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ABSTRACT

Abstract

Geons are simple 3-D geometric primitives proposed by Biederman for object repre-
sentation. The idea is to segment objects into an arrangement of simple geometric
shapes. Objects represented by geons can be identified more easily since the many-to-
one mapping of object recognition is reduced to the recognition of a small number of
geons. In this project, a vision system is implemented for the search and recognition
of geons.

The vision system is composed of a colour camera and a laser range finder. and is
mounted on a pan-tilt unit. The entire setup is mounted on a mobile robot. The task
of the svstem can be divided into two phases: The first phase is focus of attention.
Our focus of attention algorithm is based on colour. The geons are painted with a
pre-determined colour, and the colour camera searches for objects with that colour.
Upon detection of a geon, the mobile robot moves towards it in preparation for the
next phase.

The second phase is object recognition. With the robot in the proximity of the
geon. the laser range finder is used to obtain range data of the geon for recognition.
Since only a small number of geons (N = 7) is considered in this project, very sparse

range data is sufficient for successful recognition.
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RESUME

Résumé

Les géons sont de simples primitives géométriques 3-D introduites par Biederman
pour la représentation d'objets. L’idée est de segmenter les objets en un ensemble
de formes géométriques simples. Les objets représentés par des géons peuvent étre
reconnus plus facilement puisque le probleme de reconnaissance qui consiste a trouver
un objet particulier parmi un grand nombre d’objets se limite a reconnaitre un petit
nombre de géons. Dans ce projet, un systéme de vision est implanté pour la recherche
et la reconnaissance de géons.

Le systeme de vision est composé d’une caméra couleur et d’un laser de profondeur
et est monté sur une unité pan-tilt. L’ensemble du montage est placé sur un robot
mobile. La tache du systéme peut étre divisée en deux phases: la premiére correspond
a la détermination du centre d’intérét. Notre algorithme de détermination du centre
d’intérét est basé sur la couleur. Les géons sont peints avec une couleur prédéterminée
et la caméra couleur cherche des objets de cette couleur. Une fois qu'un géon est
détecté, le robot mobile se dirige vers lui pour préparer la phase suivante.

La seconde phase est celle de reconnaissance d’objets. Avec le robot a proximité
du géon, le laser de profondeur est utilisé pour obtenir des données de profondeur sur
le géon pour la reconnaissance. Comme dans ce projet seulement un petit nombre de
géon est considéré (N = 7), des données de profondeur trés espacées sont suffisantes

pour que la reconnaissance soit effectuée avec succes.
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1.1 INTRODUCTION

CHAPTER 1

Introduction and Motivation

The objective of this thesis is to present an algorithm for the search and recognition
of simple 3-D shapes, called geons, based on sparse range data. A vision system
was constructed to test our work. The following chapters will describe in detail the
implementation of this vision system, as well as the recognition algorithm. This first
chapter introduces the use of geons in computer vision, and the goals and motivation

for our research.

1. Introduction

Recent advances in computer imaging technology have led to increasing research
cffort being placed on object recognition. In particular, three-dimensional generic
object recognition turns out to be especially interesting and challenging. The term
“generic object recognition” refers to the recognition of objects from a domain of a
large number of models [18], and the distinction between two-dimensional recognition
and three-dimensional recognition will be explored in the next chapter. One approach
to this problem that has gained considerable interest is the volumetric approach. In
this class of methods, complex objects are considered as a concatenation of many
simple volumetric parts. The objects are first divided into parts, and then each part
is identified. The identities of the individual parts are combined with information

on how the parts are grouped to achieve recognition of the entire object. This is



1.1 INTRODUCTION

analogous to speech processing, in which phonemes - small, simple units of speech - are
first identified, and then their concatenation leads to speech recognition. Biederman’s
Recognition By Components (RBC) theory (8, 9] proposed the use of 36 unique
geons as the volumetric primitives to be used in generic 3-D object recognition. The
most important difference between geons and other geometric primitives, such as
superquadrics, is that geons are described solely by qualitative attributes. Biederman
noted that the human observer judges quantitative attributes poorly, and vet can
efficiently recognize almost any complex real-world object. It is, therefore, probable
that quantitative description is not an important factor in generic object recognition.
A more thorough discussion of geons will be presented in the next chapter.

Although distinguishing a moderate number of simple 3-D shapes appears to be
a fairly simple problem, it does involve some open issues. One issue of particular
importance is the choice of sensor used to gather relevant information. The majority
of computer vision methods use ordinary video cameras as an input device to acquire
two-dimensional intensity images of the scene. This option is attractive due to the
off-the-shelf availability of video cameras. Some research have been done on using
line drawings to deduce geon shapes [6, 7, 17]. Theoretically, line drawings of ob-
jects could be obtained by extracting edge information from 2-D intensity images.
However, reliable edge detection is difficult to realize. Poor and uncontrolled lighting
conditions often leads to partial failure of edge extraction mechanisms. Moreover.
cdge information alone sometimes produce ambiguous results.

Since explicit 3-D information can be obtained from a range map. the use of
laser rangefinders for object recognition has become increasingly popular. There
exist several laser ranging techniques, each with their advantages and drawbacks. For
reasons to be discussed later, we have adopted the triangulation technique for the
implementation of our laser rangefinder.

This research explores the feasibility of geon recognition based on very sparsc
range data. In addition, an active vision system was implemented to search for geons

in an indoor environment, acquiring a good view of the geon to facilitate recognition.

(S



1.2 MOTIVATIONS AND GOALS

The ultimate goal is to have the vision system mounted on a mobile robot, which will

navigate towards the geon to collect range data for recognition.

2. Motivations and Goals

Rather than attempting to solve the daunting problem of generic 3-D recog-
nition, this research only considers the recognition of individual geons. Raja and
Jain [48] tackled this problem by acquiring range data of geons and fitting them
to superquadrics, then determining the identity of the geons based on superquadric
parameters. Wu [66] used a global optimization technique to match multiple-view
range data with parametric descriptions of geons. Our proposed approach differs from
those mentioned above in two important respects. Firstly, it is reasonable to expect
relatively little computation for the recognition of simple objects, therefore, instead
of using a full range map. we use only six laser stripe profiles for recognition. This will
significantly reduce the amount of data processing required. Secondly. the essence of
geons is their qualitative nature, and fitting superquadric parameters to them more
or less defeats that purpose. Our recognition algorithm will make decisions based on
qualitative attributes rather than quantitative parameters.

Using range data to recognize geons is only one of our objectives. Our ultimate
goal is to integrate the vision system with a mobile robot, so that geon recognition
can become one of the robot’s functionalities. This involves additional issues such as
focal attention for the search of geons in the environment. and robot navigation to
bring the robot near the geons. These issues will be addressed in Chapter 4.

This research has some potentially interesting applications. As an example, an
automated front end loader in a warehouse could be made to distinguish simple
objects like boxes (cuboids), barrels (cyvlinders), and cones (tapered cylinders), and
manipulate them accordingly. Geons can also act as landmarks to aid mobile robot

navigation.



1.3 THESIS OUTLINE

3. Thesis Outline

The following chapters will address different aspects of geon recognition and our
approach to tackling this problem. In the next chapter, we will compare 2-D and 3-D
methods to object recognition, and review some recent work on the latter. Specifically.,
we will focus on the increasingly important role of geons in the 3-D vision research
community. Chapter 3 describes the hardware, namely the vision system as well
as the mobile robot. The details of our rangefinder calibration method are also
presented. Chapter 4 addresses the active vision portion of our vision system - the
use of colour as the cue for focus of attention. the method to achieve proper placement
of laser stripes, and a brief description of the robot navigation algorithm. Chapter
5 describes the recognition module, which involves preprocessing of data and the
generation of evidence to facilitate the final decision process. Chapter 6 presents the
methods and results of the experiments. The experiments consist of three parts: the
first part deals exclusively with simulated data. In the second part real geons are
placed in the relative vicinity of the vision system so that recognition can be achieved
with camera movements alone. In the third part the vision system is mounted on
the mobile robot, which navigates through a controlled indoor environment to search
for geons, and attempts to identify them upon detection. Finally, the last chapter

summarizes the thesis and presents a critical analysis of our research.



2.1 ACTIVE VISION

CHAPTER 2

Background

Object recognition with mobile robots often implies more than merely identifving
an object in an image. It also involves searching for the object of interest in the
environment, and if necessary. approaching it and making adjustments to acquire
a better view. In other words, the problem of mobile robot object recognition is

composed of two parts:

(i) Active Vision/Focus of Attention (Where is it?)

(ii) Object Recognition (What is it?)

The first section of this chapter addresses the problem of active vision and focus
of attention. The second section discusses object recognition, as well as the use of
geons for object representation and recognition. We conclude with a brief description

of our approach to the experiment.

1. Active Vision

Most research in machine vision involves passively sampled images. Recogni-
tion algorithms often operate under idealistic conditions such as controlled lighting,
sharply focused images, and a priori knowledge of the objects’ locations. While these
assumptions may be valid for certain applications (e.g.. factory automation), they

hardly apply to intelligent, autonomous systems. Human perception, for instance, is



2.1 ACTIVE VISION

not passive, but active. Qur eyes adjust to different levels of illumination and bring
scenes into focus, our heads move to search for an object, and we are capable of
movement towards the object to obtain a better view.

Bajcsy [2] defined active vision as “a study of modelling and controlling strategies
applied to the data acquisition process which will depend on the current state of the
data interpretation and the goal or task of the process”. This is different from the
concept of “active sensors”, which refers to sensors that transmit signals (e.g., sonar,
structured light) into the environment and use the reflected signals to deduce range
information. We use the term *active” to denote controlling passive sensors in an
active manner, i.e., purposefully changing the sensor’s state parameters according to
specific sensing strategies.

An observer is called “active” when engaged in some kind of activity whose pur-
pose is to control the geometric parameters of the sensory apparatus [1]. Many active
vision systems involve the alteration of sensor settings. For example. Krotkov [35]
presented the Agile camera system which performs stereo ranging. Each of the two
cameras has control of focus, zoom, and aperture. The vergence angle between the
two cameras can also be controlled. Another class of active vision systems involves
mobile robots. With a vision system mounted on a mobile robot, one can often dis-
pense with the need to control sensor settings. Instead. the robot can be steered to
desired locations to acquire images. For example, Gvozdjak [28] implemented an ac-
tive object recognition system on a mobile robot, emploving a hierarchical recognition
algorithm based on a multi-resolution representation of objects and images. First,
the robot searches for a coarse shape that matches the low resolution image of the
model. If a match is found, the robot moves closer to the object to sec whether its
finer details also match the higher resolution image of the model. The cycle repeats
until either a no-match is confirmed or the finest available details are matched. It
can be shown that an active observer can solve basic vision problems in a much more
cfficient way than a passive one. Problems that are ill-posed. nonlinear or unstable for

a passive observer can become well-posed. linear or stable for an active observer[1].



2.1 ACTIVE VISION

1.1. Focus of Attention. Since an active vision system is often required to
explore the environment with little a priori information, it is important that it has
a way to limit its attention to certain regions of interest. The purpose of defining
focus of attention (FOA) is to locate and analyse relevant information essential to the
current task and ignore irrelevant details, so that computing resources can be more
efficiently allocated. The issue of FOA is not restricted solely to vision, as it is also
relevant to the other senses. For instance, the human brain can establish focus of
attention on audio information. This is evident by the fact that two persons engaged
in conversation in a noisy surrounding can comprehend each other’s speech. while
background noise is not processed. In the case of computer vision, recognition sys-
tems are often confronted with massive amounts of visual information, the majority
of which is irrelevant to the current task. Without any means of pruning the infor-
mation, most visual tasks would be too computationally intensive to realize real-time
performance. A focus of attention algorithm that can drastically reduce the amount
of computations required is therefore highly desirable.

One important issue in this regard is what features should be used to attract
the vision system’s attention. Psychophysical studies show that features such as line
endings. closure, orientation, curvature, luminance, colour and motion attract early
visual attention in the human vision system [59]. This is is not necessarily true for
machine vision systems. In this case, the choice of features should depend on the task.
For example, a motion tracking system should use motion as a feature for attracting
attention. Due to the breadth and the sheer amount of work done in the area of
FOA. we will not attempt to give a detailed review of the literature on this subject.
Instead, we will focus on research that employs colour as the cue for locating areas of
interest, since colour is what we have used to deduce the locations of objects in our
experiments.

With recent advances in colour CCD camera technology, colour vision is becoming
much more affordable and reliable. The use of colour as a visual feature is less com-

putationally expensive and often more reliable than geometrical features in matching,

~I



2.1 ACTIVE VISION

image segmentation [15, 42, 53, 60], and even object recognition [25, 26, 32, 58].
Relatively little work has been done on using colour as the only cue for focus of atten-
tion [3, 21, 24, 62]. The Georgia Institute of Technology Mobile Robot Laboratory
has implemented a multi-agent robot trash-collecting team which used colour to de-
tect trash (red soda cans) and garbage bins (painted blue)[3]. Although experimental
results were satisfactory (they won the Office Cleanup Event at the 1994 AAAI Mo-
bile Robot Competition), some rather restrictive assumptions had to be made: All
objects of interest were assumed to be painted uniformly in one colour. and only red.
bliue and green objects could be detected. Fujiwara et al [24] implemented a mobile
robot vision system which performs visual search of multi-coloured objects using an
extended version of Swain and Ballard’s histogram backprojection algorithm [58].
The algorithm performed well even in cluttered scenes. and often provided enough
localization for the robot to grasp the object without the need of verification by other
methods. Ennesser and Medioni [21] introduced a focus of attention algorithm using
local colour information. Unlike Swain and Ballard’s histogram backprojection algo-
rithm, which performs point-by-point processing over the entire scene, this algorithm
exploits more information and prunes the search space by directly matching local
sub-images with the model.

Colour-based recognition suffers from the problem of colour variation under differ-
ent lighting conditions. Colour constancy algorithms have been proposed to remedy
this effect [23, 25, 26, 32].

A focus of attention mechanism should be able to spot the region of interest in
the scene. allowing the greatest part of the scene to be quickly discarded. Speed is
therefore an important criterion to the quality of an FOA algorithm. Colour informa-
tion can often be inferred more rapidly than geometric features. and is shown to be
cffective as a cue for attention in some human visual tasks. Some open issues need to
be addressed, such as the problem of colour variation [23, 25, 26, 32|, and the choice

of colour space {21, 42]. Colour alone cannot solve all visual search problems [24],
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but can often offer a significant reduction in search space complexity when looking

for coloured objects.

2. Object Recognition

The problem of object recognition involves extracting image features from sensors
(edges. regions, texture, range, etc.) and matching an object model to those features
to determine the object’s location, orientation, and identity[5]. Object recognition

systems can be classified into two categories:

(i) Two-Dimensional Object Recognition

(i1) Three-Dimensional Object Recognition

Since our research primarily deals with 3-D object recognition, the discussion on

the former will be relatively brief.

2.1. Two-Dimensional Object Recognition. Two-dimensional object
recognition differs from its three-dimensional counterpart in one important way, in
that it makes no attempt to infer any 3-D information (such as depth, object occlu-
sion. shading, and surface orientation). Despite this restriction, many other cues can
be extracted from a 2-D image, such as colour, brightness. reflections, texture. edges.
shape and size. Even though we live in a three-dimensional world. 2-D recognition is
sufficient to solve many problems. For example, OCR (Optical Character Recogni-
tion) systems are exclusively 2-D since writing is two-dimensional by nature. Other
applications such as remote sensing (flat terrain seen from high altitudes). radiology
(where the image is a “shadow” of the object), and microscopy (where the image is
a cross-section of the object) can often be adequately resolved using 2-D recognition
schemes [51]. Even objects that are three-dimensional in nature can sometimes be
successfully recognized by 2-D recognition systems. For example, an industrial robot
vision system can recognize parts on a conveyor belt, given conditions such as a well

illuminated scene, non-overlapping objects, and objects in specific 3-D orientations.
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Chin and Dyer [16] have classified 2-D object recognition methods into three
classes based on the kinds of features employed for matching. The first type of
method uses global features such as an object’s size. shape, and perimeter. The
second type uses local features that describe more complex properties of the object,
such as edges and curve segments. The final type uses local and relational features
which are organized in a graph. Nodes describe local features and arcs describe the
relationship between the connected pairs of features. This is called the relational
graph method.

The features mentioned above are more or less all the information available for a
2-D object recognition system. It quickly becomes apparent that this lack of higher
dimensional spatial information severely limits vision systems’ capabilities towards
general-purpose object recognition, particularly for mobile robot vision, which in-
evitably deals with objects and obstacles in the 3-D world. Often little a priori
knowledge can be assumed. Nonetheless, 2-D vision is a fairly broad field on its own
accord. with many sound theories proposed and many practical systems having been
implemented. Since this research is concerned with 3-D object recognition, a detailed

review of 2-D object recognition is bevond the scope of this thesis.

2.2. Three-Dimensional Object Recognition. The term “three-
dimensional object recognition” can be rather vague, since many different schemes
and methods have been proposed to solve this problem. Some employ range data,
some attempt to interpret multiple views of objects, and some attempt to infer 3-D
features of an object from a single 2-D intensity or colour image. Therefore it is not
casy to give a formal definition to 3-D object recognition. For the purpose of this
thesis. we define 3-D object recognition as “the ability to infer the identity, location.
and orientation of solid 3-D objects by extracting view-invariant 3-D features from
the scene and matching them with features of 3-D object models™ [17].

The definition given above indicates that 3-D object recognition does not neces-
sarily require explicit 3-D (range) data. In fact, most early research in 3-D recognition

employed intensity images due to the relatively low cost of frame grabbers and digital

10



2.2 OBJECT RECOGNITION

cameras. The main problem faced by 3-D recognition systems that employ 2-D in-
tensity images is that considerable information about the three-dimensional structure
of the scene is lost in the projection onto the two-dimensional image [5]. Therefore,
3-D features must be extracted implicitly from the 2-D images. Various kinds of 3-D
information can be inferred from an intensity image using attributes such as shading,
texture, edges, and corners [12]4.

Recognition of 3-D objects is difficult because a 3-D object can have many dis-
tinguishable appearances, depending on its location and orientation with respect to
the observer. Therefore the object model must contain a description of the object
from all possible viewing angles. A straightforward exhaustive search approach is
clearly impractical. More elaborate feature extraction and matching algorithms are
required. For example, Bergevin and Levine {6, 7] introduced an object recogni-
tion system called PARVO (Primal Access Recognition of Visual Objects) which
takes line drawings of objects as input. PARVO extracts features such as corners.
T-junctions. and symmetry. Using these features, the object is segmented into sim-
ple parts, and each segmented part is matched to a geon label (geons are specific
geometric shapes which will be discussed in detail in the following section).

Another approach that has gained a lot of attention in the object recognition
community is the aspect graph (or characteristic views) approach. Koenderink and
Van Doorn [34] introduced the concept of aspect graphs for representing shapes of 3-
D objects. This method stems from the observation that although an object can have
an infinite number of orientations, it has a limited number of “characteristic views”,
or aspects, from which the object has the same qualitative appearance, i.e. the same
faces and edges are visible, even though quantitative attributes such as the length
of edges may be different. All the different aspects of an object comprise an aspect
graph of the object. Each node of the aspect graph represents an aspect. and each
arc represents a shift in viewpoint that transforms one aspect to another. Stewman
and Bowyer [19, 55, 56, 57| proposed a “viewing sphere” approach to generating

the aspect graph. A “viewing sphere” is an imaginary sphere whose centre is the
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geometric model of an object. The surface of the sphere is tessellated into small cells,
each of which represents the same aspect view. Using all the cells on the viewing
sphere (which corresponds to all possible aspects of the object model), the object
model’s aspect graph can be generated. This aspect graph approach to 3-D object
recognition is considered important because it provides a complete viewer-centered
representation of an object [19] and it has been shown to be effective in the recognition
of complex polyhedral objects.

The aspect graph method and PARVO. like other edge-based approaches. have
the shortcoming that no explicit surface information is available. Objects represented
by edges alone may lead to ambiguities like the one shown in Figure 2.1. Although
the inference of surface information from intensity images is possible (e.g., through
shading and texture), it is often difficult to accomplish and is error-prone. Explicit
3-D information of the scene is therefore highly beneficial to the efficiency of 3-D
object recognition.

The past few years has seen a significant increase in research efforts into range-
based object recognition [27, 29, 36, 39, 43, 47, 48, 54, 66]. This is partly due to
the off-the-shelf availability of commercial laser rangefinders. Rangefinders can now
be implemented at a relatively modest cost and effort, and the quality of range data
has been steadily improving.

In 3-D object recognition, range data is usually presented in the form of range
images (or depth maps). A range image is a two-dimensional array, with each pixel
indicating the distance measurement from a known reference coordinate system to
a particular point on the object surface in the scene [39]. The main advantage of
using a range image for object recognition is that it gives a description of the physical
structure of the object, rather than just the intensity or colour of light reflected off
the object. Range data is relatively uncorrupted by reflectance variations, ambient
lighting and shadows [5], and quantitative geometric properties of the scene can be
inferred accurately. Therefore, the recognition of objects by shape is much easier

than in intensity or colour images. Of course, information regarding the brightness
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2D View

Tapered Cylinder?

FIGURE 2.1. Example of ambiguity in 2-D vision.

or colour of the scene will be lost in a range image, and recognition methods that
require such information will not be applicable. Some research has been done on
fusing intensity/colour images and range images, utilizing the strength of both to
achieve effective object recognition [4, 20, 61]. Those methods have shown limited
success and tend to require very heavy computations.

Range data are fundamentally different from intensity and colour images, and the

use of range data for object recognition has led to a whole new genre of data processing
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and feature extraction methodologies. Nonetheless, the fundamental problems of
object recognition remain the same: What features should be extracted? How should
the objects be represented? The following section addresses different representational

schemes for object recognition using range data.

3. Object Representation

An appropriate way of describing objects is of crucial importance to the efficiency
and robustness of the object recognition system. Representation schemes for 3-D
objects are usually either edge-based, surface-based, or volume-based {13, 39]. The
edge-based approach is easy to implement because edges in a range image are simply
locations where range values change significantly. Moreover, edges in range images
can contain more information than those in intensity images: various types of edges
such as convex, concave, limb and occluding can be differentiated in a range image
[39]. However, an edge-based representation does not provide any explicit surface
information which may be important for distinguishing surfaces having identical edge
descriptions from a certain view, and ambiguities like the one depicted in Figure 2.1
may still arise.

The surface-based approach represents objects by characterizing surfaces bounded
by edges. With explicit 3-D coordinates of each point made available by range images.
an object’s surface properties can be deduced using differential geometry. This ap-
proach tends to be more computationally intensive then the edge-based approach due
to the calculations required for obtaining surface attributes such as surface normals.
Also. surface segmentation can be a difficult problem.

The volume-based approach depends on the observation that most man-made
objects can be loosely described as a composition of several (less than 10) geometric
parts such as boxes. discs. and cylinders. This is analogous to the way each spo-
ken word is regarded as a composition of a few phonemes in speech recognition [13].
The advantage of this approach is that the many-to-one mapping problem of object

recognition is broken down into smaller problems of recognition at the level of simple
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geometric parts. Once the recognition of parts (which is much easier than the recog-
nition of complex objects) is accomplished, spatial relations between parts are used
to differentiate objects with similar parts but different arrangements.

The next question is what geometric parts should be used to describe complex
objects. Pentland [45, 46] first proposed the use of superquadrics as part primitives
for object recognition. Superquadrics are a family of parametric shapes described
by an equation that contains 5 parameters, and the parameter values determine the
superquadric’s shape (e.g., ellipsoids. cvlinders. parallelpipeds. pyvramids. cones. and
some other round-edged shapes in between these standard shapes) [48]. Hanson
[31] later proposed hyperquadrics for computer graphics applications, and Han et al.
[29] used hyperquadric models for shape recovery from range data. Hyperquadrics
arc generalizations of superquadrics, their equation containing more parameters so
that it can describe a larger set of geometric shapes. The research done on using
superquadrics and hyperquadrics for shape recovery from range data [11, 31, 48]
adopts more or less the same approach: an error-of-fit function is defined. and the
parameters of the quadric shape are estimated by attempting to minimize the error-
of-fit function using nonlinear optimization methods. This approach is problematic
because the nonlinear optimization process tends to be very time-consuming, may
fail to reach a giobal minimum, and sometimes require an initial guess. It is also
doubtful that the human vision system recognizes objects by attempting to quantify
shape parameters.

A new class of geometric primitives, called geons, has been proposed for 3-D
object representation[8, 9]. As described below, geons fundamentally differ from
parametric shapes such as superquadrics and hyperquadrics. and may lead to more

robust 3-D object recognition systems.

3.1. What are Geons? Biederman [8, 9] proposed a theory known as
Recognition-by-Components (RBC). The theory postulates that human perceptual

recognition of objects is a process in which objects are segmented at regions of deep
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concavity into an arrangement of simple geometric components, as shown in Fig-
ure 2.2. The fundamental assumption behind RBC is that a modest set of generalized-
cone components (N < 36) is sufficient to represent all known objects for low-level
perception. The set of generalized-cones is termed “geons” (short for “geometric
ions™). The 36 geons are derived from three attributes of a geon’s cross-section: edge
(straight or curved), symmetry (symmetrical or assymmetrical), size (expanding, con-
stant, or expanding and contracting), and one attribute of its axis (straight or curved).
The most important difference between geons and other parametric shape primitives
such as superquadrics is that a geon’s attribute values need only be dichotomous or
trichotomous rather than quantitative, so that a human being’s limited capacities
for absolute judgement are not taxed [8]. Moreover, slight quantitative variations in

the attributes usually have little effect on the recognition of objects, as illustrated in

Figure 2.3.
Tapered Cylinder
Deep
Concavities

/_\U

Bent Cyliner

=

FIGURE 2.2. Example of an object composed of simple geometric primitives.
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FIGURE 2.3. Two objects composed of the same geometric primitives with
slight quantitative variations.

Brown et al [14] raised the question of whether geons are indeed geometric prim-
ttives in the traditional sense that they “pop out” in search tasks. Features are said
to “pop out” if they are detected automatically and preattentively. Experiments were
performed on human subjects, who were shown images of objects. and their reaction
time (RT) needed to detect the presence or absence of a target geon was measured.
Experimental results indicated that geons are not processed preattentively by the hu-
man vision system[14]. Nonetheless, geons can be identified and distinguished from
cach other verv quickly. In addition, Biederman [8] has shown that objects repre-
sented by geons can be recognized with relative ease, even under sub-optimal viewing
conditions such as an object being partially occluded, lacking some components, or
having its contour partially deleted. These attributes make geons an attractive can-
didate for object representation. ‘

The RBC theory has motivated further studies of geons in the computer vision
community. PARVO [6, 7] was the first significant effort to build a geon-based vision

svstem. and it is also one of the few vision systems whose design respects and makes
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explicit the main assumptions of the RBC theory. Although PARVO was created to
take only line drawings of objects as input, it is possible to extend the system to
handle objects found in range images. Hummel and Biederman [9] have implemented
a neural net model for geon-based recognition which constitutes a framework for
general object recognition based on RBC, but no experimental results have been
made available.

A relatively small research effort has also been addressed to the recognition of
geons from range data [48, 66]. Raja and Jain [48] have performed geon recognition
by relating a subset of 12 geons to superquadrics fitted to range data. Experiments
were done using real range images of geons. Results show that estimation of su-
perquadrics parameters is extremely sensitive to noise and “rough” object surfaces,
but under normal circumstances, qualitative shape attributes can be inferred from
superquadric parameters quite accurately. Wu and Levine [66] used multiview range
images to approximate shapes by a set of 7 geons. Experimental results show that
multiview analysis leads to better performance in shape approximation than single-
view. particularly inder the influence of noise, missing data. and slight variations in
shape.

The set of 7 geons used by Wu and Levine [65, 66] is the same set of geons we
attempt to recognize in this research (see Figure 2.4). These specific geon types were
chosen because they are regular, simple, and svmmetrical shapes. Most of them can
be described without ambiguity by a simple geometric term, such as ellipsoid, cuboid,
cvlinder, cone and pyramid. These shapes are also consistent with the basic forms
used by more traditional methods of 3-D object representation such as sculpture [65].

Although geons have emerged as the most popular shape representation for
generic object recognition, the above-mentioned research related to geons is still be-
ing applied to very constrained domains. In some cases svnthetic data were used, or
segmentation was performed manually, or the objects are made unrealistically simple.
Much work remains to be done before a generic geon-based recognition system can

be realized.
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e o

R4 ES

Bent Cuboid Bent Cylinder

FIGURE 2.4. The 7 geons used in this research.

4. Proposed Approach

Speed is the most crucial criterion in determining our method of establishing focus
of attention. In general, 3-D feature extraction methods are more reliable than 2-D
methods. but they are also more computationally expensive [24]. Colour can be used
as a 2-D global feature which requires less computation in matching than structural
features such as shape, corners or edges. Colour detection is also an inexpensive
method due to the relatively low cost of colour CCD cameras in recent vears. For the
above reasons, colour was chosen as the cue for focus of attention in our experiments.

Upon detection of the object of interest, a robot navigation strategy must be
employed to steer the robot to the vicinity of the object without colliding with obsta-
cles. Zelek [67] proposed and implemented a mobile robot control architecture called

SPOTT (A System which integrates Potential fields for planning On-line with TR+
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program control in order to successfully execute a general suite of Task commands).
SPOTT integrates data from laser rangefinders, sonar, infrared sensors and tactile
sensors to navigate the robot in an unknown or partially known environment. Local
path-planning is based on a potential field method. Despite SPOTT’s success in nav-
igating a mobile robot through an indoor environment, it is prohibitively slow due
to the massive amount of sensor data it is required to manipulate, and the intense
amount of computation needed to calculate the potential field. A much simpler nav-
igation algorithm was therefore adopted in this thesis. The Mobile Robotics team at
McGill University recently developed a path planning program in preparation for the
1997 AAAI mobile robot competition !. In this algorithm, only sonar sensors and a
colour camera are used to perform path planning, and it is shown to be very fast and
robust. With slight modification this path planning module was incorporated into
our application.

Speed is also of critical importance to our recognition process. Most research done
on 3-D shape recognition has required complete range maps of objects of interest
({13, 48]. The problem is that the acquisition time for range maps is often quite
long (on the order of tens of seconds). Since we are only attempting to differentiate
between a set of T geons, we submit that only a few strategically placed laser-stripes
will suffice for our purpose. Very little work has been done on 3-D object recognition
using such sparse data. Qiang et al. [47] proposed a method for recognizing and
locating polvhedral objects using as little as one laser stripe. In their experiments.
they use a model for each stable position for every object. In our case, however, we
do not have precise models available since geons have qualitative attributes. In our
experiments we will show that three horizontal and three vertical laser stripes will be
sufficient for distinguishing our set of 7 geons.

Many recognition systems begin with quantitative information derived from the
image and perform recognition by matching the information with object model
'The team came first in the event Find Life on Mars (Single Agent Nonmanipulator Category).

Team members: Francois Belair, Eric Bourque, Deep Jugessur, Rob Sim. Supervisor: Professor
Gregory Dudek.
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databases. Even previous work on geon recognition (48, 66]. mentioned in the iast
section, involves estimation of certain quantitative parameters. To comply with the
essence of geons and the underlying concepts of the RBC theory, we attempted to
recognize geons through the inference of qualitative features from range data. An
evidence-based recognition approach [33] was adopted for our system.

The idea behind evidence-based recognition is that rather than using all the in-
formation provided by a representation, it is possible to use only “discriminating”
information. or evidence, to cue certain objects. In our case, evidence such as taper-
ing. bending, curved/straight cross-section, and absence/presence of corners will be
useful for geon recognition.

With this qualitative approach, we hope to accomplish fast and accurate geon

recognition without the need of complex parameters estimation.



3.1 THE LASER RANGEFINDER

CHAPTER 3

Hardware Implementation, Calibration,

and Specifications

The main objective of this research is to recognize geons from range data. Therefore
the laser rangefinder is the most central piece of hardware to our experiments. The
first section of this chapter gives a general overview of laser ranging technology, as well
as the implementation of our rangefinder. The second section describes our calibration
method. The following sections will give brief descriptions and specifications of the
other hardware used: The colour camera for establishing focus of attention. the pan-

tilt unit for camera movement, and the mobile robot for navigation and exploration.

1. The Laser Rangefinder

Many tasks call for the need to quantify range, in particular, mobile robot nav-
igation. A mobile robot’s task is often to gather information from its surroundings
and make intelligent movements accordingly. Range information is especially useful,
if not crucial, to successful path-planning in mobile robots. That is why most mobile
robots are equipped with at least one set of range sensors. The use of range data for
object recognition did not become common until fairly recently. This is because range
data must be highly accurate to be deemed practical for object recognition purposes,

and early range-measuring techniques lacked such accuracy.

N
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There is a number of distance measuring techniques. The more commonly used

ones are[22]:

e Laser ranging
e Stereo disparity
e Sonar

e Interferometry

Laser ranging is by far the most popular candidate for range image acquisition.
since other techniques suffer serious drawbacks: Stereo vision exhibits the correspon-
dance problem; sonar is inaccurate and therefore rarely used for object recognition:
interferometry is costly and limited to relative distance measurement. Also. lasers
produce a narrow and collimated beam with minimal divergence. This property al-
lows the source to be highly directional and spatially selective[37]. which makes it
very suitable for long-distance measurement and ranging. Lasers generally transmit
light of a fixed wavelength. so a narrow band optical filter can be placed in front of
the image sensor to reject ambient light and detect nothing else but the laser beam.

There are three different methods of laser ranging:

e Triangulation
e Time of flight (TOF) measurement

e Phase-shift measurement

The concept of time of flight laser ranging is similar to that of sonar range sensing:
short bursts of energy are projected from the source. and the time it takes them to
be reflected back to the sensor is measured. Using elementary physics. the range
between the sensor and the surface that reflected the signal is d = ct/2. where d is
the range, c is the speed of light, and ¢ is the round-trip time taken by the signal.
Object recognition often calls for range data with accuracy in the millimeter range,
and to achieve that kind of accuracy, the TOF laser rangefinder must be able to

measure time ¢ with subnanosecond precision. Since timing circuitry with that kind
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of resolution is very expensive, TOF laser rangefinders are rarely used for object
recognition.
Phase-shift rangefinders deduce distance by measuring the phase difference be-

tween the outgoing signal and the reflected signal. The range d can be derived from

the equation [22]:

oc
. d = —
(3.1) Inf

where ¢ is the phase-shift, ¢ is the speed of light, and f is the frequency of the
laser. One problem with this method is that phase-shift measurement can lead to
ambiguous results: the laser’s sinusoids repeat every 360°, so equation ( 3.1} should

really be:

(3.2) d=

where n = 0.1,2,...

n cannot be known without using other means of range measurement. This prob-
lem is often countered by restricting the operating range of the rangefinder within an
interval where no ambiguities may arise. Another problem with phase-shift measure-
ment is that sophisticated and expensive phase measurement electronics are needed.

In a triangulation-based rangefinder, the laser projector is usually tilted at a fixed
angle with respect to the camera’s optical axis (see Figure 3.3). Ah, which depicts the
location of the reflected laser light’s projection on the image plane, varies according to
the distance z. Therefore range information can be deduced from Ah. One drawback
of triangulation ranging is that its accuracy diminishes with range. It wili be shown
later in this chapter that Ah is roughly proportional to the reciprocal of distance z.
As the distance grows larger, Ah must be measured with higher precision to give the
same resolution in 2 values. Another drawback of triangulation is the missing part

problem: since the laser projector is not aligned with the camera’s optical axis, there

24



3.1 THE LASER RANGEFINDER

may be situations in which the laser hits an object part that is not visible to the

camera. This situation is illustrated in Figure 3.1.

Laser
Projector
Object
_/_i
Camera
x

FIGURE 3.1. Illustration of the “missing part” problem in triangulation-
based laser rangefinders.

Although triangulation-based rangefinding has its share of disadvantages. it can
be implemented inexpensively and tends to give good accuracy over a range of several
meters. Since our experiments only require range data up to the range of about
2 meters, the triangulation approach was adopted for the implementation of our

rangefinder.

1.1. Setup. Figure 3.2 shows our laser rangefinder. The laser projector on
top of the black-and-white camera projects a horizontal laser line while the one beside
the camecra projects a vertical line. The lasers used in this setup have a rated power
of 20 milliwatts each and a wavelength of 670nm. A bandpass optical filter is placed

in front of the camera to remove ambient light.
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Horizontal Laser

Vertical Laser
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B/W Camera y

Pan-Tilt Unit

FIGURE 3.2. The laser rangefinder.

Figure 3.3 shows the rangefinder configuration viewed from one side. The laser
projector and the image plane (CCD array) are separated by a known baseline dis-
tance A. The laser projector is tilted at a known angle p with respect to the z-axis
(which is the same as the optical axis). Ah is the vertical displacement of the laser-
stripe image on the image plane with respect to the centre of the image plane. The
basic principle of triangulation is that given two angles and one side of a triangle. all
the other angles and sides can be derived. In this case, p and A are known, and 3

can be derived as shown in equation 3.3:

+ 6

0]

(3.3) 8=
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z

FIGURE 3.3. Horizontal configuration of the laser rangefinder.

where
D/2 — Ah
f

With the values of p, 3, and A known, the length of the side [ can be calculated.

(3.4) 6 = arctan( )

Subsequently. the distance z can be easily calculated as:

(3-3) z =lcos@

In theory, the distance z between the object and the image plane can be derived
using equations 3.3 and 3.5. In practice, however, it is extremely difficult to measure
the values of physical dimensions such as baseline distance A and angle p with suffi-
cient accuracy. Most laser rangefinders therefore require calibration. The calibration

of rangefinders will be discussed in the next section.
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The brightness of one column of .
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FIGURE 3.4. Brightness of a column of pixels.

In order to obtain an accurate reading of distance z. the location of the laser
stripe image on the image plane (Ah) must be measured with sub-pixel precision. In
general. the brightness profile of the laser stripe on the image plane takes the shape
of a Gaussian curve, as shown in Figure 3.4. Treating this profile as a Gaussian curve,
the mean of the Gaussian can be calculated and taken as the "location™ of the laser.
Since the profile is obtained from a digital image, it is discrete in nature and therefore

the mean é can be calculated using the weighted sum-of-index method:

(3.6) é= M
>0 B()
where n is the number of rows of pixels in the image.
The setup of our rangefinder is quite typical of triangulation-based rangefinders.
Although variations in attributes such as baseline distance A and angle (p) can ef-

fect performance slightly, the accuracy of a rangefinder is mainly dependent on its

calibration, which we will discuss next.
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2. Calibration

There are several calibration techniques for laser rangefinders in the literature
(50, 64]. The most commonly used one involves solving for the camera model’s pa-
rameters such as focal length, lens distortion coefficients, and dimensions of CCD
elements. Although these parameters are provided by the camera manufacturers,
they are often not accurate enough for 3-D vision applications. The calibration pro-
cedure involves placing an object - usually a precisely marked grid - at a known
location and orientation with respect to the camera. An image of the grid is ac-
quired, and features such as points and edges are extracted. Using these features, a
set of geometric equations can be derived. If the number of equations is greater than
or equal to the number of unknown parameters, the parameters can be obtained using
nonlinear optimization. The drawback of this technique is that it tends to be very
computer-intensive. The nonlinear optimization often fails to converge to a solution,
due to slight variations in physical parameters, e.g. decentration of lenses [50, 64],
imperfections in CCD elements. etc.

A very simple and direct approach was used for calibrating our laser rangefinder.
A flat calibration board was placed at a known distance in front of the camera, and
the rangefinder was moved away from the board by small known increments. each
time taking an image of the laser-stripe (In this experiment, 10 images were taken
and averaged in order to minimize the effect of random noise). The location of the
laser-stripe on the image (Ah) corresponding to each known distance was recorded
in a look-up table. Figure 3.5 shows a plot of Ah values versus z.

The next step is to interpolate the points to obtain a curve. This step is needed
in order to handle range values that lie between the sampled points we obtained from
calibration. The following relationship between z and Ah can be derived by observing

Figure 3.3:

D/2—Ah z/tanp- A
f - z

(3.7) tan@ =
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FIGURE 3.5. Plot of z versus Ah.

Solving this equation leads to:

A 1 D
(3.8) Ah = gl (tanp - 5)
or simply
A
(3.9) Ah = - - k

where £ is a constant.

Theoretically, the values of A, D, and p in equation 3.8 can bc measured. How-
ever, it is extremely difficult to measure those values with sufficient accuracy for our
purpose. It is also possible to fit a curve to the points by solving for A and & in equa-

tion 3.9 using nonlinear optimization. The disadvantage is that triangulation-based
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rangefinders suffer from diminishing accuracy with increasing range, so the points at
long range are inaccurate compared to the ones at close range. Fitting a curve to all of
the points will therefore compromise the accuracy of the measurements taken at close
range. To alleviate this problem, another approach was used. Linear interpolation
was done on each pair of consecutive points. In other words. the space between two
adjacent points was simply joined with a straight line, as shown in Figure 3.6. Error
is introduced by the discrepency between the straight line and the actual data. This

crror can be minimized by sampling images at small intervals (e.g.. 3mm).
z vs Ah curve

Error introduced

from linear
intepolation.. . v

Linear interpolation

Sampled Points

FIGURE 3.6. Linear interpolation of z versus Ah curve.

Ideally, the horizontal laser stripe should be projected onto the CCD array hor-

izontally. In practice, it is difficult to align the laser projector and the CCD camera

perfectly, and spherical lens distortion causes the stripe to bend slightly. as shown
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in Figure 3.7. To take this into account, Ah is calculated independently for every

column in the image.

Image of laser stripe,
slightly bent due to
/spherical lens distortion

/

S— A7 ~
\ I
mage of laser
stripe not perfectly
horizontal horizontal due to

reference line misalignment between
‘ camera and laser
fine projector

FIGURE 3.7. Typical image of laser stripe.

Every point on the horizontal laser stripe represents an (r, =) coordinate in space.
The procedure mentioned above only solves for the value of z. There remains the
problem of solving for . Assuming that spherical lens distortion is negligible (this
assumption is valid in our case since a 16mm lens, which has minimal spherical
distortion. is used), z can be solved using simple geometry. Figure 3.8 shows the top
view representation of the rangefinder. To simplify calculations, we define the frame
of reference such that the optical axis intersects with the x-axis at £ = 0. The point
m{x1.y1.z1) on the laser-stripe is projected onto the point pi(x}.y;) on the CCD
image plane. z; can be found by calculating the value of Ah on the column ¥}, as

explained earlier. Once z; is known, z; can be calculated using equation 3.10:

l" Iy
(3.10) 71 = tanf = =1 =
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‘ where f is the focal length of the lens, and z} is the horizontal distance between pf
and the center of the image plane, which can be easily derived if the dimensions of

the CCD array is known.

pl(xl Y ’Zl)

Image Plane

X

y

FIGURE 3.8. Topview of the laser rangefinder configuration.

The setup and calibration of the vertical laser are very similar to that of the

horizontal laser. and therefore will not be discussed in detail.
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2.1. Performance. The accuracy of our rangefinder was evaluated by placing
the calibration board about 1 meter from it and obtaining the range profile. Figure 3.9
shows the distribution of the corresponding z values. The error at a range of 1
meter is about 1lmm (0.1% error). This performance is comparable to most other
triangulation-based rangefinders reported in the literature[10, 38, 44, 54]|.

Although our calibration method resulted in accurate readings, it involves a te-
dious and manual process in which a human operator must move the rangefinder
setup by small. precise increments repeatedly. A more elegant calibration scheme

should be implemented. This will be left as possible future work.

Distrbution of z Values for a Horzontal Scan
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FIGURE 3.9. Distribution of z values for a scan at 1 meter.
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3.4 THE MOBILE ROBOT

3. The Pan-Tilt Unit and the Colour Camera

The laser rangefinder is mounted on a Pan-Tilt Unit! (PTU) to give it two degrees
of freedom in rotation(see Figure 3.2). The PTU has a maximum angular velocity
of 300°/second, and a resolution of 0.05°. It also comes with a Pan-Tilt controller.
which accepts commands via an RS-232 connection from a host computer (in this
case, the robot’s on-board computer), and a C programmers interface. which enables
the user to interact with the PTU through software.

The colour camera on the rangefinder(see Figure 3.2) is used to establish focus
of attention, which will be discussed in the next chapter. It is mounted directly
above the black and white camera, and the two cameras have the same geometric
properties, i.e., their lenses have the same focal length and their CCD arrays have the
same dimensions. This is to ensure a correspondance between what the color camera

sees and what the black and white camera sees.

4. The Mobile Robot

Figure 3.10 shows the Nomad 200? mobile robot used in this experiment. The
robot is a three servo, three wheel synchronous drive non-holonomic system. It has
two degrees of freedom. translation and rotation, so it can move on the x-y plane by
first rotating to a desired bearing, and then moving forward. The turret of the robot
can also rotate independently. The Nomad 200 has a maximum translational speed of
50cm per second and a maximum rotational speed of 60° per second. It consists of 3
sensory systems: a sonar ranging system, a tactile system, and an infrared proximity
system. (The vision system shown in Figure 3.10 was implemented and added onto
the robot for this research).

The sonar ranging system is a time of flight ranging sensor composed of a ring of

16 transducers. It can give range information from 44cm to 650cm with 1% accuracy

'The Pan-Tilt Unit is manufactured by Directed Perception, Inc. 1451 Capuchino Ave., Burlingame,

California. 94010 (415)342-9399
*The Nomad 200 is manufactured by Nomadic Technologies Inc., 2133 Leghorn Street, Mountain

View, CA 94043-1605. tel. (415) 988-7200, e-mail nomad@robots.com
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Visual system

Sonar sensol

Infrared proximity
sensors

Tactile seaso

FIGURE 3.10. The mobile robot.

over the entire range. The tactile system consists of 20 independent pressure sensitive
sensors, placed uniformly around the robot’s bumper. Each sensor has sensitivity of
about 8 ounces. The tactile system is intended to protect the Nomad 200 from damage
in accidental collisions with obstacles. The infrared proximity system has 16 sensors
which determine range by measuring the intensity of reflected infrared signals. The
svstem gives range information of up to 60cm under the proper conditions. Due to its
relatively short range of operation, the infrared proximity sensor system is intended
mainly to warn the robot of imminent collisions with obstacles.

The Nomad 200 robot, like most other mobile robots, is equipped with different
tvpes of sensors because each type of sensor can compensate for the inadequacies
of others. Ideally, the robot control architecture should make use of all available
sensor readings. SPOTT [67] is such an architecture. However, due to the speed
requirements, we have chosen a simpler, faster navigation algorithm which only makes

use of sonar data and colour video signals.
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5. Summary

This chapter has presented the basic concept of triangulation-based range sensing,
the implementation and calibration of our rangefinder, as well as other hardware
components used in this research (i.e., the colour camera, the Pan-Tilt Unit. and
the mobile robot). The rangefinder is composed of a black and white camera, two
laser projectors, an optical filter and positioning tools, all of which are off-the-shelf
commercial products. The colour camera is mounted on the laser rangefinder. It’s
function is to establish focus of attention, the details of which will be given in the
following chapter. The rangefinder is in turn mounted onto the PTU, which makes
camera movement possible.

All information from the hardware components are first sent to the robot’s on-
board computer. Such information include video imagery from the cameras. current
position of the PTU, and the switching of the laser projectors. Since the processing
power of the robot’s computer is limited, the information is sent via wireless trans-
mission to a Silicon Graphics Indy computer, where all the computations are done.
Figure 3.11 illustrates the interconnections between the hardware components.

The assembly and calibration of the vision system are part of this research. The
development and maintainance of the mobile robot. on the other hand, is an on-
going effort of the Mobile Robotics Laboratory in the Centre for Intelligent Machines,

McGill University.
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Pan-Tilt PTU
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Colour Camera RS232 !
Camera Controller connection | Robot
[T On-board
Video VO | Computer
Port :
B/W Camera .
Camera Controller ON/OFF ' - -\i/}r-e-k-:s-s- oo ‘
Switch + * Transmitter/
Horizontal Controller ! Receiver .
Laser
Vertical
Laser . Wireless
. Transmitter/
Receiver \

Silicon Graphics
Indy Workstation

|

FIGURE 3.11. Interconnections between the hardware components.
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4.1 FOCUS OF ATTENTION

CHAPTER 4

Implementation of the Active Vision

Module

As mentioned in Chapter 2, the implementation of our vision system can be divided
into two main modules: the active vision module which involves controlling strategies
for acquiring a good view of the objects of interest, and the object recognition module
which involves the use of range data to identify geons. This chapter deals with the
former. The first section of this chapter describes the focus of attention mechanism.
namely the colour image processing algorithm used to extract the geons from their
surroundings. Section 2 describes how the geons’ locations are inferred. and how the
proper placement of laser stripes is achieved. Finally, the mobile robot navigation

algorithm is presented in Section 3.

1. Focus of Attention

The objective of the focus of attention is to locate the geons in the robot’s sur-
roundings. Colour is chosen as the feature for cuing visual attention. All the geons
arc painted uniformly in a predetermined colour, and the goal is to extract pixels be-
longing to that colour from the colour image. In essence, this is a problem of colour

segmentation (15, 42, 53, 60].
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1.1. Colour Space. The performance of a colour segmentation algorithm
is strongly dependent on the choice of the colour space in which segmentation is
performed. Each colour space has its pros and cons, depending on the application. For
instance, the HSI (Hue, Saturation, and Intensity) space is convenient for representing
human colour perception, while the YIQ (Luminance, In-phase chrominance, and
Quadrature chrominance) space is efficient for encoding colour information in TV
signals [42].

The majority of colour image capture devices represent colour irnages by assigning
cach pixel a R (red), G (green), and B (Blue) value. The RGB representation of an
image can then be transformed into other colour spaces for further processing. The
choice of colour space therefore implies the choice of transformation from the RGB
space to the desired colour space. There are two types of colour space transformation:

linear and nonlinear. A linear transformation takes the form of:

(41) I, = C“R'{"ClzB'f'C]gG
(42) L, = CglR-i-ngB +C23G
(4.3) Iz = c31R+c32B + ¢33G

where c,; are constants.

For example. the RGB-to-YIQ transformation is [52]:

(4.4) Y = 0.299R + 0.114B + 0.387G
(4.3) I = 0.596R — 0.322B — 0.274G
(4.6) Q = 0211R +0.312B - 0.523G

An example of a nonlinear transformation is the RGB-to-HSI transformation

shown below:
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4.1 FOCUS OF ATTENTION

(4.7) H = arctan2(V3(G — B), (2R - G - B))

. R G B
(48) S = 1_377”"(1'2+G-+-B’R+G‘+B’R+G+B)
(4.9) [ = 5'*‘_(3;'“_3_

Ohta et al. [42] have made a comparative study of more than 100 different colour
spaces by testing a recursive thresholding segmentation algorithm in each colour
space. Ideally. a similar study should be done to determine the optimal colour space
to perform our colour segmentation. However, the speed of the overall process would
be seriously taxed by the computational requirements for a colour space transforma-
tion. For instance, the RGB-HSI transformation described in equations( 4.7 - 4.9)
calls for the calculation of an arctangent and a square root, both of which involve
relatively intensive computations. To do the tranformation on a 640 x 480 colour im-
age. these operations must be carried out 307,200 times. An analysis shows that the
RGB-HSI transformation on a 640 x 480 image would take 3.39 seconds for a Silicon
Graphics Indy workstation. Even a linear transformation, like the RGB-YIQ trans-
formation, requires a considerable amount of “number-crunching”. The RGB-YIQ
transformation of a 640 x 480 image takes 1.13 seconds on the same workstation. The
whole process of searching for a geon and navigating towards it would likely require
the analysis of tens of colour images, and the time required to do the colour space
transformation would add up quickly. Also, experiments show that segmentation in
the RGB space gives acceptable performance. Therefore. for the sake of speed and
simplicity, we have chosen the RGB colour space to conduct colour image analysis

and segmentation.

1.2. Colour Segmentation. The purpose of colour segmentation is to par-
tition an image into meaningful regions based on the colour characteristics of the
scene. There are two variations to the problem of colour segmentation [53]. The first

applies to situations where some particular colour space characteristics are known a
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priori and the goal is to detect regions which satisfy those characteristics. The second
variation arises when there is no a priori knowledge regarding colour, and the goal is
to segment the image into regions with similar colour space characteristics. The lat-
ter often calls for sophisticated thresholding, clustering or region growing techniques
since little or no human interaction is permissible. Since we have a priori knowledge
of the geons’ colour, our problem belongs to the first category. Our task is further
simplified by the fact that we only need tc segment the geons’ colour from the rest
of the scene, so essentially we are dealing with the problem of binarizing an image in
colour space.

Binarizing a 1D histogram of a grayscale image involves determining the lower
threshold value ¢t; and the upper threshold value t; (see Figure 4.1(a)). All pixels
with grayvscale value between t; and ¢y are considered foreground, and the rest are
considered background. This can be extended to a 2-D histogram in which the fore-
ground is defined by a rectangular box, whose sides are bounded by ¢,. ¢4, t2r. toy,
as shown in Figure 4.1(b). By the same reasoning, a 3-D histogram (colour histogram)
can be thresholded by defining a lower and upper threshold value on each of the R.
G. and B axes. The resulting thresholded region will take the shape of a rectan-
gular parallelpiped. It may not be appropriate to segment multi-dimensional data
by thresholding each 1-D axis independently. Vector quantization or Voronoi tessel-
lation is better suited for segmentation because the multi-dimensionality of data is
taken into account. Figure 4.2 illustrates how vector quantization differs from simple
thresholding in the 2-D case.

The mobile robotics team at the Georgia Institute of Technology has used a very
simple method to distinguish red, green, and blue objects [3]. Given an RGB image,
the “super-components™ of red, green, and blue are extracted. The super-component
of a colour is computed by subtracting the values of the other two components at each
pixel. e.g., super-red is red - (blue + green), super-green is green - (blue + red). Once
the super-components of each pixel have been calculated, the detection of a colour can

be done by simply thresholding the corresponding super-component. For instance, to
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FIGURE 4.1. (a)Segmentation of a 1-D histogram. (b)Segmentation of a 2-D histogram

X

FIGURE 4.2. Segmentation using vector quantization

extract red objects from a scene, the super-red value for each pixel is calculated. If
a pixel’s super-red value is greater than a threshold value t,.. i.e. 7 — (g +b) > ¢,.
then the pixel is considered red. This method is simpler than the multi-dimensional
thresholding method because only one threshold value needs to be defined. compared
to the six threshold values needed for 3-D thresholding (a lower threshold ¢, and a
higher threshold tg for each of the R, G, and B axis). However, the super-component
approach has a serious drawback: only the three primary colours (red, green and
blue) can be extracted. A super-yellow component, for example, cannot be extracted

unless a colour space transformation is done in advance.
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(a) (b)

FIGURE 4.3. (a) Geon placed against a black background. (b) Thresholded
image of (a)

In our research, a simple 3-D thresholding method was used to perform colour
segmentation. A geon is placed against a black background. as shown in Figure 4.3(a)
and its image is captured. The image is then segmented into foreground (the geon)
and background using the super-red method mentioned above (see Figure 4.3(b)).
The threshold ¢, is found by trial-and-error. In this case. segmentation was done
using the threshold r > b+ g + 20, where 7, g.b € [0, 255]. Although this threshold is
successful in segmenting the image in Figure 4.3(a), it is not restrictive enough and
thus may not work for other backgrounds that are more rich in colour. i.e.. it may
mistake many other coloured objects in the background as part of the foreground. To
further refine the thresholded region, a colour histogram of the geon is plotted (see
Figure 4.4(a)). The cluster of points in the colour histogram represents the colour
of cach pixel in the image shown in Figure 4.3(a). By observing the 2-D projections
of the colour histogram (Figure 4.4(b)-(d)). thresholds can be selected such that the

thresholded region contains most of the points. In this case, the thresholds are:
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(4.10) b < 0467r —7
(4.11) b < 75

(4.12) r > 50

(4.13) b < 1.333g + 10
(4.14) b > 1.333g —86.7
(4.13) g < 115

(4.16) g < 0.639r —12.78
(4.17) g > 0.381r —45.7

Coloured objects are subject to slight variations in colour under different light-
ing conditions [25, 26]. Figure 4.5(a) shows the colour histogram of the same scene
taken simultaneously under both fluorescent light and sunlight. The colour varia-
tion is evident when one compares the 2-D projections of the histogram shown in
Figure 4.5(b)-(d) with those in Figure 4.4(b)-(d). To take into account this colour
shift. the thresholded region must be enlarged to include most of the points under
both lighting conditions. (The case in which only sunlight is present is not considered
since we assume that we have control over the illumination). In order to accomodate
both scenarios. the threshold region must be made larger so that most of the points
in the histogram shown in Figure 4.4 and the one in Figure 4.5 are included. The

new thresholds are shown below:



(4.18)

(4.19)
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FIGURE 4.4. (a)The 3-D colour histogram of the geon. (b)Projection of the
3-D histogram on the blue-green plane. (c)Projection of the 3-D histogram
on the red-green plane. (d)Projection of the 3-D histogram on the red-blue
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4.1 FOCUS OF ATTENTION

(b)

(d)

FIGURE 4.5. (a)The 3-D colour histogram of the geon under sunlight and
fluorescent light. (b)Projection of the 3-D histogram on the blue-green plane.
(c)Projection of the 3-D histogram on the red-green plane. (d)Projection of

the 3-D histogram on the red-blue plane.

Even the best colour segmentation algorithms sometimes fail to separate target

objects from their background. The most common causes of failure are variations

in lighting conditions, specular reflections, and shadows. Many colour constancy

algorithms have been proposed [25, 26, 32, 58], but the problem of colour constancy

remains largely unsolved. Most schemes proposed in the field of colour segmentation

assume target objects rich in colour information, which is not the case in this research.

Segmentation in a different colour space may improve performance. but we chose

not to do any colour space transformation in order to limit the computational time.
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Clustering and region growing methods can also be employed to achieve more accurate
colour segmentation [15, 42, 53, 60]. Those methods were not considered, again due

to the issue of speed.

2. Locating the Geons

The previous section described how a geon is extracted from a cluttered scene,
which is essentially how the focus of attention problem is solved. This section ad-
dresses the issue of how the location of the geon, in particular its bearing and distance
with respect to the robot. can be deduced from the information obtained from the

last section.

2.1. Data Preprocessing. The binary image obtained after the colour seg-
mentation is likely to contain noise. The noise may be intrinsic to the scene, due to
random variations in the RGB values of each pixel (see Figure 4.6). This kind of noise
is usually only a few pixels in size. To alleviate the effect of this noise. a morpho-
logical erosion [52] operation is performed on the image. In a morphological erosion
operation. any foreground pixel that has one or more background pixel connected to
it is rejected and labelled as a background pixel. As a result, any blobs that are only
a few pixels in size, or any lines less than 3 pixels wide will be filtered out.

Another scenario is when some other object in the background has the same
colour as the geon by coincidence (Figure 4.7). Blob analysis is used to solve this
problem. A blob is a group of pixels that are connected. When more than one blob
is present in the image, the largest blob is taken as the geon and all other blobs are
discarded. We assume that all background objects with the same colour as the geon
arc smaller than the geon (or at least appear smaller in the image).

The measures mentioned above may still fail to separate the geon from noise or
other background objects with similar colour. Two scenarios may arise: an object
with the same colour as the geon may appear to be overlapping the geon from the
camera’s point of view; thus the geon and the object will be considered as one single

blob. Another case is when there is an object of the same colour as the geon and the
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FIGURE 4.6. The presence of random noise in the thresholded image

(@) (b)

FIGURE 4.7. (a) Geon placed near a background object with similar colour.
(b) Binarized image of (a).

object appears larger than the geon. In this case the object will be considered as the
geon, while the real geon will be discarded as background. There appears to be no

casy way around these two problems. We chose to ignore these special cases because
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the chance of them occuring under the circumstances of our experiment was quite

slim.

2.2. Visual Search. As will be addressed in the next section, the robot
navigation process will presumably bring the robot within a distance of about 1 meter
from the geon, and the vision system will also be roughly facing the geon. Once this
point has been attained, two tasks remain for the active vision module: to bring the
geon within the camera’s field of view, and to deduce the location of the geon.

Although we can assume that the vision system will be pointing towards the
direction of the geon, it may still lie outside the camera’s field of view, especially
since a narrow angle lens is used for our camera in order to minimize spherical lens
distortion. Some sort of camera movement is therefore needed to ensure detection
of the geon. A simple search is performed by moving the camera with the Pan-Tilt
Unit (PTU) to cover a large area in front of the vision system. After every PTU
movement the colour camera captures an image and performs colour segmentation.
Once the segmented image shows a blob large enough to be considered a geon, the
PTU movement stops. At this point, the geon may be only partially inside the
camera’s field of view, as shown in Figure 4.8(a). If this is the case, further camera
movements will be required. For example, in the case shown in Figure 4.8(a), where
the blob occupies the rightmost columns in the image, the camera must pan clockwise
in order to bring the entire geon within field of view. Likewise, if the blob lies on the
topmost edge of the image, the camera must tilt up, and vice versa. The question is
by how much the camera should pan or tilt.

Referring again to Figure 4.8(a), the horizontal distance d (in pixels) between the
leftmost edge of the image and the leftmost pixel of the blob can be used to determine
the desired camera pan angle to bring the geon within view. If we can assume that
spherical lens distortion is negligible (which, as mentioned earlier, is a reasonable
assumption in our case), then 64, the angle subtended by d (See Figure 4.8(a)) can

be determined by the following equation:
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(a) (b)

FIGURE 4.8. (a)Geon partially within camera’s field of view. (b)Image of
the same geon after one iteration of adjustment.

d
(427) 04 = 72- X Gfm.

where 64 is the angle subtended by d, 8, is the angle subtended by the camera’s
field of view, and h is the total number of columns of pixels in the image.

Once 64 is obtained, we know that the camera can be panned clockwise by any
angle smaller than 6, in order to bring a larger portion, if not the entirety of the
geon into view. We chose to pan the camera by (0.75 x 64)° each time. Figure 4.8(b)
shows the image of the geon after the camera adjustment. If the geon is still partially
out of view, which appears to be the case here, the new 6, will be calculated and the
above-mentioned procedure will be reiterated. If the object remains partially out of
view after several iterations, or if the object occupies both the leftmost and rightmost
edges of the image, then the object is too large to fit into the camera’s field of view,
and the robot will be required to move backwards a little to reattempt the visual

search.
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The case in which the blob is lying on the top or bottom edge of the image is

handled in very much the same way and therefore will not be elaborated here.

(a)

FIGURE 4.9. Distance between robot and geon

2.3. Determining Distance. With the entire geon within view, the hori-
zontal distance between the robot and the geon can be determined quite easily. As
illustrated in Figure 4.9, the bottommost point of the blob usually corresponds to
the point on the geon closest to the base of the robot, and that point is usually in
contact with the floor. That point, designated as point x. will be used as a reference

point. The horizontal distance d between point x and the base of the robot is:

(4.28) d = heam X t(m((g —¢) — 2= 1 g)

where h.m is the vertical height of the colour camera with respect to the floor, ¢ is
the tilt angle of the PTU, 8y,, is the angle subtended by the camera’s vertical field of
view. and @ is the angular difference between the bottom of the image and point x.
As pointed out before, § can be calculated using the equation (refer to Figure 4.9(a)

for variable definitions):
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The PTU's tilt angle ¢ can be easily obtained by calling a PTU library function.
Although simple and robust, this method of distance estimation can only offer
limited accuracy. Experiments show that it gives an error of about +5% at a distance
of 100cm. Several sources may contribute to this error: firstly. the tilt angle of the
PTU, given by a PTU software library function., is of limited precision: secondly. the
calculation of 8 in equation 4.29 ignores the effect of spherical lens distortion. albeit a
small one; thirdly, the binarized image that shows the geon as a blob, like the one in
Figure 4.10(a), may not portray the geon accurately. Specular reflections and shad-
owing often render the geon partially undetected, as illustrated in Figure 4.10(b).
Nevertheless. this method was adopted because the recognition process does not re-
quire a high degree of accuracy in the measurement of the distance. The distance is
used to ensure that the laser rangefinder is within its operating range (the rangefinder
was calibrated up to a range of 2 meters), and is also used to determine the placement

of the laser scans, which will be discussed next.

(a) (b)

FIGURE 4.10. (a)Geon under the influence of specular reflections. (b) Bi-
narized image of (a).
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2.4. Positioning of Laser Stripes. The recognition algorithm proposed in
this thesis relies on strategic placement of laser stripes on the geons. The 3 horizontal
laser stripes are placed so that the geon is divided vertically into four equal portions,
and the 3 vertical stripes are placed such that the geon is divided equally into four

horizontal portions. This is illustrated in Figure 4.11.

FIGURE 4.11. Desired locations of laser stripes on the geon.

The difficulty stems from the fact that the laser projectors are not aligned with
the optical axis of the camera. Therefore some geometric calculations are required to
determine by how much the PTU should pan or tilt to accomplish proper laser stripe
placement.

The first step is to establish a “bounding box™ around the geon in the binarized
image (see Figure 4.12(a)). The horizontal laser stripes h;, ks, and hz should divide
v into four equal parts. Figure 4.12(b) shows the side view of the system. If 8, is the
angle subtended by v, and 8, 012, 6,3 is the angular distance between point p and

hi. ha, and hj, respectively, then:
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(4.30) Oy, = 0.7536,

(4.31) Or2 = 0.56,

(4.32) Br3 = 0.256,

(4.33) 6, = % x 0,

where 6, is the angle subtended by the camera’s vertical field of view.

dK

(a)

FIGURE 4.12. (a)Desired locations of the horizontal laser scans. (b)Side
view of the vision system and the geon.

The next step is to calculate A¢ (see Figure 4.13), which is the angular difference

between point p (the bottom of the geon) and the current projection of the horizontal

-
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laser. Using simple trigonometry, 3, and 3> can be determined by equations 4.34

and 4.35:

hpru + hiassing
d — hiascosd

(4.34) B, = arctan(

s

(4.35) B = 5

(g_¢_Ph):¢+ph

Subsequently, Aé can be determined by the following equation:

(4.36) Ap=7—f1— (7= F2) =01 + B2

The desired tilt angles for h,, ho, and h3 are simply A¢ + 0y, Ad + 62, and

Ao + bh3, respectively.

h laser,

cam

FiGURE 4.13. Illustration of how the proper placement of horizontal laser
stripes can be inferred.

The placement of the vertical laser stripes also relies on geometric calculations.

Figure 4.14(a) shows the top view of the vertical rangefinder’s layout. The angle
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(a) (b)

FIGURE 4.14. Definitions of geometric variables for the vertical laser scans.

spanned by the geon relative to the camera is 6, which can be calculated using the

equation below:

b
(4.37) 6 = “; X 000

where d; is the width of the image (in pixels), and #y,, is the angle subtended by
the camera’s horizontal field of view. d, the distance between the geon and the
camera, can be derived using the method described in Section 2.3. ¢ is the angular
difference between the laser projector’s current direction and the leftmost point of
the geon. A¢ is the angle spanned by the geon relative to the vertical laser projector.
The following equations are used to calculate ¢ and A¢ (Refer to Figure 4.14(b) for

variable definitions):

(1.38)

(S]]



(4.39)

(4.40)

(4.41)

(4.43)

(4.44)

4.2
¢ = datan(p,) — dtan(0,)
g = dtan(p,)
f=9+c
o = arctan]) -
Y= arctan(div)

Ao = — Py —O— U

o)X

The desired pan-angles are simply:

(4.45)

(4.46)

(4.47)

&1 = @ +0.25A0

Oy2 = ¢ +0.5A0

bu3 = & + 0.75A¢
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To summarize, this section has presented the method for determining the three
tilt angles 6,, Oh, Ox3, and the pan angles ¢,;, @2, ¢.3, which will place the six laser

stripes onto the desired locations of the geon.

3. Robot Navigation

The ability to navigate in an unknown environment is a fundamental requirement
for a mobile robot. Without a priori knowledge of the environment. the robot must
be able to perceive its surroundings using its sensors., and execute actions that are
appropriate for that environment and the goals of the robotic system. Mobile robots
often need to obtain information from a combination of several sensor systems. For
example, SPOTT [67] combines information from sonar, laser rangefinders, infrared
sensors, and tactile (bumper) sensors to perform navigation. The rationale behind us-
ing multiple sensor types is that each type of sensor has its strengths and weaknesses,
and the strength of one sensor type can remedy the weakness of another.

Autonomous robot navigation is a very extensive field in its own right. Since
this research is not directly related to robot navigation, a detailed analysis of this
topic will not be presented in this thesis. Instead, we will give a description of the
navigation algorithm used in the experiments.

The role of robot navigation in this research is to bring the robot to the vicinity
of a geon. if one exists in the surroundings. Once this is accomplished. the vision
system will take over. First, it will perform a visual search of the geon. Then. upon
detection of the geon, it will attempt to infer the geon’s identity based on range data.

The navigation system! employs the ring of sonar sensors on the robot (see Fig-
ure 3.10), and a colour camera mounted on the robot such that it points towards the
floor at an oblique angle (this is a different camera from the one on our vision system).

The camera is equipped with a wide angle lens to give it a broad field of view. The

'The navigation system used in this research was implemented by Francois Bélair, Deep Jugessur,
and Robert Sim of the Mobile Robotics Laboratory at the Centre for Intelligent Machines, McGill
University.
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robot perceives its environment through colour images, and range information from

the sonar. Three assumptions are made in this navigation scheme:

(i) The colour of the floor is uniform and is known a priori.
(ii) The colour of the target (geon) is known a priori.
(iii)) Any object whose colour is not the same as the floor’s colour is an obstacle.

(Note: A target is also considered as and obstacle.)

Once the colour camera detects a colour different from that of the floor, it will
be registered as an obstacle, and its location determined through a geometric trans-
formation. Note that in this case, any target is also an obstacle, since the target is
a geon. and collision between the robot and the geon is undesirable. Sonar is also
used for obstacle detection. The advantage of using sonar is that it can acquire range
information from all directions quickly and inexpensively. The drawback is that sonar
suffers from certain deficiencies such as lack of accuracy and multiple reflections [22].
To minimize their effect, multiple sonar readings may be taken at each step.

The next step is path planning. The goal of path planning is to find the most
efficient route that brings the robot from its current position to the target position
without colliding with obstacles. A safe polygon approach to path planning was
adopted. Figure 4.15(a) illustrates the concept of safe polygon. For each obstacle in
the robot’s vicinity, a line, perpendicular to the shortest distance between the robot
and the obstacle, is drawn. The distance between the obstacle and the line. d. is
set to a value greater than the robot’s radius. The line divides the plane into two
regions: an admissible region, and an inadmissible region. The intersection of all the
admissible regions corresponding to each obstacle produces a polygon (in this case a
pentagon). as shown in Figure 4.15(b). This polvgon is referred to as the safe polygon
since the robot can move safely within it. In the case where no obstacle is detected
near the robot (Figure 4.16(a)), a default bounding box of pre-defined size is applied

as the safe polvgon. If there exist some obstacles, but they do not form a safe polygon
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‘ (see Figure 4.16(b)), then the safe polygon is defined as the intersection between the

default bounding box and the admissible regions corresponding to the obstacles.

Q) (b)

FIGURE 4.15. Illustration of the safe polygon concept.

.
N

/ .
& )

robot robot

e

\ / @

* default bounding box safe polygon

obstacle

() (b)

FIGURE 4.16. Default bounding box.

To navigate towards the target, the robot moves towards the vertex on the safe

polygon that is closest to the target, as shown in Figure 4.17. The safe polygon will
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change shape every time the robot makes a move, so the shape of the polygon must
be constantly undated. By moving to the vertex closest to the target every time, the

robot will eventually be brought close enough to the target.

e ® target

vertice closest to
the target

safe polygon

FIGURE 4.17. Choice of vertice.

In summary, we employ a simple and robust navigation scheme to bring the
robot close to the geon for its recognition. The robot wanders in the environment
until the geon is detected. Upon detection, the geon is registered as the target and
path planning is executed. A colour camera and sonar are used to perceive the
environment, and a novel safe polygon approach is used for path planning. The
goal of this navigation process is to bring the robot within a certain distance (approx.
90cm) from the geon. Once that goal is attained, our active vision process can proceed
to bring the geon within the rangefinder’s field of view using colour segmentation and

PTU movements, as described earlier in this chapter.
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4. Summary

This chapter has presented the active vision module, which is responsible for
locating geons in an indoor environment, navigating towards a geon, and strategically
placing laser stripes onto the geon. Under the assumption that the geons are painted
in a specific colour, a colour histogram segmentation method is used to extract them
from the scene. A novel safe polygon path planning technique is used to bring the
robot to the vicinity of the geon. Proper laser stripe placement is accomplished by
geometric reasoning.

The next task, which is to identify the geon based on the acquired range data,

will be addressed in the following chapter.
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CHAPTER 5

The Geon Recognition Module

This chapter presents a detailed description of the geon recognition module of our
vision system. Our recognition module is composed of several stages. as shown in
Figure 5.1. The first section of this chapter addresses the first two stages, namely
the data acquisition stage and the data preprocessing stage. Section 2 introduces
the concept of evidence-based recognition. The next three sections outline the three
tvpes of evidence used in our recognition scheme, and how they are inferred. Finally.

Section 6 describes the decision-making process based on available evidence.

1. Data Acquisition and Preprocessing

Section 4.2 explained how the desired PTU’s pan and tilt angles for proper laser
stripe placement can be calculated based on camera geometry. Therefore, to obtain
the range data, the rangefinder simply needs to pan or tilt the PTU to the precal-
culated angles, and grab a frame each time. Range data can then be obtained from
cach frame using the method described in Chapter 3.

Two issues must be addressed before the range data can be used for recognition.
First. smoothing must be performed to alleviate noise. There are many methods
for smoothing one dimensional data, and Gaussian smoothing is probably the most
widely used. One drawback to the Gaussian smoothing kernel is that in the case

of spurious noise, where one or two points of the one-dimensional profile have values
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Range Data Laser Rangefinder
Acquisition and PTU

Raw Range
Data

Smoothing and

Preprocessing
Background Removal

Enhanced
Range Data

!
Evidence Curve/Corner Detection

Generation Evidence for Bending/Tapering

Evidence
Rule-base

Evidence-based | Identify Geon Based on
Recognition Evidence Obtained

|

Results

FIGURE 5.1. Stages of the recognition process

significantly different from their neighbouring points. it exhibits the undesirable effect
of spreading the error to its neighbouring points, as illustrated in Figure 5.2(a)-(b).
Noise of this nature is common in range data, since laser rangefinders are often prone
to the effect of specular reflections. Therefore, the Gaussian kernel is not used for
smoothing range data in our experiments. Instead, the median smoothing kernel is
used since it does not have the undesirable effect of spreading error to neighbouring

points (see Figure 5.2(c)).
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FIGURE 5.2. (a)Points along a digitized line. (b)The digitized line in (a)
after Gaussian filtering. (c)The digitized line in (a) after median filtering.

The other issue is the removal of background. The rangefinder sees parts of the
laser stripe reflected off the floor (or the table), as well as those reflected off the geon.
making it necessary to distinguish one from the other.

Our background segmentation method is based on two sets of information. The
first set of information comes from the binarized image of the geon, which is obtained
by thresholding the colour histogram of the image. A Vertical Region Of Interest
(VROI) can be established in the binarized image, as shown in Figure 5.3. A margin
of several pixels is adopted on each side to take into account the slight discrepency
between the image obtained by the colour camera and the image acquired by the
B/W camera, and the effect of the morphological erosion performed on the binarized
image. All points lving outside the VROI are quickly rejected as background. Note

that we did not attempt to establish a Horizontal Region Of Interest (HROI), because
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the colour camera is mounted above the black and white camera. Thus the colour

image’s HROI does not correspond to that of the black and white image.

Vertical Region of
Interest (VROI)

— Bmanz:q
tmage ot
geon
Laser

Stnpe
/ Range protile
rejected as rejected as
backyground background

FIGURE 5.3. Background removal based on VROI

The second set of information is derived from the geometry of the robot and
the vision system. Referring to Figure 5.4, the distance between the image plane
and the laser projection on the object, d, can be used to infer the vertical distance
between the laser projection and the image plane, f,4-. (d is obtained directly from
the rangefinder). If the laser is projected onto the floor, then hg.r will be roughly
equal to the height between the camera and the floor. h.,,. The values of Ay,q.r
corresponding to every point on the range profile are calculated, and if A er > hcam.

then the point is rejected as background. hyser and A, are calculated through

equation 5.1 and equation 5.2, respectively:
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= T )
(5.1) hiaser = d X COS(; — QpTU — 0)

(5.2) heam = hprU + Ream to_pPTUCOS(OPTU)

(Refer to Figure 5.4 for definition of variables.)

The value of @ ip equation 5.1 is calculated based on the location of the laser

stripe on the image, and the known value of the angle subtended by the camera’s

FIGURE 5.4. Background removal based on the vision system’s geometry

In the experiments. a lcm margin is given to A, to account for inaccuracies
in range data and angle measurements. Thus. a point is rejected as background
only if hygser > heam — 1. This margin may cause some “good” points to be filtered

out. We assume that this discrepancy will not seriously affect the performance of the

recognition process.

68



5.2 EVIDENCE-BASED RECOGNITION

Another method for background range data removal was also considered. Given
a range profile, like the one shown in Figure 5.3, the first and last corners of the
profile correspond to the background limits. Therefore, once those two corners are
detected. the points to the left of the first corner and those to the right of the last
corner can be considered as background. This method was rejected because we could
not assume that the quality of laser reflected off the background will be as good as
that reflected off the painted geons. In the experiments. parts of the laser stripe often
hit dark patches on the floor and gaps between floor tiles, which resulted in noisy
range data poorly suited for corner detection.

After these data preprocessing steps, the resulting range data are ready to be

used for recognition. The following sections describe our recognition algorithm.

2. Evidence-based Recognition

As mentioned in Chapter 2. the classical approach of model-based matching is
not suitable for our task due to the qualitative nature of geons. Instead, an evidence-
based recognition technique was chosen.

Evidence-based recognition[33] identifies 3-D objects by looking for notable fea-
tures of objects. Traditional object recognition techniques use quantitative infor-
mation derived from the image to perform recognition by mapping all information
into model representations. Such an approach involves graph-matching which has
exponential time-complexity. Rather than using all such information, the use of onlyv
“remarkable” information, or evidence, which strongly cues certain objects. may dras-
tically speed up the process. For instance, Jain and Hoffman[33] used three types
of evidence conditions based on morphological, path, and boundary information to
generate an evidence rulebase to identify 31 different objects from range data.

Since our recognition scheme is based on sparse range data of objects, it is impor-

tant that we can extract enough evidence - from the little data available - to identify
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the objects with a certain level of accuracy. We used three types of evidence fea-
tures to identify the geons: evidence of tapering, evidence of bending, and presence
of corners, curve segments, and straight line segments in the range profiles.

The next three sections will describe how the three evidence features mentioned

above are determined based on the range profile.

3. Curvature, Line, and Corner Detection

Considerable research effort has been placed upon curvature estimation and line
ficting [41, 49, 63]. Since digitized curves often occur as contours of objects and
regions, estimation of such curves can facilitate feature extraction for object repre-
sentation and recognition [63]. A reliable curvature estimation algorithm is crucial
to our task since the recognition of the geons is dependent on information such as the
presence or absence of curves, straight lines, and corners.

A range profile of any of our geons can contain a combination of curve segments,
line segments, and straight lines (see Figure 5.5). Our curvature estimation method
must be able to identify those components within a digitized curve. The task is made
simpler by the fact that no quantitative information (amount of curvature, angular
size of corner, length, etc.) is required. On the other hand, the task is made more
difficult by the fact that our digitized curves are derived from range data which are
typically quite noisy, and most curvature estimation algorithms tend to be sensitive
to noise.

Three different curvature estimation methods were implemented for our exper-
iments and their performance compared: Ramer’s method[49]. Wall’s method[63],
and O’Gorman’s method[41]. The first two methods®. although quite fast and ro-
bust. were eventually dropped. The main reason is that these methods model curves
as piccewise linear segments, as shown in Figure 5.6. Therefore, there is no evidence
to show if the profile is made up of just a curve, as shown in Figure 5.6(a), or a curve
and a straight line, as in Figure 5.6(b). O’Gorman’s method, on the other hand.

'Ramer’s method and Wall's method were implemented by Robert Sim, currently a graduate student
in the Centre for Intelligent Machines, McGill University.

70



5.3 CURVATURE, LINE, AND CORNER DETECTION

straight
curve ‘ line segment

(a) (b)

FIGURE 5.5. (a)A laser scan on a tapered cylinder. (b)The range profile
corresponding to the scan in (a).

explicitly differentiates and locates curve segments, line segments, and corners on a

digitized curve. as shown in Figure 5.6(c).

3.1. O’Gorman’s Curvilinear Feature Detection Method. The basic
principle of O’Gorman’s curvilinear feature detection method is to first estimate the
local curvature along the digitized curve, and then analyse the plot of local curvatures
to determine the presence and location of curves, lines, and corners. For this method.
the Difference of Slope (DOS) on every point along the curve is calculated. Figure 5.7
illustrates how this DOS is obtained. The point of interest. x, sits in the middle of a
curve segment, M, which separates two curve segments. both of length W. (Lengths
M and W are measured in number of pixels). Two straight lines are then fitted onto
the two curve segments of length W using the Linear Regression method[30]. The
angular difference between the two straight lines, 6, is then computed. The value of 4
corresponding to each point along the curve is calculated, and a #-plot is generated.
In essence, the #-plot describes the local curvature along the digitized curve: segments
of the 8-plot where € = 0 correspond the straight line segments, while sharp, narrow

peaks correspond to corners. Low, wide peaks depict curve segments.
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FIGURE 5.6. (a)Curve fitting using Ramer’s method. (b)Curve fitting of a
curve segment and a line segment using Ramer’s method. (c)Curve fitting
of a curve segment and a line segment using O’Gorman’s method.

For this algorithm to function well, the values of parameters W and M must be
determined with care. The arc length of the curve segment, L (where L = 2W + M)
determines the feature resolution of the'method. The shorter L is. the less interference
between neighbouring features. On the other hand, it is desirable to have a large value
for W. since a long W has the effect of smoothing out random noise in the line-fitting
process. The arc length of the gap, M, should be positive and equal to or greater
than the maximum arc length of a corner[40]. The values of W and M chosen in

these experiments were 10 and 3, respectively.
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FIGURE 5.7. Illustration of the DOS method. (Adopted from [41])

The next step involves feature determination based on the #-plot generated. The
#-plot of a curve segment resembles a wide, low hill, while a corner resembles a narrow,
sharp peak. Theoretically, the #-plot of a straight line should be zero at all points.
However. random noise on the digitized line will result in small “jitters™ on its #-plot.
Therefore, a non-zero threshold, fs,_,_. must be defined such that regions on the f-plot

with values within £6s___ are considered straight line segments. and the zero-range

is defined as:
zero-range: —fs, . <0 <46s,_ .
Crossings into and out of the zero-range is designated as zero-range crossings. s.:
zero-range crossing: 0(s;) = +lg,_ .
A corner or a curve will result in a peak on the #-plot with 6 exceeding f5__ ..
The peak consists of two zero-crossings: s. . at the beginning of the peak. crosses

out of the zero-range, and s, _,, at the end of the peak which crosses back into the

+17

zero-range. Figure 5.8 illustrates a typical @-plot corresponding to a corner. The

width of the peak is the length between the two zero-range crossings, s.-:
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<3+l s-':_;

peak width: s.. =s.

Since corners have narrow peaks and curves have wide peaks, the width of the
peak. s... can be used to make the distinction between the two. The value of a
parameter. S . Needs to be defined such that peaks of width greater than sq ye
are considered curves. Ideally. s, is sufficient to differentiate between curves and
corners. However, real range data tend to be noisy and may render this method
uanreliable. The peak height is therefore used in conjunction with the peak width to
make the decision. Another parameter, 8., .-, is selected such that if the maximum
height of the peak, Gpeqx is greater than Ocorner. and the peak width is smaller than

Scurve- then it is a corner. A peak with s.. > Scrve aNd Opeak < Ocorner is considered

to be a curve.

6

1 zero-range

zero-range zero-range
crossing Sz crossing Szj41

FIGURE 5.8. Typical  — plot corresponding to a corner

Two special cases may arise: Firstly, a peak may have s.. < sqyree 2nd Opear <
Bcorner- Secondly, a peak may also have s.. > Scyrve and Opear > BOcorner- The first
case is considered an anomaly due to noise and therefore regarded as a straight line
segment. The latter is considered as a corner immediately next to a curve, as shown

in Figure 5.9.
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FIGURE 5.9. (a)The range profile of a corner immediately next to a curve.
(b)The 6-plot corresponding to the profile in (a).

[n summary, O’'Gorman’s curvature detection algorithm is an appropriate one
for the purpose of our experiments because of its ability to explicitly distinguish
between curve segments, corners, and line segments. It is also relatively insensitive

to moderate levels of noise in range data.

4. Evidence of Bending

The seven geons considered in this research can be classified into three categories:
bent objects ( bent cylinders and bent cuboids). tapered objects (tapered cylinders
and tapered cuboids), and the rest which are neither bent nor tapered (cuboids.
cvlinders. and ellipsoids). If any evidence of bending can be found in the data. then
the search space can be narrowed down from the seven possible geons to the two bent
geons.

One indication of bending is the presence of a range profile consisting of two
scparate segments, as illustrated in Figure 5.10. Since this is a characteristic unique
to bent objects. it constitutes an evidence of bending. In other words, if any one or
more of the six range profiles on the geon consists of two separate segments, then the

object is either a bent cuboid or a bent cylinder.
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(a) (b)

FIGURE 5.10. (a)A bent cuboid (b)A range profile on the bent cuboid in
(a) which consists of 2 segments.

Another sign of bending is the presence of concavities in the range profile. Out
of the seven geons. only the bent ones have concave surfaces. The projection of
laser stripes on those concave surfaces will result in concave segments in the range
profile. as demonstrated in Figure 3.11. To detect concave segments on the range
profile, we simply made use of the #-plot generated by O’Gorman’s curvature detection
mechanism (refer to Section 2 of this chapter). Any concave segments on the range

profile will result in negative # values on the #-plot, as shown in Figure 5.11(c).

— 7 > — ]

Concave Segment

(a) (b) (c)

FIGURE 5.11. (a)A bent cylinder (b)A range profile on the bent cuboid in
(a) which has a concave segment. (c) @-plot of the profile in (b).

In the event that none of the range profiles show evidence of multi-segments or

concavities, it is still possible to identify bent objects by observing the coordinates
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of the scans’ endpoints. Figure 5.12 shows a bent cuboid and its six laser scans,
none of which consists of two segments or is projected on a concave surface. The
use of the range profile endpoints is similar to the use of edge information, since all
endpoints invariably lie on one of the geon’s edges. If complete edge information
on the geon were available, evidence of bending could be easily deduced from the
presence of the geon’s concave edge indicated in Figure 5.12(a). However, in the
absence of explicit edge information, the endpoints of each range profile must be used

to infer the presence of such concave edges.

Concave edge ™

wp) wey) wpy)

(a) (b)

FIGURE 5.12. (a)A bent cuboid (b)The range profiles on the bent cuboid
in (a) with the left endpoints illustrated.

Figure 5.12(b) shows the horizontal profiles of the bent cuboid, with each of the
left endpoints denoted p;. p2, and p3, and their x-coordinates denoted z(p;). z(p,).
and z(p3). One can determine by observation that the endpoints p;. p2, and p3 lie on
a concave edge. If a straight line is drawn between p, and p3, and if the point p, is
to the right of the straight line, then the points p;. p,. and ps suggest the presence
of a concave edge. For convex and straight edges, p» would fall to the left of the line
and on the line, respectively. To state this mathematically, a concave edge is present

if the following equatign is satisfied:

~1
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z(p1) + z(ps3)

> ko
2 tol

(5.3) z(p2) —

where K is a predetermined value of tolerance to account for inaccuracies.

The same reasoning is used on the right endpoints of the horizontal profiles, as
well as the top and bottom endpoints of the vertical profiles to detect the presence
of concave edges.

There remain some “accidental views” from which the six range profiles of the
geons will not provide any evidence of bending. Figure 5.13 shows one such case.

These accidental views account for most of the erroneous results.

(a) (b)

FIGURE 5.13. (a)A bent cuboid (b)The range profiles on the bent cuboid
in (a), showing no evidence of bending
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5. Evidence of Tapering

Unlike the bent geons, tapered geons do not produce range profiles that con-
tain obvious clues such as multiple-segments or concavities. As a result. evidence of
tapering must be inferred from the endpoints of the range profiles.

A tapered geon’s cross-sections are either consistently expanding or contracting.
Therefore, range profiles with consistently increasing or decreasing lengths are strong
evidence of tapering. This is illustrated in Figure 5.14. The horizontal lengths of
scans hy.ha. and hj are increasing consistently. which implies the object’s expanding
cross-sections. The same logic applies to the vertical scans. In other words, the geon

is considered tapered if any one of the following conditions is satisfied:

(5.4) Lyy > Lpy > Lpg
(5.5) Luyy < Lps < Lps
(5.6) L. > Ly > Ly
(5.7) Ly < Ly < Lys

Of course, there are many viewpoints from which the range profiles of a tapered
geon satisfy none of the above conditions. Figure 5.15(a) and (b) shows one such view.
To take care of these cases, our recognition system relies on another clue based on the
range profile endpoints. Figure 5.15(a)-(d) show a tapered cuboid. a cuboid, and their
corresponding horizontal range profiles. Horizontal distances between the endpoints
are used to determine whether or not the geon is tapered. The definitions of lengths
Li_y. Ly_3, LY _,. L5_5 are indicated in Figure 5.153(d). Observing the profiles of the
cuboid. one can see that the difference between L,_, and L._3 is approximately the
same as the difference between L|_, and L,_;. This is true for all cuboids, cylinders
and ellipsoids in any stable position, but not true for the tapered geons. As can be

seen in Figure 5.15(b), the profiles of the tapered cuboid lack the kind of symmetry
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(a) (b)

FIGURE 5.14. (a)A tapered cylinder (b)The horizontal range profiles on the
tapered cylinder in (a), with consistently increasing lengths.
exhibited by the cuboid’s profiles. Therefore, the tapered geons satisfy the following

condition:

(5.8) lLi—2 — Lo_s| — [L]_y — L5 _3]] > ket

where k¢, is a predetermined tolerance to account for variations and noise.

Note that this condition alone does not guarantee that the geon is tapered, since
bent geons also satisfy this condition. The object must conform to this equation AND
show no evidence of bending to be considered tapered.

Again, there exist accidental views which will lead to erroneous recognition. as
illustrated in Figure 3.16. For example, the range profiles of the tapered cuboid,
shown in Figure 5.16(b), do not show any evidence of tapering mentioned in this

section.

80



5.5 EVIDENCE OF TAPERING

(a) (b)

h;
~
v
L1z
2 Liz ?:z-s

(c) (d)

FIGURE 5.15. (a)A tapered cuboid. (b)The range profiles on the tapered
cuboid in (a).(c)A cuboid. (d)The range profiles on the cuboid in (c).
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(a) (b)

FIGURE 5.16. (a)A tapered cuboid (b)The range profiles on the tapered
cuboid in (a). showing no evidence of tapering

In summary, this section presents two methods of detecting evidence of tapering.
The first one determines whether the geon’s cross-sections are expanding or contract-
ing by checking whether the length of the range profiles is consistently increasing or
decreasing. The second one checks whether the profiles exhibit signs of symmetry, a
property shared by cuboids, cylinders, and ellipsoids. Both methods use information
derived only from the profile endpoints, since tapered objects lack unique surface
characteristics (unlike the bent objects. which have concave surfaces). This makes
the recognition of tapered geons somewhat less reliable, as indicated by the experi-
mental results presented in the next chapter. Note that in both methods the geon

should be centered in the field of view so that all endpoints are within the view of

the rangefinder.
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6. The Decision Tree

A vast number of expert systems utilize decision trees to determine what actions
to execute or to classify objects. The main advantage of using decision trees is that
thev are simple and thus easy to understand intuitively, and their simplicity also leads
to higher speed. One class of decision trees, known as binary trees, can only have
two branches for every node. Each node essentially contains a YES/NO question,
depending on the answer, one of the two branches is traversed to reach the next
node. A binary tree can therefore be easily constructed using a hierarchical structure
of “IF.. THEN” rules. This section describes the binary tree we have implemented
for the purpose of identifying a geon based on its six range profiles. The questions in
each node of the tree are answered by the evidence obtained using methods described
in previous sections of this chapter. Our decision tree is shown in Figure 5.17.

The initial step is to look for evidence of bending. This is done first because. as
mentioned in the last section, evidence of tapering cannot be established unless it is
known that the geon does not show any sign of bending. If evidence of bending is
present. then the remaining possibilities are bent cvlinder and bent cuboid. The deci-
sion is based upon information on the curvature characteristics of the range profiles.
This is difficult because both geons have curved surfaces, and thus will have range
profiles with curved segments. However, the proportion of curved surfaces on a bent
cyvlinder is far larger than that on a bent cuboid. thus one can deduce that in general.
bent cyvlinders will result in more curve segments in the range profiles than the bent
cuboids. The decision tree considers the geon a bent cyvlinder if more than three of
the range profiles contain curve segments, otherwise it is considered a bent cuboid.
The number three was chosen since it is found to minimize the number of erroneous
results based on trial and error.

If no evidence of bending is found, we proceed to check for evidence of tapering.
[f the geon is found to be tapered, then the next step is rather straightforward: since
only tapered cylinders have curved surfaces, the geon can be considered a tapered

cvlinder as long as more than one of the range profiles contain curve segments. A
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FIGURE 5.17. The decision tree

tapered cuboid, on the other hand, only has flat surfaces and therefore its profiles
should not have any curve segments.

Without any evidence of tapering and bending, the geon can either be a cuboid,
a cylinder. or an ellipsoid. The distinction between these three geons must be based
solely on the curvature information in range profiles. The cuboid can be easily distin-

guished from the other two since it is the only one with no curved surfaces. Thus its
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range profiles should not have any curve segments. If curve segments are present, then
we check for the presence of corners. Since an ellipsoid is composed entirely of one
continuous curved surface, its range profiles should not have any corners. Therefore
the geon must be a cylinder if corners are present. In the absence of corners, the geon
is most likely an ellipsoid, but in some rare cases it can also be a cylinder. Figure 5.18
shows a view from which a cylinder’s range profiles have no corners. Thus. we check
the number of curved range profiles. If all the six range profiles are curved, the geon

is certainly an ellipsoid, otherwise it is considered a cyvlinder.

ad

CC(

(a) (b)

FIGURE 5.18. (a)A cylinder (b)The range profiles of the cylinder in {a).
showing no presence of corners.

The use of decision trees for recognition has a few drawbacks. Firstly, for many
complex real world problems decision trees can become too large to be understandable
or manageable. We did not have to deal with this problem due to the small number
of geon classes considered. Secondly, decision trees tend to be inflexible - if we were
to add another class of geons to the seven we already have. the whole tree would
have to be restructured, which may be difficult. Thirdly, a tree demands discrete.
unambiguous answers (unless a “fuzzy tree” is used). In particular, a binary tree

can only accept YES or NO answers, and therefore cannot take into account any
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uncertainty or quantitative inputs. Nevertheless, the desire for speed and simplicity
prompted us to adopt this approach for our decision-making process.

In this chapter we have described the preprocessing stage which “cleans up” the
range data prior to recognition. This involves background removal and median filter-
ing to alleviate noise. The methods of corner/curve detection and inferring evidence
of tapering and bending were also presented. Finally, the last section explained the

structure of the decision tree for the recognition process.
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CHAPTER 6

Experiments

Three sets of experiments were performed to test different aspects of our active vision

and geon recognition system:

(i) The testing of our geon recognition algorithm using computer-generated su-
perquadrics.

(ii) The testing of our geon recognition system’s performance on real range data.

(1ii) The testing of the overall system, which includes the robot navigation, active

vision, and the geon recognition using the visual system mounted on a mobile

robot.

The approach to each set of experiments and their results are discussed in the

first three sections of this chapter.

1. Recognition on Simulated Data

Our geon recognition algorithm was tested using computer simulation. 3-D mod-
els of geons were generated using the software makesq'. which requires the user to
enter 18 parameters for a superquadric shape. The software takes the 18 parameters
and generates the 3-D points for the superquadric’s surfaces. The surface points cor-

responding to the locations of the six laser stripes were extracted as scan data for geon

'Written by Kenong Wu[65, 66]
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recognition. For each geon, four variations were produced in order to test the effec-
tiveness of our recognition algorithm in identifying geons with different quantitative
attributes, such as different degree of tapering and bending.

The viewing sphere approach [19, 55, 56, 57] was adopted to test our recogni-
tion algorithm. In this approach, an imaginary sphere centered around the geon is
tessellated into small viewing cells, and recognition is performed from each viewing
cell on the sphere. Since our research assumes that the vision system is mounted on a
mobile robot. and that the geons to be recognized always lie below the vision system’s
height, we do not need to consider the entire surface of the viewing sphere. Instead.
only the shaded region of the sphere, shown in Figure 6.1(a). will be considered. As
indicated in Figure 6.1(b), the region spans the range of elevation angle from 30° to
70°, and the entire azimuth of 360°. The viewing region is tessellated into viewing
cells, each spanning 10° of elevation angle and 10° of azimuth angle, making a total
of 4 x 36 = 144 viewing cells.

Each of the 28 objects (7 geon types with 4 variations of each) can also have
more than one stable position. Recognition was performed by applying the viewing
sphere to every possible stable position of each object. The results are presented and

discussed in the following subsections.

1.1. Tapered Geons. Each of the two tapered objects (tapered cylinder and
tapered cuboid) have four variations in shape (see Figure 6.2). ranging from very
tapered {object 1) to slightly tapered (object 4). The tapered objects have three
stable positions, as illustrated in Figure 6.3. Recognition was performed through all
the 144 viewing cells for every stable position for each object. Tables 6.1 and 6.2
show the recognition rate of the tapered cuboids and cylinders, respectively. The
columns of numbers in boldface indicate the percentage of correct recognition, while
other columns of numbers indicate the percentage of incorrect recognition.

Table 6.1 shows that the recognition rate for the tapered cuboids ranges from
75% to 98% for the first three objects only, which are more prominently tapered.

For object 4, whose degree of tapering is very slight, the rate of recognition takes a

88



viewing cell

viewing sphere

(a)

6.1 RECOGNITION ON SIMULATED DATA

FIGURE 6.1. The viewing sphere.

(b)

Object Stable | Tapered | Tapered | Bent Bent Cubotid | Cylinder | Ellipsoid
Position | Cuboid | Cvlinder | Cuboid | Cylinder
Object 1 1 94 0 0 0 6 0 0
2 98 1 0 0 1 0 0
3 92 6 0 0 3 0 0
Object 2 1 83 0 0 0 17 0 0
2 93 4 0 0 3 0 0
3 81 14 0 0 5 0 0
Object 3 1 75 11 0 0 8 5 0
2 84 4 0 0 11 1 0
3 92 5 0 0 3 0 0
Object 1 1 62 10 0 0 26 2 0
2 62 10 0 0 16 12 0
3 75 0 0 0 25 0 0

TABLE 6.1. Rate of recognition for tapered cuboids (%)

significant drop. Due to the subtlety of its tapering. the recognition system begins to

mistake the tapered cuboid for a simple cuboid. This raises an interesting question:

\When should an object be considered tapered? That is, how subtle can the tapering

be for the object to still be considered a tapered object? This is a rather open-ended

question which is subject to opinion. Psychophysical experiments similar to Brown

et al.’s “pop-up” experiments[14] can be performed to observe how human subjects
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Object 3

FIGURE 6.2. The four different tapered cuboids tested.

respond to this question. The human observers can be shown objects with different
degrees of tapering, and asked to quickly determine whether or not the object is
tapered.

The results in Table 6.1 also indicate that the tapered cuboid is often mistaken
as a tapered cylinder. This suggests occasional failure of our corner/curve detection
algorithm.

The results for the tapered cylinders (Table 6.2) are considerably better. This
is mostly due to the fact that while our curvature detection algorithm quite often
mistakes straight lines and corners as curves, the reverse is not true. Curve segments
with a rcasonable degree of curvature are always correctly identified as curves. This

bias stems from the nature of O’Gorman’s curvature detection method[41]. Under
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Stable Position 1 Stable Position 2

Stable Position 3

FIGURE 6.3. The stable positions of tapered cuboids.

the effect of random noise, the 8-plot of a straight line will have non-zero € values,
and thus will be easily mistaken as the plot of a curved segment. The 6-plots for
curved segments, on the other hand. already have non-zero values for 6. and random
noisc will merely add some perturbation to the already non-zero 8’s, leaving the final

decision unchanged.

1.2. Bent Cuboid. Similar to the tapered geons. four variations of each
bent geon were tested, ranging from very bent (object 1) to slightly bent (object
4). as shown in Figure 6.4. Three stable positions exist for the bent cuboids (see
Figure 6.5). Note that stable position 3 only applies to the bent cuboids. but not the

bent cyvlinders.
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Object Stable | Tapered | Tapered | Bent Bent Cuboid | Cylinder | Ellipsoid
Position | Cuboid | Cylinder | Cuboid | Cylinder

Object 1 1 0 100 0 0 0 0 0
2 1 88 0 0 2 23 6
3 0 100 0 0 0 0 0
Object 2 1 0 100 0 0 0 0 0
2 0 78 0 0 0 4 8
3 0 100 0 0 0 0 0
Object 3 1 0 100 0 0 0 0 0
2 0 90 0 0 0 6 4
3 0 100 0 0 0 0 0
Object 4 1 0 100 0 0 0 0 0
2 0 90 0 0 0 10 0
3 0 100 0 0 0 0 0

TABLE 6.2. Rate of recognition for tapered cylinders (%)

Tables 6.3 and 6.4 show the results for the bent cuboids and the bent cylinders.
respectively. As expected, the recognition rate declines as bending becomes less
prominent. The bent cuboids are also quite frequently mistaken for bent cylinders,
and vice versa. This is a rather difficult problem to tackle, since both geons can
produce range profiles with curve segments, line segments, and corners. As mentioned
in Chapter 5, the decision tree distinguishes the two geons by the number of range
profiles with curve segments. Since a bent cylinder has more curved surfaces than a
bent cuboid, the decision tree identifies the geon as a bent cylinder if more than three

of its six scans contain curve segments. This is not a reliable rule per se: rather. it is

chosen for its statistical likelihood to produce correct results.

1.3. Cuboids, Cylinders, and Ellipsoids. Figures 6.6. 6.8, and 6.10 show
the different variations of cuboids, cylinders, and ellipsoids, respectively. The varia-
tions are different degrees of elongation of the geons. Results are tabulated in Tables
6.5. 6.6, and 6.7. Those for the cuboids are relatively poor, while those of the cylin-
ders are nearly perfect. This is due to the same reason discussed in Section 5.1.1: our

curvature detection algorithm has a tendency to mistake straight line segments and

corners as curves because of noise, but not vice versa.

92




6.1 RECOGNITION ON SIMULATED DATA

Object 1

Object 3

Object 2

Object 4

FIGURE 6.4. The four different bent cuboids tested.

Object Stable | Tapered | Tapered | Bent Bent Cuboid | Cvlinder | Ellipsoid
Position | Cuboid | Cylinder | Cuboid | Cyvlinder
Object 1 1 0 0 98 2 0 0 0
2 0 16 76 2 0 6 0
3 0 1 87 12 0 0 0
Object 2 1 0 0 83 17 0 0 0
2 0 15 75 4 0 6 0
3 0 0] 86 14 0 0 0
Object 3 1 0 0 85 15 0 0 0
2 0 21 73 0 0 6 0
3 0 3 86 11 0 0 0
Object 4 1 0 0 83 17 0 0 0
2 15 18 61 0 0 6 0
3 4 10 83 3 0 0 0

TABLE 6.3. Rate of recognition for bent cuboids (%)

The resuits for the first two cllipsoids are perfect, but for ellipsoids that are

severely elongated, the results become very poor. In most cases they are mistaken as

cyvlinders. This should not be considered as a serious flaw of the recognition algorithm.
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Stable Pasition 2

Stable Pasition 3

FIGURE 6.5. The stable positions of bent cuboids.

Object | Stable | Tapered | Tapered | Bent Bent | Cuboid | Cvlinder | Ellipsoid
Position | Cuboid | Cylinder | Cuboid | Cylinder

Object 1 1 0 0 27 73 0 0 0

2 0 0 0 83 0 0 17

Object 2 1 0 0 10 60 0 0 0

2 N/A N/A N/A N/A N/A N/A N/A

Object 3 1 0 0 43 57 0 0 0

2 N/A N/A N/A N/A N/A N/A N/A

Object 4 1 0 0 52 48 0 0 0

B 2 N/A N/A N/A N/A N/A N/A N/A

TABLE 6.4. Rate of recognition for bent cylinders (%)

since a very elongated ellipsoid does indeed resemble a cylinder, even to the human

observer.

1.4. Summary.

In this part of the experiment we have constructed simulated

3-D surface points for a total of 28 objects (four variations for each of the seven geons).

and all possible stable positions of each object were tested using the viewing sphere

approach. The purpose of the four variations is to test the behaviour of our system

when the geons vary in their degree of tapering, bending, and elongation. Results
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Object 2

Object 4

FIGURE 6.6. The four different cuboids tested.

Object | Stable | Tapered | Tapered | Bent Bent Cuboid | Cylinder | Ellipsoid
Position | Cuboid | Cylinder { Cuboid | Cylinder

Object 1 1 0 0 0 0 83 17 0
2 N/A N/A N/A N/A N/A N/A N/A

Object 2 1 0 0 0 0 89 11 0
2 0 0 0 0 67 33 0

Object 3 1 0 0 0 0 88 12 0
2 0 0 0 0 86 14 0

Object 4 1 0 0 0 0 94 6 0
2 0 0 0 0 94 6 0

TABLE 6.5. Rate of recognition for cuboids (%)

show that our recognition system’s performance degenerates gracefully under extreme

conditions. For instance, the system begins to mistake a very slightly bent cuboid as

a cuboid, or a very slightly tapered cylinder as a cylinder; such behaviour is expected

even for the human observer.
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Stable Position 2

FIGURE 6.7. The stable positions of cuboids.

Object | Stable | Tapered | Tapered | Bent Bent | Cuboid | Cyvlinder | Ellipscid
Position | Cuboid | Cylinder | Cuboid | Cylinder
Object 1 1 0 0 0 0 0 100 0
2 0 0 0 0 0 100 0
Object 2 1 0 0 0 0 0 97 3
2 0 0 0 0 0 100 0
Object 3 1 0 0 0 0 0 100 0
2 0 0 0 0 0 100 0
Object 4 1 0 0 0 0 0 100 0
2 0 0 0 0 0 100 0
TABLE 6.6. Rate of recognition for cylinders (%)
Object | Stable | Tapered | Tapered | Bent Bent | Cuboid | Cvlinder | Ellipsoid
Position | Cuboid | Cylinder | Cuboid | Cylinder
Object 1 1 0 0 0 0 0 0 100
Object 2 1 0 0 0 0 0 0 100
Object 3 1 0 6 0 0 0 15 78
Object 4 1 0 53 0 3 0 25 19

TABLE 6.7. Rate of recognition for ellipsoids (%)

QOther erroneous results can be attributed to the occasional failure of our cor-

ner/curve detection mechanism, as well as certain “accidental views” from which the
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Object 2

Object 3 Object 4

FIGURE 6.8. The four different cylinders tested.

range profiies fail to convey crucial information such as evidence of bending and ta-
pering. Figure 6.11 shows a graph that indicates the relationship between the rate
of incorrect recognition and the location of the viewing cell. The percentage error
ranges from as low as 3% in some viewing cells to as high as 30% in others. This
clearly indicates that our system performance is worse for certain viewing cells, where

accidental views are likely to occur.

2. Recognition of Real Geons

In this part of the experiment, real geons were used to test cur computer vision
svstem. The vision system includes the laser rangefinder, the colour camera. and the
Pan Tilt Unit (PTU). The seven geons were constructed of wood. with the exception

of the bent cyvlinder, which was made of clay.
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Stable Pasition 1 Stable Position 2

FIGURE 6.9. The stable positions of cylinders.

All the geons were painted red, and the active vision module of our vision system
performed colour segmentation on the image by regarding all red pixels as foreground
and anything else as background (refer to Chapter 4 for the details of colour segmen-
tation). Red was chosen because it appears to produce the strongest reflection from
the laser.

The vision system was placed on a bench, 80cm above the floor. Video signals
were fed directly to a Silicon Graphics Indy workstation. Since the system itself
cannot achieve any translational movement, the geon must be placed within the
operating range of the laser rangefinder, which is 70cm to 200cm.

The first step of the process was to search for red objects in the surroundings.
panning and tilting the PTU as required. Once the geon was within the colour
camera’s field of view, geometric reasoning was used to deduce the location of the
geon and the pan/tilt angles required for the proper placement of laser stripes. The
six range profiles were then acquired and recognition was performed. We tested our
svstemn with no less than ten unique poses for each geon. As an example, Figure 6.12

shows the 11 poses we used for the tapered cuboid.
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Object 1 Obiject 2

Object 3 Object 4
FIGURE 6.10. The four different ellipsoids tested.

We also investigated the effect of increasing distance on the performance of our
recognition system. Therefore, each geon was tested at three different ranges: 100cm,
130cm. and 160cm from the camera. The overall results are shown in Tables 6.8. 6.9.
and 6.10.

The results on real geons are somewhat poorer than those in the previous sec-
tion. This is expected since the recognition of real geons involves several problematic
issues which are absent in the recognition on simulated data. Firstly, real range data
contains more noise than simulated data. Secondly, our simulation assumes perfectly

accurate placement of laser stripes on the geons, whereas laser stripe placement on
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FIGURE 6.11. Relationship between error rate and location of viewing cell.

Object Bent Bent | Tapered | Tapered | Cuboid | Cylinder | Ellipsoid
Cuboid | Cylinder | Cuboid | Cylinder

Bent Cuboid 83 17 0 0 0 0 0
Bent Cylinder 17 75 0 0 0 0 8
Tapered Cuboid 0 0 64 9 27 0 0
Tapered Cylinder 0 0 0 82 0 18 0
Cuboid 0 0 10 0 920 0 0
Cylinder 0 10 0 10 0 80 0
Ellipsoid 0 0 0 0 0 0 100

TABLE 6.8. Rate of recognition at range 100cm (%)

real geons is inferred from geometric reasoning, which can be error-prone (see Chapter

4). Lastly. with real geons, the issue of background segmentation has to be accounted

data being discarded.

for. and as mentioned in Chapter 5. background filtering sometimes leads to “good”

The above results also indicate a decline in performance over increasing range. A

major reason that leads to this decline is that the level of noise rises as range increases.
and a higher level of noise results in poorer performance in our curvature detection

algorithm. The other reason for poorer rate of recognition at long range stems from
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View 3

View 4 View § View 6

View 7 View 8 View 9

View 10 View 11

FIGURE 6.12. The 11 unique views of the tapered cuboid used to test the
recognition system.

the background removal method. As mentioned before, background removal was
partly based on geometric calculations. The accuracy of those calculations declines
with increasing range, thus leading to more good data being filtered out. In some

cases range data from the laser, reflected off the floor, are mistaken as surface points

on the geons.
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Object Bent Bent | Tapered | Tapered | Cuboid | Cylinder | Ellipsoid
Cuboid | Cylinder | Cuboid | Cylinder
Bent Cuboid 75 25 0 0 0 0 0
Bent Cylinder 17 67 0 8 0 0 8
Tapered Cuboid 0 0 73 18 9 0 0
Tapered Cylinder 9 0 0 82 0 9 0
Cuboid 0 0 10 0 80 10 0
Cvlinder 0 0 0 20 0 80 0
Ellipsoid 0 0 0 0 0 0 100
TABLE 6.9. Rate of recognition at range 130cm (%)
Object Bent Bent | Tapered | Tapered | Cuboid | Cyvlinder | Ellipsoid
Cuboid | Cylinder | Cuboid | Cylinder
Bent Cuboid 58 42 0 0 0 0 0
Bent Cylinder 25 67 0 8 0 0 0
Tapered Cuboid 0 0 55 36 9 0 0
Tapered Cylinder 9 9 0 73 0 9 0
Cuboid 10 0 10 0 50 30 0
Cvlinder 0 30 0 10 0 60 0
Ellipsoid 0 10 0 0 0 10 80
TABLE 6.10. Rate of recognition at range 160cm (%)

3. Geon Recognition Combined with Autonomous Robot

Navigation

The last part of the experiments is to integrate our vision system with an au-

tonomous robot. and make the robot navigate to search for geons in an indoor en-

vironment. The robot navigation algorithm described in Section 4.3 was employved.

The robot’s movements were restricted to within a “pen” inside the laboratory. so

as to minimize the danger of collision with furniture and equipment. The pen was

roughly 3.0m x 4.5m in size, and was constructed with plastic boards 65cm high. The

geons were either placed on the floor or on a desk of known height. Instead of using a

real desk, a 70cm tall box was used as a substitute. This is because the sonar sensors

on the robot may fail to pick up the legs of a desk, and thus may result in a collision.
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The robot was able to navigate within the pen swiftly without colliding with ob-
stacles. in most cases succeeding to detect and approach the geons within 30 seconds.
In several of the trials, however, the robot got trapped at a local minimum and failed
to converge to its destination. Since this problem only concerns the robot navigation
algorithm, it will not be accounted for in this thesis.

The results for 30 runs in which the robot successfully moved close to the geon
were recorded. Out of those 30 runs, only 60% of them gave correct recognition. Half
of the runs were done with the geon on the floor, and the other half with the geon
on the “desk” (box). The rate of recognition for the latter case was 73%. which was
better than those of the former, 47%. The reason for this difference was that with
the geon on the box, the range between the geon and the rangefinder was relatively
short, approximately 100cm. With the geon on the floor, the range was much longer,
approximately 150cm. This property of diminishing accuracy over range led to the
poorer performance with the geon on the floor.

Another reason for the mediocre overall performance has to do with the robot’s
surroundings. The floor in the laboratory was composed of raised floor tiles. As the
robot travels across the room, its wheels would go into the grooves between the tiles.
causing the robot to tilt by a small angle. As mentioned in Chapter 5. background
removal for the range data was accomplished through geometric reasoning. That
small tilt angle in the robot was enough to upset the geometric calculations, resulting
in occasional failure in background rejection.

In summary, this chapter has presented experimental data to evaluate the per-
formance of our recognition algorithm under three scenarios: recognition based on
simulated range data. recognition of real geons, and combining the vision system
with mobile robot navigation to detect and identify real geons. We have also dis-
cussed issues which affect the outcome in each scenario. For instance, recognition of
real geons involve disparaging factors that are absent in recognition based on simu-
lated data, such as diminishing accuracy over increasing range. Some measures could

be taken to improve the results, and these will be addressed in the next chapter.
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7.1 THESIS SUMMARY

CHAPTER 7

Conclusions

In this research the feasibility of identifying a small set of simple volumetric shapes
based on a few strategically placed laser stripes was investigated. The use of qualita-
tive 3-D shapes, called geons, was inspired by Biederman’s Recognition By Compo-
nents (RBC) theory [8, 9]. An evidence-based mechanism was used in the recognition
process, and a mobile robotic visual system was implemented in order to apply our
research techniques to real data. This chapter gives a brief discussion of our work

and experimental results, as well as suggestions for improvements.

1. Thesis Summary

Our task of geon recognition with mobile robot can be loosely divided into two
parts. The first part, referred to as the active vision module. involves navigation
of the robot in the environment, visual search for objects of interest. and obtaining
relevant range information. These actions call for the need of a mobile robot. a colour
camera, a laser rangefinder, and a pan-tilt unit for camera movements. The details
of the implementation and integration of this hardware were given in Chapter 3. The
goal of the active vision module is to obtain quality range data for recognition by all
available means. This requires a robot navigation algorithm to bring the robot close
to the geon, a colour segmentation algorithm to establish focus of attention, and a

method for proper laser stripe placement. These issues were addressed in Chapter 4.
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7.2 DISCUSSION

The other part of the task is the recognition module. This module is responsible
for processing the range data acquired by the active vision module, and deducing the
geons’ identities based on qualitative attributes of the range profiles.

Chapter 6 presented the experimental results. Our recognition algorithm was
first tested with simulated range data. Results were less than perfect, mostly due to
certain accidental views from which the range data of a geon failed to convey some of
it characteristics. Not surprisingly, results on real range data were poorer than those
on simulated data, since real data brought additional complications such as noise,
inaccurate laser stripe placement, and poor background rejection. The results also
illustrated an important point: under extreme conditions, such as a tapered cvlinder
with very slight tapering, our system had the tendency to overlook the tapering and
mistake the geon as a cylinder. Also, a very elongated ellipsoid was often mistaken as
a cylinder. This kind of error is expected even for a human observer. This suggests
that a qualitative approach to object recognition such as ours may be appropriate for

mimicking human vision.

2. Discussion

This research investigates an approach for identifving simple volumetric shapes
using sparsely spaced laser stripes. Very little work in object recognition has been
done using this technique. Qiang et al[47] proposed a method to recognize polyhe-
dral objects using as few as one laser-stripe scan. The range data is matched against
polyvhedral object models in the database using quantitative constraints such as ab-
solute lengths of scanned segments and heights of the segments’ endpoints. This calls
for the need to store in the database precise geometric measurements of every object
model, which leads to substantial storage requirements and a lengthy matching pro-
cess. Our algorithm, on the other hand, makes decisions based on dichotomous or
trichotomous attributes. The main reason is to conform to the qualitative nature of

geons as proposed by Biederman.



7.2 DISCUSSION

Traditional range-based object recognition utilizes a complete range map of the
scene, and often requires lengthy procedures such as computing surface normals to
every point on the image. Our recognition algorithm, on the other hand, uses only a
small number of one-dimensional range profiles and thus requires minimal processing.
However, the overall recognition process remains quite slow, even though the data
processing alone takes merely a fraction of a second. By far the biggest bottleneck in
the overall process is the Pan-Tilt Unit movement. PTU movements are required to
place laser stripes on designated parts of the geons. but this step can be avoided if a
different rangefinder design is adopted. For instance, Sato’s range-finder design [54]
uses a technique that combines temporal laser switching and a small galvano mirror
to achieve light pattern generation, thus eliminating the need for mechanical moving
parts.

Colour was chosen as the cue for focus of attention, mainly because the acquisition
and processing of colour information is relatively inexpensive and straightforward.
Speed is an important issue in our colour segmentation algorithm, since almost a
third of a million pixels need to be processed in each colour image. We used a simple
thresholding method to separate background and foreground. The thresholding is
done in the RGB colour space so as to avoid the need for colour-space transformations.
This led to fast but somewhat unreliable colour segmentation. The process is sensitive
to changes in lighting conditions. In the experiments, colour segmentation tends to
fail when the geon is placed under direct sunlight. Some of the sophisticated colour
clustering techniques [53] are likely to give much better performance, but they are
too slow for real-time applications. Perhaps future advances in computer technology
can make those techniques fast enough to be feasible.

The removal of background range data was a difficult issue. Focal attention
based on colour imaging could only localize the geons in the surroundings. Additional
measures had to be taken in order to reject the portions of a laser stripe reflected off
the floor. Some research showed that simple shapes can be extracted from a range

image by fitting hyperquadric models to them [29]. This approach was not feasible
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7.3 CONCLUSIONS

due to the sparse range data we used. Eventually we chose to use geometric reasoning
to solve this problem. Experiments showed that this method occasionally failed,
and in the scenario where the mobile robot was involved, performance was severely
compromised when the robot traversed slightly uneven floors, thereby rendering the
geometric calculations inaccurate. One solution that is likely to succeed in rejecting
background range data is to use a polychromatic laser range sensor, a technology
developed recently by the National Research Council of Canada [4]. This device can
provide both range and colour intensity measurements. \With this sensor, the desired
range data can be extracted simply by chcosing those with the same colour as the
geons.

Further research can be done to improve the generality of the system. For in-
stance, a larger number of geons can be considered, and the restriction of the geons
being in their stable positions can be relaxed. To do that. more laser scans may be
required to gather the necessary discriminating information. It may even be feasible
to extend the system to recognize more complex objects composed of several geons.
This will most likely require object segmentation based on intensity/colour images,

combined with range-based recognition of the segmented geons.

3. Conclusions

This thesis has presented a vision system that combines colour imageryv and range
data to search for and identifv geons. Experimental results show that the recognition
is reasonably accurate in both simulated range data and real data. We believe that
performance can be further enhanced by implementing some of the suggested changes
mentioned in the previous section, and that recognition of simple objects based on

very sparse range data is feasible.
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