
 

An FPGA Implementation for a High-Speed Optical Link 

with a PCIe Interface 

Edin Kadrid 

 

Department of Electrical & Computer Engineering 

McGill University 

Montreal, Canada 

October 2011 

 

 

A thesis submitted to McGill University in partial fulfillment of the requirements for the 

degree of Master of Engineering. 

© 2011 Edin Kadrid



   i 

 

 

 

Abstract 

This thesis describes the design and implementation of an optical fiber based high speed 

interface between two computers. The system is particular in that the data transits in a 

Field Programmable Gate Array (FPGA) situated between each computer and the optical 

fiber link. The measured full duplex speed for exchanging data between two C programs 

running on two different computers is over 8Gbit/s, including encoding, protocol and 

software overhead. This design is suited for applications requiring high bandwidth 

between two computers, and since an FPGA sees all the data being exchanged, it can be 

used as a fast and flexible data processing tool: Error correction, debug support, data 

analysis, encryption and compression are all possible uses where the FPGA can save the 

Central Processing Unit (CPU) an important amount of computing cycles. 

 

 

 

 



   ii 

 

 

 

Résumé 

Cette thèse décrit la conception et l'implémentation d'une interface à grande vitesse 

entre deux ordinateurs, basée sur un lien en fibre optique. La particularité du système 

est que les données transitent dans un "Field Programmable Gate Array" (FPGA) qui se 

trouve entre chaque ordinateur et les câbles en fibre optique. La vitesse de transmission 

bidirectionnelle de données d'un programme en C à un autre via cette interface a été 

mesurée à plus de 8Gbit/s. Ceci inclus les ralentissements dus à l'encodage, le protocole 

de communication et le logiciel. Cette conception convient à des applications 

demandant une bande passante importante entre deux ordinateurs, et comme un FPGA 

observe toutes les données échangées, ce dernier peut être utilisé comme un outil de 

traitement de données rapide et flexible: La correction d'erreur de transmission, le 

support de débogage, l'analyse, le chiffrement et la compression de données sont 

toutes des applications potentielles où le FPGA peut alléger la tâche de l’unité centrale. 

 

 



   iii 

 

 

 

Acknowledgements 

I would like to thank my supervisor, Professor Željko Žilid, for his incredible support, 

guidance and insightful advice. His great vision and knowledge allowed me to make 

rapid progress and deliver tangible results. 

Equally important, I must thank my co-supervisor, Professor Naraig Manjikian from 

Queen’s University. His great knowledge, experience and dedication to this project 

helped me fix and avoid major issues and saved me valuable time. 

I would like to thank the other students in McGill’s VLSI Design lab for their motivation 

and advice, with a special mention to Bojan Mihajlovid for helping me set up the 

workstation, together with Logan Smyth and Omid Sarbishei who have explored this 

project before me and provided me with useful information when I was just starting. 

Although the writing of this thesis does not make it obvious due to a focus on other 

features of the system, setting up a working and efficient driver to interface with the 

hardware was a complex task. Still, it was certainly made much easier by the publicly 

available source code of a basic driver written by Leon Woestenberg and Nickolas 

Heppermann. I would also like to thank the (few) people who answered the half a dozen 

help messages I wrote on Altera forums. 



   iv 

 

 
In general, I would like to thank all the teachers and Professors I have had, as well as 

everybody who taught me something and contributed to my education. 

Very special thanks go to my mother, my father and my brother, who have always 

shown an amazing support and a great dedication to my success. 

Finally, I have to thank McGill University, Hydro-Quebec, the governments of Canada 

and Quebec, my supervisor, and the “Fonds Québécois de la recherche sur la nature et 

les technologies” (FQRNT) for the scholarships, fellowships, and financial support they 

provided me throughout my undergraduate and graduate studies. 

 

 

 

 

 

 

 

 



   v 

 

 

 

Contents 

1 Introduction                                                                                                                     1 

1.1 Motivation ………………………………………………………………………………. 1 

1.1.1 Faster optical fiber links and applications …................. 1 

1.1.2 Motivation for the presence of an FPGA in the link ….. 3 

1.1.3 The role of the PCIe interface ……................................. 5 

1.2 System setup …………………………………………………………………………… 6 

1.3 Outline ……………………………………………………………………………………. 8 

2 Background                                                                                                                       9 

2.1 Field Programmable Gate Arrays …………………………………………….. 9 

 2.1.1 History of FPGAs ……………………..…………..…………........... 9 

 2.1.2 Functioning of FPGAs ………………..……………………………… 12 

2.2 Peripheral Component Interconnect express ………………………….. 17 

 2.2.1 History of PCIe ………………………………………………………….. 17 

 2.2.2 Functioning of PCIe …………………………………………………… 18 

2.3 Optical Fibers ………………………………………………………………………….. 23 

 2.3.1 History of optical fibers …………………………………………….. 23 

 2.3.2 Functioning of optical fibers ……………………………………… 25 

3 Design                                                                                                                 29 

3.1 High level system …………….………………………………………………………. 30 



   vi 

 

 
3.1.1 High level view of the system ……………………………………. 30 

3.1.2 High level view of the communication protocol ……..... 31 

3.1.3 Memory structure…………….…………..………………………….. 33 

3.2 PCIe interface ………………………………………………………………………….. 35 

3.2.1 Configuration of the PCIe interface …………………………… 35 

3.2.2 Structure of the PCIe interface ……………………..………….. 38 

3.2.3 Direct Memory Access ………………………………………………. 43 

3.2.4 Interface with software and driver design ………………… 44 

3.3 Optical fiber interface ……………………………………………………………… 50 

3.3.1 8b/10b encoding ………………………………………………………. 50 

3.3.2 Structure of the optical fiber interface ……………………… 56 

3.3.3 Synchronization between the two nodes ………………….. 61 

3.4 Complete system …………….………………………………………………………. 63 

3.4.1 Interface between PCIe and optical fiber systems …….. 63 

3.4.2 FPGA resource usage …….............................................. 68 

4 Experiments                                                                                                                69 

4.1 System Setup and physical layer ……………………………………………… 69 

4.2 Determining the transfer size at the PCIe level ……………………….. 72 

4.3 Low-level speeds of the PCIe and optical fiber links ………………… 75 

4.4 Driver design considerations …………………………………………………… 76 

4.5 Measuring system bandwidth and latency ………………………………. 77 

5 Conclusions and Future Work                                                                                        81 

5.1 Achievements …………………………………………………………………………. 81 

5.2 Future extensions to related areas ………………………………………….. 82 



   vii 

 

 

 

List of figures 

1.1 High level view of the hardware setup ……………………………………………..... 6 

2.1 PAL and PLA structures ……………………………………………………………………….. 11 

2.2 Simplified logic block structure of an FPGA …………………………………………. 13 

2.3 FPGA logic block and routing channels structure ………………………………... 14 

2.4 Switch box structure …………………………………………………………………………... 15 

2.5 Evolution of PCI-like standards ……………………………………………………………. 17 

2.6 PCIe link structure ………………………………………………………………………………. 19 

2.7 Structure of the PCIe transaction layers …………………………………………...... 20 

2.8 TLP Structure in the PCIe protocol ………………………………………………………. 23 

2.9 The principle of total internal reflection in optical fibers …………………….. 26 

2.10 Illustrating the effect of pulse broadening at the receiver end …………. 27 

3.1 High level view of the system structure ………………………………………………. 30 

3.2 High level view of the communication structure …………………………………. 32 

3.3 Memory structure of the design …………………………………………………………. 34 

3.4 PCIe chaining DMA design structure …………………………………………………… 39 

3.5 Application logic hierarchy of the PCIe design …………………………………….. 42 

3.6 Steps for running the PCIe interface at different levels ………………………. 48 

3.7 Effect of AC coupled channel on the DC component of a signal ………….. 51 



   viii 

 

 
3.8 Bit ordering in 8b/10b encoding …………………………………………………………. 52 

3.9 Cascading N 8b/10b encoders …………………………………………………………….. 55 

3.10 Application logic structure of the optical fiber interface …………………… 60 

3.11 Communication steps to synchronize the two nodes ……………………….. 62 

3.12 Links between the driver, PCIe logic and optical fiber interface logic … 65 

3.13 PCIe and optical fiber communication on SignalTap waveform …………. 66 

3.14 Synchronizing a signal to a new clock domain …………………………………… 67 

4.1 PCIe throughput versus DMA size …………………………………………............... 74 

4.2 PCIe latency versus DMA size …………………………………………...................... 75 

5.1 Integrated optical fiber infrastructure on an FPGA ……………………………… 85 

 

 

 

 

 

 

 



   ix 

 

 

 

List of tables 

3.1 PCIe system settings …………………………………………………………………………… 36 

3.2 PCIe base address registers ………………………………………………………………… 36 

3.3 PCIe Read-Only registers …………………………………………………………………….. 37 

3.4 PCIe capabilities parameters ………………………………………………………………. 37 

3.5 PCIe buffer setup parameter ………………………………………………………………. 37 

3.6 Encoding of x in 8b/10b ………………………………………………………………………. 53 

3.7 Encoding of y in 8b/10b ………………………………………………………………………. 54 

3.8 Control symbols in 8b/10b ………………………………………………………………….. 54 

3.9 Compilation report data ……………………………………………………………………… 68 

4.1 System throughput measurements …………………………………………………….. 78 

 

 

 



1 Introduction   1 

 

 

 

Chapter 1 

Introduction 

 

1.1 Motivation 

 

1.1.1 Faster optical fiber links and applications 

Increasing demand for faster internet access and higher quality multimedia transmission 

has led to a fast growth of computer network bandwidth capabilities. Ethernet over a 

twisted-pair cable has long been the link of choice between nodes in Local Area Network 

(LAN) communication, and has more recently started being replaced by not always 

faster, but more convenient Wi-Fi technologies. Ethernet was developed between 1973 

and 1974 by the Palo Alto Research Center (PARC), and was first commercially 

introduced in 1980 [5]. First designed for speeds of 10Mbit/s, later standards increased 

this value to 100Mbit/s, and then 1Gbit/s. The latter technology, also called Gigabit 

Ethernet (GbE or 1 GigE), was introduced in 1999, and has a bandwidth of 1Gbit/s. But 



1 Introduction   2 

 

 
traditional copper-based physical implementations cannot follow the most recent 

demand for high speed networks, and due to their higher attenuation and interference, 

they are continuously being replaced with optical fiber cables. This is the case for some 

1 Gigabit Ethernet standards, and for the more recent 10 Gigabit Ethernet one, first 

published in 2002, as well as 40 Gigabit Ethernet and 100 Gigabit Ethernet, first 

proposed in 2008 and ratified in June 2010. Different types of optical fibers are used 

depending on the functioning of the cable (single mode or multimode), and on the 

targeted communication distance. 

Moore’s Law states that the number of transistors available at low cost on ICs doubles 

every two years. This trend has traditionally been satisfied by a reduction of transistor 

size, which in turn enabled a continuous increase of processors’ clock frequencies. But 

as current technologies reach their limits, transistor density and clock frequencies are 

not increasing at the same rate as before. More recent efforts consist in increasing 

computing power by moving to multicore architectures. In high-performance distributed 

computing applications, where the nowadays common 2, 4 or 8 core computers are not 

enough, several computing nodes can be used, often consisting of different computers. 

These nodes are not part of the same machine, and thus one critical element of the 

overall computing system is the interconnect between the different nodes. Ethernet is 

one standard that can be used to connect different nodes together. InfiniBand is 

another popular example of an industry-standard high-performance interconnect that 

aims at minimizing latency and maximizing bandwidth. 



1 Introduction   3 

 

 
The evolution in bandwidth capabilities of these interconnects must also be 

accompanied by Input/Output (I/O) improvements between the interconnect and the 

computer’s memory: This is achieved through standards such as the Peripheral 

Component Interconnect express (PCIe). This industry standard has known several 

evolutions since it was first introduced as PCI in 1993. The different generations kept 

improving on bandwidth capabilities to meet the increasing I/O performance demands 

of various applications. PCIe 2.0 is used in this work, capable of achieving bandwidths of 

5.0Gbit/s per lane. A published study [27] evaluates the performance of Quad Data Rate 

(QDR) InfiniBand with PCIe 2.0 and stresses the importance of such interconnects in the 

area of high-performance computing. 

 

1.1.2 Motivation for the presence of an FPGA in the link 

In the work described in this thesis, two nodes are concerned, and a high bandwidth is 

to be achieved between them. The optical fiber interconnect used is based on the 

1000base-X family (which can be used for 1 Gigabit Ethernet implementations). The 

optical fiber channels are linked to an interface that is situated in an FPGA chip. In this 

design, the channels are controlled by transceivers running at a bandwidth of 

6.25Gbit/s. An Altera Stratix IV FPGA is used, and although it supports 10-gigabit 

Ethernet, as well as a number of other high-speed interface standards, including 

HyperTransport and RapidIO, the design presented in this thesis is more customized. 



1 Introduction   4 

 

 
In advanced environments where CPU cycles become a scarce resource, having an FPGA 

seeing the data passing through two nodes can significantly lower the load on the CPU, 

especially for common FPGA-efficient parallelizable tasks such as error correction, 

encryption and compression. For example, the high bandwidth and monitoring 

capabilities of the design suggests uses in gate-level logic simulations that see a high 

number of state changes, and that are a crucial element of today’s electronics design, 

test and commercialization cycles. 

A similar FPGA and optical fiber based data acquisition system has been implemented 

and presented in [3] and [4]. The architecture and communication protocol are based on 

a master-slave system where the PCIe card is a master controlling a scalable number of 

front-end cards (the slaves). The PCIe links a computer to the FPGA board that is also 

equipped with fiber optic links to the front-end cards. The authors report stability with 

data rates of 1.6Gbit/s. These high data rates are to be achieved to support the 

development of a new accelerator Facility for Antiproton and Ion Research (FAIR) in 

Germany. The performance of their PCIe link is roughly the same as in the work 

presented in this thesis, only twice slower because they use the first generation of PCIe, 

whereas Gen2 is used here. Their design also demonstrates possible uses of an FPGA in 

communication links, since it is used for various tasks such as pulse shape analysis. 

 

 



1 Introduction   5 

 

 
1.1.3 The role of the PCIe interface 

PCIe is a standard port that gets integrated in modern, high-performance multicore 

configurations. The standardization and wide use of PCIe are important: they suggest 

that the design described in this thesis can easily be integrated in various configurations 

since the link between the interface and the computing node only consists of the 

standard PCIe 2.0 interconnect. For example, PCIe 2.0 is integrated in the recent fourth 

generation UltraSPARC T3 SoC processor [28]. In fact, the PCI standard’s transparency to 

the implemented PCI software has been an important element influencing its wide-scale 

adoption in industry. As another example, the PCIe interface is also a critical component 

in IBM’s supercomputer designs. This is illustrated in *30+, where a customization of the 

PCIe interfaces’ channel variables improves the performance of their Roadrunner 

petaflop supercomputer without modifying the overall system architecture. 

The implementation described here takes the standard approach of using PCIe as a link 

between the host and an I/O subsystem, accompanied by a custom optical fiber link for 

host-to-host communication. Indeed, PCIe is not deemed efficient for directly linking 

two hosts and a dedicated cluster is usually used in the interface, typically consisting of 

an InfiniBand or an Ethernet link. Other approaches to creating such interfaces have 

been explored such as the Dolphin Express [29], which tries to address the shortcomings 

of PCIe when directly used for host-to-host communication, and compares the potential 

performance of a PCIe-only link versus a 10GigE-based link. Even though [29] uses a first 

generation PCIe implementation, it achieves a better performance than 10GigE. In the 



1 Introduction   6 

 

 
work described here, PCIe 2.0 is used, thus achieving double the bandwidth for the 

same number of lanes. The performance is close to that of [29] and the differences can 

be attributed to the processor and memory speeds of the computers used. 

 

1.2 System setup 

The design consists of two computers connected to Altera’s Development and Education 

board 4 (DE4) through a PCIe Gen2 link with x4 lanes. The DE4 is equipped with a Stratix 

IV FPGA that temporarily stores the data being transmitted in its internal memory. A 

High Speed Mezzanine Connector (HSMC) connects the DE4 to a daughter card with 8 

Small Form-factor Pluggable (SFP) slots. Four of them are used to connect four two-way 

optical fiber cables. Figure 1.1 shows a block diagram of the configuration. 

Figure 1.1: High level view of the hardware setup 

Stratix IV 

FPGA 

Stratix IV 

FPGA 

Computer 

Computer 

SFP 

board 

SFP 

board 

PCIe Gen2 

x4 lanes 
HSMC 

4x 

Two-way 

optical fiber 

cables 



1 Introduction   7 

 

 
For the PCIe link, the theoretical achievable data rate without overhead is 4Gbit/s per 

lane. For the optical fiber, it is 5Gbit/s per channel. Using 4 PCIe lanes and 4 optical fiber 

cables thus brings the two links up to 16Gbit/s and 20Gbit/s respectively. Also, the 

optical fiber link experiences more overhead due to its interface with software, and it 

can be expected to be the ultimate bottleneck of the design, thus controlling the overall 

system’s performance. 

The work started from Altera's PCIe Hard IP (Intellectual Property) block. It was 

interfaced with the altpciechdma (ALTera PCIE CHaining Direct Memory Access) driver 

coded by Leon Woestenberg and Nickolas Heppermann, and available in the Linux 

kernel. The other main piece of the design is the optical fiber interface that was based 

on the source code of the loopback demonstration provided by Terasic for its SFP HSMC 

daughter card. The driver and the PCIe interfaces both required important changes in 

order to allow for faster speed, more flexible communication with the FPGA's internal 

memory and more convenient use at the software level. The optical communication 

logic was modified to include 8b/10b encoding, internally controllable reset, channel 

bonding, channel alignment and start/end of transmission. It was also modified to 

support communication in a real setting between two nodes instead of a loopback test 

only, by introducing a custom synchronization mechanism between the two nodes. The 

system also required the implementation of an interface between the PCIe logic, the 

optical communication logic and the FPGA’s internal memory. Those modifications are 

described in more detail in section III. 



1 Introduction   8 

 

 
 

1.3 Outline 

Section II presents background information on the major elements of the system. It 

provides a perspective on the development of FPGAs, the PCIe protocol and optical 

fibers, together with outlining their basic functioning. Section III describes the design in 

three main steps. After giving a high level view of the system, the PC/FPGA interface is 

presented, including the PCIe and driver designs. Then, the optical fiber interface linking 

the two nodes is explained. Finally, the link between the two previous interfaces is 

explained. Section IV summarises and analyzes the experimental results. A conclusion of 

the work and potential future improvements are found in Section V. 



2 Background   9 

 

 

 

Chapter 2 

Background 

 

2.1 Field Programmable Gate Arrays 

 

2.1.1 History of FPGAs 

The transistor was invented at Bell Telephone Laboratories in 1947 by John Bardeen and 

Walter Brattain [6]. It is mainly used for the amplification and switching of electronic 

signals, and its ability to scale down in size and up in quantity has since then been crucial 

in it being the technology of choice for developing electronics components. 

An Integrated Circuit (IC) uses the properties of semi-conductor materials, mainly silicon 

because it is inexpensive and widely available, to create devices with transistor 

properties, mainly MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). 

Compared to discrete transistors, the IC ones are smaller and quicker. Furthermore, the 



2 Background   10 

 

 
ability to reliably mass produce IC chips with more and more transistors ensured lower 

costs to the user, and propelled the electronics industry in a new era. For example, the 

microprocessor transistor count increased from about 2300 in 1971 (Intel 4004, 10µm 

transistor technology) to about 42 million in 2000 (Intel Pentium 4, 0.18µm technology). 

In 2006, it was common to find chips with 1 million transistors per    , with state-of-

the-art technologies enabling the production of chips containing a total of 

approximately 1.7 billion transistors (Intel Dual Core Itanium 2, 90nm technology) [7]. 

One major development that permitted the exponential growth of the number of 

transistors per chip is the advent of Very-Large Scale Integration (VLSI) techniques in the 

late 1970’s. Together with Computer-Aided Design (CAD) tools, VLSI introduced more 

systematic design approaches that accelerated and facilitated the design of more 

complex systems. CAD tools permit design simulation, verification, layout generation 

and design synthesis at the different complexity levels [8]. 

Nowadays, ICs can be “full-custom” designs, where the transistors and their 

interconnection layouts are directly specified by the technicians or engineers. This 

introduces high labour, testing and time costs, but optimizes the utilized area, 

consumed power and operational speed of the system. This approach is only viable for 

products with very high sale volumes, such as Intel’s microprocessors. 

Several alternatives to full-custom design exist. Application Specific Integrated Circuits 

(ASICs) are often described at a hardware description language (HDL) level, and 

implemented using standard cell libraries. This approach trades off performance for 



2 Background   11 

 

 
lower cost and faster time to market. Another approach is to use a gate array 

technology: prefabricated silicon chip circuits containing transistors and basic logic 

gates, with no particular connection between them. The designer then lays out the 

appropriate interconnections to make the gate array perform a more specific function. 

Introduced to target a higher number of potential customers and reduce production 

costs, programmable logic devices (PLDs) illustrate another way of implementing 

electronic circuits, where the device’s function is undefined at the time of manufacture, 

and the user has to program the device to make it perform a specific function.  One 

early example is Texas Instrument’s Programmable Logic Array (PLA), where the 

programming consisted of altering the metal layer of the IC. The output of PLAs results 

from connections between an AND array followed by an OR array. As an example, basic 

logic functions in sum of products form could be implemented. Programmable Array 

Logic (PAL) devices were later introduced, removing the need of the OR array and 

resulting in faster designs. Figure 2.1 shows the structures of PLAs and PALs. 

Figure 2.1, PAL and PLA structures 

  A A’   B B’    C C’   D D’   A A’   B B’    C C’   D D’ 

F1 F2 

F1 

F2 

PAL circuit PLA circuit 

Both circuits realize the same functions F1 and F2:     F1 = A’C + BC     F2 = A’C + D 



2 Background   12 

 

 
Complex Programmable Logic Devices (CPLDs) are based on a PAL architecture, but are 

much bigger in size and are used for larger, more complex designs. They can be 

reprogrammed several times and often integrate additional features such as bi-

directional outputs, feedback lines and storage devices (flip-flops). 

Extending on the previous ideas, Field Programmable Gate Arrays (FPGAs) have been 

invented. An FPGA contains programmable logic components and reconfigurable 

interconnects, and contrary to the previously mentioned technologies that use arrays of 

logic gates, FPGAs are based on reprogrammable Look-Up Tables (LUTs). FPGAs stress 

out the trade-offs discussed earlier to a higher extreme: Although the performance of 

an FPGA is lower than with full-custom or standard cell library approaches, its much 

lower non-recurring engineering cost makes it the technology of choice for many 

applications. FPGAs are faster than software and more flexible than hardware: they sit 

between these two paradigms, combine some of the advantages of each and thus suit 

many purposes and applications. 

 

2.1.2 Functioning of FPGAs 

FPGAs contain programmable logic blocks and reconfigurable interconnects to combine 

them together. Other enhancements such as multipliers and memory blocks are also 

integrated into FPGAs. Large FPGAs with all of these features enable the 

implementation of complex digital systems. Furthermore, analog features can be 



2 Background   13 

 

 
embedded directly on FPGA chips, such as differential comparators on input pins to 

protect against electromagnetic interference and potential ground offsets when 

differential signaling is used. Logic blocks often consist of 3-LUT or 4-LUT components 

[12]. An n-LUT device takes an n-bit binary input and produces a 1–bit output out of a 

predefined set of    stored values, one corresponding to each input pattern. In a 

simplified view, a logic block consists of an LUT, a memory element (typically a D flip-

flop), and a multiplexer that chooses which of the registered or unregistered outputs of 

the LUT are to be used as the output of the logic block. This logic block structure for a 4-

LUT design is shown in figure 2.2. 

 

Figure 2.2: Simplified logic block structure of an FPGA 

Figure 2.3 shows how 3-LUTs (each associated with a D flip-flop) and programmable 

interconnects can be laid out on an FPGA chip. As shown, the programmable 

interconnects account for most of the area consumption. 

D    Q 

clock 

4-LUT 
Input #3 

Input #2 

Input #1 

Input #0 

Output 

Multiplexer 



2 Background   14 

 

 

 

Figure 2.3: FPGA logic block and routing channels structure 

In this scheme, the logic blocks are the LUTs, and the routing channel deals with groups 

of 3 wires. On the sides of the LUTs, some connections are made while other ones are 

not. Then, when a group of three horizontal lines intersect with a group of three vertical 

ones, a switch box is used to determine the appropriate connections. As illustrated in 

figure 2.4, a switch box consists of three programmable switches that can connect a 

wire entering a switch to the three other wires also entering it. With this structure, 

wires in channel #1 can only be connected to other wires of channel #1, channel #2 can 

only be connected to channel #2, and so on. The FPGA basically consists of a large array 

of such a structure, with input/output (I/O) pads placed around the rectangular layout, 

so that the appropriate signals that need to interface with external hardware are routed 

all the way to the edges. 

LUT LUT 

LUT LUT LUT 

LUT 



2 Background   15 

 

 

 

Figure 2.4: Switch box structure 

In order to perform certain common tasks more efficiently, many common Digital Signal 

Processing (DSP) blocks, and even complete microprocessors are embedded as 

hardwired cores in modern FPGAs. Just like CPUs, FPGAs are meant to be programmed 

to execute a particular task of interest. Although an FPGA typically runs at a relatively 

lower clock rate, on the order of hundreds of MHz compared to several GHz for CPUs, 

the inherent parallelism of its resources makes it a candidate of choice for certain high 

performance computing tasks that it can execute much faster than a CPU. These include 

convolution, filtering or Fast Fourier Transform (FFT) operations. The low clock rate and 

the direct low level implementation of the functions on the data also allows for less 

power consumption. FPGAs are for example suitable in applications such as code 

breaking, since encryption/decryption algorithms can be implemented faster on an 

Wire channel #1 

Wire channel #2 

Wire channel #3 

W
ire ch

an
n

el #1
 

W
ire ch

an
n

el #
2 

W
ire ch

an
n

el #
3 

Programmable Switch 



2 Background   16 

 

 
FPGA than a CPU, and because the input data is inherently highly parallelizable in a 

brute-force attack. One such attack has been implemented with Copacobana [14] on 56-

bit Data Encryption Standard (DES). The same FPGA-based infrastructure has also been 

used in different applications such as bioinformatics [15]. 

FPGAs perform operations by spatially organizing the primitive operations, whereas 

CPUs perform operations by sequentially organizing them in time and storing 

intermediate results in a limited number of registers. Although the FPGA may then end 

up with a few cycles of latency, the pipelined structure ultimately permits a faster 

processing compared to the CPU that takes more cycles for the same operation. This 

spatial organization allows for less instruction overhead and more active computations 

on the same chip area. Together with the inherent ability of FPGAs to work directly at 

the bit level due to their low-level hardware implementation, as opposed to CPUs that 

only access words then waste cycles on isolating the desired bits, this allows FPGAs to 

perform many tasks an order of magnitude faster than a CPU counterpart. 

 

 

 

 

 



2 Background   17 

 

 
2.2 Peripheral Component Interconnect Express 

 

2.2.1 History of PCIe 

Peripheral Component Interconnect Express (PCIe), is a computer extension card 

standard, designed as an improvement over the PCI and PCI-X (PCI-eXtended) standards 

[17]. Although backwards compatible with both of them, it significantly differs in its 

functioning. It is a serial, packet-based, point-to-point link between two devices. PCIe 

itself has known three generations so far, each one improving on the previous one’s 

bandwidth capability. Figure 2.5 summarizes the achievable bandwidths for the 

standards mentioned, as well as the older Accelerated Graphics Port (AGP) standard. 

Figure 2.5: Evolution of PCI-like standards 

Technology timeline 

Bandwidth (MB/s) 

                     1993   1997   1998  2002   2004     2007    

                      PCI     AGP     PCIx  AGP8  PCIe1   PCIe2 

                                                                     (x8)      (x8) 

4000 

2000 

1000 

266 
133 

0 



2 Background   18 

 

 
Note that PCIe is capable of transmitting data in full duplex mode, and since the data in 

figure 2.5 is quoted per each direction, the PCIe values mentioned could effectively be 

doubled with respect to the other ones. 

PCI has been created by Intel. PCIe was then also developed by Dell, IBM and HP. The 

PCIe standard is being developed and maintained by the PCI-Special Interest Group (PCI-

SIG), regrouping many companies. Each new generation saw a double increase in 

bandwidth. In Gen2, this was mainly due to the doubling of the base clock rate with 

respect to Gen1: 5GHz instead of 2.5GHz. For the most recent Gen3, the 8b/10b 

encoding used in Gen2 and explained in section 3.3.1 from the optical fiber interface 

perspective, is being replaced by a more advanced “scrambling” technique, and uses 

128b/130b encoding, thus reducing the encoding overhead by a factor of 13. 

Today, PCIe is widely used as a motherboard-level interconnect and as an expansion 

card interface for custom hardware boards linked to the computer’s motherboard. 

 

2.2.2 Functioning of PCIe 

In conventional PCI, all the devices share the same 32 or 64-bit parallel bus. In PCIe, the 

link is based on couples of dedicated, unidirectional, serial, point-to-point connections, 

called lanes. A four-lane structure is illustrated in figure 2.6. 



2 Background   19 

 

 

Figure 2.6: PCIe link structure 

PCIe connectors are composed of a number of double-sided pins, used to transmit 

signals such as a 12V power supply, a reference clock and Joint Test Action Group (JTAG) 

signals. Each lane is assigned two of those pins to transmit data, one in each direction, 

hence the dedicated connection. Contrary to the conventional PCI case, there is no 

dedicated interrupt line, and together with control messages, interrupt requests are 

transmitted in place of the data through a Message Signaled Interrupt (MSI) mechanism. 

Just like in most high-speed communication systems, the clock information is embedded 

in the transmitted signal. At the receiver end, in order to accurately retrieve this 

information despite electric coupling along the communication link, the data first has to 

be encoded using a line code. PCIe Gen2 uses 8b/10b [18], which produces a 20% 

overhead. Therefore, although the speed is quoted at 5.0Gbit/s, the effective data rate 

is limited to 4.0Gbit/s per lane. 

PCIe 

device 1 

PCIe 

device 2 
LINK 

LANE 

2x Signals 



2 Background   20 

 

 
In order to limit the noise picked up throughout the communication channel, PCIe uses 

differential signaling, with a transmitter differential peak voltage of       = 0.4 – 0.6V, 

and a common mode voltage of     = 0 – 3.6V. 

Within the Open Systems Interconnection (OSI) model, PCIe specifies three layers: The 

transaction layer, the data link layer and the physical layer, as illustrated in figure 2.7. 

Figure 2.7: Structure of the PCIe transaction layers 

Physical layer 

The physical layer (PHY) specification is divided into an electrical and a logical part, 

which defines analog circuitry definitions, such as the serializer/deserializer (SerDes). At 

the electrical level, each double-sided pin transmits a differential pair of data at 

Device 

PCIe logic 

interface 

Transaction layer 

Data link layer 

Physical layer 

Device 

PCIe logic 

interface 

Transaction layer 

Data link layer 

Physical layer 

LINK 



2 Background   21 

 

 
5.0Gbit/s in one direction (for Gen2). Two pins form one lane, which can simultaneously 

transmit data in both directions at 5.0Gbit/s. Devices can have a number of lanes of x1, 

x2, x4, x8, x16, or x32. A larger slot is allowed to accommodate a smaller device, thus 

permitting a higher compatibility between different hardware components. A PCIe 

device with one lane uses 18 double-sided pins. A PCIe x4 device, such as the one 

implemented in this design, uses 32 of them. 

 

Transaction layer 

In PCIe, a transaction request does not need to be directly followed by its response, so 

that during the time the target device processes the received information and replies, 

other data packets can be sent. The transaction layer generates Transaction Layer 

Packets (TLPs) that are then processed by the Data link layer. Because of the physical 

5.0Gbit/s dedicated pin connection, PCIe2 Gen2 is quoted to have a speed of 5.0Gbit/s 

per lane. With encoding overhead, this figure drops to 4.0Gbit/s for the actual data 

bytes that can be transmitted in the link. But this does not all consist of useful data. 

Depending on the higher-level protocol and software overheads, some of it will be 

wasted. For example, Cyclic Redundancy Check (CRC) and packet acknowledgement 

introduces an important overhead that further downgrades the speed capability of the 

protocol. The transaction layer supports four transaction types. Memory Read or Write 

transactions transfer data from or to a memory mapped location. Input/Output (I/O) 



2 Background   22 

 

 
Read or Write transactions transfer data from or to an I/O location. Configuration Read 

or Write transactions fetch device capabilities and check the status of the PCIe 

configuration space. Messages are used for event signaling and general purpose 

messaging. 

 

Data link layer 

The data link layer sequences the TLPs generated by the transaction layer. Their reliable 

delivery is ensured with an acknowledgement system that requires sending 

unacknowledged TLPs again until they are received. A sequence number and a 32-bit 

CRC code are included in each TLP to ensure error-free transmission, or at least 

considerably decrease the probability of an undetected error. At the receiver side, 

packets that fail the CRC check or contain an inconsistent sequence number produce a 

negative-acknowledge (NAK) signal, indicating to the transmitter that the TLP has to be 

sent again. 

The structure of a TLP is shown in figure 2.8, where DW is a double word (32 bits). ECRC 

is the End-to-end CRC generated by the transaction layer and LCRC is the Local CRC 

appended by the data link layer. SOF is the Start of Frame and EOF is the End of Frame, 

both appended by the physical layer. 



2 Background   23 

 

 

Figure 2.8: TLP Structure in the PCIe protocol 

 

2.3 Optical Fibers 

 

2.3.1 History of optical fibers 

Optical fibers are based on the transmission of a signal in form of light, guiding it by 

repeated reflections. This was first demonstrated in the 1840s by Daniel Colladon and 

Jacques Babinet. After a number of developments, optical fiber telecommunications 

were ultimately triggered in the 1970s, when Robert D. Maurer, Donald Keck, Peter C. 

Schultz, and Frank Zimar demonstrated optical fibers with attenuation below 20dB/km, 

based on doped silica glass [13]. Optical fibers have since then become an integral part 

of communication systems. Widely used, from linking two computers locally to 

transoceanic links, they have evolved into a major industry. Nowadays, optical fibers are 

capable of achieving faster bandwidths than copper cables, as well as less attenuation, 

SOF Sequence 

number 

Header DATA ECRC LCRC EOF 

1 byte 2 bytes 3-4 DW 0-1024 DW 1 DW 1 DW 1 byte 

Generated by the Transaction layer 

Output of the data link layer 

Output of the physical layer 
Serial transmission direction 



2 Background   24 

 

 
cross-talk and electrical interference [1]. Although their price has long been their main 

drawback, they tend to slowly replace copper links. This is the case, for example, in LAN 

Ethernet connections. In fact, optical fibers have long been better suited and more 

widely used in long-distance communication, because the low attenuation rate allows 

for fewer repeaters to be used. 

Several research efforts have led into optical fibers becoming serious competitors to 

copper based equivalents in many applications. For example, for relatively short 

interconnects such as the one discussed in this thesis, bandwidth can be scaled 

efficiently using fiber ribbons, first introduced in 1975 by AccuRibbon. Ribbons increase 

the achievable bandwidth by increasing the number of cables used in parallel while 

maintaining a small area usage. This finds applications in computer data centers, 

equipment connections and outside plant cables. Also inspired by copper cable 

technologies, active optical fiber cables have been developed: the cable’s performance 

is increased by inserting a chip that can deal with issues such as attenuation, crosstalk 

and group velocity distortion. This improves the bandwidth and allows for less reliable 

materials and processes to be used, thus decreasing the cable’s cost. Finally, optical 

fiber transceivers are also being integrated in a Surface Mount Technology (SMT) 

manner on Printed Circuit Boards (PCBs), allowing for smaller components to be used, 

lower production costs and a better automation of the manufacturing process. 

 



2 Background   25 

 

 
2.3.2 Functioning of optical fibers 

Materials have a characteristic refractive index n = c/v, where c is the velocity of light in 

vacuum (about 300,000 km/s), and v is the velocity of light in the material. Light being 

the fastest in vacuum, n assumes values greater than 1. According to Snell’s law, the 

angles of incidence and refraction of a light wave hitting a boundary between two 

materials with different refractive indices    and    is governed by 
     

     
  

  

  
. 

Therefore, if the incidence angle is greater than a critical angle               , 

where light goes from a material with refractive index    to one with refractive index 

  , and    >   , then total internal reflection occurs: The wave continues its 

propagation without loss. Optical fibers are typically made of a long and thin high 

refractive index core, surrounded by a lower refractive index cladding. Typical values for 

the refractive indices are         and        . A coating surrounding this structure 

is also used in order to protect the optical fiber from its environment, thereby increasing 

its strength, reliability and lifetime. Optical fibers transmit information by guiding light in 

their core, through a series of total internal reflections at the boundary between the 

core and the cladding, made possible by the contrast in refractive indices. This is 

illustrated in figure 2.9. 



2 Background   26 

 

 

Figure 2.9: The principle of total internal reflection in optical fibers 

A typical optical fiber link consists of a transmitter and a receiver, an optical fiber cable, 

as well as a connector on each side. Pulse distortion results due to non-ideal 

characteristics of those components, which affects overall system performance [2]. 

Typically, the digital data is encoded with a line code such as Manchester or 8b/10b, and 

is transmitted as a stream of 1s and 0s. This produces a square-wave type of signal. But 

due to pulse distortion throughout the length of the fiber and at the connections 

between the different components of the link, the pulse broadens and may eventually 

send the wrong information, as illustrated in figure 2.10. 

Figure 2.10 only illustrates the signal levels detected at the receiver end, which do not 

directly translate into data bits. In particular, since the application presented in this 

work uses a Non-Return-to-Zero (NRZ) scheme as shown, line codes such as 8b/10b 

   

   

   

   

Snell’s law 

If the angle of incidence is less 

than the critical angle, the light 

refracts in the other medium  

If the angle of incidence is 

greater than the critical angle, 

the light is reflected internally  

Core 

Cladding 



2 Background   27 

 

 
encoding are further used in order to embed clock information and to provide a DC 

balanced signal, as explained in section 3.3.1. An alternative is to use a Return-to-Zero 

(RZ) scheme, where the signal returns to zero between each pulse. In this case, a 

positive signal indicates a logical 1, a negative one indicates a logical 0, and a zero signal 

is observed after every transmitted bit, thus producing a self-clocking signal. This 

nevertheless consumes twice the bandwidth of an NRZ scheme, and still does not 

provide DC balance. 

Figure 2.10: Illustrating the effect of pulse broadening at the receiver end 

In single mode operation, a coherent light of a single wavelength and mode is guided by 

the optical fiber. In multimode, multiple modes are excited in the core of the fiber. So in 

an ideal setting, multimode fibers have unlimited bandwidth, but in practice, distortion 

occurs and limits the achievable bandwidth. Those distortions are more pronounced in 

multimode fibers, and since the length of the fiber also affects the bandwidth, single 

Ideal signal 

Practical observed signal 

Pulse broadened signal 

High pulse broadening, 50% 

detection rule fails 

1 

0 

0          1          0          1          0 

0          1          0          1          0 

0          1          0          1          0 

0          1          1          1          0 



2 Background   28 

 

 
mode fibers are preferred for very long distance transmissions. The work presented 

here concerns a short interconnect with a multimode fiber that is only 50cm long, thus 

allowing for very high bandwidths to be achieved. In general, multimode fibers also have 

larger core sizes, thus simplifying connections and allowing for the use of less expensive 

electronic components and light sources such as LEDs (Light-Emitting Diodes) and 

VCSELs (Vertical-Cavity Surface-Emitting Lasers). 

Distortion occurs for various reasons. First, an instantaneous rise time of 0 is 

unachievable in practice. Hence, the ideal square wave signal is already distorted at the 

transmitter end, before being further distorted by the receiver. As an example, for the 

SFP components used in this design, maximum rise and fall time values are specified at 

90ps [23]. Also, waves propagate with phase velocity     
  , where T is the wave’s 

period and   is its wavelength. But the emitted light is composed of several modes that 

do not propagate at the same speeds within the fiber and cannot arrive at the receiver 

in a perfectly consistent temporal order with respect to the time they left the 

transmitter side. This effect is known as chromatic dispersion and leads to pulse 

broadening. The other effect that causes distortion of the signal and limits the 

achievable bandwidth of a multimode fiber is known as modal distortion. This occurs 

because the different light components are sent through different paths (or modes), 

which have a different length. Thus, the waves do not all travel through a path of the 

same distance. 

 



3 Design   29 

 

 

 

Chapter 3 

Design 

 

This chapter aims at explaining the structure and different elements of the design. 

Section 3.1 presents the general structure of the interface, showing how the logics for 

PCIe and optical communication interface with the computer and the second board. A 

description of the internal memory structure of the FPGA is also presented, showing 

how the different elements of the system access it. Section 3.2 tackles the details of the 

PCIe link design, including the configuration of the Altera PCIe function, the structure of 

DMA requests and issues related to the software driver. Section 3.3 is concerned with 

the optical fiber interface design, with a focus on the implemented 8b/10b encoding 

scheme and the synchronization mechanism between the two nodes. Finally, section 3.4 

explains the link between the two major sub-components of the design: the PCIe logic 

and the optical communication logic. 



3 Design   30 

 

 
Since the design targets an Altera FPGA, the main Computer-Aided Design (CAD) tool 

used was Altera’s Quartus II software. Several related tools were used, including the In-

System Memory Content Editor, the SignalTap II Logic Analyzer and the MegaWizard 

Plug-In Manager to generate parameterized Intellectual Property (IP) modules. 

 

3.1 High level view of the system 

 

3.1.1 High level view of the communication protocol 

Overall, the system can be viewed as a PCIe logic communicating with the computer, 

and an optical fiber interface logic communicating with the other board. They are linked 

with a custom communication protocol and exchange data through a Random Access 

Memory (RAM) structure as explained in section 3.1.3. A diagram illustrating this is 

shown in figure 3.1. 

Figure 3.1: High level view of the system structure 

PCIe Logic 

Optical Fiber Logic 

Arbiter 

Memory 

FPGA 

Top Level 

Optical Fiber Logic 

on board #2 

Computer 



3 Design   31 

 

 
3.1.2 High level view of the communication protocol 

The two main links that constitute the system are the PCIe interface between the FPGA 

and the PC, and the optical fiber interface between the two nodes. The design uses x4 

lanes for the PCIe. Each lane is quoted at a maximum physical throughput of 5Gbit/s, 

thus forming a 20Gbit/s link. Each optical fiber module is run at 6.25Gbit/s, thus forming 

a 25Gbit/s link when 4 channels are used. When protocol, encoding and software 

overhead are introduced, the available raw bitrate for the payload is reduced. Still, the 

optical fiber link remains faster, and the PCIe interface can be considered the bottleneck 

of the design. 

Although it is possible to have the optical fiber link wait for PCIe DMA completion, and 

similarly to have the PCIe DMA wait for optical fiber transfer completion, such an 

approach is clearly inefficient. This motivates the use of at least two buffers on each 

node, such that on DMA completion, no cycle is wasted waiting for node to node 

transfer: The next chunk of data can be transferred to another buffer, while the data 

that has just been written to the FPGA can be transferred to the other node. Since the 

optical fiber is faster, it is expected that the PCIe will always be busy processing DMAs, 

while the optical fiber will not be used to its full capacity, since it will regularly be 

waiting for DMA completion before it triggers a new transfer. This scheme ensures that 

the overall speed of the system does not fall below that of the slower component: The 

PCIe link. 



3 Design   32 

 

 
In this design, three buffers are used instead of only two. This reserves more time to 

eventually process the data, at the expense of requiring more area and increasing the 

latency. Each buffer is further divided into two subparts. The first subpart has its data 

written by the optical fiber and read by the PC, while the second one is read by the 

optical fiber and written by the PC. In hardware, this is stored into two RAM blocks, each 

one divided into 3 buffers, as illustrated in figure 3.2. The first part of Buffer1 is stored in 

the first RAM, while its second part is stored in the second RAM. This is the case for 

Buffer2 and Buffer3 as well. 

Figure 3.2: High level view of the communication structure 

 

 

 

 

FPGA RAM 2 

FPGA RAM 1 

FPGA RAM 2 

FPGA RAM 1 

Buffer1 

Buffer2 

Buffer3 

Buffer3 

Buffer2 

Buffer1 

Buffer1 

Buffer2 

Buffer3 

Buffer3 

Buffer2 

Buffer1 

PC memory PC memory 



3 Design   33 

 

 
3.1.3 Memory structure 

With respect to the PCIe DMA transfers, the FPGA’s internal memory is denoted as the 

Endpoint (EP) memory. Each FPGA needs three memory areas for the three buffers used 

in the design, so the EP memory could be structured as one RAM divided into three 

areas. In this design, it was chosen to divide the RAM into four areas in order to keep 

multiples of two in the structure. The fourth area has predefined pseudo-random values 

that are transmitted when the optical fiber is in an idle state as mentioned in section 

3.3.3, although this is not required and is mainly the result of previous debugging efforts 

during the implementation of the design. Furthermore, because of the different clock 

domains, two RAMs have to be used instead of one. The first RAM is written by the 

optical fiber interface logic at the receiver’s clock speed, whereas it is read by the PC at 

the PCIe clock speed. On the other hand, the second RAM is written by the PC at the 

PCIe clock speed, and it is read by the optical fiber interface logic at the transmitter’s 

clock speed. The PCIe accesses the data in 64-bit words, whereas the optical fiber 

interface logic, that uses channels with 128 bits of data, accesses one 128-bit word on 

every clock cycle. The RAMs therefore need to have different sizes for the input and 

output data, together with different input and output clocks, which is supported by 

Altera on-chip RAMs. This is illustrated in figure 3.3. 



3 Design   34 

 

 

Figure 3.3: Memory structure of the design 

When transiting through the FPGA chip, the data is stored in an internal memory RAM. 

The size of the RAM has to be carefully chosen because there is a trade-off between 

communication latency and FPGA area versus communication speed. The smaller the 

RAM, the faster a particular bit will travel from one computer to the other because the 

DMA chunks will be smaller and processed sooner. Also, smaller RAMs allow for the 

extra FPGA area to be used for other purposes. On the other hand, this would increase 

the PCIe protocol overhead since tasks such as fetching the DMA descriptor tables and 

checking for DMA completion have close to constant duration no matter what the size 

of the DMA is, so that two DMAs of size N would take more time to be completed than 

one DMA of size 2N. This tradeoff is further described in section 4.2. 

Dual-Ported RAM 1 

Read Port B Write Port A 

64b 64b 

16,384 x 

64b 128b 

14b 

Receiver clock 

Received data 

RAM Address 

Link with 

node B 

FPGA 

15b 

FPGA clock 

Data 

Address 

PC 

Dual-Ported RAM 2 

Write Port A Read Port B 

64b 64b 

16,384 x 

64b 128b 

14b 

Transmitter clock 

Transmit data 

RAM Address 15b 

FPGA clock 

Data 



3 Design   35 

 

 
The size of each RAM is chosen to be 2 Mbits, for a total of 4 Mbits of memory on each 

board. The PCIe logic sees the RAM as a group of 32,768 64-bit words accessible by a 

15-bit address, whereas the optical fiber interface logic sees the RAM as a group of 

16,384 128-bit words accessible by a 14-bit address. 

For debugging purposes, each RAM is also associated with a companion “shadow” 

memory that is single-ported and that receives as input all the data that is being written 

to the RAM blocks. So the first shadow memory is written by the optical fiber interface 

logic at the same time as the first RAM, accessed as 128-bit words, while the second 

shadow memory is accessed as 64-bit words and is written by the PCIe interface at the 

same time as the second RAM. Since those shadow memories are single-ported, the 

second port can be used by the “In-System Memory Content Editor” of Quartus to 

monitor changes in the RAM through the JTAG port, and thus ease the debugging 

process by providing direct observation of the FPGA’s internal memory. 

3.2 PCIe interface 

 

3.2.1 Configuration of the PCIe interface 

The PCIe compiler 11.0 provided with Quartus is used to generate a MegaWizard 

configurable PCIe design. It implements the transaction, data link and physical layer 

features of the PCIe specifications described in section 2.2.2. Part of Altera FPGAs, the 

PCIe hard IP block embeds those features and allows for important resource savings in 



3 Design   36 

 

 
terms of Logic Element (LE) usage. It also contains embedded memory buffers and 

consumes less power than an equivalent soft IP implementation. 

The parameters can easily be configured with the MegaWizard, and some of them are 

shown in tables 3.1, 3.2, 3.3, 3.4 and 3.5. 

Parameter Value 

PHY type Stratix IV GX 

PHY interface Serial 

Lanes x4 

Xcvr ref_clk 100 MHz 

Application Interface Avalon-ST 64-bit 

Port type Native Endpoint 

PCI Express version 2 

Application clock 250 MHz 

Max rate Gen2 (5.0 Gbit/s) 

Test out width 9 bits 

Table 3.1: PCIe system settings 

BAR BAR type BAR Size 

0 32-bit Non-Prefetchable Memory 256 MBytes - 28 bits 

2 32-bit Non-Prefetchable Memory 256 KBytes - 18 bits 

4 32-bit Non-Prefetchable Memory 256 KBytes - 18 bits 

Table 3.2: PCIe base address registers 

After the PCIe device has been mapped to the port or memory mapped I/O address 

space of the system, the software driver programs PCIe Base Address Registers (BARs) to 

inform the device of its address mapping. BAR0 and BAR4 map to the target memory 

block on the FPGA while BAR2 maps to the DMA control and status registers. 



3 Design   37 

 

 
Register Name Value 

DeviceID 0x0004 

VendorID 0x1172 

SubsystemID 0x0004 

Subsystem Vendor ID 0x1172 

RevisionID 0x01 

Class Code 0xFF0000 

Table 3.3: PCIe Read-Only registers 

Parameter Value 

Tags suported 32 

Completion timeout range ABCD 

Error reporting Off 

MSI messages requested 4 

MSI message 64-bit address capable On 

Link common clock On 

Implement MSI-X Off 

Table 3.4: PCIe capabilities parameters 

Parameter Value 

Maximum payload size 512 Kbytes 

Number of virtual channels 1 

Retry buffer size 2 Kbytes 

Maximum retry packets 64 

Table 3.5: PCIe buffer setup parameter 

 

 

 

 



3 Design   38 

 

 
3.2.2 Structure of the PCIe interface 

The chaining DMA example design also provided by Altera, is used as a starting basis for 

the work [16]. Whereas a simple DMA can only transfer data that is stored contiguously 

in memory, a chaining DMA implementation makes use of a descriptor table that can 

store several memory transfer requests, possibly with non contiguous starting points. 

Although Altera’s example design is used as a starting point for this implementation, the 

chaining DMA feature is not used to its full potential and data is always assumed to be 

contiguous. 

Figure 3.4 illustrates the structure of the PCIe design. It has a DMA arbiter that contains 

a Root-Complex (RC) slave module, a DMA read and a DMA write module. Each DMA 

module has its own DMA descriptor table, so that DMA reads and writes can be 

performed at the same time, using the full duplex capability of the PCIe protocol. The 

DMA modules are controlled by a software driver, in turn controlled by a C program 

running on the computer. RC memory is the system memory (accessible by the PC), 

Endpoint (EP) memory is the FPGA memory where transactions take place. The EP 

memory consists of a RAM structure in the FPGA’s internal memory.  Contrary to the 

example design, and since this RAM block is also used by the optical fiber interface, it 

was brought up to the top level in order to integrate the final design more easily. Also, it 

was divided into two blocks, one for read transactions and one for write transactions, as 

explained in sections 3.1.2 and 3.1.3. The RC slave module is responsible for 

downstream requests to the EP memory: It programs the DMA control registers and 



3 Design   39 

 

 
reads the status registers. The DMA read engine implements operations that transfer 

data from the RC memory to the EP memory in the FPGA across the PCIe link, whereas 

the DMA write engine transfers data from the EP memory to the RC memory. 

Figure 3.4: PCIe chaining DMA design structure, similar to [16] 

 

The application logic hierarchy inside the FPGA is illustrated in more detail in figure 3.5. 

As mentioned previously, the EP memory RAM is brought out of the PCIe design itself, 

such that it later interacts with the optical fiber interface design more easily. 

example_app_chaining: This is the top level module implementing Avalon Streaming 

(Avalon-ST) interfaces and sideband bus logic. Avalon interfaces ease the design of 

Altera FPGAs, by defining interfaces for streaming high-speed data, reading and writing 

registers and memory, or controlling off-chip devices. Avalon-ST supports the 

Driver RC 

memory 

     PCIe 

   Hard IP 

DMA 

Write 

DMA 

Read Arbiter 

EP memory 

DMA Control/Status 

register 

RC slave 

FPGA 

Application logic 

Avalon-ST 

Configuration 

PCIe 

link 



3 Design   40 

 

 
unidirectional flow of multiplexed streams, packets and Digital Signal Processing (DSP) 

data [9]. 

cdma_ast_rx: This module contains the Avalon-ST receive port for the DMA requests, 

which converts data at the Avalon-ST interface into the corresponding descriptors and 

data interface later used by lower level modules. 

cdma_ast_tx: This module is responsible for implementing the same kind of 

transactions as the previous one, but for upstream communication: It contains the 

Avalon-ST transmit port that converts the descriptors and data interface from lower 

level modules to the corresponding Avalon-ST interface. 

cdma_ast_msi: Similarly to the modules implementing the Avalon-ST transmit port; this 

module is responsible for converting MSI requests from lower level modules into 

Avalon-ST data. 

cdma_app_icm: In Altera's example design, this module instantiates the EP memory of 

the design. Here, the corresponding connections are propagated to the top level, so that 

the interface with the optical fiber related logic is simplified. This module also arbitrates 

PCIe packets for the modules dma_dt and rc_slave. 

rc_slave: This module is responsible for managing downstream requests. It instantiates 

the rxtx_downstream_intf and reg_access modules. These requests include the 

programming of the DMA control registers and reading of DMA status registers. 



3 Design   41 

 

 
rxtx_downstream_intf: This module takes care of downstream read and write requests. 

BARs 0, 1, 4 and 5 are mapped to the EP memory, whereas BARs 2 and 3 access the 

chaining DMA control and status registers using the reg_access module. The latter 

accesses the control registers in dma_prog_reg (programmed by the software driver) 

and the status registers in read_dma_requester and write_dma_requester: For each 

descriptor, these modules transfer data between RC and EP memory by issuing PCIe 

transaction layer packets. 

dma_descriptor: This module retrieves the DMA read or write descriptors written by the 

software driver and stores them in a First in First Out (FIFO) structure. Its data is then 

read by read_dma_requester and write_dma_requester. 

dma_dt: This module plays the role of an arbiter that manages the PCIe packets issued 

by dma_prg_reg, read_dma_requester, write_dma_requester and dma_descriptor. 

flagger: This module is not present in the example design. It is added inside the arbiter 

in order to monitor changes in the DMA status registers and inform the optical fiber 

interface hardware when it is allowed to transfer data. 

Other modules are also used for tasks such as Cyclic Redundancy Check (CRC) 

calculation and synchronization, but they do not illustrate the hierarchy of the PCIe 

communication design and are not shown here. 



3 Design   42 

 

 

 

Figure 3.5: Application logic hierarchy of the PCIe design 

FPGA top level 

Optical fiber 

logic 

Memory (RAM) 

PCIe physical connections 

example_app_chaining 

cdma_ast_rx cdma_ast_tx cdma_ast_msi 

flagger dma_dt_write dma_dt_read 

cdma_app_icm 

rc_slave 

reg_access rxtx_downstream_intf 

dma_prg_reg dma_prg_reg 

dma_descriptor dma_descriptor 

read_dma 

requester 

write_dma 

requester 

Link with computer 

Link with 

HSMC 

Arbiter 



3 Design   43 

 

 
3.2.3 Direct Memory Access 

The descriptor table is a fundamental part of the chaining DMA implementation. It 

contains information on the length, address of the source and address of the destination 

of up to 256 transfers for a single DMA request. Since the starting addresses are 

specified for each entry in the table, the data need not be stored in contiguous memory 

locations. Each entry also contains control bits that set the handshaking behaviour 

between the software and the DMA engine [17]. 

The software driver writes the DMA information into shared memory, from which the 

DMA read and write modules continuously collect descriptor table information. The 

driver then programs the control registers with the number of descriptors to be 

processed, and triggers new DMA requests for read and write. Each descriptor is then 

processed in turn and the corresponding data transfer is performed. Note that read and 

write descriptors may be processed simultaneously. 

The chaining DMA control registers are mapped into BAR2. At address 0x0, four 32-bit 

DWORDs constitute the DMA write control registers, whereas address 0x10 contains 

four 32-bit DWORDs for the DMA read control registers. Two of those 32-bit DWORDs 

are used to specify the lower and upper parts of the 64-bit base address of the 

descriptor table in RC memory. 16 bits indicate the number of descriptors to be 

processed, 16 bits indicate the index of the last descriptor to be processed, 16 bits are 

used as a control field, and the last 16 bits are unused. 



3 Design   44 

 

 
On BAR2 address 0x20 and 0x28, chaining DMA status registers are stored for both the 

DMA write and the DMA read respectively. They indicate information such as the board 

number, maximum request size, the number of the last processed descriptor, and 

whether there are any descriptors left to be processed by the engine. 

The 16-bit control fields of the DMA read and write control registers indicate how the 

DMA engine can inform the software driver of a DMA completion. The two main 

methods that could be implemented are MSI interrupts or polling of the last processed 

descriptor. In the first scheme, the driver enters a sleep state after issuing DMA 

requests. The DMA engine then issues an MSI interrupt and wakes up the driver on 

completion. In the second scheme, the driver polls the state of the “last descriptor 

processed” register, and knows that the request has been completed when the 

register’s value is equal to the number of descriptors in the table, since they are 

processed from index 0 to index n-1, where n is the number of descriptors in the table. 

Both schemes have been implemented in software, but it was found that the system 

was faster with polling. Indeed, sending interrupts produces an overhead that can be 

circumvented by a parameterized polling strategy; experiments have been conducted to 

compare the two approaches and they are explained in section 4.2. 

3.2.4 Interface with software and driver design 

The design of a driver that interacts with the FPGA logic properly is a complex task in 

itself. The driver has been coded in C, and is based on the freely available software 



3 Design   45 

 

 
coded by Leon Woestenberg and Nickolas Heppermann, altpciechdma.c, available in the 

Linux kernel. This driver organizes the PCIe probing at system startup and implements a 

DMA test for both reads and writes, where completion is checked with polling. The 

driver required some major updates to customize the design, make it more efficient and 

interface it with a C program. Reference information about implementing linux drivers 

was found in [11]. 

Drivers are pieces of software that lie in the Linux Kernel space. They allow high level 

user applications such as a C program to interact with the computer’s low level 

hardware. Drivers can access several built-in kernel functions to communicate with the 

hardware, and can be accessed by the user application in different ways. The two main 

types of device drivers in Linux are the block and character types. Block type devices 

implement random access to larger units of data for transfers to and from memory and 

are used for hardware such as hard disks, whereas character devices implement serial 

I/O transfers in the much smaller unit of a single character. Here the driver is loaded as a 

module instead of integrating it into the kernel and recompiling it. In Linux, drivers are 

seen as files from the point of view of the user application, and they can be accessed 

with such functions as getchar or fread. The file also needs to be opened beforehand 

and closed at the end of its use. 

The userspace commands insmod and rmmod serve to load and unload a device driver 

from user space; they can be directly integrated in a makefile that also compiles the C 

code of the driver. Those functions make calls to the kernel space functions module_init 



3 Design   46 

 

 
and module_exit which are executed at the beginning and end of use of a driver. The 

latter functions serve various initialization purposes, such as reserving interrupts or 

memory pages, and then restoring the reserved resources when they are no longer 

needed by the driver. The driver needs to register itself in kernel space using functions 

such as register_chrdev with a given major number. This major number is then used in 

user space when linking a file in the /dev directory with the mknod command, to 

distinguish between the different drivers. Note that the appropriate chmod settings 

have to be granted to the device file, and the memory access functions should be called 

with the appropriate write and read rights. 

In the case of the PCIe driver, after downloading the FPGA design to the board and 

restarting the computer, the PCIe device is already detected by the Operating System 

(OS) and can be observed in the list of PCIe devices by typing the command lspci. Then, 

on module insertion and initialization, a probing function is called in the driver. This 

function performs several tasks: It allocates memory, allocates and maps coherently-

cached memory for the descriptor table of the chaining DMA design, enables the bus 

master capabilities of the device, enables and queries interrupt lines, sets a 32-bit DMA 

mask, maps PCIe BARs in memory and initializes the character device capabilities of the 

driver. The driver also requires the manufacturer and device ID numbers: 0x1172 for 

Altera, and 0x0004, arbitrarily chosen for this particular design’s device number. This 

needs to match the configuration registers in the MegaWizard when generating the PCIe 

interface. 



3 Design   47 

 

 
Due to the full duplex capabilities of the PCIe interface, DMA reads and writes can be 

performed at the same time. In this implementation, only fread calls are used in the C 

program to interface with the driver. Half the buffer is used to copy data from the FPGA 

to user space, whereas the second half of the buffer is previously filled with the data to 

be written to the board. Opening the device file with fopen (with read and right 

permissions), and calling fread in the C program calls a function DMA_transfer in the 

driver that performs several tasks. First, it polls the status of a 3-bit flag sitting in the 

PCIe’s read header. Each bit corresponds to the current state of one of the 3 memory 

buffers in the FPGA. If the bit at the current index is 0, it proceeds with filling descriptor 

tables for both a DMA read and a DMA write, and triggers them both, otherwise it waits 

until the bit switches back to 0 before it proceeds with the DMA transfers. A value of 0 

indicates that the exchange of data with the other node through the optical fiber logic 

has been processed successfully, that new data is ready to be read by the PC, and that 

the buffer is ready to be filled for future transfers. When a value of 0 is seen and after 

the DMAs are set up, the driver proceeds with polling for completion as explained in 

section 3.2.3. On completion, the driver sets the current flag bit to 1 to indicate that 

data is ready for the optical fiber to transfer it, and it increments the value of the 

current buffer/flag (legal values are 0, 1 and 2). An alternative, MSI based completion 

checking system has been implemented as well, as explained in section 3.2.3. In this 

scenario, the driver switches to a sleep state after triggering the DMAs, and is awakened 

by an Interrupt Service Routine (ISR), automatically called on DMA completion. The 

overall scheme is illustrated in figure 3.6. 



3 Design   48 

 

 

 

Figure 3.6: Steps for running the PCIe interface at different levels 

Compile FPGA design 

and download to the 

board 

Restart computer, 

PCI device 

identified by OS 

Compile driver, 

insert as module, 

link to device file 

Driver module, PCIe, 

device file initialization 

Open file 

Set up next write 

buffer, call fread 

Poll for status of the flag, 

proceed when 0 

Trigger DMA read and write 

Poll for completion 

Set flag to 1, 

increment buffer ID 

Retrieve read data  

Close file  

Remove driver 

module  

D
o

n
e 

N
o

t d
o

n
e 

Perform DMA read 

and write 

USER SPACE KERNEL SPACE 

HARDWARE 



3 Design   49 

 

 
When writing to the read header (to reset or trigger a DMA for example), it should be 

ensured that the current status of the three flag bits are not overwritten. Reading the 

32-bit header with io_read32, updating the desired flags and then writing the 32-bit 

number back with io_write32 is a risky option, since the flags could potentially be 

changed by the hardware side while the software is updating the register. Then, when 

writing the value back, the change made by the hardware could be overwritten and the 

system may fail. This option, although unlikely, has been avoided by a modification of 

the hardware: When the software attempts to write a 1 to one of those three bits, they 

are updated as expected, but writing a 0 has no effect. This way, only the hardware can 

switch the flags from 1 back to 0, and the driver does not need to worry about erasing 

those flags when writing to the read header. 

 

 

 

 

 

 

 



3 Design   50 

 

 
 
3.3 Optical fiber interface 

 

3.3.1 8b/10b encoding 

In an electronic circuit, electric energy can be transferred between wires due to 

capacitive coupling. Although this phenomenon can be intentional in some designs, it 

can have harmful effects in the baseband transmission of digital data: Alternative 

Current (AC)-coupled electrical connections can lose the Direct Current (DC) information 

of the signal, as illustrated in figure 3.7. This translates to a channel with high-pass 

characteristics where the lower (DC) frequencies are attenuated. 

Consider for example a system implementing binary phase-shift keying (BPSK) 

modulation, where the logical “0” bit of data is mapped into a negative voltage     , 

and the logical “1” is mapped into its positive counterpart    . If the data’s redundancy 

pattern produces a transmitted signal where 60% of the bits are logical 1s, the DC level 

of the transmit signal would be        , which is its average value. After passing the 

signal through an AC-coupled channel, the received signal would lose the DC level 

information, and its average would drop down to 0. 

This inevitably introduces errors in the transmission, and affects clock recovery 

information. In order to counter this, encoding schemes that produce a DC-balanced 

output out of possibly redundant input data have been designed. 



3 Design   51 

 

 

Figure 3.7: Effect of AC coupled channel on the DC component of a signal 

 

The optical fiber interface design implements 8b/10b encoding. This is a line code with 

20% overhead, as it maps each sequence of 8 data bits into a 10 bit symbol. It was first 

described in 1983 by Al Widmer and Peter Franaszek in [18]. 

The symbols are chosen such that DC-balance is achieved: No matter how redundant 

the data is, the total number of 1s and 0s transmitted only differ by at most 2 at all 

times. Also, except for a comma control signal used for synchronization, there are never 

more than five 0s or 1s transmitted in a row. This ensures proper clock recovery at the 

receiver end. 

The 8 bits of data, denoted HGFEDCBA, are divided into two groups: The lower 5 bits 

(EDCBA), and the upper 3 bits (HGF). An 8-bit data string is denoted Dx.y, where x is the 

decimal value of EDCBA, and y is the decimal value of HGF. Control symbols are denoted 

DC level 

AC coupled 

channel 

Transmitted signal Received signal 



3 Design   52 

 

 
Kx.y. There are          possible symbols, but only        possible data strings, 

so that only the symbols with less than 5 same consecutive bits are used. Also, some of 

the 8-bit data symbols can be encoded into two different 10-bit symbols, one of them 

having two more 1s than 0s and vice versa. 

The x portion of the data is encoded into a 6-bit entity (abcdei), and the y portion is 

encoded into a 4-bit entity (fghj). The bits are then transmitted from least to most 

significant, as illustrated in figure 3.8. 

Figure 3.8: Bit ordering in 8b/10b encoding 

The encoder needs to keep track of the disparity in the number of 1s and 0s sent. A 

value, called the Running Disparity (RD), holds this information. By convention, the RD 

starts at a value of -1. When the transmitted symbol has no disparity, the RD is left 

unchanged. In the case where the codeword to be transmitted is one that has two 

Dx.y 

E D C B A H G F 

a b c d e f g h j i 

Transmit 

8b 

10b 



3 Design   53 

 

 
possible encodings, a disparity will occur. If the RD is -1, then the codeword with two 

more 1s is chosen and the next RD value is +1. If the RD is +1, then the codeword with 

two more 0s is chosen and the next RD is set to be -1. Therefore, this RD information has 

to be propagated and used as an input into the next encoding step. Note that the 

decoders do not require this information, since the backward mapping is unique. Tables 

3.6 and 3.7 provide the mappings for encoding x and y. Table 3.8 provides the codes for 

common control symbols. 

Input Output   Input Output 

    RD = -1 RD = +1       RD = -1 RD = +1 

Notation EDCBA abcdei   Notation EDCBA abcdei 

D.00.x 00000 100111 011000   D.16.x 10000 011011 100100 

D.01.x 00001 011101 100010   D.17.x 10001 100011 

D.02.x 00010 101101 010010   D.18.x 10010 010011 

D.03.x 00011 110001   D.19.x 10011 110010 

D.04.x 00100 110101 001010   D.20.x 10100 001011 

D.05.x 00101 101001   D.21.x 10101 101010 

D.06.x 00110 011001   D.22.x 10110 011010 

D.07.x 00111 111000 000111   D.23.x 10111 111010 000101 

D.08.x 01000 111001 000110   D.24.x 11000 110011 001100 

D.09.x 01001 100101   D.25.x 11001 100110 

D.10.x 01010 010101   D.26.x 11010 010110 

D.11.x 01011 110100   D.27.x 11011 110110 001001 

D.12.x 01100 001101   D.28.x 11100 001110 

D.13.x 01101 101100   D.29.x 11101 101110 010001 

D.14.x 01110 011100   D.30.x 11110 011110 100001 

D.15.x 01111 010111 101000   D.31.x 11111 101011 010100 

Table 3.6: Encoding of x in 8b/10b 



3 Design   54 

 

 
Input Output 

    RD = -1 RD = +1 

Notation HGF fghj 

D.x.0 000 1011 0100 

D.x.1 001 1001 

D.x.2 010 0101 

D.x.3 011 1100 0011 

D.x.4 100 1101 0010 

D.x.5 101 1010 

D.x.6 110 0110 

D.x.P7 111 1110 0001 

D.x.A7 111 0111 1000 

Table 3.7: Encoding of y in 8b/10b 

Input Output 

    RD = -1 RD = +1 

Notation HGFEDCBA abcdeifghj 

K.28.0 00011100 0011110100 1100001011 

K.28.1 00111100 0011111001 1100000110 

K.28.2 01011100 0011110101 1100001010 

K.28.3 01111100 0011110011 1100001100 

K.28.4 10011100 0011110010 1100001101 

K.28.5 10111100 0011111010 1100000101 

K.28.6 11011100 0011110110 1100001001 

K.28.7 11111100 0011111000 1100000111 

K.23.7 11110111 1110101000 0001010111 

K.27.7 11111011 1101101000 0010010111 

K.29.7 11111101 1011101000 0100010111 

K.30.7 11111110 0111101000 1000010111 

Table 3.8: Control symbols in 8b/10b 



3 Design   55 

 

 
For D.x.7, the preceding 6-bit code determines which one of the primary (D.x.P7) or the 

alternate (D.x.A7) code is to be sent. This choice prevents any sequence of 5 consecutive 

1s or 0s (which is reserved for comma control symbols). Control codes K28.1, K28.5 and 

K28.7 are comma symbols used for determining the alignment of the 8b/10b encoded 

received signal. 

In this design, the channel is 160 bits wide, and 8b/10b encoders are cascaded to map 

the 128 bits of data into the 160 bit encoded signal. In order to avoid an extra delay in 

data transmission, the running disparity is directly computed and propagated to the 

subsequent encoders without being registered. This allows all the encoders to produce 

their output on the same clock cycle, instead of waiting for the previous ones to finish. 

Only the RD output of the last encoder is registered and used as an RD input to the first 

encoder on the next clock cycle. This is illustrated in figure 3.9. 

Figure 3.9: Cascading N 8b/10b encoders 

clk rst 
Data0 (7..0) 

Code0 (9..0) 

8b/10b 

encoder 
RDi0 RDo0 

clk rst 
Data1 (7..0) 

Code1 (9..0) 

8b/10b 

encoder 
RDi1 RDo1 

clk rst 
DataN (7..0) 

CodeN (9..0) 

8b/10b 

encoder 
RDiN RDoN 

clk 

D 
Q 



3 Design   56 

 

 
Note that the errors introduced if no line code is used have been observed in a test 

setting. For example, when constantly sending a value of 0, the first few bits would be 

received properly, but the received signal would eventually flip to all 1s because the 

clock is not properly recovered anymore, and is seen with a delay. Also, transmitting a 

non-encoded pseudo-random pattern of 1s and 0s, using the full capacity of the channel 

without the 20% overhead, produces an error-free transmission, since in a random 

binary stream, it is rare that six 0s or 1s are generated consecutively, and the long term 

ratio of 1s to 0s is close to 1. 

 

3.3.2 Structure of the optical fiber interface 

The Verilog source code of the loopback demonstration provided by Terasic is used as a 

basis for the design [19]. The code already implements the pin interface with the HSMC. 

It takes care of comma detection and channel bonding, triggered by user push buttons 

on the board. It also instantiates a complex board test system (BTS). The BTS generates 

pseudo-random data, sends it to the channel, and compares it to the received data after 

it is looped back through the optical fiber. Note that this example design is targeted at 

the Stratix IV “development kit”, different from the DE4 board that is used in this 

project. In particular, the clock circuitries and the pin assignments are different and have 

to be adapted to match the characteristics of the DE4. 



3 Design   57 

 

 
For the purpose of this design, the pseudo-random data that is generated is replaced by 

the output of the Random Access Memory (RAM) in the FPGA’s internal memory, and 

the channel bonding, comma detection and start/end of transmission are automated. 

Also, 8b/10b encoder/decoder modules are implemented as described in section 3.3.1. 

The hierarchy and structure of the optical fiber interface logic is shown in figure 3.10. 

The main modules are the following: 

nios_bts_port_core: This module instantiates the lower level submodules. It propagates 

signals from the top level and initializes parameters such as the data width and the 

number of channels. 

altgx_s4gx_basic_x4_8p5G: This is a module that implements an instance of a 

customized transceiver channel based on the MegaWizard function altgx as described in 

[10]. Its ports are routed to the top level and attached to the pins that map to the HSMC 

board. This transceiver module thus implements the link to the other node of the 

design. A transceiver is a combination of a transmitter and a receiver that acts as the 

interface between the digital processing domain and the analog transmission domain.  

Further, we distinguish between stages where digital data is encoded and processed to 

prepare it for better transmission (Physical Coding Sublayer, PCS), and the stages that 

are concerned with converting analog to digital or digital to analog signals  and 

connecting to the physical medium (Physical Medium Attachment sublayer, PMA). For 

example, on the receiver side, the PMA contains the Clock and Data Recovery (CDR) 



3 Design   58 

 

 
unit. In this design, most of the PCS blocks that can be implemented directly in the 

transceiver module are here disabled and implemented outside, such as word alignment 

and 8b/10b encoding. This is because the algorithms that are automatically supported 

by the transceivers do not exactly fit optical fiber standards. 

altgx_s4gx_xcvr_reconfig_x4: This MegaWizard generated module implements the 

altgx_reconfig module, which allows for dynamic reconfiguration of the associated 

transceivers. This permits easier debugging or later updates and maintenance of the 

system. For example, when an altgx_reconfig module is used, Quartus’ Transceiver 

Toolkit can be used to automatically search for optimum parameters for the altgx 

function, to test for system performance or draw eye diagrams. 

xs_wrapper_bts: This module acts as a wrapper around lower level components that 

synchronize the signals. Also, after the signals have been word-aligned and channel-

bonded for the first time, a pattern_sync piece of data is sent to the other node. The 

same pattern is later received from the other node. xs_wrapper_bts is responsible for 

capturing it and ensuring proper synchronization between the two nodes. 

altera_bts: In the example design, this module instantiates pseudo-random data 

generation and manages the start and end of the test. It has been modified to read data 

from and write data to the RAM in the top level. It also instantiates the 8b/10b encoders 

and decoders that process the data before it is being transmitted and after it has been 

received, respectively. 



3 Design   59 

 

 
tx_wrapper_bts: This module determines what data is to be sent to the other node. It 

has a Finite State Machine (FSM) that switches between states where a repeating DC 

balanced pattern, a word alignment pattern, followed by the actual user data are being 

transmitted. This allows for word alignment and channel bonding. 

channel_aligner and word_aligner: These modules perform channel alignment and 

word alignment respectively. This is required to ensure proper detection of word 

boundaries at the receiver side; otherwise the data could be delayed by a few bits in 

either direction. 

On system reset, each board continuously sends a predefined synchronization pattern. 

After one second, it attempts to detect “comma” signals in the received stream in order 

to align it properly as explained in section 3.3.1. One second later, it performs channel 

bonding. Once this initialization process has been performed, the optical fiber system is 

ready to reliably exchange data with the other node. The one second wait allows for a 

human user to reset the two systems using a push button on the DE4 board since it is 

possible to release the two buttons within one second of each other. 

 

 

 



3 Design   60 

 

 

 

Figure 3.10: Application logic structure of the optical fiber interface 

FPGA top level 

PCIe logic 

Memory (RAM) 
nios_bts_port_core 

xs_wrapper_bts 

altera_bts 

Link with 

Computer 

Arbiter 

altgx_s4gx_basic_x4_8p5G altgx_s4gx_xcvr 

reconfig_x4 

 

word_aligner 

Link with 

board #2 

channel_aligner 

tx_wrapper_bts 

8b/10b 



3 Design   61 

 

 
3.3.3 Synchronization between the two nodes 

In order to keep the two end nodes synchronized, a mechanism needs to be 

implemented to signal to the other node that data is ready to be transmitted. Start and 

end of packet control signals are also useful to accurately determine the beginning and 

end of data. The only way to share such information is through the optical fiber link, at 

the cost of sending fewer data bits. But the overhead introduced is minor, and is not 

even seen by the whole system since the optical fiber link works faster than the PCIe 

one between the PC and the FPGA. This section explains the custom synchronization 

protocol that was implemented between the two nodes. 

When no user data is ready to be transmitted between the two nodes, some predefined 

synchronization data is chosen to travel on the channel. As soon as node A is ready to 

exchange data with node B, it starts repeatedly sending ready_on signals. As soon as a 

ready_on signal is received from node B and node A is ready, it starts sending start_on 

signals. At the reception of a start_on signal, node A starts sending 128 bits of data on 

each transmit clock cycle. It also waits for the first received signal that is not a start_on 

signal to start recording 128 bits of received data on each receive clock cycle. A start_on 

state is required, because relying on ready_on only might result in node A sending user 

data before node B is ready to record it in case it has not seen the ready_on of node A 

yet. When all the data has been processed, an end_on signal is sent. On reception of an 

end_on signal, node A stops recording data. This scheme has the advantage of being 

completely symmetric, so that none of the nodes is solely responsible for triggering and 



3 Design   62 

 

 
controlling data exchanges. A and B can be used interchangeably in the explanation. 

Figure 3.11 illustrates the communication steps. 

Figure 3.11: Communication steps to synchronize the two nodes 

 

The three control signals are unique 8b/10b encoded signals: they cannot be confused 

with data symbols. In order to maintain a consistent RD, ready_on is chosen to be K28.0 

repeated 16 times (in order to fill up the 16 x 10 = 160-bit channel), where even 

positions are the RD = +1 code, and odd positions are the RD = -1 code. start_on and 

end_on  have the same structure, with K28.2 and K28.4 respectively. 

ready_on = 0xC2CF4_C2CF4_C2CF4_C2CF4_C2CF4_C2CF4_C2CF4_C2CF4 

start_on = 0xC28F5_C28F5_C28F5_C28F5_C28F5_C28F5_C28F5_C28F5 

end_on = 0xC34F2_C34F2_C34F2_C34F2_C34F2_C34F2_C34F2_C34F2 

Idle  

Send synch 

pattern 

Ready  

Send 

ready_on 

Start  

Send 

start_on 

End  

Send 

end_on 

 

Active 

Send data 

Ready for next 

transfer 

ready_on 

received 

start_on 

received 

No more data 

to send 



3 Design   63 

 

 
3.4 Complete system 

 

3.4.1 Interface between PCIe and optical fiber system 

Although the PCIe link is the system’s bottleneck and the optical fiber link does not 

always transmit useful data, it is only synchronized once on system startup, instead of 

performing synchronization for every new chunk of data to be transferred.  On reset, 

comma detection takes place: It tries to identify sequences of five 0s and 1s in the 

8b/10b control codes. Then, the four channels are bonded and data starts to be 

transmitted. Originally, only dummy data is continuously being transferred. When the 

PCIe link signals to the optical fiber interface that data is ready to be exchanged 

between the two nodes, synchronization takes place in the optical fiber link as explained 

in section 3.3.3 and user data starts being transmitted through the link. On completion, 

if another buffer of data is available, it will be transmitted as well, and so on. If no buffer 

is available yet and the PCIe is busy completing its DMA, then the optical fiber goes back 

to a state of transmitting dummy data until a new buffer is available. 

In the PCIe application logic, changes in the value of the three reserved bits of the 

control field of the DMA read status register sitting on BAR2 are monitored. Those three 

bits are used as control bits for the three buffers storing data. Originally, the value of 

each bit is 0, and the driver can perform a DMA transfer. On completion of a DMA 

transfer on buffer #0, the software sets the corresponding flag to 1 and switches to 

buffer #1 for the next transfer. This rising edge is seen by the PCIe logic and a signal 



3 Design   64 

 

 
flagAssertedOut(0) is asserted. flagAssertedOut is a 3-bit signal: one for each flag and 

buffer. This signal is propagated to the flagger module to signal that data is ready to be 

transferred between the two nodes. 

When the flagger module sees a high flagAssertedOut signal coming from the PCIe logic, 

it asserts the corresponding SFPtransfer(2:0) signal, propagated all the way to the 

design’s top level. This signal informs the optical fiber interface logic that it can start a 

new transfer, and it remains high until completion of the transfer. On completion of the 

transfer, the corresponding SFPflag(2:0) signal, output of the optical fiber interface logic 

and input to flagger, is asserted. The corresponding SFPtransfer is then deasserted to 

acknowledge the reception of the signal, and flagAssertedIn(2:0) is asserted for one 

clock cycle to signal the PCIe logic that the flag can be switched back to 0. 

The design’s top level contains a register currentSFPtransfer(1:0). It has two bits in order 

to store 3 states, one for each buffer currently being used to read/write data with the 

optical fiber. When a rising edge of the current SFPtransfer control signal is seen, a new 

transfer is triggered and the proper protocol and connections are propagated further 

down the hierarchy. On completion of the transfer, the current SFPflag is asserted to 

signal completion to the flagger module, and currentSFPtransfer is incremented. It can 

now process other rising edges of SFPtransfer that possibly occurred during the previous 

transfer if the PCIe completed a transfer before the optical fiber did. When the flagger 

module sees a high SFPflag, it acknowledges It by setting SFPtransfer back to 0, which is 



3 Design   65 

 

 
in turn acknowledged by the top level that switches SFPflag back to 0 as well, going back 

to the initial state. 

The hierarchical structure is illustrated in figure 3.12. The signal levels during such 

transitions are shown in figure 3.13; they are sampled at the transmitter clock rate and 

are obtained from experiments on the actual design using Quartus’s SignalTap II Logic 

Analyzer. The waveform has been compressed in time to fit the page, the three black 

vertical lines show a longer period of time (during which the optical fiber transfer takes 

place). Note that the value of the signal sendPattern is low when the optical fiber has 

data to transmit, and it is high otherwise. 

Figure 3.12: Links between the driver, PCIe logic and optical fiber interface logic 

Top Level 

PCIe logic Optical 

fiber 

interface 

logic 

PCIe 

registers 

3-bit 

flags 

flagger 

Link to board #2 

 

Data transfer 

PC reads and sets flags 

Computer 

(driver) 

flagAssertedOut 

flagAssertedIn 

SFPtransfer 

SFPflag 



3 Design   66 

 

 

Figure 3.13: PCIe and optical fiber communication on SignalTap waveform 

 

Although the main clock runs at 50MHz, a Phase-Locked Loop (PLL) is used to distribute 

a 125MHz clock to the optical fiber interface logic. This matches the 125MHz clock 

generated on the SFP daughter card that drives the transceivers. In addition to these, 

the PCIe logic itself uses several clocks (the main one is at 100MHz), and the receiver 

and transmitter logics both use a different clock. 

Memory elements of a digital design are typically designed using flip-flops. These 

devices have inherent setup and hold times, and when they are not respected, the flip-

flop can enter into a metasable state, where its state is not settled between neither 0 

nor 1. The logic value might therefore switch back and forth until it finally settles, but if 



3 Design   67 

 

 
the rising edge of the clock occurs during that time, an erroneous value may be read and 

the system may fail. The control signals described in this section interact with logic in 

different clock domains. Thus, synchronizers must be used in order to ensure that 

proper values are read and to avoid unpredictable behaviour, at the cost of introducing 

a few clock cycles of delay in the protocol. The basic functioning of a synchronizer is 

illustrated in figure 3.14, where the signal in clock domain A is registered several times 

in cascaded registers in clock domain B before it is read by logic in B. With this scheme, 

if enough buffers are used, the probability of failure becomes very small and is suitable 

for most practical purposes. 

Figure 3.14: Synchronizing a signal to a new clock domain 

 

 

D   Q 

Clock domain B 

Clock 

domain A 
D   Q D   Q D   Q 

Signal0_A 

Signal0_B 

Clock B 



3 Design   68 

 

 
3.4.2 FPGA resource usage 

The compilation report returns the data shown in table 3.9. 

Component Value/Usage 

Family Stratix IV 

Device EP4SGX530KH40C2 

Logic utilization 4% 

… Combinational ALUTs 9,088 / 424,960 ( 2 % ) 

… Memory ALUTs 522 / 212,480 ( < 1 % ) 

… Dedicated logic registers 11,616 / 424,960 ( 3 % ) 

Total registers 11,616 

Total pins 275 / 888 ( 31 % ) 

Total virtual pins 0 

Total block memory bits 8,405,376 / 21,233,664 ( 40 % ) 

DSP block 18-bit elements 0 / 1,024 (0 % ) 

Total GXB Receiver Channel PCS 8 / 24 ( 33 % ) 

Total GXB Receiver Channel PMA 8 / 36 ( 22 % ) 

Total GXB Transmitter Channel PCS 8 / 24 ( 33 % ) 

Total GXB Transmitter Channel PMA 8 / 36 ( 22 % ) 

Total PLLs 2 / 8 ( 25 % ) 

Total DLLs 0 / 4 ( 0 % ) 

Table 3.9: Compilation report data 

In the above, ALUT stands for Adaptive LUT. GXB stands for Gigabit transceiver block. 

PCS stands for Physical Coding Sublayer and PMA stands for Physical Medium 

Attachment sublayer. Note that the logic utilization is low (4%), so that custom logic can 

be added on the FPGA in order to perform various processing on the data. 

 

 



4 Experiments   69 

 

 

 

Chapter 4 

Experiments 

 

Section 4.1 describes in more detail the different hardware and software that were used 

to develop the system. Section 4.2 provides experimental results that justify some of the 

design choices such as the transfer size and driver/PCIe interface strategies. Bandwidth 

and latency measurements are also reported for different components of the system, 

and the performance of the complete system is compared to the expected performance 

of a similar system based on other modern optical fiber standards. 

 

4.1 System setup and physical layer 

Due to the complexity of the design, logic simulators such as Modelsim have not been 

used. On the other hand, Quartus’s Signal Tap II Logic Analyzer has been crucial for 

determining issues with the design and debugging logical errors. 



4 Experiments   70 

 

 
The compilation time of the design is about 25 minutes when using a computer with one 

3GHz processor. Note that multicore computers do little to improve compilation time, 

since for most of the compilation process (Analysis & Synthesis, and Fitter (place & 

route)), only one core is being used. 

The hardware design is described using a hardware description language (HDL). The 

most common ones are VHDL (VHSIC HDL, where VHSIC stands for very-high-speed 

integrated circuits) and Verilog. The two languages being very similar, either one could 

be chosen. Also, since they are ultimately equivalent at the component or module level 

of abstraction, both could be used in the same design. In this work, Verilog was chosen. 

The system has been developed and tested between two Linux computers running 

Ubuntu 10.04 with Kernel version 2.6.32-33. They both total 8.2GBytes of RAM and are 

equipped with a quad-core AMD Phenom™ II X4 955 processor chip. Note that the 

performance of the system is the same whether it is set up between two computers or 

in a loopback mode, and it was found that it behaved faster on a different computer, 

with 3.2GBytes of RAM, a AMD Phenom™ II X6 1055T processor chip and the Fedora 

operating system with Kernel 2.6.34.8-68.fc13.i686. This computer runs the system at 

about 9Gbit/s instead of 8.38Gbit/s as measured here and explained later. There was no 

other such computer available to test the full system at this speed, but this loopback 

clearly shows the overhead associated on the PC side, and it implies that the measured 

speed of 8.38Gbit/s for the system can easily be further increased without changing the 

design, but just updating the computer’s software and hardware. 



4 Experiments   71 

 

 
The design has been processed with the Altera Quartus II software for a Stratix IV FPGA 

chip, specifically the EP4SGX530KH40C2N that is found on the Altera Development and 

Education board (DE4). The FPGA chip provides a logic capacity that is equivalent to 

approximately 530,000 logic blocks using 4-input LUTs. It provides 27,376K of memory 

bits, 4 PCI Express Hard IP (Intellectual Property) blocks, and 8 phase locked loops (PLLs) 

[20]. The DE4 board also provides many useful features, including integrated 

transceivers supporting up to 8.5Gbit/s, a PCIe x8 edge connector and two HSMC 

connectors [21]. Designs are downloaded to the board through a Universal Serial Bus 

(USB) cable and a Joint Test Action Group (JTAG) interface. HSMC is a low-cost and high 

performance physical interface designed by Altera to allow for third-party hardware to 

be added to the development boards and interfaced with the FPGA [22]. 

The PCIe interface between the DE4 board and the computer uses 4 lanes and thus 

achieves a maximum theoretical physical throughput of 20Gbit/s. The HSMC port is 

connected to a daughter card: Terasic’s Small Form-factor Pluggable (SFP) HSMC board. 

This board provides 8 SFP connectors: 4 Transceiver based ones, as well as 4 Low-

Voltage Differential Signaling (LVDS) based ones [19]. The SFP transceiver modules for 

the optical fiber interface are Finisar’s FTLF8524P2BNV 1000Base-X model [23]. They are 

plugged into the 4 transceiver based SFP slots of the daughter card, and emit light of 

wavelength 850nm using Oxide VCSELs. The optical fiber cables are 50cm long; they 

have Lucent Connectors (LC) and are inserted in the SFP modules. The cables are of the 



4 Experiments   72 

 

 
62.5/125 µm family: they are multi-mode fibers with a core size of 62.5µm and a 

cladding diameter of 125µm. 

As mentioned in the specifications for the SFP modules [23], the case operating 

temperature ranges from -20°C to 85°C, and the link is expected to be reliable with 

cable lengths up to about 70m. Furthermore, for a single supply voltage of about 3.3V, 

the stressed receiver sensitivity is evaluated at about 0.55mW for all four channels 

combined. This parameter describes the minimum optical power required at the 

receiver to recover the signal with a Bit Error Rate (BER) of at most      , as required 

by many optical channel specifications, including 10 Gigabit Ethernet. 

At the transmitter side, the optical modulation amplitude has 247µW for each channel. 

The optical rise and fall times are at most 90ps, the total jitter is at most 57ps, and the 

spectral width is at most 0.85nm: This is the amount of deviation from the nominal 

value of around 850nm observed on the optical wavelength, and is ideally equal to zero. 

4.2 Determining the transfer size at the PCIe level 

Note that the speeds reported are for a two-way communication, which is inherently 

possible with the hardware available (PCIe and two-way optical fiber links). For example, 

a speed of 1Gbit/s means that every second, 1Gbit of data is sent to the other node, and 

1Gbit of data is received from the other node.  

For both the PCIe link and the optical fiber link, a handshaking protocol takes place 

before each transfer. This protocol runs with almost constant time no matter the 



4 Experiments   73 

 

 
amount of data to be exchanged per transfer (as this has been fixed in the design). The 

protocol is an overhead, but is required since FPGA storing resources are limited, and 

the data generated by the high level C programs is not necessarily all available from the 

start of the application: If it is generated in real time it should be buffered until enough 

data is available to constitute a new transfer. The greater the size of each transfer, the 

smaller the time spent on protocol overhead, but the greater the latency for transferring 

one particular bit from the first node to the second. 

Since the optical fiber is faster than the PCIe link, its protocol overhead does not 

ultimately matter, and deciding the transfer sizes should be based on analysis of the 

PCIe throughput. In order to maintain a lower system complexity, the transfer size is 

chosen to be fixed. If the data rate of the used application is too slow, dummy bits can 

be appended to the data in order to fill up the buffers more quickly and avoid 

communication latency between the two nodes. In the PCIe case, time is wasted in 

writing/reading data between the C program and the device driver’s file. Here, the 

computer’s memory capabilities and processing speed play an important role. Once the 

data is available to the driver, the communication protocol consists of setting up 

descriptor tables that are then fetched by the PCIe logic, then triggering a DMA request 

by writing to PCIe registers. On completion, interrupt handling or register polling are 

other tasks that further slow down the system. The PCIe protocol itself uses a packet 

acknowledgement system that significantly slows down throughput in the case of a high 

traffic interface. Figure 4.1 shows the evolution of the measured PCIe throughput for an 



4 Experiments   74 

 

 
increasing transfer size. The measurements have been performed in a loopback setting, 

where a C program exchanges data with the internal memory of an FPGA, without using 

any other node. Since measurements are done at the high level C program sitting on top 

of the system, software overhead plays an important role in reducing the theoretical 

maximum PCIe speed. Data is sent and received in the form of successive DMA requests 

of varying size. 

 

Figure 4.1: PCIe throughput versus DMA size 

As expected, for greater transfer sizes, the PCIe link is faster. But the curve has an 

asymptotic behaviour, and we can clearly see that after a certain memory size, the 

protocol overhead is negligible and very little speed is gained by further increasing the 

memory, at the cost of increasing FPGA resource usage and latency due to packet size, 

as shown in figure 4.2. 

3 

4 

5 

6 

7 

8 

9 

0 200 400 600 800 1000 1200 

Speed (Gbit/s) 

Transfer 
size (kBits) 



4 Experiments   75 

 

 

 

Figure 4.2: PCIe latency versus DMA size 

When the transfer size is switched from 512 kBits to 1Mbit, the latency is approximately 

doubled, but the bandwidth improvement is minimal. Thus, for the purpose of this 

design, the transfer size was chosen to be 512 kBits. Also, this size leaves enough FPGA 

memory for possibly more than three buffers in the case of applications where heavier 

processing on the data is required, as explained in section 5.2. 

4.3 Low-level speeds of the PCIe and optical fiber links  

Measuring the PCIe speed for the physical connection only, ignoring some of the 

protocol overhead, can be done by comparing the values of a counter between enough 

sent/received packets during a transfer. This counter has its value incremented on every 

positive edge of the reference 50MHz clock. We observe 542 cycles of the 50MHz clock 

for 1940 64-bit data chunks successfully transferred during a DMA write, resulting in a 

speed of about 11.45Gbit/s, and 1892 64-bit data chunks successfully transferred during 

0 

20 

40 

60 

80 

100 

120 

140 

0 200 400 600 800 1000 1200 

Latency (μs) 

Transfer 
size (kBits) 



4 Experiments   76 

 

 
a DMA read, resulting in a speed of about 11.17Gbit/s. This measurement does not 

provide the direct physical speed of the interface, as it includes the 8b/10b encoding, 

the packet headers and some potential replayed packets, but it ignores the overhead in 

initializing and acknowledging the transfer between the driver and the PCIe logic.  

We can do the same approximate calculation for the optical fiber link, by measuring the 

speed between two transceivers. We observe 491 cycles of the 50MHz clock for 1534 

160-bit packets sent and received. This yields a physical speed of 24.99Gbit/s for the 

four channels. This speed corresponds to the expected 6.25Gbit/s per channel, and is a 

protocol-free measurement. Adding the 8b/10b encoding, the effective data rate after 

the handshaking protocol initiating each transfer is thus measured to be 5Gbit/s per 

channel, for a total of 20Gbit/s between the two computers. 

4.4 Driver design considerations 

In an attempt to better understand the point of slowdown on the software side, an 

experiment has been conducted where the data was directly available inside the driver 

instead of writing to it with a C program. This eliminates any overhead due to file 

input/output (I/O) between the C program and the device driver’s file. The increase in 

speed was only 5% with respect to the character-device driver implementation. This 

result indicates that even if a block device implementation had been implemented 

instead, only up to a 5% increase in speed would have been observed, which does not 

indicate a major bottleneck. 



4 Experiments   77 

 

 
In comparing the two “check for completion strategies” in the PCIe link, it was observed 

that issuing an MSI interrupt and having the driver detect it and handle it takes a 

constant time regardless of the size of the data being transferred. In the polling case, a 

more customized strategy can be adopted. In fact, after issuing a DMA request, a polling 

scheme implies that the driver needs to repeatedly poll the status of the register 

indicating the last processed descriptor until it reaches a desired value. This process 

consumes resources and slows down the DMA transfer if it is still active. In order to 

minimize this overhead, it is desirable that polling occurs only once, right after the DMA 

transfer has been completed. Therefore, a wait/sleep statement can be used right after 

the DMA request has been issued, so that the driver waits an amount of time    before 

its first poll. If the first poll is unsuccessful, then subsequent polling should be done 

within an interval of time    smaller than   . Optimal values for    and    are determined 

experimentally, and they highly depend on the transfer size. The aim is to minimize both 

the number of polls and the time between completion and the first successful poll. On 

average, using optimal values for    and   , polling was found to be about 10% faster 

than an MSI scheme. 

4.5 Measuring system bandwidth and latency 

In order to use the complete system, the two C programs need to be running at the 

same time. To keep things simpler, no protocol has been implemented to trigger the 

communication and take care of the fact that the C programs will not be started at the 

exact same time. Instead of this, when the driver first polls for the status of the three 



4 Experiments   78 

 

 
bits that indicate whether it can perform a DMA transfer, a long wait of 5 seconds is 

used in case of a failed polling. This gives enough time for the user to start the other 

program as well. Once the programs are started, data is continuously being exchanged 

in chunks of 512 kBits. 600,000 chunks are exchanged (for a total of 314,572,800,000 

bits), and the experiment is repeated 5 times. The results are tabulated in table 4.1. 

According to these results, the average high level speed of the system can be set at 

8.38Gbit/s. 

Experiment # 1 2 3 4 5 

Runtime (s) 37.55 37.51  37.54  37.55  37.52  

Speed (Gbit/s)  8.377 8.386  8.380   8.377  8.384 

        
Average speed: 

8.38 Gbit/s 

Table 4.1: System throughput measurements 

The optical fiber link used in this design achieves a data rate of 20Gbit/s. Compared to 

the InfiniBand technology, this sits between the achievable speeds of 16Gbit/s in Double 

Data Rate (DDR) and 32bit/s achievable in Quad Data Rate (QDR) modes. Those speed 

values concern four channels and include encoding overhead but not other protocol 

requirements. This also approximately corresponds to the rate achievable using two 10G 

Ethernet cables. The link is therefore well suited for high-speed applications, since it 

permits faster transfers than many modern optical fiber standards. However, optical 

fiber links in general scale almost linearly in speed by just adding more channels, and 

the main advantage of this design is the presence of an FPGA that sees the transmitted 

data, and that can for example process it and use the extra throughput available in the 



4 Experiments   79 

 

 
optical fiber channels to send additional information (since the ultimate system 

throughput is limited by the PCIe connection, extra unused bandwidth is available in the 

optical fiber channels). 

The designed interface is eventually intended to be used in a high-speed distributed 

simulation environment. Latency is especially critical in such an application, because the 

delay between the different cores or processing units is to be maintained as low as 

possible in order to avoid rollbacks, deadlocks and other events that affect the 

simulation’s performance. As far as the optical fiber link is concerned, its latency mainly 

depends on transfer speed and packet size, but also potentially on the technology used, 

the cable’s length and other physical factors. In this case, the length of the cable is 0.5m, 

contributing to a 2.5ns increase in latency, which is insignificant compared to what is 

measured for the rest of the system. 

In fact, latency can be measured using a SignalTap waveform and counting the number 

of cycles of the transmit clock between the moment a signal is sent and the moment it is 

acknowledged on the receiver channel. The transmit clock speed is determined as 

explained previously; it has a value of 156.25MHz. Performing this measurement, the 

latency is found to be around 0.73µs. This measures the latency on the optical fiber link 

itself, including line encoding/decoding and the overhead due to the 160-bit packet size. 

This value closely corresponds to the expected latency on a similar InfiniBand link (in the 

order of 1µs), and is clearly better that what can be expected from the same experiment 

in an Ethernet connection: about 10-100µs [26]. 



4 Experiments   80 

 

 
Although this measurement supports the fact that this system can outperform other 

optical fiber standards, it does not provide an accurate view at the high level, end-to-

end user application level. Indeed, the software overhead, the combination of a PCIe 

link, an optical fiber one and buffers to hold the data and maintain high bandwidth all 

further increase the system latency as seen by the C programs lying on top of the 

system. This high-level latency is easily measured by the software at around 260µs. This 

value is not a significant loss compared to the capability of the optical fiber link, and is 

thus acceptable for most high-speed applications. In particular, it is in the same order as 

Ethernet latency, despite the 3-buffer structure that can be used for other purposes and 

that make this design more attractive than an Ethernet counterpart achieving the same 

bandwidth. Note however that this latency could be significantly reduced should the 

application require it, by allowing a variable transfer size or a variable number of buffers 

for the data. Here, large transfer sizes were chosen to increase the bandwidth, at the 

cost of increasing latency. For example referring to [27], where the performance of PCIe 

2.0 with QDR InfiniBand is analyzed, bandwidth calculations are performed on large 

message sizes: 1byte to 1Mbyte on a logarithmic scale, whereas latency calculations are 

performed on message sizes from 1byte to 1Kbyte, with a performance that starts 

degrading after message sizes of 64bytes. Furthermore, note that according to their 

experimental results, message sizes of 512Kbits = 64Kbytes also seem to be a point 

where a further increase of the size only yields a negligible improvement in bandwidth. 

 



5 Conclusion   81 

 

 

 

Chapter 5 

Conclusions and Future Work 

 

5.1 Achievements 

Since the capabilities of single computers are too limited for most high-performance 

computing applications, these are usually being carried out by parallelizing the 

computational tasks and spreading the workload between several computing units. The 

interconnects between the different nodes of the system play a critical role in ensuring 

the efficient execution of parallel computation algorithms. In recent work, high 

bandwidth and low latency for these interconnects have typically been achieved 

through optical fiber based links such as 10-GigE and InfiniBand. The high-speed 

interface presented in this thesis links two computers together through four optical 

fiber channels at 25Gbit/s, and can provide better performance than Ethernet and 

InfiniBand counterparts. Furthermore, the optical fiber link is interfaced to FPGA chips 

situated on each computer. Each FPGA sees all the data before it is transmitted to the 



5 Conclusion   82 

 

 
other node and after it is received from the other node, and it is interfaced with a 

computer through a PCIe x4 Gen2 link running at 20Gbit/s. PCIe is an industry standard 

protocol that provides good performance, reliability, scalability and that is widely used 

in I/O links between a device and a computer’s memory. The computer communicates 

with the hardware and triggers DMA transfers with the FPGA through a kernel level 

driver. Due to the triple buffering structure, the overall link speed does not drop below 

that of the slower interface: the PCIe. This buffering structure also gives time to the 

FPGA to process the data in parallel before it is being transmitted and after it is 

received. Different strategies have been explored to maximize the performance of the 

DMA transfers. Ultimately, including protocol and software overhead, the data rate of 

the design was measured to be about 8.38Gbit/s from one C program to another. 

 

5.2 Future extensions to related areas 

Keeping the design as it is, the optical fiber link has got some extra throughput that 

could be used to share extra information about the data being transmitted. This extra 

throughput can further be increased if the FPGA is used to compress the received data 

before transmitting it and then decompress the received data. This compression 

capability could also be used to cut down the physical optical fiber bandwidth itself, by 

using only two channels instead of four, and still keeping the same speed performance. 

This is of course feasible assuming an application with high enough redundancy in the 



5 Conclusion   83 

 

 
data being transmitted, such that compression has a significant effect. Compression, as 

well as any other digital processing on the data such as convolution operations for 

filtering, does not affect the overall system bandwidth, its costs are in FPGA logic block 

area and in delaying the reception of transmitted data. Fewer optical fibers could also 

be used in order to introduce other nodes in the design, at the cost of having the optical 

fiber become the bottleneck. Still, the overall structure would remain the same, only the 

PCIe link would be waiting for optical fiber completions, and not the other way around 

as is the case in this design. 

The data is currently stored in 3 memory buffers. This gives time to do processing on 

one buffer and transmit the result with the optical fiber. In case the operation is time 

expensive, additional buffers can easily be introduced at the cost of increasing system 

latency. In this design, only 14.8% of the available FPGA memory is actually being used 

by the buffers. Therefore, everything else remaining the same, and keeping buffers of 1 

Mbit, up to 20 of them could be used, instead of 3 currently. The number of memory 

buffers and the transfer size could also be varied to achieve different bandwidth and 

latency trade-offs, depending on the application’s requirements and performance. 

If the amount of data required to start processing is greater than the size of one buffer, 

or greater than what can potentially be stored in the FPGA’s internal memory, the data 

can easily be transferred to external memory available on the DE4 board: 64MB Flash 

memory, 2MB SSRAM or 8GB DDR2 SO-DIMM sockets (double data rate 2 small outline 



5 Conclusion   84 

 

 
dual in-line memory module). A PCIe reference design to external memory is provided 

by Altera in [24]. 

Harnessing the full power of the FPGA in the interface is a task that remains to be 

explored, and that will certainly spark new ideas and provide many interesting 

challenges. 

The interface was originally intended to connect two PCs that perform parallel logic 

simulations using Graphics Processing Units (GPUs). This FPGA based high speed 

interface provides additional powerful tools to communicate simulation data between 

the two nodes. With respect to this application, one improvement to the design would 

be to allow the GPU units to directly trigger DMA transfers on their own, without 

consuming CPU computational cycles. GPUs offer a high amount of parallelism due to 

their inherent design intended at manipulating large amounts of (graphical) data in 

parallel. 

The design may eventually be further ameliorated by making use of the efforts and 

developments recently pursued by Altera to embed an optical fiber infrastructure 

directly on FPGAs [1]. The latest designed FPGAs are to be integrated with laser and 

photon detectors in order to provide range, power, cost and density advantages over 

equivalent copper-based interconnects that are reaching their bandwidth limits and 

cannot scale to future technological needs anymore. Figure 5.1 shows an example of 



5 Conclusion   85 

 

 
such an FPGA, with a transmitter optical sub-assembly (TOSA) and a receiver optical sub-

assembly (ROSA) placed on the corners of the chip. 

Figure 5.1: Integrated optical fiber infrastructure on an FPGA 

The link developed in this thesis demonstrates an important tool to support other 

research activities, mainly due to its scalability, high bandwidth, low latency, and the 

presence of programmable logic monitoring the transiting data. For example, consider 

the NUMAchine [31][32], a large-scale shared-memory multiprocessor with tightly-

coupled processing units implementing a CC-NUMA (Cache-Coherent Non-Uniform 

Memory Access). The use of programmable logic and high-speed interconnects is key in 

the successful implementation of such a multiprocessor system that requires high 

bandwidth and low latency between the different nodes. 

Furthermore, in logic simulation and debugging, the FPGAs can provide debug support 

on top of the system to increase visibility and lead to more efficient circuit debugging. In 

particular, they can lower the cost of hardware assertion on-line monitoring and provide 

TOSA TOSA 

ROSA ROSA 

FPGA chip 



5 Conclusion   86 

 

 
essential verification and debugging information without interrupting or slowing down 

the system [33][34]. 

This work also constitutes a good reference for the design of Network On Chips (NoCs) 

that require high bandwidth between processing elements. One major research effort is 

in making these designs fault-tolerant [35][36] and maintaining reliability as the size of 

integrated circuits decreases and the effect of process variations increases. High 

bandwidth reconfigurable links can be used in fault-reliable NoC routers, where errors 

can be monitored and their effect mitigated on the fly, thus decreasing packet latency in 

the network in case of failures. Combining the two previous points, [41] presents a 

debugging and monitoring infrastructure for the design of reliable and failure-free NoCs. 

Testing of high-speed serial interfaces has also been the subject of various research 

efforts because of the expensive instrumentation, long test time and signal integrity 

issues [37]. The work presented in this thesis can play a major role in facilitating such 

expensive tasks in various ways. Since the data transits through an FPGA, data integrity 

can efficiently be checked at the system level using logic analyzers such as SignalTap, 

which is in fact done here for several calculations in section 4. Furthermore, tools such 

as Altera's Transceiver Toolkit also provide an easily accessed testing infrastructure with 

such features as automatic test data generation and BER calculation for transceiver 

components, but also EyeQ diagram generation to check signal integrity in more detail. 



5 Conclusion   87 

 

 
The presence of the FPGA in the link also suggests an extension to multiple-valued logic 

in order to increase the system's efficiency [38][39], as well as an improvement of the 

clock management system. GALDS (Globally Asynchronous, Locally Dynamic System) 

[40] provides a system-level framework for designing efficient, multiple-clock based 

digital systems. In fact, numerous clock domains are used as part of the design 

presented in this thesis: The FPGA logic, the PCIe protocol, the HSMC interface, the 

daughter card, the transmit and the receive transceivers all use different clocks. The 

clocks in one node are either generated independently or related through PLLs [25], and 

the different clock domains further need to be synchronized between the two nodes of 

the system. 

 

 



   88 

 

 

 

References 

 

[1] Altera Corporation. “Overcome Copper Limits with Optical Interfaces.” Internet: 

http://www.altera.com/literature/wp/wp-01161-optical-fpga.pdf, April 2011 

[accessed September 2011]. 

[2] Corning Incorporated. “Optical Fiber Local Area Networks: Bandwidth, Data Rate, 

and Link Length - What Does It All Mean?” 

Internet: http://www.corning.com/docs/opticalfiber/wp410_10-01.pdf 

October 2001 [accessed September 2011]. 

[3] S. Minami, J. Hoffmann, N. Kurz and W. Ott, "Design and Implementation of a 

Data Transfer Protocol via Optical Fiber," Real Time Conference (RT), 2010 17th 

IEEE-NPSS, pp. 1-3, 2010. 

[4] S. Minami, J. Hoffmann, N. Kurz and W. Ott, "Design and Implementation of a 

Data Transfer Protocol Via Optical Fiber," IEEE Transactions on Nuclear Science, 

vol. 58, no. 1, pp. 1816-1819, 2011. 

[5] R.M. Metcalfe and D.R. Boggs, "Ethernet: Distributed packet switching for local 

computer networks," Communications of the ACM, vol. 19, no. 7, pp. 395-404, 

1976. 



   89 

 

 
[6] J. Bardeen and W. Brattain, “The Transistor, a Semiconductor Triode,” Phys. Rev., 

vol.74, p. 230, 1948. 

 [7] Intel Corporation. “60 years of the transistor: 1947 - 2007.” Internet: 

http://www.intel.com/technology/timeline.pdf, [accessed September 2011]. 

[8] J. M. Rabaey, A. Chandrakasan and B. Nikolic, "Introduction," in Digital 

Integrated Circuits, 2nd edition. Sodini, Ed. Upper Saddle River, NJ: Prentice Hall, 

2002, pp. 3-34. 

[9] Altera Corporation. “Avalon Interface Specifications.” Internet: 

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf, May 2011 

[accessed September 2011]. 

[10] Altera Corporation. “Transceiver Architecture in Stratix IV Devices.” Internet: 

http://www.altera.com/literature/hb/stratix-iv/stx4_siv52001.pdf, June 2011 

[accessed September 2011]. 

[11] J. Corbet, A. Rubini, G. Kroah-Hartman. Linux Device Drivers. Sebastopol, CA: 

O’Reilly Media, 2005. 

[12] K. Compton and S. Hauck, "Reconfigurable Computing: A Survey of Systems and 

Software," ACM Computing Surveys, vol. 34, no. 2, pp. 171-210, June 2002. 

[13] R.D. Maurer, "Glass fibers for optical communications," Proceedings of the IEEE, 

vol. 61, no. 4, pp. 452-462, April 1973. 

[14] T. Güneysu, T. Kasper, M. Novotný, C. Paar and A. Rupp, "Cryptanalysis with 

COPACOBANA," IEEE Transactions on Computers, vol. 57, no. 11, pp. 1498-1513, 

November 2008. 



   90 

 

 
[15] L. Wienbrandt, S. Baumgart, J. Bissel, C.M.Y. Yeo and M. Schimmler, "Using the 

reconfigurable massively parallel architecture COPACOBANA 5000 for 

applications in bioinformatics," Procedia Computer Science 1, vol. 1, no. 1, pp. 

1027-1034, 2010. 

[16] Altera Corporation. “PCI Express High Performance Reference Design.” 

AN-456-1.3. Internet: http://www.altera.com/literature/an/an456.pdf, August 

2010 [accessed September 2011]. 

[17] Altera Corporation. “IP Compiler for PCI Express - User Guide.” Internet: 

http://www.altera.com/literature/ug/ug_pci_express.pdf, May 2011 [accessed 

September 2011]. 

[18] A.X. Widmer and P.A. Franaszek, "A DC-Balanced, Partitioned-Block, 8B/10B 

Transmission Code," IBM Journal of Research and Development, vol. 27, no. 5, 

pp. 440-451, 1983. 

[19] Terasic Technologies Incorporated. “SFP HSMC – Terasic SFP HSMC Board User 

Manual.”Internet: http://www.terasic.com.tw/cgi-bin/page/archive_download.p

l?Language=English&No=342&FID=c4b7d99c26cb60c9e3bdb4f2ecdf10dd, 

September 2009 [accessed September 2011]. 

[20] Altera Corporation. “Overview for the Stratix IV Device Family.” Internet: 

http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf, June 2011 

[accessed September 2011]. 

[21] Terasic Technologies Incorporated. “DE4 User Manual.” 

Internet: http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Langua



   91 

 

 
ge=English&No=501&FID=b1388d95cec372035605969d3b3727e4, August 2010 

[accessed September 2011]. 

[22] Altera Corporation. “High Speed Mezzanine Card (HSMC) – Specification.” 

Internet: http://www.altera.com/literature/ds/hsmc_spec.pdf, June 2009 

[accessed September 2011]. 

[23] Finisar Corporation. “Product Specification - 4.25Gb/s RoHS Compliant 

Short-Wavelength SFP Transceiver - FTLF8524P2xNy.” Internet: 

http://www.finisar.com/sites/default/files/FTLF8524P2xNy%20Spec%20RevJ.pdf

June 2009 [accessed September 2011]. 

[24] Altera Corporation. “PCI Express to External Memory Reference Design.” 

AN-431-2.0. Internet: http://www.altera.com/literature/an/an431.pdf, May 

2011 [accessed September 2011]. 

[25] Z. Zilic "PLL- and DLL-based Clock Management for Digital Circuits," On-line 

Symposium on Electrical Engineering, May 2001. 

[26] HPC Advisory Council. “Interconnect Analysis: 10GigE and InfiniBand in High 

Performance Computing.” Internet: 

http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf 

2009 [accessed September 2011]. 

[27] M.J. Koop, Huang Wei, K. Gopalakrishnan, D.K. Panda, "Performance Analysis 

and Evaluation of PCIe 2.0 and Quad-Data Rate InfiniBand," 16th IEEE Symposium 

on High Performance Interconnects, 2008. HOTI '08., pp.85-92, August 2008. 



   92 

 

 
[28] J.L. Shin, Huang Dawei, B. Petrick, Hwang Changku, K.W. Tam, A. Smith, Pham 

Ha, Li Hongping, T. Johnson, F. Schumacher, A.S. Leon, A. Strong, "A 40 nm 16-

Core 128-Thread SPARC SoC Processor," IEEE Journal of Solid-State Circuits, 

vol.46, no.1, pp.131-144, January 2011. 

[29] V. Krishnan, “Towards an integrated IO and clustering solution using PCI 

express,” IEEE International Conference on Cluster Computing, pp. 259-266, 

September 2007. 

[30] P. Germann, M. Doyle, R. Ericson, S. Lewis, J. Dangler, A. Patel, “Pushing the 

limits of PCI-express: A PCIe application within an IBM supercomputing 

environment,” Electronic Components and Technology Conference 58th, pp. 495-

501, May 2008. 

[31] A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless, N. 

Manjikian, S. Srbljic, M. Stumm, Z. Vranesic and Z. Zilic,  "Design and 

Implementation of the NUMAchine Multiprocessor," Proceedings of 35th 

ACM/IEEE Design Automation Conference DAC `98, pp.66-69, San Francisco, June 

1998. 

[32] S. Brown, N. Manjikian, Z. Vranesic, S. Caranci, A. Grbic, R. Grindley, M. Gusat, K. 

Loveless, Z. Zilic and S. Srbljic,  "Experience in Designing a Large-Scale 

Multiprocessor using Field-Programmable Devices and Advanced CAD Tools," 

Proceedings of 33rd ACM/IEEE Design Automation Conference DAC `96, pp. 24-29, 

Las Vegas, June 1996. 



   93 

 

 
[33] M. Boulé and Z. Zilic, “Generating Hardware Assertion Checkers: For Hardware 

Verification, Emulation, Post-Fabrication Debugging and On-Line Monitoring,” 

Springer Verlag. 2008. 

[34] M. Boulé, J-S. Chenard and Z. Zilic, “Debug Enhancements in Assertion-Checker 

Generation,” IET Computers and Digital Techniques, Vol. 1, No. 6, pp. 669-677, 

November 2007. 

[35] M. H. Neishaburi and Z. Zilic, "Enhanced Reliability Aware NoC Router," Proc. Intl. 

Symposium on Quality Electronic Design, ISQED 2011, 6 pages, March 2011. 

[36] M. H. Neishaburi and Z. Zilic, "Reliability Aware NoC Router Architecture Using 

Input Buffer Sharing," Proceedings of Great Lakes Symposium on VLSI, pp. 511-

516, May 2009. 

[37] Y. Fan and Z. Zilic, “Accelerating Test, Validation and Debug of High Speed Serial 

Interfaces,” Springer Verlag. 2011.  

[38] Z. Zilic and Z. G. Vranesic, "Multiple Valued Logic in FPGAs," Proceedings of 36th 

Midwest Symposium on Circuits and Systems, pp. 1553-1556, Detroit, Michigan, 

August 1993. 

[39] Z. Zilic and Z. Vranesic, "A Multiple-Valued Reed-Muller Transform for 

Incompletely Specified Functions," IEEE Transactions on Computers, vol. 44, No. 

8, pp. 1012-1020, August 1995. 

[40] A. Chattophadyay and Z. Zilic, “GALDS: A Complete Framework for Designing 

Multi-clock ASICs and SoCs,” IEEE Transactions on Very Large Scale Integrated 

Circuits (VLSI), Vol. 13, No. 6, pp. 641-654, June 2005. 



   94 

 

 
[41]  J-S. Chenard, S. Bourduas, N. Azuelos, M. Boulé and Z. Zilic, "Hardware Assertion 

Checkers in On-Line Detection of Faults in a Hierarchical-Ring Network-On-Chip," 

poster, Workshop on Diagnostic Services in Network-on-Chips, DATE 2007 Conf., 

Nice, France, April 2007. 


