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ABSTRACT

Abstract

Gcons are simple 3-D geometric primitives proposed by Biederman for object repre­

sentation. The idea is to segment objects into an arrangement of simple geometric

shapes. Objects represented by geons can be identified more easily since the many-to­

one mapping of object recognition is reduced to the recognition of a small number of

geons. In this project, a vision system is implemented for the search and recognition

of geons.

The vision system is composed of a colour camera and a laser range finder, and is

mounted on a pan-tilt unit. The entire setup is mounted on a mobile robot. The task

of the system can be divided into two phases: The first phase is focus of attention.

Our focus of attention algorithm is based on colour. The geons are painted with a

pre-determined colour, and the colour camera searches for objects \Vith that colour.

C pon detection of a geon, the mobile robot moves towards it in preparation for the

next phase.

The second phase is abject recognition. \-Vith the robot in the proximity of the

geon. the laser range finder is used to obtain range data of the geon for recognition.

Since only a small number of geons (N = 7) is considered in this project, very sparse

range data is sufficient for successful recognition .
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RÉsmlÉ

Résumé

Les géons sont de simples primitives géométriques 3-D introduites par Biederman

pour la représentation d'objets. L'idée est de segnlenter les objets en un ensemble

de formes géométriques simples. Les objets représentés par des géons peuvent être

reconnus plus facilement puisque le problème de reconnaissance qui consiste à trouver

un objet particulier parmi un grand nombre d'objets se limite à reconnaltre un petit

nombre de géons. Dans ce projet, un système de vision est implanté pour la recherche

et la reconnaissance de géons.

Le système de vision est composé d'une caméra couleur et d'un laser de profondeur

et est monté sur une unité pan-tilt. L'ensemble du montage est placé sur un robot

mobile. La tâche du système peut être divisée en deux phases: la première correspond

à la détermination du centre d'intérêt. ~otre algorithme de détermination du centre

dïntérêt est basé sur la couleur. Les géons sont peints avec une couleur prédéterminée

pt la caméra couleur cherche des objets de cette couleur. Une fois qu'un géon est

détecté, le robot mobile se dirige vers lui pour préparer la phase suivante.

La seconde phase est celle de reconnaissance d'objets. Avec le robot à proximité

du géon, le laser de profondeur est utilisé pour obtenir des données de profondeur sur

le géon pour la reconnaissance. Comme dans ce projet seulement un petit nombre de

géon est considéré (N = ï), des données de profondeur très espacées sont suffisantes

pour que la reconnaissance soit effectuée avec succès.
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1.1 INTRODUCTION

CHAPTER 1

Introduction and Motivation

The objective of this thesis is to present an algorithm for the search and recognition

of simple 3-D shapes~ caIled geons~ based on sparse range data. A vision system

was constructed to test our work. The following chapters will describe in detail the

implementation of this vision system, as weIl as the recognition algorithm. This first

chapter introduces the use of geons in computer vision~ and the goals and motivation

for our research.

1. Introduction

Recent advances in computer imaging technology have led to increasing research

effort being placed on object recognition. In particular, three-dimensional generic

abject recognition turns out to be especially interesting and chaIlenging. The term

··gencric abject recognition" refers to the recognition of objects from a domain of a

large number of models [18], and the distinction betwcen two-dimensional recognition

and three-dimensional recognition will be explored in the next chapter. One approach

ta this problem that has gained considerable interest is the volumetrie approach. In

this class of methods, complex objects are considered as a concatenation of many

sirnple volunletric parts. The objects are first divided inta parts, and then each part

is identified. The identities of the individual parts are combined with information

on haw the parts are grouped to achieve recognition of the entire object. This 15

1
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1.1 INTRODUCTION

analogous to speech processing~ in which phonemes - small, simple units of speech - are

first identified, and then their concatenation leads to speech recognition. Biederman's

Recognition By Components (RBC) theory [8, 9] proposed the use of 36 unique

geons as the volumetrie primitives to be used in generic 3-D object recognition. The

most important difference between geons and other geometric primitives, such as

superquadrics, is that geons are described solely by qualitative attributes. Biederman

noted that the human observer judges quantitative attributes poorly, and yet can

efficiently recognize almost any complex reaI-world object. It is, therefore, probable

that quantitative description is not an important factor in generic object recognition.

:-\. more thorough discussion of geons will be presented in the next chapter.

Although distinguishing a moderate number of simple 3-D shapes appears to be

a rairly simple problem, it does involve sorne open issues. One issue of particular

importance is the choice of sensor used to gather relevant information. The majority

of computer vision methods use ordinary video cameras as an input device ta acquire

two-dimensional intensity images of the scene. This option is attractive due ta the

off-the-shelf availability of video cameras. Sorne research have been done on using

line drawings to deduce geon shapes [6, 7, 17]. Theoretically, line drawings of ob­

jects could be obtained by extracting edge information frOln 2-D intensity images.

However, reliable edge detection is difficult to realize. Poor and uncontrolled lighting

conditions often leads to partial failure of edge extraction mechanisms. :'vloreo\·cr.

cdge information alone sometimes produce ambiguous results.

Since explicit 3-D information can be obtained from a range map. the use of

laser rangefinders for abject recognition has become increasingly popular. Thcre

exist several laser ranging techniques, each \Vith their advantages and drawbacks. For

rcasons ta be discussed later, we have adopted the triangulation technique for the

implementation of our laser rangefinder.

This research explores the feasibility of geon recognition based on very sparse

range data. In addition, an active vision system \Vas implemented to search for geons

in an indoor environrnent, acquiring a good view of the geon to faciIitate recognition .

2
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1.2 ~[OTIVATIONS AND GOALS

The ultimate goal is to have the vision system mounted on a mobile robot~ which will

navigate towards the geon to collect range data for recognition.

2. Motivations and Goals

Rather than attempting to solve the daunting problem of generic 3-D recog­

nition~ this research only considers the recognition of individual geons. Raja and

Jain [48] tackled this problem by acquiring range data of geons and fitting them

ta superquadrics~ then determining the identity of the geons based on superquadric

parameters. \Vu [66J used a global optimization technique to match multiple-vie\\'

range data with parametric descriptions of geons. Our proposed approach differs from

those mentioned above in two important respects. Firstly~ it is reasonable to expect

relatively little computation for the recognition of simple objects~ therefore~ instead

of using a full range map~ we use only si.x laser stripe profiles for recognition. This will

signifieantly reduce the amollnt of data processing required. Secondly~ the essence of

geons is their qualitative nature~ and fitting superquadric parameters to thenl more

or less defeats that purpose. Our recognition algorithm will make decisions based on

qualitative attributes rather than quantitative parameters.

Csing range data to recognize geons is only one of our objectives. Our ultimate

goal is ta integrate the vision system with a mobile roboL so that geon recognition

can become one of the robofs functionalities. This involves additional issues snch as

focal attention for the search of geons in the environment~ and robot navigation to

bring the robot near the geons. These issues will be addressed in Chapter 4.

This research has sorne potentially interesting applications. As an example~ an

automated front end loader in a warehouse could be made to distinguish sinlple

abjects like boxes (cuboids)~ barrels (cylinders), and cones (tapered cylinders), and

manipulate them accordingly. Geons can also act as landmarks to aid mobile robot

navigation.

3
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1.3 THESIS OUTLTh'"E

3. Thesis Outline

The following chapters will address different aspects of geon recognition and our

approach to tackling this problem. In the next chapter, we will compare 2-D and 3-D

methods to object recognition, and review sorne recent work on the latter. Specifical1y,

we will focus on the increasingly important role of geons in the 3-D vision research

community. Chapter 3 describes the hardware, namely the vision system as well

as the mobile robot. The details of our rangefinder calibration method are also

presented. Chapter -1 addresses the active vision portion of our vision system - the

use of colour as the cue for focus of attention, the method to achieve proper placement

of laser stripes, and a brief description of the robot navigation algorithm. Chapter

5 describes the recognition module, which involves preprocessing of data and the

gcneration of evidence to facilitate the final decision process. Chapter 6 presents the

rnethods and results of the experiments. The experiments consist of three parts: the

first part deals exclusively with simulated data. In the second part rcal geons are

placcd in the relative vicinity of the vision systenl so that recognition can be achieved

with camera movements alone. In the third part the vision system is mounted on

the mobile robot, which navigates through a controlled indoor environment to search

for geons, and attempts to identify them upon detection. Finally, the last chapter

summarizcs the thesis and presents a critical analysis of our research.

4
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2.1 ACTIVE VISION

CHAPTER 2

Background

Object recognition with mobile robots often implies more than merely identifying

an object in an image. It also involves searching for the object of interest in the

environment, and if necessary, approaching it and making adjustments to acquire

a better view. In other words, the problem of mobile robot object recognition is

composed of two parts:

(i) Active Vision/Focus of Attention (\Vhere is it?)

(ii) Object Recognition (\Vhat is it?)

The first section of this chapter addresses the problem of active vision and focus

of attention. The second section discusses object recognition, as weIl as the use of

geons for object representation and recognition. vVe conclude \Vith a brief description

of our approach to the experiment.

1. Active Vision

~Iost research in machine vision involves passively sampIed images. Recogni­

tion algorithms often operate under idealistic conditions such as controlled lighting,

sharply focused images, and a priori knowledge of the objects' locations. \Vhile these

assumptions may be valid for certain applications (e.g., factory automation), they

hardly apply to intelligent, autonomous systems. Human perception, for instance. is

5
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not passive, but active. Our eyes adjust ta different levels of illumination and bring

scenes into focus, our heads move to search for an abject, and we are capable of

mO\'ement towards the object to obtain a better view.

Bajcsy [2J defined active vision as "a study of modelling and controlling strategies

applied to the data acquisition process which will depend on the current state of the

data interpretation and the goal or task of the process:'. This is different from the

concept of "active sensors" , which refers ta sensors that transmit signais (e.g., sonaL

structured light) into the environment and use the reflected signais to deduce range

infornlation. \'Ve use the term "active" ta denote controIIing passive sensors in an

active manner, i.e., purposefully changing the sensor's state parameters according to

specifie sensing strategies.

An observer is called "active:' when engaged in sorne kind of activity whose pur­

pose is to control the geometric parameters of the sensory apparatus [IJ. ~Jlany active

vision systems involve the alteration of sensor settings. For example, Krotkov [35]

presented the Agile camera system which performs stereo ranging. Each of the t\\'o

cameras has control of focus, zoom, and aperture. The vergence angle between the

t\\'o cameras can also be controlled. Another class of active vision systems involves

mobile robots. \Vith a vision system mounted on a mobile roboL one can often dis­

pense with the need ta control sensor settings. Instead, the robot can be steered ta

desired locations ta acquire images. For example, Gvozdjak [28] implemented an ac­

tive objcct recognition system on a mobile robot, employing a hierarchical recognition

algorithm based on a multi-resolution representation of abjects and images. FirsL

the robot searches for a coarse shape that matches the low resolution image of the

model. If a match is found, the robot moves closer ta the abject to sec whether its

fincr details also match the higher resolution image of the model. The cycle repeats

until cither a no-match is confirmed or the finest available details are matched. It

can be shawn that an active observer can solve basic vision problems in a much more

cfficicnt \Vay than a passive one. Problems that are ill-posed, nonlinear or unstable for

a passive observer can become well-posed, linear or stable for an active observer[lJ .

6
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1.1. Focus of Attention. Since an active vision system is often required to

explore the environment with little a priori information, it is important that it has

a way to limit its attention to certain regions of interest. The purpose of defining

focus of attention (FOA) is to locate and analyse relevant information essential to the

current task and ignore irrelevant details, so that computing resources can he more

efficiently allocated. The issue of FüA is not restricted solely to vision, as it is also

relevant ta the other senses. For instance, the human brain can establish focus of

attention on audio information. This is evident by the fact that two persans engaged

in conversation in a noisy surrounding can comprehend each other's speech, while

background noise is not processed. In the case of computer vision, recognition sys­

tems are often confronted with massive amounts of visual information, the majority

of which is irrelevant ta the current task. \Vithout any means of pruning the infor­

mation, most visual tasks would be too computationally intensive to realize real-time

performance. A focus of attention algorithm that can drastically reduce the amount

of computations required is therefore highly desirable.

One important issue in this regard is \Vhat features should be used to attract

the \Oision system's attention. Psychophysical studies show that features such as Hne

cndings, closure, orientation, curvature, luminance, calour and motion attract early

\Oisual attention in the human vision system [59]. This is is not necessarily true for

machine vision systems. In this case, the choice of features should depend on the task.

For cxample, a motion tracking system should use motion as a feature for attracting

attention. Due ta the breadth and the sheer amount of work done in the area of

fOA. we will not attempt ta gjve a detailed review of the literature on this subject.

Instea<L we will focus on research that employs colour as the cue for locating areas of

intercst, since colour is what we have used ta deduce the locations of objects in our

experimentso

\Vith recent advances in colour CCO camera technology, colour vision is becoming

Inuch more affordable and reHable. The use of colour as a visual feature is less com­

putationally expensive and often more reliable than geometrical features in matching,

7
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image segmentation [15, 42, 53, 60}, and even object recognition [25, 26, 32, 58].

Relatively little work has been done on using colour as the only eue for foc us of atten­

tion [3, 21, 24, 62]. The Georgia Institute of Technology ~Iobile Robot Laboratory

has implemented a multi-agent robot trash-collecting team which used colour to de­

tect trash (red soda cans) and garbage bins (painted blue)[3]. Although experimental

results were satisfactory (they won the Office Cleanup Event at the 1994 AAAI ~Io­

bile Robot Competition), sorne rather restrictive assumptions had to be made: AlI

objects of interest were assumed to be painted uniformly in one colour. and only red,

blue and green abjects could be detected. Fujiwara et al [24] implemented a mobile

robot vision system which performs visual search of multi-coloured objects using an

extended version of Swain and Ballard's histogram backprojection algorithm [58].

The algorithm performed well even in cluttered scenes, and often provided enough

localization for the robot to grasp the object without the need of verification by other

methods. Ennesser and :Medioni [21] introduced a focus of attention algorithm using

local colour information. Cnlike Swain and Ballard's histogram backprojection algo­

rithm, which performs point-by-point processing over the entire scene. this algorithm

exploits more information and prunes the search space b:r directly matching local

sub-images with the mode!.

Colour-based recognition suffers from the problem of colour variation under differ­

ent lighting conditions. Colour constancy algorithms have been proposed to remedy

this effect [23, 25, 26, 32].

A focus of attention mechanism should be able ta spot the region of interest in

the scene. allowing the greatest part of the scene to be quickly discarded. Speed is

therefore an important criterion to the quality of an FOA algorithm. Colour informa­

tion can often be inferred more rapidly than geometric features. and is shawn ta be

effective as a eue for attention in sorne human visual tasks. Sorne open issues need ta

be addressed, such as the problem of colour variation [23, 25, 26, 32), and the choice

of colour space [21, 42]. Colaur alone cannot solve ail visual search problems [24),
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but can often offer a significant reduction in search space complexity when looking

for coloured abjects.

2. Object Recognition

The problem of object recognition involves extracting image features from sensors

(edges, regions, texture, range, etc.) and matching an object model ta those features

ta determine the abject 's location, orientation, and identity[5]. Object recognition

systems can be classified into two categories:

(i) Two-Dimensional Übject Recognition

(ii) Three-Dimensional Übject Recognition

Since our research primarily deals with 3-D object recognition, the discussion on

the former will be relatively brief.

2.1. Two-DiUleosional Object Recognition. Two-dimensional object

recognition differs from its three-dimensional counterpart in one important way. in

that it makes no attempt to infer any 3-D information (such as depth, object occlu­

sion. shading, and surface orientation). Despite this restriction, many other eues can

be extractecl from a 2-D image, such as colour, brightness, reflections, texture. edges,

shape and size. Eyen though we live in a three-dimensional worId, 2-D recognition is

sufficicnt to solve many problems. For example, OCR (Optical Character Recogni­

tion) systems are exclusively 2-D since writing is two-dimensional by nature. Other

applications such as remote sensing (fiat terrain seen from high altitudes), radiology

(where the image is a "shaclow" of the abject), and microscopy (where the image is

a cross-section of the object) can often be adequately resolved using 2-D recognition

schemes [51]. Even abjects that are three-dimensional in nature can sometimes be

successfully recognized by 2-D recognition systems. For example, an industrial robot

\'ision system can recognize parts on a conveyor belt, given conditions such as a weil

illuminated scene, non-overlapping objects, and abjects in specifie 3-D orientations,

9
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Chin and Oyer [16] have classified 2-D abject recognition methods into three

classes based on the kinds of features employed for matching. The first type of

method uses global features such as an object's size, shape, and perimeter. The

second type uses local features that describe more complex properties of the object,

such as edges and curve segments. The final type uses local and relational features

which are organized in a graph. Nodes describe local features and arcs describe the

relationship between the connected pairs of featllres. This is called the relational

graph method.

The features mentioned above are more or less aIl the information available for a

2-D object recognition system. It quickly becomes apparent that this lack of higher

dimensional spatial information severely limits vision systems' capabilities towards

general-purpose object recognition, particlliarly for mobile robot vision, which in­

c\"itably deals \Vith abjects and obstacles in the 3-D world. Often little a priori

knowledge can be assumed. Nonetheless, 2-D vision is a fairly broad field on its own

accord~ with many sound theories proposed and many pral:tical systems having been

implemented. Since this research is concerned with 3-D object recognition, a detailed

re\"Îew of 2-D abject recognition is beyond the scope of this thesis.

2.2. Three-Dimensional Object Recognition. The term ·'three-

dimensional object recognition" can be rather vague, since many different schemes

and methods have been proposed to solve this problem. Same employ range data,

sorne attempt ta interpret multiple views of abjects, and sorne attenlpt ta infer 3-D

fcaturcs of an abject from a single 2-D intensity or colour image. Therefore it is not

casy ta give a formaI definition ta 3-D abject recognition. For the purpose of this

thcsis. we define 3-D objcct recognition as "the ability ta infer the identity, location,

and orientation of solid 3-D abjects by extracting view-invariant 3-D features from

the scene and matching them with features of 3-D object models" [17].

The definition given above indicates that 3-D abject recognition does not neces­

sarHy require explicit 3-D (range) data. In fact, most early research in 3-D recognition

employed intensity images due to the relatively low cast of frame grabbers and digital
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cameras. The main problem faced by 3-D recognition systems that employ 2-D in­

tcnsity images is that considerable information about the three-dimensional structure

of the scene is lost in the projection onto the two-dimensional image [5]. Therefore,

3-D features must be extracted implicitly from the 2-D images. Various kinds of 3-D

information can be inferred from an intensity image using attributes such as shading,

texture, edges, and corners [12].

Recognition of 3-D objects is difficult because a 3-D object can have many dis­

tinguishable appearances, depending on its location and orientation \Vith respect to

the observer. Therefore the object model must contain a description of the object

from aIl possible viewing angles. A straightforward exhaustive search approach is

clearly impractical. Nlore elaborate feature extraction and matching algorithms are

required. For example, Bergevin and Levine [6, 7] introduced an object recogni­

tion system called PARVO (PrimaI Access Recognition of Visual Objects) which

takcs line drawings of objects as input. PARVO extracts features such as corners,

T-junctions, and symmetry. Using these features, the object is segmented into sim­

ple parts, and each segmented part is matched to a geon label (geons are specific

geometric shapes which will be discussed in detail in the following section).

Another approach that has gained a lot of attention in the object recognition

community is the aspect graph (or characteristic views) approach. Koenderink and

\·an Ooorn [34] introduced the concept of aspect graphs for representing shapes of 3­

D abjects. This method stems from the observation that although an abject can have

an infinite number of orientations, it has a limited number of "characteristic views",

or aspects, from which the object has the same qualitative appearance, i.e. the same

faces and edges are visible, even though quantitative attributes such as the length

of edges may be different. AlI the different aspects of an object comprise an aspect

graph of the object. Each node of the aspect graph represents an aspect. and each

arc represents a shift in viewpoint that transforms one aspect to another. Stewman

and Bowyer [19, 55, 56, 57] proposed a ~~viewing sphere" approach to generating

the aspect graph. A "viewing sphere" is an imaginary sphere whose centre is the

Il
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geometric model of an object. The surface of the sphere is tessellated into small ceIls,

each of which represents the same aspect view. Using aIl the cells on the viewing

sphere (which corresponds to aIl possible aspects of the object mode!), the object

moders aspect graph can be generated. This aspect graph approach to 3-D object

recognition is considered important because it provides a complete viewer-centered

representation of an object [19] and it has been shown to be effective in the recognition

of complex polyhedral objects.

The aspect graph method and PARVO. like other edge-based approaches. have

the shortcaming that no explicit surface information is available. übjects represented

by edges alone may lead to ambiguities like the one shown in Figure 2.1. :\lthough

the inference of surface information from intensity images is possible (e.g., through

shading and textureL it is often difficult to accomplish and is error-prone. Explicit

3-D information of the scene is therefore highly beneficial to the efficiency of 3-D

object recognition.

The past few years has seen a significant increase in research efforts into range­

based object recognition [27, 29, 36, 39, 43, 47, 48, 54, 66]. This is partly due to

the off-the-shelf availability of comnlercial laser rangefinders. Rangefinders can now

be implemented at a relatively modest cost and effort, and the quality of range data

has been steadily improving.

In 3-D object recognition, range data is usually presented in the Corm of range

images (or depth maps). A range image is a two-dimensional array, with each pixel

indicating the distance measurement from a known reference coordinate system to

a particular point on the object surface in the scene [39]. The main adyantage of

using a range image for abject recognition is that it gives a description of the physical

structure of the abject. rather than just the intensity or colour of light reflected off

the object. Range data is relatively uncorrupted br reflectance variations, ambient

lighting and shadows [51, and quantitative geometric properties of the scene can be

inferred accurately. Therefore, the recognition of objects by shape is much casier

than in intensity or colour images. Of course, information regarding the brightness

12
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Tapered Cuboid?

2D View

•

Tapered Cylinder?

FIGURE 2.1. Example of ambiguity in 2-D vision.

•

or colour of the scene will be lost in a range image~ and recognition methods that

rcquire such information will not be applicable. Sorne research has been done on

fusing intensity/colour images and range images~ utilizing the strength of both to

achieve effective abject recognition [4, 20, 61J. Thosc rnethods have shown limited

success and tend to require very heavy computations.

Range data are fundamentally different from intensity and colour images~ and the

use of range data for object recognition has led to a whole new genre of data processing
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and feature extraction methodologies. Nonetheless, the fundamental prohlems of

object recognition remain the same: What features should be extracted? How should

the objects he represented? The following section addresses different representational

schemes for object recognition using range data.

3. Object Representation

An appropriate way of describing objects is of crucial importance to the efficiency

and robustness of the abject recognition system. Representation schemes for 3-D

objects are usually either edge-based, surface-based, or volume-based [13, 39]. The

edge-based approach is easy to implement because edges in a range image are simply

locations where range values change significantly. ~[oreover, edges in range images

can contain more information than those in intens~ty images: various types of cdges

snch as convex, concave, limb and occ1uding can he differentiated in a range image

[39]. However, an edge-based representation does not provide any explicit surface

information which may be important for distinguishing surfaces having identical edge

descriptions from a certain view, and ambiguities like the one depicted in Figure 2.1

may still arise.

The surface-based approach represents abjects by characterizing surfaces bounded

by edges. \Vith explicit 3-D coordinates of each point made available by range images,

an object's surface properties can be deduced using differential geometry. This ap­

proach tends to he more computationally intensive then the edge-based approach duc

ta the calculations required for obtaining surface attributes such as surface normals.

:\lso. surface segmentation can he a difficult problem.

The volume-based approach depends on the obsenration that most man-made

abjects can be loosely described as a composition of several (less than 10) geometric

parts such as boxes. discs. and cylinders. This is analogous to the way each spo­

ken word is regarded as a composition of a few phonemes in speech recognition [13].

The advantage of this approach is that the many-to-one mapping problem of object

recognition is broken down into smaller problems of recognition at the leveI of simple
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geometric parts. Once the recognition of parts (which is much easier than the recog­

nition of complex abjects) is accomplished, spatial relations between parts are used

to differentiate objects with similar parts but different arrangements.

The next question is what geometric parts should be used ta describe complex

objects. Pentland [45, 46] first proposed the use of superquadrics as part primitives

for object recognition. Superquadrics are a farnily of parametric shapes described

by an equation that contains 5 parameters, and the parameter values determine the

sl1perquadric's shape (e.g., ellipsoids, cylinders, parallelpipeds, pyramids. cones. and

sorne other round-edged shapes in hetween these standard shapes) [48j. Hanson

[31] later proposed hyperquadrics for computer graphies applications, and Han et al.

[29] used hyperquadric models for shape recovery from range data. Hyperquadrics

are generalizations of superquadrics, their equation containing more parameters so

that it can describe a larger set of geometric shapes. The research done on using

superquadrics and hyperquadrics for shape recovery from range data [11, 31, 48]

adopts more or less the same approach: an error-of-fit function is defined. and the

parameters of the quadric shape are estimated by attempting to minimize the error­

of-fit function using nonlinear optimization methods. This approach is problematic

bccause the nonlinear optimization process tends to be very time-consuming, may

fail to reach a global minimum, and sometimes require an initial guess. It is also

doubtful that the human vision system recognizes abjects by attempting to quanti(y

shape parameters.

:\. new class of geometric primitives, called geons, has been proposed for 3-D

abject representation[8, 9]. As described below, geons fundamentally differ from

parametric shapes such as superquadrics and hyperquadrics, and may lead ta more

robust 3-D object recognition systems.

3.1. What are Geons? Biederman [8, 9] proposed a thcory known as

Recognition-by-Components (RBC). The theory postulates that human perceptual

recognition of objects is a process in which objects are segmented at regions of deep
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concavity into an arrangement of simple geometric components, as shown in Fig­

ure 2.2. The fundamental assumption behind RBC is that a modest set of geoeralized­

cone components (JV :S 36) is sufficient to represent aIl known objects for low-Ievel

perception. The set of generalized-cones is termed "geons" (short for '"geometric

ions:'). The 36 geoos are derived from three attributes of a geon '5 cross-section: edge

(st raight or curved), symmetry (symmetrical or assymmetrical), size (expanding, con­

stanL or expanding and contracting), and one attribute of its axis (straight or curved).

The most important difference between geons and other parametric shape primitives

such as superquadrics is that a geon's attribute values need only be dichotomous or

trichotomous rather than quantitative, 50 that a human being:s limited capacities

for absolute judgement are oot taxed [8]. Nloreover, slight quantitative variations in

the attributes usually have little effect on the recognition of objects, as illustrated in

Figure 2.3.

Tapered Cylinder

Bent Cyliner

Disk

FIGURE 2.2. Example of an object composed of simple geometric primitives.
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FIGURE 2.3. Two objects composed of the same geometric primitives with
slight quantitative variations.

Brown et al [14J raised the question of whether geons are indeed geometric prim­

itives in the traditional sense that they "pop out'~ in search tasks. Features are said

to ··pop out" if they are detected automatically and preattentively. Experiments were

perforrned on human subjects~ who were shown images of objects~ and their reaction

time (RT) needed ta detect the presence or absence of a target geon was measured.

Experimental results indicated that geons are not processed preattentively by the hu­

man vision system[14J. Nonetheless, geons can be identified and distinguished from

cach other very quickly. In addition, Biederman [8J has shown that abjects repre­

sented by geons can be recognized with relative ease, even under sub-optimal viewing

conditions such as an object being partially ocduded, lacking sorne components~ or

having its contour partially deleted. These attributes make geons an attractive can­

didatc for object representation.

The RBC theory has rnotivated further studies of geons in the computer vision

community. PARVO [6, 7J was the first significant effort to build a geon-based vision

systern~ and it is also one of the few vision systems whose design respects and makes
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explicit the main assumptions of the RBC theory. Although PARVO was created to

take only line drawings of objects as input, it is possible to extend the system to

handle objects found in range images. Hummel and Biederrnan [9J have implernented

a neural net model for geon-based recognition which constitutes a framework for

general abject recognition based on RBC, but no experimental results have been

rnade available.

:\ relatively small research effort has also been addressed to the recognition of

geons from range data [48, 66J. Raja and Jain [48J have performed geon recognition

by relating a subset of 12 geons to superquadrics fitted to range data. Experiments

were done using real range images of geons. Results show that estimation of su­

perquadrics parameters is extremely sensitive to noise and '"rough" object surfaces,

but under normal circumstances, qualitative shape attributes can be inferred from

superquadric parameters quite accurately. \Vu and Levine [66J used multiview range

images to approximate shapes by a set of 7 geons. Experimental results show that

multiviewanalysis leads to better performance in shape approximation than single­

\"iew. particularly inder the influence of noise, missing data. and slight variations in

shape.

The set of ï geons used by \-Vu and Levine [65, 66J is the sarne set of geons we

attempt to recognize in this research (see Figure 2.4). These specifie geon types \Vere

chosen because they are regular, simple, and symmetrical shapes. ~Iost of them can

he dcscribed without ambiguity by a simple geometric term, such as ellipsoid, cuboid,

cylindeL cone and pyramid. These shapes are also consistent \Vith the basic forms

used by more traditional methods of 3-D object representation such as sculpture [65].

:\lthough geons have emerged as the most popular shape representation for

genenc abject recognition, the above-mentioned research related to geons is still be­

ing applicd to \"ery constrained dornains. In sorne cases synthetic data were used, or

segrnentation was performed rnanually, or the objects are made unrealistically simple.

~Iuch work remains to be done before a generic geon-based recognition system can

he realized.
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Cylinder

Tapered Cuboid

~
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Bent Cuboid

Tapered Cylinder

Bent Cylinder

•

FIGURE 2.4. The 7 geons used in this research.

4. Proposed Approach

Speed is the most crucial criterion in detennining our method of establishing focus

of attention. In general, 3-D feature extraction methods are more reliable than 2-D

methods, but they are also more computationally expensive [24]. Colour cao he used

as a 2-D global feature which requires less computation in matching than structural

fcat ures such as shape, corners or edges. Colour detection is also an inexpensÎ\'e

method due ta the relatively low cost of colour CCD cameras in recent years. For the

above reasons, colour was chosen as the cue for focus of attention in our experiments.

Cpon detection of the abject of interest, a robot navigation strateg)' must he

emplayed to steer the robot to the vicinity of the abject without colliding with obsta­

cles, Zelek [67] proposed and implemented a mobile robot control architecture called

SPOTT (A System which integrates Potential fields for planning On-Hne with TR+
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program control in order to successfully execute a general suite of Task commands).

SPOTT integrates data from laser rangefinders, sonar~ infrared sensors and tactile

sensors to navigate the robot in an unknown or partially known environment. Local

path-planning is based on a potential field method. Despite SPOTT's success in nav­

igating a mobile robot through an indoor environment~ it is prohibitively slow due

ta the massive amount of sensor data it is required to manipulate~ and the intense

amount of computation needed to calculate the potential field. :\. much simpler nav­

igation algorithm was therefore adopted in this thesis. The ~[abile Robotics team at

~IcGill Cniversity recently developed a path planning program in preparation for the

1997 .-\.:\.:\.1 mobile robot competition 1. In this algorithm~ only sonar sensors and a

colour camera are used to perform path planning, and it is shown to be very fast and

robust. vVith slight modification this path planning module was incorporated into

our application.

Speed is also of critical importance to our recognition process. ~:fost research done

on 3-D shape recognition has required complete range maps of objects of interest

[13, 48]. The problem is that the acquisition time for range maps is often quite

long (on the order of tens of seconds). Since we are only attempting to differentiate

between a set of ï geons, we submit that only a few strategically placed laser-stripes

will suffice for our purpose. Very little work has been done on 3-D object recognition

using such sparse data. Qiang et al. [47] proposed a method for recognizing and

locating polyhedral objects using as little as one laser stripe. In their experiments.

they use a model for each stable position for every object. In our case, howeveL wc

do not have precise models available since geons have qualitative attributes. In our

experiments we will show that three horizontal and three vertical laser stripes will be

sufficient for distinguishing our set of 7 geons.

~Iany recognition systems begin with quantitative information derived from the

image and perform recognition by matching the information with object model

1The team came first in the event Find Life on Mars (Single Agent Nonmanipulator Category).
Tearn rnembers: Francois Belair, Eric Bourque, Dœp Jugessur, Rob Sim. Supervisor: Professor
Gregory Dudek.
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databases. Even previous work on geon recognition [48, 66]. mentioned in the iast

section, involves estimation of certain quantitative parameters. To comply with the

essence of geons and the underlying concepts of the RBC theory~ we attempted to

recognize geons through the inference of qualitative features from range data. An

e\"idence-based recognition approach [33] was adopted for our system"

The idea behind evidence-based recognition is that rather than using aIl the in­

formation provided by a representation, it is possible to use only "discriminating~'

information, or evidence, to eue certain objects. In our case, evidencc such as taper­

ing, bending, curved/straight cross-section, and absence/presence of corners will be

useful for geon recognition.

\Yith this qualitative approach, we hope to accomplish fast and accurate geon

recognition without the need of complex parameters estimation.
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CHAPTER 3

Hardware ImpleD1entation, Calibration,

and Specifications

The main objective of this research is to recognize geons from range data. Therefore

the laser rangefinder is the most central piece of hardware to our experiments. The

first section of this chapter gives a general overview of laser ranging technology~ as weIl

as the implementation of our rangefincler. The second section describes our calibration

method. The following sections will give brief descriptions and specifications of the

other hardware used: The colour camera for establishing focus of attention. the pan­

tilt unit for camera movemenL and the mobile robot for navigation and exploration.

1. The Laser Rangefinder

~Iany tasks caU for the neecl to quantify range~ in particular~ mobile robot nav­

igation. :\ mobile robot~s task is often to gather information from its surroundings

and make intelligent movements accordingly. Range information is especially useful~

if Ilot crucial~ to successful path-planning in mobile robots. That is why most mobile

robots are equipped with at least one set of range sensors. The use of range data for

object recognition did not become common until fairly recently. This is because range

data must be highly accurate to be deemed practical for object recognition purposes,

and early range-measuring techniques lacked such accuracy.
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There is a number of distance measuring techniques. The more cornmonly used

ones are[22]:

• Laser ranging

• Stereo disparity

• Sonar

• Interferometry

Laser ranging is by far the most popular candidate for range image acquisition,

since other techniques suffer serious drawbacks: Stereo vision exhibits the correspon­

dance problenl; sonar is inaccurate and therefore rarely used for object recognition:

interferometry is costly and limited to relative distance measurement. :\.Iso, lasers

produce a narrow and collinlated beam with minimal divergence. This property al­

10ws the source ta be highly directional and spatially selective[37]. which makes it

very suitable for long-distance measurement and ranging. Lasers generally transmit

light of a fixed wavelength. sa a narrow band opticaI tilter can be placed in front of

the image sensor ta reject ambient light and detect nothing else but the laser beam.

There are three different methods of laser ranging:

• Triangulation

• Time of flight (TüF) measurement

• Phase-shift measurement

The concept of time of flight laser ranging is similar ta that of sonar range sensing:

short bursts of energy are projected from the source, and the time it takes them to

he reftected back ta the sensor is measured. Csing elementary physics. the range

hetween the sensor and the surface that reflected the signal is d = ct/2, where d is

the range, c is the speed of light, and t is the round-trip time taken by the signal.

Object recognition often calls for range data with accuracy in the millimeter range,

and ta achieve that kind of accuracy, the TüF laser rangefinder must be able to

rncasure time t with subnanosecond precision. Since timing circuitry \Vith that kind
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of resolution is very expensive, TOF laser rangefinders are rarely used for object

recognition.

Phase-shift rangefinders deduce distance by measuring the phase difference be­

tween the outgoing signal and the refiected signal. The range d can be derived from

the equation [22]:

d = ifJc
4iif

where (jJ is the phase-shift, c is the speed of light, and f is the frequency of the

laser. One problem \Vith this method is that phase-shift measurement can Iead to

ambiguous results: the Iaser's sinusoids repeat every 360°, so equation ( 3.1) should

reaIly be:

(3.2)
d = (4) + 2;rn)c

4/Tf

•

where n = 0,1,2, ...

n cannot be known without using other means of range measurement. This proh­

lem is often countered by restricting the operating range of the rangefinder within an

inten·al where no ambiguities may arise. Another problem with phase-shift measure­

ment is that sophisticated and expensive phase measurement electronics are needed.

In a triangulation-based rangefinder, the laser projector is usually tilted at a fixed

angle with respect to the camera's optical a..xis (see Figure 3.3). ~h, which depicts the

location of the refiected laser light's projection on the image plane, varies according to

the distance z. Therefore range information can be deduced from ~h. One drawback

of triangulation ranging is that its accuracy diminishes \Vith range. It will be shown

later in this chapter that ~h is roughly proportional to the reciprocal of distance z.

.\s the distance grows larger, ~h must be measured with higher precision to give the

same resolution in z values. Another drawback of triangulation is the missing part

problem: since the laser projector is not aligned with the camera's optical a..xis, there
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may be situations in which the laser hits an object part that is not visible to the

camera. This situation is illustrated in Figure 3.1.

Laser

Projector

Object

Camera ==::J

FIGURE 3.1. Illustration of the ""missing parC~ problern in triangulation­
based laser rangefinders.

Although triangulation-based rangefinding has its share of disadvantages. it can

be implemented inexpensively and tends to give good accuracy over a range of several

rneters. Since our experiments only require range data up to the range of about

2 meters. the triangulation approach \Vas adopted for the impleulentation of our

rangefinder.

1.1. Setup. Figure 3.2 shows our laser rangefinder. The laser projector on

•
top of the black-and-white camera projects a horizontal laser line while the one beside

the camera projects a vertical line. The lasers used in this setup have a rated power

of 20 milliwatts each and a wavelength of 670nm. A bandpass optical filter is placed

in front of the camera to remove ambient light.
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z

x

y
B/WCamera

~ Vertical Laser

•

FIGURE 3.2. The laser rangefinder.

Figure 3.3 shows the rangefinder configuration viewed from one side. The laser

projector and the image plane (CCD array) are separated by a known baseline dis­

tance A. The laser projector is tilted at a known angle p with respect ta the z-a.."is

(which is the same as the optical axis). Llh is the vertical displacement of the laser­

stripe image on the image plane \Vith respect ta the centre of the image plane. The

basic principle of triangulation is that given two angles and one side of a triangle. ail

the other angles and sides can be derived. In this case~ p and A are known~ and f3

can be derived as shawn in equatian 3.3:

•
(3.3) a 7f ()}J=-+

2
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FIGURE 3.3. Horizontal configuration of the laser rangefinder.

where

(3.-1)
D/2 - ~h

() = arctan( f )

\Vith the values of p~ /3~ and A known~ the length of the side l can be calculated.

Suhsequently~ the distance z can be easHy calculated as:

(3.5) z = l cos (}

•

In theory~ the distance z between the object and the image plane can be derived

using equations 3.3 and 3.5. In practice~ howeveL it is extremely difficult to measure

the values of physical dimensions such as baseline distance .4 and angle p \Vith suffi­

cient accuracy. ~\'Iost laser rangefinders therefore require calibration. The calibration

of rangefinders will be discussed in the next section.
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• The brighmess of one column of
pixels lak~ the shape of~a=--__~
Gaus..'iian curvc.

30D
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FIGURE 3.4. Brightness of a column of pixels.

In order ta obtain an accurate reading of distance z, the location of the laser

stripe image on the image plane (.tlh) must be measured with sub-pixel precision. In

generaL the brightness profile of the laser stripe on the image plane takes the shape

of a Gaussian cun-e, as shawn in Figure 3.4. Treating this profile as a Gaussian curve,

the mean of the Gaussian can be calculated and taken as the "location" of the laser.

Since the profile is obtained from a digital image, it is discrete in nature and therefore

the mean ê can be calculated using the weighted sum-of-index method:

(3.6)

•

where n is the number of rows of pixels in the image.

The sctup of our rangefinder is quite typical of triangulation-based rangefinders.

.-\lthough variations in attributes such as baseline distance A and angle (p) can ef­

[cet performance slightly, the accuracy of a rangefinder is mainly dependent on its

calibration, which we will discuss next .
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2. Calibration

There are several calibration techniques for laser rangefinders in the literature

[50, 64]. The most commonly used one involves solving for the camera moders pa­

rameters such as focal length, lens distortion coefficients, and dimensions of CCD

elements. Although these parameters are provided by the camera manufacturers,

they are often not accurate enough for 3-D vision applications. The calibration pro­

cedure involves placing an object - usually a precisely marked grid - at a known

location and orientation with respect ta the camera. An image of the grid is ac­

quired, and features such as points and edges are extracted. Using these features, a

set of geametric equations can be derived. If the number of equations is greater than

or equal ta the number of unknown parameters, the parameters can be obtained using

nonlinear optimization. The drawback of this technique i5 that it tends to be very

computer-intensive. The nonlinear optimization often fails to converge ta a solution,

due to slight variations in physical parameters, e.g. decentration of lenses [50, 64],

imperfections in CCD elements. etc.

A very simple and direct approach \Vas used for calibrating our laser rangefinder.

.-\. fiat calibration board was placed at a known distance in front of the camera, and

the rangefinder was moved a\Vay from the board by small known increments, each

time taking an image of the laser-stripe (In this experimenL 10 images \Vere taken

and averaged in arder to minimize the effect of random noise). The location of the

laser-st ripe on the image (.:lh) corresponding to each known distance was recorded

in a look-up table. Figure 3.5 shows a plot of ~h values versus z.

The next step is to interpolate the points to obtain a curve. This step is needed

in arder to handle range values that lie between the sampled points we obtained from

calibration. The following relationship between z and ~h can be derived by observing

Figure 3.3:

•
(3.1) tan (J = D /2 - ~h _ z/ tan p - A.

J z
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Plot of Distance z vs delta h
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FIGURE 3.5. Plot of z versus ~h.

Solving this equation leads to:

(3.8)
-\ 1 D

~h = ~ - (-- --)
z tan p 2

or simply

(:3.9)
.4

~h = - - k
z

where Il. is a constant.

•
Theoretically, the values of A, D, and p in equation 3.8 can be measured. Ho\\"­

('\'cr, it is extremely difficult to measure those values with sufficient accuracy for our

purpose. It is also possible to fit a curve to the points by solving for A and k in equa­

tion 3.9 using nonlinear optimization. The disadvantage is that triangulation-based
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rangefinders suffer from diminishing accuracy with increasing range, so the points at

long range are inaccurate compared to the ones at close range. Fitting a curve to aIl of

the points will therefore compromise the accuracy of the measurements taken at close

range. To alleviate this problem, another approach was used. Linear interpolation

was done on each pair of consecutive points. In other words, the space between two

adjacent points was simply joined \Vith a straight line, as shown in Figure 3.6. Error

is introduced by the discrepency between the straight line and the actual data. This

crror can be minimized by sampling images at small intervals (e.g.. 5mm).

,,,,
,

/

/

1

z vs ~h curve

Error introduced /
from linear

intepOlation~ ------- .- ..

- ~L.. l'
Inear mterpo atIon

1

1

J

1

1

1,
Sampled Points

FIGURE 3.6. Linear interpolation of z versus 6h curvc.

•
IdeaIly, the horizontal laser stripe should be projected onto the CCD array hor­

izontally. In practice, it is difficult to align the laser projector and the eeo camera

perfectly, and spherical lens distortion causes the stripe to bend slightly, as shown
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in Figure 3.7. To take this inta account, ~h is calculated independently for every

column in the image.

Image of laser stripe,
slightly bent due to

(PhericaJ lens dislortion

/

/
horizontal
reference line

ç~ Image of laser

1 ------- .tripe nO{ perfeclly
1 horizontal due 10

1

misalignment between
'--- . camera and laser

line projector

FIGURE 3.7. Typical image of laser stripe.

Eyery point on the horizontal laser stripe represents an (x, z) coordinate in space.

The procedure Inentioned above only solves for the value of z. There remains the

problem of solving for x. Assuming that spherical lens distortion is negligible (this

assumption is vaUd in our case since a 16mm lens, which has minimal sphcrical

distortion. is used), x can be solved using simple geometry. Figure 3.8 shows the top

\"iew representation of the rangefinder. To simplify calculations, we define the frame

of rcference such that the optical axis intersects \Vith the x-a..xis at x = O. The point

pd·T, . .Ill. zr) on the laser-stripe is projected onto the point p; (X'll y~) on the CCD

image plane. 21 can be found by calculating the value of ~h on the colurnn y~, as

explained earlier. Once Zl is known, Xl cao be calculated using equation 3.10:

•
(3.10)

X' X l x; (Z 1 - f)
_1 = tanO = => Xl = f
f Zl - f
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where f is the focal length of the tens, and x~ is the horizontal distance between p~

and the center of the image plane, which cau he easily derived if the dimensions of

the CCO array is known.

f

PI ~(Xl ~ ~YI ')

Z

Lxy

Image Plane

•
FIGURE 3.8. Topvicw of the laser rangefindcr configuration.

The setup and calibration of the vertical laser are very similar ta that of the

horizontal lasec and therefore will not he discussed in detail.
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3.2 CALIBRATION

The accuracy of our rangefinder was evaluated by placing

the calibration board about 1 meter from it and obtaining the range profile. Figure 3.9

shows the distribution of the corresponding z values. The error at a range of 1

meter is about Imm (0.1% error). This performance is comparable to most other

triangulation-based rangefinders reported in the literature[lO, 38, 44, 54] .

.-\.lthough our calibration method resulted in accurate readings, it involves a te­

cliaus and manual process in which a human operator must maye the rangefinder

setup by small. precise increments repeatedly. A more elegant calibration scheme

shauld be implemented. This will be left as possible future work.
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FIGURE 3.9. Distribution of z values for a scan at 1 meter.
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3. The Pan-Tilt Unit and the Colour Camera

The laser rangefinder is mounted on a Pan-Tilt Unit l (PTU) to give it two degrees

of freedom in rotation(see Figure 3.2). The PTU has a ma'<.Ïrnurn angular velocity

of 3000 /second, and a resolution of 0.05°. It also cornes \Vith a Pan-Tilt controller.

which accepts commands via an RS-232 connection from a host computer (in this

case~ the robot 's on-board computer), and a e programmers interface. which enables

t he user to interact with the PTU through software.

The eolour camera on the rangefinder(see Figure 3.2) is used to establish foeus

of attention, which will be discussed in the next chapter. It is mounted directly

above the black and white camera, and the two cameras have the same geometric

properties~ Le., their lenses have the same focallength and their eeo arrays have the

same dimensions. This is to ensure a correspondance between what the color camera

sees and what the black and white camera sees.

4. The Mobile Robot

Figure 3.10 shows the Nomad 2002 mobile robot used in this experiment. The

robot is a three servo, three wheel synchronous drive non-holonomie system. It has

two degrees of freedom~ translation and rotation, so it can move on the x-y plane by

first rotating to a desired bearing, and then moving forward. The turret of the robot

can also rotate independently. The Nomad 200 has a maximum translational speed of

.50em per second and a maximum rotational speed of 600 per second. It consists of 3

sensory systems: a sonar ranging system~ a tactile system, and an infrared proximity

system. (The vision system shown in Figure 3.10 was implemented and added onto

the robot for this research).

The sonar ranging system is a time of flight ranging sensor composed of a ring of

16 transdueers. It can give range information from 44cm to 650cm \Vith 1% accuracy

1The Pan-Tilt Unit is manufactured by Directed Perception, Inc. 1451 Capuchino Ave.. Burlingame,
California. 94010 (415)342-9399
2The ~omad 200 is manufactured by Nomadic Technologies Inc., 2133 Leghorn Street. ~[ollntain

\ïew, CA 94043-1605. teL (415) 988-7200, e-mail nomad@robots.com
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Visual system

Sonar senso

_--- Infrared proximity
sensors

Tactile sensor'~--

FIGURE 3.10. The mobile robot.

o,oer the entire range. The tactile system consists of 20 independent pressure sensitive

sensors~ placed uniformly around the robot~s bumper. Each sensor has sensitivity of

about 8 ounces. The tactile system is intended to protect the Nomad 200 from damage

in accidentai collisions with obstacles. The infrared proximity system has 16 sensors

which determine range by measuring the intensity of refiected infrared signais. The

system gives range infornlation of up to 60cm under the proper conditions. Due to its

rclati"ely short range of operation~ the infrared proximity sensor system is intended

mainly to warn the robot of imminent collisions with obstacles.

The :\""omad 200 robot~ like most other mobile robots~ is equipped with different

types of sensors because each type of sensor can compensate for the inadequacies

of others. Ideally: the robot control architecture should make use of aH available

sensor readings. SPOTT [67] is such an architecture. However~ due to the speed

rcquirements~we have chosen a simpler~ faster navigation algorithm which only makes

use of sonar data and colour video signaIs.
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5. Summary

This chapter has presented the basic concept of triangulation-based range sensing,

the implementation and calibration of our rangefinder, as weIl as other hardware

components used in this research (i.e., the colour camera, the Pan-Tilt UniL and

the mobile robot). The rangefinder is composed of a black and white camera, two

laser projectors, an optical filter and positioning tools, aIl of which are off-the-shelf

commercial products. The colour camera is mounted on the laser rangefinder. lCs

function is to establish focus of attention. the details of which will be given in the

follawing chapter. The rangefinder is in turn mounted onto the PTU, which makes

camera rnovement possible.

AIl information from the hardware components are first sent ta the robot 's on­

board computer. Such information include video imagery from the cameras, current

position of the PTU, and the switching of the laser projectors. Since the processing

power of the robot 's computer is limited, the information is sent via wireless trans­

mission to a Silicon Graphies Indy computer, where aIl the computations are done.

Figure 3.11 illustrates the interconnections between the hardware components.

The assembly and calibration of the vision system are part of this research. The

development and maintainance of the mobile robot, on the other hand, is an 00­

going effort of the ylobile Robotics Laboratory in the Centre for Intelligent ~,Iachines,

),1cGill University.
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FIGURE 3.11. Interconnections between the hardware components.
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4.1 FOCUS OF ATTENTION

CHAPTER 4

IInpleInentation of the Active Vision

Module

.-\.5 mentioned in Chapter 2~ the implementation of our vision system can be divided

inta two main modules: the active vision module which involves controlling strategies

for acquiring a good view of the objects of interest~ and the abject recognition module

which invoh·es the use of range data to identify geons. This chapter deals with the

former. The first section of this chapter describes the focus of attention mechanisnl.

namely the colour image processing algorithm used to extract the geons from their

surroundings. Section 2 describes how the geons~ locations are inferred, and how the

proper placement of laser stripes is achieved. Finally~ the mobile robot navigation

algorithm is presented in Section 3.

1. Focus of Attention

The objective of the Cocus of attention is to locate the geons in the robot ~s sur­

roundings. Colour is chosen as the feature for cuing visual attention. Ali the geons

arc painted uniformly in a predetermined colour~ and the goal is to extract pixels be­

longing to that colour from the colour image. In essence~ this is a problem of colour

segmentation [15, 42, 53, 60] .
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1.1. Colour Space. The performance of a colour segmentation algorithm

is strongly dependent on the choice of the colour space in which segmentation is

performed. Each colour space has its pros and cons, depending on the application. For

instance, the H51 (Hue, Saturation, and Intensity) space is convenient for representing

human colour perception, while the YlQ (Luminance, In-phase chrominance, and

Quadrature chrominance) space is efficient for encoding colour information in TV

signaIs [421.

The majority of colour image capture devices represent colour images by assigning

cach pixel a R (red), G (green), and B (Blue) value. The RGB representation of an

image can then he transformed into other colour spaces for further processing. The

choice of colour space therefore implies the choice of transformation from the RGB

space to the desired eolour spaee. There are two types of eolour space transformation:

linear and nonlinear. A linear transformation takes the form of:

(4.1 )

(-l.2)

(-l.3) /3 C31 R + C.12 B + C33G

where Ci] are constants.

For example. the RGB-to-\'lQ transformation is [52]:

(-lA)

(..t..5 )

(-l.6)

y - 0.299R + 0.114B + 0.58iG

/ - 0.596R - 0.322B - 0.274G

Q 0.211R + O.312B - 0.523G

•
An examplc of a nonlinear transformation is the RGS-to-H51 transformation

shown below:
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•
(4.ï) H -

(-1.8) S -

(4.9) 1 -

arctan2( v'3(G - BL (2R - G - B»

3 .C R G B)
l - mln R + G + B' R + G + B' R + G + B

R+G+B
3

•

ühta et aL [42] have made a comparative study of more than 100 different colour

spaces by testing a recursive thresholding segmentation algorithm in each colour

space. IdeaIly~ a similar study should he done to determine the optimal colour space

to perform our colour segmentation. However, the speed of the overall process would

be seriously ta..xed hy the computational requirements for a colour space transforma­

tion. For instance, the RGS-HSI transformation described in cquations( 4. ï - 4.9)

calls for the calculation of an arctangent and a square rooL both of which involve

relatively intensive computations. To do the tranformation on a 640 x 480 colour im­

age, thcse operations must be carried out 30ï,200 times. An analysis shows that the

RG B-HSI transformation on a 640 x 480 image would take 3.39 seconds for a Silicon

Graphies Indy workstation. Even a linear transformation, like the RGB-YIQ trans­

formation~ requires a considerable amount of '"number-crunching". The RGB-\lQ

transformation of a 640 x 480 image takes 1.15 seconds on the same workstation. The

whole process of searching for a geon and navigating towards it would likely require

the analysis of tens of colour images, and the time required ta do the colour space

transformation would add up quickly. Also, experiments show that segmentation in

the RGB space gives acceptable performance. Therefore, for the sake of speed and

simplicity, we have chosen the RGB calour space to conduct colour image analysis

and segnlentation.

1.2. Colour Segmentation. The purpose of colour segmentation is to par­

tition an image into meaningful regions based on the colour characteristics of the

scene. There are two variations to the problem of colour segmentation [53]. The first

applies ta situations where sorne particular colour space characteristics are known a
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priori and the goal is to detect regions which satisfy those characteristics. The second

variation arises when there is no a priori knowledge regarding colour, and the goal is

to segment the image into regions with similar colour space characteristics. The lat­

ter often caBs for sophisticated thresholding, clustering or region growing techniques

since little or no human interaction is permissible. Since we have a priori knowledge

of the geons' colour, our problem belongs to the first category. Our task is further

simplified by the fact that we only need tG segment the geons~ colour from the rest

of the scene, so essentially we are dealing with the problem of binarizing an image in

colour space.

Binarizing a 10 histogram of a grayscale image involves determining the lower

threshold value tL and the upper threshold value tu (see Figure 4.1(a». A11 pixels

with grayscale value between t L and tu are considered foreground~ and the rest are

considered background. This can be extended to a 2-D histogram in which the fore­

ground is defined by a rectangular box, whose sides are bounded by tlL~ tlH, t 2L, tUI,

as shown in Figure 4.1(b). By the same reasoning, a 3-D histogram (colour histogram)

cao be thresholded by defining a lower and upper threshold value on each of the R.

G. and B a.xes. The resulting threshoided region will take the shape of a rectan­

gular parallelpiped. It may not be appropriate to segment multi-dimensional data

by thresholding each 1-0 axis independentIy. Vector quantization or Voronoi tessel­

lat ion is better suited for segmentation because the multi-dimensionality of data is

taken into account. Figure 4.2 illustrates how vector quantization differs from simple

thresholding in the 2-D case.

The mobile roboties team at the Georgia Institute of Technology has used a very

simple method to distinguish red, green, and blue objects [3J. Given an RGB image~

the "super-components" of red, green, and blue are extracted. The super-component

of a colour is compnted by subtracting the values of the other two components at each

pixel. e.g., super-red is red - (bIne + green), super-green is green - (bIne + red). Once

the super-cOlnponents of each pixel have been caiculated, the detection of a colour can

be donc by simply thresholding the corresponding super-component. For instance, to
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FIGURE 4.1. (a)Segmentation of a 1-0 histogram. (b)Segmentation of a 2-D histogram
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FIGURE 4.2. Segmentation using vector quantization

•

cxtract red abjects from a scene: the super-red value for each pixel is calculated. If

a pixers super-red value is greater than a threshold value tr : i.e. T - (g + b) > t r .

then the pixel is considered red. This method is simpler than the multi-diInensional

thresholding method because only one threshold value needs to be defined: compared

to the six threshold values needed for 3-D thresholding (a lower threshold tL and a

higher threshold tH for each of the R: G: and B axis). HoweveL the super-component

approach has a serious drawback: only the three primary colours (red: green and

blue) can be extracted. A super-yellow component: for example: cannot he extracted

unless a colour space transformation is done in advance.

43



•

(a)

4.1 FOCUS OF ATTENTION

(b)

•

FrGURE 4.3. (a) Geon placed against a black background. (b) Thrcsholded
image of (a)

In our research, a simple 3-D thresholding method \Vas used to perform colour

segmentation. A geon is placed against a black background. as shown in Figure 4.3(a)

and its image is captured. The image is then segmented into foreground (the geon)

and background using the super-red method mentioned above (see Figure 4.3(b)).

The threshold tr is found by trial-and-error. In this case~ segmentation \Vas done

using the threshold T ~ b+ 9 + 20, where r~ g, b E [0, 255J. Although this threshold is

snccessful in segmenting the image in Figure 4.3(a), it is not restrictive enough and

thus may not work for other backgrounds that are more rich in colour, i.e .. it may

rnistake many other coloured objects in the background as part of the foreground. To

further refine the thresholded regjon, a calour histogram of the geon is plotted (see

Figure 4A(a)). The cluster of points in the colour histogram represents the colour

of each pixel in the image shown in Figure 4.3(a). By observing the 2-D projections

of the colour histogram (Figure 4.4(b)-(d)), thresholds can be selected such that the

thresholded region contains most of the points. In this case, the thresholds are:
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•
(4.10) b < 0.467r - 7

(4.11 ) b < 75

(4.12) r > 50

(4.13) b < 1.3339 + 10

(4.14) b > 1.3339 - 86.7

(4.15) 9 < 115

(4.16) 9 < O.639r - 12.78

(4.1 ï) 9 > O.381r - 45.ï

Coloured objects are subject to slight variations in colour under different light­

ing conditions [25, 26]. Figure 4.5(a) shows the colour histogram of the same scene

taken simultaneously under both fluorescent light and sunlight. The calour varia­

tion is evident when one compares the 2-D projections of the histogram shown in

Figure 4.5(b)-(d) with those in Figure 4.4(b)-(d). Ta take into account this colour

shifL the thresholded region must be enlarged ta include most of the points under

bath lighting conditions. (The case in which only sunlight is present is not cansidcred

sincc we assume that we have control over the illumination). In order ta accomodate

bot h scenarios! the threshold region must be made larger sa that most of the points

in the histogram shown in Figure 4.4 and the one in Figure 4.5 are included. The

new thrcsholds are shawn below:
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FIGURE 4.4. (a)The 3-D colour histogram of the geon. (b)Projection of the
3-D histogram on the blue-green plane. (c)Projection of the 3-D histogram
on the red-green plane. (d)Projection of the 3-D histogram on the red-blue
plane.

(..1.18) b < O.75r - 5

(-4.19) b < 80

(-4.20) r > 50

(4.21) b < 1.333g + 10

(-4.22) b > 0.6ïg - 40

(-4.23) 9 < 100• (-4.24) b < û.44r - 50.6 46

(4.25) 9 > 30

(4.26) 9 < 0.58r + 25.2
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FIGURE 4.5. (a)The 3-D colour histogram of the geon under sunlight and
fluorescent light. (b)Projection of the 3-D histogram on the blue-green plane.
(c)Projection of the 3-D histogram on the red-green plane. (d)Projection of
the 3-D histogram on the red-blue plane.

Even the best colour segmentation algorithms sometimes fail to separatc target

objects from their background. The most cornmon causes of failure are variations

in lighting conditions. specular reftections~ and shadows. :Vlany colour constancy

algorithms haye been proposed [25, 26, 32, 58}, but the problern of colour constancy

rcmains largely unsolved. :\ilost schemes proposed in the field of colour segmentation

assume target objects rich in colour information~which is not the case in this research.

Segmentation in a different colour space may improve perforrnance~ but we chose

not to do any colour space transformation in arder to limit the computational time.
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Clustering and region growing methods can also be employed to achieve more accurate

eolour segmentation [15, 42, 53, 60]. Those methods were Dot considered, again due

to the issue of speed.

2. Locating the Geons

The previous section described how a geon is extracted from a cluttered scene~

which is essentially how the focus of attention problem is solved. This section ad­

dresses the issue of how the location of the geon~ in particular its bearing and distance

with respect to the robot. can be deduced from the information obtained from the

last section.

2.1. Data Preprocessing. The binary image obtained after the colour seg­

mentation is likely to contain noise. The noise may be intrinsic to the scene~ due to

randonl variations in the RGB values of each pi.~el (see Figure 4.6). This kind of noise

is usually only a few pixels in size. To alleviate the effect of this noise~ a morpho­

lagical erosion [52} operation is performed on the image. In a Inorphological erosion

operation~ any foreground pixel that has one or more background pixel conneeted to

it is rejected and labelled as a background pixel. As a resulL any blobs that are only

a fcw pixels in size~ or any lines less than 3 pixels wide will be filtered out.

:\nother scenario is when some other object in the background has the same

colour as the geon br coincidence (Figure 4.7). 810b analysis is used to solve this

problem. A blob is a group of pixels that are connected. \Vhen nlore than one blob

is present in the image~ the largest blob is taken as the geon and aIl other blobs are

discarded. \Ve assume that aIl background objects \Vith the same colour as the geon

arc smaller than the geon (or at least appear smaller in the image).

The measures mentioned above may still fail ta separate the geon from noise or

other background objects with similar colour. Two scenarios may arise: an object

with the same colour as the geon may appear to he overlapping the geon from the

camera ~s point of view; thus the geon and the abject will he considered as one single

blob. Another case is when there is an object of the same colour as the geon and the
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FIGURE 4.6. The presence of random noise in the thresholded image

(a) (b)

•

FIGURE 4.7. (a) Geon placed near a background object with similar colour.
(b) Binarized image of (a).

abject appears larger than the geon. In this case the abject will be cansidered as the

geao, while the real geon will be discarded as background. There appears to be 00

casy way araund these two problems. \Ve chose to ignore these special cases because
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the chance of them occuring under the circumstances of our experiment was quite

slim.

2.2. Visnal Search. As will be addressed in the next section! the robot

navigation process will presumably bring the robot within a distance of about 1 meter

from the geon! and the vision system will also be roughly facing the geon. Once this

point has been attained! two tasks remain for the active vision module: to bring the

geon within the camera's field of view! and to deduce the location of the geon.

:\lthough we can assume that the vision system will be pointing towards the

direction of the geon, it may still lie outside the camera's field of view! especially

since a narrow angle lens is used for our camera in order to minimize spherical lens

distortion. Sorne sort of camera movement is therefore needed to ensure detection

of the geon. A simple search is perfornled by moving the camera with the Pan-Tilt

Cnit (PTU) to cover a large area in front of the vision system. After every PTU

mO\'cment the colour camera captures an image and perforrns colour segmentation.

Once the segmented image shows a blob large enough to be considered a geon, the

PTC movement stops. At this point, the geon may be only partially inside the

camera's field of view, as shown in Figure 4.8(a). If this is the case! further camera

rnO\'ements will be required. For example, in the case shawn in Figure 4.8(a), where

the blob occupies the rightmost columns in the image, the camera must pan clockwise

in order to bring the entire geon within field of view. Likewise, if the blob lies on the

topmost edge of the image! the camera must tilt up, and vice versa. The question is

by how much the camera should pan or tilt.

Referring again to Figure 4.8(aL the horizontal distance d (in pixels) between the

leftmost edge of the image and the leftmost pixel of the blob can he used to determine

the dcsired camera pan angle to bring the geon within view. If we can assume that

sphcrical lens distortion is negligible (which! as mentioned earlier, is a reasonable

assumption in our case), then Bd, the angle subtended by cl (See Figure 4.8(a)) can

he determined by the following equation:
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(b)

FIGURE 4.8. (a)Geon partially within camera's field of view. (b)Image of
the same geon after one iteration of adjustment.

(.1.27)

•

wherc (}d is the angle subtended by d~ (}Iav is the angle subtended by the camera~s

field of view~ and h is the total number of columns of pixels in the image.

Once ()d is obtained~ we know that the camera can be panned clockwise by any

angle smaller than Bd in arder ta bring a larger portion, if not the entirety of the

geon into view. \Ve chose ta pan the camera by (0.75 x Bd)O each time. Figure 4.8(b)

shows the image of the geon after the camera adjustment. If the geon is still partially

out of view~ which appears to be the case here, the new (}d will be calculated and the

above-mentioned procedure will be reiterated. If the object remains partially out of

de\\" after several iterations~ or if the abject occupies both the leftmost and rightmost

cdges of the image, then the object is tao large to fit into the camera~s field of view~

and the robot will be required to move backwards a little ta reattempt the visual

search.
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The case in which the blob is lying on the top or bottom edge of the image is

handled in very much the same way and therefore will not be elaborated here.

v
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FIGURE 4.9. Distance between robot and geon

2.3. Determining Distance. With the entire geon within view, the hori-

zontal distance between the robot and the geon can be determined quite easHy. As

illustrated in Figure 4.9, the bottommost point of the blob usually corresponds to

the point on the geon closest to the base of the robot, and that point is usually in

contact with the floor. That point: designated as point x. will be used as a reference

point. The horizontal distance d between point x and the base of the robot is:

(4.28) 7r ') Bloud = hcam x tan( (2" - q> - -2- + B)

•

where hcarn is the vertical height of the colour camera \Vith respect ta the ftoor: fjJ is

the tilt angle of the PTU, Blou is the angle subtended by the camera's vertical field of

\"iew, and (} is the angular difference between the bottom of the image and point x .

.-\s pointed out before: () can he calculated using the equation (refer ta Figure 4.9(a)

for variable definitions):

52



•
(4.29)

k() = - X Olav
v

4.2 LOCATING THE GEONS

The PTU~s tilt angle </J can be easily obtained by calling a PTU library function.

Although simple and robust, this method of distance estimation can only offer

limited accuracy. Experiments show that it gives an error of about ±5% at a distance

of lOOcm. Several sources may contribute to this error: fi rstly, the tilt angle of the

PTe, given by a PTU software library function~ is of limited precision: secondly. the

calculation of f) in equation 4.29 ignores the effect of sphericallens distortion, albeit a

smaIl one: thirdly, the binarized image that shows the geon as a blob, like the one in

Figure 4.1Ü(a), may not portray the geon accurately. Specular reflections and shad­

owing often render the geon partially undetected, as illustrated in Figure 4.10(b).

:\evertheless. this method was adopted because the recognition process does not re­

quire a high degree of accuracy in the measurement of the distance. The distance is

used to ensure that the laser rangefinder is within its operating range (the rangefinder

was calibrated up to a range of 2 meters) ~ and is also used to determine the placement

of the laser scans, which will be discussed next.

{a} {b}

•
FIGURE 4.10. (a)Geon under the influence of specular reflections. (b) Bi­
narized image of (a) .
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2.4. Positioning of Laser Stripes. The recognition algorithm proposed in

this thesis relies on strategie placement of laser stripes on the geons. The 3 horizontal

laser stripes are placed so that the geon is divided vertically into four equal portions~

and the 3 vertical stripes are placed such that the geon is divided equally into four

horizontal portions. This is illustrated in Figure 4.11.

FIGURE 4.11. Desired locations of laser stripes on the geon.

The difficulty stems from the fact that the laser projectors are not aligned with

the optical axis of the camera. Therefore sorne geometric calculations are required to

determine by how much the PTU should pan or tilt ta accomplish proper laser stripe

placement.

The first step is to establish a "hounding box~~ around the geon in the binarized

image (see Figure 4.12(a)). The horizontal laser stripes hl, h2 , and h 3 should divide

.Y into four eqllal parts. Figure 4.12(b) shows the side view of the system. If ()y is the

angle subtended by y, and ()hl' (Jh2l ()h3 is the angular distance between point p and

hl, h 2 , and h3~ respectively, then:
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(4.31)

(4.32)

(-1.33)

(hl = O.758y

4.2 LOCATING THE GEONS

where BUfol' is the angle subtended by the camera's vertical field of view.

(a)

p

(b)

•
FIGURE 4.12. (a)Desired locations of the horizontal laser scans. (b)Side
vicw of the vision system and the geon.

The next step is to calculate Dol/> (see Figure 4.13), which is the angular difference

between point p (the bottom of the geon) and the current projection of the horizontal
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laser. Using simple trigonometry, {31 and {32 can he determined by equations 4.34

and 4.35:

(4.34)

(4.35)

j3 (
hPTU + hlassin(j»

l = arctan
d - hlascos(jJ

(3 'if en . ) .
. 2 = - - - - q> - Ph = q> + Ph

2 2

Subsequently, ~d> can be determined by the fol1owing equation:

(4.36)

The desired tilt angles for hI, h 2 , and h 3 are simply !1f/;J + 0hl, ~d> + Oh2, and

~o + Oh3, respectively.

h laser.

d

•
FIGURE 4.13. Illustration of how the proper placement of horizontal laser
stripes can be inferred.

The placement of the vertical laser stripes also relies on geometric calculations.

Figure 4.14(a) shows the top view of the vertical rangefinder's layout. The angle
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g

•

(a) (b)

d

FIGURE 4.14. Definitions of geometric variables for the vertical laser scans.

spanned by the geon relative to the camera is (): which can be ca1culated using the

equation below:

(-1.37)
a+b

B = -d- x Blou
x

•

whcre dx is the width of the image (in pixelsL and Blou is the angle subtended by

the camera's horizontal field of view. d, the distance between the geon and the

camera, can be derived using the method described in Section 2.3. fj) is the angular

difference between the laser projector's current direction and the leftmost point of

the geon. ~c:;) is the angle spanned by the geon relative to the vertical laser projector.

The following equations are used to calculate fi> and .:J.(jJ (Refer to Figure -I.14(b) for

variable definitions):

(-1.38)
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(4.39)

(4.40)

(4.-11)

(4.-12)

(4.-13)

(4.-1-1)

9 = dtan(pv)

f =g+c

4> = arctan(~) - Pt:

d
1j; = arctan(-d )

v

,7r .
~(i) = - - Pu - o.' -li:. 2

4.2 LOCATING THE GEONS

The desired pan-angles are simply:

•

(4.4.5)

(-1.46)

(-lA7)

9vl = 9 + O.25~<p

6 v 2 = 4> + O.5~ljJ

ifJv3 = <P + O.75~<p
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Ta summarize, this section has presented the method for detennining the three

tilt angles Ohl, Oh2' Oh3' and the pan angles 4>vl, 4>v2, cPv3' which will place the six laser

stripes onto the desired locations of the geon.

3. Robot Navigation

The ability ta navigate in an unknown environment is a fundamental requirement

for a mobile robot. \Vithout a priori knowledge of the environment, the robot must

be able to perceive its surroundings using its sensors, and execute actions that are

appropriate for that environment and the goals of the robotic system. lVlobile robots

often need to obtain information from a combination of several sensor systems. For

example, SPOTT [67) combines information from sonar, laser rangefinders, infrared

sensors, and tactile (bumper) sensors to perform navigation. The rationale behind us­

ing multiple sensor types is that each type of sensor has its strengths and weaknesses,

and the strength of one sensor type can remedy the weakness of another.

.-\utonomous robot navigation is a very extensive field in its OW11 right. Since

this research is not directly related to robot navigation, a detailed analysis of this

topie will not be presented in this thesis. Instead, wc will give a description of the

na\'igation algorithm used in the experiments.

The role of robot navigation in this research is to bring the robot ta the vicinity

of a geon. if one exists in the surroundings. Once this is accomplished, the vision

system will take over. First, it will perform a visual search of the geon. Then. upon

dctection of the geon, it will attempt to infer the geon 's identity based on range data.

The navigation system 1 employs the ring of sonar sensors on the robot (sec Fig­

ure :3.10), and a colour camera mounted on the robot such that it points towards the

Aoor at an oblique angle (this is a different camera from the one on our vision system).

The camera is equipped with a \Vide angle lens to give it a broad field of vie\\". The

J The navigation system used in this research was implemented by François Bélair, Deep .Jugessur,
and Robert Sim of the l'.-Iobilc Robotics Laboratory at the Centre for Intelligent Machines, ~IcGill

Cnivcrsity.
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robot perceives its environment through colour images, and range information from

the sonar. Three assurnptions are made in this navigation scheme:

(i) The colour of the floor is uniform and is kno\vn a priori.

(ii) The colour of the target (geon) is known a priori.

(iii) Any object whose colour is not the same as the floor's colour is an obstacle.

(Note: A target is also considered as and obstacle.)

Once the colour camera detects a colour different from that of the floor, it wiU

be registered as an obstacle, and its location determined through a geometric trans­

formation. Note that in this case, any target is also an obstacle, since the target is

a geon. and collision between the robot and the geon is undesirable. Sonar is also

used for obstacle detection. The advantage of using sonar is that it can acquire range

information from aIl directions quickly and inexpensively. The drawback is that sonar

suffers from certain deficiencies such as lack of accuracy and multiple reflections [22J.

To minimize their effect, multiple sonar readings may be taken at each step.

The next step is path planning. The goal of path planning is to find the most

efficient route that brings the robot from its current position ta the target position

without colliding with obstacles. A safe polygon approach ta path planning was

aclopted. Figure 4.15(a) illustrates the concept of safe polygon. For each obstacle in

the robot's vicinity, a line, perpendicular to the shortest distance between the robot

and the obstacle, is drawn. The distance between the obstacle and the line. d. is

set ta a value greater than the robot 's radius. The line divides the plane into two

regions: an admissible region, and an inadmissible region. The intersection of aU the

admissible regions corresponding ta each obstacle produces a polygon (in this case a

pentagon), as shown in Figure 4.15(b). This polygon is referred to as the safe polygon

since the robot can move safely within it. In the case where no obstacle is detected

near the robot (Figure 4.16(a)), a default bounding box of pre-defined size is applied

as the safe polygon. If there exist sorne obstacles, but they do not form a safe polygon
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(see Figure 4.16(b)), then the safe polygon is defined as the intersection between the

default bounding box and the admissible regions corresponding to the obstacles.

/.... ····0·.·
:robo·r·.

__ safe po11'{:on"". '

\
Obsucle."

_....

robot

(a) (b)

FIGURE 4.15. Illustration of the safe polygon concept .

.0
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robot

\
\
\kfauh bounding bQ~

/
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•otxwdc:

•

./

(a)

FIGURE 4.16. Default bounding box.

•
To navigate towards the target~ the robot moves towards the vertex on the safe

polygon that is closest to the target~ as shown in Figure 4.17. The saCe polygon will
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change shape every time the robot makes a move~ so the shape of the polygon must

be constantly undated. By moving to the vertex closest ta the target every time, the

robot \viII eventually be brought close enough to the target.

.---- @ target

robot

'" safe polygon

vertice c10sest to
the target

•

FIGURE 4.17. Choice of vertice.

In Sllmmary~ we employ a simple and robust navigation scheme to bring the

robot close ta the geon for its recognition. The robot wanders in the environment

until the geon is detected. Cpon detection, the geon is registered as the target and

path planning is executed. A colour camera and sonar are used to percei"c the

en\·ironmcnt, and a novel safe polygon approach is used for path planning. The

goal of this navigation process is to bring the robot within a certain distance (approx.

90cm) from the geon. Once that goal is attained, our active vision process can proceed

to bring the geon wit.hin the rangefinder's field of view using colour segmentation and

PTe movements, as described earHer in this chapter.
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4. Summary

This chapter has presented the active vision module~ which is responsible for

locating geons in an indoor environment, navigating towards a geon~ and strategÏcally

placing laser stripes onto the geon. Under the assumption that the geons are painted

in a specifie colour, a colour histogram segmentation method is used to extract them

from the scene. A novel safe polygon path planning technique is used to bring the

robot to the vicinity of the geon. Proper laser stripe placement i5 accomplished by

geometric reasoning.

The next task which is to identify the geon based on the acquired range data,

will be addressed in the following chapter.
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CHAPTER 5

The Geon Recognition Module

This chapter presents a detailed description of the geon recognition module of our

\"Ïsion system. Our recognition module is composed of several stages. as shown in

Figure 5.1. The first section of this chapter addresses the first two stages~ namely

the data acquisition stage and the data preprocessing stage. Section 2 introduces

the concept of evidence-based recognition, The next three sections outline the three

types of evidence used in our recognition scheme~ and ho\\" they are inferred. Finally.

Section 6 describes the decision-making process based on available evidence.

1. Data Acquisition and Preprocessing

Section 4.2 explained ho\\" the desired PT{;~s pan and tilt angles for proper laser

stripe placement can be calculated based on camera geometry. Therefore, to obtain

the range data~ the rangefinder simply needs to pan or tilt the PTe to the precal­

clllated angles, and grab a frame each time. Range data can then be obtained from

each frame using the method described in Chapter 3.

Two issues must be addressed before the range data can he used for recognition.

First. smoothing must be performed to alleviate noise. There are many methods

for smoothing one dimensional data~ and Gaussian smoothing is probably the most

widely used. One drawback to the Gaussian smoothing kernel is that in the case

of spurious noise~ where one or two points of the one-dimensional profile ha\'e values
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FIGURE 5.1. Stages of the recognition process

•

significantly different from their neighbouring points~ it exhibits the undesirable effect

of spreading the errar ta its neighbouring points~ as illustrated in Figure 5.2(a)-(b) .

.\"oise of this nature is common in range data~ since laser rangefinders are often prone

ta the effect of specular reflections. Therefore, the Gaussian kernel is not used for

smoothing range data in our experiments. Instead, the median smoothing kernel is

used since it does not have the undesirable effect of spreading error ta neighbouring

points (see Figure 5.2(c)) .
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FIGURE 5.2. (a)Points along a digitized Line. (b)The digitized Line in (a)
after Gaussian filtering. (c)The digitized Hne in (a) aCter median filtering.

The other issue is the removal of background. The rangefinder sees parts of the

laser stripe reflected off the floor (or the table) ~ as weIl as those reflected off the gean,

making it necessary to distinguish one from the other.

Our background segmentation method is based on two sets of information. The

first set of information cornes from the binarized image of the geon~ which is obtained

by thresholding the colour histogram of the image. A Vertical Region Of Interest

(VRaI) can be establishcd in the binarized image~ as shawn in Figure 5.3. :\ margin

of several pixels is adopted on each sicle to take into accaunt the slight discrepency

bctwecn the image obtained by the colour camera and the image acquired by the

BI\V camera~ and the effect of the morphological erosion performed on the binarized

image. AIl points lying outside the VROI are quickly rejected as background. ~ote

that we did not attempt to establish a Horizontal Region Of Interest (HRüI) ~ because
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the colour camera is mounted above the black and white camera. Thus the colour

image's HROr does not correspond to that of the black and white image.

Vc:rnt"al Rq: lUII of
Int=(VROI)

~__ Binm:zed
nnagc III
gcon

Iùn~c pmfÎlc---------""-v-I
rCJectetl ...,
backgrnund

reJCcted ...,
b;lckpnund

•

FIGURE 5.3. Background removal based on VROI

The second set of information is derived from the geometry of the robot and

the Yision system. Referring ta Figure 5.4~ the distance bctween the image plane

and the laser projection on the object, d, can be used to infer the \"ertical distance

between the laser projection and the image plane, h'aser. (d is obtained directly from

the rangefinder). If the laser is projected onto the fioor, then hlaser will be roughly

equal to the height between the camera and the fioar. h cam . The values of hlaser

corresponding ta every point on the range profile are calculated, and if h'ascr ~ h cam ,

then the point is rejected a., background. hlaser and h cam are calculated through

equation 5.1 and equation 5.2, respectively:
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hlaser = d x COS (i - rPPTU - 0)

hcam = h PTU + hCamJ.o-PTUCos(4)PTu)

•

(Refer to Figure 5.4 for definition of variables.)

The value of (J in equation 5.1 is calculated based on the location of the laser

stripe on the image, and the known value of the angle subtended by the camera~s

field of view~ Olav. The cletails are discussed in Subsection 4.2.2.
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FrGURE 5.4. Background removal based on the vision system~s geometry

In the experiments. a lcm margin is given to hlascr to account for inaccuracies

In range data and angle measurements. Thus, a point is rejected as background

only if hlascr 2:: h cam - 1. This margin may cause sorne ··good" points to be filtered

ou t. \Ve assume that this discrepancy will not seriously affect the performance of the

recognition process.
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Another method for background range data removal was also considered. Given

a range profile~ like the one shown in Figure 5.3~ the first and last corners of the

profile correspond to the background limits. Therefore, once those two corners are

detected. the points ta the left of the first corner and those to the right of the last

corner can be considered as background. This method was rejected because we could

not assume that the quality of laser refiected off the background will be as good as

that reftected off the painted geons. In the experiments. parts of the laser stripe often

hit clark patches on the fioor and gaps between fioor tiles~ which resulted in noisy

range data poody suited for corner detection.

After these data preprocessing steps, the resulting range data are ready to be

used for recognition. The following sections describe our recognition algorithm.

2. Evidence-based Recognition

As mentioned in Chapter 2. the classical approach of model-based matehing is

not suitable for our task due to the qualitative nature of geons. Instead~ an e\"idenee­

based recognition technique \Vas ehosen.

Evidence-based reeognition(33] identifies 3-D objects by looking for notable fea­

tures of objects. Traditional object recognition techniques use quantitative infor­

mation derived from the image to perform recognition by mapping aIl information

into modcl representations. Such an approach involves graph-matching which has

cxponential time-complexity. Rather than using aIl such information, the llse of only

"rcmarkable~~ information, or evidence, which strongly eues certain abjects. may dras­

tically speed up the process. For instance~ .Iain and Hoffman[33] used three types

of cvidence conditions based on morphological, path, and boundary information ta

gcneratc an evidence rulebase to identify 31 different objects from range data.

Since our recognition scheme is based on sparse range data of objects, it is impor­

tant that we can extract enough evidence - from the little data available - to identify
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the abjects with a certain level of accuracy. \Ve used three types of evidence fea­

tures ta identify the geons: evidence of tapering, evidence of bending, and presence

of corners, curve segments, and straight Hne segments in the range profiles.

The next three sections will describe how the three evidence features mentioned

above are determined based on the range profile.

3. Curvature, Line, and Corner Detection

Considerable research effort has been placed upon curvature estimation and line

fitting [41, 49, 63]. Since digitized curves often occur as contours of objects and

regions, estimation of such curves can facilitate feature extraction for abject repre­

sentation and recognition [63]. A reHable curvature estimation algorithm is crucial

ta our task since the recognition of the geons is dependent on information such as the

presence or absence of curves, straight Hnes, and corners.

.-\. range profile of any of our geons can contain a combination of curve segments,

line segments, and straight Hnes (see Figure 5.5). Our curvature estimation method

must he able ta identify those components within a digitized curve. The task is made

simpler by the fact that no quantitative information (amount of cunrature, angular

size of corner, lengtb, etc.) is required. On the other hand, the task is made more

difficult by the fact that our digitized curves are derived from range data which are

typically quite noisy, and most curvature estimation algorithms tend ta be sensitive

ta noise.

Three different curvature estimation methods \Vere implemented for our exper­

iments and their performance compared: Ramer's method[49L \VaIrs method[63L

and O'Gorman's method[41]. The first two methods 1 • although quitc fast and ro­

bust. \Vere evcntually dropped. The main reason is that these methods model curves

as picccwise Iinear segments, as shown in Figure 5.6. Therefore, there is no evidcnce

ta show if the profile is made up of just a curve, as shown in Figure 5.6(a), or a cun·c

and a straight line, as in Figure 5.6(b). O'Gorman 's mcthod, on the other hand,

1Ramer's method and \Vall's method were implemented by Robert Sim, currently a graduate student
in the Centre for Intelligent ~-Iachines, McGill University-
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(a)

/
cu[Ve
sqmeot

(h)

\
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.'

\
stnûgtJl
fine segment

FIGURE 5.5. (a)A laser scan on a tapered cylinder. (b)The range profile
corresponding to the scan in (a).

explicitly differentiates and locates curve segments~ line segInents~ and corners on a

digitized curve. as shawn in Figure 5.6(c).

3.1. Q'Gorman's Curvilinear Feature Detection Method. The basic

•

principle of O:Connan:s curvilinear feature detection method is to first estimate the

local curvature along the digitized cun'e: and then analyse the plot of local curvatures

to determine the presence and location of curves: lines~ and corners. For this method.

the Difference of Slope (DOS) on every point along the curve is calculated. Figure .J.7

illustrates how this DOS is obtained. The point of interesL x: sits in the middle of a

cun'c segment: M~ which separates two curve segments. bath of length W. (Lengths

M and Ware measured in number of pixels). Two straight lines are then fitted onto

the t\Va curve segments of length W using the Linear Regression method[30}. The

angular diffcrence between the two straight lines: B: is then computed. The \'alue of ()

correspanding ta each point along the curve is calculated: and a O-plot is generated,

In essence: the O-plot describes the local curvature along the digitized curve: segments

of the O-plot where () ~ 0 correspond the straight line segments: while sharp: narrow

peaks correspond to corners. Low, wide peaks depict curve segments.
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FIGURE 5.6. (a)Curve fitting using Ramer~s method. (b)Curve fitting of a
curve segment and a Hne segment using Ramer's method. (c)Curve fitting
of a curve segment and a line segment using O'Gorman's method.

For this algorithm to function weIl, the values of parameters W and M must he

detcrmined with care. The arc length of the curvc segment, L (where L = 2W + M)

dctcrmincs the feature resolution of theomethod. The shorter Lis. the less interference

bet,,"een neighbouring features. On the other hand, it is desirable to have a large value

for W. since a long W has the effect of smoothing out random noise in the line-fitting

process. The arc length of the gap, M~ should be positive and equal to or greater

than the ma..ximum arc length of a corner(40]. The values of W and M chosen in

these cxperinlents \Vere 10 and 3~ respectively.
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FIGURE 5.7. Illustration of the DOS method. (Adopted from (41J)

The next step involves feature determination based on the O-pLot generated. The

O-plot of a curve segment resembles a \Vide, low hill, while a corner resembles a narrow,

sharp pcak. Theoretically, the O-plot of a straight Line should be zero at aIl points.

Howc\·er, random noise on the digitized Line will result in small ·:jitters" on its O-pLot.

Therefore, a non-zero threshold, OSmar' must be defined such that regions on the O-plot

with \"alues within ±OSmar are considered straight Line segments, and the zero-range

is defined as:

zeT"O-Tange: -()Smaz :::; 0 :::; OSmar

•

Crossings into and out of the zero-range is designated as zero-range cTossings. 8=:

zeTo-7·ange cTossing: 0(8=) = ±OSmar

A corner or a curve will result in a peak on the O-plot \Vith 0 exceeding 0Smaz.

The peak consists of two zero-crossings: 8=), at the beginning of the peak, crosses

out of the zero-range, and 8;;:)+1' at the end of the peak which crosses back into the

zero-range. Figure 5.8 illustrates a typical O-plot corresponding ta a corner, The

width of the peak is the length between the two zero-range crossings, 8;;:;;::
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Since corners have narrow peaks and curves have wide peaks~ the width of the

peak. 8==~ can be used ta make the distinction between the two. The value of a

parameter. Scurve' needs to be defined such that peaks of width greater than Scurve

are considered curves. Ideally~ Scurve is sufficient to differentiate between cun-es and

corners. However, real range data tend to be noisy and rnay render this method

unreliable. The peak height is therefore used in conjunction with the peak width to

make the decision. Another parameter, 0corner, is selected such that if the maximum

height of the peak~ Opeak is greater than OCOTner~ and the peak width is smaller than

Scurue, then it is a corner. A peak \Vith s=: > Scurve and ()peak < Ocarncr is considered

to be a curve.

J.!zero-range

zero-range

crossing SZj+lcrossing SZj

e
1 /9peak

ecomcr11------------------------~~~~-----------------------
<: :>

1

eS J---------------------- __~~ _
m~ ,

-asmax j- ------ --- ---- ------J----
1 zero-range

FIGURE 5.8. Typical (J - plot corresponding to a corner

•

Two special cases may arise: Firstly~ a peak Inay have 8:::: < Scurve and ()peak <

()corncr' Secondly~ a peak rnay also have S:::: > Scurve and Bpcak > Bcarner. The tirst

case is considered an anomaly due ta noise and therefore regarded as a straight line

segment. The latter is considered as a corner immediately next ta a curve, as shown

in Figure 5.9.
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•

FIGURE 5.9. (a)The range profile of a corner immediatcly next to a curvc.
(b)The O-plot corresponding to the profile in (a).

In summary. Q'Gorman's curvature detection algorithm is an appropriate one

for the purpose of our experiments hecause of its ability ta explicitly distinguish

between curve segments, corners, and Hne segments. It is also relatively insensiti\'e

ta moderate levels of noise in range data.

4. Evidence of Bending

The seven geons considered in this research can he classified into three categories:

bent abjects ( bent cylinders and bent cuboids), tapered objects (tapered cylinders

and tapered cuboidsL and the rest which are neither bent nor tapered (cuboids.

cylinders. and ellipsoids). If any evidence of bending can be found in the data, then

the search space can be narrowed down from the seven possible geans ta the twa bent

gcons.

One indication of bending is the presence of a range profile consisting of twa

separate segments. as illustrated in Figure 5.10. Since this is a characteristic unique

to bent objects. it canstitutes an evidence of bending. In other words, if any one or

more of the six range profiles on the geon consists of two separate segments, then the

object is either a bent cuboid or a bent cylinder.
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(a)

5.4 EVIDENCE OF BEI\'DING

(b)

FIGURE 5.10. (a)A bent cuboid (b)A range profile on the bent cuboid in
(a) which consists of 2 segments.

Another sign of bending is the presence of concavities in the range profile. Out

of the seven geons~ only the bent ones have concave surfaces. The projection of

laser stripes on those concave surfaces will result in concave segments in the range

profile. as dernonstrated in Figure 5.11. To detect concave segments on the range

profile, we simply made use of the O-plot generated by O~GormanlS curvature detection

meehanism (refer to Section 2 of this chapter). Any concave segments on the range

profile will result in negative () values on the ()-plot l as shown in Figure 5.II(e).

(a)

ConClve Segment

(b)

~ :JU~ 1 1

t" 1

1~~.~. _._..... ~--_ .l
(c)

•

FIGURE 5.11. (a)A bent cylinder (b)A range profile on the bent cuboid in
(a) which has a concave segment. (c) (J-p[ot of the profile in (b).

In the event that none of the range profiles show evidence of multi-segments or

concavities. it is still possible to identify bent objects by obsen'ing the coordinates
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of the scans' endpoints. Figure 5.12 shows a bent cuboid and its six laser scans,

none of which consists of two segments or is projected on a concave surface. The

use of the range profile endpoints is similar to the use of edge information, since aIl

endpoints invariably lie on one of the geon's edges. If complete edge information

on the geon were available, evidence of bending could be easily deduced from the

presence of the geon's concave edge indicated in Figure 5.12(a). However, in the

absence of explicit edge information, the endpoints of each range profile must be used

to infer the presence of such concave edges.

y

Ca)

"...t!-------- l'Il

n......----n
1

i'J.~:----"1

-1

Cb)

•

FIGURE 5.12. (a)A bent cuboid (b)Tbe range profiles on the bent cuboid
in (a) with the left endpoints illustrated.

Figure 5.12(b) shows the horizontal profiles of the bent cuboid, with each of the

left end points denoted Pl, P2, and P3, and their x-coordinates denoted x(pr). x(P2L

and x (p:d . One can determine by observation that the endpoints Pl, P2, and P3 lie on

a concave edge. If a straight line is dra\\--n between Pl and P3, and if the point P2 is

ta the right of the straight line, then the points Pl, P2, and P3 suggest the presence

of a concave edge. For convex and straigbt edges, P2 would fall to the left of the line

and on the line, respectively. To state this mathematically, a concave edge is present

if the following equatiQ!l is satisfied:
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5.4 EVIDENCE OF BENDING

(P) x(pd + X(P3) k
X 2 - 2 > tol

where k tol is a predetermined value of tolerance to account for inaccuracies.

The same reasoning is used on the right endpoints of the horizontal profiles, as

weIl as the top and bottom endpoints of the vertical profiles to detect the presence

of concave edges.

Therc remain sorne ·"accidentai views:1 from which the six range profiles of the

geons will Ilot provide any evidence of bending. Figure 5.13 shows one such case.

These accidentaI views account for rnost of the erroneous results.

(a) Cb)

•

FIGURE 5.13. (a)A bent cuboid (b)The range profiles on the bent cuboid
in (aL showing no cvidence of bending
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5. Evidence of Tapering

Cnlike the bent geons, tapered geons do not produce range profiles that con­

tain obvious dues such as multiple-segments or concavities. As a result~ evidence of

tapering must be inferred from the endpoints of the range profiles.

.-\ tapered geon's cross-sections are either consistently expanding or contracting.

Thercfore~ range profiles with consistently increasing or decreasing lengths are strong

evidence of tapering. This is illustrated in Figure 5.14. The horizontal lengths of

scans hl~h2.~ and h3 are increasing consistently, which implies the object's expanding

cross-sections. The same logic applies to the vertical scans. In other words, the geon

is considered tapered if any one of the following conditions is satisfied:

(.5.-1)

(.5.5)

(.5.6)

(5.7)

Lhl > L h 2. > L h3

Lhl < L h2 < L h3

•

Of course~ there are many viewpoints from which the range profiles of a tapered

geon satisfy none of the above conditions. Figure 5.15(a) and (b) shows one such view.

To take care of these cases, our recognition system relies on another clue based on the

range profile endpoints. Figure 5.15(a)-(d) show a tapered cuboid. a cuboid, and their

corresponding horizontal range profiles. Horizontal distances between the endpoints

are used to deterrnine whether or not the geon is tapered. The definitions of lengths

L I - 2 , L2 - 3, L;_2' L;_3 are indicated in Figure 5.15(d). Observing the profiles of the

cuboid. one can see that the difference between L 1-2 and L 2 - 3 is approximately the

same as the difference between L;_2 and L~_3' This is true for aIl cuboids, cylinders

and ellipsoids in any stable position, but not true for the tapered geons. As can be

seen in Figure 5.15(b), the profiles of the tapered cuboid lack the kind of symmetry
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(a)

•

FIGuRE 5.14. (a)A tapered cylinder (b)The horizontal range profiles on the
tapered cylinder in (aL wjth consistently increasing lengths.

exhibited by the cuboid's profiles. Therefore~ the tapered geons satisfy the following

condition:

(5.8)

•

where k tol is a predetermined tolerance to account for variations and noise.

:\otc that this condition alone does not guarantee that the geon is tapered, since

bent geons aiso satisfy this condition. The object must conform to this equation AND

show no evidence of bending to be considered tapered.

:\gain, there exist accidentaI views which will lead to erroneous recognition. as

illustrated in Figure 5.16. For example, the range profiles of the tapered cuboid,

shawn in Figure 5.16(bL do not show any evidence of tapering mentioned in this

section .
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\L.----

(a) (b)

(c)

1:;-2

LZ-3

(d)

L I -2

•
FIGURE 5.15. (a)A tapered cuboid. (b)The range profiles on the tapered
cuboid in (a).(e)A cuboid. (d)The range profiles on the cuboid in (c) .
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(a)

5.5 EVIDENCE OF TAPERING

(b)

•

FIGURE 5.16. (a)A tapered cuboid (h)The range profiles on the tapered
cuboid in (aL showing no evidence of tapering

In summary, this section presents two methods of detecting evidence of tapering.

The first one determines whether the geon 's cross-sections are expanding or contract­

ing by checking whether the length of the range profiles is consistently increasing or

decreasing. The second one checks whethp.r the profiles exhibit signs of symmetry. a

property shared by cuboids, cylinders~ and ellipsoids. Both methods use information

deri\"ed only from the profile endpoints, since tapered objects lack unique surface

characteristics (unlike the bent objects, which have concave surfaces). This makes

the recognition of tapered geons somewhat less reliable, as indicated by the experi­

mental results presented in the next chapter. Note that in bath methods the geon

should he centered in the field of view so that aIl endpoints are within the view of

the rangefinder.
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6. The Decision Tree

A vast number of expert systems utilize decision trees to determine \Vhat actions

to execute or to classify objects. The main advantage of using decision trees is that

they are simple and thus easy to understand intuitively, and their simplicity also leads

to higher speed. One class of decision trees, known as binary trees, can only have

two branches for every node. Each node essentially contains a 'YES/~O question,

depending on the answer, one of the two branches is traversed to reach the next

node. :\ binary tree can therefore be easily constructed using a hierarchical structure

of ··IF...THEl'\': rules. This section describes the binary tree we have implemented

for the purpose of identifying a geon based on its six range profiles. The questions in

each node of the tree are answered by the evidence obtained using methods described

in previous sections of this chapter. Our decision tree is shown in Figure 5.17.

The initial step is to look for evidence of bending. This is done first because. as

rnentioned in the last section, evidence of tapering cannot be established unless it is

known that the geon does not show any sign of bending. If evidence of bending is

present. then the remaining possibilities are bent cylinder and bent cuboid. The deci­

sion is based upon information on the curvature characteristics of the range profiles.

This is difficult because both geons have curved surfaces, and thus will have range

profiles with curved segments. However, the proportion of curved surfaces on a bent

cylinder is far largcr than that on a bent cuboid. thus one can deduce that in general.

hent cylinders will result in more curve segments in the range profiles than the bent

cuboids. The decision tree considers the geon a bent cylinder if more than three of

the range profiles contain curve segments, otherwise it is considered a bent cuboid.

The nllmber three was chosen since it is found to minimize the nurnber of erroneous

results based on trial and error.

If no evidence of bending is found, we proceed to check for evidence of tapering.

If the geun is found to be tapered, then the next step is rather straightforward: since

only tapered cylinders have curved surfaces, the geon can be considered a tapered

cylinder as long as more than one of the range profiles contain curve segments. :\.
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FIGURE 5.17. The decision tree

tapcrcd cuboid~ on the other hand~ only has fiat surfaces and therefore its profiles

should not have any curve segments.

\Yithout any evidence of tapering and bending, the geon can either be a cuboid~

a cylinder, or an ellipsoid. The distinction between these three geons must be based

solel.y on the curvature information in range profiles. The cuboid can be easily distin­

guished from the other two since it is the only one with no curved surfaces. Thus its
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range profiles should not have any curve segments. If curve segments are present~ then

we check for the presence of corners. Since an ellipsoid is composed entirely of one

continuous curved surface, its range profiles should not have any corners. Therefore

the geon must be a cylinder if corners are present. In the absence of corners, the geon

is most likely an ellipsoid, but in sorne rare cases it can also be a cylinder. Figure 5.18

shows a view from which a cylinder's range profiles have no corners. Thus. we check

the number of curved range profiles. If aU the six range profiles are curved~ the geon

is certainly an ellipsoid, otherwise it is considered a cylinder.

(a) (b)

•

FIGURE 5.18. (a)A cylinder (b)The range profiles of the cylinder in (a),
showing no presence of corners.

The use of decision trecs for recognition has a few drawbacks. Firstly, for rnany

complex rcal world problems decision trees can become tao large to be understandable

or manageable. \Ve did not have to deal \Vith this problem due ta the small number

of geon classes considered. Secondly, decision trees tend ta be inflexible - if we were

ta add another class of geons ta the seven we already have, the whole tree would

have to be restructured, which may be difficult. Thirdly, a tree demands discrete,

unambigllous answers (unless a "fuzzy tree~' is used). In particular, a binary tree

can only accept YES or NO answers, and therefore cannat take into account any
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uncertainty or quantitative inputs. Nevertheless, the desire for speed and simplicity

prompted us to adopt this approach for our decision-making process.

In this chapter we have described the preprocessing stage which ~·cleans up" the

range data prior to recognition. This involves background removal and median filter­

ing to alleviate noise. The methods of corner/ curve detection and inferring evidence

of tapering and bending were also presented. Finally, the last section explained the

structure of the decision tree for the recognition process.
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CHAPTER 6

ExperilIlents

Three sets of experiments were performed to test different aspects of our active vision

and geon recognition system:

(i) The testing of our geon recognition algorithm using computer-generated su­

perquadrics.

(ii) The testing of our geon recognition system~s performance on real range data.

(iii) The testing of the overall system~ which includes the robot navigation~ active

vision~ and the geon recognition using the visual system mounted on a mobile

robot.

The approach to each set of experiments and their results are discussed in the

first three sections of this chapter.

1. Recognition on Simulated Data

Our geon recognition algorithm was tested using computer simulation. 3-D mod­

cls of geons were generated using the software makesq1. which requires the user to

entcr 18 parameters for a superquadric shape. The software takes the 18 parameters

and generates the 3-D points for the superquadric~ssurfaces. The surface points cor­

responding to the locations of the six laser stripes were extracted as scan data for geon

1\Vrittcn by Kenong Wu[65, 66]

87



•

•

6.1 RECOGNITION ON SIMULATED DATA

recognition. For each geon, four variations were produced in arder ta test the effec­

tiveness of our recognition algorithm in identifying geons with different quantitative

attributes, such as different degree of tapering and bending.

The viewing sphere approach [19, 55, 56, 57] was adopted to test our recogni­

tion algorithm. In this approach, an imaginary sphere centered around the geon is

tcssclIated into smaU viewing cells, and recognition is performed from each viewing

cell on the sphere. Since our research assumes that the vision system is mounted on a

mobile robot. and that the geons to be recognized always lie below the vision system's

height, we do not need to consider the entire surface of the viewing sphere. Instcad,

only the shaded region of the sphere, shown in Figure 6.1(a), will be considered. As

indicated in Figure 6.1 (b), the region spans the range of elevation angle from 30° ta

70°, and the entire azimuth of 360°. The viewing region is tessellated into viewing

cells. each spanning 10° of elevation angle and 10° of azimuth angle, making a total

of 4 x 36 = 144 viewing cells.

Each of the 28 objects (7 geon types \Vith 4 variations of each) can also have

marc than one stable position. Recognition was performed by applying the viewing

sphere to every possible stable position of each object. The results are presented and

discussed in the following subsections.

1.1. Tapered Geons. Each of the two tapered objects (tapcred cylinder and

tapered cuboid) have four variations in shape (see Figure 6.2), ranging from "ery

tapered (object 1) to slightly tapered (object 4). The tapered objects have three

stable positions, as illustrated in Figure 6.3. Recognition was performed through aU

the 144 viewing cells for every stable position for each object. Tables 6.1 and 6.2

show the recognition rate of the tapered cuboids and cylinders, respectively. The

columns of numbers in boldface indicate the percentage of correct recognition, while

other columns of numbers indicate the percentage of incorrect recognition.

Table 6.1 shows that the recognition rate for the tapered cuboids ranges from

75% ta 98% for the first three objects only, which are more pronlÎnently tapered.

For abject 4, whose degree of tapering is very slight, the rate of recognition takes a
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FIGURE 6.1. The viewing sphere.

TABLE 6.1. Rate of recogmtlOn for tapered cuboids (%)

Object Stable Tapered Tapered Bent Bent Cuboid Cylinder Ellipsoid
Position Cuboid Cylinder Cuboid Cylinder

abject 1 1 94 0 0 0 6 0 0
2 98 1 0 0 1 0 0
3 92 6 0 0 3 0 0

abject 2 1 83 0 0 0 17 0' 0
2 93 4 0 0 3 0 0
3 81 14 0 0 ;) 0 0

Object 3 1 75 Il 0 0 8 ;) 0
2 84 4 0 0 Il 1 0
3 92 ;) 0 0 3 0 0

abject -1 1 62 10 0 0 26 2 0
2 62 10 0 0 16 12 0
3 75 0 0 0 25 0 0..

•

significant drop. Due ta the subtlety of its tapering, the recognition system begins ta

mistake the tapered cuboid for a simple cuboid. This raises an interesting question:

\Yhen shauld an abject be considered tapered? That is, how subtle can the tapering

he for the abject to still be considered a tapered abject? This is a rather open-ended

question which is subject to opinion. Psychophysical experiments similar to Brown

ct al. 's ~~pop-up" experiments[14] can be performed to observe how human subjects

89



•

Object 1

Object 3

6.1 RECOGNITION ON SllvIULATED DATA

Object 2

Object4

•

FIGURE 6.2. The four different tapered cuboids tested.

respond ta this question. The human observers can be shawn abjects with different

degrees of tapering~ and asked ta quickly determine whether or not the abject is

tapered.

The results in Table 6.1 also indicate that the tapered cuboid is often mistaken

as a tapered cylinder. This suggests occasional failure of our cornerjcurve detection

algorithm.

The results for the tapered cylinders (Table 6.2) are considerably bettcr. This

is mostly due ta the fact that while our curvature detection algorithm quite often

mistakes straight lines and corners as curves~ the reverse is nat true. Curve segments

with a reasonable degree of cunrature are always correctly identified as curves. This

bias stems from the nature of O~Gorman's curvature detection method[41]. Gnder
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Stable Position 2

•

Stable Position 3

FIGURE 6.3. The stable positions of tapered cuboids.

the effect of random noise, the 8-plot of a straight line will have non-zero (J values,

and thus will be easily mistaken as the plot of a curved segment. The (J-plots for

curved segments, on the other hand, already have non-zero values for (J. and random

noise will merely add sorne perturbation ta the already non-zero (J's, leaving the final

decision unchanged.

1.2. Bent Cuboid. Similar ta the tapered geons, four variations of each

bent geon were tested, ranging from very bent (object 1) to slightly bent (abject

-1). as shown in Figure 6.4. Three stable positions exist for the bent cuboids (see

Figure 6.5). Note that stable position 3 only applies ta the bent cuboids. but not the

bent cylinders.
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Object Stable Tapered Tapered Bent Bent Cuhoid Cylinder Ellipsoid
Position Cuboid Cylinder Cuboid Cylinder

Object 1 1 0 100 0 0 0 0 0
2 1 88 0 0 2 23 6
3 0 100 0 0 0 0 0

Object 2 1 0 100 0 0 0 0 0
2 0 78 0 0 0 4 18
3 0 100 0 0 0 0 0

Object 3 1 0 100 0 0 0 0 0
2 0 90 0 0 0 6 4
3 0 100 0 0 0 0 0

übject 4 1 0 100 0 0 0 Of 0
2 0 90 0 0 0 10 0

J 3 0 100 0 0 0 0 0
TABLE 6.2, Rate of recognition for tapered cylmders (%)

Tables 6.3 and 6.4 show the results for the bent cuboids and the bent cylinders.

respectively. .-\.S expected: the recognition rate declines as bending becomes less

prominent. The bent cuboids are also quite frequently mistaken for bent cylinders:

and \"ice versa. This is a rather difficult problem to tackle: since both geons can

produce range profiles with curve segments, line segments, and corners. As mentioned

in Chapter 5, the decision tree distinguishes the t\Vo geons by the number of range

profiles with cun"e segments. Since a bent cylinder has nl0re curved surfaces than a

bent cuboid, the decision tree identifies the geon as a bent cylinder if more than three

of its six scans contain curve segments. This is not a reliable rule per se: rather. it is

chosen for its statistical likelihood to produce correct results.

1.3. Cuboids, Cylinders, and Ellipsoids. Figures 6.6, 6.8, and 6.10 show

•

the diffcrent variations of cuboids, cylinders, and ellipsoids, respectively. The \'aria­

tions are different degrees of elongation of the geons. Results are tabulated in Tables

6.5. 6.6, and 6.7. Those for the cuboids are relatively poor, while those of the cylin­

clers are nearly perfecto This is due to the same reason diseussed in Section 5.1.1: our

Clin"ature detection algorithm has a tendeney to mistake straight line segments and

corners as curves because of noise, but not vice versa.
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Object 1 Object2

Object3 Object4

FIGURE 6.4. The four different bent cuboids tested.

TABLE 6.3. Rate of recogmtIOn for bent CUbOlds (%)

Object Stable Tapered Tapered Bent Bent Cuboid Cylinder Ellipsoid
Position Cuboid Cylinder Cuboid Cylinder

übject 1 1 0 0 98 2 0 0 0
2 0 16 76 2 0 6 0

1 3 0 1 87 12 0 0 01

übject 2 1 0 0 83 17 0 0 0
2 0 15 75 -1 0 6 0
3 0 0 86 14 0 0 0

übject 3 1 0 0 85 Vi 0 0 0
2 0 21 73 0 0 6 0
3 0 3 86 Il 0 0 0

1 Object -1 1 0 0 83 17 0 0 0
2 15 18 61 0 0 6 0

1 3 4 10 83 3 0 0 0..

•
The results for the first two cllipsoids are perfect~ but for ellipsoids that are

seyerely elongated~ the results become very poor. In most cases they are mistaken as

cylinders. This should not be considcred as a serious flaw of the recognition algorithm,
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Stable POI!iÏtion 1 Stable Pasitioo 2

Stable Pasitioo 3

FIGURE 6.5. The stable positions of bent cuboids.

TABLE 6.4. Rate of recognItIOn for bent cyhnders (%)

Object Stable Tapered Tapered Sent Bent Cuboid Cylinder Ellipsoid
Position Cuboid Cylinder Cuboid Cylinder

Object 1 1 0 0 2ï 13 0 0 0
2 0 0 0 83 a 0 17

Object 2 1 0 0 40 60 0 0 0
2 NIA NIA NIA NIA NIA ,,:\/A NIA

1 übject 3 1 0 0 43 51 0 0 0
2 NIA NIA NIA NIA NIA ":\1..\ NIA

übject --l 1 0 0 -') 48 0 0 0v_
2 NIA NIA NIA NIA NIA ~/A NIA..

since a very elongated ellipsoid does indeed resemble a cylinder. even to the human

observer.

•

1.4. Summary. In this part of the experiment we have constructed simulated

3-D surface points for a total of 28 objects (four variations for each of the scyen geonsL

and aIl possible stable positions of each object were tested using the viewing sphere

approach. The purpose of the four variations is to test the behaviour of our system

when the geons vary in their degree of tapering, bending, and elongation. R.esults
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Object 1 Object 2

Objcct 3
Object4

FIGURE 6.6. The four different cuboids tested.

TABLE 6.5. Rate of recogmtlOn for CUbOlds (%)

abject Stable Tapered Tapered Bent Sent Cuboid Cylinder Ellipsoid
Position Cuboid Cylinder Cuboid Cylinàer

abject 1 1 0 0 0 0 83 17 0
2 ~/A N/A ~/A N/A ?\/A ?\/A "X/A

Object 2 1 0 0 0 0 89 Il 0
2 0 0 0 0 67 33 0

Object 3 1 0 0 0 0 88 12 0
2 0 0 0 0 86 14 0

abject 4 1 0 0 0 0 94 6 0
2 0 0 0 0 94 6 0

. -

•
show that our recognition system's performance degenerates gracefully under extreme

conditions. For instance~ the system begjns to mistake a very slightly bent cuboid as

a cu boid! or a very slightly tapered cylinder as a cylinder: such behaviollr is expected

even for the human observer.

95



•
6.1 RECOGNITION ON STh'IULATED DATA

Stable POIliÏtioo 1

Stable POIliÏtioo 2

FIGURE 6.7. The stable positions of cuboids.

TABLE 6.6. Rate of recognItIOn for cylmders (%)

Object Stable Tapered Tapered Bent Bent Cuboid Cylinder Ellipsoid
Position Cuboid Cylinder Cuboid Cylinder

abject 1 1 0 0 0 0 0 100 0
2 0 0 0 0 0 100 0

abject 2 1 0 0 0 0 0 97 3
2 0 0 0 0 0 100 0

abject 3 1 0 0 0 0 0 100 0
2 0 0 0 0 0 100 0

abject 4 1 0 0 0 0 0 100 0
2 0 0 0 0 0 100 0

..

TABLE 6.7. Rate of recogmtIOn for elhpsolds (%)

abject Stable Tapered Tapered Bent 1 Bent Cuboid Cylinder Ellipsoid
Position Cuboid Cylinder Cuboid 1 Cylinder

abject 1 1 0 0 0 0 0 0 100
abject 2 1 0 0 0 0 0 0 100
Object 3 1 0 6 0 0 0 15 78
Object 4 1 0 53 0 3 0 ?- 19-v..

•
Other erroneous results can be attributed to the occasional failure of our cor­

ner/ curve detection mechanism, as weil as certain "accidentai views" from which the
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Ûbject 1

Ûbject 3

6.2 RECOGNITION OF REAL GEONS

Ûbject 2

Object4

•

FIGURE 6.8. The four different cylinders tested.

range profiies fail to convey crucial information such as evidencc of bcnding and ta­

pering. Figure 6.11 shows a graph that indicates the relationship between the rate

of incorrect recognition and the location of the vie\ving celi. The percentage error

ranges from as low as 3% in sorne viewing ceUs to as high as 30% in others. This

clearly indicates that our system performance is worse for certain viewing cells~ where

accidentaI '\"iews are likely to occur.

2. Recognition of Real Geons

In this part of the experiment~ real geons were used to test our computer vision

system. The vision system includes t.he laser rangefinder ~ the colour camera~ and the

Pan Tilt Cnit (PTU). The seven geons were constructed of wood. with the exception

of the bent cylinder~ which was made of clay.
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Stable Position 1

6.2 RECOG1'iïTION OF REAL GEONS

Stable Position 2

•

FIGURE 6.9. The stable positions of cylinders.

AIl the geons were painted red~ and the active \'ision module of our vision system

performed colour segmentation on the image by regarding aIl red pixels as foreground

and anything else as background (refer to Chapter 4 for the details of colour segmen­

tation). Red was chosen beeause it appears to produce the strongest reRection from

the laser.

The vision system was placed on a beneh. SOem above the Hoor. Video signaIs

\Vere fed directly to a Silicon Graphies Indy workstation. Since the system itself

cannat aehieve any translational movement~ the geon must be plaeed within the

operating range of the laser rangefinder~ which is 70em to 200cm.

The first step of the proeess \Vas to search for red objects in the surroundings,

panning and tilting the PTe as required. Once the geon \Vas within the colour

camera's field of view. geometric reasoning was used ta deduce the location of the

gcon and the pan/tilt angles required for the proper placement of laser stripes. The

six range profiles \Vere then acquired and recognition \Vas performed. \Ve tested our

system with no less than ten unique poses for each geon. As an example. Figure 6.12

shows the Il poses we used for the tapered cuboid.
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Object 1

Object 3

6.2 RECOGNITION OF REAL GEONS

Object 2

Object4

•

FIGURE 6.10. The four different ellipsoids tcsted.

\Ve also investigated the effect of increasing distance on the performance of our

recognition system. Therefore~ each geon was tested at three different ranges: lOOcm~

130cm. and 160cm from the camera. The overall results are shown in Tables 6.8. 6.9.

and 6.10.

The results on real geons are somewhat poorer than those in the previous sec­

tion. This is expected since the recognition of real geons involves several problematic

issues which are absent in the recognition on simulated data. Firstly~ real range data

contains more noise than simulated data. Secondly, our simulation assumes perfectly

accurate placement of laser stripes on the geons, whereas laser stripe placement on
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FIGURE 6.11. Relationship between error rate and location of vicwing cel!.

TABLE 6.8. Rate of recognItIOn at range lOOcm (%)

ûbject Sent Sent Tapered Tapered Cuboid Cylinder Ellipsoid
Cuboid Cylinder Cuboid Cylinder

Bent Cuboid 83 17 0 a 0 a 0
Sent Cylinder 17 75 0 0 0 a 8

Tapered Cuboid 0 0 64 9 ?- 0 0-{

Tapered Cylinder 0 a 0 82 0 18 a
Cuboid 0 0 10 0 90 0 0

Cylinder 0 la 0 10 0 80 0
Ellipsoid 0 0 0 a a 0 100

..

•

rcal geons is inferred from geometric reasoning~ which can be eHor-prone (see Chapter

-1). Lastly, with real geons, the issue of background segmentation has to be accounted

for. and as mentioned in Chapter 5, background filtering sometimes leads to ~~good"

data being discarded.

The above results aiso indicate a decline in performance over increasing range. A

major reason that leads to this decline is that the level of noise rises as range increases,

and a higher level of noise results in poorer performance in our curvature detcction

algorithm. The other reason for poorer rate of recognition at long range stems from
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View 1 View2 View3

View4 ViewS View6

View 7

•View 10

View B View9

View Il

•

FIGURE 6.12. The Il unique views of the tapered cuboid used to test the
recognition system.

the background removal method. As mentioned before~ background removal was

partly based on geometric calculations. The accuracy of those calculations dpc1ines

with increasing range~ thus leading ta more gaod data being filtered out. In sorne

cases range data from the laser~ reflected off the ftoor, are mistaken as surface points

on the geons.
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TABLE 6.9. Rate of recognItion at range 130cm (%)

Object Sent Bent Tapered Tapered Cuboid Cylinder Ellipsoid
Cuboid Cylinder Cuboid Cylinder

Bent Cuboid 75 25 0 0 0 0 0
Bent Cylinder 17 67 0 8 0 0 8

Tapered Cuboid 0 0 73 18 9 0 0
Tapered Cylinder 9 0 0 82 0 9 0

Cuboid 0 0 10 0 80 10 0
Cylinder 0 0 0 20 0 80 0
Ellipsoid 0 0 0 0 0 0 100. ,

6.3 GEON RECOGNITION COMBu-.~D WITH AUTONOMOUS ROBOT NAVIGATION

•

TABLE 6.10. Rate of recogmtion at range 160cm (%)

Object Bent Bent Tapered Tapered Cuboid Cylinder Ellipsoid
Cuboid Cylinder Cuboid Cylinder

Bent Cuboid 58 42 0 0 0 0 0
Sent Cylinder oJ- 67 0 8 0 0 0_v

Tapered Cuboid 0 0 55 36 9 0 0
Tapered Cylinder 9 9 0 73 0 9 0

Cuboid 10 0 10 0 50 30 0
Cylinder 0 30 0 10 0 60 0
Ellipsoid 0 10 0 0 0 10 80. ,

3. Geon Recognition Combined with Autonomous Robot

Navigation

•

The last part of the experiments is to integrate our vision system with an au­

tonomous roboL and make the robot navigate to search for geons in an indoor en­

\'ironment. The robot navigation algorithm described in Section 4.3 was employed,

The robot~s movements were restricted to within a "pen'~ inside the laboratory~ so

as to minimize the danger of collision \Vith furniture and equipment. The pen was

roughly 3.0m x 4.5m in size, and \Vas constructed \Vith plastic boards 65cm high. The

geons were either placed on the floor or on a desk of known height. Instead of using a

real desk a 70cm taU box \Vas used as a substitute. This is because the sonar sensors

on the robot may fail to pick up the legs of a desk~ and thus may result in a collision,
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6.3 GEON RECOGNITION COMBINED WITH AUTONOMOUS ROBOT ~AVIGATION

The robot was able ta navigate within the pen swiftly without colliding \Vith ob­

stacles. in most cases succeeding ta detect and approach the geons within 30 seconds.

In several of the trials, however, the robot got trapped at a local minimum and failed

ta converge ta its destination. Since this problem only concerns the robot navigation

algorithm, it will not be accounted for in this thesis.

The results for 30 runs in which the robot successfully moved close to the geon

\Vere recorded. Out of those 30 runs, only 60% of them gave correct recognition. Half

of the runs were done with the geon on the Boor, and the other half with the geon

on the "desk" (box). The rate of recognition for the latter case was 73%, which \Vas

better than those of the former, 47%. The reason for this difference \Vas that \Vith

the geon on the box, the range between the geon and the rangefinder \Vas relatively

short, approximately 100cm. \Vith the geon on the floor, the range was much longer,

approximately 150cm. This property of diminishing accuracy over range led to the

poorer performance \Vith the geon on the Boor.

Another reason for the mediocre overaIl performance has to do \Vith the robot 's

surrollndings. The floor in the laboratory \Vas composed of raised flaor tiles. As the

robot travels across the room, its wheels would go inta the grooves between the tiles.

causing the robot to tilt by a small angle. As mentioned in Chapter 5, background

removal for the range data was accomplished through geometric reasoning. That

smaIl tilt angle in the robot \Vas enough to upset the geometric calculations, resulting

in occasional failure in background rejection.

In summary, this chapter has presented experimental data to evaluate the per­

formance of our recognition algorithm under three scenarios: recognition based on

simulated range data, recognition of real geons, and combining the vision system

with mobile robot navigation to detect and identify real geons. \Ve have also dis­

cllssed issues which affect the outcome in each scenario. For instance, recognition of

real gcons involve disparaging factors that are absent in recognition bascd on siulU­

lated data, such as diminishing accuracy O\'er increasing range. Sonle measures could

he taken to improve the results, and these will be addressed in the next chapter.
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7.1 THESIS SUMMARY

CHAPTER 7

Conclusions

In this research the feasibility of identifying a small set of simple volumetrie shapes

based on a few strategically placed laser stripes was investigated. The use of qualita­

tive 3-D shapes~ called geons, was inspired by Biederman~s Recognition By Campo­

nents (RBC) theory (8, 9]. An evidence-based mechanism was used in the recognition

process, and a mobile robotic visual system \Vas implemented in arder ta apply our

research techniques to real data. This chapter gives a brief discussion of our work

and experimental results~ as weIl as suggestions for improvements.

1. Thesis Summary

Our task of geon recognition with mobile robot can be loosely divided into two

parts. The first part, referred ta as the active vision module, involves navigation

of the robot in the environment~ visual search for abjects of interest. and obtaining

relevant range information. These actions calI for the need of a mobile robot. a colour

call1era, a laser rangefinder~ and a pan-tilt unit for camera movenlents. The details

of the implementation and integration of this hardware were given in Chapter 3. The

goal of the active vision module is ta obtain quality range data for recognition by aIl

available means. This requires a robot navigation algorithm to bring the robot close

to the gcon, a colour segmentation algorithm to establish focus of attention, and a

rnethod for proper laser stripe placement. These issues \Vere addressed in Chapter 4.
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ï.2 DISCUSSION

The other part of the task is the recognition module. This module is responsible

for processing the range data acquired by the active \'ision module, and deducing the

geons' identities based on qualitative attributes of the range profiles.

Chapter 6 presented the experimental results. Our recognition algorithm was

first tested with simulated range data. Results \''''ere less than perlect, mostly due to

certain accidentaI views from which the range data of a geon failed to convey sorne of

it characteristics. Not surprisingly, results on real range data \Vere poorer than those

on simulated data, since real data brought additional complications such as noise,

inaccurate laser stripe placement, and poor background rejection. The results also

illustrated an important point: under extreme conditions, such as a tapered cylinder

with very slight tapering, our system had the tendency ta overlook the tapering and

mistake the geon as a cylinder. Also, a very elongated ellipsoid \Vas orten mistaken as

a cylinder. This kind of error is expected even for a human observer. This suggests

that a qualitative approach to object recognition such as ours may be appropriate for

mirnicking human vision.

2. Discussion

This research investigates an approach for identifying simple volumetrie shapes

llsing sparsely spaced laser stripes. Very little work in object recognition has been

done using this technique. Qiang et al[47J proposed a method to recognize polyhe­

ciral objects using as few as one laser-stripe scan. The range data is matched against

polyhedral abject models in the database using quantitative constraints such as ab­

solute lengths of scanned segments and heights of the segments' endpoints. This calls

for the need ta store in the database precise geometric measurements of every object

model, which leads to substantial storage requirements and a lengthy matching pro­

cess. Our algorithm, on the other hand, rnakes decisions based on dichotomous or

trichotomous attributes. The main reason is to conform ta the qualitative nature of

geons as proposed by Biederman.

105



•

•

7.2 DISCUSSION

Traditional range-based object recognition utilizes a complete range map of the

scene~ and ofteo requires lengthy procedures such as computiog surface DormaIs to

every point on the image. Our recognition algorithm, on the other hand, uses only a

small number of one-dimensional range profiles and thus requires minimal processing.

However~ the overall recognition process remains quite slow, even though the data

processing alone takes merely a fraction of a second. Br far the biggest bottleneck in

the m·erall process is the Pan-Tilt Unit movement. PTU movernents are required to

place laser stripes on designated parts of the geons. but this step can be avoided if a

different rangefinder design is adopted. For instance~ Sato's range-finder design [54J

uses a technique that combines temporal laser switching and a small galvano mirror

to achieve light pattern generation, thus elirninating the need for mechanical moving

parts.

Colour was chosen as the cue for focus of attention, mainly because the acquisition

and processing of colour information is relatively inexpensive and straightforward.

Speed is an important issue in our colour segmentation algorithrn, since almost a

third of a rnillion pixels need ta be processed in each colour image. vVe used a simple

thresholding method to separate background and foreground. The thresholding is

dane in the RG 8 calour space so as to avoid the need for colour-space transformations.

This led to fast but somewhat unreliable colour segmentation. The process is sensitive

ta changes in lighting conditions. In the experiments~ colour segmentation tends to

fail when the geon is placed under direct sunlight. Sorne of the sophisticated colour

clustering techniques [53J are likely to give much better performance~ but they are

too slow for real-time applications. Perhaps future advances in conlputer technology

can make those techniques fast enough to be feasible.

The removal of background range data \Vas a difficult issue. Focal attention

based on colour imaging could only localize the geons in the surroundings. Additional

rneasures had to be taken in order to reject the portions of a laser stripe reflected off

the floor. Sorne research sho\Ved that simple shapes can be extracted from a range

image by fitting hyperquadric models to thern [29]. This approach was not feasible
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due to the sparse range data we used. Eventually we chose ta use geometric reasoning

to solve this problem. Experiments showed that this method occasionally failed,

and in the scenario where the mobile robot \Vas involved, performance was severely

compronlised when the robot traversed slightly uneven Boors, thereby rendering the

geometric calculations inaccurate. One solution that is likely ta succeed in rejecting

background range data is to use a polychromatic laser range sensor, a technology

developed recently by the National Research Council of Canada [4]. This device can

pro\'ide both range and colour intensity measurements. \Vith this sensor, the desired

range data can be extracted simply by choosing those with the same colour as the

geons.

Further research can be done to improve the generality of the system. For in­

stance, a larger number of geons can be considered, and the restriction of the geons

being in their stable positions can he relaxed. To do that. more laser scans may be

required ta gather the necessary discriminating information. It may even be feasible

ta extend the system to recognize more complex objects composed of several geons.

This will most likely require object segmentation based on intensityfcolour images,

combined with range-based recognition of the segmented geons.

3. Conclusions

This thesis has presented a vision system that combines colour imagery and range

data to search for and identify geons. Experimental results show that the recognition

is reasonably accurate in bath simulated range data and real data. 'Ve believe that

performance can be further enhanced by implementing sorne of the suggested changes

mcntioned in the previous section, and that recognition of simple objects based on

\·cry sparse range data is feasible .
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