalized intersections,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 2,

pp. 198–209, 2021.

[9] K. Dresner and P. Stone, “A multiagent approach to autonomous intersection

management,” Journal of artificial intelligence research, vol. 31, pp. 591–656, 2008.

[10] X. Chen, M. Hu, B. Xu, Y. Bian, and H. Qin, “Improved reservation-based method

with controllable gap strategy for vehicle coordination at non-signalized intersections,”

Physica A: Statistical Mechanics and its Applications, vol. 604, p. 127953, 2022.

Bibliography 69

[11] X. Mo, Z. Huang, Y. Xing, and C. Lv, “Multi-agent trajectory prediction with

heterogeneous edge-enhanced graph attention network,” IEEE Transactions on

Intelligent Transportation Systems, vol. 23, no. 7, pp. 9554–9567, 2022.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[13] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling spatial-temporal

interactions for human trajectory prediction,” in Proceedings of the IEEE/CVF

international conference on computer vision, pp. 6272–6281, 2019.

[14] Y. Huang, H. Dai, and V. S. Tseng, “Periodic attention-based stacked sequence to

sequence framework for long-term travel time prediction,” Knowledge-Based Systems,

vol. 258, p. 109976, 2022.

[15] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi, “Sequence-to-sequence

prediction of vehicle trajectory via lstm encoder-decoder architecture,” in 2018 IEEE

Intelligent Vehicles Symposium (IV), pp. 1672–1678, 2018.

[16] L. You, S. Xiao, Q. Peng, C. Claramunt, X. Han, Z. Guan, and J. Zhang, “St-seq2seq:

A spatio-temporal feature-optimized seq2seq model for short-term vessel trajectory

prediction,” IEEE Access, vol. 8, pp. 218565–218574, 2020.

Bibliography 70

[17] X. Feng, Z. Cen, J. Hu, and Y. Zhang, “Vehicle trajectory prediction using intention-

based conditional variational autoencoder,” in 2019 IEEE Intelligent Transportation

Systems Conference (ITSC), pp. 3514–3519, 2019.

[18] L. Lin, W. Li, H. Bi, and L. Qin, “Vehicle trajectory prediction using lstms with

spatial–temporal attention mechanisms,” IEEE Intelligent Transportation Systems

Magazine, vol. 14, no. 2, pp. 197–208, 2022.

[19] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing for autonomous

driving: Opportunities and challenges,” Proceedings of the IEEE, vol. 107, pp. 1697–

1716, Aug 2019.

[20] T. Jie, L. Shaoshan, Y. Bo, and S. Weisong, “Pi-Edge: A low-power edge computing

system for real-time autonomous driving services,” arXiv preprint arXiv:1901.04978,

2018.

[21] H. Lu, Q. Liu, D. Tian, Y. Li, H. Kim, and S. Serikawa, “The cognitive internet of

vehicles for autonomous driving,” IEEE Network, vol. 33, pp. 65–73, May 2019.

[22] H. Bura, N. Lin, N. Kumar, S. Malekar, S. Nagaraj, and K. Liu, “An edge based smart

parking solution using camera networks and deep learning,” in 2018 IEEE International

Conference on Cognitive Computing (ICCC), pp. 17–24, July 2018.

Bibliography 71

[23] P. Gopika, G. Bissan, D. F. Mario, and V. Rudi, “Efficient placement of edge computing

devices for vehicular applications in smart cities,” in NOMS 2018-2018 IEEE/IFIP

Network Operations and Management Symposium, pp. 1–9, IEEE, 2018.

[24] S. S. Sarmad, A. Muhammad, M. A. Waqar, K. M. A, and R. S. Devi, “vFog: A

vehicle-assisted computing framework for delay-sensitive applications in smart cities,”

IEEE Access, vol. 7, pp. 34900–34909, 2019.

[25] O. Hashash, C. Chaccour, and W. Saad, “Edge continual learning for dynamic digital

twins over wireless networks,” arXiv preprint arXiv:2204.04795, 2022.

[26] K. Wang, T. Yu, Z. Li, K. Sakaguchi, O. Hashash, and W. Saad, “Digital twins

for autonomous driving: A comprehensive implementation and demonstration,” arXiv

preprint arXiv:2401.08653, 2023.

[27] Y. Wang, X. Yang, H. Liang, Y. Liu, et al., “A review of the self-adaptive traffic

signal control system based on future traffic environment,” Journal of Advanced

Transportation, vol. 2018, 2018.

[28] Y. Zhang, L. Liu, Z. Lu, L. Wang, and X. Wen, “Robust autonomous intersection control

approach for connected autonomous vehicles,” IEEE Access, vol. 8, pp. 124486–124502,

2020.

Bibliography 72

[29] J. Wang, X. Zhao, and G. Yin, “Multi-objective optimal cooperative driving for

connected and automated vehicles at non-signalised intersection,” IET Intelligent

Transport Systems, vol. 13, no. 1, pp. 79–89, 2019.

[30] W. Zhao, R. Liu, and D. Ngoduy, “A bilevel programming model for autonomous

intersection control and trajectory planning,” Transportmetrica A: transport science,

vol. 17, no. 1, pp. 34–58, 2021.

[31] A. I. M. Medina, N. Van De Wouw, and H. Nijmeijer, “Cooperative intersection control

based on virtual platooning,” IEEE Transactions on Intelligent Transportation Systems,

vol. 19, no. 6, pp. 1727–1740, 2017.

[32] S. D. Kumaravel, A. A. Malikopoulos, and R. Ayyagari, “Optimal coordination of

platoons of connected and automated vehicles at signal-free intersections,” IEEE

Transactions on Intelligent Vehicles, vol. 7, no. 2, pp. 186–197, 2022.

[33] L. Yang, R. Tang, and K. Chen, “Call, put and bidirectional option contracts in

agricultural supply chains with sales effort,” Applied Mathematical Modelling, vol. 47,

pp. 1–16, 2017.

[34] H. Bai, J. Shen, L. Wei, Z. Feng, et al., “Accelerated lane-changing trajectory planning

of automated vehicles with vehicle-to-vehicle collaboration,” Journal of Advanced

Transportation, vol. 2017, 2017.

Bibliography 73

[35] K. Sun, X. Zhao, and X. Wu, “A cooperative lane change model for connected and

autonomous vehicles on two lanes highway by considering the traffic efficiency on both

lanes,” Transportation Research Interdisciplinary Perspectives, vol. 9, p. 100310, 2021.

[36] Y. Zhou, H. Zhu, M. Guo, and J. Zhou, “Impact of cacc vehicles’ cooperative driving

strategy on mixed four-lane highway traffic flow,” Physica A: Statistical Mechanics and

its Applications, vol. 540, p. 122721, 2020.

	Introduction
	Thesis contributions
	Thesis organization

	Background
	Edge computing based cooperative traffic scheduling
	Reservation-based scheduling algorithm

	Future traffic predictors
	Traffic flow prediction
	Vehicle motion prediction

	System architecture
	Time-based topology graph(TG)
	System workflow

	Path planning
	Time-based search algorithm
	Priority-based planning strategy

	Future traffic prediction
	Traffic flow predictors for non-signalized intersection
	Intention and motion prediction for highway
	Destination predictor
	Location predictor for non-connected vehicles

	Simulation
	The CARLA environment
	PID based vehicle
	Non-signalized intersection experiment
	Highway experiment with blockage
	Experiment set-up in CARLA simulator

	Results
	Results on high-way
	Results on non-signalized intersection

	Related works
	Conclusion and future work

