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Abstract

A Stochastic multiple regression approach for parameter and state estimation in Reproduc-
ing Kernel Hilbert Space (RKHS) is presented in this thesis. It begins with the understand-
ing and derivation of double sided kernel representation for a fourth order linear system
and proceeds into discussing and developing methods for state and parameter estimation
from single noisy realizations of the system output on a time interval [a, b].The multiple
linear regression model does not satisfy the assumptions of the Gauss-Markov theorem in
that the random regressor has a regression error, which is heteroskedastic. These complica-
tions do not impede achieving high accuracy of estimation. A recursive version of a feasible
generalized least squares with covariance weighting is employed to attenuate adverse effects
due to heteroskedasticity. Once the parameters are estimated the output is reconstructed
by projection onto the span of fundamental solutions and this in turn is used to reconstruct
the time derivatives of the system output.



Résumé

Une approche de régression multiple stochastique pour l’estimation des paramètres et des
états dans l’espace de reproduction du noyau de Hilbert (RKHS) est présentée dans cette
thèse. Il commence par la compréhension et la dérivation de la représentation du noyau
double face pour un système linéaire du quatrième ordre et passe à la discussion et au
développement de méthodes d’estimation d’état et de paramètres à partir de réalisations
bruyantes uniques de la sortie du système sur un intervalle de temps [a, b]. Le modèle de
régression linéaire multiple ne satisfait pas aux hypothèses du théorème de Gauss-Markov
en ce que le régresseur aléatoire a une erreur de régression, qui est hétéroscédastique. Ces
complications n’empêchent pas d’atteindre une grande précision d’estimation. Une version
récursive des moindres carrés généralisés réalisables avec pondération de la covariance est
utilisée pour atténuer les effets négatifs dus à l’hétéroscédasticité. Une fois les paramètres
estimés, la sortie est reconstruite par projection sur la durée des solutions fondamentales
et celle-ci est à son tour utilisée pour reconstruire les dérivées temporelles de la sortie du
système.
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Chapter 1

Introduction

A control system model is a mathematical representation of the essential characteristics of
an existing control system. A control system uses a controller which provides the corrective
action eliminating the error to achieve a desired output. It is a known fact that a controller
is of two types: open loop and closed loop controller. An open-loop control system is a
system which cannot correct variations in the output because it does not employ feedback.
Whereas a closed loop system is a type of system which employs a feedback loop. An
error detector compares a signal, a function of the output, obtained from a sensor, with a
reference input. The difference between these signals is used by the controller to determine
a control action and reduce the error.The difference between the desired output and the
current output generates a control law so as to change the state or the parameters of the
system to bring the system output closer to the desired output. A general control system
employing feedback is represented as below [26].

Figure 1.1 Closed Loop Controller with State Estimator
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1.1 Parameter Estimation and State Estimation in Linear Systems

"When a system model can be defined by a finite number of variables and parameters, it is
called a parametric model.To implement a parametric model-based controller, it is necessary
to know precisely the structure of the model of the system and its associated parameters.
Therefore, if parameters are initially unknown, the process of parameter identification is
quite important for the design of the control system" [26].Identification of parameters have
important applications in system identification, system control, and system analysis.
"The minimum set of variables whose current values along with the values of the input
signals in future can predict the future behavior of the system are state variables" [26].For
a System to generate a desired control action in order to reduce the error the understanding
of all systems states are usually required. The system is fed with measurement noise and
input disturbances hence it is expected that the controller has to be less sensitive to these
external signals therefore for a large system, it is not possible to measure the state variables.
An estimator needs to be designed that can estimate the states from both the output and
input. The problem of estimator design for an observable system has been extensively dealt
by mathematicians especially, Kalman and Luenberger [19], [20], [21], [22].
The framework of parameter and state estimation based on an algebraic method been
introduced by M. Fliess and H. Sira-Ramirez [9]. It is based on differential algebra and
operational calculus. The algebraic method is non-asymptotic: the solutions are obtained
by exact algebraic formulas, one to obtain estimates in finite time. The desired parameters
are expressed as a function of integrals of the measured outputs and inputs of the system
[7]. It does not need any statistical knowledge of the noise . Moreover, the estimator is
able to treat identification in the presence of bias and of structured perturbations.Noise
attenuation is attempted by repeated integration and shaping the annihilator functions
used in eliminating the effect of the initial conditions. However, this method requires
frequent re-initialization when used forward in time, and its noise rejection properties
were characterized as non-standard; see Fliess (2006). These methods are sensitive to
measurement noise.
Algebraic state and parameter estimation of linear systems based on a special construction
of a forward-backward kernel representation of linear differential invariants are extended
to handle large noise in output measurement [13] .With the knowledge of the characteristic
equation of the system the state equations are replaced with an output reproducing property
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on an arbitrary time interval [ta, tb] . The behavioural model is derived from the differential
invariance which is characteristic of the system and eliminates the need of initial conditions
and is in the form of a homogeneous Fredholm integral equation of the second kind with
a Hilbert Schmidt kernel [26]. The mathematical interpretation as a Reproducing Kernel
Hilbert Space (RKHS) of the behavioural model allows us to extract signal and its time
derivatives that confirm the system invariance from output measurement subject to noise.
For the OLS estimator to be a BLUE (Best Linear Unbiased Estimator); see [1] the resid-
ual has to have constant variance (Homoscedastic).If the error residuals does not have a
constant variance,they are termed to be as heteroskedastic.Heteroskedasticity is the most
frequent complication in parameter estimation using regression, it has serious consequences
for the OLS estimator. Despite that the OLS estimator remains unbiased, the estimated
regression error is wrong while confidence intervals cannot be relied on [11]. "A standard
quite powerful way to deal with unknown heteroskedasticity is to resort to Feasible Gen-
eralised least squares (FGLS), which can be shown to be BLUE (Best Linear Unbiased
Estimator)" [12]. The FGLS uses the with inverse covariance weighting recursively replac-
ing the inverse covariance matrix every step in the regression error minimization problem
associated with the stochastic multiple regression equations for parameter estimation [2].

1.2 Thesis summary: objectives and organization

"There are two ways of parameter estimation: online and offline. In offline identification,
the accumulation of data used to estimate the parameters. All the data are available to be
analyzed. On the other hand, online identification is done recursively in time. It means
that the parameter estimates are updated recursively within the time limit. In this thesis,
the identification using online approach will be used to estimate the parameter within a
given model structure" [2].
The Recursive Least Squares method is one of the most popular adaptive filters. As com-
pared to the OLS algorithm, the FGLS offers a superior convergence rate, especially for
highly correlated input signals; however, there would be an increase in the computational
complexity [17]. The FGLS has been widely used and it has several advantages such as
fast parameter convergence and feasible to apply to the direct closed-loop parameter iden-
tification approach .
"The tracking ability of the parameter estimator depends on the covariance element but its
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strength decays with time. To overcome this problem, covariance resetting approach will be
employed to revitalize the strength of the tracking variations of parameters. However, it is
not easy to employ the resetting technique since the time of parameter change is unknown.
One way to detect the changes of parameter is to measure the residual error inside the re-
cursive algorithm. Without the execution of the covariance resetting technique, the residual
error will exhibit a sudden change. Covariance resetting technique is executed whenever
the algorithm of recursive identification perceives a change. Before the covariance resetting
takes place, the residual error will exhibit some irregular movements when the parameter
varies. These irregularities are then used to execute covariance resetting algorithm" [2].

Chapter 1 : provides a brief introduction to algebraic parameter and state estimation as
the central topic in this thesis. It also states the objectives in the thesis work.

Chapter 2: focuses on the derivation and understanding of the double sided kernels for
homogeneous SISO LTI systems and develops the kernel for a fourth order system.

Chapter 3: discusses the previous works done on state and online parameter estimation .

Chapter 4: presents a summary forward-backward kernel based state and parameter esti-
mation using multiple regression equations which is very efficient in the presence of het-
eroskedasticity .

Chapter 5: is dedicated to numerical results and discussion of a mathematical approach.
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Chapter 2

A Double Sided Kernel in SISO LTI
Representation [18]

As mentioned in the introduction, algebraic estimation has different advantages where the
framework is first laid in [9] and [8]. The theory for the problem considered in this thesis
was initially briefly presented in [13]. It employs forward and backward integration and
Cauchy formula for multiple integrals to convert a high order differential equation, that
embodies a system invariant, into an integral form with no singularities at the boundaries
of the observation window. In any observation window, the output reproducing form of
system invariance can then be used to characterize system trajectories. An equivalent
system representation takes the form of a subspace of an RKHS Hilbert space - a fact that
can be used in denoisification of measured output [16].The paper considers only single-input
single-output systems and it states the problem as follows.

2.1 Algebraic parameter estimation using kernel representation of

homogeneous SISO LTI systems [13]

The estimation problem assumes a SISO LTI system structure :

ẋ = Ax

y = Cx (2.1)
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where the system matrix A is in canonical form,

0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 · · · 1

−a0 −a1 −a2 . . . −an−1


(2.2)

and,

C =
[
1 0 0 . . .

]
(2.3)

so that the characteristic equation of the system is,

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t) = 0 (2.4)

The unknown values of the parameters ai, i = 0, .., n − 1 need to identified using noisy
observations of the system’s output y(t) over a finite, but arbitrary, interval of time t ∈
[0, T ], T > 0. The input-output equation of the system can be represented as;

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t) = −bn−1u
(n−1)(t)− · · · − b0u(t) (2.5)

In the light of the assumptions made, the system is differentially flat, so that the entire
state vector x(t), for t ∈ [a, b], can be instantaneously recovered from the knowledge of the
input and output functions u(t), y(t), t ∈ [a, b] and their derivatives

2.1.1 A Differential invariant and its controlled version

The LHS and RHS of equation (2.5) involve differential operators F and U acting on the
system so that it can be represented as;

F (y)(t) = U(u)(t); t ∈ [a, b] (2.6)
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If input to the system is not changing for all times then F represents a differential invariant
whose output remains constant under the action of the flow of the system. If input u varies
in time the equality delivers what is referred as controlled invariance.

2.1.2 Kernel Representation [5]

Applying control invariance of (2.6), which in this case coincides with an input-output
system equation, an initial condition free integral representation of the system can be
obtained. The construction relies on the introduction of functions, which act as annihilators
of initial or boundary conditions.

Definition of Annihilators
A pair of smooth (class C∞) functions

(αa, αb) , αs : [a, b]→ R

s = a or b , is an annihiltor of the boundary conditions for system (2.5) if the αs are non-
negative, monotonic and vanish with their derivatives up to order n - 1 at the respective
ends of the the interval [a,b]; i.e.

α(i)
s (s) = 0 i = 0, · · · , n− 1; s = a, b; α(0)

s ≡ αs

such that their sum is strictly positive, i.e. for some constant c>0,

αab(t) := αa(t) + αb(t) > ct ∈ [a, b]

An example for such an annihilator for system (2.5) is the pair

αa(t) := (t− a)n, αb(t) := (b− t)n t ∈ [a, b]

αab(t) := αa(t) + αb(t) > 0 t ∈ [a, b]

αab(s) = (b− a)n, s = a, b

Applying the annihilators the integral representation of the system (2.5) can be obtained
as stated below in Theorem 1.
The paper [13] proceeds to develop the kernel representation for a third order system.
In this thesis the double sided kernel approach is presented explicitly for a fourth order
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system. The knowledge of the system characteristic equation enables one to replace the
state equations with an output reproducing property on an arbitrary time interval [a, b].
The differential invariance, which is essentially the characteristic equation, is used to derive
the behavioral model of the system [14]. The mathematical interpretation as a Reproducing
Kernel Hilbert Space (RKHS) of the behavioral model allows us to extract signal and its
time derivatives that confirm the system invariance from output measurement subject to
noise [25].

The following theorem describing such system representation has been stated and proved.

Theorem 1. There exist Hilbert-Schmidt kernels KDS, Ki
DS, i = 1, · · ·n− 1, such that the

output function y of (2.5) is reproduced on any given interval [a, b] in accordance with the
action of the evaluation functional

y(t) =

∫ b

a

KDS(t, τ)y(τ) dτ ; ∀t ∈ [a, b] (2.7)

and the derivatives of the output y(1), · · · y(n−1) can be computed recursively by way of output
integration, so that for i = 1, · · ·n− 1 and for all t ∈ [a, b]:

y(i)(t) =
i−1∑
k=0

bk(t)y
(k)(t) +

∫ b

a

Ki
DS(t, τ)y(τ) dτ (2.8)

where y(0) ≡ y and bk(·) are rational functions of t.Hilbert-Schmidt kernels are square
integrable functions on L2[a, b]× L2[a, b].

The kernels of Theorem 1 have the following expression for a system of order n,

KF,y(n, t, τ) =
n∑
j=1

(−1)j+1

(
n

j

)
n!(t− τ)j−1(τ − a)n−j

(n− j)!(j − 1)!

+
n−1∑
i=0

ai

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)n−i+j−1(τ − a)n−j

(n− j)!(n− i+ j − 1)!

(2.9)
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KB,y(n, t, τ) =
n∑
j=1

(
n

j

)
n!(t− τ)j−1(b− τ)n−j

(n− j)!(j − 1)!

+
n−1∑
i=0

ai

i∑
j=0

(
i

j

)
n!(t− τ)n−i+j−1(b− τ)n−j

(n− j)!(n− i+ j − 1)!

(2.10)

KF,u(n, t, τ) =
n−1∑
i=0

bi

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)n−i+j−1(τ − a)n−j

(n− j)!(n− i+ j − 1)!
(2.11)

KB,u(n, t, τ) =
n−1∑
i=0

bi

i∑
j=0

(
i

j

)
n!(t− τ)n−i+j−1(b− τ)n−j

(n− j)!(n− i+ j − 1)!
(2.12)

2.2 Kernel development for a fourth order system [18]

The general characteristic equation of a fourth order system is written as below:

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0 (2.13)

on an interval [a, b].

Multiplying equation (2.13)by (ε − a)4 and by (b − ζ)4 we obtain (2.14) and (2.15) re-
spectively.

(ε−a)4y(4)(t)+a3(ε−a)4y(3)(t)+a2(ε−a)4y(2)(t)+a1(ε−a)4y(1)(t)+a0(ε−a)4y(t) = 0 (2.14)

(b−ζ)4y(4)(t)+a3(b−ζ)4y(3)(t)+a2(b−ζ)4y(2)(t)+a1(b−ζ)4y(1)(t)+a0(b−ζ)4y(t) = 0 (2.15)

We will integrate (2.14) and (2.15) four times on the interval [a, a+ τ ] and [b−σ, b] , which
essentially means that the (2.13) will be integrated in the forward direction for the interval
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[a, a+ τ ] and in the backward direction during the interval [b, b− σ].
Each term in (2.14) will be separately integrated four times as below,

∫ a+τ

a

(ε− a)4
(
y(4)
)

(ε)dε

= τ 4y(3)(a+ τ)−
[
4(ε− a)3y(2) (ε)|a+τ

a −
∫ a+τ

a

12(ε− a)2y(2)(ε)d(ε)

]

= τ 4y(3)(a+ τ)− 4τ 3y(2)(a+ τ) + 12(ε− a)2y (ε)|a+τ
a −

∫ a+τ

a

24(ε− a)y(ε)d(ε)

= τ 4y(3)(a+ τ)− 4τ 3y(2)(a+ τ) + 12τ 2y(1)(a+ τ)− 24(ε− a)y (ε)|a+τ
a

+

∫ a+τ

a

24(ε− a)y(ε)d(ε) (2.16)

∫ a+τ

a

(ε− a)4y(4)(ε)dε = τ 4y(3)(a+ τ)− 4τ 3y(2)(a+ τ) + 12τ 2y(1)(a+ τ)

− 24τy(a+ τ) +

∫ a+τ

a

24y(ε)dε

(2.17)

The upper limit of the integral is made a " dummy variable", in order to integrate the first
term of (2.14) again, that is set ε′ = a+ τ and hence,
τ 4y(3)(a+ τ) = (ε′ − a)4 y(3) (ε′)

τ 3y(2)(a+ τ) = (ε′ − a)3 y(2) (ε′)

τ 2y(1)(a+ τ) = (ε′ − a)2 y(1) (ε′)

τy(a+τ) = (ε′ − a) y (ε′) , the integration proceeds with the above changes and integrating
(2.14) again,
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∫ a+τ

a

∫ ε′

a

(ε− a)4y(4)(ε)dεdε′

=

∫ a+τ

a

(ε′ − a)
4
y(3) (ε′) dε′ − 4

∫ a+ε

a

(ε′ − a)
3
y(2) (ε′) dε′

+ 12

∫ a+ε

a

(ε′ − a)
2
y(1) (ε′) dε′ − 24

∫ a+ε

a

(ε′ − a) y (ε′) dε

+ 24

∫ a+ε

a

∫ ε′

a

y (ε′) dεdε′ (2.18)

∫ a+τ

a

∫ ε′

a

(ε− a)4y(4)(ε)dεdε′

= (ε′ − a)
4
y(2) (ε′)|a+τ

a − 4

∫ a+τ

a

(ε′ − a)
3
y(2) (ε′) dε′ − 4 (ε′ − a)

3
y (ε′)|a+τ

a

+ 12

∫ a+τ

a

(ε′ − a)
2
y (ε′) dε′ + 12 (ε′ − a)

2
y (ε′)|a+τ

a

− 24

∫ a+τ

a

(ε′ − a) y (ε′) dε′ + 24

∫ a+ε

a

∫ ε′

a

y(ε)d(ε)dε′

− 24

∫ a+τ

a

(ε′ − a) y (ε′) dε′ (2.19)

∫ a+τ

a

∫ ε′

a

(ε− a)4y(4)(ε)dεdε′

=τ 4y(2)(a+ τ)− 4 (ε′ − a)
3
y ε′|a+τ

a + 12

∫ a+τ

a

(ε′ − a)
2
y (ε′) dε′

− 4τ 3y(a+ τ) + 12 (ε′ − a)
2
y (ε′)|a+τ

a − 24

∫ a+τ

a

(ε′ − a) y (ε′) dε′

+ 12τ 2y(a+ τ) + 24

∫ a+ε

a

∫ ε′

a

y(ε)d(ε)dε′ − 48

∫ a+τ

a

(ε′ − a) y (ε′) dε′ (2.20)
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∫ a+τ

a

∫ ε′

a

(ε− a)4y(4)(ε)dεdε′

=τ 4y(2)(a+ τ)− 4τ 3y(a+ τ) + 12 (ε′ − a)
2
y (ε)|a+τ

a

− 24

∫ a+τ

a

(ε′ − a) y (ε′) dε′ − 4τ 3y(a+ τ) + 24τ 2y(a+ τ)

+ 24

∫ a+ε

a

∫ ε′

a

y(ε)d(ε)dε′ − 72

∫ a+τ

a

(ε′ − a) y (ε′) dε′ (2.21)

Finally we get ,∫ a+τ

a

∫ ε′

a

(ε− a)4y(4)(ε)dεdε′ =τ 4y(2)(a+ τ)− 8τ 3y(a+ τ) + 36τ 2y(a+ τ)

− 96

∫ a+τ

a

(ε′ − a) y (ε′) dε′ + 24

∫ a+τ

a

∫ ε′

a

y(ε)dεdε′

(2.22)

To integrate for the third time, we again set ε′′ = a+ τ in (2.22) we get,

∫ a+τ

a

∫ ε′

a

∫ ε′′

a

(ε− a)4y(4)(ε)dεdε′dε′′

=

∫ a+τ

a

(ε′′ − a)
4
y(2) (ε′′) dε′′ − 8

∫ a+τ

a

(ε′′ − a)
3
y′ (ε′′) dε′′

+ 36

∫ a+τ

a

(ε′′ − a)
2
y (ε′′) dε′′ − 96

∫ a+τ

a

∫ ε′′

a

(ε′ − a) y (ε) dε′dε′′

+ 24

∫ a+τ

a

∫ ε′

a

∫ ε′′

a

y(ε)dεdε′dε′′ (2.23)

∫ a+τ

a

∫ ε′

a

∫ ε′′

a

(ε− a)4y(4)(ε)dεdε′dε′′

=τ 4y(1)(a+ τ)− 4 (ε′′ − a)
3
y (ε′′)|a+τ

a + 12

∫ a+τ

a

(ε′′ − a)
2
y (ε′′) dε′′
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− 8τ 3y(a+ τ) + 60

∫ a+τ

a

(ε′′ − a)
2
y (ε′′) dε′′

− 96

∫ a+τ

a

∫ ε′′

a

(ε′ − a) y (ε) dε′dε′′ + 24

∫ a+τ

a

∫ ε′

a

∫ ε′′

a

y(ε)dεdε′dε′′ (2.24)

∫ a+τ

a

∫ ε′

a

∫ ε′′

a

(ε− a)4y(4)(ε)dεdε′dε′′

=τ 4y(a+ τ)− 12τ 3y(a+ τ) + 72

∫ a+τ

a

(ε′ − a)
2
y (ε′′) dε′′

− 96

∫ a+τ

a

∫ ε′′

a

(ε′ − a) y (ε′) dεdε′′ + 24

∫ a+τ

a

∫ ε′

a

∫ ε′′

a

y(ε)dεdε′dε′′ (2.25)

Replacing the upper limit on the integral by a ‘dummy variable’, ε′′′ = a+τ and integrating
the first term of (2.14) for the fourth time,

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

(ε− a)4y(4)(ε) dεdε′dε′′dε′′′

=

a+τ∫
a

(ε′′′ − a)4y(1)(ε′′′)dε′′′ −
a+τ∫
a

12(ε′′′ − a)3y(ε′′′)dε′′′

+

a+τ∫
a

ε′′′∫
a

72(ε′′ − a)2y(ε′′)dε′′dε′′′ −
a+τ∫
a

ε′′′∫
a

ε′′∫
a

96(ε′ − a)y(ε′)dε′dε′′dε′′′ (2.26)

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

24y(ε)dεdε′dε′′dε′′′

= τ 4y(a+ τ)−
a+τ∫
a

16(ε′′′ − a)3y(ε′′′)dε′′′ +

a+τ∫
a

ε′′′∫
a

72(ε′′ − a)2y(ε′′)dε′′dε′′′

−
a+τ∫
a

ε′′′∫
a

ε′′∫
a

96(ε′ − a)y(ε′)dε′dε′′dε′′′ +

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

24y(ε)dεdε′dε′′dε′′′ (2.27)
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Integrating the second term in (2.14) for the first time,

a+τ∫
a

a3(ε− a)4y(3)(ε)dε

= a3(ε− a)4y(2)(ε) |a+τ
a −

a+τ∫
a

4a3(ε− a)3y(2)(ε)dε

= a3τ
4y(2)(a+ τ)−

[
4a3(ε− a)3y(1)(ε) |a+τ

a −
a+τ∫
a

12a3(ε− a)2y(1)(ε)dε

]

= a3τ
4y(2)(a+ τ)− 4a3τ

3y(1)(a+ τ) + 12a3τ
2y(a+ τ)−

a+τ∫
a

24a3(ε− a)y(ε)dε (2.28)

Following similar steps as before and introducing ‘dummy variable’, ε′ = a + τ , and inte-
grating for the second time,

a+τ∫
a

ε′∫
a

a3(ε− a)4y(3)(ε)dεdε′

=

a+τ∫
a

a3(ε′ − a)4y(2)(ε′)dε′ −
a+τ∫
a

4a3(ε′ − a)3y(1)(ε′)dε′ +

a+τ∫
a

12a3(ε′ − a)2y(ε′)dε′

−
a+τ∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′

= a3τ
4y(1)(a+ τ)− 8a3τ

3y(a+ τ) +

a+τ∫
a

36a3(ε′ − a)2y(ε′)dε′

−
a+τ∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′ (2.29)

Integrating for the third time,
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a+τ∫
a

ε′′∫
a

ε′∫
a

a3(ε− a)4y(3)(ε)dεdε′dε′′

=

a+τ∫
a

a3(ε′′ − a)4y(1)(ε′′)dε′′ −
a+τ∫
a

8a3(ε′′ − a)3y(ε′′)dε′′

+

a+τ∫
a

ε′′∫
a

36a3(ε′ − a)2y(ε′)dε′dε′′ −
a+τ∫
a

ε′′∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′dε′′

= a3τ
4y(a+ τ)−

a+τ∫
a

12a3(ε′′ − a)3y(ε′′)dε′′ +

a+τ∫
a

ε′′∫
a

36a3(ε′ − a)2y(ε′)dε′dε′′

−
a+τ∫
a

ε′′∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′dε′′ (2.30)

Repeating the steps and integrating the second term in (2.14) for the fourth time,

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

a3(ε− a)4y(3)(ε)dεdε′dε′′

=

a+τ∫
a

a3(ε′′′ − a)4y(ε′′′)dε′′′ −
a+τ∫
a

ε′′′∫
a

12a3(ε′′ − a)3y(ε′′)dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

36a3(ε′ − a)2y(ε′)dε′dε′′dε′′′ −
a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′dε′′dε′′′ (2.31)

Integrating the third term in (2.14) once,

a+τ∫
a

a2(ε− a)4y(2)(ε)dε = a2(ε− a)4y(1)(ε) |a+τ
a −

a+τ∫
a

4a2(ε− a)3y(1)(ε)dε
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= a2τ
4y(1)(a+ τ)−

[
4a2(ε− a)3y(ε) |a+τ

a −
a+τ∫
a

12a2(ε− a)2y(ε)dε

]

= a2τ
4y(1)(a+ τ)− 4a2τ

3y(a+ τ) +

a+τ∫
a

12a2(ε− a)2y(ε)dε (2.32)

Integrating for the second time,

a+τ∫
a

ε′∫
a

a2(ε− a)4y(2)(ε)dεdε′

=

a+τ∫
a

a2(ε′ − a)4y(1)(ε′)dε′ −
a+τ∫
a

4a2(ε′ − a)3y(ε′)dε′ +

a+τ∫
a

ε′∫
a

12a2(ε− a)2y(ε)dεdε′

= a2τ
4y(a+ τ)−

a+τ∫
a

8a2(ε′ − a)3y(ε′)dε′ +

a+τ∫
a

ε′∫
a

12a2(ε− a)2y(ε)dεdε′ (2.33)

Integrating the third term for the third time,

a+τ∫
a

ε′′∫
a

ε′∫
a

a2(ε− a)4y(2)(ε)dεdε′dε′′

=

a+τ∫
a

a2(ε′′ − a)4y(ε′′)dε′′ −
a+τ∫
a

ε′′∫
a

8a2(ε′ − a)3y(ε′)dε′dε′′

+

a+τ∫
a

ε′′∫
a

ε′∫
a

12a2(ε− a)2y(ε)dεdε′dε′′ (2.34)

Integrating the above equation again,

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

a2(ε− a)4y(2)(ε)dεdε′dε′′dε′′′
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=

a+τ∫
a

ε′′′∫
a

a2(ε′′ − a)4y(ε′′)dε′′dε′′′ −
a+τ∫
a

ε′′′∫
a

ε′′∫
a

8a2(ε′ − a)3y(ε′)dε′dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

12a2(ε− a)2y(ε)dεdε′dε′′dε′′′ (2.35)

Integrating the fourth term in (2.14),

a+τ∫
a

a1(ε− a)y(1)(ε)dε

= a1(ε− a)4y(ε) |a+τ
a −

a+τ∫
a

4a1(ε− a)3y(ε)dε

= a1τ
4y(a+ τ)−

a+τ∫
a

4a1(ε− a)3y(ε)dε (2.36)

By introducing the dummy variable and integrating for the second time,

a+τ∫
a

ε′∫
a

a1(ε− a)4y(1)(ε)dεdε′

=

a+τ∫
a

a1(ε′ − a)4y(ε′)dε′ −
a+τ∫
a

ε′∫
a

4a1(ε− a)3y(ε)dεdε′ (2.37)

Integrating the above equation again,

a+τ∫
a

ε′′∫
a

ε′∫
a

a1(ε− a)4y(1)(ε)dεdε′dε′′ =

a+τ∫
a

ε′′∫
a

a1(ε′ − a)4y(ε′)dε′dε′′

−
a+τ∫
a

ε′′∫
a

ε′∫
a

4a1(ε− a)3y(ε)dεdε′dε′′ (2.38)
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Finally integrating the fourth term of (2.14) for the fourth time,

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

a1(ε− a)4y(1)(ε)dεdε′dε′′dε′′′

=

a+τ∫
a

ε′′′∫
a

ε′′∫
a

a1(ε′ − a)4y(ε′)dε′dε′′dε′′′ −
a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

4a1(ε− a)3y(ε)dεdε′dε′′dε′′′

(2.39)

Integrating the last term in (2.14) four times we get,

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

a0(ε− a)4y(ε)dεdε′dε′′dε′′′ (2.40)

Collecting all the terms after being subjected to integration four times , we get,

τ 4y(a+ τ) =

a+τ∫
a

[
16(ε′′′ − a)3 − a3(ε′′′ − a)4

]
y(ε′′′)dε′′′

+

a+τ∫
a

ε′′′∫
a

[
− 72(ε′′ − a)2 + 12a3(ε′′ − a)3 − a2(ε′′ − a)4

]
y(ε′′)dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

[
96(ε′ − a)− 36a3(ε′ − a)2 + 8a2(ε′ − a)3 − a1(ε′ − a)4

]
y(ε′)dε′dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

[
− 24 + 24a3(ε− a)− 12a2(ε− a)2+

4a1(ε− a)3 − a0(ε− a)4

]
y(ε)dεdε′dε′′dε′′′ (2.41)
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Cauchy’s formula for repeated integration (stated below) is used in order to simplify the
above equation and is explained below.

Let f be a continuous function on the real line, then the nth repeated integral of f based
at a,

f (−n)(x) =

∫ x

a

∫ σ1

a

· · ·
∫ σn−1

a

f(σn)dσn · · · dσ2dσ1 (2.42)

is equivalent to a single integration

f (−n)(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt (2.43)

We let a+ τ = t in (2.41) and apply Cauchy’s formula,

(t− a)4y(t) ,

t∫
a

KF,y(t, τ)y(τ) dτ (2.44)

with KF,y(t, τ) as,

KF,y(t, τ) =

[
16(τ − a)3 − a3(τ − a)4

]
+ (t− τ)

[
− 72(τ − a)2 + 12a3(τ − a)3 − a2(τ − a)4

]
+

(t− τ)2

2

[
96(τ − a)− 36a3(τ − a)2 + 8a2(τ − a)3 − a1(τ − a)4

]
+

(t− τ)3

6

[
− 24 + 24a3(τ − a)− 12a2(τ − a)2 + 4a1(τ − a)3 − a0(τ − a)4

]
(2.45)

Now consider the equation (2.15),

(b− ζ)4y(4)(t) + a3(b− ζ)4y(3)(t) + a2(b− ζ)4y(2)(t) + a1(b− ζ)4y(1)(t) + a0(b− ζ)4y(t) = 0
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b∫
b−σ

(b− ζ)4y(4)(ζ)dζ

= (b− ζ)4y(3)ζ |bb−σ +

b∫
b−σ

4(b− ζ)3y(3)(ζ)dζ

= −σ4y(3)(b− σ) +

[
4(b− ζ)3y(2)(ζ) |bb−σ +

b∫
b−σ

12(b− ζ)2y(2)(ζ)dζ

]

= −σ4y(3)(b− σ)− 4σ3y(2)(b− σ) +

[
12(b− ζ)2y(1)(ζ) |bb−σ +

b∫
b−σ

24(b− ζ)y(1)(ζ)dζ

]

= −σ4y(3)(b− σ)− 4σ3y(2)(b− σ)− 12σ2y(1)(b− σ) +

[
24(b− ζ)y(ζ) |bb−σ

+

b∫
b−σ

24y(ζ)dζ

]
= −σ4y(3)(b− σ)− 4σ3y(2)(b− σ)− 12σ2y(1)(b− σ)− 24σy(b− σ)

+

b∫
b−σ

24y(ζ)dζ (2.46)

As shown in the forward integration procedure earlier, the upper limit on the integral is
replaced by a ‘dummy variable ’, ζ ′ = b− σ, meaning

−σ4y(3)(b− σ) = −(b− ζ ′)4y(3)(ζ ′)

−4σ3y(2)(b− σ) = −4(b− ζ ′)3y(2)(ζ ′)

−12σ2y(1)(b− σ) = −12(b− ζ ′)2y(1)(ζ ′)

−24σy(b− σ) = −24(b− ζ ′)y(ζ ′)

Now, we integrate the first term of (2.15) for the second time,
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b∫
b−σ

b∫
ζ′

(b− ζ)4y(4)(ζ)dζ

= −
b∫

b−σ

(b− ζ)4y(3)(ζ ′)dζ ′ −
b∫

b−σ

4(b− ζ ′)3y(2)(ζ ′)dζ ′

−
b∫

b−σ

12(b− ζ ′)2y(1)(ζ ′)dζ ′ −
b∫

b−σ

24(b− ζ ′)y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

24y(ζ)dζdζ ′

= σ4y(2)(b− σ) + 8σ3y(1)(b− σ) + 36σ2y(b− σ)−
b∫

b−σ

96(b− ζ ′)y(ζ ′)dζ ′

+

b∫
b−σ

b∫
ζ′

24y(ζ)dζdζ ′ (2.47)

Replace the upper limit on the integral by a ‘dummy variable’, ζ ′′ = b− σ and integrating
the first term of (2.15) for the third time,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

(b− ζ)4y(4)(ζ)dζdζ ′dζ ′′

=

b∫
b−σ

(b− ζ ′′)4y(2)(ζ ′′)dζ ′′ +

b∫
b−σ

8(b− ζ ′′)3y(1)(ζ ′′)dζ ′′ +

b∫
b−σ

36(b− ζ ′′)2y(ζ ′′)dζ ′′

−
b∫

b−σ

b∫
ζ′′

96(b− ζ ′)y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

24y(ζ)dζdζ ′dζ ′′

= −σ4y(1)(b− σ)− 12σ3y(b− σ) +

b∫
b−σ

72(b− ζ ′′)2y(ζ ′′)dζ ′′
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−
b∫

b−σ

b∫
ζ′′

96(b− ζ ′)y(ζ ′)dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

24y(ζ)dζdζ ′dζ ′′ (2.48)

Replace the upper limit on the integral by a ‘dummy variable’, ζ ′′′ = b−σ, and integrating
for the fourth time,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

(b− ζ)4y(4)(ζ)dζdζ ′dζ ′′dζ ′′′

= −
b∫

b−σ

(b− ζ ′′′)4y(1)(ζ ′′′)dζ ′′′ −
b∫

b−σ

12(b− ζ ′′′)3y(ζ ′′′)dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

72(b− ζ ′′)2y(ζ ′′)dζ ′′ζ ′′′ −
b∫

b−σ

b∫
ζ′′′

b∫
ζ′′

96(b− ζ ′)y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

24y(ζ)dζdζ ′dζ ′′dζ ′′′ (2.49)

Integrating the second term in (2.15) for the first time, we get,

b∫
b−σ

a3(b− ζ)4y(3)(ζ)dζ

= a3(b− ζ)4y(2)(ζ) |bb−σ +

b∫
b−σ

4a3(b− ζ)2y(2)(ζ)dζ

= −a3σ
4y(2)(b− σ) +

[
4a3(b− ζ)y(1)(ζ) |bb−σ +

b∫
b−σ

12a3(b− ζ)2y(1)(ζ)dζ

]
= −a3σ

4y(2)(b− σ)− 4a3σ
3y(1)(b− σ)− 12a3σ

2y(b− σ)

+

b∫
b−σ

24a3(b− ζ)y(ζ)dζ (2.50)
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Introducing the ‘dummy variable’, ζ ′ = b− σ and integrating the above equation again,

b∫
b−σ

b∫
ζ′

a3(b− ζ)4y3(ζ)dζdζ ′

= −
b∫

b−σ

a3(b− ζ ′)4y(2)(ζ ′)dζ ′ −
b∫

b−σ

4a3(b− ζ ′)3y(1)(ζ ′)dζ ′

−
b∫

b−σ

12a3(b− ζ ′)2y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′

= a3σ
4y(1)(b− σ) + 8a3σ

(3)y(b− σ)−
b∫

b−σ

36a3(b− ζ ′)2y(ζ ′)dζ ′

+

b∫
b−σ

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′ (2.51)

Integrating the above again , meaning integrating the third term in (2.15) for the third
time:

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a3(b− ζ)4y3(ζ)dζdζ ′dζ ′′

=

b∫
b−σ

a3(b− ζ ′′)4y(1)(ζ ′′)dζ ′′ +

b∫
b−σ

8a3(b− ζ ′′)3y(ζ ′′)dζ ′′

−
b∫

b−σ

b∫
ζ′′

36a3(b− ζ ′)2y(ζ ′)dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′dζ ′′

= −a3σ
4y(b− σ) +

b∫
b−σ

12a3(b− ζ ′′)3y(ζ ′′)dζ ′′ −
b∫

b−σ

b∫
ζ′′

36a3(b− ζ ′)2y(ζ ′)dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′dζ ′′ (2.52)
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Integrating again,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

a3(b− ζ)4y3(ζ)dζdζ ′dζ ′′dζ ′′′

= −
b∫

b−σ

a3(b− ζ ′′′)4y(ζ ′′′)dζ ′′′ +

b∫
b−σ

b∫
ζ′′′

12a3(b− ζ ′′)3y(ζ ′′)dζ ′′dζ ′′′

−
b∫

b−σ

b∫
ζ′′′

b∫
ζ′′

36a3(b− ζ ′)2y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′′dζ ′′dζ ′′′ (2.53)

The third term of equation (2.15) is integrated once, and we get,

b∫
b−σ

a2(b− ζ)4y(2)(ζ)dζ

= a2(b− ζ)4y(1)(ζ) |bb−σ +

b∫
b−σ

4a2(b− ζ)3y(1)(ζ)dζ

= −a2σ
4y(1)(b− σ) +

[
4a2(b− ζ)3y(ζ) |bb−σ +

b∫
b−σ

12a2(b− ζ)2y(ζ)dζ

]

= −a2σ
4y(1)(b− σ)− 4a2σ

3y(b− σ) +

b∫
b−σ

12a2(b− ζ)2y(ζ)dζ (2.54)

Integrating for the second time,

b∫
b−σ

b∫
ζ′

a2(b− ζ ′)4y(2)(ζ)dζdζ ′ = −
b∫

b−σ

a2(b− ζ ′)4y(1)(ζ ′)
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−
b∫

b−σ

4a2(b− ζ ′)3y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

12a2(b− ζ ′)2y(ζ)dζdζ ′

= a2σ
4y(b− σ)−

b∫
b−σ

8a2(b− ζ ′)3y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

12a2(b− ζ)2y(ζ)dζdζ ′ (2.55)

Third time integration yields,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a2(b− ζ)4y(2)(ζ)dζdζ ′dζ ′′

=

b∫
b−σ

a2(b− ζ ′′)(4)y(ζ ′′)dζ ′′ −
b∫

b−σ

b∫
ζ′′

8a2(b− ζ ′)3y(ζ ′)dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

12a2(b− ζ)2y(ζ)dζdζ ′dζ ′′ (2.56)

Finally, integrating the third term of (2.15) for the fourth time,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

a2(b− ζ)4y(2)(ζ)dζdζ ′dζ ′′dζ ′′′

=

b∫
b−σ

b∫
ζ′′′

a2(b− ζ ′′)4y(ζ ′′)dζ ′′dζ ′′′ −
b∫

b−σ

b∫
ζ′′′

b∫
ζ′′

8a2(b− ζ ′)3y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

12a2(b− ζ)2y(ζ)dζdζ ′dζ ′′dζ ′′′ (2.57)

Integrating the fourth term in (2.15) once, we get,

b∫
b−σ

a1(b− ζ)4y(1)(ζ)dζ = a1(b− ζ)4y(ζ) |bb−σ +

b∫
b−σ

4a1(b− ζ)3y(ζ)dζ
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= −a1σ
4y(b− σ) +

b∫
b−σ

4a1(b− ζ)3y(ζ)dζ (2.58)

Integrating for the second time,

b∫
b−σ

b∫
ζ′

a1(b− ζ)4y(1)(ζ)dζdζ ′

= −
b∫

b−σ

a1(b− ζ ′)4y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

4a1(b− ζ)3y(ζ)dζdζ ′ (2.59)

Integrating the above equation once more,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a1(b− ζ)4y(1)(ζ)dζdζ ′dζ ′′ = −
b∫

b−σ

b∫
ζ′′

a1(b− ζ ′)4y(ζ ′)dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

4a1(b− ζ)3y(ζ)dζdζ ′dζ ′′

(2.60)

Integrating the fourth term for the fourth time,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

a1(b− ζ)4y(1)(ζ)dζdζ ′dζ ′′dζ ′′′ = −
b∫

b−σ

b∫
ζ′′′

b∫
ζ′′

a1(b− ζ ′)4y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

4a1(b− ζ)3y(ζ)dζdζ ′dζ ′′dζ ′′′ (2.61)

Repeating the above for the fifth term in (2.15), we get,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

a0(b− ζ)4y(ζ)dζdζ ′dζ ′′dζ ′′′ (2.62)
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Collecting terms from the integrals of individual terms of (2.15) we have,

σ4y(b− σ)

=

b∫
b−σ

[
16(b− ζ ′′′)3 + a3(b− ζ ′′′)4

]
y(ζ ′′′)dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

[
− 72(b− ζ ′′)2 − 12a3(b− ζ ′′)3 − a2(b− ζ ′′)4

]
y(ζ ′′)ζ ′′ζ ′′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′′

[
96(b− ζ ′) + 36a3(b− ζ ′)2 + 8a2(b− ζ ′)3 + a1(b− ζ ′)4

]
y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

[
− 24− 24a3(b− ζ)− 12a2(b− ζ)2

− 4a1(b− ζ)3 − a0(b− ζ)4

]
y(ζ)dζdζ ′dζ ′′dζ ′′′ (2.63)

In order to apply Cauchy’s formula, all the limits on the integrals in (2.63) are reversed
and making the necessary sign changes, we get

σ4y(b− σ) =

b−σ∫
b

[
− 16(b− ζ ′′′)3 − a3(b− ζ ′′′)4

]
y(ζ ′′′)dζ ′′′

+

b−σ∫
b

ζ′′′∫
b

[
− 72(b− ζ ′′)2 − 12a3(b− ζ ′′)3 − a2(b− ζ ′′)4

]
y(ζ ′′)ζ ′′ζ ′′′

+

b−σ∫
b

ζ′′∫
b

ζ′′∫
b

[
− 96(b− ζ ′)− 36a3(b− ζ ′)2 − 8a2(b− ζ ′)3 − a1(b− ζ ′)4

]
y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b−σ∫
b

ζ′′′∫
b

ζ′′∫
b

ζ′∫
b

[
− 24− 24a3(b− ζ)− 12a2(b− ζ)2

− 4a1(b− ζ)3 − a0(b− ζ)4

]
y(ζ)dζdζ ′dζ ′′dζ ′′′ (2.64)
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Substituting b − σ = t and applying the formula for repeated integrals as listed in (2.42)
and (2.43),

(b− t)4y(t) =

t∫
b

[
− 16(b− σ)3 − a3(b− σ)4

]
y(σ)dσ

+

t∫
b

(t− σ)

[
− 72(b− σ)2 − 12a3(b− σ)3 − a2(b− σ)4

]
y(σ)dσ

+

t∫
b

(t− σ)2

2

[
− 96(b− σ)− 36a3(b− σ)2 − 8a2(b− σ)3 − a1(b− σ)4

]
y(σ)dσ

+

t∫
b

(t− σ)3

6

[
− 24− 24a3(b− σ)− 12a2(b− σ)2

− 4a1(b− σ)3 − a0(b− σ)4

]
y(σ)dσ

(2.65)

We reverse the limits of integration again, and change the variable of integration from σ to
τ and get,

(b− t)4y(t) =

b∫
t

[
16(b− τ)3 + a3(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)

[
72(b− τ)2 + 12a3(b− τ)3 + a2(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)2

2

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)3

6

[
24 + 24a3(b− τ) + 12a2(b− τ)2 + 4a1(b− τ)3

+ a0(b− τ)4

]
y(τ)dτ

(2.66)
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Thereby obtaining,

(b− t)4y(t) ,

b∫
t

KB,y(t, τ)y(τ) dτ (2.67)

with

KB,y(t, τ) =

[
16(b− τ)3 + a3(b− τ)4

]

+ (t− τ)

[
72(b− τ)2 + 12a3(b− τ)3 + a2(b− τ)4

]

+
(t− τ)2

2

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]

+
(t− τ)3

6

[
24 + 24a3(b− τ) + 12a2(b− τ)2 + 4a1(b− τ)3 + a0(b− τ)4

]

(2.68)

Therefore, adding equations (2.44) and (2.67) and dividing both sides by
[(t− a)4 + (b− t)4] yields:

y(t) =

b∫
a

KDS,y(t, τ)y(τ)dτ (2.69)

where,

KDS,y ,
1

[(t− a)4 + (b− t)4]

KF,y(t, τ) : τ ≤ t

KB,y(t, τ) : τ > t
(2.70)

In order to find the recursive expressions for the derivatives of the output y(t) similar
derivation can be used. To obtain the expression for y(1)(t), equations (2.14) and (2.15)



2 A Double Sided Kernel in SISO LTI Representation [18] 30

need to be integrated three times each. This gives the following expressions:

(t− a)(4)y(1)(t)

=

[
12(t− a)3 − a3(t− a)4

]
y(t)

+

t∫
a

[
− 72(τ − a)2 + 12a3(τ − a)3 − a2(τ − a)4

]
y(τ)dτ

+

t∫
a

(t− τ)

[
96(τ − a)− 36a3(τ − a)2 + 8a2(τ − a)3 − a1(τ − a)4

]
y(τ)dτ

+

t∫
a

(t− τ)2

2

[
− 24 + 24a3(τ − a)− 12a2(τ − a)2

+ 4a1(τ − a)3 − a0(τ − a)4

]
y(τ)dτ

+

t∫
a

(t− τ)2

2
(τ − a)4u(τ)dτ

(2.71)

(b− t)(4)y(1)(t)

=

[
− 12(b− t)3 − a3(b− t)4

]
y(t)

+

b∫
t

[
72(b− τ)2 + 12a3(b− τ)3 + a2(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)2

2

[
24 + 24a3(b− τ) + 12a2(b− τ)2

+ 4a1(b− τ)3 + a0(b− τ)4

]
y(τ)dτ

−
b∫
t

(t− τ)2

2
(b− τ)4u(τ)dτ

(2.72)
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The closed form expression for y(1)(t) is obtained by adding equations (2.71) and (2.72)
and dividing by [(t− a)4 + (b− t)4].
For finding the expression for y(2)(t), equations (2.14) and (2.15) are integrated twice,giving:

(t− a)(4)y(2)(t)

=

[
8(t− a)3 − a3(t− a)4

]
y(1)(t)

+

[
36(t− a)2 + 8a3(t− a)3 − a2(t− a)4

]
y(t)

+

t∫
a

[
96(τ − a)− 36a3(τ − a)2 + 8a2(τ − a)3 − a1(τ − a)4

]
y(τ)dτ

+

t∫
a

(t− τ)

[
− 24 + 24a3(τ − a)− 12a2(τ − a)2

+ 4a1(τ − a)3 − a0(τ − a)4

]
y(τ)dτ

+ (t− τ)(τ − a)4u(τ)dτ

(2.73)

(b− t)(4)y(2)(t)

=

[
− 8(b− t)3 − a3(b− t)4

]
y(1)(t)

+

[
− 36(b− t)2 − 8a3(b− t)3 − a2(b− t)4

]
y(t)

+

b∫
t

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)

[
24 + 24a3(b− τ) + 12a2(b− τ)2

+ 4a1(b− τ)3 + a0(b− τ)4

]
y(τ)dτ

− (t− τ)(b− τ)4u(τ)dτ

(2.74)

The closed form expression for y(2)(t) is obtained by adding equations (2.73) and (2.74)
and dividing by [(t− a)4 + (b− t)4].
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Integrating equations (2.14) and (2.15) once we get an expression for y(3)(t),

(t− a)(4)y(3)(t)

=

[
4(t− a)3 − a3(t− a)4

]
y(2)(t)

+

[
− 12(t− a)2 + 4a3(t− a)3 − a2(t− a)4

]
y(1)(t)

+

[
24(t− a)− 12a3(t− a)2 + 4a2(t− a)3 − a1(t− a)4

]
y(t)

+

t∫
a

[
− 24 + 24a3(τ − a)− 12a2(τ − a)2 + 4a1(τ − a)3 − a0(τ − a)4

]
y(τ)dτ

+

t∫
a

(τ − a)4u(τ)dτ

(2.75)

(b− t)(4)y(3)(t)

=

[
− 4(b− t)3 − a3(b− t)4

]
y(2)(t)

+

[
− 12(b− t)2 − 4a3(b− t)3 − a2(b− t)4

]
y(1)(t)

+

[
− 24(b− t)− 12a3(b− t)2 − 4a2(b− t)3 − a1(b− t)4

]
y(t)

+

b∫
t

[
24 + 24a3(b− τ) + 12a2(b− τ)2 + 4a1(b− τ)3 + a0(b− τ)4

]
y(τ)dτ

−
b∫
t

(b− τ)4u(τ)dτ

(2.76)

The closed form expression for y(3)(t) is obtained by adding equations (2.75) and (2.76)
and dividing [(t− a)4 + (b− t)4].
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Chapter 3

Previous works on Kernel Based
Parameter and State Estimation of LTI
SISO Systems on Finite Interval

In this chapter we define two different approaches and previous works for Parameter esti-
mation of an LTI system using Double Sided Kernel on a finite interval[a, b].The following
specific approaches are chosen to show research progress and improvement over time by
overcoming limitations.

3.1 Two-step Non-asymptotic Parameter and State

Estimation [18]

In this method a completely novel approach to two-step parameter estimation and state
estimation from single noisy realizations of the system output on a finite interval [a, b] is
derived.

3.1.1 Step 1: Parameter estimation [18]

The parameter estimation problem to “identify” the true parameters a0,a1,a2,a3 in terms
of simple unconstrained minimization is formulated using a simple approach of averaging
the reproducing property itself(refer to Theorem 1 in chapter 2) . If exact matching is
required only at a finite number n of discrete time points tj; j = 1, · · · , n then the problem
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amounts to finding the optimal solution to:

min{J(a) :=
1

2n

n∑
i=1

(y(ti)− < y,KDS(ti, ·) >2)2 | w.r.t. a ∈ R3} (3.1)

= min{ 1

2n

n∑
i=1

[
y(ti)−

∫ b

a

KDS(ti, τ)y(τ)dτ

]2

| w.r.t. a ∈ R3}

A continuous time version of the above becomes

min{ 1

2T

∫ b

a

[
y(t)−

∫ b

a

KDS(t, τ)y(τ)dτ

]2

dt | w.r.t. a ∈ R3} (3.2)

with T := b− a.

The cost function in (3.2) can be calculated as follows. KDS(t, τ) is expressed as a scalar
product of some partial kernels

KDS(t, τ) = Kv(t, τ)Ta+ kv5(t, τ) equivalently KDS(t, τ) = aTKv(t, τ) + kv5(t, τ) (3.3)

Kv(t, τ)T := [kv1(t, τ), kv2(t, τ), kv3(t, τ), kv5(t, τ)]; a := [a0, a1, a2, a3]T (3.4)

Substituting the above into the cost of (3.2) yields (with T := b− a)

J(a) :=
1

2T

∫ b

a

[
y(t)−

∫ b

a

KDS(t, τ) y(τ)dτ

]2

dt

=
1

T

∫ b

a

[
1

2
y(t)2 − y(t)

∫ b

a

KDS(t, τ) y(τ)dτ +
1

2

(∫ b

a

KDS(t, τ) y(τ)dτ

)2
]
dt

=
1

T

∫ b

a

[
1

2
y(t)2 − y(t)

∫ b

a

KDS(t, τ) y(τ)dτ +
1

2

∫ b

a

KDS(t, τ) y(τ)dτ

∫ b

a

KDS(t, s) y(s)ds

]
dt

=
1

2T

∫ b

a

y(t)2dt− 1

T

∫ b

a

∫ b

a

KDS(t, τ) y(τ)y(t) dτ dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

KDS(t, τ)KDS(t, s) y(τ)y(s) dτ ds dt
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Hence

J(a) =

=
1

2T

∫ b

a

y(t)2dt− 1

T

∫ b

a

∫ b

a

[Kv(t, τ)Ta+ kv5(t, τ)] y(τ)y(t) dτ dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

[aTKv(t, τ) + kv5(t, τ)][Kv(t, s)
Ta+ kv5(t, s)] y(τ)y(s) dτ ds dt

=
1

2T

∫ b

a

y(t)2dt− 1

T

∫ b

a

∫ b

a

Kv(t, τ)T y(τ)y(t) dτ dt a− 1

T

∫ b

a

∫ b

a

kv5(t, τ) y(τ)y(t) dτ dt

+
1

2T
aT
∫ b

a

∫ b

a

[∫ b

a

Kv(t, τ)Kv(t, s)
T dt

]
y(τ)y(s) dτ ds a

+
1

2T

∫ b

a

∫ b

a

∫ b

a

kv5(t, τ)Kv(t, s)
T y(τ)y(s) dτ ds dt a

+ aT
1

2T

∫ b

a

∫ b

a

∫ b

a

Kv(t, τ)kv5(t, s) y(τ)y(s) dτ ds dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

kv5(t, τ)kv5(t, s)] y(τ)y(s) dτ ds dt

Assembling terms

J(a) = d+ bTa+
1

2
aTCa with

d :=

{
1

2T

∫ b

a

y(t)2dt− 1

T

∫ b

a

∫ b

a

kv5(t, τ) y(τ)y(t) dτ dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

kv5(t, τ)kv5(t, s)] y(τ)y(s) dτ ds dt

}
bT :=

{
− 1

T

∫ b

a

∫ b

a

Kv(t, τ)T y(τ)y(t) dτ dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

[Kv(t, s)
Tkv5(t, τ) +Kv(t, τ)Tkv5(t, s)] y(τ)y(s) dτ ds dt

}
C :=

1

T

{∫ b

a

∫ b

a

[∫ b

a

Kv(t, τ)Kv(t, s)
T dt

]
y(τ)y(s) dτ ds

}
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The standard quadratic cost yields a minimization problem w.r.t. parameter a that is
solved globally and analytically; [24] :

J(a) := d+ bTa+
1

2
aTCa

min{J(a) | a ∈ R3} is attained globally and uniquely at

â = −C−1b; with minimum value J(â) = d− 1

2
bTC−1b (3.5)

Also, it should be noted that the triple intergrals can be written as alternative integral
products expressions which are easier to handle numerically

∫ b

a

∫ b

a

∫ b

a

kv5(t, τ)kv5(t, s)] y(τ)y(s) dτ ds dt =

∫ b

a

(∫ b

a

kv5(t, τ) y(τ) dτ

)2

dt∫ b

a

∫ b

a

∫ b

a

[Kv(t, s)
Tkv5(t, τ) +Kv(t, τ)Tkv5(t, s)] y(τ)y(s) dτ ds dt

=

∫ b

a

(∫ b

a

Kv(t, s)
Ty(s) ds

)(∫ b

a

kv5(t, τ) y(τ) dτ

)
dt

+

∫ b

a

(∫ b

a

Kv(t, τ)Ty(τ) dτ

)(∫ b

a

kv5(t, s) y(s) ds

)
dt

∫ b

a

∫ b

a

[∫ b

a

Kv(t, τ)Kv(t, s)
T dt

]
y(τ)y(s) dτ ds

=

∫ b

a

[∫ b

a

Kv(t, τ) y(τ) dτ

] [∫ b

a

Kv(t, s) y(s) ds

]T
dt
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The discrete cost (3.1) can be computed similarly, as follows:

J(a) :=
1

2n

n∑
i=1

[
y(ti)−

∫ b

a

KDS(ti, τ) y(τ)dτ

]2

=
1

n

n∑
i=1

[
1

2
y(ti)

2 − y(ti)

∫ b

a

KDS(ti, τ) y(τ)dτ +
1

2

(∫ b

a

KDS(ti, τ) y(τ)dτ

)2
]

=
1

n

n∑
i=1

[
1

2
y(ti)

2 − y(ti)

∫ b

a

KDS(ti, τ) y(τ)dτ +
1

2

∫ b

a

KDS(ti, τ) y(τ)dτ

∫ b

a

KDS(ti, s) y(s)ds

]
=

1

2n

n∑
i=1

y(ti)
2 − 1

n

n∑
i=1

y(ti)

∫ b

a

KDS(ti, τ) y(τ) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

KDS(ti, τ)KDS(ti, s) y(τ)y(s) dτ ds

Expanding the kernels yields

J(a) =

=
1

2n

n∑
i=1

y(ti)
2 − 1

n

n∑
i=1

∫ b

a

[Kv(ti, τ)a+ kv5(ti, τ)] y(τ)y(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

[aTKv(ti, τ) + kv5(ti, τ)][Kv(ti, s)
Ta+ kv5(ti, s)] y(τ)y(s) dτ ds

=
1

2n

n∑
i=1

y(ti)
2dt− 1

n

n∑
i=1

∫ b

a

Kv(ti, τ)T y(τ)y(ti) dτ a−
1

n

n∑
i=1

∫ b

a

kv5(ti, τ) y(τ)y(ti) dτ

+
1

2n
aT

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)Kv(ti, s)
Ty(τ)y(s) dτ ds a

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)Kv(ti, s)
T y(τ)y(s) dτ ds a

+ aT
1

2n

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)kv5(ti, s) y(τ)y(s) dτ ds

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)kv5(ti, s)] y(τ)y(s) dτ ds
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Assembling terms again delivers a standard quadratic

J(a) = d+ bTa+
1

2
aTCa with

d :=

{
1

2n

n∑
i=1

y(ti)
2 − 1

n

n∑
i=1

∫ b

a

kv5(ti, τ) y(τ)y(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)kv5(ti, s)] y(τ)y(s) dτ ds

}

bT :=

{
− 1

n

n∑
i=1

∫ b

a

Kv(ti, τ)T y(τ)y(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

[Kv(ti, s)
Tkv5(ti, τ) +Kv(ti, τ)Tkv5(ti, s)] y(τ)y(s) dτ ds

}

C :=

{
1

n

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)Kv(ti, s)
T y(τ)y(s) dτ ds

}

min{J(a) | a ∈ R3} is attained globally and uniquely at

â = −C−1b; with minimum value J(â) = d− 1

2
bTC−1b (3.6)

The double integrals above can again be written in terms of single integrals

∫ b

a

∫ b

a

kv5(ti, τ)kv5(ti, s)] y(τ)y(s) dτ ds =

(∫ b

a

kv5(ti, τ) y(τ) dτ

)2

∫ b

a

∫ b

a

[Kv(ti, s)
Tkv5(ti, τ) +Kv(ti, τ)Tkv5(ti, s)] y(τ)y(s) dτ ds

=

(∫ b

a

Kv(ti, s)
Ty(s) ds

)(∫ b

a

kv5(ti, τ) y(τ) dτ

)
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+

(∫ b

a

Kv(ti, τ)Ty(τ) dτ

)(∫ b

a

kv5(ti, s) y(s) ds

)
∫ b

a

∫ b

a

Kv(ti, τ)Kv(ti, s)
Ty(τ)y(s) dτ ds

=

[∫ b

a

Kv(ti, τ) y(τ) dτ

] [∫ b

a

Kv(ti, s) y(s) ds

]T
3.1.2 Step 2: Output estimation by projection [18]

The system output after estimating the parameters can be reconstructed using

ŷ =

∫ b

a

KDS(ti, τ)z(τ)dτ (3.7)

where z(τ) is the measured signal.
However, as a more precise alternative to the above, the system output can be smoothed/re-
constructed from a noisy measurement by direct orthogonal projection onto the subspace
spanned by the fundamental solutions of the characteristic equation (2.4) of the system.
This is because every solution of the characteristic equation with the already identified
parameter vector a satisfies the reproducing property of Theorem 1 in chapter 2 and so,
the projection onto the space of fundamental solutions will be the noise free trajectory of
the system. The fundamental solutions of the characteristic equation are obtained by the
direct integration of (2.4). This is performed as follows. We select n independent vectors
as initial conditions for the homogeneous LTI system in (2.4) in chapter 2. These initial
conditions can be taken as the vectors of the canonical basis in Rn i.e,

e1 = [1, 0, ..., 0]

e2 = [0, 1, ..., 0]

· · · (3.8)

en = [0, 0, ..., 1] (3.9)

The system equation (2.4) is then solved for each individual initial condition yielding solu-
tions

yi(a) = ei i = 1, · · · , n.
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It is an elementary fact from the theory of ordinary differential equations that any solution
of the system (2.4) with any initial condition is a linear combination of such fundamental
solutions yi. Hence we search for the coefficients of this linear combination so that the
resulting function is the closest to the output measurement data. Closest solution is found
in terms of an orthogonal projection onto span of Sa.

Sa = span {yi(·), i = 1, · · · , n}

This is best done by orthonormalizing the set of fundamental solutions.The projection of
a measured noisy signal z(·) ∈ L2[a, b] into Sa is given as,

yE(·) , arg min
{
‖z − y‖2

2 |y ∈ S
a
}

(3.10)

We seek,

ŷ =
n∑
i=1

ĉiyi (3.11)

As ŷ is a linear combination, the optimality conditions in (3.10) is achieved if and only if,

〈
z|yj

〉
2

=
n∑
i=1

ĉi
〈
yi|yj

〉
2
j = 1, · · · , n (3.12)

which can be written in a matrix form as:

v = G(y)ĉ; G(y) , mat
{〈
yi|yj

〉
2

}n
i,j=1

v , vec {〈z|yi〉2}
n
i=1 ; ĉ , vec {ĉi}ni=1

(3.13)

G is called the Gram matrix for vectors in span Sa and is invertible because it is known that
all fundamental solutions are linearly independent, from the theory of differential equations.

ĉ = G−1(y)v (3.14)

ŷ , the estimated output is thus obtained from (3.11).
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3.1.3 Reconstruction of the output derivatives [18]

Once we obtain ŷ , the estimated output, the derivatives can be reconstructed using the
formula [15],

y(i)(t) =

∫ b

a

Ki
DS(t, τ)ŷ(τ)dτ (3.15)

where, Ki
DS are the kernel representation for output derivatives. In this thesis we consider

i = 1, 2, and 3. The formulae for kernel representation of output derivatives are developed
in Chapter 2.
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3.2 Parametric estimation and State Estimation using IV-GLS

method [12]

3.2.1 Parametric estimation as a least squares problem [12]

Consider the input-output equation (2.5) of an nth order

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t) = −bn−1u
(n−1)(t)− · · · − b0u(t)

For a given input function u, the estimation problem for system reduces to that of a
homogeneous system as the influence of the input can be factored out from the output
measurement prior to the estimation procedure. The double-sided kernel KDS,y are clearly
linear with respect to the system parameters, So as the kernels of Theorem 1 are linear in
the unknown system coefficients, the reproducing property is first re-written to bring out
this fact while omitting the obvious dependence of the kernels on n. [11].

y(t) =

∫ b

a

KDS,y(t, τ)y(τ) dτ (3.16)

=
n∑
i=0

βi

∫ b

a

KDS(i),y(t, τ)y(τ)dτ (3.17)

where the KDS(i),y; i = 0, · · · , n are “component kernels" of KDS,y that post-multiply the
coefficients βi = ai; i = 0, · · · , n−1, with βn = 1 for convenience of notation. In a noise-free
deterministic setting, the output variable y becomes the measured output coinciding with
the nominal output trajectory yT , so the regression equation for the constant parameters
ai, i = 0, . . . , n− 1, (3.17), can be written in a partitioned form as

yT (t) = [K ā, K1](t; yT )βT (3.18)

ā := [a0, · · · , an−1]; βT := [ā; βn]

where K ā(t; yT ) is a row vector with integral components

K ā(t; yT )k :=

∫ b

a

KDS(k),y(t, τ)yT (τ)dτ ; k = 0, . . . n− 1 (3.19)
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while K1(t; yT ) is a scalar

K1(t; yT ) :=

∫ b

a

KDS(n),y(t, τ)yT (τ)dτ (3.20)

corresponding to βn = 1. Given distinct time instants t1, · · · , tN ∈ (a, b], here referred to
as knots, the regression equation is re-written point-wise in the form of a matrix equation

Q(yT ) = P (yT )ā (3.21)

Q :=


q(t1)
...

q(tN)

 ;P :=


p0(t1) · · · pn−1(t1)

. . .

p0(tN) · · · pn−1(tN)


q(ti) = yT (ti)−K1(ti, yT );

pk(ti) = K ā(ti; yT )k (3.22)

that can be solved using least squares error minimization. provided adequate identifiability
assumptions are met and the output is measured without error.Equation 3.21 is the para-
metric estimation equation to be solved by least squares error minimization.

3.2.2 Instrument Variable - Generalised Least Squares Method (IV -
GLS) [12]

The formulation of the simple regression with distinct time instants t1, · · · , tN ∈ (a, b],
referred to as knots is similar to that of equation (3.21). However least squares error min-
imisation can be solved if the identifiability assumptions are met.The identifiablity condi-
tions are discussed elaborately in the next chapter.With the presence of large measurement
noise, here assumed to be AWGN - white Gaussian and additive, the regression equation
(3.21) is no longer valid as the reproducing property fails to hold along an inexact output
trajectory. It must thus be suitably replaced leading to a stochastic regression problem.
The stochastic output measurement process on a probability space (Ω,F ,P) is

yM(t, ω) = yT (t) + ησ(t, ω) ; t ∈ [a, b] (3.23)



3 Previous works on Kernel Based Parameter and State Estimation of LTI
SISO Systems on Finite Interval 44

where ησ signifies the AWGN with constant variance σ2 and where yT is the true system
output. Here, W σ is the Wiener process which is used to represent the integral of white
noise , informally, ησ(t)dt = σdW (t) with W as the standard Brownian motion. It follows
that the following equality is valid

yM(t) =

∫ b

a

KDS,y(t, τ)yM(τ) dτ + e(t) (3.24)

with e(t) := ησ(t)−
∫ b

a

KDS,y(t, τ) dW σ(τ) (3.25)

Therefore (3.17) becomes

yM(t) =
n∑
i=0

βi

∫ b

a

KDS(i),y(t, τ)yM(τ)dτ + e(t) (3.26)

The above linear regression equation (3.26) fails to agree with the Gauss-Markov assump-
tions as the regressor is correlated with error which is also heteroskedastic.Hetero-skedastic
error is an error with unequal variance. A standard quite powerful way to deal with un-
known heteroskedasticity is to resort to generalized least squares (GLS), which can be
shown to be BLUE ; see [1]. Let Q(yM) and P (yM) be the matrices corresponding to N
samples of the measurement process realization yM at a batch of knots t1, · · · , tN . Then
the stochastic regression error vector is given by

e := [e(ti), · · · , e(tN)]T = Q(yM)− P (yM)ā (3.27)

where e(ti) are as in (3.25).
Applying the expectation operator to equations (3.23) and (3.25) and using the properties
of the Wiener process yields

E[yM(t)] = E[yT (t)] + E[ησ(t)] = yT (t) (3.28)

E[e(t)] = E[ησ(t)]− E
[ ∫ b

a

KDS(t, τ)dW σ(τ)

]
(3.29)

=

∫ b

a

KDS(t, τ)E[dW σ(τ)] = 0 (3.30)
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thus

Cov(e) = E
[
eeT
]

(3.31)

The components of the covariance matrix are calculated as Cov(e(ti), e(tj)).The covariance
formula for the generalized white noise process is written as

E[ησ(t)ησ(s)] = σ2δ(t− s) (3.32)

The sifting property (also referred to as sampling property) of the delta Dirac function,
which is valid for all tempered distributions f (thus also functions with compact support
which are square integrable), is needed here as stated in the form∫ b

a

f(t)δ(t− s)dt = f(s) (3.33)

Writing ησ(τ)dτ in place of dW σ(τ), the covariance calculation is as follows

Cov[e(ti), e(tj)] = E[e(ti)e(tj)]

= E

[[
ησ(ti)−

∫ b

a

KDS(ti, τ)ησ(τ)dτ

][
ησ(tj)−

∫ b

a

KDS(tj, s)η
σ(s)ds

]]

= E[ησ(ti)η
σ(tj)]− E

[ ∫ b

a

KDS(ti, τ)ησ(tj)η
σ(τ)dτ

]
− E

[ ∫ b

a

KDS(tj, s)η
σ(ti)η

σ(s)ds

]
+ E

[ ∫ b

a

∫ b

a

KDS(ti, τ)KDS(tj, s)η
σ(τ)ησ(s)dτds

]
= σ2δ(ti − tj)−

∫ b

a

KDS(ti, τ)E[ησ(tj)η
σ(τ)]dτ −

∫ b

a

KDS(tj, s)E[ησ(ti)η
σ(s)]ds

+

∫ b

a

∫ b

a

KDS(ti, τ)KDS(tj, s)E[ησ(τ)ησ(s)]dτds

= σ2δ(ti − tj)− σ2

∫ b

a

KDS(ti, τ)δ(τ − tj)dτ − σ2

∫ b

a

KDS(tj, τ)δ(τ − ti)dτ

+ σ2

∫ b

a

KDS(ti, τ)

∫ b

a

KDS(tj, s)δ(s− τ)ds dτ

= σ2δ(ti − tj)− σ2KDS(ti, tj)− σ2KDS(tj, ti) + σ2

∫ b

a

KDS(ti, τ)KDS(tj, τ)dτ
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The formula for the variance follows by substituting t = ti = tj, and recalling that, infor-
mally, δ(0) = 1,

Var[e(t)] = σ2 − 2σ2KDS(t, t) + σ2

∫ b

a

[
KDS(t, τ)

]2
dτ

At this point it should be clear that the standard GLS cannot be applied directly as the
covariance matrix depends on the unknown variance σ2 and also on the unknown parameter
vector ā in the KDS kernels. Hence a feasible version of the GLS must be employed here
in which the covariance matrix is estimated progressively as more information about the
regression residuals becomes available. This is typically performed as part of a recursive
scheme in which consecutive batches of samples are drawn from the realization of yM .
Letting Qi − Piā denote the regression error ei in batch i, the recursive GLS algorithm
computes

âk = arg min
ā

(
k∑
i=1

(Qi − Piā)TSi(Qi − Piā)

)
(3.34)

where âk is the parameter estimate update at iteration k of the algorithm. Each weighting
matrix Sk+1, is calculated as the inverse of the covariance matrix based on the parameter
estimate âk obtained.The Recursive GLS with covariance weighting with detailed steps is
described in next chapter(refer to section 4.4)

3.2.3 Errors-in-variables [12]

It is well known that the presence of errors-in-variables induces an asymptotic bias in OLS
regression estimates which is proportional to the signal-to-noise ratio in the observed regres-
sand. In such situations the leading way to eliminate estimation bias is to use Instrumental
Variables (IV); see [30], in the normal equations that deliver the optimal estimates. The
IV method has a long history and multiple applications; refer to [23], [28], [29], [3], [10], [4].

To render statistical consistency for the estimation problem at hand the IV is con-
structed by way of the backward reproducing kernel as described below.

Referring to the exposition of the basic regression problem in section 3.2.1 it follows
from Theorem 1 that the “double-sided” regression equation (3.18), can be cloned as two
statistically independent regression equations corresponding to the forward and backward
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kernels KF,y and KB,y as follows:

(t− a)nyT (t) =

∫ t

a

KF,y(t, τ) yT (τ)dτ

:= [K ā
F , K

1
F ](t; yT ) β ; t ∈ [a, b] (3.35)

(b− t)nyT (t) =

∫ b

t

KB,y(t, τ) yT (τ)dτ

:= [K ā
B, K

1
B](t; yT ) β ; t ∈ [a, b] (3.36)

Given a set of knots [t1, · · · , tN ];N > n; t1 >> a; tN << b, the latter are written in discrete
time as N copies of (3.35) and (3.36) in matrix-vector form

YT = KF (yT )β (3.37)

YT = KB(yT )β (3.38)

YT :=
[
yT (t1) · · · yT (tN)

]T
KF (yT ) :=


1

(t1−a)n
[K ā

F , K
1
F ](t1, yT )

...
1

(tN−a)n
[K ā

F , K
1
F ](tN , yT )

 ;

KB(yT ) :=


1

(b−t1)n
[K ā

B, K
1
B](t1, yT )

...
1

(b−tN )n
[K ā

B, K
1
B](tN , yT )


The equations (3.37) and (3.38) deliver two “independent” OLS estimators for the parameter
vector β corresponding to two normal equations :

KF (yT )TKF (yT )β = KF (yT )TYT

KB(yT )TKB(yT )β = KB(yT )TYT

namely:

β̂F :=
[
KF (yT )TKF (yT )

]−1
KF (yT )TYT (3.39)

β̂B :=
[
KB(yT )TKB(yT )

]−1
KB(yT )TYT (3.40)
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provided that each of the inverted matrices are nonsingular. The more efficient of them
would be the one that corresponds to an inverted matrix having smaller condition number.

Of course, nothing stands in the way of pre-multiplying the forward estimation equa-
tion (3.37) by the backward matrix KB(yT ), or, vice-versa, pre-multiplying the backward
estimation equation (3.38) by the forward matrix KF (yT ). If any of the symmetric matrices
satisfy :

det
[
KB(yT )TKF (yT )

]
6= 0 or

det
[
KF (yT )TKB(yT )

]
6= 0 (3.41)

the other one will also be nonsingular (because they are transposes of one another). This
observation delivers two more estimators which, in the noiseless case, will be competitive
with those in (3.39)-(3.40) :

KB(yT )TKF (yT )β = KB(yT )TYT

KF (yT )TKB(yT )β = KF (yT )TYT

so that

β̂IV F :=
[
KB(yT )TKF (yT )

]−1
KB(yT )TYT (3.42)

β̂IV B :=
[
KF (yT )TKB(yT )

]−1
KF (yT )TYT (3.43)

These are in fact “instrumental variable estimators” as compared with the OLS estimators
(3.39) and (3.40) with KB as the IV for the forward equation (3.42) and with KF as the IV
for the backward equation (3.43). Clearly, as long as the non singularity condition (3.41)
is satisfied then, in the noiseless case, all the estimators are bound to produce the same
value of the estimated parameter vector, i.e. βF = βB = βIV F = βIV B.

The use of the IV as defined above is rigorously justified as follows. When a noisy
realization of a measurement process yM replaces the unknown system output yT , the
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regression equations (3.37), (3.38) re-write as

YM = KF (yM)β + ξ (3.44)

YM = KB(yM)β + ψ (3.45)

with the obvious meaning of KF (yM) and KF (yM) whose arguments were substituted ac-
cordingly. As follows from the definition of the stochastic regression error (3.25) the noise
processes ξ and ψ are expressed by

ξ := η −KF (η)β; ψ := η −KB(η)β (3.46)

Now, the “instrumental variable” KB(yM) is well correlated with YM (as in the noise free
case KB(yT ) produces a system output yT that is computed by the forward kernel as well
as by the backward kernel). On the other hand, the backward kernel matrix KB(yM) is
uncorrelated with the “forward” noise ξ (over the interval (a, t)) if the backward kernel
KB(yM) (involving the noise ψ) is calculated over a disjoint interval (t + ε, b). Implied is
the fact E[KB(yM)ψ] = 0 while E[KB(yM)KF (yM)] 6= 0 for a small separation constant
ε > 0.
A symmetric statement is that the “instrumental variable” KF (yM) is uncorrelated with
the “backward” noise ψ.
The statistical properties of the IV instrument as discussed above restore consistency of
the modified GLS estimator employing such IV instrument; see [30] for a proof in the OLS
case. However, the IV-GLS recursions are now modified to

β̂k+1 = β̂k +Rk+1P̃
T
k+1Sk+1(Q̃k+1 − P̃k+1β̂k) (3.47)

Rk+1 = Rk −RkP̃
T
k+1(S−1

k+1 + P̃k+1RkP̃
T
k+1)−1P̃k+1Rk (3.48)

where the matrices P and Q are replaced by P̃ and Q̃

P̃ = KB(yM)TKF (yM) ; Q̃ = KB(yM)TYM (3.49)

and Mk+1 =
∑k+1

i=0 P̃
T
i SiP̃i and Rk+1 = M−1

k+1 .
It is worth noticing that a stopping criterion of the recursive scheme is elegantly delivered
by the fact that the final estimate should satisfy βn = 1 where β := [a0, · · · , an−1, βn],
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lending a criterion
|ân − 1| < ε for some ε > 0 (3.50)

A similar recursive scheme for the estimator for β̂IV B can also be developed.
When using the recursive IV-GLS algorithm, the covariance of the error terms should be
calculated by replacing KDS by KF or KB appropriately.
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Chapter 4

Kernel-Based FGLS for Parameter
Estimation in LTI Systems

The Parameter Estimation methods which uses Generalised Least Squares-IV method men-
tioned in Chapter 3 uses a simple regression equation (3.21).In our method we use Feasible
Generalised Least Squares with multiple regression. Using Theorem 1, the kernel is inte-
grated multiple times forming multiple linearly independent regression equations.Consider
a fourth order system (2.13) which has four unknown parameters a0, a1, a2, a3 .The kernel
is integrated four times forming four linearly independent stochastic regression equations
matching the number of unknown parameters.These independent regression equations are
derived below:

Consider the forward kernel representation (2.44) for simplicity,

αa(t)y(t) ,
∫ t

a

KF (t, τ)y(τ)dτ (4.1)

and using the Cauchy formula for repeated integration on (4.1) yields

1

(n− 1)!

∫ t

a

αa(τ)(t− τ)n−1y(τ)dτ =
1

n!

∫ t

a

(t− τ)nKF (t, τ)y(τ)dτ n = 1, 2, 3 (4.2)

from (2.45) we have KF (t, τ) as,
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KF (t, τ) =

[
16(τ − a)3 − a3(τ − a)4

]
+ (t− τ)

[
− 72(τ − a)2 + 12a3(τ − a)3 − a2(τ − a)4

]
+

(t− τ)2

2

[
96(τ − a)− 36a3(τ − a)2 + 8a2(τ − a)3 − a1(τ − a)4

]
+

(t− τ)3

6

[
− 24 + 24a3(τ − a)− 12a2(τ − a)2 + 4a1(τ − a)3 − a0(τ − a)4

]
(4.3)

substituting (4.3) in the (4.2) we get,

=

∫ t

a

(t− τ)n

n!

[
16(τ − a)3 − a3(τ − a)4

]
y(τ)dτ

+

∫ t

a

(t− τ)n+1

(n+ 1)!

[
− 72(τ − a)2 + 12a3(τ − a)3 − a2(τ − a)4

]
y(τ)dτ

+

∫ t

a

(t− τ)n+2

(n+ 2)!

[
96(τ − a)− 36a3(τ − a)2 + 8a2(τ − a)3 − a1(τ − a)4

]
y(τ)dτ

+

∫ t

a

(t− τ)n+3

(n+ 3)!

[
− 24 + 24a3(τ − a)− 12a2(τ − a)2 + 4a1(τ − a)3 − a0(τ − a)4

]
y(τ)dτ

(4.4)

or,
1

(n− 1)!

∫ t

a

αa(τ)(t− τ)n−1y(τ)dτ =

∫ t

a

Kn
F (t, τ)y(τ)dτ n = 1, 2, 3 (4.5)

where,

Kn
F (t, τ) =

(t− τ)n

n!

[
16(τ − a)3 − a3(τ − a)4

]
+

(t− τ)n+1

(n+ 1)!

[
− 72(τ − a)2 + 12a3(τ − a)3 − a2(τ − a)4

]
+

(t− τ)n+2

(n+ 2)!

[
96(τ − a)− 36a3(τ − a)2 + 8a2(τ − a)3 − a1(τ − a)4

]
+

(t− τ)n+3

(n+ 3)!

[
− 24 + 24a3(τ − a)− 12a2(τ − a)2 + 4a1(τ − a)3 − a0(τ − a)4

]
(4.6)
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A similar procedure is then used for the backward kernel representation.

αb(t)y(t) =

∫ b

t

KB(t, τ)y(τ)dτ = −
∫ t

b

KB(t, τ)y(τ)dτ (4.7)

using the Cauchy formula for repeated integration on (4.7) yields

1

(n− 1)!

∫ b

t

αb(τ)(t− τ)n−1y(τ)dτ = − 1

n!

∫ b

t

(t− τ)nKB(t, τ)y(τ)dτ n = 1, 2, 3 (4.8)

from (2.68) we have

KB,y(t, τ) =

[
16(b− τ)3 + a3(b− τ)4

]
+ (t− τ)

[
72(b− τ)2 + 12a3(b− τ)3 + a2(b− τ)4

]
+

(t− τ)2

2

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]
+

(t− τ)3

6

[
24 + 24a3(b− τ) + 12a2(b− τ)2 + 4a1(b− τ)3 + a0(b− τ)4

]
(4.9)

substituting (4.9) in (4.8)

= −

[∫ b

t

(t− τ)n

n!

[
16(b− τ)3 + a3(b− τ)4

]
y(τ)dτ

+

∫ b

t

(t− τ)n+1

n+ 1!

[
72(b− τ)2 + 12a3(b− τ)3 + a2(b− τ)4

]
y(τ)dτ

+

∫ b

t

(t− τ)n+2

n+ 2!

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]
y(τ)dτ

+

∫ b

t

(t− τ)n+3

n+ 3!

[
24 + 24a3(b− τ) + 12a2(b− τ)2 + 4a1(b− τ)3 + a0(b− τ)4

]
y(τ)dτ

]
(4.10)
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where,

Kn
B(t, τ) = −

[
(t− τ)n

n!

[
16(b− τ)3 + a3(b− τ)4

]
+

(t− τ)n+1

n+ 1!

[
72(b− τ)2 + 12a3(b− τ)3 + a2(b− τ)4

]
+

(t− τ)n+2

n+ 2!

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]
+

(t− τ)n+3

n+ 3!

[
24 + 24a3(b− τ) + 12a2(b− τ)2 + 4a1(b− τ)3 + a0(b− τ)4

]]
(4.11)

or,

1

(n− 1)!

∫ b

t

αb(τ)(t− τ)n−1y(τ)dτ =

∫ b

t

Kn
B(t, τ)y(τ)dτ n = 1, 2, 3 (4.12)

Therefore, adding equations (2.44) and (2.67)

αa(t)y(t) + αb(t)y(t) =

∫ t

a

KF (t, τ)y(τ)dτ +

∫ b

t

KB(t, τ)y(τ)dτ (4.13)

αa(t)y(t) + αb(t)y(t) =

∫ b

a

KDS(t, τ)y(τ)dτ (4.14)

with

KDS(t, τ) ,

KF (t, τ) : τ ≤ t

KB(t, τ) : τ > t
(4.15)

Adding (4.5) and (4.12) gives

1

(n− 1)!

[ ∫ t

a

αa(τ)(t− τ)n−1y(τ)dτ +

∫ b

t

αb(τ)(t− τ)n−1y(τ)dτ

]
=

[ ∫ t

a

K ′F (t, τ)y(τ)dτ +

∫ b

t

K ′B(t, τ)y(τ)

] (4.16)
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1

(n− 1)!

[ ∫ t

a

αa(τ)(t− τ)n−1y(τ)dτ +

∫ b

t

αb(τ)(t− τ)n−1y(τ)dτ

]
=

∫ b

a

Kn
DS(t, τ)y(τ)dτ

n = 1, 2, 3

(4.17)

with

Kn
DS(t, τ) ,

Kn
F (t, τ) : τ ≤ t

Kn
B(t, τ) : τ > t

(4.18)

Substituting n = 1, 2, 3 in (4.17) and (4.13) yields four linearly independent equations with
four unknown parameters.Using the kernel-based multiple regression equations parameter
and states of a fourth order system are determined.

4.1 Parameter Estimation as a Least Squares Problem [12]

The kernels of Theorem 1 are linear in the unknown system coefficients βi. Omitting the
dependence of kernels on n the reproducing property (for homogeneous systems) is first
re-written.The additional linearly independent equations formed by repeated integration
as in 4.17 with n = 1, 2, 3 can also be represented as:

αab(t)y(t) =
n∑
i=0

βi

∫ b

a

KDS(i)(t, τ)y(τ)dτ (4.19)

∫ b

a

αab(τ)y(τ)dτ =
n∑
i=0

βi

∫ b

a

K1
DS(i)(t, τ)y(τ)dτ (4.20)

∫ b

a

αab(τ)(t− τ)y(τ)dτ =
n∑
i=0

βi

∫ b

a

K2
DS(i)(t, τ)y(τ)dτ (4.21)

∫ b

a

αab(τ)(t− τ)2y(τ)dτ =
n∑
i=0

βi

∫ b

a

K3
DS(i)(t, τ)y(τ)dτ (4.22)

where the KDS(i) and Kn
DS(i) , i = 0, ..., n are ’component kernels’ of KDS and Kn

DS re-
spectively that post-multiply the coefficients βk = ak, k = 0, ..., n − 1 , with βn = 1 for
convenience of notation. In a noise-free deterministic setting, the output variable y becomes
the measured output coinciding with the nominal output trajectory yT , so the regression
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equations for the constant parameters ak,k = 0, ..., n − 1, can be written in a partitioned
form as

αab(t)yT (t) = [KDS(k), KDS(n)](t; yT )βT (4.23)∫ b

a

αab(τ)y(τ)dτ = [K1
DS(k), K

1
DS(n)](t; yT )βT (4.24)∫ b

a

αab(τ)(t− τ)y(τ)dτ = [K2
DS(k), K

2
DS(n)](t; yT )βT (4.25)∫ b

a

αab(τ)(t− τ)2y(τ)dτ = [KDS(k)
3, K3

DS(n)](t; yT )βT (4.26)

where
a := [a0, a1, ..., an−1]; βT := [a, βn]; k = 0, 1....n− 1

where KDS(k)(t; yT ),K1
DS(k)(t; yT ),K2

DS(k)(t; yT ) and K3
DS(k)(t; yT ) are row vectors with in-

tegral components corresponding to a and KDS(n),K1
DS(n),K

2
DS(n) and K3

DS(n) are scalars
corresponding to βn = 1.

αab(t)yT (t) = a

∫ b

a

KDS(k)(t, τ)y(τ)dτ + βn

∫ b

a

KDS(n)(t, τ)y(τ)dτ

(4.27)∫ b

a

αab(τ)y(τ)dτ = a

∫ b

a

K1
DS(k)(t, τ)y(τ)dτ + βn

∫ b

a

K1
DS(n)(t, τ)y(τ)dτ

(4.28)∫ b

a

αab(τ)(t− τ)y(τ)dτ = a

∫ b

a

K2
DS(k)(t, τ)y(τ)dτ + βn

∫ b

a

K2
DS(n)(t, τ)y(τ)dτ

(4.29)∫ b

a

αab(τ)(t− τ)2y(τ)dτ = a

∫ b

a

K3
DS(k)(t, τ)y(τ)dτ + βn

∫ b

a

K3
DS(n)(t, τ)y(τ)dτ

(4.30)

where
a := [a0, a1, ..., an−1]; βn = 1; k = 0, 1....n− 1
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taking the scalar components corresponding to βn to the L.H.S

αab(t)yT (t)− βn
∫ b

a

KDS(n)(t, τ)y(τ)dτ = a

∫ b

a

KDS(k)(t, τ)y(τ)dτ

(4.31)∫ b

a

αab(τ)y(τ)dτ − βn
∫ b

a

K1
DS(n)(t, τ)y(τ)dτ = a

∫ b

a

K1
DS(k)(t, τ)y(τ)dτ

(4.32)∫ b

a

αab(τ)(t− τ)y(τ)dτ − βn
∫ b

a

K2
DS(n)(t, τ)y(τ)dτ = a

∫ b

a

K2
DS(k)(t, τ)y(τ)dτ

(4.33)∫ b

a

αab(τ)(t− τ)2y(τ)dτ − βn
∫ b

a

K3
DS(n)(t, τ)y(τ)dτ = a

∫ b

a

K3
DS(k)(t, τ)y(τ)dτ

(4.34)

where
a := [a0, a1, ..., an−1]; βn = 1; k = 0, 1....n− 1

the equations(4.31),(4.32), (4.33) and (4.34) can also be written in the matrix form .

Q(yT ) = P (yT )a (4.35)

αab(t)yT (t)− βn
∫ b

a

KDS(n)(t, τ)y(τ)dτ∫ b

a

αab(τ)y(τ)dτ − βn
∫ b

a

K1
DS(n)(t, τ)y(τ)dτ∫ b

a

αab(τ)(t− τ)y(τ)dτ − βn
∫ b

a

K2
DS(n)(t, τ)y(τ)dτ∫ b

a

αab(τ)(t− τ)2y(τ)dτ − βn
∫ b

a

K3
DS(n)(t, τ)y(τ)dτ


=



a

∫ b

a

KDS(k)(t, τ)y(τ)dτ

a

∫ b

a

K1
DS(k)(t, τ)y(τ)dτ

a

∫ b

a

K2
DS(k)(t, τ)y(τ)dτ

a

∫ b

a

K3
DS(k)(t, τ)y(τ)dτ


that can be solved using least squares error minimization provided adequate identifiability
assumptions are met and the output is measured without error.

4.1.1 Parameter estimation and Practical Linear Identifiablity

Given distinct time instants ti = t1, · · · , tN ∈ (a, b], here referred to as knots, the regression
equations are re-written point-wise in the form of a matrix equation
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Q(yT ) = P (yT )a (4.36)

αab(t)yT (ti)− βn
∫ b

a

KDS(n)(t, τ)y(τ)dτ∫ b

a

αab(τ)y(τ)dτ − βn
∫ b

a

K1
DS(n)(ti, τ)y(τ)dτ∫ b

a

αab(τ)(ti − τ)y(τ)dτ − βn
∫ b

a

K2
DS(n)(ti, τ)y(τ)dτ∫ b

a

αab(τ)(ti − τ)2y(τ)dτ − βn
∫ b

a

K3
DS(n)(ti, τ)y(τ)ds


=



a

∫ b

a

KDS(k)(ti, τ)y(τ)dτ

a

∫ b

a

K1
DS(k)(ti, τ)y(τ)dτ

a

∫ b

a

K2
DS(k)(ti, τ)y(τ)dτ

a

∫ b

a

K3
DS(k)(ti, τ)y(τ)dτ


where,

Q =:


q1(ti)

q2(ti)

q3(ti)

q4(ti)

 =



αab(t)yT (ti)− βn
∫ b

a

KDS(n)(t, τ)y(τ)dτ∫ b

a

αab(τ)y(τ)dτ − βn
∫ b

a

K1
DS(n)(ti, τ)y(τ)dτ∫ b

a

αab(τ)(ti − τ)y(τ)dτ − βn
∫ b

a

K2
DS(n)(ti, τ)y(τ)dτ∫ b

a

αab(τ)(ti − τ)2y(τ)dτ − βn
∫ b

a

K3
DS(n)(ti, τ)y(τ)dτ


(4.37)

and

P =:


p1(ti)

p2(ti)

p3(ti)

p4(ti)

 =



∫ b

a

KDS(k)(ti, τ)y(τ)dτ∫ b

a

K1
DS(k)(ti, s)y(τ)dτ∫ b

a

K2
DS(k)(ti, s)y(τ)dτ∫ b

a

K3
DS(k)(ti, τ)y(τ)dτ


; a = [a1, a2, a3, a4] (4.38)

where,

q1 :=


q1(t1)

...
q1(tN)

 p1 :=


p1

0(t1) · · · p1
n−1(t1)

. . .

p1
0(tN) · · · p1

n−1(tN)

 (4.39)
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Identifiability of homogeneous LTI systems from a single realization of a
measured output [12]

Referring to Definition 2.1 and Theorem 2.2 from [27], a homogeneous LTI system such as

ẋ(t) = Ax(t); y = Cx; x ∈ Rn

x(0) = b (4.40)

is identifiable from a single noise-free realization of its output trajectory y under precise
conditions, which admittedly are difficult to verify computationally. Stated in equivalent
form:
Definition: [12] Model (4.40) is globally identifiable from b if and only if the functional
mapping b 7→ y(·;A, b) is injective on Rn where y(·;A, b) denotes the output orbit of (4.40)
.
Theorem: [12] Model (4.40) is globally identifiable from b if and only if the output orbit of
(4.40) is not confined to a proper subspace of Rn.
An alternative theoretical identifiability criterion from a single noisy output trajectory
that is easier to verify computationally will be presented elsewhere. The latter is stated in
terms of linear independence of the functions involving the component kernel expressions
in (3.17), namely functions:

fi(t) :=

∫ b

a

KDS(i),y(t, τ)y(τ)dτ ; i = 1, · · · , n (4.41)

Linear independence of the above set can be readily checked by establishing non-singularity
of the Wronskian matrix for (4.41) at some point in the interval [a, b]. However, yet another
practical version of identifiability is sufficient for the present estimation purpose as defined
below.
Definition 2: Practical linear identifiability [12]
The homogeneous system (4.40) is practically linearly identifiable on [a, b] with respect to
a particular noisy discrete realization of the output measurement process, y(t), t ∈ [a, b], if
and only if there exist distinct knots t1, · · · , tN ∈ (a, b] which render rankP (y) = n. Any
such output realization is then called persistent.
In the presence of large measurement noise, here assumed to be AWGN - white Gaussian
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and additive, the regression equation (3.17) is no longer valid as the reproducing property
fails to hold along an inexact output trajectory. It must thus be suitably replaced leading
to a stochastic regression problem. First, the stochastic output measurement process on a
probability space (Ω,F ,P) is

yM(t, ω) = yT (t) + σẆ (t) ; t ∈ [a, b] (4.42)

where σẆ (t) signifies the AWGN with constant variance σ2 and where yT is the true system
output. This corresponds to a random kernel expression∫ b

a

KDS,y(t, τ)yM(τ) dτ =
n∑
i=0

βi

∫ b

a

KDS(i),y(t, τ)yM(τ)dτ (4.43)

which is better written using the proper stochastic nomenclature as∫ b

a

KDS,y(t, τ)yT (τ) dτ +

∫ b

a

KDS,y(t, τ) dW σ(τ) (4.44)

with its partitioned form following similarly. Here, W σ is the Wiener process with intensity
σ so that, informally, ησ(t)dt = σdW (t) with W as the standard Brownian motion.since
yT satisfies the reproducing property in the deterministic regression equation (3.17). It is
noted that the random error variable e is dependent on the unknown system parameters
ai, i = 0, · · · , n− 1 .It follows that the following equality is valid

αab(t)yM(t) =
n∑
i=0

βi

∫ b

a

KDS(i)(t, τ)yM(τ)dτ + e1(t) (4.45)

∫ b

a

αab(τ)yM(τ)dτ =
n∑
i=0

βi

∫ b

a

K1
DS(i)(t, τ)yM(τ)dτ + e2(t) (4.46)

∫ b

a

αab(τ)(t− τ)yM(τ)dτ =
n∑
i=0

βi

∫ b

a

K2
DS(i)(t, τ)yM(τ)dτ + e3(t) (4.47)

∫ b

a

αab(τ)(t− τ)2yM(τ)dτ =
n∑
i=0

βi

∫ b

a

K3
DS(i)(t, τ)yM(τ)dτ + e4(t) (4.48)

which can be further written in matrix form as
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

αab(t)yM(t)− βn
∫ b

a

KDS(n)(t, τ)yM(τ)dτ∫ b

a

αab(τ)yM(τ)dτ − βn
∫ b

a

K1
DS(n)(t, τ)yM(τ)dτ∫ b

a

αab(τ)(t− τ)yM(τ)dτ − βn
∫ b

a

K2
DS(n)(t, τ)yM(τ)dτ∫ b

a

αab(τ)(t− τ)2yM(τ)dτ − βn
∫ b

a

K3
DS(n)(t, τ)yM(τ)dτ


=



∫ b

a

KDS(k)(t, τ)yM(τ)dτ∫ b

a

K1
DS(k)(t, τ)yM(τ)dτ∫ b

a

K2
DS(k)(t, τ)yM(τ)dτ∫ b

a

K3
DS(k)(t, τ)yM(τ)dτ


a+


e1

e2

e3

e4


(4.49)

and has the random regressor matrix



∫ b

a

KDS(0),y(t, τ)yM(τ)dτ, · · · ,
∫ b

a

KDS(n−1),y(t, τ)yM(τ)dτ∫ b

a

K1
DS(0),y(t, τ)yM(τ)dτ, · · · ,

∫ b

a

K1
DS(n−1),y(t, τ)yM(τ)dτ∫ b

a

K2
DS(0),y(t, τ)yM(τ)dτ, · · · ,

∫ b

a

K2
DS(n−1),y(t, τ)yM(τ)dτ∫ b

a

K3
DS(0),y(t, τ)yM(τ)dτ, · · · ,

∫ b

a

K3
DS(n−1),y(t, τ)yM(τ)dτ



T

(4.50)

with corresponding error terms

e1 = αab(t)yM(t)−
∫ b

a

KDS(t, τ)yM(τ)dτ (4.51)

e2 =

∫ b

a

αab(τ)yM(τ)dτ − β
∫ b

a

K1
DS(t, τ)yM(τ)dτ (4.52)

e3 =

∫ b

a

αab(τ)(t− τ)yM(τ)dτ −
∫ b

a

K2
DS(t, τ)yM(τ)dτ (4.53)

e4 =

∫ b

a

αab(τ)(t− τ)2yM(τ)dτ −
∫ b

a

K3
DS(t, τ)yM(τ)dτ (4.54)

On observing the above error terms it can be seen that assumptions of Gauss-Markov
Theorem are violated and additionally the error fails to be homoskedastic.
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4.2 Heteroskedasticity [12]

The existence of heteroskedasticity is a major concern in regression analysis, Heteroskedas-
ticity has serious consequences for the Ordinary Least square estimator. Despite that the
fact that the OLS estimator remains unbiased, the estimated regression error is wrong
while confidence intervals cannot be relied on.In the presence of heteroskedastic errors, re-
gression using Feasible Generalized Least Squares (FGLS) offers potential efficiency gains
over Ordinary Least Squares (OLS). Feasible generalized least squares (FGLS) employs
inverse covariance weighting in the regression error minimization problem associated with
equations (4.45),(4.46),(4.47) and (4.48). Let Q(yM) and P (yM) as defined in the (4.36) be
the matrices corresponding to N samples of the measurement process realization yM at a
batch of knots t1, · · · , tN . Then the stochastic regression error vector is given by

en := [en(ti), · · · , en(tN)]T = Q(yM)− P (yM)ā (4.55)

where en(ti) are as in (4.51), (4.52),(4.53) and (4.54). The standard GLS regression error
minimization for estimation of the parameter vector ā is

min
ā

(
[Q(yM)− P (yM)ā]TS[Q(yM)− P (yM)ā)]

)
(4.56)

with S := [Cov(e)]−1 (4.57)

Applying the expectation operator to equations (4.51),(4.52),(4.53) and (4.54) and using
the properties of the Gaussian noise yields

E[e1(t)] = E[αab(t)(σẆ (t))]− E[

∫ b

a

KDS,y(t, τ)σẆ (τ)] = 0 (4.58)

E[e2(t)] = E[

∫ b

a

αab(τ)(σẆ (τ))]− E[

∫ b

a

K1
DS,y(t, τ)σẆ (τ)dτ ] = 0 (4.59)

E[e3(t)] = E[

∫ b

a

αab(τ)(t− τ)(σẆ (τ))]− E[

∫ b

a

K2
DS,y(t, τ)σẆ (τ)dτ ] = 0 (4.60)

E[e4(t)] = E[

∫ b

a

αab(τ)(t− τ)(σẆ (τ))]− E[

∫ b

a

K3
DS,y(t, τ)σẆ (τ)dτ ] = 0 (4.61)
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4.3 Error Covariance Matrix

The following facts and properties of Gaussian White noise are recalled for the calculation
of Covariance.The generalized derivative Ẇ of Wiener processW is defined by the following
equality that needs to hold for all smooth functions g with compact support,

g(t)W (t) =

∫ t

0

g(s)Ẇ (s)ds+

∫ t

0

ġ(s)W (s)ds; t ∈ [a, b] (4.62)

The integral
∫ t

0

ġ(s)W (s)ds is well defined for any square integrable function g; i.e. g does

not have to be smooth, but ∫ t

0

g(s)2ds <∞ (4.63)

The generalized expectation and covariance functions of white noise are given by:

E[Ẇt] ≡ 0 (4.64)

Cov[Ẇt, Ẇs] = E[ẆtẆs] = δ(t− s) (4.65)

V ar[Ẇt] = E[Ẇ 2
t ] = 1 (4.66)

where is the delta Dirac distribution (strictly: a linear functional defined on the space of
tempered distributions) but acting on square integrable functions as an evaluation func-
tional: ∫ b

a

g(s)δ(t− s)ds = g(t), t ∈ [a, b] (4.67)

Using the properties (4.68) - (4.73) of white noise and recalling that the kernel functions
are Hilbert-Schmidt, hence are square integrable, the covariance calculation is then carried
out as follows
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Cov[e1(ti), e1(tj)] = E[e1(ti)e1(tj)]

= E

[[
αab(ti)σẆ (ti)−

∫ b

a

KDS(ti, s)σẆ (s)ds
]

[
αab(tj)σẆ (tj)−

∫ b

a

KDS(tj, τ)σẆ (τ)dτ
]]

=

[
E
[
σ2αab(ti)αab(tj)Ẇ (ti)Ẇ (tj)

]
− E

[
σ2αab(ti)Ẇ (ti)

∫ b

a

KDS(tj, τ)Ẇ (τ)dτ
]

− E
[
σ2αab(tj)Ẇ (tj)

∫ b

a

KDS(ti, s)Ẇ (s)ds
]

+ E
[
σ2

∫ b

a

∫ b

a

KDS(ti, s)KDS(tj, τ)Ẇ (s)Ẇ (τ)dsdτ
]]

= E
[
σ2αab(ti)αab(tj)Ẇ (ti)Ẇ (tj)

]
− E

[
σ2αab(ti)

∫ b

a

KDS(tj, τ)Ẇ (ti)Ẇ (τ)dτ
]

− E
[
σ2αab(tj)

∫ b

a

KDS(ti, s)Ẇ (tj)Ẇ (s)ds
]

+ E
[
σ2

∫ b

a

∫ b

a

KDS(ti, s)KDS(tj, τ)Ẇ (s)Ẇ (τ)dsdτ
]

= σ2αab(ti)αab(tj)E
[
Ẇ (ti)Ẇ (tj)

]
− σ2αab(ti)

∫ b

a

KDS(tj, τ)E
[
Ẇ (ti)Ẇ (τ)

]
dτ

− σ2αab(tj)

∫ b

a

KDS(ti, s)E
[
Ẇ (tj)Ẇ (s)

]
ds

+ σ2

∫ b

a

∫ b

a

KDS(ti, s)KDS(tj, τ)E
[
Ẇ (s)Ẇ (τ)

]
dsdτ

Cov[e1(ti), e1(tj)] = σ2αab(ti)αab(tj)δ(ti − tj)− σ2αab(ti)KDS(ti, tj)− σ2αab(tj)KDS(tj, ti)

+ σ2

∫ b

a

KDS(ti, s)KDS(tj, s)ds (4.68)
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Cov[e2(ti), e2(tj)] = E[e2(ti)e2(tj)]

= E

[[ ∫ b

a

αab(s)σẆ (s)ds−
∫ b

a

K1
DS(ti, s)σẆ (s)ds

]
[ ∫ b

a

αab(τ)σẆ (τ)dτ −
∫ b

a

K1
DS(tj, τ)σẆ (τ)dτ

]]

=

[
E
[
σ2

∫ b

a

∫ b

a

αab(s)αab(τ)Ẇ (s)Ẇ (τ)dsdτ
]

− E
[
σ2

∫ b

a

∫ b

a

αab(s)Ẇ (s)K1
DS(tj, τ)Ẇ (τ)dsdτ

]
− E

[
σ2

∫ b

a

∫ b

a

αab(τ)Ẇ (τ)K1
DS(ti, s)Ẇ (s)dsdτ

]
+ E

[
σ2

∫ b

a

∫ b

a

K1
DS(ti, s)K

1
DS(tj, τ)Ẇ (s)Ẇ (τ)dsdτ

]]

=

[
σ2

∫ b

a

∫ b

a

αab(s)αab(τ)E
[
Ẇ (s)Ẇ (τ)

]
dsdτ−

σ2

∫ b

a

∫ b

a

αab(s)K
1
DS(tj, τ)E

[
Ẇ (s)Ẇ (τ)

]
dsdτ

− σ2

∫ b

a

∫ b

a

αab(τ)K1
DS(ti, s)E

[
Ẇ (τ)Ẇ (s)

]
dsdτ

+ σ2

∫ b

a

∫ b

a

K1
DS(ti, s)K

1
DS(tj, τ)E

[
Ẇ (s)Ẇ (τ)

]
dsdτ

]

=

[
σ2

∫ b

a

∫ b

a

αab(s)αab(τ)δ(s− τ)dsdτ

− σ2

∫ b

a

∫ b

a

αab(s)K
1
DS(tj, τ)δ(s− τ)dsdτ

− σ2

∫ b

a

∫ b

a

αab(τ)K1
DS(ti, s)δ(s− τ)dsdτ

+ σ2

∫ b

a

∫ b

a

K1
DS(ti, s)K

1
DS(tj, τ)δ(s− τ)dsdτ

]

Cov[e2(ti), e2(tj)] = σ2

[∫ b

a

αab(s)αab(s)ds−
∫ b

a

αab(s)K
1
DS(tj, s)ds−

∫ b

a

αab(s)K
1
DS(ti, s)ds

+

∫ b

a

K1
DS(ti, s)K

1
DS(tj, s)ds

]
(4.69)
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Cov[e3(ti), e3(tj)] = E[e3(ti)e3(tj)]

= E

[[ ∫ b

a

αab(s)(ti − s)σẆ (s)ds−
∫ b

a

K2
DS(ti, s)σẆ (s)ds

]
[ ∫ b

a

αab(τ)(tj − τ)σẆ (τ)dτ −
∫ b

a

K2
DS(tj, τ)σẆ (τ)dτ

]]
=

[
E
[
σ2

∫ b

a

∫ b

a

αab(s)αab(τ)(ti − s)(tj − τ)Ẇ (s)Ẇ (τ)dsdτ
]

− E
[
σ2

∫ b

a

∫ b

a

αab(s)(ti − s)Ẇ (s)K2
DS(tj, τ)Ẇ (τ)dsdτ

]
− E

[
σ2

∫ b

a

∫ b

a

αab(τ)(tj − τ)Ẇ (τ)K2
DS(ti, s)Ẇ (s)dsdτ

]
+ E

[
σ2

∫ b

a

∫ b

a

K2
DS(ti, s)K

2
DS(tj, τ)Ẇ (s)Ẇ (τ)dsdτ

]]
=

[
σ2

∫ b

a

∫ b

a

αab(s)αab(τ)(ti − s)(tj − τ)E
[
Ẇ (s)Ẇ (τ)

]
dsdτ

− σ2

∫ b

a

∫ b

a

αab(s)(ti − s)K2
DS(tj, τ)E

[
Ẇ (s)Ẇ (τ)

]
dsdτ

− σ2

∫ b

a

∫ b

a

αab(τ)(tj − τ)K2
DS(ti, s)E

[
Ẇ (τ)Ẇ (s)

]
dsdτ

+ σ2

∫ b

a

∫ b

a

K2
DS(ti, s)K

2
DS(tj, τ)E

[
Ẇ (s)Ẇ (τ)

]
dsdτ

]
=

[
σ2

∫ b

a

∫ b

a

αab(s)αab(τ)(ti − s)(tj − τ)δ(s− τ)dsdτ

− σ2

∫ b

a

∫ b

a

αab(s)(ti − s)K2
DS(tj, τ)δ(s− τ)dsdτ

− σ2

∫ b

a

∫ b

a

αab(τ)(tj − τ)K2
DS(ti, s)δ(s− τ)dsdτ

+ σ2

∫ b

a

∫ b

a

K2
DS(ti, s)K

2
DS(tj, τ)δ(s− τ)dsdτ

]
Cov[e3(ti), e3(tj)] = σ2

[ ∫ b

a

αab(s)αab(s)(ti − s)(tj − s)ds−
∫ b

a

αab(s)(ti − s)K2
DS(tj, s)ds

−
∫ b

a

αab(s)(tj − s)K2
DS(ti, s)ds+

∫ b

a

K2
DS(ti, s)K

2
DS(tj, s)ds

]
(4.70)
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Cov[e4(ti), e4(tj)] = E[e4(ti)e4(tj)]

= E

[[ ∫ b

a

1

2
αab(s)(ti − s)2σẆ (s)ds−

∫ b

a

K3
DS(ti, s)σẆ (s)ds

]
[ ∫ b

a

1

2
αab(τ)(tj − τ)2σẆ (τ)dτ −

∫ b

a

K3
DS(tj, τ)σẆ (τ)dτ

]]
= E

[
σ2 1

4

∫ b

a

∫ b

a

αab(s)αab(τ)(ti − s)2(tj − τ)2Ẇ (s)Ẇ (τ)dsdτ
]

− E
[
σ2 1

2

∫ b

a

∫ b

a

αab(s)(ti − s)2Ẇ (s)K3
DS(tj, τ)Ẇ (τ)dsdτ

]
− E

[
σ2 1

2

∫ b

a

∫ b

a

αab(τ)(tj − τ)2Ẇ (τ)K3
DS(ti, s)Ẇ (s)dsdτ

]
+ E

[
σ2

∫ b

a

∫ b

a

K3
DS(ti, s)K

3
DS(tj, τ)Ẇ (s)Ẇ (τ)dsdτ

]
=

[
σ2 1

4

∫ b

a

∫ b

a

αab(s)αab(τ)(ti − s)2(tj − τ)2E
[
Ẇ (s)Ẇ (τ)

]
dsdτ

− σ2 1

2

∫ b

a

∫ b

a

αab(s)(ti − s)2K3
DS(tj, τ)E

[
Ẇ (s)Ẇ (τ)

]
dsdτ

− σ2 1

2

∫ b

a

∫ b

a

αab(τ)(tj − τ)2K3
DS(ti, s)E

[
Ẇ (τ)Ẇ (s)

]
dsdτ

+ σ2

∫ b

a

∫ b

a

K3
DS(ti, s)K

3
DS(tj, τ)E

[
Ẇ (s)Ẇ (τ)

]
dsdτ

]

=

[
σ2 1

4

∫ b

a

∫ b

a

αab(s)αab(τ)(ti − s)2(tj − τ)2δ(s− τ)dsdτ

− σ2 1

2

∫ b

a

∫ b

a

αab(s)(ti − s)2K3
DS(tj, τ)δ(s− τ)dsdτ

− σ2 1

2

∫ b

a

∫ b

a

αab(τ)(tj − τ)2K3
DS(ti, s)δ(s− τ)dsdτ

+ σ2

∫ b

a

∫ b

a

K3
DS(ti, s)K

3
DS(tj, τ)δ(s− τ)dsdτ

]

Cov[e4(ti), e4(tj)] = σ2

[
1

4

∫ b

a

αab(s)αab(s)(ti − s)2(tj − s)2ds− 1

2

∫ b

a

αab(s)(ti − s)2K3
DS(tj, s)ds

− 1

2

∫ b

a

αab(s)(tj − s)2K3
DS(ti, s)ds+

∫ b

a

K3
DS(ti, s)K

3
DS(tj, s)ds

]
(4.71)
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Covariance Matrix(S−1) =
Cov[e1(ti), e1(tj)] . . . . . . 0

... Cov[e2(ti), e2(tj)] . . .
...

... . . . Cov[e3(ti), e3(tj)]
...

0 . . . . . . Cov[e4(ti), e4(tj)]

 (4.72)

4.4 FGLS algorithm

"The covariance matrix depends on the unknown variance σ2 and also on the unknown
parameter vector ā in the KDS kernels.Therefore the Standard OLS estimator cannot be
applied directly.Hence we use a Recursive Feasible GLS in which the covariance matrix is
estimated progressively. Letting Qi − Piā denote the regression error ei in batch i, the
FGLS algorithm computes

âk = arg min
ā

(
k∑
i=1

(Qi − Piā)TSi(Qi − Piā)

)
(4.73)

where âk is the parameter estimate update at iteration k of the algorithm. Each weighting
matrix Sk+1, is calculated as the inverse of the covariance matrix based on the parameter
estimate âk and an estimate of the variance σ2 obtained from the residual trajectory yM(t)−
yE(t) in previous iteration k, where yE signifies the estimated/reconstructed output" [12].
The FGLS algorithm is generally a modified version of standard recursive least squares al-
gorithm [6].The FGLS employs an Inverse covarinace weighting with a recursive approach
is presented below.

At iteration k + 1, the algorithm strives to minimize

min(ēTk+1S̄k+1ēk+1) (4.74)

subject to: Q̄k+1 = P̄k+1āk+1 + ēk+1
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where

Q̄k+1 =


Q0

Q1

...
Qk+1

 ; P̄k+1 =


P0

P1

...
Pk+1

 ; ē =


e0

e1

...
ek+1


and

S̄k+1 = diag(S0, S1, . . . , Sk+1) (4.75)

The solution of the above is written as

(P̄ T
k+1S̄k+1P̄k+1)âk+1 = P̄ T

k+1S̄k+1Q̄k+1 (4.76)

or in summation form as (
k+1∑
i=0

P T
i SiPi

)
âk+1 =

k+1∑
i=0

P T
i SiQi (4.77)

Defining

Mk+1 =
k+1∑
i=0

P T
i SiPi (4.78)

the recursion for Mk+1 is:
Mk+1 = Mk + P T

k+1Sk+1Pk+1 (4.79)

Rearranging (4.77) gives

âk+1 = M−1
k+1

[(
k∑
i=0

P T
i SiPi

)
âk + P T

k+1Sk+1Qk+1

]

= M−1
k+1

[
Mkâk + P T

k+1Sk+1Qk+1

]
(4.80)

Another form of 4.80 is delivered by the recursion 4.79 and reads

âk+1 = âk −M−1
k+1(P T

k+1Sk+1Pk+1âk − P T
k+1Sk+1Qk+1)

= âk +M−1
k+1P

T
k+1Sk+1(Qk+1 − Pk+1âk) (4.81)
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A recursion for M−1
k+1 is obtained by applying the following identity to the recursion in 4.79

(A+BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1 (4.82)

which yields

M−1
k+1 = M−1

k −M
−1
k P T

k+1(Pk+1M
−1
k P T

k+1 + S−1
k+1)−1Pk+1M

−1
k

Defining Rk+1 = M−1
k+1 the latter becomes

Rk+1 = Rk −RkP
T
k+1(S−1

k+1 + Pk+1RkP
T
k+1)−1Pk+1Rk (4.83)

Equations 4.82 and 4.83 with inverse covariance weighting constitute the Feasible Gener-
alised least squares algorithm.

The initial estimate of σ2 is calculated as the empirical variance of (yM − yE) where yE is
the estimated output corresponding to the parameter values obtained in iteration k = 0.
This is updated at each consecutive iteration by the same empirical method.
To obtain an initial estimate for the weighting matrix, S0, the reproducing property of
Theorem 1 is first differentiated three times to deliver three additional linearly independent
regression equations, this to match the number of the parameters in ā with the number of
regression equations. An ordinary OLS is next used to deliver crude estimates of â0 that
can serve the evaluation of the covariance matrix in S0.

4.5 Reconstruction of the output derivatives

Given a measurement process realization yM on [a, b], the derivatives can be reconstructed
using,

y(i)(t) =

∫ b

a

Ki
DS(t, τ)ŷ(τ)dτ (4.84)

where, Ki
DS are the kernel representation for output derivatives. In this thesis we consider

i = 1 ,2 and 3 . The formulae for kernel representation of output derivatives are developed
in Chapter 2.
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Chapter 5

Results and Discussion

We employed the Feasible Generalised Least Squares algorithm for parameter and state
estimation in Chapter 4. Below we provide examples of fourth order systems and consider
different noise perturbations in the measured output.We have used this specific example so
as to compare the results with [12]
Example1 : [12]

Consider a fourth order system as described below:

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −5 −5 0

x ; y = x1 ; x(0) = [0, 0, 0, 1] (5.1)

with its corresponding characteristic equation

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0 (5.2)

The parameters a0, a1, a2,a3 are assumed to be unknown.
The measured realization of the output yM is obtained as yM = yT + ησ with variance σ
and sampled as needed.As the quality of the GLS algorithm in [12] is known to rely on
large sample theory, the FGLS with the multiple regression as explained in chapter4 does
not rely on large sample theory when compared to [12] .when the system is subjected to
low noise and moderate noise levels batches of N = 500, knots are sampled from a uniform
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distribution over [a, b] = [0, 6].However, when the system is subject to high noise levels the
sample size in increased to achieve closer estimates.The threshold value for stopping the
algorithm is ε = 0.01.The estimated system parameters with high noise level were found as
they are presented in Table (5.1) with the number of sample points N = 2000 which were
selected to be equidistant in [a, b].

a0 a1 a2 a3

True values 1 5 5 0
Estimated Values 1.71 3.6848 5.904, -0.2215

Table 5.1 Table showing true and estimated parameter values from a true
output with AWGN µ = 0 and σ = 1.75 and N=2000

Once the parameter estimates are obtained, we reconstruct the output and its derivatives
as mentioned in section 4.5 chapter 4.

Figure 5.1 True and noisy system outputs with AWGN of µ = 0 and σ =

1.75 and N=2000
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Figure 5.2 True and reconstructed output trajectories of the system with
AWGN of µ = 0 and σ = 1.75

Figure 5.3 True and reconstructed first derivative of the system output with
AWGN of µ = 0 and σ = 1.75
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Figure 5.4 True and reconstructed second derivative of the system output
with AWGN of µ = 0 and σ = 1.75

Figure 5.5 True and reconstructed third derivative of the system output
with AWGN of µ = 0 and σ = 1.75
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5.1 Study of the influence of measurement noise levels and

number of sample points on estimation

Consider again the system in (5.6), on the same time interval [0, 6]. Three different noise
levels are employed to emulate noise-perturbed output measurement in (5.6). Simultane-
ously, the number of sample points (N) is varied to study its influence on the accuracy
of estimation. Additionally, to better understand how the number of sample points (N)
affects the accuracy of estimation we compute the root mean square deviation, RMSD, as:

RMSD =

√√√√ N∑
i=1

1

n
[yT (ti)− ŷ(ti)]2 (5.3)

where yT (ti) and ŷ(ti) are: the true system output and the estimated output at time instant
ti, respectively.

Table (5.2.2) shows how the parameter estimation accuracy varies with increasing noise
levels and number of sample points N.

Variance Samples(N) a0 a1 a2 a3
0.25 500 1.0130 5.0264 5.0100 0.0080
0.5 500 0.9849 4.978, 5.0810 0.0090
0.75 500 1.0080 4.9212 4.9980 -0.0660
1.00 500 0.9800 4.9600 4.9100 -0.0900
1.25 500 1.210 5.1091 4.8944 -0.1248

2000 1.0516 4.9830 4.8964 -0.1226
1.5 500 1.3289 4.9148 5.1204 0.1315

2000 1.1289 4.9762 5.3291 -0.03
1.75 2000 1.71 3.6848 5.904 -0.2215

Table 5.2 Estimates of parameter values and RMSD for various noise levels
and sample size N
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Figure 5.6 True and noisy system outputs with AWGN of µ = 0 and σ =

0.25 and N=500

Figure 5.7 True and reconstructed output trajectories of the system with
AWGN of µ = 0 and σ = 0.25
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Figure 5.8 True and reconstructed first derivative of the system output with
AWGN of µ = 0 and σ = 0.25

Figure 5.9 True and reconstructed second derivative of the system output
with AWGN of µ = 0 and σ = 0.25
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Figure 5.10 True and reconstructed third derivative of the system output
with AWGN of µ = 0 and σ = 0.25

Figure 5.11 True and noisy system outputs with AWGN of µ = 0 and
σ = 0.5 and N=500
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Figure 5.12 True and reconstructed output trajectories of the system with
AWGN of µ = 0 and σ = 0.5

Figure 5.13 True and reconstructed first derivative of the system output
with AWGN of µ = 0 and σ = 0.5
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Figure 5.14 True and reconstructed second derivative of the system output
with AWGN of µ = 0 and σ = 0.5

Figure 5.15 True and reconstructed third derivative of the system output
with AWGN of µ = 0 and σ = 0.5
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Figure 5.16 True and noisy system outputs with AWGN of µ = 0 and
σ = 1.25 and N=2000

Figure 5.17 True and reconstructed output trajectories of the system with
AWGN of µ = 0 and σ = 1.25
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Figure 5.18 True and reconstructed first derivative of the system output
with AWGN of µ = 0 and σ = 1.25

Figure 5.19 True and reconstructed second derivative of the system output
with AWGN of µ = 0 and σ = 1.25
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Figure 5.20 True and reconstructed third derivative of the system output
with AWGN of µ = 0 and σ = 1.25

Figure 5.21 True and noisy system outputs with AWGN of µ = 0 and
σ = 1.5 and N=2000
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Figure 5.22 True and reconstructed output trajectories of the system with
AWGN of µ = 0 and σ = 1.5

Figure 5.23 True and reconstructed first derivative of the system output
with AWGN of µ = 0 and σ = 1.5
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Figure 5.24 True and reconstructed second derivative of the system output
with AWGN of µ = 0 and σ = 1.5

Figure 5.25 True and reconstructed third derivative of the system output
with AWGN of µ = 0 and σ = 1.5
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5.2 Discussion

5.2.1 Comparison with ’GLS-IV’ [12] method

The FGLS algorithm adopted in this thesis is compared with the ’GLS-IV’ described in [15].
The system considered is :

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −5 −5 −0

x ; y = x1 ; x(0) = [0, 0, 0, 1] (5.4)

with its corresponding characteristic equation

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0 (5.5)

where,
a0 = 1, a1 = 5, a2 = 5, a3 = 0

AWGN with variance 1 and 1.5(high noise) are added to the system. Below are the results
obtained using both methods.

Variance Knots(N) Method a0 a1 a2 a3

1 500 Ghosal et al. [12] 0.9464 4.8137 5.1652 0.1294
Proposed method 0.98 4.96 4.910 -0.090

1.5 3000 Ghosal et al. [12] 0.5090 4.2273 5.2360 -0.1905
2000 Proposed method 1.12 4.9762 5.329 0.03

Table 5.3 Comparative study with Ghoshal et al. [12]

The method adopted in this thesis proves to be more accurate as it can be observed clearly
from the table that with less number of samples the parameters converge more accurately
compare with [12].Also when the system is subjected to high noise with σ=1.5 the proposed
method in this thesis gives better estimates with High noise and less samples comparatively.
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5.2.2 Comparative approach of the influence of measurement noise levels and
number of sample points on estimation

The Following example has been chosen to compare the results and progress of research
with John et al [18]. The two-step asymptotic method used in John et al [18] rely on the
sample theory i.e the system relies on large number of samples for better accuracy where
as in the proposed method the accuracy is independent of the number of samples.
Example2 : [18]
Consider a fourth order system as described below:

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −10 −10 0

x ; y = x1 ; x(0) = [0, 0, 0, 1] (5.6)

with its corresponding characteristic equation

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0 (5.7)

The poles of this system are 0.4677 ± 3.2502i,−0.8228,−0.1127. Hence the system is an
unstable system. Unstable systems are known to be difficult to estimate.

The parameters a0, a1, a2,a3 are assumed to be unknown.
Consider the system in (5.6), on the same time interval [0, 6]. Three different noise levels
are employed to emulate noise-perturbed output measurement in (5.6). Simultaneously, the
number of sample points (N) is varied to study its influence on the accuracy of estimation.
Additionally, to better understand how the number of sample points (N) affects the accuracy
of estimation we compute the root mean square deviation, RMSD, as:

RMSD =

√√√√ N∑
i=1

1

n
[yT (ti)− ŷ(ti)]2 (5.8)

where yT (ti) and ŷ(ti) are: the true system output and the estimated output at time instant
ti, respectively.
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Table (5.2.2) shows how the parameter estimation accuracy varies with increasing noise
levels and number of sample points N.

Variance Samples(N) Method a0 a1 a2 a3 RMSD
0.01 600 John et al. [18] 1.0130 6.6908 10.3540 -0.3164 0.0028
0.01 1800 John et al. [18] 1.0298 9.5368 10.0113 -0.3164 0.0009
0.01 600 Proposed method 0.9969 9.9925 10.069 0.004 0.00001
0.1 600 John et al. [18] 0.6849 13.1225 9.6459 0.2734 0.0044
0.1 6000 John et al. [18] 1.018 9.8892 10.4164 -0.1837 0.0012
0.1 600 Proposed method 1.012 10.140 9.801 0.002 0.0002
1 600 John et al. [18] 2.2352 -6.3921 10.0714 -0.2155 0.0192
1 15000 John et al. [18] 1.0657 8.0940 10.0482 -0.3455 0.0035
1 600 Proposed method 0.9969 9.9925 10.069 0.004 0.0014

Table 5.4 Estimates of parameter values and RMSD for various noise levels
and sample size N

The true system parameters are a0 = 1, a1 = 10, a2 = 10, a3 = 0.
In the two Step Asymptotic method proposed by John.et al [18].It can be observed from
the result that as we increase the variance σ of the noise, a larger number of sample points
is needed to achieve similar accuracy of estimation.

It should also be noted that the above Proposed method for parameter estimation in
this thesis does not show any dependency on the samples to estimate the value of the
parameters even for a unstable system with high noise variance .Irrespective of noise levels
the parameters are estimated with highest accuracy compared to anju et al . [18]. On the
pages that follow, we present the true output with AWGN of σ = 0.01 and N=600, σ = 0.1

and N=600, σ = 1 and N=600, and the reconstruction of the system output and its three
derivatives for the best parameter estimates computed.
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Figure 5.26 True and noisy system output with AWGN of µ = 0 and σ =

0.01 and N=600

Figure 5.27 True and reconstructed output trajectories of the system with
AWGN of µ = 0 and σ = 0.01 and N=600
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Figure 5.28 True and reconstructed first derivative of the system output
with AWGN of µ = 0 and σ = 0.01 and N=600

Figure 5.29 True and reconstructed second derivative of the system output
with AWGN of µ = 0 and σ = 0.01 and N=600
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Figure 5.30 True and reconstructed third derivative of the system output
with AWGN of µ = 0 and σ = 0.01 and N=600

Figure 5.31 True and noisy system outputs with AWGN of µ = 0 and
σ = 0.1 and N=600
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Figure 5.32 True and reconstructed output trajectories of the system with
AWGN of µ = 0 and σ = 0.1 and sample size N = 600

Figure 5.33 True and reconstructed first derivative of the system output
with AWGN of µ = 0 and σ = 1 and N=600
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Figure 5.34 True and reconstructed second derivative of the system output
with AWGN of µ = 0 and σ = 0.1 and N=600

Figure 5.35 True and reconstructed third derivative of the system output
with AWGN of µ = 0 and σ = 0.1 and N=600
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Figure 5.36 True and noisy system output with AWGN of µ = 0 and σ = 1

and N=600

Figure 5.37 True and reconstructed output trajectories of the system with
AWGN of µ = 0 and σ = 1 and N=600
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Figure 5.38 True and reconstructed first derivative of the system output
with AWGN of µ = 0 and σ = 1 and N=600

Figure 5.39 True and reconstructed second derivative of the system output
with AWGN of µ = 0 and σ = 1 and N=600
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Figure 5.40 True and reconstructed third derivative of the system output
with AWGN of µ = 0 and σ = 1 and N=600

5.3 Summary

The state estimation, parameter estimation and filtering are extremely important to en-
gineering applications. A comparison with previous works on kernel-based parameter and
state estimation have been shown with results see section 5.2 and section 5.3 in this thesis
to show the work progress and overcoming the limitations of previous works in our research
group. To summarize the advantages of the proposed method:

*This method provides better parameter and state estimates with higher noise levels based
on results shown in section 5.2.1
*This method does not rely on large sample theory as it is shown in section 5.2.2, it pro-
vides better results with lesser samples comparatively.
*It is not affected by initial conditions and hence the knowledge of initial conditions is not
required.
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