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Abstract
Wildfire smoke is considered a globally important cause of mortality by the World Health

Organization, with an estimated 339,000 deaths from landscape fire smoke each year. The health

effects from wildfire smoke are expected to intensify as changes in land use and climate are

increasing the frequency and severity of wildfires, exposing more individuals to the harmful

effects of smoke each year. The objective of an environmental public health surveillance (EPHS)

system is to detect potential changes in the health status of the population, and to provide timely

evidence for public health intervention during periods of hazardous exposure. However, the

methodological and conceptual frameworks for surveillance are generally designed for infectious

disease. EPHS poses some unique challenges, as exposures like air pollution are difficult to

accurately measure and there are many indicators of health impact. Public health officials in

environmental health have called for better decision-making surveillance tools.

To address these challenges, in Chapter 3 I proposed a methodological framework for

forecasting two health indicators against a common imperfectly measured exposure. My objectives

were to identify a statistical approach that would be appropriate EPHS, be flexible so that changes

to data characteristics could be accommodated (e.g., additional indicators or changes in exposure

metrics), and address the computational constraints of requiring an “online” daily surveillance

system. I demonstrated how the proposed model could be implemented using integrated nested

Laplace approximations (INLA), a cutting-edge approach to approximate Bayesian inference.

In Chapter 4, I explored the challenges of using the proposed EPHS system across an entire

state or province with data aggregated by administrative boundaries, where some communities

may have very small absolute populations. As an alternative to aggregating administrative units,

I added spatial smoothing to the previously proposed model. The spatial smoothing stabilized

the prediction variance in smaller regions, in exchange for a small loss of accuracy. In regions

with larger populations, the smoothing was generally not found to be beneficial or necessary. The

decision of whether to include spatial smoothing can be made within context of characteristics of

the regions.
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Finally, I demonstrated how the model proposed in Chapter 3 could be used for surveillance.

I used the severe wildfire smoke event in July 2015 in southern British Columbia as a case

study, where smoky conditions resulted in PM2.5 concentrations up to ten times higher than

baseline levels. Asthma-related physician visits and dispensations of respiratory relief medications

increased by 34% and 27%, respectively, during the five smokey day period. I created a surveillance

scenario by applying the comprehensive surveillance framework for wildfire smoke using

nationally available smoke forecasts to predict the health impacts and estimate the reductions in

morbidity that may have been achieved if such a system had been used to support intervention

decisions. I found that the approach did not require precise smoke forecasts to produce reasonable

health indicator forecasts, but it was negatively affected when smoke exposure models did not

foresee highly smoky conditions. Based on the theoretical intervention assessment, I found that

simple, early interventions with lower effectiveness, such as public health messaging about steps

to reduce exposure, were preferable to delayed interventions with higher effectiveness, such as

evacuation. Further research is needed on spatial interpolation and future prediction for air

pollution and smoke, as well as further research on interventions to facilitate a more integrated

decision making framework.

This work provides a flexible methodological approach that can be extended and improved

as related research advances, such as improvements in exposure estimation and availability of

additional real-time surveillance health data. The methods developed and evaluated in the first

two manuscripts and implemented in the third are currently being integrated into the existing

public health surveillance system at the BC Centre for Disease Control, and will be used during

the wildfire season of 2017.
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Résumé
La fumée des feux de forêt est considérée comme une cause de mortalité importante à travers le

monde, avec 339 000 décès causés par la fumée de feux de paysage chaque année. On s’attend à ce

que les effets sur la santé de la fumée de feux de forêt s’intensifient, à mesure que les changements

dans l’utilisation des terres et le climat augmentent la fréquence et la gravité des feux de forêt,

exposant plus d’individus aux effets nocifs de la fumée chaque année. L’objectif d’un système

de surveillance de la santé publique environnementale (EPHS) est de détecter les changements

potentiels dans l’état de santé de la population et de fournir des preuves en temps opportuns

pour le choix d’intervention de santé publique pendant les périodes d’exposition dangereuse.

Cependant, les cadres méthodologiques et conceptuels de la surveillance sont généralement

conçus pour les maladies infectieuses. L’EPHS pose des défis uniques, car les expositions comme

la pollution de l’air sont Mesurer avec précision et il ya de nombreux indicateurs de l’impact sur

la santé. Les responsables de la santé publique en matière de santé environnementale ont réclamé

de meilleurs outils de surveillance pour la prise de décisions.

Pour répondre à ces défis, nous avons proposé dans au chapitre 3 un cadre méthodologique

pour la prévision de deux indicateurs de santé contre une exposition commune et imparfaitement

mesurée. Nos objectifs étaient d’identifier une approche statistique qui ferait de l’EPHS

appropriée, qui serait suffisamment souple pour permettre de tenir compte des changements

apportés aux caractéristiques des données (par exemple, des indicateurs supplémentaires ou des

changements dans les paramètres d’exposition), et qui permettrait de résoudre les contraintes

informatiques liées aux besoins d’un système de surveillance quotidienne ńen ligneż. Nous avons

démontré comment le modèle proposé pourrait être mis en ¡uvre en utilisant des approximations

intégrées de Laplace (INLA), une approche de pointe pour l’approximation de l’inférence

bayésienne. Au chapitre 4, nous avons exploré les défis liés à l’utilisation du système EPHS

proposé dans l’ensemble d’un état ou d’une province, avec des données agrégées par des territoires

administratifs, où certaines communautés peuvent avoir de très petites populations absolues.

Comme alternative à l’agrégation des territoires administratifs, nous avons ajouté le lissage spatial

au modèle proposé précédemment. Le lissage spatial a stabilisé la variance de prédiction dans les
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régions plus petites, en échange d’une petite perte de précision. Dans les régions où la population

est plus importante, le lissage n’a généralement pas été jugé bénéfique ou nécessaire. La décision

d’inclure le lissage spatial peut être prise dans le contexte des caractéristiques des données d’un

ensemble de régions administratives.

Enfin, nous avons décrit comment le modèle proposé au chapitre 3 peut être utilisé dans

un système de surveillance en temps réel. Nous avons utilisé l’événement de la fumée de feu

de forêt de juillet 2015, dans le sud de la Colombie-Britannique, où les concentrations de PM2,5

étaient jusqu’à dix fois plus élevées que les niveaux de référence. Les consultations médicales liées

à l’asthme et les dispensations de médicaments de soulagement ont augmenté respectivement de

34% et de 27% pendant cette période. Nous avons créé un scénario de surveillance en appliquant

notre cadre compréhensif de surveillance de la fumée de feu de forêt, en utilisant des prévisions

de fumée disponibles à l’échelle nationale, afin de prévoir les impacts sur la santé et d’estimer

les réductions de morbidité qui auraient pu être obtenues si un tel système avait été utilisé pour

appuyer les décisions d’intervention. Nous avons constaté que notre approche ne nécessitait pas

de prévisions de fumée précises pour produire des prévisions d’indicateurs de santé raisonnables,

mais elle a été négativement affectée lorsque les modèles d’exposition à la fumée n’a pas prévu

de conditions très enfumées. D’après notre évaluation théorique de l’intervention, nous avons

constaté que des interventions simples et précoces à plus faible efficacité, comme la messagerie

de santé publique sur les mesures à prendre pour réduire l’exposition, étaient préférables aux

interventions plus tardives mais avec une efficacité plus élevée, comme l’évacuation. Des

recherches supplémentaires sont nécessaires sur l’interpolation spatiale et la prévision future de

la pollution atmosphérique et de la fumée, ainsi que sur les interventions visant à faciliter un

cadre décisionnel plus intégré.

Ce travail offre une approche méthodologique souple qui peut être étendue et améliorée

à mesure que progressent les recherches connexes, telles que l’amélioration d’estimation de

l’exposition et la disponibilité de données supplémentaires sur la surveillance de la santé en temps

réel. Les méthodes développées et évaluées dans les deux premiers manuscrits et mises en ¡uvre

dans le troisième sont actuellement intégrées dans le système existant de surveillance de la santé

publique au Centre for Disease Control de la Colombie-Britannique et seront utilisées pendant la

saison des feux de forêt de 2017.
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1 Introduction

Acute environmental exposures, such as wildfire smoke and extreme hot weather, are increasing in

frequency and severity along with their population health impacts. Wildfire smoke is considered

a globally important cause of mortality by the World Health Organization (WHO), with an

estimated 339,000 deaths from landscape fire smoke each year [1]. Epidemiological research has

also shown that short-term increases in ambient particulate matter (PM) lead to increased rates

of healthcare utilization for respiratory conditions, including prescription drug dispensations,

outpatient physician visits, ambulance dispatches, and hospital admissions [2, 3, 4]. These health

effects from wildfire smoke are expected to increase because changes in land use and climate are

increasing the frequency and severity of wildfires, exposing more individuals to the harmful effects

of smoke each year [5].

Similar to infectious disease surveillance, the objective of an environmental public health

surveillance (EPHS) system is to detect potential changes in the health status of the population, and

to provide timely evidence for public health intervention during periods of hazardous exposure

[6]. However, conventional surveillance methods and conceptual frameworks were generally

designed for infectious disease. The implementation of EPHS poses some unique challenges, like

accurately measuring exposures such as air pollution across space and time, and modelling how

exposures influence multiple potential measures of health.

Public health decision makers who are responsible for recommending interventions to

mitigate the dangers of wildfire smoke exposure have called for timely population health

surveillance tools to inform their decisions [7]. However, EPHS activities thus far have focussed

on monitoring the exposure and the various health impacts independently, without linking them

to one another. Integrated modelling of these data sources within a surveillance system would

facilitate the transformation of data into actionable information.
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1.1 Research objectives

The overall goal of this dissertation was to propose and evaluate a methodological framework for

EPHS, using wildfire smoke as an application. To achieve this goal, three primary objectives were

addressed:

i Propose a statistical framework for forecasting multiple health outcomes arising from a

common latent exposure, addressing some methodological and computational challenges

in EPHS.

ii Evaluate the proposed framework using data from British Columbia (BC) by (a) extending

the proposed model to include spatio-temporal smoothing to stabilize the prediction

variance for application to regions with small populations, as is common in EPHS, and (b)

evaluating the validity and computational efficiency of prediction intervals around forecasts.

iii Propose and evaluate the a surveillance framework for wildfire smoke, using nationally

available smoke forecasts to predict the anticipated health impacts, and estimate the potential

reductions in morbidity that may have been achieved if such a system had been operational

during the severe urban wildfire event of July 2015 in southwestern BC.

1.2 Organization of the thesis

Chapter 2 presents background information on wildfire smoke and EPHS. Chapter 3 presents a

methodological and inferential approach to forecasting multiple health outcomes with a common

latent exposure, and evaluates the approach with a simulation study and a small case study from

one region of BC. Chapter 4 extends the proposed latent process approach to spatio-temporal data

and compares forecast performance for the temporal and spatio-temporal approaches across BC

administrative units. Chapter 5 explores the implementation of the proposed methodological

approach within a surveillance framework and estimates the potential impact of timely forecast-

based interventions for the severe wildfire season of 2015. Chapter 6 provides a summary of

conclusions from the three research manuscripts, with a focus on implications for public health

and priorities for future research.
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2 Background

In the first half of this chapter, I present biologic and epidemiologic evidence about the harmful

effects of wildfire smoke on human health, and summarize the public health burden of wildfire

smoke. In the second half of this chapter, I outline the major methodological challenges in wildfire

smoke surveillance, the current state of research on exposure estimation, and the contribution of

my work to moving EPHS research forward. Throughout this chapter I focus primarily on the

Canadian context, where the most cutting edge research is being done.

2.1 Respiratory health effects of acute wildfire smoke

Wildfire smoke is an environmental exposure that has significant acute impacts on respiratory

health [8, 3, 4]. In this thesis, the word exposure refers to the estimated individual-level inhalation

of particulate matter based on a proxy ecological measure, as it is used throughout the relevant

epidemiologic literature. The acute respiratory health effects of wildfire smoke exposure are an

important public health concern because entire populations across large geographic areas can be

exposed, including those hundreds or thousand of of kilometres away from the fire [9, 10]. The

effects are especially strong in individuals with pre-existing respiratory conditions, such as asthma

or chronic obstructive lung disease (COPD).

2.1.1 Smoke toxicology

Wildfire smoke is a complex mixture of solids, liquids, and gasses, many of which are known to

be harmful to humans when inhaled. Of these substances, PM has been most extensively studied,

often measured as PM10 (particles less than 10 microns in size) or PM2.5 (less than 2.5 microns in

size). In general, PM2.5 is considered to be more harmful because it penetrates deeper into human

lungs and can potentially enters the bloodstream [11, 12]. From a biological standpoint, there is a

considerable literature on the toxicology of controlled exposure to woodsmoke PM [9, 8]. However,

it is unclear which compounds in smoke actually cause all of the observed respiratory symptoms

in humans [9]. Acute exposure to carbon monoxide (CO), nitrogen oxides (NO), and ozone (O3) in
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wildfire smoke may also impact population health, based on human and animal toxicology studies

[13]. Furthermore, some components of smoke are known carcinogens and many chronic effects

have been associated with long term exposure to PM2.5 [14], suggesting that populations regularly

exposure to wildfire smoke may be at higher acute and chronic risk.

In Canada, most cities have mean annual background concentrations of PM10 below

30 μg/m3, and background PM2.5 below 20 μg/m3 [15]. Rural areas often experience lower

background concentrations, however the air quality can vary depending on neighbouring industry

and transportation networks [15]. During wildfires, PM10 and PM2.5 can easily reach or exceed

ten times the background concentrations, and large fires can affect air quality at local, regional,

continental, and global scales [1, 16]. In Canada, wildfires cause the worst acute air quality that

most people are likely to experience within the country, with daily maximum PM2.5 sometimes

exceeding 250 μg/m3.

2.1.2 Epidemiology of acute wildfire smoke exposure on respiratory health

The harmful respiratory effects of wildfire smoke exposure have been observed across many

epidemiological studies in many contexts, showing a consistently significant association between

increased exposure and respiratory health outcomes (Reid 2016). These results have been

replicated in numerous studies using different study designs, various forms of exposure

measurements, different levels of exposure severity, and in study areas from Canada, the United

States, Australia, Europe, and Asia.

The health outcomes measured in association with smoke exposure range from mild

(medication dispensations) to moderate (physician and emergency department visits) to severe

(hospital admissions, mortality) [1]. The less severe respiratory health outcomes generally have

larger observed impacts on population health because they occur more frequently and sooner

after the exposure. As such, these outcomes have been the focus of systems used for public health

surveillance of the smoke exposures. Respiratory health effects have been observed consistently

across many studies with an approximately 5% increased risk of healthcare utilization per 10

μg/m3 of increased PM2.5, with smaller effects for more severe outcomes such as mortality, which

increases by approximately 2% [17, 18]. Given that the concentrations of PM2.5 can increase from

typical background concentrations to over 200 μg/m3 and that the prevalence of asthma is quite
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high (over 5% confirmed diagnoses in British Columbia, but often estimated to be closer to 10%

[19, 20]) these effects can translate into large numbers of impacted individuals over short periods.

2.1.3 The public health burden of wildfire smoke

The WHO recognizes that smoke from wildfires, even far from the original source, can adversely

affect the health of large populations, including increased daily mortality [21]. Wildfire smoke

is considered a globally important cause of mortality and morbidity, with an estimated 339,000

deaths annually attributed to smoke from all landscape fires [1]. Low and middle income countries

are more severely affected, but large fires also occur in high income areas such as parts of Canada,

the United States, and Europe [1, 22]. Wildfire seasons in North America have become longer

and more severe, with more fires and larger fires over time, concurrent with increases in global

temperature (Figure 1) [23]. For example, Figure 1 shows the frequency of large fires (greater than

400 hectares) in the Western US since 1970.

Figure 2–1: Western US forest fire frequency
Source: Westerling et al. 2006 [23]

Changes in the frequency, severity, and behaviour of wildfires have been attributed to

climate change, landscape and land use changes, prescribed burning practices, and the potential

interactions between these complex phenomena [23]. Wildfires are expected to continue to increase

in frequency and severity over the coming decades. Given the increasing prevalence of asthma,

concerns about other sources of chronic and acute air pollution (e.g., urban), the impact that climate

changes have on temperature (e.g., heat waves, droughts), and the potential interaction between

these factors, the health effects of wildfires are expected to increase dramatically. Furthermore,

evidence suggests that smoke from wild and prescribed fires will play an increasingly important
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role in lifetime air pollutant exposures as emissions from other sources, such as vehicles and

industry, come under tighter control [5].

Research on the economic impacts of wildfires has historically been focused on the loss

of timber for the forestry industry, and the destruction of property. However, the health costs

associated with wildfire smoke exposure are considerable, and research in the United States

estimated that cost per exposed person per day could be as high as $85. Economics are an

important facet of wildfire impacts, given that hundreds of thousands or even millions of

individuals can be exposed per year in California alone, and that the fire season continues to

lengthen [24]. Canadian research estimated the cost of a 2001 Alberta wildfire at approximately

$12 million for the 670,000 individuals exposed to concentrations of PM2.5 in the 35 to 55 μg/m3

range for one day, which was a conservative estimate. These economic costs are generally based

on the increased healthcare utilization due to increased risk of illness during high levels of PM

exposure, although more sophisticated assessments also consider losses of productivity. Cost-

benefit analyses could seek to balance these costs against the cost of an intervention (such as

evacuation).

To briefly demonstrate the public health impacts of smoke exposure, consider a hypothetical

cohort of one million individuals. Assume that the prevalence of asthma in this population is

10% [19], and that on any given day in the summer season the expected number of salbutamol

dispensations is 500, the expected number of asthma-related physician visits is 200, and expected

all-cause mortality is 20 individuals, with all estimates based on empirical data from BC. Research

has shown (with replicated results) that for each 10 μg/m3 increase in PM2.5 there is an expected

increase in healthcare utilization of approximately 5% and an expected increase in all-cause

mortality of approximately 2% [17, 12]. Therefore, given a scenario where the PM increased

from background PM2.5 concentrations of 10 μg/m3 to concentrations of 50 μg/m3, I would

expect 125 additional salbutamol dispensations, 50 additional asthma-related physician visits,

and 2 additional deaths per day at this level of exposure. If the PM2.5 increased to 150 μg/m3,

which has occurred during past fire seasons in BC, I would expect an additional 375 salbutamol

dispensations, 150 additional asthma-related physician visits, and 6 additional deaths per day at

this level of PM exposure. These simple calculations assume a linear dose-response relationship at

the concentrations explored here, which is supported by research and empirical data for acute PM
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exposure [25].

2.2 Challenges in EPHS research

As changes in land use and climate drive increasingly frequent environmental events,

such as extreme heat and acute episodes of air pollution, environmental surveillance becomes

an increasingly important tool. Surveillance is a core public health function, defined by the Public

Health Agency of Canada (PHAC) as (bold added for emphasis):

“The tracking and forecasting of any health event or health determinant through the on-going collection

of data, the integration, analysis and interpretation of data into surveillance products, and the

dissemination of those surveillance products to those who need to know in order to undertake necessary

actions or responses. The overarching purpose of surveillance is to generate information and

knowledge for public health action in the short and long term" [26].

Environmental surveillance of an acute exposure, such as air pollution, involves

identification and collection of data, analysis of data, implementation of a surveillance system

to give the results context, and use of the information therein to inform decision making. Expert

methodological and substantive knowledge informs every stage.

In the surveillance and health informatics literature, using non-traditional data sources

to monitor population health is referred to as syndromic surveillance [27]. For example,

conventional surveillance may monitor laboratory-confirmed cases of an infectious disease,

whereas a syndromic surveillance system may passively monitor sales of over-the-counter

pharmaceuticals [28, 29]. Other examples of data used in syndromic surveillance include

prescription drug dispensations, online search trends, physician visits, emergency department

visits, hospitalizations, and cause-specific or all-cause mortality [30, 31]. In infectious disease

surveillance, syndromic surveillance data can potentially facilitate early outbreak detection at a

lower cost than conventional methods [32]. However, because these data are not collected for the

purposes of surveillance, they contain more artifacts and noise than laboratory-confirmed data

collected for classic surveillance. For example, individuals are more likely to see a doctor on a

weekday than a weekend. Syndromic surveillance data generally require sophisticated methods
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to disentangle the health effect of interest (the signal) from the other effects (the noise) inherent

to the data. In an environmental surveillance setting, outbreak detection is not the primary goal

because the precipitating event (e.g., a wildfire or extreme heat event) is generally known to occur

or not occur. However, syndromic surveillance data can provide rapid information on 1) whether

the event is having a measurable impact on the health of the exposed population, or 2) is likely to

have an impact in the near future. Forecasting the likely health effects under different exposure

scenarios can reduce uncertainty and facilitate decision making related to the implementation of

interventions to reduce exposure and mitigate the public health impact.

Most of the methodological tools used in public health surveillance were developed or

adapted for conventional systems based on infectious disease models [33]. Environmental public

health surveillance shares many objectives with infectious disease surveillance, but because it

seeks to detect and forecast the short term health impact of an exposure, it presents some different

methodological challenges [6, 34]. I have identified six major challenges for timely environmental

public health surveillance:

1. Exposure estimation

2. Health outcomes measurement

3. Statistical modelling

4. Implementation

5. Heterogeneous populations

6. Interventions and assessment

I elaborate on each of these challenges, summarizing the existing state of the research and

identifying the gaps that I sought to address in this thesis.

2.2.1 Exposure estimation: measuring air quality across large geographic areas

Ambient PM is a challenging environmental exposure to measure from an epidemiological

perspective. Once smoke from a wildfire is emitted, the smoke moves across space over time,

and the PM concentrations depend on many factors, such as temperature, humidity, and wind.

Individual-level exposure to PM is usually estimated from environmental measurements, because

collecting true individual exposure measurements is simply not feasible for an entire population.

Exposure assignment can be very simple, such as a binary (smoke or no smoke) classification based
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on presence of smoke or fire in a given region using remotely sensed data (satellite imagery), or it

can be a continuous measurement of PM10 or PM2.5 from air quality monitors or an estimate from

predictive models.

All of the available exposure measurements have strengths and limitations, and there is

no established gold standard. Air quality monitors provide measurements multiple times per

day but are located sporadically across provinces or states, providing a low spatial resolution.

Remotely sensed data from platforms such as the Moderate Resolution Imaging Spectroradiometer

(MODIS) have a high spatial resolution, but do not directly measure PM and may only allow

binary measurements (e.g., smoke presence or absence per pixel) in some cases. Research has

moved away from single exposure measurements to the development of predictive models that

integrate data from air quality monitors, remote sensing, and meteorological data to estimate PM

[35, 4]. Predictive models can be validated using air quality monitors in regions where monitors

are available, which approximates an ecological level gold standard in those areas. Model-based

measurements that combine air quality monitors with additional predictors are considered to be

more flexible, provide more stable estimates over time, allow finer spatial and temporal resolution,

and potentially facilitate air quality forecasting.

In BC, researchers at the BCCDC have explored several methods of estimating PM exposure

for the purpose of wildfire smoke surveillance in the province. The regulatory air quality

network of monitors is the most readily available source of air quality assessment [36]. The

location and number of monitoring stations varies between wildfire seasons; there were 43 in

2010 providing hourly PM2.5 ground-level measurements, and roughly equal numbers measuring

PM10 [37]. Environmental scientists at the BCCDC developed the Optimized Statistical Smoke

Exposure Model (OSSEM), which predicts ground-level PM2.5 per 5×5km grid in populated areas

throughout BC [37]. The model was fit using data from PM2.5 air pollution monitors, remotely

sensed aerosol and fire location data, expert tracings of smoke plumes from satellite imagery, a fire

danger rating, and the atmospheric venting index provided by the BC Ministry of Environment

and Environment Canada [37]. The model was validated with PM2.5 measurements in regions

with at least one monitoring station within the grid cell, and has been shown to provide accurate

estimates (R2 > 0.70) for ground-level PM.
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In addition to using prediction models to improve spatial resolution, forecasting PM2.5

over time is desirable for public health surveillance. For example, the BlueSky Western Canada

Smoke Forecasting System produces hourly ground-level forecasts of PM2.5 produced by wildfires,

starting at 05:00 PST for each of the following 48 hours. The BlueSky forecasting model uses

data from Canadian Wildland Fire Information System (via Natural Resources Canada) and the

Canadian Forest Fire Behaviour Prediction system to provide information on rate of fire spread,

fuel consumption, and fire intensity, as well as satellite data from MODIS and other sensors and

data on weather and topography [38]. Research evaluating BlueSky forecasting and application in

public health surveillance is ongoing [39, 35, 40].

2.2.2 Health outcomes measurement: identifying data sources for surveillance

Research shows that wildfire smoke has a wide range of health effects, from symptoms such as eye

irritation to an increase in all-cause mortality. The respiratory health effects have been the focus

of most epidemiological studies, and the results have been consistent across many studies [4],

particularly for outcomes related to asthma and chronic lung disease. As such, acute respiratory

outcomes are an important focus for tracking the population health response to smoke exposures

[7].

Surveillance data for real-time assessment of health impacts during wildfire smoke events

may be obtained from primary data collection, existing surveillance systems, or by repurposing

of data collected for other functions. Primary data collection was historically more common and

has been used in many retrospective epidemiologic studies, but is generally thought to be too time

delayed and cost prohibitive for modern large-scale surveillance needs. Electronic administrative

data are more commonly available now, and there are a wide range of administrative data used

for the purpose of surveillance; generally, the healthcare utilization data previously described are

most common. Many of these datasets can be classified by chief complaint or cause of death,

narrowing the focus from all-cause to more specific measures such as respiratory hospitalization

or asthma-related physician visit.

Data from existing surveillance systems monitoring relevant health outcomes could feasibly

be used to establish situational awareness for the population health effects of smoke events

[41]. Because health outcomes responsive to smoke include respiratory syndromes, existing
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surveillance systems that obtain data for other purposes, such as influenza, could be shared for

these purposes, provided that there is legal authority to do so. While most states or provinces do

not currently have a pre-existing surveillance system in place for wildfire smoke health effects,

public health departments could plausibly rapidly establish data sharing agreements during

smoke events.

In BC, scientists at BCCDC Environmental Health Services established the British Columbia

Asthma Medication Surveillance (BCAMS) in 2012 [42]. The BCCDC is currently leading

internationally in wildfire smoke surveillance research. The BCAMS system provides near real-

time surveillance of exposure and health outcomes to local health authorities to provide situational

awareness for public health and emergency management decision-making. This system uses all

three exposure estimates described in the previous section: measured PM2.5 from monitoring

stations, estimated PM2.5 from OSSEM, and forecasted PM2.5 from the BlueSky system.

The BCAMS system uses two indicators of population respiratory health for monitoring

the effects of wildfire smoke: dispensations of salbutamol sulfate, and asthma-related physician

visits. Salbutamol is a medication used to alleviate exacerbations of chronic lung disease, and

dispensations have been shown to increase rapidly and significantly during fire smoke episodes

in British Columbia [43, 44]. Asthma-related physician visits are taken from medical billings data

and classified using ICD-9 codes [45]. Excursions from the expected number of daily dispensations

are identified by Public Health Intelligence for Disease Outbreaks (PHIDO) using an algorithm

adapted from one originally developed for infectious diseases [46]. The PHIDO algorithm uses

iterative regression to identify excursions beyond the 95th (unusual), 99th (rare) and 99.5th (very

rare) percentiles of the expected daily distributions. Reports are provided retrospectively. The

BCCDC is actively engaged in research on exposure estimation in wildfire smoke and surveillance

of environmental exposures. Improvement and evaluation of the BCAMS system is ongoing.

2.2.3 Statistical modelling

There are many approaches to modelling time series data. For example, classic forecasting models

are frequently used in infectious disease surveillance, such as autoregressive integrated moving

average (ARIMA) models [47]. However, EPHS offers some unique challenges because the goals

and data differ slightly from other types of surveillance.
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In infectious disease surveillance, regardless of how cases are defined, historical data are

generally used to establish seasonal patterns, establish expected trends, and detect aberrations

from these expectations. In EPHS, I want to forecast anticipated health outcomes under different

exposure scenarios, where prior epidemiologic research has established a clear relationship

between the exposure the health outcomes. In the case of wildfire smoke, the exposure may

be considered latent, because PM2.5 essentially cannot be measured without some amount of

error across large geographic areas [48]. Therefore I can conceptualize the health outcomes that

are caused by wildfire smoke exposure as arising from a common underlying process that I

can measure imperfectly over time. These health outcomes data are aggregate counts that are

correlated both with themselves and one another over time.

There has been a growing interest around use of multivariate1 approaches in surveillance,

because the utility of non-traditional data sources can often be improved by borrowing strengths

from other traditional or non-traditional sources [49, 50]. Multivariate extensions to the ARIMA

model (such as vector autoregressive approaches) are most popular, because software is readily

available to implement them [51]. Multivariate models are still relatively rare in the environmental

epidemiology literature, but Dominici et al. 2004 modelled cardiovascular hospitalizations and

mortality counts against air pollution (PM) for ten American cities. Her bivariate approach

provided more efficient estimates of the relative rates, facilitated prediction of both outcomes in

cities where only one was measured, and reduced the prediction variance [52].

A hierarchical Bayesian framework allows for great flexibility in modelling data that are

correlated over time and/or space. An autoregressive forecasting model can be constructed as

multivariate via mutual dependency on a latent exposure, compared with more cumbersome

approaches, such as placing multivariate structures on the parameters. This hierarchical

framework also allows for inclusion of unique covariates for each outcome, and can be extended

to include different structures in the data, such as spatio-temporal smoothing, nonlinear effects of

covariates, or more sophisticated measurement error models of the exposure. I elaborate further

1 Throughout this thesis, I use multivariate to refer to multiple outcome variables in a single (potentially hierarchical)
model.
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on the approach I have identified in Chapter 3.

2.2.4 Implementation

The hierarchical Bayesian approach provides a more realistic way of modelling the EPHS data, but

the computational burden of such a model implemented using conventional Markov chain Monte

Carlo (MCMC) techniques is potentially enormous. Given that the interest is to apply such a model

for (at least) daily use in a public health setting, computational efficiency must be a key constraint.

Throughout this thesis I discuss the computational advantages of an inferential approach

using integrated nested Laplace approximations [53]. While MCMC is an asymptotically exact

method, INLA is an approximation using latent Gaussian models (LGMs) and the theory of

Gaussian Markov random fields (GMRFs); the error associated with the approximation has been

comparable with MCMC error in simulation and case studies [54, 55, 56, 57]. Reframing a

hierarchical model into an LGM can be non-trivial, but the marginal posterior distributions can be

estimated with a computational efficiency that is improved by orders of magnitude as compared

with MCMC [58]. Further details on the algorithm are summarized in Chapters 3 and 4.

2.2.5 Heterogeneous populations

Wildfires can expose large urban populations to wildfire smoke, but smaller communities are

more frequently affected because they are often located in more heavily forested areas that

are less aggressively protected when fires occur. Because entire populations can be exposed

to smoke when it occurs, even small populations can carry a significant public health burden.

However, forecasting with sophisticated hierarchical models involving many parameters can

become unstable in regions with smaller populations. Smaller regions could potentially be

aggregated for the purposes of health monitoring and decision-making, but this approach would

lose valuable information in the process, potentially obscuring effects of the exposure in smaller

areas. The demographic composition of a region can change how the population responds to

the smoke, making it preferable to use smaller geographic units when possible [59]. I attempt to

address these challenges in Chapter 4 by extending the previously proposed model from Chapter

3 to include spatial smoothing, hypothesizing that I can reduce the prediction variance while not
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losing excessive accuracy.

2.2.6 Interventions and assessment

In public health, the timeliness of interventions is often critical, and decisions must be made

with the best data and evidence available. Public health officials currently act during a wildfire

without the aid of surveillance and forecasting systems that can integrate data from multiple

sources and provide timely information. Consequently, decision-making is based on descriptive

analyses, including visual integrations of air quality measures, smoke forecasts, and healthcare

utilization data. Some jurisdictions report using ad-hoc methods, such as repeated telephone

calls to emergency departments or pharmacies to assess the health impact of the smoke on their

community [37]. Given this situation, there is a demand for a real-time surveillance and forecasting

system to decrease uncertainty in decision-making and estimate the burden of disease over time.

Interventions employed by public health departments are based on toxicological and

epidemiological knowledge of smoke effects, but few interventions have had their effectiveness

demonstrated in large-scale studies in real-world settings. For example, the most common public

health intervention is messaging to encourage individuals to stay indoors during a smoky period,

with the assumption that the indoor air quality will be superior to the outdoor air quality. This

may be true for individuals who close all windows and who live in dwellings with relatively

low infiltration rates (more common in newer structures), or who have central air conditioning.

However, staying indoors may offer minimal protection if the infiltration of outdoor air is high

[60], or there is significant generation of indoor PM from cooking or other activities. One research

study has investigated the effectiveness of this intervention after a large fire and smoke event in

California. Individuals were retrospectively surveyed and the researchers found that the ability

to recall a public service announcement was strongly associated with a reduction in self-reported

symptoms [61], but these results need to be replicated in different settings. Recommending the

public, and in particular those with respiratory disease, to wear masks during smoke events is

another common intervention. There is strong evidence that use of an effective air cleaner, such as

High Efficiency Particulate Air (HEPA) filters, either in private or public air shelter scan drastically

reduce the PM in the air Barn 2016[62]. Evacuation can theoretically be an effective way to reduce
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the population exposure to PM from a wildfire, but has considerable logistic, economic, and social

consequences, and its effectiveness is not well established in the literature [63, 64, 61].

There is currently insufficient evidence on interventions to establish clear decision rules

with respect to either exposure thresholds or anticipated population health effects. In the absence

of this evidence, an exploration of the utility of the surveillance model presented in the Chapter

3 is presented in Chapter 5. I propose a surveillance framework that integrates monitored air

pollution levels, monitored health outcomes, and forecasted smoke. I also explore the range of

plausible impacts of a theoretical set of intervention with varying effectiveness and deployed at

different times.

2.3 Summary

The epidemiologic effects of PM from wildfire smoke on respiratory health are well characterized

and have been replicated frequently [2, 65, 12, 3, 4]. In general, EPHS is an area of growing

importance and research on public health surveillance of wildfire smoke is needed in multiple

related areas, including exposure estimation, health outcomes monitoring, methodological

approaches, and analysis of public health interventions. In this thesis, I have attempted to

identify the major barriers to development of effective surveillance system for EPHS. I propose

and evaluate a methodological framework that is sufficiently flexible to be extended as research

progresses in exposure estimation, as new health outcome datasets become available, and as more

evidence on cost and effectiveness of interventions arise.
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3 A latent process model for forecasting multiple time
series in environmental public health surveillance

3.1 Preamble

This paper outlines a latent process model for forecasting multiple health indicators arising from a

common environmental exposure. Traditionally, surveillance models in environmental health do

not link health indicator measures, such as morbidity or mortality counts, to measures of exposure,

such as air pollution. Moreover, different measures of health indicators are treated as independent,

while it is known that they are correlated with one another over time as they arise in part from a

common underlying exposure.

I propose modelling an environmental exposure as a latent process and describe the

implementation of such a model within a hierarchal Bayesian framework, and its efficient

computation using Integrated Nested Laplace Approximations (INLA). Through a simulation

study, I compare separate univariate models for each health indicator to a bivariate approach. The

bivariate model outperforms the univariate models in bias and coverage of parameter estimation,

in forecast accuracy, and in computational efficiency. The methods are illustrated with a case

study using healthcare utilization and air pollution data from British Columbia, Canada, 2003-

2011, where seasonal wildfires produce high levels of air pollution, which has a significant impact

on population health.

This manuscript was published in Statistics in Medicine.
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3.3 Abstract

Introduction: Environmental health surveillance models do not typically link health indicator

measures (e.g., morbidity counts) with measures of exposure (e.g., air pollution). Moreover, while

different health events may arise from a common underlying exposure they are usually treated

as though they are independent. The ability to reliably forecast health indicators under different

exposure scenarios would facilitate real-time public health decision making.

Methods: We propose modelling an environmental exposure as a latent process within a

hierarchical Bayesian framework, implemented using integrated nested Laplace approximations

(using R-INLA) for efficient computation. We evaluate the approach through simulation,

comparing univariate models for each health indicator to a combined approach. We also illustrate

the method with a case study from British Columbia, where seasonal wildfires affect air quality. We

forecast two daily asthma-related health indicators (prescription dispensations, physician visits)

using measures of fine particulate matter concentrations.

Results: The hierarchical modelling structure was formulated in terms of latent Gaussian models

in order to allow implementation in R-INLA, resulting in crucial gains in computational efficiency

compared to using MCMC. Overall, the bivariate approach was superior in performance compared

to using separate univariate models. Summarizing results for one fire season in 2009, the bivariate

model provided overall more accurate predictions, and credible intervals that more frequently

contained the true value. Notably, the univariate approach incorrectly suggested a protective effect

of air pollution in a substantial number of cases, which was rarely observed with the bivariate

models.

Conclusion: Modelling multiple measures of health impact with a common latent exposure

provides a more cohesive and flexible framework than traditionally used methods. We show

that this approach can provide timely information for public health surveillance. Future work

will extend this approach for data available over both space and time, allowing dependencies

between administrative areas to be exploited, and explore the application of this framework for

public health decision-making.

Keywords: latent processes, time series, INLA, air pollution, Bayesian hierarchical models
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3.4 Introduction

Wildfire smoke is considered a globally important cause of mortality by the World Health

Organization, with an estimated 339,000 deaths from landscape fire smoke each year [1].

Epidemiological research has also shown that short-term increases in ambient particulate matter

lead to increased rates of healthcare utilization for respiratory conditions, including physician

visits, hospitalizations, and prescription drug dispensations [66, 44]. These health effects from

wildfire smoke are expected to increase as changes in land use and climate are increasing the

frequency and severity of forest fires, exposing more individuals to the harmful effects of smoke

each year [22, 5]. In some cases, the threat of large-scale exposures has led public health and

emergency management officials to evacuate entire communities to mitigate exposure to harmful

particulate matter [64, 67, 61, 68]. Public health decision-makers in areas affected by forest fire

smoke who must determine when to issue evacuation orders or implement other interventions

have called for timely population health surveillance to inform their decisions [42]. However, real-

time information on exposure and human health during smoke events is currently fragmented

and of limited use for guiding decisions about interventions. Surveillance activities have tended

to focus on monitoring exposure, without linking these exposure to population health data in a

manner that can guide real-time action. Similarly, measures of health effects, such as mortality

and morbidity counts, are usually monitored independently without linking these data explicitly

to smoke exposure. This fragmented or ‘siloed’ approach to surveillance persists, despite the fact

that these various data used for surveillance all arise from a common underlying environmental

process. Given the obvious relationships between the exposure and the health indicators, it stands

that modelling the health indicators jointly along with the measurements of the underlying process

should improve forecast accuracy through an integrated surveillance framework and ultimately

produce better decisions about public health interventions. Methods, such as vector autoregressive

approaches, exist for modelling multivariate time series with covariates, but these models are

rarely applied in public health surveillance, likely due to computational and technical challenges,

lack of flexibility, and strong assumptions [69].

Surveillance data for measuring the health effects of air pollution are generally in the

form of aggregate counts of healthcare utilization, morbidity, or mortality, such as physician

visits, emergency room visits, hospital admissions, or deaths per geographic region. Measures of
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exposure for air pollution, usually in the form of particulate matter concentrations, may be taken

directly from nearby air quality monitors or in some cases are interpolated using predictive models

[37, 70, 71]. Each health indicator can be regressed against the exposure to produce forecasts;

additional covariates can be included, such as day-of-the-week, temperature, and demographic

data. A Poisson generalized linear model with a log link is often used to model counts of

health indicators. In many epidemiological studies, simple models like these have been used for

modelling the effect of air pollution on each health indicator separately [72]. Less commonly,

multiple indicators have been modelled jointly in a multivariate approach. There are multivariate

methods presented in the disease mapping literature for multiple diseases, for both spatial and

spatio-temporal data [73]. In the environmental health statistics literature, Dominici et al. 2004

modelled both cardiovascular hospitalizations and mortality against particulate matter for ten

American cities [52]. By modelling both indicators simultaneously, they were able to obtain more

efficient estimates of the relative rates, facilitate prediction of both indicators in cities where only

one was measured, and reduce the prediction variance [52].

There are temporal patterns in health indicators that may not be fully explained by their

relationships with measures of the exposure, such as day-of-the-week patterns and seasonal and

secular trends. These patterns can be modelled as factor variables or smooth functions of time

by using polynomial terms, regression or smoothing splines, or Fourier terms in generalized

linear (GLM) or generalized additive (GAM) models [52, 74]. However, residual correlation will

frequently remain, and therefore the residuals can be modelled as an autoregressive process to

account for short-term autocorrelation in the data. Compared with accounting for autocorrelation

via factor variables or flexible modelling approaches, modelling the autoregressive process can

use fewer degrees of freedom while ensuring the variance is not underestimated from residual

autocorrelation, and potentially provide more accurate predictions [48].

In this manuscript, we propose a novel approach to forecasting in environmental health

surveillance. We use a hierarchical approach to multivariate time series modelling of health

indicator counts along with continuous autoregressive exposures, with efficient computation using

integrated nested Laplace approximations (INLA) [53]. The latent process model we describe can

be generalized to Bayesian latent variable modelling, where we model the health indicators at the

first level the hierarchy, the environmental exposure as the latent process at the second level of
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Figure 3–1: Location and severity of fires near the Central Okanagan Local Health Area (LHA #23). Fire
severity is classified by radiative power, which is strongly associated with smoky conditions.

the hierarchy, and priors at the third level of the hierarchy, to obtain marginal posterior predictive

distributions [48]. This method of modelling can be extended to include different structures in the

data, such as spatio-temporal correlation, or non-linear effects in the exposure or other covariates.

We explore our approach via a simulation study and present results from a case study using air

pollution and healthcare utilization data from British Columbia.

British Columbia is the western most province in Canada. It is heavily forested, with an

average of 2000 wildfires per season over the past ten years [66]. These fires can produce heavy

smoke, introducing high levels of fine particulate matter (PM2.5) into the air over the summer

months [17]. The province is divided into 89 Local Health Areas (LHAs), and LHA 23 in the

Central Okanagan Valley was used for our case study (Figure 3–1). This region includes the city of

Kelowna with population approximately 110,000, and the entire region had population 187,058 in

2014 [75]. Figure 3–1 shows LHA 23 and the location of fires (categorized by severity) from 2003 to

2011 (see Section 3.8).

This paper is organized as follows: in Section 3.5, we present our proposed modelling

approach, and then describe how we evaluate our approach via simulation and demonstrate the

models for use in real-time surveillance and forecasting in the case study. We describe how the

length of the time series used to forecast future values can be optimized to maximize forecast

accuracy and avoid the computational costs of modelling a longer time series. In Section 3.6,
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we describe estimation using INLA, including how predictions (forecasts) are estimated in this

framework and how the models proposed in Section 3.5 can be fit using the R-INLA package.

Section 3.7 describes the stimulation study; in Section 3.8, we describe the case study using real

surveillance and air pollution data. In Section 3.9, we offer some discussion and concluding

thoughts.

3.5 Statistical Modelling

3.5.1 Hierarchical time series models

In this section we describe univariate and multivariate hierarchical models for modelling

environmental exposure data with multiple correlated health indicators. The first level describes

the health indicator data: the count for health indicator i at time t is modelled as a Poisson random

variable, conditionally independent given their expected value μit.

yit|μit ∼ Poisson(μit)

log(μit) = αi + βizt +

J∑
j=1

γjiwjit (3.1)

Where α and β are the intercepts and effect estimates respectively, and γ are the regression

parameters on any other covariates w. It is assumed that zt is a stationary autoregressive process

of order p, common across all health indicators i = 1, 2, ...I .

zt = ρ1zt−1 + ρ2zt−2 + ...+ ρpzt−p + εzt (3.2)

The true underlying (latent) process zt is unknown and cannot be directly obtained, but

environmental exposure xt (an imperfect measure of the true zt) can be obtained as:

xt = zt + εxt

In a Bayesian analysis there is a third level for the prior distributions: p(εzt), p(εxt), p(αi), p(βi),

p(γji). The two error terms, εxt and εzt, would not be identifiable under these conditions, therefore

we impose a sum-to-zero constraint on the εzt term, which is reasonable given the assumed

iid error assumed for the xt measurement of zt. If i > 1, then the multiple indicators arise

from the same underlying process, z, where ρ1, . . ., ρp, along with εxt and εzt, are estimated

22



from the multiple Poisson time series yi, i = 1, . . . , I within a multivariate model. Conversely,

each indicator can be fit independently, with separate estimates for ρp and the other lower level

parameters. In either model, separate intercept and coefficient (α and β) parameters are estimated

for each health indicator, as each will likely have a different relationship with the exposure over

time. In this paper, we explore and compare these two implementations, which we refer to as the

univariate and bivariate models. Our goal was to present an efficient model where the multivariate

structure is obtained via mutual dependency on the latent process, avoiding the considerably more

cumbersome approach of placing multivariate structure on the intercept or effect parameters.

3.5.2 Assessing the performance of forecast models

There is a large body of research on applied forecasting, for example in the econometrics and

machine learning literatures [76, 77]. The goal of developing and evaluating forecasting models

is generally to minimize out-of-sample prediction error and methods similar to cross-validation

are often employed to summarize prediction error. However, care must be used with time series

data to ensure that the temporal ordering is preserved, unless there is interest in back-casting [78].

k-step ahead forecasting is often used, where up to k days in the future are predicted based on

currently available data. The forecast accuracy and precision are usually measured with metrics

like mean square error and standard errors to assess the performance of forecasting models [79].

In this manuscript we are proposing methods for use in public health surveillance of acute

environmental exposures, where short-term prediction is of interest. We explore one-step-ahead

forecasting, where the forecasting horizon yh1 to yht is explored via one-step-ahead predictions,

with models estimated from data within the forecast window, yw1 to ywt . For all analyses,

w1 < wt < h1 < ht. For each parameter in our simulation study, we present bias and coverage

estimates. We estimate bias as the median estimated posterior median across the simulations,

and coverage of the credible intervals as the proportion of times the interval contains the true

parameter. Additionally, we evaluate the performance of our forecasting models for one-step-

ahead prediction both in the simulation study and in the case study.
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3.5.3 Optimization of the moving forecast window

When evaluating forecast models for a time series, the length of the time series can be sequentially

increased until the entire time series is used, or a moving-window approach can be employed,

where the previous wt − w1 days are used to produce the k step ahead forecast for each day in

the time series. For simulated data with no secular trends (stationary data), increasing length

of the time series used in running the model to generate the forecast does not improve model

performance (forecast accuracy), assuming the time series is sufficiently long to estimate ρ and

the other parameters to capture the temporal patterns. The precision of the forecast will increase

with additional data, but the improvement may be negligible after the time series reaches a certain

length. However, for real data the optimal number of days supporting the forecast may not be

equal to the maximum available days. Although it is rarely done, the width of the forecast window

can be treated as a parameter and optimized using forecast accuracy measures. Modelling longer

time series increases computation time considerably and may not significantly increase forecast

accuracy and, in some cases, may actually decrease it.

3.6 Inference

The models presented in this paper could be estimated using Markov chain Monte Carlo

(MCMC) methods; however, computation for the models described in Section 3.5.1, particularly

the multivariate models, is very slow for even moderately sized datasets using MCMC. Slow

computation may not be a serious deterrent for a single data analysis, but we have proposed these

models for use in real-time public health surveillance, where timely information is critical. In

considering the efficacy of using different forecast windows there is a requirement to produce

implementations of the models and it proved to be computationally impractical to perform

inference using such packages or bespoke MCMC. The evaluation via extensive simulation studies

was also not feasible using MCMC given the computation times.

MCMC is often implemented using software such as WinBUGS/OpenBUGS [80] or JAGS,

and is widely used in the applied statistical literature [81, 82, 83]. As noted by [84], care may have

to be taken when using WinBUGS when not using built-in functions for auto-regressive processes

where cyclical graphs may arise. If the temporal process here was a random walk then this can be
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formulated as a CAR process [85] and the WinBUGS car.normal function used, which is designed

for such a purpose [86, 87]. No such function exists in JAGS and for both WinBUGS and JAGs

the AR process will have to be coded, noting WinBUGS may construct full conditionals that lead

to ‘double counting’ of the information from the neighbours, however this can negated by over-

riding the automatic construction of the full conditionals [84].

Here we demonstrate the use of techniques that perform ‘approximate’ Bayesian inference

based on integrated nested Laplace approximations (INLA) and thus do not require full MCMC

sampling to be performed [53, 88]. INLA has been developed as a computationally attractive

alternative to MCMC for LGMs.

3.6.1 Integrated nested Laplace approximations

MCMC is an asymptotically exact method, while INLA relies on analytical approximations;

however, the accuracy to which INLA can compute approximations to the posterior marginal

distributions is well documented, see for example [53, 56, 89, 90]. While INLA is usually very

accurate, [91] have shown some cases with binomial and Poisson data where a correction may

be required, although it is noted that these are very extreme cases. A number of authors have

recently reported favourable comparisons with results obtained using MCMC including [92], who

fit a bivariate meta-analysis of diagnostic test accuracy studies and [93], who perform comparison

for a variety of examples. When comparing the results from OpenBUGS and R-INLA in a disease

mapping setting, [94] found some differences in the estimates of the random effects and their

precisions when using R-INLA with the default priors, but found that exact replicates could be

found by specifying alternatives.

This class of models available in INLA are those that can be recast as latent Gaussian models,

such as generalized linear or additive (mixed) models, survival models, spatio-temporal models,

and others where the following structure is assumed:

Likelihood: y|z,θ2 ∼
∏

p(yi|z,θ2)

Latent field: z|θ1 ∼ p(z|θ1) = N (0,Σ)

Hyperpriors: θ = [θ1,θ2]
T ∼ p(θ) (3.3)
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where y are the observed data, z is the latent field, which is the joint distribution of all parameters

in the linear predictor (such as the intercept, regression coefficients, and non-linear effects), θ2 are

the hyperparameters of the likelihood (such as the variance for a Gaussian outcome), and θ1 are

the hyperparameters for the latent field (such as the variance for a random effect). The latent field

is assumed to be multivariate Gaussian with a conditional independence structure that results in a

sparse precision matrix [58]. Estimates of the posterior marginals for the latent field can be derived

from a Bayesian hierarchical model as:

p(zj |y) =
∫

p(zj ,θ|y)dθ =

∫
p(zj |θ,y)p(θ|y)dθ (3.4)

which are approximated by INLA as [95]:

∑
k

p̃(zi|θk,y)p̃(θk|y)Δk (3.5)

where p̃(·) refers to an approximation. The first term in (4.5) refers to a Laplace approximation,

while the second term depends on the implementation of the INLA program (a full Laplace

approximation, a Gaussian approximation, or a simplified Laplace approximation); see [54]. The

simplified Laplace approximation is the default and was used for all analyses in this manuscript.

For a detailed explanation of the INLA approximation algorithm, see [53]. In our analyses, we use

the implementation of INLA within the R package R-INLA, see [88].

3.6.2 Forecasting

Forecasting in a Bayesian framework is a form of out-of-bounds prediction, where the posterior

distribution of the unobserved quantity, ŷt+1, given the observed data, y, is desired. This

marginal posterior distribution for the one-step-ahead forecast is obtained by integrating over the

parameters in the latent field:

p(ŷt+1|y,θ) =
∫
z
p(ŷt+1|z,θ)p(z|y,θ)dz (3.6)

and then numerical methods as outlined in equation (6) are used to approximate the integral over

the hyperparameters θ; for more information, see [53]. The desired out-of-bounds predictions are

entered into the INLA software as NA values, which forces the prediction when the model is fit
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[53].

3.6.3 Implementation in R-INLA

The R-INLA syntax is similar to the R glm formula syntax. The form of the random effect is specified,

for example, as f(id,model=‘ar1’) for a first-order autoregressive prior as used in this paper,

where id is a placeholder for the latent variable. These indicator variables, such as id.alpha

shown in the vectors below, are used to translate the hierarchical model into the acceptable format

of a latent Gaussian model. To construct the previously described hierarchical models in INLA,

they must be entered as a joint model of the health indicator(s) and the latent exposure variable. In

R-INLA, this is implemented by constructing a matrix for the response variable and for the latent

exposure variable, and vectors for the intercept and covariates in R, for example [57]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 NA

y2 NA

...
...

yn NA

NA x1

NA x2
...

...

NA xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
response.univariate

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

...

1

NA

NA

...

NA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.alpha

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

...

n

NA

NA

...

NA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.beta

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NA

NA

...

NA

1

2

...

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.rho

where the terms response.univariate, id.alpha, id.rho, and id.beta refer to matrix or vector

names in R with the corresponding elements as specified above. The id.rho element is copied

to the element id.beta in order to estimate β for the autoregressive covariate x. The INLA

copy command allows more than one element from a latent model to contribute to the linear

predictor, as is common in hierarchical models and especially in multivariate models [57]. The

NA values in the indicator variable(s) refer to an unobserved value and do not contribute to

the likelihood. The NA values in the covariates remove it from the linear predictor. Therefore,

different combinations of null values can be used to communicate the hierarchical structure of

the model to the R-INLA program. An additional covariate W can be entered on the right side as
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[
w1, w2, . . . , wn,NA,NA, . . . ,NA

]T
. It is possible to include covariates for one outcome and not for the

other. For the bivariate model, the syntax is similar but the second indicator is included in the joint

model formulation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,1 NA NA

y2,1 NA NA

...
...

...

yn,1 NA NA

NA y1,2 NA

NA y2,2 NA

...
...

...

NA yn,2 NA

NA NA x1

NA NA x2
...

...
...

NA NA xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
response.bivariate

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

...

1

NA

NA

...

NA

NA

NA

...

NA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.alpha1

+

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.alpha2

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

...

n
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NA

...

NA

NA

NA

...

NA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.beta1

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NA

NA

...

NA

1

2

...

n

NA

NA

...

NA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.beta2

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NA

NA

...

NA

NA

NA

...

NA

1

2

...

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.rho

where id.rho is copied to both id.beta1 and id.beta2 to estimate the β1 and β2. Additional

covariates can be entered as (for example): ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 NA

w2 NA

...
...

wn NA

NA w1

NA w2

...
...

NA wn

NA NA

...
...

NA NA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
id.w
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3.6.4 Hyperprior formulation

The priors for each fixed effect in our analyses, including the intercepts, were N(0, 1/τ), τ = 0.001,

and this was also the prior on εxt. The prior on εzt is defined by default within the ar1 INLA

latent process model as N(0, τ) where the log precision is assigned a loggamma prior with shape

and scale parameters 1, and 5e−5 respectively. We also assume a first-order autoregressive process

throughout, i.e., ρ2, ..., ρp = 0 in Equation (3.2). The default R-INLA prior for the hyperparameter

ρ in a first-order autoregressive process is defined as:

log
(1 + ρ)

(1− ρ)
∼ N(0, 1/τρ) where τρ = 0.15 (3.7)

This translates to:

ρ = 2
exp(θ)

1 + exp(θ)
− 1 where θ is the logit of ρ (3.8)

which can result in a bimodal distribution (notably when using the default values). Using

beta.correlation to define the prior in R-INLA defines a prior on θ such that the correlation

parameter, ρ, has a Beta(a,b) distribution scaled to have domain in (-1, 1). Here we use Beta(5,5),

which will result in a uni-modal distribution.

3.7 Simulation Study

In this section, we describe the implementation and results of a simulation study to assess the

performance of the models described in 3.1. We estimate coverage of model parameters and assess

forecasting accuracy with mean absolute percentage error (MAPE) and forecast coverage.

3.7.1 Data generation

We consider a range of simulation scenarios based on the following data generation process. We

begin with a first-order autoregressive process z, and the log-expected values of the two health

outcomes y1 and y2 are a linear function of the underlying process z. We measure z with iid error
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as x. We did not include any additional covariates or seasonal trends.

et ∼ N(0, 1/τz) and z1 = e1

zt = ρzt−1 + et, for t = 2, 3, ..., T

xt ∼ N(zt, 1/τx)

y1t ∼ Poisson(exp(α1 + β1xt))

y2t ∼ Poisson(exp(α2 + β2xt)) (3.9)

The parameters were defined as shown below in Table 3–1. The parameters of primary interest

were the effect sizes between the exposure and the health indicators (β1 and β2), and the

autoregressive parameter ρ. We varied the ρ parameter from 0.2, to 0.8 in increments of 0.1,

and varied the β1 and β2 parameters between log(1.7) and log(2.0) in increments of log(0.1). The

effect size parameters (β1, β2) were inflated to make differences in parameter retrieval more easily

detectable [96, 17, 9]. The ρ parameter contributes to the strength of the bivariate correlation

between the two health indicators and is expected to affect the performance of the forecasting

models; were were primarily interested in the impact of this correlation parameter. The priors for

each parameter are as specified in section 4.4.

Table 3–1: Simulation data generation scenarios

Parameter α1 α2 β1 β2 ρ τx τz

Scenarios 1-7 3 2.8 log(2) log(2) 0.2 to 0.8 1/0.5 1/0.1
Scenarios 8-14 3 2.8 log(2) log(1.8) 0.2 to 0.8 1/0.5 1/0.1
Scenarios 15-21 3 2.8 log(1.8) log(1.8) 0.2 to 0.8 1/0.5 1/0.1
Scenarios 22-28 3 2.8 log(1.8) log(1.7) 0.2 to 0.8 1/0.5 1/0.1

We simulated 50 days of data, and ran 200 simulations for each of the 28 scenarios. To

estimate bias and coverage for the parameters, we simulated and fit the models using the full 50

days. Then to evaluate forecasting performance, we removed the data for the 50th day, re-fit the

models with the first 49 days, and forecasted one day ahead. The posterior predictive distribution

for ŷi,t=50 is:

p(ŷi,t=50|y,x) =
∫
θ
p(ŷi,t=50|θ)p(θ|y,x)dθ (3.10)
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where θ is a vector of parameters in the given model (α, β, τx, τz, and ρ), and (3.10) is estimated via

INLA as described in Section 3.6.1.

3.7.2 Evaluation

We summarize the performance of each model (univariate and bivariate) for each health outcome

series (y1 and y2) using:

(i) The bias, estimated by taking the median of the marginal posterior distribution for a given

parameter θ, and finding the median of these point-estimates across the 200 simulations:

(θ − θ̂)/θ for the intercepts α1 and α2, β1, β2 autoregressive parameter ρ, and precisions τx

and τz .

(ii) The coverage of the 95% credible intervals for each parameter.

(iii) The mean absolute percentage error of the forecasts: 1
n

∑n
i=1(|ŷi − yi|/yi).

(iv) The coverage of the 95% credible intervals for the forecasts.

3.7.3 Simulation results

Varying β1 and β2 had little effect on the coverage, bias, and forecast performance of the models, so

the results in this section are based on the 200 simulations where β1 = log(1.8) and β2 = log(1.7).

Conversely, the ρ parameter had an impact on the model performance, and we focus results for

different values of ρ.

Table 3–2 shows the bias and coverage for α1, α2, β1, and β2 by values of ρ = 0.2, 0.4, 0.6, and

0.8. When the value of the ρ parameter was higher for data generation, the coverage was lower for

the intercepts (α’s) and, to a lesser extent, for the exposure effects (β’s). Coverage ranged from 22%

for α1 when ρ = 0.8 to 72% when ρ = 0.2. The estimates for β1 and β2 had overall better coverage,

ranging from 60% when ρ = 0.8 to over 90% for when ρ was lower. The overall bias (based on the

median of 200 posterior medians) for the intercepts and exposure effects parameter estimates was

mostly below 5% and fairly consistent as ρ varied in the different simulation scenarios (Table 3–2).

The univariate and bivariate models performed relatively similarly for retrieving the intercepts,

but the bivariate model had higher coverage than the univariate model when retrieving the effect

(β) parameters.
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Table 3–2: Summary1 of simulation results for intercept and effect size parameters by ρ parameter value.

α1 = 3.0, α2 = 2.8 eβ1 = 1.8, eβ2 = 1.7

Model2 Median3 Bias Coverage Median3 Bias Coverage
ρ=0.8 U1 2.958 0.014 0.220 1.843 -0.024 0.600

B1 2.972 0.009 0.240 1.888 -0.049 0.880
U2 2.758 0.014 0.240 1.769 -0.041 0.600
B2 2.746 0.018 0.220 1.781 -0.048 0.940

ρ=0.6 U1 2.982 0.006 0.400 1.930 -0.072 0.820
B1 2.981 0.006 0.400 1.911 -0.062 0.900
U2 2.809 -0.003 0.400 1.779 -0.047 0.700
B2 2.793 0.002 0.380 1.828 -0.075 0.900

ρ=0.4 U1 3.005 -0.002 0.480 1.869 -0.038 0.880
B1 2.999 0.000 0.500 1.866 -0.037 0.920
U2 2.801 0.000 0.620 1.772 -0.042 0.880
B2 2.803 -0.001 0.660 1.770 -0.041 0.920

ρ=0.2 U1 3.003 -0.001 0.520 1.892 -0.051 0.780
B1 2.992 0.003 0.500 1.850 -0.028 0.920
U2 2.804 -0.001 0.720 1.758 -0.034 0.860
B2 2.800 0.000 0.680 1.786 -0.050 0.940

1 Bold values indicate better performance of a given model (univariate versus bivariate)
2 U1 = univariate from series y1, B1 = bivariate from series y1, likewise for series y2
3 Median across the 200 simulations (point estimates are the 50th percentile of the posterior)

The precision for the measurement error (τx) and for the autoregressive process (τz)

exhibited similar trends, with lower coverage when the data were simulated with a larger ρ

parameter; the autoregressive variance (τz) was less effected (Table 3–3). The univariate and

bivariate models performed relatively similarly for retrieving the autoregressive variance but the

bivariate strongly outperformed the univariate in coverage and bias for the measurement error

precision τx. Tables 3–4 and 3–5 show the simulation results for retrieving the ρ parameters from

the simulation scenarios. Higher values for ρ led to lower coverage and higher bias between the

true value and the posterior median, as the data approached non-stationarity. Across the different

scenarios, the bivariate model had more consistent coverage and overall lower bias than estimating

ρ from a single univariate model using one of the data series alone (Table 3–4).

Forecasting using the bivariate model also had overall lower forecast error and higher

coverage for the predictions than the univariate models (Table 3–5). As expected, the forecast

accuracy was lower when the data were simulated with lower ρ parameters, where the
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Table 3–3: Summary1 of simulation results for variances by ρ parameter value

τx = 0.1 τz = 0.5

Median3 Bias Coverage Median3 Bias Coverage
Data Model2

ρ=0.8 U1 0.919 -8.194 0.140 0.489 0.023 0.700
U2 0.834 -7.341 0.160 0.485 0.030 0.700

B 0.384 -2.843 0.240 0.745 -0.490 0.540

ρ=0.6 U1 0.241 -1.408 0.360 0.489 0.022 0.800
U2 0.269 -1.690 0.340 0.446 0.108 0.820

B 0.165 -0.652 0.380 0.559 -0.117 0.840

ρ=0.4 U1 0.121 -0.211 0.700 0.491 0.017 0.900
U2 0.149 -0.492 0.500 0.458 0.085 0.820

B 0.111 -0.113 0.760 0.497 0.006 0.920

ρ=0.2 U1 0.147 -0.474 0.500 0.445 0.111 0.760
U2 0.135 -0.350 0.480 0.480 0.039 0.880

B 0.123 -0.226 0.700 0.500 -0.001 0.920

1 Bold values indicate better performance of a given model (univariate versus bivariate)
2 U1 = univariate from series y1, U2 = univariate from series y2, B = single parameter estimated from joint model
3 Median across the 200 simulations (point estimates are the 50th percentile of the posterior)

dependency across time was weaker.

3.8 Case Study

3.8.1 Data

In this section we present results from a case study in British Columbia, Canada. We obtained

daily time series data from May 1 through October 31, for each year of 2003 through 2011.

We used time series of two different health indicators: series y1 refers to daily pharmaceutical

dispensations of a medication used to control acute exacerbations of asthma, and series y2

refers to daily visits to primary care physicians for asthma-related complaints. Both series are

correlated with each other and with increased PM2.5 concentrations from wildfire smoke over time

[44, 17, 66, 37, 35]. The pharmaceutical data include all dispensations of salbutamol sulphate, a

prescription drug commonly used to treat the acute symptoms of asthma and other obstructive

respiratory diseases. The BC health system requires that every prescription filled be logged into

the provincial PharmaNet database in real-time [66].The physician visits data include all asthma-

specific outpatient billings to the provincial Medical Services Plan (code 493 in the International
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Table 3–4: Summary1 of marginal posteriors for ρ parameter, β1 = log1.8, β2 = log1.7

Data Model2 Median3 Bias Coverage

ρ=0.8 U1 0.660 0.175 0.56
U2 0.667 0.166 0.56

B 0.689 0.139 0.62

ρ=0.7 U1 0.620 0.115 0.84
U2 0.605 0.136 0.84

B 0.627 0.104 0.86

ρ=0.6 U1 0.506 0.156 0.88
U2 0.513 0.144 0.92

B 0.516 0.140 0.88

ρ=0.5 U1 0.459 0.082 0.98
U2 0.457 0.087 0.98

B 0.466 0.067 0.98

ρ=0.4 U1 0.387 0.034 0.9
U2 0.380 0.051 0.94

B 0.384 0.040 0.96

ρ=0.3 U1 0.332 -0.106 0.98
U2 0.308 -0.028 0.98

B 0.315 -0.049 0.98

ρ=0.2 U1 0.236 -0.178 0.96
U2 0.247 -0.234 0.98

B 0.224 -0.121 0.98

1 Bold values indicate better performance of a given model (univariate versus bivariate)
2 U1 = univariate from series y1, U2 = univariate from series y2, B = single parameter estimated from joint model
3 Median across the 200 simulations (point estimates are the 50th percentile of the posterior)

Classification of Diseases, 9th revision). Increases in each of these health indicators have been

observed during forest fire smoke events [66, 44]. The daily PM2.5 values were estimated by the

OSSEM model developed and validated for surveillance purposes by the BCCDC, as explained in

Chapter 2 [37, 35].

In addition to the PM2.5 estimates, we included covariates for daily maximum apparent

temperature from Environment Canada, a factor variable indicating the day-of-week, and a

binary variable indicating whether the provincial sum of fire radiative power was over the 90th

percentile (see Figure 2). Fire radiative power is a satellite measurement of fire intensity, which

is proportional to the amount of smoke that active fires generate [37, 97]. A provincial ‘fire-day’

is defined in this manuscript when the FRP exceeds the 90th percentile for the data series. The

years 2003 and 2009 were severe wildfire seasons, where short-term increases in PM2.5 exposure
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Table 3–5: Summary1 of marginal posteriors for forecasts, β1 = log1.8, β2 = log1.7

Data Model2 MAPE Coverage

ρ=0.8 U1 0.653 0.820
B1 0.635 0.860
U2 0.463 0.900
B2 0.456 0.82

ρ=0.7 U1 2.128 0.840
B1 0.814 0.860
U2 0.702 0.820
B2 0.653 0.860

ρ=0.6 U1 0.562 0.860
B1 0.579 0.880
U2 0.515 0.860
B2 0.507 0.840

ρ=0.5 U1 0.566 0.760
B1 0.521 0.840
U2 0.502 0.780
B2 0.451 0.800

ρ=0.4 U1 0.541 0.860
B1 0.477 0.920
U2 0.614 0.780
B2 0.573 0.86

ρ=0.3 U1 0.659 0.840
B1 0.643 0.860
U2 0.535 0.800
B2 0.544 0.880

ρ=0.2 U1 0.630 0.700
B1 0.618 0.720
U2 0.505 0.700
B2 0.465 0.800

1 Bold values indicate better performance of a given model (univariate versus bivariate)
2 U1 = univariate from series y1, B1 = bivariate from series y1, likewise for series y2
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Figure 3–2: Time series for Central Okanagan local health area showing dispensations, physician visits and
particulate matter concentrations by fire season (1 May to 1 October), from 2003 to 2011. Red indicates a
provincial fire day based on fire severity.

coincided with large spikes in series y1 and y2 health indicators, as shown in Figure 3–2. The days

of the time series that appear red are ‘fire days’ as defined by fire radiative power over the 90th

percentile [97].

Because 2003 was at the beginning of the time series, there were insufficient historical data

to support model building for that period. We therefore used the 2009 fire season (May 1 through

October 31, 2009) as the forecast horizon. Models will be fit using the optimal time window, as

described below (see 3.8.2). The series y1 and y2 daily count data were made available by the

BCCDC.

3.8.2 Moving window optimization

For the case study, we explored moving windows (w1 to wt) ranging from 15 to 500 days. The

smallest reasonable window size requires at least one observation per day of the seven day week,

given the day-of-week factor variables used. To ensure the identifiability of the model, fifteen

days was used as the smallest potential window size. The overall measure of forecast accuracy

(MAPE) and precision (width of credible intervals) were compared across y1, y2, and the two

models (univariate, bivariate).We used a forecast horizon of 184 days (one wildfire season), yh1 =

May 1, 2009 to yht = October 31, 2009. Based on these results we selected a single forecast window
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Figure 3–3: Moving window optimization results for case study forecasting, showing accuracy (top) and
precision (bottom) by number of days in the forecast window.

size to use for the case study analysis. As shown in Figure 3–3, both forecast accuracy and precision

improved when additional days were added to the forecast window until the window size reached

100 days, where it essentially converged. The benefit of including more data was negligible and,

in some cases, actually decreased the accuracy. The decrease in accuracy could be due to secular

trends not fully modelled in the data. The precision of the forecasts continued to improve with

more data, but gains were small after 100 days, and even smaller after 200 days. The results were

consistent across y1 and y2, and across the two models (univariate and bivariate). A window size

of 100 days was therefore used for the analysis of the case study data.

3.8.3 Forecast accuracy performance

The health indicators data contain strong day-of-the-week effects, as can be seen in Figure 3–2. The

forecasts for the two models for each health indicator are shown in Figure 3–4. Models are re-fit for

each step in the forecast horizon and new parameters were estimated with slightly different data

(as the forecast window captures different data). This results in 184 separate models. However,

general trends emerged; the day-of-the-week factor variables were very influential in the models,

as were the identification of fire-days. Temperature was less influential, possibly because the fire

seasons occur primarily during the summer months, and the seasonal trends may be similar for
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Figure 3–4: Case study health indicator data with forecasts (predicted values) from univariate and bivariate
models for study area, May-October 2009 (the forecast horizon).

temperature and particulate matter. Estimates for the ρ parameters were between 0.25 and 0.8,

for each univariate model as well as the bivariate models, depending on the dataset (data within

the forecast window). In the univariate models, one or both of the estimated β parameters would

be negative approximately one third of the time, such that eβ < 1 (suggesting a protective effect

of the particulate matter), but the bivariate model estimated more consistent parameters that were

close to the known relationship between air pollution and these health outcomes, suggesting better

model stability.

The forecast accuracy measured as the mean absolute error was approximately 14% for y1

and approximately 25% for y2. The forecast coverage (percent of the forecasted values where the

95% credible interval included the true value) was approximately 80% for y1 and approximately

63% for y2. The model performance was slightly different for series 1 and series 2; the bivariate

model was nearly 3% more accurate (using median MAPE) for series 2, but slightly (0.8%) lower

in accuracy for series 1. The forecast coverage was higher in the bivariate model for series 2, but

slightly lower for the bivariate model in series 1. However, overall, the bivariate model slightly

outperformed the univariate model in forecast accuracy and forecast coverage using the mid-point

(mean) for the two series (Table 3–6).
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Table 3–6: Summary1 of case study analysis

Model2 U1 U2 B1 B2

Median MAPE 0.132 0.265 0.140 0.231
Percent in forecast CI3 0.8048 0.614 0.778 0.658

Univariate mid-point Bivariate mid-point
Median MAPE 0.198 0.186
Percent in forecast CI3 0.709 0.717

1 Bold values indicate better performance of a given model (univariate versus bivariate). The midpoint is the mean
(which is also equal to the median) of the two measures
2 U1 = univariate from series y1, B1 = bivariate from series y1, likewise for series y2
3 Percentage of the forecasts in the horizon where the 95% forecast credible interval contained the true value

3.9 Discussion

In this paper, we describe a latent process model that jointly models multiple correlated health

indicators with a common autoregressive exposure. Most forecasting approaches assume that

measurements of the health effects of an exposure on a population, such as morbidity and

mortality counts arising from air pollution exposure, are independent from one another. We

explored the impact of this assumption by comparing separate univariate models with a bivariate

approach that includes two correlated health indicators. We evaluated the performance of the

models in a simulation study and explored their application in a case study.

The latent process models proposed have a hierarchical structure common in the applied

Bayesian statistics literature [98]. The health indicators of interest are seemingly independent

at the first level of the hierarchy, but arise from a common underlying autoregressive process

(or processes); this process is measured with (non-differential) error. Similar models have been

employed in epidemiological research, but have not been previously described for public health

surveillance [52]. Such a model can be implemented using MCMC; however, given the proposed

application of public health surveillance, models would need to be efficiently run to aid real-time

decision making. The computational costs of the proposed models using MCMC, requiring hours

or even days to produce a single forecast, was prohibitive. The computational efficiency of the

INLA method as compared to MCMC is well established [55] and it offers a computationally

efficient approach to inference, providing forecasts orders of magnitude faster that MCMC. In

order to implement the proposed models using the INLA approach, they had to be recast as latent
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Gaussian models, and a non-intuitive syntax was needed to specify the joint model of the health

indicator(s) and the latent exposure in the package R-INLA. The framework we provided could be

easily expanded to include more than two health indicators, additional latent exposures measured

with error, spatio-temporal correlation, or non-differential measurement error.

The simulation study demonstrated that the bivariate model outperformed the univariate

models, with performance measured as bias and coverage of the simulation parameters and

forecast accuracy. The results appear robust to minor variations in the magnitude of the effect

of the latent process on the indicator. The coverage of the effect sizes (β’s), intercepts (α’s), and

precisions (τX and τZ) was lower when the simulated data were generated with a larger ρ value,

as the data approached non-stationarity. The parameter least affected by the changes in ρ was the

autoregressive error term εZ , which is reasonable given the structure of the hierarchy. Across the

different simulation scenarios, the bivariate models frequently provided higher coverage, lower

bias, and more accurate forecasts than the separate univariate models.

We illustrated the use of the proposed models by forecasting healthcare utilization data from

BC, Canada. Summarizing results for a forecast horizon of one fire season (184 days in 2009), the

bivariate model provided overall more accurate predictions (as measured by MAPE), and provided

credible intervals that more frequently contained the true value. The bivariate model also resulted

in more stable effect estimates. The β parameter estimates were negative in approximately one

third of the univariate models, suggesting that air pollution had a protective effect, which is known

not to be true for these data. This result was observed rarely for the bivariate model. The bivariate

model is also more computationally efficient; while it took longer to run than a single univariate

model, it was faster than running the two univariate models (one for each indicator) separately.

We explored a first-order autoregressive latent process, based on exploratory data analysis

of the health and air pollution data from BC, which frequently exhibited this trend. Future

work could extend this approach for data that exhibit higher-order autoregressive trends, and

also explore misspecification. For example, simulation studies could explore the impact of

generating a second-order autoregressive process in the latent field, and modelling it as a first-

order. Future developments of this approach could also incorporate data from multiple regions

and, by incorporating spatio-temporal structure into the models, allow strength to be borrowed
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across regions [99]. This strategy may aid in obtaining both more accurate forecasts but also

potentially in reducing the uncertainty associated with those forecasts.

Simultaneously modelling multiple health indicators with common exposures can provide

accurate and timely information for environmental public health surveillance. The findings here

are relevant for related fields (heat surveillance, other environmental exposures). Future applied

work could directly evaluate the public health impact of improved accuracy by implementing the

proposed models in a real-time surveillance system.

Acknowledgements

The authors would like to thank Finn Lindgren for his help and valuable advice in implementing

the models. The first author is funded by the Canadian Institutes of Health Research (CIHR). The

second author worked on this project whilst he was an International Visiting Research Scholar

funded by the Peter Wall Institute for Advanced Studies at the University of British Columbia.

The third author has contributed to this work with support from Health Canada. The final author

is supported by a CIHR Chair in Applied Public Health Research. Surveillance data for the case

study were made available to the BCCDC by the BC Ministry of Health.

41



4 Improving forecast precision in environmental public
health surveillance: a spatio-temporal approach

4.1 Preamble

In the previous chapter, I presented a statistical modelling framework for multiple time series

of health indicators and their common latent environmental exposure and explored at the

performance of the proposed model through a simulation study and a case study with one

administrative area in BC.

In this chapter, I apply the proposed model in all the administrative health areas across

the province. The prediction variance can sometimes be unstable when forecasting health effects

in communities with very small populations. Wildfire smoke can affect large geographic areas

and many of the communities may not have the population size of an urban centre, but the

public health concern is significant given that entire populations can be exposed to very poor air

quality. These less populated regions can be aggregated for the sake of a forecasting approach to

surveillance, but information will be lost in the process.

To facilitate the use of the proposed framework in these circumstances, the temporal model

was expanded to include spatio-temporal smoothing. Smoothing between neighbouring local

health areas allows borrowing of strength between regions, reducing the prediction variance in

exchange for an increase in bias. In the following chapter, I explore the performance of such a

bias-variance tradeoff for the sake of wildfire smoke surveillance.

This manuscript will be submitted to Spatial and Spatio-Temporal Epidemiology.
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4.3 Abstract

Introduction: Wildfires are an important source of episodes of high concentrations of air pollution

in many parts of the world. There is clear epidemiological evidence linking short-term increases

in particulate air pollution to adverse health effects, notably on the respiratory system. In general,

public health officials in smoke affected areas lack the tools required to perform surveillance

and assess the health impacts of smoke events. Communities affected by wildfire smoke are

heterogeneous in population size and makeup, resulting in low statistical power in some less

populated regions.

Methods: Recently, a latent process approach has been proposed for public health surveillance of

wildfire smoke, monitoring multiple health indicators simultaneously. However, that approach

considered information from a single region and here we extend this model to use information

from multiple regions, modelling both spatial and temporal dependence, within a Bayesian

framework. This allows smoothing between regions, exploiting spatial dependence to stabilize

the prediction variance in regions with smaller health counts. Inference using MCMC was found

to be computationally infeasible where multiple models need to be fit, in this case on a daily basis,

and we describe implementation using integrated nested Laplace approximations (INLA).

Results: Our results show that for the regions with smaller populations, the spatio-temporal

approach smooths the forecasts, substantially improving the prediction variance at the cost of a

modest reduction in accuracy.

Conclusion: Wildfire smoke can affect communities across large geographic areas. Administrative

data for health monitoring are usually disseminated within geographic units. To use a forecasting

approach to environmental public health surveillance and to avoid aggregating smaller regions,

spatial smoothing may be beneficial to avoid issues of unstable prediction variance.

Keywords: Bayesian analysis, environmental epidemiology, hierarchical models, spatial

statistics
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4.4 Introduction

In many areas, wildfires are an important source of short term increases in particulate air pollution,

which can reach very high concentrations. Wildfire seasons have become longer and more severe

in recent decades, due to changes in land use and climate [22, 9]. Wildfires smoke is a complex

mixture of gases and solids, including fine particulate matter (PM2.5), which is known to be

harmful to human respiratory health [100, 66, 17]. Smoke from wildfires can travel far from

the original fire, potentially exposing millions of individuals in large urban centres hundreds of

kilometres away [39]. North America has been severely affected, including British Columbia (BC),

the westernmost Canadian province. A severe wildfire season in 2015 resulted in the population of

greater Vancouver being exposed to extremely smoky conditions and record levels of air pollution

in early July [101].

There is strong epidemiologic evidence linking increased rates of morbidity and mortality

with exposure to acute PM2.5 [102, 103, 104]. In spite of these well-established links, public health

officials throughout smoke affected areas lack surveillance tools to assist in decision making during

smoke events. Surveillance of acute environmental exposures is an emerging research area, as

smoke pollution and extreme heat are becoming increasingly important public health events.

Researchers and scientists working in public health have called for improved surveillance methods

and tools [105, 106, 107, 108, 109].

Most of the methods and models commonly used in public health surveillance were

developed for infectious disease [33]. Environmental public health surveillance shares many

objectives with infectious disease surveillance, such as generating information to guide public

health action, but seeks to detect the real-time health impact of an exposure, an objective that presents

some different methodological challenges [6, 34]. We have identified six major challenges for

timely environmental public health surveillance:

1. Exposure estimation: Wildfire smoke is a complex mixture of potentially harmful pollutants, but

PM2.5 has been studied most frequently in relation to respiratory health. Measuring air pollution

across large geographic areas is logistically and technically challenging, and assumptions must

be made to extrapolate large-scale measurements to estimate likely population-level exposure in
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an individual or a community. Measurement error is unavoidable with the currently available

methods.

2. Health indicators: PM2.5, can have a range of different health impacts on populations, such that

any single health indicator provides only partial information with differing timeliness, sensitivity,

and data artifacts (e.g., day of the week effects for healthcare utilization data). While some

epidemiologic research has used multivariate approaches to improve parameter estimation [52],

most statistical models in epidemiologic studies of air pollution and respiratory health view each

health measure as independent.

3. Statistical modelling: Currently, air pollution data and health surveillance data are monitored

separately in public health settings. Modelling the relationship between the exposure and the

health indicator(s) could provide additional information, such as the ability to forecast likely health

indicators under different exposure scenarios.

4. Implementation: A suitable modelling approach must be flexible enough to address the

previously stated challenges but be compatible with an efficiency that is sufficient to thoroughly

evaluate via simulation and retrospective analyses. Ultimately, the modelling approach must also

be appropriate in a public health setting for real-time surveillance.

5. Heterogeneous populations: Many communities most severely affected by wildfire smoke have

small or moderate population sizes, making statistical predictions less stable. Surveillance data

are usually monitored separately for each community, while spatial dependence could be used to

reduce prediction variance.

6. Assessment: There are no established thresholds that define when a population will experience

a public health effect from smoke as measured by PM2.5. An integrated surveillance framework

should be developed, evaluated, and calibrated to meet the needs of public health and support

decision making.

Developing better estimates of population level exposure to air pollution and wildfire smoke

are active research areas [110, 111]. As explained in previous chapteres, the OSSEM model

developed by researchers at the BCCDC) estimates PM2.5 for each administrative health region

across the province [37, 35]. The BCCDC has also identified two health indicators that are strongly
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associated with acute increases in PM2.5: (1) asthma-related physician visits, and (2) asthma-

related pharmaceutical dispensations [66, 44]. These data are currently collected and monitored

for wildfire smoke surveillance in the BC Asthma Monitoring System (BCAMS) [42].

Here we focus on short-term forecasting of two health indicators associated with increases

in air pollution due to wildfire smoke in all BC LHAs. Short-term forecasting can be used within

a comprehensive surveillance framework to detect health impacts of an exposure and to estimate

public health effects under different exposure scenarios, guiding public health action in real-time.

We define two periods that are fundamental to producing and evaluating forecasts: (i) the forecast

window is used to build the models and produce the incremental forecasts in each region, and (ii)

the forecast horizon is the period over which we obtain one-day-ahead forecasts and summarize

prediction performance (Figure 4–1).

Morbidity
counts LHA1

LHA2

. . .
LHA89

forecast window

forecast horizon

time (days)

Figure 4–1: Schematic showing forecast windows and forecast horizons for each region

This work builds upon previous research addressing challenges 3 and 4 [112]. In this

manuscript, we aim to address challenges 4 and 5 by expanding a previously developed temporal

latent process model to a spatio-temporal approach. While the previous model performed well in a

moderately populated region (approximately 200,000 residents), many fire-affected communities

have considerably smaller populations (e.g., fewer than 50,000 residents). We hypothesize that

by adding spatial smoothing to the temporal approach, we can reduce the prediction variance in

areas with smaller populations. We also address some of the computational challenges posed by

this more complex model. This work is an important step towards assessing the utility of these

forecasting models within an integrated surveillance system (challenge 6).

In Section 4.8.1 we describe the study area in BC, and the data from the wildfire season

of 2015. In Section 4.6, we briefly summarize a previously proposed bivariate latent process

model [112] for forecasting health indicators in a single region based on estimated levels of
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air pollution. In that study, we summarized results for one LHA in BC for the wildfire

season of 2009. The bivariate approach outperformed the univariate, where each indicator

was modelled independently. The bivariate approach provided more accurate predictions,

had credible intervals that more frequently contained the true value, and more consistently

estimated realistic effect estimates for the relationship between air pollution and respiratory health

indicators. The remainder of the Methods section describes how this bivariate model can be

expanded to incorporate both spatial and temporal dependence. Section 4.7 briefly summarizes

the implementation of this model using integrated nested Laplace approximations (INLA) [113]

and the estimation of prediction intervals. Section 4.8 presents a comparison between the

purely temporal specification for each region separately to a combined spatio-temporal approach.

Forecast performance is assessed in terms of accuracy and precision. In Section 4.9 we discuss the

benefits and limitations of the proposed modelling approach and suggest next steps for research

to move towards an integrated surveillance framework for wildfire smoke surveillance.

4.5 Data

British Columbia is a heavily forested province in Western Canada, with a population of nearly 5

million residents [114]. The province is divided into 89 health regions known as local health areas

(LHAs) for the purpose of healthcare administration and research. The average number, size, and

cost of wildfires in BC have risen dramatically in the last decade. Figure 4–2 shows the locations of

more severe provincial fires of 2015 based on fire radiative power (FRP), which is a value derived

from satellite imagery to estimate fire intensity, and is proportional to the amount of smoke that

active wildfires generate [37, 97, 115].

The forecast window includes the wildfire seasons (May to September) from May 1, 2013

to June 30, 2015. The amount of data included in the forecast window can be determined in

different ways, from including all data available to choices bases on exploratory data analysis.

In our previous work, we optimized the length of the forecast window using time series cross-

validation [112]. Including more data in the forecast window will decrease the forecast precision,

although the benefit will likely become negligible after some threshold. The accuracy will increase

initially and then may continue to increase, remain unchanged, or even decrease in some cases.
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Figure 4–2: Location and severity of wildfires across British Columbia Local Health Areas, May - September
2015.

Using less data will ease the computational burden. We found previously that using a forecast

window of 100 days was optimal for a single, moderately populated LHA in BC. Here, we add

additional data to be conservative rather than attempting to optimize across all regions.

The forecast horizon is the 31 days of July 2015, across which the prediction performance will

be evaluated. We summarize the forecast accuracy with mean absolute error (MAE) 1
N

∑N
i=1 |yi −

ŷi|, where N = days in forecast horizon. We summarize the forecast variance with mean credible

interval width (MCIW) 1
N

∑N
i=1(ŷi

0.975 − ŷi
0.025). We use MAE, an absolute rather than relative

measure of forecast accuracy, as we are interested in the comparison between the temporal and

spatio-temporal models, rather than between regions with data on different scales. We defined the

forecast coverage as the proportion of true observed values a given (credible or prediction) interval

contains across a forecast horizon of N days.

4.5.1 Health surveillance data

Here we consider two health indicators identified and monitored by the BCCDC for the purpose of

air pollution surveillance [42]. The first is daily dispensations of the prescription drug salbutamol

sulphate, which is used to treat the acute symptoms of asthma and other chronic obstructive lung

diseases [116]. BC provides a provincial drug plan that requires by law every prescription filled
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or refilled to be logged by the provincial PharmaNet database, regardless of the recipient or the

payer, and these data are made available to the BCCDC for research and surveillance purposes

[44, 117].

The second health indicator dataset is daily asthma-related visits to primary care physicians,

such as walk-in clinics and family practices. Nearly all residents of BC are registered in the

provincial Medical Services Plan (MSP) [118]. Primary care physician visits are billed to the

provincial MSP, and the reason for the visit is coded using International Disease Classification

codes (ICD-9). Asthma-related codes (group 493) are identified by the BCCDC and used for the

purposes of wildfire smoke surveillance.

4.5.2 PM2.5 exposure

The BCCDC has developed the OSSEM predictive model to estimate average population exposure

to smoke-related PM2.5 in each LHA in BC for the purpose of public health surveillance [37, 35].

Their model integrates air pollution monitor data, climate and weather data, and satellite data on

smoke and fires to produce a population-weighted prediction for each LHA in BC on a daily basis.

They evaluated their model by spatially predicting PM2.5 concentration levels in areas with air

quality monitors, and average accuracy was over 80%.

4.5.3 Additional data

In addition to the health surveillance and air pollution data, we use values of daily maximum

apparent temperature [119], the annual population estimated for each LHA [114], and an indicator

variable for provincial ‘fire days’ as based on FRP [37]. The healthcare utilization data exhibit

strong day-of-week variation, likely due to differing levels in access to care by day by week, and

so a factor variable for each day of the week, with statutory holidays coded as Sundays, is also

used.

4.6 Methods

We propose a three-level hierarchical spatio-temporal model for environmental exposure data

modelled as a latent process and multiple correlated health indicators. The health indicator i, for
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time t, in region s, is modelled as a Poisson random variable, with rate μist as described previously

in Chapter 3:

Yist|μist ∼ Pois(μist)

logμist = αi + βiZst +

J∑
j=1

γjiWjist + Vis + Uis

Xts = Zts + εXts (4.1)

Zts = ρ1Zt−1,s + ρ2Zt−2,s + ...+ ρpZt−p,s + εZt

where Xt is the measured PM2.5 of the latent exposure Zt; α are the intercept terms and β are effects

of the daily PM2.5, allowing a different relationship with each health indicator. The measurement

error on the air pollution, εXt , and the random variation on the autoregressive latent process, εZt ,

are each normally distributed with zero mean; εZt is also constrained to sum to zero to allow

for identifiability of each parameter. The variances for εXt and εZt (τXt and τZt , respectively) are

defined using the marginal precision, see [88]. The effect parameters of other covariates W, which

can be common or different for each indicator, are given by γ. The two random effects, V and U ,

are uncorrelated and spatially correlated random effects, respectively.

The second level of the model describes the latent process, Z, the true underlying

concentration of air pollution, which is modelled an autoregressive process of order p. The

underlying air pollution concentration is common across all health indicators. The third and final

level specifies the prior distributions for each parameter.

A temporal version of this model is given in Chapter 3, where a single region, s, is considered

[112]. The temporal specification can be replicated for each region in a larger geographic study

area, but models in regions with small counts of health indicators may be vulnerable to low power.

The smaller regions could be aggregated, but information would be lost. Here we use the temporal

model in each region to independently predict each health indicator on each day in the forecast

horizon, and we also implement a spatio-temporal approach and compare the performance of the

two specifications. The spatio-temporal model estimates the first level model parameters across

the regions, smoothing towards the mean and allowing these smaller areas to borrow strength

from their neighbours, therefore stabilizing the prediction variance.
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The spatio-temporal model has two additional random effects at the second level of the

hierarchy, U , and V , each assigned multivariate Gaussian priors. The random effect V represents

uncorrelated random error, V ∼ N (0, τ−1ν I). The random effect U represents spatially correlated

random error, U ∼ N (0,Σ), Σ−1 = Q = D−1(I − W ), where D = diag(m−1s ), Wij = m−1s if

regions i and j are neigbhours and Wij = 0 otherwise; ms is the number of neighbouring regions

for region s using first-order adjacency.

The precision matrix of the intrinsic CAR model Q is of rank (n− 1) and therefore the joint

distribution of the random effects does not exist [120]. However, the conditionals (with conditional

variance τ−1u ) are proper distributions, and can be estimated as:

uis|ui,-s, -s ∈ δs ∼ N (ūiδs ,
1

msτu
) (4.2)

where ūiδs is the mean of the random effect s in its neighbourhood region δs. The conditional

precision τu is proportional to the strength of the spatial association in a given region [121] (Figure

4–3).

Figure 4–3: Spatial structure of neighbourhoods using first order adjacency, with inset map for greater
Vancouver

Priors for the other parameters in the model are as follows, α,β, γ ∼ N (0, τI), where

τ = 0.001 [88]. INLA defines the prior for the ρ parameter on the logit scale [88]. As in [112], the
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prior is changed here to provide a unimodal distribution: log (1+ρp)
(1−ρp) ∼ β(5, 5).

4.7 Inference and computation

To address many of the methodological challenges in environmental public health surveillance,

the complexity of the models proposed here require considerable computational costs. As these

models are intended to be integrated into daily use in a public health setting, they must be able

to produce forecasts on a daily basis. We found that for the temporal version of this model,

simulation-based approaches such as Markov chain Monte Carlo (MCMC) were impractical

given long convergence times [112]. Therefore, for the spatio-temporal extension, we again

use integrated nested Laplace approximations (INLA) for computationally efficient approximate

Bayesian inference [53].

The INLA algorithm is described in detail in the seminal paper [53] and outline briefly

in Chapter 3. Essentially, many hierarchical models can be expressed as latent Gaussian models

(LGMs) and used within the INLA framework. LGMs share a common structure:

Likelihood: Y |Z,θ2 ∼
∏

p(Yi|z,θ2)

Latent field: Z|θ1 ∼ p(z|θ1) = N (0,Σ) (4.3)

Hyperpriors: θ = [θ1,θ2]
T ∼ p(θ)

where Y are the observed data; Z is the latent field, which is the joint distribution of the linear

predictor and parameters within (such as the regression coefficients); θ2 are the hyperparameters

of the likelihood; θ1 are the hyperparameters for the latent field. The latent field is assumed to be

multivariate Gaussian with a conditional independence structure that results in a sparse precision

matrix; this structure works naturally for autoregressive models such as those common in spatio-

temporal statistics [58, 121]. Estimates of the posterior marginals for the latent field can be derived

from a Bayesian hierarchical model as:

p(zj |y) =
∫

p(zj ,θ|y)dθ =

∫
p(zj |θ,y)p(θ|y)dθ (4.4)
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which are approximated by INLA as [95]:

∑
k

p̃(zi|θk,y)p̃(θk|y)Δk (4.5)

where p̃(·) refers to an approximation. The first term in (4.5) refers to a Laplace approximation,

while the second term depends on the implementation of the INLA program (a full Laplace

approximation, a Gaussian approximation, or a simplified Laplace approximation); see [54].

The simplified Laplace approximation is the default and was used for all final analyses in this

manuscript. For a detailed explanation of the INLA approximation algorithm, see [53]. In the

analyses we use the implementation of INLA within the R package R-INLA, see [88].

Although INLA provides an efficient approach to performing approximate Bayesian

inference, there may still be computational issues when repeatedly fitting large datasets using

complex models with many parameters, as is the case here. The models described in this paper

were implemented using a high performance computing system, making use of a number of high

memory nodes (including two nodes with 512GB of memory). Even so, an initial approach using

the default method for selecting initial values for the optimization for each day independently

proved to be computationally demanding, as the Newton-Raphson optimizer had to restart to

produce the forecast each day when a new model was fit. Using the previous days posterior

values to initialize the optimization for the following forecast day provided a solution for days

where convergence was not achieved and, overall, allowing learning between days resulted in

marked improvements in efficiency.

4.7.1 Prediction intervals

A confidence interval around the expectation E(Y |X) is straightforward to obtain for generalized

linear models, with the assumption that the linear predictor is asymptotically normal [122].

However, any CI around E(Y |X) will only capture the variability in the mean of the linear

predictor, as used in model evaluations in Chapter 3, and not the additional variability in future

individual observations.

Prediction intervals are straightforward to compute with linear models but may be more

complex with non-Gaussian indicators, such as Poisson counts used here. In such cases, empirical

prediction intervals may be constructed using bootstrapping or simulation based approaches [123].
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In a Bayesian setting, empirical prediction intervals can be constructed for a new observation

using samples from the posterior predictive distribution. Such samples are readily available using

MCMC as well as in R-INLA. The following algorithm shows the process used here to construct

prediction intervals around the forecasted health indicators on day t for given fit R-INLA model

M using k posterior samples. Here, we used k=1000 to generate prediction intervals.

Algorithm: Constructing Bayesian prediction intervals for a Poisson hierarchical model

for i =1 to k

Generate a sample value PSi from marginal posterior predictive distribution of M

Generate random variable: Prvi ∼ Poisson(PSi)

Construct bounds from empirical distribution: (1-α)

PI = P
(α/2)
rv , P

(1−α/2)
rv

4.8 Results

4.8.1 Data summary

The summer of 2015 was a severe wildfire season in BC, with over 280,000 hectares of wildfires

burning, and more days of smoke exposure in populated regions of the province than previously

on record [124]. Within the month of July and across the 89 LHAs, there were 180 region-days

of high air pollution exposure from wildfire smoke (PM2.5 > 25μg/m3). Because some highly

populated regions were affected, including greater Vancouver, this resulted in 13,869,985 person-

days of high PM exposure in the province. In particular, large fires burned in the western part of

the province from July 5 to 10, resulting in elevated air pollution concentrations in many urban

communities (Figure 4–3).

Daily average counts per LHA for salbutamol dispensations and asthma-related physician

visits for the month of July 2015 varied by population size. Dispensations occur at much greater

frequency than physician visits (Figure 4–4), resulting in larger average daily counts per region.

Across the entire province, mean dispensations per region were 15 per day and mean physician

visits were six per day. During periods of high PM exposure (PM2.5 > 25μg/m3), the means were
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35 per day and 15 per day, respectively.

Figure 4–4: Provincial mean daily salbutamol dispensations, asthma-related physician visits, and estimated
PM2.5, July 2015. Note that the y-axis refers to health indicator counts for dispensations and physician visits,
while it refers to concentration in μg/m3 for PM2.5.

4.8.2 Forecast accuracy and precision

In this study, we compared the forecast performance of a temporal latent process model [112] with

a spatio-temporal extension. We evaluated performance empirically using MAE and MCIW for a

31 day forecast horizon during the wildfire season of 2015.

Overall, the accuracy between the two models was similar, though slightly lower for the

spatio-temporal model. This reduction in accuracy is expected, as the spatial smoothing used here

is a form of bias-variance tradeoff. The forecast variance was substantially reduced in the spatio-

temporal models on average, generally at the expense of a modest reduction in accuracy (Table

4–1).

We place a special focus on the regions with the smallest populations, as these regions tend

to have much smaller daily counts and less precise prediction intervals. In these regions, and

especially for the physician visits data, the accuracy is similar between the temporal and spatio-

temporal models, but the forecast variance is drastically improved with the spatio-temporal model

(Figure 4–6). Because more than half of the LHAs in the province have fewer than 20,000 residents,

model performance is of particular importance in these regions.
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Table 4–1: Forecast horizon accuracy (MAE) and precision (MCIW) by region/day subgroup

Indicator Dispensations Physician visits Notes
Model Temporal Spatio-temporal Temporal Spatio-temporal
All regions and days Full horizon
MAE 121.02 286.13 59.33 62.91
MCIW 406.44 25.44 117.59 0.47

Region-days where PM2.5 >25 μg/m3 180 region-days
MAE 1491.38 2830.03 873.23 906.34
MCIW 394.57 36.19 3.99 0.76

Regions with population >200,000 4 regions
MAE 1667.38 5277.77 1049.92 1148.85
MCIW 50.73 101.83 7.09 1.63

Regions with population <20,000 45 regions
MAE 2197.49 3432.75 978.92 1001.58
MCIW 781.33 5.55 229.03 0.18

Regions with population <10,000 29 regions
MAE 1073.93 1522.99 453.72 467.6
MCIW 1209.55 3.51 354.58 0.13

Regions with population <5,000 15 regions
MAE 352.8 472.63 151.59 158.56
MCIW 2336.08 1.79 684.82 0.09

Figure 4–5: Mean forecast 95% credible interval width across horizon by mean absolute error per LHA
in BC, for (a) salbutamol dispensations and (b) asthma-related physician visits. Note that some extreme
outliers for the 95% credible interval width for the temporal model have been removed for both indicators.

During periods of elevated air pollution it is particularly important to forecast accurately

and precisely because public health may intervene to reduce exposure during these smokey

periods. The performance of the models in the region-days of high exposure will be largely driven

by the demographics of the regions that happen to be exposed to a given wildfire smoke event.
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In July of 2015, highly populated regions in the lower mainland were heavily exposed, therefore

performance of the spatio-temporal model in the high exposure regions mirrored the performance

in the highly populated regions.

4.8.3 Prediction interval coverage

The variance for a predicted mean indicator is proportional to the variance for a new observation;

the latter is larger as it accounts for additional variation. Using credible intervals around the

mean expected values provided average forecast coverage of 47.0% for predicted dispensations

and 5.5% for predicted physician visits, using the spatio-temporal model. Using the empirical

prediction interval method described in Section 4.7.1, the average forecast coverage was 75.5%

for dispensations, and 92.5% for physician visits. Figure 4–6 shows the time series of true and

forecasted physician visits for the July 2015 forecast horizon in a moderately populated region of

the province (Ladysmith, population approximately 18,500), including the credible and prediction

intervals. The forecast coverage is nearly zero using the credible interval of the mean, and 90.3%

using the prediction interval.

Figure 4–6: True and forecasted values for physician visits with credible and prediction intervals a single
LHA (Ladysmith). Forecasts are the median of the posterior predictive distribution
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4.9 Discussion

In this manuscript we extended our previously proposed latent process surveillance model [112] to

include spatial smoothing. This extension was proposed to address the large prediction variance

in regions with small counts of health indicators under surveillance.

Our hierarchical approach builds a temporal prediction model based on historic data by

modelling two respiratory health indicators as Poisson random variables jointly by regressing

them against a common exposure. The exposure is then modelled as a latent process at the

second level of the hierarchy, to account for the measurement error inherent in estimating exposure

to PM2.5. Spatial smoothing is incorporated to allow regions with smaller populations and/or

smaller health indicator(s) counts to borrow strength from spatial neighbours, which are likely

to share common exposure given the spatial distribution of air pollution, as well as similar

demographics.

Daily counts of health indicators will be smaller in less populated regions, which is common

for many communities affected by wildfire smoke. Additionally, small counts are lower on average

for more severe health effects. The health impacts of wildfire smoke range from mild symptoms

through to death [8].

Each health indicator contains information on the impact of the environmental exposure and

the data used to measure each health effect may have different characteristics, such as timeliness,

day-of-the-week effects, or types of censoring. In general, monitoring multiple indicators will

provide public health with more information, and useful datasets should not be excluded from

surveillance due to low expected counts and the associated statistical challenges.

We found that spatial smoothing was beneficial for predicting the physician visits data,

which have a lower incidence than the medication dispensations data. The substantial reduction in

prediction variance for the spatio-temporal model results in only a modest decrease in the overall

accuracy from the smoothing. The spatial smoothing was also beneficial for the dispensations data

in regions with smaller populations, particularly in regions with fewer than 5,000 individuals. In

regions with large populations and high mean counts, forecasts of medication dispensations were

less accurate when smoothed. In [112] we found that the temporal model performed well for a

moderately populated region, but more than half of the regions in BC have small populations (less

than 20,000 residents). This borrowing of strength between regions makes it possible to accurately
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forecast indicators for surveillance throughout the province, when previously it was not feasible

to do so.

Prediction intervals should capture the true observed health indicators with probability

close to the given confidence level (e.g., 95%). Using the credible interval around the mean

expected count neglects the additional variability in predicting individual observations. However,

estimating prediction intervals empirically can be computationally intensive [125]. The empirical

prediction intervals obtained here fit well into the inferential framework using INLA, provide

reasonable coverage even in regions with sparse data, and maintain the computational feasibility

of the approach. The availability of these prediction intervals increases the utility of this forecasting

approach as a timely surveillance tool. It is clear that there is useful information in the posterior

distributions that could be used for surveillance decision making. Calibration and evaluation will

need to be based on a specific public health application and given different tolerance for sensitivity

and timeliness of alerts. This will be explored in future work. For example, thresholds can be set

using historical data and rather than basing the threshold decision making on the median, other

quantiles of the posterior, or the upper bounds of the PI, could be used to trigger an alert. The

performance in terms of specificity and sensitivity of the models can be made once thresholds for

decision making are available for a specific setting and context.

There are several other key next steps for this research. First, for regions with large

populations and health counts where the smoothing is less beneficial, the spatio-temporal model

could be adjusted by explicitly weighting the smoothing inversely to population size or mean

expected count. Ideally, this weighting would be optimized for prediction accuracy and variance

trade-off. Such smoothing can be made to suit the needs of the public health organizing using the

models, based on the demographics of the communities under surveillance, and on the nature of

the morbidity or mortality data used for monitoring public health response to smoke.

Second, future work should evaluate the utility of the proposed models for use in a real

public health setting, and fine-tune the approach to maximize practical public health benefits. The

proposed models can be used to estimate the expected health impacts under different exposure

scenarios and this information can be used to guide decision making. These evaluations should

include external sources of information such as scheduled outdoor events, wildfire behaviour,

relevant climate factors, and, in particular, any available forecasts of wildfire smoke or air
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pollution, such as those available from BlueSky and FireWork [39, 101]. Reliable future estimates

of air pollution would allow for meaningful forecasts beyond 24 hours in the future, providing

public health with more time to plan and implement interventions, such as disseminating public

health messaging. Estimation of population-level exposure to air pollution has a long history in

exposure science, and considerable progress has been made in the last decade [126, 39, 110, 37, 127].

Advances in this field will have a profound effect on air pollution public health surveillance.

Finally, the exposure measurement error model used here is simple, based on the

assumption of non-differential measurement error. The uncertainty associated with the predictive

LHA-level PM2.5 model [37] used to estimate exposure was not incorporated explicitly into these

forecasts. A more cohesive approach to environmental public health surveillance would be to

explicitly incorporate the smoke or air pollution modelling into this hierarchical model and to

propagate the uncertainty of these estimates through to the forecasting of the associated health

indicators.

Wildfire smoke is a serious public health concern with the potential to expose entire

populations across vast geographic areas to extremely high levels of air pollution, including PM2.5

and other harmful contaminants. Vulnerable populations, such as those with chronic lung disease,

will be particularly at risk. Severe smoke events are expected to continue in the coming decades

as climate change and land use changes increase the duration and severity of wildfire seasons

[108, 22]. Practical, well-evaluated, flexible surveillance tools are needed to assist public health

with decision-making during smoke events.
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5 One step ahead of the epidemiologic curve: a
forecasting approach for public health surveillance of
wildfire smoke

5.1 Preamble

In the previous two chapters, my objective was to identify a statistical approach that would be

appropriate for the characteristics of the exposure and outcome data encountered in EPHS, be

flexible so that changes to data characteristics could be accommodated (e.g., additional outcomes

or changes in exposure metrics), and address the computational constraints of requiring an ‘online’

daily surveillance system. In the following chapter, I evaluate how the proposed system could be

used in surveillance.

To do this, I retrospectively analyze an urban wildfire smoke event by integrating the

previously used air pollution estimates and health outcome indicators with smoke forecasts to

assess our ability to quickly detect a public health impact. In July 2015, severe wildfires burning in

southwestern British Columbia caused a prolonged period of smoky conditions across the highly

populated regions of Greater Vancouver and Vancouver Island. The potential impact of this event

and the lack of real-time surveillance tools to facilitate decision making has further motivated

research in wildfire smoke surveillance.

This manuscript will be submitted to Environmental Health Perspectives.
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5.3 Abstract

Introduction: Severe wildfires burned near densely populated regions of British Columbia,

Canada in July 2015. Millions of individuals were exposed to the smoke, and such exposures can

cause increases in asthma-related physician visits and dispensations of asthma relief medications.

Public health authorities did not have access to a surveillance system capable of predicting the

health impacts to guide decision-making and no public health interventions were initiated during

the smoke exposure.

Objectives: To evaluate the ability of an integrated surveillance system to predict the health effects

of wildfire smoke exposure and to estimate the morbidity potentially preventable through public

health interventions triggered by such a system.

Methods: We retrospectively emulated the use of a wildfire smoke surveillance system during

the severe wildfires that occurred in 2015 in BC. Daily estimated PM2.5 concentrations and daily

counts of two indicators of population respiratory health were obtained for 41 local health areas

in BC during the 2014 and 2015 wildfire seasons. Smoke forecasts from the BlueSky system were

obtained for the smoky period. A computationally efficient hierarchical time series model was

used to predict counts of the health indicators 24 and 48 hours into the future using forecasted

smoke concentrations from BlueSky. Potentially preventable morbidity was also estimated, based

on the scenario of the surveillance system triggering, at different time points during the smoke

exposure, a public health messaging campaign targeted at vulnerable individuals.

Results: Smoky conditions resulted in PM2.5 concentrations up to ten times higher than

background levels between July 5 and July 10, 2015. Asthma-related physician visits and

dispensations of relief medications were increased by 34% and 27%, respectively, during this

period. On July 6, the smokiest day, the increases were 72% and 78%, respectively. The surveillance

system provided prediction intervals for the 24-hour and 48-hour health forecasts for each day of

the July 3 to July 10, 2015 period. The 95% prediction intervals contained the true observed values

in 12 of the 14 dispensation forecasts, and 9 of the 14 physician visits forecasts. The surveillance

system did not require exact smoke forecasts to produce reasonable health indicator forecasts, but

the accuracy of health forecasts was affected by large errors in smoke forecasts. Simple, early
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interventions with lower effectiveness, such as messaging about steps to reduce exposure, would

likely have prevented more morbidity than delayed interventions with higher effectiveness, such

as evacuation.

Conclusion: After retrospectively emulating the application of a wildfire smoke surveillance

system to the severe wildfires in BC in 2015, we conclude that integrating data from multiple

sources into a wildfire smoke forecasting model can accurately predict the health impacts of smoke

exposure in a timely manner. Forecasts from such a system could be used to trigger public health

action and guide the selection of interventions to prevent morbidity. Prospective evaluation of

wildfire smoke surveillance systems in practice settings is now needed to generate evidence that

can guide their adoption and effective use.

Keywords: Wildfire smoke, air pollution, forecasting, public health surveillance
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5.4 Introduction

The summer of 2015 was one of the smokiest wildfire seasons on record in the province of British

Columbia (BC), Canada, especially in the wetter coastal areas where fire risk was unusually

elevated due to a protracted drought. Most notably, the Elaho and Boulder Creek fires were

discovered burning near Pemberton (Figure 5–1) on June 14, and they grew to 12,523 and

6,735 hectares, respectively, before they were extinguished [128]. From July 5 to July 10 smoke

from these two fires severely affected the densely populated regions of greater Vancouver and

Vancouver Island. Using the World Health Organization (WHO) daily fine particulate matter

(PM2.5) threshold of 25 μg/m3, these wildfires caused approximately 14,000,000 person-days of

unhealthy exposure. Previous research has demonstrated a strong association between smoke

exposure and multiple indicators of respiratory health, including (1) asthma-related physician

visits, and (2) dispensations of the asthma relief medication, salbutamol sulphate [35]. After the

extreme fire season of 2010 the BC Centre for Disease Control (BCCDC) used these two respiratory

health indicators to develop the BC Asthma Monitoring System (BCAMS) [42]. Retrospective

surveillance reports from BCAMS showed sharp increases in both indicators and observed air

pollution concentrations during the 2015 smoke episode, but the reports were not timely enough

to facilitate intervention.

Conventionally, public health surveillance has been used to monitor infectious diseases by

analyzing the incidence of confirmed or suspected cases over time, detecting changes from what

is expected, and triggering timely public health interventions to prevent disease transmission and

mitigate the impact of an epidemic. Environmental public health surveillance (EPHS) is analogous

to infectious disease surveillance, but there are important differences such as a focus on exposure

monitoring and the nature of the interventions. The relevance of EPHS is growing as the global

climate changes [5], resulting in more frequent and severe environmental exposures to hazards

that have population health impacts, such as heat and wildfire smoke [129]. Similar to infectious

disease surveillance, an objective of EPHS is to rapidly detect changes in the health status of

the population, and to provide timely information to guide public health interventions to reduce

hazardous exposures. Most EPHS systems differ from infections disease surveillance systems in

that they detect aberrant changes in the exposure, either independently or linked to the changes in

population health attributable to that exposure.
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During a severe smoke event with very high PM2.5 concentrations, the ideal public

health intervention would prevent excess health outcomes by maintaining population exposure

at background levels. There are no perfect interventions that could achieve this ideal, but there are

practical interventions that can reduce exposure and subsequent morbidity, especially for the most

susceptible populations [130]. Research in this area is limited, and stakeholders have expressed

the need for clear evidence about the efficacy and timeliness of different interventions. In one of

the few existing studies, Mott et al. 2002 found that over 80% of individuals in Hoopa, California

recalled at least one public safety advisory following a severe smoke event [61]. Furthermore, those

who recalled the advisories were less likely to report worsening symptoms, especially people with

asthma and the parents of younger children. A recent opinion article has also called for stronger

recommendations regarding use of home air cleaners during smoke episodes, based on evidence

of improvements in both indoor air quality and health endpoints [131]. Simulation-based research

has shown that interventions based on smoke forecasts would significantly reduce the associated

morbidity and its costs, particularly for vulnerable populations such as asthmatics [132, 133].

We know from previous studies in BC that smoke forecasts can provide public health

authorities with valuable information about expected exposures [42, 35]. However, the utility

of smoke forecasts is limited because they are neither readily accessible nor interpretable by

many public health practitioners. First, there are multiple modelling uncertainties in smoke

forecasting that cannot be easily understood without sophisticated knowledge about forest

fires and atmospheric processes. Second, forecasts indicate the expected distribution of smoke

without considering the underlying distributions and vulnerabilities of the potentially exposed

populations. Finally, smoke forecasts are generally available on web platforms, but most public

health professionals do not have the skills needed to systematically download, process, and use

the raw data files. Here, we attempt to address these challenges by integrating smoke forecasts and

health outcomes in a single surveillance system that can guide public health practice proactively

by predicting future asthma-related morbidity based on anticipated smoke levels.

The current implementation of the BCAMS system retrospectively gathers data about smoke

from smoke forecasting frameworks, air quality monitoring stations, and satellites. These data

are spatially integrated with health indicators, and reports are pushed out to regional medical

health officers [42]. The reports are always retrospective, because the system uses observed rather
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Figure 5–1: Schematic showing the existing (left) and proposed (right) decision-making process in wildfire
smoke surveillance.

than predicted information about the respiratory health indicators. For example, a BCAMS report

supplied on July 7, 2015 would have included health indicator counts up to July 6, a delay of at least

24 hours. Here we propose the prospective BC Asthma Prediction System (BCAPS) as an alternate

public health framework in which smoke forecasts are routinely downloaded, spatially matched to

population data, and simplified before being fed into a health forecasting model based on the prior

research presented in Chapters 3 and 4. Under this scenario, public health professionals would

receive daily health forecasts in the early morning providing predictions for the following 24 and

48 hours, including measures of uncertainty, rather than being expected to infer such predictions

based on their knowledge and the smoke forecasts alone. Such reports could be used to inform

proactive, evidence-based decisions (Figure 5–1) in the context of other information contributing

to situational awareness. We demonstrate the applications of BCAPS by retrospectively emulating

its real-time use to forecast the 2015 wildfire smoke event in southern BC. We also estimate the

potential exposure reduction and public health benefits that could have been achieved if BCPAS

had been used to guide intervention decisions during that period, as opposed to waiting until

health impacts had already begun to occur to intervene, or failing to intervene altogether.
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Figure 5–2: Map of BC showing the 41 study area LHAs and a satellite image blanketed in wildfire smoke
on July 6, 2015.

5.5 Methods

5.5.1 Study context

The heavily forested province of BC is located on the west coast of Canada, with much of its

population living in the south-western corner of the province. Local Health Areas (LHAs) are

the smallest geographic health units defined by the provincial government for administration

and data dissemination purposes. Our study area is defined by a subset of 41 LHAs that were

highly exposed to PM2.5 during the wildfires of July 2015 (Figure 5–2). This area includes greater

Vancouver and Vancouver Island as well as surrounding areas, with a total population of 3,658,523

persons in 2015 [114], approximately 80% of the provincial population. We defined the study

period as July 3 to July 10, 2015, where wildfire smoke caused increased PM2.5 exposures from

July 5 to July 10, which we defined as the high exposure period. We include July 3 and 4 in the

study period to demonstrate how the smoke event unfolded.

5.5.2 Environmental data

The BCAPS approach requires both historical PM2.5 concentrations and PM2.5 forecasts. We

used the BCCDC Optimized Statistical Smoke Exposure Model (OSSEM) for the historical
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estimates. This model integrates PM2.5 measurements from the provincial air quality monitoring

network with remotely sensed aerosols, remotely sensed fires, tracings of smoke plumes from

multiple satellite images, and the atmospheric venting index [35]. The model estimates PM2.5

concentrations at a spatial resolution of 5x5 km, and has been used in real-time surveillance [42]

and epidemiologic research [35] since 2012. Every morning OSSEM produces PM2.5 estimates for

the previous day, and we obtained all estimates for the 2014-2015 period.

We used the BlueSky Canada smoke forecasting framework for the PM2.5 forecasts. This

system uses current data to generate hourly forecasts of PM2.5 concentrations from forest fires

up to 60 hours in advance with a spatial resolution of 4x4 km. It is a complex forecasting

system, combining meteorological forecasts, fire locations, fuel consumption estimates, and

smoke emissions estimates in a dispersion model to predict ground-level PM2.5 concentrations

[39]. Unlike some other forecasting systems, it reflects only the PM2.5 contributions from forest

fire smoke, and not the contributions from all sources. BlueSky forecasts have been used in

epidemiologic research [35] and public health surveillance [42], and research improving the

forecasts is ongoing [40]. BlueSky generates two forecasts per day, and we used the 05:00 smoke

forecast to generate health forecasts for the next 24 and 48 hours.

To assign daily OSSEM and BlueSky values to the study area we took a population-weighted

average using data from the 2006 census. Disseminations areas (DAs) are the second-smallest

geographic census unit in Canada, with most DAs having a population of 400-700 residents [134].

We mapped the geographic centre of each of the 7469 DAs in the study area, and then assigned

daily estimates using the grid cell that contained the centroid. In addition, we assigned daily

values for maximum apparent temperature at the nearest Environment Canada weather station,

and a daily indicator of fire activity based on satellite measurements of radiative power, as done

in Chapters 3 and 4 [35].

5.5.3 Respiratory health indicators

The current implementation of BCAMS uses two indicators of population respiratory health:

(1) dispensations of salbutamol sulphate, and (2) asthma-related physician visits. Salbutamol is

a prescription drug used to treat the acute symptoms of asthma and chronic obstructive lung

diseases such as COPD [116]. Research has shown that smoky conditions are associated with
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increased salbutamol dispensations in BC [135]. The BC government requires every prescription

dispensed to be logged by the provincial PharmaNet database, regardless of the recipient or the

payer, and these data are made available to the BCCDC for surveillance purposes [44, 117, 35].

Research has also shown increased asthma-related physician visits during smoky periods in BC

[66, 35]. These visit are paid for by the provincial health insurance program, and physician billings

are logged to the central Medical Services Plan (MSP) database [117]. Visits are coded by reason

using the International Classification of Diseases, 9th Revision (ICD-9). Only visits for the code

specific to asthma (group 493) are used in BCAMS [42]. Daily counts of both indicators were

retrieved for each LHA in the study area for the period of 2014 through August 2015.

5.5.4 Forecasting respiratory health indicators with a bivariate latent process model

Our previous work proposed and evaluated a statistical approach for forecasting counts of

multiple health indicators that are associated with a common environmental exposure. Because

estimating population exposure to forest fire smoke across large geographic areas is challenging

and prone to error, our statistical approach was to consider the true exposure as latent, or

unmeasurable, and to assume that PM2.5 estimates contain some error [112, 48]. By considering

the exposure as latent we incorporate this uncertainty directly into the BCAPS health indicator

forecasting system.

Because wildfire smoke can have many health impacts, multiple different outcomes can be

used to assess the relationship between smoke exposure and population health. Our previously

developed approach allows for multiple outcomes to be simultaneously forecasted against the

common latent exposure. The multivariate approach puts less emphasis on a single, potentially

noisy data source and improves overall forecast performance in terms of accuracy and precision

[112]. Computational processing is a significant constraint in public health, as forecasts must

be timely. To implement the modelling approach and ensure efficient computation, we used a

hierarchical Bayesian framework with model fitting performed using integrated nested Laplace

approximations (INLA) [53]. This approach also provides posterior prediction intervals for each

forecast, giving the likely bounds around the mean or median estimates. When making health

forecasts using this framework, the model is trained on historical, observed data and it uses

any available information about future conditions to generate its predictions. More specifically,
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the historical model is trained using the following daily observations: counts of salbutamol

dispensations; counts of physician visits; PM2.5 concentrations from OSSEM; maximum apparent

temperature; fire activity indicator; and day-of-week. As such, the health forecasts for July 6, 2015

would use all historical data up to July 5, the day-of-week for July 6, and PM2.5 forecasts from

BlueSky for July 6 to make the prediction. Similarly, the health forecasts for July 7 would include

all historical data up to July 6, and so forth.

5.5.5 Day-by-day, retrospective emulation of BCAPS use in a public health scenario

We emulated the use of the proposed BCAPS surveillance system as if it had been operational in

July 2015. For each day in the study period, we used all available observed data from May 1,

2014 forward to fit the health forecasting model and to produce estimates for the following 24 and

48 hours. The proposed system takes the input data and the modelling results and summarizes

all of the information graphically for interpretation. The system could be modified to work

with different input data and at different temporal and geographic scales. Here, we simulated

completion of the following steps every morning:

1. At 05:00 PST the BlueSky smoke forecasts became available. We extracted the population-

weighted mean forecasted PM2.5 concentrations for each hour in each of the 41 LHAs over

the next 48 hours. Then, the hourly data were averaged across the first 0-24 hour period and

the second 25-48 hour period to generate daily mean smoke forecasts for each LHA.

2. The daily mean smoke forecasts for each LHA were classified as low, moderate, or high

smoke to improve visual interpretation; the following PM2.5 thresholds were used: low was

less than 25 μg/m3; moderate was between 25 and 60 μg/m3; and high was greater than 60

μg/m3. These values were chosen because they are consistent with thresholds used for the

Air Quality Health Index in BC.

3. For each of the 0-24 hour and 25-48 hour forecast periods, the maximum daily mean smoke

forecast was identified from the 41 LHAs in the study area. These two values were fed into

the BCAPS system to produce forecasted health outcomes for the entire region, expressed

as prediction intervals. The maximum values were chosen because smoke forecasts are

inherently uncertain, and health forecasts should be designed to include the worst case

scenario.
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Once the necessary historical data have been collated, this entire process can be automated,

including retrieval of the BlueSky forecasts from the server, generation of the health forecasts

and prediction intervals, and production of a summary report that could be disseminated to the

relevant public health professionals early each morning.

5.5.6 Estimating the potential impacts of public health interventions

Both of the respiratory health indicators suggested impacts on chronic lung diseases such as

asthma and COPD, which affect at least 6.2% and 2.3% of the BC population, respectively [20].

Given a scenario in which public health professionals receive a daily report about the potential

population health impacts of expected smoke exposures, we assume that they would take action

to start mitigating the risks in advance of the exposures, because they would have information

on expected morbidities ahead of time. As such, we estimated the impacts of hypothetical public

health interventions based on the timing of their initiation, their estimated exposure reduction, and

their effectiveness. The latter is defined as the actual proportion of a population that experiences

risk reduction, which is the product of adherence to the intervention and the efficacy of the

intervention [136]. Specifically, we estimated the decrease in excess morbidity counts for each

health outcome using the following steps for each day of the study period:

1. The expected count for each day was estimated as the mean count for that outcome on that

day-of -week (e.g. all Tuesdays) during the selected low exposure period of May 1 to July 1,

2015.

2. The number of excess salbutamol dispensations and physician visits was calculated by

subtracting the expected counts from the observed counts for each day.

3. The number of potentially preventable excess dispensations and visits was calculated for

different levels of effectiveness, ranging from 10% to 90%, and for different timings of

initiation.

4. The estimated potentially preventable excess dispensations and visits were compared for

three intervention scenarios:

(a) No intervention;
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(b) A retrospective surveillance system (BCAMS) triggering public health intervention

when an increase in morbidity is observed in conjunction with increased air pollution;

(c) A prospective surveillance and prediction system (BCAPS) triggering public health

interventions when a increase in morbidity is forecasted based on historical air pollution

and morbidity and forecasted air pollution.

Research on the effectiveness of interventions is sparse, but the available evidence suggests

that adherence to public health recommendations is higher among vulnerable groups, such as

asthmatics [61]. Furthermore, there is some evidence that recommendations to stay indoors, limit

physical activity, use air conditioners and air filters are associated with decreased negative health

effects [137], whereas recommendations to use masks are generally unsupported [138]. Evacuation

for vulnerable populations or entire populations may be recommended in extreme cases, either

by mandate or financial incentives[68, 39, 61]. The small amount of research on evacuations has

shown limited effectiveness, and is associated with considerable logistic and economic challenges

[68, 64]. Simple recommendations, such as remaining indoors and limiting physical activity, may

have higher adherence and faster uptake than more complex recommendations, such a purchasing

an air cleaner. However, personal air cleaners have been recognized and recommended as one

of the best interventions that public health professional can recommend for vulnerable people

sheltering in place [131].

5.6 Results

5.6.1 Summary of smoke exposure

Smoke had a negligible impact on air quality in the entire study area From May 1 to July 2 2015.

The mean daily OSSEM PM2.5 concentration across the 41 LHAs during this low-exposure period

was 6.3 μg/m3 and the maximum was 11.6 μg/m3. During the July 3 to 10 study period, the

concentrations remained low on July 3 and 4 at 6.8 μg/m3 and 8.3 μg/m3 respectively, but began

to increase between July 5 to 10 with a mean of 33.9 μg/m3 and a maximum of 61.7 μg/m3 on July

6 (Figure 5–3).

On July 5 the observed OSSEM PM2.5 concentration rose to 15.2 μg/m3 as smoke from

wildfires burning near Squamish began to sweep across southern BC. The BlueSky forecast
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Figure 5–3: Time series showing the daily observed particulate matter (PM2.5) concentrations from the
Optimized Statistical Smoke Exposure Model (OSSEM) along with the observed cumulative counts of
salbutamol dispensations and asthma-related physician visits. The highlighted portion is the period of
high exposure from July 5 through 10.

from the morning of July 5 incorrectly predicted low concentrations throughout the province for

the remainder of July 5 and, notably, for July 6 (Figure 5–4). However, the average observed

concentration on July 6 was 61.7 μg/m3, which was the highest for this geographic area during the

entire wildfire season, at approximately ten times background concentrations. On the mornings of

July 6, 7, and 8, BlueSky correctly forecasted high smoke for the following 24-hr and 48-hr periods.

On the morning of July 9, BlueSky correctly forecasted high concentrations for that day, with

moderate concentrations for the following day (Figure 5–4). Observed concentrations remained

above 25μg/m3 until July 10, when they decreased towards background levels (Figure 5–3).

5.6.2 Summary of respiratory health indicators

The mean daily counts of salbutamol dispensations and physician visits during the low exposure

period of May 1 to July 1 2015 were 1,038 and 405, respectively. During the high exposure

period the mean daily counts were 1,399 salbutamol dispensations and 592 physician visits. The

highest peak of each indicator occurred on Monday July 6, coinciding with peak observed PM2.5

concentrations (Figure 5–3). Both salbutamol dispensations and physician visits exhibit strong

day-of-week patterns, with the highest counts often observed on Mondays (Figure 5–3). Even

so, the counts for both indicators on Monday July 6 were considerably elevated (1.7-fold for
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Figure 5–4: Histograms of the BlueSky 24-hour and 48-hour smoke forecasts at 05:00 each morning (right
axis) for the following 0-24 and 25-48 hour periods. These are the distributions of the 24-hour concentrations
for the 41 LHAs in the study area. Histogram colour indicates the severity of PM2.5 concentrations with low
hourly maximums < 25 μg/m3, moderate hourly maximums between 25 and 60 μg/m3, and high hourly
maximums > 60 μg/m3. The vertical line indicates the observed 24-hour mean PM2.5 concentrations from
the Optimized Statistical Smoke Exposure Model (OSSEM) for the study period on the forecast date.
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dispensations, 1.8-fold for visits) above the average counts for Mondays within the low exposure

period (Table 5–1).

Table 5–1: Daily counts for each respiratory health indicator during the study period, and percent
difference when compared with expected counts for same day of week during the May 1 - July 1 2015
low exposure period.

Dispensations Physician visits

Observed count % Difference from expected count Observed count % Difference from expected count

Fri, July 3 1193 -3 401 -16
Sat, July 4 637 -6 178 -11
Sun, July 5 522 27 108 9
Mon, July 6 2192 72 926 78
Tue, July 7 1628 23 741 33
Wed, July 8 1478 29 654 39
Thu, July 9 1353 10 593 15
Fri, July 10 1218 -1 527 10

Excess1 1785 908

1 Excess during high exposure period (July 5 to 10)

5.6.3 Health forecasts

All observed counts for salbutamol dispensations were contained within the 95% prediction

intervals from the health outcomes forecasting model, with the exception of the forecasted values

for July 6 (Figure 5–5). On the morning of July 5, the 25-48 hour health forecast interval for July

6 did not contain the true value, and neither did the 0-24 hour health forecast produced on the

morning of July 6. Lower accuracy for this day was expected, given that smoke forecasts did not

predict the peak PM2.5 concentrations that occurred on July 6, when both of the health indicator

counts also peaked. Generally, the observed counts were close to or in excess of the upper bounds

of the 95% prediction interval on days when the smoke forecasts predicted higher exposures when

compared with day when lower exposures were predicted (Figure 5–5).

Several of the 95% prediction intervals for the asthma-related physician visits on July 6, 7,

and 8 did not include the observed counts, although most were borderline (Figure 5–5). Once

again, the July 5 and July 6 morning health forecasts for July 6 both underestimated the impacts

because smoke forecasts were low. The health forecasts performed better on July 7 and 8, when the

smoke forecasts more accurately predicted an increase in PM2.5 that correlated well with observed
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Figure 5–5: The 0-24 hour and 25-48 hour prediction intervals and observed counts for the entire study
area are shown for each day of the study period. The y-axis is omitted because the absolute frequency is a
function of the number of posterior samples taken to construct the prediction interval, and therefore only
meaningful in terms of relative frequency. The background of each histogram is coloured to indicate the
severity of the smoke forecast used to produce the health forecast.

concentrations.

5.7 Generating wildfire smoke surveillance reports

On any given day during the wildfire season, morning smoke forecasts generally become available

at 05:00. An automated surveillance summary report could be produced as soon as the smoke

forecasts are published. A surveillance report that shows the anticipated air quality impacts

and their corresponding health impacts could reduce the volume of disparate data that public

health professionals are currently required to consult, and it could transform those data into more

actionable information (Figure 5–6).

5.7.1 Potential impact of interventions

We estimated the total number of excess morbidities (sum of salbutamol dispensations and

physician visits) that could have been prevented under three intervention scenarios (Table 5–2):

(a) Using no surveillance, monitoring system or interventions
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Figure 5–6: An example summary report that could be automatically generated as soon as the morning
smoke forecast is published. The entire process for generating such reports can be automated.
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(b) Using BCAMS to detect elevated morbidities retrospectively

(c) Using BCAPS to forecast anticipated elevated morbidities prospectively

Naturally, no excess morbidities would have been prevented if no action had been taken. The

foresight provided by BCAPS could have prevented twice as many overall excess morbidity

counts compared to a retrospective monitoring system like BCAMS, because interventions would

have been triggered on the morning of July 6 rather than on July 7. An intervention with 50%

effectiveness initiated on July 6 by BCAPS could have prevented more combined health indicator

counts than even an intervention with 100% effectiveness initiated on July 7 by BCAMS.

Table 5–2: Estimated number (percent) of excess dispensations and physician visits that could have been
prevented had the a surveillance system been used to trigger an intervention of a given effectiveness. There
were a total of 908 excess health outcome indicators during the high exposure period of July 5 to July 10.
BCAPS-based interventions could have occurred 24 hours earlier than with BCAMS.

100% effective 75% effective 50% effective 25% effective

None 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Dispensations BCAMS 760 (43%) 570 (32%) 380 (21%) 190 (11%)

BCAPS 1675 (94%) 1256 (70%) 837.5 (47%) 419 (23%)

None 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Visits BCAMS 494 (54%) 370.5 (41%) 247 (27%) 124 (14%)

BCAPS 899 (99%) 674 (74%) 450 (50%) 225 (25%)

5.8 Discussion

In areas seasonally affected by wildfire smoke, surveillance programs are under development

to monitor the population health response to smoky conditions. Data collection and analysis

must be timely to provide public health authorities with actionable information about an acute

environmental exposure. The data that are available and appropriate for smoke surveillance

purposes are generally noisy, such as time series of healthcare usage counts, and prone to

misclassifying exposure, such as air pollution estimates. Here, we have proposed and evaluated

an integrated surveillance system for the public health impacts of wildfire smoke.

Using historical data, smoke forecasts, and the methodological framework proposed by

Morrison et al., we demonstrated that it would have been possible to accurately forecast two

health indicators, counts of salbutamol dispensations and asthma-related physician visits, during

a massive wildfire smoke exposure in the province of BC [112]. Although further research on

interventions in different settings is needed, we explored the potential for forecasts of health
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indicators from the proposed BCAPS system to trigger public health action to mitigate health

effects of wildfire smoke exposure. The existing surveillance system, BCAMS, would have

retrospectively shown a concurrent increase in air pollution and asthma-related health indicators,

but intervention after that point would have prevented less than half of the morbidity, even

with an intervention that was 100% effective. The BCAPS approach proposed here builds upon

the BCAMS system by integrating historic healthcare utilization data with smoke predictions

to forecast the likely health impacts of smoky conditions. This foresight could have resulted

in proactive intervention on July 6, and prevented nearly two thirds of health care utilization

with an intervention that was only 65% effective. We found that the accuracy of the health

forecasts was heavily dependent on the accuracy of the smoke forecasts. Overall, we found that

the timeliness of the intervention was more important than effectiveness of the intervention. A

less effective intervention with faster uptake would have reduced morbidity more than a highly

effective delayed uptake. These results highlight the critical importance of reliable smoke forecasts

for public health and other applications.

The statistical approach used here was an autoregressive latent process model that

simultaneously forecasts two health indicators against a common exposure. The motivation for

using such an approach is noisiness of the health indicator data. To avoid an excessive number of

false alerts in the predictions, the models smooth towards the historical means of both indicators,

which has considerable benefits when working syndromic surveillance data. For example, if one

indicator rose by chance but the other did not, both of the forecasted health indicators would be

smoothed towards the mean unless the variation was sustained or the other health indicator was

also increased. Because healthcare utilization data can be noisy, it is beneficial to rely on multiple

streams of data, rather than placing too much importance on a single health indicator [139, 140].

However, there are some disadvantages to this approach. The model may be slower to adjust

to sudden aberrations in the exposure or the outcomes, which may partly explain why the first

day of high exposure was less accurately predicted than the subsequent days. Although we used

the worst case scenario from the smoke forecasts, the training data did not contain any exposure

estimates beyond a concentration of 65μg/m3 because this event was unprecedented in the study

area. For this reason, the prediction intervals for both health indicators were shifted, but not to the

extreme observed values. However, if there had been periods in the training data with very high
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observed PM2.5 concentrations and corresponding high health outcome counts, the subsequent

prediction intervals would likely have been more accurate. The model also generates prediction

interval distributions, which provide more information than a single predicted value. Given the

model performance described here, decision makers should consider the upper bounds of the

prediction interval as the most likely estimate when PM2.5 values are predicted to be extreme. If

the methodological framework proposed here were integrated into an explicit decision-making

framework, an upper quantile of the prediction intervals could be used to calibrate the signals

based on desired levels of sensitivity and specificity.

We made several assumptions, particularly regarding data availability and interventions.

Scientists at the BCCDC are engaged in research to design a proactive surveillance system based on

the two health indicators used here. However, the salbutamol dispensations data are not currently

available in real time, and further administrative work is needed to facilitate a daily feed. Similarly,

the physician visits data are populated as clinicians submit their billings to MSP, meaning that the

daily feed only includes complete information for those who bill on a daily basis. The current

implementation of BCAMS typically uses all billings submitted within the past five days, though

it can be run for daily billings alone. Regardless, any single health indicator has strengths and

limitations, such as the availability or timeliness of the data and the severity of the symptoms it

is used to assess. The use of multiple health indicators can be used to overcome the limitations of

any single indicator, and adding additional data could be beneficial to the performance of BCAPS.

For example, ambulance dispatch data are theoretically available in real-time, and others have

shown an association with smoke exposures [141]. The methodological approach here would

easily extend to include such additional health indicators. There may be computational challenges

as the number indicators grows, but they should be surmountable given the efficient Bayesian

approach using INLA approximations and modern parallel computing.

Improving smoke forecasts for the purposes epidemiologic exposure assessment and public

health surveillance is an active area of research [40]. The latent process model used here assumes

some non-differential misclassification of exposure, but a more sophisticated approach could be

used to perform spatial interpolations of the historical OSSEM PM2.5 estimates and smoke forecasts

within the BCAPS system. Given the hierarchical framework of the health forecasting model, this is

methodologically feasible [112]. The benefit would be to propagate the exposure uncertainty more
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realistically through to the final health indicator predictions, while still providing estimated PM2.5

for external analyses. However, the computational challenges may not be easily addressed. In the

medium-term, improved smoke forecasts can easily be integrated into the existing system, which

would improve the performance of the health forecasts. This could include hybrid estimates that

combine smoke forecasts with observed data [40], or ensemble estimates from multiple forecast

models. For example, the FireWork smoke forecasting system is also operational across Canada

[101], but it was excluded from these analyses because of technical concerns during the 2015 event

in BC.

The research and evidence on interventions to mitigate the exposure of wildfire smoke

are still very limited. The estimates shown are intended to provide relativistic information on

the potential utility and impact of different scenarios when informed by the BCAPS surveillance

system. In reality, no intervention would be so systematically adopted by a large population

across space and time. More research on interventions will be key in this area, and having

established surveillance systems that monitor health indicators, such as BCAMS, will facilitate

the retrospective evaluation of interventions. When better information on the efficacy, uptake, and

timeliness of interventions is available, the prospective BCAPS framework proposed here could

be expanded to include information on the expected impacts of different scenarios. Future work

should also more carefully explore the thresholds at which interventions would be triggered and

the sensitivity and specificity of possible thresholds. Different public health settings may have

different tolerances for false alerts (higher sensitivity) or for failure to alert (higher specificity),

and these decisions should be made within the context of the cost and effectiveness of available

interventions.

Wildfire smoke is an increasingly important public health challenge, and environmental

surveillance research must continue to facilitate evidence-based decision making to mitigate the

harmful effects of smoke on populations. A multi-pronged approach is needed to improve the

science on all sides, from exposure assessment and epidemiologic studies to methodological

advances in surveillance across space and time and research assessing the effectiveness of potential

interventions.
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5.9 Appendix: Sensitivity analyses of interventions

There was an estimated excess of 1785 salbutamol dispensations during the high exposure period

of July 5 to 10. If a moderately effective (40%) intervention had been implemented on the morning

of July 6, approximately 38% of excess dispensations could have been prevented. To achieve the

same reduction in excess dispensations for an intervention that did not begin until the July 7,

the intervention would have to be extremely effective (90%). If action had not been taken until

July 8, an intervention with 90% effectiveness could have reduced excess dispensations by only

23%. Similarly, there was an estimated excess of 908 physician visits during high exposure period.

Because physician visits had a higher proportion of excess counts occurring on Sunday July 5, the

potential impact of intervening on or after July 6 was lower than for dispensations. If a moderately

effective (40%) intervention had been implemented on the morning of July 6, approximately 22%

of excess cumulative physician visits could have been prevented. To achieve the same reduction

in excess dispensations for an intervention that did not begin until July 7, the intervention would

have to be highly effective (60-70%). If action had not been taken until July 8, a very effective

intervention (90%) could have reduced excess dispensations by only 13%. For both outcomes,

intervening on or after Thursday July 9 would have had a negligible reduction in excess counts.

Table 5–3: Dispensations: Percentage of excess indicator counts by effectiveness and date of intervention.

10% 20% 30% 40% 50% 60% 70% 80% 90%

Date of intervention
Sun, July 5 9.9 19.8 29.7 39.6 49.6 59.4 69.3 79.2 89.1

Mon, July 6 5.4 10.9 16.3 21.8 27.2 32.6 38.1 43.5 49
Tue, July 7 3.4 6.8 10.4 13.8 17.2 20.6 24 27.5 30.9

Wed, July 8 1.4 2.8 4.2 5.6 7 8.4 9.8 11.2 12.6
Thu, July 9 0.6 1.1 1.5 2.1 2.6 3.2 3.7 4.2 4.7
Fri, July 10 0 0 0 0 0 0 0 0 0

Table 5–4: Physician visits: percentage of excess indicator counts by effectiveness and date of intervention.

10% 20% 30% 40% 50% 60% 70% 80% 90%

Date of intervention
Sun, July 5 10 20.1 30.1 40.2 50.3 60.3 70.4 80.4 90.5

Mon, July 6 9.4 18.9 28.3 37.8 47.2 56.6 66.1 75.5 84.9
Tue, July 7 4.3 8.6 12.9 17.3 21.6 25.8 30.1 34.5 38.8

Wed, July 8 2.6 5.2 7.8 10.4 12.9 15.5 18.1 20.7 23.3
Thu, July 9 0.7 1.4 2.1 2.9 3.6 4.3 5 5.7 6.4
Fri, July 10 0 0 0 0 0 0 0 0 0
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6 Discussion

6.1 Motivation

The changing global climate is having direct and indirect impacts on wildfire seasons. In BC,

longer, dryer summers have led to fires of increasing size, frequency, and severity [22]. Warmer

winters in the early 1990’s resulted in an epidemic of mountain pine beetles, severely damaging the

provincial forests and creating a high risk environment for large wildfires [142]. While wildfires

only directly threaten a small number of individuals each season, wildfire smoke can travel

hundreds or even thousands of kilometres away from the fire origin. Consequently, wildfire smoke

is an increasingly important issue in public health.

The epidemiologic research on wildfire smoke has shown that, like exposure to other

sources of PM2.5, acute exposures to high levels of smoke are strongly associated with increases

in respiratory health effects [9, 3]. When air quality is poor due to wildfire smoke, public

health systems are called upon to make recommendations for public safety. The limited evidence

necessary to make such recommendations has been repeatedly identified as a challenge in the

academic and government literature [42, 7, 65]. There have been calls for more research on the

effectiveness of interventions and on the need for surveillance to inform evidence-based decision

making.

In areas seasonally affected by wildfire smoke, such as BC, surveillance programs to monitor

the public health response to smoky conditions are being developed. Monitoring population

response to acute, extreme, and widespread air pollution events requires timely data collection

and analysis. The data that are available and appropriate for surveillance purposes are generally

noisy, such as healthcare utilization data, and error-prone, such as discrete air pollution monitors

across a large geographic area.

6.2 Summary of contributions

The goal of this thesis was to address the methodological research gap for the development

of a cohesive surveillance framework for acute environmental exposures. Through a series of
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three manuscripts, I sought to propose, apply, and evaluate a methodological framework that

integrates multiple data sources and forecasts the anticipated health effects of observed or expected

air pollution concentrations. Wildfire smoke surveillance was used as a motivating case study

and application area throughout the work. Many of the research findings may be relevant to

surveillance of other types of acute environmental exposures, such as water contamination or

extreme heat events.

In the first manuscript (Chapter 3), I proposed methods to forecast two health outcomes

against a common latent exposure. My objectives were to 1) identify a statistical approach

that would be appropriate for the characteristics of the exposure and outcome data typically

encountered in EPHS, 2) be flexible so that new exposure or outcome data could be readily

accommodated, and 3) address the computational constraints of requiring an ‘online’ daily

surveillance system. Given the difficulty of measuring air pollution across large geographic

areas and using those data to assign population exposure estimates, some amount of error is

expected. The latent process model I proposed assumed some non-differential measurement

error for the exposure (PM2.5). Additionally, my proposed model was bivariate, with two health

indicators modelled and forecasted simultaneously against this common exposure. This allowed

consideration of the correlation between the two outcomes, which improved forecast performance.

In evaluating the bivariate model, I found that it was more statistically stable in terms of estimating

reasonable effect sizes, and appeared to be equivalent or superior to the univariate models in terms

of forecast accuracy and precision. The multivariate structure obtained by mutual dependency

on the latent process was statistically simpler than placing the multivariate structure on, for

example, the parameters between the exposure and the outcomes. However, the proposed model

was not computationally efficient enough to use readily available Marcov chain Monte Carlo

(MCMC) software for implementation. Therefore, I demonstrated how the proposed model could

be implemented using integrated nested Laplace approximations (INLA), a new approach to

approximate Bayesian inference. The final bivariate model could be extended to include, for

example, additional outcomes, additional predictors, more sophisticated exposure models, and

spatial smoothing.

In the second manuscript (Chapter 4), I explored the challenges of using an EPHS system

across an entire state or province, when data will likely be aggregated by some geographic unit.
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Some communities may have very small absolute populations, but the public health concern of

wildfire smoke exposure may still be significant, given that entire populations can be exposed.

Many forecasting models will suffer from unstable prediction variance when populations and

health outcome counts are consistently small across a time series, severely limiting or even

eliminating the utility of a forecasting approach to surveillance. While it is possible to group

the geographic units to address this challenge, information will be lost in the aggregation, and

less precise information will be gleaned from the surveillance system. As an alternative, I

added spatial smoothing to the previously proposed bivariate latent model. This stabilized the

prediction variance in smaller regions, at the cost of a small loss of accuracy. In regions with larger

populations, the smoothing was generally not beneficial or necessary. The decision of whether to

include spatial smoothing can be made within the context of the data characteristics for a set of

administrative regions, such as the population sizes, the geographic sizes, the distribution of the

population at risk, and the spatial precision of the exposure measurements available.

In the third manuscript (Chapter 5), I described how the model proposed in the Chapter 3

could be used as a real-time surveillance system for public health decision making. I did this in

the form of a retrospective case study in southwestern British Columbia, which was affected by an

extreme smoke event in July 2015. The BCAPS system was used to produce daily 24-hour and 48-

hour forecasts from July 3 to July 10, as if the system were being used in real-time by public health

authorities during the event. The BCAPS system could have prevented twice as many excess health

indicator counts had it been used to guide public health interventions, as compared to the existing

BCAMS system. I found that the performance of the health indicators forecasts was dependent on

the performance of the smoke exposure forecasts (BlueSky). In brief, forecasted health indicators

counts were low when the smoke forecasting system did not predict the occurrence of a smoke

event. Syndromic surveillance data, such as the health indicators of salbutamol dispensations

and physician visits used in this thesis, tend to be noisy and contain artefacts, such as day of

the week effects. The proposed modelling framework seeks to reduce excessive false ‘alerts’ in

the predicted health indicators by smoothing the two time series towards each other and towards

the historical mean. This is beneficial to avoid sudden increases in predicted indicators due to

isolated, chance variations in the exposure. However, the disadvantage of this more conservative

smoothing approach is that the model is slower to adjust to sudden aberrations in the exposures
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or outcomes. I found that the prediction interval distributions were fairly useful for capturing

the true future observed value. If the methodological framework proposed here were integrated

into a decision making framework, an upper quantile of the prediction intervals could be used to

calibrate the signals based on desired levels of sensitivity and specificity.

6.3 Challenges and opportunities for further research

6.3.1 Modelling and computation

There are many ways to model and forecast time series data. In this thesis, my approach was to

propose a methodological framework that started with a simple model, but was flexible enough

to accommodate changes in the characteristics of the exposure or outcome data. For example,

the bivariate approach has the benefit of borrowing strength from two correlated outcomes, and

allows additional outcomes to be included as they become available. The latent exposure approach

assumes some non-differential measurement error in the air pollution estimates, but can be made

more sophisticated as advances in exposure modelling occur. The spatial smoothing described

in Chapter 4 is another example of the benefit of flexible modelling approaches, so that the

proposed methodological framework can be used even in areas with small populations. The focus

on simplicity and flexibility was an ongoing trade-off between complexity and computational

constraints. In Chapter 5, providing a single set of forecasts per day only required approximately

15 minutes to run. However, even with the approximate Bayesian inference implementation,

computation was a challenge in evaluation of the proposed approach in Chapters 3 and 4, because

the models needed to be re-fit for each forecast day in the simulation or in the forecast horizon to

obtain summary measures, such as mean absolute percentage errors (MAPE).

The computation time for producing a set of forecasts depended on the size of the forecast

window, which is the amount of ‘training data’ included in the model. It took approximately 15

minutes to produce one day of forecasts for one geographic region in Chapter 3 and 4. In Chapter

3, there were 27 simulation scenarios each of which were run 200 times, taking approximately two

days per scenario. Because of these computational constraints, the simulations from Chapter 3

were fairly simple, primarily to assess the impact of the correlation parameter on the performance,

and only 200 simulations were run per scenario. In the Chapter 4, the analyses replicated for
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each of the 89 geographic regions in the study area, first for the temporal model and then for the

spatio-temporal model. The spatio-temporal model was actually more computationally efficient,

because fewer parameters were estimated, which is also a limitation of spatial smoothing using a

conditional autoregressive random effect, because it assumes a common association between the

exposure and health indicators throughout the entire geographic region. There are alternatives

that would allow for unique relative risks between the exposure and outcome in each geographic

region while still providing spatial smoothing, such as spatially varying coefficient models [143].

However, exploratory analyses found this approach to be computationally unfeasible in the British

Columbia example used here.

The analyses for Chapter 4 were implemented using a high performance computing system

at the University of Bath, making use of a number of high memory nodes (including two nodes

with 512GB of memory). Even so, an initial approach using the default method for selecting initial

values for the optimization for each day independently proved to be computationally demanding,

as the Newton-Raphson optimizer had to restart to produce the forecast each day when a new

model was fit. Using the posterior values from the previous day to initialize the optimization for

upcoming forecast provided a solution for days on which convergence was not achieved. Overall,

allowing this learning between days resulted in marked improvements in efficiency. Future work

could aim to take further advantage of parallel computing and evaluate the performance of the

forecasting models in greater detail, such as the impact of the correlation between the two health

indicators.

6.3.2 Exposure assessment

I used modelled estimates of air pollution estimated by OSSEM throughout this thesis, as they

provided better information and at a more precise spatial scale than simply assuming air quality

monitors were representative of a large geographic area [37, 35]. The BCAPS system assumed

that these measurements were made with non-differential measurement error but were otherwise

correct. This is an overly simplistic approach, but it made a first step towards accounting for the

measurement error challenges in this type of research. Ideally, the exposure and health indicator

modelling would be performed within the same hierarchical model, which would more honestly

propagate the error throughout the forecasts. Bayesian inference using INLA would also facilitate
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use of their stochastic partial differential equation (SPDE) approach to estimate a continuous latent

field measured with error over a time at a large number of point-reference locations [144]. The

latent field does not have the same natural Gaussian Markov random field (GMRF) structure as

would be expected when aggregate spatial data are being considered. The SPDE approach instead

starts with a Gaussian field and induces a GMRF over a continuous domain to which the usual

INLA assumptions can be applied, as well as the assumption that the field must have a Matérn

covariance structure [144]. The usual approach to computation for this type of Gaussian field

model would be impossible, but making the assumptions required to model the latent field as a

GMRF allows the INLA approach to be used for approximate inference. This approach has been

used to estimate air pollution at a fine spatial scale across large geographic areas [145, 146], and

integrating this approach into the forecasting of health indicators would be an exciting avenue for

further research.

In the short term, however, integrating daily exposure modelling using SPDEs would

raise additional computational challenges, and may not be practically feasible. In the meantime,

research on exposure modelling is ongoing, and it was recently reported that combining available

exposure measurements for wildfire smoke can lead to better overall accuracy than relying on a

single exposure model [40].

6.3.3 Monitoring health indicators

Two respiratory health indicators are currently available for surveillance of wildfire smoke in BC,

and this may be expanded to include additional health outcomes as they become available. The

practical issues around securing timely collection of and access to health data will need to be

addressed for the use of this system within the BCCDC and for any public health setting that

may wish to apply such methods. Based on exploratory data analyses and the desire to reduce

model complexity where possible, I used a first-order autoregressive model for the exposure,

with no lag on the exposure. As additional data become available, or if my approach were to

be applied in different settings, further exploration of these assumptions should be performed.

Computational challenges may arise, but they should be surmountable given the approximate

approach to Bayesian inference using INLA, and the availability of parallel computing systems.
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6.3.4 Interventions research gap

Perhaps the most urgent research gap in public health and wildfire smoke is on the effectiveness

of potentially protective interventions. Stakeholders have expressed the ongoing need for clear

evidence about different interventions with respect to efficacy, uptake, and timeliness. The ongoing

collection of surveillance data will facilitate the retrospective evaluation of interventions such

as public health messaging, deployment of portable air cleaners [131], and evacuations under

the most extreme conditions [68]. Future work could potentially take advantage of the quasi-

experiment designs that would exploit the natural experiments that occur with smoky conditions,

such as pre-post designs, difference-in-differences, or interrupted time series [147, 148]. Until more

research clearly shows the best route forward, it will be difficult for public health authorities to

guide definitive decision making.

6.4 Conclusion

As the earth warms and land use patterns shift, harmful environmental exposures such as heat

waves and episodes of wildfire smoke are becoming more frequent and severe. At this time

EPHS is an emerging field, and even the most innovative air pollution surveillance systems use

separate data streams to track exposures and outcomes. There is a pressing need to integrate these

data to better inform public health practice through more comprehensive forecasting, alerting,

and decision making tools. While there have been repeated calls for improvement of EPHS

systems, progress requires collaboration between those embedded in public health practice and

methodologists with the necessary expertise to extract maximum benefit from large, noisy, and

correlated datasets.

Given the multidisciplinary nature of this topic, my work was supported by three

collaborators who each played a crucial role in the conception and execution of this dissertation.

Dr. David Buckeridge is the director of the Surveillance Laboratory at McGill University, and his

research program is focused on methodological development and evaluation of applied disease

surveillance systems. Dr. Gavin Shaddick at the University of Bath is a Bayesian statistician

who has published broadly in environmental epidemiology and spatial-temporal statistics. Dr.

Sarah Henderson a senior scientist at the BCCDC, and she oversees the development and
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implementation of a wide range of applied EPHS systems, including the BCAMS system for

wildfire smoke. For my dissertation, I sought to outline a methodological framework for wildfire

smoke surveillance that is computationally feasible, exploits the characteristics of the available

data, and can be easily modified and adapted to her applications as research in this area progresses.

Drs. Buckeridge and Shaddick supervised and consulted on the methodological development and

computational challenges. Dr. Henderson supervised and consulted on the practical aspects of

applying such a framework within the applied public health setting.

Dr. Henderson intends to incorporate the framework proposed in this thesis into the existing

BCAMS surveillance system for wildfire smoke in time for the 2017 wildfire season. As well, I will

develop the modelling framework into an open-source R package with visualization tools, making

it more user-friendly for those engaged in environmental public health surveillance.
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