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GLOSSARY

classification error An error made in identifying the classification of the target. Here, it means
a false classification result in which a road user is wrongly classified when applying the

classification algorithm. 80

collision course An instantaneous situation where two or more road users have a non-zero

likelihood to collide in a short time. 36, 37, 44, 188

computer vision A field of computer science that focuses on obtaining useful information

from digital images or videos. 11, 70, 72, 74, 82, 111, 113, 115, 132, 212

conflict severity Conflict severity has two dimensions which include both the proximity to a

crash and severity of its potential consequences. 34, 50, 106

confusion matrix A table used to describe and visualize the performance of a classification
algorithm/model. In the general case with N classes, the confusion matrix is an NxN matrix that

contains in each cell ¢;j, the number of objects of true class i predicted as class j. 74, 81, 82

crash data-based approach An approach which investigates road safety using the crash data-

based method, which relies on crash data to study road safety (s). xix, 4, 5, 11, 25, 27, 23

crash risk The possibility of a crash and its potential consequence (the severity). 26-29, 39, 40,
184,217

crash severity = The severity of personal injury or property damage resulting from a traffic

crash, also defined as crash outcome severity. 30

dangerous pedestrian crossing A crossing decision made by a pedestrian getting into a
dangerous situation where the vehicle cannot yield during the interaction of interest. 129, 141,

154,167,172, 173, 175, 188, 194-197, 242, 244

deceleration rate required to stop The constant deceleration rate required for the vehicle to

stop. 135, 142, 179, 209
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detection miss A detection error in which a road user who should be detected is not. 73

detection over-segmentation A detection error in which one road user is detected as multiple

road users when applying a vision-based tracking technique. 78

detection over-grouping A detection error in which multiple road users are detected as one

road user when applying a vision-based tracking technique. 78, 82

Distance-Velocity framework A newly-proposed framework which investigates pedestrian
safety by considering pedestrian-vehicle interactions when pedestrians cross the street and road

user behavior during such interactions. 10, 127, 129, 134, 135, 137, 178-181

human error A mistake made by a person due to an unintentional action or a decision. Human
error in the context of road traffic generally refers to mistakes made or violations conducted by

road users. 6

interaction of interest (for pedestrian-vehicle interaction) A situation where a vehicle
approaches a crosswalk and a pedestrian is either already moving to cross or is present in a

position showing willingness to cross. 136, 141, 145, 146, 163, 164, 166-169, 211, 213

marked crosswalk A pedestrian crosswalk that is regulated by crosswalk markings assigning
right-of-way to pedestrians. Accordingly, unmarked crosswalk is a pedestrian crosswalk
without any crosswalk marking. xx, 9, 12, 29, 32, 36, 43, 48, 104, 127, 137, 161, 164-175, 189,
190, 192, 193, 195, 198, 202, 209, 210, 217, 219-221, 223, 229, 237, 238, 242

method based on surrogate measure of safety A methodology that relies on surrogate

measures of safety to learn road safety. 4, 25, 130

non-signalized crosswalk A pedestrian crosswalk where there are not traffic lights controlling
the traffic. xix, xx, 2-9, 10-12, 19-25, 27-29, 31-33, 35, 37-41, 43, 48, 49, 51, 52, 68, 101-104,
108, 110, 127-134, 143, 155, 164, 167, 175, 177, 214, 216

pedestrian occurrence The moment when a pedestrian arrives close to the beginning of the
crosswalk. In this dissertation, it is defined as the pedestrian arriving within a cross-section

distance of 1 m from the beginning of the crosswalk and showing the intention to cross the street
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by either facing the road or turning their head toward the road, unless his/her behavior obviously
implies they do not intend to cross the street (e.g. standing and talking, squatting, or staying in
this area for specific purposes such as equipment installation and etc.). 9, 50, 135, 136, 138, 142,
143, 145-147, 152, 153, 155, 163, 168, 169, 171, 179, 185, 191, 199, 212, 213, 235, 238, 241

pedestrian crossing decision The action when a pedestrian decides to cross the street,
regardless if he/she is later forced to retreat by non-yielding vehicles. This includes actual
crossing attempts which may happen when a pedestrian keeps a constant walking speed to cross
without waiting or starts to cross after waiting. 9-12, 21, 25, 38-46, 129, 132, 133, 135, 136, 138,
139, 141-143, 145-147, 153-156, 163, 164, 167, 169, 172-175, 179, 180, 182-185, 187, 188, 191-
198, 209, 212, 213, 235, 238, 241-244

pedestrian crossing after vehicle passage A crossing decision made by the pedestrian, who
gives up his/her right-of-way, to pass after the vehicle passage during the interaction of interest.

136, 164, 167, 172, 182, 192-197, 242-243

post-encroachment time Time between the departure of the first road user and the arrival of

the second road user at the crossing zone where their trajectories overlap. 6, 25, 37, 103, 182

receiver operating characteristic curve A method that uses a graphical plot to validate the

performance of a binary classifier. 74

risky pedestrian crossing A crossing decision made by a pedestrian getting in a risky situation
where the vehicle may not have enough time to react and yield during the interaction of interest.

42,129, 141, 167, 172, 188, 195-197, 242-243

road user Anyone, such as a pedestrian, cyclist or motorist, who uses the road infrastructure
for transportation purposes. xix, xx, 2-6, 9, 11, 21, 24-26, 28, 33, 34, 36-38, 41, 46-48, 50, 52, 68,
71, 72, 74, 77-84, 87, 89, 91, 93, 96-98, 103, 104, 106, 108-117, 116, 118, 123, 127, 130, 133,
135, 143-145, 155, 156, 166, 177, 180-183, 189, 191, 202, 208, 211, 212, 214

safe pedestrian crossing A crossing decision made by the pedestrian where the vehicle has
enough time to react and yield during the interaction of interest. 38, 42, 129, 142, 154, 167, 172,
187,188,191, 195-197, 142, 143, 144
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safety analysis approach A methodological approach to analyse road safety. xix, 4, 10, 11, 22,
24,25, 50, 52, 208

staged pedestrian A pedestrian who stops and waits at the edge of the curb to cross the street.
Accordingly, an unstaged pedestrian is a pedestrian who takes a few steps into the vehicle lane,

making himself more visible to drivers to cross the street. 43, 44

stop sign controlled crosswalk (stop-controlled) A pedestrian crosswalk which has a stop
sign upstream requiring all vehicles to stop before the crosswalk, crossing the street without

waiting. xx, 12, 145, 150-155, 161, 164, 166-175, 232, 240, 241

support vector machine A supervised learning model used for classification or regression

analysis. 74

surrogate measure of safety A proactive measure which, instead of relying on historical crash
data, uses other measures (e.g. speed etc.) or events (e.g. conflicts) to describe the road safety

condition. 4, 21, 22, 101, 105, 106, 107, 132, 142, 143, 155, 156, 168, 181, 216-223

surrogate safety approach  An approach to analyze road safety using one or more surrogate
safety methods. Based on the categories of methods in SMoS, this dissertation classifies
surrogate safety approaches into four: the traffic data approach, the conflict approach, the

behavior approach, and the perception approach. xix, 50

thermal camera A camera which detects infrared radiation from objects and records the
detection as visualized heat zone images and videos. xix, xx, 9-11, 68, 72, 74-77, 85, 87-98, 101,
103, 108, 109, 116, 123, 161, 208, 212

time-to-collision = Time remaining for two road users to collide if they continue their present

trajectory on the collision course. 6, 25, 36, 131, 182

time to crossing Time remaining for the vehicle to reach the pedestrian crossing path if it

continues along its present trajectory. 129, 143, 188

traffic crash  An incident when a vehicle collides with another vehicle, pedestrian, or another

object in the road traffic environment. 8, 51, 72

XVi



traffic conflict A traffic event involving two road users approaching each other where there is
a risk of crash unless at least one of them changes his/her movement. 4-6, 21, 24, 33, 34, 36, 54,

122,183

traffic conflict technique The most commonly-used method based on SMoS, which relies on

collecting traffic conflict data to estimate road safety. 6, 7, 107, 132, 155

trajectory A series of positions of an object over time. Vision-based tracking techniques work
as a practical tool to extract road user trajectory from videos collected from the road environment.

6,9,32,36,51,71,77, 80, 105-115, 132, 143-146, 155, 166, 189, 191, 208, 211, 212

uncontrolled crosswalk A pedestrian crosswalk that is not controlled by any type of signs or

markings. xx, 9, 12, 20-23, 42, 127, 130, 161, 164-175, 209, 226, 234, 235, 243

vehicle yielding behavior Behavior of the driver in response to the occurrence of a pedestrian
showing intent to cross the road and the vehicle path during an interaction of interest. Vehicle
yielding behavior includes both yielding and non-yielding maneuvers. 7-12, 21, 25, 43, 46, 116,
122, 129, 131-139, 179-184, 188-197, 209, 212-214, 242-244

vehicle yielding maneuver  The maneuver by the driver who gives the right-of-way to the
pedestrian during an interaction of interest. 38, 43, 116, 129, 133, 135, 140-143, 150, 155, 167,
172,179, 182, 188, 193-197, 212, 242-244

vehicle non-infraction non-yielding A non-yielding maneuver by the driver who is unable to
stop after the pedestrian occurrence during an interaction of interest. 43, 129, 139, 152, 167, 188,

191, 195-197, 242-244

vehicle uncertain non-yielding maneuver A non-yielding maneuver by the driver who may
or may not be able to react in time to stop after the pedestrian occurrence during an interaction of

interest. 43, 129, 139, 152, 167, 188, 191, 195-197, 242-244

vehicle non-yielding violation A non-yielding maneuver by the driver, with enough time to
react and brake, who chooses not to yield after the pedestrian occurrence during an interaction of

interest. 43, 129, 139, 152, 167, 188, 191, 195-197, 242-244

Xvil



visible spectrum camera A camera which detects and records objects in the portion of the

electromagnetic spectrum that is visible to the human eye. xix, xx, 11 51, 68, 89, 101, 208

vision-based tracking A process of tracking objects over time using video cameras and

computer vision techniques. xix, 5, 6, 211

vulnerable road user A road user who faces a high probability of injury in a collision with a
vehicle and should be given increased attention. Pedestrians and cyclists are vulnerable road

users because of their unprotected, or less-protected, state when using the road. 24, 130, 180

yield-controlled crosswalk A pedestrian crosswalk regulated by signs or markings assigning

right-of-way to pedestrians. 23

yielding rate The proportion of vehicles that yield to pedestrians among all the interactions of
interest. 40-44, 50, 122, 129, 132, 140, 141, 151, 152, 155, 167, 169, 170, 175, 188, 192, 194-
197,209, 211, 242-244

yielding compliance The proportion of vehicles that yield to pedestrians among the
interactions where vehicles that are physically able to yield to crossing pedestrians. 7, 11, 44, 50,
103, 105, 106, 116, 118, 119, 122, 129, 131-135, 138, 140, 143, 151-156, 167, 169, 170, 175,
179, 180, 183, 188, 192-197, 202, 203, 208-210, 242-244
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ABSTRACT

Pedestrian safety is a topic that concerns everyone. Not only does it concern researchers and
practitioners who dedicate themselves to improve road safety, it also concerns all road users, as
everyone is a pedestrian at some point in the transportation system. The high frequency of
pedestrian crash injuries and the great possibility of fatal consequences have made pedestrian
safety a great focus in road safety research. Pedestrian safety becomes even more of a problem at
non-signalized locations when compared to signalized crosswalk locations, due to the absence of
traffic lights controlling the traffic. Different methods have been proposed and empirical studies
have been conducted to investigate pedestrian safety. Despite the extensive literature on
investigating pedestrian safety at non-signalized crosswalk locations, much remains to be done,
especially in studying interactions between the pedestrian and vehicles and their behavior during
those interactions. Therefore, this dissertation aims to improve data collection methods for
pedestrian safety analysis and to develop a methodological framework to investigate pedestrian
safety at non-signalized crosswalk locations and implement such a framework using video data

collected from different crosswalk locations with the help from vision-based tracking technology.

The work of the dissertation started with reviewing methodologies and data collection
methods in previous studies. Methods used in past studies were classified into five different
approaches. These are the crash data approach and four surrogate safety approaches, namely, the
traffic data approach, the conflict event approach, the behavioral analysis approach, and the
perception analysis approach. Issues in the use of terms and definitions, methodologies applied,
and data used in previous studies were summarized. Some preliminary data collection work had
indicated the limitations of using regular visible spectrum cameras in low visibility conditions.
To overcome the limitations that regular visible spectrum cameras have encountered during the
data collection process, the thermal camera was introduced and its performance in road user
detection, classification, and speed measurement was validated through its comparison to the use
of the regular camera. Validation results showed an evidently better performance from thermal

camera for low visibility and shadow conditions, particularly when tracking pedestrians and
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cyclists. However, the regular camera narrowly outperformed the thermal camera during daytime.
For speed measurements, the thermal camera was consistently more accurate than the regular
camera at daytime and nighttime. To evaluate existing measures in investigating pedestrian-
vehicle interactions at non-signalized crosswalk locations, a study was conducted to investigate
pedestrian safety at nighttime. Although, the methodology applied in the study performed well in
looking at pedestrian-vehicle interactions, further limitations of using safety measure methods
were discovered upon the completion of the study. A novel framework, which evaluates
pedestrian safety by looking at the interaction between the pedestrian and the vehicle, and their
behavior during the interactions, was proposed and illustrated through a case study. The
framework was further tested through a study to compare the performance of three main non-
signalized crosswalk types, including uncontrolled, marked, and stop sign controlled crosswalks,
on pedestrian safety using data collected from different sites in Montreal. Among the three types
of non-signalized crosswalks, stop sign controlled crosswalks had the best performance in
protecting pedestrians while uncontrolled crosswalks performed the worst. To explore the
extensive applications of the framework, the investigation of cyclist-pedestrian interactions was
introduced as it has been a major road safety problem but underestimated in previous research.
Marked crosswalks alone fail to protect pedestrians from passing cyclists. Besides, pedestrian

safety at crossings on cycling facilities with downhill grades was found to be a great issue.

In brief, the dissertation will: 1) provide a comprehensive literature review that acts as a
practical reference to investigating pedestrian safety at non-signalized crosswalk locations, 2)
introduce a promising alternative, the use of the thermal camera, to overcome the limitations of
using the visible spectrum camera for automated traffic data collection, 3) propose a new
framework that describes pedestrian-vehicle interactions more precisely, compared to previous
studies. This framework is promising for different purposes in road safety on various topics, such
as the analysis of interactions between different types of road users, the simulation of road user
interactions, validations of safety treatments, and the performance evaluations of autonomous

vehicles.
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RESUME

La sécurité des piétons est un sujet qui concerne tout le monde, non seulement les chercheurs et
les praticiens qui se consacrent a 1'amélioration de la sécurité routicre, elle concerne également
tous les usagers de la route, car chacun est un piéton dans le systéme de transport. La fréquence
¢levée des accidents impliquant des piétons et le grand risque de conséquences mortelles ont fait
de la sécurité des piétons un élément central de la recherche sur la sécurité routiére. La sécurité
des piétons devient encore plus problématique aux emplacements non signalés, en raison de
l'absence de feux de circulation contrdlant le trafic, par rapport aux emplacements de passages
pour piétons signalés. Différentes méthodes de contréle de la circulation ont été proposées et
différentes études ont ét¢é menées pour améliorer la sécurité des piétons. Malgré la littérature
abondante sur la sécurité des piétons aux passages pour piétons non signalés, il reste encore
beaucoup a faire, en particulier pour étudier les interactions entre les piétons et les véhicules et
leur comportement au cours de ces interactions. Par conséquent, cette thése visait a améliorer les
méthodes de collecte de données pour l'analyse de la sécurité¢ des piétons et développer un cadre
méthodologique pour étudier la sécurité des piétons aux emplacements de passages pour piétons
non signalés et a mettre en ceuvre un tel cadre en utilisant des données vidéo recueillies a partir
de différents emplacements de passages pour piétons avec l'aide de la technologie de suivi basée

sur la vision.

Le travail de la thése a commencé par la révision des méthodologies et des méthodes de
collecte de données dans les études précédentes. Les méthodes utilisées dans les études
antérieures ont été classées en cinq approches différentes, notamment 1’approche par les données
sur les accidents et quatre approches de sécurité indirectes, a savoir I’approche par les données
du trafic, ’approche par conflit, ’approche par analyse comportementale et I’approche par
analyse de la perception. Les problémes d'utilisation des termes et définitions, des méthodologies
appliquées et des données utilisées dans les études précédentes ont été résumés. Pour évaluer les
mesures existantes en matiere d’enquéte sur les interactions entre piétons et véhicules aux

emplacements de passages pour piétons non signalés, une étude a été menée sur la sécurité des
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piétons la nuit. Certains travaux préliminaires de collecte de données avaient montré les limites
de I'utilisation de caméras a spectre visible classiques dans des conditions de faible visibilité.
Bien que la méthodologie appliquée dans I'é¢tude ait donné de bons résultats en examinant les
interactions entre piétons et véhicules, des limitations supplémentaires de I'utilisation de
méthodes de mesure de sécurité ont été découvertes a la fin de 1'étude. Pour surmonter les
limitations rencontrées par les caméras a spectre visible classiques lors du processus de collecte
de données, la caméra thermique a été introduite et ses performances en matiere de détection, de
classification et de mesure de la vitesse des usagers de la route ont été validées par comparaison
avec l'utilisation de la caméra classique. Les résultats de validation ont montré que la caméra
thermique offrait manifestement de meilleures performances dans les conditions de faible
visibilité et d’ombre, en particulier lors du suivi des piétons et des cyclistes, bien que la caméra
ordinaire surperforme de prés la caméra thermique pendant la journée. Pour les mesures de
vitesse, la caméra thermique était toujours plus précise que la caméra normale jour et nuit. Un
nouveau cadre, qui apprend la sécurité des piétons en examinant 1’interaction entre les piétons et
les véhicules et leur comportement au cours des interactions, a été proposé et illustré a travers
une étude de cas. Le cadre a ensuite été testé dans le cadre d’une étude comparant les
performances de trois types de passages pour piétons non signalés, notamment les passages pour
piétons incontrolés, balisé€s et controlés par des panneaux de signalisation, en matiere de sécurité
des piétons a I’aide de données recueillies sur différents sites de Montréal. Parmi les trois types
de passages pour piétons non signalés, les passages pour piétons controlés par panneaux de
signalisation ont la meilleure performance en mati¢re de protection des piétons, tandis que les
passages pour piétons non contrdlés ont le pire. Pour explorer les applications étendues du cadre,
il a été introduit pour étudier les interactions cyclistes-pi€tons qui constituaient un probléme
majeur de sécurité routiere mais sous-estimé dans les recherches précédentes. Les passages pour
piétons marqués ne permettent pas a eux seuls de protéger les piétons des cyclistes de passage.
En outre, la sécurité¢ des piétons aux passages a niveau sur des installations cyclables avec des

pentes en descente s'est avérée €tre un probléme majeur.

En résumé, la these devrait: 1) fournir une littérature compléte qui fonctionne comme une

référence pratique pour enquéter sur la sécurité des piétons sur les passages pour piétons non
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signalés, 2) présenter une alternative prometteuse consistant a utiliser la caméra thermique pour
surmonter les limitations de 'utilisation du spectre visible caméra pour la collecte automatisée de
données sur la circulation, 3) propose un nouveau cadre décrivant plus précisément les
interactions entre piétons et véhicules par rapport aux études précédentes et offrant des
perspectives prometteuses en matiere de sécurité routiere sur divers sujets tels que 1’analyse des
interactions entre différents types de routes. Utilisateurs, la simulation des interactions des
usagers de la route, la validation des traitements de sécurité et 1’évaluation des performances des

véhicules autonomes.
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Chapter 1.

Introduction




Chapter 1 Introduction

This chapter presents the introduction of the dissertation including the motivation and context of
the research on pedestrian road safety at non-signalized crosswalks, a discussion of missing gaps
in the literature related to this topic, the objectives of this research work, and the organization of

the dissertation.

1.1 MOTIVATION AND CONTEXT

Walking is a key component of the transportation system, especially in urban areas. It is the
transportation mode that people take most frequently every day. Walking acts either as the
primary or as the ancillary transportation mode in one’s daily life. All road users are pedestrians
as walking is part of any trip, regardless of whether the primary mode of this trip is walking or
not (Peterniak, 2015). For instance, even if someone drives all the time for most of his/her daily
trips, that person, if able-bodied, will still need to walk to and from his parking lot, walk to a
grocery store for daily purchases, or walk across the street to get a coffee from a coffee shop on

the other side of the street.

As an important part of active transportation and sustainable mobility, the promotion of
walking has increased in recent years. Walking provides individual benefits such as improved
health, increased likelihood of social interactions, and can save both money and time for
commuters (Public Health Agency of Canada, 2014). Additionally, there are societal benefits
associated with walking, including reduced emissions of Greenhouse Gas (GHG) and other
pollutants. Therefore, walking has been promoted by many cities to meet their sustainability
goals and to improve their citizens’ quality of life. In spite of the benefits, active transportation

also faces some challenges and barriers, road safety being one of them.



Given the dimension of the issue, pedestrian safety has become a priority for many cities
due to the increased awareness of pedestrians’ vulnerability compared to other road users. In
2013 in the US, 14 % of total road crash fatalities were pedestrians (NHTSA, 2015). Also in
2013 in Canada, 15.6 % of road crash fatalities were pedestrians (Transport Canada, 2015). The
issue is even worse in developing countries. For instance, the report from WHO shows that
around 40 % of road crash fatalities were pedestrians in countries such as Albania, Armenia, and
Chile (WHO, 2009). Over 50 % of road crash fatalities were pedestrians in countries such as
Bangladesh, Ethiopia, and Mozambique in 2007 (WHO, 2009). Globally, almost one out of five
road crash fatalities were pedestrians according to data from 2010 (WHO, 2013).

Most crashes happen when pedestrians are exposed to motorized traffic, mostly, when
they are crossing the streets. Around 4700 pedestrians were killed and over 165000 pedestrians
were injured when crossing the street between 1999 and 2014 in Canada (Transport Canada,
2015). Pedestrians are vulnerable at locations with signalized and non-signalized crossings
(crossings without traffic light). Hunter et al. found that 40 % of intersection crashes and 93 % of
midblock crashes occurred at non-signalized locations (Hunter, et al., 1996). Police reports from
Arkhangelsk, Russia show that 79 % of pedestrian-vehicle crashes between 2005 and 2010

occurred at non-signalized crosswalks (Kudryavtsev, et al., 2012).

The numerical evidence shows that the safety of pedestrians at non-signalized crossings
is an important public health problem. Thus, transportation agencies and other practitioners are
spending more efforts in prioritizing pedestrian safety. Given the importance of pedestrian safety
in research and practice, different studies have been conducted and treatments have been
evaluated (Huang, et al., 2000; Nabavi Niaki, et al., 2016), however, more research and empirical

evidences are still needed.



1.2 LITERATURE AND RESEARCH GAPS

This section provides a general description of the five methodological approaches used in
previous studies on pedestrian-vehicle interactions, as well as the literature gaps. Details on the

literature review work are included in Chapter 2.

1.2.1 Literature Summary

1.2.1.1 Methodological Approaches

Road safety analysis methods can be categorized into crash-data based and surrogate measures of
safety (SMoS). Traditionally, road safety studies make use of historical crash data, focusing on
crash frequency and severity as direct measures of safety (Abdel-Aty & Haleem, 2010; Nabavi
Niaki, et al., 2016). In investigating pedestrian safety at non-signalized crosswalk locations,
many studies have also relied on using historical crash data (Campbell, 1997; Chu, 2006; Chu, et
al., 2008; Ellis & Van Houten, 2009; Gibby, et al., 1994; Jones & Tomcheck, 2000; Liu, et al.,
2011; Pfortmueller, et al., 2014; Zegeer, et al., 2001). However, it is known by researchers and
practitioners that the crash-data based approach depends on the quality and availability of the
data (Fu, et al., 2016; Tarko, et al., 2009). Besides, long periods (multiple years) of observation
are required to obtain data in sufficiently large quantities, making inefficient the evaluation of
treatments (St-Aubin, et al., 2013). This has also been criticized for being a reactive approach.
To overcome these issues of using crash data, proactive methods relying on SMoS (or surrogate
safety measures, SSM) have emerged without waiting for crashes to happen to gather the data.
These methods based on SMoS, i.e. safety diagnosis methods that rely on SMoS, investigate
pedestrian safety mainly through four approaches': i) the traffic data approach based on traffic
data (speed, volume, etc.), ii) the traffic conflict approach, iii) the behavioral analysis approach
based on road user behavior, and iv) the perception analysis approach based on road user

perception (Fu, et al., 2018).

! According to its definition, SMoS should satisfy the conditions of being both observable non-crash events and
being statistically related to crashes in terms of frequency and/or severity (Tarko, et al., 2009). They include SMoS
or SMoS candidates, SMoS of which relationship with crashes is not statistically proved, but which have been
applied for safety analysis purposes in past studies.



Different sources of data and approaches have been proposed for pedestrian safety studies
at non-signalized crosswalks. The crash data-based approach has relied on crash reports from the
police, government organizations, and sometimes ambulance or in-/outpatient records from
hospitals (Diogenes & Lindau, 2010; Ellis & Van Houten, 2009; Ivan, et al., 2012; Jones &
Tomcheck, 2000; Olszewski, et al., 2015; Pfortmueller, et al., 2014). In the traffic data-based
approach, traffic information such as speed and volume have been collected using different
methods including speed guns, loop detectors, magnetic plates and video data (Antov, et al.,
2007; Boyce & Van Derlofske, 2002; Fu, et al., 2016; Gitelman, et al., 2016a; Gitelman, et al.,
2016b; Liu, et al., 2011; Wang, et al., 2017). Data in the conflict event-based approach has been
collected through manual field observations (Brumfield & Pulugurtha, 2011; Clark, et al., 1996;
Mitman, et al., 2010; Nteziyaremye, 2013; Van Houten, et al., 2001), and video data both
processed manually or automatically with the help of vision-based tracking technologies
(Almodfer, et al., 2016; Cafiso, et al., 2011; Gomez, et al., 2011). Different tools and data
sources including video, field observations, speed guns, naturalistic driving data and driving or
pedestrian simulations have been applied in collecting data for the behavior analysis approach
(Brumfield & Pulugurtha, 2011; Bungum, et al., 2005; Fitzpatrick, et al., 2007; Harrison, 2017;
Jiang, 2012; Shi, et al., 2007a; Shi, et al., 2007b). The perception analysis approach has most
commonly relied on surveys (Boyce & Van Derlofske, 2002; Chai & Zhao, 2016; Dhar &
Woodin, 1995; Mitman & Ragland, 2007; Johansson & Leden, 2007; Zhuang & Wu, 2014).

1.2.1.2 Pedestrian-Vehicle Interaction Studies

The occurrence of pedestrian-vehicle interactions is the necessary condition for the occurrence of
pedestrian-vehicle crashes. In the context of pedestrian safety at crosswalk locations, a
pedestrian-vehicle interaction is a situation where both the pedestrian and the vehicle arrive close
in time and risk a chance of a crash at the crosswalk location. Learning how pedestrian-vehicle
interactions are formed and unfold has been a focus in studying pedestrian safety at non-
signalized crosswalk locations. In previous studies, pedestrian-vehicle interactions have been
mostly investigated through the study of traffic conflicts and behavioral analysis — interactions
result from the behavior and choice of actions of road users and conflicts are the outcome of

interactions.



Traffic conflict analysis has adopted traffic conflict techniques (TCT), e.g. the Swedish
TCT, to predict the outcome of interactions. Time-to-collision (TTC) and post-encroachment
time (PET) are the most common measures for identifying conflicts in general (Almodfer, et al.,
2016). Different researchers have used TTC and PET for pedestrian safety analysis (Almodfer, et
al., 2016; Cafiso, et al., 2010; Tang & Nakamura, 2009). Pedestrian-vehicle conflicts can be
divided into discrete severity levels based on different PET and TTC thresholds (Ismail, et al.,
2011; Malkhamah, et al., 2005).

Given the fact that human error is found to be one of the reasons for approximately 95 %
of road crashes (NHTSA, 2008), the behavior analysis approach is popularly applied in studies
investigating pedestrian safety at non-signalized intersections. Different studies have looked at
safety-related behaviors including yielding (Bella & Silvestri, 2015; Crowley-Koch & Van
Houten, 2011; Fitzpatrick, et al., 2011; Mitman & Ragland, 2008; Pulugurtha, 2015; Xiang, et al.,
2016), crossing movements, (Boroujerdian & Nemati, 2016; Brewer, et al., 2006; Jiang, 2012;
Jiang, et al., 2015; Kadali & Perumal, 2016; Kadali, et al., 2014; Nteziyaremye, 2013; Pawar &
Patil, 2015; Schroeder, et al., 2014; Sun, et al., 2003) and pedestrian and vehicle checking
behavior to investigate pedestrian safety at non-signalized crosswalk locations (Fisher & Garay-
Vega, 2012; Gémez, et al., 2011; Gémez, et al., 2014; Harrison, 2017; Knoblauch, et al., 2001;
Nteziyaremye, 2013), and etc.

Many studies investigating pedestrian-vehicle interactions have relied on direct (manual)
field observations (Brumfield & Pulugurtha, 2011; Bungum, et al., 2005; Hakkert, et al., 2002;
Ismail, et al., 2011; Knoblauch, et al., 2001; Li & Ming, 2016; Mitman, et al., 2010; Van Houten,
et al., 2002) or from video data recordings (Boyce & Van Derlofske, 2002; Dobbs, 2009;
Fitzpatrick, et al., 2007; Harrison, 2017; Ibrahim, et al., 2005; Shi, et al., 2007a; Shi, et al., 2007b;
Sisiopiku & Akin, 2003; Van Derlofske, et al., 2003). Recently, vision-based tracking techniques
have become available to extract detailed traffic data, such as road user trajectories (Cafiso, et al.,
2011; Saunier, n.d.; Saunier & Sayed, 2006). The recent development of video-based techniques
has brought about the possibility of investigating pedestrian-vehicle interactions in a more
precise and microscopic way, for example in (Boroujerdian & Nemati, 2016; Fu, et al., 2018;

Jiang, 2012; Jiang, et al., 2015).



1.2.2 Limitations and Gaps in Previous Studies

Despite the research efforts on pedestrian safety at non-signalized crosswalk locations, some

limitations exist in the current literature:

Despite the promise of the different methods used for evaluating non-signalized
crosswalk safety, a comprehensive review of these methods is missing. Many of the
published work does not include a systematic investigation on all related methods.
Therefore, a detailed literature review study will help and will provide a guideline for the

application of existing methods, and the development of new approaches.

For investigating pedestrian-vehicle interactions, a comprehensive framework, which
considers both the development of interactions (e.g. pedestrian and vehicle behaviors)
and the outcome of events, (e.g. the measurements based on traffic conflict techniques) is

promising. However, most previous studies have only focused on one of the two.

Despite frequent usage, behavior analysis approaches require improvements, considering
the complex dynamics of pedestrian and vehicle behaviors and attitudes during the
development of an interaction. Research on vehicle yielding behavior is limited as the
definition of yielding compliance is ambiguous. Some situations have not been explicitly
discussed, for example where it is impossible for the vehicle to yield due to their speed
and proximity to the crosswalk. Considering such situations as non-compliance is far-
fetched. Meanwhile, the definition of non-yielding maneuver is unclear — determining
when a pedestrian arrives at the beginning of the crosswalk and should be noticed and

yielded by the driver is often subjective.

Data issues are common in studies that investigate pedestrian safety at non-signalized
crosswalks. The quality and quantity of crash data have been often limited. Data used in
SMoS are usually collected using short-term data collection methods such as field
observation and video data collection (Laureshyn, et al., 2016). Most studies relied on
data from a limited number of sites due to the amount of work needed (setting up

equipment, manually labeling and extracting information, or conducting surveys) or due



to the difficulty in obtaining permission for videotaping or collecting personal
information. Data quality may also be challenged especially from manual observations or

surveys which can be highly subjective.

The benefits of vision-based techniques notwithstanding, there are critical limitations
associated with using regular video cameras for traffic data collection. Regular cameras
are sensitive to lighting conditions and fail to perform well in adverse weather, low light
conditions and darkness. Meanwhile, shadows and glare in the daytime also degrade the
accuracy of the regular cameras. In other words, regular cameras do not work under all
conditions, especially at nighttime when increased injury risk leads to more severe road
traffic crashes (Plainis, et al., 2006; Tyrrell, et al., 2016). Alternatives need to be explored
for using this type of technology.

In general, limitations and gaps still exist in the methodologies. The research work in this thesis

aims at addressing these limitations and gaps.

1.3 OBJECTIVES OF THE RESEARCH

The general objective of the research is to investigate pedestrian-vehicle interactions in

pedestrian crossings by proposing and validating new data collection methods and a theoretical

model. The proposed methods are validated using video data at various Montreal crosswalk

environments with different geometric and lighting conditions. The specific objectives are

described as follows.

A) To conduct an extensive literature review work related to methodologies for

pedestrian safety diagnosis at non-signalized crosswalks.



B)

O

D)

E)

To study issues with data collection using a regular spectrum camera under
different lighting conditions and to investigate the performance of thermal video-
camera sensors — Aiming to solve the issues found in using video data for extracting
road user trajectory under poor visibility conditions, the thermal camera is introduced as
an alternative for traffic data collection, in particular to investigate pedestrian safety
during nighttime. The performance of using this type of sensing technology is validated

through a comparison to a regular camera.

To propose a novel pedestrian-vehicle interaction framework to investigate
pedestrian safety at crosswalks — The framework considers the development of
pedestrian-vehicle interactions over time, and allows the investigation of road user
behaviors critical to the outcome of crashes: vehicle yielding behaviors, pedestrian

occurrence and crossing decisions.

To test the framework through the performance evaluation of different types of
crosswalk facilities on pedestrian safety — The framework is tested based on data from
different traffic environments. Data is collected from three main types of crosswalk
facilities. These are uncontrolled (crosswalks not controlled by any type of signs or
markings), marked (crosswalks with markings assigning right-of-way to pedestrians) and
stop sign controlled crosswalks (crosswalks with a stop sign requiring all vehicles to stop

before the crossing location).

To explore the application of the proposed methodology for cyclist-pedestrian
interactions — The framework can be applied in exploring different road safety issues,

for example cyclist-pedestrian interactions, which have not previously been investigated.



1.4 CONTRIBUTIONS

The key contributions of this dissertation are summarized as follows:

This thesis provides a comprehensive review of the methodological approaches and data
collection methods used in the existing literature on pedestrian safety at non-signalized
crosswalk locations. Researchers and practitioners can use this literature-review work as
a useful reference. Meanwhile, the identification of the limitations and gaps in the
existing literature can motivate future research in better understanding pedestrian-vehicle

interactions.

From the data collection methods, this work integrates and validates data collection
method using a thermal video sensor and demonstrates that this solution can meet the
requirements of an around-the-clock tool for traffic data collection and safety analysis
under all weather and lighting conditions. Besides, the dissertation applies the thermal
camera system for investigating pedestrian safety in low visibility conditions when
pedestrians face a higher risk of crash and few data collection tools are available to study

their safety.

It proposes a new framework for pedestrian safety at non-signalized crosswalks, referred
to as the distance-velocity (DV) model. This novel method gives insights about
pedestrian-vehicle interactions by considering the development of interactions and
behavioral factors such as vehicle yielding behavior and pedestrian crossing decisions

that are critical to the outcome of a crash.

This work explores the safety of pedestrians in their interactions with cyclists, which has
been rarely studied in the past. This work is expected to attract more research and
practices focused on the topic of cyclist-pedestrian interactions, which is important in the
context of the promotion of active transportation. This relies on the application of the DV

framework to another road safety problem.
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1.5 ORGANIZATION OF THE DISSERTATION

The dissertation is structured into eight chapters including the introduction. As being manuscript-
based, the remainder of the dissertation includes one manuscript in preparation for a submission
to a peer-reviewed journal (Chapter 2), four refereed journal papers (Chapter 3-5, 7), an
additional chapter about the work in testing the framework (Chapter 6), and the conclusion

(Chapter 8).

Chapter 2 provides a comprehensive review of the existing literature on pedestrian safety
at non-signalized crosswalk locations. Key methodologies as well as their advantages, limitations
in the past three decades (from the year of 1987) are reviewed and discussed. These
methodological approaches are summarized into five main categories (the crash data approach
and four approaches relying on SMoS). Details of the data collection and safety methods are

clearly documented in each main category.

Chapter 3 introduces the thermal camera system and presents the validation of its
performance in traffic data collection under various conditions. For validation purposes, existing
computer vision methods for automated data processing are integrated. The performance of using
thermal cameras for collecting road user information, including detection, classification and
speed measurements, under varying lighting and temperature conditions across multiple sites is

validated, and is compared to the performance of a visible spectrum camera.

Chapter 4 proposes a methodology that relies on several existing and applicable SMoS in
exploring pedestrian safety at non-signalized crosswalks at nighttime based on data collected
using the thermal camera system. The methodology used several SMoS indicators including
vehicle approaching speed, PET, yielding compliances, and conflict rates. The methodology is

applied to evaluate pedestrian safety at non-signalized crosswalks at nighttime.

Chapter 5 introduces a new methodological framework, the DV model, for investigating
pedestrian safety at non-signalized crosswalk locations. Assumptions, some practical definitions,

and the detailed explanation of the model, along with the derived measures, are presented. The

11



model classifies interactions between approaching vehicles and pedestrians showing the intention
to cross in different categories. The framework is demonstrated through a case study involving
three non-signalized crosswalks including a marked crosswalk, an uncontrolled crosswalk, and a

stop sign controlled crosswalk.

Chapter 6 aims at validating the applicability of the proposed DV model in a study
involving 15 different crosswalk locations in Montreal. Pedestrian safety at the three types of
crosswalks, marked, uncontrolled, and stop sign controlled, is analyzed and compared using the
framework. The occurrences of interactions, vehicle yielding behavior, pedestrian crossing
decisions, and the observation of evasive maneuvers are investigated. Results in this chapter
suggest that the framework describes pedestrian-vehicle interactions at non-signalized crosswalk

locations in a proper way with correct assumptions and parameters.

Chapter 7 investigates the applicability of the proposed methodology and the DV model
to study pedestrian-cyclist interactions in urban areas. The case study deals with crosswalks at

non-signalized intersections and crosswalks at bus stops along segregated cycle tracks.

Finally, Chapter 8 concludes and summarizes the key findings and contributions in this
dissertation, and discusses the limitations, implications of the DV model and future research in

the field of pedestrian safety.
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2.1 INTRODUCTION
2.1.1 Background

The safety of pedestrians at non-signalized crossings (crossings without traffic light) has become
a great concern in road safety (Makarova, et al., 2016; Olszewski, et al., 2015). In Canada,
around 4700 pedestrians were killed and over 165000 were injured when crossing the street
between 1999 and 2014 (Transport Canada, 2015). Over 62 % of pedestrian deaths and injuries
occurred at non-signalized locations. Note that the terms “non-signalized” (or “unsignalized”)
and “uncontrolled” are unfortunately used interchangeably in the existing literature to describe
crosswalk locations without traffic lights. These terms describe different situations; non-
signalized crosswalks are locations without traffic lights, while uncontrolled crosswalks are
without any traffic control devices (no signs, no markings, and also no traffic light). Recent
attempts to correct the interchangeable use of these words have added to the conceptual

confusion (Elefteriadou, 2014; McGee, et al., 2015). While the ITE Unsignalized Intersection
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Improvement Guide (UIIG) properly defines non-signalized intersections as intersections not
“controlled by a traffic signal” (McGee, et al., 2015), it does not include crossing locations that
are not at intersections. The UIIG (McGee, et al., 2015) nevertheless states that non-signalized
crossings may be classified as: 1) uncontrolled, for crossings without any type of signs or
markings. This chapter reviews previous work on non-signalized crosswalk safety based on the

above definitions.

Recognizing the risk for pedestrians at non-signalized crosswalk locations, practitioners
have made pedestrian safety a major design factor and have prioritized pedestrians when
constructing non-signalized crossings by proposing and implementing treatments including road
infrastructure, signage, and pavement marking improvements (Mead, et al., 2014). Researchers
have likewise investigated safety issues and sought solutions to improve pedestrian safety at non-
signalized crosswalk locations. Safety, along with the efficiency of several designs and safety
countermeasures has been investigated in several studies (Cafiso, et al., 2011; Huang, et al., 1999;
Jones & Tomcheck, 2000; Sisiopiku & Akin, 2003; Smith, et al., 2009; Van Houten, 1988).
Safety studies have typically relied on crash data, although crash data samples are often
insufficient due to low vehicle traffic and pedestrian activity. This results in a low frequency of
crashes (low mean problem) leading to long periods of data collection and then poor fit and
accuracy of derived statistical models (Fu, et al., 2016; Lord & Miranda-Moreno, 2008).
Methodologies based on crash data are time-inefficient, requiring many years of data, making it
difficult to evaluate recently developed treatments (St-Aubin, et al., 2013). In many cases, crash
data is limited or is inadequately detailed to explore safety problems such as road user non-
compliance and pedestrian misjudgement of gaps in traffic among others (McGee, et al., 2015).
Instead, many researchers have used surrogate measures of safety (SMoS). Some have
considered vehicle approach speed to investigate the effectiveness of safety treatments (Bentley,
2015; Fu, et al., 2016; Hakkert, et al., 2002), while others have relied on exposure measures
(Molen, 1981; Mitman, et al., 2008) or traffic conflicts (Cafiso, et al., 2011; Svensson & Hydén,
2006). Driver and pedestrian behaviors, such as yielding behavior and crossing decisions, and
their contributions to pedestrian-vehicle crashes, have also been explored (Brumfield &

Pulugurtha, 2011; Jiang, 2012; Mitman & Ragland, 2008).
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Despite the promise of these methods, many have been proposed without a systematic
investigation of related work. Additionally, utilized variables vary among the studies, and
different thresholds or “rules” have been applied to the same measure. Many national and
provincial projects and standards across Canada (Delphi MRC, 2010; Highway Safety Branch,
Ministry of Transportation and Highways, 1994; MTO, 2016) and the US (Fitzpatrick, et al.,
2006; FHWA, 2009; Zegeer, et al., 2005) have relied on safety measures without a detailed
review to justify why the measures were initially adopted. A comprehensive review of existing
and state-of-the-art methods for evaluating non-signalized crosswalk safety is essential,
providing a guide of feasible methodologies for the future development of safety approaches,

including those exploring new surrogate measures of safety.

The primary goal of this work is to provide a systematic literature review of the
alternative methods for investigating pedestrian safety at non-signalized crosswalks. This
document reviews the research literature on this topic from the previous 30 years, from 1987 to
2017, highlighting key studies with a focus on implemented methods. The considered studies use
either traditional approaches for evaluating safety based on crash data analysis or newer SMoS.
The studies are identified through a series of searches of several publication databases, which
included Google Scholar, TRIS, TRANSDOC, ITRD, and SafetyLit (Google, 2018;
Transportation Research Board, 2018; Ovid Technologies, 2018; WHO, 2018). Additional
studies were identified using the citations within the papers found in these databases.
Approximately 150 reports and peer-reviewed papers were included in this review. Based on this
literature, the methodologies are classified into five distinct approaches. This document defines
each methodological approach, summarizing commonly used measures, data, and collection
methods. Finally, this work discusses the limitations and challenges of each approach with

respect to methods and data, identifying research gaps to be further explored.

2.1.2 Brief History of Previous Work

Although crosswalks existed in ancient Rome over 2000 years ago (Bennett & Van Houten,
2016), the first signalized crossing was built in London in 1868 (The Times, 1868). Most non-

signalized crossings were uncontrolled until the early 1910s, when stop signs were first
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implemented in Detroit, Michigan (Greenbaum & Rubinstein, 2011). As stop signs often
increase delay, most non-signalized sites remained uncontrolled. Different markings and signs
for protecting pedestrians were first trialed in the 1920s and 1930s (Ishaque & Noland, 2012),
and these crossings became the earliest versions of yield-controlled crosswalks. The first zebra
crossing was implemented in the UK in 1951 and proved to be the most effective marking
pattern for protecting pedestrian crossings (Road Research Laboratory, 1963). Despite debate on
its efficiency (Campbell, 1997; Gibby, et al., 1994; Herms, 1972; Mitman, et al., 2008; Zegeer, et
al., 2005), the zebra crossing remains to be the countermeasure that has been the most frequently

used (BC MOT, 1994; FHWA, 2001).

Thanks to advances in traffic engineering and the development of lighting, sensing, and
material technologies, new countermeasures for pedestrian safety at non-signalized crosswalks
have emerged in recent decades. Most of these literature reviews on crosswalk safety and the
efficiency of pedestrian countermeasures have summarized previous practices and innovations
mostly within Europe (Davies, 1999; Draskéczy & Hydén, 1994; Fizpatrick, et al., 2007; Mead,
et al., 2014; Tan & Zegeer, 1995; Gitelman, et al., 2012; Tan & Zegeer, 1995). Some cities have
also published guidelines for pedestrian safety countermeasures: for instance, Delphi MRC, 2010;
MTO, 2016. Mead et al. (2014) comprehensively reviewed existing research on pedestrian safety
countermeasures, summarizing countermeasures into six categories: 1) marking and sign
enhancements, 2) curb extensions, 3) crossing islands, 4) raised crosswalks, 5) street lighting

improvements, and 6) automated pedestrian detection systems.

Additionally, some past studies have provided an overview regarding the methodologies
used for safety analysis (Campbell, et al., 2004; Karsch, et al., 2012; Nemeth, et al., 2014; Van
Houten & Malenfant, 1999). Reviews have also been undertaken on specific topics related to
pedestrian safety. For example, Martin (2006) reviewed research exploring factors influencing
pedestrian safety and Papadimitriou et al. (2009) conducted an assessment of pedestrian behavior
models proposed in earlier studies with a focus on crossing behavior. The US NHTSA conducted
a review of literature on child pedestrian education and possible child pedestrian programs
(Percer, 2009). Though these reviews did not aim to cover non-signalized crosswalks, they did

provide important references for research on non-signalized crosswalks. In a recent European
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Union project, researchers reviewed and summarized current safety studies for vulnerable road
users such as pedestrians and cyclists (Olszewski, et al., 2016). The report categorized existing
studies as epidemiological studies based on accident data, naturalistic driving studies, behavioral
observation studies, traffic conflict (SMoS) studies, and studies based on self-reported accidents.
Despite this work, to the best of our knowledge, no document has summarized the methods for

studying pedestrian safety at non-signalized crosswalk locations applied in past studies.

2.2 STUDIES AND METHODOLOGICAL APPROACHES

2.2.1 Summary of Studies

A summary of studies is provided in APPENDIX I, including country of origin, topic
investigated, methodological approaches and data source or type. A total of 134 references are
summarized in the table including 84 peer-reviewed journal papers, 36 reports, and 14 papers in
conference proceedings. Over half of the studies are from North America (76 from the US and
14 from Canada), 26 in Asia with 13 from China and the rest from Israel (5), India (4), Malaysia,
(3) and Iran (1). 11 of these studies are based on European data, and a small number of studies
are from Africa (2), South America (1) and Oceania (2). Two studies were conducted jointly by

German and Chinese Institutes.

From APPENDIX I, studies on pedestrian safety at non-signalized crosswalks generally

fall into the following main topics (ordered by the number of studies on each topic):

Performance evaluation: Evaluating the performance of pedestrian safety treatments and

countermeasures (84 studies)

Behavior or Perception analysis: Analyzing road user behavior or response through habits,
maneuver patterns, and motives, and their associated impact on safety; investigating road
user perceptions and their general understanding of safety; or the use of both behavior

and perceptions in the same study (33 studies)

Methods: Proposing or validating new safety analysis methods (9 studies)
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Interaction modeling/simulation: Modelling or simulating pedestrian-vehicle interactions
(5 studies); this topic also includes the analysis of interactions between autonomous

vehicles and pedestrians (2 out of the 5 studies)

Safety factors: Evaluating the impact of geometric design, environmental conditions,

pedestrian facilities, and other factors on safety (3 studies)

2.2.2 Methodological Approaches

Our review of previous work shows that no document has revised the methods for evaluating
pedestrian safety at non-signalized crosswalks in a comprehensive manner. Though the
mechanisms or methodological details often differ from the methods used in other road
environments, they do fall within the wide scope of road safety and meet the general framework
of safety studies presented in FIGURE 2-1. Methods can be classified as either 1) reactive
methods based on historical crash data, or 2) proactive methods based on SMoS, i.e. non-crash
measures that are physically and predictably related to crashes (Tarko, et al., 2009). Here, the

approaches proposed in the literature for safety analysis are classified as:

Crash data approach: this approach relies on historical crash data from police reports,

government reports, and hospital and ambulance data.

Traffic data approach: this approach relies on SMoS based on traffic parameters, mainly

vehicle speed and volumes.

Conflict approach: this approach makes use of SMoS based on near-crash events. Some
typical measures for conflicts include the famous Time-to-Collision (TTC) and Post-

Encroachment Time (PET).

Behavioral approach: this approach is based on measures derived from road user behaviors
such as driver yielding behaviors, pedestrian gap acceptance, crossing decisions, user

distraction, etc.

Perception approach: this approach relies on road user perceptions, including the

perception of safety, awareness and knowledge of signalization and crossing treatments.
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2.3 CRASH DATA APPROACH

Traditional road safety studies rely on historical crash data, to characterize safety in terms of
crash frequency, rate, and severity. Crash-based analysis supports the road safety management
process through hotspot or network screen analysis, identification of crash contributing factors
(traffic, geometry, and built environment features) influencing safety and evaluation of
countermeasures. Crash studies can be either aggregate or disaggregate (Yu, 2012; Postorino,
2003; Cai, et al., 2018). Aggregate studies consider the safety performance of a discrete area,
using measures such as crash frequency per site, and uncover impacts of “mobility characteristics,
the transport system, and the socio-economic characteristics of the area itself” (Postorino, 2003).
Aggregate crash-based studies include those conducting network screening, also referred to
hotspot identification (Dobbs, 2009), investigating the relationship of traffic and road geometric
factors with pedestrian safety, (Diogenes & Lindau, 2010; Gérder, 2004; Islam, et al., 2014; Ivan,
et al., 2001; Ivan, et al., 2012; Keall, 1995; Koepsell, et al., 2002; Kudryavtsev, et al., 2012), and
evaluating treatments by comparative analysis and modeling (Campbell, 1997; Chu, 2006; Chu,
et al., 2008; Ellis & Van Houten, 2009; Gibby, et al., 1994; Jones & Tomcheck, 2000; Liu, et al.,
2011; Pfortmueller, et al., 2014; Zegeer, et al., 2001). Disaggregate studies investigate safety at
the event level by analyzing each crash individually and model the possibility and severity of a
potential crash based on event factors (such as weather conditions, behavior, and socio-
demographics). The disaggregate safety models are also called “real-time crash risk evaluation
models” which can be used “in monitoring crash hazardousness with the real-time field data fed
in” (Yu, 2012). However, most studies investigating pedestrian safety at non-signalized

crosswalk locations have been aggregate.

2.3.1 Data Collection Methods

Crash data are normally compiled from police reports (Chu, 2006; Chu, et al., 2008; Kudryavtsev,
et al,, 2012; Olszewski, et al., 2015; Pfortmueller, et al., 2014; Zegeer, et al., 2001) or
transportation organizations (Diogenes & Lindau, 2010; Dobbs, 2009; Ellis & Van Houten, 2009;
Garder, 2004; Gibby, et al., 1994; Islam, et al., 2014; Ivan, et al., 2001; Ivan, et al., 2012; Jones

& Tomcheck, 2000; Keall, 1995), though some have relied on medical and ambulance records
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for data extraction. For instance, Strauss et al. (2014) used ambulance data to investigate
multimodal injury risk at signalized and non-signalized intersections. Pfortmueller et al. (2014)
used medical and ambulance records in addition to police reports to obtain sufficient data. This
approach requires high-quality information on crashes, their severity, and their location. Yet in
many cases, crash data is known to be incomplete (underreporting issue), with inaccurate
locations, or misclassifications (Fu, et al., 2016). Moreover, the low mean problem (sparse nature
of the crash data) can present a statistical issue, especially low-volume sites such as pedestrian
crosswalks. This explains why few studies have used crash data to investigate crosswalk safety
and the fit of statistical models were either low or unreported. In some cases, information related
to crash data can be confidential, or otherwise exempt from disclosure under policy or laws,
increasing the difficulty of obtaining sufficient data for safety analysis (CDMV, 2015). Some
studies have relied on driving simulation (Waizman, et al., 2014) or traffic simulation

experiments (Gémez, et al., 2011; Gémez, et al., 2014) to generate crash data.

2.3.2 Methods and Measures

Ranking, case-control and before-after analysis methods are most frequently used. These

methods focus on comparing frequencies or crash risks, either across sites or over time.

2.3.2.1 Ranking Methods

Some studies used methods that rank different locations either based on or considering crash
frequency or crash risk as one of the key criterions, normally to identify crash black spots. For
example, Dobbs (2009) used the total number of crashes per crossing location, as a variable in
ranking the safety performance of different non-signalized crosswalk locations to prioritize sites

for improvement.

2.3.2.2 Case-Control Methods

The case-control method is used to evaluate the effectiveness of treatments or other factors such

as the built environment or road user characteristics, as can be seen in many studies (Campbell,
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1997; Gibby, et al., 1994; Pfortmueller, et al., 2014; Zegeer, et al., 2001; Koepsell, et al., 2002).
Case-control studies compare crash risks between sites of interest and other sites used as control.
Some existing studies used case-control analysis to investigate the performance of crosswalk
markings by comparing the crash risk at marked crosswalks to unmarked crosswalks. Campbell
(1997) and Zegeer et al. (2001) found that crash frequency was higher at marked crosswalks.
Pfortmueller et al. (2014) also found crashes were more common at marked crosswalks, though

injury severity was significantly reduced.

2.3.2.3 Before-After Analysis Methods

Before-after methods investigate the effectiveness of site modifications by evaluating changes in
the crash risk before and after changes to facilities or the implementation of countermeasures
(Chen, 2010). Based on the comparison techniques, before-after analysis can be categorized into
before-after comparative methods (including the “naive” before-after and before-after with
comparison group) and before-after with Empirical Bayes (EB) (Hauer, et al., 2002). Jones &
Tomcheck (2000) compared the number of crashes before and after painted crosswalks were
removed from both signalized and non-signalized intersections, finding that crosswalk removal
reduced crashes significantly at the non-signalized sites. Liu et al. (2011) conducted an
observational before-after study using a comparison group and the EB method, estimating that
transverse rumble strips reduced crashes by 25 % at rural non-signalized pedestrian crosswalks

in Guangdong, China.

Some before-after studies also implement statistical models to predict the impact of the
built environment, traffic, law enforcement, and population on crash risk (Dobbs, 2009;
Kudryavtsev, et al., 2012). Regression modeling is used to investigate factors related to road
safety to identify key issues, find potential solutions, and make improvements (Diogenes &
Lindau, 2010; Ivan, et al., 2001; Olszewski, et al., 2015). Diogenes & Lindau (2010) used a
Poisson regression model to evaluate the probability of pedestrian crashes at midblock
crosswalks with and without traffic signals. Important factors contributing to crash risk included
the presence of bus stops, the number of traffic lanes, and the distance to the closest marked

crossing, while factors mediating risk included the presence of marked crosswalk and traffic
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signals, the average sidewalk width, and the hourly vehicle volume. Olszewsky et al. (2015) used
a binary logit model to investigate the effect of various factors on pedestrian fatality probability.
The study found that darkness, two-way roads, non-built-up area, and mid-block crossings

increased the probability of pedestrian deaths.

2.4 TRAFFIC DATA APPROACH

The traffic data approach refers to methods that rely on macroscopic traffic variables like volume,
density, mean speed, and average headway/gap as predictors of safety, in the sense of SMoS
(Yan, et al., 2008). All traffic data approaches have mainly been implemented to investigate
pedestrian exposure to motorized traffic, crash severity, and vehicle headways or gaps for
crossing (Huang, 2000). The traffic data approach is considered an aggregate analysis,
investigating road safety using macroscopic traffic information rather than individual events.
Existing studies have shown significant relationships between traffic variables and crash
frequency and probability (Garder, 2004; Islam, et al., 2014; Ivan, et al., 2001; Olszewski, et al.,
2015; Stipancic, et al., 2018; Zegeer, et al., 2005).

Studies using the traffic data approach have largely focused on speed and volume
measures. Although other traffic variables such as vehicle headway/gap and density might be
used as safety measures, quite a few existing studies adopting these measures could be found

(Schroeder, et al., 2010).

2.4.1 Data Collection Methods

Speed and volume data have been measured in numerous ways. Speed information has been
collected using more conventional tools including laser and radar guns (Gitelman, et al., 2016a;
Gitelman, et al., 2016b; Hakkert, et al., 2002; Johansson & Leden, 2007; Liu, et al., 2011) and
more advanced technologies including video cameras, LIDAR guns, and naturalistic driving data
(mainly GPS). Video cameras can record and save rich traffic information, making it an efficient
data collection method in the field of transportation. Wang et al. (2017) manually measured

vehicle speeds from collected video data. Fu et al. (2016) used automated video-based tracking
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technology to obtain vehicle crossing speeds at non-signalized crosswalk locations. Boyce &
Van Derlofske (2002) also relied on video data, though the collection and processing of the video
data was not explained. Naturalistic driving data is another promising data collection method for
rich positional and speed information collected using GPS devices, cameras, and other in-vehicle
sensors. Antov et al. (2007) and Bentley (2015) used naturalistic driving data to obtain vehicle
speeds at pedestrian crossings. Dougald et al. (2012) used a LiDAR gun, which provides very
accurate speed measurements, and mentioned the use of automatic traffic recorders (ATRs)
without providing more detail. Other studies did not provide or clearly explain their methods for
collecting speed data (Burritt, et al., 1990; Dhar & Woodin, 1995; Huang, et al., 1999; Karkee, et
al., 2010; Pécheux, et al., 2009).

Traffic volume data is fundamental in the field of transportation. Traffic sensors,
including inductive loops, video cameras, and magnetic plates have been widely used to collect
volume data more efficiently than manual counts by on-site observers (Iowa DOT, 2002; Leduc,
2008). Among the studies using traffic volume as a safety measure, Chi (2007) collected vehicle
volume information by manually reviewing collected video footage. Fu et al. (2016) relied on
automated video-based tracking technology to extract volumes of vehicles and pedestrians to
investigate pedestrian exposure to motorized traffic. Dhar & Woodin (1995) used traffic volume
as a safety measure but the data collection method is not described in the study. Given the
limited work conducted, it is not possible to draw further conclusions on methods in collecting

volume data applied in previous studies.

2.4.2 Methods and Measures

2.4.2.1 Vehicular Speed Method

Based on the principle of work and kinetic energy, a higher vehicle speed leads to an increase in
energy release if a crash happens, which brings up the probability of severe injuries or even
fatalities. Studies using vehicle speed as a safety measure have shown a strong relation between
speed, crash likelihood, and severity (WHO, 2004; European Commission, 2017; Kloeden, et al.,
1997; Garder, 2004; Nemeth, et al., 2014; Olszewski, et al., 2015). Various speed measures have
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been explored, including the driving speed at pedestrian crosswalk (Antov, et al., 2007), the
speed at a sight distance reference point (where the driver is able to see the crosswalk and stop
before the crosswalk, given the speed limit and a reaction time of 2.5 sec) (Bentley, 2015), and
the approach speed (Boyce & Van Derlofske, 2002; Van Derlofske, et al., 2003). The definitions
of these measures are often unclear if provided at all. The approach speed is measured at a
certain location before the crosswalk and has been applied by several researchers (Bentley, 2015;
Boyce & Van Derlofske, 2002; Gitelman, et al., 2016a; Hakkert, et al., 2002; Liu, et al., 2011;
Pécheux, et al., 2009). The passing speed is measured at the crosswalk (for example, the crossing
area defined by road markings) and has likewise been investigated thoroughly (Antov, et al.,
2007; Bentley, 2015; Dougald, et al., 2012; Fu, et al., 2016; Hakkert, et al., 2002; Wang, et al.,
2017). Other studies fail to state the way and the location of the speed measurement (Burritt, et
al., 1990; Dhar & Woodin, 1995; Gitelman, et al., 2016b; Huang, et al., 1999; Johansson &
Leden, 2007; Karkee, et al., 2010; Wallberg & Wisenbord, 2000).

In APPENDIX I, most of the studies using vehicle speed have focused on the evaluation
of countermeasures, designs, and facilities. Antov et al. (2007) found that average passing speeds
at non-signalized crosswalks in Estonia were generally unaffected by pavement markings, with
60% of drivers going over the speed limit. Bentley (2015) used both approach and passing speed
to show that both high-visibility crosswalks and crossing signs decreased the speed at the sight
distance reference point and the crosswalk. Boyce & Van Derlofske (2002) found that clear
striping did not reduce the mean approach speed, while an in-pavement flashing warning system
did initially reduce mean speed, though the effect diminished over time (Boyce & Van Derlofske,
2002; Van Derlofske, et al., 2003). Fu et al. (2016) used vehicle passing speed to compare the
safety performance of non-signalized crosswalks during day and at night conditions. Without
explaining the speed measure used, Burritt et al. (1990) found that flashing beacons failed to
reduce vehicle speeds at school crossings, Dhar & Woodin (1995) found that fluorescent strong
yellow-green signs (SYG) at marked crosswalks reduce vehicle speeds significantly, and Karkee
et al. (2010) observed that the average speed was significantly lower after installation of an in-

pavement flashing light system at marked crosswalks.
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2.4.2.2 Traffic Volume Method

In road safety, traffic volume is one key element affecting crash occurrence. Traffic volume
determines “the exposure to risk that pedestrians are facing when they cross the road” (Ivan, et
al., 2012). The positive correlation between exposure and crash likelihood has been
demonstrated in previous studies (Islam, et al., 2014; Ivan, et al., 2001). Volume is the most
common exposure measure. The measures applied in volume-based methods include either
vehicle volume or pedestrian volume, or some combination of both (for instance, their product).
Several existing studies utilizing the volume method are identified in APPENDIX I. Schroeder et
al. (2010) used the traffic volume as the safety measure to compare between two non-signalized
crosswalks at roundabouts, and suggested that the site with lower vehicle volume is safer with
the reduced likelihood of encountering a vehicle in the pedestrian crossing. Chi (2007) found that
adding crosswalk painting at the studied locations was associated with an increase in both
pedestrian and vehicle volumes. Fu et al. (2016) found that exposure was much higher during the
day than at night at several non-signalized crosswalk locations. Dhar & Woodin (1995) looked at
the volume before and after the installation of fluorescent yellow-green signs and found that road
user volumes did not change after the installation. Traffic volume was used as a safety measure
(exposure to motorized traffic) though not being clearly explained in that paper (Dhar & Woodin,
1995). According to Tarko et al. (2009), although traffic volume and flow are “necessary for
crashes to happen” (Tarko, et al., 2009), they may be difficult to study as “most of the safety
treatments do not affect traffic volume” (Tarko, et al., 2009). This may explain why few studies

have used SMoS based on traffic volume to validate treatment performance.

2.5 CONFLICT APPROACH

The conflict approach, likely the oldest and most common safety diagnosis approach relying on
SMoS, considers traffic conflicts, interactions between road users, or evasive maneuvers (Sayed,
et al.,, 2013). The general conflict definition is “an observable situation in which road users
approach each other to such an extent that there is a risk of collision if their movements remain
unchanged” (Tarko, et al., 2009). Islam et al. (2014) and Ivan et al. (2012) showed that conflicts

were significant in predicting crashes occurring at non-signalized crosswalk locations, and

33



suggested conflicts “may be a good surrogate for crashes in analyzing pedestrian safety”.
Conflict frequency and severity are analyzed in both aggregate and disaggregate ways for the
purpose of safety evaluation. Conflict severity is about the probability of a crash and the severity
of the potential crash (Laureshyn, et al., 2017) which is determined using different measures

such as PET and TTC.

2.5.1 Data Collection Methods

Traffic conflict data can be collected manually, in the field, or from video recordings.
Alternatively, automated video-based tracking technology can extract positional and speed
information of road users, making it a more efficient approach. Most existing studies based on
evasive maneuvers have relied on field observations (Brumfield & Pulugurtha, 2011; Clark, et al.,
1996; Hakkert, et al., 2002; Islam, et al., 2014; Ivan, et al., 2012; Mitman, et al., 2010; Van
Houten & Malenfant, 1992; Van Houten, 1988; Van Houten, et al., 1998; Van Houten, et al.,
2001; Van Houten, et al., 2002). Other researchers manually post-processed collected video data
(Boyce & Van Derlofske, 2002; Dobbs, 2009; Fitzpatrick, et al., 2006; Gitelman, et al., 2016a;
Gitelman, et al., 2016b; Nteziyaremye, 2013; Van Derlofske, et al., 2003).

Most time-based studies use video data collection, with some extracting information
manually (Johansson & Leden, 2007). As with conflict methods, researchers have used video-
based tracking to extract data more efficiently. Cafiso et al. (2011) used the Highway
Engineering Research Group (HERG) software and Fu et al. (2016) used Traffic Intelligence
(Jackson, et al., 2013). One study recorded information (Bella & Silvestri, 2015). Other studies,
using video data, did not describe the tool used for extracting information (Almodfer, et al., 2016;

Sun & Lu, 2011).

2.5.2 Methods and Measures

Conlflicts can be measured using human observation of evasive maneuvers, including urgent
evasive maneuvers (such as rushing to complete or swerving) and less urgent ones (e.g. reducing

the speed or waiting to cross) made either by the pedestrian or the driver to avoid a crash
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(Perkins & Harris, 1968; Hughes, et al., 2001), time-based measurements which quantify the
proximity of the pedestrian and vehicle in term of time (Hydén, 1987; Svensson & Hydén, 2006),

or acceleration or deceleration noise (Shoarian-Sattari & Powell, 1987).

2.5.2.1 Methods based on Evasive Maneuvers

A large number of past studies have focussed on conflicts, interactions where at least one user
must make some predefined evasive maneuver to avoid a crash (Dobbs, 2009; Clark, et al., 1996;
Dhar & Woodin, 1995; Fitzpatrick, et al., 2006; Gitelman, et al., 2016a; Gitelman, et al., 2016b;
Gomez, et al., 2011; Hakkert, et al., 2002; Jiang, 2012; Jiang, et al., 2015; Van Houten, 1988;
Van Houten & Malenfant, 1992; Van Houten, et al., 1998; Van Houten & Malenfant, 1999; Van
Houten, et al., 2001; Van Houten, et al., 2002). Evasive maneuvers include reactions such as
rushing to complete or aborting a crossing (for pedestrians) and swerving, lane changing, or
braking (for drivers). Dhar & Woodin (1995) defined pedestrian-vehicle conflicts as involving
“swerving or sudden braking” and found that the number of conflicts at non-signalized
crosswalks decreased after installing fluorescent yellow-green signs. Brumfield & Pulugurtha
(2011) considered six different conflict situations including sudden braking or swerving, lane
changing, and several pedestrian movements. The study found that distracted drivers were four
times more likely to be involved in conflicts. Fitzpatrick et al. (2006) defined conflicts as
interactions where either a pedestrian or vehicle takes evasive action, though they observed only
one such conflict. Gitelman et al. (2016a) used conflicts defined as situations involving evasive
maneuvers (sudden changes in speed or the direction to avoid a crash) to show that a raised
pedestrian crosswalk with preceding speed humps reduced the number of pedestrian-vehicle
conflicts. The same method was used to show that removing crosswalk markings at non-
signalized crossings reduced rates of pedestrian-vehicle conflicts on multilane divided urban
roads (Gitelman, et al., 2016b). Using both crash and near-crash data from driving simulation
experiments, Gomez et al. (2011) found that advanced yielding signs reduced crashes and near
crashes by 50 % at intersections. Hakkert et al. (2002) found a significant reduction in the
conflict rate (number of conflicts per pedestrian at the crosswalk) after the implementation of a

pedestrian-detecting crosswalk warning system.
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A few studies relied on less urgent and more frequent evasive maneuvers, such as
reducing the speed or standing and waiting to cross. Huang et al. (1999) defined conflicts as
having occurred when a motorist slowed or stopped to avoid hitting a pedestrian or when a
pedestrian changed speed or stopped to avoid being struck by a vehicle. The authors found that
pedestrians crossing at the flashing crosswalk experienced fewer conflicts than those who
crossed elsewhere. Boyce & Van Derlofske (2002) described conflicts as “an occasion when a
driver moves over the crosswalk while a pedestrian is on the crosswalk, the vehicle passing
either in front or behind the pedestrian”, which were reduced with in-pavement flashing warning
lights. Mitman et al. (2010) used “multiple-threat opportunities as a safety measure, defined as
“the number of times in which a driver yielded in one lane (the first lane encountered in the
crossing direction of the pedestrian), whereas a driver in the adjacent lane of the same direction
of travel (the next lane encountered) did not yield”. Multiple-threat opportunities should be
considered conflicts since they are “observable situation[s] in which road users approach each
other to such an extent that there is a risk of collision if their movements remain unchanged”.
The authors showed that the probability of being involved in multiple-threat opportunities at
marked crosswalks was higher than at unmarked crosswalks on multi-lane roads. Wang & Fang
(2008) proposed using pedestrian walking speed to measure pedestrian evasions. Conflicts were
categorized, using crossing speeds of 0.8-1.4 m/sec in front of approaching vehicles to represent
safe conditions, 1.4-1.6 m/sec to represent slight conflicts, above 1.6 m/sec to represent serious

conflicts, and highly abnormal or inconsistent pedestrian gaits to indicate extreme conflicts.

2.5.2.2 Methods Using Time-Based Measurements

Probably the most mature and most widely-used conflict analyses use time-based measurements
to define and evaluate traffic conflicts (Zhang, et al., 2014). Conflicts between pedestrians and
vehicles are often classified into discrete severity levels according to different time thresholds of

the given time-based measurement.

One common time-based measurement for pedestrian-vehicle interactions is Time-to-
collision (TTC). TTC is defined as the expected time for two road users to collide if they

continue their trajectories on a collision course (St-Aubin, 2016). TTC between two road users
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on a collision course is measured based on their current states (such as the speed and the
acceleration) and locations, and their potential motions after (St-Aubin, 2016). The simplest, and
most classic, hypothesis in motion prediction for TTC is motion prediction at constant velocity,
where TTC is defined as “the expected time for two road users to collide if they remain at their
present speed, direction, and on the same trajectory” (Hayward, 1971). An Italian study proposed
the Pedestrian Risk Index (PRI) based on the TTC and vehicle speeds to link both the probability
of collision and the severity of the consequences (Cafiso, et al., 2011). The study found that
traffic calming techniques of speed humps and raised crosswalks reduced the severity of
conflicts compared to traditional crosswalk markings. Johansson & Leden’s (2007) used time-to-
accident (TA), which is the TTC when one of the road users starts an evasive action (Svensson,
1998). Yet, limited studies investigating pedestrian safety at non-signalized crosswalks have
used TTC, perhaps due to /) the less-predictable pedestrian motion that differs from simple
constant velocity; and 2) the higher complexity of TTC measures using advanced motion

prediction methods (Mohamed & Saunier, 2013) for pedestrian-vehicle interactions.

Post-Encroachment Time (PET) is another popular time-based measurement. PET is
defined as “the time between the moment that the first road user leaves the virtual collision zone
and the moment the second road user reaches it”. PET is of a completely different nature from
TTC which is continuous and relies on motion prediction methods (Varhelyi, 1998). Fu et al.
(2016) defined conflicts as pedestrian-vehicle interactions with a PET of less than 5 seconds and
dangerous conflicts as interactions with a PET of less than 1.5 seconds. The proportion of
dangerous conflicts was found to be higher at night than during the day. Almodfer et al. (2016)
proposed the concept of the lane-based PET (LPET) which regards the collision zone as a width
of the travel lane, instead of the width of the vehicle as normally used in PET measures, to

identity pedestrian-vehicle conflicts.

Other indicators such as vehicle acceleration/deceleration or rotation information
(Olszewski, et al., 2016) can also been used to represent the severity of pedestrian conflicts.

However, nothing has been found in previous studies.
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2.6 BEHAVIORAL APPROACH

Crash reconstruction and witness accounts have shown the strong relationship between crashes
and behavior at non-signalized crosswalk locations (Cottrell & Mu, 2005). This may explain why
the behavioral analysis approach, which considers road user behavior as a safety indicator, is the
most popular among the reviewed studies (nearly 70 %). Although vehicles are required to yield
to pedestrians at non-signalized crosswalks, they may not comply and pedestrians need to pay
attention to passing vehicles to make safe crossing decisions. Safety-related behaviors include
yielding, crossing movements, and pedestrian and vehicle checking behavior (Cinnamon, et al.,

2011), and are typically studied at the microscopic level (for each interaction).

2.6.1 Methods and Measures

The behavior of a road user is either active or reactive. Active behavior includes pedestrian and
driver behaviors determined by intrinsic movement patterns and habits, such as distraction,
checking habits, and pedestrian walking patterns of speed and crossing location, or other
behaviors not triggered by a threat from the road environment. Reactive behaviors, including
yielding maneuvers, pedestrian crossing decisions, or gap acceptance, are actions taken in

response to external triggers from the road environment (potential collisions).

2.6.1.1 Active Behavior Methods

Different studies have used active behaviors to investigate pedestrian safety at non-signalized
crosswalks (Bentley, 2015; Brewer, et al., 2015; Brumfield & Pulugurtha, 2011). The following
sections summarize studies focused on behavior and studies using behavior as a measure for
safety analysis. Pedestrian active behaviors include distraction, gaze behavior, and walking
patterns, while driver active behaviors include distraction, glancing behavior, and speed

adaptation.
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(1) Pedestrian Distraction

At crosswalks, pedestrian distraction refers to situations in which pedestrians focus on something
other than crossing the street. Distractions include “wearing headphones, talking on a cell phone,
eating, drinking, smoking or talking” (Bungum, et al., 2005). Several studies have focused on
pedestrian distractions (Brumfield & Pulugurtha, 2011; Bungum, et al., 2005; Harrison, 2017; Li
& Ming, 2016; Pulugurtha, et al., 2011; Solah, et al., 2016). In a study conducted on the campus
of University of North Carolina at Charlotte involving seven different non-signalized crosswalk
locations, Brumfield & Pulugurtha (2011) found that 29 % of pedestrians were noticeably
distracted as they crossed the street. Brumfield & Pulugurtha found that drivers yielded more to
distracted pedestrians; however, careless and aggressive crossing decisions by pedestrians
associated with distraction increased the crash risk for pedestrians (Brumfield & Pulugurtha,
2011). Bungum et al. (2005) found that about 20 % of pedestrians were distracted when crossing
under the white “walk” signal based on observations from a T intersection in Las Vegas, Nevada.
According to Harrison (2017), 45 % of pedestrians were distracted by their cell phone at two

different crosswalks on the campus of Mississippi State University.

(2) Pedestrian Gaze Behavior

Pedestrian gaze is required for pedestrians to check for oncoming vehicles, important for
ensuring safe passage, as considered in several studies (Harrison, 2017; Knoblauch, et al., 2001;
Nteziyaremye, 2013). Knoblauch et al. (2001) considered “pedestrian looking behavior” using
the percentage of pedestrians who performed gaze maneuvers as a measure of effectiveness and
found an increase in gaze maneuvers after marking the crosswalk. Others investigated the
number of looks made by crossing pedestrians (Harrison, 2017) or average head movements

before and during crossing (Nteziyaremye, 2013).

(3) Pedestrian Crossing Patterns

Pedestrian crossing patterns refer to the ways in which pedestrians behave when they approach
and cross the street without response to external influence (interactions). Pedestrian crossing
patterns found in past studies mainly consider the crossing speed (Fitzpatrick, et al., 2006; Goh,

et al., 2012; Jiang, 2012; Jiang, et al., 2015; Nteziyaremye, 2013; Shi, et al., 2007a; Shi, et al.,
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2007b) and compliance in using the designated crosswalk area (Fitzpatrick, et al., 2006;
Gitelman, et al., 2016a; Hakkert, et al., 2002; Knoblauch, et al., 2001; Sisiopiku & Akin, 2003).
Fitzpatrick et al. (2006) studied transit rider safety at non-signalized crosswalks by considering
the speed of pedestrians crossing to reach a bus. Goh et al. (2012) found that pedestrians at non-
signalized crosswalks have significantly higher crossing speeds compared to those at signalized
crosswalks. Huang & Cynecki (2001) used the share of pedestrians crossing within the crosswalk
boundaries to investigate the performance of the raised intersection treatment, finding an
improvement from 11 % to 38 %. Gitelman et al. (2016a) also reported an increase in the share
of pedestrians crossing within the boundaries of raised pedestrian crosswalks combined with
preceding speed humps. Sisiopiku & Akin (2003) defined the crossing compliance rate as the
number of pedestrians crossing at the crosswalk area (CA), defined as the area within 3 m from
both sides of the crosswalk painting, over the number of pedestrians in the larger crosswalk

influence area (CIA), in a period of time.

(4) Driver Distraction

Like pedestrian distraction, driver distraction refers to situations in which drivers focus on
something other than paying attention to pedestrians and navigating the crossing. Driver
distractions such as talking on the phone or texting have been normally investigated (Brumfield
& Pulugurtha, 2011; Pulugurtha, et al., 2011). Brumfield & Pulugurtha (2011) found that 18 %
of drivers were noticeably distracted with 9% talking on the phone and 3% texting, and that
distracted drivers were about 15 times less likely to yield to pedestrians. Believing yielding rate
was “an indicator of the relative safety” (Brumfield & Pulugurtha, 2011), the authors concluded
that crash risks are higher for distracted drivers: Pulugurtha et al. (2011) found that distracted

drivers were four times more likely to be involved in a conflict.

(5) Glancing Behavior

Driver glancing is required for drivers to check for pedestrians who intend to cross the street.
Several authors who studied driver glancing behavior at non-signalized crosswalk locations
(Fisher & Garay-Vega, 2012; Gomez, et al., 2011; Gomez, et al., 2014). Fisher & Garay-Vega
(2012) found that advanced yielding markings and prompt signs increased the likelihood that a
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driver glances towards pedestrians and increases the distance of the first glance towards the
pedestrian. Gomez et al. (2011) showed that at advanced yielding markings, 54 % of drivers
glanced toward pedestrians, compared to 40 % at standard crossing markings. (Van Houten, et al.,

2001).

(6) Active Speed Adaptation

Unlike speed measures discussed in the traffic data approach, speed adaptation focuses on
maneuvers drivers take to avoid dangerous situations, measured as a speed reduction or
deceleration rate. Active behaviorr studies consider that vehicles crossing a pedestrian crosswalk
often change speed independently of pedestrian presence. Antov et al. (2007) found minor
changes in speed near zebra crosswalks. Bentley (2015) used acceleration rate and gas pedal
position to evaluate the effectiveness of high-visibility crosswalks (HVC) and pedestrian
crossing signs. The study found that HVCs increase the magnitude of the vehicle deceleration
regardless of pedestrian presence. Smith et al. (2009) used deceleration rate to show similar
driver behavior at active and passive warning systems at non-signalized intersections and mid-

block crossings.

2.6.1.2 Reactive Behavior Methods

Reactive behavior methods consider pedestrian and driver behaviors undertaken in response to
other road user actions and are more common than active behavior methods in crosswalk safety
studies. Common pedestrian reactive behaviors include waiting behavior (time) and crossing
decisions (gap acceptance), while vehicle reactive behaviors include yielding (yielding rates and
the choice of the stopping distance to crosswalk) and speed adaptation behaviors

(acceleration/deceleration maneuvers).

(1) Waiting Behavior

Pedestrian waiting behaviors include the decision to wait (Jiang, 2012; Jiang, et al., 2015) and
the time spent waiting (Jiang, 2012; Jiang, et al., 2015; Shi, et al., 2007a; Shi, et al., 2007b;

Ibrahim, et al., 2005). Upon arrival at a crossing, pedestrians decide whether to wait for
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approaching vehicles. An alert pedestrian will stop and wait until the oncoming vehicle shows
the intention to yield. Jiang (2012) compared waiting decisions in China and Germany and found
that over 80 % of pedestrians in China stopped at the roadside and waited to cross in China,
compared to 30 % in Germany. Further results were published in Jiang et al. (2015). Pedestrian
waiting time also affects pedestrian safety. Extended waiting times could increase exposure to
approaching vehicles and result in lost patience and risky crossing attempts, as also illustrated in
(Brosseau, et al., 2013). Shi et al. (2007a) found pedestrians were willing to accept shorter gaps
after longer waiting times. Other studies (Pécheux, et al., 2009; Pulugurtha, 2015) used
observations of stranded pedestrians who had to wait for “a significantly long time” before being

able to cross safely (Pécheux, et al., 2009).

(2) Crossing Decisions

During pedestrian-vehicle interactions, decisions made by pedestrians are one of the key
elements to be considered. Safe crossing decisions reduce the risk of collision, while risky
decisions (very short gaps) could result in dangerous situations involving hard vehicle braking,
near-misses, or even crashes. Accepted gap is the most common measure used to describe
pedestrian crossing decisions (Boroujerdian & Nemati, 2016; Brewer, et al., 2006; Jiang, 2012;
Jiang, et al., 2015; Kadali & Perumal, 2016; Kadali, et al., 2014; Nteziyaremye, 2013; Pawar &
Patil, 2015; Schroeder, et al., 2014; Sun, et al., 2003). Brewer et al. (2006) explored pedestrian
gap acceptance at uncontrolled mid-block crosswalks and found that the 85 centile of the
accepted gaps ranged from 5.3 to 9.4 s. Jiang (2012) and Jiang et al. (2015) found that
pedestrians in China had a slightly smaller acceptable gap than those in Germany, recommending
a critical gap of 5.0 seconds for both Chinese and Germany pedestrians. Statistical techniques
(Boroujerdian & Nemati, 2016; Kadali & Perumal, 2016; Schroeder, et al., 2014; Sun, et al.,
2003) and machine learning methods (Kadali, et al., 2014) have been used to model pedestrian
gap acceptance and explore factors contributing to gap acceptance. Other than gap acceptance,
Fu et al. (2018) investigated pedestrian crossing decisions based on the status of the approaching
vehicle measured using time-to-crossing and required deceleration rate. Xiang et al. (2016)
applied Monte-Carlo simulation to evaluate pedestrian safety considering both pedestrian gap

acceptance and waiting time.
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(3) Yielding Behavior

Vehicle yielding behavior is believed to be one of the most important indicators of pedestrian
safety at non-signalized crosswalks and has therefore been most widely studied within behavioral
approaches. Many studies (around 30 studies included in this paper) used yielding rates as a
measure of effectiveness to validate the performance of pedestrian treatments or
countermeasures at non-signalized crosswalks. For instance, Brewer et al. (2015) found the
installation of pedestrian hybrid beacon (PHB) or rectangular rapid flash beacon (RRFB)
treatments improved yielding rates substantially and that yielding rates were higher for
pedestrians waiting in the vehicle lane (unstaged) compared to pedestrians who waited on the
curb (staged). Gitelman et al. (2016a) found that raised pedestrian crosswalks and preceding
speed humps improved yielding rates. Chi (2007), Knoblauch et al. (2001), Mitman et al. (2008),
and Mitman & Ragland (2008) compared yielding rates at marked and unmarked crosswalks.
Brewer et al. (2015), Domarad et al. (2013), Fitzpatrick et al. (2011), Shurbutt & Van Houten
(2010), Fitzpatrick et al. (2016a), and Fitzpatrick et al. (2016b) explored the efficiency of the
RRFB sign in protecting pedestrians at crosswalks based on yielding rates of vehicles. Other
studies considered yielding rates with respect to pedestrians who were distracted (Brumfield &
Pulugurtha, 2011), considering variations across ethnicity (Coughenour, et al., 2017; Goddard, et
al., 2014), staged and unstaged (Brewer, et al., 2015; Dulaski & Liu, 2013), different ages and
gender (Rosenbloom, et al., 2006; Wa, 1993), with disabilities (Schroeder, et al., 2010;
Schroeder, et al., 2014), and with different gestures (Zhuang & Wu, 2014).

Some studies specially investigate vehicle yielding behavior during pedestrian-vehicle
interactions (Chai & Zhao, 2016; Jiang, 2012; Jiang, et al., 2015; Ibrahim, et al., 2005; Vérhelyi,
1998) or model vehicle yielding behavior and investigate factors related to vehicle yielding
(Antov, et al., 2007; Schroeder, 2008; Schroeder & Rouphail, 2011; Sun, et al., 2003). Millard-
Ball (2016) used game theory to analyze relationships between pedestrians and autonomous
vehicles based on yielding. Fu et al. (2016) compared vehicle yielding behavior in daytime
conditions to nighttime conditions at non-signalized crosswalks. Fu et al. (2018) proposed a new
framework to deal with limitations of simple yielding rates based on the status of approaching
vehicles and their ability to conduct a successful yielding maneuver. Non-yielding maneuvers

were classified as non-yielding violation, uncertain non-yielding maneuver, and non-infraction

43



non-yielding, and yielding rate and yielding compliance were redefined. Some studies have also
looked at yielding distance from the crosswalk (Karkee, et al., 2010) or “the distance that
motorists stopped before the crosswalk when yielding to pedestrian” (Van Houten & Malenfant,
1992; Van Houten, 1988; Van Houten, et al., 1998; Van Houten, et al., 2001; Van Houten, et al.,
2002).

(4) Reactive Speed Adaptation

Different from active speed adaptations which occur independently from pedestrian presence,
reactive speed adaptations are changes in vehicle speed when approaching pedestrians who are
crossing or intend to cross the street. Knoblauch & Raymond (2000) compared vehicle speed
reductions before and after adding the crosswalk marking, under three pedestrian presence
conditions (no pedestrian, pedestrian looking, and pedestrian not looking). The pedestrian
presence was defined as the presence of staged pedestrians. The study found that the vehicle
speed reduction was much smaller when pedestrians were looking at approaching vehicles (0.28
km/h), compared to when pedestrians were not looking (2.61 km/h) and when there were no
pedestrians (3.32 km/h). Varhelyi (1998) investigated vehicle speed adaptations during
encounters and non-encounters with pedestrians?, and speed adaptations without pedestrian
presence. Most vehicles did not adapt their speed or yield the right-of-way. Other studies
specifically considered vehicle decelerations to investigate pedestrian-vehicle interactions (Jiang,

2012).

2.6.2 Data Collection Methods

In general, behavioral analysis studies have used data collected from video cameras, field
observations, and other sensors (LiDAR and radar). Other studies have used naturalistic driving

data and driving or pedestrian simulation.

2 In this study, situations with pedestrian presence are defined as “situations when an approaching car is within 70 m
from the zebra crossing and there is a pedestrian presence (pedestrian approaching or crossing) at the zebra crossing” (Varhelyi,
1998). Situations with pedestrian presence are further classified as encounters and non-encounters. Encounters are defined as
“situations in which the approaching car and the pedestrian could theoretically arrive at the meeting point at the same time (they
are on a collision course)” (Varhelyi, 1998). The rest of the situations with pedestrian presence are non-encounters. One can refer
to the study for more details.
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2.6.2.1 Active Behavior Methods

Pedestrian distraction has been studied using manual field observations (Brumfield & Pulugurtha,
2011; Bungum, et al., 2005; Li & Ming, 2016) and video data, or some combination thereof
(Harrison, 2017; Solah, et al., 2016). For pedestrian gaze behavior, Knoblauch et al. (2001)
manually collected data from field observations, Harrison (2017) manually extracted information
from video data, and Nteziyaremye (2013) combined both video data collection and field
observation methods. For pedestrian crossing behavior, most studies relied on data extracted
manually from videos (Fitzpatrick, et al., 2006; Fizpatrick, et al., 2007; Gitelman, et al., 2016a;
Huang, et al., 2000; Ibrahim, et al., 2005; Shi, et al., 2007a; Shi, et al., 2007b; Sisiopiku & Akin,
2003), semi-automatically using computer-based tools (Jiang, 2012; Jiang, et al., 2015), collected
using field observations (Goh, et al., 2012), or a combination of video and field work

(Nteziyaremye, 2013).

Driver distraction is mainly studied using only field observations (Brumfield &
Pulugurtha, 2011; Pulugurtha, et al., 2011). Most studies exploring driver glancing behavior used
driving simulation experiments with eye trackers or cameras (Fisher & Garay-Vega, 2012;
Gomez, et al., 2011; Gomez, et al., 2014). As an alternative, data for vehicle speed adaptations
have been collected using naturalistic driving data (Antov, et al., 2007; Bentley, 2015) and

automatically extracted from video (Smith, et al., 2009).

2.6.2.2 Reactive Behavior Methods

Pedestrian waiting behavior has largely been studied using video data and manual techniques, e.g.
(Ibrahim, et al., 2005; Sisiopiku & Akin, 2003), though some have extracted data using
computer-based tools, e.g. (Jiang, 2012; Jiang, et al., 2015). Likewise, crossing decisions have
been studied manually (Brewer, et al., 2006; Kadali & Perumal, 2016; Sun, et al., 2003) and
using computer-based tools (Boroujerdian & Nemati, 2016; Fu, et al., 2018; Jiang, 2012; Jiang,
et al., 2015). Pawar & Patil (2015) and Schroeder et al. (2014) relied on field observations, while
Nteziyaremye (2013) used both manual observations and video. A few studies have used

experiments including simulators and picture- or video-based surveys (Granié, et al., 2014; Liu
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& Tung, 2014; Oxley, et al., 2005). Xiang et al. (2016) simulated pedestrian crossing decisions

and safety using the Monte Carlo simulation method.

Vehicle yielding behavior has generally been investigated using field-observed data
(Brumfield & Pulugurtha, 2011; Cambridge, 2012; Hakkert, et al., 2002; Knoblauch, et al., 2001;
Mitman & Ragland, 2008; Van Houten, et al., 2002; Zhuang & Wu, 2014) or data manually
extracted from videos (Brewer, et al., 2015; Chi, 2007; Fitzpatrick, et al., 2006; Ibrahim, et al.,
2005; Sun, et al., 2003). Chai & Zhao (2016) investigated vehicle yielding behaviors using
driving simulators. Reactive speed adaptations have relied on video data collection and
computer-based tools (Jiang, 2012) and field data collection using speed measuring devices

(Varhelyi, 1998).

2.7 PERCEPTION APPROACH

Perceptions of safety and the road environment may have a substantial impact on safety as they
influence road user behavior. Perception-based approaches investigate for example perceptual
factors that may affect pedestrians’ decisions to use a crosswalk. Studies have focused on
different types of perceptions, including sense of safety, awareness, and knowledge of crossing
treatments, and main concerns during crossing activities. Perception analysis has been used to
extract road user requirements, to investigate their awareness and acceptance of various

treatments, and to better understand the gap between perceptions and actual safety.

2.7.1 Data Collection Methods

Studies on perception analysis have most commonly used surveys through on-site questionnaires
or face-to-face interviews (Boyce & Van Derlofske, 2002; Dhar & Woodin, 1995; Fitzpatrick, et
al., 2004; Huang, et al., 1999; Ibrahim, et al., 2005; Mitman & Ragland, 2007). Chai & Zhao
(2016) conducted an “on-site” questionnaire after driving simulation experiments involving 50
participants. Zhuang & Wu (2014) conducted a questionnaire by recruiting drivers for
participation. To collect pedestrian perception information, Nteziyaremye (2013) used an on-

street face-to-face interview. Johansson & Leden (2007) conducted a school survey for children
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about their safety perceptions. Some studies have distributed surveys electronically, including
Sisiopiku & Akin (2003) and Dougald et al. (2012), who used both an on-site questionnaire and
an electronically-distributed survey. Dutt et al. (1997) relied on physical surveys mailed or
handed-out and surveys distributed via email. Traditional methods of distributing surveys by

mail or by phone have seen limited use in recent years due to poor efficiency and return rates.

2.7.2 Methods and Measures

The different measures used in existing studies can be classified as: 1) focusing on perceived
safety of drivers and pedestrians; 2) investigating road user knowledge and preferences; 3)

exploring the concerns and suggestions of pedestrians, and; 4) investigating road user motives.

2.7.2.1 Methods Considering Perceived Safety

As perceptions of safety may mirror reality, they might be used as SMoS, as demonstrated in
several studies (Boyce & Van Derlofske, 2002; Chai & Zhao, 2016; Dougald, et al., 2012;
Fitzpatrick, et al., 2004; Ibrahim, et al., 2005; Johansson & Leden, 2007; Sisiopiku & Akin,
2003). Boyce & Van (2002) surveyed pedestrians about two crosswalk treatments: repainting
crosswalk striping, and repainting with the installation of in-pavement flashing warning lights.
Results showed that while pedestrians considered both crosswalks to be moderately safe, in-
pavement flashing warning lights did not change their perceptions of safety. Chai & Zhao (2016)
investigated the effect of exposure to aggressive stimuli (provocations from other vehicles
including sustained honking and improper passing) on driver perceived risk. They found that
perceived risks significantly increased after repeated provocations. Dougald et al. (2012)
investigated the performance of zig-zag markings through pedestrian and driver surveys. 61% of
drivers agreed that the markings increased their awareness or attention, and 56% of drivers
agreed that the markings increased pedestrian and cyclist safety. 58% of pedestrians and cyclists

thought zig-zag markings improved their safety.
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2.7.2.2 Methods Considering Knowledge and Preference

Knowledge of and preferences towards crossing countermeasures and treatments should be
considered in safety studies, as they may affect road user maneuvers, compliance, and safety.
Several studies have considered road user knowledge and preference in investigating pedestrian
safety at non-signalized crosswalk locations (Dhar & Woodin, 1995; Dougald, et al., 2012; Dutt,
et al., 1997; Fitzpatrick, et al., 2004; Huang, et al., 1999; Mitman & Ragland, 2007; Sisiopiku &
Akin, 2003; Zhuang & Wu, 2014). Dhar & Woodin (1995) conducted a survey of pedestrians,
nearby residents, and passing motorists regarding their preferences towards the standard
crosswalk sign and the strong yellow green (SYG) sign. 73% of participants preferred the SYG
signs, while 6% preferred the standard option. Dutt et al. (1997) also found SYG signs were
preferred in general. Fitzpatrick et al. (2004) looked at pedestrian preferences of several
treatments (two marked crosswalks, an in-roadway light treatment, a Hawk treatment, two split
midblock signal treatments, and a countdown pedestrian timer) across seven sites. Huang et al.
(1999) explored pedestrians’ understanding of the pedestrian crosswalk warning system with in-
pavement flashing lights surrounding the crosswalk area, activated by pedestrians walking
between sensors. Although the system was successfully activated by pedestrians in 75% of the
cases, results showed that most pedestrians did not know how to activate the system. Zhuang &
Wu (2014) summarized 11 types of pedestrian gestures signaling intent to cross at non-signalized
crosswalk locations, and a survey was conducted to study driver understanding of pedestrian
crossing intentions. Sisiopiku & Akin (2003) assessed pedestrian knowledge of right-of-way and
their preference of different types of crosswalk. Mitman & Ragland (2007) explored pedestrian
and driver knowledge of the right-of-way at marked and unmarked crosswalks. Results clearly

showed the uncertainty about pedestrian right-of-way laws among both pedestrians and drivers.

2.7.2.3 Methods Considering Concerns and Suggestions

By understanding pedestrians’ concerns and suggestions regarding safety factors and crossing
activities, improvements to pedestrian perceptions of safety and actual safety are possible. Some
studies have used pedestrian concerns and suggestions to find and solve safety issues (Fitzpatrick,

et al., 2004; Sisiopiku & Akin, 2003). Fitzpatrick et al. (2004) collected suggestions on elements
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pedestrians found confusing and elements that could improve safety, finding that the
unpredictability of drivers was a main concern. Sisiopiku & Akin (2003) asked for pedestrians’
opinions on major problems at designated crosswalks, though responses were not clearly

summarized.

2.7.2.4 Methods Considering Motives

A better knowledge of user motives (mainly pedestrians’ willingness to use the crosswalk
properly and drivers’ willingness to yield right-of-way) improves the understanding of factors
related to pedestrian safety. Sisiopiku & Akin (2003) considered the motives of pedestrians
behind the spatial non-compliance behavior® (Nteziyaremye, 2013). A survey was designed to
“reveal motivational factors determining the performed unsafe road-crossing behavior”
(Nteziyaremye, 2013). Results from the survey showed that the spatial crossing compliance rate
calculated through survey results was 59%, which was almost exactly equal to the crossing
compliance rate calculated according to field observations (58.7%), indicating “the reliability of

the perception data” (Sisiopiku & Akin, 2003).

2.8 ISSUES AND CHALLENGES IN NON-SIGNALIZED CROSSWALK SAFETY
ANALYSIS

Despite the important efforts in pedestrian safety research at non-signalized crosswalk locations,
some limitations and research gaps still exist. Specific issues are summarized in three areas: lack

of consistency in the terms and definitions, methodological limitations, and data issues.

2.8.1 Terms and Definitions

In this research area, terms and definitions for different variables and indicators have varied or
have been used interchangeably in different studies. For example, crash data studies (Dobbs,

2009; Gibby, et al., 1994; Olszewski, et al., 2015; Zegeer, et al., 2001) have used “risk”, “rate”,

3 Nteziyaremye (2013) categorized pedestrian non-compliance behavior as spatial non-compliance
(pedestrian crossing out of the crosswalk area or jay-walking) or temporal non-compliance (red light violation).
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and “probability” to present the probability of an outcome of a crash (e.g. number of crashes per
1 million people or vehicles, in a given location/area), while other studies (Kudryavtsev, et al.,
2012; Chu, 2006; Chu, et al., 2008) used “rate” to refer to the proportion of a certain type of
crash (e.g. fatal crashes, or crashes classified by types) among the total number of crashes.
Traffic exposure most commonly refers to traffic volumes or average daily traffic estimates,
though some studies have used exposure measures based on traffic conflicts (Fu, et al., 2016). In
the behavior analysis approach, yielding compliance and yielding rates have been used
interchangeably. Additionally, different parameters and thresholds have been applied in past
studies. For instance, determining when a pedestrian arrives at the beginning of the crosswalk
and should be noticed and yielded by the driver is relatively subjective — Van Houten et al. (1998)
defined “pedestrian presence” as pedestrians positioned 30 cm from the curb facing the
crosswalk, while Fu et al. (2018) used “pedestrian occurrence” and a threshold of 1 m. The use
of different thresholds for determining conflict severity (serious conflicts) also lacks validation.
Moreover, many studies included variables and indicators (such as yielding compliance and
yielding rate) without definition or explanation, and terms remain unexplained and without a

detailed account of how to implement them.

2.8.2 Methodological Limitations

Some methods introduced or applied in previous studies have limitations. One is that many
methods relying on historical crash data and statistical modeling have poor fit and accuracy
(Hummer, et al., 2000; Ye, et al., 2012). Approaches based on SMoS also have limitations.
Traffic analysis considers the likelithood and severity of pedestrian crashes based on traffic
conditions, but it does not take account of other factors that are closely associated with
pedestrian safety such as behavioral factors. In other words, traffic analysis looks at pedestrian
safety in a macroscopic way but does not consider factors that are microscopic and the direct

cause of crashes, at the unit of individual road users or events.

In general, most, if not all, SMoS need to be further validated as “predictable and reliable”
surrogates of crashes. Despite frequent usage, behavior analysis approaches require

improvements, considering the complex dynamics in pedestrian and vehicle behaviors during the
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development of interactions. Lastly, perceived safety is different from actual road conditions and

safety, and the gap between perceived and objective safety must be addressed further.

2.8.3 Data Issues

Data issues are common in road safety studies, especially in studies investigating pedestrian
safety at non-signalized crosswalks. The limitations of crash data are well documented, as
discussed earlier. Data used to compute SMoS are usually based on short-term data collection
methods such as field observations and video data collection, which can provide detailed and
time-efficient data for safety analysis. However, there are few guidelines regarding the number
of locations and the duration of observations (to collect a sufficient number of observations, e.g.
individual events) according to (Laureshyn, et al., 2016). Many studies collect data at a limited
number of sites due to the high cost and labor required (setting up equipment, manually labeling
information, or conducting surveys) or due to confidentiality (the sensitivity and difficulty to
obtaining permission for videotaping or collecting personal information). An additional concern
when collecting data on-site (both crash and SMoS data) is the safety of observers or data
collectors who can be exposed to motorized traffic. Data quality may also be challenged

especially when collected using manual observations or surveys which can be subjective.

While great benefits have been obtained using vision-based techniques, there are critical
limitations. Regular visible spectrum cameras are sensitive to lighting conditions, thus the
accuracy of using them to collect traffic data is limited. They fail to perform well in adverse
weather, low light conditions, and darkness. Meanwhile, shadows and glare in the daytime also
degrade the accuracy of the regular cameras when collecting traffic data. In other words, regular
cameras do not work under all conditions, especially at nighttime and other low-visibility
conditions when increased injury risk leads to more severe road traffic crashes (Plainis, et al.,
2006). Alternatives need to be explored for using this type of technology. Besides, many studies
rely on manual or semi-automated methods in extracting data from video recordings, which is
normally time-consuming and strenuous. Developments of automated data processing
methods/tools based on video trajectory data help reduce the workload involved when manually

processing the data and avoid errors and the subjective nature of observer assessments.
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In general, the occurrence of a crash does not have a single contributory factor but is due to
a complex combination of the specific interaction, reactions and maneuvers, traffic environment,
road characteristics, and the characteristics of road users and their vehicles. The greatest
challenge in analyzing pedestrian safety at non-signalized crosswalk locations, which has been
also the challenge in most road safety studies, is explaining these complex dynamics and

designing methodological solutions to analyze safety.

2.9 CONCLUSIONS

The chapter reviewed methodologies and data collection methods used to study pedestrian safety
at non-signalized crosswalk locations between 1987 and 2017. Methods used in past studies are
classified into five approaches, which are the crash data approach, the traffic data approach, the
conflict approach, the behavioral approach, and the perception approach. Definitions, methods
used, related measures, and data collection methods for each approach are discussed. Limitations
of the previous studies are summarized. Signalized and non-signalized crossings are obviously
different due to the level of control and different standards that exist for them; and methods for
investigating pedestrian safety should reflect these differences. As the key contribution, this
paper systematically summarizes past research in pedestrian safety at non-signalized crosswalks
based on the methodologies used, providing a practical reference for researchers and

practitioners.

In the future, more effort is necessary to propose simple, comprehensive, and consistent
terms and definitions, as well as a better justification or discussion of criteria and thresholds.
Guidelines and standards should be developed for the applications of the methodologies. The
complex dynamics of pedestrian-vehicle interactions, in terms of the multiple maneuvers they
may make, different contributing factors that can affect their maneuvers or the outcomes, and
their less-predictable outcomes after these maneuvers under the effect of the factors, must be

thoroughly explained using an improved methodology to capture the outcome of an interaction.
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Link between chapter 2 and chapter 3

The previous chapter summarizes data collection methods used in previous studies in
investigating pedestrian safety at non-signalized intersection. The advantages of using vision-
based techniques have been recognized; however, limitations have also been outlined in using
regular cameras for traffic data collection. The regular camera detects objects in visible light
spectrum. This makes it sensitive to different environmental factors such as lighting, shadow and
weather conditions. The thermal camera detects the thermal signal, instead of visible light
spectrum. Therefore, it provides a potential solution to collect video data as an alternative to

regular cameras, especially for situations when the regular camera is not able to function well.

Work regarding to the performance validation of using the thermal camera for traffic data
collection under different environment and understanding its advantages over the visible
spectrum camera could provide a useful reference for researchers who are interested to develop
this technology and practitioners who wish to use this technology in the field of transportation.
This motivates the study in the following chapter. In Chapter 4, the performance of thermal and
visible spectrum videos for the automated collection and traffic data extraction is evaluated in

terms of road user detection, classification, and vehicle speed estimation.
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Chapter 3

Automatic Traffic Data Collection under
Varying Lighting and Temperature
Conditions in Multimodal Environments:
Thermal versus Visible Spectrum Video-
Based Systems
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3.1 ABSTRACT

Vision-based monitoring systems using visible spectrum (regular) video cameras can
complement or substitute conventional sensors and provide rich positional and classification data.
Although new camera technologies, including thermal video sensors, may improve the
performance of digital video-based sensors, their performance under various conditions has
rarely been evaluated at multimodal facilities. The purpose of this research is to integrate
existing computer vision methods for automated data collection and evaluate the detection,
classification, and speed measurement performance of thermal video sensors under varying
lighting and temperature conditions. Thermal and regular video data was collected
simultaneously under different conditions across multiple sites. Although the regular video
sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal

sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians
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and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global
accuracy of 48 %. Thermal speed measurements were consistently more accurate than for the
regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and
pavement temperature, solves issues associated with visible light cameras for traffic data
collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and

lower processing requirements.

3.2 INTRODUCTION

In transportation management, planning, and road safety, collecting data for both motorized and
non-motorized traffic is necessary (Robert, 2009). Collecting vehicle data was traditionally
limited to manual data collection or inductive loops at fixed locations (Bahler, et al., 1998), to
the point that loops became standard in many jurisdictions and are still widely used today
(Coifman, 2005). However, traditional loops do not provide any spatial coverage and do not
capture all road user types (loop detectors exist for bicycles but do not count vehicles or
pedestrians). Trajectory data for all users (pedestrians, bicycles, and vehicles) is essential to
understand microscopic behavior and surrogate safety analysis in critical road facilities such
intersections with high non-motorized traffic volumes (Zangenehpour, et al., 2016). These
factors have spurred the development of non-intrusive traffic sensors of which video-based
devices are among the most promising (Robert, 2009). Vision-based monitoring systems are
widely used in ITS applications (Yoneyama, et al., 2005), can complement or substitute
conventional sensors (Cho & Rice, 2006), enable multiple lane detection (Bahler, et al., 1998),
and provide rich positional and classification data (Zangenehpour, et al., 2015) beyond the

capabilities of traditional devices (Iwasaki, et al., 2013).

These benefits notwithstanding, there are several critical limitations associated with using
regular video cameras, also referred to as visible spectrum video cameras, for traffic data
collection. As these cameras rely on the visible light spectrum, the accuracy of detection,
tracking, and classification is “sensitive to environmental factors such as lighting, shadow, and
weather conditions” (Fu, et al., 2015; Yoneyama, et al., 2005). Perhaps the greatest limitation of

regular cameras is varied performance in low light conditions and darkness (Sangnoree &
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Chamnongthai, 2009). Considering detection and classification at nighttime, “the light sensitivity
and contrast of the camera...are generally too weak™ (Robert, 2009) to compensate for “the
interference of illumination and blurriness” (Thi, et al., 2008). This is particularly problematic
because the increased injury risk associated with nighttime conditions leads to more, and more
severe, road traffic crashes (Huang, et al., 2000). During daytime, shadows and glare degrade the
accuracy of extracted data (Yoneyama, et al., 2005; Iwasaki, et al., 2013). This is why typical
computer vision approaches developed for daytime surveillance may not work under all
conditions (Robert, 2009), and the advancement of vision-based traffic sensors is a pressing

matter (Iwasaki, et al., 2013).

Recently, new camera (sensor) technologies, including thermal or infrared sensors for
traffic surveillance, have become available. Although the present cost of these cameras has
prevented their widespread use in traffic analysis, cost will continue to decrease as the
technology advances. Recognizing that it “is difficult to cope with all kinds of situations with a
single approach” (Yoneyama, et al., 2005), the performance of thermal cameras must be
compared to regular cameras across varied lighting and visibility conditions to satisfy the desire
for an “around-the-clock” video-based traffic sensor (Iwasaki, et al., 2013). In recent years,
various computer vision techniques for tracking, classification, and surrogate safety analysis
have been developed (Zangenehpour, et al., 2015; Saunier, n.d.), though nearly all these methods
were developed and tested using regular video cameras. It is unclear if these methods can be
directly applied to thermal video and whether thermal cameras offer a performance advantage

compared to regular cameras across lighting and temperature conditions.

The purpose of this study is 1) to integrate existing tracking and classification computer-
vision methods for automated thermal-video data collection under low visibility conditions,
nighttime and shadows and ii) to evaluate the performance of thermal video sensors under
varying lighting and temperature conditions compared to visible light cameras. Performance is
evaluated with respect to road user detection, classification, and vehicle speed measurements.
Lighting and temperature conditions where each camera outperformed the other are identified to
provide practical recommendations for the implementation of video-based sensors. An early

version of this paper has been presented previously (Fu, et al., 2016; Fu, et al., 2016).
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3.3 LITERATURE REVIEW

The difficulties associated with collecting traffic data using regular cameras, and attempts to
rectify these issues, have been well documented in the existing literature, though many existing
studies do not appropriately report performance, be it for detection, classification, or tracking.
Yoneyama, Yeh, and Kuo (2005) demonstrated that nighttime detection misses are up to 50 %
and false alarms are 3.4 % of the ground truth total, much higher than for daytime detection.
Robert (Robert, 2009) showed that vehicle counts were accurate in various lighting, weather, and
traffic conditions when using a headlight detection method, although sample sizes were generally
100 vehicles or less. Methods that detect headlights or taillights are typically only applicable at
night, and the headlight detection method may increase the difficulty of vehicle classification
(Iwasaki, et al., 2013). Thi et al. (2008) proposed a methodology using eigenspaces and machine
learning for classification from regular video at nighttime. The authors found a successful
classification rate of 94 % compared to 70 % or lower for other classification schemes. Coifman
et al. (1998) suggested that “to be an effective traffic surveillance tool ... a video image
processing system ... should ... function under a wide variety of lighting conditions”. The
authors proposed feature-based tracking as an improvement over those methods dependent on
identifying an entire vehicle, because even under different lighting or visibility conditions, “the
most salient features at the given moment are tracked” (Coifman, et al., 1998). The proposed
algorithm was evaluated on highways where it was generally successful at tracking vehicles in

situations including congestion, shadows, and varying lighting conditions.

With the limited success of regular cameras in adverse conditions, many researchers have
considered alternative technologies for traffic data collection. Balsys, Valinevicius, and Eidukas
(2009) identified that weather interference could be avoided using infrared (thermal) cameras,
demonstrating that the cameras eliminated issues associated with headlight glare at night and cast
shadows during the day. Thermal video demonstrated a 15 % improvement in detection rate over
visible light cameras. Sangnoree and Chamnongthai (2009) presented a method for detecting,
classifying, and measuring speeds of vehicles at night using thermal videos. Although
classification and speed estimation were successful, detection worked best when only a single

vehicle was present in the video frame (84 % success) but suffered when two or more vehicles
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were present (41-76 % success). Iwasaki (2008) developed a vision-based monitoring system
that works robustly around-the-clock using infrared thermography. Iwasaki, Kawata, and
Nakamiya (2013) achieved 96 % successful detection of vehicles using thermal video in poor
visibility conditions. MacCarley, Hemme, and Klein (2000) compared several infrared and
visible light cameras, and found that many infrared cameras were “virtually immune to headlight
or streetlight backscatter” and therefore performed best in darkness, fog, or the combination of
darkness and fog. However, without fog or with light fog, the visible light camera outperformed
infrared cameras, and “there appears to be a limited number of situations for which non-visible
spectrum imaging appears to be justified”, including dense fog or scenes with glare or shadows

(MacCarley, et al., 2000).

Thermal video has been used successfully for nighttime pedestrian detection, an area of
particular importance because pedestrians may be less visible to drivers at night, and are
therefore at a greater risk of collision (Huang, et al., 2000). Xu, Liu, and Fujimura (2005) used a
support vector machine (SVM) to detect and classify pedestrians using a thermal camera
mounted to a moving vehicle. Although detection was successful in many cases, occlusion of
pedestrians in heavy traffic was a significant limitation. Krotosky and Trivedi (2007) analyzed
multiple camera technologies. Recognizing that regular and thermal cameras provide “disparate,
yet complementary information about a scene”, the authors recommend combining visible light

and infrared technologies (Krotosky & Trivedi, 2007).

Despite this existing work, several shortcomings exist. Although several studies have
addressed detecting vehicles or pedestrians, there has been limited work on detecting and
classifying multiple road user types (including bicycles) from thermal video in mixed-traffic
environments such as urban intersections. No studies have attempted to identify the effect of
pavement temperature on the quality of thermal video. Although thermal video sensors are
promising, their performance must be comprehensively evaluated and the adaptation of existing
computer vision software must be studied. Most studies do not appropriately report performance
and cannot be reproduced since the software code and/or datasets are not available. Detection
rate alone is too limited to represent performance. The whole confusion matrix should be

presented and receiver operating characteristic (ROC) curves should be used to evaluate

74



detectors or classifiers as parameters are adjusted. Separate data sets for calibration and
performance measurements should be required. When available, researchers should use standard
metrics such as the Measure of Tracking Accuracy (MOT) (Bernardin & Stiefelhagen, 2008).
This research aims to address these gaps and integrate thermal sensors into existing data
collection and safety tools, in particular under conditions where regular video presents

limitations.

3.4 METHODOLOGY

The methodology considers three steps: i) technology integration and data collection, ii)
implementation of detection and classification algorithms, and iii) vehicle speed validation. The

three steps are detailed below.

3.4.1 Technology Integration and Data Collection

The two technologies involved in this study are thermal-video sensors with a resolution of
368x296 pixels and visible-light cameras with a resolution of 1920x1080 pixels. The thermal
camera system consists of a thermal sensor, a signal converter, and a power supply unit. Thermal
video data is stored on a simple chip microcomputer (SCM). The thermal sensor, the ThermiCam
by FLIR, is connected to an X-stream edge card that reads the thermal signal and converts and
outputs the signal to a video file. The video file from the X-stream edge card is transferred to the
SCM using an Ethernet connection where it is saved using the VLC Software (VideoLAN
Organization, n.d.). The camera and X-stream edge card are powered using a battery with an
output of 12-24 V. The SCM, the battery and the X-stream edge card are placed in a small
enclosure which can be easily installed for data collection. FIGURE 3-1 presents the components
of the thermal camera system and a sample frame from the thermal camera recorded at night in

FIGURE 3-1d.
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FIGURE 3-1 Thermal camera system**

Three primary sources of data are required: thermal video data, visible spectrum video
data, and environmental and pavement temperature data. The regular visible-spectrum camera
and thermal camera systems are installed simultaneously using a telescoping-fibreglass mast to
ensure nearly identical fields of view. The regular camera system, introduced previously
(Zangenehpour, et al., 2015), uses an inexpensive and commercially available video camera

which stores video and is powered internally.

Since the road pavement is the primary background in the video scenes, pavement
temperature is regarded as the main temperature variable affecting thermal video performance.
Pavement temperature data were collected using the FLIR ONE thermal camera (FLIR Systems,
Inc., 2015), which attaches to an iPhone to capture thermal video and temperatures using the FLIR
ONE iPhone application. The camera was held close to the road surface to get an accurate

temperature as suggested in the user manual (FLIR Systems Inc., 2014). Based on field-testing,

4 Note that in the field, the battery, SCM and the TI X-stream are enclosed in a small waterproof case.
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the temperature measured by the FLIR ONE camera was within 2°C of the actual pavement
temperature. FIGURE 3-2 shows the camera system, its user interface, and field measurement of

the pavement temperature data.

g

a) FLIR ONE camera (FLIR Systems, Inc., 2015) b) App user interface c) Field measurement

FIGURE 3-2 Pavement temperature measuring sensor — FLIR ONE thermal camera

3.4.2 Implementation of Detection and Classification Algorithms

As thermal videos detect thermal energy, they are expected to solve the issues associated with
visible light cameras under different lighting conditions. Though, existing detection and
classification algorithms are used for automated data collection, they must be re-trained and
evaluated under different lighting and temperature conditions. Additional details of the methods

for detection, tracking and classification are presented in the next sub-sections.

3.4.2.1 Detection and Tracking Algorithm

The videos were processed using the tracker available in Traffic Intelligence, an open-source
computer-vision software project (Saunier & Sayed, 2006). Individual pixels are first detected
and tracked from frame to frame, and recorded as feature trajectories using the Kanade-Lucas-

Tomasi feature tracking algorithm (Shi & Tomasi, 1994). Feature trajectories are then grouped
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based on consistent common motion to identify unique road users. The techniques used in the
tracker are further explained by Shi & Tomasi (1994) and Saunier & Sayed (2006). Algorithm
parameters were calibrated through trial and error, in order to minimize both false alarms and
misses. False alarms and misses respectively result mostly from over-segmentation (one user

being tracked as multiple users) and over-grouping (multiple users being tracked as one user).

3.4.2.2 Classification Algorithm

Road user classification was performed using the method developed by Zangenehpour, Miranda-
Moreno, and Saunier (2015). Classifier V classifies detected road users as vehicles, pedestrians,
or cyclists based on the combination of appearance, aggregate speed, speed frequency
distribution, and location in the scene. An SVM is used to learn the appearance of each road user
type as described by the well-known Histogram Oriented Gradients (HOG). The SVM was
trained based on a database containing 1500 regular images of each road user type. The overall
accuracy of this classification method at intersections with high volumes and mixed road user
traffic is approximately 93 %, an improvement over simpler algorithms using only one or two
classification cues (Zangenchpour, et al., 2015). The classifiers are available in Traffic
Intelligence (Saunier, n.d.). For more details regarding the original classification method, readers

are referred to (Zangenehpour, et al., 2015).

3.4.2.3 Algorithm Retraining

Considering that the classifier uses the appearance of the road user as a parameter, and the fact
that road users in thermal videos appear quite differently than they do in visible light videos, the
SVM classifier for appearance classification, as part of the Classifier V (Zangenehpour, et al.,
2015) that is used in this study, needs to be retrained on a dataset of thermal images for all road
user types. Although the shape and proportions of the road users should be roughly equivalent, it
is unclear how their appearance described by HOG varies between the visible and thermal
images. Furthermore, the reduced resolution of the thermal video may impact the classification
performance as less information and fewer details are available. The accuracy of the

classification algorithm must therefore be explored further.
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The retraining work mainly consists of three steps: 1) extracting the square sub-images of
all moving objects as tracked by the algorithm in the sample videos; 2) manually labeling images
of the different road user types and preparing the database for training; 3) using the database to
train the SVM classifier. The steps of the retraining work for the SVM classifier are presented in
FIGURE 3-3. For retraining purpose, this study used a database containing 1500 thermal images
from several videos (separate from the ones used for performance evaluation) for each type of
road user to train the SVM. FIGURE 3-4 shows the samples of the images of the road users in
the database which covers different lighting and temperature conditions. Results using the
Classifier V with the SVM trained respectively on the regular and the thermal datasets are

compared in the experimental results.

. Manual
. Sub-images of All
Input: Video and g —» : :
p — Moving Objects Classification &

Trajectory Data Dataset Preparation
|

v

) Output: SVM
HOG Feature | | Trainthe SVM || Model Trained on

Descriptors Model Thermal Images

FIGURE 3-3 Steps involved in retraining the classifier (Zangenehpour, et al., 2015)

iy
b ] i
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a) Sample of vehicles b) Sample of cyclists ¢) Sample of pedestrians

FIGURE 3-4 Sample of extracted road user images used for retraining
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3.4.2.4 Detection and Classification Performance Metrics

The detection and classification performance are measured using different metrics and by
extracting video data from frames every 10 seconds. This corresponds to 150 frames considering
a frame rate of 15 frames per second (fps). Data (detection, user class, and speed) is then
extracted by observing the results of the tracking and classification algorithms and compared
visually with the ground truth. The interval of 10 s was chosen to be large enough in order to
avoid evaluating the same road user twice. Most road users are tracked for less than 10 s
continuously as the tracking algorithm tracks only moving road users (if stopped, a road user is
not tracked anymore: tracking resumes when the road user starts moving again): trajectories are
typically less than 5 s long for vehicles, and less than 10 s for pedestrians and cyclists. Also, 10 s
is short enough to provide enough observations to evaluate the detection and classification
performance. For the extracted frames, detection and classification errors are counted as shown

in FIGURE 3-5.

Extracted Frame and Errors

Error type Description

a: Miss 1 cyclist, 1 pedestrian

b: Over-segmentation |1 vehicle with 2 trajectories

c: Over-grouping 3 pedestrian groups, IDs: 360, 364 and 368
d: Classification error | 1 pedestrian classified as cyclist, ID 359

FIGURE 3-5 Video sampling and data extraction for detection & classification
Performance
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Different metrics are computed to evaluate the performance of thermal vs regular video.
For the classification problem, the confusion matrix is used to investigate the technology
performance and derive metrics. In the general case with N classes, the confusion matrix is an
NxN matrix that contains in each cell ¢;;, the number of objects of true class i predicted as class
j. The detection and tracking step can be also evaluated as a binary classification problem (a
matrix with N=2 classes, miss and detected), where the class of objects to be detected is the
positive class. The matrix in this binary case is presented in TABLE 3-1 with the particular
names taken by the instances depending on their true and predicted class. Misses are the false

negatives and false alarms are the false positives.

TABLE 3-1 Corresponding Table of Confusion & Basic Terms from Confusion Matrix

Positive Negative
Positi True Positives (TP) False Negatives (FN) Recall i
ositive -
£ Y TTPYFN
Negative False Positives (FP) True Negatives (TN)
Precision — TP
recision = 5

The most common metric is the global accuracy defined as the proportion of correct predictions

and 1s computed as:

Y Cike
1
XiXjCij M

Accuracy =
The majority of existing studies have used global accuracy to measure classification performance,
both for road user detection and classification methods. This is however insufficient to properly
report the performance, both for two-class classification, i.e. detection (since false alarms are not
accounted for by a single detection rate) and for classification with three and more classes such

as in multimodal environments, e.g. with pedestrians, cyclists, and vehicles. As used widely in
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the field of machine learning, this study relied on the confusion matrix to derive the following

disaggregate metrics per class:

. Ckk
= 2
Precision;, S iCin 2)
Recall;, = Cr (3)
2 Ckj

In the case of a binary classification problem, precision and recall are typically reported only for

the positive class, and can be written in terms of true/false positives/negatives as follows:

TP _ C11
TP+FP c11+C21

Precision =

4)

TP C11
TP+FN c11+C12

Recall =

)

FN
TP+FN’

From which, the miss rate can be derived as, miss rate = 1 — Recall =

The above metrics are computed by populating the confusion matrix through the visual
assessment of each frame extracted every 10 s or 150 frames as shown in FIGURE 3-5. Since
pedestrians often move in groups, and detecting and tracking individual pedestrians within
groups is difficult (and actually an open problem in all conditions in computer vision), the unit of
analysis is individual pedestrians or groups of pedestrians. In FIGURE 3-5, the groups of
pedestrians labeled c¢ (over-grouping) are then considered correctly detected. Miss rate is the
main metric reported for detection performance used for all test cases in the experimental results,
while precision and recall at the individual level, overall and per known (true) type of road user,

are also reported for two test cases for a more complete assessment.

The road user classification problem has three classes: pedestrians, cyclists and vehicles.
Precision and recall are reported for each class, as well as global accuracy, from the confusion

matrix accumulated over all extracted frames.

82



3.4.3 Vehicle Speed Validation

Once road users have been detected and classified, parameters such as vehicle speed are of
interest for traffic studies. Many existing studies have used mean relative error (MRE) to
quantify the error of video speeds extracted automatically from video. However, a previous study
by Anderson-Trocmé et al. (Anderson-Trocme, et al., 2015) showed that it “is insufficient at
capturing the true behaviour of detectors and other measures are necessary to define device
precision and accuracy separately”, where accuracy is the systematic error or bias, and precision
is the residual error. However, because video-based sensors tend to overestimate speed, and
because this overestimation is roughly constant with respect to speed, simple methods for

calculating relative precision error and relative accuracy error were developed.

The vehicle speed validation process begins by plotting automatically extracted speeds
against manually measured speeds (speeds calculated based on known distances and video frame
rate) in order to observe trends across visibility and temperature conditions. The line y=x
represents ideal detector performance, and data points above the line indicate overestimation of
speed, while points below the line indicate underestimation. As the overestimation bias is
typically constant, a line with slope equal to one is fitted to the data. The y-intercept and R-
squared values of this fitted line represent accuracy and precision respectively. However,
converting these results to relative error values “matches the approach utilized in existing
literature, and provides an intuitive and communicable comparison” between multiple
environments (Anderson-Trocme, et al., 2015). Relative precision error (RPE) is quantified
similarly to mean relative error, with the subtraction of a correction factor equal to the y-
intercept of the fitted line. To normalize the intercept value consistently with the relative mean
error, the y-intercept is evaluated at every data point (divided by the harmonic mean of observed
speed) for the relative accuracy error (RAE). The RAE represents the over- or under-estimation
bias present in the video data. The RPE can be seen as the best possible performance that could
be expected from calibrated video data (Anderson-Trocme, et al., 2015). Values for relative error,

relative precision and accuracy error are calculated as

Mean Relative Error (MRE) = ﬁzlv’z;—v"l (6)
o
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1 |(Ve—y intercept)—V,|
100 X Vo 7

Relative Precision Error (RPE) =

|y intercept|

Relative Accuracy Error (RAE) = ﬁz v

®)

Where V, and V, stands for the automatically extracted and manually measured speeds

respectively.

3.5 DATA DESCRIPTION

To evaluate the performance of the thermal and regular cameras, 14 test cases (camera
installations), with approximately one to four hours of video data for each case, were used. The
lighting test cases, presented in TABLE 3-2, include videos during the day and at night. Daytime
test cases focussed on various sun exposures and shadow conditions, while nighttime test cases
focussed on the level of visibility, with one case in near complete darkness, one nearly
completely illuminated, and one in between. Speed performance was evaluated on a sample size
of 100 vehicles for each test case, while classification and detection performance was evaluated

on 30 minutes of sample videos.

A similar approach was adopted for the temperature test cases, shown in TABLE 3-3. To
evaluate detection and classification performance under different temperature conditions, thermal
video data were collected from the same site with the same camera angle throughout a sunny
summer day when the pavement temperature rose from 20°C in the morning to 50°C in the
afternoon. Data collected from the same site in winter when the pavement temperature was close
to 0°C was included. As with the lighting test cases, speed performance was evaluated on a 100-
vehicle sample, and classification and detection performance was evaluated on 20-minute video
samples. In TABLE 3-3, the thermal images change drastically from cold to hot pavement
temperature. Road users are light on a dark background when the pavement temperature is low,

and dark on a light background when pavement temperature is high.
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TABLE 3-2 Summary of Lighting Test Cases

VEHICLE SPEED CLASSIFICATION
Lighting Condition . .
Sample Size Season Road Type Video Length  Season Road type
Overcast Winter Summer Intersection
Sun, little shadow Sprin, Summer Intersection
Daytime . 100 vehicles P . g Segment Every .
Sun, slight shadows Spring 30 minutes N/A N/A
Sun, strong shadows Summer Summer Intersection
High visibility Segment
Nighttime Medium visibility 100 vehicles Spring Intersection Every 10's for Winter Intersection
30 minutes
Low visibility Intersection
SAMPLE CAMERA VIEWS UNDER DIFFERENT LIGHTING CONDITIONS
Daytl'm.e Thermal Camera Regular Camera nght.t 1'm ¢ Thermal Camera Regular Camera
Conditions ) , Conditions ] ]
High
Overcast visibility
Sun, little Medium
shadow visibility
arong Low
shadows visibility
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TABLE 3-3 Summary of Temperature Test Cases

Pavement Temp. Ambient Temp. Sample Size Season Road Type
VEHICLE SPEED

0 °C-5°C ~ 0°C Winter Segment
20 °C-25°C ~20°C Summer Segment
25 °C-30°C ~20°C ) Summer Segment
30 °C-35°C ~20°C 100 vehicles Summer Segment

35 °C-40°C ~20°C Summer Segment
40 °C-45°C ~20°C Summer Intersection
CLASSIFICATION

0°C-5°C ~ 0°C Winter

20 °C-25°C ~20°C Summer

25 °C-30°C ~20°C Summer

30 °C-35°C ~20°C EZ;IZS) foi 38 minflltzg Summer Intersection
35 °C-40°C ~20°C Summer

40 °C-45°C ~20°C Summer

45 °C-50°C ~20°C Summer

SAMPLE CAMERA VIEWS UNDER DIFFERENT TEMPERATURE

Pavement Temp. Camera View Pavement Temp. Camera View

0°C-5°C 35°C-40°C
20°C-25°C 40°C-45°C
25°C-30°C 45°C-50°C
30°C-35°C
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3.6 RESULTS

3.6.1 Detection and Classification

3.6.1.1 Lighting

Results of detection and classification for the thermal and regular video are presented in TABLE
3-4 for the lighting test cases. The thermal camera reported a miss rate of 5 % or less for all road
user types in nearly all test cases. While the vehicle miss rate of the regular camera was also
lower than 5 % in all test cases, the rate increased significantly for pedestrians and cyclists in all
nighttime test cases, where very few pedestrians and cyclists were detected with the regular
camera (more than 75 %). Vehicles were well detected by both technologies under all conditions,
possibly because their lit headlights and larger size provide more features for tracking compared
to pedestrians and cyclists. In conditions without interference of darkness or shadows (test cases
of “overcast” and “sun, little shadow”), excellent performance was obtained for the regular
videos. However, daytime cases with shadows showed a decrease in performance, as shadows
inhibit the tracking and detection of pedestrians, cyclists, and some vehicles. The miss rates of
pedestrians and cyclists both increased to around 15 %, 10 % points higher than those in the

thermal videos.
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TABLE 3-4 Detection and Classification Performance for Different Lighting Conditions — Thermal and Regular Video

THERMAL VIDEO REGULAR VIDEO
Lighting Condition No. of No. of Missed/ Classification Classification No. of No. of Missed/ Classification Classification
Presence  Miss Rate Precision Recall Presence Miss Rate Precision Recall

Vehicle Detection and Classification

Overcast 121 0/0.0% 53.3% 97.0 % 192 0/0.0% 78.9 % 99.3 %
Daytime  Sun, little shadow 52 2/3.8% 46.3 % 100.0 % 74 0/0.0% 67.9 % 100.0 %
Sun, strong 5 0/0.0% 442 % 100.0 % 83 3/3.6% 55.0 % 100.0 %
shadows
High visibility 102 1/1.0% 66.7 % 91.2% 102 4/39% 74.5 % 97.6 %
Nighttime ~Medium visibility 249 4/1.6% 99.0 % 96.2 % 241 11/4.6% 97.2% 99.5 %
Low visibility 4 1/2.4% 56.3 % 96.4 % 4 2/48% 91.4% 100.0 %
Cyclist Detection and Classification
Overcast 26 1/3.8% 36.1 % 81.3 % 38 1/2.6% 30.9 % 96.7 %
Davtim Sun, little shadow 46 1/22% 95.8 % 54.8 % 57 4/7.0% 87.8 % 783 %
ytime
SS}‘:;AOWS strong ge 4/59% 90.3 % 50.0 % 67 11/16.4% 63.0 % 68.0 %
High visibility 44 1/23% 70.2 % 93.0 % 44 36/81.8% 42.9 % 37.5%
Medium visibility 12 0/0.0% 64.7 % 100.0 % 12 12/100.0 % 0.0 % Invalid
Nighttime = icibility 10 0/0.0% 69.2 % 90.0 % 10 10/100.0 % Invalid Invalid
Pedestrian Detection and Classification
Daytime  Overeast 314 9/2.9% 98.3 % 68.5 % 356 14/3.9% 99.1 % 68.3 %
Sun, little shadow 78 2/2.6% 82.1% 56.1% 63 0/0.0% 93.8% 66.2 %
SS}‘I‘;‘&OWS strong 4 1g 9/7.6 % 100.0 % 46.8 % 130 19/ 14.6 % 86.6 % 59.2 %
High visibility 149 5/34% 97.8 % 68.9 % 149 109/73.1 % 90.0 % 25.7%
Nighttime ~Medium visibility ~ 85 3/3.5% 94.5 % 94.5 % 77 68/88.3 % 100.0 % 14.3 %
Low visibility 286 4/1.4% 99.5 % 89.5 % 286 278197.2 % Invalid 0.0 %
Total Detection and Classification
Accuracy Accuracy
Overcast 461 10/2.2% 74.9 % 586 15/2.6 % 79.1 %
Daytime  Sun, little shadow 176 5/1.8% 66.2 % 194 4/2.1% 80.2 %
ssl?:(iows strong 53 13/4.9% 62.8 % 280 33/11.8% 69.1 %
High visibility 295 7/2.4% 79.4 % 295 159 /50.5 % 74.0 %
Medium visibility ~ 346 772.0% 96.1 % 330 91/27.6 % 96.8 %
Nighttime ;. visibility 338 5/1.5% 90.3 % 338 290/85.8 % 91.4 %
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For classification performance, the measures of recall and precision are also presented in
TABLE 3-4. Higher values of recall and precision in classifying vehicles using regular videos
indicate that, in general, the performance of classifying vehicles was improved when using the
regular camera over the thermal camera. However, from medium to low visibility conditions,
regular cameras perform poorly in the classification of cyclists and pedestrians. For cases with
medium and low visibility specifically, the algorithm failed to recognize pedestrians and cyclists
in regular videos. In such cases, since classification is performed only for tracked road users,
computing the precision may not be possible when no road user of the class was detected or
representative if too few were detected. Thermal videos perform reliably in nighttime cases, even
when using the classification algorithm trained on the regular, or visible spectrum, images of
road users. In daytime conditions, the classification of pedestrians and cyclists is only slightly
better by regular camera, as the global accuracy values are slightly higher in regular videos than
those in thermal videos in most cases. The classification performance per class indicates the need
for improving the classification algorithm for thermal videos by training the algorithm on images
from thermal cameras. Nevertheless, even with the algorithm trained only on regular video data,
the thermal camera correctly classifies road users more often in low visibility conditions,

especially at nighttime.

A more complete detection performance evaluation, in particular for individual
pedestrians, is reported for two extreme test cases: 1) the sunny daytime case without the
interference of shadow, which has the best lighting environment, presented in FIGURE 3-6, and,
i1) the worst lighting condition case shown in FIGURE 3-7, which is nighttime condition with
low visibility. From the results, the thermal camera and the regular camera perform similarly
well in detecting different road users in the good lighting environment. For low visibility
condition at night, the two camera systems have similar capability in detecting vehicles; however,
the regular camera failed to detect the cyclists and pedestrians under such a low visibility
condition (low recall) where the thermal camera can still work efficiently — this is in accordance
with the previous analysis. With similar performance for good lighting conditions and much
better performance for low visibility conditions, compared to the visible spectrum camera system,

thermal cameras can be used for all weather and lighting conditions.
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FIGURE 3-6 Detection performance results — Test Case: daytime, sun, little shadow

100 % 100.0% 99.7%gg 9., 91.6%
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25%
‘Invalid
0% - . .
Vehicle Cyclist Pedestrian Overall

® Thermal Camera = Regular Camera
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50 %
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® Thermal Camera * Regular Camera
b) Recall

FIGURE 3-7 Detection performance results — Test Case: nighttime, low visibility
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3.6.1.2 Temperature

The classifier trained on the thermal dataset was applied in the different temperature test cases
where the outputs of the thermal videos changed greatly with the change of temperature. TABLE
3-5 presents the results of detection and classification performance for the classifier trained on
the regular or thermal dataset for each test case. Again, the thermal video provided detection
rates exceeding 95 % for nearly all test cases, and temperature had little impact on detecting
different road users. Even when the pavement temperature approaches that of the road users,
miss rate remained low. Observing the videos, temperature variation within each road user likely
explains this good performance: features are still detected for the areas of high and low

temperature within road users.

Although miss rate was low, classification results were generally poor before retraining
the algorithm, and classification accuracy reduced systematically as temperature increased from
90.3 % in the lowest temperature case to 30.8 % in the highest. This result indicates that, for the
thermal video, the object appearance described by HOG (Zangenehpour, et al., 2015) varies with
pavement temperature, and therefore the SVM should be trained on thermal images to account
for the different appearance of road users. The classification accuracy after the new training
showed improvements, particularly at higher pavement temperatures. At 45-50 °C, overall
classification accuracy improved by 48.6 % points, from an accuracy of 30.8 to 79.4 %. The
excellent performance of detection and the higher classification accuracy rates for the algorithm
trained on thermal data indicate the possibility of using this algorithm to correctly detect and

classify different types of road users under different temperature conditions.
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TABLE 3-5 Detection and Classification Performance for Different Pavement Temperatures —
Thermal Camera

Classifier Trained on Classifier Trained on Improvement
Pavement No. of No. of Missed Regular data Thermal data (% points)
Temp. Presence /Miss Rate Precision Recall Precision Recall Precision Recall
Vehicle Detection and Classification
0°C-5°C 42 1/2.4% 56.3 % 96.4 % 67.4% 96.7 % 11.2% 0.2 %
20 °C-25°C 58 0/0.0% 89.1 % 100.0 % 96.1 % 100.0 % 7.0 % 0.0 %
25 °C-30°C 37 2/54% 67.6 % 100.0 % 83.9% 100.0 % 16.2 % 0.0 %
30 °C-35°C 20 0/0.0% 279 % 100.0 % 68.4 % 100.0 % 40.5 % 0.0 %
35 °C-40°C 45 1/22% 35.6 % 100.0 % 67.5% 100.0 % 31.9% 0.0 %
40 °C-45°C 31 1/32% 23.6 % 100.0 % 65.4 % 100.0 % 41.7 % 0.0 %
45 °C-50°C 19 0/0.0% 12.1 % 100.0 % 47.6 % 100.0 % 355% 0.0 %
Average 44.6 % 99.5 % 70.9 % 99.5 % 26.3 % 0.0 %
Cyclist Detection and Classification
0°C-5°C 10 0/0.0% 69.2 % 90.0 % 64.3 % 100.0 % -4.9 % 10.0 %
20 °C-25°C 33 0/0.0% 72.1 % 96.9 % 64.6 % 96.9 % -71.5% 0.0 %
25 °C-30°C 22 0/0.0% 70.0 % 46.7 % 70.8 % 94.4 % 0.8 % 47.8 %
30 °C-35°C 36 0/0.0% 93.8 % 51.7% 75.8 % 86.2 % -18.0 % 34.5%
35°C-40°C 27 2/7.4% 88.9 % 333 % 67.9 % 76.0 % -21.0 % 42.7%
40 °C-45°C 40 0/0.0% 88.9 % 22.9% 83.8 % 86.1 % 5.1 % 63.3 %
45 °C-50°C 26 0/0.0% 100.0 % 6.7 % 85.0% 85.0 % -15.0 % 783 %
Average 833 % 49.7 % 73.2% 89.2% -10.1 % 39.5%
Pedestrian Detection and Classification
0°C-5°C 286 4/1.4% 99.5 % 89.5% 100.0 % 92.0 % 0.5% 25%
20 °C-25°C 71 0/0.0% 100.0 % 66.0 % 100.0 % 66.7 % 0.0 % 0.7 %
25 °C-30°C 39 0/0.0% 86.4 % 67.9 % 100.0 % 66.7 % 13.6 % -1.2%
30 °C-35°C 53 3/57% 75.0 % 429 % 97.0 % 74.4 % 22.0 % 31.6 %
35 °C-40°C 51 2/39% 62.5% 12.5% 96.7 % 63.0 % 342 % 50.5 %
40 °C-45°C 44 2/45% 50.0 % 233 % 96.3 % 70.3 % 46.3 % 46.9 %
45 °C-50°C 44 2/45% 61.1 % 333 % 100.0 % 71.1 % 389 % 37.7%
Average 76.4 % 47.9 % 98.6 % 72.0 % 222 % 24.1%
Total Detection and Classification
Accuracy Accuracy Accuracy
0°C-5°C 338 5/15% 90.3 % 92.8 % 2.6 %
20 °C-25°C 162 0/0.0% 86.3 % 85.9 % -0.3%
25 °C-30°C 98 3/3.1% 742 % 84.4 % 10.2 %
30 °C-35°C 109 3/2.7% 54.2 % 82.4 % 28.1 %
35 °C-40°C 123 5/4.1% 433 % 76.5 % 332 %
40 °C-45°C 115 3/2.6% 359 % 82.2% 46.3 %
45 °C-50°C 89 2/22% 30.8% 79.4 % 48.6 %
Average 59.3 % 83.4% 24.1 %

92



Looking at the per-class performance measures, better recall and precision were found in
almost all temperature cases for vehicles and pedestrians when using the algorithm trained with
thermal data (with an average increase of 26.3 % points in precision for vehicles, and an average
increase of 24.1 % points in recall and 22.2 % points in precision for pedestrians). The recall for
cyclists increases in all cases by 39.5 % points on average; however, precision decreases in most
of the cases by 10.1 % points on average. This is explained by considering that, before training
the algorithm on thermal data, a smaller portion of the detected cyclists are successfully
classified which leads to a deceptively high precision. In other words, fewer cyclists were
classified as such by the algorithm trained with regular videos, but the algorithm made few
mistakes, and the other cyclists were classified as pedestrians or vehicles resulting in lower
precision for these road user types. With a the newly trained algorithm, more road users,
including actual cyclists are classified as cyclists, which increases cyclist recall; but in doing so,
more vehicles and pedestrians are also misclassified as cyclists, causing a decrease in cyclist
precision. A general issue for both types of cameras is confusing pedestrians and cyclists since
they have similar appearances. Global accuracy improved by as much as 50 % points in the
multimodal environments. Moreover, the % point improvement was larger for high temperature
cases, indicating that training the algorithm for data collection using thermal videos is both

necessary and effective.

3.6.2 Vehicle Speed Validation

To compare the performance of the camera systems in vehicle speed extraction accuracy, a data
visualization exercise was completed for all test cases. One example, shown in FIGURE 3-8,

demonstrates the performance of the two camera systems under sun with strong shadows.

3.6.2.1 Speed and Lighting

TABLE 3-6 provides the equation of the fitted line, its R-squared value, MRE, RAE, and RPE
for each lighting conditions test case. For comparison purpose, a t-test was conducted to test the
significance of the difference in the intercepts of models for using the two camera systems. The

level of significance was set at 10 %. As given in TABLE 3-6, the intercept was found to be
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significantly different between the thermal camera and the regular camera for all lighting

conditions, except for the low visibility condition.

From the results, the first important observation was that the intercept value in nearly all
test cases was positive for both technologies. This result is consistent with previous research and
shows that video sensors tend to overestimate speeds (Anderson-Trocme, et al., 2015). The R-
square values for thermal video are significantly higher for daytime with shadows as well as
median and low visibility conditions. RPE is perhaps the most critical value in TABLE 3-6. The
thermal camera had a lower RPE in all test cases other than overcast sky, in which the regular
camera was expected to perform well without lighting interference. In the other test cases, the
thermal video consistently provided a 2-3 % points improvement in RPE over the regular camera.
Despite this good performance, the RAE was highly variable both across conditions and across
cameras. This again supports previous research, and indicates that the overestimation bias is less
a function of camera or conditions as it as a function of user calibration error (Anderson-Trocme,
et al., 2015). In general, the RPE was within 5-10 % of ground truth, which is consistent with

previously measured performance of video sensors (Anderson-Trocme, et al., 2015).
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FIGURE 3-8 Example of vehicle speed estimation performance for thermal and regular
cameras under sun with strong shadows
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TABLE 3-6 Vehicle Speed Performance for Different Lighting Conditions — Thermal and
Regular Video

DIFFERENCE IN INTERCEPTS {| THERMAL VIDEO REGULAR VIDEO
Lighting Condition p-value Level of Significance | Calibration Model R? Calibration Model R?
Overcast <0.01 * y=x-197 0.91 y=x-0.04 0.95
Daytime Sun, lit.tle shadow <0.01 * y=x+2091 0.96 y=x+1.77 0.92
Sun, slight shadows <0.01 * y=x+2.50 0.93 y=x+5.75 0.90
Sun, strong shadows <0.01 * y=x+0.20 0.88 y=x-2.00 0.56
High visibility <0.01 * y=x+4.49 0.93 y=x+0.01 0.92
Nighttime Medium visibility 0.09 + y=x+245 0.86 y=x+4.14 0.46
Low visibility 0.52 ns y=x+0.17 0.97 y=x+0.83 0.93
THERMAL VIDEO REGULAR VIDEO
Lighting Condition MRE RAE RPE MRE RAE RPE
Overcast 0.067 0.058 0.067 0.059 0.001 0.059
Daytime Sun, lit.tle shadow 0.106 0.116 0.045 0.069 0.071 0.062
Sun, slight shadows 0.103 0.105 0.047 0.226 0.242 0.063
Sun, strong shadows 0.061 0.005 0.061 0.108 0.053 0.097
High visibility 0.150 0.151 0.047 0.051 0.000 0.051
Nighttime Medium visibility 0.104 0.082 0.072 0.150 0.138 0.104
Low visibility 0.036 0.026 0.033 0.060 0.005 0.059

Note: for significance test of each pair of groups, ns means that the difference between the pair of the group was not statistically
significant (p-value > 0.1), + means that the difference was statistically significant at the significance level of 10% (0.05 < p-
value < 0.1), * means that the difference was significant with p-value < 0.05.

3.6.2.2 Speed and Temperature

Similarly for the temperature test cases, parameters of the fitted line and the segregated relative
errors values are presented in TABLE 3-7. The RPE for all but one test case was 0.06 or less, and
was not observed to vary greatly with temperature. For one test case (35-40°C), several outliers
greatly increased the reported error. A slight increase in RPE was noted between 20 and 30°C.
These pavement temperatures most closely match the surface temperature of vehicles, and so a
slight performance decrease may be explained by tracking issues associated with the low contrast
with the pavement temperature. Despite the slight effect of temperature, the thermal videos

performed reliably and consistently across all temperature test cases, with errors equal to what is
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expected from existing research. Thermal videos can be an effective substitute for regular videos

with regards to speed data extraction under various lighting and temperature conditions.

TABLE 3-7 Vehicle Speed Performance for Different Pavement Temperature — Thermal
Video

Pavement Temp. Calibration Model R? MRE RAE RPE
0°C- 5°C y=x+2.50 0.930 0.103 0.105 0.047
20°C-25°C y=x+0.20 0.870 0.061 0.005 0.061
25°C-30°C y=x+152 0.770 0.066 0.039 0.056
30°C-35°C y=x+2.88 0.830 0.106 0.087 0.046
35°C-40°C y=x+2.63 0.930 0.103 0.126 0.114
40°C-45°C y=x+248 0.900 0.087 0.081 0.058
3.7 CONCLUSIONS

This paper presents an approach to integrate and evaluate the performance of thermal and visible
light videos for the automated collection and traffic data extraction under various lighting and
temperature conditions in urban intersections with high pedestrian and bicycle traffic. The two
technologies were evaluated in terms of road user detection, classification, and vehicle speed

estimation. Considering the above results, several key conclusions are drawn.

e The regular camera only narrowly outperformed the thermal camera in terms of detection
and classification of all road users during daytime conditions. Also, the regular camera
detects and classifies vehicles adequately under nighttime conditions. However, the
performance of the regular camera deteriorates for pedestrians and cyclists in all
nighttime test cases, while miss rate by the thermal camera remained around 5 %,

showing stability across the tested conditions.

e Based on the results at the individual level from the two test cases, the two cameras

performed similarly in the favorable case; while for the night, low visibility case, the

96



advantage of using thermal camera was more significant compared to the results at the

group level.

e Training of the classifier to account for variation in the appearance of road users in the
thermal video was observed to increase classification performance (recall, precision, and
global accuracy) for the thermal camera, particularly at higher temperatures. Training the
algorithm using more thermal videos is expected to improve the -classification
performance by thermal video also during the day, where the thermal camera was slightly

inferior to regular video.

e Speed measurements by the thermal camera were consistently more accurate than
measurements by the regular video. Additionally, speed measurement accuracy was

observed to be generally insensitive to lighting and temperature conditions.

Summarizing these points, regular video works well for “overcast” and “sun, little
shadow” conditions without lighting interference such as shadow, glare, low visibility, or
reflection. The thermal camera performs similarly in these conditions (although classification
must be improved by training the algorithm on thermal data). However, with shadows or at night,
the performance of the regular camera was greatly reduced, and the thermal camera was superior
in terms of detection, classification, and vehicle speed measurement. The thermal videos are
insensitive to lighting interference, and solve the issues associated with visible light cameras for
traffic data collection, especially for active road users such as pedestrians and cyclists. The
thermal camera is also generally insensitive to the effects of pavement temperature. Thermal
videos are more reliable and stable compared to regular videos in an around-the-clock collection
campaign. Furthermore, greyscale thermal videos with lower resolution provide comparable
results during the day, yet require less storage space and processing power, which are key
concerns. Finally, thermal videos cause no privacy issues, which are a major hurdle for the

application of video-based sensors, especially in the U.S. and European countries.

As part of its contributions, this paper provides an approach for integrating existing
tracking and classification algorithms for automated thermal video collection and analysis under

varied lighting and weather conditions. The proposed approach can be used for automated
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counting, speed studies and surrogate safety analyses in particular during low visibility

conditions and in environments with high pedestrian and bicycle traffic activity.

Though general improvement of the classification performance was achieved by training
the classifier on thermal data, the results (average 83.4 % global accuracy over all cases, in
TABLE 3-5) are lower than what has been reported previously for regular videos (93.3 %)
(Zangenehpour, et al., 2015). Reasons for this reduced performance must be considered in future
work, including lower resolution of thermal videos, and the need for more training image
samples of road users under different temperature conditions. Validation of the classification
algorithms on thermal videos will be better characterized using the ROC curve to compare
different methods over several parameter settings. Although past literature shows visual
improvements when using thermal cameras in foggy conditions, no work has been done to
quantify the improvement of thermal videos during adverse weather conditions. The evaluation
of thermal video in adverse weather conditions, such as heavy precipitation and fog, is a key
focus of future work. Finally, a hybrid system that combines the advantages of both technologies
can be designed to automatically calibrate and process video data from both thermal and visible

spectrum sensors.
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Link between chapter 3 and chapter 4

The previous chapter introduced the thermal camera and validated its performance in automated
traffic data collection. Being insensitive to lighting interference and resistant to the effects of
pavement temperature, thermal videos are more reliable and stable compared to visible spectrum
cameras for the round-the-clock traffic data collection purpose. Results also showed the data
collection approach using existing tracking and classification algorithms and the thermal camera
can be used for automated counting, speed studies and safety analyses in particular during low
visibility conditions and in environments with high pedestrian and bicycle traffic activity. With
the help of thermal camera, the next chapter will use existing surrogate measures of safety to
investigate pedestrian-vehicle interactions at non-signalized crosswalks during nighttime

situations.
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Chapter 4

Pedestrian Crosswalk Safety at Non-
signalized Crossings during Nighttime: Use
of Thermal Video Data and Surrogate Safety
Measures
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4.1 ABSTRACT

This paper proposes a methodology to evaluate crosswalk pedestrian safety at nighttime by using
surrogate safety measures derived from thermal video data. The methodology is illustrated for
two non-signalized crosswalk locations in downtown Montreal, Quebec, Canada. Video
recordings from a thermal camera were used to compare nighttime and daytime safety conditions
with surrogate safety measures that included vehicle approaching speed, post-encroachment time
(PET), yielding compliances, and conflict rates. A disaggregate measure of pedestrian exposure
that excludes non-interacting road users is also proposed. A thermal camera was used to alleviate
issues pertaining to low visibility at night for video analysis when road users, especially
pedestrians, are difficult to track. The results showed that the thermal-video—based methodology
could effectively collect interaction data at night regardless of lighting conditions. Through the
use of thermal video data and the methodology proposed in this paper, the interactions between

crossing pedestrians and motor vehicles, with related measures such as PET and speed, could be
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analyzed to evaluate the effect of different crosswalk treatments on pedestrian safety in low-

visibility conditions.

4.2 INTRODUCTION

Pedestrian safety has become a priority for many cities because of the increased awareness of
pedestrians’ vulnerability compared with that of other road users. In 2013, the United States
counted 14 % of its total road crash fatalities as pedestrians (NHTSA, 2015), while Canada
experienced 15.6 % of its road crash fatalities as pedestrians (Transport Canada, 2015). Studies
indicate that nearly half (46 %) of pedestrian fatalities in the United States (2013) and 57 % of
pedestrian fatalities in Ontario, Canada (2015), occur at nighttime. Most crashes happen as
pedestrians cross the streets while exposed to motorized traffic. A study in Europe showed that
roughly 31 % of all pedestrian victims of road crashes were injured on marked crosswalks
(Czajewski, et al.,, 2013). Pedestrians are also vulnerable at locations with non-signalized
crossings. For instance, Hunter et al. found that 40 % of intersection crashes and 93 % of
midblock crashes occurred at non-signalized locations (Hunter, et al., 1996). Compared with
daytime, there is less motorized and pedestrian traffic at nighttime, generally leading to higher
vehicle speeds as well as lower levels of driver awareness and attention. This difference in traffic
and driving behavior leads to an increase in crash frequency and severity, especially when
pedestrians are involved (Plainis, et al., 2006). In addition, Huang et al. point out that nighttime
crosswalks and pedestrians can be less visible for drivers to see in time for a stop (Huang, et al.,
2007). Crosswalk safety and related treatments have been looked into by numerous studies;
however, evaluating the treatment is challenging, particularly at nighttime, because of the sparse
nature of crash data and the lack of exposure measures (e.g., nighttime count data). Most often,

short-term counts for safety analysis are taken only during daytime (Ryus, et al., 2014).

Moreover, the pedestrian safety literature has been built mainly through the use of
historical crash data, focusing on crash frequency and severity as direct measures for road safety
(Nabavi Niaki, et al., 2014; Zahabi, et al., 2011). However, vehicle-pedestrian crash data is not
always available in sufficiently large quantity and suffers from known problems such as low-

mean small sample, underreporting, mislocation and misclassification. Tarko et al. list the
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limitations of using crash data for road safety analysis (Tarko, et al., 2009). In addition, the low-
mean problem causes statistical issues when one works with pedestrian nighttime crash data, in
which, given the low level of exposure, the mean number of crashes is typically very low. Using
historical data for pedestrian safety analysis requires long periods of observation (many years),
meaning that recent treatments cannot be quickly evaluated from crash data because of the lack
of after-treatment crash data (St-Aubin, et al., 2013a). To overcome this problem, proactive
methods have been proposed that do not require waiting for crashes to happen but rely on

surrogate measures of safety.

Surrogate safety measures obtained from automated video analytics are gaining
increasing popularity in road safety analysis for their various benefits (St-Aubin, et al., 2013a;
Tarko, et al., 2009). Some studies have used such measures for identifying risk factors or
evaluating treatment effectiveness by using a before—after or control-case study approach
(Brosseau, et al., 2013; St-Aubin, et al., 2013a; St-Aubin, et al., 2013b; Zangenehpour, et al.,
2013; Zangenehpour, et al., 2016). Despite the important developments on surrogate safety
analysis, there has been no nighttime safety evaluation using surrogate safety measures. Among
the reasons can be mentioned the technological limitations of regular video cameras (in the

visible spectrum) and other technologies that are unable to provide high-quality nighttime data.

The objective of this work is to propose a surrogate safety methodology to quantify pedestrian
safety on crosswalks during nighttime by using thermal video sensors. To get effective video
data under nighttime conditions, this paper used a thermal-camera—based system; the details of
this system are reported by Fu et al. (2017). The trajectories were then extracted from video data
and analyzed by calculating speeds of crossing vehicles, postencroachment time (PET), exposure

based on PET, cumulative distribution PET, conflict ratios, and yielding compliance rates.

4.3 LITERATURE REVIEW

Using traffic trajectory data obtained from video recordings is the most widely adopted method
for automatically calculating surrogate safety measures. Different trackers have been developed

and used to obtain trajectory data (Jodoin & Saunier, 2014; Saunier, n.d.; Saunier & Sayed, 2006;

105



Shi & Tomasi, 1994). Saunier (Saunier, n.d.) and Saunier and Sayed (Saunier & Sayed, 2006)
adapted feature-based tracking to intersections by continuously detecting new features and
adding them to current feature groups. An improved multiple object tracking system, named
Urban Tracker, was developed for tracking different types of road users in urban mixed traffic
(Jodoin & Saunier, 2014). To count different road users in mixed traffic conditions and to
identify interactions based on their trajectories and those between different types of road users,
Zangenehpour et al. developed a classification algorithm to distinguish between three types of
road users: pedestrians, vehicles, and cyclists (Zangenehpour, et al., 2015). The proposed
classifier uses the occurrence area, speed distribution, and presence, or appearance, of the road
users. The data can then be used for surrogate safety analysis of the interactions between
different road users. The overall accuracy of the classification algorithm at intersections with
high traffic volumes and mixed road user traffic was approximately 93 %. This algorithm was
trained for thermal video by Fu et al. (2017) and results for mixed traffic conditions

demonstrated an overall accuracy of 70 %.

Other studies have also used trajectory data for obtaining traffic information such as
volume, speed, and conflict measures, which are fundamental for surrogate safety measures
(Alhajyaseen, et al., 2012; Brosseau, et al., 2013; Peesapati, et al., 2011; St-Aubin, et al., 2013a;
St-Aubin, et al.,, 2013b; Zangenehpour, et al., 2015). Laureshyn (2010) looked at various
indicators in behavioral and road safety research in terms of validity and reliability. The
indicators included time to collision, PET, GT, encroachment time, time headway or gap, and
compliance with yielding rules and stop sign requirements. Other studies used different measures
for different conditions. St-Aubin et al. (2013a; 2013b) computed time to collision using the
equations presented by Laureshyn for highway safety (Laureshyn, 2010). Tang and Nakamura
relied on PET for evaluating conflict severity at signalized intersections (Tang & Nakamura,

2009).

For pedestrian safety at crosswalks, PET has been used widely (Alhajyaseen, et al., 2012;
Brosseau, et al., 2013). For instance, Alhajyaseen et al. (2012) used PET and vehicle speed at a
crosswalk as the surrogate measures of safety to assess pedestrian safety at intersections. Other

indicators, such as speed and yielding compliance to evaluate crosswalk safety, have been used
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extensively (Huybers, et al., 2004; Smith, et al., 2009). Another important safety concept is
exposure to the risk of collision (Qin & Ivan, 2001). Exposure is traditionally measured through
the pedestrian and vehicle volumes passing the area of interest (i.e., crosswalks for this study).
But exposure is a general concept that represents the opportunities or necessary conditions for a
collision to occur: it can be measured in various ways, depending on the purpose of the study.
Pedestrians’ exposure was included in a 1989 study of pedestrian safety at traffic signals by use
of a manual traffic conflict technique (Garder, 1989). In 1998, Silcock et al. proposed a method
that used video recording to automatically extract the number of crossing movements and
pedestrian—vehicle interactions (Silcock, et al., 1998). However, the definition of the conflicts
(e.g., the threshold used on the surrogate measure of safety to distinguish from other events) was
not clarified (Papadimitriou, et al., 2012). Exposure is generally used to calculate a pedestrian’s
risk of collision with vehicles through crash or conflict ratios. The ratio is calculated on the basis
of the number of crashes or conflicts over the exposure, which reflects the probability dimension
of risk; i.e., the probability of a crash or conflict per unit of the chosen exposure. The most recent
work using surrogate safety analysis with rate calculations can be found in Automated
Classification Based on Video Data at Intersections with Heavy Pedestrian and Bicycle Traffic:
Methodology and Application (Zangenehpour, et al., 2015). In that paper, the authors use the
ratio of the total number of conflicts and severe conflicts divided by the product of the pedestrian

and vehicle volumes.

Different measures of pedestrian exposure have been proposed (Papadimitriou, et al.,
2012). In the literature, the number of pedestrian crossings per hour, vehicle volume, or their
product has been used as the key indicators; however, these measures do not correspond to
events where a pedestrian and a vehicle may actually interact (i.e., where they are close enough
to each other at the site of interest that they are at least aware of each other). There is a huge gap
between the product of traffic volumes and an actual interaction between a pedestrian and a
vehicle. This gap is even larger during nighttime, when pedestrian and vehicle flows are much
lower and can present more temporal variability. Vehicle—pedestrian interactions change from
site to site and from time to time. Besides, upstream signalization has a large impact on the
arrival time of pedestrians and vehicles, which also influences pedestrian exposure. All these

uncertainties may explain the low or unreported fitness of the crash-based models in past studies.
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Consequently, existing exposure measures must be validated and new ones proposed where

necessary.

4.4 METHODOLOGY

The proposed methodology consists of three steps: video data collection at nighttime using
thermal video sensors, extraction of road user trajectories, and computation of surrogate safety

measures. Some additional details are given below.

4.4.1 Thermal Video System, Object Tracking and Validation of Detection Performance

A thermal camera system was used for data collection. For details about the system and its
performance in nighttime conditions, one can refer to Fu et al. (2017). The system components
are presented in FIGURE 4-1a. For field measuring purposes, the camera was mounted on an
adjustable mast against existing poles (i.e., lamppost or telephone pole) with an ideal coverage
area and camera angle. FIGURE 4-1b shows a sample snapshot from the thermal video, which
was taken at nighttime where regular cameras in the visible spectrum fail to provide enough
details about road users because of the darkness, reflection, shadow, and glare from different
light sources. FIGURE 4-1c presents the issues of using regular videos for video data collection

at night, and how thermal video is not affected by these lighting issues.

Once video was collected, video data processing was carried out using the tracker in the
open source Traffic Intelligence project (Saunier, n.d.); as an outcome, road user trajectories
were obtained. The techniques used in the tracker are explained by Shi and Tomasi (1994) and
Saunier and Sayed (2006). Fu et al. has validated the performance of video analysis using
thermal video for traffic data collection in multimodal environments in various lighting and
temperature conditions, and has shown the reliability of this technique (Fu, et al., 2017).
Compared with mixed traffic conditions at intersections, non-signalized crosswalks are much
simpler because road users travel in fixed directions along fixed segregated paths. Therefore, the

performance of the tracker for detecting road users at crosswalks is expected to be higher. This
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study uses the performance measures introduced by Fu et al., where miss rate was defined as “the
proportion of road users whose movement is not captured by any trajectories; for pedestrians, the
detection performance was evaluated at the group level, i.e., a group of pedestrians not tracked is

counted as one miss” (Fu, et al., 2017). Precision and recall for detection are also reported.

L/ !

(a) Camera system and installation

- ® - .
-
Issue 3: Issue 4:

Glare from light sources Shadow

28 |

e
Issue 1: Issue 2:
Headlight reflection Low visibility

'9

b

(c) Issues for using regular videos at night paired with the corresponding thermal videos

FIGURE 4-1 Thermal camera system and a comparison with regular videos at nighttime.
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4.4.2 Validation of the Classification Tool for Pedestrian-Vehicle Interactions at

Crosswalks

To calculate the PETs, a classification method is required to identify the vehicle—pedestrian
interactions. A previously developed method for object classification in video (Zangenehpour, et
al., 2015) was adapted by changing the image database for detecting road user presence in

thermal videos. Details are available at Zangenehpour et al. (2015) and Fu et al. (2017).

Fu et al. (2017) shows the overall accuracy of the classification algorithm in terms of
classification performance measures to be more than 80 % for mixed traffic, with the average
precision of 70.9 % and the average recall of 99.5 % for vehicles, the average precision of 73.2 %
and the average recall of 89.2 % for cyclists, and the average precision of 98.6 % and the average
recall of 72.0 % for pedestrians. While the rates are relatively high, they are not high enough to
conduct a safety analysis. However, with the simpler traffic conditions at non-signalized
crosswalks, the classification performance is expected to be better. Similar to work of Fu et al.
(2017), the classification performance was validated in terms of precision, recall, and overall

accuracy.

4.4.3 Safety Measures

For evaluating the safety status of a crosswalk during nighttime, the following three measures

were defined.

4.4.3.1 Pedestrian-Vehicle Interaction

FIGURE 4-2 describes a pedestrian—vehicle interaction at a crosswalk. PET is defined as the
time gap between two road users arriving at and leaving the crossing area; PET is used in this
study as the surrogate safety measure for interactions between pedestrians crossing the street and
the vehicles, because their trajectories will always intersect allowing PET to thus always be

computed. The fact that PET may not be computed for some interactions is otherwise a known
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shortcoming of that measure. Based on the road user classification and the trajectory data of each

road user, the PETs of pedestrian—vehicle interactions are calculated by the following equation:

Tea — Tpp,if Tp, < Tea
PET = (1
Tpg — Ter if Ter, < Tpy

Where definitions are presented in FIGURE 4-2: Tp; < T¢4 indicates the case where a pedestrian
arrives at the crossing area before the vehicle, and T, < Tp, means the opposite, with the
vehicle arriving before the pedestrian. This study used a computer vision safety analysis tool to
automatically calculate the PET values for each pair of interacting vehicles and pedestrians;
because detecting the tracking method does not provide a contour of the vehicle, the front and
rear of the vehicle were considered to be 2 m before and after the centroid (along the trajectory).
Interactions with PETs less than 5 s were considered as conflicts, and those with PETs less than
1.5 s were defined as dangerous conflicts (Zangenehpour, et al., 2016). In the cases where

several pedestrians are tracked as a group, only one interaction with the whole group is counted.

Crossing Zone for PET:
Intersection of Trajectories

T, time the vehicle arrives the crossing zone

T, time the vehicle leaves the crossing zone
T, time the pedestrian arrives the crossing zone
T, time the pedestrian leaves the crossing zone

FIGURE 4-2 Description of pedestrian-vehicle interactions at a crosswalk

4.4.3.2 Pedestrian Exposure Measure

Different exposure measures can be used, depending on the purpose, and can be considered in

the traditional safety hierarchy framework of surrogate safety analysis based on earlier work by
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Hydén, among others (Hyden, 1987), illustrated in FIGURE 4-3, with collisions as the most
severe events at the top and undisturbed passages at the bottom. Using microscopic trajectory
data, this work can measure exposure at the level of road user interactions when two road users
are close enough in time and space. This paper sets an arbitrary threshold of 20 s on PET for
interactions considered as exposure to the risk of pedestrian—vehicle collisions. The threshold of
20 s is chosen because little possibility exists for the vehicle passage to affect the safety of

pedestrian who crosses 20 s before or after.

Collisions
Severe traffic conflicts

ight traffic conflicts

All  interactions —
(total exposure)

traffic conflicts

Undisturbed

FIGURE 4-3 Pedestrian-vehicle interactions in the safety hierarchy (Hyden, 1987)

4.4.3.3 Safety Measures

To evaluate and compare the safety status across sites, safety measures are computed and
compared on the basis of cumulative distribution functions (CDFs) and the interaction rates, in
seconds, which are computed as the number of conflicts over the number of interactions

(exposure). The definitions of the safety measures are provided as follows:

(5) Cumulative Distribution Functions (CDFs)

FIGURE 4-4 illustrates how two CDFs (from two different sites) can be compared for safety
analysis. The elevated line indicates a higher proportion of dangerous conflicts. The gray line in

the figure represents the dangerous conflict threshold, and the right border of the figure is the
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conflict threshold. This method of showing safety is intuitive; however, as illustrated by St-

Aubin et al., using cumulative distribution is not always conclusive (St-Aubin, et al., 2015).

Conflicts

[ T 1
Dangerous conflicts

——
S
%]
on
]
=
D
2
2 /
2]
2
k=
E —Dangerous conflict
=]
35 threshold
Tpc Tc
PET value (T)

T, PET threshold for dangerous conflicts (T = 1.5 s)
T.: PET threshold for conflicts (T =5 s)

FIGURE 4-4 Illustration of different cumulative distribution functions

(6) Conflict Ratio

Two conflict rates are used. For a given site 1, the conflict rate (R;) is defined as the number of
pedestrian—vehicle conflicts, which are the interactions of less than 5 s with PETs, divided by the
number of interactions with PET of less than 20 s. denoted Ng; (exposure). The dangerous
conflict rate (Rpc;) is defined as the number of dangerous conflicts, which are the interactions

with PET less than 1.5 s, divided by the same exposure measure Ng; .

(7) Crossing Speed

The crossing speed of vehicles passing the crosswalk is also used as a safety measure in this
paper. Crossing speeds are automatically extracted from the videos through the computer vision
software and have been shown to be reliable in (Fu, et al., 2016). A script was used for extracting

velocities and calculating the speeds for vehicles passing the crosswalk. FIGURE 4-5 presents
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how the crossing speeds were extracted. A mask was prepared for the detection zone — the
crosswalk in this case, shown in FIGURE 4-5 a). In video collected from site i, for a certain
vehicle j, j = (1, ..., N), where N is the total number of vehicles, if its trajectory falls in the
detecting zone in video frame m, me(p,p + 1, ...,q), its velocity v, is extracted and the
instantaneous speed s;j,, is calculated. The crossing speed is calculated by averaging the

instantaneous speeds in these frames, as presented in the following equation:

s = 1
u- q-p+1

Ym=p(Sijm) (2)
The average crossing speed for site i would be:

Si =% M aGsij) (3)

The speed distributions and average crossing speeds of all the passing vehicles are compared.
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FIGURE 4-5 Sample of speed extraction through the computer vision software
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(8) Yielding Compliance

The law requires vehicles to yield to a pedestrian starting or indicating the intention to cross the
road. In this case, yielding compliance refers to the rate of drivers’ yielding behavior among the
pedestrian—vehicle interactions, which require the drivers to slow down or stop to give
pedestrians the right-of-way. Yielding compliance rate (YCR) was calculated by manually
counting the vehicle yielding maneuvers. For site i, if a pedestrian arrives at the crosswalk before
a certain vehicle j, the yielding behavior of this vehicle involved in an interaction with a

pedestrian can be quantified by the following measures

Y, = X1 X;; )

YCR; =t (6)

1

Where X;; is 1 if the vehicle yields to pedestrians and 0 otherwise at site i for interaction j. M; is

the total number of pedestrian-vehicle interactions involving pedestrians who have already started
or indicated their intention to cross, and where, to avoid a collision, at least one involved road user

must yield. Y; is the total number of yielding drivers and Y CR; is the yielding compliance rate.

4.5 CASE STUDY

For this study, two crosswalk locations with different traffic and environmental conditions were

selected in downtown Montreal.

4.5.1 Site Selection and Data Description

For testing the thermal camera system and investigating the crosswalk safety, two crosswalk

locations with different traffic and environmental conditions were selected in downtown Montreal:

e Site du Fort This crosswalk is located on Rue du Fort at the intersection of Rue du Fort

and Rue Baile. It is a painted crosswalk crossing two one-way lanes separated by a
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median. Because the left lane was observed to have very little traffic, only the right lane

was analyzed. Located on a secondary road, this site has a relatively low traffic volume.

e Site St-Laurent The crosswalk is located on one of the main arteries in downtown
Montreal, Boulevard Saint-Laurent, at the intersection of Boulevard Saint-Laurent and
Rue Bagg. It is a painted crosswalk crossing two one-way lanes. This location is busier

than the du Fort site in terms of vehicular and pedestrian traffic.

For each site, thermal video data were collected in both daytime and nighttime conditions.
For comparison purposes, all video data were collected in the same season with similar traffic,
weather, and road surface conditions (i.e., in good weather conditions with bare pavement in winter).
All the videos were recorded during the afternoon peak period and at nighttime on weekdays when

higher crash rates were observed. Details of the video data are presented in TABLE 4-1.

TABLE 4-1 Description of the Video Recorded from Each Site

Site Name Date Period of a Day Time Duration (hour)
Day 03:00-04:40pm 1.6
11-Nov-2014 )
Night 07:00-08:15pm 1.2
du Fort 14-Jan-2015 Night 06:30-08:20pm 1.8
Day 03:30-04:30pm 1.0
15-Jan-2015 )
Night 07:00-08:40pm 1.6
Day 03:00-04:10pm 1.2
31-Dec-2014 .
) Night 06:30-09:15pm 2.8
Saint-Laurent
Day 02:00-04:30pm 2.4
01-Jan-2015 .
Night 06:00-09:15pm 33

4.5.2 Detection and Classification Validation

The tracker and the classification algorithm were validated using 30 minute video samples from
each site. Results of the detection and classification performance are provided in TABLE 4-2.
Based on the results, the tracker and the classification algorithm worked almost perfectly in
detecting and classifying the pedestrians and vehicles at each crosswalk—very few misses and

around 95 % of precision, recall, and global accuracy rates in most cases, except for the lower
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recall values in detecting pedestrians (around 80 %), mainly resulting from the overgrouping of
pedestrians moving together (Fu, et al., 2017). These values are much higher than those for
mixed traffic tested by Fu et al., indicating the reliable performance of using the tracker and the
classification algorithm at crosswalks (Fu, et al., 2017). The small portion of the misclassified

road users could be easily manually corrected if needed.

TABLE 4-2 Classification Accuracy Validation Results

No. of No. of Missed Detection Performance Classification Performance
Road User Type . — —

Presence  /Miss Rate Precision Recall Precision Recall
du Fort (Video length of 30 minutes, from night, 14-Jan-2015)
Vehicle 68 1/1.7% 97.1 % 971 % 98.5 % 98.5 %
Pedestrian 60 1/1.6% 100 % 81.1 % 100 % 98.3 %
Overall 128 2/1.6% 91.4 % 98.4 % Global Accuracy = 97.7 %
Saint-Laurent (Video length of 30 minutes, from night, 31-Dec-2014)
Vehicle 205 0/ 0% 97.6 % 98.6 % 94.8 % 97.6 %
Pedestrian 104 1/1.0% 100 % 80.0 % 100 % 93.0 %
Overall 309 1/0.3% 93.1 % 98.4 % Global Accuracy = 91.7 %

4.5.3 Results and Analysis

The proposed methodology was applied to the selected sites. For the du Fort site, an average of
319 vehicles and 161 pedestrians per hour were detected during the 2.6 h of video data collected
in daytime conditions, while a volume of 414 vehicles and 127 pedestrians per hour were
detected from the 4.6 h of video taken at night. The Saint-Laurent site had a volume of 848
vehicles and 994 pedestrians per hour during 3.6 h of daytime video recordings, and a vehicle
flow of 833 vehicles and 407 pedestrians per hour during 6.1 h of nighttime video recordings.
TABLE 4-3, TABLE 4-4 and TABLE 4-5 present a summary of the results of different safety
measures, which includes the average vehicle crossing speed, vehicle yielding compliance rate,
exposure measured in the traditional way, using the product of pedestrian and vehicle volume,
number of the conflicts, conflict rate, and number and rate of dangerous conflicts, for both sites.
FIGURE 4-6 presents the distributions of speeds and the CDFs of PET for conflicts for both day
and night.

118



TABLE 4-3 Results: Volume, Speed, and Yielding Compliance

Vehicle Volume Pedestrian Volume Average Cro. Speed Yielding Compliance
(vph) (pph) (km/h)/SD (%)
Site Name Date Day Night Day Night Day Night Day Night
du Fort November 13,2014 359.4 439.2 53.8 233 28.0/5.9 30.6/8.9 20.83 50.00
January 14, 2015 -- 469.4 - 167.8 - 31.2/9.1 -- 38.52
January 15, 2015 331.9 255.0 160.6 127.0 26.6/6.5 30.8/7.3 11.76 18.18
All 319.2 413.7 81.9 127.6 26.7/6.1 31.2/83 15.52 37.66
Saint-Laurent  December 31,2014  1333.3 629.3 1087.5 423.2 24.4/10.0 32.0/10.9 32.69 18.18
January 1, 2015 605.0 1005.8 946.7 392.7 25.0/17.9 33.7/14.0 30.11 25.40
All 847.8 833.0 993.6 406.7 24.7/9.1 33.8/13.3 31.47 22.92
Note: vph = vehicles per hour; pph = pedestrians per hour; -- = data not collected.

TABLE 4-4 Results: Exposure Measures

Traditional Exposure Number of Interactions with PET Number of Interactions
(per hour) Less Than 20 s per Exposure per Traditional Exposure
(per hour) (per thousand)
Site Name Date Day Night Day Night Day Night
du Fort November 13,2014 19316 10247 126.9 114.2 6.6 11.1
January 14, 2015 - 78762 -- 517.2 - 6.6
January 15, 2015 53307 32385 213.1 208.0 4.0 6.4
All 26152 52791 158.1 306.3 6.0 5.8
Saint-Laurent  December 31, 2014 1450000 266323 6129.2 1758.9 4.2 6.6
January 01, 2015 572733 394988 3659.2 5280.9 6.4 134
All 842361 338779 4531.9 3664.3 5.4 10.8

Note: -- = data not collected.
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TABLE 4-5 Results: Conflict Measures and Conflict Rates

lg:::;]bii::f Conflict Rate Number of Dangerous Dangerous Conflicts Rate
(per hour) (%) Conflicts (%)
Site Name Date Day Night Day Night Day Night Day Night
du Fort November 13,2014 2.5 5.0 1.97 % 438 % 0.0 0.0 0.00 % 0.00 %
January 14, 2015 - 36.1 -- 6.98 % -- 39 -- 0.75 %
January 15, 2015 9.0 8.1 4.22 % 3.89% 0.0 2.5 0.00 % 1.20 %
All 5.0 18.3 3.16% 597 % 0.0 24 0.00 % 0.78 %
Saint-Laurent December 31, 2014 55.8 27.1 0.91 % 1.54 % 5.0 2.9 0.08 % 0.16 %
January 1, 2015 37.9 442 1.04 % 0.84 % 33 9.1 0.09 % 0.17 %
All 439 36.4 0.97 % 0.99 % 39 6.2 0.09 % 0.17 %
Note: -- = data not collected.
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FIGURE 4-6 Visualization results of the two sites — speed distributions and PET CDFs
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Looking at FIGURE 4-6a and 6c, it can be observed that increases in the crossing speed
were detected at night for both sites. Also, from TABLE 4-3, for the crosswalk safety situation,
the average crossing speeds were found to be higher (by 9.3 % to 16.8 %) at the crosswalk of the
du Fort site at nighttime compared with daytime; for the Saint-Laurent site, the average crossing
speeds increased by around 30 % at night compared with daytime speeds. Possible reasons for
this observation could be 1) although the traffic flow is similar between afternoon peak hours
and early nighttime hours for both sites, the volumes at the second site are higher during the
afternoon peak hours, which leads to the congestion of the adjacent road segments; 2) during the
afternoon peak hour, a large number of vehicles are searching for parking spots, and their
parking maneuvers block the traffic. This phenomenon is especially evident for the site of St-
Laurent, where a pharmacy and many restaurants are located. Many parking maneuvers were
observed in the daytime, while fewer occurred at night; 3) Because of lower traffic volumes and
less pedestrian activity at night, drivers drive faster. This increase in the average crossing speeds
of the passing vehicles at the crosswalks at nighttime indicates that pedestrians are exposed to

higher probabilities of severe crashes at night.

Exposure was measured in both the traditional way using the pedestrian-vehicle volume
product and the exposure using PET and compared by computing their ratio. From TABLE 4-4,
most of the values were in the order of 4 to 13 events with PET less than 20 s per 1000 potential
interactions computed from the traditional exposure. The number of interactions with PET less
than 20 s is used in the study. From the results, a higher exposure can be observed in daytime
compared with nighttime in most cases except for data collected at the du Fort site on
Wednesday, January 14, when a hockey game brought about a large number of people at
nighttime, and data collected from the Saint-Laurent site on Thursday, January 15, when people

go out clubbing

From FIGURE 4-6b and 6d, among all interactions, a higher percentage of dangerous
conflicts (with PET less than 1.5 s) were observed at nighttime compared with daytime, which
indicates that pedestrians were involved in more dangerous interactions with vehicles at the
crosswalks at night. Looking at the rates, R, values do not necessarily change from daytime to
nighttime, while the Rp. values indicate that pedestrians experience higher risks of being

involved in a dangerous conflict at night.
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These results concerning the speeds and conflict rates indicate that at these two locations,
pedestrians were at higher risks of being involved in a dangerous interaction at night, when

crossing speeds were on average higher.

However, regarding the yielding behavior of the drivers, it was found that yielding
compliance varies from site to site. Site du Fort had a higher yielding rate at nighttime; however
the yielding rate was reduced at night at the Saint-Laurent site. Upon a field inspection of Rue du
Fort in daytime, vehicles were parked near the crosswalk along the sidewalk; however, that site
was free of parked vehicles at night. This observation might explain the increase in yielding rate
at night at this site as it was easier to detect pedestrians in advance by drivers. Drivers did not
yield to pedestrians at nighttime as much as they did in daytime at the Saint-Laurent site. This
might be due to the reduced visibility of the pedestrians and less willingness for drivers to yield
with increased speed at nighttime. In any case, the overall yielding compliances of the drivers at

these two locations were both low (on an average of 15 % to 38 % for the two sites).

4.6 CONCLUSIONS

This paper presented an automated video-based methodology for safety analysis of pedestrian
crossings at nighttime by using thermal video data. Different surrogate safety measures were
used for this purpose. The proposed automated methodology can be implemented for assessing
different crosswalk treatments, such as LED pedestrian warning signs, an automated pedestrian
detection—warning system, and geometric—marking treatments for improving crosswalk safety at
nighttime. The preliminary results showed that pedestrians were exposed to higher risk levels at
the study sites during nighttime as opposed to daytime conditions. That is, average vehicle
crossing speeds and percentage of dangerous conflicts were higher during nighttime when
compared with daytime, indicating that pedestrians were at higher risks during nighttime. Not
much difference was found concerning the two other indicators, yielding compliance and the

conflict rates; however, at both sites, the yielding compliance rate was quite low.

Thermal camera sensors provide a reliable solution to the limitation of common video
sensors in the visible spectrum when used for nighttime analysis. The main advantages of using

thermal cameras rather than regular ones are higher accuracy and the ability to collect reliable
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video data under different environmental conditions, such as in instances of low visibility, glare,
or shadows caused by different light sources. Although the economic cost of thermal camera
sensors is relatively high, future developments are expected to make them more accessible to

researchers, governments, and personal users.

The validation work and the potential future work involving the thermal camera have
been discussed extensively by Fu et al. (2017). The use of the thermal camera system for safety
analysis at different locations and for different types of road users in nighttime conditions will be
explored. The exposure used in this paper potentially provides a more precise measure to
describe the pedestrian—vehicle interactions, which, compared with exposure measures based on
traffic volumes, are more closely related to pedestrian safety. A PET threshold of 20 s was set
empirically and arbitrarily to cover all potential conflicts. However, this value needs to be
calibrated, and its use needs to be further explored and validated. Sensitivity analysis should be
performed to examine the use of the threshold in describing pedestrian exposure. The
methodology and the safety measures used in this paper could be adapted for the analysis of

signalized intersections.
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Link between chapter 4 and chapter 5

The previous chapter presents the work investigating pedestrian safety at non-signalized
crosswalk locations at nighttime, with a methodology based on available SMoS. Interesting
findings have been obtained. However, the shortcoming of the methodology in describing how
interactions unfold over time is further recognized. A new framework, represented in the
distance-velocity (DV) diagram and referred as the DV model, will be presented in the following
chapter to describe pedestrian-vehicle interactions, considering the position and speed changes of
road users over time during the interaction. The framework is demonstrated through a case study
in evaluating pedestrian safety at three non-signalized crossings in different types: a marked

crosswalk, an uncontrolled crosswalk, and a crosswalk controlled by stop signs.

Note that: the contents in Chapter 5 were published earlier in Accident Analysis &
Prevention. To keep it consistent with the original version of publication, the terms for the
different crosswalk types were kept the same as the publication version. In other parts of the
dissertation including this page, however, “painted’ and “unprotected’ were revised into

“marked” and “uncontrolled” respectively.
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Chapter 5

A Novel Framework to Evaluate Pedestrian
Safety at Non-signalized Locations
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5.1 ABSTRACT

This paper proposes a new framework to evaluate pedestrian safety at non-signalized crosswalk
locations. In the proposed framework, the yielding maneuver of a driver in response to a
pedestrian is split into the reaction and braking time. Hence, the relationship of the distance
required for a yielding maneuver and the approaching vehicle speed depends on the reaction time
of the driver and deceleration rate that the vehicle can achieve. The proposed framework is
represented in the distance-velocity (DV) diagram and referred as the DV model. The
interactions between approaching vehicles and pedestrians showing the intention to cross are
divided in three categories: 1) situations where the vehicle cannot make a complete stop, i1)
situations where the vehicle’s ability to stop depends on the driver reaction time, and ii1)
situations where the vehicle can make a complete stop. Based on these classifications, non-
yielding maneuvers are classified as “non-infraction non-yielding” maneuvers, “uncertain non-
yielding” maneuvers and ‘“non-yielding” violations, respectively. From the pedestrian
perspective, crossing decisions are classified as dangerous crossings, risky crossings and safe
crossings accordingly. The yielding compliance and yielding rate, as measures of the yielding
behavior, are redefined based on these categories. Time to crossing and deceleration rate
required for the vehicle to stop are used to measure the probability of collision. Finally, the

framework is demonstrated through a case study in evaluating pedestrian safety at three different
129



types of non-signalized crossings: a painted crosswalk, an unprotected crosswalk, and a
crosswalk controlled by stop signs. Results from the case study suggest that the proposed
framework works well in describing pedestrian-vehicle interactions which helps in evaluating

pedestrian safety at non-signalized crosswalk locations.

5.2 INTRODUCTION

Pedestrians, referred often as vulnerable road users, are highly susceptible to severe road injuries
and fatalities when involved in vehicle crashes. For example, in 2013, 14 % of total road crash
fatalities reported in the US (NHTSA, 2015), and 15.6 % of road crash fatalities in Canada were
pedestrians (Transport Canada, 2015). A large proportion of crashes occur either at uncontrolled
crossings (without stop signs or traffic signals) or at non-signalized crossings (without traffic
signals), for instance, more than 70 % of the intersection-related fatal crashes in the US in the

years from 2010 to 2012 occurred at non-signalized intersections (McGee et al., 2015).

Road safety studies are traditionally limited to analysis based on historical crash data
(Nabavi Niaki et al., 2015) (Abdel-Aty & Haleem, 2010), which suffers from problems such as
low-mean small sample, underreporting, mislocation and misclassification (Fu et al., 2016).
Moreover, recent treatments cannot be rapidly evaluated due to the lack of after-treatment crash
data which requires long periods (multiple years) of observation (St-Aubin et al., 2013). To
overcome such issues related to crash data analysis, proactive methods based on surrogate safety
measures, that do not require crashes to occur, have been gained some momentum in the

literature.

Several studies have used surrogate safety measures for identifying risk factors or
evaluating treatment effectiveness (St-Aubin et al, 2013) (Zangenehpour et al., 2013)
(Zangenehpour et al., 2016). Despite important developments in surrogate safety analysis, the
issue of the relationship between surrogate measures and crash-based measures remains (Tarko
et al., 2009). Compared to the vehicle safety literature, pedestrian safety has attracted much less
attention, in particular surrogate safety measures for pedestrian-vehicle interactions at crosswalks.
The vulnerability of pedestrians explains why vehicles should yield right-of-way to pedestrians

at crosswalks. Yielding behavior is therefore a critical part of interactions at non-signalized
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intersections. Yielding should therefore be considered among other surrogate safety measures
used in previous studies (e.g. time-to-collision or post-encroachment time). Past research has
considered yielding compliance (Lacoste et al., 2014) (Shurbutt & Van Houten, 2010), but their
definition of yielding compliance is ambiguous. Furthermore, there are situations where it is
impossible for the vehicle to yield considering its proximity and speed to the crosswalk at the
occurrence of the pedestrian. Such situations are likely considered as violations in most previous

studies.

This research aims to address the above-mentioned research gaps in the pedestrian safety
literature. The main purpose is two-fold: i) to propose a new surrogate safety framework to
investigate pedestrian-vehicle interactions at non-signalized crosswalks, and ii) using a case
study, to apply the proposed approach to explore pedestrian safety issues and the efficiency of

countermeasures at crosswalks.

5.3 LITERATURE REVIEW

5.3.1 Pedestrian-vehicle Interactions and Surrogate Safety Measures for Crosswalk

Safety

Due to the limitations of using crash data, many studies have attempted to use different surrogate
safety measures to investigate pedestrian-vehicle interactions. Hydén depicted the general safety
hierarchy framework of surrogate safety analysis, suggesting a relationship between crashes and
conflicts, their position is the hierarchy representing their chance of resulting in a crash (Hydén,
1987). Laureshyn considered the validity and reliability of different surrogate safety measures in
behavioral and road safety research (Laureshyn, 2010), and the indicators include time to
collision (TTC), post-encroachment time (PET), gap time (GT), compliance with the yielding
rules and stop sign requirements. Some researchers have used TTC and PET for pedestrian safety
(Almodfer et al., 2015) (Tang & Nakamura, 2009), with (Almodfer et al., 2015) finding these
measures as the most used. Some have indicated their preference for using PET in situations
where road user trajectories are crossing (e.g. pedestrian safety at crosswalks) (Almodfer et al.,
2015) (Tang & Nakamura, 2009). Conflicts between pedestrians and vehicles may be divided
into discrete severity levels based on different PET and TTC thresholds (Malkhamah et al., 2005)

(Ismail et al., 2011). Pedestrian-vehicle interactions are difficult to describe because of the
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unpredictable behavior of the road users (Almodfer et al., 2015), especially pedestrians whose
direction, speed, and acceleration/deceleration can change rapidly. This paper will use the more
general term of interactions instead of conflicts, as conflicts have specific definitions in existing
traffic conflict techniques such as the Swedish traffic conflict technique (Hydén, 1987).
Interactions are defined as situations where the road users of interest are close enough in time

and space, such that they may interact with each other (Nicolas et al., 2010).

Different data generation techniques and sensors (e.g., loops, radar, GPS devices and
video cameras), have been used to extract information for surrogate safety analysis (Stipancic et
al., 2016) (Golob et al., 2004) (Lee et al., 2002). Among these sensors, video-based devices,
which provide rich positional data and other information beyond the capabilities of most other
devices, are the most promising (Robert, 2009). The development of video-based techniques
(computer vision) has brought about the possibility of investigating yielding compliance and

crossing decision in a more precise and microscopic way.

5.3.2 Yielding Compliance and Crossing Decision Studies

Many studies that are not explicitly in the literature on surrogate measures of safety have
investigated vehicle-yielding behavior at non-signalized crosswalks (Lacoste et al., 2014)
(Shurbutt & Van Houten, 2010) (Fitzpatrick, et al., 2006). For example, Fitzpatrick used the
driver yielding rate to check effectiveness of different crosswalk treatments through meta-
analysis (Fitzpatrick, et al., 2006). A study conducted in Winnipeg found crosswalks with
overhead flashing devices had higher average yielding rates than those with the side-mounted
passive signs (Lacoste et al., 2014). Shurbutt and Van Houten used yielding rate to validate the
performance of the rectangular rapid-flashing beacon (RRFB) at non-signalized crosswalks
(Shurbutt & Van Houten, 2010). Many studies have used “yielding compliance” to describe
vehicle yielding behavior (Lacoste et al., 2014) (Shurbutt & Van Houten, 2010) (Fitzpatrick et al.,
2006). The yielding compliance of a driver at non-signalized crosswalks refers to situations
where the driver yields to pedestrians following the traffic rules. The majority of past studies
consider non-yielding maneuvers as violations and use the rate of non-yielding maneuvers to
measure the yielding compliance. However, in some situations, vehicles are too close in time to

the crosswalk to stop at the moment the pedestrian shows the intention to cross. In such
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situations, drivers cannot yield even if they want to, and such situations cannot be treated as
violations. Only the study presented in (Shurbutt & Van Houten, 2010) has identified these
situations and excluded them from violations in a simple way by using a fixed distance from the
crosswalk. Furthermore, the definition of non-yielding maneuvers is often unclear and relatively

subjective, in particular regarding the pedestrian’s intent to cross.

Many researchers have looked into pedestrian crossing decisions. For example, Granié et
al. investigated pedestrian crossing decisions under various urban environments through a survey
using sets of photographs presenting five different environments (Grani¢ et al., 2014).
Participants’ decision to cross or not, perception of comfort and safety, and elements influencing
decision-making were collected and analyzed (Grani¢ et al., 2014). Liu and Tung looked at the
effects of age, time gap, time of day, and vehicle approaching speed on the decision of
pedestrians to cross the road based on pre-recorded videos of different road scenes (Liu & Tung,
2014). Using the simulated road environment from a mid-range driving simulator, Oxley et al.
conducted a study to analyze pedestrians’ gap selection and their crossing decisions (Oxley et al.,
2005). Due to the limited available techniques for data collection, most of these past studies have
been based on off-road, laboratory experiments, such as tests in simulators, and picture- or

video-based surveys, which may not properly reflect real situations.

5.3.3 Driver Reaction on Road Safety

Driver response time, also called perception-response time or reaction time, has a great impact
on road safety, creating significant interest in this area of research (Hick, 1952) (Hyman, 1953)
(Koppa, 2000) (Green, 2009). The distribution of driver response time is often called the Hick-
Hyman “Law” (Hick, 1952) (Hyman, 1953) .Vehicle yielding maneuvers at pedestrian crossings
include two critical times (and corresponding distances): 1) a perception-response time, which
allows the driver to observe the pedestrian’s intention to cross and make a decision to yield, and
2) a time to brake or perform another evasive action if necessary. Driver response time at
crosswalks refers to the time lag between detection of the pedestrian and the initiation of braking.
Response time greatly affects driver’s yielding behavior at crosswalks and the risk that
pedestrians face when they are crossing the street. Therefore, response time needs to be

considered in crosswalk safety studies, which is uncommon in the literature.
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Response time varies between individuals and depends on various factors such as age,
gender and driving experience, the appearance of the pedestrians, distraction, and the built
environment (Kosinski, 2005). Different studies have looked into driver response time and
different distributions have been recommended (Koppa, 2000) (Green, 2009). Many of these
studies considered response time to expected and unexpected events. At crosswalks, drivers are
aware of the presence of pedestrians, thus pedestrian crossing events should be considered as
expected, which is associated with shorter reaction times compared to unexpected events (Fitch
et al., 2010). Among the past studies, Koppa and Rodger decompose the driver braking response
prior to the actual braking into perception-reaction time and movement time (the amount of time
required to move the foot to the brake pedal). Results from this work were consistent with past
literature but followed a stronger investigation (Koppa, 2000). The report briefly discussed non-
signalized intersections and used 1.57 sec of driver response time as a realistic worst-case
scenario (99" percentile) (Koppa, 2000). Based on this report, movement time ranges from 0.2
sec to 0.26 sec based on the vertical separation between the brake pedal and the driver’s foot
(Koppa, 2000). Based on this report and other literature, the driver response during a pedestrian-
vehicle interaction (the entire reaction period prior to the actual braking) at crosswalks takes

between 0.5 s and 2 s.

5.4 THE NEW SAFETY FRAMEWORK

The proposed pedestrian-vehicle interaction model, referred to also as the DV model, is
represented in a two-dimensional distance-velocity space and helps investigate pedestrian safety

based on vehicle reaction and braking behavior.

5.4.1 Basic Distance-Velocity Model

The evolution of a yielding maneuver unfolds over time and space is presented in FIGURE 5-1.
Several basic assumptions are made in analyzing road user behavior for crosswalk safety: 1)
during a yielding maneuver, a driver has a response time after the occurrence of the pedestrian,
and the vehicle keeps constant speed over this time; 2) a braking period, when the driver brakes
at a constant deceleration rate, occurs after the reaction time; 3) drivers have knowledge of

whether they are able to stop before reaching the crosswalk, i.e., they know the maximum
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deceleration rate required to stop and yield; 4) the maximum deceleration rate of the vehicle is

defined by the pavement friction rate.

Occurrence of the pedestrian: a pedestrian
showing intention

" - . . . - i " .. . Im from crosswalk
Position 1: vehicle arrival ~ Position 2: pedestrian Position 3: the beginning Position 4: position
with a certain speed occurrence of braking where vehicle stops

Response Braking

FIGURE 5-1 Vehicle yielding maneuver at a crosswalk

5.4.1.1 Practical Definitions of Pedestrian Occurrence and Crossing Decision

As yielding behavior of the vehicle greatly depends on whether drivers noticed the crossing
intention of the pedestrian, the occurrence and crossing decision of the pedestrian are closely
associated to vehicle yielding compliance and pedestrian safety. The definitions of pedestrian

occurrence and crossing decision are as follows:

Pedestrian Occurrence: This may be the most important event to define in the pedestrian-
vehicle interactions at crosswalks. The occurrence of the pedestrian is the time when the
pedestrian arrives close to the beginning crosswalk, defined in this paper as arriving within a
cross-section distance of 1 m from the beginning of the crosswalk (see FIGURE 5-1), and shows
the intention to cross the street by either facing the road or turning their head toward the road,
unless his/her behavior obviously implies they do not intend to cross the street (e.g. standing and
talking, squatting, or staying in this area for specific purposes such as equipment installation and

etc.).

Pedestrian Crossing Decision: The pedestrian crossing decision is defined as the time when the
pedestrian starts to cross the street, regardless if he/she is later forced to retreat by non-yielding
vehicles. Actual crossing attempts may happen when a pedestrian keeps a constant walking
speed to cross after arrival without waiting, or starts to cross after waiting or hesitates after

arrival.
135



Pedestrian Occurrence and Crossing Decision for Pedestrian Groups: Several pedestrians
can arrive at a similar time and cross in the same gap. The occurrence of the group is defined as
the first occurrence of a pedestrian from the group. However, each pedestrian is considered to be

individually exposed to the risk of collision.

Interactions of interest are the situations in which a vehicle approaches a crosswalk and a
pedestrian is either already moving to cross or present in a position showing willingness to cross.
Situations in which the pedestrian is already crossing and would have left the roadway well in
advance of the expected arrival of the vehicle at the crosswalk, i.e. where the approaching

vehicle is not required to decelerate or yield to avoid a collision, are excluded.

5.4.1.2 Model Description

Driving maneuver during a yielding behavior consists of two periods, as shown in FIGURE 5-1:
1) the response period, when the driver observes the pedestrian and decides to yield, and; 2) the
braking period, from the moment the driver applies pressure to the brake pedal until the vehicle
completely stops. As usually adopted in transportation engineering (Jammer, 1957), the
minimum distance required for a vehicle to make a full stop to yield to a pedestrian (D,,;,) at
constant deceleration is:
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where v is the initial speed (velocity) of the vehicle at the occurrence of the pedestrian, t, is the
perception-reaction time of the driver, p,,q, 1s the maximum friction coefficient of the road
surface, and 6 is the angle of roadway slope. Based on these assumptions and formula
derivations, the ability for the driver to stop is a function of the distance (D) and the vehicle

approaching speed (v). Assuming the reaction time range as [t, min, tr max], then Dy is in a

2 2

v
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range of [Dy, D1] = [Vt, min + 9)]. An early version of this paper
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with additional details of the model can be seen at Fu et al. (2017). Miiller et al. (2004) found

that the maximum friction coefficient ranges from 0.85 to 1.15 on dry road, while on soapy road
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it the coefficient ranges from 0.45 to 0.75. In this paper, a fixed value of 0.75 is used for the

model illustration and test purposes.

FIGURE 5-2 shows the basic elements in the model with plausible values. The Distance-
Velocity (DV) diagram is divided into three areas by the D, and D; curves: i) the first area,
defined as phase I, where vehicles cannot make a full stop, ii) the second area, phase II, where
whether vehicles can stop and yield depends on the driver’s reaction time, and iii) the third area,
phase III, where vehicles can stop. Line A in the figure represents the distance and speed over
time during an example interaction where a vehicle approaches at constant speed, then brakes at
constant deceleration after the pedestrian starts to cross. The DV coordinates at the time when
the pedestrian shows crossing intention and when the pedestrian decides to cross (starts crossing

maneuver) are marked in the diagram.

40 A
Phase III Vehicles can yield

Phase 11 Yielding depends
20 A on reaction time

Line A - Distance and velocity of the approaching vehicle

Distance (m)

When pedestrian appears

When pedestrian crossing decision is made
+ Braking Maneuver After Perception
Phase I Vehicles cannot make a full stop

0 += : . . : >
0 3 6 9 12 15

Speed (m/s)

FIGURE 5-2 Explanation of D-V diagram with example values

5.4.2 Behavior Measures

Based on the D-V diagram and the situations represented by the three phases, drivers’ non-
yielding maneuvers and pedestrians’ crossing decisions can be classified; then, yielding
compliance and crossing decision ratios can be used to evaluate the safety status of a given

crosswalk.
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5.4.2.1 Vehicle Yielding

5.4.2.1.1 Non-Yielding Maneuver

Vehicle yielding behavior can be analyzed with knowledge of the pedestrian occurrence, i.e. the
time when the pedestrian starts or intends to cross the street. Non-yielding maneuvers are defined
as the events in which drivers do not provide right-of-way to pedestrians, regardless as to
whether drivers do not intend or are not able to yield (Lacoste et al., 2014) (Fitzpatrick et al.,
2006) (Campbell, 2012). By plotting in the DV diagram the speed V.. of vehicles conducting
non-yielding maneuvers and their distance D, to the crossing at the occurrence of the pedestrian,
a vehicle’s ability to stop in front of the crosswalk can be classified. According to the DV
diagram, non-yielding maneuvers can be placed into three categories, as presented in FIGURE

5-3a:

e Non-infraction Non-yielding: If D,.. < D, (corresponding to Phase I in the two
diagrams in FIGURE 5-3), the vehicle will not have enough time to make a full stop to
yield. Non-yielding maneuvers in such situations should not be considered as a non-
yielding behavior.

e Uncertain Non-yielding Maneuver: If Dy < D,.. < D;(corresponding to Phase II), the
driver may or may not be able to react to the crossing pedestrian in time to yield.
Although drivers are required be attentive to crossing pedestrians, reaction time can vary.
In this category, it is hard to determine whether the driver is not able to or not willing to
yield. These situations are therefore called uncertain non-yielding maneuvers. Vehicles in
Phase II are still required to yield to pedestrians, as they are required to pay attention and
react as quickly as possible.

e Non-yielding Violation: If D; < D,.. (corresponding to Phase III), the vehicle has
enough time to react and yield to the pedestrian. All non-yielding maneuvers in this

situation are voluntary and therefore violations.
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FIGURE 5-3 Classification of non-yielding maneuvers and crossing decisions in the DV
diagram

5.4.2.1.2 Yielding Rate and Yielding Compliance

Past studies used yielding rate and yielding compliance as interchangeable terms, while in fact
they are different. In most past studies, all non-yielding maneuvers have been considered as non-
compliance, including those where vehicles are too close to the crosswalk to have the option to
yield (phase I in the DV model). This paper presents clearly the definitions of yielding rate and

yielding compliance by taking into account situations where vehicles are not able to yield:

e Yielding Rate: Yielding rate is defined as the proportion of vehicles that yield to
pedestrians over all the pedestrian-vehicle interactions.
¢ Yielding Compliance: Yielding compliance is the proportion of vehicles that yield to

pedestrians over the vehicles that are physically able to yield to crossing pedestrians.

According to this, yielding rate for phase i (i =I,1I,1I1: [ — Phase I, Il — Phase 11,
111 — Phase I11) refers to the ratio of yielding maneuvers among all interactions reaching phase
i. The overall yielding rate, which is improperly used for yielding compliance, is the proportion
of total number of yielding maneuvers over the number of all pedestrian-vehicle interactions.
The yielding compliance rate considers interactions where the vehicle Docc, Voce coordinates fall
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in Phase II and III at the occurrence of the pedestrian. Yielding rate and yielding compliance can

be expressed using the following equations:

N . .
_ yielding;
YR, = ———L (4)
interaction;
ZNyielding-
— i
YR =5 )
interaction;
Nyieldi +Nyieldi
yielding yielding
YC — 11 111 (6)

NinteractionH +Ninteraction111

Where, YR; is the yielding rate for Phase i, Nyeiqing, 1S the number of yielding maneuvers in
Phase i, Ninteraction; 18 the number of pedestrian-vehicle interactions of interest (defined in 3.1.1)

in Phase i, YR is the overall yielding rate, and YC is the yielding compliance.

5.4.2.1.3 Uncertainty Zone for Yielding

Based on the DV diagram, if an interaction falls in Phase II (D, < D,.. < D,), either the driver,
or the outside observer cannot know whether the driver is able to stop or not. Such a situation is
defined as the uncertainty zone for yielding. A better understanding of this uncertainty zone
should shed light on driver behavior during the pedestrian-vehicle interactions, and may help
improve models, specifically in simulating pedestrian-vehicle interactions. This paper provides a

brief exploration of the uncertainty zone for yielding by looking at the yielding rate for Phase 11

Ninteraction"

(YR;p), and the proportion of interactions in Phase II among all the interactions ( .
X Ninteractioni

5.4.2.2 Crossing Decision

In order to describe the pedestrian crossing decisions in an interaction, the speed and distance
(Deross, Veross) coordinates of the vehicle when the pedestrian starts to cross the street are extracted.
As illustrated in the DV diagram in FIGURE 5-3b, the pedestrian crossing decisions can be

classified in three types:
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e Dangerous Crossings: When the crossing decision occurs in the situation where
Deross < Dy (Phase 1), pedestrians expose themselves to dangerous interactions with
vehicles that cannot brake to yield.

e Risky Crossings: When the crossing decision occurs in the situation where Dy <
D¢ross < D; (Phase 1II), it is still unsafe for pedestrians to cross the street as drivers may
not have enough time to react and yield. Drivers with longer reaction times will either
brake sharply or may collide with pedestrians.

e Safe Crossings: When the crossing decision occurs in the situation where D; < D.yoss
(Phase III), pedestrians are relatively safe. Drivers have enough time to react and yield to

pedestrians.

Ratios of different types of crossing decisions over the total number of interactions where

pedestrians start to cross can be used to evaluate pedestrian crossing behavior.

5.4.3 Surrogate Measures of Safety

The proposed framework also attempts to measure the probability dimension of the risk of
collision, which is not represented by the yielding compliance and crossing decision indicators
presented previously. In the DV model, vehicles have less space and time to react and brake with
the situations moving clockwise, i.e. moving from phase III, to phase II, then phase I; therefore,
the probability of collision increases clockwise. In this study, it is quantified by two indicators:

time to crossing and deceleration rate required to stop and yield.

5.4.3.1 Time to Crossing

Time to crossing (TC) refers to the time required for the vehicle to reach the pedestrian crossing
path if continuing at constant speed. Assuming the (D,V) coordinate of the vehicle at a certain
instant to be, TC is calculated as D /V, which is the slope of the line going through the origin and
the point (D, V) in the DV diagram. TC represents the available time for the drivers to attempt

evasive actions before reaching the crosswalk.
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5.4.3.2 Deceleration Rate required to Stop

Deceleration rate required to stop (DRS) is the constant deceleration rate required for the vehicle
to stop and give the right-of-way to pedestrians. Assuming the driver is aware of the pedestrian

at the pedestrian occurrence and reacts immediately thent, = t, ;.

Assuming the deceleration rate as a, the distance for the entire reaction-braking

2
maneuver is D = vt, + Z—a; then, the deceleration rate can be calculated as:
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For determining the DRS, as t,. = t; i, We get:
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ifD > vtr_min (8)

TC and DRS of the vehicle at the time of the pedestrian occurrence and of the time of the

pedestrian crossing decision (or attempt) will be collected and analyzed.

The relationship between pedestrian safety and yielding compliance of the drivers can be
better understood using the DV model. The level of safety in an interaction between a driver and
a pedestrian evolves throughout the interaction. For instance: an interaction involving a driver
that fails to yield in Phase III, considered a relatively safe situation, will result in a more
dangerous situation (Phase I); a timely stop/slow-to-yielding maneuver in Phase II may result in
a safe crossing in Phase III. The probability of collision can be analyzed based on TC and DRS.
Moreover, TC, DRS and other surrogate measures of safety may help explain the fine details of
interactions, such as the detailed process of yielding maneuvers and its impact on pedestrian

crossing decisions.
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5.5 CASE STUDY

A study was conducted to illustrate the use of the DV model to evaluate pedestrian safety at three
different types of non-signalized crossings: a painted crosswalk, an unprotected crosswalk (a
crossing location with neither sign nor pavement treatment to protect the pedestrians), and a
crosswalk controlled by stop signs. Road user trajectories were extracted using automated video-
based techniques. Multiple cameras were used to cover large road sections for the sites where a
single camera installation failed to cover the entire road section being analyzed. Using the
trajectory data, the framework was applied. Results were analyzed using the DV model. Details
of data collection and processing methods, and the comparative analysis of pedestrian safety are

provided in this section.

5.5.1 Data Collection and Processing

5.5.1.1 Data Collection

For temporary trajectory data collection, mobile cameras are the easiest, most feasible, means of
data collection. GoPro’s Hero and Hero 3 Edition cameras were used in HD resolution (1920 by
1080 pixels). The cameras were mounted on mobile masts and fixed to existing facilities such as

lampposts and traffic light poles.

One of the limitations of using mobile video data collection is the limited field of view
and trajectory length due to the restricted installation height and location, which means that a
single camera is not sufficient to cover a sufficiently large observation area for most sites.
Therefore, multiple cameras may be required to observe the approaching road user trajectories.
In this study, cameras were installed in sequence along the approach studied with a portion of

their views overlapping for synchronization purposes.
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5.5.1.2 Data Processing

As presented in FIGURE 5-4, the data processing work mainly consists of four steps:

STEP 1: Trajectory Data Extraction from Video After data collection, video data processing
was carried out using the tracker in the open source Traffic Intelligence project (Saunier & Sayed,
2006), which provides accurate positioning and velocity outputs of the road users, as done in (Fu
et al., 2016; Anderson-Trocme et al., 2015). Moreover, the most up-to-date version of the project
was used which addresses errors caused by the lens distortion (“fish-eye” effect) (Forsyth &
Ponce, 2012). The output is the trajectory data (positions and velocity vectors) of the road users

in each frame saved in a SQLite database.

STEP 2: Preparation of the Trajectory Database For sites requiring multiple cameras, merged
trajectory outputs through consecutive cameras is ideal, but not completely implemented and
validated in the Traffic Intelligence project. In this study, the videos from different locations in
the same site were processed separately. In order to learn how driver react to different pedestrian
occurrences and crossing decisions at different distances, the position and time of the vehicle
through different camera views should be extracted, thereby requiring video synchronization

based on the time offsets of the video recordings for the different camera views.

STEP 3: Filter and Mark the Interactions As currently available computer techniques are
either unable to detect, or detect accurately, the fine details of pedestrian occurrence, in
particular the detection of the pedestrian’s intention to cross, pedestrian occurrences and their
crossing decisions were determined manually. In the study, videos were scanned manually for
interactions of interest. Timestamps (in the format of frame number) of pedestrian occurrences

and relative crossing decisions during these interactions were manually recorded.

STEP 4: Extraction of the Distance and Velocity Data Based on the frame numbers from Step
3, the distance and velocity of the vehicle at the time of pedestrian occurrences and crossing
decisions are calculated using a simple script. In the DV framework, distance to the pedestrian
crossing path is required. Reference lines to measure the distance are set at the middle of the

crosswalk painting for the painted crosswalk and stop sign controlled crosswalk locations. For
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the unprotected location, the position of the pedestrian crossing is the geometrical separation of
the approach and the center of the intersection or crossing zone (see example in FIGURE 5-4).
As most people crossed within the crosswalk limits at the painted crosswalk and stop sign
crosswalk locations, the distance to the reference line is used. For those who crossed outside of
the crosswalk, and those at the unprotected crosswalk location, the distance is adjusted by adding
or subtracting the displacement of the pedestrian to the reference line. In addition, since the
tracker only tracks moving objects, the distances of the vehicles already stopped at the times of

measurement are extracted manually.

Step 1: Trajectory Data
Extraction from Video

Step 2: Preparation of Trajectory Data

Trajectory Data
Yes +| Sites need multiple [ No
camera installations

Input
Video Data

" y

Traffic Intelligence

A4

Check the start time of

Tracker video recording
¥ v
Output Record the time offsets
Trajectory data saved in of camera views for
SQLite files synchronization

e —

Step 3: Filter and Mark
Interactions

Step 4: Data Extraction for
the DV Framework
Input - Trajectory Data,
and Timestamps of
Occurrence & Crossing

¥ v

Manually find the
interactions of interest

Record the timestamp of
pedestrian occurrence

v

Script to Extract Vehicle
Location and Speed Data

v

Record the timestamp of
pedestrian crossing
decision

Output - Vehicle
Distance and Velocity of
each Interaction

FIGURE 5-4 Steps involved in data processing
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5.5.1.3 Hllustration of the Results

For illustration purpose, this paper provides an example with the outputs of one interaction, as
shown in FIGURE 5-5. Two cameras were installed in sequence to cover approximately 35
meters. FIGURE 5-5a provides an illustration of the camera installation. FIGURE 5-5b provides
snapshots from the two camera views showing the trajectory of the same vehicle at the same time.
Cameras are synchronized by knowing the time offset between the starts of the recordings for the
two camera views. For illustration purposes, FIGURE 5-5c gives the DV diagram with the DV
coordinates of the vehicle during the entire process of interaction. Markers in the DV diagram
shows the DV coordinates at the times of the occurrence and of the crossing decision of the
pedestrian. The outputs in the DV figure align well with the assumption illustrated in FIGURE
5-2. At the occurrence of the pedestrian, the vehicle, possibly driven by a vigilant driver, began
decelerating to yield to the potential crossing by the pedestrian. Based on the framework, the
occurrence and crossing decision fall in Phase II where a timely reaction and a relative high
deceleration rate are required of the driver. The TC and the DRS for the pedestrian occurrence
and crossing decision can be computed. In this interaction, TC and DRS at the time of the
pedestrian occurrence were found to be 2.06 s and 2.38 m/s?>. TC and DRS at the time of the

pedestrian crossing decision were 2.05 s and 1.85 m/s?.
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FIGURE 5-5 Illustration of the results for one pedestrian-vehicle interaction
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5.5.2 Data Description

For the case study, three pedestrian crossing locations with different crosswalk designs were

selected in central Montreal:

e Site Laurier Berri: crosswalk located on Avenue Laurier at the intersection of Avenue
Laurier and Rue Berri — it is a painted crosswalk crossing on Avenue Laurier, a one-way,
one-lane street.

e Site Laurier Drolet also located on Avenue Laurier at the intersection of Avenue Laurier
and Rue Drolet — it is a pedestrian crossing location with no crosswalk paintings or signs
to mark the crossing.

e Site 13e Belair: crosswalk located on Rue Belair at the intersection of Rue Belair and
13e Avenue — it is a pedestrian crosswalk with both the crosswalk painting and stop signs
where vehicles must stop and yield to pedestrians. All three crosswalks are located at

level roads, which means the road slope is 0.

Video data were collected for each site. Details of the video data are presented in TABLE 5-1.
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TABLE 5-1 Descriptions of the Video Recorded at Each Site

Type of Crosswalk Site name Date Time Duration (hour)
Painted Laurier_Berri March 17" 2016 14:00-18:40 4.7
Unprotected Laurier_Drolet June 17% 2016 10:00-14:30 4.5
Stop sign controlled 13e_Belair June 2152016 09:00-13:30 4.5

Site name # of Cameras Camera View 1 Camera View 2

Laurier_Berri 2
Laurier_Drolet 2
13e_Bélair 1

Note: in the pictures of the camera views, orange arrows indicate the direction of the approach studied, yellow pins
indicate the crosswalk locations, and green lines are the reference lines as described in 4.1.2

5.5.3 Results and Discussion
5.5.3.1 Vehicle Yielding Behavior

Results of measures for vehicle yielding behavior are presented in FIGURE 5-6 and TABLE 5-2.
From FIGURE 5-6, the DV framework, with its parameters of reaction time, is useful to describe
and analyze the interactions. No yielding maneuver was observed for interactions in Phase I,
where vehicles are very close to the crosswalk and cannot yield. Vehicle maneuvers in
interactions in Phase II vary greatly among drivers. This suggests the existence of the uncertainty
zone of yielding associated with Phase II. Considering the interactions in Phase III, for the

painted crosswalk and the stop sign controlled crosswalk locations where drivers know that they
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must yield the right-of-way to crossing pedestrians, most drivers did yield. This provides
evidence that vehicles in the situations of Phase III have enough time to react and yield to the
pedestrians, and non-yielding maneuvers happening in such situations are (voluntary) violations.
Considering yielding rates and driver compliances, as shown in TABLE 5-2, the large difference
(a maximum difference of 16.9 % points) between the overall yielding rate (YR) and the yielding
compliance (YC) shows that the yielding compliance used in many past studies (which is, in fact,

the overall yielding rate) may not properly describe the yielding compliance of the drivers.

From the results, most interactions that occurred at the stop sign controlled crosswalk fall
in Phase III as from the DV plots, and the overall yielding rate and yielding compliance was
77.8 %, which is the highest among all the sites. For the painted crosswalk location, the yielding
compliance was 64.3 %. The yielding rate of Phase III was 82.3 % suggesting a high compliance
of the drivers at this site. However, due to the non-yielding maneuvers for the interactions falling
in Phase II and Phase I, the overall yielding rate was only 52.0 %, which suggests a less safe
environment for pedestrians compared to the stop sign controlled crosswalk. The unprotected
crosswalk performs poorly in terms of pedestrian safety. No vehicle yielded in Phase III, where
the driver has sufficient time to react and yield. The yielding compliance for this site was only
10.8 % and the overall yielding rate was only 8.7 %. The reason for these low rates may be that
most drivers think they have right to cross without yielding. Moreover, from the comparison of
the DV plots, the stop sign is found to move the interactions toward reduced speeds, since most
drivers slow down as they approach the stop sign. Based on the indicators of the DV model, the
stop sign controlled crosswalk provides the safest accommodation for pedestrians to cross by
offering the best yielding compliance of the drivers, while the unprotected crosswalk is the least

safe.
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FIGURE 5-6 DV plot for pedestrian occurrence and yielding behavior

TABLE 5-2 Results of Yielding Rates

Phase No. Obs. Type of Non-yielding No. of Non-yielding  Yielding Rate for Phase i
Painted Crosswalk (Site Laurier Berri, 57 interaction observations)
I 15 Non-infraction Non-yielding 15 0.0 %
11 25 Uncertain Non-yielding 12 52.0 %
I 17 Non-yielding Violation 3 82.4 %
Opverall yielding rate (YR) - yielding compliance rate used in past studies 47.4 %
Rate for redefined yielding compliance (YCR) 64.3 %
Unprotected Crosswalk (Site Laurier Drolet, 46 interaction observations)
I 9 Non-infraction Non-yielding 9 0.0 %
I 18 Uncertain Non-yielding 14 222 %
I 19 Non-yielding Violation 19 0.0 %
Overall yielding rate (YR) - yielding compliance rate used in past studies 8.7 %
Redefined yielding compliance rate (YC) 10.8 %

Stop Sign Controlled Crosswalk (Site 13e¢_Bélair, 27 interaction observations)

I 0 Non-infraction Non-yielding 0 undefined
I 1 Uncertain Non-yielding 1 0.0 %

I 26 Non-yielding Violation 5 80.8 %
Overall yielding rate (YR) - yielding compliance rate used in past studies 77.8 %
Redefined yielding compliance rate (YC) 77.8 %

Note: Phase I refers to where vehicles cannot make full stop, Phase II is where yielding depends on reaction time,
and Phase III is where vehicles can stop and yield.

151



The TC and DRS of the interactions can be generated to quantify the probability of
collisions. The median TC and DRS at the times of pedestrian occurrences and their standard
deviations can be calculated. Results are provided in FIGURE 5-7. From the results, the stop sign
controlled crosswalk has a median TC that is doubled, and a median DRS of pedestrian
occurrences that is much lower, compared to the other two crosswalk locations. This indicates
that stop signs generally provide better conditions for vehicles to respond and decelerate in order
to yield to pedestrians. On the other hand, the unprotected crosswalk has the highest median
DRS, suggesting that it will be more difficult for vehicles to yield to pedestrians. The
unprotected crosswalk has a similar median TC value to that of the painted crosswalk, which
shows similar conditions provided by the two crosswalks for vehicles to respond. These findings
suggested that the stop sign controlled crosswalk performs best for pedestrian safety, while the
unprotected crosswalk is the worst. The painted crosswalk provides a safer accommodation for

pedestrians compared to the unprotected crosswalk, but not as good as the stop sign controlled

crosswalk.
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FIGURE 5-7 Result comparisons for yielding behavior at three types of crosswalks

5.5.3.2 Pedestrian Crossing Decisions

Results for crossing decisions are provided in FIGURE 5-8 and FIGURE 5-9. Crossing decisions at the
painted crosswalk fall in Phase II and Phase III, with the median TC of 2.29 s and the median DRS of
1.71 m/s* when pedestrian decisions were made. For crossing decisions at the stop sign controlled
crosswalk, most of the crossing decisions are made in Phase III, where vehicles have enough time to react
and yield. The median TC is 4.89 s and the median DRS is 0.32 m/s?>. The TC and DRS for the times at

which the pedestrian crossing decisions were made are presented in FIGURE 5-9. The higher TC and
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lower DRS for interactions at the stop sign location can be attributed to their location in the DV diagram
(Phase III) and the high yielding compliance, illustrated in FIGURE 5-8. Based on the comparison of the
median TC and DRS across the three intersection types, the stop sign controlled location is safer
compared to the painted crosswalk by leading pedestrians to make safe crossing decisions. Due to the
reduced yielding compliance at the unprotected crosswalk, the majority of the crossing decisions were
made after the vehicle passed. Therefore, only six crossing attempts were observed, making it insufficient
for comparison as can be seen in the higher variability of TC and DRS in FIGURE 5-9. However, as
presented in FIGURE 5-8, two dangerous crossing attempts, where the pedestrians had to retreat as the
vehicles did not give the right-of-way, were found at the unprotected crosswalk location, suggesting the

reduced safety at the unprotected crosswalk location.
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FIGURE 5-8 DV plots for pedestrian crossing decision

16 - 8
12 A 6 X
)
2 E
o 81 ZE
@]
= 2

41.[ ZI X
=5 = e

Painted Unprotected Stop Sign Painted Unprotected Stop Sign

FIGURE 5-9 Result comparisons for crossing decisions at three types of crosswalks
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5.6 CONCLUSION

This paper proposes an original framework to study pedestrian-vehicle interactions at non-
signalized crosswalk locations based on the vehicle trajectory speed and distance to the
pedestrian crossing. This model utilizes trajectories coming from video analysis. The framework,
also referred to as the DV model, shows promise in studying vehicle yielding and pedestrian
crossing behavior at non-signalized locations. The data generation process is semi-automated
using an existing automated tracking tool, manual identification of events (pedestrian
occurrences and crossing decisions), and automated data extraction. The proposed framework is
tested through a case study using video data from three different types of non-signalized crossing

locations in Montreal.

Based on a case study, the DV framework, along with the derived measures, is used for
analyzing driver interactions with crossing pedestrians, by identifying the situations in which the
driver can and cannot stop to yield to the pedestrian, and by characterizing both users’ behavior
and maneuvers. The framework better explains pedestrian-vehicle interactions compared to
typical safety studies based on traffic conflict techniques such as (Almodfer et al., 2015)
(Malkhamah et al., 2005) (Tang & Nakamura, 2009) which fall short in describing unpredictable
behavior of the road users. Surrogate measures of safety selected in the paper, TC and DRS, are
integrated in the framework to diagnose the safety of the interactions. The framework provides
reasonable results in classifying driver yielding behaviors. The absence of yielding maneuvers in
Phase I indicates the existence of situations where vehicles are so close to the crosswalk at the
pedestrian occurrence that they cannot stop and give the right-of-way. The high yielding rate in
Phase I1I indicates that in such situations drivers have enough time to react and most of them are
willing to yield to pedestrians (as required by the law). The reduced yielding rate in Phase II
indicates the situations where drivers either require increased reaction time or are unwilling to

yield to pedestrians. The reaction time range of 0.5 to 2 s thus seems reasonable.

Results of the case study are intuitive. The stop sign controlled crosswalk can better
protect the pedestrians compared to the other two crosswalks in terms of driver compliance,
overall yielding rates and crossing decisions the pedestrians make. The unprotected crosswalk

performs inadequately for pedestrian safety as the yielding compliance is very low and the safety
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level as measured by the vehicle yielding behavior is the lowest. As the key contribution, this
paper provides a new approach to describe pedestrian-vehicle interactions. The proposed
approach can be used for different purposes in road safety including treatment (countermeasure)
evaluation, simulation of pedestrian-vehicle interaction, behavior analysis, safety monitoring

(detecting vehicle violations), and improvements of yielding enforcement policies.

However, the model needs to be further validated through a sufficiently large number of
observations and locations. The maximum friction rate is influenced by many factors including
weather, type of the pavement, type of the tire and braking system specifications. The treatment
of the maximum friction can be improved in future work. The range of reaction time also needs
to be further calibrated. The existence of the uncertainty zone and its impact on pedestrian safety
should be further explored. Other surrogate measures of safety than TC and DRS, such as TTC
and PET will be used and compared in future studies. Data will be collected from a large number
of sites for the model validation and improvement based on available historical crash data. In
addition, the behavior of drivers and pedestrians is an important factor. One must assume that

users are similar overall at different sites for the performance validation of different treatments.

Studies on road user behavior such as vehicle yielding compliance and pedestrian
crossing decision during vehicle-pedestrian interactions will be further conducted using the DV
model with video data. Also, as part of future work, the effectiveness of different crosswalk
treatments will be further evaluated based on the framework. The effects of various factors
(traffic volume, time-of-day, the geometric design, built environment, etc.) will be investigated.
Driver glance behavior and driving distraction, which are important explanatory factors for
pedestrian safety, require the installation of in-vehicle sensors like eye trackers and have thus not
been much investigated yet (Bichicchi et al., 2017). The model could be applied to improve

microsimulation simulation models in better describing vehicle-pedestrian interactions.
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Link between chapter 5 and chapter 6

The previous chapter introduced the DV framework and demonstrated it through a case study
involving three sites of different types. However, this is far from being sufficient for testing and
valuating the framework. The city of Montreal has been recently investing in improving
pedestrian safety at non-signalized crosswalk locations. Based on the project our laboratory has
with the city, we are able to conduct a large-scaled data collection involving multiple sites in
Montreal. As part of the project, the model is applied to evaluate the performance of the three
main types of crosswalks (the marked crosswalk, the uncontrolled crosswalk, and the stop sign
controlled crosswalk) on pedestrian safety through in an extended study involving 15 different
crosswalk locations selected from City of Montreal. The model is further tested. The
performance of the three types of crosswalk on pedestrian safety is investigated and compared.
Though thermal camera has been proved to perform well for traffic data collection, the study still
used video data collected from regular cameras. This was due to 1) the use of the thermal camera
was not included in the design of the project; 2) the accessibility of limited number of thermal
cameras (only one available) did not allow efficient data collection given a data collection
permission with limited dates; 3) there are safety concerns for data collection at night. Detailed

work is presented in the following chapter.
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Chapter 6

Model Application for Multiple Sites
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Chapter 6 Model Application for Multiple Sites

6.1 INTRODUCTION

Chapter 5 has given the definition of interaction of interest. An interaction of interest between
the pedestrian and the vehicle covers the entire procedure starting from when the vehicle and the
pedestrian approach to each other, ending by successful passages, evasive maneuvers, or in worst
case, a crash. In terms of behavior analysis, pedestrian safety is mainly decided by four

elements:

1) The occurrence of the interaction — Based on the definition of interaction of interest, an
interaction happens when a pedestrian presents at the crosswalk with his intention to cross, and a
vehicle is approaching the crosswalk location. For an interaction of interest, the trigger of the
interaction is the occurrence of a pedestrian intending to cross; therefore, the pedestrian
occurrence, defined in Chapter 5, also represents the occurrence of the interaction. The initial
status of the vehicle at the occurrence of the interaction is important as it determines the

capability (the time and distance from the crossing pedestrian) of the drivers to respond.

2) The vehicle yielding behavior — In response to pedestrian occurrence, drivers decide to
yield or not. Driver yielding behaviors are strongly associated with pedestrian safety. Driver
compliance to the yielding law helps reduce the risk of pedestrians. Yielding behavior can be

analyzed using the DV framework.

3) The crossing decision of the pedestrian — During a pedestrian-vehicle interaction,
pedestrians cross the street when they feel confident to. The pedestrian can be endangered if the
crossing decision is made when the vehicle is still at a high speed, with his yielding intention
unknown. The pedestrian decision can be analyzed based on the status of the vehicle when the

decision is made.
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4) The outcome of the interaction — an interaction of interest ends up three types of
outcomes. ) The pedestrian crosses before the vehicle passage, being given right-of-way. ii) The
pedestrian have to cross after the vehicle passage not being yielded. iii) An evasive maneuver or
a crash happens if the pedestrian decides to cross the street in front of the vehicle, but he is not
given right-of-way by the driver. Due to the limitation of crash data analysis (Fu, et al., 2016;
Tarko, et al., 2009), evasive maneuvers have been an important measure of safety (Dhar &
Woodin, 1995; Fitzpatrick, et al., 2006; Gitelman, et al., 2016). Evasive maneuvers include
reactions such as rushing to complete or aborting a crossing (for pedestrians) and swerving, lane

changing, or braking.

As the main purpose, this part is to test and validate the DV framework through multiple
sites. An extended study involving 15 different crosswalk locations selected from City of
Montreal was conducted. Detailed analysis was made based on the information extracted from
the video data collected from these sites. The occurrences of interactions, vehicle yielding
behavior, pedestrian crossing decisions, and the observation of evasive maneuvers are

investigated.

6.2 SITE DESCRIPTION

For model validation, pedestrian safety at the three main types of non-signalized crosswalks,
which include uncontrolled crosswalks (Type A), marked crosswalks (Type B in the chapter),
and stop sign controlled crosswalks (Type C), were further analyzed. For the three types of
crosswalk, each involved video data collected from five site locations. FIGURE 6-1 presents

locations of the sites. Detailed descriptions for each site are included in APPENDIX II.
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FIGURE 6-1 Map of Site Locations

6.3 DATA COLLECTION

Video data were collected using the same method described in Chapter 5. Details of the video
data are presented in TABLE 6-1. Data were collected from the fifteen sites, totaling to 80.8
hours (21.9 hours from uncontrolled crosswalk locations, 30.3 hours from marked crosswalk

locations, and 28.6 hours from crosswalk locations controlled by the stop sign).
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TABLE 6-1 Descriptions of the Video Recorded at Each Site

Type of Crosswalk Site ID Site Name Date Time Duration (hr)
Uncontrolled A-1 NotreDamedeGrace-D'Oxford July 20" 2016 08:10-13:50 57
-Type A - A-2 Clark-PrinceArthur July 232016 09:10-12:00 2.9
A-3 Masson-6e July 4" 2016 08:30-12:55 44
A-4 Beaubien-Molson June 282016 08:10-12:35 44
A-5 Laurier_Drolet June 17" 2016 10:00-14:30 4.5
Total duration for Type A 21.9
Marked B-1 Prieur-DeLaRoche September 23" 2016 09:30-18:50 9.3
- Type B - B-2 NotreDamedeGrace-OldOrchard ~ July 20" 2016 08:50-13:40 4.8
B-3 Beaubien-SaintVallier June 30" 2016 08:30-14:20 5.9
B-4 Beaubien-27¢ July 7" 2016 10:15-15:50 5.6
B-5 Laurier_Berri March 17" 2016 14:00-18:40 4.7
Total duration for Type B 303
Stop sign C-1 Roy-HenriJulien June 16" 2016 09:40-17:50 8.2
- Type C - C-2 George-Gagne June 9" 2017 09:15-15:20 6.1
C-3 Sauriol-Millen September 20" 2016 09:00-11:00 2.2
C+4 19e-Belair June 21* 2016 09:10-15:50 7.6
C-5 13e_Belair June 21% 2016 09:00-13:30 4.5
Total duration for Type C 28.6
Total duration for all sites 80.8

6.4 RESULTS AND DISCUSSION

After data collection, video data were processed and trajectory information of the road users was
extracted and analyzed using the same approach given in Chapter 5. Interactions of interest were
analyzed for each site included in each crosswalk type. 682 interactions were observed from the
15 sites with 292 from uncontrolled crosswalks, 222 from marked crosswalks and 168 from stop
sign controlled crosswalks. This chapter mainly focuses on results summarized for different
types of crosswalks. For one who wants to check more details, results for each specific site are

included in APPENDIX III.

As the main purpose of this chapter, the performances of the three main types of non-
signalized crosswalks on pedestrian safety are analyzed and compared. The intensity of observed
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interactions at their occurrences, and vehicle yielding behaviors and pedestrian crossing
decisions in response to these interactions are analyzed using the DV framework. Results for
each type of crosswalk are given in TABLE 6-2. Results are discussed in three parts: 1)

interactions of interest; 2) yielding behavior of vehicles; and 3) crossing decisions of pedestrians.

TABLE 6-2 Results from DV Model for Different Crosswalk Types

Type of Crosswalk Type A Type B Type C All Sites
Uncontrolled Marked Stop sign controlled
Results for Interactions of Interest
Number of Interactions
No. of Total Interactions 292 222 168 682
No. of Interactions in Phase I (*Percentage over the total) 32 (11.0 %) 33 (14.9 %) 5(3.0%) 70 (10.3 %)
No. of Interactions in Phase II (Percentage over the total) 43 (14.7 %) 58 (26.1 %) 35(20.8 %) 136 (19.9 %)
No. of Interactions in Phase III (Percentage over the total) 217 (74.3 %) 131 (59.0 %) 128 (76.2 %) 476 (69.8 %)
TC and DRS at the Occurrence of Interaction
TC (sec) Median 5.60 3.73 3.92 431
Std. Dev. 6.39 4.89 4.50 5.64
DRS (m/s?) Median 0.79 0.61 0.48 0.69
Std. Dev. 3.09 2.29 0.84 2.49
Results for Yielding Behavior
No. of Non-infraction Non-yieldings 32 33 4 69
No. of Uncertain Non-yieldings 38 31 10 79
No. of Non-Yielding Violations 207 50 21 278
No. of Yielding Maneuvers 15 108 133 256
Yielding Rate 51% 48.7 % 79.2 % 37.5%
Yielding Compliance 5.8% 57.1% 81.6 % 41.8 %
Results for Crossing Decision
No. of Decisions to Cross after Vehicle Passage 267 112 34 412
No. of Decisions to Cross before Vehicle Passage 25 111 134 270
No. of Dangerous Crossings (**Percentage over the total) 2 (8.0 %) 12 (10.8 %) 0 (0.0 %) 14 (5.2 %)
No. of Risky Crossings (Percentage over the total) 6 (24.0 %) 23 (20.7 %) 24 (17.9 %) 53 (19.6 %)
No. of Safe Crossings (Percentage over the total) 17 (68.0 %) 76 (68.5 %) 110 (82.1 %) 203 (75.2 %)
No. of Crossings with Evasive Maneuvers 10 3 1 14
TC (sec) Median 5.54 4.03 4.40 4.14
Std. Dev. 3.65 422 5.01 4.55
DRS (m/s?) Median 0.75 0.63 0.30 0.50
Std. Dev. 1.77 3.25 1.07 2.30

Note that: *Percentage over the total in results for occurrence of interactions is the percentage of each type of interactions over the total number of
interactions observed. **Percentage over the total in results for crossing decisions is the percentage of each type of crossing decisions over all the
crossing attempts made to cross before the vehicle passage.
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6.4.1 Interactions of Interest

Intensity of interactions of interest when they occur and yielding behavior of drivers during these
interactions are investigated. FIGURE 6-2 presents the outputs for the position and speed of
vehicles when interactions occur, and their yielding behavior, in the format of the DV diagram.
Results for surrogate measures of safety including TC and DRS at the occurrence of interactions

for different types of crosswalk are virtualized using boxplots in FIGURE 6-3.

The percentages of each type of interactions over the total number of interactions of
interest are compared among different types of crosswalk. From TABLE 6-2, the type of
crosswalk controlled by stop signs has the highest percentage (76.17 %) of interactions that
happened in Phase III, where vehicles can stop. Besides, the lowest percentage (2.98 %) of
interactions that happened in Phase I where vehicles cannot make a full stop can be observed at
stop sign controlled locations. These indicate that stop sign controlled crosswalks effectively
reduce the chance of pedestrians to expose to interactions that occur with high risk situations.
Compared to uncontrolled crosswalks, marked crosswalks have a lower percentage of
interactions in Phase III, and a higher percentage of interactions that occur in Phase I, suggesting
that interactions at marked crosswalks occur with averagely more intense situations over the
other two crosswalk types. These findings align with what are given in the DV plots in FIGURE
6-2. As marked with the grey mask, vehicles states at interaction occurrence falls mostly in
Phase II and Phase III where vehicles have time to react and yield to pedestrians with reduced
speed at stop sign controlled crosswalks. From the figure, as marked with grey mask,
occurrences of pedestrians are more dispersed in the DV diagram mainly because vehicles

approaching the crosswalks have averagely higher speeds.

Intensity of interactions at occurrence can also be represented using TC and DRS at
pedestrian occurrence. Checking from TABLE 6-2 and FIGURE 6-3, uncontrolled crosswalks
have the highest median TC compared to the other two types of crosswalks which indicates that
interactions are less intense at uncontrolled crosswalks in terms of the time left for drivers to
observe and react to a pedestrian at his presence at the crosswalk location to cross the street
compared to those happen at marked and stop sign controlled crosswalk locations. However,

median DRS value for interactions at uncontrolled crosswalks is the highest among all site types,
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which means vehicles should decelerate at a higher rate to stop to yield during the occurrence of
an interaction compared to other two types. Interactions happen at stop sign locations are the
least intense as they require averagely least deceleration rate to decelerate at pedestrian

occurrence.

From the results in Chapter 5, more pedestrians might be stuck by non-yielding
maneuvers of multiple vehicles in sequence at uncontrolled crosswalks. In these cases, the
pedestrian tends to wait for an extended period of time to cross. Because of the extended waiting
time, more interactions of interest generated, occurring with large TC values and small DRS
values. This may explain why the median TC at uncontrolled crosswalk is the highest.
Comparing only among indicators for the occurrences of interactions is not sufficient. To further
verify this and to investigating pedestrian safety at these three types of crosswalk, vehicle

yielding behavior and pedestrian crossing decision are to be explored.

6.4.2 Vehicle Yielding Behavior

From TABLE 6-2 and FIGURE 6-2, among all the 682 interactions, no yielding maneuver was
observed for interactions in Phase I, where vehicles are very close to the crosswalk and cannot
yield. High proportions of vehicles not giving right-of-way to pedestrians with several yielding
indicate the existence of uncertainty zone of yielding associate with Phase II. During the
interactions that occur with a situation of Phase III where drivers know that they must yield,
most of vehicles did yield. This further supports the conclusion in Chapter 5 that “the DV
framework, with its parameters of reaction time, is useful to describe and analyze the

Interactions”.

From the results, yielding rate at stop sign controlled crosswalks was 79.17 %, which is
the highest among the three types of crosswalk. The yielding compliance shows that 81.60 % of
the vehicles, who could yield to pedestrians, actually yielded. Among the interactions that occur
at marked crosswalks, less than half of the vehicles involving in interactions of interest yielded,
while there are around 60 % of drivers who could yield gave right-of-way. Uncontrolled
crosswalks however, had the lowest yielding rate of 5.14 %, and the lowest yielding compliance

of 5.77 %.
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The results indicate that stop sign controlled crosswalks not only reduces high-intensity
interactions but also help increase vehicle yielding compliance, guaranteeing right-of-way for
pedestrians and providing a safe environment for pedestrians to cross. Marked crosswalks have a
reduced yielding compliance, which mean pedestrians are less safe to cross at marked crosswalks
compared to stop sign controlled crosswalks. Drivers did not yield to pedestrians when passing
by them at uncontrolled crosswalks showing the least safe environment for pedestrian to cross

the street at such sites.
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6.4.3 Pedestrian Crossing Decision

In interactions with approaching vehicles, pedestrians decide the time to cross the street by
judging whether they are sufficiently safety to cross. Being a zero-sum game (if one gains,
another loses) for pedestrian right-of-way at crosswalks, pedestrian decisions to cross after
vehicle passages and vehicle yielding maneuvers are tightly correlated. Results for pedestrian
crossing decisions are also included in TABLE 6-2. As one can see from the table, because of
vehicles with non-yielding maneuvers, many pedestrians had to cross after vehicle passages
without risking themselves in front of the vehicles: half of the pedestrians at marked crosswalks
crossed after vehicle passages; most pedestrians at uncontrolled crosswalks gave up right-of-way
to vehicles; at stop sign controlled crosswalks, however, only small amount of pedestrian (34 out

of 168) crossed after the pedestrians.

Pedestrian crossing before vehicle passages closely related to their safety as they expose
themselves in front of vehicles. Therefore, pedestrian crossings before vehicle passages are
essential to be investigated. DV plots for pedestrians crossing decisions to cross before vehicle
passages for the three types of crosswalk are shown in FIGURE 6-4. FIGURE 6-5 gives the

comparison of the TC and DRS for the times at which the pedestrian cross decisions were made.

According to TABLE 6-2, for stop sign locations, most pedestrians (around 82.09 %)
decided to cross in a safe situation. Besides, zero dangerous crossings have been observed.
Compared to stop sign controlled crosswalks, marked and uncontrolled crosswalk locations have
reduced proportions of pedestrian safe crossings and increased proportions of dangerous
crossings. This is also illustrated in FIGURE 6-4¢ where the plots represent the states of vehicles
when pedestrian crossing decisions were made. All pedestrian crossing decisions at stop sign
controlled crosswalks fall in Phase II and Phase III. Marked crosswalks and uncontrolled ones
have similar proportions in different types of crossing decisions (roughly 68 % for safe crossings,
and 21 for risky crossings while 10 % for risky crossings). From FIGURE 6-4, crossing
decisions made at uncontrolled crosswalks are associated with increased vehicle speed (Miranda-

Moreno, et al., 2019) compared to those at marked crosswalks.

171



Looking at the TC and DRS results in TABLE 6-2 and FIGURE 6-5, the median TC for
pedestrian crossing decisions at uncontrolled crosswalks is the highest among the three types of
crosswalk. However, this does not mean that uncontrolled crosswalks protect the pedestrian
crossings better. With the lower expectation of being yielded by vehicles, larger proportion of
pedestrians crossing at uncontrolled crosswalks prefer a safe situation with a high TC to cross
before vehicle passages, or otherwise cross after. Such crossing decisions increase median TC at
uncontrolled crosswalks. Results for DRS can better illustrate pedestrian safety at these sites.
The median DRS at uncontrolled crosswalks are the highest indicating that pedestrians crossing
at uncontrolled crosswalks exposed to situations where drivers need sharper brakes with less
comfort to yield. Pedestrians crossing before vehicle passages at marked crosswalks face less
intense situations in terms of DRS. Stop sign controlled crosswalks have a much smaller DRS

illustrating a noticeably safer situation for pedestrians crossing before vehicle passages.

From TABLE 6-2 and FIGURE 6-4, 3 out of the 111 crossing decisions (and 222 total
interactions) at marked crosswalks ended up with evasive maneuvers. 10 out of the 25 crossing
decisions (and 292 total interactions) made at uncontrolled crosswalks resulted in evasive
maneuvers. Only 1 out of 134 crossing decisions (and 168 total interactions) ended up with an
evasive maneuver at stop sign controlled crosswalks. Results for evasive behaviors also show
that crosswalks controlled using stop signs protect pedestrians better by reducing the pedestrians,
while uncontrolled crosswalks performs worst in terms of protecting pedestrians from evasive

situations. Marked crosswalks have a better performance compared to uncontrolled crosswalks.

Interestingly, from FIGURE 6-4, the pedestrians made several dangerous crossing
decisions but the crossings did not result in the drivers’ evasive maneuvers or crashes. Checking
from the video, the reason is that during those interactions vehicles already started to yield with

their intention observed by pedestrians.
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6.5 CONCLUSION

This chapter validates the DV framework through data collected from multiple sites. Results
suggest that the DV framework describes pedestrian-vehicle interactions in a proper way. The
framework provides a novel and reliable insight at vehicle yielding behavior and pedestrian
crossing decisions, as the main behavior factors related to pedestrian safety at non-signalized
crosswalk locations. Assumptions made in the framework and parameters applied (the range of

reaction time) have been proved to be reasonable through a large number of observations.

The performance of three main types of non-signalized crosswalks, including
uncontrolled crosswalks, marked crosswalks and stop sign controlled crosswalks, on pedestrian
safety have been further investigated. Results are in consistence with the previous study
described in Chapter 5. Stop sign controlled crosswalks have the best performance in protecting
pedestrians by reducing intensity of interactions at occurrence, increasing vehicle yielding rates
and compliances, and reducing dangerous crossing decisions and the chance of evasive
maneuvers. Uncontrolled crosswalks do not perform effectively in protecting pedestrians as
yielding compliances are very low at all the sites studied and the chance of evasive maneuvers
are the highest. Marked crosswalks perform similarly in terms of the occurrence of interactions
and pedestrian crossing decisions made. However, marked crosswalks have much higher
yielding rates and driver yielding compliances, and reduced chance of the occurrence of evasive

maneuvers indicating a better performance compared to uncontrolled crosswalks.

Despite the better performance in pedestrian safety by stop sign controlled crosswalks,
stop signs reduce greatly the efficiency of vehicles which is also one of the main concerns in the
field of transportation. Besides, drivers are less likely to comply stop signs if they are installed
everywhere. This increases the risk for pedestrians who might pay less attention when expecting
vehicles to yield. The overall performance of stop sign installations is still an open question
which requires more efforts in both research and engineering. Cities should be hesitant to install

stop signs at non-signalized crosswalks without further engineering analysis.
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Link between chapter 6 and chapter 7

In the previous chapter, the DV framework was validated further through a study investigating
the performance of three main types of non-signalized crosswalks on pedestrian safety. Results
suggest that the framework describes pedestrian-vehicle interactions in a proper way. Through
the analysis on the 682 pedestrian-vehicle interaction observations, assumptions and parameters

used in the framework have been proved to be reasonable.

The framework is promising for investigating other safety topics, such as pedestrian-
vehicle interactions at signalized locations (e.g. interactions between pedestrians and turning
vehicles), interactions between different types of road users such as pedestrians and cyclists, or
cyclists and vehicles. The following chapter is about using the framework to investigate cyclist-
pedestrian interactions in urban areas, which has been a topic with grooving interest recently in

both traffic safety and sustainability but underestimated in previous research.
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Chapter 7

Investigating Cyclist-Pedestrian Interactions
at Bus Stops and Non-signalized Intersections
using a Distance-Velocity Model and Speed
Measures derived from Video Data
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7.1 ABSTRACT

As walking and cycling flows increase in urban areas, cyclist-pedestrian interactions also
increase at road facilities. Cyclist yielding compliance rates at these locations can be low which
could deteriorate pedestrian safety and comfort. To investigate pedestrian safety at these
locations, this study introduces a framework using cyclists’ distance, speed and yielding
maneuver information at the time of pedestrian occurrence and crossing derived from video data.
The distance-to-crosswalk and speed of the cyclist are used to classify the cyclist’s situation at
pedestrian occurrences into three categories: 1) where the cyclist cannot make a full stop; ii)
where the ability to yield depends on the reaction time; and iii) where the cyclist can stop to yield.
Yielding behavior and crossing decision are classified. Pedestrian safety is validated using direct
measures such as yielding compliance rates, and indirect measures such as time-to-crossing and

deceleration rate required to stop. Cyclist crossing speeds at the crosswalk are also analyzed.
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A case study involving several crosswalk locations on cycle tracks from Montreal,
Canada, was conducted. Video data was collected and video-based tracking techniques were
used to extract cyclist speed and distance information. Results allow for microscopic analysis
and provide insight into cyclist-pedestrian interactions. Results generally show that cyclists
endanger pedestrians. The factors that contribute to the low yielding compliance of cyclists and
the impact of marking, and road grade on cyclist behavior are explored. This safety analysis

could inform policy on bicycle yielding enforcement and bicycle braking system standards.

Keywords: pedestrian safety; cyclist-pedestrian interaction; yielding behavior; crossing decision;

distance-velocity model; cyclist facility

7.2 INTRODUCTION

Active transportation, typically in the form of walking and cycling, has gained popularity as a
transportation mode in recent years for many reasons. Cycling and walking provide individual
benefits such as improved health, increased likelihood of social interactions, and can save
commuters both money and time (Public Heath Agency of Canada, 2014). Additionally, there are
societal benefits associated with cycling and walking including reduced Greenhouse Gas (GHG)
emissions, and improved public health. Therefore, shifting daily travel patterns from the use of
private motorized vehicles to walking and cycling could have meaningful impacts on cities
meeting their sustainability goals. Cities and regions across the globe have been promoting
walking and cycling by updating policy, investing in infrastructure, developing bike share
programs, improving public transit networks and integrating pedestrian, cycling and public
transit networks. However, as vulnerable road users, pedestrians and cyclists face a greater risk
of injury and are involved in a disproportionate number of collisions on roadways (NHTSA,
2017). To achieve a major shift towards active transportation, pedestrian and cyclist safety must

be better addressed in research, policy and street design.

The safety of pedestrians and cyclists is a heavily researched topic (Nabavi Niaki, et al.,
2016) (Abdel-Aty & Haleem, 2010) (Zahabi, et al., 2011) (Miranda-Moreno, et al., 2011)
(Abdel-Aty & Nawathe, 2006) (Cai, et al., 2017). Research in pedestrian and cyclist safety
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typically focuses on pedestrian and cyclist risk when exposed to motorized traffic. Although
crashes involving motorized vehicles occur with a greater severity, cyclist-pedestrian crashes are
also a relevant topic of study. Statistical evidence suggests that cyclist-pedestrian crashes are not
rare. One report indicated that in Germany in 2016, 4050 cyclist-pedestrian crashes occurred,
resulting in 11 fatalities (StBA, 2017). Tuckel, Milczarski and Maisel (2014) analyzed hospital
records, from 2005 to 2011, and reported 7904 pedestrians injuries from collisions with cyclists
in New York State and 6177 in California. Approximately 9 % of these injuries were treated as
inpatients. Additionally, evidence from news suggests that pedestrian injuries and fatalities from
cyclist-pedestrian crashes are fairly common (Evans, 2017) (Kavanagh, 2012) (Scott, 2017).
Furthermore, encouragement of cycling and walking through changes in policy and improved
infrastructure is likely to increase the number of cyclist-pedestrian interactions occurring in cities,
making cyclist-pedestrian interactions an area of greater concern. The City of Montreal has
received numerous complaints from its residents concerning poor safety perception at pedestrian
crosswalks along cycle paths, especially in proximity to schools. However, work regarding the
safety issues related to the interactions between pedestrians and cyclists has remained

surprisingly untapped (Beitel, et al., 2017) (Tuckel, et al., 2014).

Many pedestrian safety studies have been conducted through the use of crash data
(Nabavi Niaki, et al., 2016) (Zahabi, et al., 2011). This approach can be problematic as crash
data is not always available and suffers from issues including low-mean, small sample,
underreporting, location errors and misclassification (Fu, et al., 2016). It is essentially impossible
to measure pedestrian safety with respect to bicycles using crash data as crashes are often
neglected or not well reported in many cities. Therefore, studying road user behavior and
investigating non-crash related measures, i.e. surrogate measures of safety, in such conditions is

the most promising option and will provide a better understanding of the collision processes.

This paper proposes a methodology for investigating and estimating the safety of cyclist-
pedestrian interactions at pedestrian crossings located at non-signalized intersections and bus
stops. This is intended to address an important research gap in the field of pedestrian safety
(Afghari, et al., 2014). Based on a recently-proposed safety model framework, known as the

Distance-Velocity (DV) model, presented and implemented in (Fu, et al., 2018) for vehicle-
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pedestrian interactions, cyclist yielding maneuvers and pedestrian crossing decisions in cyclist-
pedestrian interactions are explored using video data. Speed measures were also investigated in
supplement to the DV framework. The impact of crosswalk marking and road grade on the
behavior and deceleration rate of upstream and downstream cyclists is investigated as well. For
this purpose, video data is collected and analysed from multiple bus stops and non-signalized

intersections.

7.3 LITERATURE REVIEW

The literature on cyclist-pedestrian interactions, behavior and yielding is limited. This research
gap may exist because cyclist-pedestrian interactions are less likely to result in a severe collision
than vehicle-pedestrian interactions. Therefore, despite the prevalence of these active
transportation modes, the vast body of literature in road safety is limited to the study of
interactions with vehicles. Recent practices for assessing active transportation safety rely on
collision records and collision models (Zahabi, et al., 2011), (Miranda-Moreno, et al., 2011) &
(Mohamed, et al., 2013). However, the use of collision-based analysis for cyclist-pedestrian
safety diagnosis is impossible in most situations. Therefore, the only feasible strategy for
estimating safety in cyclist-pedestrian interactions is through road user behavior analysis and

surrogate safety measures (SSM).

Automated video-based techniques that use SSMs are becoming more common in road
safety analysis (Fu, et al., 2016). Different techniques and sensors, including loops, radars and
GPS devices have been used to extract information for surrogate safety analysis (Stipancic, et al.,
2016) (Golob, 2004) (Lee, 2002). Among the several SSMs proposed in the literature, the most
commonly used are time-to-collision (TTC) and post-encroachment time (PET). PET is the time
difference for two road users passing at the same location. One study investigated safety in
cyclist-pedestrian interactions using PET, cyclist speed and the type of interaction, based on the
angle of approach and the first user to arrive at the collision point, but did not consider yielding

behavior (Beitel, et al., 2017).
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The importance of yielding right-of-way to pedestrians in interactions involving cyclists
or vehicles is underscored by the vulnerability of pedestrians, compared to other road users.
Yielding is therefore a critical component of safety in interactions at non-signalized intersections.
Research considering yielding compliance of cyclists is limited. One study explained low cyclist
yielding compliance based on the large effort required to make a complete stop and then
accelerate back to cruising speed (Fajans & Curry, 2001). However, compared to situations
where no pedestrian is present, a greater proportion of cyclists decrease their speed if they
perceive a potential traffic conflict with a pedestrian (Ayres, et al., 2015). Research in vehicle-
pedestrian interactions, which have been more thoroughly studied, is nonetheless limited in the
area of driver yielding behavior. There are situations where it is impossible for vehicles and
cyclists to yield when considering their proximity to the crosswalk at the pedestrian crossing
decision. Such situations are likely considered as violations in most previous studies. The ability
for a vehicle or cyclists to yield must be considered when studying vehicle and cyclist yielding

behavior.

Several studies have investigated vehicle-pedestrian interactions through the analysis of
yielding behavior and pedestrian crossing decision (Li, et al., 2015) (Afghari, et al., 2014). This
methodology remains untested for cyclist-pedestrian interactions. Applying this methodology to
cyclist-pedestrian interactions is non-trivial as bicycles and vehicles behave in different ways.
This paper will address this research gap by proposing a methodology to investigate cyclist
yielding behavior and pedestrian crossing decision for cyclist-pedestrian interactions. The
methodology is then applied to a case study on crosswalk performance at non-signalized urban
intersections with painted cycle tracks, and bus stop locations along segregated bicycle facilities

in Montreal.

7.4 METHODOLOGY

The methodology section outlines the mechanism of cyclist braking systems, followed by the

description of the DV framework. Data collection and processing methods are detailed as well.
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7.4.1 Bicycle Braking System and Deceleration Rate

Ideally, the bicycle deceleration rate reaches a maximum when the pavement friction coefficient
is at a maximum. However, this is rarely achieved for cyclists since they tend to avoid sharp
deceleration and complete stops and many braking systems cannot provide the friction
coefficient that matches the maximum value that the pavement can provide. The analysis in this
paper makes use of past work by the USDOT that validated cyclist yielding behavior and
pedestrian crossing decisions (Landis, et al., 2004): the authors investigated the deceleration rate
and the corresponding friction coefficient for cyclists and found the 85th percentile deceleration
rate for bicycles to be 3.3 m/s%, and the corresponding reference friction coefficient to be 0.32 for
level road situations (Landis, et al., 2004). In this paper, the reference friction coefficient is
considered as the greatest friction coefficient a cyclist can achieve (y,,4,) and is applied in the

model.

For roads with a non-zero grade, the effect of the road grade is considered in calculating
the deceleration rate of the bicycle. Then, the deceleration rate is a function of the grade degree

and the pavement friction coefficient and can be presented as:

a=g(u—20) (1)

where, a is the deceleration rate, g is the gravitational acceleration, u is the friction coefficient
and @ is the road grade in radians. The deceleration rate reaches its maximum when the friction
coefficient reaches maximum, e.g. 0.32. With a change of road grade of 1° (1.75 %), the
maximum deceleration rate that the cyclist can achieve changes by 5 %. Thus, road grade
significantly affects cyclist deceleration. Meanwhile, due to the gravitational potential energy,
bicycles traveling downhill easily reach a higher speed compared to those traveling uphill.
Bicycles traveling downhill travel at higher speed and are less able to brake, leading to an
increased crash probability and severity, thus an increased crash risk. The novel safety
framework used to investigate vehicle-pedestrian interactions presented in (Fu, et al., 2018) can

also be applied to study cyclist-pedestrian interactions.
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7.4.2 DV Model for Cyclist-pedestrian Interactions

This section provides a brief introduction of the DV framework. Details for the basic
assumptions, model derivation and definitions are provided in (Fu, et al., 2018). Parameters such

as maximum deceleration rate are adjusted for cyclists.

7.4.2.1 Practical definitions

According to the DV framework proposed in (Fu, et al., 2018), several key definitions are given

below:

e The pedestrian occurrence is the time when the pedestrian arrives at the area within a
cross-section distance of 1 m from the crosswalk marking, and shows the intention to
cross the street (e.g. facing the road or turning their head toward the road).

e The pedestrian crossing decision is defined as the time when the pedestrian starts to cross
the street, regardless if he/she has to retreat because of non-yielding cyclists. Actual
crossing attempts include keeping a constant walking speed to cross after arrival without
waiting, and starting to cross after waiting or hesitating after arrival.

e For pedestrian groups, the occurrence of the group is defined as the first occurrence of a
pedestrian from the group. However, each pedestrian is considered to be individually
exposed to the risk of collision.

e The investigated cyclist-pedestrian interactions are the situations in which a cyclist
approaches a crosswalk and a pedestrian is either already moving to cross, already

present in a position showing willingness to cross, or arriving with an intent to cross.

7.4.2.2 Introduction of the Model

According to (Fu, et al., 2018), the minimum distance D,,;,, required for a cyclist to make a full

stop to yield to a pedestrian present at the crosswalk can be computed as:

Dpin = vt + vZ/(Zg * (Umax — 0)) (2)
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where, v is the initial speed of the cyclist at the occurrence of the pedestrian, t, is the perception-
reaction time of the cyclist, 4, 18 the maximum friction coefficient of the road and 6 is the

road grade.

Assuming the reaction time range as [t, min, tr max]> then Dy, 1s in a range of [Dy, D1] =
[Vt min + v?/ (29 * (hmax — 0)), Vtr max + V?/(29 * (Hmax — 6))]. The curves of Dy and D,
in a DV diagram are presented in FIGURE 7-1a. The diagram is then divided into three phases: 1)
phase I, where cyclists cannot make a full stop, ii) phase II, where the cyclist’s ability to stop and
yield depends on the cyclist’s reaction time, and iii) phase III, where cyclists can stop. Reaction
time of the cyclist varies. According to (AASHTO, 1999), the reaction time in response to

expected events varies between 0.5 and 2.5 sec.
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7.4.2.3 Model Applications and Related Measures

According to the DV framework proposed in (Fu, et al., 2018), several classifications and safety

measures can be derived from the (D,V) coordinates when the pedestrian starts to cross:
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e Cyclist yielding behavior is classified as: 1) yielding maneuvers; 2) non-infraction non-
yielding maneuvers (Phase I), where cyclists are not able to stop; 3) uncertain non-
yielding maneuvers (Phase II), where cyclists may or may not be able to react in time to
stop; and 4) non-yielding violations (Phase IIT) where cyclists have enough time to react
and brake but choose not to yield. The classification of non-yielding maneuvers is
illustrated in FIGURE 7-1b.

e The yielding rate is the proportion of cyclists that yield right-of-way to pedestrians out of
the total number of cyclists studied. The yielding compliance is the proportion of cyclists
yielding right-of-way out of the cyclists that are physically able to yield (interactions that
fall into Phase II and Phase III).

e The classification of crossing decisions is illustrated in the DV diagram in Fig. 1c. There
are four cases: 1) dangerous crossings, occurring in Phase I, where pedestrians expose
themselves to dangerous interactions with cyclists that cannot yield; 2) risky crossings,
occurring in Phase II, where pedestrians are at risk as cyclists may not have enough time
to react and yield; 3) safe crossings, occurring in Phase III where pedestrians are
relatively safe given that cyclists are either not on a collision course or have enough time
to react and yield; and 4) crossings after the cyclist passage where pedestrians give up to
cross with cyclists approaching.

e Collision risk measures, as proposed in (Fu, et al., 2017), comprise two measures used for
quantifying the risk of collision: 1) the time to crossing (TC); and 2) the deceleration
required to stop (DRS). TC refers to the time required for the cyclist to reach the
pedestrian crossing path if continuing at constant speed. DRS is the constant deceleration

rate required for the cyclist to stop and give the right-of-way to pedestrians.

7.5 CASE STUDY

Two types of crosswalk locations from Montreal are included: 1) crosswalks at non-signalized

intersections; 2) crosswalks at bus stops along segregated cycle tracks.
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7.5.1 Site and Data Description

The selected sites and their characteristics are presented in TABLE 7-1.

o C(Crossings at non-signalized intersections: two sites were picked from intersections
without traffic lights or stop signs. Painted cycle tracks are located along the side of the
road and carry a high volume of cyclists. The selected intersections have zero grade and
high pedestrian volumes crossing the street. Site I-1 has a marked crosswalk, while the
crosswalk at Site I-2 is unmarked. Comparisons are made to investigate the effectiveness
of crosswalk markings on cyclist-pedestrian interactions.

e Crossings at bus stops: for investigating cyclist-pedestrian interactions at bus stops along
segregated cycle tracks, five sites (with crosswalk markings) were selected from two

high-traffic streets. Different grades on the study cycle tracks exist.

For data collection, mobile camera systems provide the entire view of the crosswalk area
including the cycle track approaches where cyclists are coming from. GoPro’s Hero 3 Edition
cameras were used. The cameras were temporally mounted on portable poles, fixed to lampposts.
Video data were collected on weekdays during daytime hours. For comparison, all video data for
sites belonging to the same crosswalk type were collected with similar weather and traffic
conditions. Additional details of the sites, including the location, road grade, built environment

and the amount of video data recorded are presented in TABLE 7-1.

After data collection, automated video-based tracking techniques were applied to extract
trajectory data. Video data processing was conducted using the tracker in the open source Traffic
Intelligence project (Saunier & Sayed, 2006), which has been proved to provide highly accurate
outputs of road users (Anderson-Trocme, et al., 2015) (Fu, et al., 2017). Details of video data

processing for the DV framework have been included in (Fu, et al., 2018).
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TABLE 7-1 Descriptions of Sites and Video Data Recorded

Site ID Site Name Type of the Road Grade (rad.) Date/Time Duration (hour)
Sites at Non-signalized Intersections
I-1 Laurier_Rivard Level 0 17-Jun-2016 / 10:00-16:30 6.5
I-2 Laurier_Drolet Level 0 17-Jun-2016 / 10:00-14:30 4.5
Sites at Bus Stop Locations
11-1 CSC_Dunlop Non-Zero Grade 0.026 02-Oct-2013 / 10:30-16:40 6.3
11-2 CSC_Pagnuelo Non-Zero Grade 0.033 25-Sep-2013 /09:00-17:15 8.3
11-3 CSC_Courcelette Non-Zero Grade 0.028 25-Sep-2013 / 09:00-17:00 8.0
11-4 Rachel_Chapleau Level 0 30-Sep-2013 / 09:00-17:30 8.5
11-5 Rachel_Messier Level 0 30-Sep-2013 / 09:00-17:10 8.2
Site ID Site Name Site Description Camera View
+ Street Located: Rue Laurier
-1 Laurier Rivard + The Closest Intgrsection: Rue Rivard .
- - Cycle Track: painted cycle track on both sides of the road
+ Type of crosswalk: marked crosswalk with pedestrian sign
- Street Located: Rue Laurier
12 Laurier Drolet * The Closest Intgrsection: Rue Drolet _
- + Cycle Track: painted cycle track on both sides of the road
* Type of crosswalk: unmarked crosswalk
+ Street Located: Chemin de la Cote-Sainte-Catherine
- The Closest Intersection: Rue Dunlop
* Bus Lines: 51, 119, and 129
1I-1 CSC_Dunlop * Bus Volume: average 10 buses per hour
- Built Environment: a music college is near the bus stop
which brings dense pedestrian traffic during peak hours when
students leave school.
+ Street Located: Chemin de la Cote-Sainte-Catherine
- The Closest Intersection: Rue Pagnuelo
+ Bus Lines: 51, and 129
1I1-2 CSC_Pagnuelo * Bus Volume: average 10 buses per hour
+ Built Environment: the site is on the approach of the
intersection, therefore cyclist traffic is affected by the traffic
light.
+ Street Located: Chemin de la Cote-Sainte-Catherine
+ The Closest Intersection: Rue Courcelette
+ Bus Lines: 51, 119, 129, and 368
1I1-3 CSC_Courcelette + Bus Volume: average 11 buses per hour
+ Built Environment: the site is on the approach of the
intersection, therefore cyclist traffic is affected by the traffic
light.
+ Street Located: Rue Rachel
+ The Closest Intersection: Rue Fullum
11-4 Rachel_Fullum * Bus Lines: 29
* Bus Volume: average 2 buses per hour
* Built Environment: nothing specific
+ Street Located: Rue Rachel
+ The Closest Intersection: Rue Messier
115 Rachel_Messier * Bus Lines: 29

* Bus Volume: average 2 buses per hour
+ Built Environment: nothing specific
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7.5.2 Results and Discussions

The results are summarized in two parts: behavior analysis using DV framework and speed

analysis.

7.5.2.1 Behavioral Analysis

Based on trajectory data extracted from video recordings, cyclist-pedestrian interactions were
analyzed using the DV framework, and road user behaviors were investigated. TABLE 7-2 and

TABLE 7-3 provide the summary of the results.

(1) Illustration of the DV Framework Output

The DV framework was applied to investigate cyclist-pedestrian interactions and road user
behavior during these interactions. The distance to the crosswalk and the approaching speed of
the cyclist at the pedestrian occurrence can be extracted to determine if the cyclist cannot, may
be able to, or can stop (as represented by phases I, II, III in the DV diagram). Then, based on
whether the cyclist yielded or not, their yielding behavior can be classified. Finally, the risk
category in which the pedestrian decided to cross can be evaluated. Additionally, microscopic
data related to road user behavior and safety can be extracted, such as TC, cyclists’ DRS at the

pedestrian occurrence, and cyclists” DRS at the pedestrian crossing decision.

The diagram of the DV framework provides a data visualization to analyze road user
behavior under different situations and for different sites. The DV output of cyclist and
pedestrian behavior for Site II-1 is illustrated in FIGURE 7-2. For example, in FIGURE 7-2a,
illustrating seven pedestrian interactions with downhill cyclists, there was: one yielding event,
one non-yielding violation, three uncertain non-yielding interactions, and two non-infraction
non-yielding interactions. Additionally, of the seven interactions, three pedestrian crossing
attempts were made and are illustrated in FIGURE 7-2c. Two pedestrians made safe crossing
decisions, where the cyclist could stop in time; however, one of those pedestrians was required to
take evasive action due to the non-yielding violation of the cyclist. One pedestrian attempted to

cross in a risky situation and was required to take evasive action. Lastly, the four interactions
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omitted from FIGURE 7-2¢ represent pedestrians who decided to cross after the cyclist passed.

Results for uphill cyclists are presented in FIGURE 7-2b and 2d.
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FIGURE 7-2 Example of DV diagram for cyclist-pedestrian interaction — site I

(2) Sites at non-signalized urban intersections

e Yielding Behavior and Compliance

The yielding rate was found to be low for both sites, as seen in TABLE 7-2. It is important
to distinguish between the two sites with respect to yielding requirements. Site 1 is a marked
crossing, and therefore cyclists are required to yield to pedestrians by law. On the other hand, Site
2, the control site, is unmarked; cyclists are not required to yield to pedestrians, in fact, pedestrians
are required to wait for a sufficient gap before attempting to cross. The yielding compliance of
cyclists at the marked crosswalk is 14 %, higher than at the control site, with the unmarked

crosswalk, where less than 3 % of cyclists yielded to pedestrians. This indicates that the crosswalk
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marking does prompt approximately one out of every ten cyclists to yield to pedestrians. The low
proportion of cyclists that yield right-of-way to pedestrians at intersections with crosswalk

markings suggests that road markings do not have a significant impact on cyclist behavior.

From TABLE 7-2, the median TC (4.72 s) was higher at the unmarked crosswalk
compared to the median TC (4.21 s) at the marked crosswalk. However, this does not indicate
that the unmarked crosswalk is safer. In fact, given the fact less pedestrians were yielded at the
unmarked crosswalk, those pedestrians were exposed to additional and unnecessary interactions
(that won’t happen if the previous cyclist yields) with cyclists coming after. Although the
increase in the additional and unnecessary interactions made unmarked crosswalk more
dangerous, the cyclists involved in those interactions have higher TC during the pedestrian

events, which will lead to an increased median TC at the unmarked crosswalk.”

e Crossing Decisions

From FIGURE 7-3, most pedestrians at these two sites chose to cross after the cyclist crossed at
both sites. A greater proportion of pedestrians that crossed after the cyclist passage at the
unmarked crosswalk (94.1 %) is found compared to marked crosswalk (85.7 %). The reason is
that, due to the increased yielding attempts at the marked crosswalk, pedestrians had more

opportunity to use their right-of-way.

At the marked crosswalk, 19 interactions were found where pedestrians decided to cross
before the cyclist passage, fifteen were given the right-of-way by the cyclist and the remaining
four pedestrian crossings were interrupted by non-yielding cyclists. The four interactions, where
the pedestrian crossing was disrupted by a non-yielding cyclist, are considered as conflicts

because at least one user was required to make an evasive maneuver to avoid collisions.

(3) Sites at bus stop locations

¢ Yielding Behavior and Compliance
From TABLE 7-3, only 8.2 % of the cyclists yielded right-of-way to pedestrians. Additionally,
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the overall yielding compliance was 19.6 %. In other words, approximately 90 % of cyclists in
the presence of a crossing pedestrian refused to yield. Although the yielding and compliance rate
varied slightly across sites, they were low for all sites. Conclusions cannot be drawn by

comparing different sites given the limited number of observations of yielding maneuvers.

As shown in TABLE 7-3, interactions involving downhill and uphill cyclists had similar
TC values and were found in similar proportions for each phase; however, the deceleration rates
required to stop (DRS) were significantly higher for downhill cyclists. As expected, this
indicates that interactions involving uphill cyclists are safer as they travel more slowly, requiring
a reduced DRS, and can achieve increased maximum deceleration rate due to the road grade.
Larger median TC and smaller deceleration rates required to stop for cyclist-pedestrian
interactions at level road crossings were found. However, half of the interactions involved non-
yielding maneuvers of the multiple cyclists in sequence to one pedestrian. In these cases, the
pedestrian tends to wait for an extended period of time to cross. This has the effect of generating

a large TC and a small DRS.

Despite the impact that road grade may have on cyclist yielding capability, yielding
compliance remained low across all road grades. In general, the cyclists that were studied

appeared unwilling to yield regardless of road grade.

e (Crossing Decisions

The majority (48 out of 61) of pedestrians decided to cross after the cyclist, as illustrated in
TABLE 7-3. Two out of the 13 remaining crossings were dangerous, three were risky and eight
were safe. The results are intuitive; a greater number of pedestrians crossed in Phase III as

cyclists have more time to respond and yield by slowing down or stopping completely.

The proportion of pedestrians crossing after the cyclist passage in the interactions
remained similar for all road grade types: uphill, downhill and flat. As seen in TABLE 7-3, four
out of five pedestrians crossed after the cyclist for all three road grade types. This relatively high

proportion may be the result of pedestrians responding to low cyclist yielding rates. Interestingly,
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dangerous crossing decisions were only observed among interactions occurring in uphill

situations as indicated in FIGURE 7-4. This finding can be explained by the fact that pedestrians

feel safer to cross in front of the cyclists going uphill given the reduced speed and increased

deceleration.

TABLE 7-2 Results — Sites at Non-signalized Urban Intersections

Site ID - Name

I-1 Laurier_Rivard

I-2 Laurier_Drolet

Summary of the Two Sites

Road Type Level - marked Level - unmarked
Number of Interactions
No. of Total Interactions 133 51 184
No. of Interactions in Phase I 35 12 47
No. of Interactions in Phase 11 40 11 51
No. of Interactions in Phase I11 58 28 86
Results for Yielding Behavior
No. of Non-infraction Non-Yieldings 35 12 47
No. of Uncertain Non-yieldings 34 11 45
No. of Non-Yielding Violations 50 27 77
No. of Yielding Maneuvers 14 1 15
Yielding Rate 10.5 % 2.0% 82 %
Yielding Compliance 143 % 2.6 % 10.9 %
TC (sec) Median 421 4.72 4.34
Std. Dev. 434 4.57 4.41
DRS (m/s?) Median 0.73 0.69 0.72
Std. Dev. 1.79 2.92 237
Results for Crossing Decisions
No. of Dangerous Crossings 2 1 3
3No. of Risky Crossings 8 0 8
No. of Safe Crossings 9 2 11
No. of Decisions to Cross after Cyclist Passage 114 48 162
TC (sec) Median 2.16 2.78 2.39
Std. Dev. 2.16 1.73 2.07
DRS (m/s?) Median 0.89 0.99 0.94
Std. Dev. 1.68 3.31 1.92
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TABLE 7-3 Results — Crosswalks at Bus Stops along Segregated Cycle Tracks

Site ID - Name 11-1 CSC_Dunlop 11-2 CSC_Pagnuelo 11-3 CSC_Courcelette
Road Type Downhill Uphill Overall Downbhill Uphill Overall Downbhill Uphill Overall
Number of Interactions
No. of Total Interactions 7 11 18 4 11 15 6 1 7
No. of Interactions in Phase I 2 6 8 2 2 4 2 0 2
No. of Interactions in Phase II 3 4 7 2 6 8 3 0 3
No. of Interactions in Phase 111 2 1 3 0 3 3 1 1 2
Results for Yielding Behavior
No. of Non-infraction Non-Yieldings 2 6 8 2 2 4 2 0 2
No. of Uncertain Non-yieldings 3 4 7 2 3 5 3 0 3
No. of Non-Yielding Violations 1 1 2 0 3 3 1 1 2
No. of Yielding Maneuvers 1 0 1 0 3 3 0 0 0
Yielding Rate 14.3 % 0.0 % 5.6 % 0.0 % 273 % 20.0 % 0.0 % 0.0 % 0.0 %
Yielding Compliance 20.0 % 0.0 % 10.0 % 0.0 % 333 % 273 % 0.0 % 0.0 % 0.0 %
TC (sec) Median 1.86 0.90 1.54 1.98 3.77 2.26 1.93 4.55 1.94
Std. Dev. 2.02 1.29 1.67 0.78 2.57 2.33 1.61 - 1.67
DRS (m/s?) Median 1.58 2.00 2.00 2.48 0.67 1.35 2.18 0.60 1.93
Std. Dev. 3.53 1.01 2.51 2.12 2.04 2.11 5.51 -- 5.20
Results for Crossing Decision
No. of Dangerous Crossings 0 2 2 0 0 0 0 0 0
No. of Risky Crossings 2 0 2 0 0 0 0 0 0
No. of Safe Crossings 1 0 1 0 3 3 0 0 0
No. of Decisions to Cross after Cyclist Passage 4 9 13 4 8 12 6 1 7
TC (sec) Median 3.15 1.51 1.74 - 8.33 8.33 - - -
Std. Dev. 1.28 0.02 1.25 - 3.47 3.47 - - -
DRS (m/s?) Median 0.36 0.87 0.73 - 0.11 0.11 -- -- --
Std. Dev. 0.00 0.20 0.32 -- 0.16 0.16 -- -- --
(Continued)
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TABLE 7-3 Continued

Site ID - Name

11-4 Rachel_Fullum

11-5 Rachel_Messier

Summary of the Five Sites

Road Type Level Level Downhill Uphill Level Overall
Number of Interactions
No. of Total Interactions 3 18 17 23 21 61
No. of Interactions in Phase I 0 1 6 8 1 15
No. of Interactions in Phase II 1 1 8 10 2 20
No. of Interactions in Phase 111 2 16 3 5 18 26
Results for Yielding Behavior
No. of Non-infraction Non-Yieldings 0 1 6 8 1 15
No. of Uncertain Non-yieldings 1 1 8 7 2 17
No. of Non-Yielding Violations 2 15 2 5 17 24
No. of Yielding Maneuvers 0 1 1 3 1 9
Yielding Rate 0.0 % 5.6% 59% 13.0 % 4.8 % 82 %
Yielding Compliance 0.0 % 59% 9.1% 20.0 % 5.0% 19.6 %
TC (sec) Median 7.83 6.51 1.91 1.89 6.6 298
Std. Dev. 4.50 445 1.59 2.30 434 3.72
DRS (m/s?) Median 0.36 0.33 2.14 1.29 0.34 0.77
Std. Dev. 0.69 0.34 3.94 1.67 0.39 2.61
Results for Crossing Decision
No. of Dangerous Crossings 0 0 0 2 0 2
No. of Risky Crossings 1 2 0 1 3
No. of Safe Crossings 0 4 1 3 4 8
No. of Decisions to Cross after Cyclist Passage 3 13 14 18 16 48
TC (sec) Median - 4.10 3.07 4.61 4.10 4.10
Std. Dev. - 1.10 1.28 439 1.10 2.84
DRS (m/s?) Median - 0.83 0.81 0.37 0.83 0.73
Std. Dev. -- 0.27 0.30 0.40 0.27 0.36
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7.5.2.2 Speed Data

(1) Sites at non-signalized urban intersections

The average crossing speeds of cyclists, when passing the crossing location (Fu, et al., 2016), are

investigated. The statistical summary of the crossing speed data is included in TABLE 7-4.

Distributions of crossing speeds at the marked and unmarked crosswalks are presented in

FIGURE 7-5a. Results suggest that the presence of crosswalk marking helps reduce cyclist
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crossing speed, by 3.35 km/h on average. Crossing speed data for cyclists involved in cyclist-
pedestrian interactions are also presented in TABLE 7-4. The reduction in average crossing
speed at the marked crosswalk is noticeable (2.89 km/h); however, cyclists do not seem to
decrease their speeds when they pass by pedestrians waiting to cross. An explanation for this can
be that cyclists reduce their speed when passing the marked crosswalk to avoid collisions, but do

not slow down to yield right-of-way.

(2) Sites at bus stop locations

FIGURE 7-5b presents the distributions of cyclist crossing speeds extracted from each site, and
lastly, a combination of all five sites separated by the three different road grade types. Due to the
impact of road grade, it is not surprising to find that, on average, cyclists going downhill travel
23.2 % faster compared to those on the level road. Similarly, the mean crossing speed of cyclists

going uphill is 20.6 % lower than those traveling on a level road.

No significant reduction in cyclist crossing speed was found for cyclists involved in an
interaction with a pedestrian, indicating that cyclists did not slow when pedestrians were waiting
along the cycle track to cross. This is different from most results in the literature for finding does
not support most of the studies investigating pedestrian-vehicle interactions where vehicles were
found to slow down (Boyce & Van Derlofske, 2002). In other words, pedestrian crosswalks

along cycle tracks were not effective in protecting pedestrians.

A reduction of cyclist crossing speed, associated with the pedestrian occurrence, was
found to be more significant for level grade type compared to uphill and downhill grade types.
This difference between grade types is intuitive. At level grade crossings, cyclists tend to stop
pedaling in pedestrian interactions to avoid potential crashes, resulting in a reduction of crossing
speed due to the road friction. On the other hand, cyclists traveling downhill may prepare to
brake but often do not brake unless the pedestrian decides to cross first. In this situation,
although the cyclist may not be pedaling, their crossing speed remains high because of the
gravity potential. Lastly, cyclists traveling uphill are less likely to stop pedaling in the presence

of a pedestrian due to the greater effort they need to maintain, or retrieve their crossing speed.
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TABLE 7-4 Summary of the Cyclist Crossing Speed (km/h)

Counts Mean Std. Dev Max Min
Crosswalks at Non-signalized Intersections
Marked vs Unmarked (all cyclist)
Site I-1 — Marked 2717 (418 /hr) 18.36 4.49 37.61 4.71
SitelI-2 — Unmarked 2032 (451 /hr) 21.71 5.46 38.47 5.57
Marked vs Unmarked (cyclists involved in interactions)
Site I-1 — Marked 133 18.46 5.62 35.72 4.74
Sitell-2 — Unmarked 51 21.35 5.22 35.83 8.00
Crosswalks at Bus Stops along Segregated Cycle Tracks
Each Site
Downbhill 962 (153 /hr) 24.47 5.65 43.98 7.79
Site I1-1 Uphill 755 (120 / hr) 13.07 3.15 34.54 3.62
Downhill 801 (97 / hr) 19.88 5.65 40.61 427
Site 11-2 Uphill 797 (93 /hr) 13.59 3.84 31.48 3.34
Downhill 545 (68 /hr) 22.38 6.59 39.90 8.03
Site I1-3 Uphill 596 (75 /hr) 16.49 3.13 30.87 5.87
Site 114 1795 (212 /hr) 19.49 5.54 42.49 5.67
Site I1-5 1825 (223 /hr) 19.31 5.48 48.09 5.37
Different Road Grade Types (all cyclists)
Downbhill 2308 23.90 6.25 43.98 4.27
Uphill 2148 15.41 4.19 34.54 3.34
Level 3620 19.40 5.51 42.49 5.37
Different Road Grade Types (cyclists involved in interactions)
Downbhill 17 23.61 6.10 33.08 4.68
Uphill 23 14.56 3.93 20.40 6.48
Level 21 16.82 3.67 23.14 10.50
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7.6 CONCLUSION

This paper adapted a framework (Fu, et al., 2018), previously used to study safety in vehicle-

pedestrian interactions, to study cyclist-pedestrian interactions. The framework, named the DV

framework, is tested through a case study using video data from two different types of pedestrian

crosswalk locations. The effectiveness of crosswalk marking, and three road grade types

including uphill, downhill, and level road were studied and compared for relative safety. Results

generally show that cyclists endanger pedestrians intending to cross. Some key conclusions can

be drawn:

From the case study, cyclists’ yielding compliance at the marked crosswalk is
surprisingly low. Most cyclists did not yield to pedestrians even when able to.
Additionally, an evasive maneuver was required when a pedestrian chose to cross before
the cyclist passage. Although crosswalk markings increased the yielding by
approximately 10 %, with respect to the control site, overall, painted crosswalks alone
fail to protect pedestrians from passing cyclists.

The results indicate the existence of safety issues at pedestrian crossings on cycling
facilities with downhill grades, which has been underestimated and seen little previous
research. Currently, not much work has been taken in protecting pedestrians from cyclists.
Several countermeasures, such as education, enforcement, and new road treatments
should be implemented in order to protect pedestrians.

The study, by using the DV framework and speed analysis, provides explanation and
evidence that interactions between pedestrians and downhill cyclists are more risky
compared to those between pedestrians and uphill cyclists, and cyclists on level roads.
Cyclists are less able to yield due to the increased speed and reduced maximum

deceleration rate they can achieve.

This paper introduces a new approach in studying cyclist-pedestrian interactions. This

approach takes road grade, the capability of braking and the road user reaction into consideration.

These are key factors contributing to the outcome of an interaction and incorporating them into

the model provides a more complete picture.
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From the DV framework, the cyclist’s maximum deceleration rate can greatly impact
his/her ability to yield right-of-way to a pedestrian. The maximum friction rate used in this study
comes from (Landis, et al., 2004) which involved an empirical on-road experiment. However,
cyclist braking systems vary greatly. To guarantee a successful braking maneuver in situations
where cyclists should brake or in emergency situations, one avenue may be to establish
requirements for cyclist braking systems. Much work remains to be done on the topic of cyclist
behavior. Preferred evasive actions for cyclists can be different from drivers. More observations
should be made to have a clear definition of cyclist evasive behavior to identify different types of
evasive actions (such as swerving and braking, though none of them were observed in this study).

Besides, the reaction time thresholds used in this paper need to be further validated.

For future work, data will be collected from a large number of sites including different
environments where cyclist-pedestrian interactions happen. Different countermeasures may be
proposed and implemented to improve cyclist yielding compliance. The performance of these
countermeasures can be further validated using the framework. The framework can also be
applied to investigate interactions between e-bike riders and pedestrians. As e-bikes have
become more commonplace, this type of interaction occurs more frequently. Furthermore,
because of the additional momentum that e-bikes can carry compared to regular bicycles,

collisions involving pedestrians and e-bike riders are associated with greater severity.
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Chapter 8 Conclusions and Future Work

8.1 GENERAL CONCLUSIONS

This chapter provides a general summary of the main conclusions in this dissertation. This is

followed by a discussion of the limitations, providing directions for future work.

e As a first step, an extensive literature review on pedestrian safety at non-signalized
crosswalk locations was carried out. Based on the data used, methods proposed in past
studies were classified into five different approaches. Based on this systematic literature
review, this dissertation identified some key research gaps in the pedestrian road safety
literature. One of the main gaps is the lack of efficient data collection tools under critical
conditions, leading to many studies relying on small sample sizes, especially at nighttime.
In addition, a comprehensive framework that describes how pedestrian-vehicle

interactions unfold over time and is closely related to the outcome of crashes is missing.

e To provide an alternative to the visible-spectrum approach, the thermal camera system
was validated for automated collection and traffic data extraction under varying lighting
and temperature conditions, by comparing it to the use of regular visible spectrum
cameras. The thermal camera proved to perform well without being sensitive to lighting
interference and pavement temperatures. Results indicated that the thermal camera
provides a promising alternative for traffic data collection using vision-based

technologies.

e To address issues related to pedestrian safety at nighttime, this dissertation proposed a
method to investigate pedestrian-vehicle interactions under low visibility conditions
using thermal video sensors. Based on SMoS, which include vehicle approaching speed,
PET, yielding compliances and conflict rates, the nighttime safety of pedestrians at non-
signalized crosswalks was evaluated. Results from the study showed that pedestrians

were exposed to higher risk levels at study sites during nighttime, compared to daytime
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conditions. The thermal video sensor could effectively collect high-quality trajectory data

for all road users at night regardless of lighting conditions.

As one of the main contributions, this dissertation proposed a novel framework (the DV
framework) for investigating pedestrian-vehicle interactions at non-signalized crosswalks.
The framework investigates pedestrian-vehicle interactions based on the vehicle speed
and distance to the pedestrian crossing. The model considers the impact of driver
response and braking time. It classifies the conditions where the driver approaches a
pedestrian(s) intending to cross into three types, according to the driver capability to yield.
The DV framework can investigate interaction occurrences, yielding behavior and
crossing decisions. More specifically, it can help investigate pedestrian safety based on
safety measures including yielding rate and yielding compliance, time-to-crossing and
deceleration rate required to stop. The framework was illustrated through a case study
involving three non-signalized crosswalks of different types in Montreal. Results from

the case study showed that the framework provides reasonable results.

Empirical evidence for the proposed framework were obtained through the application of
the proposed methodology to a case study involving data collected from multiple sites in
Montreal. Pedestrian safety at three main types of non-signalized crosswalks, including
uncontrolled crosswalks, marked crosswalks, and stop-controlled crosswalks, was
compared. Results showed that, among the three types of non-signalized crosswalks,
stop-controlled crosswalks have the best performance considering all the measures.
Uncontrolled crosswalks do not protect pedestrians effectively due to the low yielding
compliance rates and the highest chance of evasive maneuvers. Marked crosswalks
perform better compared to uncontrolled ones. Results further suggested that the
framework describes pedestrian-vehicle interactions in a proper way. While considering
vehicle yielding behavior and pedestrian crossing decisions as the main behavior factors
related to pedestrian safety, the framework provides a more complete picture in learning

pedestrian-vehicle interactions.

To explore the application of this model in investigating cyclist-pedestrian interactions, a

case study was conducted involving two types of pedestrian crosswalk locations, non-
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signalized urban intersections with painted cycle tracks and bus stop locations along
segregated bicycle facilities in Montreal. Results generally showed that cyclists endanger
pedestrians intending to cross and that marked crosswalks alone fail to protect pedestrians
from passing cyclists. Other findings include that cyclists’ yielding compliance at the
marked crosswalk was surprisingly low and that pedestrian safety at crossings on cycling
facilities with downhill grades is an issue. The results can hopefully lead to future
research and practice interest on the topic of reducing pedestrian risks during pedestrian-
cyclist interactions. The study provides a good example of using the DV framework to

study different safety topics.

8.2 LIMITATIONS OF THE RESEARCH

Despite the contributions and the efforts in its accomplishment, the research has its limitations.
The limitations are discussed below from three aspects: methodological framework, data

collection method, data processing and analysis.

8.2.1 Methodological Framework

The main limitation of the framework is that the SMoS has not yet been proved as a suitable
safety predictor. Some validation is required. Although the DV framework provides precise
measures of road user behavior (e.g. yielding rate and compliance), other measures (TC and DRS)
used as SMoS in the model need to be further validated. Besides, this research was unable to take
into account some advanced measures, such as measures using motion prediction (Mohamed &
Saunier, 2013; St-Aubin, et al., 2014), that are potentially better in performance as a safety
predictor. In general, a lot of work is required to build models that can predict and improve

pedestrian safety to improve this framework.
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8.2.2 Data Collection Method

The data collection work in the dissertation was conducted with the help of a mobile video data
collection system. One of the limitations of video data collection from a mast is the limited field
of view and trajectory length. Camera often fails to cover the entire road section of interest, in
particular when looking at vehicle-pedestrian approaching behaviors. Wider observation areas
may be required to observe the approaching road user trajectories. As part of this work, the
combination of multiple cameras was applied to collect data where a single camera was not able
to cover an area wide enough for the observation. Extracting vehicle trajectory information
through different camera views was conducted semi-automatically (trajectory data for each
camera view have been extracted automatically while matching the trajectory data of road user
individuals through different camera views has been conducted manually); the challenge will

however be to track, or re-identify, road users across multiple camera views.

8.2.3 Data Processing and Analysis

The limitation in data processing and analysis is mainly being lack of tools for accurately and

efficiently automating the work:

e The DV framework relies highly on trajectory data with accurate position and speed
information. However, the vision-based tracking tool from the Traffic Intelligence project
(Jackson, et al., 2013) cannot detect and track all road users perfectly. Great effort has
been spent in going through each interaction of interest and manually correcting errors in
the trajectories. Such errors are mainly generated from poor lighting conditions and the
trajectories of the stationary road users lost by the tracking tool. Regarding the issue with
the poor lighting, the thermal camera system has already been proposed in this
dissertation, though it is not continuously used in the research because of the limited
availability of the thermal sensor equipment. The interrupted trajectory issue can be

diminished with improvement in the field of computer vision.
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e The work to match road user trajectory data through different camera views has been
conducted manually, which is unduly time-consuming: videos need to be scanned to
record the time offsets of camera views for synchronization, find out the same road users,
and record their tracked identification number through in different camera views. The
research could have benefitted greatly if tools automatically tracking road users through

multiple camera views are available.

e Data analysis (preparing information in the DV framework) also highly relies on manual
work. Interactions of interest, vehicle yielding maneuvers (whether vehicles yield), and
pedestrian events (pedestrian occurrences and crossing decisions) are recorded by
scanning videos manually. A computer tool that automatically filters interactions of
interest, identifies pedestrian occurrence and crossing events (based on pedestrian facial
recognition or body movement detection), and determines yielding behavior can make the

work more efficient.

With the issues associated with the data collection method and the time and effort
required in processing the data, this research was only able to test the DV framework through 15
sites. This is not sufficient for validation purposes. More sites need to be included to further test

the DV framework and calibrate the safety indicators used in the studies.
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8.3 EXTENSION FOR FUTURE WORK

Future work is discussed from two aspects: methodological development and extensive

applications.

8.3.1 Methodological Development

Future work can be conducted to improve the proposed framework. A sufficiently large number
of observations and locations will be included to further test and to calibrate the DV model.
Analysis results from the framework will be compared to historical crash data to test for
correlation — as part of the validation process. Parameters used in the model, such as deceleration
rate thresholds, will also be verified and further calibrated if needed. Different SMoS will be
tested in the framework to improve its performance. Advanced safety models based on motion
pattern prediction will be investigated. The implementation of these models in the DV
framework will be explored. Moreover, the model can be improved by considering traffic,

environmental and geometric factors, and vehicular characteristics.

A full-automated analysis tool based on the framework should be developed to automate
the processes, including filtering interactions of interest, identifying pedestrian occurrence and
crossing events, and determining yielding behavior. Among the processes, automating the event
identification work is challenging as pedestrian walking habits and patterns vary across
individuals, contexts, etc. Machine learning methods will be applied in identifying the intent to

cross (occurrence) and the decision made to cross (crossing decision) for the pedestrian.

As an alternative to video data collection from a mast, the use of drone data will be
explored in future model-validation. Using drone for video data collection could help cover
larger fields of view (Jin, et al., 2016). Alternatively, with the increasing penetration among road
users, GPS data collected through GPS units or smart devices equipped on participants may also
be used for model validation and parameter calibration in future work, if data sources are

available.
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8.3.2 Extensive Applications

More applications of the DV framework can be attempted. The model will be used to evaluate
safety effects of different signs and control systems at a given intersection. In addition to
interactions between pedestrians and vehicle on the approach street where vehicles enter the
intersection, most studies have ignored interactions at exit streets where vehicle leave the
intersection. This can potentially be more dangerous due to the driver’s unclear knowledge of
right-of-way, acceleration attempts to recover speed and the complex situation the driver faces at
the intersection. The impact of such interactions on pedestrian safety can be investigated using

the proposed interaction framework along with other safety measures.

The framework can be applied to other road environments where pedestrian-vehicle
interactions always occur in the future, e.g. crosswalks at signalized locations, roundabouts, and
channelized intersections. The yielding behavior of vehicles interacting with crossing pedestrians
in situations where pedestrians are not allowed to cross, such as during the red phase at
signalized intersections or in the middle of road segments can be explored. Moreover, the
framework can be adjusted and applied in different situations in addition to pedestrian safety. It
can be used to investigate interactions between different types of road users, such as pedestrian-
cyclist interactions and cyclist-vehicle interactions. The model can even be used to investigate
the impact of mixed traffic flows with different penetration percentage of automated vehicles
(with low perception-response time) on pedestrian safety in non-signalized crosswalk
environments. Meanwhile, methods and tools, derived from the DV framework, to detect the
intent to cross can be implemented to define the correct response and performance of automated

vehicles when facing different situations with crossing pedestrians and cyclists.
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Appendix I

TABLE I Results Summary of Previous Research on Pedestrian Safety at Non-Signalized Crossings

Summary of Literature

Approach(s) Applied
Studies Country Topic Crash Data Surrogate Measures of Safety Data Source
Traffic Event Behavior Perception
Almodfer, et al. (2016) China Method: - -- -- - Video data, details not given
Conflict
Antov, et al. (2007) Estonia Behavior Analysis: - v - v -~ aNDSdata
Factors of veh. yielding
Arnold & Landz (2007) usS Performance Evaluation: -- v -- -- -- b Field observation
LED stop sign & Optical speed bar
Austin, et al. (2006) usS Performance Evaluation: -- -- -- \ -- Field observation
Pedestrian prompting at stop sign
Beaubien (1989) usS Performance Evaluation: -- \ -- -- -- Data from previous studies based on
Stop sign for speed controlling field observation
Bella & Silvestri (2015) Italy Performance Evaluation: -- - -- \ -- Driving simulation
Different safety treatments
Bennett & Van Houten (2016) (0N Performance Evaluation: -- -- -- \ -- Field observation
Gateway In-street Sign
Bentley (2015) UsS Performance Evaluation: -- S -- S -- NDS data
High-visibility crosswalks
Bichicchi, et al. (2017) Italy Performance Evaluation: -- -- -- V -- GPS; Mobile eye tracking data
Geometric design on driver glancing
Boroujerdian & Nemati (2016) Iran Behavior Analysis: -- -- -- \ -- ¢ Field measurement, Laser gun;
Ped. gap acceptance Video data, computer-based tools.
* Boyce & Van Derlofske (2002) (0N Performance Evaluation: -- \ \ -- S Video data, details not given;
In-pavement warning light On-site survey.
* Van Derlofske, et al. (2003) UsS Performance Evaluation: - S S - v Video data, details not given;
In-pavement warning light On-site survey.
Brewer, et al. (2006) uUsS Behavior Analysis: -- -- -- S -- Field observation;
Ped. gap acceptance Video data, manually processed.
Brewer, et al. (2015) UsS Performance Evaluation: - - - N - Field observation;
RRFB sign Video data, manually processed.
Britt, et al. (1995) [N} Performance Evaluation: -- -- -- \ -- Field observation
Law enforcement
Brumfield & Pulugurtha (2011) usS Behavior Analysis: -- -- v v -- Field observation
Ped. distraction
Bungum, et al. (2005) usS Behavior Analysis: -- -- -- v -- Field observation
Ped. distraction
Burritt, et al. (1990) uS Performance Evaluation: -- \ -- -- -- Details not given
School zone flashers
Cafiso, et al. (2011) Italy Method: -- -- \/ -- -- Video data, computer-based tools
Conflict
Cambridge (2012) [N} Performance Evaluation: -- -- -- v -- Field observation

Symbol prompts & 3D pavement
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TABLE I Continued

Approach(s) Applied
Studies Country Topic Crash Data Surrogate Measures of Safety Data Source
Traffic Event  Behavior Perception
Campbell (1997) usS Performance Evaluation: N -- -- -- -- Crash report, details not given
Marked vs. unmarked
Chai & Zhao (2016) China Behavior/Perception Analysis: -- -- -- V J Driving simulation;
Aggressive driving behavior Questionnaire after simulation.
Chi (2007) [N} Performance Evaluation: -- v -- v -- Video data, manually processed
Marked vs. unmarked
Chen et al. (2017) (0N Interaction Modeling/Simulation: -- -- -- \ -- Traffic simulation
Autonomous Vehicles
Interaction with ped.
* Chu (2006) usS Performance Evaluation: \ -- -- -- -- Crash report, police
Lighting; marking
* Chu, et al. (2008) (0N Performance Evaluation: v -- -- -- -- Crash report, police
Lighting; marking
City of Fort Collins (2017) (0N Performance Evaluation: -- \ -- -- -- No data involved
Unwarranted stop sign for speed
controlling, and volume controlling
Clark, et al. (1996) usS Performance Evaluation: -- -- \ \ -- Field observation
Fluorescent strong yellow-green signs
Community of Firestone (2017) usS Performance Evaluation: -- \ -- -- -- No data involved
Unwarranted stop sign for speed
controlling, and volume controlling
Coughenour, et al. (2017) (0N Behavior Analysis: -- -- -- \ -- Field observation
Racial Bias in Yielding
Crowley-Koch & Van Houten (2011) US Performance Evaluation: -- -- -- \/ -- Field observation;
Ped. prompts Video data, manual processed.
DeVeauuse, et al. (1999) usS Performance Evaluation: -- -- -- \/ -- Field observation
Stop sign on campus
Dhar & Woodin (1995) [N} Performance Evaluation: -- \ \ S S On-site survey;
Fluorescent strong yellow-green signs Rest details not given
Diogenes & Lindau (2010) Brazil Performance Evaluation: \ -- -- -- -- Crash report, government
Midblock crossing
Crash risk modeling
Dixon, et al. (1997) usS Performance Evaluation: -- -- -- v -- Details not given
Speed reducing peripherals
Dobbs (2009) usS Performance Evaluation: v -- v -- -- Crash report, government;
Campus pedestrian safety Video data, manual processed
Domarad, et al. (2013) Canada Performance Evaluation: -- -- -- \ -- Video data, manual processed
RRFB
Dougald, et al. (2012) UsS Performance Evaluation: - \ - - v Field measuring, ATRs & LiDAR gun;

Zig-zag pavement

Electronically-distributed
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TABLE I Continued

Approach(s) Applied
Studies Country Topic Crash Data Surrogate Measures of Safety Data Source
Traffic Event  Behavior Perception

Dulaski & Liu (2013) [N} Performance Evaluation: -- -- -- N -- Field observation
Ped. stepping off the curb

Dutt, et al. (1997) usS Performance Evaluation: -- -- -- -- \/ Electronically-distributed survey
Fluorescent strong yellow-green signs

Ellis & Van Houten (2009) uUsS Performance Evaluation: Y -- -- -- -- Crash report, government
Publicity & law enforcement

Ewing (1999) Canada Performance Evaluation: -- \ -- -- -- Not clearly stated
Unwarranted stop sign for speed
controlling, and volume controlling

Fisher & Garay-Vega (2012) usS Performance Evaluation: -- -- -- V -- Driving simulation
Advanced yielding signs

Fitzpatrick, et al. (2004) usS Performance Evaluation: -- -- -- -- \/ Video data, manually processed;
Marking On-site survey.
In-pavement warning light
HAWK

* Fitzpatrick, et al. (2006) usS Performance Evaluation & Guidelines: -- -- V V -- Video data, manually processed
Treatment validation
Guideline revision

* Fizpatrick, et al. (2007) usS Performance Evaluation & Guidelines: - -- -- \/ -- Video data, manually processed
Treatment validation
Guideline revision

* Fitzpatrick, et al. (2011) (0N Performance Evaluation: -- -- -- \ -- Video data, manually processed
Marking, RRFB, HAWK, Sharrow

* Shurbutt & Van Houten (2010) usS Performance Evaluation: -- -- -- \/ -- Video data, manually processed
Marking, RRFB, HAWK, Sharrow

Fitzpatrick, et al. (2016a) usS Performance Evaluation: -- -- -- \/ -- Field observation
Above- & below-sign RRFB

Fitzpatrick, et al. (2016b) (0N Performance Evaluation: -- -- -- \ -- Field observation
RRFB with different designs

Foomani, et al. (2015) Canada Performance Evaluation: -- -- -- \ -- Video data, manually processed
Stop-operated intersection with active
road sign

Fu, et al. (2016) Canada Performance Evaluation: -- v v v -- Video data, computer-based tools
Lighting - night vs. day

Fu, et al. (2018) Canada Method: -- -- v v -- Video data, computer-based tools
Interaction

Garder (2004) uS Safety Factors: \ -- -- -- -- Crash report, government

Crash modeling
Speed and other factors on safety
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TABLE I Continued

Approach(s) Applied
Studies Country Topic Crash Data Surrogate Measures of Safety Data Source
Traffic Event  Behavior Perception

Gibby, et al. (1994) usS Performance Evaluation: N -- -- -- -- Crash report, government
Marked vs. unmarked

Gitelman, et al. (2016a) Israel Performance Evaluation: - S S \/ - Field measuring, Laser gun;
Raised crosswalk Video data, manually processed
Preceding speed humps

Gitelman, et al. (2016b) Israel Performance Evaluation: -- S S v -- Field measuring, laser gun;
Marking Video data, manually processed

Goddard, et al. (2014) usS Behavior Analysis: -- -- -- v -- Field observation
Racial Bias in Yielding

Goh, et al. (2012) Malaysia Behavior Analysis: -- -- -- \ -- Field observation
Ped crossing speed
Non-signalized vs. signalized

Gomez, et al. (2011) uUsS Performance Evaluation: \ -- \ \ -- Driving simulation
Advanced yielding marking

Gomez, et al. (2014) US Performance Evaluation: \ -- -- S -- Driving simulation
Geometric Design — stop sign & T-
intersections

Hakkert, et al. (2002) Israel Performance Evaluation: - v v \ - Field measuring, laser gun;
Ped. warning systems Field observation
(ARMS & Hercules systems)

Harrison (2017) [N Behavior Analysis: -- -- -- \ -- Video data, manually processed
Ped. behavior

* Huang, et al. (1999) us Performance Evaluation: -- S S S S Details not given
Active warning system

* Huang (2000) us Performance Evaluation: -- -- -- \ -- Details not given
Active warning system

Huang, et al. (2000) US Performance Evaluation: -- -- -- \ -- Video data, manually processed
Overhead crosswalk sign
Ped. safety cone
Ped. regulatory sign

Ibrahim, et al. (2005) Malaysia Behavior/Perception Analysis: -- -- -- S S Video data, manually processed
Rule of right-of-way

Islam, et al. (2014) US Method: v -- v - - Crash report, government;
Crash modeling Field observation
Validating SSM

Ivan, et al. (2001) [N Safety Factors: \ -- -- -- -- Crash report, government
Crash modeling
Related factors
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TABLE I Continued

Approach(s) Applied
Studies Country Topic Crash Data Surrogate Measures of Safety Data Source
Traffic Event  Behavior Perception

Ivan, et al. (2012) US Method: N -- N -- -- Crash report, government;
Crash modeling Field observation
Validating SSM

* Jiang (2012) German, China ~ Behavior Analysis: -- -- \ V -- Video data, computer-based tools
Ped. & veh. with different culture

* Jiang, et al. (2015) German, China ~ Behavior Analysis: -- -- S v -- Video data, computer-based tools
Ped. & veh. with different culture

Johansson & Leden (2007) Sweden Performance Evaluation: -- \ \ v v Field measuring, radar gun;
Swedish code, speed cushion, marking, Video data, manually processed;
refuge, paving stone, elevated area Face-to-face interview.

Jones & Tomcheck (2000) usS Performance Evaluation: \ -- -- -- -- Crash report, government
Marked vs. unmarked

Kadali & Perumal (2016) India Behavior Analysis: -- -- -- V -- Video data, manually processed
Ped. gap acceptance

Kadali, et al. (2014) India Behavior Analysis: -- -- -- \ -- Video data, manually processed
Ped. gap acceptance

Karkee, et al. (2010) (0N Performance Evaluation: -- S -- S -- Field observation
In-pavement flashing light sys.

Keall (1995) New Zealand Performance Evaluation: \ -- -- -- -- Crash report, government; Survey
Non-signalized vs. others
The elderly in pedestrian crashes

Khatoon, et al. (2013) India Behavior Analysis: -- -- -- \ -- Paper not found
Gap acceptance

Knoblauch & Raymond (2000) (0N Performance Evaluation: -- -- -- \ -- Field observation
Marking

Knoblauch, et al. (2001) usS Performance Evaluation: -- -- -- \ -- Field observation
Marking

Koepsell, et al. (2002) usS Performance Evaluation: \ -- -- -- -- Crash report, details not given
Marking
Older ped.

Kudryavtsev, et al. (2012) Norway, Russia  Performance Evaluation: \ -- -- -- -- Crash report, police
Signalized vs. non-signalized crosswalk

Li & Ming (2016) China Behavior Analysis: -- -- -- \ -- Field observation
Ped. distraction

Liu & Tung (2014) China Behavior Analysis: -- - - \ -- Video based survey
Ped. crossing

Liu, et al. (2011) China Performance Evaluation: \ \ -- -- -- Crash report, government;

Transverse rumble strip

Field measuring, radar speed gun
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TABLE I Continued

Approach(s) Applied
Studies Country Topic Crash Data Surrogate Measures of Safety Data Source
Traffic Event  Behavior Perception
Lu, et al. (2016) China Interaction Modeling/Simulation: -- -- N -- -- Video data, details not given
Ped. crossing
Driver yielding
Ped. safety evaluation
Malenfant & Van Houten (1990) Canada Performance Evaluation: -- -- -- \ -- Field observation
"Countesy Promotes Safety" program
Millard-Ball (2016) US Interaction Modeling/Simulation: -- -- -- v -- No data involved
Autonomous vehicles
Game theory in interaction with ped.
Mitman & Ragland (2007) (SN Perception Analysis: -- - - -- \/ On-site survey
Right-of-way
Marked vs. unmarked
* Mitman, et al. (2008) uUsS Performance Evaluation: -- -- \ \ -- Field observation;
Marked vs. unmarked Video data, manually processed.
* Mitman & Ragland (2008) us Performance Evaluation: -- - S S -- Field observation;
Marked vs. unmarked Video data, manually processed.
Mitman, et al. (2010) uUs Performance Evaluation: -- -- S S -- Field observation
Marked vs. unmarked
Najm, et al. (2001) [N Performance Evaluation: \ -- -- -- -- Crash report, police
Vehicle-ped./cyclist collisions at
signalized & non-signalized
intersections
Nteziyaremye (2013) South Africa Behavior/Perception Analysis: -- -- S S S Video data, manually processed;
Ped. crossing On-site survey.
Different crossing facilities
Olszewski, et al. (2015) Poland Safety Factors: \ -- -- -- -- Crash report, police
Crash modeling
Oxley, et al. (2005) Australia Behavior Analysis: -- -- -- \ -- Simulator experiment
Ped. crossing
Pawar & Patil (2015) India Behavior Analysis: -- -- -- \ -- Video data, manually processed
Ped. gap acceptance
Pécheux, et al. (2009) us Performance Evaluation: -- - S S -- Details not given
Different treatments
Pfortmueller, et al. (2014) Switzerland Performance Evaluation: \ -- -- -- -- Crash report, police & hospital
Marked vs. unmarked
Pulugurtha, et al. (2011) [N Behavior Analysis: -- -- -- v -- Paper not found
Driver and ped. distraction
Pulugurtha (2015) [N Performance Evaluation: -- -- S \ -- Field observation

Ped. hybrid beacon
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TABLE I Continued

Approach(s) Applied
Studies Country Topic Crash Data Surrogate Measures of Safety Data Source
Traffic Event  Behavior Perception
Rosenbloom, et al. (2006) Israel Behavior Analysis: -- -- -- N -- Field observation
Driver yielding
Age & gender
* Schroeder & Rouphail (2011) [N} Behavior Analysis: -- -- -- S -- Field observation;
Modeling driver yielding Field measuring, Laser gun.
* Schroeder (2008) usS Behavior Analysis: -- -- -- S -- Field observation;
Modeling driver yielding Field measuring, Laser gun.
Schroeder, et al. (2010) usS Method: -- \ -- S -- Field observation
Ped. crossing at roundabouts
Vision impaired
Schroeder, et al. (2014) usS Behavior Analysis: -- -- -- S -- Field observation
Modeling ped./driver behavior
Serag (2014) Egypt Behavior Analysis: -- -- -- \ -- Video data., manually processed
Modeling ped. gap acceptance
Shi, et al. (2007a) China Behavior Analysis: -- - -- S -- Details not given
Ped. crossing behavior
Shi, et al. (2007b) China Performance Evaluation: -- -- -- S -- Details not given
Ped. crossing behavior
Two different sites
Sisiopiku & Akin (2003) usS Behavior/Perception Analysis: -- -- -- \ \ Video data, manually processed;
Various facility Electronically-distributed survey.
Smith, et al. (2009) [N} Performance Evaluation: -- - -- \ -- Video data, computer-based tools
Active vs. passive warning system
Solah, et al. (2016) Malaysia Behavior Analysis: -- -- -- S -- Field observation;
Distraction Video data, manually processed.
St-Aubin, et al. (2018) Canada Performance Evaluation: -- \ -- \ -- Video data, computer-based tools
Stop sign
Speed controlling
Stopping behavior
Sun & Lu (2011) China Method: -- -- \ -- -- Video data, details not given
Conflict
Sun, et al. (2003) (0N Interaction Modeling/Simulation: -- -- -- \ -- Video data, manually processed
Ped. gap acceptance
Motorist yield
Turner, et al. (2006) usS Performance Evaluation: - -- -- v -- Video data, manually processed
Red signal

Beacon devices
Active signs
Enhanced/high-visibility treatments
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TABLE I Continued

Approach(s) Applied
Studies Country Topic Crash Data Surrogate Measures of Safety Data Source
Traffic Event  Behavior Perception
Van Houten & Malenfant (1992) Canada Performance Evaluation: -- -- N N -- Field observation
Flashing amber
Van Houten (1988) Canada Performance Evaluation: -- -- S S -- Field observation
Stop line
Sign prompt
Van Houten, et al. (1998) Canada Performance Evaluation: -- -- S v -- Field observation
Ped.-activated flashing beacons
Van Houten, et al. (2001) Canada Performance Evaluation: -- -- S S -- Field observation
Advance yielding marking
Van Houten & Retting (2001) Canada Performance Evaluation: -- -- - S -- Field observation;
LED stop sign Video data, manually processed.
Van Houten, et al. (2002) Canada Performance Evaluation: -- -- v S -- Field observation
Advance yielding marking
Fluorescent yellow-green RA 4 sign
Varhelyi (1998) Sweden Performance Evaluation: -- -- S S -- Field measuring, laser gun
Non-signalized
Wa (1993) Canada Behavior Analysis: -- -- -- \ -- Field observation
Old motorist
Waizman, et al. (2014) Israel Interaction Modeling/Simulation: \ -- -- -- -- Traffic simulation
Validation and application
Wallberg & Wisenbord (2000) Sweden Performance Evaluation: -- \ \ \/ \/ Paper not found
Marked vs. unmarked
Wang, et al. (2017) China Performance Evaluation: -- S -- -- -- Video data, manually processed
Speed control measures
Wang & Fang (2008) China Method: -- -- \ \ -- Video data, manually processed
Conflict
Xiang, et al. (2016) China Method: -- -- -- \/ -- Computer simulation
Monte-Carlo simulation (Monte-Carlo)
Risk prediction for ped. crossing
Yannis, et al. (2013) Greece Behavior Analysis: -- -- -- \ -- Video data, manually processed
Ped. gap acceptance
* Zegeer, et al. (2001) usS Performance Evaluation: \ -- -- -- -- Crash report, police
Marked vs. unmarked
* Zegeer, et al. (2005) UsS Performance Evaluation: y -- -- -- -- Crash report, police
Marked vs. unmarked
Zhuang & Wu (2014) China Performance Evaluation: - -- -- v v Field observation;

Gesture measure

Questionnaire survey.

Note: Publication marked with * in sequence are about the same study presented in two or more publication formats (normally a same study published in both a Journal and a report); ® NDS is abbreviation
for Naturalistic Driving Study which uses onboard data acquisition systems including GPS devices, video cameras, radars, accelerometer and/or other devices to get detailed information of the drivers, ® Field
observation means data collection manually and directly observed and recorded on site by observers; ¢ Field measurement means data collection based on different techniques on site.
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Appendix II Sites for Model Implementation and

Validation

a) Site A-1 NotreDamedeGrace-D'Oxford : Pedestrian crossing at intersection on Avenue Notre-Dame-de-Grace and Avenue
D’Oxford. The pedestrian crossing is on Avenue Notre-Dame-de-Grace, a one-way and one-lane street with a conventional bike

lane.

b) Site A-2 Clark-PrinceArthur: Pedestrian crossing at intersection Rue Clark and Rue Prince-Arthur. The pedestrian crossing

is on Rue Prince-Arthur, a one-way and one lane-street with a conventional and contraflow bike lanes.
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¢) Site A-3 Masson-6e: Pedestrian crossing at intersection Rue Masson and Avenue 6e. The pedestrian crossing is on Rue

Masson, a two-ways and one-lane street per direction.

d) Site A-4 Beaubien-Molson: Pedestrian crossing at intersection Rue Molson and Rue Beaubien. The pedestrian crossing is on

Rue Beaubien, a two-ways and one-lane street per direction.

224



e) Site A-5 Laurier_Drolet : Pedestrian crosswalk at intersection Avenue Laurier and Rue Drolet. The pedestrian crossing is on

Avenue Lauriel, a one-way and one-lane street per direction with a conventional and buffered contraflow bike lane.

FIGURE II-1 Site description for uncontrolled crosswalks (Type A)
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Y
a) Site B-1 Prieur-DeLaRoche: Crosswalk located at the intersection of Rue Prieur and Rue De La Roche. The crosswalk

crossing is on Rue Prieur, a one-way and one-lane bike shared street with a contraflow bike lane.

b) Site B-2 NotreDamedeGrace-OldOrchard: Crosswalk located at the intersection of Avenue Notre-Dame-de-Grace and
Avenue Old Orchard. The crosswalk crossing is on Avenue Notre-Dame-de-Grace, a one-way and one-lane street with a

conventional bike lane.
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¢) Site B-3 Beaubien-SaintVallier: Crosswalk located at the intersection of Rue Beaubien and Rue De Saint-Vallier. The

crosswalk crossing is on Rue Beaubien, a two-ways and one lane street per direction.

———y
T oy
P

d) Site B-4 Beaubien-27e: Crosswalk located at the intersection of Rue Beaubien and Avenue 27e. The crosswalk crossing is on

Rue Beaubien, a two-ways and one lane street per direction.
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e) Site B-5 Laurier_Berri: Crosswalk located at the intersection of Avenue Laurier and Rue Berri. The crosswalk crossing is on

Avenue Laurier, a one-way and one-lane street with a conventional and contraflow bike lane.

FIGURE I1I-2 Site description for marked crosswalks (Type B)
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\ e
a) Site C-1 Roy-HenriJulien: Intersection controlled with stop signs in all the approaches located at Avenue Henri-Julien and

Rue Roy. The crosswalk crossing is on Avenue Henrie-Julien, a one-way and one-lane street.

b) Site C-2 George-Gagne: Intersection controlled with stop signs in all the approaches located at Rue George and Rue Gagné.

The crosswalk is on Rue George, a two-ways and one-lane street.

229



¢) Site C-3 Sauriol-Millen: Intersection controlled with stop signs in all the approaches at Rue Sauriol and Avenue Millen. The

crosswalk is on Rue Sauriol, a two-ways and one-lane street.

AN Dy, :
d) Site C-4 19e-Belair: Intersection controlled with stop signs in all the approaches at Avenue 19e and Rue Bélair. The

crosswalk is on Rue Bélair, a two-ways and one-lane street.
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e) Site Z-5 13e_Belair: Intersection controlled with stop signs in all the approaches at Avenue 13e and Rue Bélair. The

crosswalk is on Rue Bélair, a two-ways and one-lane street.

FIGURE II-3 Site description for stop sign controlled crosswalks (Type C)
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TABLE III-1 Results from DV Model for Marked Crosswalks

Site ID X-1 ‘ X-2 X-3 X-4 X-5

Results for Occurrence of Interactions
Number of Interactions

No. of Total Interactions 35 17 60 53 57
No. of Interactions in Phase I (Percentage over the total) 3 (8.57 %) 3 (17.65 %) 7 (11.67 %) 5(9.43 %) 15 (26.32 %)
No. of Interactions in Phase II (Percentage over the total) 7 (20.00 %) 6 (35.29 %) 13 (21.67 %)) 7 (13.21 %) 25 (43.86 %)
No. of Interactions in Phase III (Percentage over the total) 25 (71.43 %) 8 (47.06 %) 40 (66.66 %) 41 (77.36 %) 17 (29.82 %)
TC and DRS at the Occurrence of Interaction

TC (sec) Median 4.18 1.96 5.73 7.61 1.78

Std. Dev. 3.29 2.65 3.57 4.90 1.68
DRS (m/s?) Median 0.56 0.71 0.56 0.36 1.69

Std. Dev. 1.39 2.26 1.36 0.92 222

Results for Yielding Behavior

No. of Non-infraction Non-yieldings 3 3 7 5 15
No. of Uncertain Non-yieldings 6 3 3 7 12
No. of Non-Yielding Violations 4 3 11 29 3
No. of Yielding Maneuvers 22 8 39 12 27
Yielding Rate 62.86 % 47.06 % 65.00 % 22.64 % 47.37 %
Yielding Compliance 68.75 % 57.14 % 73.58 % 25.00 % 64.29 %

No. of Decisions to Cross after Vehicle Passage

No. of Decisions to Cross before Vehicle Passage

No. of Dangerous Crossings (Percentage over the total)

No. of Risky Crossings (Percentage over the total)

No. of Safe Crossings (Percentage over the total)

No. of Crossings with Evasive Maneuvers

TC (sec)

DRS (m/s?)

Median
Std. Dev.
Median
Std. Dev.

13
2
0 (0.00 %)
2 (9.09 %)
20 (90.91 %)
0
536
425
0.29
0.43

9
8
0 (0.00 %)
2 (25.00 %)
6 (75.00 %)
0
7.04
6.29
0.49
1.24

Results for Crossing Decision

21
41
6 (14.63 %)
10 (24.39 %)
25 (60.98 %)
2
4.07
271
1.01
2.15

41
13
2(15.38 %)
2(15.38 %)
9 (69.24 %)
1
3.89
3.26
0.40
2.68

31
26
4 (15.38 %)
7(26.92 %)
15 (57.69 %)
0
3.08
1.72
1.00
1.49
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TABLE II1I-2 Results for Uncontrolled Crosswalks

Site ID Y-2 Y-3 Y-4 Y-5
Results for Occurrence of Interactions
Number of Interactions

No. of Total Interactions 11 2 165 68 46

No. of Interactions in Phase I (Percentage over the total) 5(45.45 %) 0 (0.00 %) 13 (7.88 %) 5(7.35 %) 9 (19.57 %)

No. of Interactions in Phase II (Percentage over the total) 2 (18.18 %) 0 (0.00 %) 16 (9.70 %) 7 (10.29 %) 18 (39.13 %)

No. of Interactions in Phase III (Percentage over the total) 4 (36.37 %) 2 (100.00 %) 136 (82.42 %) 56 (82.36 %) 19 (41.30 %)

TC and DRS at the Occurrence of Interaction

TC (sec) Median 1.53 5.06 7.01 7.55 243
Std. Dev. 2.82 1.04 5.81 6.10 3.12

DRS (m/s?) Median 1.46 0.81 0.63 0.69 2.54
Std. Dev. 3.45 0.02 1.83 1.45 4.21

Results for Yielding Behavior

No. of Non-infraction Non-yieldings 5 0 13 5 9

No. of Uncertain Non-yieldings 2 0 15 7 14

No. of Non-Yielding Violations 4 2 128 54 19

No. of Yielding Maneuvers 0 0 9 2 4

Yielding Rate 0.00 % 0.00 % 5.45% 2.94 % 8.70 %

Yielding Compliance 0.00 % 0.00 % 5.92 % 3.17% 10.81 %

Results for Crossing Decision

No. of Decisions to Cross after Vehicle Passage 11 2 156 66 42

No. of Decisions to Cross before Vehicle Passage 0 1 15 3 6

No. of Dangerous Crossings (Percentage over the total) 0(-) 0 (0.00 %) 1 (6.67 %) 0 (0.00 %) 0 (0.00 %)

No. of Risky Crossings (Percentage over the total) 0(--) 0 (0.00 %) 3 (20.00 %) 1(33.33 %) 3 (50.00 %)

No. of Safe Crossings (Percentage over the total) 0(-) 1 (100.00 %) 11 (73.33 %) 2 (66.67 %) 3 (50.00 %)

No. of Crossings with Evasive Maneuvers 0 1 6 1 2

TC (sec) Median - 5.80 5.54 6.87 3.63
Std. Dev. - - 3.97 56.27 2.65

DRS (m/s?) Median - 0.82 0.77 0.56 1.29
Std. Dev. -- -- 0.67 1.52 3.06
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TABLE III-3 Results for Stop Controlled Crosswalks

Site ID 72 Z-3 7-4 Z-5
Results for Occurrence of Interactions
Number of Interactions
No. of Total Interactions 61 36 4 40 27
No. of Interactions in Phase I (Percentage over the total) 0 (0.00 %) 2 (5.56 %) 0 (0.00 %) 3 (7.50 %) 0 (0.00 %)
No. of Interactions in Phase II (Percentage over the total) 20 (32.79 %) 8(22.22 %) 0 (0.00 %) 6 (15.00 %) 1(3.70 %)
No. of Interactions in Phase III (Percentage over the total) 41 (67.21 %) 26 (72.22 %) 4 (100.00 %) 31(77.50 %) 26 (96.30 %)
TC and DRS at the Occurrence of Interaction
TC (sec) Median 3.30 3.28 4.11 5.37 5.07
Std. Dev. 5.76 3.50 0.69 4.62 1.44
DRS (m/s?) Median 0.48 0.79 0.58 0.31 0.47
Std. Dev. 0.83 1.03 0.31 0.87 0.44
Results for Yielding Behavior
No. of Non-infraction Non-yieldings 0 1 0 3 0
No. of Uncertain Non-yieldings 4 4 0 1 1
No. of Non-Yielding Violations 6 3 0 7 5
No. of Yielding Maneuvers 51 28 4 29 21
Yielding Rate 83.61 % 78.00 % 100.00 % 72.50 % 77.78 %
Yielding Compliance 83.61 % 82.35% 100.00 % 78.38 % 77.78 %
Results for Crossing Decision
No. of Decisions to Cross after Vehicle Passage 10 8 0 10 6
No. of Decisions to Cross before Vehicle Passage 51 28 4 31 21
No. of Dangerous Crossings (Percentage over the total) 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 0 (0.00 %)
No. of Risky Crossings (Percentage over the total) 18 (35.29 %) 3 (10.71 %) 0 (0.00 %) 3 (10.00 %) 0 (0.00 %)
No. of Safe Crossings (Percentage over the total) 33 (64.71 %) 25(89.29 %) 4 (100.00 %) 27 (90.00 %) 21 (100.00 %)
No. of Crossings with Evasive Maneuvers 0 0 0 1 0
TC (sec) Median 424 445 4.54 5.69 5.96
Std. Dev. 6.98 3.34 5.60 4.00 1.27
DRS (m/s?) Median 0.28 0.49 0.26 0.25 0.32
Std. Dev. 1.44 0.93 0.40 0.75 0.47
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