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Abstract 

 

Background: Wearable devices capable of monitoring physiological data is a growing field of 

interest with several applications on how we can analyze and use the data to benefit our everyday 

lives. Despite the leaps in technological advancements, there still remains several challenges with 

regards to collecting data over multiple days for longitudinal studies, such as circadian rhythm 

analysis, as well as ambulatory environment artifacts corrupting signals and compromising the 

monitoring required for real-time information and decision making, such as estimating cardiac 

vital signs of an outpatient.  

Purpose: The main objective of this thesis is to reliably collect and interpret physiological data 

collected from wearable devices and develop algorithms that creatively provide this information 

to the users in a way that can easily be employed by a wearable device. 

Methods: Two parts comprise this thesis: (Part I) based on heart rate (HR) data recorded from 

wearable devices, the endogenous, diurnal fluctuations of an individual’s HR was investigated in 

the free-living environment of everyday life, circadian HR profile with key anchors and its 

relationship with sleep-wake schedule identified, and an individualized model characterizing 

circadian fluctuations of HR proposed; and (Part II) a real-time algorithm for processing 

ambulatory electrocardiograms (ECG) was developed with a modified Pan-Tompkins QRS 

detection algorithm incorporated to detect heart beats, which were then used to estimate HR and 

heart rate variability with every second of recording accompanied by a novel signal quality index 

(SQI) quantifying how reliable the R-peak derived cardiac vital signs are. 

Results: (Part I): The endogenous, diurnal fluctuations of HR was successfully identified from a 

smartwatch with HR monitoring capabilities, key anchors were found to very closely relate to the 

individual’s sleep-wake schedule, as reported in literature, and a Fourier Series parameterization 

model was used to characterize the individual’s circadian HR profile. (Part II): The R-peak 

detection algorithm developed yielded very high performance on the standard ambulatory ECG 

database and the SQI proposed leveraged a Random Forest classifier analysis of important features 

and provided strong evidence to capture information relating with what degree the cardiac vital 

signs outputted should be considered reliable. 

 



Abstrait (French) 

 

Contexte: Les dispositifs portables capables de surveiller des données physiologiques constituent 

un domaine d’intérêt croissant avec de nombreuses applications sur la façon dont nous pouvons 

analyser et utiliser les données pour améliorer notre vie quotidienne. Malgré les avancées 

technologiques, la collecte de données sur plusieurs jours pour des études longitudinales telles que 

l’analyse du rythme circadien, ainsi que des artefacts de l’environnement ambulatoire qui 

corrompent les signaux et compromettent la surveillance en temps réel et prise de décision, telles 

que l'estimation des signes vitaux cardiaques d'un patient ambulatoire. 

Objectif: L'objectif principal de cette thèse est de collecter et d'interpréter de manière fiable les 

données physiologiques recueillies à partir de dispositifs portables et de développer des 

algorithmes qui fournissent de manière créative ces informations aux utilisateurs dans une façon 

qui peuvent facilement être utilisées par un dispositif portable. 

Méthodes: Cette thèse est composée de deux parties: (Partie I) basée sur les données de fréquence 

cardiaque (HR) enregistrées à partir de dispositifs portables, les fluctuations endogènes et diurnes 

de la HR d’une personne ont été étudiées dans le cadre de vie libre de la vie quotidienne, le profil 

de la FC circadien avec les points d'ancrage clés et leur relation avec le calendrier veille-sommeil 

ont été identifiés, et un modèle individualisé caractérisant les fluctuations circadiennes de la FC 

proposé; et (Partie II) un algorithme en temps réel pour le traitement des électrocardiogrammes 

ambulatoires (ECG) a été développé avec un modifié Pan-Tompkins algorithme de détection QRS 

incorporé pour détecter les battements cardiaques, qui ont ensuite été utilisés pour estimer la 

variabilité de la fréquence cardiaque et de la fréquence cardiaque à chaque seconde 

d'enregistrement accompagné d'un nouvel indice de qualité du signal (SQI) quantifiant la fiabilité 

des signes vitaux cardiaques dérivés du pic-R. 

Résultats: (Partie I): Les fluctuations endogènes et diurnes de la FC ont été identifiées avec succès 

grâce à une smartwatch dotée de capacités de surveillance de la FC. modèle de paramétrisation a 

été utilisé pour caractériser le profil de fréquence cardiaque circadien de la personne. (Partie II): 

L'algorithme de détection des pics R développé a donné de très hautes performances sur la base de 

données ECG ambulatoire standard et, en utilisant une Forêt Aléotoire analyse des characteristic 

important, le SQI proposé a fourni des preuves solides pour capturer des informations relatives au 

degré de fiabilité des signes vitaux cardiaques produits. 
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Original Contributions 

Research Part I: 

The diurnal, endogenous fluctuations of an individual’s HR from HR data recorded from 

commercially available wearable devices was investigated over multiple days in unrestricted, 

free-living conditions. Through creative circadian smoothing operations, key anchors 

commonly reported in controlled studies were confirmed and an innovative method for 

displaying the individual’s probability of sleep-wake cycle was integrated to provide a new 

layer of information for the first time in uncontrolled circadian rhythm studies. 

 

Research Part II: 

In this study, a real-time ambulatory ECG processing algorithm detecting R-peaks and 

outputting second-by-second heart rate and heart rate variability measurements, respectively, 

was developed. A unique method for defining a weighted combination of features and decision 

rules was proposed to accompany each output in order to relay a measure of how reliable the 

R-peak derived cardiac vital signs are (real number ranging from 0 to 1). This was achieved  

from a novel analysis of feature importance derived from a Random Forest classifier trained 

on a noisy dataset of increasing signal-to-noise ratio with passed or failed R-peak detection 

performance as the binary classification labels.   
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Chapter 1  

Introduction to Thesis Research 

 Introduction 

1.1 General Introduction 

The field of wearable devices is growing rapidly and unlocks exciting applications. In 

2018, 177.2 million wearable devices were shipped, up 27.5% from the previous year [1]. Analysts 

project the wearable device market will be worth USD 25 billion by the end of 2019 and grow at 

a compounded annual growth rate of 17.7% over the next 5 years [2][3]. The different segments 

of wearables are separated into consumer, defense, healthcare, industrial and other applications, 

ordered by increasing market share [4]. The major companies paving the road to bring wearable 

devices to the market are Apple (market leader), Samsung, LG, Fitbit, Xiaomi, Nike, Garmin, 

Huawei, Abbot and Medtronic amongst others [5]. Several consumer wearables with health and 

fitness applications incorporate sensors which monitor biological signals, and of course medical-

grade healthcare wearables do the same. Currently, there are consumer wearables that monitor 

heart rate (HR), heart rate variability (HRV), electrocardiogram (ECG), blood pleasure, breathing 

rate, electromyogram, sweat analytes, biomechanics movement, and even cognitive function [6]. 

Wearables are predominantly in the form of smartwatches (approximately 80% market share), 

however other form factors such as bands, garments, patches, earwear, eyewear and rings with 

embedded sensors exist as well [7]. As more sensors, functionalities and valuable information are 

developed – which I argue need to be related to health and wellness – wearables can quickly cross 

the line from being an accessary to being a necessity, similarly to how today a smartphone is 

practically a necessity in the modern developed world.  

In order for wearables to win the case of being an essential piece of technology, one area 

requiring continuous efforts is signal integrity and physiological monitoring reliability. Recording 

biological signals in the ambulatory environment inherently understands that the user can 

constantly be in motion which can be expected to introduce a suite of artifacts corrupting the signal. 

This potentially means the health/medical parameter intending to extract from the signal becomes 

more challenging and unreliable if no signal processing or intelligent algorithms are implemented 
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to mitigate the noise effect. Furthermore, the ambulatory environment is unpredictable and 

introduces unknown factors effecting physiological parameters which cannot always be detected, 

interpreted and/or accounted for in the output. Hence, this is another form of potentially unreliable 

information about biological states provided to the user. Together, these are two ways 

misinformation can be provided to the user that at best deters adaptation from the general 

consumer, however more seriously can lead to misdiagnoses when considering medical wearable 

devices worn by patients relying on accurate, real-time data for dear life.  

 

1.2 Research Objectives 

The broad objective of my thesis research was to reliably collect and interpret physiological 

signals recorded from wearable devices. More explicitly, this involved familiarizing myself with 

the experimental process and raw format of collecting data from wearable devices, employing 

signal processing techniques in order to mitigate noise factors and best retrieve underlying 

physiological signals, and developing algorithms which extracts reliable biological information 

about the subject wearing the device and then outputs them in a easy to understand way that 

facilitates analysis and interpretation. Furthermore, all operations were done with a design focus 

that would allow for real-time implementation on devices in the field. My thesis research project 

was split into two parts: 

Part I: Identification of individualized circadian fluctuations under free-living conditions 

using HR data collected from wearable devices. 

Part II: Real-time ambulatory ECG processing and novel signal quality index (SQI) for R-

peak-derived cardiac vital signs. 

In Part I, the specific objectives were to first evaluate whether circadian fluctuations of an 

individual’s HR can be monitored in free-living conditions from a smartwatch with HR-monitoring 

capability and then propose a model for quantifying HR’s circadian fluctuation along with its 

dependency on external factors such as sleep-wake schedule. 

In Part II, the main objective was to develop a real-time algorithm for processing 

ambulatory ECG data collected from a medical-grade remote patient monitoring device. The 

outputs of interest were cardiac vital signs, HR and HRV, as well as a novel SQI which quantifies 

the reliability of the underlying ECG segment and the beat detections used to derive the 

aforementioned cardiac vital signs.  
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Chapter 2  

Research Part I 

 Identification of individualized circadian fluctuations 
under free-living conditions using HR data collected 
from wearable devices  

2.1 Introduction 

Over the past several decades, increasing scientific evidence of an internal biological clock 

in humans have emerged. Referred to as the circadian (Latin for “around a day”) rhythm, nearly 

all living organisms demonstrate endogenous oscillations in physiological, metabolic and/or 

behavioral functions over the roughly 24 hours of each day [8]. Researchers have identified this in 

human beings on the cellular level all the way up to the organ systems level through monitoring a 

wide array of physiological parameters over at least one uninterrupted day; for example: 

transcription genes, protein and ion concentrations, hormone secretion and sugar levels, vital signs, 

such as HR, respiration rate and core body temperature (CBT), and brain activity [9]-[12]. Each 

have been found to display evident and characteristic circadian rhythmicity under controlled 

environments. The main factors which have been found to entrain as well as disrupt circadian 

rhythms, referred to as zeitgebers in the field of chronobiology, are exposure to light, sleep-wake 

schedule, active-rest intervals, eating-fasting distribution, temperature, social interactions and 

medications [13]. As a result, it is common practice to identify and study disruptions of circadian 

rhythms in humans, respectively, under highly controlled laboratory settings where all zeitgebers 

can be monitored and regulated and then individually disrupted depending on the aim of the study. 

More recently, a growing number of studies have linked the desynchronization of people’s 

activities with their internal biological clock to several of the most common diseases and disorders: 

obesity, diabetes, depression, cardiovascular diseases, cancer, and more [14]-[18]. Similarly, 

studies on the treatment and therapy of diseases and disorders have recently started considering 

the chronobiologic implications on efficacy and prognosis; for example, chronochemotherapy for 

cancer treatment considers the pharmacokinetics and pharmacodynamics of chemotherapeutic 
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drugs at certain points in the biological clock as well as proliferation of healthy cells and activity 

of DNA repair enzymes [17].  

Advancements in wearable technology now provide us the ability to record some of these 

physiological parameters identified to display circadian fluctuations, this time however, outside 

the laboratory. Thus, monitoring whether or not endogenous fluctuations are evident and 

significant in everyday life and understanding which and how specific activities/events contribute 

towards synchronization or desynchronization is for the first time at arm’s reach. With all the 

studies and evidence confirming human beings’ biological functioning and dependency on a 

circadian rhythm, there still remains a large gap between what is concluded by scientists in 

laboratories and how it can be used to inform actionable insights in the free-living environment of 

everyday life. Through the use of wearable technology, signal processing and data science, this 

study attempts to narrow this gap and help lay the groundwork to a healthier lifestyle in-synched 

with individualized circadian rhythm.  

2.1.1 Research Objectives and Scope 

The overarching objective of this research is to test whether the diurnal, endogenous 

fluctuations of a single physiological parameter – HR – can be identified from a smartwatch 

currently available on the consumer market. The smartwatch must of course have HR monitoring 

capabilities and will then be validated as a reliable signal that records cardiac beats. Thereafter, 

research continued into developing a model which characterizes individual-specific circadian 

fluctuations of HR and its relationship with sleep-wake schedule. 

The scope of this study involved monitoring HR from one individual subject over multiple 

weeks under complete free-living environment conditions. What this means is that no fixed 

schedule or restriction of any sort was imposed on the subject; they were at liberty to choose their 

sleep-wake schedule, eating-fasting periods and active-rest intervals, all which are known external 

factors contributing to non-endogenous changes in HR. Therefore, the effects of external factors 

was taken into consideration during signal processing and interpretation. 

2.2 Background 

What is theorized to have originated from Earth’s rotation about its axis in the Solar System 

and the consequential day and night cycles established with our Sun, today almost all lifeform – 
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bacteria, fungi, plants, animals – possesses a timekeeping system which regulates organism 

functions with a roughly 24 hour period [8]. The primary environmental factor resposnible for 

entraining this circadian rhythm is sunlight exposure or light and dark stimuli. The most high level 

circadian regulation known to human beings may very well be our sleep and wake schedule; 

however, there are many other physiological processes similarly regulated on this time scale, 

including body temperatures, hormone release, feeding behaviour, drug metabolism, glucose 

homeostatis and cell-cycle progression [19]. Evidents suggests that a master internal clock exists 

and is responsible for all these physiological circadian rhythms through neuronal and hormonal 

regulation. This master clock, also referred to as the central circadian pacemaker, is locatted in 

mammals in the suprachiasmatic nucleus (SCN) of the hypothalumus. Figure 1 illustrates the 

general anatomical organization of the hypothalomus and some of the other components involved 

in the central circadian pacemaker. The SCN comprises approximately 20,000 neurons organized 

in a bilateral nuclei bed and is situated directly above the optic chiasm. Specialized photosensitive 

retinal ganglion cells receive photic information about the daily light cycle from the retina and 

sends it to the SCN via the retinohypothalmic tract. From there, a cascade of neural pathways and 

hormone secreation signaling, originating from the SCN, control the wide array of physiological 

functions known (and yet to be known) to be regulated on a circadian rhythm. [19]  

 

 

Endogenous fluctuations of human beings’ HR is but one physiological parameter which 

has been studied to follow a circadian rhythm. Researchers have been very interested in monitoring 

vital signs such as HR, respiration rate and body temperatures, as well as hormone concentration 

levels (melatonin and cortisol predominantly) in order to study circadian processes and understand 

Figure 1: General anatomical organization of components involved in the central circadian 
pacemaker situated in the suprachiasmatic nucleus (SCN) of the hypothalamus [20].  
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the synchronization and desynchronization of the master clock. Figure 2 below, prepared by Dr. 

Diane Boivin, director of the Centre of Study and Treatment of Circadian Rhythms, Douglas 

Research Centre, presents a generalized circadian profile of some of the main physiological 

parameters known to exhibit endogenous circadian fluctuations. When it comes to human’s cyclic 

sleep-wake schedule, Dr. Boivin explains so eloquently how there are two processes which interact 

with each other in order to keep healthy adults awake for about 16 hours and asleep for about 8 

hours each day; these are the homeostatic process and the circadian process. The homeostatic 

process drives the propensity for one to sleep the longer they stay awake, and the circadian process 

drives favourable physiological conditions for sleep at different times of the day. [21] 

 

Figure 2: Generalized circadian profile of core body temperature, heart rate, plasma 
melatonin, plasma cortisol and happiness. [21]  
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In 1994, a novel study by Krauchi and Wirz-Justice on the circadian rhythm of heat 

production, HR, respiratory quotient (RQ) and body temperatures was published [11]. Their study 

consisted of recording these vital signs, as well as urine data for hormone and ion levels, in seven 

healthy adult males over 34 hours of constant bed rest with no sleep allowed and regular isocaloric 

food and fluid intake. Because of this constant routine protocol, referred to as unmasking 

conditions, the researchers hypothesized that if vital signs fluctuated it would be as a result of an 

H 

I 

J 

Figure 3: Circadian rhythm over 30.5 hours in rectal (A) and skin (B-G) temperatures, heart rate (H), heat production (I) and 
respiratory quotient (RQ) value (J). Data points are means +/- SE of 7 men at 5 minute intervals for all signals except heat production 
and RQ-value at 4 hour intervals. Thick line: mean; thin line: +/- 1 SE; abscissa: time of day in hours. [11] 
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endogenous circadian component. The conclusion of their study showed that heat production, HR 

and rectal and distal skin temperatures demonstrate a significant circadian rhythm, however 

stomach temperature and RQ do not. Figure 3 above presents the summary recordings of these 

parameters over the 34 hours as mean ± standard error (SE) for the seven subjects tested. It is 

evident in these results that HR, amongst other parameters, display significant circadian fluctuation 

profile. Krauchi and Wirz-Justice further quantified the minimum and maximum values, 

respectively, of each vital sign as a mean ± SE for the seven subjects and the one-hour range at 

which they occurred at. They were then able establish which physiological parameters are phase 

locked or opposite in phase. For HR, they derived that the minimum HR value was 58.22 ± 3.29 

bpm occurring over the hour 0400-0500 and the maximum HR value was 64.64 ± 3.85 bpm 

occurring over the hour 1100-1200. In circadian rhythm studies, the CBT nadir, usually estimated 

from rectal temperature, in a 24-hour cycle is commonly used as a reference and assigned a 

circadian phase equal to 0. Units of circadian phase can either be expressed in hours, thus ranging 

between 0 and 24 hours and setting CBT nadir equal to 0 hour, or in units of degrees after 

segmenting the 24 hours in a day into 360 degrees and similarly setting the CBT nadir to 0 degrees. 

Figure 4: Mean cross-correlation coefficients (after Fisher’s Z-transformation), calculated 
separately for the 7 subjects, between rectal temperature and heart rate, heat production (HP) 
and all skin temperatures (hand: Tha; foot: Tfo; stomach: Tst; midthigh: Tth; infraclavicular: 
Tic; and forehead: Tfh). [11] 
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Figure 4 presents the cross-correlation coefficient analysis of each parameter with rectal skin 

temperature, which was used to determine phase relationships. From these results, this study 

concluded that HR is phase locked with rectal temperature as well as with heat production and 

proximal skin temperatures (infraclavicular, thigh and forehead) however opposite in phase with 

distal skin temperatures (hands and feet). From this study, the authors argue that despite many 

studies of the time claiming day-night variations in HR is entirely exogenous and only related to 

activity level, this study’s unmasking protocol clearly identified the endogenous circadian rhythm 

of HR. Although HR’s circadian profile is phase locked with rectal temperature’s, the authors point 

out that it is phase advanced by about 1 hour, which indicates it is not driven by CBT and can be 

considered an independent physiological parameter with evidence of endogenous circadian 

fluctuations.  

A few years later, Krauchi et al. studied the link between distal vasodilation and sleep-

onset latency, this time under constant-routine protocol modified to allow nocturnal sleep [22]. 

The conclusion of this study suggested that the distal-to-proximal skin temperature gradient was 

the best predictor for sleep initiation in 18 healthy adult males compared to HR, CBT and its rate 

of change, and even melatonin onset. They argue that despite HR and natural melatonin levels 

displaying circadian fluctuations, it is the circadian changes in thermoregulation which 

functionally relate to sleep propensity (i.e. the “pressure” of sleep). The takeaway for the purposes 

of this thesis is that HR was now also shown to display circadian fluctuations when nocturnal sleep 

is included in the constant routine protocol and not just when or if a subject stays up all day and 

all night, like could be argued from just their previous study. 

In 2011, Boudreau et al., which includes Dr. Boivin, investigated the circadian rhythm of 

HR and HRV [9]. They did this by monitoring RR intervals (via automatic detection software on 

200Hz ECG), alongside CBT, salivary cortisol and urinary 6-sulfate-melatonin (UaMt6s; the main 

melatonin metabolite) as references for characteristic circadian markers. The study involved eight 

healthy young adults under a controlled protocol called the ultradian sleep-wake cycle (USW) 

procedure conducted over 72 hours. Figure 5 below describes the USW procedure with an 

illustration showing alternating 60-minute wake episodes in dim light and nap opportunities in 

complete darkness. Throughout the procedure, subjects remained in bed in a semi-recumbent 

position and received isocaloric meals during each wake episode in order to limit the effect of 

active-rest and eating-fasting zeitgebers. RR interval values, standard RR interval low frequency 
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(LF: 0.04-0.15 Hz) and high frequency (HF: 0.15-0.40 Hz) bands relative power (separated via 

discrete wavelet transform), and the LF:HF ratio were the parameters considered in evaluating the 

correlation between HRV and circadian markers. The RR interval HF component is considered to 

reflect parasympathetic modulation of the cardiac system, whereas the LF:HF ratio is considered 

to reflect the sympathovagal balance [23]. The results of this study are presented in Figure 6  and 

display significant circadian rhythms. Correlation coefficients and phase relationships with respect 

Figure 6: HRV and hormonal data during the USW 
procedure double-plotted over two days. HRV are 
expressed as percentage of the total 24-hour mean. 
Black bars at the bottom of graph represent time of 
projected habitual nocturnal sleep episodes. Values are 
expressed as mean ± SE of the mean. [9] 

Figure 5: Ultradian sleep-wake cycle (USW) 
procedure. Following a baseline awake and then 8 hour 
sleep episode  (days 1-2), subjects began an USW 
procedure for 72 hours (days-2-5). White bars represent 
waking hours in 150 lux, grey bars represent waking 
episodes in dim light (<10 lux) and black bars represent 
sleep episodes in total darkness (<0.3 lux). [9] 
 

Table 1: Maximal correlation (units expressed in decimal 
hours) and correlation coefficient between the HRV 
parameters, and salivary cortisol and UaMt6s. A positive phase 
difference indicates an advance of the HRV parameter series 
compared to the hormonal series. * indicates phase difference 
significantly different than zero (p ≤ 0.05). Values are 
expressed as mean ± SE of the mean. [9] 
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to cortisol and UaMt6s secretions, respectively, are recorded in Table 1. In summary, mean RR 

interval circadian profile is phase advanced with respect to salivary cortisol and UaMt6s rhythms 

and is higher at night compared to daytime (i.e. lower mean HR at night compared to day). The 

specific results of the LF, HF and LF:HF rhythms only conclusively suggest that the variation in 

parasympathetic modulation of the heart (HF power) is phase locked with UaMt6s secretion and 

phase advanced relative to salivary cortisol secretion, meaning maximum parasympathetic 

modulation habitually occurs at the onset of sleep. 

 In a latter study conducted by the same group under the same USW procedure, the 

researchers were able to show that circadian rhythm in HRV from fifteen healthy young adults 

does indeed correlate with increased cardiac sympathovagal response specifically at the time of 

awakening in the morning [16]. They did this by separately analyzing the HRV parameter series 

recorded during wake episodes from those recorded during nap episodes of the USW procedure. 

They concluded that interactions between sleep-wake dependency and circadian processes 

contribute towards the increased sympathovagal response to awakening in the morning such that 

it is shown to be phase locked with approximately zero lag to the morning cortisol peak. They go 

on to explain how this interaction may very well be the reason why adverse cardiac events, such 

as myocardial infarction, ventricular tachycardia, ventricular fibrillation and sudden cardiac death 

are predominantly reported in the morning hours [24][25].   

2.3 Methods 

2.3.1 Subject 

One healthy adult male (25 years of age, 81 kg) is the sole subject of this study upon which 

all data was recorded on.   

2.3.2 Monitoring Devices 

The Polar M600 smartwatch, presented in Figure 7, was used as the primary device which 

derives wrist-based HR from an unknown proprietary algorithm converting wavelet recordings 

from the watch’s photoplethysmography (PPG) sensors into units of beats per minute (bpm) at a 

rate of 1 Hz. The Hexoskin smartshirt, presented in Figure 8, was used as a secondary device in 

order to compare with and validate the smartwatch-derived HR. Similar to the Polar, the Hexoskin 
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also outputs HR recordings at a rate of 1 Hz, however derived from dry electrodes embedded in 

the garment producing an ambulatory ECG signal. Table 2 summarizes and compares selected 

details about the two devices used in this study. 

 
Table 2: Technical details of monitoring devices. 

 Polar M600 Hexoskin 
 

Type of wearable 

device 

 

 

Smartwatch 
 

Smartshirt 

Sensors 6-LED PPG 

Accelerometer 

Gyroscope 

Ambient light sensor 

Vibration motor 

Microphone 

Analog 2-lead 256Hz ECG 

Analog 3D 64Hz Accelerometer 

Analog dual-channel 128Hz breathing sensors 

 

Raw sensor data 

available? 

 

 

No 

 

Yes 

HR output Derived from: Wrist-based PPG 

Output rate: 1 Hz 

Units: bpm 

 

Derived from: 1-lead ECG 

Output rate: 1 Hz 

Units: bpm 

Health/activity 

data provided 

Activity tracker (steps, distance, cadence, 

speed/pace, calories burned, GPS). 

Sleep tracker (timing, amount quality). 

Wrist-based heart rate measurements (HR, 

HRmax, HR zones). 

Activity tracker (steps, distance, cadence, 

speed/pace, peak acceleration, calories 

burned). 

Sleep tracker (timing, amount quality, 

position, resting HR and breathing rate). 

Cardiac measurements (QRS events, R-R 

interval, HR, HRmax, HR zones, HR recovery, 

resting HR, HRV). 

Respiratory measurements (breathing rate, 

tidal volume, minute ventilation, VO2max). 

 

Battery life 24 to 36 hours 12 to 14 hours 
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2.3.3 Experimental Protocol 

This study was split into two recording periods: 

Recording Period 1- Data recorded over 15 days between Dec. 21, 2016 and Jan. 6, 2017.  

Recording Period 2- Data recorded over 19 days between Feb. 19, 2017 and Mar. 10, 2017. 

Data collection followed a strict protocol in order to (i) maximize data collection over as many 

hours of a day as possible, (ii) efficiently use full battery life of both devices, and (iii) to document 

as many significant activities/events to be used as reference when processing and analyzing the 

data.  Below is a list of the tasks involved in the data acquisition protocol for this study: 

1. Charge Polar to full battery. 

2. Put Polar on and commence HR recording. 

3. Charge Hexoskin to full battery. 

4. Put Hexoskin on, plug in battery and begin recording. 

5. Document (e.g. as a note file on smartphone) a journal log of all main activities/events 

that occur during the recording period in as much detail as possible. Below is a list of 

main events that needed to be recorded, however whatever else the subject felt should be 

documented was: 

5.1. Time of Waking up. 

Figure 7: Polar M600 smartwatch 

Figure 8: Hexoskin smartshirt 
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5.2. Time of going to Sleep. 

(Considered to be when the subject is in bed, put all devices away (meaning 

phone, computer, iPad, etc.) and is ready to close their eyes and go to sleep). 

5.3. Time + summary of morning/evening routine  

(e.g. bathroom, shower, rushing to get out). 

5.4. Time + cups/size of Coffee drink. 

5.5. Start time + end time + portion + type of Food eaten  

(e.g. 1 bowl of salad and 1 hamburger with spicy sauce). 

5.6. Start time + end time + type and intensity of all Physical activity  

(includes long walks, walking up/down stairs, gym workouts, sports, 

moments of heavy lifting). 

5.7. Time + type of significant emotional stress  

(e.g. rushing in the morning, school/work/family stress, excitement, anger, 

nervousness). 

6. Recording from the Hexoskin would continue without interruption until either the battery 

died or the subject took a shower. When the subject became aware the battery died, they 

would right away charge it to full battery and continue recording once fully charged. 

7. Recording from the Polar would continue without interruption until the battery died 

except for 15-20 min every morning after the subject woke up. When the subject became 

aware the battery died, they would right away charge it to full battery and continue 

recording once fully charged. 

8. No research recordings took place from Friday sundown to Saturday nightfall. 

 

Over Recording Period 1, both Polar and Hexoskin HR signals were recorded. Over 

Recording Period 2 only Polar HR signal was recorded. 

2.3.4 Analysis 

2.3.4.1 Polar HR validation with Hexoskin HR 

After aligning the start time of all Polar and Hexoskin HR data files over the recording 

periods, on segments where both Polar and Hexoskin HR data were available the difference and 

cross-correlation between the two signals were investigated. The premise is such that Polar’s wrist-
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based PPG-derived HR signal needs to be validated with Hexoskin’s chest-based ECG-derived 

HR signal prior to developing subject-specific models for circadian fluctuations of HR and further 

circadian analyses derived solely from a smartwatch with PPG-derived HR recording available.  

To begin with, the cross-correlation between the two HR signals over segments where both 

were collected was estimated and the delay at the maximum correlation was used to align the two 

signals for further analysis. From there, for each segment, the (1) error between the two HR signals 

was computed by subtracting the Polar HR from Hexoskin HR (error signal also referred to as the 

residual), (2 and 3) the probability distributions of each signal and of the residual were computed, 

and (4 and 5) power spectrums for each signal and the residual signal were computed. Together, 

these results are used to analyze and understand the temporal and frequency domain comparability 

or lack thereof between both devices’ HR outputs. 

 

(i) Mean percent error (MPE), (ii) root-mean squared-error (RMSE), and (iii) maximum 

value of cross-correlation coefficient function were summarized for each segment of both Polar 

and Hexoskin HR data and then averaged over all segments to quantify the comparability of Polar’s 

HR signal with Hexoskin’s. MPE and RMSE calculations are presented in Equations 1 and 2, 

respectively: 

 𝑀𝑃𝐸 =
100%
𝑁 *+

ℎ-[𝑛] − 𝑝-[𝑛]
ℎ-[𝑛]

+
3

-45

 (1) 

 𝑅𝑀𝑆𝐸 = 8
1
𝑁*(ℎ-[𝑛] − 𝑝-[𝑛]);

3

-45

 (2) 

where ℎ- is the Hexoskin HR signal sampled at 1 Hz and 𝑝- is the Polar HR signal also sampled at 

1 Hz, which are both collected over the same segment 𝑖 of duration equal to 𝑁 samples long.	𝑀𝑃𝐸 

and 𝑅𝑀𝑆𝐸 were calculated for each segment individually. 

2.3.4.2 Subject-specific model for characterizing circadian fluctuations of HR 

A model will be proposed to characterize free-living environment circadian fluctuations of 

HR derived from the Polar smartwatch over the full recording period (Recording Periods 1 and 2). 
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First, all HR data was segmented into their respective calendrical date’s 24-hour timeline and then 

the mean of all HR data points available at each clock second was computed in order to output a 

mean HR signal over the 24-hours in a day. The mean HR signal was computed from all available 

HR data points, however was then recomputed after exogenously elevated or depressed HR 

segments due to external factors were cut out. The external factors considered to non-

endogenously elevate or depress HR were namely exercise and all-nighters where the subject 

purposefully stayed up. The start and end time of these activities were determined from the detailed 

journal log the subject kept. HR intervals during sleep was not removed as an external factor since 

sleep is a natural process of healthy daily life and was decided to be included in this study’s 

analysis as an inevitable external factor that will present itself over 24-hour cycles. Contrarily, 

exercise is not an event that necessarily occurs over every 24-hour cycle in a normal life (however, 

may be an activity which people strive to do every day or so), therefore was considered as 

extenuating circumstances which can contribute to a shift in the subject’s circadian rhythm. If the 

subject exercised daily or even every second day at a consistent time, this may have been 

reconsidered, however, as the journal log and data show, this subject exercises once or twice a 

week at most. HR data over such external factors was manually removed by visually detecting 

when the HR elevation/depression began and ended with respect to baseline. 

The mean HR signal after intervals of external factors were removed, also to be referred to 

as the circadian HR profile, was then smoothed with a low pass filter (LPF) at different cut-off 

frequencies until an acceptable cut-off was identified. Along with the mean HR signal, the SE at 

each time point was also computed by dividing the standard deviation of HR values at the specific 

time point by the square root of the number of HR values available at the respective time point. 

The LPF with same cut-off frequency was also applied to the SE signal and was used as a ± 

boundary of the circadian HR profile for analysis purposes. 

Once the smoothed circadian HR profile was computed, different parameterization 

methods to characterize the profile were proposed. The four parameterization models considered 

and their mathematical equations are listed below: 

1) Polynomial: 𝑓(𝑥) = 𝑎A +*𝑎C𝑥
3

C45

 (3) 
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2) Sum of Sines: 𝑓(𝑥) = *𝑎Csin	(𝑏C𝑥 + 𝑐C)
3

C45

 (4) 

3) Fourier Series: 𝑓(𝑥) = 𝑎A +*𝑎C cos(𝑛𝑥𝑤) + 𝑏C sin(𝑛𝑥𝑤)
3

C45

 (5) 

4) Gaussian: 𝑓(𝑥) = *𝑎C expO−P
𝑥 − 𝑏C
𝑐C

Q
;

R
3

C45

 (6) 

The decision criteria for selecting the best model are: 

i. Lowest number of coefficients 

ii. Highest adjusted R2 value 

iii. Lowest RMSE 

The model with the best combination of statistics satisfying the decision criteria will be selected 

and used to define this study’s subject-specific model for characterizing circadian fluctuations of 

HR. 

2.4 Results 

Figure 9 presents all Polar HR signals collected over Recording Periods 1 and 2 

concatenated with respect to date and time and separated into weeks from Sunday to Saturday; 

Weeks 1 and 2 comprise Recording Period 1 and Weeks 3 to 5 comprise Recording Period 2. 

Similarly, Figure 10 presents all Hexoskin HR signals, which were only collected over Research 

Period 1. The error between Polar and Hexoskin HR signals were computed on all segments with 

both signals available and the residual plotted in Figure 11. Significant external factors, such as 

sleep and exercise intervals, are identified in these plots by bar lines over the duration they 

occurred at as per journal log entries. 

Appendix A presents figures of all the raw Polar HR data segmented into calendrical days 

for Recording Periods 1 and 2, respectively. 
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Figure 9: Polar HR signals concatenated and separated into weeks (Sunday to Saturday) over Recording 
Period 1 (Weeks 1 and 2) and Recording Period 2 (Weeks 3-5). 
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In Table 3, summary statistics MPE, RMSE and cross-correlation on each segment and the 

overall average (and standard deviation) between Polar’s HR and Hexoskin’s are presented. 25 

Figure 10: Hexoskin HR signals concatenated and separated into weeks (Sunday to Saturday) over 
Recording Period 1 (Weeks 1 and 2). 

Figure 11: HR Error between Polar and Hexoskin concatenated and separated into weeks (Sunday to 
Saturday) over Recording Period 1 (Weeks 1 and 2). 
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segments of at least 2 hours in duration were available for analysis. Figure 12 and Figure 13 

demonstrate the results generated to extract the summary statistics presented in Table 3 and further 

analysis plots comparing the two HR signals on two selected segments, respectively. For 

illustration purposes, the former is one of the segments yielding highest combined summary 

statistics and the latter yielding one of the lowest. 

Table 3: Summary Comparison of Polar HR signal with Hexoskin HR signal 
over 25 corresponding segments during Recording Period 1. 

 Duration 

[h] 

MPE 

[%] 

RMSE 

[bpm] 
Cross-Corr. 

Segment 1 13.00 8.26 12.13 0.65 

Segment 2 11.71 9.17 11.27 0.73 

Segment 3 6.97 6.46 9.28 0.63 

Segment 4 7.20 6.23 8.38 0.80 

Segment 5 12.65 9.22 14.07 0.49 

Segment 6 5.53 2.43 2.43 0.93 

Segment 7 4.59 2.48 3.75 0.75 

Segment 8 8.16 4.01 5.47 0.91 

Segment 9 7.44 3.22 6.27 0.83 

Segment 10 5.52 6.67 10.00 0.64 

Segment 11 14.45 2.83 4.31 0.89 

Segment 12 6.30 6.00 7.45 0.83 

Segment 13 2.54 4.21 7.89 0.98 

Segment 14 4.07 9.98 12.55 0.49 

Segment 15 10.48 3.48 4.98 0.88 

Segment 16 9.16 5.53 7.26 0.78 

Segment 17 2.26 2.97 3.36 0.90 

Segment 18 7.23 3.48 4.20 0.90 

Segment 19 13.00 4.25 6.25 0.88 

Segment 20 3.20 6.08 10.64 0.74 

Segment 21 6.14 5.07 7.42 0.83 

Segment 22 9.13 9.25 13.05 0.59 

Segment 23 11.37 10.91 13.77 0.56 

Segment 24 8.79 4.29 6.29 0.80 

Segment 25 3.94 5.57 7.94 0.81 
     

    Avg. (Std.) 7.79 (3.52) 5.68 (2.53) 8.02 (3.42) 0.77 (0.14) 
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Figure 12: Polar/Hexoskin HR signal comparison over Segment 6 corresponding to the recording on Dec. 26-27, 2016. (A) Cross-
correlation coefficient function (Rph) of Polar HR signal (p) with respect to Hexoskin HR signal (h) after max. correlation aligned to zero 
lag; (B) Frequency distribution of Polar HR values and Hexoskin HR values, respectively, with bin sizes of 2 bpm; (C) Probability 
distribution of the residual between Hexoskin HR and Polar HR with bin sizes of 1 bpm; (D) Polar and Hexoskin HR time-series, 
respectively, and the duration of which was during evening sleep (black bar); (E) Residual (Hexoskin - Polar) time-series and sleep interval; 
(F) Power spectrum of Polar and Hexoskin HR signal, respectively, zoomed-in to range between 0 Hz and approx. 0.1 Hz; (G) Power 
spectrum of residual zoomed-in to range between 0 Hz and approx. 0.1 Hz. 
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Figure 13: Polar/Hexoskin HR signal comparison over Segment 22 corresponding to the recording on Jan. 4, 2017. (A) Cross-correlation 
coefficient function (Rph) of Polar HR signal (p) with respect to Hexoskin HR signal (h) after aligned for max. correlation at zero lag; (B) 
Frequency distribution of Polar HR values and Hexoskin HR values, respectively, with bin sizes of 2 bpm; (C) Probability distribution of 
the residual between Hexoskin HR and Polar HR with bin sizes of 1 bpm; (D) Polar and Hexoskin HR time-series, respectively, all of 
which was during awake hours; (E) Residual (Hexoskin - Polar) time-series; (F) Power spectrum of Polar and Hexoskin HR signal, 
respectively, zoomed-in to range between 0 Hz and approx. 0.1 Hz; (G) Power spectrum of residual zoomed-in to range between 0 Hz and 
approx. 0.1 Hz. 
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Figure 14 presents the results of this subject’s mean HR (Polar) calculated as the average 

HR at each second (since 1 Hz HR outputs) over the 24 hours of a day over Recording Periods 1 

and 2, which came out to 34 days of HR data. Although most days did not have HR data at every 

second, the ensemble of HR data did have more than just one at each second of a 24-hour clock. 

Figure 14.A considers averaging of all HR data whereas Figure 14.B removed segments from the 

averaging where external factors, except for sleep, contributed towards exogenously elevated or 

depressed HR values, such as exercise as discussed earlier. Results and analysis moving forward 

considers the mean 24-hour HR signal with such exogenously elevated/depressed HR values 

removed before averaging (i.e. Figure 14.B) – the circadian HR profile. 

 

 Figure 15 illustrates Low Pass cutoff frequencies 1x10-4 Hz, 1x10-5 Hz and 5x10-5 Hz for 

smoothing the circadian HR profile. When comparing the three, at the lower end 1x10-4 Hz cutoff 

frequency (Figure 15.A) the smoothed signal appears to still capture higher frequency oscillations 

that most likely represent variation as a result of averaging as oppose to a general 24-hour 

endogenous HR fluctuation profile; at the higher end 1x10-5 Hz cutoff frequency (Figure 15.B) 

the smoothed signal evidently misses a lot of the higher frequency components and thus misses 

the local maximums and minimums present in the signal and which contributes to the characteristic 

circadian HR profile as brought down in literature. However, at cutoff frequency of 5x10-5 Hz 

(Figure 15.C), a good balance between the two extremes is evident, which becomes further 

Figure 14: Mean across all Polar HR values recorded at the same time of day (hh:mm) over Recording Periods 1 and 2 (34 
days total), referred to as the subject’s circadian HR profile. (A) All HR data included; (B) Significant external factors, except 
sleep, contributing to exogenously elevated or depressed HR values (e.g. exercise) manually removed from averaging. 
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apparent when considering where the mean signal lies between the ± 1x and 2x SE boundaries 

compared to the other two cutoff frequencies. As a result, the 5x10-5 Hz low pass cutoff frequency 

is selected to smooth the circadian HR profile for further analysis in proposing a subject-specific 

model that characterizes circadian fluctuations of HR.   

Figure 15: Smoothing of Mean 24-hour HR signal with different low 
pass cutoff frequencies: (A) 1x10-4 Hz; (B) 1x10-5 Hz; and (C) 5x10-5 
Hz, which is the selected LPF. 
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 Once the smoothing operation was selected, key anchors (1) minimum, (2) interval of 

maximum increase and (3 and 4) two local maximums were identified. This was achieved by 

computing the derivative of the circadian HR profile as illustrated in Figure 16.A and then 

identified on the actual circadian HR profile in Figure 16.C. The probability distribution of when 

the subject was sleeping over Recording Periods 1 and 2 was computed and plotted in Figure 16.B. 

From this, a line bar separating probability distributions into six categories is plotted on a grey 

scale at the bottom of Figure 16.B was included as well at the bottom of Figure 16.C. This sleep 

Figure 16: Anchors derived and sleep distribution defined in order to provide 
context to the circadian HR profile. (A) Derivative of Smoothed Mean signal (5x10-

5 Hz LPF) with datatips at HR circadian anchors; (B) Probability distribution of 
subject’s sleeping intervals, including naps with grey scale gradient line bar of the 
sleep distribution; (C) Smoothed Mean and 1x SE boundaries of the circadian HR 
profile with gradient line bar of sleep distribution and key anchors marked by 
datatips (from left to right): Minimum, Interval of Maximum Increase, Local 
Maximum 1 and Local Maximum 2. 
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probability gradient provides valuable context to when these anchors occur with respect to the 

subject’s sleep-wake schedule over the full recording period from which the circadian HR profile 

was derived from. Values and time of day for the HR circadian anchors are presented in Table 4 

below. 

Table 4: Key anchors identified in the circadian HR profile. Values expressed as 
smoothed 24-hour mean ± SE.  

 Definition 
Time  

[hh:mm] 
Value  
[bpm] 

Anchor 1 Minimum 05:29 48.7 ± 0.2 

Anchor 2 Interval of Maximum Increase 07:42-09:42 +7.0 ± 2.9 

Anchors 3 and 4 
Local Maximum 1 12:50 64.1 ± 2.3 

Local Maximum 2 18:58 67.0 ± 2.5 

 

The parameterization methods considered to mathematically model the circadian HR 

profile and their model order, adjusted R2, RMSE and number of coefficients are presented in 

Table 5. Based on the decision criteria of (i) lowest number of coefficients, (ii) highest adjusted 

R2, and (iii) lowest RMSE, the 3rd order Fourier Series parameterization method is selected as the 

best model to characterize this subject’s circadian fluctuations of HR. Although the 3rd and 4th 

order Sum of Sines methods also yield good fit statistics, the 3rd order Fourier Series yields 1.0000 

adjusted R2 with less number of coefficients and with comparable RMSE, therefore Fourier Series 

model was selected.  

Table 5: Parameterization methods and associated statistics used in selecting the 

best model for characterizing subject-specific circadian fluctuations of HR. 

Parameterization 
Method 

Model 
Order 

Adjusted R2 RMSE No. of 
Coefficients 

Polynomial 
8 0.9953 4.208 x 10-1 9 

9 0.9991 1.878 x 10-1 10 

Sum of Sines 

2 0.9143 1.791 x 10-1 6 

3 0.9908 5.867 x 10-1 9 

4 1.0000 2.575 x 10-2 12 
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Fourier Series 

2 0.9895 6.263 x 10-1 6 

3 1.0000 3.486 x 10-2 8 

4 1.0000 4.705 x 10-14 12 

Gaussian 

2 0.9696 1.066 x 100 6 

3 0.9995 1.426 x 10-1 9 

4 0.9963 3.742 x 10-1 12 

 

The equation of the selected 3rd order Fourier Series model with its coefficient are presented in 

Equation 7 below, where 𝐻𝑅T  is the model estimated circadian HR profile in units of bpm, and 𝑡 

is the time in units of hours which loops in the range of [0,24[. 

 𝐻𝑅T (𝑡) = 𝑎A +* 𝑎C cos(𝑛𝑡𝑤) + 𝑏C sin(𝑛𝑡𝑤)
34V

C45

 (7) 

 Coefficients:	  

 

𝑎A = 59.45	 

𝑎5 = −2.187	

𝑎; = 1.614	

𝑎V = −0.6393 

𝑏5 = −7.986	

𝑏; = −1.556	

𝑏V = 0.8772 
 

 𝑤 = 0.2614  

 

2.5 Discussion 

Before evaluating endogenous fluctuations of HR derived from the Polar M600 

smartwatch, the reliability of its HR over all hours of the day needed to be established. This was 

done by monitoring HR from another wearable device, the Hexoskin smartshirt, which moreover 

derives HR from a different signal; ambulatory ECG as oppose to PPG. The main limitations in 

regard to comparing both HR outputs over multiple consecutive days was (i) the different battery 
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life of each device, and (ii) data alignment. The former was able to be lessened by disconnecting 

Bluetooth connectivity on the Polar, increasing its uninterrupted HR monitoring from around 24 

hours to just about 36 hours and by optimizing recharging time for both devices to exactly the 

amount of time needed to bring the device close to 100%. Hexoskin battery lifetime was found to 

be nearly half that of Polar; however, because Polar Bluetooth was disconnected and recharging 

time was optimized, majority of the time Hexoskin HR was recorded so to was Polar’s. This can 

be seen when comparing the HR signals over Weeks 1 and 2 from both devices (Figure 9 and 

Figure 10) such that only a few short intervals in each week Polar HR is recorded and Hexoskin 

is not. Battery life for wearable devices is still a concern today when the aim is to record multiple, 

uninterrupted, consecutive days as would be needed for circadian rhythm studies. However, with 

each year the field advances, so too does the battery lives. As for the second limitation, since both 

device HR outputs are sampled at 1 Hz exactly, this made things simpler. For analysis purposes, 

data alignment was mitigated by first computing the cross-correlation coefficient of each segment 

and then adjusting the timestamp of the Hexoskin HR outputs with what was the point of maximum 

correlation’s lag. It was observed that Hexoskin’s timestamp was anywhere between 4 to 7 seconds 

advanced compared to Polar’s HR signal. This can be explained in part due to the physiological 

delay between HR derived from the QRS event in ECG signal compared to HR, rather pulse rate, 

derived from PPG waveforms recorded at the wrist. Studies have shown that this delay, referred 

to the pulse transit time (PTT), can range anywhere between 180 and 330 ms when detected at the 

wrist/finger [26],[27]. Therefore, the delay in Polar’s HR signal can surely be assumed to be more 

significantly associated with Polar’s proprietary algorithms (unknown) used to process the PPG 

signal and technical or processing delays associated with sending and timestamping outputs. 

 

Once Hexoskin and Polar data was aligned, segments with both data available were 

collected and the residual computed: Hexoskin HR minus Polar HR at each time point (Figure 

11). From these results over Weeks 1 and 2, it can be seen that the residual predominantly hovers 

around 0 bpm, with intermittent and relatively sharp errors every so often especially when the 

subject is not sleeping. Upon further analysis, it can be seen in Figure 11 that the sharp intermittent 

errors weigh heavier on the positive y-axis than on the negative, meaning most of the time there 

are significant differences between the two HR signals, Hexoskin’s is significantly higher. This 

can be seen as well in Figure 9 and Figure 10 with close attention. Table 3 summarizes the 
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comparison statistics computed on all segments with both HR signals available (of at least 2 hours) 

and yields an average MPE of 5.68%, average RMSE of 8.02 bpm, and average correlation 

coefficient of 0.77 across all segments. Together, these results suggest high degree of 

comparability between both devices’ HR output, and allow me to conclude for purposes of this 

study that Polar’s HR signal is reliable, especially after the error between the two can be explained 

to be on the part of Hexoskin’s signal and not Polar’s.  

To provide context as to why significant power at high frequency was observed form this 

study in Hexoskin HR signals compared to Polar HR signals, a little background on ECG, and 

ambulatory ECG signal from the Hexoskin specifically, needs to be discussed here. Hexoskin’s 

HR is derived from electrodes embedded in the fabric of the smartshirt and produce an ambulatory 

ECG signals. It is well documented that ECG signals are challenged with several forms of artifact 

– physiological, experimental, and environmental – however, when it comes to ambulatory ECG 

signals, such as the one monitored by the Hexoskin, the main artifact corrupting the signal is due 

to electrode motion artifact [28][29]. Electrode motion artifact in the ECG signal produces R-peak-

like artifacts corrupting any R-peak detection algorithm used to calculate HR and thus introduces 

significant error in HR output above certain signal-to-noise ratios (SNR). On one hand, either a 

stricter R-peak detection algorithm is implemented which results in relatively higher false negative 

(FN) rates and lower false positive (FP) rates, thus outputting erroneously low HR values. On the 

other hand, a looser R-peak detection algorithm can be implemented to achieve low FN rates 

however at the expense of relatively high FP rates, thus outputting erroneously high HR values. 

Hexoskin, like many other ECG monitoring devices, lean more towards the looser R-peak 

detection algorithm in order not to miss any true R-peaks and add other sections to the algorithm 

to mitigate FPs without compromising the true positive (TP) detection rates (e.g. recursive filtering 

[30]). It is therefore with reason to assume most of the high frequency, elevated HR values 

outputted in Hexoskin HR signals, which are significantly more prominent during wakeful hours 

compared to sleeping hours, is a consequence of deriving HR from ambulatory ECG and the 

common FP beat detections associated with it due to motion artifacts. To further evaluate this with 

respect to our study and the specific relationship observed between Hexoskin HR, Polar HR and 

residual HR, detailed analysis on Polar/Hexoskin segments were performed and results on two 

segments presented in Figure 12 and Figure 13, respectively. The first presents results over 

segment 6 where the subject was preparing for nocturnal sleep and then sleeping (i.e. no-to-low 
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activity), and the second over segment 22 which consisted of regular awake hours of the day with 

intervals of low-to-moderate activity. Comparing panels A of these two figures, the no-to-low 

activity segment yields significantly higher correlation between the two signals than the low-to-

moderate activity segment (0.93 compared to 0.59). This is evident when considering panels D 

and E with both HR plotted over each other and the residual plotted, respectively; segment 6 

Hexoskin and Polar HRs closely follow each other and yield a roughly zero error throughout, 

whereas segment 22 Hexoskin HR continuously overshoots the Polar HR with high frequency and 

large positive spikes also apparent in the residual signal. Panels F further verifies this such that 

segment 22 Hexoskin HR power is more than double that of Polar’s and has significant power in 

higher frequencies (between 0.01 and 0.03 Hz) not only compared to Polar’s over the same 

segment but also compared to Hexoskin’s over segment 6. In panels G, segment 6 residual appears 

as white noise (until about 0.1Hz where all power saturates to zero), whereas there is still 

significant power in segment 22 residual. Panels B and C present the overlaid probability count of 

each signal separated into 2 bpm bins and the probability distribution of the residual separated into 

1 bpm bins, respectively. The Hexoskin probability count over segment 6 closely relates to the 

Polar’s despite still having a few counts at higher HR values when Polar does not, nonetheless the 

residual probability distribution appears to resemble that of a normal or sharp student-t distribution 

function in the ± 10 bpm range. As for segment 22, the probability count of Hexoskin overshoots 

Polar’s at higher HR values and surprisingly undershoots Polar’s at lower HR values. 

Consequently, a nonsymmetric residual distribution with larger error at higher HR values is the 

result. Together, the analysis on these two segments as example confirms our initial observation 

that, in general, the Hexoskin outputs higher HR signal with larger high frequency components, 

especially during wakeful hours of the day, compared to Polar HR signal. With the understanding 

that Hexoskin’s ambulatory ECG-derived HR signal inherently is susceptible to motion artifacts 

resulting in more FP beat detections and thus erroneously high HR values compared to Polar’s HR 

signal at times, the comparability of the two signals outweigh the minor differences observed in 

the detailed signal analysis. Furthermore, it was the trend over a 24-hour scale which was important 

to validate for the Polar smartwatch’s HR signal since circadian fluctuations is the focus of this 

research. Therefore, this study concludes that there is not enough evidence to suggest Polar’s HR 

is unreliable and will be used with confidence when analyzing subject-specific circadian 

fluctuations of HR. 
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Once the smartwatch’s HR signal was established as reliable, we can rely on earlier studies 

identifying endogenous, diurnal fluctuations of HR that it does exist and is identifiable under 

constant routine protocols with or without sleep or under alternating sleep-wake condition 

protocols (e.g. USW procedure) [9][11][16][22]. The main objective this study was thus to test 

whether circadian fluctuations of HR can be verified under complete free-living conditions or not 

from the primary wearable device. The results of this study argue that indeed it can be. Despite 

high frequency perturbations and gaps of data missing, visual inspection of Figure 9, which 

segments all Polar recordings into Sunday-Saturday weeks, clearly reveals a significant low 

frequency component with a period of roughly 24 hours. Therefore, what was done to create a 24-

hour profile of this subject’s HR was to take an average of all HR data available at each second of 

the 24-hour clock; Figure 14.A displays these results. Noticeably, between around 19:00 h to 

23:00 h there is a large spike in mean 24-hour HR. This is because, as inferred from the subject’s 

journal log, 5 days over the recording period the subject exercised in the evening around those 

times (Figure 9 confirms this with blue bar lines indicating the interval of exercise). Specifically, 

the subject played basketball for 1 to 2 hours where his HR elevated to just under 190 bpm peak 

and stayed around the range of 150 to 180 bpm throughout the exercise. Once exercise finished, 

baseline endogenous HR resumed after up to even 4 hours of recovery. Depending on the intensity 

and duration of exercise, it is expected that HR recovery back to baseline varies and can take 

several hours after high intensity exercises because of the central response and local peripheral 

response components of the cardiovascular system [31]. Although exercise was not prohibited 

since the aim of this study was to monitor circadian rhythms under uncontrolled, natural conditions 

with no restrictions on activities, exercise intervals and other intervals confirmed from journal log 

that exogenously elevated or depressed HR, such as overnight caffeinated work, were excised from 

the data to create a new mean 24-hour HR profile. Figure 14.B illustrates the results which is 

argued to reflect only naturally occurring, diurnal, endogenous fluctuations. For this reason, sleep 

intervals was not removed since it naturally occurs on a daily basis for all healthy human beings 

unless purposely avoided (like the subject of this study did one night). Exercise though is not a 

prerequisite for daily life to the extent sleep is; regular exercise for multiple times a week is 

recommended in a healthy lifestyle, however there is no propensity to exercise like there is to sleep 

unless the individual accustomed themselves to exercise daily for many years and even then can 

relatively be easily stopped for prolonged periods without serious repercussions, as would be the 
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case for not sleeping (e.g. hallucination, motor function impairment, etc.). It is here where this 

study differentiates between two of the main zeitgebers after sunlight exposure when it comes to 

evaluating circadian fluctuations in free-living conditions: daily sleep-wake schedule is a human 

requirement; exercise is not per say and therefore treated as a significant external factor masking 

the endogenous HR fluctuations interested in analysing.  

 

After the endogenous mean 24-hour HR signal was collected as defined, LPF at different 

cut-off frequencies were tested in order to best smooth the data while still preserving key anchors 

identified in the data and which have been brought down in literature. Figure 15 summarizes this 

evaluation showing a relatively low cut-off frequency of 1x10-4 Hz in panel A, a relatively high 

cut-off frequency of 1x10-5 Hz in panel B, and one in the middle of 5x10-5 Hz in panel C, which 

was selected as the acceptable LPF cut-off frequency for further analysis of the circadian HR 

profile. 

 

Value and time of day for the minimum and maximum HR values are two key anchors 

commonly set out to define when characterizing physiological signals on a circadian map 

[9][22][32]. CBT recorded rectally is a well-established parameter monitored alongside other 

parameters of interest in circadian studies since its nadir (i.e. minimum value) repeatably occurs 

in the early hours of the morning or just past the halfway mark of nocturnal sleep [33]. Therefore, 

anchors are also commonly expressed in units of time after (+) or before (-) the CBT nadir or in 

units of degrees after segmenting one days CBT nadir with the next day’s CBT nadir into 360 

degrees. This study only recorded HR, therefore times of anchors can only be expressed by their 

value and time of occurrence along our 24 hour clock. Besides for minimum and maximum HR 

value anchors, researchers sometimes also define the interval of maximum increase in HR since it 

strongly correlates with the time majority of adverse cardiac events have been reported to occur at 

[16]. The circadian HR anchors identified from this study are presented in Table 4, which were 

derived from the results presented in Figure 16. To further provide context of the circadian HR 

profile and before being able to fully discuss the four anchors identified, it was essential that sleep-

wake schedule information was captured since it was not a controlled zeitgeber like the majority 

of studies published. To do this, a probability distribution of which hours the subject was sleeping 

over the full recording period was computed and results presented in Figure 16.B and then again 



 

33 

 

in Figure 16.C as a grey-scaled gradient bar line under the circadian HR profile. This is a novel 

representation of a subject’s sleep-wake schedule when studying circadian rhythms in free-living 

conditions and proved to be valuable in our understanding of the proposed circadian HR profile, 

its SE boundaries and the anchors. HR circadian anchors were derived from taking the derivative 

of the smoothed mean 24-hour HR signal, as presented in Figure 16.A. Minimum HR of 48.7 bpm 

occurring at the early morning hour of 05:29 was identified as Anchor 1. The actual value is of 

course subject-specific and relatively low compared to other studies, however the time of 

occurrence is within the sleeping probability of greater than 90% and very much in line with other 

studies showing it to occur mid sleep [21][32]. Anchor 2, interval of maximum increase in HR, 

was defined as the hour before and hour after time of maximum increase in HR. From the circadian 

HR profile derivative signal, this ended up being defines as an increase of 7.0 bpm over the 

morning hours 07:42 and 09:42 when the subject is commonly waking up. From the sleep 

portability analysis, it is inferred that over these 2 hours the probability of the subject sleeping was 

becoming less and less, starting from 90% or less and ending at 25% or more. These results can 

be explained to directly coincide with researchers reporting HR endogenously begins to elevate as 

an individual approaches the end of nocturnal sleep and then surges, along with blood pressure, at 

the onset of awakening [16][21]. For the subject of this study, sleep-wake schedule was not 

consistent in timing or duration, as the weekly plots of Figure 9 display. Nonetheless, the sleep 

probability gradient defends that this interval is precisely when the subject is most likely to 

transition from sleep to wake. Two local maximums were identified as Anchors 3 and 4, 

respectively; one of 64.1 bpm just after noon detected at 12:51 and the second of 67.0 bpm 

approximately six hours later at 18:58. Again, this confirms earlier studies concluding HR 

endogenously elevates in the morning and stays elevated until late afternoon [21][32]. As for which 

anchor is the absolute maximum, most studies identified it to be the earlier afternoon maximum, 

however these studies were either under constant routine protocols or USW procedure, and there 

was still a secondary maxima towards the later afternoon. The difference between the two local 

maximums detected in this study is 2.9 bpm, and between the absolute maximum and minimum it 

is 18.3 bpm. Therefore, in consideration of the maximum-minimum range, the two local 

maximums can arguably be considered as one prolonged period of elevated HR. Notably, the SE 

around the minimum HR anchor is detected to be but 0.2 bpm whereas at the local maximums it 

is 2.3 and 2.5 bpm, respectively. This can mainly be explained due to the greater variation in 
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activities that an individual goes through during wakeful hours of the day that elevate or depress 

HR from underlying endogenous values. However, HR nadir almost always occurs when the 

individual is sleeping and not performing any activity and therefore more precisely records HR 

values without other exogenous contributions besides for sleep.  

 

A model characterizing the subject-specific circadian fluctuations of HR in free-living 

conditions was finally summarized and presented in Equation 7 after evaluating different models 

reported in Table 5. The conclusion, based on the best combination of lowest number of 

coefficients needed to be calculated empirically, highest adjusted R2, and lowest RMSE, a 3rd order 

Fourier Series model is proposed. Essentially a combination of 3 cosine and sine function pairs, 

this model is proposed as a mathematical equations that can characterize any individual’s 

smoothed mean 24-hour HR profile. Interestingly, the period of the first, second and third 

harmonics are almost exactly 24.0, 12.0 and 8.0 hours, respectively. The absolute amplitudes of 

the first harmonic cosine and sine pair is largest, followed by the second, and lastly the third. 

Together, this model seems to perfectly capture the circadian, half circadian and quarter circadian 

components of a subject’s 24-hour HR profile.  

 

One of the applications interested by this research project’s industry partner, Thinkinetics 

Inc., is being able to map and predict the circadian rhythm of an individual’s HR a few days into 

the future. As discussed in the Introduction and Background sections of this chapter, on one hand 

many diseases and disorders have been linked to the desynchronization of individual’s activities 

with respect to their circadian clock, and on the other hand there are well established links with 

optimal timing for best sleep, cognitive awareness, physical performance and other benefits with 

the individual’s personal circadian rhythm [21]. For example, optimal sleeping hours are based on 

hormonal secretion levels which vary amongst individuals based on their specific circadian rhythm 

[21]. In short, there are several reported benefits to knowing and being in-tuned with one’s 

circadian rhythm, and linking known activities with consequences – good or bad – is attainable 

given the advancements in wearable and physiological sensing technology, which could prove to 

be appreciated by clinicians and general consumers alike. To illustrate this application, Figure 17 

presents the circadian HR profile computed over all available data except Week 1. This profile was 

used to interpolate and map the profile over and along Week 1 when HR data was not available, 
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as shown in Figure 18. The profile in Figure 17 is highly comparable with that of Figure 15.C 

and suggests week-to-week consistency of HR circadian fluctuations. To begin with, Anchors 1, 

3 and 4 are highlighted with their time and values; Anchor 1 and 4 occur at almost the exact same 

clock time and vary from the full dataset’s’ anchor values by less than 1 bpm. Anchor 3 however 

is almost one hour advanced and is more than 1 bpm lower in value. Analyzing Figure 18, it is 

evident that smoothed HR data majority of the time fits well within the ± 2 SE boundaries except 

for during the interval of exercise, upon waking up in the morning on the fourth day starting at 96 

h, and to a lesser degree the short nap on that same day. Along with sleep tracking and activity 

tracking capabilities most smartwatches, have this type of information identifying the time of 

significant overshooting or undershooting of the individual’s HR from a prior established circadian 

HR profile can lend to user decisions towards improved lifestyle behaviours and scheduling 

optimal with their personal circadian rhythm. Simple examples can include when to start getting 

ready for sleep and how late in the afternoon will exercise not delay sleep, but can even reach 

advising at risk individuals to take medication at times aligned with their chronobiology or 

immediately notify a doctor if the rate of change in morning HR is outside regular ranges. 

 

Figure 17: 24-hour mean, smoothed mean and SE boundaries on Polar HR data collected over 
Weeks 2 to 5. Datatips at anchors 1, 3 and 4. 
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Figure 18: Week 1 Polar HR data and smoothed HR data interpolated with the smoothed 24-hour mean 
HR profile (computed from Weeks 2 to 5) where data is not available. External factors marked by bar lines. 
Smoothed mean ± 2 x SE marked as boundaries. 
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Chapter 3  

Research Part II 

 Real-time ambulatory ECG processing and novel SQI 
for R-peak-derived cardiac vital signs 

3.1 Introduction 

Electrocardiography, practically invented by Willem Einthoven in 1895, is the process of 

recording the electrical activity of the heart by placing electrodes on the skin producing an 

electrocardiogram signal (process and signal abbreviated as either ECG or EKG). The micro 

voltage changes from each cardiac depolarization-repolarization cycle is detected by the electrodes 

and produces characteristic waveforms in the ECG signal. ECG today is part of the gold standard 

for evaluating general health and has become a very powerful tool for detecting, diagnosing and 

monitoring an array of cardiovascular diseases (CVD), which accounted for 31% of all deaths 

worldwide in the year 2016 [35]. Historically, ECG has been monitored under stationary 

conditions, usually in a supine position, and in hospitals or clinics. However, in the 1950s, Norman 

Holter invented a portable ECG recorder, what is called today a Holter monitor. The Holter 

monitor lasts 24 to 48 hours and meant to be sent home with patients known or being tested for 

CVD in order to collect continuous, uninterrupted monitoring later to be analyzed by clinicians 

and cardiologists [36]. Since then, plenty of remote-monitoring ECG devices have been released 

in the market for research and as certified medical devices after passing rigorous standards set out 

by governing bodies such as the Food and Drug Administration (FDA) in the United States and 

Health Canada in Canada.  

The challenge though with monitoring ECG outside the hospital in ambulatory 

environments is that the ECG inherently becomes very susceptible to many noise sources. One in 

particular – electrode motion artifact – is known to be the toughest to handle since it presents itself 

as ectopic beats or as high power white noise; in both cases making it very difficult to analyze the 

underlying physiological signal [37]. Therefore, mitigating against electrode motion artifact is 

highly sought out by many researchers. From a hardware perspective, electrode material science 

(e.g. flexible capacitive electrodes [38]) and electrode-skin contact (e.g. dry versus gel [39]) are 
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but two means investigated that can limit the thresholds and recurrences of motion artifact 

corrupting the signal. From a signal processing perspective, creative ways passed simple filters are 

continuously being proposed as a means to extract underlying cardiac vital signs despite these type 

of artifacts. Adaptive filtering, machine learning models and sensor fusion when available are 

some of the options proposed in the literature to accurately identify heart beats and other ECG 

information in the presence of noise. Nonetheless, at one point or another, motion can be so great 

that noise will inevitably be introduced and render entire segments unreadable. At this point, such 

segments needs to be identified as unreliable for ECG analysis so that inaccurate vital signs are 

not being outputted and false events that would otherwise caution a potential health crisis are not 

being triggered. 

3.1.1 Research Objectives and Scope 

The main objective of this research is to develop a real-time algorithm which processes 

ambulatory ECG data and outputs reliable cardiac vital signs HR and HRV. In order to achieve 

this, first an R-peak detection algorithm needed to be developed with attention towards mitigating 

noise factors common in ambulatory ECG data. Second, an efficient and accurate HR and HRV 

calculation method was employed on the R-peak detection results. And lastly, a SQI on the 

underlying ECG segment used to calculate HR and HRV was developed and proposed to 

accompany each cardiac vital sign as a quantifiable measure to how reliably these cardiac vital 

signs should be considered. 

The scope of this project involved developing a real-time ECG processing algorithm, as 

outlined above, in MATLAB language such that it can be easily translated and employed in the 

software of a wearable ECG-monitoring medical device. Specifically, the developed algorithm 

was to be used by this project’s industry partner, Elastic Care Inc., who were developing a medical-

grade remote patient monitoring device with 12-lead ECG monitoring along with respiration and 

movement. Ambulatory ECG data was not collected as a part of this study, therefore the algorithm 

was developed and evaluated on publicly available ambulatory ECG databases: the Massachusetts 

Institute of Technology - Beth Israel Hospital (MIT-BIH) Arrhythmia database and the MIT-BIH 

Noise Stress Test (NST) database [37]. Performance metrics were calculated and assessed based 

on what has been brought down in literature and based on the applicable American National 

Standard ANSI/AAMI/IEC 60601-2-47:2012/(R)2016, which is required to be followed by 
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ambulatory ECG systems submitting for FDA or Health Canada approval as an ECG monitoring 

medical device [40].  

3.2 Background 

The ECG signal is a valuable diagnostic tool since with each beat of the heart a 

characteristic waveform is produced, which specialists are able to interpret in regards to 

cardiovascular health and diseases. Figure 19 illustrates the characteristic P-QRS-T waveform for 

normal heartbeats, termed sinus rhythm. Minor differences in the characteristic sinus rhythm to 

the trained eye is a specific medical indication. Different ECG leads, achieved by placing unipolar 

or bipolar electrodes at different locations along a subject’s chest, allows for an even deeper layer 

of analysis as to which atrium or which ventricle is the source of irregular cardiac electrical 

activity; twelve leads is standard for a complete ECG analysis. A non-extensive list of main 

applications for reasons to monitor an individual’s ECG include: detection of irregular heart 

rhythms (also referred to as arrhythmias), coronary artery blockage, areas of damaged heart 

muscle, enlargement of the heart, inflammation of pericarditis, electrolyte imbalance, lung 

diseases, monitoring heart medication and pacemakers, monitoring ongoing heart attacks, and 

ruling out hidden heart diseases in pre-surgery assessment [29]. 

Figure 19: Schematic diagram of the characteristic P-QRS-T waveform 
of sinus rhythm in humans as seen in the ECG signal. [34] 
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The QRS complex, namely the R-peak, is generally accepted as the reference time of each 

heartbeat. One of the most well-known real-time QRS detection algorithms is the one developed 

by Jiapu Pan and Willis J. Tompkins in the year 1985 [41]. The algorithm, recognized as the Pan-

Tompkins Algorithm, is divided into three process: learning phase 1, learning phase 2 and 

detection. Learning phase 1 requires about 2 seconds so that at least one R-peak presents itself and 

initializes R-peak and noise amplitude thresholds based on the assumption that the largest peak is 

R-peak and other peaks at least half in ECG amplitude are noise peaks (or T-waves). Learning 

phase 2 requires two heartbeats and is in order to initialize RR interval and RR rate thresholds. 

The detection process consists of sequential processing steps including three linear digital filters 

and adaptive thresholding. The first steps involve a low pass filter (LPF) followed by a high pass 

filter (HPF), essentially achieving a bandpass filter, in order to reject noise components outside 

the fundamental frequencies of the QRS complex. The design goal of the bandpass filter was to 

only keep frequency components in the range of 5-15 Hz, however they achieved 3 dB passband 

approximately between 5-12 Hz due to processing limitations. Following the bandpass filter, the 

derivative of the resulting signal was approximated by a filter and then a simple point-by-point 

squaring operation. Next, a 150 ms moving-window integration was performed (the authors 

explain that the 150 ms width of the window was determined empirically). Figure 20 illustrates 

the results on the steps thus far explained starting from input ECG signal to after the moving-

window integration.  

Figure 20: Idealized illustrative comparison of input ECG signal (top) 
and output after the Moving-Window Integration step (bottom), 
highlighting to relationship of the QRS complex width, QS, and the 
integrator window width, W. [41] 
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The step that came next was beat-by-beat detection of QRS complexes, termed fiducial 

mark by the authors. As can be deduced from Figure 20, this was achieved by detecting the point 

of maximal slop on the first rising edge of the integration output, which corresponds to the R-peak. 

The last two steps after this involved threshold testing and updating; one based on amplitude of 

peak detected and the other based on the resulting interval between the peak detected and the 

previous peak. The amplitude threshold essentially classifies each detected peak as either an R-

peak or a noise peak by first testing whether the amplitude at the point of detection on the 

integration signal is closer to the previously detected R-peak or previously detected noise peak, 

and second if the amplitude of the point of detection on the bandpass filtered signal is also closer 

to the previously detected R-peak or previously detected noise peak. Integration signal and 

bandpass filtered R-peak amplitudes, respectively, along with those of each tested and failed peak 

(i.e. noise peak) are updated with each detection. After an acceptable R-peak is determined from 

the first thresholding step, an average of the eight most recent RR intervals are computed and 

compared against a Low, High and Missed threshold limit based on the average of the eight most 

recent RR intervals that fell between the Low and High limit thresholds. The Low threshold is 

essentially 92% of the average RR interval, the High limit 116% and the Missed limit 166%. If the 

new detected R-peak renders the average to be above the Missed threshold, the maximal peak 

reserved that will establish the average RR interval to be between the Low and High thresholds is 

reconsidered to be a true R-peak. This concludes the steps and process of the Pan-Tompkins 

Algorithm and it should be noted that all threshold percentages were empirically determined.  

The Pan-Tompkins Algorithm was evaluated on all 48 records of the MIT-BIH Arrhythmia 

database with performance results presented in Table 6. Total number of beats, FP beats, FN beats, 

and failed detection beats and rates are the record-by-record performance metrics of choice and in 

summary their algorithm correctly detects 99.3% of QRS complexes on this standard dataset of 

ambulatory, pathological ECGs. 

Since the Pan-Tompkins Algorithm has been published, several modifications have been 

proposed, including the one by Patrick S. Hamilton and W. J. Tompkins himself where they 

improved the peak detection step, optimized a set of QRS peak and noise thresholds, and removed 

the average RR interval threshold (which limited the Pan-Tompkins Algorithm to ECG records of 

normal heart rates, performing poorly on bigeminy and trigeminy arrhythmias for example) [42]. 

The Hamilton-Tompkins Algorithm reported 99.69% and 99.77% gross sensitivity (Se) and gross 
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positive predictivity (Pp) on the MIT-BIH Arrhythmia database. Another famous and competing 

class of R-peak detection algorithms was first developed by Zong et al. in 2003 and involves a 

length transform operation instead of just digital filters [43]. Zong et al. reported gross Se and Pp 

of 99.65% and 99.77%, respectively, on the standard MIT-BIH Arrhythmia database. 

 
Table 6: Results of evaluating J. Pan and W. J. Tompkin’s Real-Time 
QRS Detection Algorithm on the MIT-BIH Arrhythmia database [41]. 



 

43 

 

No matter the R-peak detection algorithm, all attempt to eliminate FPs and FNs caused by 

ECG artifacts, however all fail at certain SNRs where the underlying signal is no longer retrievable. 

ECG artifacts can be characterized into three categorized: physiological, experimental and 

environmental [29]. The first arises due to other physiological processes in the body such as muscle 

artifacts from the electrical activity during muscle contractions or baseline wander from 

respiration. The second includes all the artifacts more prevalent or more of a concern during 

ambulatory ECG monitoring and include electrode-motion artifact and electrode-contact artifact. 

These artifacts can present themselves at all frequencies and at powers significantly greater than 

the electrical activity of the heart, thus mimicking QRS complexes. The last category of ECG 

artifacts are those such as powerline interference, electromagnetic interference and interference 

from circuit components [29]. Because ECG artifacts can easily corrupt the signal from 

interpretability, SQIs become a valuable tool to relay if the ECG signal is clean enough for 

diagnostic inspection and/or cardiac vital sign extraction. 

 

The goal of ECG SQIs are to extract signal and beat properties and output binary 

classification on individual segments of data as either being acceptable (1) or unacceptable (0). 

Literature discusses physiological, temporal and frequency domain SQIs. Physiological ECG SQIs 

are usually heuristic and evaluate RR interval and rate with respect to known physiological limits. 

Orphanidou et al. proposes HR in the range of 40 and 180 bpm at rest and 40 and 300 bpm during 

exercise, maximum RR interval of 3 seconds (which allows for one missed beat if 40 bpm is 

physiological minimum) and a maximum RR interval divided by minimum RR interval limit in a 

10 second segment of 2.2 [44],[45]. Temporal domain SQIs are both heuristic and empirical and 

include flat line detection, minimum and maximum amplitude limits such as 0.2 and 15 mV, 

respectively, amplitude range limits such as ± 4 mV, excessive amplitudes for a prolonged duration 

such as 2 mV for 0.2 seconds or longer, and large amplitude rate of changes such as 0.005 mV/sec 

or greater [46]-[49]. The third and fourth moment of signal segments (i.e. skewness and kurtosis, 

respectively) are other temporal domain SQIs with acceptable values determined empirically from 

labelled datasets [50]. Frequency domain SQIs involve segmenting the ECG into different 

bandwidths and computing in-bound to out-of-band or in-band to full-band power ratios, 

respectively, and then set empirically determined limits for acceptable ratio values [48],[51].  
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A study by Clifford et al. extracted several of these SQIs and used them as features to train 

different machine learning models to classify whether ECG segments are clean or noisy [52]. On 

the PhysioNet Challenge 2011 dataset, consisting of 12-lead ECG records with binary signal 

quality labels for each lead, they segmented the data into 5 second segments and achieved 

classification testing accuracies of 98% and 97%, respectively, from multi-layer perceptron and 

support vector machine (SVM) models.  

3.3 Methods 

3.3.1 ECG Database 

Two publicly available ECG databases from PhysioNet were used in this study: (1) the 

MIT-BIH Arrhythmia database, and (2) the MIT-BIH NST database [37]. The MIT-BIH 

Arrhythmia database consists of 48 half-hour excerpts of two-channel ambulatory ECG recordings 

digitized at 360 Hz. Only modified limb lead II (MLII) were used of the two channels and records 

with paced beats were excluded, resulting in 44 records used from this database. The labels of 

MLII records used are the following: 100, 101, 103, 105, 106, 108, 109, 111, 112, 113, 114, 116, 

117, 118, 119, 121, 122, 123, 124, 200, 201, 202, 203, 205, 207, 208, 209, 210, 213, 214, 215, 

220, 221, 223, 231, 233, 234. 

The MIT-BIH NST database, consisting of 12 half-hour records, uses two patient records 

from the Arrhythmia database (records 118 and 119) and adds a combination of three types of 

artificially generated noise most common to ambulatory ECG at six particular SNRs of -6, 0, 6, 

12, 18 and 24 dB, respectively. The three artificial noise signals generated were designed to mimic 

baseline wander, muscle artifact and electrode motion artifact. The combined noise signal was 

introduced to the records after the first 5 minutes of recording and thereafter for 2 minute segments 

alternating on and off every 2 minutes. MLII for all 12 NST records were used: 118e_6, 119e_6, 

118e00, 119e00, 118e06, 119e06, 118e12, 119e12, 118e18, 119e18, 118e24, and 119e24.  

The NST database reflects different extremes of noise able to be introduced from being 

recorded in an ambulatory environments, and the Arrhythmia database, recorded in actual 

ambulatory environments, reflects the different types of pathological patients that can distort 

otherwise sinus ECG signals and still must be processed as reliable when noise is or is not present. 

Together, majority of the signal properties an ECG monitoring device would encounter in the 
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ambulatory environment are considered. The Arrhythmia database was used to evaluate 

performance of the overall algorithm developed and the NST database was used as a tool to extract 

signal properties at different noise levels contributing to unreliable cardiac vital signs. 

 

3.3.2 Algorithm Development 

3.3.2.1 Real-time processing 

The real-time ECG processing algorithm was designed to have an initial baseline data 

collection period followed by 1-second sliding windows where signal processing operations (1) R-

peak detection, (2) HR and HRV calculation, and (3) SQI calculation are performed on each 

window until recording halts.  

The baseline data collection period is intended to extract baseline signal properties and 

initial cardiac vital signs under the assumption no motion artifact was present. The user pairing 

with the ambulatory ECG monitor would be instructed to remain still for this baseline duration – 

essentially an initial calibration which is not uncommon in remote monitoring devices – and then 

baseline parameters such as amplitude thresholds, significant frequency components and initial 

cardiac vital signs can be extracted. The specific baseline data collection outputs are listed below: 

• Amplitude range (maximum minus minimum) 

• Most recent 12 RR intervals 

• Minimum RR interval 

• Most recent HR estimate 

• Minimum HR estimate  

• Most recent HRV estimate 

Extracting this type of baseline information is proposed to improve performance on the 

subsequent signal processing steps in the event environmental noise does get introduced 

downstream.  

The length of each sliding window is intended to keep enough past ECG data in order to 

most accurately detect most recent R-peaks and signal quality features with the trade-off of not 

storing too much memory to be employed by a monitoring device. Then, keeping the same window 

length, the window slides by 1-second and re-runs the signal processing steps in order to output 

results on the next 1-second of data, and so on and so forth. The 1-second sliding window 
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parameter was selected in order to output new cardiac vital signs at a rate of 1 Hz in real-time if 

implemented on a remote monitoring device. This would allow for fast response to sudden changes 

in cardiac activity, a feature assumed desirable to most wearable and medical cardiac monitoring 

devices.  

 

3.3.2.2 R-peak detection algorithm 

A modified Pan-Tompkins Algorithm was implemented for this project’s R-peak detection 

algorithm. Namely, the LPF, HPF, derivative filter and point-by-point squaring operations were 

implemented as Pan and Tompkins reported in their paper. The moving-window integration was 

implemented as a moving averaging filter and the fiducial mark maximum slope detection 

followed by adaptive amplitude and RR interval thresholding was switched to a peak detection 

function with minimum peak prominence threshold, adaptive minimum peak-to-peak distance 

threshold and an optimization search. The steps of the algorithm developed are listed below with 

descriptions of each operation implemented sequentially, starting from input ECG: 

Step 1: LPF 

Convolution with transfer function (MATLAB’s ‘conv’ function) presented in Equation 8: 

 𝐻(𝑧) =
(1 − 𝑧ef);

(1 − 𝑧e5); (8) 

Step 2: HPF 

Convolution with transfer function presented in Equation 9: 

 𝐻(𝑧) =
(−1 + 32𝑧e5f + 𝑧eV;)

(1 + 𝑧e5)  (9) 

Result of the LPF and HPF steps is a 3 dB passband approximately between 5-12 Hz [41]. 

Step 3: Derivative 

Convolution with transfer function presented in Equation 10  

 𝐻(𝑧) = (𝑓g/8)(−𝑧e; − 2𝑧e5 + 2𝑧5 + 𝑧;) (10) 

where 𝑓g is the sampling rate, equal to 360 Hz for the MIT-BIH Arrhythmia and NST 

databases. 
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Step 4: Squaring 

Simple point-by-point squaring operation. 

Step 5: Averaging 

Convolution by the transfer function presented in Equation 10: 

 𝐻(𝑧) =
1
𝐿*𝑧ej
ke5

j4A

 (10) 

where 𝐿 is length in sample number of the moving average window size, which is set to 150 

ms, therefore 𝐿 = 0.15𝑓g = 0.15(360) = 54 for the databases used. 

Step 6: Peak detection with Adaptive Thresholds 

MATLAB’s ‘findpeaks’ function with ‘MinPeakProminence’ and ‘MinPeakDistance’ 

specified. ‘MinPeakProminence’ set to 5% of maximum peak in segment. 

‘MinPeakDistance’ initialized to 200 ms (corresponding to an instantaneous HR of 300 bpm) 

for the baseline data collection period and then updated with each sliding window as 55% of 

the shortest RR interval from the 12 most recent RR intervals. Thresholds were determined 

empirically on the dataset. 

Step 7: Peak location Optimization 

Location of the peaks detected on the moving average signal were optimized to the location 

on the input ECG signal within ± 20 ms that resulted in the maximum squared value. This 

optimization was identified visually and then empirically after testing searching window 

length from ± 10 to 60 ms. Searching for maximum value or maximum squared values was 

also compared and maximum squared value (essentially maximum absolute value) yielded 

better performance, which can be explained due to the arrhythmias which some produce 

negative voltage R-peaks. 

 

3.3.2.3 HR and HRV calculations 

HR is calculated as the equal-weighted average of the 𝑁 most previous RR intervals, 

converts it into units of beats per minute (bpm), and outputs second-by-second updated values with 

each signal processing window. The HRV calculation method was designed to simply output the 
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most recent RR interval value in units of milliseconds (ms) after each signal processing window. 

Equations 11 and 12 presents the HR and HRV calculation equations, respectively: 

 𝐻𝑅- =
60

1
𝑁 l𝑅𝑅- + 𝑅𝑅-e5 + 𝑅𝑅-e; + ⋯+ 𝑅𝑅-e(3e5)n

= [bpm] (11) 

 𝐻𝑅𝑉- = 1000 × 𝑅𝑅- = [ms] (12) 

where 𝑅𝑅- is the most recent RR interval, in units of seconds, of the 𝑖st signal processing window, 

and 𝐻𝑅- and 𝐻𝑅𝑉- are similarly the HR and HRV outputs, respectively, from the 𝑖st signal 

processing window.  

As default, 𝑁 was set to equal 12 for the HR calculation equation, however in cases where each of 

the most recent three RR intervals are greater than 1200 ms (representing instantaneous HRs less 

than 50 bpm) the value of 𝑁 switched to equal 4. It is common to adjust the number of RR intervals 

averaged based on their lengths when approximating real-time HR for medical purposes. A similar 

decision rule is reported in GE Healthcare’s CARESCAPE Patient Data Module [53]. In practice, 

𝑁 is commonly set to either 8 or 12. The greater the value of 𝑁, the slower it responds to sudden 

increases or decreases in HR however also outputs less variation between successive HR outputs. 

Since HRV output represents individual RR-interval variation, HR calculation was decided to 

average over 12 instead of 8 RR-intervals. Together, the HR and HRV outputs captures the gradual 

changes and immediate variation of heart rate, respectively. 

It should be noted that, as Equations 11 and 12 show, accuracy of HR and HRV are 100% 

dependent on the accuracy of the R-peak detection algorithm. As explained, the number of RR 

intervals used to approximate the cardiac vital sign only affects over how many heartbeats is the 

vital sign value captured over; however, the R-peak detection performance determines if the vital 

sign is reliable or not regardless of the approximation chosen. 

 

3.3.2.4 Novel SQI for R-peak derived cardiac vital signs 

Since noise can inevitably be assumed to corrupt ambulatory ECG recordings, this research 

set out to develop a novel SQI which quantifies the reliability of R-peak derived cardiac vital signs 

HR and HRV. As such, each second-by-second output is accompanied by a real number SQI 
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ranging from 0 to 1, where at the lower limit 0 indicates a completely unreliable underlying ECG 

segment and at the upper limit 1 indicates a completely reliable segment. This SQI aims to suggest 

with what degree of certainty the cardiac vital sign should be considered reliable and derived from 

noise-free ECG.   

The SQI proposed computes 14 well-established signal features, derives 9 decision rules 

based on previously reported thresholds and from training a support vector machine (SVM) on the 

NST database, and then weighs the respective contribution of each decision rule from a Random 

Forest (RF) classification analysis to output the final SQI. Table 7 presents the 14 features (F1-

14) and 9 decision rules (DR1-9) used in developing the proposed SQI along with their source. 

Table 7: Features and Decision Rules used to develop the novel ambulatory ECG-derived cardiac vital sign SQI. 

Feature Feature Value Decision Rule Decision Rule for “Passed” (i.e. DR = 0) Source 

F1 Heart rate DR1 35 ≤ F1 < 180 bpm (rest) 
40 < F1 < 300 bpm (active) 

[45] 

F2 Max. RR interval DR2 F2 ≤ 3 sec  [44] 

F3 Max/min. RR interval DR3 F3 ≤ 2.2 [44] 

F4 Duration of longest Flat line DR4 F4 ≤ 0.2 sec [46] 

F5 Max.−min. Amplitude DR5 F5 ≤ 4 mV or 120% max. baseline  [48] 

F6 Duration of amplitude above 2 mV DR6 F6 < 0.2 sec [49] 

F7 No. of consecutive steep slopes DR7 F7 ≥ 1 [49] 

F8 Power in 0.05-0.25 Hz band 

DR8 
SVM Classifier on F8-13 
(trained on the MIT-BIH NST database) [48] 

F9 Power in 0.25-10 Hz band 

F10 Power in 10-20 Hz band 

F11 Power in 20-58 Hz band 

F12 Power in 58-62 Hz band 

F13 Power in 62-100 Hz band 

F14 Spectral density ratio 5-14/5-50 Hz DR9 0.40 < F14 < 0.95 [51] 

All features are taken from or extracted over the 1-second segment of signal processing 

windows. For F1, HR is calculated as defined in Equation 11. If there are no R-peaks detected in 

the 1-second output segment, F1 still assumes the most recent segment’s HR value, however F2 

will equal 0 and F3 is set to one. If there is only one R-peak detected, F2 can be calculated as the 
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interval between the detected R-peak and the previous one but F3 equals 1, and if there are two or 

more R-peaks detected, F2 is the most recent RR interval and F3 considers all RR intervals 

involved in the 1-second output segment. For F4, flat line segments are defined as segments where 

the signal slope equals zero. For F7, steep slope is defined as per [49] as a rate of change greater 

than +0.0005 mV/sec. Power in specifically defined bands F8-13 are common ECG bands 

separating low, ECG1, ECG2, medium, powerline and high frequency bands, respectively. The 

spectral density ratio (SDR) also considers well-defined ECG bands where the power in 5-14 Hz 

isolates QRS complex power and is then considered with respect to the power of the overall 

predominant band of ECG signals. 

Decision rules were taken from the literature and five were slightly modified as results 

were being investigated on specific records of this study’s dataset: 

Firstly, since the dataset used in this study is that of pathological patients, some noise-free 

record segments displayed the arrhythmia bradycardia resulting in HRs below 40 bpm at rest when 

considering DR1. The lower limit resting HR set in [45] was changed to 35 bpm as default, 

however if within the baseline data collection period a lower HR was calculated, that value less 5 

bpm was chosen as the lower limit. Ideally, HR limits should be an operator-selectable parameter 

set by a patient’s physician or the user themselves, which the developed algorithm can easily 

accommodate for.   

Secondly, the amplitude range can somewhat vary based on ECG recorder, ECG lead 

and/or electrode. The dataset used in this study appeared to produce different amplitude ranges 

than the ones reported in [48] with several clean records surpassing the 4 mV threshold. Therefore, 

in cases when 4 mV amplitude range was surpassed, DR5 was empirically modified to allow up to 

120% of the initial baseline period’s peak amplitude range before considering the segment to have 

failed this decision rule. 

Thirdly, steep slopes did arise sometimes in clean segments of data, assumingly due to 

specific arrhythmia conditions, therefore DR7 was modified to allow up to one steep slope. 

Fourthly, SVM classification on solely power in different frequency bands presented in 

DR8 was not found in literature; for example, [48] also included F5 as a feature input. The SVM 

classifier developed in this study used only F8, F9, F10, F11, F12 and F13 as input features. 

Furthermore, the outputs of training and testing datasets commonly used are labeled as either clean 

or unclean with respect to signal quality annotated by a cardiologist or ECG expert. The dataset 
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used to develop this study’s SVM classifier was the full MIT-BIH NST database and the novel 

binary classification output selected was passed (0) or failed (1) R-peak detection results on the 1-

second output segment the features were extracted over. Essentially, each record went through the 

full real-time ECG processing algorithm with second-by-second R-peaks detected and features 

extracted. R-peak detection performance was then evaluated by comparing its detection accuracy 

with the annotated R-peaks and each 1-second output with one or more false detections were 

assigned a label of “failed” and each with no false detections were assigned a label of “passed”. 

As such, the features and labels were defined, each feature-label pair randomized and then first 

split into an 80:20 train:test dataset to test different SVM parameters on the test dataset. Once the 

highest performing parameters were identified, the full dataset was used to train the final SVM 

classifier as DR8. 

 And lastly, the SDR reported by [51] on the MIMIC II database assigned the acceptable 

range to be between 0.50 and 0.80, which this study did not confirm. Empirically iterated to 

achieve highest SQI performance on the NST database, the acceptable range for DR9 was set to 

be between 0.40 and 0.95. 

Once all features were extracted and decision rules defined and empirically optimised, this 

study set out to combine the results of the decision rules (i.e. count of which passed and which 

failed) not equally, but rather by assigning greater weight to the more important features/rules. By 

presenting Equations 13 and 14, the difference between an equally-weighted and a weighted 

combination of decision rules to arrive at a single, real number SQI value in the range of [0,1], 

respectively, is demonstrated:  

 𝑆𝑄𝐼 =
𝐷𝑅5 + 𝐷𝑅; +⋯+ 𝐷𝑅3

𝑁  (13) 

 𝑆𝑄𝐼 =
𝑎5𝐷𝑅5 + 𝑎;𝐷𝑅; +⋯+ 𝑎3𝐷𝑅3

∑ 𝑎C3
C45

 (14) 

 

𝑁 is the number of decision rules considered in the calculation, 𝐷𝑅C is the 𝑛st decision rule which 

either equals 1 (pass) or 0 (fail), and 𝑎C, in Equation 14 only, represents the weight assigned to 

the 𝑛st decision rule. 
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To assign appropriate weights, a RF classifier developed by Kyriaki Kostoglou et al. in 

[55] was utilized. In the training phase, the RF model is designed to consider features randomly 

selected and then iteratively replaced on different subsets of the dataset. The left out data from the 

subset, termed the out-of-bag (OOB) set, is used for validation as the decision tree grows and 

generates the OOB error. The average OOB error across all observations of different feature 

combinations is then used to identify most important features as those that produce the least OOB 

error [55]. Similarly as the SVM classifier, the binary classification used to train the RF classifier 

was R-peak detection “pass” or “fail” on 1-second output segments of the MIT-BIH NST database. 

Once the RF classifier was defined on this dataset, best performing feature set and their relative 

performance was used to approximate an integer multiple to their corresponding decision rules as 

outlined in Table 7. 

 

3.3.3 Analysis 

3.3.3.1 R-peak detection, HR and HRV analysis 

R-peak detection performance is evaluated for each record of the databases individually 

and then overall for each of the two databases used, respectively. The metrics reported for each 

record are TP, FP and FN number of beats, and statistics Se and Pp which are calculated as shown 

in Equations 15 and 16, respectively. 

 𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (15) 

 𝑃𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (16) 

 Importantly to note, in order to consider a detection a TP the detection was allowed to be 

within ± 150ms of the annotated peak label, as per standard [40] and commonly reported in 

literature for R-peak detection performance. 

For the respective databases, two aggregate statistics are commonly reported: (1) gross 

statistics, which assigns equal weight to each detection, and (2) average statistics, which assign 

each record equal weight. These record-by-record and aggregate database statistics are what is 

requested to be reported for ECG monitors filling for medical device status. [40] 
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 Record-by-record vital signs HR and HRV performance are evaluated by each of their 

RMSE with reference vital sign computed in the same manner as presented in Equations 11 and 

12 just with RR intervals calculated from the labeled beats, as instructed in standard [40]. The 

RMSE calculation formula is presented in Equation 17.  

 𝑅𝑀𝑆𝐸 = 8
1
𝑀*(𝐸-[𝑛] − 𝑅-[𝑛]);

~

-45

 
(17) 

where 𝐸- is the estimated cardiac vital sign over the 𝑖st segment based on the R-peak detection 

algorithm results, 𝑅- is the reference cardiac vital sign over the 𝑖st segment based on the annotated 

beat labels, and 𝑀 is the number of segments (i.e. the duration) of the record. 𝑅𝑀𝑆𝐸 is computed 

on HR and HRV, respectively, for each record individually and only the average statistic is 

computed for each respective database’s performance. 

3.3.3.2 SQI analysis 

SQIs have been commonly studied as binary classifications to differentiate between 

poor/unacceptable and good/acceptable signal quality [45][48][56]. However, when SQIs are 

combined, some studies do represent them in the range of 0 to 1 or 0% to 100%. In these studies, 

the objective is to decide which ECG lead or which physiological signal (e.g. arterial blood 

pressure) should be used to estimate HR based on the signal that generates the highest SQI 

[51][56]. However in this study, the scope is individual ECG lead analysis and the motivation is 

to output a real-number SQI indicating how reliable the underlying signal is in estimating the 

cardiac vital sign. Therefore, it is clear that evaluating the performance of this study’s proposed 

SQI is how well it differentiates between ECG segments yielding wrong cardiac vital signs, and 

hence failed R-peak detections, and to what extent are these wrong or failed, respectively. A high 

performing SQI model would intuitively assign lower SQI values to ECG segments yielding large 

HR and HRV error and low R-peak detection accuracies, and successively increasing SQI values 

as the HR and HRV errors decrease and R-peak detection accuracies increase. Conversely, a poor 

SQI model would yield no linear relationship between SQI value and cardiac vital sign error and 

R-peak detection performance.  
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As such, each group of 1-second output ECG segments were grouped according to same 

SQI value outputs and analyzed with respect to the same R-peak detection, HR and HRV 

performance metrics presented earlier: R-peak Se and Pp, HR RMSE, and HRV RMSE. 

3.4 Results 

The design of the real-time algorithm developed is presented in Figure 21. As can be seen, 

after an initial baseline data collection period of 20.5 seconds the first HR and HRV vital signs are 

outputted with an automatic initial SQI of 1.0 (since assumed noise-free). Thereafter, these outputs 

– HR, HRV and SQI – are updated with each second of recording that continues. The signal 

processing sliding windows were set to 10.0 seconds in order to balance between keeping enough 

Baseline Data Collection 

Raw ECG Signal 

Signal Processing windows 
1. R-peak Detection 
2. HR and HRV Calculation 
3. SQI Calculation 

Figure 21: Design of the Real-time ECG Processing Algorithm developed. The segments of the raw ECG signal used in 
baseline data collection and then in sliding-window signal processing is represented by the signal timeline (green arrow; units 
in mm:ss of elapsed recording time): baseline data collection spans the first 20.5 seconds of recording, which then outputs 
baseline signal properties and initial outputs on the first 20.0 seconds of data. Thereafter, signal processing windows 10 
seconds in length slide by 1.0 second and performs (1) R-peak detection, (2) HR and HRV calculation, and (3) SQI calculation 
on the full window and outputs the new results calculated over the 8.5th to 9.5th second of the respective 10 second window, 
thus outputting new second-by-second updated cardiac vital signs and reliability measure. 
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data for high R-peak detection performance and acceptable memory if employed by a monitoring 

device. The last 0.5 seconds of each window, baseline data collection period included, are 

discarded in the event the window ends in the middle of a QRS complex which has been identified 

to result in false detections. Therefore, there is a delay of 0.5 seconds (not including processing 

time delays) between the time of output and the physiological time of occurrence. 

 

For illustration purposes, Figure 22 presents the processed ECG output with detected R-

peaks and second-by-second SQI values overlaid in the background (using the same y-axis) on a 

selected record – record 118 of the MIT-BIH Arrhythmia database.  

Figure 22: R-peak detection and SQI output results on MIT-BIH record 118; (A) Complete record 1804 seconds long 
of processed ECG data; (B) Zoomed-in section of the first 50 seconds of recording. The initial blue ECG trace and 
red filled circles R-peaks over the 0th to 20th second are the outputs from the baseline data collection period. Thereafter, 
alternating colours of trace and filled circles are the outputs from each 1-second segment output of the sliding window 
signal processing steps. At the end of each sliding window signal processing step, a black circle (ranging from 0.0 to 
1.0) represents the SQI output of that segment. 
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On a segment in the same record selected above, step-by-step outputs from the modified 

Pan-Tompkins algorithm developed is presented in Figure 23. 

 

 

Table 8 and Table 9 on the next pages present final R-peak detection, HR and HRV 

performance statistics on the MIT-BIH Arrhythmia and NST databases, respectively. 

Figure 23: Step-by-step results of the modified Pan-Tompkins algorithm developed and 
employed on the 63rd to 64th 1-second output segment of MIT-BIH record 118. Starting with 
10 second input ECG (in units of mV and sampled at a rate of 360Hz), the steps go through 
the bandpass filter (Steps 1-2), the derivative filter (Step 3), squaring (Step 4), moving-
window average (Step 5), peak detection the averaged signal (Step 6), optimizing the peak 
detection on the ECG signal (Step 7) and the only outputting the R-peaks detected on the 1-
second output segment which is between the 8th and 9th second of the 10 second window. 
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Table 8: R-peak detection, HR and HRV performance statistics on the MIT-BIH 
Arrhythmia database. 

Record 
R-peak Detection Statistics HR RMSE  

(bpm) 
HRV RMSE  

(ms) TP FP FN Se Pp 

100 2270 0 0 1 1 0.13 14.29 
101 1863 2 1 0.9995 0.9989 0.39 19.19 
103 2082 0 0 1 1 0.09 1.77 
105 2568 33 2 0.9992 0.9873 6.09 51.80 
106 2011 1 15 0.9926 0.9995 2.00 76.03 
108 1742 191 19 0.9892 0.9012 20.90 194.96 
109 2529 0 1 0.9996 1 0.49 16.21 
111 2120 0 2 0.9991 1 0.64 29.76 
112 2537 0 0 1 1 0.13 2.87 
113 1791 0 2 0.9989 1 0.56 23.87 
114 1864 1 13 0.9931 0.9995 1.44 98.43 
115 1951 0 0 1 1 0.08 2.59 
116 2387 3 22 0.9909 0.9987 3.57 217.51 
117 1533 0 0 1 1 0.26 11.96 
118 2276 1 1 0.9996 0.9996 0.72 22.08 
119 1985 0 0 1 1 0.16 15.04 
121 1861 0 0 1 1 0.12 4.23 
122 2474 0 0 1 1 0.11 2.44 
123 1514 0 3 0.9980 1 0.73 33.82 
124 1617 0 0 1 1 0.11 15.75 
200 2595 23 4 0.9985 0.9912 3.30 52.93 
201 1951 0 11 0.9944 1 1.88 74.44 
202 2122 0 12 0.9944 1 2.17 71.71 
203 2958 53 20 0.9933 0.9824 6.58 70.05 
205 2639 0 15 0.9943 1 4.72 50.18 
207 1849 418 9 0.9952 0.8156 36.65 705.14 
208 2928 8 25 0.9915 0.9973 4.84 160.48 
209 3003 6 0 1 0.9980 3.27 15.50 
210 2637 13 10 0.9962 0.9951 4.14 50.03 
212 2746 0 0 1 1 0.12 2.27 
213 3248 0 0 1 1 0.24 9.39 
214 2246 3 14 0.9938 0.9987 2.48 80.93 
215 3355 0 5 0.9985 1 1.20 26.30 
219 2152 0 0 1 1 0.12 7.90 
220 2041 0 5 0.9976 1 1.01 29.43 
221 2422 0 3 0.9988 1 0.83 27.07 
222 2477 8 4 0.9984 0.9968 2.80 49.99 
223 2602 0 1 0.9996 1 0.49 25.05 
228 2048 67 4 0.9981 0.9683 8.94 110.70 
230 2254 0 0 1 1 0.21 9.45 
231 1563 0 6 0.9962 1 1.34 81.25 
232 1780 8 0 1 0.9955 1.19 72.82 
233 3073 0 3 0.9990 1 0.95 30.50 
234 2750 0 1 0.9996 1 0.47 12.11 

Total 100414 839 233 - - - - 
Average - - - 0.9977 0.9914 2.92 60.91 

Gross - - - 0.9977 0.9917 - - 
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Table 9: R-peak detection, HR and HRV performance statistics on the MIT-BIH 
NST database. 

Record 
R-peak Detection Statistics HR RMSE  

(bpm) 
HRV RMSE  

(ms) TP FP FN Se Pp 

118e_6 1973 848 304 0.8665 0.6994 31.42 327.21 
119e_6 1826 915 159 0.9199 0.6662 41.55 353.07 
118e00 2174 780 103 0.9548 0.7360 37.32 266.52 
119e00 1943 805 42 0.9788 0.7071 41.86 336.92 
118e06 2254 587 23 0.9899 0.7934 32.65 251.84 
119e06 1977 615 8 0.9960 0.7627 35.54 305.45 
118e12 2274 234 3 0.9987 0.9067 19.22 159.21 
119e12 1985 252 0 1 0.8873 18.66 208.29 
118e18 2276 38 1 0.9996 0.9836 4.96 66.26 
119e18 1985 12 0 1 0.9940 2.06 44.45 
118e24 2276 1 1 0.9996 0.9996 0.72 22.13 
119e24 1985 0 0 1 1 0.18 16.38 

Total 24928 5087 644 - - - - 
Average - - - 0.9753 0.8447 22.18 196.48 

Gross - - - 0.9748 0.8305 - - 
 

 

  

Results of HR and HRV outputs with respect to their accompanying SQI are presented in 

Figure 24 on record 118 of the MIT-BIH Arrhythmia database, the same record selected thus far 

to use as example. The bottom panel of Figure 24 represent the residual between subtracting the 

outputted vital sign from the reference vital sign as well as identifies the points of failed R-peak 

detection. In contrast, the same results for record 207 of the MIT-BIH Arrhythmia database, which 

is one of the records yielding worst performance as can be seen in Table 8, are presented in Figure 

25. Upon inspection of Figure 25, at the times of several failed R-peak detections, especially FPs, 

the SQI begins to decrease well below unity. Figure 26 zooms in on one of the failed intervals and 

also presents the underlying ECG signal, which clearly shows poor signal quality of such that the 

annotators could not retrieve the beat rhythm or location (hence no annotated beats).  
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Figure 24: HR (A) and HRV (C) second-by-second output results on MIT-BIH record 118, along with each output’s 
accompanying SQI. HR Error (B) and HRV Error (D) with respect to estimates using the labelled R-peaks, 
highlighting the time at which the R-peak detection  algorithm failed. 

Figure 25: HR (A) and HRV (C) second-by-second output results on MIT-BIH record 207, along with each output’s 
accompanying SQI. HR Error (B) and HRV Error (D) with respect to estimates using the labelled R-peaks, 
highlighting the time at which the R-peak detection  algorithm failed. 
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Figure 26: MIT-BIH Arrhythmia record 207; (A-D) Zoomed-in section of Figure 25; (E) Output’s corresponding 
ECG signal with the algorithms detected beats (red, top) and the annotation labeled beats (yellow, bottom). 
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The final SQI model proposed was presented in Equation 14. The weights (𝑎C) of each 

decision rule (𝐷𝑅C) concluded from this study are presented below: 

(Recall 𝐷𝑅C = 1 if “passed”, and 0 if “failed”) 

 Equation 14 weight assignments for proposed SQI: 

i. Default: all 𝑎C = 1 

ii. If 𝐷𝑅; = 1: 𝑎5 = 3  

iii. If 𝐷𝑅; passed and 𝐷𝑅V failed: 𝑎; = 2 and 𝑎V = 1; 

If 𝐷𝑅; failed and 𝐷𝑅V passed: 𝑎; = 1 and 𝑎V = 2; 

iv. If	𝐷𝑅� = 0: 𝑎� = 0  

v. If	𝐷𝑅f = 0: 𝑎f = 0  

These assignments were made from the RF classifier analysis after investigating most 

important features and their relative differences with adjustments made empirically from the SQI 

performance analysis on the MIT-BIH Arrhythmia database. The feature importance results from 

the RF classifier trained on R-peak detection performance on the MIT-BIH NST database are 

presented in Figure 27. 

 

Figure 27: Important features of highest performing RF Classifier trained on the 
MIT-BIH NST database using R-peak detection performance (“pass” or “fail”) as 
the binary classification labels. 
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 In order to interpret SQI performance on the Arrhythmia database, 1-second segments were 

grouped based on SQI output values and then R-peak detection statistics, HR RMSE and HRV 

RMSE computed and analyzed. Table 10 and Figure 28 presents these results for the case when 

SQI was derived from equally weighting all decision rules (i.e. Equation 13) and from weighting  

the decision rules as defined above for the final proposed model. 

 

Table 10: Comparison of SQI results computed from the final proposed model of weighted decision rules 
(DRs) and equally-weighted DRs, respectively, on all 1-second segments of ECG data from the MIT-BIH 
Arrhythmia database processed through the real-time algorithm developed.  

(Equation 14) 
SQI = Weighted DRs based on RF Classifier 

(Equation 13) 
SQI = Equal Weighted DRs  

SQI 
Groups 

Total no. 
segments 

No. Passed 
segments 

% Passed 
segments 

SQI 
Groups 

Total no. 
segments 

No. Passed 
segments 

% Passed 
segments 

0.2857 12 3 0.2500 0.5556 2 2 1.0000 
0.4286 37 13 0.3514 0.6667 66 52 0.7879 
0.5714 170 94 0.5529 0.7778 1196 1132 0.9465 
0.7143 1696 1523 0.8980 0.8889 8982 8867 0.9872 
0.8571 8420 8331 0.9893 1 68250 67963 0.9958 

1 68250 67963 0.9958     

Total 78496 78016 680 Total 78496 78016 680 
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Figure 28: Results of SQI performance analysis; (A-C) SQI calculated from the final proposed 
weighted average of DRs; (D-F) SQI calculated from equally-weighted DRs.  
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3.5 Discussion 

The overall ECG algorithm developed was successfully designed to accommodate real-

time processing through an initial baseline data collection period followed by sliding windows. It 

is not uncommon for wearable or medical devices to instruct an initial calibration period before 

commencing a new recording session and can therefore be used to set initial user-specific 

thresholds and extract noise-free signal properties. Second-by-second updates for HR and HRV 

along with a novel SQI quantifying how reliable these R-peak derived cardiac vital signs are were 

successfully outputted.  

 

The R-peak detection algorithm is at the core of how accurate cardiac vital signs – HR and 

HRV – are when outputted. Since HR can be estimated over different lengths of time or different 

number of RR intervals, it is the detection accuracy of QRS complexes which determines reliability 

and the estimation method but needs to be reported. Same applies for HRV, which usually outputs 

RR interval values on a beat-by-beat basis as oppose to second-by-second most recent RR intervals 

as done in this project. 

A modified Pan-Tompkins R-peak detection algorithm was implemented and yielded high 

performance comparable to prior studies reporting on the classic MIT-BIH Arrhythmia database. 

As presented in Table 8, 99.77% gross Se and 99.17% gross Pp were achieved, which is slightly 

more sensitive than the results reported for the Hamilton-Tompkins algorithm at the expense of 

being a little less precise [42]. There is a natural balance between how sensitive an R-peak 

detection algorithm can be to not miss any detections and how precise it can be to get everyone. 

This was seen when testing different parameters and thresholds and what rules were considered 

for them to update with each window of processing. This led to empirically iterating through 

different values, visually inspecting results and looking for highest performance on the overall 

MIT-BIH NST database with discrete segments of different SNRs and on select records with 

annotated segments indicating poor signal quality from the MIT-BIH Arrhythmia database. 

Outputs after each step of the R-peak detection algorithm and what segment of the window was 

used for most recent cardiac vital estimation were presented in Figure 23. This figure clearly 

shows how the last step of a search window for picking the time of the R-peak precisely and not 

anywhere else in the QRS complex was successfully achieved. This final optimization step 

minimizes minor variations and maintains consistency across R-peak derived cardiac vital sign 
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estimates. Also reported in Table 8, is the performance of HR and HRV, which yielded 2.92 bpm 

RMSE and 60.91 ms RMSE, respectively, as an average across all records on the MIT-BIH 

Arrhythmia database. In context of the normal range for HR and HRV, respectively, these errors 

are minor and appear acceptable.  

 

Arriving at the final SQI for quantifying reliability of HR and HRV outputs involved a few 

steps combining methods brought down in literature in a novel way based on this project’s specific 

goal. Well-established features and decision rules for their acceptable limits or range were 

extracted on 1-second ECG segments. Features were physiological-, temporal- and frequency- 

based and for the most part the decision rules were empirically determined by several researchers. 

For this reason, some of the decision rules were changed to meet the properties of this study’s 

dataset and goals. A SVM classifier, trained on the MIT-BIH NST database used power in six 

ECG bands as features and “passed” or “failed” R-peak detection results as classification labels. 

This was used to output an independent decision of whether or not the ECG segment is reliable or 

not to output cardiac vital signs based on frequency content distribution. Once all individual 

decision rules were defined, a RF classifier was similarly trained on the NST database, this time 

with the purpose of identifying important features contributing to each decision rule. Figure 27 

illustrates the RF feature importance results of the highest performing model, which as can be seen, 

only consists of 12 of the 14 records: features 4 (F4) and 10 (F10) are excluded. Referring back to 

Table 7, F4 extracts flat line information from the ECG segment, however it was identified that 

not one record in both databases used in this study had a flat line duration greater than the limit set 

in the corresponding decision rule. Therefore, it makes sense that this feature was dropped from 

the best performing model and essentially removed from one of the decision rules considered in 

the final SQI model – i.e. 𝑎� assigned to equal zero in the final model for Equation 4. Similarly, 

F6, which is the feature that extracts excessive amplitudes above a threshold, was also rarely 

encountered in the dataset. So although F6 is not dropped from the final feature list, it holds the 

lowest feature importance and therefore its decision rule was also assigned a weight equal to 0 if 

not failed. The other feature not present in the final feature list, F10, is one of the ECG bands and 

interestingly enough is the ECG2 band of 10 to 20 Hz where some of the QRS complex frequency 

content exists. The two highest bands were most significant, which makes sense since true noisy 

segments resulting in failed R-peak detection results usually consist of high frequency noise. 
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Together, the six power band features (F8-13) were considered to be moderately important and 

therefore their unique decision rule (the SVM classifier) maintained a weight of 1. Most evident 

in Figure 27 is that F1, the physiological limit of HR, is the most important feature in 

distinguishing passed or failed R-peak detections. This does not come as a surprise since HR 

estimate accuracy is completely dependent on R-peak detection accuracy. For equal reasons, next 

most important features are F2 and F3 which extract RR interval thresholds. At first glance, it 

appears that F1 is about four times more important than the least important features, F1 and F2 are 

about double, F7 and F8 are somewhere around one and a half, and F12 and F13 are part of the 

SVM classifier decision rule. Therefore, this information helped guide the initial weight 

assignment which was then iteratively corrected to the proposed one which yielded results highly 

suggesting a well characterized SQI for R-peak detection performance and cardiac vital sign 

reliability.  

In order to identify if the RF classifier feature importance did add value to the SQI model 

proposed, Table 10 presented count results for how many ECG segments were assigned to unique 

SQI values computed without and with the input from the RF classifier analysis; namely, equally 

weighting each decision rule as if uninformed which ones contain more information about R-peak 

detection performance, and the proposed SQI model, respectively. As can be seen from these 

results, the proposed model not only distinguishes SQI values more uniformly between the full 

range of 0 and 1, but also yields much better passed versus failed or % passed segments than the 

equal weighted SQI. the equal-weighted SQI model only outputs 4 unique SQI values which do 

not even range the full 0 to 1 scale the reliability measure is intended to cover. Even more 

reassuring is that the % passed segments for the proposed SQI model are very comparable to the 

actual corresponding SQI values, whereas for the equally-weighted SQI model the % passed 

segments do not match the SQI values for the full range at all. Figure 28 demonstrates this 

moreover by presenting the performance of each group of SQIs with respect to R-peak Se and Pp, 

HR RMSE and HRV RMSE. Most strikingly from these results is how the proposed SQI 

differentiates increasingly improved R-peak detection precision (i.e. Pp statistic) with an 

approximate linear trend, and similarly HR and HRV error linearly decreases. Conversely, the 

equal weighted SQI results show no correlation with performance and SQI value over the full 

range of unique SQI values.  
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Further analyzing the performance results of the proposed SQI model, very interestingly is 

how at SQI equal to 1 the HRV RMSE is nil but there is a relatively significant HR RMSE. This 

can be explained due to HRV being calculated based on the two most recent R-peak detections 

(most recent RR interval) and HR is essentially average based on intervals over the 13 most recent 

R-peak detections. Hence, despite the present ECG segment not containing any noise resulting in 

failed R-peak detections, the HR estimate outputted may still contain error from prior segments 

that were corrupted with noise. This presents itself as a delay limitation, however an inherent 

limitation to any average HR estimate as oppose to an instantaneous HR measurement such as the 

HRV calculated in this study. 

 

Coming back to training the initial classifiers and identifying important features which 

differentiate between ECG segments that are more likely to yield failed R-peak detection results 

or not, I would like to reemphasize that this was exactly the goal of this study rather than the 

commonly used low/poor/unacceptable segment versus high/good/acceptable segment binary 

classifications. The proposed SQI is not intended to suggest whether or not the ECG signal is 

legible or of high enough diagnostic quality, it is intended to provide quantifiable information to 

how accurate the derived cardiac vital signs are on the segment of ECG data used. It is also 

noteworthy to mention that the method executed for training and defining the proposed SQI is 

agnostic to the R-peak detection algorithm upstream the overall algorithm. Meaning, if another R-

peak detection algorithm is used or the current one improved, the same features and decision rule 

results can be extracted, fed into the RF R-peak detection pass or fail classifier to determine 

important features on a dataset of your choosing and then analyzed to appropriately weight each 

decision rule to arrive at the final combined SQI. This is an attractive feature which can allow for 

algorithm updates, even remotely (via remote Bluetooth firmware updates for example), to 

improve performance of the SQI rather than hardware and signal integrity improvements, which 

may not always be economically feasible or practical if the device is already in the field.  

Figure 29 presents an illustration to help explain the main application of the proposed SQI: 

With each update in HR and HRV, an accompanying score – the proposed SQI – will update as 

well indicating to what degree of reliability the vital signs given to you should be considered with. 

As a biomedical engineer working in the field of wearable devices, this is a common concern of 

users: “How can I trust the outputs I am getting?”. 
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Figure 29: Illustration of the application for this study: with each cardiac 
vital sign outputted to the users an SQI quantifying how reliable these 
estimates are is provided. Background image taken from [57]. 
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Chapter 4  

Conclusions 

 Conclusions 

4.1 Key Findings and Relevance 

The studies performed in this thesis involved both HR signal and ECG signal analysis, 

respectively, collected from wearable devices. The former was a direct output collected from an 

individual subject paired with consumer wearable devices, and the latter was taken from an open 

source database of medical-grade ambulatory recordings. The main goal of this thesis was thus to 

reliably collected and interpret biological information from these datasets in spite of the 

ambulatory condition common to wearable device monitoring. 

In the first part of this research, an individual’s diurnal, endogenous fluctuations of HR 

was investigated in free-living conditions. Circadian rhythm studies are not commonly performed 

in uncontrolled environments since (a) monitoring devices outside the laboratory have many 

limitations including battery life and susceptibility to ambulatory artifacts, and (b) there are several 

external factors contributing towards masking the endogenous, diurnal fluctuations. This study 

thus set out to address both of these concerns. To begin with, the PPG-derived HR from the 

smartwatch was compared to a smartshirt with ECG-derived HR and was concluded to be as 

reliable and even less susceptible to high frequency changes arising from ambulatory artifacts at 

times. Next, from recordings collected over about five weeks total, the diurnal endogenous 

fluctuations was explored despite several data-collection interruptions and free-living conditions. 

A 24-hour profile of the endogenous HR fluctuations was successfully separated from the available 

data then smoothed with a LPF to emphasize times and HR values of key anchors reported in 

literature. From there, the smoothed circadian HR signal was parametrized with a 3rd order Fourier 

Series as a proposal for an individualized model characterizing endogenous fluctuations in HR. 

Furthermore, the sleep-wake schedule was creatively mapped over the 24 hours of a day as an 

individual’s probability of sleeping at any given hour. As such, the circadian HR profile and key 

anchors were given context with respect to the sleep-wake schedule, which is one of the most 

significant and unavoidable external factor contributing to circadian rhythm entrainment.   
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In the second part of this research, a real-time ambulatory ECG processing algorithm with 

HR and HRV outputs was developed. The real-time design involved an initial baseline data 

collection period followed by sliding windows of continuous processing until recording 

terminates. Over each window of data, a modified Pan-Tompkins algorithm detecting R-peaks for 

HR and HRV estimates was implemented and shown to yield high and comparable performance 

to the prior art on a standard ambulatory ECG database of pathological subjects. Since ambulatory 

ECG is highly susceptible to motion artifacts, a SQI relaying how reliable each cardiac vital sign 

output is was proposed. Starting with common signal features with reported or empirically 

determined decision rules separating clean and noisy ECG segments, a RF classifier determined 

which features and corresponding decision rules were most important in distinguishing segments 

with failed R-peak detection results. Based on relative feature importance from the RF analysis, 

results from each decision rule were combined to generate a novel SQI quantifying how reliable 

each ECG segment is. With this type of information accompanying each HR and HRV value 

outputted, the user can better evaluate for themselves how accurate the data they are receiving is 

at any given moment. 

In summary, the findings from this thesis show promise that there are signal processing 

techniques, creative algorithms and specific analyses that can be employed on biological signals 

collected from wearable devices in order to output reliable information.  

 

 

4.2 Future Research 

Since wearable devices are capable of monitoring multiple physiological parameters and 

are continuously adding new ones to their suit of features, sensor fusion and the co-dependency of 

biological signals and processes is naturally a future area of interest which can lend to both 

advancements in free-living circadian rhythm studies and improved vital sign extraction methods. 

After identifying the diurnal, endogenous fluctuations of HR, with each new physiological 

parameter added, such as CBT, respiration or sweat analytes, and which is then modeled as a 

subject-specific 24-hour profile, a deeper understanding of how our internal biological clock plays 

a role in our timing of activities and behaviours can further be studied. As for the SQI proposed, it 

can only relay if the individual ECG signal alone is not reliable enough to be used for R-peak 

derived cardiac vital signs however does not re-compute a more accurate value since no other 
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acceptable signal is available. With multiple signals, either another ECG lead or another signal 

entirely such as PPG, the proposed SQI can be extracted on each signal individually and then used 

to determine from which one does the most reliable cardiac vital sign come from and then output 

those values to the user. More sensors and more physiological information are an opportunity to 

output more reliable data and paint a fuller picture of the user-specific biological state. 
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Appendices 

Appendix A  

Raw Polar HR data collected over Recording Periods 1 and 2 are presented in Figure A-1 and 

Figure A-2, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1: Raw Polar HR data (cyan signal) collected over Recording Period 1 (15 days total with HR data), separated into days of 
the week and the 24-hour clock time. Solid bar lines represent intervals of external factors (sleep = black; exercise = blue; overnight + 
coffee = teal).  
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Figure A-2: Raw Polar HR data (cyan signal) collected over Recording Period 2  (19 days total with HR data), separated into days of 
the week and the 24-hour clock time. Solid bar lines represent intervals of external factors (sleep = black; exercise = blue).  


