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interest. 40-44, 50, 122, 129, 132, 140, 141, 151, 152, 155, 167, 169, 170, 175, 188, 192, 194-

197, 209, 211, 242-244 

yielding compliance    The proportion of vehicles that yield to pedestrians among the 

interactions where vehicles that are physically able to yield to crossing pedestrians. 7, 11, 44, 50, 

103, 105, 106, 116, 118, 119, 122, 129, 131-135, 138, 140, 143, 151-156, 167, 169, 170, 175, 

179, 180, 183, 188, 192-197, 202, 203, 208-210, 242-244  
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ABSTRACT 

Pedestrian safety is a topic that concerns everyone. Not only does it concern researchers and 

practitioners who dedicate themselves to improve road safety, it also concerns all road users, as 

everyone is a pedestrian at some point in the transportation system. The high frequency of 

pedestrian crash injuries and the great possibility of fatal consequences have made pedestrian 

safety a great focus in road safety research. Pedestrian safety becomes even more of a problem at 

non-signalized locations when compared to signalized crosswalk locations, due to the absence of 

traffic lights controlling the traffic. Different methods have been proposed and empirical studies 

have been conducted to investigate pedestrian safety. Despite the extensive literature on 

investigating pedestrian safety at non-signalized crosswalk locations, much remains to be done, 

especially in studying interactions between the pedestrian and vehicles and their behavior during 

those interactions. Therefore, this dissertation aims to improve data collection methods for 

pedestrian safety analysis and to develop a methodological framework to investigate pedestrian 

safety at non-signalized crosswalk locations and implement such a framework using video data 

collected from different crosswalk locations with the help from vision-based tracking technology. 

The work of the dissertation started with reviewing methodologies and data collection 

methods in previous studies. Methods used in past studies were classified into five different 

approaches. These are the crash data approach and four surrogate safety approaches, namely, the 

traffic data approach, the conflict event approach, the behavioral analysis approach, and the 

perception analysis approach. Issues in the use of terms and definitions, methodologies applied, 

and data used in previous studies were summarized. Some preliminary data collection work had 

indicated the limitations of using regular visible spectrum cameras in low visibility conditions. 

To overcome the limitations that regular visible spectrum cameras have encountered during the 

data collection process, the thermal camera was introduced and its performance in road user 

detection, classification, and speed measurement was validated through its comparison to the use 

of the regular camera. Validation results showed an evidently better performance from thermal 

camera for low visibility and shadow conditions, particularly when tracking pedestrians and 
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cyclists. However, the regular camera narrowly outperformed the thermal camera during daytime. 

For speed measurements, the thermal camera was consistently more accurate than the regular 

camera at daytime and nighttime. To evaluate existing measures in investigating pedestrian-

vehicle interactions at non-signalized crosswalk locations, a study was conducted to investigate 

pedestrian safety at nighttime. Although, the methodology applied in the study performed well in 

looking at pedestrian-vehicle interactions, further limitations of using safety measure methods 

were discovered upon the completion of the study. A novel framework, which evaluates 

pedestrian safety by looking at the interaction between the pedestrian and the vehicle, and their 

behavior during the interactions, was proposed and illustrated through a case study. The 

framework was further tested through a study to compare the performance of three main non-

signalized crosswalk types, including uncontrolled, marked, and stop sign controlled crosswalks, 

on pedestrian safety using data collected from different sites in Montreal. Among the three types 

of non-signalized crosswalks, stop sign controlled crosswalks had the best performance in 

protecting pedestrians while uncontrolled crosswalks performed the worst. To explore the 

extensive applications of the framework, the investigation of cyclist-pedestrian interactions was 

introduced as it has been a major road safety problem but underestimated in previous research. 

Marked crosswalks alone fail to protect pedestrians from passing cyclists. Besides, pedestrian 

safety at crossings on cycling facilities with downhill grades was found to be a great issue.  

In brief, the dissertation will: 1) provide a comprehensive literature review that acts as a 

practical reference to investigating pedestrian safety at non-signalized crosswalk locations, 2) 

introduce a promising alternative, the use of the thermal camera, to overcome the limitations of 

using the visible spectrum camera for automated traffic data collection, 3) propose a new 

framework that describes pedestrian-vehicle interactions more precisely, compared to previous 

studies. This framework is promising for different purposes in road safety on various topics, such 

as the analysis of interactions between different types of road users, the simulation of road user 

interactions, validations of safety treatments, and the performance evaluations of autonomous 

vehicles.  
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RÉSUMÉ 

La sécurité des piétons est un sujet qui concerne tout le monde, non seulement les chercheurs et 

les praticiens qui se consacrent à l'amélioration de la sécurité routière, elle concerne également 

tous les usagers de la route, car chacun est un piéton dans le système de transport. La fréquence 

élevée des accidents impliquant des piétons et le grand risque de conséquences mortelles ont fait 

de la sécurité des piétons un élément central de la recherche sur la sécurité routière. La sécurité 

des piétons devient encore plus problématique aux emplacements non signalés, en raison de 

l'absence de feux de circulation contrôlant le trafic, par rapport aux emplacements de passages 

pour piétons signalés. Différentes méthodes de contrôle de la circulation ont été proposées et 

différentes études ont été menées pour améliorer la sécurité des piétons. Malgré la littérature 

abondante sur la sécurité des piétons aux passages pour piétons non signalés, il reste encore 

beaucoup à faire, en particulier pour étudier les interactions entre les piétons et les véhicules et 

leur comportement au cours de ces interactions. Par conséquent, cette thèse visait à améliorer les 

méthodes de collecte de données pour l'analyse de la sécurité des piétons et développer un cadre 

méthodologique pour étudier la sécurité des piétons aux emplacements de passages pour piétons 

non signalés et à mettre en œuvre un tel cadre en utilisant des données vidéo recueillies à partir 

de différents emplacements de passages pour piétons avec l'aide de la technologie de suivi basée 

sur la vision. 

Le travail de la thèse a commencé par la révision des méthodologies et des méthodes de 

collecte de données dans les études précédentes. Les méthodes utilisées dans les études 

antérieures ont été classées en cinq approches différentes, notamment l’approche par les données 

sur les accidents et quatre approches de sécurité indirectes, à savoir l’approche par les données 

du trafic, l’approche par conflit, l’approche par analyse comportementale et l’approche par 

analyse de la perception. Les problèmes d'utilisation des termes et définitions, des méthodologies 

appliquées et des données utilisées dans les études précédentes ont été résumés. Pour évaluer les 

mesures existantes en matière d’enquête sur les interactions entre piétons et véhicules aux 

emplacements de passages pour piétons non signalés, une étude a été menée sur la sécurité des 
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piétons la nuit. Certains travaux préliminaires de collecte de données avaient montré les limites 

de l’utilisation de caméras à spectre visible classiques dans des conditions de faible visibilité. 

Bien que la méthodologie appliquée dans l'étude ait donné de bons résultats en examinant les 

interactions entre piétons et véhicules, des limitations supplémentaires de l'utilisation de 

méthodes de mesure de sécurité ont été découvertes à la fin de l'étude. Pour surmonter les 

limitations rencontrées par les caméras à spectre visible classiques lors du processus de collecte 

de données, la caméra thermique a été introduite et ses performances en matière de détection, de 

classification et de mesure de la vitesse des usagers de la route ont été validées par comparaison 

avec l'utilisation de la caméra classique. Les résultats de validation ont montré que la caméra 

thermique offrait manifestement de meilleures performances dans les conditions de faible 

visibilité et d’ombre, en particulier lors du suivi des piétons et des cyclistes, bien que la caméra 

ordinaire surperforme de près la caméra thermique pendant la journée. Pour les mesures de 

vitesse, la caméra thermique était toujours plus précise que la caméra normale jour et nuit. Un 

nouveau cadre, qui apprend la sécurité des piétons en examinant l’interaction entre les piétons et 

les véhicules et leur comportement au cours des interactions, a été proposé et illustré à travers 

une étude de cas. Le cadre a ensuite été testé dans le cadre d’une étude comparant les 

performances de trois types de passages pour piétons non signalés, notamment les passages pour 

piétons incontrôlés, balisés et contrôlés par des panneaux de signalisation, en matière de sécurité 

des piétons à l’aide de données recueillies sur différents sites de Montréal. Parmi les trois types 

de passages pour piétons non signalés, les passages pour piétons contrôlés par panneaux de 

signalisation ont la meilleure performance en matière de protection des piétons, tandis que les 

passages pour piétons non contrôlés ont le pire. Pour explorer les applications étendues du cadre, 

il a été introduit pour étudier les interactions cyclistes-piétons qui constituaient un problème 

majeur de sécurité routière mais sous-estimé dans les recherches précédentes. Les passages pour 

piétons marqués ne permettent pas à eux seuls de protéger les piétons des cyclistes de passage. 

En outre, la sécurité des piétons aux passages à niveau sur des installations cyclables avec des 

pentes en descente s'est avérée être un problème majeur. 

En résumé, la thèse devrait: 1) fournir une littérature complète qui fonctionne comme une 

référence pratique pour enquêter sur la sécurité des piétons sur les passages pour piétons non 
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signalés, 2) présenter une alternative prometteuse consistant à utiliser la caméra thermique pour 

surmonter les limitations de l'utilisation du spectre visible caméra pour la collecte automatisée de 

données sur la circulation, 3) propose un nouveau cadre décrivant plus précisément les 

interactions entre piétons et véhicules par rapport aux études précédentes et offrant des 

perspectives prometteuses en matière de sécurité routière sur divers sujets tels que l’analyse des 

interactions entre différents types de routes. Utilisateurs, la simulation des interactions des 

usagers de la route, la validation des traitements de sécurité et l’évaluation des performances des 

véhicules autonomes. 
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Chapter 1 Introduction 

 

This chapter presents the introduction of the dissertation including the motivation and context of 

the research on pedestrian road safety at non-signalized crosswalks, a discussion of missing gaps 

in the literature related to this topic, the objectives of this research work, and the organization of 

the dissertation. 

1.1 MOTIVATION AND CONTEXT 

Walking is a key component of the transportation system, especially in urban areas. It is the 

transportation mode that people take most frequently every day. Walking acts either as the 

primary or as the ancillary transportation mode in one’s daily life. All road users are pedestrians 

as walking is part of any trip, regardless of whether the primary mode of this trip is walking or 

not (Peterniak, 2015). For instance, even if someone drives all the time for most of his/her daily 

trips, that person, if able-bodied, will still need to walk to and from his parking lot, walk to a 

grocery store for daily purchases, or walk across the street to get a coffee from a coffee shop on 

the other side of the street. 

As an important part of active transportation and sustainable mobility, the promotion of 

walking has increased in recent years. Walking provides individual benefits such as improved 

health, increased likelihood of social interactions, and can save both money and time for 

commuters (Public Health Agency of Canada, 2014). Additionally, there are societal benefits 

associated with walking, including reduced emissions of Greenhouse Gas (GHG) and other 

pollutants. Therefore, walking has been promoted by many cities to meet their sustainability 

goals and to improve their citizens’ quality of life. In spite of the benefits, active transportation 

also faces some challenges and barriers, road safety being one of them.  



3 

 

 Given the dimension of the issue, pedestrian safety has become a priority for many cities 

due to the increased awareness of pedestrians’ vulnerability compared to other road users. In 

2013 in the US, 14 % of total road crash fatalities were pedestrians (NHTSA, 2015). Also in 

2013 in Canada, 15.6 % of road crash fatalities were pedestrians (Transport Canada, 2015). The 

issue is even worse in developing countries. For instance, the report from WHO shows that 

around 40 % of road crash fatalities were pedestrians in countries such as Albania, Armenia, and 

Chile (WHO, 2009). Over 50 % of road crash fatalities were pedestrians in countries such as 

Bangladesh, Ethiopia, and Mozambique in 2007 (WHO, 2009). Globally, almost one out of five 

road crash fatalities were pedestrians according to data from 2010 (WHO, 2013).  

Most crashes happen when pedestrians are exposed to motorized traffic, mostly, when 

they are crossing the streets. Around 4700 pedestrians were killed and over 165000 pedestrians 

were injured when crossing the street between 1999 and 2014 in Canada (Transport Canada, 

2015). Pedestrians are vulnerable at locations with signalized and non-signalized crossings 

(crossings without traffic light). Hunter et al. found that 40 % of intersection crashes and 93 % of 

midblock crashes occurred at non-signalized locations (Hunter, et al., 1996). Police reports from 

Arkhangelsk, Russia show that 79 % of pedestrian-vehicle crashes between 2005 and 2010 

occurred at non-signalized crosswalks (Kudryavtsev, et al., 2012).  

The numerical evidence shows that the safety of pedestrians at non-signalized crossings 

is an important public health problem. Thus, transportation agencies and other practitioners are 

spending more efforts in prioritizing pedestrian safety. Given the importance of pedestrian safety 

in research and practice, different studies have been conducted and treatments have been 

evaluated (Huang, et al., 2000; Nabavi Niaki, et al., 2016), however, more research and empirical 

evidences are still needed. 
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1.2 LITERATURE AND RESEARCH GAPS 

This section provides a general description of the five methodological approaches used in 

previous studies on pedestrian-vehicle interactions, as well as the literature gaps. Details on the 

literature review work are included in Chapter 2. 

1.2.1 Literature Summary 

1.2.1.1 Methodological Approaches  

Road safety analysis methods can be categorized into crash-data based and surrogate measures of 

safety (SMoS). Traditionally, road safety studies make use of historical crash data, focusing on 

crash frequency and severity as direct measures of safety (Abdel-Aty & Haleem, 2010; Nabavi 

Niaki, et al., 2016). In investigating pedestrian safety at non-signalized crosswalk locations, 

many studies have also relied on using historical crash data (Campbell, 1997; Chu, 2006; Chu, et 

al., 2008; Ellis & Van Houten, 2009; Gibby, et al., 1994; Jones & Tomcheck, 2000; Liu, et al., 

2011; Pfortmueller, et al., 2014; Zegeer, et al., 2001). However, it is known by researchers and 

practitioners that the crash-data based approach depends on the quality and availability of the 

data (Fu, et al., 2016; Tarko, et al., 2009). Besides, long periods (multiple years) of observation 

are required to obtain data in sufficiently large quantities, making inefficient the evaluation of 

treatments (St-Aubin, et al., 2013). This has also been criticized for being a reactive approach. 

To overcome these issues of using crash data, proactive methods relying on SMoS (or surrogate 

safety measures, SSM) have emerged without waiting for crashes to happen to gather the data. 

These methods based on SMoS, i.e. safety diagnosis methods that rely on SMoS, investigate 

pedestrian safety mainly through four approaches1: i) the traffic data approach based on traffic 

data (speed, volume, etc.), ii) the traffic conflict approach, iii) the behavioral analysis approach 

based on road user behavior, and iv) the perception analysis approach based on road user 

perception (Fu, et al., 2018). 

                                                      
1 According to its definition, SMoS should satisfy the conditions of being both observable non-crash events and 

being statistically related to crashes in terms of frequency and/or severity (Tarko, et al., 2009). They include SMoS 

or SMoS candidates, SMoS of which relationship with crashes is not statistically proved, but which have been 

applied for safety analysis purposes in past studies. 
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Different sources of data and approaches have been proposed for pedestrian safety studies 

at non-signalized crosswalks. The crash data-based approach has relied on crash reports from the 

police, government organizations, and sometimes ambulance or in-/outpatient records from 

hospitals (Diogenes & Lindau, 2010; Ellis & Van Houten, 2009; Ivan, et al., 2012; Jones & 

Tomcheck, 2000; Olszewski, et al., 2015; Pfortmueller, et al., 2014). In the traffic data-based 

approach, traffic information such as speed and volume have been collected using different 

methods including speed guns, loop detectors, magnetic plates and video data (Antov, et al., 

2007; Boyce & Van Derlofske, 2002; Fu, et al., 2016; Gitelman, et al., 2016a; Gitelman, et al., 

2016b; Liu, et al., 2011; Wang, et al., 2017). Data in the conflict event-based approach has been 

collected through manual field observations (Brumfield & Pulugurtha, 2011; Clark, et al., 1996; 

Mitman, et al., 2010; Nteziyaremye, 2013; Van Houten, et al., 2001), and video data both 

processed manually or automatically with the help of vision-based tracking technologies 

(Almodfer, et al., 2016; Cafiso, et al., 2011; Gómez, et al., 2011). Different tools and data 

sources including video, field observations, speed guns, naturalistic driving data and driving or 

pedestrian simulations have been applied in collecting data for the behavior analysis approach 

(Brumfield & Pulugurtha, 2011; Bungum, et al., 2005; Fitzpatrick, et al., 2007; Harrison, 2017; 

Jiang, 2012; Shi, et al., 2007a; Shi, et al., 2007b). The perception analysis approach has most 

commonly relied on surveys (Boyce & Van Derlofske, 2002; Chai & Zhao, 2016; Dhar & 

Woodin, 1995; Mitman & Ragland, 2007; Johansson & Leden, 2007; Zhuang & Wu, 2014).  

1.2.1.2 Pedestrian-Vehicle Interaction Studies 

The occurrence of pedestrian-vehicle interactions is the necessary condition for the occurrence of 

pedestrian-vehicle crashes. In the context of pedestrian safety at crosswalk locations, a 

pedestrian-vehicle interaction is a situation where both the pedestrian and the vehicle arrive close 

in time and risk a chance of a crash at the crosswalk location. Learning how pedestrian-vehicle 

interactions are formed and unfold has been a focus in studying pedestrian safety at non-

signalized crosswalk locations. In previous studies, pedestrian-vehicle interactions have been 

mostly investigated through the study of traffic conflicts and behavioral analysis – interactions 

result from the behavior and choice of actions of road users and conflicts are the outcome of 

interactions. 
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Traffic conflict analysis has adopted traffic conflict techniques (TCT), e.g. the Swedish 

TCT, to predict the outcome of interactions. Time-to-collision (TTC) and post-encroachment 

time (PET) are the most common measures for identifying conflicts in general (Almodfer, et al., 

2016). Different researchers have used TTC and PET for pedestrian safety analysis (Almodfer, et 

al., 2016; Cafiso, et al., 2010; Tang & Nakamura, 2009). Pedestrian-vehicle conflicts can be 

divided into discrete severity levels based on different PET and TTC thresholds (Ismail, et al., 

2011; Malkhamah, et al., 2005). 

Given the fact that human error is found to be one of the reasons for approximately 95 % 

of road crashes (NHTSA, 2008), the behavior analysis approach is popularly applied in studies 

investigating pedestrian safety at non-signalized intersections. Different studies have looked at 

safety-related behaviors including yielding (Bella & Silvestri, 2015; Crowley-Koch & Van 

Houten, 2011; Fitzpatrick, et al., 2011; Mitman & Ragland, 2008; Pulugurtha, 2015; Xiang, et al., 

2016), crossing movements, (Boroujerdian & Nemati, 2016; Brewer, et al., 2006; Jiang, 2012; 

Jiang, et al., 2015; Kadali & Perumal, 2016; Kadali, et al., 2014; Nteziyaremye, 2013; Pawar & 

Patil, 2015; Schroeder, et al., 2014; Sun, et al., 2003) and pedestrian and vehicle checking 

behavior to investigate pedestrian safety at non-signalized crosswalk locations  (Fisher & Garay-

Vega, 2012; Gómez, et al., 2011; Gómez, et al., 2014; Harrison, 2017; Knoblauch, et al., 2001; 

Nteziyaremye, 2013), and etc. 

Many studies investigating pedestrian-vehicle interactions have relied on direct (manual) 

field observations (Brumfield & Pulugurtha, 2011; Bungum, et al., 2005; Hakkert, et al., 2002; 

Ismail, et al., 2011; Knoblauch, et al., 2001; Li & Ming, 2016; Mitman, et al., 2010; Van Houten, 

et al., 2002) or from video data recordings (Boyce & Van Derlofske, 2002; Dobbs, 2009; 

Fitzpatrick, et al., 2007; Harrison, 2017; Ibrahim, et al., 2005; Shi, et al., 2007a; Shi, et al., 2007b; 

Sisiopiku & Akin, 2003; Van Derlofske, et al., 2003). Recently, vision-based tracking techniques 

have become available to extract detailed traffic data, such as road user trajectories (Cafiso, et al., 

2011; Saunier, n.d.; Saunier & Sayed, 2006). The recent development of video-based techniques 

has brought about the possibility of investigating pedestrian-vehicle interactions in a more 

precise and microscopic way, for example in (Boroujerdian & Nemati, 2016; Fu, et al., 2018; 

Jiang, 2012; Jiang, et al., 2015). 
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1.2.2 Limitations and Gaps in Previous Studies 

Despite the research efforts on pedestrian safety at non-signalized crosswalk locations, some 

limitations exist in the current literature: 

 Despite the promise of the different methods used for evaluating non-signalized 

crosswalk safety, a comprehensive review of these methods is missing. Many of the 

published work does not include a systematic investigation on all related methods. 

Therefore, a detailed literature review study will help and will provide a guideline for the 

application of existing methods, and the development of new approaches. 

 For investigating pedestrian-vehicle interactions, a comprehensive framework, which 

considers both the development of interactions (e.g. pedestrian and vehicle behaviors) 

and the outcome of events, (e.g. the measurements based on traffic conflict techniques) is 

promising. However, most previous studies have only focused on one of the two. 

 Despite frequent usage, behavior analysis approaches require improvements, considering 

the complex dynamics of pedestrian and vehicle behaviors and attitudes during the 

development of an interaction. Research on vehicle yielding behavior is limited as the 

definition of yielding compliance is ambiguous. Some situations have not been explicitly 

discussed, for example where it is impossible for the vehicle to yield due to their speed 

and proximity to the crosswalk. Considering such situations as non-compliance is far-

fetched. Meanwhile, the definition of non-yielding maneuver is unclear – determining 

when a pedestrian arrives at the beginning of the crosswalk and should be noticed and 

yielded by the driver is often subjective. 

 Data issues are common in studies that investigate pedestrian safety at non-signalized 

crosswalks. The quality and quantity of crash data have been often limited. Data used in 

SMoS are usually collected using short-term data collection methods such as field 

observation and video data collection (Laureshyn, et al., 2016). Most studies relied on 

data from a limited number of sites due to the amount of work needed (setting up 

equipment, manually labeling and extracting information, or conducting surveys) or due 
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to the difficulty in obtaining permission for videotaping or collecting personal 

information. Data quality may also be challenged especially from manual observations or 

surveys which can be highly subjective. 

 The benefits of vision-based techniques notwithstanding, there are critical limitations 

associated with using regular video cameras for traffic data collection. Regular cameras 

are sensitive to lighting conditions and fail to perform well in adverse weather, low light 

conditions and darkness. Meanwhile, shadows and glare in the daytime also degrade the 

accuracy of the regular cameras. In other words, regular cameras do not work under all 

conditions, especially at nighttime when increased injury risk leads to more severe road 

traffic crashes (Plainis, et al., 2006; Tyrrell, et al., 2016). Alternatives need to be explored 

for using this type of technology. 

In general, limitations and gaps still exist in the methodologies. The research work in this thesis 

aims at addressing these limitations and gaps. 

1.3 OBJECTIVES OF THE RESEARCH 

The general objective of the research is to investigate pedestrian-vehicle interactions in 

pedestrian crossings by proposing and validating new data collection methods and a theoretical 

model. The proposed methods are validated using video data at various Montreal crosswalk 

environments with different geometric and lighting conditions. The specific objectives are 

described as follows. 

A) To conduct an extensive literature review work related to methodologies for 

pedestrian safety diagnosis at non-signalized crosswalks. 
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B) To study issues with data collection using a regular spectrum camera under 

different lighting conditions and to investigate the performance of thermal video-

camera sensors – Aiming to solve the issues found in using video data for extracting 

road user trajectory under poor visibility conditions, the thermal camera is introduced as 

an alternative for traffic data collection, in particular to investigate pedestrian safety 

during nighttime. The performance of using this type of sensing technology is validated 

through a comparison to a regular camera. 

C) To propose a novel pedestrian-vehicle interaction framework to investigate 

pedestrian safety at crosswalks – The framework considers the development of 

pedestrian-vehicle interactions over time, and allows the investigation of road user 

behaviors critical to the outcome of crashes: vehicle yielding behaviors, pedestrian 

occurrence and crossing decisions. 

D) To test the framework through the performance evaluation of different types of 

crosswalk facilities on pedestrian safety – The framework is tested based on data from 

different traffic environments. Data is collected from three main types of crosswalk 

facilities. These are uncontrolled (crosswalks not controlled by any type of signs or 

markings), marked (crosswalks with markings assigning right-of-way to pedestrians) and 

stop sign controlled crosswalks (crosswalks with a stop sign requiring all vehicles to stop 

before the crossing location). 

E) To explore the application of the proposed methodology for cyclist-pedestrian 

interactions – The framework can be applied in exploring different road safety issues, 

for example cyclist-pedestrian interactions, which have not previously been investigated.  
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1.4 CONTRIBUTIONS 

The key contributions of this dissertation are summarized as follows: 

 This thesis provides a comprehensive review of the methodological approaches and data 

collection methods used in the existing literature on pedestrian safety at non-signalized 

crosswalk locations. Researchers and practitioners can use this literature-review work as 

a useful reference. Meanwhile, the identification of the limitations and gaps in the 

existing literature can motivate future research in better understanding pedestrian-vehicle 

interactions. 

 From the data collection methods, this work integrates and validates data collection 

method using a thermal video sensor and demonstrates that this solution can meet the 

requirements of an around-the-clock tool for traffic data collection and safety analysis 

under all weather and lighting conditions. Besides, the dissertation applies the thermal 

camera system for investigating pedestrian safety in low visibility conditions when 

pedestrians face a higher risk of crash and few data collection tools are available to study 

their safety. 

 It proposes a new framework for pedestrian safety at non-signalized crosswalks, referred 

to as the distance-velocity (DV) model. This novel method gives insights about 

pedestrian-vehicle interactions by considering the development of interactions and 

behavioral factors such as vehicle yielding behavior and pedestrian crossing decisions 

that are critical to the outcome of a crash. 

 This work explores the safety of pedestrians in their interactions with cyclists, which has 

been rarely studied in the past. This work is expected to attract more research and 

practices focused on the topic of cyclist-pedestrian interactions, which is important in the 

context of the promotion of active transportation. This relies on the application of the DV 

framework to another road safety problem. 
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1.5 ORGANIZATION OF THE DISSERTATION  

The dissertation is structured into eight chapters including the introduction. As being manuscript-

based, the remainder of the dissertation includes one manuscript in preparation for a submission 

to a peer-reviewed journal (Chapter 2), four refereed journal papers (Chapter 3-5, 7), an 

additional chapter about the work in testing the framework (Chapter 6), and the conclusion 

(Chapter 8). 

Chapter 2 provides a comprehensive review of the existing literature on pedestrian safety 

at non-signalized crosswalk locations. Key methodologies as well as their advantages, limitations 

in the past three decades (from the year of 1987) are reviewed and discussed. These 

methodological approaches are summarized into five main categories (the crash data approach 

and four approaches relying on SMoS). Details of the data collection and safety methods are 

clearly documented in each main category. 

Chapter 3 introduces the thermal camera system and presents the validation of its 

performance in traffic data collection under various conditions. For validation purposes, existing 

computer vision methods for automated data processing are integrated. The performance of using 

thermal cameras for collecting road user information, including detection, classification and 

speed measurements, under varying lighting and temperature conditions across multiple sites is 

validated, and is compared to the performance of a visible spectrum camera.  

Chapter 4 proposes a methodology that relies on several existing and applicable SMoS in 

exploring pedestrian safety at non-signalized crosswalks at nighttime based on data collected 

using the thermal camera system. The methodology used several SMoS indicators including 

vehicle approaching speed, PET, yielding compliances, and conflict rates. The methodology is 

applied to evaluate pedestrian safety at non-signalized crosswalks at nighttime.  

Chapter 5 introduces a new methodological framework, the DV model, for investigating 

pedestrian safety at non-signalized crosswalk locations. Assumptions, some practical definitions, 

and the detailed explanation of the model, along with the derived measures, are presented. The 
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model classifies interactions between approaching vehicles and pedestrians showing the intention 

to cross in different categories. The framework is demonstrated through a case study involving 

three non-signalized crosswalks including a marked crosswalk, an uncontrolled crosswalk, and a 

stop sign controlled crosswalk.  

Chapter 6 aims at validating the applicability of the proposed DV model in a study 

involving 15 different crosswalk locations in Montreal. Pedestrian safety at the three types of 

crosswalks, marked, uncontrolled, and stop sign controlled, is analyzed and compared using the 

framework. The occurrences of interactions, vehicle yielding behavior, pedestrian crossing 

decisions, and the observation of evasive maneuvers are investigated. Results in this chapter 

suggest that the framework describes pedestrian-vehicle interactions at non-signalized crosswalk 

locations in a proper way with correct assumptions and parameters.  

Chapter 7 investigates the applicability of the proposed methodology and the DV model 

to study pedestrian-cyclist interactions in urban areas. The case study deals with crosswalks at 

non-signalized intersections and crosswalks at bus stops along segregated cycle tracks.  

Finally, Chapter 8 concludes and summarizes the key findings and contributions in this 

dissertation, and discusses the limitations, implications of the DV model and future research in 

the field of pedestrian safety. 
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2.1 INTRODUCTION 

2.1.1 Background 

The safety of pedestrians at non-signalized crossings (crossings without traffic light) has become 

a great concern in road safety (Makarova, et al., 2016; Olszewski, et al., 2015). In Canada, 

around 4700 pedestrians were killed and over 165000 were injured when crossing the street 

between 1999 and 2014 (Transport Canada, 2015). Over 62 % of pedestrian deaths and injuries 

occurred at non-signalized locations. Note that the terms “non-signalized” (or “unsignalized”) 

and “uncontrolled” are unfortunately used interchangeably in the existing literature to describe 

crosswalk locations without traffic lights. These terms describe different situations; non-

signalized crosswalks are locations without traffic lights, while uncontrolled crosswalks are 

without any traffic control devices (no signs, no markings, and also no traffic light). Recent 

attempts to correct the interchangeable use of these words have added to the conceptual 

confusion (Elefteriadou, 2014; McGee, et al., 2015). While the ITE Unsignalized Intersection 
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Improvement Guide (UIIG) properly defines non-signalized intersections as intersections not 

“controlled by a traffic signal” (McGee, et al., 2015), it does not include crossing locations that 

are not at intersections. The UIIG (McGee, et al., 2015) nevertheless states that non-signalized 

crossings may be classified as: 1) uncontrolled, for crossings without any type of signs or 

markings. This chapter reviews previous work on non-signalized crosswalk safety based on the 

above definitions. 

Recognizing the risk for pedestrians at non-signalized crosswalk locations, practitioners 

have made pedestrian safety a major design factor and have prioritized pedestrians when 

constructing non-signalized crossings by proposing and implementing treatments including road 

infrastructure, signage, and pavement marking improvements (Mead, et al., 2014). Researchers 

have likewise investigated safety issues and sought solutions to improve pedestrian safety at non-

signalized crosswalk locations. Safety, along with the efficiency of several designs and safety 

countermeasures has been investigated in several studies (Cafiso, et al., 2011; Huang, et al., 1999; 

Jones & Tomcheck, 2000; Sisiopiku & Akin, 2003; Smith, et al., 2009; Van Houten, 1988). 

Safety studies have typically relied on crash data, although crash data samples are often 

insufficient due to low vehicle traffic and pedestrian activity. This results in a low frequency of 

crashes (low mean problem) leading to long periods of data collection and then poor fit and 

accuracy of derived statistical models (Fu, et al., 2016; Lord & Miranda-Moreno, 2008). 

Methodologies based on crash data are time-inefficient, requiring many years of data, making it 

difficult to evaluate recently developed treatments (St-Aubin, et al., 2013). In many cases, crash 

data is limited or is inadequately detailed to explore safety problems such as road user non-

compliance and pedestrian misjudgement of gaps in traffic among others (McGee, et al., 2015). 

Instead, many researchers have used surrogate measures of safety (SMoS). Some have 

considered vehicle approach speed to investigate the effectiveness of safety treatments (Bentley, 

2015; Fu, et al., 2016; Hakkert, et al., 2002), while others have relied on exposure measures 

(Molen, 1981; Mitman, et al., 2008) or traffic conflicts (Cafiso, et al., 2011; Svensson & Hydén, 

2006). Driver and pedestrian behaviors, such as yielding behavior and crossing decisions, and 

their contributions to pedestrian-vehicle crashes, have also been explored (Brumfield & 

Pulugurtha, 2011; Jiang, 2012; Mitman & Ragland, 2008).  
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Despite the promise of these methods, many have been proposed without a systematic 

investigation of related work. Additionally, utilized variables vary among the studies, and 

different thresholds or “rules” have been applied to the same measure. Many national and 

provincial projects and standards across Canada (Delphi MRC, 2010; Highway Safety Branch, 

Ministry of Transportation and Highways, 1994; MTO, 2016) and the US (Fitzpatrick, et al., 

2006; FHWA, 2009; Zegeer, et al., 2005) have relied on safety measures without a detailed 

review to justify why the measures were initially adopted. A comprehensive review of existing 

and state-of-the-art methods for evaluating non-signalized crosswalk safety is essential, 

providing a guide of feasible methodologies for the future development of safety approaches, 

including those exploring new surrogate measures of safety. 

The primary goal of this work is to provide a systematic literature review of the 

alternative methods for investigating pedestrian safety at non-signalized crosswalks. This 

document reviews the research literature on this topic from the previous 30 years, from 1987 to 

2017, highlighting key studies with a focus on implemented methods. The considered studies use 

either traditional approaches for evaluating safety based on crash data analysis or newer SMoS. 

The studies are identified through a series of searches of several publication databases, which 

included Google Scholar, TRIS, TRANSDOC, ITRD, and SafetyLit (Google, 2018; 

Transportation Research Board, 2018; Ovid Technologies, 2018; WHO, 2018). Additional 

studies were identified using the citations within the papers found in these databases. 

Approximately 150 reports and peer-reviewed papers were included in this review. Based on this 

literature, the methodologies are classified into five distinct approaches. This document defines 

each methodological approach, summarizing commonly used measures, data, and collection 

methods. Finally, this work discusses the limitations and challenges of each approach with 

respect to methods and data, identifying research gaps to be further explored. 

2.1.2 Brief History of Previous Work 

Although crosswalks existed in ancient Rome over 2000 years ago (Bennett & Van Houten, 

2016), the first signalized crossing was built in London in 1868 (The Times, 1868). Most non-

signalized crossings were uncontrolled until the early 1910s, when stop signs were first 
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implemented in Detroit, Michigan (Greenbaum & Rubinstein, 2011). As stop signs often 

increase delay, most non-signalized sites remained uncontrolled. Different markings and signs 

for protecting pedestrians were first trialed in the 1920s and 1930s (Ishaque & Noland, 2012), 

and these crossings became the earliest versions of yield-controlled crosswalks. The first zebra 

crossing was implemented in the UK in 1951 and proved to be the most effective marking 

pattern for protecting pedestrian crossings (Road Research Laboratory, 1963). Despite debate on 

its efficiency (Campbell, 1997; Gibby, et al., 1994; Herms, 1972; Mitman, et al., 2008; Zegeer, et 

al., 2005), the zebra crossing remains to be the countermeasure that has been the most frequently 

used (BC MOT, 1994; FHWA, 2001).  

Thanks to advances in traffic engineering and the development of lighting, sensing, and 

material technologies, new countermeasures for pedestrian safety at non-signalized crosswalks 

have emerged in recent decades. Most of these literature reviews on crosswalk safety and the 

efficiency of pedestrian countermeasures have summarized previous practices and innovations 

mostly within Europe (Davies, 1999; Draskóczy & Hydén, 1994; Fizpatrick, et al., 2007; Mead, 

et al., 2014; Tan & Zegeer, 1995; Gitelman, et al., 2012; Tan & Zegeer, 1995). Some cities have 

also published guidelines for pedestrian safety countermeasures: for instance, Delphi MRC, 2010; 

MTO, 2016. Mead et al. (2014) comprehensively reviewed existing research on pedestrian safety 

countermeasures, summarizing countermeasures into six categories: 1) marking and sign 

enhancements, 2) curb extensions, 3) crossing islands, 4) raised crosswalks, 5) street lighting 

improvements, and 6) automated pedestrian detection systems.   

Additionally, some past studies have provided an overview regarding the methodologies 

used for safety analysis (Campbell, et al., 2004; Karsch, et al., 2012; Nemeth, et al., 2014; Van 

Houten & Malenfant, 1999). Reviews have also been undertaken on specific topics related to 

pedestrian safety. For example, Martin (2006) reviewed research exploring factors influencing 

pedestrian safety and Papadimitriou et al. (2009) conducted an assessment of pedestrian behavior 

models proposed in earlier studies with a focus on crossing behavior. The US NHTSA conducted 

a review of literature on child pedestrian education and possible child pedestrian programs 

(Percer, 2009). Though these reviews did not aim to cover non-signalized crosswalks, they did 

provide important references for research on non-signalized crosswalks. In a recent European 
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Union project, researchers reviewed and summarized current safety studies for vulnerable road 

users such as pedestrians and cyclists (Olszewski, et al., 2016). The report categorized existing 

studies as epidemiological studies based on accident data, naturalistic driving studies, behavioral 

observation studies, traffic conflict (SMoS) studies, and studies based on self-reported accidents. 

Despite this work, to the best of our knowledge, no document has summarized the methods for 

studying pedestrian safety at non-signalized crosswalk locations applied in past studies.  

2.2 STUDIES AND METHODOLOGICAL APPROACHES 

2.2.1 Summary of Studies 

A summary of studies is provided in APPENDIX I, including country of origin, topic 

investigated, methodological approaches and data source or type. A total of 134 references are 

summarized in the table including 84 peer-reviewed journal papers, 36 reports, and 14 papers in 

conference proceedings. Over half of the studies are from North America (76 from the US and 

14 from Canada), 26 in Asia with 13 from China and the rest from Israel (5), India (4), Malaysia, 

(3) and Iran (1). 11 of these studies are based on European data, and a small number of studies 

are from Africa (2), South America (1) and Oceania (2). Two studies were conducted jointly by 

German and Chinese Institutes. 

From APPENDIX I, studies on pedestrian safety at non-signalized crosswalks generally 

fall into the following main topics (ordered by the number of studies on each topic):  

Performance evaluation: Evaluating the performance of pedestrian safety treatments and 

countermeasures (84 studies) 

Behavior or Perception analysis: Analyzing road user behavior or response through habits, 

maneuver patterns, and motives, and their associated impact on safety; investigating road 

user perceptions and their general understanding of safety; or the use of both behavior 

and perceptions in the same study (33 studies) 

Methods: Proposing or validating new safety analysis methods (9 studies) 
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Interaction modeling/simulation: Modelling or simulating pedestrian-vehicle interactions 

(5 studies); this topic also includes the analysis of interactions between autonomous 

vehicles and pedestrians (2 out of the 5 studies)  

Safety factors: Evaluating the impact of geometric design, environmental conditions, 

pedestrian facilities, and other factors on safety (3 studies) 

2.2.2 Methodological Approaches 

Our review of previous work shows that no document has revised the methods for evaluating 

pedestrian safety at non-signalized crosswalks in a comprehensive manner. Though the 

mechanisms or methodological details often differ from the methods used in other road 

environments, they do fall within the wide scope of road safety and meet the general framework 

of safety studies presented in FIGURE 2-1. Methods can be classified as either 1) reactive 

methods based on historical crash data, or 2) proactive methods based on SMoS, i.e. non-crash 

measures that are physically and predictably related to crashes (Tarko, et al., 2009). Here, the 

approaches proposed in the literature for safety analysis are classified as: 

Crash data approach: this approach relies on historical crash data from police reports, 

government reports, and hospital and ambulance data.  

Traffic data approach: this approach relies on SMoS based on traffic parameters, mainly 

vehicle speed and volumes.   

Conflict approach: this approach makes use of SMoS based on near-crash events. Some 

typical measures for conflicts include the famous Time-to-Collision (TTC) and Post-

Encroachment Time (PET).   

Behavioral approach: this approach is based on measures derived from road user behaviors 

such as driver yielding behaviors, pedestrian gap acceptance, crossing decisions, user 

distraction, etc. 

Perception approach: this approach relies on road user perceptions, including the 

perception of safety, awareness and knowledge of signalization and crossing treatments.  
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FIGURE 2-1 General Framework of Road Safety Measures 
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2.3 CRASH DATA APPROACH 

Traditional road safety studies rely on historical crash data, to characterize safety in terms of 

crash frequency, rate, and severity. Crash-based analysis supports the road safety management 

process through hotspot or network screen analysis, identification of crash contributing factors 

(traffic, geometry, and built environment features) influencing safety and evaluation of 

countermeasures. Crash studies can be either aggregate or disaggregate (Yu, 2012; Postorino, 

2003; Cai, et al., 2018). Aggregate studies consider the safety performance of a discrete area, 

using measures such as crash frequency per site, and uncover impacts of “mobility characteristics, 

the transport system, and the socio-economic characteristics of the area itself” (Postorino, 2003). 

Aggregate crash-based studies include those conducting network screening, also referred to 

hotspot identification (Dobbs, 2009), investigating the relationship of traffic and road geometric 

factors with pedestrian safety, (Diogenes & Lindau, 2010; Gårder, 2004; Islam, et al., 2014; Ivan, 

et al., 2001; Ivan, et al., 2012; Keall, 1995; Koepsell, et al., 2002; Kudryavtsev, et al., 2012), and 

evaluating treatments by comparative analysis and modeling (Campbell, 1997; Chu, 2006; Chu, 

et al., 2008; Ellis & Van Houten, 2009; Gibby, et al., 1994; Jones & Tomcheck, 2000; Liu, et al., 

2011; Pfortmueller, et al., 2014; Zegeer, et al., 2001). Disaggregate studies investigate safety at 

the event level by analyzing each crash individually and model the possibility and severity of a 

potential crash based on event factors (such as weather conditions, behavior, and socio-

demographics). The disaggregate safety models are also called “real-time crash risk evaluation 

models” which can be used “in monitoring crash hazardousness with the real-time field data fed 

in” (Yu, 2012). However, most studies investigating pedestrian safety at non-signalized 

crosswalk locations have been aggregate. 

2.3.1 Data Collection Methods 

Crash data are normally compiled from police reports (Chu, 2006; Chu, et al., 2008; Kudryavtsev, 

et al., 2012; Olszewski, et al., 2015; Pfortmueller, et al., 2014; Zegeer, et al., 2001) or 

transportation organizations (Diogenes & Lindau, 2010; Dobbs, 2009; Ellis & Van Houten, 2009; 

Gårder, 2004; Gibby, et al., 1994; Islam, et al., 2014; Ivan, et al., 2001; Ivan, et al., 2012; Jones 

& Tomcheck, 2000; Keall, 1995), though some have relied on medical and ambulance records 
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for data extraction. For instance, Strauss et al. (2014) used ambulance data to investigate 

multimodal injury risk at signalized and non-signalized intersections. Pfortmueller et al. (2014) 

used medical and ambulance records in addition to police reports to obtain sufficient data. This 

approach requires high-quality information on crashes, their severity, and their location. Yet in 

many cases, crash data is known to be incomplete (underreporting issue), with inaccurate 

locations, or misclassifications (Fu, et al., 2016). Moreover, the low mean problem (sparse nature 

of the crash data) can present a statistical issue, especially low-volume sites such as pedestrian 

crosswalks. This explains why few studies have used crash data to investigate crosswalk safety 

and the fit of statistical models were either low or unreported. In some cases, information related 

to crash data can be confidential, or otherwise exempt from disclosure under policy or laws, 

increasing the difficulty of obtaining sufficient data for safety analysis (CDMV, 2015). Some 

studies have relied on driving simulation (Waizman, et al., 2014) or traffic simulation 

experiments (Gómez, et al., 2011; Gómez, et al., 2014) to generate crash data. 

2.3.2 Methods and Measures 

Ranking, case-control and before-after analysis methods are most frequently used. These 

methods focus on comparing frequencies or crash risks, either across sites or over time.  

2.3.2.1 Ranking Methods 

Some studies used methods that rank different locations either based on or considering crash 

frequency or crash risk as one of the key criterions, normally to identify crash black spots. For 

example, Dobbs (2009) used the total number of crashes per crossing location, as a variable in 

ranking the safety performance of different non-signalized crosswalk locations to prioritize sites 

for improvement.  

2.3.2.2 Case-Control Methods 

The case-control method is used to evaluate the effectiveness of treatments or other factors such 

as the built environment or road user characteristics, as can be seen in many studies (Campbell, 
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1997; Gibby, et al., 1994; Pfortmueller, et al., 2014; Zegeer, et al., 2001; Koepsell, et al., 2002). 

Case-control studies compare crash risks between sites of interest and other sites used as control. 

Some existing studies used case-control analysis to investigate the performance of crosswalk 

markings by comparing the crash risk at marked crosswalks to unmarked crosswalks. Campbell 

(1997) and Zegeer et al. (2001) found that crash frequency was higher at marked crosswalks. 

Pfortmueller et al. (2014) also found crashes were more common at marked crosswalks, though 

injury severity was significantly reduced.  

2.3.2.3 Before-After Analysis Methods 

Before-after methods investigate the effectiveness of site modifications by evaluating changes in 

the crash risk before and after changes to facilities or the implementation of countermeasures 

(Chen, 2010). Based on the comparison techniques, before-after analysis can be categorized into 

before-after comparative methods (including the “naïve” before-after and before-after with 

comparison group) and before-after with Empirical Bayes (EB) (Hauer, et al., 2002). Jones & 

Tomcheck (2000) compared the number of crashes before and after painted crosswalks were 

removed from both signalized and non-signalized intersections, finding that crosswalk removal 

reduced crashes significantly at the non-signalized sites. Liu et al. (2011) conducted an 

observational before-after study using a comparison group and the EB method, estimating that 

transverse rumble strips reduced crashes by 25 % at rural non-signalized pedestrian crosswalks 

in Guangdong, China. 

Some before-after studies also implement statistical models to predict the impact of the 

built environment, traffic, law enforcement, and population on crash risk (Dobbs, 2009; 

Kudryavtsev, et al., 2012). Regression modeling is used to investigate factors related to road 

safety to identify key issues, find potential solutions, and make improvements (Diogenes & 

Lindau, 2010; Ivan, et al., 2001; Olszewski, et al., 2015). Diogenes & Lindau (2010) used a 

Poisson regression model to evaluate the probability of pedestrian crashes at midblock 

crosswalks with and without traffic signals. Important factors contributing to crash risk included 

the presence of bus stops, the number of traffic lanes, and the distance to the closest marked 

crossing, while factors mediating risk included the presence of marked crosswalk and traffic 
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signals, the average sidewalk width, and the hourly vehicle volume. Olszewsky et al. (2015) used 

a binary logit model to investigate the effect of various factors on pedestrian fatality probability. 

The study found that darkness, two-way roads, non-built-up area, and mid-block crossings 

increased the probability of pedestrian deaths. 

2.4 TRAFFIC DATA APPROACH 

The traffic data approach refers to methods that rely on macroscopic traffic variables like volume, 

density, mean speed, and average headway/gap as predictors of safety, in the sense of SMoS 

(Yan, et al., 2008). All traffic data approaches have mainly been implemented to investigate 

pedestrian exposure to motorized traffic, crash severity, and vehicle headways or gaps for 

crossing (Huang, 2000). The traffic data approach is considered an aggregate analysis, 

investigating road safety using macroscopic traffic information rather than individual events. 

Existing studies have shown significant relationships between traffic variables and crash 

frequency and probability (Gårder, 2004; Islam, et al., 2014; Ivan, et al., 2001; Olszewski, et al., 

2015; Stipancic, et al., 2018; Zegeer, et al., 2005).  

Studies using the traffic data approach have largely focused on speed and volume 

measures. Although other traffic variables such as vehicle headway/gap and density might be 

used as safety measures, quite a few existing studies adopting these measures could be found 

(Schroeder, et al., 2010).  

2.4.1 Data Collection Methods  

Speed and volume data have been measured in numerous ways. Speed information has been 

collected using more conventional tools including laser and radar guns (Gitelman, et al., 2016a; 

Gitelman, et al., 2016b; Hakkert, et al., 2002; Johansson & Leden, 2007; Liu, et al., 2011) and 

more advanced technologies including video cameras, LiDAR guns, and naturalistic driving data 

(mainly GPS). Video cameras can record and save rich traffic information, making it an efficient 

data collection method in the field of transportation. Wang et al. (2017) manually measured 

vehicle speeds from collected video data. Fu et al. (2016) used automated video-based tracking 
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technology to obtain vehicle crossing speeds at non-signalized crosswalk locations. Boyce & 

Van Derlofske (2002) also relied on video data, though the collection and processing of the video 

data was not explained. Naturalistic driving data is another promising data collection method for 

rich positional and speed information collected using GPS devices, cameras, and other in-vehicle 

sensors. Antov et al. (2007) and Bentley (2015) used naturalistic driving data to obtain vehicle 

speeds at pedestrian crossings. Dougald et al. (2012) used a LiDAR gun, which provides very 

accurate speed measurements, and mentioned the use of automatic traffic recorders (ATRs) 

without providing more detail. Other studies did not provide or clearly explain their methods for 

collecting speed data (Burritt, et al., 1990; Dhar & Woodin, 1995; Huang, et al., 1999; Karkee, et 

al., 2010; Pécheux, et al., 2009).  

Traffic volume data is fundamental in the field of transportation. Traffic sensors, 

including inductive loops, video cameras, and magnetic plates have been widely used to collect 

volume data more efficiently than manual counts by on-site observers (Iowa DOT, 2002; Leduc, 

2008). Among the studies using traffic volume as a safety measure, Chi (2007) collected vehicle 

volume information by manually reviewing collected video footage. Fu et al. (2016) relied on 

automated video-based tracking technology to extract volumes of vehicles and pedestrians to 

investigate pedestrian exposure to motorized traffic. Dhar & Woodin (1995) used traffic volume 

as a safety measure but the data collection method is not described in the study. Given the 

limited work conducted, it is not possible to draw further conclusions on methods in collecting 

volume data applied in previous studies.  

2.4.2 Methods and Measures 

2.4.2.1 Vehicular Speed Method 

Based on the principle of work and kinetic energy, a higher vehicle speed leads to an increase in 

energy release if a crash happens, which brings up the probability of severe injuries or even 

fatalities. Studies using vehicle speed as a safety measure have shown a strong relation between 

speed, crash likelihood, and severity  (WHO, 2004; European Commission, 2017; Kloeden, et al., 

1997; Gårder, 2004; Nemeth, et al., 2014; Olszewski, et al., 2015). Various speed measures have 
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been explored, including the driving speed at pedestrian crosswalk (Antov, et al., 2007), the 

speed at a sight distance reference point (where the driver is able to see the crosswalk and stop 

before the crosswalk, given the speed limit and a reaction time of 2.5 sec) (Bentley, 2015), and 

the approach speed (Boyce & Van Derlofske, 2002; Van Derlofske, et al., 2003). The definitions 

of these measures are often unclear if provided at all. The approach speed is measured at a 

certain location before the crosswalk and has been applied by several researchers (Bentley, 2015; 

Boyce & Van Derlofske, 2002; Gitelman, et al., 2016a; Hakkert, et al., 2002; Liu, et al., 2011; 

Pécheux, et al., 2009). The passing speed is measured at the crosswalk (for example, the crossing 

area defined by road markings) and has likewise been investigated thoroughly (Antov, et al., 

2007; Bentley, 2015; Dougald, et al., 2012; Fu, et al., 2016; Hakkert, et al., 2002; Wang, et al., 

2017). Other studies fail to state the way and the location of the speed measurement (Burritt, et 

al., 1990; Dhar & Woodin, 1995; Gitelman, et al., 2016b; Huang, et al., 1999; Johansson & 

Leden, 2007; Karkee, et al., 2010; Wallberg & Wisenbord, 2000). 

In APPENDIX I, most of the studies using vehicle speed have focused on the evaluation 

of countermeasures, designs, and facilities. Antov et al. (2007) found that average passing speeds 

at non-signalized crosswalks in Estonia were generally unaffected by pavement markings, with 

60% of drivers going over the speed limit. Bentley (2015) used both approach and passing speed 

to show that both high-visibility crosswalks and crossing signs decreased the speed at the sight 

distance reference point and the crosswalk. Boyce & Van Derlofske (2002) found that clear 

striping did not reduce the mean approach speed, while an in-pavement flashing warning system 

did initially reduce mean speed, though the effect diminished over time (Boyce & Van Derlofske, 

2002; Van Derlofske, et al., 2003). Fu et al. (2016) used vehicle passing speed to compare the 

safety performance of non-signalized crosswalks during day and at night conditions. Without 

explaining the speed measure used, Burritt et al. (1990) found that flashing beacons failed to 

reduce vehicle speeds at school crossings, Dhar & Woodin (1995) found that fluorescent strong 

yellow-green signs (SYG) at marked crosswalks reduce vehicle speeds significantly, and Karkee 

et al. (2010) observed that the average speed was significantly lower after installation of an in-

pavement flashing light system at marked crosswalks. 
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2.4.2.2 Traffic Volume Method 

In road safety, traffic volume is one key element affecting crash occurrence. Traffic volume 

determines “the exposure to risk that pedestrians are facing when they cross the road” (Ivan, et 

al., 2012). The positive correlation between exposure and crash likelihood has been 

demonstrated in previous studies (Islam, et al., 2014; Ivan, et al., 2001). Volume is the most 

common exposure measure. The measures applied in volume-based methods include either 

vehicle volume or pedestrian volume, or some combination of both (for instance, their product). 

Several existing studies utilizing the volume method are identified in APPENDIX I. Schroeder et 

al. (2010) used the traffic volume as the safety measure to compare between two non-signalized 

crosswalks at roundabouts, and suggested that the site with lower vehicle volume is safer with 

the reduced likelihood of encountering a vehicle in the pedestrian crossing. Chi (2007) found that 

adding crosswalk painting at the studied locations was associated with an increase in both 

pedestrian and vehicle volumes. Fu et al. (2016) found that exposure was much higher during the 

day than at night at several non-signalized crosswalk locations. Dhar & Woodin (1995) looked at 

the volume before and after the installation of fluorescent yellow-green signs and found that road 

user volumes did not change after the installation. Traffic volume was used as a safety measure 

(exposure to motorized traffic) though not being clearly explained in that paper (Dhar & Woodin, 

1995). According to Tarko et al. (2009), although traffic volume and flow are “necessary for 

crashes to happen” (Tarko, et al., 2009), they may be difficult to study as “most of the safety 

treatments do not affect traffic volume” (Tarko, et al., 2009). This may explain why few studies 

have used SMoS based on traffic volume to validate treatment performance. 

2.5 CONFLICT APPROACH 

The conflict approach, likely the oldest and most common safety diagnosis approach relying on 

SMoS, considers traffic conflicts, interactions between road users, or evasive maneuvers (Sayed, 

et al., 2013). The general conflict definition is “an observable situation in which road users 

approach each other to such an extent that there is a risk of collision if their movements remain 

unchanged” (Tarko, et al., 2009). Islam et al. (2014) and Ivan et al. (2012) showed that conflicts 

were significant in predicting crashes occurring at non-signalized crosswalk locations, and 
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suggested conflicts “may be a good surrogate for crashes in analyzing pedestrian safety”. 

Conflict frequency and severity are analyzed in both aggregate and disaggregate ways for the 

purpose of safety evaluation. Conflict severity is about the probability of a crash and the severity 

of the potential crash (Laureshyn, et al., 2017) which is determined using different measures 

such as PET and TTC.  

2.5.1 Data Collection Methods  

Traffic conflict data can be collected manually, in the field, or from video recordings. 

Alternatively, automated video-based tracking technology can extract positional and speed 

information of road users, making it a more efficient approach. Most existing studies based on 

evasive maneuvers have relied on field observations (Brumfield & Pulugurtha, 2011; Clark, et al., 

1996; Hakkert, et al., 2002; Islam, et al., 2014; Ivan, et al., 2012; Mitman, et al., 2010; Van 

Houten & Malenfant, 1992; Van Houten, 1988; Van Houten, et al., 1998; Van Houten, et al., 

2001; Van Houten, et al., 2002). Other researchers manually post-processed collected video data 

(Boyce & Van Derlofske, 2002; Dobbs, 2009; Fitzpatrick, et al., 2006; Gitelman, et al., 2016a; 

Gitelman, et al., 2016b; Nteziyaremye, 2013; Van Derlofske, et al., 2003).   

Most time-based studies use video data collection, with some extracting information 

manually (Johansson & Leden, 2007). As with conflict methods, researchers have used video-

based tracking to extract data more efficiently. Cafiso et al. (2011) used the Highway 

Engineering Research Group (HERG) software and Fu et al. (2016) used Traffic Intelligence 

(Jackson, et al., 2013). One study recorded information (Bella & Silvestri, 2015). Other studies, 

using video data, did not describe the tool used for extracting information (Almodfer, et al., 2016; 

Sun & Lu, 2011). 

2.5.2 Methods and Measures 

Conflicts can be measured using human observation of evasive maneuvers, including urgent 

evasive maneuvers (such as rushing to complete or swerving) and less urgent ones (e.g. reducing 

the speed or waiting to cross) made either by the pedestrian or the driver to avoid a crash 
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(Perkins & Harris, 1968; Hughes, et al., 2001), time-based measurements which quantify the 

proximity of the pedestrian and vehicle in term of time (Hydén, 1987; Svensson & Hydén, 2006), 

or acceleration or deceleration noise (Shoarian-Sattari & Powell, 1987).  

2.5.2.1 Methods based on Evasive Maneuvers 

A large number of past studies have focussed on conflicts, interactions where at least one user 

must make some predefined evasive maneuver to avoid a crash (Dobbs, 2009; Clark, et al., 1996; 

Dhar & Woodin, 1995; Fitzpatrick, et al., 2006; Gitelman, et al., 2016a; Gitelman, et al., 2016b; 

Gómez, et al., 2011; Hakkert, et al., 2002; Jiang, 2012; Jiang, et al., 2015; Van Houten, 1988; 

Van Houten & Malenfant, 1992; Van Houten, et al., 1998; Van Houten & Malenfant, 1999; Van 

Houten, et al., 2001; Van Houten, et al., 2002). Evasive maneuvers include reactions such as 

rushing to complete or aborting a crossing (for pedestrians) and swerving, lane changing, or 

braking (for drivers). Dhar & Woodin (1995) defined pedestrian-vehicle conflicts as involving 

“swerving or sudden braking” and found that the number of conflicts at non-signalized 

crosswalks decreased after installing fluorescent yellow-green signs. Brumfield & Pulugurtha 

(2011) considered six different conflict situations including sudden braking or swerving, lane 

changing, and several pedestrian movements. The study found that distracted drivers were four 

times more likely to be involved in conflicts. Fitzpatrick et al. (2006) defined conflicts as 

interactions where either a pedestrian or vehicle takes evasive action, though they observed only 

one such conflict. Gitelman et al. (2016a) used conflicts defined as situations involving evasive 

maneuvers (sudden changes in speed or the direction to avoid a crash) to show that a raised 

pedestrian crosswalk with preceding speed humps reduced the number of pedestrian-vehicle 

conflicts. The same method was used to show that removing crosswalk markings at non-

signalized crossings reduced rates of pedestrian-vehicle conflicts on multilane divided urban 

roads (Gitelman, et al., 2016b). Using both crash and near-crash data from driving simulation 

experiments, Gómez et al. (2011) found that advanced yielding signs reduced crashes and near 

crashes by 50 % at intersections. Hakkert et al. (2002) found a significant reduction in the 

conflict rate (number of conflicts per pedestrian at the crosswalk) after the implementation of a 

pedestrian-detecting crosswalk warning system.  
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A few studies relied on less urgent and more frequent evasive maneuvers, such as 

reducing the speed or standing and waiting to cross. Huang et al. (1999) defined conflicts as 

having occurred when a motorist slowed or stopped to avoid hitting a pedestrian or when a 

pedestrian changed speed or stopped to avoid being struck by a vehicle. The authors found that 

pedestrians crossing at the flashing crosswalk experienced fewer conflicts than those who 

crossed elsewhere. Boyce & Van Derlofske (2002) described conflicts as “an occasion when a 

driver moves over the crosswalk while a pedestrian is on the crosswalk, the vehicle passing 

either in front or behind the pedestrian”, which were reduced with in-pavement flashing warning 

lights. Mitman et al. (2010) used “multiple-threat opportunities as a safety measure, defined as 

“the number of times in which a driver yielded in one lane (the first lane encountered in the 

crossing direction of the pedestrian), whereas a driver in the adjacent lane of the same direction 

of travel (the next lane encountered) did not yield”. Multiple-threat opportunities should be 

considered conflicts since they are “observable situation[s] in which road users approach each 

other to such an extent that there is a risk of collision if their movements remain unchanged”. 

The authors showed that the probability of being involved in multiple-threat opportunities at 

marked crosswalks was higher than at unmarked crosswalks on multi-lane roads. Wang & Fang 

(2008) proposed using pedestrian walking speed to measure pedestrian evasions. Conflicts were 

categorized, using crossing speeds of 0.8-1.4 m/sec in front of approaching vehicles to represent 

safe conditions, 1.4-1.6 m/sec to represent slight conflicts, above 1.6 m/sec to represent serious 

conflicts, and highly abnormal or inconsistent pedestrian gaits to indicate extreme conflicts. 

2.5.2.2 Methods Using Time-Based Measurements 

Probably the most mature and most widely-used conflict analyses use time-based measurements 

to define and evaluate traffic conflicts (Zhang, et al., 2014). Conflicts between pedestrians and 

vehicles are often classified into discrete severity levels according to different time thresholds of 

the given time-based measurement.  

One common time-based measurement for pedestrian-vehicle interactions is Time-to-

collision (TTC). TTC is defined as the expected time for two road users to collide if they 

continue their trajectories on a collision course (St-Aubin, 2016). TTC between two road users 
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on a collision course is measured based on their current states (such as the speed and the 

acceleration) and locations, and their potential motions after (St-Aubin, 2016). The simplest, and 

most classic, hypothesis in motion prediction for TTC is motion prediction at constant velocity, 

where TTC is defined as “the expected time for two road users to collide if they remain at their 

present speed, direction, and on the same trajectory” (Hayward, 1971). An Italian study proposed 

the Pedestrian Risk Index (PRI) based on the TTC and vehicle speeds to link both the probability 

of collision and the severity of the consequences (Cafiso, et al., 2011). The study found that 

traffic calming techniques of speed humps and raised crosswalks reduced the severity of 

conflicts compared to traditional crosswalk markings. Johansson & Leden’s (2007) used time-to-

accident (TA), which is the TTC when one of the road users starts an evasive action  (Svensson, 

1998). Yet, limited studies investigating pedestrian safety at non-signalized crosswalks have 

used TTC, perhaps due to 1) the less-predictable pedestrian motion that differs from simple 

constant velocity; and 2) the higher complexity of TTC measures using advanced motion 

prediction methods (Mohamed & Saunier, 2013) for pedestrian-vehicle interactions. 

Post-Encroachment Time (PET) is another popular time-based measurement. PET is 

defined as “the time between the moment that the first road user leaves the virtual collision zone 

and the moment the second road user reaches it”. PET is of a completely different nature from 

TTC which is continuous and relies on motion prediction methods (Várhelyi, 1998). Fu et al. 

(2016) defined conflicts as pedestrian-vehicle interactions with a PET of less than 5 seconds and 

dangerous conflicts as interactions with a PET of less than 1.5 seconds. The proportion of 

dangerous conflicts was found to be higher at night than during the day. Almodfer et al. (2016) 

proposed the concept of the lane-based PET (LPET) which regards the collision zone as a width 

of the travel lane, instead of the width of the vehicle as normally used in PET measures, to 

identity pedestrian-vehicle conflicts.  

Other indicators such as vehicle acceleration/deceleration or rotation information  

(Olszewski, et al., 2016) can also been used to represent the severity of pedestrian conflicts. 

However, nothing has been found in previous studies. 
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2.6 BEHAVIORAL APPROACH 

Crash reconstruction and witness accounts have shown the strong relationship between crashes 

and behavior at non-signalized crosswalk locations (Cottrell & Mu, 2005). This may explain why 

the behavioral analysis approach, which considers road user behavior as a safety indicator, is the 

most popular among the reviewed studies (nearly 70 %). Although vehicles are required to yield 

to pedestrians at non-signalized crosswalks, they may not comply and pedestrians need to pay 

attention to passing vehicles to make safe crossing decisions. Safety-related behaviors include 

yielding, crossing movements, and pedestrian and vehicle checking behavior (Cinnamon, et al., 

2011), and are typically studied at the microscopic level (for each interaction).  

2.6.1 Methods and Measures 

The behavior of a road user is either active or reactive. Active behavior includes pedestrian and 

driver behaviors determined by intrinsic movement patterns and habits, such as distraction, 

checking habits, and pedestrian walking patterns of speed and crossing location, or other 

behaviors not triggered by a threat from the road environment. Reactive behaviors, including 

yielding maneuvers, pedestrian crossing decisions, or gap acceptance, are actions taken in 

response to external triggers from the road environment (potential collisions).  

2.6.1.1 Active Behavior Methods 

Different studies have used active behaviors to investigate pedestrian safety at non-signalized 

crosswalks (Bentley, 2015; Brewer, et al., 2015; Brumfield & Pulugurtha, 2011). The following 

sections summarize studies focused on behavior and studies using behavior as a measure for 

safety analysis. Pedestrian active behaviors include distraction, gaze behavior, and walking 

patterns, while driver active behaviors include distraction, glancing behavior, and speed 

adaptation. 
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(1) Pedestrian Distraction 

At crosswalks, pedestrian distraction refers to situations in which pedestrians focus on something 

other than crossing the street. Distractions include “wearing headphones, talking on a cell phone, 

eating, drinking, smoking or talking” (Bungum, et al., 2005). Several studies have focused on 

pedestrian distractions (Brumfield & Pulugurtha, 2011; Bungum, et al., 2005; Harrison, 2017; Li 

& Ming, 2016; Pulugurtha, et al., 2011; Solah, et al., 2016). In a study conducted on the campus 

of University of North Carolina at Charlotte involving seven different non-signalized crosswalk 

locations, Brumfield & Pulugurtha (2011) found that 29 % of pedestrians were noticeably 

distracted as they crossed the street. Brumfield & Pulugurtha found that drivers yielded more to 

distracted pedestrians; however, careless and aggressive crossing decisions by pedestrians 

associated with distraction increased the crash risk for pedestrians (Brumfield & Pulugurtha, 

2011). Bungum et al. (2005) found that about 20 % of pedestrians were distracted when crossing 

under the white “walk” signal based on observations from a T intersection in Las Vegas, Nevada. 

According to Harrison (2017), 45 % of pedestrians were distracted by their cell phone at two 

different crosswalks on the campus of Mississippi State University. 

(2) Pedestrian Gaze Behavior 

Pedestrian gaze is required for pedestrians to check for oncoming vehicles, important for 

ensuring safe passage, as considered in several studies (Harrison, 2017; Knoblauch, et al., 2001; 

Nteziyaremye, 2013). Knoblauch et al. (2001) considered “pedestrian looking behavior” using 

the percentage of pedestrians who performed gaze maneuvers as a measure of effectiveness and 

found an increase in gaze maneuvers after marking the crosswalk. Others investigated the 

number of looks made by crossing pedestrians (Harrison, 2017) or average head movements 

before and during crossing (Nteziyaremye, 2013). 

(3) Pedestrian Crossing Patterns 

Pedestrian crossing patterns refer to the ways in which pedestrians behave when they approach 

and cross the street without response to external influence (interactions). Pedestrian crossing 

patterns found in past studies mainly consider the crossing speed (Fitzpatrick, et al., 2006; Goh, 

et al., 2012; Jiang, 2012; Jiang, et al., 2015; Nteziyaremye, 2013; Shi, et al., 2007a; Shi, et al., 
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2007b) and compliance in using the designated crosswalk area (Fitzpatrick, et al., 2006; 

Gitelman, et al., 2016a; Hakkert, et al., 2002; Knoblauch, et al., 2001; Sisiopiku & Akin, 2003). 

Fitzpatrick et al. (2006) studied transit rider safety at non-signalized crosswalks by considering 

the speed of pedestrians crossing to reach a bus. Goh et al. (2012) found that pedestrians at non-

signalized crosswalks have significantly higher crossing speeds compared to those at signalized 

crosswalks. Huang & Cynecki (2001) used the share of pedestrians crossing within the crosswalk 

boundaries to investigate the performance of the raised intersection treatment, finding an 

improvement from 11 % to 38 %. Gitelman et al. (2016a) also reported an increase in the share 

of pedestrians crossing within the boundaries of raised pedestrian crosswalks combined with 

preceding speed humps. Sisiopiku & Akin (2003) defined the crossing compliance rate as the 

number of pedestrians crossing at the crosswalk area (CA), defined as the area within 3 m from 

both sides of the crosswalk painting, over the number of pedestrians in the larger crosswalk 

influence area (CIA), in a period of time. 

(4) Driver Distraction 

Like pedestrian distraction, driver distraction refers to situations in which drivers focus on 

something other than paying attention to pedestrians and navigating the crossing. Driver 

distractions such as talking on the phone or texting have been normally investigated (Brumfield 

& Pulugurtha, 2011; Pulugurtha, et al., 2011). Brumfield & Pulugurtha (2011) found that 18 % 

of drivers were noticeably distracted with 9% talking on the phone and 3% texting, and that 

distracted drivers were about 15 times less likely to yield to pedestrians. Believing yielding rate 

was “an indicator of the relative safety” (Brumfield & Pulugurtha, 2011), the authors concluded 

that crash risks are higher for distracted drivers: Pulugurtha et al. (2011) found that distracted 

drivers were four times more likely to be involved in a conflict. 

(5) Glancing Behavior 

Driver glancing is required for drivers to check for pedestrians who intend to cross the street. 

Several authors who studied driver glancing behavior at non-signalized crosswalk locations 

(Fisher & Garay-Vega, 2012; Gómez, et al., 2011; Gómez, et al., 2014). Fisher & Garay-Vega 

(2012) found that advanced yielding markings and prompt signs increased the likelihood that a 
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driver glances towards pedestrians and increases the distance of the first glance towards the 

pedestrian. Gómez et al. (2011) showed that at advanced yielding markings, 54 % of drivers 

glanced toward pedestrians, compared to 40 % at standard crossing markings. (Van Houten, et al., 

2001).  

(6) Active Speed Adaptation 

Unlike speed measures discussed in the traffic data approach, speed adaptation focuses on 

maneuvers drivers take to avoid dangerous situations, measured as a speed reduction or 

deceleration rate. Active behaviorr studies consider that vehicles crossing a pedestrian crosswalk 

often change speed independently of pedestrian presence. Antov et al. (2007) found minor 

changes in speed near zebra crosswalks. Bentley (2015) used acceleration rate and gas pedal 

position to evaluate the effectiveness of high-visibility crosswalks (HVC) and pedestrian 

crossing signs. The study found that HVCs increase the magnitude of the vehicle deceleration 

regardless of pedestrian presence. Smith et al. (2009) used deceleration rate to show similar 

driver behavior at active and passive warning systems at non-signalized intersections and mid-

block crossings. 

2.6.1.2 Reactive Behavior Methods 

Reactive behavior methods consider pedestrian and driver behaviors undertaken in response to 

other road user actions and are more common than active behavior methods in crosswalk safety 

studies. Common pedestrian reactive behaviors include waiting behavior (time) and crossing 

decisions (gap acceptance), while vehicle reactive behaviors include yielding (yielding rates and 

the choice of the stopping distance to crosswalk) and speed adaptation behaviors 

(acceleration/deceleration maneuvers). 

(1) Waiting Behavior 

Pedestrian waiting behaviors include the decision to wait (Jiang, 2012; Jiang, et al., 2015) and 

the time spent waiting (Jiang, 2012; Jiang, et al., 2015; Shi, et al., 2007a; Shi, et al., 2007b; 

Ibrahim, et al., 2005). Upon arrival at a crossing, pedestrians decide whether to wait for 
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approaching vehicles. An alert pedestrian will stop and wait until the oncoming vehicle shows 

the intention to yield. Jiang (2012) compared waiting decisions in China and Germany and found 

that over 80 % of pedestrians in China stopped at the roadside and waited to cross in China, 

compared to 30 % in Germany. Further results were published in Jiang et al. (2015). Pedestrian 

waiting time also affects pedestrian safety. Extended waiting times could increase exposure to 

approaching vehicles and result in lost patience and risky crossing attempts, as also illustrated in 

(Brosseau, et al., 2013). Shi et al. (2007a) found pedestrians were willing to accept shorter gaps 

after longer waiting times. Other studies (Pécheux, et al., 2009; Pulugurtha, 2015) used 

observations of stranded pedestrians who had to wait for “a significantly long time” before being 

able to cross safely (Pécheux, et al., 2009). 

(2) Crossing Decisions 

During pedestrian-vehicle interactions, decisions made by pedestrians are one of the key 

elements to be considered. Safe crossing decisions reduce the risk of collision, while risky 

decisions (very short gaps) could result in dangerous situations involving hard vehicle braking, 

near-misses, or even crashes. Accepted gap is the most common measure used to describe 

pedestrian crossing decisions (Boroujerdian & Nemati, 2016; Brewer, et al., 2006; Jiang, 2012; 

Jiang, et al., 2015; Kadali & Perumal, 2016; Kadali, et al., 2014; Nteziyaremye, 2013; Pawar & 

Patil, 2015; Schroeder, et al., 2014; Sun, et al., 2003). Brewer et al. (2006) explored pedestrian 

gap acceptance at uncontrolled mid-block crosswalks and found that the 85th centile of the 

accepted gaps ranged from 5.3 to 9.4 s. Jiang (2012) and Jiang et al. (2015) found that 

pedestrians in China had a slightly smaller acceptable gap than those in Germany, recommending 

a critical gap of 5.0 seconds for both Chinese and Germany pedestrians. Statistical techniques 

(Boroujerdian & Nemati, 2016; Kadali & Perumal, 2016; Schroeder, et al., 2014; Sun, et al., 

2003) and machine learning methods (Kadali, et al., 2014) have been used to model pedestrian 

gap acceptance and explore factors contributing to gap acceptance. Other than gap acceptance, 

Fu et al. (2018) investigated pedestrian crossing decisions based on the status of the approaching 

vehicle measured using time-to-crossing and required deceleration rate. Xiang et al. (2016) 

applied Monte-Carlo simulation to evaluate pedestrian safety considering both pedestrian gap 

acceptance and waiting time. 
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(3) Yielding Behavior 

Vehicle yielding behavior is believed to be one of the most important indicators of pedestrian 

safety at non-signalized crosswalks and has therefore been most widely studied within behavioral 

approaches. Many studies (around 30 studies included in this paper) used yielding rates as a 

measure of effectiveness to validate the performance of pedestrian treatments or 

countermeasures at non-signalized crosswalks. For instance, Brewer et al. (2015) found the 

installation of pedestrian hybrid beacon (PHB) or rectangular rapid flash beacon (RRFB) 

treatments improved yielding rates substantially and that yielding rates were higher for 

pedestrians waiting in the vehicle lane (unstaged) compared to pedestrians who waited on the 

curb (staged). Gitelman et al. (2016a) found that raised pedestrian crosswalks and preceding 

speed humps improved yielding rates. Chi (2007), Knoblauch et al. (2001), Mitman et al. (2008), 

and Mitman & Ragland (2008) compared yielding rates at marked and unmarked crosswalks. 

Brewer et al. (2015), Domarad et al. (2013), Fitzpatrick et al. (2011), Shurbutt & Van Houten 

(2010), Fitzpatrick et al. (2016a), and Fitzpatrick et al. (2016b) explored the efficiency of the 

RRFB sign in protecting pedestrians at crosswalks based on yielding rates of vehicles. Other 

studies considered yielding rates with respect to pedestrians who were distracted (Brumfield & 

Pulugurtha, 2011), considering variations across ethnicity (Coughenour, et al., 2017; Goddard, et 

al., 2014), staged and unstaged (Brewer, et al., 2015; Dulaski & Liu, 2013), different ages and 

gender (Rosenbloom, et al., 2006; Wa, 1993), with disabilities (Schroeder, et al., 2010; 

Schroeder, et al., 2014), and with different gestures (Zhuang & Wu, 2014).  

Some studies specially investigate vehicle yielding behavior during pedestrian-vehicle 

interactions (Chai & Zhao, 2016; Jiang, 2012; Jiang, et al., 2015; Ibrahim, et al., 2005; Várhelyi, 

1998) or model vehicle yielding behavior and investigate factors related to vehicle yielding 

(Antov, et al., 2007; Schroeder, 2008; Schroeder & Rouphail, 2011; Sun, et al., 2003). Millard-

Ball (2016) used game theory to analyze relationships between pedestrians and autonomous 

vehicles based on yielding. Fu et al. (2016) compared vehicle yielding behavior in daytime 

conditions to nighttime conditions at non-signalized crosswalks. Fu et al. (2018) proposed a new 

framework to deal with limitations of simple yielding rates based on the status of approaching 

vehicles and their ability to conduct a successful yielding maneuver. Non-yielding maneuvers 

were classified as non-yielding violation, uncertain non-yielding maneuver, and non-infraction 
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non-yielding, and yielding rate and yielding compliance were redefined. Some studies have also 

looked at yielding distance from the crosswalk (Karkee, et al., 2010) or “the distance that 

motorists stopped before the crosswalk when yielding to pedestrian” (Van Houten & Malenfant, 

1992; Van Houten, 1988; Van Houten, et al., 1998; Van Houten, et al., 2001; Van Houten, et al., 

2002).  

(4) Reactive Speed Adaptation 

Different from active speed adaptations which occur independently from pedestrian presence, 

reactive speed adaptations are changes in vehicle speed when approaching pedestrians who are 

crossing or intend to cross the street. Knoblauch & Raymond (2000) compared vehicle speed 

reductions before and after adding the crosswalk marking, under three pedestrian presence 

conditions (no pedestrian, pedestrian looking, and pedestrian not looking). The pedestrian 

presence was defined as the presence of staged pedestrians. The study found that the vehicle 

speed reduction was much smaller when pedestrians were looking at approaching vehicles (0.28 

km/h), compared to when pedestrians were not looking (2.61 km/h) and when there were no 

pedestrians (3.32 km/h). Várhelyi (1998) investigated vehicle speed adaptations during 

encounters and non-encounters with pedestrians 2 , and speed adaptations without pedestrian 

presence. Most vehicles did not adapt their speed or yield the right-of-way. Other studies 

specifically considered vehicle decelerations to investigate pedestrian-vehicle interactions (Jiang, 

2012).  

2.6.2 Data Collection Methods  

In general, behavioral analysis studies have used data collected from video cameras, field 

observations, and other sensors (LiDAR and radar). Other studies have used naturalistic driving 

data and driving or pedestrian simulation.  

                                                      
2 In this study, situations with pedestrian presence are defined as “situations when an approaching car is within 70 m 

from the zebra crossing and there is a pedestrian presence (pedestrian approaching or crossing) at the zebra crossing” (Várhelyi, 

1998). Situations with pedestrian presence are further classified as encounters and non-encounters. Encounters are defined as 

“situations in which the approaching car and the pedestrian could theoretically arrive at the meeting point at the same time (they 

are on a collision course)” (Várhelyi, 1998). The rest of the situations with pedestrian presence are non-encounters. One can refer 

to the study for more details. 
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2.6.2.1 Active Behavior Methods 

Pedestrian distraction has been studied using manual field observations (Brumfield & Pulugurtha, 

2011; Bungum, et al., 2005; Li & Ming, 2016) and video data, or some combination thereof 

(Harrison, 2017; Solah, et al., 2016). For pedestrian gaze behavior, Knoblauch et al. (2001) 

manually collected data from field observations, Harrison (2017) manually extracted information 

from video data, and Nteziyaremye (2013) combined both video data collection and field 

observation methods. For pedestrian crossing behavior, most studies relied on data extracted 

manually from videos (Fitzpatrick, et al., 2006; Fizpatrick, et al., 2007; Gitelman, et al., 2016a; 

Huang, et al., 2000; Ibrahim, et al., 2005; Shi, et al., 2007a; Shi, et al., 2007b; Sisiopiku & Akin, 

2003), semi-automatically using computer-based tools (Jiang, 2012; Jiang, et al., 2015), collected 

using field observations (Goh, et al., 2012), or a combination of video and field work 

(Nteziyaremye, 2013).  

Driver distraction is mainly studied using only field observations (Brumfield & 

Pulugurtha, 2011; Pulugurtha, et al., 2011). Most studies exploring driver glancing behavior used 

driving simulation experiments with eye trackers or cameras (Fisher & Garay-Vega, 2012; 

Gómez, et al., 2011; Gómez, et al., 2014). As an alternative, data for vehicle speed adaptations 

have been collected using naturalistic driving data (Antov, et al., 2007; Bentley, 2015) and 

automatically extracted from video (Smith, et al., 2009). 

2.6.2.2 Reactive Behavior Methods 

Pedestrian waiting behavior has largely been studied using video data and manual techniques, e.g. 

(Ibrahim, et al., 2005; Sisiopiku & Akin, 2003), though some have extracted data using 

computer-based tools, e.g. (Jiang, 2012; Jiang, et al., 2015). Likewise, crossing decisions have 

been studied manually (Brewer, et al., 2006; Kadali & Perumal, 2016; Sun, et al., 2003) and 

using computer-based tools (Boroujerdian & Nemati, 2016; Fu, et al., 2018; Jiang, 2012; Jiang, 

et al., 2015). Pawar & Patil (2015) and Schroeder et al. (2014) relied on field observations, while 

Nteziyaremye (2013) used both manual observations and video. A few studies have used 

experiments including simulators and picture- or video-based surveys (Granié, et al., 2014; Liu 
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& Tung, 2014; Oxley, et al., 2005). Xiang et al. (2016) simulated pedestrian crossing decisions 

and safety using the Monte Carlo simulation method. 

Vehicle yielding behavior has generally been investigated using field-observed data 

(Brumfield & Pulugurtha, 2011; Cambridge, 2012; Hakkert, et al., 2002; Knoblauch, et al., 2001; 

Mitman & Ragland, 2008; Van Houten, et al., 2002; Zhuang & Wu, 2014) or data manually 

extracted from videos (Brewer, et al., 2015; Chi, 2007; Fitzpatrick, et al., 2006; Ibrahim, et al., 

2005; Sun, et al., 2003). Chai & Zhao (2016) investigated vehicle yielding behaviors using 

driving simulators. Reactive speed adaptations have relied on video data collection and 

computer-based tools (Jiang, 2012) and field data collection using speed measuring devices 

(Várhelyi, 1998). 

2.7 PERCEPTION APPROACH  

Perceptions of safety and the road environment may have a substantial impact on safety as they 

influence road user behavior. Perception-based approaches investigate for example perceptual 

factors that may affect pedestrians’ decisions to use a crosswalk. Studies have focused on 

different types of perceptions, including sense of safety, awareness, and knowledge of crossing 

treatments, and main concerns during crossing activities. Perception analysis has been used to 

extract road user requirements, to investigate their awareness and acceptance of various 

treatments, and to better understand the gap between perceptions and actual safety.  

2.7.1 Data Collection Methods  

Studies on perception analysis have most commonly used surveys through on-site questionnaires 

or face-to-face interviews (Boyce & Van Derlofske, 2002; Dhar & Woodin, 1995; Fitzpatrick, et 

al., 2004; Huang, et al., 1999; Ibrahim, et al., 2005; Mitman & Ragland, 2007). Chai & Zhao 

(2016) conducted an “on-site” questionnaire after driving simulation experiments involving 50 

participants. Zhuang & Wu (2014) conducted a questionnaire by recruiting drivers for 

participation. To collect pedestrian perception information, Nteziyaremye (2013) used an on-

street face-to-face interview. Johansson & Leden (2007) conducted a school survey for children 
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about their safety perceptions. Some studies have distributed surveys electronically, including 

Sisiopiku & Akin (2003) and Dougald et al. (2012), who used both an on-site questionnaire and 

an electronically-distributed survey. Dutt et al. (1997) relied on physical surveys mailed or 

handed-out and surveys distributed via email. Traditional methods of distributing surveys by 

mail or by phone have seen limited use in recent years due to poor efficiency and return rates. 

2.7.2 Methods and Measures 

The different measures used in existing studies can be classified as: 1) focusing on perceived 

safety of drivers and pedestrians; 2) investigating road user knowledge and preferences; 3) 

exploring the concerns and suggestions of pedestrians, and; 4) investigating road user motives.  

2.7.2.1 Methods Considering Perceived Safety 

As perceptions of safety may mirror reality, they might be used as SMoS, as demonstrated in 

several studies (Boyce & Van Derlofske, 2002; Chai & Zhao, 2016; Dougald, et al., 2012; 

Fitzpatrick, et al., 2004; Ibrahim, et al., 2005; Johansson & Leden, 2007; Sisiopiku & Akin, 

2003). Boyce & Van (2002) surveyed pedestrians about two crosswalk treatments: repainting 

crosswalk striping, and repainting with the installation of in-pavement flashing warning lights. 

Results showed that while pedestrians considered both crosswalks to be moderately safe, in-

pavement flashing warning lights did not change their perceptions of safety. Chai & Zhao (2016) 

investigated the effect of exposure to aggressive stimuli (provocations from other vehicles 

including sustained honking and improper passing) on driver perceived risk. They found that 

perceived risks significantly increased after repeated provocations. Dougald et al. (2012) 

investigated the performance of zig-zag markings through pedestrian and driver surveys. 61% of 

drivers agreed that the markings increased their awareness or attention, and 56% of drivers 

agreed that the markings increased pedestrian and cyclist safety. 58% of pedestrians and cyclists 

thought zig-zag markings improved their safety. 
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2.7.2.2 Methods Considering Knowledge and Preference 

Knowledge of and preferences towards crossing countermeasures and treatments should be 

considered in safety studies, as they may affect road user maneuvers, compliance, and safety. 

Several studies have considered road user knowledge and preference in investigating pedestrian 

safety at non-signalized crosswalk locations (Dhar & Woodin, 1995; Dougald, et al., 2012; Dutt, 

et al., 1997; Fitzpatrick, et al., 2004; Huang, et al., 1999; Mitman & Ragland, 2007; Sisiopiku & 

Akin, 2003; Zhuang & Wu, 2014). Dhar & Woodin (1995) conducted a survey of pedestrians, 

nearby residents, and passing motorists regarding their preferences towards the standard 

crosswalk sign and the strong yellow green (SYG) sign. 73% of participants preferred the SYG 

signs, while 6% preferred the standard option. Dutt et al. (1997) also found SYG signs were 

preferred in general. Fitzpatrick et al. (2004) looked at pedestrian preferences of several 

treatments (two marked crosswalks, an in-roadway light treatment, a Hawk treatment, two split 

midblock signal treatments, and a countdown pedestrian timer) across seven sites. Huang et al. 

(1999) explored pedestrians’ understanding of the pedestrian crosswalk warning system with in-

pavement flashing lights surrounding the crosswalk area, activated by pedestrians walking 

between sensors. Although the system was successfully activated by pedestrians in 75% of the 

cases, results showed that most pedestrians did not know how to activate the system. Zhuang & 

Wu (2014) summarized 11 types of pedestrian gestures signaling intent to cross at non-signalized 

crosswalk locations, and a survey was conducted to study driver understanding of pedestrian 

crossing intentions. Sisiopiku & Akin (2003) assessed pedestrian knowledge of right-of-way and 

their preference of different types of crosswalk. Mitman & Ragland (2007) explored pedestrian 

and driver knowledge of the right-of-way at marked and unmarked crosswalks. Results clearly 

showed the uncertainty about pedestrian right-of-way laws among both pedestrians and drivers.  

2.7.2.3 Methods Considering Concerns and Suggestions 

By understanding pedestrians’ concerns and suggestions regarding safety factors and crossing 

activities, improvements to pedestrian perceptions of safety and actual safety are possible. Some 

studies have used pedestrian concerns and suggestions to find and solve safety issues (Fitzpatrick, 

et al., 2004; Sisiopiku & Akin, 2003). Fitzpatrick et al. (2004) collected suggestions on elements 
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pedestrians found confusing and elements that could improve safety, finding that the 

unpredictability of drivers was a main concern. Sisiopiku & Akin (2003) asked for pedestrians’ 

opinions on major problems at designated crosswalks, though responses were not clearly 

summarized.  

2.7.2.4 Methods Considering Motives 

A better knowledge of user motives (mainly pedestrians’ willingness to use the crosswalk 

properly and drivers’ willingness to yield right-of-way) improves the understanding of factors 

related to pedestrian safety. Sisiopiku & Akin (2003) considered the motives of pedestrians 

behind the spatial non-compliance behavior3 (Nteziyaremye, 2013). A survey was designed to 

“reveal motivational factors determining the performed unsafe road-crossing behavior” 

(Nteziyaremye, 2013). Results from the survey showed that the spatial crossing compliance rate 

calculated through survey results was 59%, which was almost exactly equal to the crossing 

compliance rate calculated according to field observations (58.7%), indicating “the reliability of 

the perception data” (Sisiopiku & Akin, 2003).   

2.8 ISSUES AND CHALLENGES IN NON-SIGNALIZED CROSSWALK SAFETY 

ANALYSIS 

Despite the important efforts in pedestrian safety research at non-signalized crosswalk locations, 

some limitations and research gaps still exist. Specific issues are summarized in three areas: lack 

of consistency in the terms and definitions, methodological limitations, and data issues. 

2.8.1 Terms and Definitions  

In this research area, terms and definitions for different variables and indicators have varied or 

have been used interchangeably in different studies. For example, crash data studies (Dobbs, 

2009; Gibby, et al., 1994; Olszewski, et al., 2015; Zegeer, et al., 2001) have used “risk”, “rate”, 

                                                      
3 Nteziyaremye (2013) categorized pedestrian non-compliance behavior as spatial non-compliance 

(pedestrian crossing out of the crosswalk area or jay-walking) or temporal non-compliance (red light violation). 
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and “probability” to present the probability of an outcome of a crash (e.g. number of crashes per 

1 million people or vehicles, in a given location/area), while other studies (Kudryavtsev, et al., 

2012; Chu, 2006; Chu, et al., 2008) used “rate” to refer to the proportion of a certain type of 

crash (e.g. fatal crashes, or crashes classified by types) among the total number of crashes. 

Traffic exposure most commonly refers to traffic volumes or average daily traffic estimates, 

though some studies have used exposure measures based on traffic conflicts (Fu, et al., 2016). In 

the behavior analysis approach, yielding compliance and yielding rates have been used 

interchangeably. Additionally, different parameters and thresholds have been applied in past 

studies. For instance, determining when a pedestrian arrives at the beginning of the crosswalk 

and should be noticed and yielded by the driver is relatively subjective – Van Houten et al. (1998) 

defined “pedestrian presence” as pedestrians positioned 30 cm from the curb facing the 

crosswalk, while Fu et al. (2018) used “pedestrian occurrence” and a threshold of 1 m. The use 

of different thresholds for determining conflict severity (serious conflicts) also lacks validation. 

Moreover, many studies included variables and indicators (such as yielding compliance and 

yielding rate) without definition or explanation, and terms remain unexplained and without a 

detailed account of how to implement them. 

2.8.2 Methodological Limitations  

Some methods introduced or applied in previous studies have limitations. One is that many 

methods relying on historical crash data and statistical modeling have poor fit and accuracy 

(Hummer, et al., 2000; Ye, et al., 2012). Approaches based on SMoS also have limitations. 

Traffic analysis considers the likelihood and severity of pedestrian crashes based on traffic 

conditions, but it does not take account of other factors that are closely associated with 

pedestrian safety such as behavioral factors. In other words, traffic analysis looks at pedestrian 

safety in a macroscopic way but does not consider factors that are microscopic and the direct 

cause of crashes, at the unit of individual road users or events.  

In general, most, if not all, SMoS need to be further validated as “predictable and reliable” 

surrogates of crashes. Despite frequent usage, behavior analysis approaches require 

improvements, considering the complex dynamics in pedestrian and vehicle behaviors during the 
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development of interactions. Lastly, perceived safety is different from actual road conditions and 

safety, and the gap between perceived and objective safety must be addressed further. 

2.8.3 Data Issues  

Data issues are common in road safety studies, especially in studies investigating pedestrian 

safety at non-signalized crosswalks. The limitations of crash data are well documented, as 

discussed earlier. Data used to compute SMoS are usually based on short-term data collection 

methods such as field observations and video data collection, which can provide detailed and 

time-efficient data for safety analysis. However, there are few guidelines regarding the number 

of locations and the duration of observations (to collect a sufficient number of observations, e.g. 

individual events) according to (Laureshyn, et al., 2016). Many studies collect data at a limited 

number of sites due to the high cost and labor required (setting up equipment, manually labeling 

information, or conducting surveys) or due to confidentiality (the sensitivity and difficulty to 

obtaining permission for videotaping or collecting personal information). An additional concern 

when collecting data on-site (both crash and SMoS data) is the safety of observers or data 

collectors who can be exposed to motorized traffic. Data quality may also be challenged 

especially when collected using manual observations or surveys which can be subjective.  

While great benefits have been obtained using vision-based techniques, there are critical 

limitations. Regular visible spectrum cameras are sensitive to lighting conditions, thus the 

accuracy of using them to collect traffic data is limited. They fail to perform well in adverse 

weather, low light conditions, and darkness. Meanwhile, shadows and glare in the daytime also 

degrade the accuracy of the regular cameras when collecting traffic data. In other words, regular 

cameras do not work under all conditions, especially at nighttime and other low-visibility 

conditions when increased injury risk leads to more severe road traffic crashes (Plainis, et al., 

2006). Alternatives need to be explored for using this type of technology. Besides, many studies 

rely on manual or semi-automated methods in extracting data from video recordings, which is 

normally time-consuming and strenuous. Developments of automated data processing 

methods/tools based on video trajectory data help reduce the workload involved when manually 

processing the data and avoid errors and the subjective nature of observer assessments.  
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In general, the occurrence of a crash does not have a single contributory factor but is due to 

a complex combination of the specific interaction, reactions and maneuvers, traffic environment, 

road characteristics, and the characteristics of road users and their vehicles. The greatest 

challenge in analyzing pedestrian safety at non-signalized crosswalk locations, which has been 

also the challenge in most road safety studies, is explaining these complex dynamics and 

designing methodological solutions to analyze safety. 

2.9 CONCLUSIONS 

The chapter reviewed methodologies and data collection methods used to study pedestrian safety 

at non-signalized crosswalk locations between 1987 and 2017. Methods used in past studies are 

classified into five approaches, which are the crash data approach, the traffic data approach, the 

conflict approach, the behavioral approach, and the perception approach. Definitions, methods 

used, related measures, and data collection methods for each approach are discussed. Limitations 

of the previous studies are summarized. Signalized and non-signalized crossings are obviously 

different due to the level of control and different standards that exist for them; and methods for 

investigating pedestrian safety should reflect these differences. As the key contribution, this 

paper systematically summarizes past research in pedestrian safety at non-signalized crosswalks 

based on the methodologies used, providing a practical reference for researchers and 

practitioners. 

In the future, more effort is necessary to propose simple, comprehensive, and consistent 

terms and definitions, as well as a better justification or discussion of criteria and thresholds. 

Guidelines and standards should be developed for the applications of the methodologies. The 

complex dynamics of pedestrian-vehicle interactions, in terms of the multiple maneuvers they 

may make, different contributing factors that can affect their maneuvers or the outcomes, and 

their less-predictable outcomes after these maneuvers under the effect of the factors, must be 

thoroughly explained using an improved methodology to capture the outcome of an interaction.  
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Link between chapter 2 and chapter 3 

The previous chapter summarizes data collection methods used in previous studies in 

investigating pedestrian safety at non-signalized intersection. The advantages of using vision-

based techniques have been recognized; however, limitations have also been outlined in using 

regular cameras for traffic data collection. The regular camera detects objects in visible light 

spectrum. This makes it sensitive to different environmental factors such as lighting, shadow and 

weather conditions. The thermal camera detects the thermal signal, instead of visible light 

spectrum. Therefore, it provides a potential solution to collect video data as an alternative to 

regular cameras, especially for situations when the regular camera is not able to function well.  

Work regarding to the performance validation of using the thermal camera for traffic data 

collection under different environment and understanding its advantages over the visible 

spectrum camera could provide a useful reference for researchers who are interested to develop 

this technology and practitioners who wish to use this technology in the field of transportation. 

This motivates the study in the following chapter. In Chapter 4, the performance of thermal and 

visible spectrum videos for the automated collection and traffic data extraction is evaluated in 

terms of road user detection, classification, and vehicle speed estimation.  
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3.1 ABSTRACT 

Vision-based monitoring systems using visible spectrum (regular) video cameras can 

complement or substitute conventional sensors and provide rich positional and classification data. 

Although new camera technologies, including thermal video sensors, may improve the 

performance of digital video-based sensors, their performance under various conditions has 

rarely been evaluated at multimodal facilities. The purpose of this research is to integrate 

existing computer vision methods for automated data collection and evaluate the detection, 

classification, and speed measurement performance of thermal video sensors under varying 

lighting and temperature conditions. Thermal and regular video data was collected 

simultaneously under different conditions across multiple sites. Although the regular video 

sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal 

sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians 
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and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global 

accuracy of 48 %. Thermal speed measurements were consistently more accurate than for the 

regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and 

pavement temperature, solves issues associated with visible light cameras for traffic data 

collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and 

lower processing requirements. 

3.2 INTRODUCTION 

In transportation management, planning, and road safety, collecting data for both motorized and 

non-motorized traffic is necessary (Robert, 2009). Collecting vehicle data was traditionally 

limited to manual data collection or inductive loops at fixed locations (Bahler, et al., 1998), to 

the point that loops became standard in many jurisdictions and are still widely used today 

(Coifman, 2005). However, traditional loops do not provide any spatial coverage and do not 

capture all road user types (loop detectors exist for bicycles but do not count vehicles or 

pedestrians). Trajectory data for all users (pedestrians, bicycles, and vehicles) is essential to 

understand microscopic behavior and surrogate safety analysis in critical road facilities such 

intersections with high non-motorized traffic volumes (Zangenehpour, et al., 2016). These 

factors have spurred the development of non-intrusive traffic sensors of which video-based 

devices are among the most promising (Robert, 2009). Vision-based monitoring systems are 

widely used in ITS applications (Yoneyama, et al., 2005), can complement or substitute 

conventional sensors (Cho & Rice, 2006), enable multiple lane detection (Bahler, et al., 1998), 

and provide rich positional and classification data (Zangenehpour, et al., 2015) beyond the 

capabilities of traditional devices (Iwasaki, et al., 2013).  

These benefits notwithstanding, there are several critical limitations associated with using 

regular video cameras, also referred to as visible spectrum video cameras, for traffic data 

collection. As these cameras rely on the visible light spectrum, the accuracy of detection, 

tracking, and classification is “sensitive to environmental factors such as lighting, shadow, and 

weather conditions” (Fu, et al., 2015; Yoneyama, et al., 2005). Perhaps the greatest limitation of 

regular cameras is varied performance in low light conditions and darkness (Sangnoree & 
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Chamnongthai, 2009). Considering detection and classification at nighttime, “the light sensitivity 

and contrast of the camera...are generally too weak” (Robert, 2009) to compensate for “the 

interference of illumination and blurriness” (Thi, et al., 2008). This is particularly problematic 

because the increased injury risk associated with nighttime conditions leads to more, and more 

severe, road traffic crashes (Huang, et al., 2000). During daytime, shadows and glare degrade the 

accuracy of extracted data (Yoneyama, et al., 2005; Iwasaki, et al., 2013). This is why typical 

computer vision approaches developed for daytime surveillance may not work under all 

conditions (Robert, 2009), and the advancement of vision-based traffic sensors is a pressing 

matter (Iwasaki, et al., 2013). 

Recently, new camera (sensor) technologies, including thermal or infrared sensors for 

traffic surveillance, have become available. Although the present cost of these cameras has 

prevented their widespread use in traffic analysis, cost will continue to decrease as the 

technology advances. Recognizing that it “is difficult to cope with all kinds of situations with a 

single approach” (Yoneyama, et al., 2005), the performance of thermal cameras must be 

compared to regular cameras across varied lighting and visibility conditions to satisfy the desire 

for an “around-the-clock” video-based traffic sensor (Iwasaki, et al., 2013). In recent years, 

various computer vision techniques for tracking, classification, and surrogate safety analysis 

have been developed (Zangenehpour, et al., 2015; Saunier, n.d.), though nearly all these methods 

were developed and tested using regular video cameras. It is unclear if these methods can be 

directly applied to thermal video and whether thermal cameras offer a performance advantage 

compared to regular cameras across lighting and temperature conditions.  

The purpose of this study is i) to integrate existing tracking and classification computer-

vision methods for automated thermal-video data collection under low visibility conditions, 

nighttime and shadows and ii) to evaluate the performance of thermal video sensors under 

varying lighting and temperature conditions compared to visible light cameras. Performance is 

evaluated with respect to road user detection, classification, and vehicle speed measurements. 

Lighting and temperature conditions where each camera outperformed the other are identified to 

provide practical recommendations for the implementation of video-based sensors. An early 

version of this paper has been presented previously (Fu, et al., 2016; Fu, et al., 2016). 
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3.3 LITERATURE REVIEW 

The difficulties associated with collecting traffic data using regular cameras, and attempts to 

rectify these issues, have been well documented in the existing literature, though many existing 

studies do not appropriately report performance, be it for detection, classification, or tracking. 

Yoneyama, Yeh, and Kuo (2005) demonstrated that nighttime detection misses are up to 50 % 

and false alarms are 3.4 % of the ground truth total, much higher than for daytime detection. 

Robert (Robert, 2009) showed that vehicle counts were accurate in various lighting, weather, and 

traffic conditions when using a headlight detection method, although sample sizes were generally 

100 vehicles or less. Methods that detect headlights or taillights are typically only applicable at 

night, and the headlight detection method may increase the difficulty of vehicle classification 

(Iwasaki, et al., 2013). Thi et al. (2008) proposed a methodology using eigenspaces and machine 

learning for classification from regular video at nighttime. The authors found a successful 

classification rate of 94 % compared to 70 % or lower for other classification schemes. Coifman 

et al. (1998) suggested that “to be an effective traffic surveillance tool … a video image 

processing system … should … function under a wide variety of lighting conditions”. The 

authors proposed feature-based tracking as an improvement over those methods dependent on 

identifying an entire vehicle, because even under different lighting or visibility conditions, “the 

most salient features at the given moment are tracked” (Coifman, et al., 1998). The proposed 

algorithm was evaluated on highways where it was generally successful at tracking vehicles in 

situations including congestion, shadows, and varying lighting conditions. 

With the limited success of regular cameras in adverse conditions, many researchers have 

considered alternative technologies for traffic data collection. Balsys, Valinevicius, and Eidukas 

(2009) identified that weather interference could be avoided using infrared (thermal) cameras, 

demonstrating that the cameras eliminated issues associated with headlight glare at night and cast 

shadows during the day. Thermal video demonstrated a 15 % improvement in detection rate over 

visible light cameras. Sangnoree and Chamnongthai (2009)  presented a method for detecting, 

classifying, and measuring speeds of vehicles at night using thermal videos. Although 

classification and speed estimation were successful, detection worked best when only a single 

vehicle was present in the video frame (84 % success) but suffered when two or more vehicles 
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were present (41-76 % success). Iwasaki (2008) developed a vision-based monitoring system 

that works robustly around-the-clock using infrared thermography. Iwasaki, Kawata, and 

Nakamiya (2013) achieved 96 % successful detection of vehicles using thermal video in poor 

visibility conditions. MacCarley, Hemme, and Klein (2000) compared several infrared and 

visible light cameras, and found that many infrared cameras were “virtually immune to headlight 

or streetlight backscatter” and therefore performed best in darkness, fog, or the combination of 

darkness and fog. However, without fog or with light fog, the visible light camera outperformed 

infrared cameras, and “there appears to be a limited number of situations for which non-visible 

spectrum imaging appears to be justified”, including dense fog or scenes with glare or shadows 

(MacCarley, et al., 2000). 

Thermal video has been used successfully for nighttime pedestrian detection, an area of 

particular importance because pedestrians may be less visible to drivers at night, and are 

therefore at a greater risk of collision (Huang, et al., 2000). Xu, Liu, and Fujimura (2005) used a 

support vector machine (SVM) to detect and classify pedestrians using a thermal camera 

mounted to a moving vehicle. Although detection was successful in many cases, occlusion of 

pedestrians in heavy traffic was a significant limitation. Krotosky and Trivedi (2007) analyzed 

multiple camera technologies. Recognizing that regular and thermal cameras provide “disparate, 

yet complementary information about a scene”, the authors recommend combining visible light 

and infrared technologies (Krotosky & Trivedi, 2007).  

Despite this existing work, several shortcomings exist. Although several studies have 

addressed detecting vehicles or pedestrians, there has been limited work on detecting and 

classifying multiple road user types (including bicycles) from thermal video in mixed-traffic 

environments such as urban intersections. No studies have attempted to identify the effect of 

pavement temperature on the quality of thermal video. Although thermal video sensors are 

promising, their performance must be comprehensively evaluated and the adaptation of existing 

computer vision software must be studied. Most studies do not appropriately report performance 

and cannot be reproduced since the software code and/or datasets are not available. Detection 

rate alone is too limited to represent performance. The whole confusion matrix should be 

presented and receiver operating characteristic (ROC) curves should be used to evaluate 
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detectors or classifiers as parameters are adjusted. Separate data sets for calibration and 

performance measurements should be required. When available, researchers should use standard 

metrics such as the Measure of Tracking Accuracy (MOT) (Bernardin & Stiefelhagen, 2008). 

This research aims to address these gaps and integrate thermal sensors into existing data 

collection and safety tools, in particular under conditions where regular video presents 

limitations.  

3.4 METHODOLOGY 

The methodology considers three steps: i) technology integration and data collection, ii) 

implementation of detection and classification algorithms, and iii) vehicle speed validation. The 

three steps are detailed below. 

3.4.1 Technology Integration and Data Collection 

The two technologies involved in this study are thermal-video sensors with a resolution of 

368x296 pixels and visible-light cameras with a resolution of 1920x1080 pixels. The thermal 

camera system consists of a thermal sensor, a signal converter, and a power supply unit. Thermal 

video data is stored on a simple chip microcomputer (SCM). The thermal sensor, the ThermiCam 

by FLIR, is connected to an X-stream edge card that reads the thermal signal and converts and 

outputs the signal to a video file. The video file from the X-stream edge card is transferred to the 

SCM using an Ethernet connection where it is saved using the VLC Software (VideoLAN 

Organization, n.d.). The camera and X-stream edge card are powered using a battery with an 

output of 12-24 V. The SCM, the battery and the X-stream edge card are placed in a small 

enclosure which can be easily installed for data collection. FIGURE 3-1 presents the components 

of the thermal camera system and a sample frame from the thermal camera recorded at night in 

FIGURE 3-1d. 
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FIGURE 3-1  Thermal camera system*4  

Three primary sources of data are required: thermal video data, visible spectrum video 

data, and environmental and pavement temperature data. The regular visible-spectrum camera 

and thermal camera systems are installed simultaneously using a telescoping-fibreglass mast to 

ensure nearly identical fields of view. The regular camera system, introduced previously 

(Zangenehpour, et al., 2015), uses an inexpensive and commercially available video camera 

which stores video and is powered internally.  

Since the road pavement is the primary background in the video scenes, pavement 

temperature is regarded as the main temperature variable affecting thermal video performance. 

Pavement temperature data were collected using the FLIR ONE thermal camera (FLIR Systems, 

Inc., 2015), which attaches to an iPhone to capture thermal video and temperatures using the FLIR 

ONE iPhone application. The camera was held close to the road surface to get an accurate 

temperature as suggested in the user manual (FLIR Systems Inc., 2014). Based on field-testing, 

                                                      
4 Note that in the field, the battery, SCM and the TI X-stream are enclosed in a small waterproof case. 
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the temperature measured by the FLIR ONE camera was within 2°C of the actual pavement 

temperature. FIGURE 3-2 shows the camera system, its user interface, and field measurement of 

the pavement temperature data. 

 

FIGURE 3-2  Pavement temperature measuring sensor – FLIR ONE thermal camera 

3.4.2 Implementation of Detection and Classification Algorithms  

As thermal videos detect thermal energy, they are expected to solve the issues associated with 

visible light cameras under different lighting conditions. Though, existing detection and 

classification algorithms are used for automated data collection, they must be re-trained and 

evaluated under different lighting and temperature conditions. Additional details of the methods 

for detection, tracking and classification are presented in the next sub-sections. 

3.4.2.1 Detection and Tracking Algorithm 

The videos were processed using the tracker available in Traffic Intelligence, an open-source 

computer-vision software project (Saunier & Sayed, 2006). Individual pixels are first detected 

and tracked from frame to frame, and recorded as feature trajectories using the Kanade-Lucas-

Tomasi feature tracking algorithm (Shi & Tomasi, 1994). Feature trajectories are then grouped 
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based on consistent common motion to identify unique road users. The techniques used in the 

tracker are further explained by Shi & Tomasi (1994) and Saunier & Sayed (2006). Algorithm 

parameters were calibrated through trial and error, in order to minimize both false alarms and 

misses. False alarms and misses respectively result mostly from over-segmentation (one user 

being tracked as multiple users) and over-grouping (multiple users being tracked as one user).  

3.4.2.2 Classification Algorithm 

Road user classification was performed using the method developed by Zangenehpour, Miranda-

Moreno, and Saunier (2015). Classifier V classifies detected road users as vehicles, pedestrians, 

or cyclists based on the combination of appearance, aggregate speed, speed frequency 

distribution, and location in the scene. An SVM is used to learn the appearance of each road user 

type as described by the well-known Histogram Oriented Gradients (HOG). The SVM was 

trained based on a database containing 1500 regular images of each road user type. The overall 

accuracy of this classification method at intersections with high volumes and mixed road user 

traffic is approximately 93 %, an improvement over simpler algorithms using only one or two 

classification cues (Zangenehpour, et al., 2015). The classifiers are available in Traffic 

Intelligence (Saunier, n.d.). For more details regarding the original classification method, readers 

are referred to (Zangenehpour, et al., 2015). 

3.4.2.3 Algorithm Retraining 

Considering that the classifier uses the appearance of the road user as a parameter, and the fact 

that road users in thermal videos appear quite differently than they do in visible light videos, the 

SVM classifier for appearance classification, as part of the Classifier V (Zangenehpour, et al., 

2015) that is used in this study, needs to be retrained on a dataset of thermal images for all road 

user types. Although the shape and proportions of the road users should be roughly equivalent, it 

is unclear how their appearance described by HOG varies between the visible and thermal 

images. Furthermore, the reduced resolution of the thermal video may impact the classification 

performance as less information and fewer details are available. The accuracy of the 

classification algorithm must therefore be explored further.  
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The retraining work mainly consists of three steps: 1) extracting the square sub-images of 

all moving objects as tracked by the algorithm in the sample videos; 2) manually labeling images 

of the different road user types and preparing the database for training; 3) using the database to 

train the SVM classifier. The steps of the retraining work for the SVM classifier are presented in 

FIGURE 3-3. For retraining purpose, this study used a database containing 1500 thermal images 

from several videos (separate from the ones used for performance evaluation) for each type of 

road user to train the SVM. FIGURE 3-4 shows the samples of the images of the road users in 

the database which covers different lighting and temperature conditions. Results using the 

Classifier V with the SVM trained respectively on the regular and the thermal datasets are 

compared in the experimental results.  

 

FIGURE 3-3 Steps involved in retraining the classifier (Zangenehpour, et al., 2015) 

                   
a) Sample of vehicles          b) Sample of cyclists                                c) Sample of pedestrians 

FIGURE 3-4 Sample of extracted road user images used for retraining 
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3.4.2.4 Detection and Classification Performance Metrics 

The detection and classification performance are measured using different metrics and by 

extracting video data from frames every 10 seconds. This corresponds to 150 frames considering 

a frame rate of 15 frames per second (fps). Data (detection, user class, and speed) is then 

extracted by observing the results of the tracking and classification algorithms and compared 

visually with the ground truth. The interval of 10 s was chosen to be large enough in order to 

avoid evaluating the same road user twice. Most road users are tracked for less than 10 s 

continuously as the tracking algorithm tracks only moving road users (if stopped, a road user is 

not tracked anymore: tracking resumes when the road user starts moving again): trajectories are 

typically less than 5 s long for vehicles, and less than 10 s for pedestrians and cyclists. Also, 10 s 

is short enough to provide enough observations to evaluate the detection and classification 

performance. For the extracted frames, detection and classification errors are counted as shown 

in FIGURE 3-5. 

 

FIGURE 3-5  Video sampling and data extraction for detection & classification 

Performance 
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Different metrics are computed to evaluate the performance of thermal vs regular video. 

For the classification problem, the confusion matrix is used to investigate the technology 

performance and derive metrics. In the general case with N classes, the confusion matrix is an 

NxN matrix that contains in each cell 𝑐𝑖𝑗, the number of objects of true class 𝑖 predicted as class 

𝑗. The detection and tracking step can be also evaluated as a binary classification problem (a 

matrix with N=2 classes, miss and detected), where the class of objects to be detected is the 

positive class. The matrix in this binary case is presented in TABLE 3-1 with the particular 

names taken by the instances depending on their true and predicted class. Misses are the false 

negatives and false alarms are the false positives.  

TABLE 3-1  Corresponding Table of Confusion & Basic Terms from Confusion Matrix 

 

Predicted class 

 

Positive Negative 

True class 

Positive True Positives (TP) False Negatives (FN) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Negative False Positives (FP) True Negatives (TN)  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   

 

The most common metric is the global accuracy defined as the proportion of correct predictions 

and is computed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝐶𝑘𝑘

∑ ∑ 𝐶𝑖𝑗𝑗𝑖
       (1) 

The majority of existing studies have used global accuracy to measure classification performance, 

both for road user detection and classification methods. This is however insufficient to properly 

report the performance, both for two-class classification, i.e. detection (since false alarms are not 

accounted for by a single detection rate) and for classification with three and more classes such 

as in multimodal environments, e.g. with pedestrians, cyclists, and vehicles. As used widely in 
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the field of machine learning, this study relied on the confusion matrix to derive the following 

disaggregate metrics per class:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =
𝐶𝑘𝑘

∑ 𝐶𝑖𝑘𝑖
       (2) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =
𝐶𝑘𝑘

∑ 𝐶𝑘𝑗𝑗
        (3) 

In the case of a binary classification problem, precision and recall are typically reported only for 

the positive class, and can be written in terms of true/false positives/negatives as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑐11

𝑐11+𝑐21
     (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑐11

𝑐11+𝑐12
                                                                    (5) 

From which, the miss rate can be derived as, 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 =  1 − 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
. 

The above metrics are computed by populating the confusion matrix through the visual 

assessment of each frame extracted every 10 s or 150 frames as shown in FIGURE 3-5. Since 

pedestrians often move in groups, and detecting and tracking individual pedestrians within 

groups is difficult (and actually an open problem in all conditions in computer vision), the unit of 

analysis is individual pedestrians or groups of pedestrians. In FIGURE 3-5, the groups of 

pedestrians labeled c (over-grouping) are then considered correctly detected. Miss rate is the 

main metric reported for detection performance used for all test cases in the experimental results, 

while precision and recall at the individual level, overall and per known (true) type of road user, 

are also reported for two test cases for a more complete assessment. 

The road user classification problem has three classes: pedestrians, cyclists and vehicles. 

Precision and recall are reported for each class, as well as global accuracy, from the confusion 

matrix accumulated over all extracted frames. 
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3.4.3 Vehicle Speed Validation 

Once road users have been detected and classified, parameters such as vehicle speed are of 

interest for traffic studies. Many existing studies have used mean relative error (MRE) to 

quantify the error of video speeds extracted automatically from video. However, a previous study 

by Anderson-Trocmé et al. (Anderson-Trocme, et al., 2015) showed that it “is insufficient at 

capturing the true behaviour of detectors and other measures are necessary to define device 

precision and accuracy separately”, where accuracy is the systematic error or bias, and precision 

is the residual error. However, because video-based sensors tend to overestimate speed, and 

because this overestimation is roughly constant with respect to speed, simple methods for 

calculating relative precision error and relative accuracy error were developed. 

The vehicle speed validation process begins by plotting automatically extracted speeds 

against manually measured speeds (speeds calculated based on known distances and video frame 

rate) in order to observe trends across visibility and temperature conditions. The line y=x 

represents ideal detector performance, and data points above the line indicate overestimation of 

speed, while points below the line indicate underestimation. As the overestimation bias is 

typically constant, a line with slope equal to one is fitted to the data. The y-intercept and R-

squared values of this fitted line represent accuracy and precision respectively. However, 

converting these results to relative error values “matches the approach utilized in existing 

literature, and provides an intuitive and communicable comparison” between multiple 

environments (Anderson-Trocme, et al., 2015). Relative precision error (RPE) is quantified 

similarly to mean relative error, with the subtraction of a correction factor equal to the y-

intercept of the fitted line. To normalize the intercept value consistently with the relative mean 

error, the y-intercept is evaluated at every data point (divided by the harmonic mean of observed 

speed) for the relative accuracy error (RAE). The RAE represents the over- or under-estimation 

bias present in the video data. The RPE can be seen as the best possible performance that could 

be expected from calibrated video data (Anderson-Trocme, et al., 2015). Values for relative error, 

relative precision and accuracy error are calculated as 

𝑀𝑒𝑎𝑛 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑅𝐸) =  
1

100
∑

|𝑉𝑒−𝑉𝑜| 

𝑉𝑜
     (6) 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑃𝐸)  =  
1

100
∑

|(𝑉𝑒−𝑦 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)−𝑉𝑜| 

𝑉𝑜
   (7) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐸𝑟𝑟𝑜𝑟 (𝑅𝐴𝐸) =
1

100
∑

|𝑦 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡| 

𝑉𝑜
                                          (8) 

Where 𝑉𝑒  and 𝑉𝑜  stands for the automatically extracted and manually measured speeds 

respectively.  

3.5 DATA DESCRIPTION 

To evaluate the performance of the thermal and regular cameras, 14 test cases (camera 

installations), with approximately one to four hours of video data for each case, were used. The 

lighting test cases, presented in TABLE 3-2, include videos during the day and at night. Daytime 

test cases focussed on various sun exposures and shadow conditions, while nighttime test cases 

focussed on the level of visibility, with one case in near complete darkness, one nearly 

completely illuminated, and one in between. Speed performance was evaluated on a sample size 

of 100 vehicles for each test case, while classification and detection performance was evaluated 

on 30 minutes of sample videos. 

A similar approach was adopted for the temperature test cases, shown in TABLE 3-3. To 

evaluate detection and classification performance under different temperature conditions, thermal 

video data were collected from the same site with the same camera angle throughout a sunny 

summer day when the pavement temperature rose from 20°C in the morning to 50°C in the 

afternoon. Data collected from the same site in winter when the pavement temperature was close 

to 0°C was included. As with the lighting test cases, speed performance was evaluated on a 100-

vehicle sample, and classification and detection performance was evaluated on 20-minute video 

samples. In TABLE 3-3, the thermal images change drastically from cold to hot pavement 

temperature. Road users are light on a dark background when the pavement temperature is low, 

and dark on a light background when pavement temperature is high. 
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TABLE 3-2  Summary of Lighting Test Cases 

Lighting Condition 

VEHICLE SPEED   CLASSIFICATION 

Sample Size Season Road Type   Video Length Season Road type 

Daytime 

Overcast 

100 vehicles 

Winter 

Segment 

  

Every 10 s for 

30 minutes 

Summer Intersection 

Sun, little shadow Spring  Summer Intersection 

Sun, slight shadows Spring  N/A N/A 

Sun, strong shadows Summer  Summer Intersection 

Nighttime 

High visibility 

100 vehicles Spring 

Segment   
Every 10 s for 

30 minutes 
Winter Intersection Medium visibility Intersection  

Low visibility Intersection   

SAMPLE CAMERA VIEWS UNDER DIFFERENT LIGHTING CONDITIONS 

Daytime 

Conditions 
Thermal Camera Regular Camera 

Nighttime 

Conditions 
Thermal Camera Regular Camera 

Overcast 

  

High 

visibility 

  

Sun, little 

shadow 

  

Medium 

visibility 

  

Sun, 

strong 

shadows 

  

Low 

visibility 
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TABLE 3-3  Summary of Temperature Test Cases 

Pavement Temp. Ambient Temp. Sample Size Season Road Type 

VEHICLE SPEED 

0 °C- 5°C ~   0 °C 

100 vehicles 

Winter Segment 

20 °C-25°C ~ 20 °C Summer Segment 

25 °C-30°C ~ 20 °C Summer Segment 

30 °C-35°C ~ 20 °C Summer Segment 

35 °C-40°C ~ 20 °C Summer Segment 

40 °C-45°C ~ 20 °C Summer Intersection 

CLASSIFICATION 

0 °C- 5°C ~   0 °C 

Every 10 s (150 

frames) for 20 minutes 

Winter 

Intersection 

20 °C-25°C ~ 20 °C Summer 

25 °C-30°C ~ 20 °C Summer 

30 °C-35°C ~ 20 °C Summer 

35 °C-40°C ~ 20 °C Summer 

40 °C-45°C ~ 20 °C Summer 

45 °C-50°C ~ 20 °C Summer 

SAMPLE CAMERA VIEWS UNDER DIFFERENT TEMPERATURE 

Pavement Temp. Camera View Pavement Temp. Camera View 

0°C- 5°C 

 

35°C-40°C 

 

20°C-25°C 

 

40°C-45°C 

 

25°C-30°C 

 

45°C-50°C 

 

30°C-35°C 

 

 

 



87 

 

3.6 RESULTS 

3.6.1 Detection and Classification 

3.6.1.1 Lighting  

Results of detection and classification for the thermal and regular video are presented in TABLE 

3-4 for the lighting test cases. The thermal camera reported a miss rate of 5 % or less for all road 

user types in nearly all test cases. While the vehicle miss rate of the regular camera was also 

lower than 5 % in all test cases, the rate increased significantly for pedestrians and cyclists in all 

nighttime test cases, where very few pedestrians and cyclists were detected with the regular 

camera (more than 75 %). Vehicles were well detected by both technologies under all conditions, 

possibly because their lit headlights and larger size provide more features for tracking compared 

to pedestrians and cyclists. In conditions without interference of darkness or shadows (test cases 

of “overcast” and “sun, little shadow”), excellent performance was obtained for the regular 

videos. However, daytime cases with shadows showed a decrease in performance, as shadows 

inhibit the tracking and detection of pedestrians, cyclists, and some vehicles. The miss rates of 

pedestrians and cyclists both increased to around 15 %, 10 % points higher than those in the 

thermal videos. 
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TABLE 3-4  Detection and Classification Performance for Different Lighting Conditions – Thermal and Regular Video 

  

Lighting Condition 

THERMAL VIDEO     REGULAR  VIDEO     

No. of 

Presence  
No. of Missed/ 

Miss Rate 
 

Classification 

Precision 

Classification 

Recall 

No. of 

Presence 

No. of Missed/ 

Miss Rate 
 

Classification 

Precision 

Classification 

Recall 

  Vehicle Detection and Classification 

Daytime 

Overcast 121 0 / 0.0 %  53.3 % 97.0 % 192 0 / 0.0 %  78.9 % 99.3 % 

Sun, little shadow 52 2 / 3.8 %  46.3 % 100.0 % 74 0 / 0.0 %  67.9 % 100.0 % 
Sun, strong 

shadows 
77 0 / 0.0 %  44.2 % 100.0 % 83 3 / 3.6 %  55.0 % 100.0 % 

Nighttime 

High visibility 102 1 / 1.0 %  66.7 % 91.2 % 102 4 / 3.9 %  74.5 % 97.6 % 

Medium visibility 249 4 / 1.6 %  99.0 % 96.2 % 241 11 / 4.6 %  97.2 % 99.5 % 

Low visibility 42 1 / 2.4 %  56.3 % 96.4 % 42 2 / 4.8 %  91.4 % 100.0 % 

  Cyclist Detection and Classification 

Daytime 

Overcast 26 1 / 3.8 %  36.1 % 81.3 % 38 1 / 2.6 %  30.9 % 96.7 % 

Sun, little shadow 46 1 / 2.2 %  95.8 % 54.8 % 57 4 / 7.0 %  87.8 % 78.3 % 

Sun, strong 
shadows 

68 4 / 5.9 %  90.3 % 50.0 % 67 11 / 16.4 %  63.0 % 68.0 % 

High visibility 44 1 / 2.3 %  70.2 % 93.0 % 44 36 / 81.8 %  42.9 % 37.5 % 

Nighttime 
Medium visibility 12 0 / 0.0 %  64.7 % 100.0 % 12 12 / 100.0 %  0.0 % Invalid 

Low visibility 10 0 / 0.0 %  69.2 % 90.0 % 10 10 / 100.0 %  Invalid Invalid 

 Pedestrian Detection and Classification 

Daytime 
Overcast 314 9 / 2.9 %  98.3 % 68.5 % 356 14 / 3.9 %  99.1 % 68.3 % 

Sun, little shadow 78 2 / 2.6 %  82.1 % 56.1 % 63 0 / 0.0 %  93.8 % 66.2 % 

Sun, strong 
shadows 

118 9 / 7.6 %  100.0 % 46.8 % 130 19/ 14.6 %  86.6 % 59.2 % 

Nighttime 

High visibility 149 5 / 3.4 %  97.8 % 68.9 % 149 109 / 73.1 %  90.0 % 25.7 % 

Medium visibility 85 3 / 3.5 %  94.5 % 94.5 % 77 68 / 88.3 %  100.0 % 14.3 % 

Low visibility 286 4 / 1.4 %  99.5 % 89.5 % 286 278 / 97.2 %  Invalid 0.0 % 

 Total Detection and Classification 

        Accuracy       Accuracy 

Daytime 

Overcast 461 10 / 2.2 %  74.9 % 586 15 / 2.6 %  79.1 % 

Sun, little shadow 176 5 / 1.8 %  66.2 % 194 4 / 2.1 %  80.2 % 

Sun, strong 

shadows 
263 13 / 4.9 %  62.8 % 280 33 / 11.8 %  69.1 % 

High visibility 295 7 / 2.4 %  79.4 % 295 159 / 50.5 %  74.0 % 

Nighttime 
Medium visibility 346 7 / 2.0 %  96.1 % 330 91 / 27.6 %  96.8 % 

Low visibility 338 5/ 1.5 %  90.3 % 338 290 / 85.8 %  91.4 % 



89 

 

For classification performance, the measures of recall and precision are also presented in 

TABLE 3-4. Higher values of recall and precision in classifying vehicles using regular videos 

indicate that, in general, the performance of classifying vehicles was improved when using the 

regular camera over the thermal camera. However, from medium to low visibility conditions, 

regular cameras perform poorly in the classification of cyclists and pedestrians. For cases with 

medium and low visibility specifically, the algorithm failed to recognize pedestrians and cyclists 

in regular videos. In such cases, since classification is performed only for tracked road users, 

computing the precision may not be possible when no road user of the class was detected or 

representative if too few were detected. Thermal videos perform reliably in nighttime cases, even 

when using the classification algorithm trained on the regular, or visible spectrum, images of 

road users. In daytime conditions, the classification of pedestrians and cyclists is only slightly 

better by regular camera, as the global accuracy values are slightly higher in regular videos than 

those in thermal videos in most cases. The classification performance per class indicates the need 

for improving the classification algorithm for thermal videos by training the algorithm on images 

from thermal cameras. Nevertheless, even with the algorithm trained only on regular video data, 

the thermal camera correctly classifies road users more often in low visibility conditions, 

especially at nighttime. 

A more complete detection performance evaluation, in particular for individual 

pedestrians, is reported for two extreme test cases: i) the sunny daytime case without the 

interference of shadow, which has the best lighting environment, presented in FIGURE 3-6, and, 

ii) the worst lighting condition case shown in FIGURE 3-7, which is nighttime condition with 

low visibility. From the results, the thermal camera and the regular camera perform similarly 

well in detecting different road users in the good lighting environment. For low visibility 

condition at night, the two camera systems have similar capability in detecting vehicles; however, 

the regular camera failed to detect the cyclists and pedestrians under such a low visibility 

condition (low recall) where the thermal camera can still work efficiently – this is in accordance 

with the previous analysis. With similar performance for good lighting conditions and much 

better performance for low visibility conditions, compared to the visible spectrum camera system, 

thermal cameras can be used for all weather and lighting conditions. 
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a) Precision 

 
b) Recall 

FIGURE 3-6 Detection performance results – Test Case: daytime, sun, little shadow 

 
a) Precision - * Invalid because no cyclist is detected (TP and FP are both 0). 

 
b) Recall 

FIGURE 3-7 Detection performance results – Test Case: nighttime, low visibility 

66.3 %

98.5 % 94.2 %
86.8%

65.2 %

94.4 % 97.8 %
81.5 %

0 %

25 %

50 %

75 %

100 %

Vehicle Cyclist Pedestrian Overall

Thermal Camera Regular Camera

93.0 %
82.3 % 79.0 % 82.8 %

95.6 % 91.1 %
81.3 %

88.5 %

0 %

25 %

50 %

75 %

100 %

Vehicle Cyclist Pedestrian Overall

Thermal Camera Regular Camera

57.7 %

100.0 % 99.7 % 91.6 %

64.5%

*Invalid

88.9 %

67.6 %

0 %

25 %

50 %

75 %

100 %

Vehicle Cyclist Pedestrian Overall

Thermal Camera Regular Camera

97.6 % 100.0 %

75.1 % 77.8 %

95.2 %

0.0 % 2.1 %
11.1 %

0 %

25 %

50 %

75 %

100 %

Vehicle Cyclist Pedestrian Overall

Thermal Camera Regular Camera



91 

 

3.6.1.2 Temperature 

The classifier trained on the thermal dataset was applied in the different temperature test cases 

where the outputs of the thermal videos changed greatly with the change of temperature. TABLE 

3-5 presents the results of detection and classification performance for the classifier trained on 

the regular or thermal dataset for each test case. Again, the thermal video provided detection 

rates exceeding 95 % for nearly all test cases, and temperature had little impact on detecting 

different road users. Even when the pavement temperature approaches that of the road users, 

miss rate remained low. Observing the videos, temperature variation within each road user likely 

explains this good performance: features are still detected for the areas of high and low 

temperature within road users. 

Although miss rate was low, classification results were generally poor before retraining 

the algorithm, and classification accuracy reduced systematically as temperature increased from 

90.3 % in the lowest temperature case to 30.8 % in the highest. This result indicates that, for the 

thermal video, the object appearance described by HOG (Zangenehpour, et al., 2015) varies with 

pavement temperature, and therefore the SVM should be trained on thermal images to account 

for the different appearance of road users. The classification accuracy after the new training 

showed improvements, particularly at higher pavement temperatures. At 45-50 °C, overall 

classification accuracy improved by 48.6 % points, from an accuracy of 30.8 to 79.4 %. The 

excellent performance of detection and the higher classification accuracy rates for the algorithm 

trained on thermal data indicate the possibility of using this algorithm to correctly detect and 

classify different types of road users under different temperature conditions.  
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TABLE 3-5 Detection and Classification Performance for Different Pavement Temperatures – 

Thermal Camera 

Pavement 

Temp. 

No. of 

Presence 

No. of Missed 

/Miss Rate 

Classifier Trained on  

Regular data 

Classifier Trained on  

Thermal data 

Improvement 

(% points) 

Precision Recall Precision Recall Precision Recall 

 Vehicle Detection and Classification 

0 °C- 5°C 42 1 / 2.4 % 56.3 % 96.4 % 67.4 % 96.7 % 11.2 % 0.2 % 

20 °C-25°C 58 0 / 0.0 % 89.1 % 100.0 % 96.1 % 100.0 % 7.0 % 0.0 % 

25 °C-30°C 37 2 / 5.4 % 67.6 % 100.0 % 83.9 % 100.0 % 16.2 % 0.0 % 

30 °C-35°C 20 0 / 0.0 % 27.9 % 100.0 % 68.4 % 100.0 % 40.5 % 0.0 % 

35 °C-40°C 45 1 / 2.2 % 35.6 % 100.0 % 67.5 % 100.0 % 31.9 % 0.0 % 

40 °C-45°C 31 1 / 3.2 % 23.6 % 100.0 % 65.4 % 100.0 % 41.7 % 0.0 % 

45 °C-50°C 19 0 / 0.0 % 12.1 % 100.0 % 47.6 % 100.0 % 35.5 % 0.0 % 

Average  44.6 % 99.5 % 70.9 % 99.5 % 26.3 % 0.0 % 

 Cyclist Detection and Classification 

0 °C- 5°C 10 0 / 0.0 % 69.2 % 90.0 % 64.3 % 100.0 % -4.9 % 10.0 % 

20 °C-25°C 33 0 / 0.0 % 72.1 % 96.9 % 64.6 % 96.9 % -7.5 % 0.0 % 

25 °C-30°C 22 0 / 0.0 % 70.0 % 46.7 % 70.8 % 94.4 % 0.8 % 47.8 % 

30 °C-35°C 36 0 / 0.0 % 93.8 % 51.7 % 75.8 % 86.2 % -18.0 % 34.5 % 

35 °C-40°C 27 2 / 7.4 % 88.9 % 33.3 % 67.9 % 76.0 % -21.0 % 42.7 % 

40 °C-45°C 40 0 / 0.0 % 88.9 % 22.9 % 83.8 % 86.1 % -5.1 % 63.3 % 

45 °C-50°C 26 0 / 0.0 % 100.0 % 6.7 % 85.0 % 85.0 % -15.0 % 78.3 % 

Average  83.3 % 49.7 % 73.2 % 89.2 % -10.1 % 39.5 % 

 Pedestrian Detection and Classification 

0 °C- 5°C 286 4 / 1.4 % 99.5 % 89.5 % 100.0 % 92.0 % 0.5 % 2.5 % 

20 °C-25°C 71 0 / 0.0 % 100.0 % 66.0 % 100.0 % 66.7 % 0.0 % 0.7 % 

25 °C-30°C 39 0 / 0.0 % 86.4 % 67.9 % 100.0 % 66.7 % 13.6 % -1.2 % 

30 °C-35°C 53 3 / 5.7 % 75.0 % 42.9 % 97.0 % 74.4 % 22.0 % 31.6 % 

35 °C-40°C 51 2 / 3.9 % 62.5 % 12.5 % 96.7 % 63.0 % 34.2 % 50.5 % 

40 °C-45°C 44 2 / 4.5 % 50.0 % 23.3 % 96.3 % 70.3 % 46.3 % 46.9 % 

45 °C-50°C 44 2 / 4.5 % 61.1 % 33.3 % 100.0 % 71.1 % 38.9 % 37.7 % 

Average  76.4 % 47.9 % 98.6 % 72.0 % 22.2 % 24.1 % 

 Total Detection and Classification 

   Accuracy Accuracy Accuracy 

0 °C- 5°C 338 5 / 1.5 % 90.3 % 92.8 % 2.6 % 

20 °C-25°C 162 0 / 0.0 % 86.3 % 85.9 % -0.3 % 

25 °C-30°C 98 3 / 3.1 % 74.2 % 84.4 % 10.2 % 

30 °C-35°C 109 3 / 2.7 % 54.2 % 82.4 % 28.1 % 

35 °C-40°C 123 5 / 4.1 % 43.3 % 76.5 % 33.2 % 

40 °C-45°C 115 3 / 2.6 % 35.9 % 82.2 % 46.3 % 

45 °C-50°C 89 2 / 2.2 % 30.8 % 79.4 % 48.6 % 

Average  59.3 % 83.4 % 24.1 % 
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Looking at the per-class performance measures, better recall and precision were found in 

almost all temperature cases for vehicles and pedestrians when using the algorithm trained with 

thermal data (with an average increase of 26.3 % points in precision for vehicles, and an average 

increase of 24.1 % points in recall and 22.2 % points in precision for pedestrians). The recall for 

cyclists increases in all cases by 39.5 % points on average; however, precision decreases in most 

of the cases by 10.1 % points on average. This is explained by considering that, before training 

the algorithm on thermal data, a smaller portion of the detected cyclists are successfully 

classified which leads to a deceptively high precision. In other words, fewer cyclists were 

classified as such by the algorithm trained with regular videos, but the algorithm made few 

mistakes, and the other cyclists were classified as pedestrians or vehicles resulting in lower 

precision for these road user types. With a the newly trained algorithm, more road users, 

including actual cyclists are classified as cyclists, which increases cyclist recall; but in doing so, 

more vehicles and pedestrians are also misclassified as cyclists, causing a decrease in cyclist 

precision. A general issue for both types of cameras is confusing pedestrians and cyclists since 

they have similar appearances. Global accuracy improved by as much as 50 % points in the 

multimodal environments. Moreover, the % point improvement was larger for high temperature 

cases, indicating that training the algorithm for data collection using thermal videos is both 

necessary and effective. 

3.6.2 Vehicle Speed Validation 

To compare the performance of the camera systems in vehicle speed extraction accuracy, a data 

visualization exercise was completed for all test cases. One example, shown in FIGURE 3-8, 

demonstrates the performance of the two camera systems under sun with strong shadows. 

3.6.2.1 Speed and Lighting  

TABLE 3-6 provides the equation of the fitted line, its R-squared value, MRE, RAE, and RPE 

for each lighting conditions test case. For comparison purpose, a t-test was conducted to test the 

significance of the difference in the intercepts of models for using the two camera systems. The 

level of significance was set at 10 %. As given in TABLE 3-6, the intercept was found to be 
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significantly different between the thermal camera and the regular camera for all lighting 

conditions, except for the low visibility condition.  

From the results, the first important observation was that the intercept value in nearly all 

test cases was positive for both technologies. This result is consistent with previous research and 

shows that video sensors tend to overestimate speeds (Anderson-Trocme, et al., 2015). The R-

square values for thermal video are significantly higher for daytime with shadows as well as 

median and low visibility conditions. RPE is perhaps the most critical value in TABLE 3-6. The 

thermal camera had a lower RPE in all test cases other than overcast sky, in which the regular 

camera was expected to perform well without lighting interference. In the other test cases, the 

thermal video consistently provided a 2-3 % points improvement in RPE over the regular camera. 

Despite this good performance, the RAE was highly variable both across conditions and across 

cameras. This again supports previous research, and indicates that the overestimation bias is less 

a function of camera or conditions as it as a function of user calibration error (Anderson-Trocme, 

et al., 2015). In general, the RPE was within 5-10 % of ground truth, which is consistent with 

previously measured performance of video sensors (Anderson-Trocme, et al., 2015). 

 

FIGURE 3-8  Example of vehicle speed estimation performance for thermal and regular 

cameras under sun with strong shadows  
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TABLE 3-6  Vehicle Speed Performance for Different Lighting Conditions – Thermal and 

Regular Video 

  DIFFERENCE IN INTERCEPTS THERMAL VIDEO REGULAR VIDEO 

Lighting Condition p-value Level of Significance Calibration Model  R2 Calibration Model R2 

Daytime 

Overcast <0.01 * y = x - 1.97 0.91 y = x - 0.04 0.95 

Sun, little shadow <0.01 * y = x + 2.91 0.96 y = x + 1.77 0.92 

Sun, slight shadows <0.01 * y = x + 2.50 0.93 y = x + 5.75 0.90 

Sun, strong shadows <0.01 * y = x + 0.20 0.88 y = x - 2.00 0.56 

Nighttime 

High visibility <0.01 * y = x + 4.49 0.93 y = x + 0.01 0.92 

Medium visibility 0.09 + y = x + 2.45 0.86 y = x + 4.14 0.46 

Low visibility 0.52 ns y = x + 0.17 0.97 y = x + 0.83 0.93 

  THERMAL VIDEO REGULAR VIDEO 

Lighting Condition MRE RAE RPE MRE RAE RPE 

Daytime 

Overcast 0.067 0.058 0.067 0.059 0.001 0.059 

Sun, little shadow 0.106 0.116 0.045 0.069 0.071 0.062 

Sun, slight shadows 0.103 0.105 0.047 0.226 0.242 0.063 

Sun, strong shadows 0.061 0.005 0.061 0.108 0.053 0.097 

Nighttime 

High visibility 0.150 0.151 0.047 0.051 0.000 0.051 

Medium visibility 0.104 0.082 0.072 0.150 0.138 0.104 

Low visibility 0.036 0.026 0.033 0.060 0.005 0.059 

Note: for significance test of each pair of groups, ns means that the difference between the pair of the group was not statistically 

significant (p-value > 0.1), + means that the difference was statistically significant at the significance level of 10% (0.05 < p-

value < 0.1), * means that the difference was significant with p-value < 0.05. 

 

3.6.2.2 Speed and Temperature  

Similarly for the temperature test cases, parameters of the fitted line and the segregated relative 

errors values are presented in TABLE 3-7. The RPE for all but one test case was 0.06 or less, and 

was not observed to vary greatly with temperature. For one test case (35-40°C), several outliers 

greatly increased the reported error. A slight increase in RPE was noted between 20 and 30°C. 

These pavement temperatures most closely match the surface temperature of vehicles, and so a 

slight performance decrease may be explained by tracking issues associated with the low contrast 

with the pavement temperature. Despite the slight effect of temperature, the thermal videos 

performed reliably and consistently across all temperature test cases, with errors equal to what is 
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expected from existing research. Thermal videos can be an effective substitute for regular videos 

with regards to speed data extraction under various lighting and temperature conditions. 

TABLE 3-7 Vehicle Speed Performance for Different Pavement Temperature – Thermal 

Video 

Pavement Temp. Calibration Model R2 MRE RAE RPE 

0°C- 5°C y = x + 2.50 0.930 0.103 0.105 0.047 

20°C-25°C y = x + 0.20 0.870 0.061 0.005 0.061 

25°C-30°C y = x + 1.52 0.770 0.066 0.039 0.056 

30°C-35°C y = x + 2.88 0.830 0.106 0.087 0.046 

35°C-40°C y = x + 2.63 0.930 0.103 0.126 0.114 

40°C-45°C y = x + 2.48 0.900 0.087 0.081 0.058 

 

3.7 CONCLUSIONS 

This paper presents an approach to integrate and evaluate the performance of thermal and visible 

light videos for the automated collection and traffic data extraction under various lighting and 

temperature conditions in urban intersections with high pedestrian and bicycle traffic. The two 

technologies were evaluated in terms of road user detection, classification, and vehicle speed 

estimation. Considering the above results, several key conclusions are drawn. 

 The regular camera only narrowly outperformed the thermal camera in terms of detection 

and classification of all road users during daytime conditions. Also, the regular camera 

detects and classifies vehicles adequately under nighttime conditions. However, the 

performance of the regular camera deteriorates for pedestrians and cyclists in all 

nighttime test cases, while miss rate by the thermal camera remained around 5 %, 

showing stability across the tested conditions. 

 Based on the results at the individual level from the two test cases, the two cameras 

performed similarly in the favorable case; while for the night, low visibility case, the 
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advantage of using thermal camera was more significant compared to the results at the 

group level. 

 Training of the classifier to account for variation in the appearance of road users in the 

thermal video was observed to increase classification performance (recall, precision, and 

global accuracy) for the thermal camera, particularly at higher temperatures. Training the 

algorithm using more thermal videos is expected to improve the classification 

performance by thermal video also during the day, where the thermal camera was slightly 

inferior to regular video. 

 Speed measurements by the thermal camera were consistently more accurate than 

measurements by the regular video. Additionally, speed measurement accuracy was 

observed to be generally insensitive to lighting and temperature conditions. 

Summarizing these points, regular video works well for “overcast” and “sun, little 

shadow” conditions without lighting interference such as shadow, glare, low visibility, or 

reflection. The thermal camera performs similarly in these conditions (although classification 

must be improved by training the algorithm on thermal data). However, with shadows or at night, 

the performance of the regular camera was greatly reduced, and the thermal camera was superior 

in terms of detection, classification, and vehicle speed measurement. The thermal videos are 

insensitive to lighting interference, and solve the issues associated with visible light cameras for 

traffic data collection, especially for active road users such as pedestrians and cyclists. The 

thermal camera is also generally insensitive to the effects of pavement temperature. Thermal 

videos are more reliable and stable compared to regular videos in an around-the-clock collection 

campaign. Furthermore, greyscale thermal videos with lower resolution provide comparable 

results during the day, yet require less storage space and processing power, which are key 

concerns. Finally, thermal videos cause no privacy issues, which are a major hurdle for the 

application of video-based sensors, especially in the U.S. and European countries. 

As part of its contributions, this paper provides an approach for integrating existing 

tracking and classification algorithms for automated thermal video collection and analysis under 

varied lighting and weather conditions. The proposed approach can be used for automated 
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counting, speed studies and surrogate safety analyses in particular during low visibility 

conditions and in environments with high pedestrian and bicycle traffic activity.  

Though general improvement of the classification performance was achieved by training 

the classifier on thermal data, the results (average 83.4 % global accuracy over all cases, in 

TABLE 3-5) are lower than what has been reported previously for regular videos (93.3 %) 

(Zangenehpour, et al., 2015). Reasons for this reduced performance must be considered in future 

work, including lower resolution of thermal videos, and the need for more training image 

samples of road users under different temperature conditions. Validation of the classification 

algorithms on thermal videos will be better characterized using the ROC curve to compare 

different methods over several parameter settings. Although past literature shows visual 

improvements when using thermal cameras in foggy conditions, no work has been done to 

quantify the improvement of thermal videos during adverse weather conditions. The evaluation 

of thermal video in adverse weather conditions, such as heavy precipitation and fog, is a key 

focus of future work. Finally, a hybrid system that combines the advantages of both technologies 

can be designed to automatically calibrate and process video data from both thermal and visible 

spectrum sensors.    
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Link between chapter 3 and chapter 4 

The previous chapter introduced the thermal camera and validated its performance in automated 

traffic data collection. Being insensitive to lighting interference and resistant to the effects of 

pavement temperature, thermal videos are more reliable and stable compared to visible spectrum 

cameras for the round-the-clock traffic data collection purpose. Results also showed the data 

collection approach using existing tracking and classification algorithms and the thermal camera 

can be used for automated counting, speed studies and safety analyses in particular during low 

visibility conditions and in environments with high pedestrian and bicycle traffic activity. With 

the help of thermal camera, the next chapter will use existing surrogate measures of safety to 

investigate pedestrian-vehicle interactions at non-signalized crosswalks during nighttime 

situations.  
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4.1 ABSTRACT  

This paper proposes a methodology to evaluate crosswalk pedestrian safety at nighttime by using 

surrogate safety measures derived from thermal video data. The methodology is illustrated for 

two non-signalized crosswalk locations in downtown Montreal, Quebec, Canada. Video 

recordings from a thermal camera were used to compare nighttime and daytime safety conditions 

with surrogate safety measures that included vehicle approaching speed, post-encroachment time 

(PET), yielding compliances, and conflict rates. A disaggregate measure of pedestrian exposure 

that excludes non-interacting road users is also proposed. A thermal camera was used to alleviate 

issues pertaining to low visibility at night for video analysis when road users, especially 

pedestrians, are difficult to track. The results showed that the thermal-video–based methodology 

could effectively collect interaction data at night regardless of lighting conditions. Through the 

use of thermal video data and the methodology proposed in this paper, the interactions between 

crossing pedestrians and motor vehicles, with related measures such as PET and speed, could be 
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analyzed to evaluate the effect of different crosswalk treatments on pedestrian safety in low-

visibility conditions. 

4.2 INTRODUCTION 

Pedestrian safety has become a priority for many cities because of the increased awareness of 

pedestrians’ vulnerability compared with that of other road users. In 2013, the United States 

counted 14 % of its total road crash fatalities as pedestrians (NHTSA, 2015), while Canada 

experienced 15.6 % of its road crash fatalities as pedestrians (Transport Canada, 2015). Studies 

indicate that nearly half (46 %) of pedestrian fatalities in the United States (2013) and 57 % of 

pedestrian fatalities in Ontario, Canada (2015), occur at nighttime. Most crashes happen as 

pedestrians cross the streets while exposed to motorized traffic. A study in Europe showed that 

roughly 31 % of all pedestrian victims of road crashes were injured on marked crosswalks 

(Czajewski, et al., 2013). Pedestrians are also vulnerable at locations with non-signalized 

crossings. For instance, Hunter et al. found that 40 % of intersection crashes and 93 % of 

midblock crashes occurred at non-signalized locations (Hunter, et al., 1996). Compared with 

daytime, there is less motorized and pedestrian traffic at nighttime, generally leading to higher 

vehicle speeds as well as lower levels of driver awareness and attention. This difference in traffic 

and driving behavior leads to an increase in crash frequency and severity, especially when 

pedestrians are involved (Plainis, et al., 2006). In addition, Huang et al. point out that nighttime 

crosswalks and pedestrians can be less visible for drivers to see in time for a stop (Huang, et al., 

2007). Crosswalk safety and related treatments have been looked into by numerous studies; 

however, evaluating the treatment is challenging, particularly at nighttime, because of the sparse 

nature of crash data and the lack of exposure measures (e.g., nighttime count data). Most often, 

short-term counts for safety analysis are taken only during daytime (Ryus, et al., 2014).  

Moreover, the pedestrian safety literature has been built mainly through the use of 

historical crash data, focusing on crash frequency and severity as direct measures for road safety 

(Nabavi Niaki, et al., 2014; Zahabi, et al., 2011). However, vehicle-pedestrian crash data is not 

always available in sufficiently large quantity and suffers from known problems such as low-

mean small sample, underreporting, mislocation and misclassification. Tarko et al. list the 
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limitations of using crash data for road safety analysis (Tarko, et al., 2009). In addition, the low-

mean problem causes statistical issues when one works with pedestrian nighttime crash data, in 

which, given the low level of exposure, the mean number of crashes is typically very low. Using 

historical data for pedestrian safety analysis requires long periods of observation (many years), 

meaning that recent treatments cannot be quickly evaluated from crash data because of the lack 

of after-treatment crash data (St-Aubin, et al., 2013a). To overcome this problem, proactive 

methods have been proposed that do not require waiting for crashes to happen but rely on 

surrogate measures of safety. 

Surrogate safety measures obtained from automated video analytics are gaining 

increasing popularity in road safety analysis for their various benefits (St-Aubin, et al., 2013a; 

Tarko, et al., 2009). Some studies have used such measures for identifying risk factors or 

evaluating treatment effectiveness by using a before–after or control–case study approach 

(Brosseau, et al., 2013; St-Aubin, et al., 2013a; St-Aubin, et al., 2013b; Zangenehpour, et al., 

2013; Zangenehpour, et al., 2016). Despite the important developments on surrogate safety 

analysis, there has been no nighttime safety evaluation using surrogate safety measures. Among 

the reasons can be mentioned the technological limitations of regular video cameras (in the 

visible spectrum) and other technologies that are unable to provide high-quality nighttime data. 

The objective of this work is to propose a surrogate safety methodology to quantify pedestrian 

safety on crosswalks during nighttime by using thermal video sensors. To get effective video 

data under nighttime conditions, this paper used a thermal-camera–based system; the details of 

this system are reported by Fu et al. (2017). The trajectories were then extracted from video data 

and analyzed by calculating speeds of crossing vehicles, postencroachment time (PET), exposure 

based on PET, cumulative distribution PET, conflict ratios, and yielding compliance rates. 

4.3 LITERATURE REVIEW 

Using traffic trajectory data obtained from video recordings is the most widely adopted method 

for automatically calculating surrogate safety measures. Different trackers have been developed 

and used to obtain trajectory data (Jodoin & Saunier, 2014; Saunier, n.d.; Saunier & Sayed, 2006; 
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Shi & Tomasi, 1994). Saunier (Saunier, n.d.) and Saunier and Sayed  (Saunier & Sayed, 2006) 

adapted feature-based tracking to intersections by continuously detecting new features and 

adding them to current feature groups. An improved multiple object tracking system, named 

Urban Tracker, was developed for tracking different types of road users in urban mixed traffic 

(Jodoin & Saunier, 2014). To count different road users in mixed traffic conditions and to 

identify interactions based on their trajectories and those between different types of road users, 

Zangenehpour et al. developed a classification algorithm to distinguish between three types of 

road users: pedestrians, vehicles, and cyclists (Zangenehpour, et al., 2015). The proposed 

classifier uses the occurrence area, speed distribution, and presence, or appearance, of the road 

users. The data can then be used for surrogate safety analysis of the interactions between 

different road users. The overall accuracy of the classification algorithm at intersections with 

high traffic volumes and mixed road user traffic was approximately 93 %. This algorithm was 

trained for thermal video by Fu et al. (2017) and results for mixed traffic conditions 

demonstrated an overall accuracy of 70 %. 

Other studies have also used trajectory data for obtaining traffic information such as 

volume, speed, and conflict measures, which are fundamental for surrogate safety measures 

(Alhajyaseen, et al., 2012; Brosseau, et al., 2013; Peesapati, et al., 2011; St-Aubin, et al., 2013a; 

St-Aubin, et al., 2013b; Zangenehpour, et al., 2015). Laureshyn (2010) looked at various 

indicators in behavioral and road safety research in terms of validity and reliability. The 

indicators included time to collision, PET, GT, encroachment time, time headway or gap, and 

compliance with yielding rules and stop sign requirements. Other studies used different measures 

for different conditions. St-Aubin et al. (2013a; 2013b) computed time to collision using the 

equations presented by Laureshyn for highway safety (Laureshyn, 2010). Tang and Nakamura 

relied on PET for evaluating conflict severity at signalized intersections (Tang & Nakamura, 

2009).  

For pedestrian safety at crosswalks, PET has been used widely (Alhajyaseen, et al., 2012; 

Brosseau, et al., 2013). For instance, Alhajyaseen et al. (2012) used PET and vehicle speed at a 

crosswalk as the surrogate measures of safety to assess pedestrian safety at intersections. Other 

indicators, such as speed and yielding compliance to evaluate crosswalk safety, have been used 
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extensively (Huybers, et al., 2004; Smith, et al., 2009). Another important safety concept is 

exposure to the risk of collision (Qin & Ivan, 2001). Exposure is traditionally measured through 

the pedestrian and vehicle volumes passing the area of interest (i.e., crosswalks for this study). 

But exposure is a general concept that represents the opportunities or necessary conditions for a 

collision to occur: it can be measured in various ways, depending on the purpose of the study. 

Pedestrians’ exposure was included in a 1989 study of pedestrian safety at traffic signals by use 

of a manual traffic conflict technique (Garder, 1989). In 1998, Silcock et al. proposed a method 

that used video recording to automatically extract the number of crossing movements and 

pedestrian–vehicle interactions (Silcock, et al., 1998). However, the definition of the conflicts 

(e.g., the threshold used on the surrogate measure of safety to distinguish from other events) was 

not clarified (Papadimitriou, et al., 2012). Exposure is generally used to calculate a pedestrian’s 

risk of collision with vehicles through crash or conflict ratios. The ratio is calculated on the basis 

of the number of crashes or conflicts over the exposure, which reflects the probability dimension 

of risk; i.e., the probability of a crash or conflict per unit of the chosen exposure. The most recent 

work using surrogate safety analysis with rate calculations can be found in Automated 

Classification Based on Video Data at Intersections with Heavy Pedestrian and Bicycle Traffic: 

Methodology and Application (Zangenehpour, et al., 2015). In that paper, the authors use the 

ratio of the total number of conflicts and severe conflicts divided by the product of the pedestrian 

and vehicle volumes. 

Different measures of pedestrian exposure have been proposed (Papadimitriou, et al., 

2012). In the literature, the number of pedestrian crossings per hour, vehicle volume, or their 

product has been used as the key indicators; however, these measures do not correspond to 

events where a pedestrian and a vehicle may actually interact (i.e., where they are close enough 

to each other at the site of interest that they are at least aware of each other). There is a huge gap 

between the product of traffic volumes and an actual interaction between a pedestrian and a 

vehicle. This gap is even larger during nighttime, when pedestrian and vehicle flows are much 

lower and can present more temporal variability. Vehicle–pedestrian interactions change from 

site to site and from time to time. Besides, upstream signalization has a large impact on the 

arrival time of pedestrians and vehicles, which also influences pedestrian exposure. All these 

uncertainties may explain the low or unreported fitness of the crash-based models in past studies. 
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Consequently, existing exposure measures must be validated and new ones proposed where 

necessary. 

4.4 METHODOLOGY 

The proposed methodology consists of three steps: video data collection at nighttime using 

thermal video sensors, extraction of road user trajectories, and computation of surrogate safety 

measures. Some additional details are given below. 

 

4.4.1 Thermal Video System, Object Tracking and Validation of Detection Performance 

A thermal camera system was used for data collection. For details about the system and its 

performance in nighttime conditions, one can refer to Fu et al. (2017). The system components 

are presented in FIGURE 4-1a. For field measuring purposes, the camera was mounted on an 

adjustable mast against existing poles (i.e., lamppost or telephone pole) with an ideal coverage 

area and camera angle. FIGURE 4-1b shows a sample snapshot from the thermal video, which 

was taken at nighttime where regular cameras in the visible spectrum fail to provide enough 

details about road users because of the darkness, reflection, shadow, and glare from different 

light sources. FIGURE 4-1c presents the issues of using regular videos for video data collection 

at night, and how thermal video is not affected by these lighting issues. 

Once video was collected, video data processing was carried out using the tracker in the 

open source Traffic Intelligence project (Saunier, n.d.); as an outcome, road user trajectories 

were obtained. The techniques used in the tracker are explained by Shi and Tomasi (1994) and 

Saunier and Sayed (2006). Fu et al. has validated the performance of video analysis using 

thermal video for traffic data collection in multimodal environments in various lighting and 

temperature conditions, and has shown the reliability of this technique (Fu, et al., 2017). 

Compared with mixed traffic conditions at intersections, non-signalized crosswalks are much 

simpler because road users travel in fixed directions along fixed segregated paths. Therefore, the 

performance of the tracker for detecting road users at crosswalks is expected to be higher. This 
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study uses the performance measures introduced by Fu et al., where miss rate was defined as “the 

proportion of road users whose movement is not captured by any trajectories; for pedestrians, the 

detection performance was evaluated at the group level, i.e., a group of pedestrians not tracked is 

counted as one miss” (Fu, et al., 2017). Precision and recall for detection are also reported. 

   
(a) Camera system and installation     (b) Sample of thermal video   

 

 
(c) Issues for using regular videos at night paired with the corresponding thermal videos 

FIGURE 4-1 Thermal camera system and a comparison with regular videos at nighttime. 
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4.4.2 Validation of the Classification Tool for Pedestrian-Vehicle Interactions at 

Crosswalks 

To calculate the PETs, a classification method is required to identify the vehicle–pedestrian 

interactions. A previously developed method for object classification in video (Zangenehpour, et 

al., 2015) was adapted by changing the image database for detecting road user presence in 

thermal videos. Details are available at Zangenehpour et al. (2015) and Fu et al. (2017).  

Fu et al. (2017) shows the overall accuracy of the classification algorithm in terms of 

classification performance measures to be more than 80 % for mixed traffic, with the average 

precision of 70.9 % and the average recall of 99.5 % for vehicles, the average precision of 73.2 % 

and the average recall of 89.2 % for cyclists, and the average precision of 98.6 % and the average 

recall of 72.0 % for pedestrians. While the rates are relatively high, they are not high enough to 

conduct a safety analysis. However, with the simpler traffic conditions at non-signalized 

crosswalks, the classification performance is expected to be better. Similar to work of Fu et al. 

(2017), the classification performance was validated in terms of precision, recall, and overall 

accuracy. 

4.4.3 Safety Measures 

For evaluating the safety status of a crosswalk during nighttime, the following three measures 

were defined.  

4.4.3.1 Pedestrian-Vehicle Interaction 

FIGURE 4-2 describes a pedestrian–vehicle interaction at a crosswalk. PET is defined as the 

time gap between two road users arriving at and leaving the crossing area; PET is used in this 

study as the surrogate safety measure for interactions between pedestrians crossing the street and 

the vehicles, because their trajectories will always intersect allowing PET to thus always be 

computed. The fact that PET may not be computed for some interactions is otherwise a known 
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shortcoming of that measure. Based on the road user classification and the trajectory data of each 

road user, the PETs of pedestrian–vehicle interactions are calculated by the following equation: 

𝑃𝐸𝑇 = {
𝑇𝐶𝐴 − 𝑇𝑃𝐿 , 𝑖𝑓 𝑇𝑃𝐿 < 𝑇𝐶𝐴

 
𝑇𝑃𝐴 − 𝑇𝐶𝐿 , 𝑖𝑓   𝑇𝐶𝐿 < 𝑇𝑃𝐴

    (1) 

Where definitions are presented in FIGURE 4-2: 𝑇𝑃𝐿 < 𝑇𝐶𝐴 indicates the case where a pedestrian 

arrives at the crossing area before the vehicle, and 𝑇𝐶𝐿 < 𝑇𝑃𝐴  means the opposite, with the 

vehicle arriving before the pedestrian. This study used a computer vision safety analysis tool to 

automatically calculate the PET values for each pair of interacting vehicles and pedestrians; 

because detecting the tracking method does not provide a contour of the vehicle, the front and 

rear of the vehicle were considered to be 2 m before and after the centroid (along the trajectory). 

Interactions with PETs less than 5 s were considered as conflicts, and those with PETs less than 

1.5 s were defined as dangerous conflicts (Zangenehpour, et al., 2016). In the cases where 

several pedestrians are tracked as a group, only one interaction with the whole group is counted. 

 

FIGURE 4-2  Description of pedestrian-vehicle interactions at a crosswalk 

4.4.3.2 Pedestrian Exposure Measure 

Different exposure measures can be used, depending on the purpose, and can be considered in 

the traditional safety hierarchy framework of surrogate safety analysis based on earlier work by 
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Hydén, among others (Hyden, 1987), illustrated in FIGURE 4-3, with collisions as the most 

severe events at the top and undisturbed passages at the bottom. Using microscopic trajectory 

data, this work can measure exposure at the level of road user interactions when two road users 

are close enough in time and space. This paper sets an arbitrary threshold of 20 s on PET for 

interactions considered as exposure to the risk of pedestrian–vehicle collisions. The threshold of 

20 s is chosen because little possibility exists for the vehicle passage to affect the safety of 

pedestrian who crosses 20 s before or after. 

 

FIGURE 4-3  Pedestrian-vehicle interactions in the safety hierarchy (Hyden, 1987) 

4.4.3.3 Safety Measures 

To evaluate and compare the safety status across sites, safety measures are computed and 

compared on the basis of cumulative distribution functions (CDFs) and the interaction rates, in 

seconds, which are computed as the number of conflicts over the number of interactions 

(exposure). The definitions of the safety measures are provided as follows: 

(5) Cumulative Distribution Functions (CDFs)  

FIGURE 4-4 illustrates how two CDFs (from two different sites) can be compared for safety 

analysis. The elevated line indicates a higher proportion of dangerous conflicts. The gray line in 

the figure represents the dangerous conflict threshold, and the right border of the figure is the 
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conflict threshold. This method of showing safety is intuitive; however, as illustrated by St-

Aubin et al., using cumulative distribution is not always conclusive (St-Aubin, et al., 2015).  

 

FIGURE 4-4  Illustration of different cumulative distribution functions 

(6) Conflict Ratio 

Two conflict rates are used. For a given site i, the conflict rate (𝑅𝐶𝑖) is defined as the number of 

pedestrian–vehicle conflicts, which are the interactions of less than 5 s with PETs, divided by the 

number of interactions with PET of less than 20 s. denoted 𝑁𝐸𝑖  (exposure). The dangerous 

conflict rate (𝑅𝐷𝐶𝑖) is defined as the number of dangerous conflicts, which are the interactions 

with PET less than 1.5 s, divided by the same exposure measure 𝑁𝐸𝑖 . 

(7) Crossing Speed   

The crossing speed of vehicles passing the crosswalk is also used as a safety measure in this 

paper. Crossing speeds are automatically extracted from the videos through the computer vision 

software and have been shown to be reliable in (Fu, et al., 2016). A script was used for extracting 

velocities and calculating the speeds for vehicles passing the crosswalk. FIGURE 4-5 presents 
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how the crossing speeds were extracted. A mask was prepared for the detection zone – the 

crosswalk in this case, shown in FIGURE 4-5 a). In video collected from site 𝑖, for a certain 

vehicle 𝑗, 𝑗 = (1,… ,𝑁), where 𝑁 is the total number of vehicles, if its trajectory falls in the 

detecting zone in video frame  𝑚 , 𝑚ϵ(𝑝, 𝑝 + 1,… , 𝑞) , its velocity  𝑣𝑖𝑗𝑚⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  is extracted and the 

instantaneous speed 𝑠𝑖𝑗𝑚  is calculated. The crossing speed is calculated by averaging the 

instantaneous speeds in these frames, as presented in the following equation:  

𝑠𝑖𝑗 =
1

𝑞−𝑝+1
∑ (𝑠𝑖𝑗𝑚)𝑞

𝑚=𝑝                                                           (2) 

The average crossing speed for site 𝑖 would be: 

𝑠𝑖 =
1

𝑁
∑ (𝑠𝑖𝑗)

𝑁
𝑗=1       (3) 

The speed distributions and average crossing speeds of all the passing vehicles are compared. 
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(a) Mask for detecting zone    

 
(b) Sample of a trajectory   

FIGURE 4-5  Sample of speed extraction through the computer vision software 
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(8) Yielding Compliance 

The law requires vehicles to yield to a pedestrian starting or indicating the intention to cross the 

road. In this case, yielding compliance refers to the rate of drivers’ yielding behavior among the 

pedestrian–vehicle interactions, which require the drivers to slow down or stop to give 

pedestrians the right-of-way. Yielding compliance rate (YCR) was calculated by manually 

counting the vehicle yielding maneuvers. For site 𝑖, if a pedestrian arrives at the crosswalk before 

a certain vehicle 𝑗 , the yielding behavior of this vehicle involved in an interaction with a 

pedestrian can be quantified by the following measures  

𝑌𝑖 = ∑ 𝑋𝑖𝑗
𝑀
1        (5) 

𝑌𝐶𝑅𝑖 =
𝑌𝑖

𝑀𝑖
                                                 (6) 

Where 𝑋𝑖𝑗 is 1 if the vehicle yields to pedestrians and 0 otherwise at site i for interaction j. 𝑀𝑖 is 

the total number of pedestrian-vehicle interactions involving pedestrians who have already started 

or indicated their intention to cross, and where, to avoid a collision, at least one involved road user 

must yield. 𝑌𝑖 is the total number of yielding drivers and 𝑌𝐶𝑅𝑖  is the yielding compliance rate.  

4.5 CASE STUDY 

For this study, two crosswalk locations with different traffic and environmental conditions were 

selected in downtown Montreal. 

4.5.1 Site Selection and Data Description 

For testing the thermal camera system and investigating the crosswalk safety, two crosswalk 

locations with different traffic and environmental conditions were selected in downtown Montreal:  

 Site du Fort This crosswalk is located on Rue du Fort at the intersection of Rue du Fort 

and Rue Baile. It is a painted crosswalk crossing two one-way lanes separated by a 
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median. Because the left lane was observed to have very little traffic, only the right lane 

was analyzed. Located on a secondary road, this site has a relatively low traffic volume. 

 Site St-Laurent The crosswalk is located on one of the main arteries in downtown 

Montreal, Boulevard Saint-Laurent, at the intersection of Boulevard Saint-Laurent and 

Rue Bagg. It is a painted crosswalk crossing two one-way lanes. This location is busier 

than the du Fort site in terms of vehicular and pedestrian traffic. 

For each site, thermal video data were collected in both daytime and nighttime conditions. 

For comparison purposes, all video data were collected in the same season with similar traffic, 

weather, and road surface conditions (i.e., in good weather conditions with bare pavement in winter). 

All the videos were recorded during the afternoon peak period and at nighttime on weekdays when 

higher crash rates were observed. Details of the video data are presented in TABLE 4-1. 

TABLE 4-1  Description of the Video Recorded from Each Site 

Site Name Date Period of a Day Time Duration (hour) 

du Fort 

11-Nov-2014 
Day 03:00-04:40pm 1.6 

Night 07:00-08:15pm 1.2 

14-Jan-2015 Night 06:30-08:20pm 1.8 

15-Jan-2015 
Day 03:30-04:30pm 1.0 

Night 07:00-08:40pm 1.6 

Saint-Laurent 

31-Dec-2014 
Day 03:00-04:10pm 1.2 

Night 06:30-09:15pm 2.8 

01-Jan-2015 
Day 02:00-04:30pm 2.4 

Night 06:00-09:15pm 3.3 

 

4.5.2 Detection and Classification Validation 

The tracker and the classification algorithm were validated using 30 minute video samples from 

each site. Results of the detection and classification performance are provided in TABLE 4-2. 

Based on the results, the tracker and the classification algorithm worked almost perfectly in 

detecting and classifying the pedestrians and vehicles at each crosswalk—very few misses and 

around 95 % of precision, recall, and global accuracy rates in most cases, except for the lower 
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recall values in detecting pedestrians (around 80 %), mainly resulting from the overgrouping of 

pedestrians moving together (Fu, et al., 2017). These values are much higher than those for 

mixed traffic tested by Fu et al., indicating the reliable performance of using the tracker and the 

classification algorithm at crosswalks (Fu, et al., 2017). The small portion of the misclassified 

road users could be easily manually corrected if needed.  

TABLE 4-2  Classification Accuracy Validation Results 

Road User Type 
No. of 

Presence 

No. of Missed 

/Miss Rate 

Detection Performance  Classification Performance  

Precision Recall  Precision Recall  

du Fort (Video length of 30 minutes, from night, 14-Jan-2015) 

Vehicle 68 1 / 1.7 % 97.1 % 97.1 %  98.5 % 98.5 % 

Pedestrian 60 1 / 1.6 % 100 % 81.1 % 100 % 98.3 % 

Overall 128 2 / 1.6 % 91.4 % 98.4 % Global Accuracy = 97.7 % 

Saint-Laurent (Video length of 30 minutes, from night, 31-Dec-2014) 

Vehicle 205 0 /    0 % 97.6 % 98.6 % 94.8 % 97.6 % 

Pedestrian 104 1 / 1.0 % 100 % 80.0 % 100 % 93.0 % 

Overall 309 1 / 0.3 % 93.1 % 98.4 % Global Accuracy = 91.7 % 

 

4.5.3 Results and Analysis 

The proposed methodology was applied to the selected sites. For the du Fort site, an average of 

319 vehicles and 161 pedestrians per hour were detected during the 2.6 h of video data collected 

in daytime conditions, while a volume of 414 vehicles and 127 pedestrians per hour were 

detected from the 4.6 h of video taken at night. The Saint-Laurent site had a volume of 848 

vehicles and 994 pedestrians per hour during 3.6 h of daytime video recordings, and a vehicle 

flow of 833 vehicles and 407 pedestrians per hour during 6.1 h of nighttime video recordings. 

TABLE 4-3, TABLE 4-4 and TABLE 4-5 present a summary of the results of different safety 

measures, which includes the average vehicle crossing speed, vehicle yielding compliance rate, 

exposure measured in the traditional way, using the product of pedestrian and vehicle volume, 

number of the conflicts, conflict rate, and number and rate of dangerous conflicts, for both sites. 

FIGURE 4-6 presents the distributions of speeds and the CDFs of PET for conflicts for both day 

and night.  
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TABLE 4-3  Results: Volume, Speed, and Yielding Compliance 

  
Vehicle Volume  

(vph) 

Pedestrian Volume  

(pph) 

Average Cro. Speed 

(km/h)/SD 

Yielding Compliance  

(%) 

Site Name Date Day Night Day Night Day Night Day Night 

du Fort November 13, 2014 359.4 439.2 53.8 23.3 28.0 / 5.9 30.6 / 8.9 20.83 50.00 

 January 14, 2015 -- 469.4 -- 167.8 -- 31.2 / 9.1 -- 38.52 

 January 15, 2015 331.9 255.0 160.6 127.0 26.6 / 6.5 30.8 / 7.3 11.76 18.18 

 All 319.2 413.7 81.9 127.6 26.7 / 6.1 31.2 / 8.3 15.52 37.66 

Saint-Laurent December 31, 2014 1333.3 629.3 1087.5 423.2 24.4 / 10.0 32.0 / 10.9 32.69 18.18 

 January 1, 2015 605.0 1005.8 946.7 392.7 25.0 / 7.9 33.7 / 14.0 30.11 25.40 

 All 847.8 833.0 993.6 406.7 24.7 / 9.1 33.8 / 13.3  31.47 22.92 

Note: vph = vehicles per hour; pph = pedestrians per hour; -- = data not collected. 

 

TABLE 4-4  Results: Exposure Measures 

   
Traditional Exposure 

 (per hour) 

Number of Interactions with PET 

Less Than 20 s per Exposure 

(per hour) 

Number of Interactions 

per Traditional Exposure  

(per thousand) 

Site Name Date Day Night Day Night Day Night 

du Fort November 13, 2014 19316 10247 126.9 114.2 6.6 11.1 

 January 14, 2015 -- 78762 -- 517.2 -- 6.6 

 January 15, 2015 53307 32385 213.1 208.0 4.0 6.4 

 All 26152 52791 158.1 306.3 6.0 5.8 

Saint-Laurent December 31, 2014 1450000 266323 6129.2 1758.9 4.2 6.6 

 January 01, 2015 572733 394988 3659.2 5280.9 6.4 13.4 

 All 842361 338779 4531.9 3664.3 5.4 10.8 

Note: -- = data not collected. 
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TABLE 4-5  Results: Conflict Measures and Conflict Rates 

   

Number of 

Conflicts  

(per hour) 

Conflict Rate 

(%) 

Number of Dangerous 

Conflicts 

Dangerous Conflicts Rate 

(%) 

Site Name Date Day Night Day Night Day Night Day Night 

du Fort November 13, 2014 2.5 5.0 1.97 % 4.38 % 0.0 0.0 0.00 % 0.00 % 

 January 14, 2015 -- 36.1 -- 6.98 % -- 3.9 -- 0.75 % 

 January 15, 2015 9.0 8.1 4.22 % 3.89 % 0.0 2.5 0.00 % 1.20 % 

 All 5.0 18.3 3.16 % 5.97 % 0.0 2.4 0.00 % 0.78 % 

Saint-Laurent December 31, 2014 55.8 27.1 0.91 % 1.54 % 5.0 2.9 0.08 % 0.16 % 

 January 1, 2015 37.9 44.2 1.04 % 0.84 % 3.3 9.1 0.09 % 0.17 % 

 All 43.9 36.4 0.97 % 0.99 % 3.9 6.2 0.09 % 0.17 % 

Note: -- = data not collected. 

 

     
(a) Speed distribution – du Fort                                                    (b) Cumulative conflict distribution – du Fort 

     
(c) Speed distribution – Saint-Laurent                                           (d) Cumulative conflict distribution – Saint-Laurent 

FIGURE 4-6  Visualization results of the two sites – speed distributions and PET CDFs 
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Looking at FIGURE 4-6a and 6c, it can be observed that increases in the crossing speed 

were detected at night for both sites. Also, from TABLE 4-3, for the crosswalk safety situation, 

the average crossing speeds were found to be higher (by 9.3 % to 16.8 %) at the crosswalk of the 

du Fort site at nighttime compared with daytime; for the Saint-Laurent site, the average crossing 

speeds increased by around 30 % at night compared with daytime speeds. Possible reasons for 

this observation could be 1) although the traffic flow is similar between afternoon peak hours 

and early nighttime hours for both sites, the volumes at the second site are higher during the 

afternoon peak hours, which leads to the congestion of the adjacent road segments; 2) during the 

afternoon peak hour, a large number of vehicles are searching for parking spots, and their 

parking maneuvers block the traffic. This phenomenon is especially evident for the site of St-

Laurent, where a pharmacy and many restaurants are located. Many parking maneuvers were 

observed in the daytime, while fewer occurred at night; 3) Because of lower traffic volumes and 

less pedestrian activity at night, drivers drive faster. This increase in the average crossing speeds 

of the passing vehicles at the crosswalks at nighttime indicates that pedestrians are exposed to 

higher probabilities of severe crashes at night. 

Exposure was measured in both the traditional way using the pedestrian-vehicle volume 

product and the exposure using PET and compared by computing their ratio. From TABLE 4-4, 

most of the values were in the order of 4 to 13 events with PET less than 20 s per 1000 potential 

interactions computed from the traditional exposure. The number of interactions with PET less 

than 20 s is used in the study. From the results, a higher exposure can be observed in daytime 

compared with nighttime in most cases except for data collected at the du Fort site on 

Wednesday, January 14, when a hockey game brought about a large number of people at 

nighttime, and data collected from the Saint-Laurent site on Thursday, January 15, when people 

go out clubbing 

From FIGURE 4-6b and 6d, among all interactions, a higher percentage of dangerous 

conflicts (with PET less than 1.5 s) were observed at nighttime compared with daytime, which 

indicates that pedestrians were involved in more dangerous interactions with vehicles at the 

crosswalks at night. Looking at the rates, 𝑅𝐶 values do not necessarily change from daytime to 

nighttime, while the 𝑅𝐷𝐶  values indicate that pedestrians experience higher risks of being 

involved in a dangerous conflict at night. 
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These results concerning the speeds and conflict rates indicate that at these two locations, 

pedestrians were at higher risks of being involved in a dangerous interaction at night, when 

crossing speeds were on average higher.  

However, regarding the yielding behavior of the drivers, it was found that yielding 

compliance varies from site to site. Site du Fort had a higher yielding rate at nighttime; however 

the yielding rate was reduced at night at the Saint-Laurent site. Upon a field inspection of Rue du 

Fort in daytime, vehicles were parked near the crosswalk along the sidewalk; however, that site 

was free of parked vehicles at night. This observation might explain the increase in yielding rate 

at night at this site as it was easier to detect pedestrians in advance by drivers. Drivers did not 

yield to pedestrians at nighttime as much as they did in daytime at the Saint-Laurent site. This 

might be due to the reduced visibility of the pedestrians and less willingness for drivers to yield 

with increased speed at nighttime. In any case, the overall yielding compliances of the drivers at 

these two locations were both low (on an average of 15 % to 38 % for the two sites). 

4.6 CONCLUSIONS 

This paper presented an automated video-based methodology for safety analysis of pedestrian 

crossings at nighttime by using thermal video data. Different surrogate safety measures were 

used for this purpose. The proposed automated methodology can be implemented for assessing 

different crosswalk treatments, such as LED pedestrian warning signs, an automated pedestrian 

detection–warning system, and geometric–marking treatments for improving crosswalk safety at 

nighttime. The preliminary results showed that pedestrians were exposed to higher risk levels at 

the study sites during nighttime as opposed to daytime conditions. That is, average vehicle 

crossing speeds and percentage of dangerous conflicts were higher during nighttime when 

compared with daytime, indicating that pedestrians were at higher risks during nighttime. Not 

much difference was found concerning the two other indicators, yielding compliance and the 

conflict rates; however, at both sites, the yielding compliance rate was quite low. 

Thermal camera sensors provide a reliable solution to the limitation of common video 

sensors in the visible spectrum when used for nighttime analysis. The main advantages of using 

thermal cameras rather than regular ones are higher accuracy and the ability to collect reliable 
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video data under different environmental conditions, such as in instances of low visibility, glare, 

or shadows caused by different light sources. Although the economic cost of thermal camera 

sensors is relatively high, future developments are expected to make them more accessible to 

researchers, governments, and personal users. 

The validation work and the potential future work involving the thermal camera have 

been discussed extensively by Fu et al. (2017). The use of the thermal camera system for safety 

analysis at different locations and for different types of road users in nighttime conditions will be 

explored. The exposure used in this paper potentially provides a more precise measure to 

describe the pedestrian–vehicle interactions, which, compared with exposure measures based on 

traffic volumes, are more closely related to pedestrian safety. A PET threshold of 20 s was set 

empirically and arbitrarily to cover all potential conflicts. However, this value needs to be 

calibrated, and its use needs to be further explored and validated. Sensitivity analysis should be 

performed to examine the use of the threshold in describing pedestrian exposure. The 

methodology and the safety measures used in this paper could be adapted for the analysis of 

signalized intersections.  
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Link between chapter 4 and chapter 5 

The previous chapter presents the work investigating pedestrian safety at non-signalized 

crosswalk locations at nighttime, with a methodology based on available SMoS. Interesting 

findings have been obtained. However, the shortcoming of the methodology in describing how 

interactions unfold over time is further recognized. A new framework, represented in the 

distance-velocity (DV) diagram and referred as the DV model, will be presented in the following 

chapter to describe pedestrian-vehicle interactions, considering the position and speed changes of 

road users over time during the interaction. The framework is demonstrated through a case study 

in evaluating pedestrian safety at three non-signalized crossings in different types: a marked 

crosswalk, an uncontrolled crosswalk, and a crosswalk controlled by stop signs.  

Note that: the contents in Chapter 5 were published earlier in Accident Analysis & 

Prevention. To keep it consistent with the original version of publication, the terms for the 

different crosswalk types were kept the same as the publication version. In other parts of the 

dissertation including this page, however, “painted” and “unprotected” were revised into 

“marked” and “uncontrolled” respectively.  
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5.1 ABSTRACT  

This paper proposes a new framework to evaluate pedestrian safety at non-signalized crosswalk 

locations. In the proposed framework, the yielding maneuver of a driver in response to a 

pedestrian is split into the reaction and braking time. Hence, the relationship of the distance 

required for a yielding maneuver and the approaching vehicle speed depends on the reaction time 

of the driver and deceleration rate that the vehicle can achieve. The proposed framework is 

represented in the distance-velocity (DV) diagram and referred as the DV model. The 

interactions between approaching vehicles and pedestrians showing the intention to cross are 

divided in three categories: i) situations where the vehicle cannot make a complete stop, ii) 

situations where the vehicle’s ability to stop depends on the driver reaction time, and iii) 

situations where the vehicle can make a complete stop. Based on these classifications, non-

yielding maneuvers are classified as “non-infraction non-yielding” maneuvers, “uncertain non-

yielding” maneuvers and “non-yielding” violations, respectively. From the pedestrian 

perspective, crossing decisions are classified as dangerous crossings, risky crossings and safe 

crossings accordingly. The yielding compliance and yielding rate, as measures of the yielding 

behavior, are redefined based on these categories. Time to crossing and deceleration rate 

required for the vehicle to stop are used to measure the probability of collision. Finally, the 

framework is demonstrated through a case study in evaluating pedestrian safety at three different 
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types of non-signalized crossings: a painted crosswalk, an unprotected crosswalk, and a 

crosswalk controlled by stop signs. Results from the case study suggest that the proposed 

framework works well in describing pedestrian-vehicle interactions which helps in evaluating 

pedestrian safety at non-signalized crosswalk locations. 

5.2 INTRODUCTION 

Pedestrians, referred often as vulnerable road users, are highly susceptible to severe road injuries 

and fatalities when involved in vehicle crashes. For example, in 2013, 14 % of total road crash 

fatalities reported in the US (NHTSA, 2015), and 15.6 % of road crash fatalities in Canada were 

pedestrians (Transport Canada, 2015). A large proportion of crashes occur either at uncontrolled 

crossings (without stop signs or traffic signals) or at non-signalized crossings (without traffic 

signals), for instance, more than 70 % of the intersection-related fatal crashes in the US in the 

years from 2010 to 2012 occurred at non-signalized intersections (McGee et al., 2015).  

Road safety studies are traditionally limited to analysis based on historical crash data 

(Nabavi Niaki et al., 2015) (Abdel-Aty & Haleem, 2010), which suffers from problems such as 

low-mean small sample, underreporting, mislocation and misclassification (Fu et al., 2016). 

Moreover, recent treatments cannot be rapidly evaluated due to the lack of after-treatment crash 

data which requires long periods (multiple years) of observation (St-Aubin et al., 2013). To 

overcome such issues related to crash data analysis, proactive methods based on surrogate safety 

measures, that do not require crashes to occur, have been gained some momentum in the 

literature.  

Several studies have used surrogate safety measures for identifying risk factors or 

evaluating treatment effectiveness (St-Aubin et al, 2013) (Zangenehpour et al., 2013) 

(Zangenehpour et al., 2016). Despite important developments in surrogate safety analysis, the 

issue of the relationship between surrogate measures and crash-based measures remains (Tarko 

et al., 2009). Compared to the vehicle safety literature, pedestrian safety has attracted much less 

attention, in particular surrogate safety measures for pedestrian-vehicle interactions at crosswalks. 

The vulnerability of pedestrians explains why vehicles should yield right-of-way to pedestrians 

at crosswalks. Yielding behavior is therefore a critical part of interactions at non-signalized 
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intersections. Yielding should therefore be considered among other surrogate safety measures 

used in previous studies (e.g. time-to-collision or post-encroachment time). Past research has 

considered yielding compliance (Lacoste et al., 2014) (Shurbutt & Van Houten, 2010), but their 

definition of yielding compliance is ambiguous. Furthermore, there are situations where it is 

impossible for the vehicle to yield considering its proximity and speed to the crosswalk at the 

occurrence of the pedestrian. Such situations are likely considered as violations in most previous 

studies. 

This research aims to address the above-mentioned research gaps in the pedestrian safety 

literature. The main purpose is two-fold: i) to propose a new surrogate safety framework to 

investigate pedestrian-vehicle interactions at non-signalized crosswalks, and ii) using a case 

study, to apply the proposed approach to explore pedestrian safety issues and the efficiency of 

countermeasures at crosswalks. 

5.3 LITERATURE REVIEW  

5.3.1 Pedestrian-vehicle Interactions and Surrogate Safety Measures for Crosswalk 

Safety 

Due to the limitations of using crash data, many studies have attempted to use different surrogate 

safety measures to investigate pedestrian-vehicle interactions. Hydén depicted the general safety 

hierarchy framework of surrogate safety analysis, suggesting a relationship between crashes and 

conflicts, their position is the hierarchy representing their chance of resulting in a crash (Hydén, 

1987). Laureshyn considered the validity and reliability of different surrogate safety measures in 

behavioral and road safety research (Laureshyn, 2010), and the indicators include time to 

collision (TTC), post-encroachment time (PET), gap time (GT), compliance with the yielding 

rules and stop sign requirements. Some researchers have used TTC and PET for pedestrian safety 

(Almodfer et al., 2015) (Tang & Nakamura, 2009), with (Almodfer et al., 2015) finding these 

measures as the most used. Some have indicated their preference for using PET in situations 

where road user trajectories are crossing (e.g. pedestrian safety at crosswalks) (Almodfer et al., 

2015) (Tang & Nakamura, 2009). Conflicts between pedestrians and vehicles may be divided 

into discrete severity levels based on different PET and TTC thresholds (Malkhamah et al., 2005) 

(Ismail et al., 2011). Pedestrian-vehicle interactions are difficult to describe because of the 
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unpredictable behavior of the road users (Almodfer et al., 2015), especially pedestrians whose 

direction, speed, and acceleration/deceleration can change rapidly. This paper will use the more 

general term of interactions instead of conflicts, as conflicts have specific definitions in existing 

traffic conflict techniques such as the Swedish traffic conflict technique (Hydén, 1987). 

Interactions are defined as situations where the road users of interest are close enough in time 

and space, such that they may interact with each other (Nicolas et al., 2010).  

Different data generation techniques and sensors (e.g., loops, radar, GPS devices and 

video cameras), have been used to extract information for surrogate safety analysis (Stipancic et 

al., 2016) (Golob et al., 2004) (Lee et al., 2002). Among these sensors, video-based devices, 

which provide rich positional data and other information beyond the capabilities of most other 

devices, are the most promising (Robert, 2009). The development of video-based techniques 

(computer vision) has brought about the possibility of investigating yielding compliance and 

crossing decision in a more precise and microscopic way.  

5.3.2 Yielding Compliance and Crossing Decision Studies 

Many studies that are not explicitly in the literature on surrogate measures of safety have 

investigated vehicle-yielding behavior at non-signalized crosswalks (Lacoste et al., 2014) 

(Shurbutt & Van Houten, 2010) (Fitzpatrick, et al., 2006). For example, Fitzpatrick used the 

driver yielding rate to check effectiveness of different crosswalk treatments through meta-

analysis (Fitzpatrick, et al., 2006). A study conducted in Winnipeg found crosswalks with 

overhead flashing devices had higher average yielding rates than those with the side-mounted 

passive signs (Lacoste et al., 2014). Shurbutt and Van Houten used yielding rate to validate the 

performance of the rectangular rapid-flashing beacon (RRFB) at non-signalized crosswalks 

(Shurbutt & Van Houten, 2010). Many studies have used “yielding compliance” to describe 

vehicle yielding behavior (Lacoste et al., 2014) (Shurbutt & Van Houten, 2010) (Fitzpatrick et al., 

2006). The yielding compliance of a driver at non-signalized crosswalks refers to situations 

where the driver yields to pedestrians following the traffic rules. The majority of past studies 

consider non-yielding maneuvers as violations and use the rate of non-yielding maneuvers to 

measure the yielding compliance. However, in some situations, vehicles are too close in time to 

the crosswalk to stop at the moment the pedestrian shows the intention to cross. In such 
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situations, drivers cannot yield even if they want to, and such situations cannot be treated as 

violations. Only the study presented in (Shurbutt & Van Houten, 2010) has identified these 

situations and excluded them from violations in a simple way by using a fixed distance from the 

crosswalk. Furthermore, the definition of non-yielding maneuvers is often unclear and relatively 

subjective, in particular regarding the pedestrian’s intent to cross. 

Many researchers have looked into pedestrian crossing decisions. For example, Granié et 

al. investigated pedestrian crossing decisions under various urban environments through a survey 

using sets of photographs presenting five different environments (Granié et al., 2014). 

Participants’ decision to cross or not, perception of comfort and safety, and elements influencing 

decision-making were collected and analyzed (Granié et al., 2014). Liu and Tung looked at the 

effects of age, time gap, time of day, and vehicle approaching speed on the decision of 

pedestrians to cross the road based on pre-recorded videos of different road scenes (Liu & Tung, 

2014). Using the simulated road environment from a mid-range driving simulator, Oxley et al. 

conducted a study to analyze pedestrians’ gap selection and their crossing decisions (Oxley et al., 

2005). Due to the limited available techniques for data collection, most of these past studies have 

been based on off-road, laboratory experiments, such as tests in simulators, and picture- or 

video-based surveys, which may not properly reflect real situations.  

5.3.3 Driver Reaction on Road Safety 

Driver response time, also called perception-response time or reaction time, has a great impact 

on road safety, creating significant interest in this area of research (Hick, 1952) (Hyman, 1953) 

(Koppa, 2000) (Green, 2009). The distribution of driver response time is often called the Hick-

Hyman “Law” (Hick, 1952) (Hyman, 1953) .Vehicle yielding maneuvers at pedestrian crossings 

include two critical times (and corresponding distances): 1) a perception-response time, which 

allows the driver to observe the pedestrian’s intention to cross and make a decision to yield, and 

2) a time to brake or perform another evasive action if necessary. Driver response time at 

crosswalks refers to the time lag between detection of the pedestrian and the initiation of braking. 

Response time greatly affects driver’s yielding behavior at crosswalks and the risk that 

pedestrians face when they are crossing the street. Therefore, response time needs to be 

considered in crosswalk safety studies, which is uncommon in the literature.  
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Response time varies between individuals and depends on various factors such as age, 

gender and driving experience, the appearance of the pedestrians, distraction, and the built 

environment (Kosinski, 2005). Different studies have looked into driver response time and 

different distributions have been recommended (Koppa, 2000) (Green, 2009). Many of these 

studies considered response time to expected and unexpected events. At crosswalks, drivers are 

aware of the presence of pedestrians, thus pedestrian crossing events should be considered as 

expected, which is associated with shorter reaction times compared to unexpected events (Fitch 

et al., 2010). Among the past studies, Koppa and Rodger decompose the driver braking response 

prior to the actual braking into perception-reaction time and movement time (the amount of time 

required to move the foot to the brake pedal). Results from this work were consistent with past 

literature but followed a stronger investigation (Koppa, 2000). The report briefly discussed non-

signalized intersections and used 1.57 sec of driver response time as a realistic worst-case 

scenario (99th percentile) (Koppa, 2000). Based on this report, movement time ranges from 0.2 

sec to 0.26 sec based on the vertical separation between the brake pedal and the driver’s foot 

(Koppa, 2000). Based on this report and other literature, the driver response during a pedestrian-

vehicle interaction (the entire reaction period prior to the actual braking) at crosswalks takes 

between 0.5 s and 2 s. 

5.4 THE NEW SAFETY FRAMEWORK 

The proposed pedestrian-vehicle interaction model, referred to also as the DV model, is 

represented in a two-dimensional distance-velocity space and helps investigate pedestrian safety 

based on vehicle reaction and braking behavior. 

5.4.1 Basic Distance-Velocity Model 

The evolution of a yielding maneuver unfolds over time and space is presented in FIGURE 5-1. 

Several basic assumptions are made in analyzing road user behavior for crosswalk safety: 1) 

during a yielding maneuver, a driver has a response time after the occurrence of the pedestrian, 

and the vehicle keeps constant speed over this time; 2) a braking period, when the driver brakes 

at a constant deceleration rate, occurs after the reaction time; 3) drivers have knowledge of 

whether they are able to stop before reaching the crosswalk, i.e., they know the maximum 
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deceleration rate required to stop and yield; 4) the maximum deceleration rate of the vehicle is 

defined by the pavement friction rate.  

 

FIGURE 5-1 Vehicle yielding maneuver at a crosswalk 

5.4.1.1 Practical Definitions of Pedestrian Occurrence and Crossing Decision 

As yielding behavior of the vehicle greatly depends on whether drivers noticed the crossing 

intention of the pedestrian, the occurrence and crossing decision of the pedestrian are closely 

associated to vehicle yielding compliance and pedestrian safety. The definitions of pedestrian 

occurrence and crossing decision are as follows:  

Pedestrian Occurrence: This may be the most important event to define in the pedestrian-

vehicle interactions at crosswalks. The occurrence of the pedestrian is the time when the 

pedestrian arrives close to the beginning crosswalk, defined in this paper as arriving within a 

cross-section distance of 1 m from the beginning of the crosswalk (see FIGURE 5-1), and shows 

the intention to cross the street by either facing the road or turning their head toward the road, 

unless his/her behavior obviously implies they do not intend to cross the street (e.g. standing and 

talking, squatting, or staying in this area for specific purposes such as equipment installation and 

etc.). 

Pedestrian Crossing Decision: The pedestrian crossing decision is defined as the time when the 

pedestrian starts to cross the street, regardless if he/she is later forced to retreat by non-yielding 

vehicles. Actual crossing attempts may happen when a pedestrian keeps a constant walking 

speed to cross after arrival without waiting, or starts to cross after waiting or hesitates after 

arrival.  
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Pedestrian Occurrence and Crossing Decision for Pedestrian Groups: Several pedestrians 

can arrive at a similar time and cross in the same gap. The occurrence of the group is defined as 

the first occurrence of a pedestrian from the group. However, each pedestrian is considered to be 

individually exposed to the risk of collision.  

Interactions of interest are the situations in which a vehicle approaches a crosswalk and a 

pedestrian is either already moving to cross or present in a position showing willingness to cross. 

Situations in which the pedestrian is already crossing and would have left the roadway well in 

advance of the expected arrival of the vehicle at the crosswalk, i.e. where the approaching 

vehicle is not required to decelerate or yield to avoid a collision, are excluded.  

5.4.1.2 Model Description 

Driving maneuver during a yielding behavior consists of two periods, as shown in FIGURE 5-1: 

1) the response period, when the driver observes the pedestrian and decides to yield, and; 2) the 

braking period, from the moment the driver applies pressure to the brake pedal until the vehicle 

completely stops. As usually adopted in transportation engineering (Jammer, 1957), the 

minimum distance required for a vehicle to make a full stop to yield to a pedestrian (𝐷𝑚𝑖𝑛) at 

constant deceleration is: 

𝐷𝑚𝑖𝑛 = 𝑣𝑡𝑟 +
𝑣2

2𝑔(𝜇𝑚𝑎𝑥−𝜃)
     (3) 

where 𝑣 is the initial speed (velocity) of the vehicle at the occurrence of the pedestrian, 𝑡𝑟 is the 

perception-reaction time of the driver, 𝜇𝑚𝑎𝑥  is the maximum friction coefficient of the road 

surface, and 𝜃  is the angle of roadway slope. Based on these assumptions and formula 

derivations, the ability for the driver to stop is a function of the distance (𝐷) and the vehicle 

approaching speed (𝑣). Assuming the reaction time range as [𝑡𝑟_𝑚𝑖𝑛, 𝑡𝑟_𝑚𝑎𝑥], then 𝐷𝑚𝑖𝑛 is in a 

range of [𝐷0, 𝐷1] = [𝑣𝑡𝑟_𝑚𝑖𝑛 +
𝑣2

2𝑔(𝜇𝑚𝑎𝑥−𝜃)
, 𝑣𝑡𝑟_𝑚𝑎𝑥 +

𝑣2

2𝑔(𝜇𝑚𝑎𝑥−𝜃)
]. An early version of this paper 

with additional details of the model can be seen at Fu et al. (2017). Müller et al. (2004) found 

that the maximum friction coefficient ranges from 0.85 to 1.15 on dry road, while on soapy road 
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it the coefficient ranges from 0.45 to 0.75. In this paper, a fixed value of 0.75 is used for the 

model illustration and test purposes. 

FIGURE 5-2 shows the basic elements in the model with plausible values. The Distance-

Velocity (DV) diagram is divided into three areas by the 𝐷0  and 𝐷1  curves: i) the first area, 

defined as phase I, where vehicles cannot make a full stop, ii) the second area, phase II, where 

whether vehicles can stop and yield depends on the driver’s reaction time, and iii) the third area, 

phase III, where vehicles can stop. Line A in the figure represents the distance and speed over 

time during an example interaction where a vehicle approaches at constant speed, then brakes at 

constant deceleration after the pedestrian starts to cross. The DV coordinates at the time when 

the pedestrian shows crossing intention and when the pedestrian decides to cross (starts crossing 

maneuver) are marked in the diagram. 

 

FIGURE 5-2 Explanation of D-V diagram with example values 

5.4.2 Behavior Measures 

Based on the D-V diagram and the situations represented by the three phases, drivers’ non-

yielding maneuvers and pedestrians’ crossing decisions can be classified; then, yielding 

compliance and crossing decision ratios can be used to evaluate the safety status of a given 

crosswalk.  
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5.4.2.1 Vehicle Yielding 

5.4.2.1.1 Non–Yielding Maneuver 

Vehicle yielding behavior can be analyzed with knowledge of the pedestrian occurrence, i.e. the 

time when the pedestrian starts or intends to cross the street. Non-yielding maneuvers are defined 

as the events in which drivers do not provide right-of-way to pedestrians, regardless as to 

whether drivers do not intend or are not able to yield (Lacoste et al., 2014) (Fitzpatrick et al., 

2006) (Campbell, 2012). By plotting in the DV diagram the speed Vocc of vehicles conducting 

non-yielding maneuvers and their distance Docc to the crossing at the occurrence of the pedestrian, 

a vehicle’s ability to stop in front of the crosswalk can be classified. According to the DV 

diagram, non-yielding maneuvers can be placed into three categories, as presented in FIGURE 

5-3a: 

 Non-infraction Non-yielding: If 𝐷𝑜𝑐𝑐 < 𝐷0  (corresponding to Phase I in the two 

diagrams in FIGURE 5-3), the vehicle will not have enough time to make a full stop to 

yield. Non-yielding maneuvers in such situations should not be considered as a non-

yielding behavior. 

 Uncertain Non-yielding Maneuver: If 𝐷0 < 𝐷𝑜𝑐𝑐 < 𝐷1(corresponding to Phase II), the 

driver may or may not be able to react to the crossing pedestrian in time to yield. 

Although drivers are required be attentive to crossing pedestrians, reaction time can vary. 

In this category, it is hard to determine whether the driver is not able to or not willing to 

yield. These situations are therefore called uncertain non-yielding maneuvers. Vehicles in 

Phase II are still required to yield to pedestrians, as they are required to pay attention and 

react as quickly as possible. 

 Non-yielding Violation: If 𝐷1 < 𝐷𝑜𝑐𝑐  (corresponding to Phase III), the vehicle has 

enough time to react and yield to the pedestrian. All non-yielding maneuvers in this 

situation are voluntary and therefore violations. 



139 

 

    

a) Classification of the non-yielding maneuvers           b) Classification of the pedestrian crossing decisions 

FIGURE 5-3 Classification of non-yielding maneuvers and crossing decisions in the DV 

diagram 

5.4.2.1.2 Yielding Rate and Yielding Compliance 

Past studies used yielding rate and yielding compliance as interchangeable terms, while in fact 

they are different. In most past studies, all non-yielding maneuvers have been considered as non-

compliance, including those where vehicles are too close to the crosswalk to have the option to 

yield (phase I in the DV model). This paper presents clearly the definitions of yielding rate and 

yielding compliance by taking into account situations where vehicles are not able to yield: 

 Yielding Rate: Yielding rate is defined as the proportion of vehicles that yield to 

pedestrians over all the pedestrian-vehicle interactions. 

 Yielding Compliance: Yielding compliance is the proportion of vehicles that yield to 

pedestrians over the vehicles that are physically able to yield to crossing pedestrians. 

According to this, yielding rate for phase 𝑖  (𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 : 𝐼 − 𝑃ℎ𝑎𝑠𝑒 𝐼, 𝐼𝐼 − 𝑃ℎ𝑎𝑠𝑒 𝐼𝐼,

𝐼𝐼𝐼 − 𝑃ℎ𝑎𝑠𝑒 𝐼𝐼𝐼) refers to the ratio of yielding maneuvers among all interactions reaching phase 

𝑖. The overall yielding rate, which is improperly used for yielding compliance, is the proportion 

of total number of yielding maneuvers over the number of all pedestrian-vehicle interactions. 

The yielding compliance rate considers interactions where the vehicle Docc,Vocc coordinates fall 
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in Phase II and III at the occurrence of the pedestrian. Yielding rate and yielding compliance can 

be expressed using the following equations: 

𝑌𝑅𝑖 =
𝑁𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔𝑖

𝑁𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖

       (4) 

𝑌𝑅 =
∑𝑁𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔𝑖

∑𝑁𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖

      (5) 

𝑌𝐶 =
𝑁𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔𝐼𝐼

+𝑁𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔𝐼𝐼𝐼

𝑁𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝐼
+𝑁𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝐼𝐼

      (6) 

Where, 𝑌𝑅𝑖 is the yielding rate for Phase 𝑖, 𝑁𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔𝑖
 is the number of yielding maneuvers in 

Phase 𝑖, 𝑁𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖
 is the number of pedestrian-vehicle interactions of interest (defined in 3.1.1) 

in Phase 𝑖, 𝑌𝑅 is the overall yielding rate, and 𝑌𝐶 is the yielding compliance. 

5.4.2.1.3 Uncertainty Zone for Yielding 

Based on the DV diagram, if an interaction falls in Phase II (𝐷0 < 𝐷𝑜𝑐𝑐 < 𝐷1), either the driver, 

or the outside observer cannot know whether the driver is able to stop or not. Such a situation is 

defined as the uncertainty zone for yielding. A better understanding of this uncertainty zone 

should shed light on driver behavior during the pedestrian-vehicle interactions, and may help 

improve models, specifically in simulating pedestrian-vehicle interactions. This paper provides a 

brief exploration of the uncertainty zone for yielding by looking at the yielding rate for Phase II 

(𝑌𝑅𝐼𝐼), and the proportion of interactions in Phase II among all the interactions (
𝑁𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝐼

∑𝑁𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖

).  

5.4.2.2 Crossing Decision 

In order to describe the pedestrian crossing decisions in an interaction, the speed and distance 

(Dcross,Vcross) coordinates of the vehicle when the pedestrian starts to cross the street are extracted. 

As illustrated in the DV diagram in FIGURE 5-3b, the pedestrian crossing decisions can be 

classified in three types:  
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 Dangerous Crossings: When the crossing decision occurs in the situation where 

𝐷𝑐𝑟𝑜𝑠𝑠 < 𝐷0  (Phase I), pedestrians expose themselves to dangerous interactions with 

vehicles that cannot brake to yield.  

 Risky Crossings: When the crossing decision occurs in the situation where 𝐷0 <

𝐷𝑐𝑟𝑜𝑠𝑠 < 𝐷1 (Phase II), it is still unsafe for pedestrians to cross the street as drivers may 

not have enough time to react and yield. Drivers with longer reaction times will either 

brake sharply or may collide with pedestrians.  

 Safe Crossings: When the crossing decision occurs in the situation where 𝐷1 < 𝐷𝑐𝑟𝑜𝑠𝑠 

(Phase III), pedestrians are relatively safe. Drivers have enough time to react and yield to 

pedestrians.  

Ratios of different types of crossing decisions over the total number of interactions where 

pedestrians start to cross can be used to evaluate pedestrian crossing behavior. 

5.4.3 Surrogate Measures of Safety 

The proposed framework also attempts to measure the probability dimension of the risk of 

collision, which is not represented by the yielding compliance and crossing decision indicators 

presented previously. In the DV model, vehicles have less space and time to react and brake with 

the situations moving clockwise, i.e. moving from phase III, to phase II, then phase I; therefore, 

the probability of collision increases clockwise. In this study, it is quantified by two indicators: 

time to crossing and deceleration rate required to stop and yield.  

5.4.3.1 Time to Crossing 

Time to crossing (TC) refers to the time required for the vehicle to reach the pedestrian crossing 

path if continuing at constant speed. Assuming the (D,V) coordinate of the vehicle at a certain 

instant to be, TC is calculated as 𝐷/𝑉, which is the slope of the line going through the origin and 

the point (D,V) in the DV diagram. TC represents the available time for the drivers to attempt 

evasive actions before reaching the crosswalk. 
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5.4.3.2 Deceleration Rate required to Stop 

Deceleration rate required to stop (DRS) is the constant deceleration rate required for the vehicle 

to stop and give the right-of-way to pedestrians. Assuming the driver is aware of the pedestrian 

at the pedestrian occurrence and reacts immediately then𝑡𝑟 = 𝑡𝑟_𝑚𝑖𝑛.  

Assuming the deceleration rate as 𝑎 , the distance for the entire reaction-braking 

maneuver is 𝐷 = 𝑣𝑡𝑟 +
𝑣2

2𝑎
; then, the deceleration rate can be calculated as: 

𝑎 =
𝑣2

2(𝐷−𝑣𝑡𝑟)
        (7) 

For determining the DRS, as 𝑡𝑟 = 𝑡𝑟_𝑚𝑖𝑛, we get:  

𝐷𝑅𝑆 =
𝑣2

2(𝐷−𝑣𝑡𝑟_𝑚𝑖𝑛)
 , 𝑖𝑓 𝐷 > 𝑣𝑡𝑟_𝑚𝑖𝑛    (8) 

TC and DRS of the vehicle at the time of the pedestrian occurrence and of the time of the 

pedestrian crossing decision (or attempt) will be collected and analyzed.  

The relationship between pedestrian safety and yielding compliance of the drivers can be 

better understood using the DV model. The level of safety in an interaction between a driver and 

a pedestrian evolves throughout the interaction. For instance: an interaction involving a driver 

that fails to yield in Phase III, considered a relatively safe situation, will result in a more 

dangerous situation (Phase I); a timely stop/slow-to-yielding maneuver in Phase II may result in 

a safe crossing in Phase III. The probability of collision can be analyzed based on TC and DRS. 

Moreover, TC, DRS and other surrogate measures of safety may help explain the fine details of 

interactions, such as the detailed process of yielding maneuvers and its impact on pedestrian 

crossing decisions. 
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5.5 CASE STUDY 

A study was conducted to illustrate the use of the DV model to evaluate pedestrian safety at three 

different types of non-signalized crossings: a painted crosswalk, an unprotected crosswalk (a 

crossing location with neither sign nor pavement treatment to protect the pedestrians), and a 

crosswalk controlled by stop signs. Road user trajectories were extracted using automated video-

based techniques. Multiple cameras were used to cover large road sections for the sites where a 

single camera installation failed to cover the entire road section being analyzed. Using the 

trajectory data, the framework was applied. Results were analyzed using the DV model. Details 

of data collection and processing methods, and the comparative analysis of pedestrian safety are 

provided in this section. 

5.5.1 Data Collection and Processing 

5.5.1.1 Data Collection 

For temporary trajectory data collection, mobile cameras are the easiest, most feasible, means of 

data collection. GoPro’s Hero and Hero 3 Edition cameras were used in HD resolution (1920 by 

1080 pixels). The cameras were mounted on mobile masts and fixed to existing facilities such as 

lampposts and traffic light poles. 

One of the limitations of using mobile video data collection is the limited field of view 

and trajectory length due to the restricted installation height and location, which means that a 

single camera is not sufficient to cover a sufficiently large observation area for most sites. 

Therefore, multiple cameras may be required to observe the approaching road user trajectories. 

In this study, cameras were installed in sequence along the approach studied with a portion of 

their views overlapping for synchronization purposes. 
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5.5.1.2 Data Processing 

As presented in FIGURE 5-4, the data processing work mainly consists of four steps:  

STEP 1: Trajectory Data Extraction from Video After data collection, video data processing 

was carried out using the tracker in the open source Traffic Intelligence project (Saunier & Sayed, 

2006), which provides accurate positioning and velocity outputs of the road users, as done in (Fu 

et al., 2016; Anderson-Trocme et al., 2015). Moreover, the most up-to-date version of the project 

was used which addresses errors caused by the lens distortion (“fish-eye” effect) (Forsyth & 

Ponce, 2012). The output is the trajectory data (positions and velocity vectors) of the road users 

in each frame saved in a SQLite database.  

STEP 2: Preparation of the Trajectory Database For sites requiring multiple cameras, merged 

trajectory outputs through consecutive cameras is ideal, but not completely implemented and 

validated in the Traffic Intelligence project. In this study, the videos from different locations in 

the same site were processed separately. In order to learn how driver react to different pedestrian 

occurrences and crossing decisions at different distances, the position and time of the vehicle 

through different camera views should be extracted, thereby requiring video synchronization 

based on the time offsets of the video recordings for the different camera views. 

STEP 3: Filter and Mark the Interactions As currently available computer techniques are 

either unable to detect, or detect accurately, the fine details of pedestrian occurrence, in 

particular the detection of the pedestrian’s intention to cross, pedestrian occurrences and their 

crossing decisions were determined manually. In the study, videos were scanned manually for 

interactions of interest. Timestamps (in the format of frame number) of pedestrian occurrences 

and relative crossing decisions during these interactions were manually recorded.  

STEP 4: Extraction of the Distance and Velocity Data Based on the frame numbers from Step 

3, the distance and velocity of the vehicle at the time of pedestrian occurrences and crossing 

decisions are calculated using a simple script. In the DV framework, distance to the pedestrian 

crossing path is required. Reference lines to measure the distance are set at the middle of the 

crosswalk painting for the painted crosswalk and stop sign controlled crosswalk locations. For 
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the unprotected location, the position of the pedestrian crossing is the geometrical separation of 

the approach and the center of the intersection or crossing zone (see example in FIGURE 5-4). 

As most people crossed within the crosswalk limits at the painted crosswalk and stop sign 

crosswalk locations, the distance to the reference line is used. For those who crossed outside of 

the crosswalk, and those at the unprotected crosswalk location, the distance is adjusted by adding 

or subtracting the displacement of the pedestrian to the reference line. In addition, since the 

tracker only tracks moving objects, the distances of the vehicles already stopped at the times of 

measurement are extracted manually.  

 

FIGURE 5-4 Steps involved in data processing 
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5.5.1.3 Illustration of the Results 

For illustration purpose, this paper provides an example with the outputs of one interaction, as 

shown in FIGURE 5-5. Two cameras were installed in sequence to cover approximately 35 

meters. FIGURE 5-5a provides an illustration of the camera installation. FIGURE 5-5b provides 

snapshots from the two camera views showing the trajectory of the same vehicle at the same time. 

Cameras are synchronized by knowing the time offset between the starts of the recordings for the 

two camera views. For illustration purposes, FIGURE 5-5c gives the DV diagram with the DV 

coordinates of the vehicle during the entire process of interaction. Markers in the DV diagram 

shows the DV coordinates at the times of the occurrence and of the crossing decision of the 

pedestrian. The outputs in the DV figure align well with the assumption illustrated in FIGURE 

5-2. At the occurrence of the pedestrian, the vehicle, possibly driven by a vigilant driver, began 

decelerating to yield to the potential crossing by the pedestrian. Based on the framework, the 

occurrence and crossing decision fall in Phase II where a timely reaction and a relative high 

deceleration rate are required of the driver. The TC and the DRS for the pedestrian occurrence 

and crossing decision can be computed. In this interaction, TC and DRS at the time of the 

pedestrian occurrence were found to be 2.06 s and 2.38 m/s2. TC and DRS at the time of the 

pedestrian crossing decision were 2.05 s and 1.85 m/s2.  
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c) DV relationship of the entire interaction           

FIGURE 5-5 Illustration of the results for one pedestrian-vehicle interaction 
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5.5.2 Data Description  

For the case study, three pedestrian crossing locations with different crosswalk designs were 

selected in central Montreal:  

 Site Laurier_Berri: crosswalk located on Avenue Laurier at the intersection of Avenue 

Laurier and Rue Berri – it is a painted crosswalk crossing on Avenue Laurier, a one-way, 

one-lane street.  

 Site Laurier_Drolet also located on Avenue Laurier at the intersection of Avenue Laurier 

and Rue Drolet – it is a pedestrian crossing location with no crosswalk paintings or signs 

to mark the crossing.  

 Site 13e_Belair: crosswalk located on Rue Belair at the intersection of Rue Belair and 

13e Avenue – it is a pedestrian crosswalk with both the crosswalk painting and stop signs 

where vehicles must stop and yield to pedestrians. All three crosswalks are located at 

level roads, which means the road slope is 0.  

Video data were collected for each site. Details of the video data are presented in TABLE 5-1. 
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TABLE 5-1 Descriptions of the Video Recorded at Each Site 

Type of Crosswalk Site name Date Time Duration (hour) 

Painted Laurier_Berri March 17th 2016 14:00-18:40 4.7 

Unprotected Laurier_Drolet June 17th 2016 10:00-14:30 4.5 

Stop sign controlled 13e_Belair June 21st 2016 09:00-13:30 4.5 

Site name # of Cameras Camera View 1 Camera View 2 

Laurier_Berri 2 

  

Laurier_Drolet 2 

  

13e_Bélair 1 

 

 

Note: in the pictures of the camera views, orange arrows indicate the direction of the approach studied, yellow pins 

indicate the crosswalk locations, and green lines are the reference lines as described in 4.1.2 

5.5.3 Results and Discussion 

5.5.3.1 Vehicle Yielding Behavior 

Results of measures for vehicle yielding behavior are presented in FIGURE 5-6 and TABLE 5-2. 

From FIGURE 5-6, the DV framework, with its parameters of reaction time, is useful to describe 

and analyze the interactions. No yielding maneuver was observed for interactions in Phase I, 

where vehicles are very close to the crosswalk and cannot yield. Vehicle maneuvers in 

interactions in Phase II vary greatly among drivers. This suggests the existence of the uncertainty 

zone of yielding associated with Phase II. Considering the interactions in Phase III, for the 

painted crosswalk and the stop sign controlled crosswalk locations where drivers know that they 
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must yield the right-of-way to crossing pedestrians, most drivers did yield. This provides 

evidence that vehicles in the situations of Phase III have enough time to react and yield to the 

pedestrians, and non-yielding maneuvers happening in such situations are (voluntary) violations. 

Considering yielding rates and driver compliances, as shown in TABLE 5-2, the large difference 

(a maximum difference of 16.9 % points) between the overall yielding rate (YR) and the yielding 

compliance (YC) shows that the yielding compliance used in many past studies (which is, in fact, 

the overall yielding rate) may not properly describe the yielding compliance of the drivers. 

From the results, most interactions that occurred at the stop sign controlled crosswalk fall 

in Phase III as from the DV plots, and the overall yielding rate and yielding compliance was 

77.8 %, which is the highest among all the sites. For the painted crosswalk location, the yielding 

compliance was 64.3 %. The yielding rate of Phase III was 82.3 % suggesting a high compliance 

of the drivers at this site. However, due to the non-yielding maneuvers for the interactions falling 

in Phase II and Phase I, the overall yielding rate was only 52.0 %, which suggests a less safe 

environment for pedestrians compared to the stop sign controlled crosswalk. The unprotected 

crosswalk performs poorly in terms of pedestrian safety. No vehicle yielded in Phase III, where 

the driver has sufficient time to react and yield. The yielding compliance for this site was only 

10.8 % and the overall yielding rate was only 8.7 %. The reason for these low rates may be that 

most drivers think they have right to cross without yielding. Moreover, from the comparison of 

the DV plots, the stop sign is found to move the interactions toward reduced speeds, since most 

drivers slow down as they approach the stop sign. Based on the indicators of the DV model, the 

stop sign controlled crosswalk provides the safest accommodation for pedestrians to cross by 

offering the best yielding compliance of the drivers, while the unprotected crosswalk is the least 

safe. 
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a) Painted crosswalk              b) Unprotected crosswalk             c) Stop sign controlled crosswalk 

FIGURE 5-6 DV plot for pedestrian occurrence and yielding behavior 

TABLE 5-2 Results of Yielding Rates 
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Phase No. Obs. Type of Non-yielding No. of Non-yielding Yielding Rate for Phase 𝑖 

Painted Crosswalk (Site Laurier_Berri, 57 interaction observations) 

I 15 Non-infraction Non-yielding 15 0.0 % 

II 25 Uncertain Non-yielding 12 52.0 % 

III 17 Non-yielding Violation 3 82.4 % 

Overall yielding rate (YR) - yielding compliance rate used in past studies 47.4 % 

Rate for redefined yielding compliance (YCR) 64.3 % 

Unprotected Crosswalk (Site Laurier_Drolet, 46 interaction observations) 

I 9 Non-infraction Non-yielding 9 0.0 % 

II 18 Uncertain Non-yielding 14 22.2 % 

III 19 Non-yielding Violation 19 0.0 % 

Overall yielding rate (YR) - yielding compliance rate used in past studies 8.7 % 

Redefined yielding compliance rate (YC) 10.8 % 

Stop Sign Controlled Crosswalk (Site 13e_Bélair, 27 interaction observations) 

I 0 Non-infraction Non-yielding 0 undefined 

II 1 Uncertain Non-yielding 1 0.0 % 

III 26 Non-yielding Violation 5 80.8 % 

Overall yielding rate (YR) - yielding compliance rate used in past studies 77.8 % 

Redefined yielding compliance rate (YC) 77.8 % 

Note: Phase I refers to where vehicles cannot make full stop, Phase II is where yielding depends on reaction time, 

and Phase III is where vehicles can stop and yield. 
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The TC and DRS of the interactions can be generated to quantify the probability of 

collisions. The median TC and DRS at the times of pedestrian occurrences and their standard 

deviations can be calculated. Results are provided in FIGURE 5-7. From the results, the stop sign 

controlled crosswalk has a median TC that is doubled, and a median DRS of pedestrian 

occurrences that is much lower, compared to the other two crosswalk locations. This indicates 

that stop signs generally provide better conditions for vehicles to respond and decelerate in order 

to yield to pedestrians. On the other hand, the unprotected crosswalk has the highest median 

DRS, suggesting that it will be more difficult for vehicles to yield to pedestrians. The 

unprotected crosswalk has a similar median TC value to that of the painted crosswalk, which 

shows similar conditions provided by the two crosswalks for vehicles to respond. These findings 

suggested that the stop sign controlled crosswalk performs best for pedestrian safety, while the 

unprotected crosswalk is the worst. The painted crosswalk provides a safer accommodation for 

pedestrians compared to the unprotected crosswalk, but not as good as the stop sign controlled 

crosswalk. 

   

FIGURE 5-7 Result comparisons for yielding behavior at three types of crosswalks 

5.5.3.2 Pedestrian Crossing Decisions 

Results for crossing decisions are provided in FIGURE 5-8 and FIGURE 5-9. Crossing decisions at the 
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1.71 m/s2 when pedestrian decisions were made. For crossing decisions at the stop sign controlled 

crosswalk, most of the crossing decisions are made in Phase III, where vehicles have enough time to react 
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lower DRS for interactions at the stop sign location can be attributed to their location in the DV diagram 

(Phase III) and the high yielding compliance, illustrated in FIGURE 5-8. Based on the comparison of the 

median TC and DRS across the three intersection types, the stop sign controlled location is safer 

compared to the painted crosswalk by leading pedestrians to make safe crossing decisions. Due to the 

reduced yielding compliance at the unprotected crosswalk, the majority of the crossing decisions were 

made after the vehicle passed. Therefore, only six crossing attempts were observed, making it insufficient 

for comparison as can be seen in the higher variability of TC and DRS in FIGURE 5-9. However, as 

presented in FIGURE 5-8, two dangerous crossing attempts, where the pedestrians had to retreat as the 

vehicles did not give the right-of-way, were found at the unprotected crosswalk location, suggesting the 

reduced safety at the unprotected crosswalk location.  

 

a) Painted crosswalk              b) Unprotected crosswalk             c) Stop sign controlled crosswalk 

FIGURE 5-8 DV plots for pedestrian crossing decision 

   

FIGURE 5-9 Result comparisons for crossing decisions at three types of crosswalks 
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5.6 CONCLUSION 

This paper proposes an original framework to study pedestrian-vehicle interactions at non-

signalized crosswalk locations based on the vehicle trajectory speed and distance to the 

pedestrian crossing. This model utilizes trajectories coming from video analysis. The framework, 

also referred to as the DV model, shows promise in studying vehicle yielding and pedestrian 

crossing behavior at non-signalized locations. The data generation process is semi-automated 

using an existing automated tracking tool, manual identification of events (pedestrian 

occurrences and crossing decisions), and automated data extraction. The proposed framework is 

tested through a case study using video data from three different types of non-signalized crossing 

locations in Montreal. 

Based on a case study, the DV framework, along with the derived measures, is used for 

analyzing driver interactions with crossing pedestrians, by identifying the situations in which the 

driver can and cannot stop to yield to the pedestrian, and by characterizing both users’ behavior 

and maneuvers. The framework better explains pedestrian-vehicle interactions compared to 

typical safety studies based on traffic conflict techniques such as (Almodfer et al., 2015) 

(Malkhamah et al., 2005) (Tang & Nakamura, 2009) which fall short in describing unpredictable 

behavior of the road users. Surrogate measures of safety selected in the paper, TC and DRS, are 

integrated in the framework to diagnose the safety of the interactions. The framework provides 

reasonable results in classifying driver yielding behaviors. The absence of yielding maneuvers in 

Phase I indicates the existence of situations where vehicles are so close to the crosswalk at the 

pedestrian occurrence that they cannot stop and give the right-of-way. The high yielding rate in 

Phase III indicates that in such situations drivers have enough time to react and most of them are 

willing to yield to pedestrians (as required by the law). The reduced yielding rate in Phase II 

indicates the situations where drivers either require increased reaction time or are unwilling to 

yield to pedestrians. The reaction time range of 0.5 to 2 s thus seems reasonable. 

Results of the case study are intuitive. The stop sign controlled crosswalk can better 

protect the pedestrians compared to the other two crosswalks in terms of driver compliance, 

overall yielding rates and crossing decisions the pedestrians make. The unprotected crosswalk 

performs inadequately for pedestrian safety as the yielding compliance is very low and the safety 
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level as measured by the vehicle yielding behavior is the lowest. As the key contribution, this 

paper provides a new approach to describe pedestrian-vehicle interactions. The proposed 

approach can be used for different purposes in road safety including treatment (countermeasure) 

evaluation, simulation of pedestrian-vehicle interaction, behavior analysis, safety monitoring 

(detecting vehicle violations), and improvements of yielding enforcement policies.   

However, the model needs to be further validated through a sufficiently large number of 

observations and locations. The maximum friction rate is influenced by many factors including 

weather, type of the pavement, type of the tire and braking system specifications. The treatment 

of the maximum friction can be improved in future work. The range of reaction time also needs 

to be further calibrated. The existence of the uncertainty zone and its impact on pedestrian safety 

should be further explored. Other surrogate measures of safety than TC and DRS, such as TTC 

and PET will be used and compared in future studies. Data will be collected from a large number 

of sites for the model validation and improvement based on available historical crash data. In 

addition, the behavior of drivers and pedestrians is an important factor. One must assume that 

users are similar overall at different sites for the performance validation of different treatments.  

Studies on road user behavior such as vehicle yielding compliance and pedestrian 

crossing decision during vehicle-pedestrian interactions will be further conducted using the DV 

model with video data. Also, as part of future work, the effectiveness of different crosswalk 

treatments will be further evaluated based on the framework. The effects of various factors 

(traffic volume, time-of-day, the geometric design, built environment, etc.) will be investigated. 

Driver glance behavior and driving distraction, which are important explanatory factors for 

pedestrian safety, require the installation of in-vehicle sensors like eye trackers and have thus not 

been much investigated yet (Bichicchi et al., 2017). The model could be applied to improve 

microsimulation simulation models in better describing vehicle-pedestrian interactions. 
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Link between chapter 5 and chapter 6 

The previous chapter introduced the DV framework and demonstrated it through a case study 

involving three sites of different types. However, this is far from being sufficient for testing and 

valuating the framework. The city of Montreal has been recently investing in improving 

pedestrian safety at non-signalized crosswalk locations. Based on the project our laboratory has 

with the city, we are able to conduct a large-scaled data collection involving multiple sites in 

Montreal. As part of the project, the model is applied to evaluate the performance of the three 

main types of crosswalks (the marked crosswalk, the uncontrolled crosswalk, and the stop sign 

controlled crosswalk) on pedestrian safety through in an extended study involving 15 different 

crosswalk locations selected from City of Montreal. The model is further tested. The 

performance of the three types of crosswalk on pedestrian safety is investigated and compared. 

Though thermal camera has been proved to perform well for traffic data collection, the study still 

used video data collected from regular cameras. This was due to 1) the use of the thermal camera 

was not included in the design of the project; 2) the accessibility of limited number of thermal 

cameras (only one available) did not allow efficient data collection given a data collection 

permission with limited dates; 3) there are safety concerns for data collection at night. Detailed 

work is presented in the following chapter. 
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Chapter 6 Model Application for Multiple Sites 

 

6.1 INTRODUCTION 

Chapter 5 has given the definition of interaction of interest. An interaction of interest between 

the pedestrian and the vehicle covers the entire procedure starting from when the vehicle and the 

pedestrian approach to each other, ending by successful passages, evasive maneuvers, or in worst 

case, a crash. In terms of behavior analysis, pedestrian safety is mainly decided by four 

elements: 

1) The occurrence of the interaction – Based on the definition of interaction of interest, an 

interaction happens when a pedestrian presents at the crosswalk with his intention to cross, and a 

vehicle is approaching the crosswalk location. For an interaction of interest, the trigger of the 

interaction is the occurrence of a pedestrian intending to cross; therefore, the pedestrian 

occurrence, defined in Chapter 5, also represents the occurrence of the interaction. The initial 

status of the vehicle at the occurrence of the interaction is important as it determines the 

capability (the time and distance from the crossing pedestrian) of the drivers to respond. 

2) The vehicle yielding behavior – In response to pedestrian occurrence, drivers decide to 

yield or not. Driver yielding behaviors are strongly associated with pedestrian safety. Driver 

compliance to the yielding law helps reduce the risk of pedestrians. Yielding behavior can be 

analyzed using the DV framework.  

3) The crossing decision of the pedestrian – During a pedestrian-vehicle interaction, 

pedestrians cross the street when they feel confident to. The pedestrian can be endangered if the 

crossing decision is made when the vehicle is still at a high speed, with his yielding intention 

unknown. The pedestrian decision can be analyzed based on the status of the vehicle when the 

decision is made. 
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4) The outcome of the interaction – an interaction of interest ends up three types of 

outcomes. i) The pedestrian crosses before the vehicle passage, being given right-of-way. ii) The 

pedestrian have to cross after the vehicle passage not being yielded. iii) An evasive maneuver or 

a crash happens if the pedestrian decides to cross the street in front of the vehicle, but he is not 

given right-of-way by the driver. Due to the limitation of crash data analysis (Fu, et al., 2016; 

Tarko, et al., 2009), evasive maneuvers have been an important measure of safety (Dhar & 

Woodin, 1995; Fitzpatrick, et al., 2006; Gitelman, et al., 2016). Evasive maneuvers include 

reactions such as rushing to complete or aborting a crossing (for pedestrians) and swerving, lane 

changing, or braking. 

As the main purpose, this part is to test and validate the DV framework through multiple 

sites. An extended study involving 15 different crosswalk locations selected from City of 

Montreal was conducted. Detailed analysis was made based on the information extracted from 

the video data collected from these sites. The occurrences of interactions, vehicle yielding 

behavior, pedestrian crossing decisions, and the observation of evasive maneuvers are 

investigated. 

6.2 SITE DESCRIPTION  

For model validation, pedestrian safety at the three main types of non-signalized crosswalks, 

which include uncontrolled crosswalks (Type A), marked crosswalks (Type B in the chapter), 

and stop sign controlled crosswalks (Type C), were further analyzed. For the three types of 

crosswalk, each involved video data collected from five site locations. FIGURE 6-1 presents 

locations of the sites. Detailed descriptions for each site are included in APPENDIX II. 
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FIGURE 6-1 Map of Site Locations 

6.3 DATA COLLECTION 

Video data were collected using the same method described in Chapter 5. Details of the video 

data are presented in TABLE 6-1. Data were collected from the fifteen sites, totaling to 80.8 

hours (21.9 hours from uncontrolled crosswalk locations, 30.3 hours from marked crosswalk 

locations, and 28.6 hours from crosswalk locations controlled by the stop sign).  
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TABLE 6-1 Descriptions of the Video Recorded at Each Site 

Type of Crosswalk Site ID Site Name Date Time Duration (hr) 

Uncontrolled  A-1 NotreDamedeGrace-D'Oxford July 20th 2016 08:10-13:50 5.7 

- Type A - A-2 Clark-PrinceArthur July 23rd 2016 09:10-12:00 2.9 

 A-3 Masson-6e July 4th 2016 08:30-12:55 4.4 

 A-4 Beaubien-Molson June 28th 2016 08:10-12:35 4.4 

 A-5 Laurier_Drolet June 17th 2016 10:00-14:30 4.5 

 Total duration for Type A 21.9 

Marked  B-1 Prieur-DeLaRoche September 23rd 2016 09:30-18:50 9.3 

- Type B -  B-2 NotreDamedeGrace-OldOrchard July 20th 2016 08:50-13:40 4.8 

 B-3 Beaubien-SaintVallier June 30th 2016 08:30-14:20 5.9 

 B-4 Beaubien-27e July 7th 2016 10:15-15:50 5.6 

 B-5 Laurier_Berri March 17th 2016 14:00-18:40 4.7 

 Total duration for Type B 30.3 

Stop sign C-1 Roy-HenriJulien June 16th 2016 09:40-17:50 8.2 

- Type C - C-2 George-Gagne June 9th 2017 09:15-15:20 6.1 

 C-3 Sauriol-Millen September 20th 2016 09:00-11:00 2.2 

 C-4 19e-Belair June 21st 2016 09:10-15:50 7.6 

 C-5 13e_Belair June 21st 2016 09:00-13:30 4.5 

 Total duration for Type C 28.6 

 Total duration for all sites 80.8 

 

6.4 RESULTS AND DISCUSSION 

After data collection, video data were processed and trajectory information of the road users was 

extracted and analyzed using the same approach given in Chapter 5. Interactions of interest were 

analyzed for each site included in each crosswalk type. 682 interactions were observed from the 

15 sites with 292 from uncontrolled crosswalks, 222 from marked crosswalks and 168 from stop 

sign controlled crosswalks. This chapter mainly focuses on results summarized for different 

types of crosswalks. For one who wants to check more details, results for each specific site are 

included in APPENDIX III. 

As the main purpose of this chapter, the performances of the three main types of non-

signalized crosswalks on pedestrian safety are analyzed and compared. The intensity of observed 
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interactions at their occurrences, and vehicle yielding behaviors and pedestrian crossing 

decisions in response to these interactions are analyzed using the DV framework. Results for 

each type of crosswalk are given in TABLE 6-2. Results are discussed in three parts: 1) 

interactions of interest; 2) yielding behavior of vehicles; and 3) crossing decisions of pedestrians. 

TABLE 6-2 Results from DV Model for Different Crosswalk Types 

Type of Crosswalk Type A Type B Type C 
All Sites 

 Uncontrolled Marked Stop sign controlled 

Results for Interactions of Interest 

Number of Interactions 

No. of Total Interactions 292 222 168 682 

No. of Interactions in Phase I  (*Percentage over the total) 32 (11.0 %) 33 (14.9 %) 5 (3.0 %) 70 (10.3 %) 

No. of Interactions in Phase II (Percentage over the total) 43 (14.7 %) 58 (26.1 %) 35 (20.8 %) 136 (19.9 %) 

No. of Interactions in Phase III (Percentage over the total) 217 (74.3 %) 131 (59.0 %) 128 (76.2 %) 476 (69.8 %) 

TC and DRS at the Occurrence of Interaction 

TC (sec) Median 5.60 3.73 3.92 4.31 

 Std. Dev. 6.39 4.89 4.50 5.64 

DRS (m/s2) Median 0.79 0.61 0.48 0.69 

 Std. Dev. 3.09 2.29 0.84 2.49 

Results for Yielding Behavior 

No. of Non-infraction Non-yieldings 32 33 4 69 

No. of Uncertain Non-yieldings 38 31 10 79 

No. of Non-Yielding Violations 207 50 21 278 

No. of Yielding Maneuvers 15 108 133 256 

Yielding Rate 5.1 % 48.7 % 79.2 % 37.5 % 

Yielding Compliance 5.8 % 57.1 % 81.6 % 41.8 % 

Results for Crossing Decision 

No. of Decisions to Cross after Vehicle Passage 267 112 34 412 

No. of Decisions to Cross before Vehicle Passage 25 111 134 270 

No. of Dangerous Crossings (**Percentage over the total) 2 (8.0 %) 12 (10.8 %) 0 (0.0 %) 14 (5.2 %) 

No. of Risky Crossings (Percentage over the total) 6 (24.0 %) 23 (20.7 %) 24 (17.9 %) 53 (19.6 %) 

No. of Safe Crossings (Percentage over the total) 17 (68.0 %) 76 (68.5 %) 110 (82.1 %) 203 (75.2 %) 

No. of Crossings with Evasive Maneuvers 10 3 1 14 

TC (sec) 
Median 5.54 4.03 4.40 4.14 

Std. Dev. 3.65 4.22 5.01 4.55 

DRS (m/s2) 
Median 0.75 0.63 0.30 0.50 

Std. Dev. 1.77 3.25 1.07 2.30 

Note that: *Percentage over the total in results for occurrence of interactions is the percentage of each type of interactions over the total number of 

interactions observed. **Percentage over the total in results for crossing decisions is the percentage of each type of crossing decisions over all the 

crossing attempts made to cross before the vehicle passage. 
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6.4.1 Interactions of Interest 

Intensity of interactions of interest when they occur and yielding behavior of drivers during these 

interactions are investigated. FIGURE 6-2 presents the outputs for the position and speed of 

vehicles when interactions occur, and their yielding behavior, in the format of the DV diagram. 

Results for surrogate measures of safety including TC and DRS at the occurrence of interactions 

for different types of crosswalk are virtualized using boxplots in FIGURE 6-3. 

The percentages of each type of interactions over the total number of interactions of 

interest are compared among different types of crosswalk. From TABLE 6-2, the type of 

crosswalk controlled by stop signs has the highest percentage (76.17 %) of interactions that 

happened in Phase III, where vehicles can stop. Besides, the lowest percentage (2.98 %) of 

interactions that happened in Phase I where vehicles cannot make a full stop can be observed at 

stop sign controlled locations. These indicate that stop sign controlled crosswalks effectively 

reduce the chance of pedestrians to expose to interactions that occur with high risk situations. 

Compared to uncontrolled crosswalks, marked crosswalks have a lower percentage of 

interactions in Phase III, and a higher percentage of interactions that occur in Phase I, suggesting 

that interactions at marked crosswalks occur with averagely more intense situations over the 

other two crosswalk types. These findings align with what are given in the DV plots in FIGURE 

6-2. As marked with the grey mask, vehicles states at interaction occurrence falls mostly in 

Phase II and Phase III where vehicles have time to react and yield to pedestrians with reduced 

speed at stop sign controlled crosswalks. From the figure, as marked with grey mask, 

occurrences of pedestrians are more dispersed in the DV diagram mainly because vehicles 

approaching the crosswalks have averagely higher speeds.  

Intensity of interactions at occurrence can also be represented using TC and DRS at 

pedestrian occurrence. Checking from TABLE 6-2 and FIGURE 6-3, uncontrolled crosswalks 

have the highest median TC compared to the other two types of crosswalks which indicates that 

interactions are less intense at uncontrolled crosswalks in terms of the time left for drivers to 

observe and react to a pedestrian at his presence at the crosswalk location to cross the street 

compared to those happen at marked and stop sign controlled crosswalk locations. However, 

median DRS value for interactions at uncontrolled crosswalks is the highest among all site types, 
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which means vehicles should decelerate at a higher rate to stop to yield during the occurrence of 

an interaction compared to other two types. Interactions happen at stop sign locations are the 

least intense as they require averagely least deceleration rate to decelerate at pedestrian 

occurrence. 

From the results in Chapter 5, more pedestrians might be stuck by non-yielding 

maneuvers of multiple vehicles in sequence at uncontrolled crosswalks. In these cases, the 

pedestrian tends to wait for an extended period of time to cross. Because of the extended waiting 

time, more interactions of interest generated, occurring with large TC values and small DRS 

values. This may explain why the median TC at uncontrolled crosswalk is the highest. 

Comparing only among indicators for the occurrences of interactions is not sufficient. To further 

verify this and to investigating pedestrian safety at these three types of crosswalk, vehicle 

yielding behavior and pedestrian crossing decision are to be explored.  

6.4.2 Vehicle Yielding Behavior 

From TABLE 6-2 and FIGURE 6-2, among all the 682 interactions, no yielding maneuver was 

observed for interactions in Phase I, where vehicles are very close to the crosswalk and cannot 

yield. High proportions of vehicles not giving right-of-way to pedestrians with several yielding 

indicate the existence of uncertainty zone of yielding associate with Phase II. During the 

interactions that occur with a situation of Phase III where drivers know that they must yield, 

most of vehicles did yield. This further supports the conclusion in Chapter 5 that “the DV 

framework, with its parameters of reaction time, is useful to describe and analyze the 

interactions”.  

From the results, yielding rate at stop sign controlled crosswalks was 79.17 %, which is 

the highest among the three types of crosswalk. The yielding compliance shows that 81.60 % of 

the vehicles, who could yield to pedestrians, actually yielded. Among the interactions that occur 

at marked crosswalks, less than half of the vehicles involving in interactions of interest yielded, 

while there are around 60 % of drivers who could yield gave right-of-way. Uncontrolled 

crosswalks however, had the lowest yielding rate of 5.14 %, and the lowest yielding compliance 

of 5.77 %.  
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The results indicate that stop sign controlled crosswalks not only reduces high-intensity 

interactions but also help increase vehicle yielding compliance, guaranteeing right-of-way for 

pedestrians and providing a safe environment for pedestrians to cross. Marked crosswalks have a 

reduced yielding compliance, which mean pedestrians are less safe to cross at marked crosswalks 

compared to stop sign controlled crosswalks. Drivers did not yield to pedestrians when passing 

by them at uncontrolled crosswalks showing the least safe environment for pedestrian to cross 

the street at such sites. 
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FIGURE 6-2 DV plot for pedestrian occurrence and yielding behavior 

   

FIGURE 6-3 Result comparisons for pedestrian occurrence at three types of crosswalks   
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6.4.3 Pedestrian Crossing Decision 

In interactions with approaching vehicles, pedestrians decide the time to cross the street by 

judging whether they are sufficiently safety to cross. Being a zero-sum game (if one gains, 

another loses) for pedestrian right-of-way at crosswalks, pedestrian decisions to cross after 

vehicle passages and vehicle yielding maneuvers are tightly correlated. Results for pedestrian 

crossing decisions are also included in TABLE 6-2. As one can see from the table, because of 

vehicles with non-yielding maneuvers, many pedestrians had to cross after vehicle passages 

without risking themselves in front of the vehicles: half of the pedestrians at marked crosswalks 

crossed after vehicle passages; most pedestrians at uncontrolled crosswalks gave up right-of-way 

to vehicles; at stop sign controlled crosswalks, however, only small amount of pedestrian (34 out 

of 168) crossed after the pedestrians.  

Pedestrian crossing before vehicle passages closely related to their safety as they expose 

themselves in front of vehicles. Therefore, pedestrian crossings before vehicle passages are 

essential to be investigated. DV plots for pedestrians crossing decisions to cross before vehicle 

passages for the three types of crosswalk are shown in FIGURE 6-4. FIGURE 6-5 gives the 

comparison of the TC and DRS for the times at which the pedestrian cross decisions were made.  

According to TABLE 6-2, for stop sign locations, most pedestrians (around 82.09 %) 

decided to cross in a safe situation. Besides, zero dangerous crossings have been observed. 

Compared to stop sign controlled crosswalks, marked and uncontrolled crosswalk locations have 

reduced proportions of pedestrian safe crossings and increased proportions of dangerous 

crossings. This is also illustrated in FIGURE 6-4c where the plots represent the states of vehicles 

when pedestrian crossing decisions were made. All pedestrian crossing decisions at stop sign 

controlled crosswalks fall in Phase II and Phase III. Marked crosswalks and uncontrolled ones 

have similar proportions in different types of crossing decisions (roughly 68 % for safe crossings, 

and 21 for risky crossings while 10 % for risky crossings). From FIGURE 6-4, crossing 

decisions made at uncontrolled crosswalks are associated with increased vehicle speed (Miranda-

Moreno, et al., 2019) compared to those at marked crosswalks.  
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Looking at the TC and DRS results in TABLE 6-2 and FIGURE 6-5, the median TC for 

pedestrian crossing decisions at uncontrolled crosswalks is the highest among the three types of 

crosswalk. However, this does not mean that uncontrolled crosswalks protect the pedestrian 

crossings better. With the lower expectation of being yielded by vehicles, larger proportion of 

pedestrians crossing at uncontrolled crosswalks prefer a safe situation with a high TC to cross 

before vehicle passages, or otherwise cross after. Such crossing decisions increase median TC at 

uncontrolled crosswalks. Results for DRS can better illustrate pedestrian safety at these sites. 

The median DRS at uncontrolled crosswalks are the highest indicating that pedestrians crossing 

at uncontrolled crosswalks exposed to situations where drivers need sharper brakes with less 

comfort to yield. Pedestrians crossing before vehicle passages at marked crosswalks face less 

intense situations in terms of DRS. Stop sign controlled crosswalks have a much smaller DRS 

illustrating a noticeably safer situation for pedestrians crossing before vehicle passages.  

From TABLE 6-2 and FIGURE 6-4, 3 out of the 111 crossing decisions (and 222 total 

interactions) at marked crosswalks ended up with evasive maneuvers. 10 out of the 25 crossing 

decisions (and 292 total interactions) made at uncontrolled crosswalks resulted in evasive 

maneuvers. Only 1 out of 134 crossing decisions (and 168 total interactions) ended up with an 

evasive maneuver at stop sign controlled crosswalks. Results for evasive behaviors also show 

that crosswalks controlled using stop signs protect pedestrians better by reducing the pedestrians, 

while uncontrolled crosswalks performs worst in terms of protecting pedestrians from evasive 

situations. Marked crosswalks have a better performance compared to uncontrolled crosswalks. 

Interestingly, from FIGURE 6-4, the pedestrians made several dangerous crossing 

decisions but the crossings did not result in the drivers’ evasive maneuvers or crashes. Checking 

from the video, the reason is that during those interactions vehicles already started to yield with 

their intention observed by pedestrians.  
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FIGURE 6-4 DV plots for pedestrian crossing decision before vehicle passages 

   

FIGURE 6-5 Result comparisons for crossing decisions before vehicle passages  
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6.5 CONCLUSION 

This chapter validates the DV framework through data collected from multiple sites. Results 

suggest that the DV framework describes pedestrian-vehicle interactions in a proper way. The 

framework provides a novel and reliable insight at vehicle yielding behavior and pedestrian 

crossing decisions, as the main behavior factors related to pedestrian safety at non-signalized 

crosswalk locations. Assumptions made in the framework and parameters applied (the range of 

reaction time) have been proved to be reasonable through a large number of observations. 

The performance of three main types of non-signalized crosswalks, including 

uncontrolled crosswalks, marked crosswalks and stop sign controlled crosswalks, on pedestrian 

safety have been further investigated. Results are in consistence with the previous study 

described in Chapter 5. Stop sign controlled crosswalks have the best performance in protecting 

pedestrians by reducing intensity of interactions at occurrence, increasing vehicle yielding rates 

and compliances, and reducing dangerous crossing decisions and the chance of evasive 

maneuvers. Uncontrolled crosswalks do not perform effectively in protecting pedestrians as 

yielding compliances are very low at all the sites studied and the chance of evasive maneuvers 

are the highest. Marked crosswalks perform similarly in terms of the occurrence of interactions 

and pedestrian crossing decisions made. However, marked crosswalks have much higher 

yielding rates and driver yielding compliances, and reduced chance of the occurrence of evasive 

maneuvers indicating a better performance compared to uncontrolled crosswalks. 

Despite the better performance in pedestrian safety by stop sign controlled crosswalks, 

stop signs reduce greatly the efficiency of vehicles which is also one of the main concerns in the 

field of transportation. Besides, drivers are less likely to comply stop signs if they are installed 

everywhere. This increases the risk for pedestrians who might pay less attention when expecting 

vehicles to yield. The overall performance of stop sign installations is still an open question 

which requires more efforts in both research and engineering. Cities should be hesitant to install 

stop signs at non-signalized crosswalks without further engineering analysis. 
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Link between chapter 6 and chapter 7 

In the previous chapter, the DV framework was validated further through a study investigating 

the performance of three main types of non-signalized crosswalks on pedestrian safety. Results 

suggest that the framework describes pedestrian-vehicle interactions in a proper way. Through 

the analysis on the 682 pedestrian-vehicle interaction observations, assumptions and parameters 

used in the framework have been proved to be reasonable. 

The framework is promising for investigating other safety topics, such as pedestrian-

vehicle interactions at signalized locations (e.g. interactions between pedestrians and turning 

vehicles), interactions between different types of road users such as pedestrians and cyclists, or 

cyclists and vehicles. The following chapter is about using the framework to investigate cyclist-

pedestrian interactions in urban areas, which has been a topic with grooving interest recently in 

both traffic safety and sustainability but underestimated in previous research.  
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Chapter 7 

 

Investigating Cyclist-Pedestrian Interactions 

at Bus Stops and Non-signalized Intersections 

using a Distance-Velocity Model and Speed 

Measures derived from Video Data 
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7.1 ABSTRACT  

As walking and cycling flows increase in urban areas, cyclist-pedestrian interactions also 

increase at road facilities. Cyclist yielding compliance rates at these locations can be low which 

could deteriorate pedestrian safety and comfort. To investigate pedestrian safety at these 

locations, this study introduces a framework using cyclists’ distance, speed and yielding 

maneuver information at the time of pedestrian occurrence and crossing derived from video data. 

The distance-to-crosswalk and speed of the cyclist are used to classify the cyclist’s situation at 

pedestrian occurrences into three categories: i) where the cyclist cannot make a full stop; ii) 

where the ability to yield depends on the reaction time; and iii) where the cyclist can stop to yield. 

Yielding behavior and crossing decision are classified. Pedestrian safety is validated using direct 

measures such as yielding compliance rates, and indirect measures such as time-to-crossing and 

deceleration rate required to stop. Cyclist crossing speeds at the crosswalk are also analyzed.  
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A case study involving several crosswalk locations on cycle tracks from Montreal, 

Canada, was conducted. Video data was collected and video-based tracking techniques were 

used to extract cyclist speed and distance information. Results allow for microscopic analysis 

and provide insight into cyclist-pedestrian interactions. Results generally show that cyclists 

endanger pedestrians. The factors that contribute to the low yielding compliance of cyclists and 

the impact of marking, and road grade on cyclist behavior are explored. This safety analysis 

could inform policy on bicycle yielding enforcement and bicycle braking system standards. 

Keywords: pedestrian safety; cyclist-pedestrian interaction; yielding behavior; crossing decision; 

distance-velocity model; cyclist facility 

7.2 INTRODUCTION 

Active transportation, typically in the form of walking and cycling, has gained popularity as a 

transportation mode in recent years for many reasons. Cycling and walking provide individual 

benefits such as improved health, increased likelihood of social interactions, and can save 

commuters both money and time (Public Heath Agency of Canada, 2014). Additionally, there are 

societal benefits associated with cycling and walking including reduced Greenhouse Gas (GHG) 

emissions, and improved public health. Therefore, shifting daily travel patterns from the use of 

private motorized vehicles to walking and cycling could have meaningful impacts on cities 

meeting their sustainability goals. Cities and regions across the globe have been promoting 

walking and cycling by updating policy, investing in infrastructure, developing bike share 

programs, improving public transit networks and integrating pedestrian, cycling and public 

transit networks. However, as vulnerable road users, pedestrians and cyclists face a greater risk 

of injury and are involved in a disproportionate number of collisions on roadways (NHTSA, 

2017). To achieve a major shift towards active transportation, pedestrian and cyclist safety must 

be better addressed in research, policy and street design. 

The safety of pedestrians and cyclists is a heavily researched topic (Nabavi Niaki, et al., 

2016) (Abdel-Aty & Haleem, 2010) (Zahabi, et al., 2011) (Miranda-Moreno, et al., 2011) 

(Abdel-Aty & Nawathe, 2006) (Cai, et al., 2017). Research in pedestrian and cyclist safety 
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typically focuses on pedestrian and cyclist risk when exposed to motorized traffic. Although 

crashes involving motorized vehicles occur with a greater severity, cyclist-pedestrian crashes are 

also a relevant topic of study. Statistical evidence suggests that cyclist-pedestrian crashes are not 

rare. One report indicated that in Germany in 2016, 4050 cyclist-pedestrian crashes occurred, 

resulting in 11 fatalities (StBA, 2017). Tuckel, Milczarski and Maisel (2014) analyzed hospital 

records, from 2005 to 2011, and reported 7904 pedestrians injuries from collisions with cyclists 

in New York State and 6177 in California. Approximately 9 % of these injuries were treated as 

inpatients. Additionally, evidence from news suggests that pedestrian injuries and fatalities from 

cyclist-pedestrian crashes are fairly common (Evans, 2017) (Kavanagh, 2012) (Scott, 2017). 

Furthermore, encouragement of cycling and walking through changes in policy and improved 

infrastructure is likely to increase the number of cyclist-pedestrian interactions occurring in cities, 

making cyclist-pedestrian interactions an area of greater concern. The City of Montreal has 

received numerous complaints from its residents concerning poor safety perception at pedestrian 

crosswalks along cycle paths, especially in proximity to schools. However, work regarding the 

safety issues related to the interactions between pedestrians and cyclists has remained 

surprisingly untapped (Beitel, et al., 2017) (Tuckel, et al., 2014). 

Many pedestrian safety studies have been conducted through the use of crash data 

(Nabavi Niaki, et al., 2016) (Zahabi, et al., 2011). This approach can be problematic as crash 

data is not always available and suffers from issues including low-mean, small sample, 

underreporting, location errors and misclassification (Fu, et al., 2016). It is essentially impossible 

to measure pedestrian safety with respect to bicycles using crash data as crashes are often 

neglected or not well reported in many cities. Therefore, studying road user behavior and 

investigating non-crash related measures, i.e. surrogate measures of safety, in such conditions is 

the most promising option and will provide a better understanding of the collision processes. 

This paper proposes a methodology for investigating and estimating the safety of cyclist-

pedestrian interactions at pedestrian crossings located at non-signalized intersections and bus 

stops. This is intended to address an important research gap in the field of pedestrian safety 

(Afghari, et al., 2014). Based on a recently-proposed safety model framework, known as the 

Distance-Velocity (DV) model, presented and implemented in (Fu, et al., 2018) for vehicle-
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pedestrian interactions, cyclist yielding maneuvers and pedestrian crossing decisions in cyclist-

pedestrian interactions are explored using video data. Speed measures were also investigated in 

supplement to the DV framework. The impact of crosswalk marking and road grade on the 

behavior and deceleration rate of upstream and downstream cyclists is investigated as well. For 

this purpose, video data is collected and analysed from multiple bus stops and non-signalized 

intersections. 

7.3 LITERATURE REVIEW  

The literature on cyclist-pedestrian interactions, behavior and yielding is limited. This research 

gap may exist because cyclist-pedestrian interactions are less likely to result in a severe collision 

than vehicle-pedestrian interactions. Therefore, despite the prevalence of these active 

transportation modes, the vast body of literature in road safety is limited to the study of 

interactions with vehicles. Recent practices for assessing active transportation safety rely on 

collision records and collision models (Zahabi, et al., 2011), (Miranda-Moreno, et al., 2011) & 

(Mohamed, et al., 2013). However, the use of collision-based analysis for cyclist-pedestrian 

safety diagnosis is impossible in most situations. Therefore, the only feasible strategy for 

estimating safety in cyclist-pedestrian interactions is through road user behavior analysis and 

surrogate safety measures (SSM). 

Automated video-based techniques that use SSMs are becoming more common in road 

safety analysis (Fu, et al., 2016). Different techniques and sensors, including loops, radars and 

GPS devices have been used to extract information for surrogate safety analysis (Stipancic, et al., 

2016) (Golob, 2004) (Lee, 2002). Among the several SSMs proposed in the literature, the most 

commonly used are time-to-collision (TTC) and post-encroachment time (PET). PET is the time 

difference for two road users passing at the same location. One study investigated safety in 

cyclist-pedestrian interactions using PET, cyclist speed and the type of interaction, based on the 

angle of approach and the first user to arrive at the collision point, but did not consider yielding 

behavior (Beitel, et al., 2017).  
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The importance of yielding right-of-way to pedestrians in interactions involving cyclists 

or vehicles is underscored by the vulnerability of pedestrians, compared to other road users. 

Yielding is therefore a critical component of safety in interactions at non-signalized intersections. 

Research considering yielding compliance of cyclists is limited. One study explained low cyclist 

yielding compliance based on the large effort required to make a complete stop and then 

accelerate back to cruising speed (Fajans & Curry, 2001). However, compared to situations 

where no pedestrian is present, a greater proportion of cyclists decrease their speed if they 

perceive a potential traffic conflict with a pedestrian (Ayres, et al., 2015). Research in vehicle-

pedestrian interactions, which have been more thoroughly studied, is nonetheless limited in the 

area of driver yielding behavior. There are situations where it is impossible for vehicles and 

cyclists to yield when considering their proximity to the crosswalk at the pedestrian crossing 

decision. Such situations are likely considered as violations in most previous studies. The ability 

for a vehicle or cyclists to yield must be considered when studying vehicle and cyclist yielding 

behavior. 

Several studies have investigated vehicle-pedestrian interactions through the analysis of 

yielding behavior and pedestrian crossing decision (Li, et al., 2015) (Afghari, et al., 2014). This 

methodology remains untested for cyclist-pedestrian interactions. Applying this methodology to 

cyclist-pedestrian interactions is non-trivial as bicycles and vehicles behave in different ways. 

This paper will address this research gap by proposing a methodology to investigate cyclist 

yielding behavior and pedestrian crossing decision for cyclist-pedestrian interactions. The 

methodology is then applied to a case study on crosswalk performance at non-signalized urban 

intersections with painted cycle tracks, and bus stop locations along segregated bicycle facilities 

in Montreal. 

7.4 METHODOLOGY 

The methodology section outlines the mechanism of cyclist braking systems, followed by the 

description of the DV framework. Data collection and processing methods are detailed as well. 
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7.4.1 Bicycle Braking System and Deceleration Rate 

Ideally, the bicycle deceleration rate reaches a maximum when the pavement friction coefficient 

is at a maximum. However, this is rarely achieved for cyclists since they tend to avoid sharp 

deceleration and complete stops and many braking systems cannot provide the friction 

coefficient that matches the maximum value that the pavement can provide. The analysis in this 

paper makes use of past work by the USDOT that validated cyclist yielding behavior and 

pedestrian crossing decisions (Landis, et al., 2004): the authors investigated the deceleration rate 

and the corresponding friction coefficient for cyclists and found the 85th percentile deceleration 

rate for bicycles to be 3.3 m/s2, and the corresponding reference friction coefficient to be 0.32 for 

level road situations (Landis, et al., 2004). In this paper, the reference friction coefficient is 

considered as the greatest friction coefficient a cyclist can achieve (𝜇𝑚𝑎𝑥) and is applied in the 

model. 

For roads with a non-zero grade, the effect of the road grade is considered in calculating 

the deceleration rate of the bicycle. Then, the deceleration rate is a function of the grade degree 

and the pavement friction coefficient and can be presented as: 

𝑎 = 𝑔(𝜇 − 𝜃)          (1) 

where, a is the deceleration rate, g is the gravitational acceleration, μ is the friction coefficient 

and θ is the road grade in radians. The deceleration rate reaches its maximum when the friction 

coefficient reaches maximum, e.g. 0.32. With a change of road grade of 1° (1.75 %), the 

maximum deceleration rate that the cyclist can achieve changes by 5 %. Thus, road grade 

significantly affects cyclist deceleration. Meanwhile, due to the gravitational potential energy, 

bicycles traveling downhill easily reach a higher speed compared to those traveling uphill. 

Bicycles traveling downhill travel at higher speed and are less able to brake, leading to an 

increased crash probability and severity, thus an increased crash risk. The novel safety 

framework used to investigate vehicle-pedestrian interactions presented in (Fu, et al., 2018) can 

also be applied to study cyclist-pedestrian interactions. 
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7.4.2 DV Model for Cyclist-pedestrian Interactions 

This section provides a brief introduction of the DV framework. Details for the basic 

assumptions, model derivation and definitions are provided in (Fu, et al., 2018). Parameters such 

as maximum deceleration rate are adjusted for cyclists. 

7.4.2.1 Practical definitions 

According to the DV framework proposed in (Fu, et al., 2018), several key definitions are given 

below: 

 The pedestrian occurrence is the time when the pedestrian arrives at the area within a 

cross-section distance of 1 m from the crosswalk marking, and shows the intention to 

cross the street (e.g. facing the road or turning their head toward the road).  

 The pedestrian crossing decision is defined as the time when the pedestrian starts to cross 

the street, regardless if he/she has to retreat because of non-yielding cyclists. Actual 

crossing attempts include keeping a constant walking speed to cross after arrival without 

waiting, and starting to cross after waiting or hesitating after arrival. 

 For pedestrian groups, the occurrence of the group is defined as the first occurrence of a 

pedestrian from the group. However, each pedestrian is considered to be individually 

exposed to the risk of collision. 

 The investigated cyclist-pedestrian interactions are the situations in which a cyclist 

approaches a crosswalk and a pedestrian is either already moving to cross, already 

present in a position showing willingness to cross, or arriving with an intent to cross. 

7.4.2.2 Introduction of the Model 

According to (Fu, et al., 2018), the minimum distance 𝐷𝑚𝑖𝑛 required for a cyclist to make a full 

stop to yield to a pedestrian present at the crosswalk can be computed as: 

 𝐷𝑚𝑖𝑛 = 𝑣𝑡𝑟 + 𝑣2/(2𝑔 ∙ (𝜇𝑚𝑎𝑥 − 𝜃))     (2) 
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where, v is the initial speed of the cyclist at the occurrence of the pedestrian, 𝑡𝑟 is the perception-

reaction time of the cyclist, 𝜇𝑚𝑎𝑥 is the maximum friction coefficient of the road and 𝜃 is the 

road grade. 

Assuming the reaction time range as [𝑡𝑟_𝑚𝑖𝑛, 𝑡𝑟_𝑚𝑎𝑥], then 𝐷𝑚𝑖𝑛 is in a range of [𝐷0, 𝐷1] = 

[𝑣𝑡𝑟_𝑚𝑖𝑛 + 𝑣2/(2𝑔 ∙ (𝜇𝑚𝑎𝑥 − 𝜃)), 𝑣𝑡𝑟_𝑚𝑎𝑥 + 𝑣2/(2𝑔 ∙ (𝜇𝑚𝑎𝑥 − 𝜃))]. The curves of 𝐷0  and 𝐷1 

in a DV diagram are presented in FIGURE 7-1a. The diagram is then divided into three phases: i) 

phase I, where cyclists cannot make a full stop, ii) phase II, where the cyclist’s ability to stop and 

yield depends on the cyclist’s reaction time, and iii) phase III, where cyclists can stop. Reaction 

time of the cyclist varies. According to (AASHTO, 1999), the reaction time in response to 

expected events varies between 0.5 and 2.5 sec. 
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a. Explanation of D-V diagram with example values 

  

b. Classification of non-yielding maneuvers   c. Classification of pedestrian crossing decisions 

FIGURE 7-1 DV diagram for cyclist-pedestrian interaction 

7.4.2.3 Model Applications and Related Measures 

According to the DV framework proposed in (Fu, et al., 2018), several classifications and safety 

measures can be derived from the (D,V) coordinates when the pedestrian starts to cross: 
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 Cyclist yielding behavior is classified as: 1) yielding maneuvers; 2) non-infraction non-

yielding maneuvers (Phase I), where cyclists are not able to stop; 3) uncertain non-

yielding maneuvers (Phase II), where cyclists may or may not be able to react in time to 

stop; and 4) non-yielding violations (Phase III) where cyclists have enough time to react 

and brake but choose not to yield. The classification of non-yielding maneuvers is 

illustrated in FIGURE 7-1b. 

 The yielding rate is the proportion of cyclists that yield right-of-way to pedestrians out of 

the total number of cyclists studied. The yielding compliance is the proportion of cyclists 

yielding right-of-way out of the cyclists that are physically able to yield (interactions that 

fall into Phase II and Phase III). 

 The classification of crossing decisions is illustrated in the DV diagram in Fig. 1c. There 

are four cases: 1) dangerous crossings, occurring in Phase I, where pedestrians expose 

themselves to dangerous interactions with cyclists that cannot yield; 2) risky crossings, 

occurring in Phase II, where pedestrians are at risk as cyclists may not have enough time 

to react and yield; 3) safe crossings, occurring in Phase III where pedestrians are 

relatively safe given that cyclists are either not on a collision course or have enough time 

to react and yield; and 4) crossings after the cyclist passage where pedestrians give up to 

cross with cyclists approaching. 

 Collision risk measures, as proposed in (Fu, et al., 2017), comprise two measures used for 

quantifying the risk of collision: 1) the time to crossing (TC); and 2) the deceleration 

required to stop (DRS). TC refers to the time required for the cyclist to reach the 

pedestrian crossing path if continuing at constant speed. DRS is the constant deceleration 

rate required for the cyclist to stop and give the right-of-way to pedestrians. 

7.5 CASE STUDY 

Two types of crosswalk locations from Montreal are included: 1) crosswalks at non-signalized 

intersections; 2) crosswalks at bus stops along segregated cycle tracks. 
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7.5.1 Site and Data Description 

The selected sites and their characteristics are presented in TABLE 7-1. 

 Crossings at non-signalized intersections: two sites were picked from intersections 

without traffic lights or stop signs. Painted cycle tracks are located along the side of the 

road and carry a high volume of cyclists. The selected intersections have zero grade and 

high pedestrian volumes crossing the street. Site I-1 has a marked crosswalk, while the 

crosswalk at Site I-2 is unmarked. Comparisons are made to investigate the effectiveness 

of crosswalk markings on cyclist-pedestrian interactions. 

 Crossings at bus stops: for investigating cyclist-pedestrian interactions at bus stops along 

segregated cycle tracks, five sites (with crosswalk markings) were selected from two 

high-traffic streets. Different grades on the study cycle tracks exist.  

For data collection, mobile camera systems provide the entire view of the crosswalk area 

including the cycle track approaches where cyclists are coming from. GoPro’s Hero 3 Edition 

cameras were used. The cameras were temporally mounted on portable poles, fixed to lampposts. 

Video data were collected on weekdays during daytime hours. For comparison, all video data for 

sites belonging to the same crosswalk type were collected with similar weather and traffic 

conditions. Additional details of the sites, including the location, road grade, built environment 

and the amount of video data recorded are presented in TABLE 7-1.  

After data collection, automated video-based tracking techniques were applied to extract 

trajectory data. Video data processing was conducted using the tracker in the open source Traffic 

Intelligence project (Saunier & Sayed, 2006), which has been proved to provide highly accurate 

outputs of road users (Anderson-Trocme, et al., 2015) (Fu, et al., 2017). Details of video data 

processing for the DV framework have been included in (Fu, et al., 2018). 
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TABLE 7-1 Descriptions of Sites and Video Data Recorded 

  

Site ID Site Name Type of the Road Grade (rad.) Date/Time Duration (hour) 

Sites at Non-signalized Intersections 

I-1 Laurier_Rivard Level 0 17-Jun-2016 / 10:00-16:30 6.5 

I-2 Laurier_Drolet Level 0 17-Jun-2016 / 10:00-14:30 4.5 

Sites at Bus Stop Locations 

II-1 CSC_Dunlop Non-Zero Grade 0.026 02-Oct-2013 / 10:30-16:40 6.3 

II-2 CSC_Pagnuelo Non-Zero Grade 0.033 25-Sep-2013 / 09:00-17:15 8.3 

II-3 CSC_Courcelette Non-Zero Grade 0.028 25-Sep-2013 / 09:00-17:00 8.0 

II-4 Rachel_Chapleau Level 0 30-Sep-2013 / 09:00-17:30 8.5 

II-5 Rachel_Messier Level 0 30-Sep-2013 / 09:00-17:10 8.2 

Site ID Site Name Site Description Camera View 

I-1 Laurier_Rivard 

 Street Located: Rue Laurier 

 The Closest Intersection: Rue Rivard 

 Cycle Track: painted cycle track on both sides of the road 

 Type of crosswalk: marked crosswalk with pedestrian sign 

 

I-2 Laurier_Drolet 

 Street Located: Rue Laurier 
 The Closest Intersection: Rue Drolet 

 Cycle Track: painted cycle track on both sides of the road 

 Type of crosswalk: unmarked crosswalk 

 

II-1 CSC_Dunlop 

 Street Located: Chemin de la Côte-Sainte-Catherine 
 The Closest Intersection: Rue Dunlop 

 Bus Lines: 51, 119, and 129 

 Bus Volume: average 10 buses per hour  
 Built Environment: a music college is near the bus stop 

which brings dense pedestrian traffic during peak hours when 

students leave school.  

II-2 CSC_Pagnuelo 

 Street Located: Chemin de la Côte-Sainte-Catherine  

 The Closest Intersection: Rue Pagnuelo 

 Bus Lines: 51, and 129 

 Bus Volume: average 10 buses per hour 

 Built Environment: the site is on the approach of the 
intersection, therefore cyclist traffic is affected by the traffic 

light.  

II-3 CSC_Courcelette 

 Street Located: Chemin de la Côte-Sainte-Catherine  
 The Closest Intersection: Rue Courcelette 

 Bus Lines: 51, 119, 129, and 368 

 Bus Volume: average 11 buses per hour 
 Built Environment: the site is on the approach of the 

intersection, therefore cyclist traffic is affected by the traffic 

light.  

II-4 Rachel_Fullum 

 Street Located: Rue Rachel  
 The Closest Intersection: Rue Fullum 

 Bus Lines: 29 

 Bus Volume: average 2 buses per hour 
 Built Environment: nothing specific 

 

II-5 Rachel_Messier 

 Street Located: Rue Rachel 

 The Closest Intersection: Rue Messier 

 Bus Lines: 29 

 Bus Volume: average 2 buses per hour 

 Built Environment: nothing specific 
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7.5.2 Results and Discussions 

The results are summarized in two parts: behavior analysis using DV framework and speed 

analysis. 

7.5.2.1 Behavioral Analysis 

Based on trajectory data extracted from video recordings, cyclist-pedestrian interactions were 

analyzed using the DV framework, and road user behaviors were investigated. TABLE 7-2 and 

TABLE 7-3 provide the summary of the results. 

(1) Illustration of the DV Framework Output 

The DV framework was applied to investigate cyclist-pedestrian interactions and road user 

behavior during these interactions. The distance to the crosswalk and the approaching speed of 

the cyclist at the pedestrian occurrence can be extracted to determine if the cyclist cannot, may 

be able to, or can stop (as represented by phases I, II, III in the DV diagram). Then, based on 

whether the cyclist yielded or not, their yielding behavior can be classified. Finally, the risk 

category in which the pedestrian decided to cross can be evaluated. Additionally, microscopic 

data related to road user behavior and safety can be extracted, such as TC, cyclists’ DRS at the 

pedestrian occurrence, and cyclists’ DRS at the pedestrian crossing decision. 

The diagram of the DV framework provides a data visualization to analyze road user 

behavior under different situations and for different sites. The DV output of cyclist and 

pedestrian behavior for Site II-1 is illustrated in FIGURE 7-2. For example, in FIGURE 7-2a, 

illustrating seven pedestrian interactions with downhill cyclists, there was: one yielding event, 

one non-yielding violation, three uncertain non-yielding interactions, and two non-infraction 

non-yielding interactions. Additionally, of the seven interactions, three pedestrian crossing 

attempts were made and are illustrated in FIGURE 7-2c. Two pedestrians made safe crossing 

decisions, where the cyclist could stop in time; however, one of those pedestrians was required to 

take evasive action due to the non-yielding violation of the cyclist. One pedestrian attempted to 

cross in a risky situation and was required to take evasive action. Lastly, the four interactions 
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omitted from FIGURE 7-2c represent pedestrians who decided to cross after the cyclist passed. 

Results for uphill cyclists are presented in FIGURE 7-2b and 2d.   

   
a) Yielding behavior - downhill             b) Yielding behavior uphill 

 

   
c) Crossing decision - downhill cyclists       d) Crossing decisions uphill cyclists 

FIGURE 7-2 Example of DV diagram for cyclist-pedestrian interaction – site I 

(2) Sites at non-signalized urban intersections 

 Yielding Behavior and Compliance 

The yielding rate was found to be low for both sites, as seen in TABLE 7-2. It is important 

to distinguish between the two sites with respect to yielding requirements. Site 1 is a marked 

crossing, and therefore cyclists are required to yield to pedestrians by law. On the other hand, Site 

2, the control site, is unmarked; cyclists are not required to yield to pedestrians, in fact, pedestrians 

are required to wait for a sufficient gap before attempting to cross. The yielding compliance of 

cyclists at the marked crosswalk is 14 %, higher than at the control site, with the unmarked 

crosswalk, where less than 3 % of cyclists yielded to pedestrians. This indicates that the crosswalk 
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marking does prompt approximately one out of every ten cyclists to yield to pedestrians. The low 

proportion of cyclists that yield right-of-way to pedestrians at intersections with crosswalk 

markings suggests that road markings do not have a significant impact on cyclist behavior.  

From TABLE 7-2, the median TC (4.72 s) was higher at the unmarked crosswalk 

compared to the median TC (4.21 s) at the marked crosswalk. However, this does not indicate 

that the unmarked crosswalk is safer. In fact, given the fact less pedestrians were yielded at the 

unmarked crosswalk, those pedestrians were exposed to additional and unnecessary interactions 

(that won’t happen if the previous cyclist yields) with cyclists coming after. Although the 

increase in the additional and unnecessary interactions made unmarked crosswalk more 

dangerous, the cyclists involved in those interactions have higher TC during the pedestrian 

events, which will lead to an increased median TC at the unmarked crosswalk.” 

 Crossing Decisions 

From FIGURE 7-3, most pedestrians at these two sites chose to cross after the cyclist crossed at 

both sites. A greater proportion of pedestrians that crossed after the cyclist passage at the 

unmarked crosswalk (94.1 %) is found compared to marked crosswalk (85.7 %). The reason is 

that, due to the increased yielding attempts at the marked crosswalk, pedestrians had more 

opportunity to use their right-of-way.  

At the marked crosswalk, 19 interactions were found where pedestrians decided to cross 

before the cyclist passage, fifteen were given the right-of-way by the cyclist and the remaining 

four pedestrian crossings were interrupted by non-yielding cyclists. The four interactions, where 

the pedestrian crossing was disrupted by a non-yielding cyclist, are considered as conflicts 

because at least one user was required to make an evasive maneuver to avoid collisions.  

(3) Sites at bus stop locations 

 Yielding Behavior and Compliance 

From TABLE 7-3, only 8.2 % of the cyclists yielded right-of-way to pedestrians. Additionally, 
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the overall yielding compliance was 19.6 %. In other words, approximately 90 % of cyclists in 

the presence of a crossing pedestrian refused to yield. Although the yielding and compliance rate 

varied slightly across sites, they were low for all sites. Conclusions cannot be drawn by 

comparing different sites given the limited number of observations of yielding maneuvers.  

As shown in TABLE 7-3, interactions involving downhill and uphill cyclists had similar 

TC values and were found in similar proportions for each phase; however, the deceleration rates 

required to stop (DRS) were significantly higher for downhill cyclists. As expected, this 

indicates that interactions involving uphill cyclists are safer as they travel more slowly, requiring 

a reduced DRS, and can achieve increased maximum deceleration rate due to the road grade. 

Larger median TC and smaller deceleration rates required to stop for cyclist-pedestrian 

interactions at level road crossings were found. However, half of the interactions involved non-

yielding maneuvers of the multiple cyclists in sequence to one pedestrian. In these cases, the 

pedestrian tends to wait for an extended period of time to cross. This has the effect of generating 

a large TC and a small DRS. 

Despite the impact that road grade may have on cyclist yielding capability, yielding 

compliance remained low across all road grades. In general, the cyclists that were studied 

appeared unwilling to yield regardless of road grade.  

 Crossing Decisions 

The majority (48 out of 61) of pedestrians decided to cross after the cyclist, as illustrated in 

TABLE 7-3. Two out of the 13 remaining crossings were dangerous, three were risky and eight 

were safe. The results are intuitive; a greater number of pedestrians crossed in Phase III as 

cyclists have more time to respond and yield by slowing down or stopping completely. 

The proportion of pedestrians crossing after the cyclist passage in the interactions 

remained similar for all road grade types: uphill, downhill and flat. As seen in TABLE 7-3, four 

out of five pedestrians crossed after the cyclist for all three road grade types. This relatively high 

proportion may be the result of pedestrians responding to low cyclist yielding rates. Interestingly, 
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dangerous crossing decisions were only observed among interactions occurring in uphill 

situations as indicated in FIGURE 7-4. This finding can be explained by the fact that pedestrians 

feel safer to cross in front of the cyclists going uphill given the reduced speed and increased 

deceleration. 

TABLE 7-2 Results – Sites at Non-signalized Urban Intersections 

Site ID - Name I-1 Laurier_Rivard I-2 Laurier_Drolet 
Summary of the Two Sites 

Road Type Level - marked Level - unmarked 

Number of Interactions 

No. of Total Interactions 133 51 184 

No. of Interactions in Phase I 35 12 47 

No. of Interactions in Phase II 40 11 51 

No. of Interactions in Phase III 58 28 86 

Results for Yielding Behavior 

No. of Non-infraction Non-Yieldings 35 12 47 

No. of Uncertain Non-yieldings 34 11 45 

No. of Non-Yielding Violations 50 27 77 

No. of Yielding Maneuvers 14 1 15 

Yielding Rate 10.5 % 2.0 % 8.2 % 

Yielding Compliance 14.3 % 2.6 % 10.9 % 

TC (sec) 
Median 4.21 4.72 4.34 

Std. Dev. 4.34 4.57 4.41 

DRS (m/s2) 
Median 0.73 0.69 0.72 

Std. Dev. 1.79 2.92 2.37 

Results for Crossing Decisions 

No. of Dangerous Crossings 2 1 3 

3No. of Risky Crossings 8 0 8 

No. of Safe Crossings 9 2 11 

No. of Decisions to Cross after Cyclist Passage 114 48 162 

TC (sec) 
Median 2.16 2.78 2.39 

Std. Dev. 2.16 1.73 2.07 

DRS (m/s2) 
Median 0.89 0.99 0.94 

Std. Dev. 1.68 3.31 1.92 
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TABLE 7-3  Results – Crosswalks at Bus Stops along Segregated Cycle Tracks 

Site ID - Name II-1 CSC_Dunlop II-2 CSC_Pagnuelo II-3 CSC_Courcelette 

Road Type Downhill Uphill Overall Downhill Uphill Overall Downhill Uphill Overall 

Number of Interactions 

No. of Total Interactions 7 11 18 4 11 15 6 1 7 

No. of Interactions in Phase I 2 6 8 2 2 4 2 0 2 

No. of Interactions in Phase II 3 4 7 2 6 8 3 0 3 

No. of Interactions in Phase III 2 1 3 0 3 3 1 1 2 

Results for Yielding Behavior 

No. of Non-infraction Non-Yieldings 2 6 8 2 2 4 2 0 2 

No. of Uncertain Non-yieldings 3 4 7 2 3 5 3 0 3 

No. of Non-Yielding Violations 1 1 2 0 3 3 1 1 2 

No. of Yielding Maneuvers 1 0 1 0 3 3 0 0 0 

Yielding Rate 14.3 % 0.0 % 5.6 % 0.0 % 27.3 % 20.0 % 0.0 % 0.0 % 0.0 % 

Yielding Compliance 20.0 % 0.0 % 10.0 % 0.0 % 33.3 % 27.3 % 0.0 % 0.0 % 0.0 % 

TC (sec) 
Median 1.86 0.90 1.54 1.98 3.77 2.26 1.93 4.55 1.94 

Std. Dev. 2.02 1.29 1.67 0.78 2.57 2.33 1.61 -- 1.67 

DRS (m/s2) 
Median 1.58 2.00 2.00 2.48 0.67 1.35 2.18 0.60 1.93 

Std. Dev. 3.53 1.01 2.51 2.12 2.04 2.11 5.51 -- 5.20 

Results for Crossing Decision 

No. of Dangerous Crossings 0 2 2 0 0 0 0 0 0 

No. of Risky Crossings 2 0 2 0 0 0 0 0 0 

No. of Safe Crossings 1 0 1 0 3 3 0 0 0 

No. of Decisions to Cross after Cyclist Passage 4 9 13 4 8 12 6 1 7 

TC (sec) 
Median 3.15 1.51 1.74 -- 8.33 8.33 -- -- -- 

Std. Dev. 1.28 0.02 1.25 -- 3.47 3.47 -- -- -- 

DRS (m/s2) 
Median 0.36 0.87 0.73 -- 0.11 0.11 -- -- -- 

Std. Dev. 0.00 0.20 0.32 -- 0.16 0.16 -- -- -- 

(Continued) 
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TABLE 7-3 Continued 

Site ID - Name II-4 Rachel_Fullum II-5 Rachel_Messier Summary of the Five Sites 

Road Type Level Level Downhill Uphill Level Overall 

Number of Interactions 

No. of Total Interactions 3 18 17 23 21 61 

No. of Interactions in Phase I 0 1 6 8 1 15 

No. of Interactions in Phase II 1 1 8 10 2 20 

No. of Interactions in Phase III 2 16 3 5 18 26 

Results for Yielding Behavior 

No. of Non-infraction Non-Yieldings 0 1 6 8 1 15 

No. of Uncertain Non-yieldings 1 1 8 7 2 17 

No. of Non-Yielding Violations 2 15 2 5 17 24 

No. of Yielding Maneuvers 0 1 1 3 1 9 

Yielding Rate 0.0 % 5.6 % 5.9 % 13.0 % 4.8 % 8.2 % 

Yielding Compliance 0.0 % 5.9 % 9.1 % 20.0 % 5.0 % 19.6 % 

TC (sec) 
Median 7.83 6.51 1.91 1.89 6.6 2.98 

Std. Dev. 4.50 4.45 1.59 2.30 4.34 3.72 

DRS (m/s2) 
Median 0.36 0.33 2.14 1.29 0.34 0.77 

Std. Dev. 0.69 0.34 3.94 1.67 0.39 2.61 

Results for Crossing Decision 

No. of Dangerous Crossings 0 0 0 2 0 2 

No. of Risky Crossings 0 1 2 0 1 3 

No. of Safe Crossings 0 4 1 3 4 8 

No. of Decisions to Cross after Cyclist Passage 3 13 14 18 16 48 

TC (sec) 
Median -- 4.10 3.07 4.61 4.10 4.10 

Std. Dev. -- 1.10 1.28 4.39 1.10 2.84 

DRS (m/s2) 
Median -- 0.83 0.81 0.37 0.83 0.73 

Std. Dev. -- 0.27 0.30 0.40 0.27 0.36 
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FIGURE 7-3 Crossing decisions of pedestrians at non-signalized intersections: marked vs. 

unmarked 

  

FIGURE 7-4 Crossing decisions of pedestrians at bus stop locations: different road grade 

situations 

7.5.2.2 Speed Data 

(1) Sites at non-signalized urban intersections  

The average crossing speeds of cyclists, when passing the crossing location (Fu, et al., 2016), are 

investigated. The statistical summary of the crossing speed data is included in TABLE 7-4. 

Distributions of crossing speeds at the marked and unmarked crosswalks are presented in 

FIGURE 7-5a. Results suggest that the presence of crosswalk marking helps reduce cyclist 
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crossing speed, by 3.35 km/h on average. Crossing speed data for cyclists involved in cyclist-

pedestrian interactions are also presented in TABLE 7-4. The reduction in average crossing 

speed at the marked crosswalk is noticeable (2.89 km/h); however, cyclists do not seem to 

decrease their speeds when they pass by pedestrians waiting to cross. An explanation for this can 

be that cyclists reduce their speed when passing the marked crosswalk to avoid collisions, but do 

not slow down to yield right-of-way. 

(2) Sites at bus stop locations 

FIGURE 7-5b presents the distributions of cyclist crossing speeds extracted from each site, and 

lastly, a combination of all five sites separated by the three different road grade types. Due to the 

impact of road grade, it is not surprising to find that, on average, cyclists going downhill travel 

23.2 % faster compared to those on the level road. Similarly, the mean crossing speed of cyclists 

going uphill is 20.6 % lower than those traveling on a level road. 

No significant reduction in cyclist crossing speed was found for cyclists involved in an 

interaction with a pedestrian, indicating that cyclists did not slow when pedestrians were waiting 

along the cycle track to cross. This is different from most results in the literature for finding does 

not support most of the studies investigating pedestrian-vehicle interactions where vehicles were 

found to slow down (Boyce & Van Derlofske, 2002). In other words, pedestrian crosswalks 

along cycle tracks were not effective in protecting pedestrians.  

A reduction of cyclist crossing speed, associated with the pedestrian occurrence, was 

found to be more significant for level grade type compared to uphill and downhill grade types. 

This difference between grade types is intuitive. At level grade crossings, cyclists tend to stop 

pedaling in pedestrian interactions to avoid potential crashes, resulting in a reduction of crossing 

speed due to the road friction. On the other hand, cyclists traveling downhill may prepare to 

brake but often do not brake unless the pedestrian decides to cross first. In this situation, 

although the cyclist may not be pedaling, their crossing speed remains high because of the 

gravity potential. Lastly, cyclists traveling uphill are less likely to stop pedaling in the presence 

of a pedestrian due to the greater effort they need to maintain, or retrieve their crossing speed. 
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TABLE 7-4 Summary of the Cyclist Crossing Speed (km/h) 

 Counts   Mean Std. Dev Max Min 

 

Crosswalks at Non-signalized Intersections 

 

Marked vs Unmarked (all cyclist) 

Site I-1 – Marked 2717 (418 /hr) 18.36 4.49 37.61 4.71 

SiteII-2 – Unmarked 2032 (451 /hr) 21.71 5.46 38.47 5.57 

Marked vs Unmarked (cyclists involved in interactions) 

Site I-1 – Marked 133 18.46 5.62 35.72 4.74 

SiteII-2 – Unmarked 51 21.35 5.22 35.83 8.00 

 

Crosswalks at Bus Stops along Segregated Cycle Tracks 

 

Each Site 

Site II-1 

Downhill 962 (153 /hr) 24.47 5.65 43.98 7.79 

Uphill 755 (120 / hr) 13.07 3.15 34.54 3.62 

Site II-2 

Downhill 801 (97 / hr) 19.88 5.65 40.61 4.27 

Uphill 797 (93 /hr) 13.59 3.84 31.48 3.34 

Site II-3 

Downhill 545 (68 /hr) 22.38 6.59 39.90 8.03 

Uphill 596 (75 /hr) 16.49 3.13 30.87 5.87 

Site II-4 1795 (212 /hr) 19.49 5.54 42.49 5.67 

Site II-5 1825 (223 /hr) 19.31 5.48 48.09 5.37 

Different  Road Grade Types (all cyclists) 

Downhill 2308 23.90 6.25 43.98 4.27 

Uphill 2148 15.41 4.19 34.54 3.34 

Level 3620  19.40 5.51 42.49 5.37 

Different  Road Grade Types (cyclists involved in interactions) 

Downhill 17 23.61 6.10 33.08 4.68 

Uphill 23 14.56 3.93 20.40 6.48 

Level 21 16.82 3.67 23.14 10.50 
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a) Non-signalized intersections: marked vs. unmarked 

 
b) Bus stop locations: different road grade situations 

FIGURE 7-5 Distribution of cyclist’s crossing speed for site studied  
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7.6 CONCLUSION 

This paper adapted a framework (Fu, et al., 2018), previously used to study safety in vehicle-

pedestrian interactions, to study cyclist-pedestrian interactions. The framework, named the DV 

framework, is tested through a case study using video data from two different types of pedestrian 

crosswalk locations. The effectiveness of crosswalk marking, and three road grade types 

including uphill, downhill, and level road were studied and compared for relative safety. Results 

generally show that cyclists endanger pedestrians intending to cross. Some key conclusions can 

be drawn: 

 From the case study, cyclists’ yielding compliance at the marked crosswalk is 

surprisingly low. Most cyclists did not yield to pedestrians even when able to. 

Additionally, an evasive maneuver was required when a pedestrian chose to cross before 

the cyclist passage. Although crosswalk markings increased the yielding by 

approximately 10 %, with respect to the control site, overall, painted crosswalks alone 

fail to protect pedestrians from passing cyclists.  

 The results indicate the existence of safety issues at pedestrian crossings on cycling 

facilities with downhill grades, which has been underestimated and seen little previous 

research. Currently, not much work has been taken in protecting pedestrians from cyclists. 

Several countermeasures, such as education, enforcement, and new road treatments 

should be implemented in order to protect pedestrians. 

 The study, by using the DV framework and speed analysis, provides explanation and 

evidence that interactions between pedestrians and downhill cyclists are more risky 

compared to those between pedestrians and uphill cyclists, and cyclists on level roads. 

Cyclists are less able to yield due to the increased speed and reduced maximum 

deceleration rate they can achieve. 

This paper introduces a new approach in studying cyclist-pedestrian interactions. This 

approach takes road grade, the capability of braking and the road user reaction into consideration. 

These are key factors contributing to the outcome of an interaction and incorporating them into 

the model provides a more complete picture.  
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From the DV framework, the cyclist’s maximum deceleration rate can greatly impact 

his/her ability to yield right-of-way to a pedestrian. The maximum friction rate used in this study 

comes from (Landis, et al., 2004) which involved an empirical on-road experiment. However, 

cyclist braking systems vary greatly. To guarantee a successful braking maneuver in situations 

where cyclists should brake or in emergency situations, one avenue may be to establish 

requirements for cyclist braking systems. Much work remains to be done on the topic of cyclist 

behavior. Preferred evasive actions for cyclists can be different from drivers. More observations 

should be made to have a clear definition of cyclist evasive behavior to identify different types of 

evasive actions (such as swerving and braking, though none of them were observed in this study). 

Besides, the reaction time thresholds used in this paper need to be further validated. 

For future work, data will be collected from a large number of sites including different 

environments where cyclist-pedestrian interactions happen. Different countermeasures may be 

proposed and implemented to improve cyclist yielding compliance. The performance of these 

countermeasures can be further validated using the framework. The framework can also be 

applied to investigate interactions between e-bike riders and pedestrians. As e-bikes have 

become more commonplace, this type of interaction occurs more frequently. Furthermore, 

because of the additional momentum that e-bikes can carry compared to regular bicycles, 

collisions involving pedestrians and e-bike riders are associated with greater severity. 
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Chapter 8 Conclusions and Future Work 

8.1 GENERAL CONCLUSIONS 

This chapter provides a general summary of the main conclusions in this dissertation. This is 

followed by a discussion of the limitations, providing directions for future work. 

 As a first step, an extensive literature review on pedestrian safety at non-signalized 

crosswalk locations was carried out. Based on the data used, methods proposed in past 

studies were classified into five different approaches. Based on this systematic literature 

review, this dissertation identified some key research gaps in the pedestrian road safety 

literature. One of the main gaps is the lack of efficient data collection tools under critical 

conditions, leading to many studies relying on small sample sizes, especially at nighttime. 

In addition, a comprehensive framework that describes how pedestrian-vehicle 

interactions unfold over time and is closely related to the outcome of crashes is missing.  

 To provide an alternative to the visible-spectrum approach, the thermal camera system 

was validated for automated collection and traffic data extraction under varying lighting 

and temperature conditions, by comparing it to the use of regular visible spectrum 

cameras. The thermal camera proved to perform well without being sensitive to lighting 

interference and pavement temperatures. Results indicated that the thermal camera 

provides a promising alternative for traffic data collection using vision-based 

technologies. 

 To address issues related to pedestrian safety at nighttime, this dissertation proposed a 

method to investigate pedestrian-vehicle interactions under low visibility conditions 

using thermal video sensors. Based on SMoS, which include vehicle approaching speed, 

PET, yielding compliances and conflict rates, the nighttime safety of pedestrians at non-

signalized crosswalks was evaluated. Results from the study showed that pedestrians 

were exposed to higher risk levels at study sites during nighttime, compared to daytime 
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conditions. The thermal video sensor could effectively collect high-quality trajectory data 

for all road users at night regardless of lighting conditions.  

 As one of the main contributions, this dissertation proposed a novel framework (the DV 

framework) for investigating pedestrian-vehicle interactions at non-signalized crosswalks. 

The framework investigates pedestrian-vehicle interactions based on the vehicle speed 

and distance to the pedestrian crossing. The model considers the impact of driver 

response and braking time. It classifies the conditions where the driver approaches a 

pedestrian(s) intending to cross into three types, according to the driver capability to yield. 

The DV framework can investigate interaction occurrences, yielding behavior and 

crossing decisions. More specifically, it can help investigate pedestrian safety based on 

safety measures including yielding rate and yielding compliance, time-to-crossing and 

deceleration rate required to stop. The framework was illustrated through a case study 

involving three non-signalized crosswalks of different types in Montreal. Results from 

the case study showed that the framework provides reasonable results. 

 Empirical evidence for the proposed framework were obtained through the application of 

the proposed methodology to a case study involving data collected from multiple sites in 

Montreal. Pedestrian safety at three main types of non-signalized crosswalks, including 

uncontrolled crosswalks, marked crosswalks, and stop-controlled crosswalks, was 

compared. Results showed that, among the three types of non-signalized crosswalks, 

stop-controlled crosswalks have the best performance considering all the measures. 

Uncontrolled crosswalks do not protect pedestrians effectively due to the low yielding 

compliance rates and the highest chance of evasive maneuvers. Marked crosswalks 

perform better compared to uncontrolled ones. Results further suggested that the 

framework describes pedestrian-vehicle interactions in a proper way. While considering 

vehicle yielding behavior and pedestrian crossing decisions as the main behavior factors 

related to pedestrian safety, the framework provides a more complete picture in learning 

pedestrian-vehicle interactions. 

 To explore the application of this model in investigating cyclist-pedestrian interactions, a 

case study was conducted involving two types of pedestrian crosswalk locations, non-
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signalized urban intersections with painted cycle tracks and bus stop locations along 

segregated bicycle facilities in Montreal. Results generally showed that cyclists endanger 

pedestrians intending to cross and that marked crosswalks alone fail to protect pedestrians 

from passing cyclists. Other findings include that cyclists’ yielding compliance at the 

marked crosswalk was surprisingly low and that pedestrian safety at crossings on cycling 

facilities with downhill grades is an issue. The results can hopefully lead to future 

research and practice interest on the topic of reducing pedestrian risks during pedestrian-

cyclist interactions. The study provides a good example of using the DV framework to 

study different safety topics.   

 

8.2 LIMITATIONS OF THE RESEARCH 

Despite the contributions and the efforts in its accomplishment, the research has its limitations. 

The limitations are discussed below from three aspects: methodological framework, data 

collection method, data processing and analysis.  

8.2.1 Methodological Framework  

The main limitation of the framework is that the SMoS has not yet been proved as a suitable 

safety predictor. Some validation is required. Although the DV framework provides precise 

measures of road user behavior (e.g. yielding rate and compliance), other measures (TC and DRS) 

used as SMoS in the model need to be further validated. Besides, this research was unable to take 

into account some advanced measures, such as measures using motion prediction (Mohamed & 

Saunier, 2013; St-Aubin, et al., 2014), that are potentially better in performance as a safety 

predictor. In general, a lot of work is required to build models that can predict and improve 

pedestrian safety to improve this framework.  
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8.2.2 Data Collection Method 

The data collection work in the dissertation was conducted with the help of a mobile video data 

collection system. One of the limitations of video data collection from a mast is the limited field 

of view and trajectory length. Camera often fails to cover the entire road section of interest, in 

particular when looking at vehicle-pedestrian approaching behaviors. Wider observation areas 

may be required to observe the approaching road user trajectories. As part of this work, the 

combination of multiple cameras was applied to collect data where a single camera was not able 

to cover an area wide enough for the observation. Extracting vehicle trajectory information 

through different camera views was conducted semi-automatically (trajectory data for each 

camera view have been extracted automatically while matching the trajectory data of road user 

individuals through different camera views has been conducted manually); the challenge will 

however be to track, or re-identify, road users across multiple camera views.  

8.2.3 Data Processing and Analysis 

The limitation in data processing and analysis is mainly being lack of tools for accurately and 

efficiently automating the work: 

 The DV framework relies highly on trajectory data with accurate position and speed 

information. However, the vision-based tracking tool from the Traffic Intelligence project 

(Jackson, et al., 2013) cannot detect and track all road users perfectly. Great effort has 

been spent in going through each interaction of interest and manually correcting errors in 

the trajectories. Such errors are mainly generated from poor lighting conditions and the 

trajectories of the stationary road users lost by the tracking tool. Regarding the issue with 

the poor lighting, the thermal camera system has already been proposed in this 

dissertation, though it is not continuously used in the research because of the limited 

availability of the thermal sensor equipment. The interrupted trajectory issue can be 

diminished with improvement in the field of computer vision.  
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 The work to match road user trajectory data through different camera views has been 

conducted manually, which is unduly time-consuming: videos need to be scanned to 

record the time offsets of camera views for synchronization, find out the same road users, 

and record their tracked identification number through in different camera views. The 

research could have benefitted greatly if tools automatically tracking road users through 

multiple camera views are available.  

 Data analysis (preparing information in the DV framework) also highly relies on manual 

work. Interactions of interest, vehicle yielding maneuvers (whether vehicles yield), and 

pedestrian events (pedestrian occurrences and crossing decisions) are recorded by 

scanning videos manually. A computer tool that automatically filters interactions of 

interest, identifies pedestrian occurrence and crossing events (based on pedestrian facial 

recognition or body movement detection), and determines yielding behavior can make the 

work more efficient. 

With the issues associated with the data collection method and the time and effort 

required in processing the data, this research was only able to test the DV framework through 15 

sites. This is not sufficient for validation purposes. More sites need to be included to further test 

the DV framework and calibrate the safety indicators used in the studies.   
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8.3 EXTENSION FOR FUTURE WORK 

Future work is discussed from two aspects: methodological development and extensive 

applications. 

8.3.1 Methodological Development  

Future work can be conducted to improve the proposed framework. A sufficiently large number 

of observations and locations will be included to further test and to calibrate the DV model. 

Analysis results from the framework will be compared to historical crash data to test for 

correlation – as part of the validation process. Parameters used in the model, such as deceleration 

rate thresholds, will also be verified and further calibrated if needed. Different SMoS will be 

tested in the framework to improve its performance. Advanced safety models based on motion 

pattern prediction will be investigated. The implementation of these models in the DV 

framework will be explored. Moreover, the model can be improved by considering traffic, 

environmental and geometric factors, and vehicular characteristics. 

A full-automated analysis tool based on the framework should be developed to automate 

the processes, including filtering interactions of interest, identifying pedestrian occurrence and 

crossing events, and determining yielding behavior. Among the processes, automating the event 

identification work is challenging as pedestrian walking habits and patterns vary across 

individuals, contexts, etc. Machine learning methods will be applied in identifying the intent to 

cross (occurrence) and the decision made to cross (crossing decision) for the pedestrian. 

As an alternative to video data collection from a mast, the use of drone data will be 

explored in future model-validation. Using drone for video data collection could help cover 

larger fields of view (Jin, et al., 2016). Alternatively, with the increasing penetration among road 

users, GPS data collected through GPS units or smart devices equipped on participants may also 

be used for model validation and parameter calibration in future work, if data sources are 

available.  
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8.3.2 Extensive Applications  

More applications of the DV framework can be attempted. The model will be used to evaluate 

safety effects of different signs and control systems at a given intersection. In addition to 

interactions between pedestrians and vehicle on the approach street where vehicles enter the 

intersection, most studies have ignored interactions at exit streets where vehicle leave the 

intersection. This can potentially be more dangerous due to the driver’s unclear knowledge of 

right-of-way, acceleration attempts to recover speed and the complex situation the driver faces at 

the intersection. The impact of such interactions on pedestrian safety can be investigated using 

the proposed interaction framework along with other safety measures.  

The framework can be applied to other road environments where pedestrian-vehicle 

interactions always occur in the future, e.g. crosswalks at signalized locations, roundabouts, and 

channelized intersections. The yielding behavior of vehicles interacting with crossing pedestrians 

in situations where pedestrians are not allowed to cross, such as during the red phase at 

signalized intersections or in the middle of road segments can be explored. Moreover, the 

framework can be adjusted and applied in different situations in addition to pedestrian safety. It 

can be used to investigate interactions between different types of road users, such as pedestrian-

cyclist interactions and cyclist-vehicle interactions. The model can even be used to investigate 

the impact of mixed traffic flows with different penetration percentage of automated vehicles 

(with low perception-response time) on pedestrian safety in non-signalized crosswalk 

environments. Meanwhile, methods and tools, derived from the DV framework, to detect the 

intent to cross can be implemented to define the correct response and performance of automated 

vehicles when facing different situations with crossing pedestrians and cyclists. 
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Appendix I Summary of Literature 

TABLE I Results Summary of Previous Research on Pedestrian Safety at Non-Signalized Crossings 

Studies Country Topic 

Approach(s) Applied 

Data Source Crash Data  Surrogate Measures of Safety 

Traffic  Event Behavior Perception 

Almodfer, et al. (2016) China Method: 

Conflict 

-- --  √ -- -- Video data, details not given 

Antov, et al. (2007) Estonia Behavior Analysis: 

Factors of veh. yielding 

-- √ -- √ -- a NDS data 

Arnold & Landz  (2007) US Performance Evaluation: 

LED stop sign & Optical speed bar 

-- √ -- -- -- b Field observation 

Austin, et al. (2006) US Performance Evaluation:  

Pedestrian prompting at stop sign 

-- -- -- √ -- Field observation 

Beaubien (1989) US Performance Evaluation: 

Stop sign for speed controlling 

-- √ -- -- -- Data from previous studies based on 

field observation 

Bella & Silvestri (2015) Italy Performance Evaluation: 

Different safety treatments 

-- -- -- √ -- Driving simulation 

Bennett & Van Houten (2016) US Performance Evaluation: 

Gateway In-street Sign 

-- -- -- √ -- Field observation 

Bentley (2015) US Performance Evaluation:  
High-visibility crosswalks 

-- √ -- √ -- NDS data 

Bichicchi, et al. (2017) Italy Performance Evaluation: 

Geometric design on driver glancing 

-- -- -- √ -- GPS; Mobile eye tracking data 

Boroujerdian & Nemati (2016) Iran Behavior Analysis:  

Ped. gap acceptance 

-- -- -- √ -- c Field measurement, Laser gun;  

Video data, computer-based tools.   

* Boyce & Van Derlofske (2002) US Performance Evaluation:  

In-pavement warning light 

-- √ √ -- √ Video data, details not given; 

On-site survey. 

* Van Derlofske, et al. (2003) US Performance Evaluation:  
In-pavement warning light 

-- √ √ -- √ Video data, details not given; 

On-site survey. 

Brewer, et al. (2006) US Behavior Analysis:  
Ped. gap acceptance 

-- -- -- √ -- Field observation;  

Video data, manually processed. 

Brewer, et al. (2015) US Performance Evaluation:  

RRFB sign 

-- -- -- √ -- Field observation;  

Video data, manually processed. 

Britt, et al. (1995) US Performance Evaluation:  

Law enforcement 

-- -- -- √ -- Field observation 

Brumfield & Pulugurtha (2011) US Behavior Analysis: 

Ped. distraction 

-- -- √ √ -- Field observation 

Bungum, et al. (2005) US Behavior Analysis: 

Ped. distraction 

-- -- -- √ -- Field observation 

Burritt, et al. (1990) US Performance Evaluation:  
School zone flashers 

-- √ -- -- -- Details not given 

Cafiso, et al. (2011) Italy Method:  

Conflict 

-- -- √ -- -- Video data, computer-based tools 

Cambridge (2012) US Performance Evaluation:  

Symbol prompts & 3D pavement 

-- -- -- √ -- Field observation 

(Continued)  
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TABLE I Continued 

Studies Country Topic 

Approach(s) Applied 

Data Source Crash Data  Surrogate Measures of Safety 

Traffic  Event Behavior Perception 

Campbell (1997) US Performance Evaluation:  

Marked vs. unmarked 

√ -- -- -- -- Crash report, details not given 

Chai & Zhao (2016) China Behavior/Perception Analysis: 

Aggressive driving behavior 

-- -- -- √ √ Driving simulation; 

Questionnaire after simulation. 

Chi (2007) US Performance Evaluation:  

Marked vs. unmarked 

-- √ -- √ -- Video data, manually processed 

Chen et al. (2017) US Interaction Modeling/Simulation: 

Autonomous Vehicles  

Interaction with ped. 

-- -- -- √ -- Traffic simulation 

* Chu (2006) US Performance Evaluation:  
Lighting; marking 

√ -- -- -- -- Crash report, police 

* Chu, et al. (2008) US Performance Evaluation:  
Lighting; marking 

√ -- -- -- -- Crash report, police 

City of Fort Collins (2017) US Performance Evaluation: 

Unwarranted stop sign for speed 

controlling, and volume controlling 

-- √ -- -- -- No data involved 

Clark, et al. (1996) US Performance Evaluation:  

Fluorescent strong yellow-green signs 

-- -- √ √ -- Field observation 

Community of Firestone (2017) US Performance Evaluation: 

Unwarranted stop sign for speed 

controlling, and volume controlling 

-- √ -- -- -- No data involved 

Coughenour, et al. (2017) US Behavior Analysis: 

Racial Bias in Yielding 

-- -- -- √ -- Field observation 

Crowley-Koch & Van Houten (2011) US Performance Evaluation:  

Ped. prompts 

-- -- -- √ -- Field observation;  

Video data, manual processed. 

DeVeauuse, et al. (1999) US Performance Evaluation: 
Stop sign on campus 

-- -- -- √ -- Field observation 

Dhar & Woodin (1995) US Performance Evaluation:  

Fluorescent strong yellow-green signs 

-- √ √ √ √ On-site survey; 

Rest details not given 

Diogenes & Lindau (2010) Brazil Performance Evaluation: 

Midblock crossing 

Crash risk modeling 

√ -- -- -- -- Crash report, government 

Dixon, et al. (1997) US Performance Evaluation:  

Speed reducing peripherals 

-- -- -- √ -- Details not given 

Dobbs (2009) US Performance Evaluation: 

Campus pedestrian safety 

√ -- √ -- -- Crash report, government; 

Video data, manual processed 

Domarad, et al. (2013) Canada Performance Evaluation:  

RRFB 

-- -- -- √ -- Video data, manual processed 

Dougald, et al. (2012) US Performance Evaluation:  
Zig-zag pavement 

-- √ -- -- √ Field measuring, ATRs & LiDAR gun; 

Electronically-distributed  

 (Continued)  
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TABLE I Continued 

Studies Country Topic 

Approach(s) Applied 

Data Source Crash Data  Surrogate Measures of Safety 

Traffic  Event Behavior Perception 

Dulaski & Liu (2013) US Performance Evaluation:  

Ped. stepping off the curb 

-- -- -- √ -- Field observation 

Dutt, et al. (1997) US Performance Evaluation:  

Fluorescent strong yellow-green signs 

-- -- -- -- √ Electronically-distributed survey 

Ellis & Van Houten (2009) US Performance Evaluation:  
Publicity & law enforcement 

√ -- -- -- -- Crash report, government 

Ewing (1999)  Canada Performance Evaluation: 

Unwarranted stop sign for speed 

controlling, and volume controlling 

-- √ -- -- -- Not clearly stated 

Fisher & Garay-Vega (2012) US Performance Evaluation: 

Advanced yielding signs 

-- -- -- √ -- Driving simulation 

Fitzpatrick, et al. (2004) US Performance Evaluation:  

Marking 

In-pavement warning light  

HAWK 

-- -- -- -- √ Video data, manually processed; 

On-site survey. 

* Fitzpatrick, et al. (2006) US Performance Evaluation & Guidelines: 

Treatment validation 

Guideline revision 

-- -- √ √ -- Video data, manually processed 

* Fizpatrick, et al. (2007) US Performance Evaluation & Guidelines: 

Treatment validation 

Guideline revision 

-- -- -- √ -- Video data, manually processed 

* Fitzpatrick, et al. (2011) US Performance Evaluation:  

Marking, RRFB, HAWK, Sharrow 

-- -- -- √ -- Video data, manually processed 

* Shurbutt & Van Houten (2010) US Performance Evaluation:  

Marking, RRFB, HAWK, Sharrow 

-- -- -- √ -- Video data, manually processed 

Fitzpatrick, et al. (2016a) US Performance Evaluation:  
Above- & below-sign RRFB 

-- -- -- √ -- Field observation 

Fitzpatrick, et al. (2016b) US Performance Evaluation:  
RRFB with different designs 

-- -- -- √ -- Field observation 

Foomani, et al. (2015) Canada Performance Evaluation: 

Stop-operated intersection with active 

road sign 

-- -- -- √ -- Video data, manually processed 

Fu, et al. (2016) Canada Performance Evaluation:  

Lighting - night vs. day 

-- √ √ √ -- Video data, computer-based tools 

Fu, et al. (2018) Canada Method:  

Interaction 

-- -- √ √ -- Video data, computer-based tools 

Gårder (2004) US Safety Factors: 

Crash modeling 

Speed and other factors on safety 

√ -- -- -- -- Crash report, government 

(Continued)  



218 

 

TABLE I Continued 

Studies Country Topic 

Approach(s) Applied 

Data Source Crash Data  Surrogate Measures of Safety 

Traffic  Event Behavior Perception 

Gibby, et al. (1994) US Performance Evaluation: 

Marked vs. unmarked 

√ -- -- -- -- Crash report, government 

Gitelman, et al. (2016a) Israel Performance Evaluation:  

Raised crosswalk 

Preceding speed humps 

-- √ √ √ -- Field measuring, Laser gun; 

Video data, manually processed 

Gitelman, et al. (2016b) Israel Performance Evaluation:  

Marking 

-- √ √ √ -- Field measuring, laser gun; 

Video data, manually processed 

Goddard, et al. (2014) US Behavior Analysis: 

Racial Bias in Yielding 

-- -- -- √ -- Field observation 

Goh, et al. (2012) Malaysia Behavior Analysis: 

Ped crossing speed 

Non-signalized vs. signalized 

-- -- -- √ -- Field observation 

Gómez, et al. (2011) US Performance Evaluation: 

Advanced yielding marking 

√ -- √ √ -- Driving simulation 

Gómez, et al. (2014) US Performance Evaluation: 

Geometric Design – stop sign & T-

intersections 

√ -- -- √ -- Driving simulation 

Hakkert, et al. (2002) Israel Performance Evaluation:  
Ped. warning systems 

(ARMS & Hercules systems) 

-- √ √ √ -- Field measuring, laser gun; 

Field observation 

Harrison (2017) US Behavior Analysis: 

Ped. behavior 

-- -- -- √ -- Video data, manually processed 

* Huang, et al. (1999) US Performance Evaluation:  
Active warning system 

-- √ √ √ √ Details not given 

* Huang (2000) US Performance Evaluation:  
Active warning system 

-- -- -- √ -- Details not given 

Huang, et al. (2000) US Performance Evaluation:  

Overhead crosswalk sign  

Ped. safety cone 

Ped. regulatory sign 

-- -- -- √ -- Video data, manually processed 

Ibrahim, et al. (2005) Malaysia Behavior/Perception Analysis: 

Rule of right-of-way 

-- -- -- √ √ Video data, manually processed 

Islam, et al. (2014) US Method: 

Crash modeling 

Validating SSM 

√ -- √ -- -- Crash report, government; 

Field observation 

Ivan, et al. (2001) US Safety Factors: 

Crash modeling 

Related factors 

√ -- -- -- -- Crash report, government 

(Continued)  
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TABLE I Continued 

Studies Country Topic 

Approach(s) Applied 

Data Source Crash Data  Surrogate Measures of Safety 

Traffic  Event Behavior Perception 

Ivan, et al. (2012) US Method:  

Crash modeling 

Validating SSM 

√ -- √ -- -- Crash report, government; 

Field observation  

* Jiang (2012) German, China Behavior Analysis:  

Ped. & veh. with different culture 

-- -- √ √ -- Video data, computer-based tools 

* Jiang, et al. (2015) German, China Behavior Analysis:  
Ped. & veh. with different culture 

-- -- √ √ -- Video data, computer-based tools 

Johansson & Leden (2007) Sweden Performance Evaluation:  
Swedish code, speed cushion, marking, 

refuge, paving stone, elevated area 

-- √ √ √ √ Field measuring, radar gun; 

Video data, manually processed; 

Face-to-face interview. 

Jones & Tomcheck (2000) US Performance Evaluation:  

Marked vs. unmarked 

√ -- -- -- -- Crash report, government 

Kadali & Perumal (2016) India Behavior Analysis:  

Ped. gap acceptance 

-- -- -- √ -- Video data, manually processed 

Kadali, et al. (2014) India Behavior Analysis: 

Ped. gap acceptance 

-- -- -- √ -- Video data, manually processed 

Karkee, et al. (2010) US Performance Evaluation: 

In-pavement flashing light sys. 

-- √ -- √ -- Field observation 

Keall (1995) New Zealand Performance Evaluation: 

Non-signalized vs. others 

The elderly in pedestrian crashes  

√ -- -- -- -- Crash report, government; Survey 

Khatoon, et al. (2013) India Behavior Analysis: 

Gap acceptance 

-- -- -- √ -- Paper not found 

Knoblauch & Raymond (2000) US Performance Evaluation: 

Marking 

-- -- -- √ -- Field observation 

Knoblauch, et al. (2001) US Performance Evaluation:  

Marking 

-- -- -- √ -- Field observation 

Koepsell, et al. (2002) US Performance Evaluation:  

Marking 

Older ped.  

√ -- -- -- -- Crash report, details not given 

Kudryavtsev, et al. (2012) Norway, Russia Performance Evaluation: 

Signalized vs. non-signalized crosswalk 

√ -- -- -- -- Crash report, police 

Li & Ming (2016) China Behavior Analysis:  

Ped. distraction 

-- -- -- √ -- Field observation 

Liu & Tung (2014) China Behavior Analysis: 

Ped. crossing 

-- -- -- √ -- Video based survey 

Liu, et al. (2011) China Performance Evaluation: 

Transverse rumble strip 

√ √ -- -- -- Crash report, government;  

Field measuring, radar speed gun 

(Continued)  
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TABLE I Continued 

Studies Country Topic 

Approach(s) Applied 

Data Source Crash Data  Surrogate Measures of Safety 

Traffic  Event Behavior Perception 

Lu, et al. (2016) China Interaction Modeling/Simulation: 

Ped. crossing 

Driver yielding 

Ped. safety evaluation 

-- -- √ -- -- Video data, details not given 

Malenfant & Van Houten (1990) Canada Performance Evaluation:  

"Countesy Promotes Safety" program 

-- -- -- √ -- Field observation 

Millard-Ball (2016) US Interaction Modeling/Simulation:  
Autonomous vehicles 

Game theory in interaction with ped. 

-- -- -- √ -- No data involved 

Mitman & Ragland (2007) US Perception Analysis: 

Right-of-way 

Marked vs. unmarked 

-- -- -- -- √ On-site survey 

* Mitman, et al. (2008) US Performance Evaluation:  

Marked vs. unmarked 

-- -- √ √ -- Field observation; 

Video data, manually processed. 

* Mitman & Ragland (2008) US Performance Evaluation:  

Marked vs. unmarked 

-- -- √ √ -- Field observation; 

Video data, manually processed. 

Mitman, et al. (2010) US Performance Evaluation:  

Marked vs. unmarked 

-- -- √ √ -- Field observation 

Najm, et al. (2001) US Performance Evaluation: 

Vehicle-ped./cyclist collisions at 

signalized & non-signalized 

intersections 

√ -- -- -- -- Crash report, police 

Nteziyaremye (2013) South Africa Behavior/Perception Analysis:  

Ped. crossing 

Different crossing facilities 

-- -- √ √ √ Video data, manually processed; 

On-site survey. 

Olszewski, et al. (2015) Poland Safety Factors: 

Crash modeling 

√ -- -- -- -- Crash report, police 

Oxley, et al. (2005) Australia Behavior Analysis: 

Ped. crossing 

-- -- -- √ -- Simulator experiment 

Pawar & Patil (2015) India Behavior Analysis:  

Ped. gap acceptance 

-- -- -- √ -- Video data, manually processed 

Pécheux, et al. (2009) US Performance Evaluation:  

Different treatments 

-- -- √ √ -- Details not given 

Pfortmueller, et al. (2014) Switzerland Performance Evaluation: 

Marked vs. unmarked 
√ -- -- -- -- Crash report, police & hospital 

Pulugurtha, et al. (2011) US Behavior Analysis:  

Driver and ped. distraction 

-- -- -- √ -- Paper not found 

Pulugurtha (2015) US Performance Evaluation: 

Ped. hybrid beacon 

-- -- √ √ -- Field observation 

 (Continued)  
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TABLE I Continued 

Studies Country Topic 

Approach(s) Applied 

Data Source Crash Data  Surrogate Measures of Safety 

Traffic  Event Behavior Perception 

Rosenbloom, et al. (2006) Israel Behavior Analysis: 

Driver yielding 

Age & gender 

-- -- -- √ -- Field observation 

* Schroeder & Rouphail (2011) US Behavior Analysis:  
Modeling driver yielding 

-- -- -- √ -- Field observation; 

Field measuring, Laser gun. 

* Schroeder (2008) US Behavior Analysis: 

Modeling driver yielding 

-- -- -- √ -- Field observation; 

Field measuring, Laser gun. 

Schroeder, et al. (2010) US Method: 

Ped. crossing at roundabouts 

Vision impaired 

-- √ -- √ -- Field observation 

Schroeder, et al. (2014) US Behavior Analysis: 

Modeling ped./driver behavior 

-- -- -- √ -- Field observation 

Serag (2014) Egypt Behavior Analysis: 

Modeling ped. gap acceptance 

-- -- -- √ -- Video data., manually processed 

Shi, et al. (2007a) China Behavior Analysis: 

Ped. crossing behavior 

-- -- -- √ -- Details not given 

Shi, et al. (2007b) China Performance Evaluation: 

Ped. crossing behavior 

Two different sites 

-- -- -- √ -- Details not given 

Sisiopiku & Akin (2003) US Behavior/Perception Analysis: 

Various facility 

-- -- -- √ √ Video data, manually processed; 

Electronically-distributed survey. 

Smith, et al. (2009) US Performance Evaluation:  

Active vs. passive warning system 

-- -- -- √ -- Video data, computer-based tools 

Solah, et al. (2016) Malaysia Behavior Analysis:  

Distraction 

-- -- -- √ -- Field observation; 

Video data, manually processed. 

St-Aubin, et al. (2018) Canada Performance Evaluation: 

Stop sign  

Speed controlling  

Stopping behavior 

-- √ -- √ -- Video data, computer-based tools 

Sun & Lu (2011) China Method:  

Conflict 

-- -- √ -- -- Video data, details not given 

Sun, et al. (2003) US Interaction Modeling/Simulation: 

Ped. gap acceptance 

Motorist yield 

-- -- -- √ -- Video data, manually processed 

Turner, et al. (2006) US Performance Evaluation:  
Red signal 

Beacon devices 

Active signs 

Enhanced/high-visibility treatments 

-- -- -- √ -- Video data, manually processed 

(Continued)  
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TABLE I Continued 

Studies Country Topic 

Approach(s) Applied 

Data Source Crash Data  Surrogate Measures of Safety 

Traffic  Event Behavior Perception 

Van Houten & Malenfant (1992) Canada Performance Evaluation:  

Flashing amber 

-- -- √ √ -- Field observation 

Van Houten (1988) Canada Performance Evaluation:  

Stop line 

Sign prompt 

-- -- √ √ -- Field observation 

Van Houten, et al. (1998) Canada Performance Evaluation:  
Ped.-activated flashing beacons 

-- -- √ √ -- Field observation 

Van Houten, et al. (2001) Canada Performance Evaluation:  
Advance yielding marking 

-- -- √ √ -- Field observation 

Van Houten & Retting (2001) Canada Performance Evaluation: 

LED stop sign 

-- -- -- √ -- Field observation; 

Video data, manually processed. 

Van Houten, et al. (2002) Canada Performance Evaluation:  

Advance yielding marking  

Fluorescent yellow-green RA 4 sign 

-- -- √ √ -- Field observation 

Várhelyi (1998) Sweden Performance Evaluation: 

Non-signalized 

-- -- √ √ -- Field measuring, laser gun 

Wa (1993) Canada Behavior Analysis: 

Old motorist  

-- -- -- √ -- Field observation 

Waizman, et al. (2014) Israel Interaction Modeling/Simulation: 

Validation and application 

√ -- -- -- -- Traffic simulation 

Wallberg & Wisenbord (2000) Sweden Performance Evaluation:  

Marked vs. unmarked 

-- √ √ √ √ Paper not found 

Wang, et al. (2017) China Performance Evaluation: 

Speed control measures 

-- √ -- -- -- Video data, manually processed 

Wang & Fang (2008) China Method: 

Conflict 

-- -- √ √ -- Video data, manually processed 

Xiang, et al. (2016) China Method: 
Monte-Carlo simulation 

Risk prediction for ped. crossing 

-- -- -- √ -- Computer simulation  

(Monte-Carlo) 

Yannis, et al. (2013) Greece Behavior Analysis:  
Ped. gap acceptance 

-- -- -- √ -- Video data, manually processed 

* Zegeer, et al. (2001) US Performance Evaluation:  

Marked vs. unmarked 

√ -- -- -- -- Crash report, police 

* Zegeer, et al. (2005) US Performance Evaluation:  

Marked vs. unmarked 

√ -- -- -- -- Crash report, police 

Zhuang & Wu (2014) China Performance Evaluation:  

Gesture measure 

-- -- -- √ √ Field observation; 

Questionnaire survey. 

Note: Publication marked with * in sequence are about the same study presented in two or more publication formats (normally a same study published in both a Journal and a report); a NDS is abbreviation 

for Naturalistic Driving Study which uses onboard data acquisition systems including GPS devices, video cameras, radars, accelerometer and/or other devices to get detailed information of the drivers; b Field 

observation means data collection manually and directly observed and recorded on site by observers; c Field measurement means data collection based on different techniques on site.  
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Appendix II Sites for Model Implementation and 

Validation 

 

a) Site A-1  NotreDamedeGrace-D'Oxford : Pedestrian crossing at intersection on Avenue Notre-Dame-de-Grace and Avenue 

D’Oxford. The pedestrian crossing is on Avenue Notre-Dame-de-Grace, a one-way and one-lane street with a conventional bike 

lane. 

 
b) Site A-2 Clark-PrinceArthur: Pedestrian crossing at intersection Rue Clark and Rue Prince-Arthur. The pedestrian crossing 

is on Rue Prince-Arthur, a one-way and one lane-street with a conventional and contraflow bike lanes.  
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c) Site A-3 Masson-6e:  Pedestrian crossing at intersection Rue Masson and Avenue 6e. The pedestrian crossing is on Rue 

Masson, a two-ways and one-lane street per direction. 

 
d) Site A-4 Beaubien-Molson: Pedestrian crossing at intersection Rue Molson and Rue Beaubien. The pedestrian crossing is on 

Rue Beaubien, a two-ways and one-lane street per direction. 
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e) Site A-5 Laurier_Drolet : Pedestrian crosswalk at intersection Avenue Laurier and Rue Drolet. The pedestrian crossing is on 

Avenue Lauriel, a one-way and one-lane street per direction with a conventional and buffered contraflow bike lane. 

FIGURE II-1 Site description for uncontrolled crosswalks (Type A) 
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a) Site B-1 Prieur-DeLaRoche: Crosswalk located at the intersection of Rue Prieur and Rue De La Roche. The crosswalk 

crossing is on Rue Prieur, a one-way and one-lane bike shared street with a contraflow bike lane.  

 
b) Site B-2 NotreDamedeGrace-OldOrchard: Crosswalk located at the intersection of Avenue Notre-Dame-de-Grace and 

Avenue Old Orchard. The crosswalk crossing is on Avenue Notre-Dame-de-Grace, a one-way and one-lane street with a 

conventional bike lane. 
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c) Site B-3 Beaubien-SaintVallier: Crosswalk located at the intersection of Rue Beaubien and Rue De Saint-Vallier. The 

crosswalk crossing is on Rue Beaubien, a two-ways and one lane street per direction.   

 
d) Site B-4 Beaubien-27e: Crosswalk located at the intersection of Rue Beaubien and Avenue 27e. The crosswalk crossing is on 

Rue Beaubien, a two-ways and one lane street per direction.  
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e) Site B-5 Laurier_Berri: Crosswalk located at the intersection of Avenue Laurier and Rue Berri. The crosswalk crossing is on 

Avenue Laurier, a one-way and one-lane street with a conventional and contraflow bike lane. 

FIGURE II-2 Site description for marked crosswalks (Type B)  



229 

 

 
a) Site C-1 Roy-HenriJulien: Intersection controlled with stop signs in all the approaches located at Avenue Henri-Julien and 

Rue Roy. The crosswalk crossing is on Avenue Henrie-Julien, a one-way and one-lane street. 

 
b) Site C-2 George-Gagne: Intersection controlled with stop signs in all the approaches located at Rue George and Rue Gagné. 

The crosswalk is on Rue George, a two-ways and one-lane street. 
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c) Site C-3 Sauriol-Millen: Intersection controlled with stop signs in all the approaches at Rue Sauriol and Avenue Millen. The 

crosswalk is on Rue Sauriol, a two-ways and one-lane street. 

 
d) Site C-4 19e-Belair: Intersection controlled with stop signs in all the approaches at Avenue 19e and Rue Bélair. The 

crosswalk is on Rue Bélair, a two-ways and one-lane street. 
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e) Site Z-5 13e_Belair: Intersection controlled with stop signs in all the approaches at Avenue 13e and Rue Bélair. The 

crosswalk is on Rue Bélair, a two-ways and one-lane street. 

FIGURE II-3 Site description for stop sign controlled crosswalks (Type C) 

  



232 

 

Appendix III Detailed Results and Analysis for 

Multiple Sites 

 

   
a) Site A-1  

   
b) Site A-2 

   
c) Site A-3 
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d) Site A-4  

   
e) Site A-5 

FIGURE III-1 DV plots for uncontrolled crosswalks (Type A) 
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a) Pedestrian occurrence 

   
b) Crossing decision 

FIGURE III-2 Result comparisons pedestrian occurrence and crossing decisions at – 

Uncontrolled crosswalks (Type A) 
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a) Site B-1 

   
b) Site B-2 

   
c) Site B-3 
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d) Site B-4   

   
e) Site B-5  

FIGURE III-3 DV plots for marked crosswalks (Type B) 
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a) Pedestrian occurrence 

   
b) Crossing decision 

FIGURE III-4 Boxplots for pedestrian occurrence and crossing decisions at – Marked 

crosswalks (Type B) 
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a) Site C-1 

   
b) Site C-2 

    
c) Site C-3 
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d) Site C-4 

    
e) Site C-5 

FIGURE III-5 DV plots for stop sign controlled crosswalks (Type C) 
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a) Pedestrian occurrence 

   
b) Crossing decision 

FIGURE III-6 Result comparisons pedestrian occurrence and crossing decisions at – Stop 

sign controlled crosswalks (Type C) 
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TABLE III-1 Results from DV Model for Marked Crosswalks 

Site ID X-1 X-2 X-3 X-4 X-5 

 Results for Occurrence of Interactions 

Number of Interactions 

No. of Total Interactions 35 17 60 53 57 

No. of Interactions in Phase I  (Percentage over the total) 3 (8.57 %) 3 (17.65 %) 7 (11.67 %) 5 (9.43 %) 15 (26.32 %) 

No. of Interactions in Phase II (Percentage over the total) 7 (20.00 %) 6 (35.29 %) 13 (21.67 %)) 7 (13.21 %) 25 (43.86 %) 

No. of Interactions in Phase III (Percentage over the total) 25 (71.43 %) 8 (47.06 %) 40 (66.66 %) 41 (77.36 %) 17 (29.82 %) 

 
TC and DRS at the Occurrence of Interaction 

TC (sec) Median 4.18 1.96 5.73 7.61 1.78 

 Std. Dev. 3.29 2.65 3.57 4.90 1.68 

DRS (m/s2) Median 0.56 0.71 0.56 0.36 1.69 

 Std. Dev. 1.39 2.26 1.36 0.92 2.22 

 
Results for Yielding Behavior 

No. of Non-infraction Non-yieldings 3 3 7 5 15 

No. of Uncertain Non-yieldings 6 3 3 7 12 

No. of Non-Yielding Violations 4 3 11 29 3 

No. of Yielding Maneuvers 22 8 39 12 27 

Yielding Rate 62.86 % 47.06 % 65.00 % 22.64 % 47.37 % 

Yielding Compliance 68.75 % 57.14 % 73.58 % 25.00 % 64.29 % 

 
Results for Crossing Decision 

No. of Decisions to Cross after Vehicle Passage 13 9 21 41 31 

No. of Decisions to Cross before Vehicle Passage 22 8 41 13 26 

No. of Dangerous Crossings (Percentage over the total) 0 (0.00 %) 0 (0.00 %) 6 (14.63 %) 2 (15.38 %) 4 (15.38 %) 

No. of Risky Crossings (Percentage over the total) 2 (9.09 %) 2 (25.00 %) 10 (24.39 %) 2 (15.38 %) 7 (26.92 %) 

No. of Safe Crossings (Percentage over the total) 20 (90.91 %) 6 (75.00 %) 25 (60.98 %) 9 (69.24 %) 15 (57.69 %) 

No. of Crossings with Evasive Maneuvers 0 0 2 1 0 

TC (sec) 
Median 5.36 7.04 4.07 3.89 3.08 

Std. Dev. 4.25 6.29 2.71 3.26 1.72 

DRS (m/s2) 
Median 0.29 0.49 1.01 0.40 1.00 

Std. Dev. 0.43 1.24 2.15 2.68 1.49 
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TABLE III-2 Results for Uncontrolled Crosswalks 

Site ID Y-1 Y-2 Y-3 Y-4 Y-5 

 Results for Occurrence of Interactions 

Number of Interactions 

No. of Total Interactions 11 2 165 68 46 

No. of Interactions in Phase I  (Percentage over the total) 5 (45.45 %) 0 (0.00 %) 13 (7.88 %) 5 (7.35 %) 9 (19.57 %) 

No. of Interactions in Phase II (Percentage over the total) 2 (18.18 %) 0 (0.00 %) 16 (9.70 %) 7 (10.29 %) 18 (39.13 %) 

No. of Interactions in Phase III (Percentage over the total) 4 (36.37 %) 2 (100.00 %) 136 (82.42 %) 56 (82.36 %) 19 (41.30 %) 

 
TC and DRS at the Occurrence of Interaction 

TC (sec) Median 1.53 5.06 7.01 7.55 2.43 

 Std. Dev. 2.82 1.04 5.81 6.10 3.12 

DRS (m/s2) Median 1.46 0.81 0.63 0.69 2.54 

 Std. Dev. 3.45 0.02 1.83 1.45 4.21 

 
Results for Yielding Behavior 

No. of Non-infraction Non-yieldings 5 0 13 5 9 

No. of Uncertain Non-yieldings 2 0 15 7 14 

No. of Non-Yielding Violations 4 2 128 54 19 

No. of Yielding Maneuvers 0 0 9 2 4 

Yielding Rate 0.00 % 0.00 % 5.45 % 2.94 % 8.70 % 

Yielding Compliance 0.00 % 0.00 % 5.92 % 3.17 % 10.81 % 

 
Results for Crossing Decision 

No. of Decisions to Cross after Vehicle Passage 11 2 156 66 42 

No. of Decisions to Cross before Vehicle Passage 0 1 15 3 6 

No. of Dangerous Crossings (Percentage over the total) 0 (--) 0 (0.00 %) 1 (6.67 %) 0 (0.00 %) 0 (0.00 %) 

No. of Risky Crossings (Percentage over the total) 0 (--) 0 (0.00 %) 3 (20.00 %) 1 (33.33 %) 3 (50.00 %) 

No. of Safe Crossings (Percentage over the total) 0 (--) 1 (100.00 %) 11 (73.33 %) 2 (66.67 %) 3 (50.00 %) 

No. of Crossings with Evasive Maneuvers 0 1 6 1 2 

TC (sec) 
Median -- 5.80 5.54 6.87 3.63 

Std. Dev. -- -- 3.97 56.27 2.65 

DRS (m/s2) 
Median -- 0.82 0.77 0.56 1.29 

Std. Dev. -- -- 0.67 1.52 3.06 
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TABLE III-3 Results for Stop Controlled Crosswalks 

Site ID Z-1 Z-2 Z-3 Z-4 Z-5 

 Results for Occurrence of Interactions 

Number of Interactions 

No. of Total Interactions 61 36 4 40 27 

No. of Interactions in Phase I  (Percentage over the total) 0 (0.00 %) 2 (5.56 %) 0 (0.00 %) 3 (7.50 %) 0 (0.00 %) 

No. of Interactions in Phase II (Percentage over the total) 20 (32.79 %) 8 (22.22 %) 0 (0.00 %) 6 (15.00 %) 1 (3.70 %) 

No. of Interactions in Phase III (Percentage over the total) 41 (67.21 %) 26 (72.22 %) 4 (100.00 %) 31 (77.50 %) 26 (96.30 %) 

 
TC and DRS at the Occurrence of Interaction 

TC (sec) Median 3.30 3.28 4.11 5.37 5.07 

 Std. Dev. 5.76 3.50 0.69 4.62 1.44 

DRS (m/s2) Median 0.48 0.79 0.58 0.31 0.47 

 Std. Dev. 0.83 1.03 0.31 0.87 0.44 

 
Results for Yielding Behavior 

No. of Non-infraction Non-yieldings 0 1 0 3 0 

No. of Uncertain Non-yieldings 4 4 0 1 1 

No. of Non-Yielding Violations 6 3 0 7 5 

No. of Yielding Maneuvers 51 28 4 29 21 

Yielding Rate 83.61 % 78.00 % 100.00 % 72.50 % 77.78 % 

Yielding Compliance 83.61 % 82.35 % 100.00 % 78.38 % 77.78 % 

 
Results for Crossing Decision 

No. of Decisions to Cross after Vehicle Passage 10 8 0 10 6 

No. of Decisions to Cross before Vehicle Passage 51 28 4 31 21 

No. of Dangerous Crossings (Percentage over the total) 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 

No. of Risky Crossings (Percentage over the total) 18 (35.29 %) 3 (10.71 %) 0 (0.00 %) 3 (10.00 %) 0 (0.00 %) 

No. of Safe Crossings (Percentage over the total) 33 (64.71 %) 25 (89.29 %) 4 (100.00 %) 27 (90.00 %) 21 (100.00 %) 

No. of Crossings with Evasive Maneuvers 0 0 0 1 0 

TC (sec) 
Median 4.24 4.45 4.54 5.69 5.96 

Std. Dev. 6.98 3.34 5.60 4.00 1.27 

DRS (m/s2) 
Median 0.28 0.49 0.26 0.25 0.32 

Std. Dev. 1.44 0.93 0.40 0.75 0.47 

 


