' ¥ E National Library

of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Biblicgraphic Services Branch  des services bibliographiques

385 Wellington Street
Ortawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the originai thesis
submitted for micrcfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribben or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

- Canada

395, rue Wethnglon
OQuawa (Ontano)

LILE R R T

Cur hie Navee FeRreo e

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de ia thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de repioduction.

$’il manque des pages, veuillez
communiquer avec l'université
qui a confére le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microfcrme est soumise
a la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



Time-dependent phenomena of
excitable cardiac tissue.

by
ARKADY M. KUNYSZ

Department of Physics
Center for Nonlinear Dynamics
McGill University
Montréal, Québec, Canada

March 1996

A thesis submitted to the
Faculty of Graduate Studies and Research
in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

(©Arkady M. Kunysz, 1996



Nationa! Libra
[ L Bt

Acquisitions and

Bibliothéque nationale
du Canada

Direclion des acquisitions el

Bibliographic Services Branch  des services bibliographiques

395 Welington Stree!
Ottawa, Ontano
K1A QN4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontang)

Youwr hiee WMrer sttt

Ol NP Ity

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la thése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12406-1

Canada



Aomes parents, Andrees Mowka,
A omes qmus,
A Franeesea.

Etoala Vir,



Candidates have the option of including, as part of the thesis, the text of a
paper(s) submitted or to be submitted for publication, or the clearly duplicated text
of a published paper(s). These texts must be bound as an integral part of the thesis.

If this option is chosen, connecting texts that provide logical bridges
between the different papers are mandatory. The thesis must be written
in such a way that it is more than a mere collection of manuscripts: in other words,
results of a series of papers must be integrated.

The thesis must still conform to all other requirements of the *Guidelines for
Thesis Preparation™. The thesis must include: A Table of Contents, an abstract
in English and French. an introduction which clearly states the rationale and object-
ives of the study, a comprehensive review of the literature. a final conclusion and
summary, and a thorough bibliography or reference list.

Additional material must be provided where appropriate (e.g. in appendices) and
in sufficient detail to allow a clear and precise judgment to be made of the importance
and originality of the research reported in the thesis.

In the case of manuscripts co-authored by the candidate and others, the can-
didate is required to make an explicit statement in the thesis as to who
contributed to such work and to what extent. Supervisors must attest to
the accuracy of such statements at the doctoral oral defense. Since the task of the
examiners is made more difficult in these cases, it is in the candidate's interest to
make perfectly clear the responsibilities of all the authors of the co-authored papers.
Under no circumstances can a co-author of any component of such a thesis
serve as an examiner for that thesis.



Abstract

The effects of electrical stimulation protocols on the spontaneous activity of mul-
ticellular experimental cardiac preparations are examined. Particular attention is
drawn to the contribution of stimulation history to the dvnamies observed under dif-
ferent experimental protocols. The experimental study focuses on plase resetting.
periodic stimulation and fixed delay stimulation of embryonic chick heart cell ag-
gregates. [n addition. similar experiments are carried out on rabbit atrioventricular
cell clusters to draw a comparison between the dvnamics in rapid and slow inward
current cardiac preparations. Three classes of models of the rhythmic behaviour
are considered. The Shrier-Clay ionic model of electrical activity in spontaneously
beating embryonic chick heart cell aggregates is used to model the response of this
preparation to various stimulation protocols. A modified versicn of this model, which
includes a simplified sodium pump term, is developed to account for the effects of
stimulation history on the response of embryonic chick heart cell aggregates to sus-
tained external stimulation. Simple nonlinear models expressed in terms of difference
equations are considered to describe phase resetting behaviour, phase locki* _, and
the effects of stimulation history on the dynamics during stimulation. A simplified
model of a relaxation oscillator is also proposed that incorporates a time dependent
term. These different classes of models offer complementary approaches to the un-
derstanding of the contribution of stimulation aistory to the development of complex
dynamics in excitable systems. This work shows the importance of the interaction
between time dependent phenomena and the intrinsic properties of excitable cardiac
tissue to the rhythms observed in many experimental and clinical contexts. The
limitations of the current experimental and theoretical approaches are discussed and
their relevance to the modeling of biological systems is examined.



Résume

Cette étude porte sur influence de différents protocules de stimulation électrique
sur I'activite spontance de préparations multicellulaires de tissu cardiaque exeit
able, avec emphase sur la contribution de la stimulation passée aux rythmes ob-
servés, L'étude expérimentale comporte les protocoles suivants: réajustement Jde
phase (“phase resetting”). stimulation périodique et stimulation a deélai fixe. Les
expériences sont eté effectuces sur des aggrégats de cellules de coeur dembryon de
poulet ainsi que des prepaiations multicellulaires prélevées du nocud atrio-ventriculaire
du lapin, afin de comparer les dynamiques observées dans des cellules possédant
des mécanismes ioniques d activation différents. Trois types de modeles théoriques
sont présentés. Le modele iontque de Shrier-Clay, déerivant 'activité électrigque
d'aggrégats de cellules cardiaques d'embryon de poulet, est utilisé pour modeliser
les effets de divers protocoles de stimulation électrique sur activité rvthigque
de cette préparation. Une version modifiée de ce modele comprend une descrip-
tion simplifiée de la pompe sodium potassium. Cette derniere variante permet de
modéliser I'influence des effets de la stimulation passée sur la réponse rythmique
3 divers protocoles expérimentaux de stimulation électrigue. Des modeles non-
linéaires sont aussi développés afin de décrire les phénomeénes expérimentaux. Ces
modeles, présentés sous forme d’équations différentielles ordinaires ou d'équations &
différences complétent les résultats obtenus par simulation numérique des modeles
ioniques décrits ci-haut. Ces formularions théoriques complémentaires permettent
de mieux cerner les principaux phénomenes responsables de 'interaction dynamique
entre les effets de la stimulation passée et les propriétés d'excitahilité intrinséques
de ces préparations de tissu cardiaque. Cette étude démontre qu'un nombre gran-
dissant de rythmes expérimentaux et cliniques peuvent étre interprétés en fonction
de 'influence de la stimulation passée sur 'excitabilité du tissu cardiaque. Ce docu-
ment contient aussi une discussion portant sur les limitations des modéles théoriques
proposés ainsi que sur leur applicabilité a d’autres systémes biologiques.
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Contributions to original knowledge

This thesis studies the importance of stimulation history in the development of
complex dynamics during the application of various stimulation protocols to model
experimental preparations of pacemaking cardiac tissue.

In Chapter 1, | present an introduction to the experimental and theoretical as-
pects of excitable systems with special reference to the heart. In particular, this
chapter contains an introduction to the various types of cardiac dynamics observed
both experimentally and clinically, a definition of overdrive suppression, as well
as a summary of the theoretical methods used to model the dynamical behaviour
of excitable svstems. including ionic modeling, relaxation oscillators and ditference
equations.

Chapter 2 contains an outline of the experimental methods. Tissue preparation
technicues are discussed followed by a description of the experimental setup.

Chai)ter 3 consists of a review of our present understanding of the effects of elec-
trical stimulation on spontaneously oscillating embryonic chick heart cell aggregates,
without consideration of stimulation history dependent phenomena, The experi-
mental study focuses on phase resetting and periodic stimulation. The experimental
observations are compared with the results obtained by numerical simulation of an
ionic model of electrical activity of embryonic chick heart cell aggregates and by
iteration of a simple nonlinear model expressed in terms of difference equations.
The ionic mechanisms underlying the development of complex dynamics are dis-
cussed and the limitations of the ionic model emphasized. I provide an analysis of
the results obtained by iteration of the nonlinear model that helps gain insight into
the mathematical structure of the dynamics considered. Issues of universality are
also discussed. This chapter emphasizes the complementarity of both approaches
in the understanding of biological dynamics that could be improved by including
stimulation history dependent effects.

In Chapter 4, I carry out an extensive study of the qualitative aspects of overdrive
suppression in embryonic chick heart cell aggregates using three sets of experimental
protocols: 1} stimulation at 2 fixed frequency varving the number of stimuli, 2) stim-
ulation at different frequencies, 3) stimulation with different intensities. A math-
ematical model is developed, based on a system of norlinear ordinary differential
equations, to account for the experimental observations. The main idea of the model
is that overdrive suppression arises as a result of a hyperpolarizing current that is

xii



induced by action potentials. This work shows that the frequency of action potentials
ts the major determinant of overdrive suppression. Consequently, during periodic
pacing of spontaneous oscillators at different rates, the fastest frequency where 1:1
entrainment can be maintained is associated with maximal overdrive suppression.

Chapter 5 is devoted to an experimental and theoretical analvsis of the rhythms
arising during fixed delay stimulation of embryonic chick heart cell aggregates. Dur-
ing fixed delay stimulation, bursts of rapid activity interspersed with prolonged
pauses are typically observed for a wide range of delays. Cessation of stimulation
15 followed by overdrive suppression. [ use a simple nonlinear model, based on the
interaction between excitability and overdrive suppression, to describe these dvnam-
ics. A modified version of the Shrier-Clay ionic model of electrical activity is also
presented, that includes a simplified sodium pump term. I show that the complex
patterns during fixed delay stimulation arise due to delicate interactions between
overdrive suppression and phase resetting which can be described in terms of the
underlying ionic mechanisms. Since this preparation is an experimental model of a
reentry tachycardiz, these results may provide a basis for understanding incessant
tachycardias in the intact heart.

Finally, in Chapter 6, I present a dynamical investigation of spontaneously act-
ive cell clusters from the rabbit atrioventricular node. The goal of this study is
to better characterize the phase resetting and the rhythms during periodic stimu-
lation of this slow inward current system. Phase resetting curves of both strong,
weak as well as discr.ntinuous types are obtained by applying single current pulses
of different intensities and latencies following every ten action potentials. Graded
responses are elicited in a wide range of stimulus phases and amplitudes. A single
premature stimulus causes a transient prolongation of the cycle length. Sustained
periodic stimulation, at rates faster than the intrinsic beat rate, results in various
N:M (stimulus frequency:action potential frequency) entrainment rhythms as well
as periodic ur irregular changes in action potential morphology. The changes in ac-
tion potential characteristics are evaluated by computing the area under the actica
potential trace and above a fixed threshold (-45 mV). I show that the variations in
action potential morphology play a major role in the onset of complicated dynamics
observed in this experimental preparation. In this context, the prediction of en-
trainment rhythms using techniques based on the iteration of phase resetting curves
(PRC'’s) are inadequate since the PRC does not carry information directly related

xiii



to the changes in action potential morphology. This study demonstrates the need to
consider graded events which, though not propagated. have important implicutions

in the understanding of dynamical diseases of the heart.
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Chapter 1

Introduction

Recent advances in mathematics and computer modeling have triggered a rapid
expansion in the field of nonlinear dynamics. Today, we have heard of the “butterfly
effect™ and have been confronted with the sheer beauty of a Mandelbrot set. A
fractal dimension was attributed to clouds and raindrops. while planets were caught
in chaotic motion. We have also heard of the “universal” laws of chaotic systems.
The striking fact is that nonlinear systems can be found everywhere.

The proper function of physiological systems relies on a constant exchange and
processing of information. In the body, this is achieved vie the transmission of
electrical or chemical signals. The ability to propagate information relies on an
essential property of many physiological systems: excitability or the possibility of a
large transient excursion of a state variable in response to suprathreshold input (see
below). Since excitability necessarily implies nonlinear dynamical properties, one
may say that nonlinearity is essential to life. The incessant beating of the heart is
probably the most remarkable example of the necessary presence of nonlinear systems
in life. Since heart disease is a primary cause of mortality in most industrialized
countries, there is a very good rationale for conducting extensive experimental and
theoretical studies of such excitable biological systems.

Embrvozic chick heart cell aggregates are one of the model experimental prepar-
ations used in the study of the mechanisms underlying the cardiac rhythm as well
as of rhythmogenesis and dynamical behaviour in excitable biological tissue. Under
suitable experimental conditions, the aggregates beat spontaneously with a regular
rhythm. Because they are devoid of neural and hormonal inputs, virtually isopoten-
tial, and can be made quiescen® at will, embryonic chick heart cell aggregates are
particularly attractive as a model of excitable biological tissue. Moreover, previous



electrophysiological studies have yielded a wealth of experimental data that provided
a good understanding of the mechanisms underlying electrical activity in this prepar-
ation [19, 31, 34, 50. 55, 125, 157, 158, 139, 164]. Periodically stimulated embryonic
chick heart cell aggregates offered the earliest example of chaotic behaviour in a an
excitable biological system [154, 78], In order to account for the various rhythms ob-
served experimentally, simplified models were developed that were later adapted to
other biological systems (for review, see Reference [70]). Although these models are
rather successful at predicting most of the experimental rhythms, their description
does not account for the stimulation history dependent effects that underly the evol-
ution of rhythms observed both clinically and experimentally. As a result, we need
new theoretical approaches to improve our understanding of excitability in biological
systems. The following sections of this Chapter provide a brief survey of some of the
properties of excitable media and of the techniques used in the theoretical modeling
of excitation.

1.1 Excitable media

Excitable media are ubiquitous in nature. An excitable medium is best defined
by its threshold behaviour which is a manifestation of the intrinsic nonlinearity of
this class of systems. The threshold behaviour is directly related to the notion of
external stimulation of the system. By external stimulation, | mean the application
of an electric impulse, the addition of a fixed quantity of a chemical reagent or
perhaps a mechanical input. Provided that the amplitude of the stimulation exceeds
a certain threshold, an excitable medium previously in its resting state reacts by a
large change in the variable(s) describing the state of the system. On the contrary,
a perturbation lower or even slightly lower than threshold will induce a minimum
departure from the initial condition. The excitation phase is transient; the excitable
medium quickly returns to its original state. The return to the initial state is followed
by an episode of refractoriness to further external stimuli (refractory period). The
presence of this refractory period is an essential feature of excitable systems.

1.1.1 A few classical examples

An excitable medium is generally thought to be a collection of spatially distributed
excitable elements which interact with their neighbours according to the laws of dif-
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fusion. It is understood that excitable media contain an energy source which allow
themn to excite under stimulation. This excitation then propagates to neighbouring
elements: we have spread of excitation. The characteristics of the excitation phase
(such as duration. rate and morphology of response) reflect the nature of the intrinsic
mechanisms underlying excitability. In response to stimulation, an originally homo-
gencous excitable medium is capable of organization. This structuring may appear
in both time and space. For example. a front (or traveling wave) of excitation may
propagate from the stimulation front throughout the ertire medium. Provided that
certain conditions are met, an excitable medium may have the self-exciting prop-
erty. Sustained self-excitation can also occur as the wave of excitation catches its
own tail (reentry). The study of excitable media and of the conditions under which
these different patterns of organization occur is of increasing practical and theoretical
interest. In particular, the search for criteria which guarantee stability of specific
excitation patterns has attracted considerable attention (for review see [188]).

The Belousov-Zhabotinsky (B-Z) reaction is one of the celebrated examples of an
“autowave process” occuring in an excitable medium. An autowave process is a wave
phenomenon in which the choice of an initial condition has no other consequence than
the onset of one of several possible stable regimes. In the B-Z reaction, bromate ox-
idizes citric acid in the presence of cerium {as a catalyst). For suitably chosen initial
concentration of the reagents, Belousov [10, 11} observed sustained oscillations in the
colour of the solution, due to periodic changes in cerium concentration. Stimulation
(by mechanically stopping the propagation front) of the circular wave can result in
the formation of a spiral pattern of excitation [179, 187]. As we shall discuss later,
there is evidence that similar phenomena take place in biological tissue. For other
initial conditions (different chemical concentrations of the reagents), these oscilla-
tions are absent [179]. However, the medium is still excitable: a small perturbation
in the form of contact with a hot iron wire may result in the propagation of a single
wave of excitation {180].

In the previous example, we have dealt with an initially homogeneous and con-
tinuous medium. Similar behaviour can also occur if one discretises the excitable
medium. In the experimental context, the best example is offered by the study of
Nagumo et al, in 1963 [135]. In their experiment, a two-dimensional grid of iron
wires was immersed in a bath containing nitric acid. Their results (published only
15 years later), clearly indicate some level of organization within the bath, with the



apparition of spiral waves. Spiral waves as well as other patterns of spatio-temporal
organization were also observed in numerical simulations of cellular automata with
heterogeneously distributed refractory times [130] as well as models of nerve networks
[54]. In this case, we are clearly dealing with a system in which time and space are
discrete. The state of each element of the system depends upon the previous states
of neighbouring elements.

We have mentioned the ubiquity of excitable media. Although they are perhaps
most easily observed in chemical systems and computer models, it is in the biological
sciences that they may have the most importance. Life (at least our notion of it) is
based on the exchange of information. In a string of RN A, special sequences {codons)
mark the beginning and the end of a code that may be specific to the production of a
given protein. Chemical messengers are used to trigger the onset of various organic
reactions. The propagation of nerve impulses determines our ability to perform
physical tasks and to perceive the world. Cardiac function relies on the intrinsic
excitable property of the cardiac tissue. However, many physiological systems are of
uttermost complexity. It is in this context that experiments carried out on chemical,
electrical or numerical systems can be useful at providing a better understanding of
the importance of excitable media in biological systems.

1.1.2 Excitable media in physiology

Excitable systems are common in physiological systems. Excitable behaviour is
found in neurons [90, 58], pancreatic cells [25], intestinal cells [151], and heart tis-
sue [92, 96, 182]. When describing physiological systems, the action potential (AP),
recorded as a change in the cellular transmembrane potential V4,, is a manifesta-
tion of the large change in the state variable(s) associated with excitation. Excitable
physiological media can be either quiescent or autonomously oscillating. Electrical
coupling between the cells guarantees the spread of the excitation to neighbour-
ing excitable tissue, provided that successive excitations do not occur at intervals
shorter than the refractory time. The presence of the refractory time has serious
consequences on the spatio-temporal organization of physiological excitable tissue.
In a one dimensional excitable medium, it ensures unidirectional propagation of the
original impulse. During sustained electrical stimulation, the propagation of excit-
ation can be blocked (partially or entirely) if the period between successive stimuli
is too short. This may result in the onset of complex rhythmic patterns, which are



of particular importance in the study of the heart. These rhythms will be further

described in another part of this Chapter and in Chapter 3.

1.1.3 The heart as an excitable medium

The heart is a complex anatomical structure, possessing four distinct hydrodynam-
ical chambers. The pumping cycle of the heart can be divided into the contraction
of the atria (with filling of the ventricles) and the much more forceful contraction of
the ventricles (recirculation of blood). When isolated from the rest of the body, the
heart is capable of sustaining spontaneous activity. All the cardiac cells are excitable
and some groups of cells can sustain spontaneous electrical activity. In the healthy
heart, the basic cardiac rhythm or.ginates from a small group of spontaneously os-
cillating or pacemaker cells located in the SA node. The activity of the other groups
of slowly beating spontaneous cells {subsidiary pacemakers) is normally entrained
{suppressed) by the faster sinus rhythm [173]. These latent pacemakers (for example
the AV node) can assume dominating pacemaker function if the SA node fails to pro-
duce the basic rhythm or if an interruption in the propagation of the sinus rhythm
occurs [173]). The atrio-ventricular (AV) node forms the only anatomical (anu excit-
able) link between the atria and the ventricles. The lower electrical coupling between
AV nodal cells is the mechanism that, by delaying the propagation of the electrical
impulse to the ventricles, ensures the proper filling of the latter before contraction
occurs. The rapidly conducting Purkinje fibers complete the spread of activity to the
ventricles. The heart is therefore a strongly heterogeneous three-dimensional excit-
able medium. There is strong spatial specialization within the cells that constitute
the myocardium. In addition, the heart rhythm is subject to neuronal and hormonal
inputs that adapt cardiac output to the changing needs of life.

[n relation to the specialization of individual cells, the action potential charac-
teristics change with anatomical location. Most cardiac action potentials are of long
duration. Action potentials of ventricular cells last for 200 to 400 ms, in strong
contrast to typical 5 ms AP’s recorded in the nervous system and in skeletal muscle
[138]. This difference can be explained in terms of the different functions of the
action potential in these different types of excitable tissue. In skeletal muscle, the
action potential is a simple trigger for contractility. In the heart, the action potential
partly overlaps with the period of contraction, therefore controlling the length of the
contractile phase. This was confirmed in experiments in which the action potential



duration was artificially prolonged by the injection of electrical current [132]. There is
a direct relationship between action potential duration and the length of contraction
of cardiac muscle. Other action potential characteristics vary as well. Ventricular
cells are characterized by very fast depolarization phases ( (‘-f;“-'\"mm maximum up-
stroke velocity of the action potential). with typical maximum values around 00
V/s and almost ideal “one or none” responses to excitation [78]. In pacemaker cells
{SA and AV nodal), the onset of the action potential is much slower. Because many
types of cells are found within the small nodal regions. {£-)ma- values are typic-
ally between 4 and 30 V/s [97. 162, 128]. In addition, these groups of cells often
show “graded” or incomplete responses to stimulation [97. 162]. These experimental
observations reflect the differences in the nature of the mechanisms underlying the
onset of excitation. Some of the implications of the graded responses of AV nodal
cells to stimulation wiil be discussed in Chapter 6.

1.1.4 Cardiac rhythms

Cardiac rhythms have attracted a great deal of attention since cardiac malfunction is
often associated with abnormal and complex cardiac dynamics. In the healthy heart.
the cardiac rhythm is entirely synchronized to the beating of the pacemaker cells of
the SA node [16]: there is 1:1 entrainmeni between the sinus rhythm and the rest
of the myocardium. More complex rhythms may arise in a variety of pathological
situations. In this short section, I review some of these most important dynamical
behaviours.

Most dysrhythmias are characterized by a loss of 1:1 entrainment with the sinus
rhythm (some of the exceptions include sinus bradycardia or tachycardia and first
degree AV block). This loss of 1:1 entrainment generally appears as a consequence
of two possible factors: 1) a block of conduction of the electrical impulse; 2) a com-
petition between rhythms due to the emergence of a subsidiary pacemaker or to the
appearance of a reentrant circuit. The resulting new rhythm can be either periodic
or irregular. The loss of 1:1 entrainment was first reported at the end of the XIXth
century in the context of sustained external stimulation of animal hearts [62]. At
high stimulation rates, some of the stimuli did not induce a contraction of the cardiac
muscle. Instead, the response of the cardiac muscle to external electrical seemed to
follow a variety of N:1 entrainment patterns. Subsequent experiments [64] indicated
that similar patterns could be obtained at normal heart rates by artificially (sur-



gically) disrupting the normal conduction of cardiac electrical impulses. In these
series of experiments, N:l and N:M patterns were observed as well. Further experi-
mental investigations also led to the discovery of 2N:2M as well as chaotic types of
entrainment {117, 91]. Similar rhythmic patterns can also be found in other types
of physiological tissue subject to external forcing, such as nervous fibers [33] or the
respiratory system [145, 146, 142].

The rhythms described above are often observed in the clinical context. In par-
ticular, 2:1 and 4:1 rhythms of entrainment appear in many common forms of at-
rioventricular block. Wenckebach rhythms {82]. characterized by an increasing PR
interval (time interval between the P and the R waves in the electrocardiogram)
that finally leads to the skipping of a ventricular contraction are also found in many
rhythmic disturbances of heart function. 2N:2M rhythms can be observed during
episodes of atrioventricular block associated with atrial flutter [117]. Such 2N:2M
patterns can appear as oscillations in the time between successive activations or as
alternations in action potential morphologies. Irregular entrainment rhythms occur
in some of the most. lethal cardiac dvsrhythmias such as ventricular fibrillation. In-
terestingly, although such irregular patterns were first experimentally observed 150
vears ago, their aperiodicity was for long attributed to the lack of control of ex-
perimental conditions. Finally, paroxysmal ventricular tachycardia is a pathological
condition characterized by often seemingly irregular “bursting” behaviour [140, 166].

This description of cardiac rthythms was oriented towards the characterization of
stable entrainment patterns. However, the evolution of rhythms between different
patterns of entrainment is a common experimental and clinical observation. [n heart
tissue, the mechanisms underlying such evolutions of rhythms also play an important
role in maintaining proper heart function. In particular “overdrive suppression™
plays an important role in maintaining the domination of the sinus rhythm over
latent pacemakers.

1.1.5 Overdrive suppression: definition and mechanisms

Overdrive suppression is an important cardiac phenomenon that defines the rela-
tionship between the pacemakers of the heart [173]. Overdrive suppression has been
defined as a transient suppression of the intrinsic rhythm (prolongation in spontan-
eous cycle length) due to stimulation at rate higher than the spontaneous frequency
[173, 174]. In the heart, the activity of the latent pacemakers (such as the AV



node, or slowly beating Purkinje fibers) is normally suppressed by the faster sinus
rhythm. However, since overdrive suppression is a transient phenomenon {normally
maintained by the incessant sinus rhythm). the subsidiary pacemakers can assume
dominant pacemaker function if the sinus rhythm is disrupted. Initial reports of
overdrive suppression were given by Gaskell [63] who first described its pussible
function in his study of the tortoise heart, and by Erlanger and Cushny [33, 12).
Nowadays. numerous studies of overdrive suppression in various types of cardiae
tissue are available. In the clinical context, overdrive suppression is used as a test
for proper sinus node function (sinus node test) [101]

The experimental studies of overdrive suppression have focused on both the qual-
ttative aspects and the mechanisms. In 1966, Killip first reported that the magnitude
of overdrive suppression was dependent upon the duration and the rate of the drive
(actually the action potential frequency) [104]. Since overdrive suppression is a fune-
tion of drive duration, the intrinsic properties of excitable tissue gradually change
during sustained stimulation. Although the effects of a prolongation in the spontan-
eous cycle length on the excitability of cardiac tissue are still not well understood,
this phenomenon undoubtedly plays a major role in the evolution of rhythms during
sustained periodic stimulation [186]. For example, the progressive lengthening of
the cycle length during rapid drive may cause a gradual decrease in excitability that
result in an evolution of the original rhythm (say 2:1} towards higher degree of block
(say 3:1). However, since overdrive suppression is a function of action potential
frequency, overdrive suppression can decrease in the 3:1 regime. The original excit-
ability is then partly restored and the initial 2:1 rhythm can potentially reappear,
with a subsequent oscillation between the two regimes. Because overdrive suppres-
sion may strongly influence the dynamical behaviour during periodic stimulation,
the incorporation of such time-dependent effects into theoretical models of excitable
tissue is of prime importance. Some possible ways to achieve that goal are discussed
in Chapters 4 and 5.

The primary mechanism of overdrive suppression is a decrease in the slope of
diastolic depolarization (i.e. the slow depolarization towards threshold) [173]. Such
an effect could occur as the result of the increase (decrease) in the conductance of a
hyperpolarizing (depolarizing) current. Experimental evidence suggests that many
ionic mechanisms can underly overdrive suppression. In Purkinje fibers, overdrive

suppression can be induced by an increase in extracellular potassium concentrations



[1. 174]. A possible role of calcium ions has also been suggested [106. 134]. However,
many reports indicate that the activation of the sodium-potassium pump due to in-
creased accumulation of intracellular sodium ions or extracellular potassium ions (or
both) during fast drive is a major factor in the development of overdrive suppression
[41. 143]. Finally, neural and hormonal factors can also play a role [175]. A more

detailed discussion on the subject can be found in Reference [173] and in Chapter 4.

1.1.6 Towards modeling excitable media

The quantitative description of excitable media (e.g. threshold behaviour) is often
independent of the very mechanisms that underly excitability in a particular svs-
tem. In the same fashion, we can often describe the oscillation of a periodic system
without possessing detailed knowledge of the underlving physical phenomena. A
similar quantitative approach can be used in the mathematical modeling of excitable
phenomena. It often brings the advantage of a simpler theoretical formalism than the
descriptive approach, in terms of the detailed underlying processes. In reality. both
approaches are complementary and equally interesting. The modeling of the heart
offers a good example. The cardiac rhythm that appears on the electrocardiogram
(ECG) is a global manifestation of the intrinsic properties of the excitable cardiac
tissue. Since the heart contains millions of excitable cells, we are considering a stat-
istical or macroscopic property of the heart. The biophysicist or physiologist who
studies the ionic mechanisms of excitability works on the cellular level. Each cell
contains thousands of individual ionic channels. Thus, the cellular level corresponds
to the mesoscopic scale. The microscopic scale is reached in the studies of ion pores,
of sub-cellular structures, and in the recent advances in molecular biology.

1.2 Ionic models of excitable heart tissue

The excitability of biological tissue is due to ion (charge) movement. The transmem-
brane potential V,, of an excitable cell is a function of the chemical gradients and
of the ionic fluxes across the membrane. The cells possess active transport mech-
anisms that maintain suitable ionic gradients across the membrane. In this section,
we summarize the theoretical basis of transmembrane ionic fluxes. We also present
some of the most current ionic models of electrical activity, with special reference to
the heart.



1.2.1 Simplified model of ionic fluxes across membranes

Most of the charge movement across cellular membranes is due to sodium {Nat),
potassium (K*). calcium (Ca**) and chloride ions (C17). The particular electro-
chemical gradients are different for each ion and and can vary from one cell type to
another. The most important fact is that sodium and potassium gradients run in
opposite directions. The electrochemical potential, for a given ion species, is equal
to the algebraic sum of the concentration gradient moving ions out of the cells anl
of the electrical force due to the presence of a negative intracellular potential. At
equilibrium, an expression for the electrochemical potential can be derived using
Boltzmann's equation. The result is the well known Nernst equation [136]

kT (X,

E-=fln ] (1.1)

—

where E, is the Nernst potential, k is Boltzmann's constant. T the absolute temperature,s
the valence of the given ion, F the Faraday constant, [X,] and [\}] the respective
extracellular and intracellular concentrations of the ion species X. Typical physiolo-
gical values for the Nernst potential vary from = -100 mV for potassium, = -10 mV
tfor chioride, = +40 mV for sodium and == 4130 mV for calcium ions. These val-
ues are just rough estimates, since the ionic concentrations depend upon numerous
factors.

On the average, the inner side of the membrane is charged negatively with respect
to the extracellular space. For a given membrane potential V;,, the flow of ions X
across the membrane is proportional to the potential difference with respect to the
equilibrium potential E. (this potential difference is often referred to as the “driving
force™). The ionic current ix (for the ion X) is then

ix = gx(Vm — Ex) (1.2)

where gx is the membrane conductance to ions X and V,, the transmembrane po-
tential. Indeed, gx can itself be a function of the number and the properties (such
as gating) of the ionic channels conducting ion X. The total transmembrane cur-
rent carried by ion X when all the channels are open and independent of the gating
mechanism is usually written as:

ix = gx{Vm — Ex) (1.3)
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where gy is now the maximum channel conductance. This equation is just Ohm's
law. The effect of this current is to move the transmembrane potential towards the
equilibrium potential of ion X. The transmembrane potential I, is generally more
positive than Ex = —100mV. By convention, the outward currents due to A'* ions

are positive. Conversely, sodium and calcium currents are inward and negative.

1.2.2 A step further: the GHK approximation

The cell membrane is a thin lipid bilayer permeable to ions. In the GHK approx-
imation [71, 89], there is no assumption concerning the presence of specialized ionic
channels. The derivation of the GHK equation relies on several fundamental as-
sumptions: 1) permeant ions partition instantaneouslv (from the solution) into a
homogeneous membrane of thickness I; 2) there are no interactions between indi-
vidual ions; 3) there is a constant electric field throughout the membrane (constant
field approximation). In addition, the membrane is assumed to have a specific per-
meability for each ion species: the GHK equation describes the total current of each
ion separately.

The total ionic flow (current) for each ion species is the sum of a diffusive com-
ponent and of the current due to the presence of a constant electric field throughout
the membrane. The density of the total current for ion X can be written as
d[X]}

Ix = =sxDx FkT—— e

\ av
- P Dx[X| 5 (1.4)

where zx is the valence of ion X, Dy the diffusion coefficient of X inside the mem-
brane, [X] is the concentration of ion X, and V is the electrical potentiai at a distance
z from the outer part of the membrane. By diffusion-solubility theory, the membrane
permeability to ion X, Py, is related to Dx by

DxBx
l

where Sy is the water-membrane partition coefficient for ion X [88].
By integrating equation {equation) across the membrane of thickness I, one ob-

Px = (1.5)

tains the GHK current equation

te = Py Y B XLap () (16)
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At dynamical equilibrium, the total current in a homogeneous portion of the
membrane must vanish. An expression {or the corresponding membrane potential
(equilibrium rest potential E,) can be obtained using ti.e equation above.

_ kTSP NG + S Py [N

E.=—In - 0
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where ¥ (£7) denotes summation over cations (anions) and the subscript ; indicates
that we consider all the different ions X;. This equation is the GHK voltage equation,
used for studies of membrane permeability to ions and the description of sodium and
potassium ionic currents in excitable cells. In particular, the GHK equations account
for the rectification (marked departure from Ohm’s law ) observed for certain classes
of channels. However, the Hodgkin-Huxley formalism [90] (discussed below) is the
most useful theoretical model of ionic currents.

1.2.3 The Hodgkin and Huxley (or H+H) formalism

For the biophysicist, the names of Cole, Marmont, Hodgkin and Huxley are associ-
ated with some of the most important studies in the field of ionic channels. In 1949,
Cole and Marmont designed the voltage clamp technique [38, 124]. The cellular
transmembrane potential changes due to ionic fluxes across the membrane. These
ionic fluxes are themselves a function of membrane potential. Therefore, adequate
control of the transmembrane potential is a prime requirement in the study of the
properties of ionic channels and fiuxes. The voitage clamp technique was designed
to achieve that goal. In the original experiments by Cole and Marmont, the mem-
brane potential across an area of the membrane of the giant squid axon was kept
constant by inserting a long wire electrode inside the axoplasm. This had the effect
of shorting the resistance of the axoplasm and allowed uniform polarization of the
nerve fibre. Variants of the original technique, including single or double microelec-
trode and sucrose-gap methods represent some of the main experimental tools used
in modern biophysics [138, 88].

Three years later (in 1952), the voltage clamp was successfully used by Hodgkin
and Huxley [90] to produce the first study of voltage sensitive conductances in the
cell membrane of the giant squid axon. For the first time, distinct ionic currents
were identified and, using the experimental data, a2 model describing the kinetics of
these ionic currents was proposed.



The cell membrane is a lipid bilayer that acts as a capacitor. The ionic fluxes
occur though ionic channels determined by conformational characteristics of special-
ized proteins contained in the membrane. The membrane contains several different
populations of ionic channels each of which determines the properties of a membrane
current (for example, the conductance of the channel). Because the conformation
of the proteins changes with transmembrane potential, so does the conductance of
ionic channels: this is the voltage gating property. It is generally believed that the
opening and closing of ionic channels is governed by a stochastic voltage-dependent
process (alternative deterministic hypotheses were also proposed: see for example
References [119, 120]). When considering the statistical properties of large numbers
of individual ionic channels (i.e. a membrane current) the macroscopic properties of
the ionic current can generally be described by deterministic functions of the mem-
brane potential. Classically, there are two types of gates. The opening of both the
activation and the inaectivation gates is necessary for the ionic channel to be open.
A channel closes by inactivation when the ionic flux is interrupted by the closing of
the inactivation gate. A channel is said to deactivate when it stops to conduct due
to the closing of the activation gate. On the macroscopic scale (large population of
channels: a membrane current}, a membrane current deactivates (inactivates) when a
significant portion of the ionic channels is deactivated (inactivated). Although most
of the gates are voltage-sensitive, ligand binding mediated and ion sensitive gating
mechanisms have also been reported [88].

In the Hodgkin-Huxley description of ionic currents, the membrane of the cell is
modeled as a parallel RC circuit. The capacitance of the membrane C, is constant
and the membrane resistance R,, is a function of the sum of the conductances of all
the ionic channels at a given time. In their first series of experiments, Hodgkin and
Huxley identified three distinct currents: Iy, a rapidly activating and inactivating
inward sodium current; [ an outward current carried by potassium ions and char-
acterized by delayed activation; and /p described as a time-independent "leakage”
current. Assuming that the membrane is isopotential (space-clamped), the change in
transmembrane potential due to the membrane currents is described by

dV,
——= = —(Ina+ Ixc + It + Lapplicd) (1.8)

Cm dt

where I.pptieq is the stimulation current, C, is expressed in pF/em?® and all currents
are given in terms of current densities.
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Although the H+H formalism was dertved before 1onic channels were discovered,
the dynamics of gating were described in a fashion that is analogous to the stat-
istical properties of a population of ionic channels, The H+H description of gating
relies on the assumption that one or several gates (charged “particles™ bound to
the membrane) close or open the ionic channel in response to changes in tmembrane
voltage, and following first order kinetics. Consider one of the gates and let n denote
the probability that the gate is in a position that opens the channel. Then | — n is
the probability that the gate (channel) is closed. The voltage and time dependent
changes in n are described by

—

l—=n ol n., (Isn

where a, is the voltage dependent rate constant describing the transition between
the closed and the open state, and 3, the transition rate from the open to the closed
state.

This reaction can be described by the ordinary differential equation

%:an(lwn)-—ﬁnn. {1.10)
By making the substitutions X
™= o+ B
and
. _an
" et B

where ng, is the steady state value of n for a given transmembrane potential, one
obtains the other common form of this equation

dn nyg —n

it (1.11)
The membrane current due to ion X can now be written
Ix = ngx(Vm — Ex). (1.12)

In many cases, several gating “particles” are needed to properly describe the kinetics
of a given membrane current. This is for instance the case for the fast sodium current
for which the classical description ascumes the existence of three activation gates and
a single inactivating one (normally referred to as m and k) [88].

The mathematical description of membrane currents proposed by Hodgkin and
Huxley led to the development of many other ionic models of excitable tissue. In
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particular, the original mode! developed for the giant squid axon was successfully
adapted to describe the ionics of excitation of cardiac tissue. In the process, with
increasing amounts of data obtained from voltage clamp experiments, many other
ionic currents were discovered leading to a much more complex presentation of the

theoretical models.

1.2.4 A few models of ionic activity

The action potential of cardiac cells is typically 30 to 100 times longer than in
nerve tissue [138]. In some specialized groups of cells (nodal cells), the upstroke
of the action potential is also much slower than in ventricular or nerve cells [128].
Some cells are spontaneously active while others are quiescent. These differences in
action potential characteristics have led to the development of numerous ionic models
highly specific to the type of tissue under consideration. In cardiac cells, calcium
currents play an important role. Calcium currents are partly responsible for the
considerable duration of the action potential [88]. They underly the slow upstroke of
the action potential in pacemaker cells, and play a significant role in regulating the
contractility of cardiac muscle [88]. Numerous other currents were also discovered
and incorporated into existing ionic models. As a result, the Beeler-Reuter model,
which describes the electrical activity of mammalian ventricular muscle, is eight-
dimensional and contains the description of five separate currents [9]. The original
H+H model was only four-dimensional [90]. The MNT (McAllister, Noble and T'sien)
ionic model of Purkinje fibre tissue has ten dimensions and describes seven currents
[122]. Another model developed for Purkinje fibers by DiFrancesco and Noble has
over a hundred parameters and is 14-dimensional [48]. In chapter 3, [ review a
high dimensional ionic model of activity, the Shrier-Clay model for embryoric chick
heart cell aggregates. The main rationale for developing such complicatec theoretical
models is the assumption that the inclusion of all the ionic components and a detailed
description of their kinetics is needed to achieve an accurate simulation of cardiac
action potentials. Such models can then be used to perform c: nputer experiments
which allow very good control of the experimental parameters (often hard to achieve
in complex physiological systems). In combination with pharmacological research,
they have proved to be a useful tool in designing new therapeutic approaches for the
treatment of disease.

The increasing complexity of ionic models raises a number of questions. One of
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them concerns the significance of the enormous number of parameters included in
these theoretical descriptions. In a model containing hundreds of parameters, the role
of each parameter is hard to evaluate. The high dimensionality of the ionic models
also forbids (in most cases and for most people) a good intuitive understanding of
the important parameters of the svstem as well as analytical analysis. Because the
usefulness of such models relies heavily on numerical simulations, special care must
also be taken in the choice of the algorithms used for integration. To summarize,
these complex models often show a certain lack of transparency,

The situation may worsen as new electrophysiological data prompts biophysicists
to include new or modified components. For example, excitable (and other) cells pos-
sess active transport mechanisms that are responsible for maintaining suitable ionic
gradients across the membrane[S8, 15]. Many of these pumps or co-transporters
perform their task by exchanging iors across the membrane. Depending on the
stoichiometric ratio of the exchange, some of these mechanisms are known to be
electrogenic: they hyperpolarize the membrane via extrusion of excess positive ions.
The sodium-potassium pump is perhaps the best example of an electrogenic mech-
anism [15, 165). Its primary function is to maintain the sodium gradient across the
membrane by exchanging sodium ions from the intracellular space for potassium
ions of extracellular origin. Experimental data indicates that a 3:2 (Na*t:K*) stoi-
chiometry is typical of this exchange [165]. Because the sodium-potassium pump can
be activated by high stimulation rates, it may produce a significant hyperpolarizing
effect that may influence the excitability of the cell. Since this may in turn affect the
dynamical behaviour under stimulation, such components must be (and sometimes
are, for example, see References [48, 178]) included in ionic models. An attempt to
incorporate a simplified model of the sodium pump in the Shrier-Clay ionic model
is described in Chapter 5.

Most descriptions of ionic mechanisms assume constant ionic gradients across the
membrane. However, it is well known that rapid stimulation may result in important
changes in intracellular (and extracellular if the extracellular space is constrained)
jonic concentrations. Moreover, recent studies indicate the presence of subcellular
structures that amount to a compartmentalization of the intracellular space available
to calcium ions [88]. There is no a priori reason to reject the possibility that similar
structures exist for other ions [112]. Such compartmentalization could affect the
driving force for that ion species, and could have important consequences on the
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response of cells to excitation.

1.2.5 Simplified models of excitability

The classical way of deriving simplified models of excitability is to reduce the dimen-
sionality of the original descriptive theoretical model. For example. the time scale of
activation of the fast sodium channel is an order of magnitude shorter than time scales
involved in the kinetics of the other currents. In a first order approximation. this
fast kinetic process can therefore be omitted. This approach was followed by Gul'ko
et al. [83] in reducing a model of activity of Purkinje fibres to a three-dimensional
model of excitability. The authors chose the remaining parameters to best reproduce
the characteristics of action potentials provided by electrophysiological experiments.
The resulting simplified model preserves the excitation properties inherent in the
Hodgkin-Huxley model and in the original equations. However, further simplific-
ation of this model, based on asymptotic techniques, was necessary to carry out
analytical work {109]. In many cases where such a simplification was attempted,
the characteristics of the action potentials generated by the simpler model were in
good agreement (within 10 %) with the results of the original model. Some of these
models will be described in the next section.

1.3 Nonlinear dynamics

Nonlinearity is essential to excitable phenomena. The description of the voltage-
dependence of the gating of ionic channels in the Hodgkin-Huxley description reflects
this nonlinearity. The heart oscillation is itself a nonlinear phenomenon, that can
either be described by capturing the qualitative properties of the oscillation or by
describing the mechanisms underlying its excitability. The expansion of the field of
nonlinear dynamics has found numerous applications in biology, electrophysiology, in
experimental studies (methods in signal and data processing) and in theoretical mod-
eling of excitable phenomena (see References [70, 181]). The methods of nonlinear
dynamics have been successfully used to develop simplified theoretical paradigms
describing the phase-resetting of circadian clocks [181], the dynamical aspects of
erythropoiesis [70], population dynamics and excitability (and conduction) in car-
diac tissue {70, 78, 75). The main feature of these simplified models is that they
preserve the complex dynamical properties characteristic of the original systems.
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These mathematical models appear in the form of difference equations or as simple
systems of differential equations.

1.3.1 Fundamentals

The dynamical behaviour of a system can be described by a trajectory in phase space
(defined in terms of the state variables of the system). The trajectory describes the
dynamical evolution of the system with respect to time. In this description. time
can be a continuum or be discretised. The motion of a point in the phase space of a
system is generally constrained. Attractors are regions of phase space which attract
nearby trajectories. The nature of the attractor determines the dynamical behaviour
of the system (in terms of periodicity). In a dynamical system, the nature of the
attractor (and the qualitative dynamics of the system) can change dramatically in
response to small aiteration in one of the parameters of the system: this event is
called a bifurcation. Attractors can be found in any number of dimensions. The
maximum dimension of the attractor is the number of degrees of freedom of the
system.

Attractors which underly periodic behaviour are either closed trajectories in
phase space or discrete points. Point attractors describe steady state behaviour:
they are stable fized points. For example, the resting state of excitable tissue is affili-
ated with the presence of a stable fixed point. Stable limit cycles are attractors which
describe periodic behaviour !. Stability implies that outlying trajectories asymptot-
ically converge to the attractor. The periodic behaviour of spontaneously active or
externally stimulated excitable tissue can be the manifestation of an underlying stable
limit cycle. Attractors that are unstable repel arbitrary close trajectories unless the
trajectory coincides with the attractor (exactly on the unstable orbit or the unstable
fixed point). Toroidal n-dimensional attractors in phase space are associated with
aperiodic trajectories. Irregular motion can be quasiperiodic or cheotic. Quasiperi-
odic motion is represented by a trajectory that densely connects all the points of the
attractor in a homogeneous manner and that does cross the same point twice. Given
two arbitrarily close initial conditions, the evolution of one of the trajectories can be
predicted at any time if sufficient knowledge of the evolution of the other trajectory
is available.

'The concept of limit cycle was first introduced by Poincaré in 1881 as a closed curve in the
phase space of a system of ordinary differential equations,
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Chaos appears as irregular dynamics occuring in a deterministic system in which
trajectories remain in an invariant region of pnase space while arbitrarily close initial
conditions yield diverging (in the sense of predictability) trajectories (on average, this
divergence is exponential). This sensitivity to initial conditions is the most common
of the definitions of chaotic regimes [73]. Attractors corresponding to chaotic motion
are strange attractors. Their “strangeness® comes from their generally complex
shapes. On a strange attractor, the density of trajectories is not homogeneous as
in quasiperiodic motion. Strange attractors are self-similar and scale invariant. By
scale invariance | mean that the geometrical organization of the trajectories on the
attractor is the same on all size scales. Self-similarity implies that a given trajectory
looks the same on all size scales. Structures possessing both properties are said to
be fractal and are objects of non-integer dimension [123].

Deterministic chaos has been related to many examples of aperiodic behaviour
found in biological systems and excitable tissue. The experimental data describing
the dynamical behaviour of a system is normally collected in the form of a time
series. In order to ascertain the chaotic nature of an irregular time series, careful
tests have to be conducted. The computation of the Lyapunov exponents i> the
simplest technique available. The sign of the Lyapunov exponents is a test of the
exponential divergence (or convergence) of nearby trajectories in phase space. Each
dimension in phase space is associated with a Lyapunov exponent. A Lyapunov
exponent is positive if the trajectories diverge in terms of the corresponding variable.
Conversely, a negative Lyapunov exponent is associated with converging trajectories.
If an attractor exists and if the largest Lyapunov exponent is positive, the system is
chaotic [183]. A zero Lyapunov exponent may indicate the presence of quasiperiodic
motion. Zero Lyapunov exponents may also arise when a bifurcatior (change in
the qualitative dynamics of the system) occurs. For simple theoretical models of
dynamical systems, the Lyapunov exponents can often be computed analytically or
numerically. However, special care must be taken before interpreting the results
of tests designed to conclude on the chaotic nature of the dynamics. For example,
chaotic time series are characterized by broad-band spectra. However, this does not
imply that all time series possessing broad-band spectra are chaotic. An interesting

~xample can be found in references {137, 72].
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1.3.2 Stability in differential equations

The analysis of stability in systems of nonlinear ordinary ditferential equations is
based on the linearisation of the systems in the neighbourhood of their tixed points

(or steady states, see above). Consider the system

d.r,-

Tﬂ—:ﬂ(r).f:l....‘.‘\'. (1.13)

where f; are differentiable functions. At the steady state |

dr?
—— = .'= ....‘.'\". N
T bi=1 (L1

[n the vicinity of the steady state, the dynamics are described by:

%: Alz = x7), (1.15)

where the matrix A has elements
af; .
al; — B.r_,- |:‘ - (1.1(’1)

The eigenvalues of A computed by evaluating det(.A—Al)} = 0 (where | is the identity
matrix) characterize the qualitative dynamical behaviour in the vicinity of z°. The
steady state is asymptotically steble (i.e. asymptotically approached as t = o0) if
all the eigenvalues are negative. The steady state is unstable if at least one of the
eigenvalues has positive real part. The fixed point is neutrally stable when the real
part of the largest of the eigenvalues vanishes. A Hopf bifurcation occurs when the
real part of two complex eigenvalues vanishes. A supercritical Hopf bifurcation is
associated with soft excitation; the amplitude of the oscillation is a smooth function
of the parameter of the system. Conversely, subcritical Hopf bifurcations are linked
to hard excitation and the transition is abrupt; a large amplitude oscillation appears.
Both types of excitation are found in excitable biological systems. A review of bifurc-

ation theory in systems of nonlinear ordinary equations can be found in Reference
(86].

1.3.3 Finite difference equations

Finite difference equations have interesting properties. Even one or two dimensional
finite difference equations are capable of displaying the most complex dynamics. Of
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course, that is not to say that simpler dynamics can not be found. This richness in
the dvnamics is particularly striking when a comparison with systems of ordinary
differential equations is drawn. In one-dimensional ordinary differential equations
the requirement that trajectories be continuous forbids the observation of oscillating
or chaotic dvnamical behaviour, Finite difference equations can be obtained from
systems of ordinary differential equations by considering the return of a cross section

of the flow unto itself (the Poincaré map). Finite difference equations are of the form
zi(t+1) = filzt)i=1,... N, (1.17)

where f; is a nonlinear function and z,(t) denotes the value of element z; at time t.
Provided that an initial condition z;(0) is given, the evolution of the svstem can be
obtained by simple iteration of the finite difference equation. For reasons of clarity,
r;(t+n) will be now referred to as zy4,. Finite difference equations can be linearized
in the vicinity of a fixed point using methods analogous to those described in the
previous section. The steady state z°, defined by z*(t +1) = z°(2) is steble if all the
eigenvalues of the Jacobian are located inside the unit circle. Conversely, the steady
state is unstable if at least one of the eigenvalues lies outside of the unit circle. If two
complex eigenvalues simultaneously cross the unit circle, we have a Hopf bifurcation.
Let us now consider the one-dimensional case.

Any one-dimensional finite difference equation can be written in the form

T = f(ze) (1.13)

where f is a nonlinear function. The stability of a steady state z* is guaranteed if
| (&) < L. If this is not the case, the steady state is unstable. Let zq denote the
initial condition. There is a periodic orbit of period r if 2}, = z} and z,; # 7},
for I < 7 < n. The stability of the orbit will be determined by the absolute value of

£ defined as ) o
z° n

e= L0 =G - (1.19)
where f™ is the nth composition of f with itself. When |£] > 1, the orbit is unstable.
The stability criterion is that |§] < 1. When |§] = 1, a bifurcation arises the
nature of which is determined by the sign of £, When £ = 1 there is a tangent
bifurcation. A period-doubling bifurcation (with the dynamical consequences that
the name indicates) is found when £ = —1. This type of bifurcations is of particular
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interest since a sequence of period-doubling bifurcations is one of the “routes to
chaos™ [52].

Two types of one-dimensional finite difference equations (or maps) are of partie-
ular interest. Maps characterized by a single hump on the unit interval ive been
studied extensively. A review of the general results can be found in [47). More ap-
pealing to us are circle maps that map the unit circle unto itself. In particular, circle
maps arise in the context of periodic forcing of biological oscillators. A general form
for circle maps is

O:+1 = f(o:) [mod l]. (l‘_’U)

where f is some (not necessarily continuous or nonlinear) function and ¢ some point
of the unit circle. For continuous circle maps, the topological degree describes the
number of times &:4; goes around the unit circle when & goes around once, The
rotation number p defined as

: L&
= sSUp —— AO; 2
p= lim sup 5 E.\o., (1.21)
where N is the total number of iterations and A¢@; = @raisr — es1, is often used to
obtain partiai information about the qualitative dynamical regime. In particular, the
rotation nuinber is rational for periodic orbits. The Lyapunov number )\, defined as

N
A= Jim 5 s, (122

where f'(&;) is the first derivative of f evaluated at successive iterates ¢; can be used
to test for chaotic dynamics. The Lyapunov number is positive for chaos, negative
for periodic orbits and zero for quasiperiodicity [87].

Periodic stimulation of biological oscillators can often be described by circle maps.
At low stimulus intensities, these circle maps are found to be invertible (one to one).
For invertible circle maps, theoretical studies predict the existence of an Arnold
tongue structure [4, 70] in the amplitude versus period of stimulation bifurcation
diagram. The infinite number of N:M patterns of entrainment found in the bifure-
ation diagram obey simple ordering rules, as described by the Farey tree. The
Arnold structure disappears at higher amplitudes of stimulation. Chaotic dynamics
as well as bistability (with the same stimulation parameters two different dynamical
regimes can be observed with different choices of initial conditions) ¢can be found in
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non-invertible circle maps. Such maps are of special interest to the modeling of car-
diac excitation since many types of typical dynamicai behaviour resemble strongly
experimentally observed cardiac rhythms. A thorough treatment of circle maps can

be found in Reference [47] .

1.3.4 Simple models of biological oscillators

The landmark study by van der Pol and van der Mark {170} was the first attempt to
model the heartbeat as an electrical phenomenon. Their simple electrical model of
the heart consisted of three coupled oscillating components representing the SA node.
the atrium and the ventricle. The circuit was so designed that the “SA node™ could
entrain the “atrium” which could affect the “ventricle” but not vice-versa. With
this simple circuit (perhaps not that simple for the time) the authors were able to
reproduce many of the cardiac rhythms including different types of heart block and
bistability. The success of this approach led to a multiplication of electrical models
of the heart. Van der Pol also proposed a simiple differential equation to model
nonlinear oscillations. Its vartants as well as the original equation have been of great
importance in development of applied mathematics. The original periodically forced
equationr was Pu - du
o el - u‘)E
where B is the amplitude of the forcing. When B = 0 a stable limit cycle oscillation

+ u = Bcos(wt), (1.23)

is found. Different entrainment regions are found as B and w are varied. Although
bistability was known to be present in this equation, aperiodic dynamics were also
observed [115, 116]. In order to better describe the dynamics of excitability, the two-
dimensional form of the van der Pol relaxation oscillator was independently modified
by FitzHugh and Nagumo [57, 58]. The FitzHugh-Nagumo equations can be written

as
dE E?
— —_— [ . = -2
dg _
E = €(E +a- bg)

where E is the membrane potential and g approximates a slow current (when ¢ < 1)
and L. is the applied stimulus current. The computation of the nullclines (defined
by € = 0 and £ = 0) is helpful to give insight into the dynamics of the system.
The major feature here is that one of the nullclines is a cubic function. Although this
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model is unable to reproduce the detailed characteristics of the nerve tibre or cardiac
tissue it successfully encompasses many essential characteristics of excitable tissue
including threshold behaviour, a form of artificially induced bursting behaviour and
the existence of absolute and relative refractory periods. A further simplification
can be achieved by approximating the cubic nullcline by a piecewise linear function.
One such study was carried out by Krinsky et al. [108]. We use a similar method
in chapter 4. Although some of the detaiied aspects of excitability are missing, such
simplified models are very useful since this simplicity allows the use of analytical
tools.

The Poincare oscillator is another prototypical model of biological oscillations
that is under intensive scrutiny [78]. This very simple two-dimensional system of

ordinary differential equations is written in polar coordinates as

do

_ = 2z RE V25
i 2z [mod (1.25)
dr

-&? = Qf‘(l bt f‘).

where ¢ is the phase of the oscillation, r the radial coordinate and a some puaitive
real number. These equations possess a limit cycle that lies exactly on the unit circle.
This limit cycle is globally attracting for all initial condition except the origin. The
parameter a sets the rate at which a perturbation away from the limit cycle relaxes
back to the limit cycle. In most theoretical studies, the relaxation is assumed to
be instantaneous: this corresponds to the limiting case @ ~+ co. In ihis case, the
effect of a stimulus is to simply reset the phase of the oscillation. The assumption
about ustantaneous relaxation to the limit cycle allows analytical computation of
the so-called phase transition curve. It also underlies the theoretical computation
of entrainment rhythms during periodic stimulation using iterative techniques based
on the response to a single stimulus of a given amplitude (phase resetting). This
theoretical method will be discussed in more detail in Chapter 3. Because of their
considerable success and simplicity, iterative techniques have also been considered
in the development of theoretical models of AV nodal conduction and rhythms and
of the propagation of electrical impulses in the heart [78, 75, 82, 184, 26].

The integrate-and-fire model of excitation is another example of significant im-
portance. In this class of theoretical models, the activity rises towards a fixed
threshold and is then reset to zero. The first studies of integrate-and-fire models
go back to the late 1930’s. These simple models display a rich dynamical structure.
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The applications of integrate-and-fire models range from the modeling of circadian
rhyvthms to theoretical approaches of respiration [146, 6].

In general, the prediction of experimentally observed patterns of entrainment
based on iterative techniques relies on the strong assumption of instantaneous re-
lixation to the original limit cyele. Although many of the theoretical predictions
are in gond agreement with experimental evidence, the underlying assumption is un-
realistic, as confirmed by numerous electrophysiological experiments. In particular,
it lacks the inclusion of time-dependent effects that can play a major role in the
generation and propagation of electrical impulses in excitable biological tissue. An
example of such an effect is overdrive suppression which has been discussed in a
previous section of this chapter. Although overdrive suppression is normally specific
to cardiac tissue, other analogous time-dependent effects take place in other biolo-
gical systems. vie ionic accumnulation processes or due to the slow kinetics of some
transmembrane currents. Recently, there has been an increasing interest in modeling
such phenomena since their influence on the dynamical behaviour is now ascertained
but poorly understood. Two models of overdrive suppression in embryonic chick
heart cell aggregates are presented in Chapters 4 and 5. Another issue of interest is
the possible role of changes in action potential morphology (rather than the timing
of successive activations) in the onset of rhythms of great complexity. Since many
of the iterative techniques presently used to predict entrainment rhythms do not
describe changes in action potential morphology, the development of new theoretical
methods may be necessary in the future. This issue is further discussed in Chapter
6.

1.4 The final word

After this overview of some of the properties and dynamical behaviours of excitable
systems and of their theoretical descriptions (with special reference to the heart), it
is perhaps time to ask specific questions. The previous discussion of the influence of
the time-dependent processes on the dynamical behaviour of excitable systems sug-
gests many possibilities for further research. In particular, few mathematical models
,of excitation exist which incorporate a description of time-dependent phenomena.
Since the quantitative aspect of such time-dependent phenomena may be prepara-
tion specific, the mathematical description of these effects must be based on carefully
collected experimental data. In this sense, embryonic chick heart cell aggregates rep-
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resent an excellent experimental preparation to carry out both the experimental and
the theoretical study. Chapter 2 contains a detailed description of the experimental
setup and of the experimental methods used throughout this study. A review of the
present understanding of the generation of rhythms in embryonic chick heart cell
aggregates is given in Chapter 3. This Chapter also contains the description of the
most recent ionic model of this preparation as well as a discussion of the results that
can be obtained (in the context of periodic stimulation) by applying some of the it-
erative nonlinear techniques briefly presented in the Introduction. A detailed study
of overdrive suppression in embryonic chick heart cell aggregates, combined with
a stmplified theoretical model of this effect, is presented in Chapter 4. Chapter 5
examines the rthythms that arise with fixed delay stimulation (with respect to the up-
stroke of the action potential) of spontaneously beating chick heart cell aggregates,
The dynamics are discussed and compared with the results of numerical simula-
tions of 2 simplified nonlinear iterative model and of a modified ionic model which
contains a simple sodium-potassium pump component. The contributions of phase
resetting and overdrive suppression to the dynamics during fixed delay stimulation
are emphasized and explained in terms of ionic mechanisms. Finally, in Chapter 6,
I present the results of a study of the dynamics during periodic stimulation in AV
nodal cell clusters, and a comparison is drawn with Chapters 3 and 4. The main
goal of Chapter 6 is to illustrate the influence of changes in action potential morpho-
logy on the complexity of the dynamics and the inadequacy of theoretical methods
based on the iteration of phase resetting curves to predict the experimental rhythms.
Each Chapter also contains a discussion of the relevance of the results to the clinical,
physiological and mathematical disciplines.



Chapter 2

Methodology

This chapter summarizes the materials and methods used in the experimental studies
presented in the subsequent chapters. Whenever necessary, additional descriptions
of the experimental procedures are also included in each chapter of this manuscript.

2.1 Culturing techniques

2.1.1 Embryonic chick heart cell aggregates

Aggregates were prepared using techniques described previously [43, 44, 45. 73]
White Leghorn chick embryos were incubated for 7 days at 37°C and a relative
humidity of §5%. They were then decapitated and their hearts were excised. Atrias
and ventricles were isolated, fragmented and then dissociated into single cells in
a DNAse and trypsin containing medium [43]. The resulting cell suspension was
filtered through 2 12.0 um diameter pore size filter and centrifuged for 15 minutes
at 170 g. The cells were resuspended and aliquoted into 25 ml Erlenmeyer flasks
containing 3 ml of maintenance medium at densities of 5 x 10° to 7 x 10° cells
per flask. The flasks were then gassed with a mixture containing 5% CO., 10%
02, 85% Na, sealed with a silicone rubber stopper and placed on a gyratory table
(70 revolutions/minute and 37°C temperature) to allow the formation of spherical
aggregates.

The dissociation medium contained 5.25 x 10~° g/ml crystalline lyophilized tryp-
sin (Worthington Biochemical, 245 U/mg) and 5 x 107® g/ml deoxyribonuclease I
(Worthington Biochemical, 9.1 x 10* U/mg) in a Ca** and Mg** -free, phosphate
buffered, balanced salt solution with following concentrations: NaCl 116.0 mM, KCI
5.4 mM, NaH.PO, 0.44mM, NaHPO, 0.95 mM, dextrose 5.6 mM. A pH of 7.3 was
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obtained by adding either 1M HCl or 1M NaOH. The maintenance medium con-
tained 20% medium 199 (Grand Island Biological (GIBCO)). 145 fetal bovine serum
{GIBCO) and 2% horse serum (Kansas City Biological) in a bicarbonate butfered,
balanced salt solution. Final concentrations were (approximately): NaCl 116.0 mM.,
KCl 1.3 mM. CaCl; 1.8 mM. MgSO,4 0.8 mM, NaH.PO4 0.9 mM, NaHCO. 2000
mM. MgSO, 0.8 mM. dextrose 5.3 mM. Gentamicin sulfate (Schering, Garamy«in, 10
mg/ml) was added to a final concentration of 3 x 10™° g/ml. The enzyme-inactivating
medium was similar to the maintenance medium except for: fetal bovine serum 055,
horse serum 10%. and KCI 4mM (approximately). All solutions were filtered with a
0.22 um-diameter pore size, sterile filter.

After 48 to 96 hours in culture. the aggregates were transferred to a circular
(35 mm x 10 mm) plastic tissue culture dish (Corning). A thin layer of mineral
oil (KLEAROL {Witco)) was poured on top of the medium to prevent evaporation.
The bathing medium was gassed from above with a mixture of 5% CO.. 10% O, and
85% Na. Temperature was maintained at about 36 + [°C. The hicarbonate buffer
maintained the medium at a pH of 7.2 to 7.3. Under such conditions more than
95% of the aggregates show spontaneous rhythmic activity. Most of the aggregates
studied had a diameter of about 175 .um and contained approximately 1500 to 2000
cells.

2.1.2 Preparation of AV nodal cell clusters

New Zealand White rabbits (1.53-2.5 kg) were anaesthetised with an intramuscular
injection containing Ketamine (75 mg/kg weight) and Xylazine (5 mg/kg weight).
Heparin (300 I.U./kg, sodium salt) was injected intravenously to prevent blood co-
agulation. A mid-line thoracotomy was then performed and the heart was quickly
removed. The aorta was cannulated to perfuse the coronary artery (Langendorff
perfusion) with normal oxygenated Tyrode solution at 37°C for 2-3 minutes until
the remaining blood was washed out. The perfusate was replaced with oxygenated
Ca**-free Tyrode solution for approximately 10 minutes. The perfusate was switched
to Ca®*-free solution {100ml) containing 495 units/ml collagenase (Sigma Type IX)
and 0.4 units/ml protease (Sigma Type XIV), which was recirculated using a peri-
staltic pump. The perfusion was continued for 20 to 25 minutes, after which time
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the atria and atrioventricular septum were cut away from the ventricles and placed
in a dissection chamber containing Ca**-free oxygenated Tyrode solution. The atrr
oventricular node was identified from its anatomical location {128]. A small piece of
nodal tissue (2 x 3 mm?) was carefully dissected from the underlying muscle using
vascular scissors. The piece of tissue was cut into fine pieces and allowed to stir in
the collagenase-protease solution at 37°C. Elastase. 100 units/ml. (Sigma Type [V)
was then added to this solution. Microaliquots were taken until single atrioventricu-
lar cells were observed. At this stage, the cells were placed into a recording chamber
mounted on the stage of an inverted microscope (Zeiss Axiovert, OberKochen. Ger-
many) and the cells were allowed to settle on the glass base for 5 minutes. The
chamber was then perfused with oxygenated Ca®**-free solution for 5-10 minutes at
a rate of 2 ml/min. The solution was then gradually changed to normal oxygenated

Tvyrode solution. Experiments were carried out at a temperatures of 35°C % 0.5°C.

The normal oxygenated Tvrode solution contained (in mM): NaCl, 121.0; NaHCOs,
15.0; KCL, 5.0; CaCl 2, 2.2; MgCl! 2, 1.0; NaH,PO,, 1.0; glucose, 5.3 and the pH
was adjusted to 7.2-7.4 by titrating with 4 M-NaOH solution. The Ca**-free ™ rode
was made by replacing CaCl; 2.2 mM with CaCl. 0.15 mM.

2.2 Electrophysiology

A schematic view of the experimental setup is shown in Figure 2.1. Electrical activity
was recorded using borosilicate microelectrodes filled with 3M KCI {typical micro-
electrode resistance: 40 tc 60 MQ). The transmembrane potential was recorded using
an amplifier with negative capacitance compensation, to the nearest quarter of a mil-
livolt. The bathing medium was kept at virtual ground by coupling to a current to
voltage converter (10-100 mV /nA) through an agar salt bridge and a chlorided silver
wire. Current pulses were injected into the aggregate vie the same microelectrode
used for recording the transmembrane potential. Currents were measured to the
nearest nA. Pulses of current were generated by a microcomputer based stimulation
program Alembic Software). The duration of the current pulses was 20 msec. Voltage
and injected current waveforms were monitored on a digital osciiivscope (Textronix
5110) and recorded on an FM instrumentation recorder (Hewlett-Packard, model
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3964A, 3dB frequency response at 3 ips for DC to 1230 Hz) at a tape speed of 3.75
ips for subsequent offline analysis.

2.3 Data Analysis

Offline analysis was carried out on the digital oscilloscope and by an automated
computer system. Magnetic tapes were played back at 135 ips, and the voltage wave-
form was sampled at 1 KHz by an IBM compatible 386 computer through an A/D
interface (Omega). Interbeat intervals were calculated from the digitized waveform
by a pattern recognition program (Alembic Software, Montreal, Canada). Computer
programs were written {FORTRAN) to carry out further analysis of the interbeat
intervals. Figures of experimental traces were printed on a laser printer (HP Laserjet
I1I and IV) through graphing packages (Grapher, CorelDraw).
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Figure 2.1: Schematic view of experimental setup. Aggregates in the experimental dish
are impaled using a micromanipulator (Leitz, Germany), with a glass microelectrode
filled with 3 mM KCl. This microelectrode is used to both measure the transmembrane
potential and electrically stimulate the preparation. The electrical signal is stored on
magnetic tape for subsequent off-line analysis and may also be used to provide a trigger
for stimulation during phase resetting or fixed delay protocols. The parameters of the ex-
perimental protocols are remotely controlled by a stimulator program (Alembic Software,
Montreal, Canada) on a 386 PC computer.
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Chapter 3

Ionic mechanisms and nonlinear
dynamics of chick heart cell
aggregates

3.1 Foreword

The naturally occuring rhythm of biological oscillaters can be altered by the applica-
tion of single or periodic stimuli [144, 141, 181, 70]. A single stimulus generally alters
the timing of subsequent beats thereby resetting the phase of the rhythm while pro-
ducing only transient effects upon the intrinsic rhythmicity of the oscillator. Periodic
stimuli can have more profound effects, including a variety of regular and irregular
rhythms. Experimental studies concerning the effects of single and periodic stimuli
have been carried out in many different preparations, including the effects of light
stimuli on endogenous circadian rhythms [148]; the effects of afferent input on res-
piratory rhythmogenesis [28, 145, 142]; and the effects of electrical stimulation in
the heart, where this approach has been used to investigate the origins of complex
cardiac arthythmias {152, 171, 94]. A remarkable aspect of this body of work is that
important qualitative similarities exist between the dynamics in all of these systems
despite the broad differences in the physiological preparations studied and the stimuli
employed.

Over the past decade our group has been exploring cardiac dynamics using an
experimental model system, the chick heart cell aggregate. This preparation has
proven to be very useful for such studies, more so than single, isolated cells (see
below), because it is a relatively stable oscillator with a spontaneous period of os-
cillation that is sufficiently short to allow extensive, systematic analyses over a time
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span of hours. Consequently, we have been akle to investigate delicate regions of
phase resetting and the evolution of complex rhythms to an extent not previously
possible. The main experimental findings concerning the effects of brief duration
current pulses have also been observed in many other preparations. Thus, this syvs-
tem may serve as a2 paradigmatic preparation concerning the effects of single and
periodic stimulation on the timing of spontaneous oscillators. Since the heart cell
aggregate is well space clamped, it is suitable for voltage clamp analysis of the ionic
currents underlying spontaneous activity [29. 125]. We have conducted such studies
to determine the main current components in this system and have evaluated their
role in pacemaker activity and repolarization [159. 19]. This information can be used
to rlucidate the ion current mechanisms underlying specific aspects of dynamic be-
havior such as the response of the system to a single current pulse [32, 35, 161]. This
anproach. which is similar to that originally used by Hodgkin and Huxley [90] for
t.ae squid giant axon and by McAllister, et al., [122] and DiFrancesco and Noble (48]
tor cardiac preparations. has the considerable advantage that the dynamics generited
by the model can be firmly tied down to specific ionic mechanisms, thereby facilit-
ating the examination of critical, practical questions such as the role of drugs that
block certain channels, the effects of changes in the ionic composition of the bathing
medium, or the effects of electrical perturbation. However, ionic models tend to be
complex, whick makes general principles governing the dvnamics of these systems
difficult to formulate. An alternative approach involves nonlinear mathematics, that
is, the analysis of the changes in the qualitative properties of the solutions of gen-
eralized, finite difference equations with applied stimuli, or perturbations [181, 70).
The form of the equations used can be relatively simple and need only describe the
response of the system to perturbations without reference to specific mechanisms.
The resulting analysis can provide a mathematical description of the dynamics of
any given system, including rhythms associated with chaotic dynamics, but offers no
information concerning ionic mechanisms.

In this chapter we summarize research that integrates these two complementary
approaches for the analysis of biological dynamics, focusing mainly on research from
our group concerning the effects of current pulse perturbations on spontaneously
beating. embryonic chick heart cell aggregates.



3.2 Rationale for using embryonic chick heart cell
aggregates rather than single cells

At this point most cardiac electrophysiologists may well be wondering why we have
used aggregates in this study, or more correctly. reaggregates, rather than single
cells. especially since we obtain a single cell suspension during our tissue culture
preparation. as ncted above. The main reason is that aggregates appear to be su-
perior models for the intact embryonic heart compared to single, isolated embryonic
chick cardiac cells. For example, the threshold for the action potential in single cells
is typically -40 to -20 mV. rather than -60 mV found in intact myocardial tissue,
and the maximum diastolic potential. MDP, is typically -70 rather than <90 mV' [34].
Other investigators. in particular the Emory group, have reported similar action
potential waveforms from single cells [35. 127]. Moreover. single cells usually beat
irregularly. at best, which means they do not provide a stable model for a cardiac
oscillator [30]. The reason for the discrepancy in MDP appears to be that single
cells lack the I, repolarization current described below. Paradoxically. the ak -~nce
of Iz, which is an outward current component, may also explain the relative lack of
autonomous activity in single cells, because this current repolarizes the membrane
potential to ~90 mV, i.e., well below threshold. which removes inactivation of inward
currents, most notably [x,. [n the absence of Ix, these preparations tend to rest at
potentials where inward currents are inactivated. We do not at present understand
the reasons underlying the differences in ion currents between single cells and aggreg-
ates. Our strategy has been to continue to use aggregate preparations because they
have properties which more accurately refiect those of the intact heart, and because
they are good model oscillators.

3.3 Experimental observations

3.3.1 Phase resetting

An example of phase resetting is shown in Fig. 3.1. This figure also illustrates
the terminology used throughout this study. The control cycle length, that is, the
interbeat interval (Ty), was determined for each preparation from the average of ten
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successive beats. The eflects of single pulses on the subsequent timing of action
potentials was determined as a function of the phase © = ¢,/Ty of the stimulus.
The eycele was scanned with a single stimulus delivered each 10 spontaneous beats
incrementing the value of ¢, in 5 msec steps, The perturbed eycie length. T{o). is
the time from the upstroke of the action potential (AP) before the stimulus to the
upstroke of the AP after the stimulus. The plot of the normalized perturbed cvele
length PRC(&) = T(©)/To as a function © is the phase response curve (PRC).

The example of phase resetting in Fig. 3.1 corresponds to a 40 nA current
pulse 20 msec in duration which was applied close to the time of occurrence of
maximum diastolic potential in the control cycle. The pulse produced approximately
a 0% prolongation of the time of occurrence of the subsequent action potentiai
without significant effect on the subsequent spontaneous activity. In other words.
the electrical activity several beats after the current pulse is indistinguishable from
the activity prior to the pulse, except that the phase of the activity has been shifted
or reset, Further examples of phase resetting are illustrated in Fig. 3.2. Each
column in Fig. 3.2 consists of a control record (top trace) and four records below
each control which demonstrate the effects of different current pulse amplitudes on
phase resetting at various different points in the unperturbed cycle. The lowest
current amplitude (8 nA) produced a modest effect on the timing of the subsequent
beat, primarily a phase advance, especially as the time of the pulse relative to MDP
of the previous action potential was increased. The transition from little effect of
this pulse amplitude on phase resetting (top record underneath the control in the
8 nA panel) to a clearly observable phase advance (second and third records in
this panel) was a continuous, gradual function of the time in the unperturbed cycle
at which the current pulse was applied. Larger current pulses (16 and 32 nA)
produced a significant phase delay when the pulse was applied close to the time of
occurrence of MDP. The maximal phase delay with 32 nA pulse was approximately
35%. These larger pulses also produced a more marked phase advance at later times
in the unperturbed cycle compared to the 8 nA pulses. Moreover the transition
from phase delay to phase advance become increasingly more abrupt as the current
amplitude was increased, so much so that it appeared to be discontinuous function
of time of application of the pulse for 48 nA. Further results of this nature are given
in references [75, 35).
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Figure 3.1: Phase resetting of the rhythmic, spontaneous activity of an embryonic chick
heart cell aggregate. This experiment illustrates a phase delay induced by a 40 nA current
pulse 20 msec in duration (same duration used for all results in this study) applied close
to the time of occurence of maximum diastolic potential {(MDP). The terminology used
throughout this review is also illustrated here, The control, unperturbed cycle length is
Ta; the time of pulse injection relative to the preceding action potential is t,; and the
perturbed cycle length induced by the current pulse is T'(¢) = ToPRC(¢), where ¢ =
t,/To. From Reference [34].
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Figure 3.2: Phase resetting for current pulses having amplitudes (i) of 8, 16, 32,
and 48 nA for panels A, B, C and D, respectively. The pulses were applied at the times

indicated by the stimulus artifacts. The record at the top of each panel is the control
cycle.



3.3.2 Phase locking

The heart cell aggregates in this study were also stimulated with periodic trains
of action potentials of the same amplitudes () as used in the phase resetting
experiments. The cycle length, T, of the stimulus train was varied between 0.3 7,
and 1.8 To. The stimulus trains consisted of 50-100 stimuli so that the length of each
of these runs was typically between 10 seconds and 2 minutes (T was between 300
msec and 700 msec) with a rest interval of 30 t0 15 seconds between each run.

These preparations can be locked to the frequency of periodic current pulses
provided that the stimulation frequency does not differ too much from the intrinsic
frequency [95. 75, 67. 30]. a result which is referred to as 1:1 entrainment. An
example of 1:1 entrainment with various cycle lengths is illustrated in Fig. 3.3. The
control T for this preparation was 610 msec (Fig. 3.3A). A 1:1 entrainment pattern
was observed for cycle lengths greater than the intrinsic Ty with 48 nA current pulses,
as illustrated in Fig. 3.3B for T, = 850 msec. The pulses intrinsically locked at times
shortly after MDP of each AP, which is where maximum prolongation occured. Fig.
3.3B illustrates approximately the greatest degree of slowing of the beat rate which
we were able to achieve. A 1:1 pattern was also observed with T, = Ty, as illustrated
in Fig. 3.3C with T, = 690 msec. Similarly, l:1 patterns were obtained with T,
considerably less than T, as illustrated in Fig. 3.3D for T, = 440 msec.

Patterns more complex than 1:1 ertrainment occur when the stimulation fre-
quency differs sufficiently from the intrinsic frequency. The periodic rhythms that
are observed under these conditions are usually classified by the ratio N:M where
N is the number of imposed stirnuli and M the number of cycles in a repeating se-
quence. For stimulation frequencies sufficiently greater than the intrinsic frequency
N:M rhythms occur with N>M, as shown in Fig. 3.4. For example the third panel in
Fig. 3.4 illustrates a 5:4 rhythm, that is, the preparation essentially skipped a beat
every fifth pulse when T, was set as 200 msec. During the establishment of these
rhythms a transient phase often occurs in which an evolution of rhythms takes place
before a stable rhythm is established [186]. The stable rhythms shown in Fig. 3.4,
represent N:M patterns observed after all transients had disappeared.

With stimulation frequencies sufficiently less than the intrinsic frequency N:M
rhythms occur with N<M. The results were obtained from the same preparation as
in Fig. 3.4. The 1:2 entrainment result in Fig. 3.5 and the control above this trace
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Figure 3.3: Phase locking (1:1 entrainment) with izu,e = 48 nA. A. Control ‘spontaneous
activity (Tp = 640 msec). B. Entrainment in a 1:1 pattern with T, the cycle length of
the pulses, significantly greater than Tp (T, = 850 msec). C-D. Entrainment with T, =
690 and 440 msec respectively. Times of current pulse application in B-D are indicated
by the stimulus artifacts.
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Figure 3.4: Experimentally observed rhythms intermediate to 1:1 and 2:1 phase locking.
Top panel illustrates control spontaneous activity from a preparation different from that
illustrated in Fig. 1 (To = 300 msec). Shown below the control trace are 1:1, 5:4, 4:3,
3:2, and 2:1 phase locking for iy, = 25 nA, and T, = 220, 200, 190, 180, and 160
msec, respectively. From Reference [34].
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were obtained from a different aggregate. In addition to N:\ patterns. aperiodic
rhythms are occasionally observed in heart cell aggregates, particularly in transition
from one regular rhythm to another [75]). We defer a discussion of these results to

section 3.9,

3.4 Theoretical results based on a model of ion cur-
rents

3.4.1 Ionic model

QOur model of ion currents in embryonic chick atrial heart cell aggregates is a revised
version of the Shrier and Clay ionic modcl such as previously described [159. 33].
The parameters of the model are given in detail in Table 3.1. The model consists of 5
components based on voltage clamp results from our group and from others: namely
Inu. the fast inward sodium ion current which underlies the rapid upstroke phase
of the action potential; I¢,, the calcium ion current which underlies the latter part
of the upstroke and which is also primarily responsible for maintaining membrane
depolarization during the plateau phase of the action potential; I, (referred to as
I:» in reference [159]), the primary time dependent outward current which initiates
repolarization as Ig, is inactivated during the platean; Ik, (referred to as I in
reference [159]), the primary time dependent outward current underlying the fastest
phase of repolarization; and I, the background current, which appears to consist of
three subcomponents; I, a net inward, time independent current (the pacemaker
component) which depolarizes the membrane potential to threshold of In,, and two
components which inwardly rectify, termed I;; and Lz [35]. These preparations
do have the classical pacemaker current, Iy {49], but only at relatively negative
potentials, i.e., below -90 mV [19]. Our simulations suggest that this current is not a
significant factor for pacemaking in atrial cells, whereas it is significant in ventricular
heart cell aggregates [19]. The component underlying pacemaking in atrial cells is I3,
a net inward, time independent current whose ion constituents are as yet, unknown.
A time independent background current has recently been described in mammalian
sino-atrial nodal cells [$3). In the numerical simulation, the control cycle length of
the spontaneous beating was adjusted by changing the magnitude of I ;.
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Figure 3.5: Experimentally observed rhythms intermediate to 1:1 and 1:2 phase locking.
Top panel illustrates control spontaneous activity from the same preparation as in Fig.
3.4. The four traces below the control illustrate 1:1, 3:4, 2:3, and 3.5 phase locking
for T, = 330, 375, 430, and 495 msec, respectively, with ipu,e = 25 nA. The bottom
two panels illustrate control spontaneous activity and 1:2 phase locking from another
preparation with control cycle length To'= 500 msec. From Reference [34].



Our model of Iy, was taken without modification from reference [50). Our g,
model was developed by us based on the observations of this current by [98]. This
component is the le,p current [8]. Embryonic chick myocardial cells have little of
ihe Ie, 7 calcium ion current component {110]. The [x, and 1y, components of the
model are based on measurements of these currents from atrial heart cell aggregates
and from single atrial cells [159, 34]. The lx, component is qualitatively similar
to the classical delayed rectifier potassium ion channel in nerve {33] except that
the activation range is between -20 and +20 mV, as compared to -60 to 0 mV in
nerve, and the kinetics of this current are substantially slower in heart than in nerve.
The Iy, kinetics from single cells as measured with the patch clamp technique are
similar to our Iz, measurements from aggregates [34]. We have observed the I,
component only in aggregates, not in single cells for reasons which have not yet been
elucidated [34]. Qur model of this component is based on the measurements of [159].
The I, current might usefully be referred to as an inward rectifier with a gate.
Its open channel current-voltage relation inwardly rectifies. similar to [, possibly
because of “instantaneous™ blockade by intracellular Mg**, which is known to be
the mechanism underlying the inward rectification of I [169]. The I;. component
also has a clear time dependent gate having kinetics which are similar to those of I,
except that the maximum Ig, time constant (1 sec) occurs at -35 mV, whereas the
maximum time constant for I, (also &= 1 sec) occurs at 0 mV. The Iy, activation
range is between -50 and -25 mV (a relatively narrow range). Moreover, I, has an
N shaped open channel current-voltage relation with a peak outward current at =
-65 mV and with a current reversal at Ex, the potassium ion equilibrium potential.
However, the channel is essentially closed in the steady state for -40 mV, because the
gate is closed. It also passes little current for V > 0, because of inward rectification
of the open channel. Consequently, Ix, contributes very little to the steady state
current voltage relation. This component is primarily a transient current which can,
nevertheless, contribute significantly during the action potential, as described below.

The other feature of the mode! which is particularly worthy of note is the mech-
anism of inactivation of Ic.,r. This component does inactivate with membrane po-
tential, i.e., the clr.!-l'éi‘ca.l mechanism of inactivation. However, it inactivates during
the action poten cia.librimarily because of the inward, calcium ion current dependent
mechanism of inactivation reported originally [102, 113]. Our model of Ica,r was
designed with these results in mind, in particular the “crossover” effect reported by
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[113]. whick we have also observed in embryonic chick myocardial cells (A, Kristof
et al., unpublished observations). That 1s, an inerease of Cag* from 1.8 to 5 mM
produces a significant increase in inward ley elicited by a voltage clamp step to
0 m\'. It also produces a significant increase in the rate of inactivation of 1-,. so
much so that the records in 1.8 and & mM Cag* “crossover” when superimposed.
Our model mimics this effect. To the best of our knowledge, it is the only cardiac
membrane model which does so. This inactivation process is especially signifteant
in elucidating electrical activity which we have observed with sub-maximal doses of
tetrodotoxin (TTX). For example, 5 x 107*M TTX does not abolish spontaneous
activity in these preparations, but it does substantially reduce the upstroke velocity
(i.e.. L"'_.uu) so much so that the upstroke phase is almost completely attributable
to [¢q [161). Consequently the I, amplitude during the upstroke is actually a pood
deal larger than in control. simply because the upstroke phase is slower, thereby
allowing more time for activation of this current to take place. Paradoxically, the
action potential duration under these conditions is reduced, which would appear to
contradict conventional reasoning concerning the effects of an increase in l¢,. To
our surprise, our model mimicked this effect because the increase in lg, also caused
a marked increase in the calcium ion current dependent inactivation process which
reduced the duration of action potential relative to control [161]. In other words, this

result provides a physiological correlate to the “crossover” effect of [113].

3.4.2 Control electrophysiological results

An action potential predicted by the ionic model is shown in the top panel of Fig.
3.6 with the underlying ion currents illustrated below this waveform. The respect-
ive roles of I, and Ix, are, once again, worthy of comment. The Iy, component
along with [;; and I3 provide the mechanism of repolarization during the plateau.
However, these components are sufficient to repolarize the membrane potential oniy
to about -50 mV, as illustrated by the simulation in Fig. 17C of Reference [159]
in which the [, component was deleted from the ionic model. The [k, component
underlies repolarization between -90 and -50 mV. This channel is opened relatively
rapidly during the plateau phase of the action potential, but it does not contribute to
repolarization during this phase because of its inward rectification. As the membranz
repolarizes from the plateau, the instantaneous N-shaped current voitage relation of
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Igr comes in to play. At the foot of the action potential, i.e.. MDP, and during
the first 100 msec or so after MDP, the I, channels close, thereby allowing Iy to
depolarize the membrane to theshold of ly,.

A comparision of the ionic model with control electrical activity is shown in
Fig. 3.7. The model compares favorably with experiment, even to the extent that
the action potential of the model is essentially the same as the experimental action
potential waveform, except that the plateau phase is slightly more rectangular in the

model as compared to experiment (see Fig. 2 in Reference [35]).

3.4.3 Phase resetting

Examples of phase resetting from the ionic model are illustrated in Fig. 3.8 for
conditions which corrsspond to the experimental results in Fig. 3.2. The ionic
model closely mimics these results including the apparent discontinuity in timing of
a phase advance and phase delay with large current pulses. These effects are further
amplified by the phase resetting curves in Fig. 3.9 from an expsrimental preparation
(left hand panel) and from the model (right hand panel). The arrows in the bottom
three results in the left hand panel (experiment) and in the bottom right hand panel
{model) illustrate the apparent discontinuity in phase resetting as a function of the
time of pulse application in the unperturbed cardiac cycle which occurs for relatively
large pulse amplitudes. This result, which is beyond the scope of this review, is
discussed in considerable detail in Reference [35].

The ionic mechanism of phase resetting is primarily attributable to the Iy, and
In. components, as illustrated in Fig. 3.10 in which a 40 nA pulse was used close to
the transition between a phase advance and phase delay in the PRC. The respective
time courses of Ix, and of Iy, are shown below the voltage wave forms in each
example. The dashed lines illustrate the behavior of these currents in control, results
which are also shown in Fig. 3.6. The effect of a current pulse on Ig, in the model
applied shortly after the time of occurence of the MDP is to effectively increase
the amplitude of this component. The important point here is that a significant
fraction of I, channels remain open for 100-150 msec following MDP. The effect of
a relatively large depolarizing current pulse in this phase of the unperturbed cycle
is to quickly move the membrane potential away from Eg, thereby increasing the
driving force for the residual I, channels. (The inward rectification of I, discussed
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Figure 3.6: lon currents underiying the action potential and pacemaker activity in the
Shrier and Clay model, as described in the text. From Reference {34].
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Figure 3.7: A. Experimentally observed waveform in control conditions. B. Predictions
of the Shrier and Clay madel. We note here that the amplitude of the l;; component
of the model has been adjusted throughout this study so that the mode! closely matches
the various control interbeat intervals (Tp) observed experimentally.
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Figure 3.8: Phase resetting of the model for conditions similar to those shown for the
experimental result in Fig. 3.2. The horizontal bars under each each record in panels A
through D represents the time at which the pulse was applied in the model. A similar
representation is used for the timing of current pulses in subsequent simulations. The
current pulse amplitudes in the model here and in subsequent simulations were, in general,
the same as thz current pulse amplitudes used experimentally with appropriate scaling
for the size of the aggregate. That is, the model was designed for a 200 um diameter
aggregate [34]. The current pulse used in the model to simulate a resuit from a different
size aggregate (usvally smaller) was scaled according the cube of the diameter [29].
However, this procedure was not always followed. In some instances a current pulse
amplitude was used which gave the best agreement between theory and experiment for
a particular phase resetting curve of the preparation in question. The relative current
pulse amplitudes used to simulate other PRC’s from that preparation were then scaled
according to the experimental amplitudes. From Reference [34].
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Figure 3.9: Phase resetting curves {PRC’s) for current pulse amplitudes given in the far
right margin. Experimental results are illustrated in the left panel. The corresponding
results from the model are illustrated in the right hand panel. The vertical axes (PRC(0))
represent the perturbed cycle length, T(6), normalized relative to the unperturbed cycle
length, Ty. These terms are defined in Fig. 3.1. The horizontal axes represent the
phase in the cycle, ¢, at which the pulse was delivered. The arrows indicate apparent
discontinuities in the PRC's, an issue which is discussed in detait in Reference [34].
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above does not come into play for potentials below threshold, e, Vo= -60 m\).
Moreover, the Ix, time constant is significantly greater at -60 m\V (230 msec), as
compared to -90 mV (30 msec), so that the residual Iy, channels deactivate slower
than in control. The current pulse also produces premature activation of ly,. but
this effect is overcome by the increase of I, which leads to a significant phase delay,
However, the interplay between 1y, and Iy, during, and at the end of relatively large
amplitude current pulses, such as 40 na, is so delicate that when these pulses are
applied 1 msec later, a significant phase advance occurs in the model as shown in
the right hand panel. The slightly later time of pulse application permits a slightly
greater deactivation of [, to take place. Consequently, the current pulse depolarizes
the membrane potential ever so slightly closer to threshold of 1y, than in the left
hand panel. The combination of a reduction in amplitude of ;. and an increase in
Ina allows the premature activation of [y, to dominate in this instance and when the
current pulse is applied at later times in the unperturbed cycle. In other words, the
abrupt transition between phase delay and phase advance illustrated in Fig. 3.10 is,
in essence, a threshold phenomenon, which is known to be a steep function of pulse
parameters [56)].

3.4.4 Phase locking

The simulations generated by the ionic model corresponding to the experimental res-
ults in Figs. 3.3-3.5 are shown, respectively, in Figs. 3.11-3.13. Fig. 3.11 illustrates
the simulated electrical activity for 1:1 entrainment. A i:l chythm with T, > Ty
could be obtained for T, up to 30% greater than Ty (Fig. 3.11B). Phase locking with
a 1:1 rhythm is also shown in Fig. 3.11C and Fig. 3.11D, for T, = Ty and T, < Ty,
respectively. More complicated entrainment patterns occur in the model, as in the
experimental preparation, when the stimulation frequency differs sufficiently from
the intrinsic thythm. These results are shown in Figs. 3.12 and 3.13. The details of
the simulation protocols are given in the respective figure legends. The phase locking
behavior of the ionic model is fundamentally the same as that of the aggregate pre-
paration. This observation applies both to the qualitative appearance of the various
N:M rhythms and to the general ranges of stimulation. The close approximation of
theory to experiment is further shown in Fig. 3.14, which illustrates the transition
from 2:1 to 1:2 entrainment in the form of a “devil’s staircase” in which the N:M
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Figure 3.10: lonic mechanisms of phase delay and advance in the Shrier and Clay model,
as described tn the text. A 40 nA current pulse was applied in the model shortly after
MDP, as indicated in the voltage waveform in each panel. The time of the pulse in the
right hand panel was 1 msec later than in the left hand panel. lx, and |y, components
are shown below the voltage waveform in each panel. The dashed lines illustrate the
behavior of these components in the absence of a current pulse,
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rhythms are plotted as a function of the period of the stimulation.

The ionic mechanism of entrainment follows closely from the analvsis of phase
resetting given above. Phase locking in a il entrainment rhythm with T3, < T, is
attributable to premature activation of ly,. The result in Fig. 3.11B in which 1:1
entratnment occurs with T, > Ty is attributable to the properties of I, as described
above in the analysis of phase delays. As noted above, the interplay between 1y, and
Ixa leading to a phase delay is a rather delicate phenomenon, whereas promature
activation of Iy, is relatively robust. Consequently. the latter result, that is 1:]
entrainment with T, < 7o, occurs over a broader range of stimulus parameters than
does 1:1 entrainment with T, > To.

Entrainment patterns more complicated than 1:1 occur when the timing and
amplitude of the current pulses relative to the unperturbed interbeat interval is such
that neither premature activation of Iy, nor resetting of Iy dominates after cach
pulse. This result is illustrated for 5:4 entrainment in Fig. 3.15. For the sake of
clarity, the vertical axes in the bottom two panels of Fig. 3.15 have been amplified to
illustrate the behavior of the underlying Iy, and Iy, components. The arrow labeled
a in the middle panel of Fig. 3.15 points out the increase of I, described above,
which occurs during and immediately after the first current pulse in this simulation
as the membrane potential is depolarized away from Ex. The Iy, component is
also increased (as noted above and by the arrow l[abeled a in the bottom panel of
Fig. 3.13), because the membrane potential is depolarized close to threshold of this
current near the end of the current pulse. In this particular instance, the effect of the
pulse on Iy, is the dominant factor, resulting, subsequently in an action potential.
(The small “blips” of [x,, arrows labeled f in the bottom panel, represent the slight
reactivation of Iy, which occurs during repolarization of the AP. This effect is also
shown in Fig. 3.10). The I, component is rapidly diminished to = 0 during the
upstroke phase of the action potential, because of the marked inward rectification of
this component, as described above. The [k, amplitude once again increases during
repolarization, an effect which was also described above. The timing of the next pulse
in the current pulse sequence is such that it occurs slightly earlier relative to MDP
than the previous pulse. Consequently, the effect of this pulse on [, (arrow b in the
middle panel of Fig. 3.15) is slightly greater than with the previous pulse, because
Ix. has had less time to deactivate. However, the Iy, component still dominates
(arrow b in bottom panel of Fig. 3.13), as it does in the succeeding pulse (arrow ¢



400 msec

Figure 3.11: Phase locking of the Shrier and Clay model in 1:1 patterns. A. Spontaneous
activity in the model with Iy, adjusted to give To = 600 msec. B-D. Entrainment in
1:1 patterns with T, = 800, 680 and 400 msec, respectively. These results are to be
compared with the experimental results in Fig. 3.3.
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Figure 3.12: Rhythms intermediate to 1:1 and 2:1 phase locking in the Shrier and Clay
model. The ly; parameter was adjusted so that Tp = 300 msec. These results were
obtained with i, = 25 nA and T, = 200, 184, 178, 160 and 150 msec, respectively.
These results are to be compared with the corresponding experimental results in Fig.
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Figure 3.13: Rhythms intermediate to 1:1 and 1:2 phase locking in the Shrier and Clay
model with T, = 330, 375, 430, 470, and 495 msec, respectively, and with Ty = 300

msec. These results are to be compared with the corresponding experimental results in
Fig. 3.5.
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Figure 3.14: Phase locking as a function of the cycle time between pulses (8 = T,/Tg).
The left hand panel illustrates various phase locking regimes for the preparation illustrated
in Fig. 3.3 and the first five panels in Fig. 3.4 (To = 300 msec) with iy, = 25 nA.
The right hand pane! illustrates the various phase locking regimes of the Shrier and Clay
model with iz, = 24 nA. These results are sometimes refered to as a “devil’s staircase”.
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in the middle and bottom panels of Fig. 3.15), although it does so less compellingly
with each pulse in the a-d pulse sequence, because I, has successively less time
to deactivate, and each pulse depolarizes the membrane potentia! siightly less «lose
to threshold of Iy, throughout the sequence. Consequently, the 15, component is
dominant during and after pulse d (middle and bottom panels of Fig. 3.13), which
effectively causes the model to skip a beat. The subsequent pulse (labeled e in Fig.
3.13) elicits an AP due to activation of Iy.. The Ix, component does not produce
an inhibiting effect in this case, because it is largely deactivated at the beginning of

the pulse.

3.4.5 Limitations of the ionic model

The success of the Shrier 2nd Clay ionic model in describing the experimental results
given above leads to an important question, namely, why is the model so successful,
and where do its limitations become more apparent. The success of this ionic model
appears to lie primarily in its description of Iy, and lx,.. The model of Iy, of Ebihara
and Jones [50], which we completely borrowed in formulating the Shrier and Clay
model, may well be the most successful description of Iy, for any cardiac membrane
preparation. Qur model of Ix,, described in Reference [159], also appears to be suc-
cessful. When either of these currents is reduced or blocked altogether, discrepancies
between the numerical simulations of the iunic model and the corresponding voltage
changes of the aggregate preparation become apparent. For example, the effects of
submaximal doses of TTX [161] are well described (qualitatively) by the model with
appropriate reductions in Iy, amplitude, but significant quantitative discrepancies
are apparent, such as in the current pulse annhilatior experiment described in Fig. 6
of Reference [161]. Similarly, when Ix, is blocked by either risitolide or E-4031, the
model is qualita.iively consistent with experiment, especially for submaximal doses
of these compouvnds, but it does not describe the excitatory after depolarizations
(EAD’s) which we observe when I, is completely blocked (A. Shrier, unpublished
results). These and other discrepancies appear to be due in part to inadequacies of
our model of Iz,. Our description of this component does successfully mimic the
“crossover” effect of Lee, et al. [113], as noted above, but it does not successfully
mimic some of the long term inactivation properties of this current elucidated with
two pulse protocol voltage clamp experiments [99]. A further shortcoming of our
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Figure 3.15: lonic basis of 5:4 entrainment in the Shrier and Clay model as described
in the text. The bottom two panels illustrate the behavior of Ik, and I, in this pattern.



jonic model is the lack of various exchanger currents which have been reported in
the heart, such as the sodium calcium exchanger. The model also lacks the sodium
putassium pump current. We deliberately excluded these components in our original
formulation of the model. Qur goal was a minimal ionic model which successfully
mimicked the aclion potential and pacemaker waveforms. The surprise of this ana-
lvsis is how well the model also mimics most of the dynamics shown above. although
the model clearly is deficient especially in its lack of the sodium ion pump current. be-
cause heart cell aggregates do exhibit a clear overdrive suppressiou [172, 186] which
is a hallmark of the pump current [172, 61, 143]. Incorporation of this component
into our model in a realistic fashion, is not, in our view, a straightforward process.
DiFrancesco and Noble [48] have assumed in their model of electrical activity in car-
diac Purkinje fibers that accumulation of potassium ions in the extracellular spaces
during activity is an important mechanism controlling the amplitude of the pump
current. However, potassium ion accumulation is not, in our view, a significant
factor in heart cell aggregates, a view shared by Stimers, et al. {164] in their invest-
igation of the pump current in aggregates. Nevertheless, regardless of mechanism,
the pump current may play an important role in the dynamics of these prepaiaiions

(see below), and it must, necessarily, be incorporated into our ionic model.

3.4.6 Comparison with other preparations

The value of the analysis given here for cardiac preparations other than chick at-
rial heart cells depends, to an extent, on how repesentative the various ion current
components in the chick heart are of cardiac ion currents in other species. The Iy,
component in the chick, which the above analysis indicates is a prominent player
in phase locking, appears to be representative of Ix, in other preparations. For ex-
ample, Iy, measurements from single cells dissociated from rat heart, rabbit cardiac
Purkinje fibers, and human heart are largely similar to the Iy, results from em-
bryonic chick heart cells [20, 37, 50, 21]. Consequently, the mechanism of 1:1 phase
locking at beat rates greater than that of the intrinsic rhythm is likely to be the same
in mammalian preparations as it is in avian preparations, i.e., premature activation
of Iy, ever a relatively broad range of pulse parameters.

Po:assium ion currents in the heart, unlike Iy, and I¢,, are remarkable more for
intraspecies differences than for similarities. For example, rabbit ventricular myo-
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cytes have a significant transient outward potassium ion current, 1., [65], whereas
guinea-pig and chick myocytes do not ([136]. and A. Shrier, unpublished observa-
ticns). The latter two preparations do have a significant 15, component [126, 7, 34],
although 1, does not appear to be a significant factor in phase locking other than
Lelping to set the duration of the plateau phase of the AP,

The dominant repolarization current in chick myocytes is the Ig,. component
(139}, which has also been observed in guinea pig and in cat cardiac myocytes [156,
59]. The avian measurements of Iy, are remarkably similar to those in mammalian
cells concerning the rectification and voltage activation range of this component,
but they differ concerning kinetics. The 4, kinetics in the chick are similar to
those of I, (but with a different voltage range). whereas they are significantly
faster than those of I, in mammalian cells, hence the label Iy, where “™ refers
to “rapid” [156], although in our preparations “r” might more anpropriately refer to
“repolarization™ [159]. In any case, this comparison suggests that the role of 1, in
phase resetting and phase locking in mammalian cells could well be different {rom
that of avian cells. Nevertheless, all excitable cells, whether quiescent or autonomous,
will show a transition from 1:1 to 2:1 phase locking as the current pulse frequency
is increased, because of refractoriness. The specific nature of the (potassium) ion
current underlying the refractory behavior would appear to be preparation specific.

3.5 Nonlinear dynamics

The above results provide an analysis of the dynamics of the heart cell aggregates
and an evaluation of the role of the underlying ionic currents. However, this analysis
does not readily explain the complex sequence of patterns observed as stimulation
parametets are changed, including phenomena such as period doublings and irregular
dynamics.

Insights into these complexities can be gained by applying techniques from the
field of nonlinear mathematics [75, 67, 70, 184, 81}. This approach also provides the
framework for addressing other questions arising from the experimental data. These
questions include: What is the connection between the phase resetting properties and
dynamics during periodic stimulation? How can we predict complex rhythms that
are found as stimulus amplitude and frequency vary? Why are the resuits obtained
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from heart cell aggregates similar to results in other systems in which the underlying
mechanisms of rhythmogenesis are certainly different? We address these questions
in the following section by applying the techniques from nonlinear dynamics to the
Shrier and Clay tonic model of the heart cell aggregate. This blending of theoretical
techniques is an attempt to establish links between ionic mechanisms and nonlinear

dynamics.

3.5.1 [Iteration of the phase resetting curve

The effects of periodic stimulation can be computed from phase response curves
(PRC’s, such as those in Fig. 3.9), provided that the stimulation does not change
the intrinsic properties of the oscillator and that the time interval between the stimuli
is sufficiently long [L41, 75, 67, 184]). The basic idea here is that a single stimulus
leads to an instantaneous phase resetting from one point of the cardiac cycle to a
second point on the cycle. The theoretical formulation of this process is carried out
in terms of finite difference equations [70]. Calling the phase of the ith current pulse
&;, we have,

T(di-1)
T

i = f(0i=1,8) = L + i1 — +8 0L ¢ <1l (modl), (3.1)
where 8 = T,/Ty, T, is the cycle length of the stimulus train, and ﬂ?—.‘f’l is the phase
response curve as determined from single pulse experiments. Assuming that ¢y is
the phase of the unperturbed spontaneous cycle at which the initial current pulse of
a train of periodic pulses is applied, Equation (3.1) can be numerically iterated to
determine the dynamics.

The manner in which Equation (3.1) is implemented is illustrated in Fig. 3.16
and 3.17. Typical PRC’s from a 150 um diameter aggregate are shown in Fig.
3.16A and 3.16B, for current puise amplitudes 26 nA and 55 nA, respectiveiy. The
corresponding model results are given in Fig. 3.16C and 3.16D, respectively. The
results in Fig. 3.16C and 3.16D have been transformed according to Equation (3.1} in
Fig. 3.16E and 3.16F, respectively, with § = 0. Note that T(¢)/Tp is approximately
equal to ¢ in Fig. 16C for ¢ > 0.4 and similarly in Fig. 3.16D for ¢ > 0.3. Equation
(3.1) gives ¢; = 1 for these conditions, as shown in Fig. 3.16E and 3.16F. The results
" in Fig. 3.16C and 3.16D have been transformed according to Equation (3.1) with 8
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= 0.33 in Fig. 3.16G and 3.16H. In other words, the plots in Fig. 3.16E and 3.16F
are shifted along the ¥ axis (modulo 1} as the frequency of the externally applied
current pulse train is altered. We hereafter refer to plots such as those in Fig. 3.16G
and 3.16H as phase transition cuzves {PTC’s).

Results similar to those in Fig. 3.16G and 3.16H are the basis for the determi-
ination of the dynamics using the iterative procedure illustrated in Fig. 3.17. The
experimental recording in the top of the left panel in Fig. 3.17 is an example of 2:3
phase locking with 24 nA current pulses applied at a relative frequency of ¢ = 1.2,
The transient pattern which occured before stable 2:3 phase locking was achieved
is shown here. The PRC transformed according to Equation (3.1) for these condi-
tions is shown below the experimental recording. The initial current pulse of the
current pulse train was applied to the preparation at ¢, = 0.85. All subsequent
phases at which the current pulses occur relative to the activity of the preparation
can be determined by iteration. For example, ¢, = 0.38, ¢ = 0.7, ¢y = 0.35, ¢
= .62, ¢s = .32, ¢s = .55, and ¢; = .3, as shown in Fig. 3.17 by the horizontal
and vertical lines superimposed upon the phase transition curve. All subsequent
results alternate between the latter two values, i.e., 0.55 and 0.3. The corresponding
analysis in the model is shown in the right hand panel of Fig. 3.17. We note that
a stable 2:3 phase locking pattern is achieved in the model much more rapidly than
in the experimental result, for reasons that we do not as yet fully understand. One
clear practical advantage of the approach of Figs. 3.16 and 3.17 is that regions of
parameter space for which a particular type of phase resetting occurs, such as 2:3,
can be predicted from the PRC rather than using direct integration of the full ionic
model which can be a laborious procedure.

3.5.2 Period doubling bifurcations and chaotic dynamics

One of the important observations of nonlinear dynamics is that systems that are de-
scribed by nonlinear functions, such as those in Equation (3.1), can display complex
rhythms in which there is aperiodic behavior, and in which two initial conditions
that lie close to one another have different dynamics as time proceeds. A formal

definition for chaotic dynamics can be provided by the Lyapunov exponent, A, which
is defined

e ,
A= lim !—V-Zlnlf (6:,0)], (3.2)

i=1
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Figure 3.16: A-B. Experimentally observed phase response curves (PRC's) for moderate
and relatively large amplitude pulses {i,u;,c = 26 and 55 nA for A and B, respectively).
The trace above panel A illustrates the marner in which the PRC was determined as
in Fig. 3.1. C-D. PRC's from the Shrier and Clay ionic model (ipu,e = 26 nA and 55
nA for C and D, respectively, with I, adjusted to give Tv = 365 msec). E-F. Phase
transition curves as determined from respective PRC's in C and D using Equation (3.1)
in the text with § = 0. G-H. PTC's from E-F with 8 = 0.33. These results are the same
as in E-F, modulo 1, following an upward shift along the y axis by 0.33.
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Figure 3.17: Determination of phase locking from the phase transition curve. Left hand
panel: The experimental recording illustrates the effects of the first ten pulses of a current
pulse train with T; = 430 msec, ipuse = 25 nA for a preparation with Ty = 300 msec
(6 = 430/400 = 1.44). This activity is consistent with 2:3 phase locking following an
initial transient during the first six puises. The relative time in the unperturbed cycle at
which the first pulse was applied was 0.85. The phases at which subsequent pulses occur
can be determined from this point and the phase transition curve for these conditions,
which is shown below the recording. The horizontal and vertical lines demonstrate the
iterative procedure described in the text, as the activity locks on to the 2:3 pattern. Right
hand panel: The trace in the upper part of the panel illustrates the effect of the first
five pulses of a current pulse train on the Shrier and Clay ionic model (To = 300 msec,
isutse = 25 nA and T, = 420msec). The times of occurence of the pulses are indicated
by the hurizontal bars below the trace. The bottom part of the panel illustrates the old
phase new phase diagram for ipy,. = 25 nA and § = 1.41 along with the corresponding
iteration, as described in-the text. Note that the transient in the modet which occurs
before stable 2:3 phase locking is achieved is significantly less than in the experimental

result. The solid symbols in both panels are the phase space representation of the steady
state 2:3 rhythm.
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where NV is the total number of iterations and f'(&:.9) is the first derivative of the
function f evaluated at successive phases ¢;. A positive Lvapunov number reflects
divergence of two nearby initial conditions and is taken as a definition for chaos
[183, 70. 184]. The Lyapunov number was estimated by taking the summation over
420 iterates following a transient of 400 iterations.

Chaotic dynamics are often established following characteristic changes in the
dynamics, technically called bifurcations, that arise as a consequence of changes
in the parameters of stimulation. One well studied phenomena is period doubling
bifurcations, in which the period of an oscillation doubles. This result was first
documented in a biological system by Guevara et al. [75], using periodicaily stim-
ulated heart cells aggregates with relatively large amplitude current pulses applied
at stimulation frequencies which were a bit less than the intrinsic frequency of the
preparation. An example of a period doubling bifurcation is illustrated by the 2:2
rhythm in the top panel of Fig. 3.18. In this record a current pulse was injected
either immediately after the MDP of an action potential, or during the initial part
of the plateau phase of the action potential. Even more complex patterns occur with
N=M=2n, with n>1, such as the 4:4 pattern illustrated in the second panel of Fig.
3.18. The 2:2 and 4:4 rhythms during periodic stimulation of heart cell aggregates
here are similar to the rhythms observed by Guevara et al. [75)] and typify the period
Jdoubling route to chaotic dynamics [€9, 70]. Numerical integration of the Shrier and
Clay ionic model displays similar rhythms, as illustrated in the bottom half of Fig.
3.18. The current pulse amplitude in the simulations was 43 nA. Only very slight
changes in the frequency of the pulse train were needed to obtain these results (T,=
455, 460 and 467 msec for the 1:1, 2:2 and 4:4 results respectively).

Examples of chaotic dynamics are illustrated, from experimental data (left) and
from numerical integration of the revised version of the Shrier and Clay ionic model
(right) are illustrated in the top panels of Fig. 3.19. The phase transition curves
for the conditions of these results are closer in appearance to Fig. 3.16H than Fig.
3.16G. In particular, they have roughly parabolic shapes for ¢; < 0.3, as illustr-ted
in Fig. 3.19 (open symbols). The relative phases of each of the current pulses in
the chaotic thythms in Fig. 3.19 are shown by the closed symbols. These points
lie approximately on a continuous curve coincident with the parabolic portion of the
PTC. Since iteration of the PTC gives chaotic dynamics using Equation (3.1), this
supports our interpretation that this rhythm is chaotic. However, numerical integ-
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Figure 3.18: Period doubling rhythms. The top two panels illustrate 2:2 and 4:4 rhythms
from two different aggregates with isu,. = 43 and 48 nA, respectively. In the 2:2 result
To= 303 msec and T, = 342 msec and in the 4:4 result To = 321 and ard T, = 386
msec. The model results correspond to ipu,e = 43 nA, and T, = 455, 460, and 467
msec for 1:1, 2:2 and 4:4 rhythms, respectively, with T = 435 msec.
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ration of the Shrier and Clay ionte model did not appear to give chaotic dvnamics.
The simulation record shown in the top part of Fig. 3.19 represents a 10 second
record of irregular dynamics which was bounded, both before and after. by regular
dynamics obtained without a change in stimulus parameters. The relative difficulty
of finding chaotic dynamics from numerical integration of the full “revised” Shrier
and Clay equations presumably reflects the narrow range of parameter values for
which these dynamics are observed, and the numerical difficulties associated with
searching phase space over a fine range of parameter values. It is important to re-
cognize that the experimental system always contains small amounts of “membrane
noise” that would act to destroy regular rhythms with long periodicities, as well as
other factors such as the Na*/K* pump that might help introduce ad ditional beat
to beat variability in the deterministic model. Further numerical studies are needed
to assess the importance of these factors. Finally, we note that other ionic models
for spontaneously oscillating and periodically forced excitable uiological systems dis-
play chaotic dynamics over limited stimulation ranges, for example, see References

77, 25, 70, 176], and references therein.

3.5.3 Phase locking zones

We have observed experimental results over a broad range of pulse intensities and
frequencies. The experimental data can be conveniently summarized in a two-
dimensional representation where the abscissa gives the normalized period of the
stimulation and the ordinate gives the amplitude of the current pulse. The summary
of the results is represented by the various symbols in Fig. 3.20 which were obtained
by a visual inspection of the corresponding records generated by the ionic model.
This approach requires extensive computations at each combination of stimulation
parameters chosen. Another method for computing phase locking zones is to iterate
Equation (3.1), as discussed above and as shown in previous studies [67, 81, 184].
The results of the computation are represented by the solid lines which demarcate
the boundaries between phase locking cones. The largest zone is the 1:1 entrainment
zone. It occurs when the stimulation period is approximately equal to the intrinsic
frequency of the aggregate, but it also extends at higher amplitude stimulation to
stimulation periods that are up to 30% of the intrinsic period. The 2:1 and 2:3 zones
occur for stimulation periods approximately 0.5 and 1.5 times the intrinsic period.
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Figu-e 3.19: Aperiodic rhythms obtained from an experimental preparation (left panet)
and from the tonic model (right panel), as described in the text. For the experimental
result, Ty = 450 msec, T, = 490 msec, and i,y.. = 43 nA. Model parameters were the
same except for T, which was 497 msec. The upper panels show the electrical activity
of the experimental preparation and the model. Lower panels show the old phase-new
phase representation of the aperiodic activity, represented by the solid symbols. The
phase transition curves are represented in both panels by the open symbols.
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In comparison with the 1:1 zone, the 2:1 and 2:3 zones occur over narrower regions
of stimulation parameter space. Finally, between the 2:1 and 1:] zones there are N: M
rhythms with N>M and evolving rhythms. Between the 1:1 and 2:3 zones there are
N:M rhythms with N<M, period-doubled rhythms such as the 2:2 and 4:4 rhythms.
and chaotic rhythms. In general, the rhythms obtained by iterating Equation (3.1)
are in good accord with the experimental results. However, a more extensive and
detatled analysis of the rhythms generated by the full ionic model has yvet to be
undertaken.

The regions of the parameter space displaying chaotic dynamics are shown in Fig.
3.21. The shaded areas in this figure correspond to regions of parameter space in
which iteration of Equation (3.1) vields a positive Lvyapunov number. However, as
mentioned above, the simulation in Fig. 3.13 is the only result from numerical integ-
ration of the Shrier and Clay equations that appeared to be chaotic. The difficuity
we had in finding chaos in the full ionic model may be attributable to the extremely
fine structure of the dynamics in the shaded areas in Fig. 3.21. In fact, computations
using the PTC of the model indicate that chaotic rhythms occur in narrow bands in-
terspersed among complex, although non-chaotic, higher order rhytkms. To address
this point in detail one would need to extensively evaluate the PTC for stimuli in
these regions, which is beyond the scope of studies conducted to date.

3.5.4 Universality

The preceding sections describe experimental determination of phase resetting and
phase locking of chick heart cell aggregates, and develops theoretical models for the
analysis of these results in the context of ionic models based on voltage clamp data
. +d nonlinear finite difference equations. There is in general good agreement between
the theoretical models and the experimental data. In this section we discuss the
relevance of this work to experimental and theoretical studies of other spontaneously
oscillating biological preparations.

A property common to many different systems is that their behaviour changes
from simple to irregular as some external parameter is varied. What is notable is
that these behaviours vary in a fashion which is independent of a particular func-
tion. Rather, there are 2 large class of nonlinear functions which generate stable
cycles in one parameter range and then as the parameter is changed there are period
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Figure 3.20: Phase locking-zones. The various symbals illustrate different phase locked
rhythms, as determined from visual inspection of experimental recordings from seven
different aggregates. These results have been normalized according to the configuration
of the PRC, so that they all correspond to a 200 uzm diameter aggregate. The symbols
represent 3:1 (o ); 2:1 (N); 3:2 (U); 1:1 (e); 2:2 (A); 2:3 (©); and irregular rhythms
(* ). respectively. The boundaries of various 2ones in the ionic mode! (as indicated
by the hand drawn lines) were determined from the PTC's using the iterative approach
described in the text and in Fig. 3.16. The l,, component in the Shrier and Clay ionic
model was set so that To = 366 msec.
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Figure 3.21: Regions of chaotic dynamics predicted from iteration of the phase response
curve of the ionic model. A portion of the plot in Fig. 3.20 is shown with the N:M zones
as indicated. The shaded regions correspond to regions where a mixture of complex and
chaotic (positive Lyapunov number) rhythms were found.



doublings and chaotic dynamics. Indeed, in a variety of systems, including the heart
cell aggregates, there are characteristics of the different iterated maps that behave
in a “universal™ fashion. In this context the results of these studies on the heart
cell aggregates may serve as a model of the dynamics observed in other cardiac
preparations and biological oscillators in general.

The various rhythms that we have observed in heart cell aggregates and in our
model of this system bear a striking resembiance to rhvthms observed in other
experiments involving periodic stimulation of cardiac tissue [26. 3]. Moreover, ana-
logous rhythms have been observed in cardiac arrhythmias in the human heart, such
as second degree heart block, that arise as the parameters of electrical stimulation
are varied [160]. Furthermore, similar types of rhythms are also observed in other
physiological systems as well as in abstract theoretical models [70, 76].

From a mathematical perspective, the reason for the similarities in dynamics
between different systems are well understood. Briefly, dynamical systems that are
described by one-dimensional finite difference equations, Equation (3.1), have a lim-
ited repertoire of possible behaviors. In the current case, the nonlinear function f is
derived from the PRC. Provided the PRC satisfies certain mathematical properties,
then one can make strong statements concerning the effects of periodic stimulation on
the system. For example, if the stimulus strength is sufficiently weak, we know that
if we observe NV : M phase locking for some value of stimulus period ¢, and N'M'
phase locking for stimulus period 82, then there exists an intermediate stimulation
period 6, with 8§, < 8 < 0,, which gives a locking ratio N + N’ : M + M’'. This
observation gives insight into the ordering of the locking zones for low values of the
stimulus intensity. The other important mathematical insight into the current results
arises from the parabolic shape of regions of the PTC for moderate to relatively large
amplitude stimuli. The appearance of this geometry will give rise to period doubling
bifurcations and chaotic dynamics, regardless of the specific mechanisms. Despite
these results, a detailed understanding of the complete global organization of the
phase locking zones for all stimulus amplitudes and intensities remains a difficult
problem, currently the subject of research in mathematics.

Nevertheless, the “universal” appearance of similar rhythms in such a wide variety
of different systems has important implications for the interpretation of the current
results. Based on the observation of the rhythms alone, one cannot conclude that
some particular theoretical model is validated by the experiments. On the contrary,



a very broad range of different theoretical models will all give a rough approximation
to the observed results. Thus, simple models with parabolic PTC s may therefore
provide a convenient way to characterize results from complex systems, and may
have predictive power concerning the ordering of the dyvnamics and the range of
stimulus parameters required. However, the different theoretical models will ditfer
in subtle, but nevertheless important features such as the shapes and quantitative
boundaries of the different zones.

3.6 Conclusions

The various rhythms that are observed in heart cell aggregates described above can
be reasonably well explained in terms of ionic mechanisms as well as of nonlincar
mathematics. The results of this work may be generalized to other excitable cells, in-
dependent of the detailed ionic mechanisms, because of similarities in the underlying
nonlinear mathematics. Therefore, we believe that the chick heart cell aggregate, and
its responses to electrical stimulation, give broadly applicable insights into dynamics
arising from the stimulation of other biological oscillators.

The current analysis makes certain important simplifications that will need modi-
fication in future studies. The weakest step in what we have sketched out is the as-
sumption that the stimulation does not change the properties of the oscillation. This
assumption is not well satisfied during stimulation at rapid pacing rates. Following
the cessation of rapid pacing, the intrinsic rhythm of the heart cell aggregate slows,
a phenomenon that is known as overdrive suppression. Overdrive suppression is
observed in diverse cardiac preparations, and is frequently observed in humans fol-
lowing the tachycardia. Previous work on the chick heart cell aggregates has begun
to characterize overdrive suppression and to explore the consequences of overdrive
suppression on the dynamics of the heart cell aggregates. A further investigation
of the qualitative aspects of this phenomenon is aiso presented in Chapter 4. For
example, during periodic stimulation at rapid pacing rates there is often an evolution
of rhythms such that higher grades of block occur before the stable rhythm is estab-
lished [186]. Modifications in the simple finite difference Equation (3.1) have been
proposed to account for these effects, but the mathematical structure of the result-
ing equations is more complicated (it is a 2 dimensional nonlinear finite difference
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equation) and it is not as well understood. These effects may be associated with ac-
tivation of the Na*/K* pump and Nat/Ca®" exchanger . transient inhomogeneities
of cations in the extracellular space and intracellular space. or some combination of
these effects. [n order to account for the time dependent effects associated with rapid
stimulation, modifications in the ionic model will have to be implemented. Chapter
5 is partly devoted to the development of such a modified ionic model.

The response of the heart cell aggregates to electrical stimulation is relevant
for the interpretation of cardiac arrhythmias. For example. parasystole [95. 177]
and atrioventricular heart block [160] display many similarities to the rhythms in
the heart cell aggregate preparation. Indeed, the experimental results on heart cell
aggregates directly motivated the clinical observations reported in Reference [160].
Moreover, the knowledge obtained from heart cell aggregates may help provide a
basis for understanding the phase resetting and phase locking of ventricular tachy-
cardia observed in a clinical context during the diagnosis and control of ventricular
arrhythmias [100]. The ionic mechanisms underlying these arrhythmias are still not
well known. Since pharmacological interventions affect ionic channels directly, an
understanding of the ionic mechanisms in this model preparation may have long
range implications for therapy.

An additional direction for future research involves investigating the molecular
biology of the ionic currents. The dynamics in chick heart cell aggregates display
subtle reproducible differences depending on the age of the embryo at the time of
culturing, the part of the heart from which the culture is derived, and the composition
of the growth medium. Understanding the molecular basis of these changes, and
associating them with the observed dynamics during different stimulation protocols
provides a challenge for the future.

3.7 Appendix: detailed description of the Shrier-
Clay ionic model

In this Appendix we present the details of the modified version of the Shrier and Clay
ionic model for atrial chick heart cell aggregates used in the theoretical part of the
present work. The current components are explicitly given in Table 3.1. Numerical
simulations were implemented with a variable time step Euler iteration technique

74



[131] {or the membrane voltage and a Rush and Larsen [155] iteration method for the

gating parameters.



Table 3.1: Membrane current components fer the Shrier and Clay model of ionic currents
in atrial chick heart cells.
Sodium ion current:

Ina = 328m3(t)A(t)(V = 10).

m(t) = =(am + Bm)m(t) + am;
h(t) = =(on + Br)h(t) + an;
o = 320(V + 47.13) /(1 = exp(=0.1(V + 47.13))) s7%;
B, = S0exp(-V/11) s~h:

oy = 135 exp(—(V +80)/6.8) s~1;
B, = 3560 exp(0.079V) + 3.1x10%exp(0.35(V + 3)) s ~%; when V < —40mV and

ap =10
mh = (@n + 81)7 = 0.00013(exp(—(V + 10.66)/11.1)+ 1} ,s otherwise,

Delayed rectifier potassium current:

Iy = 14n(t)(V + 100).

7(t) = —(an + Bn)n(t) + an;
ay, = 0.08(V = 15)/(1 — exp(—0.08(V — 15))} s~
B = 0.156 exp(—0.055(V ~ 15)) s~

Primary repolarization current:

IK,- = Ios(t).

S.(t) = —(&, + ﬁ;)S(t) + oy}
a, = 18.4exp(0.12(V + 12)) s=1;
B, = 0.0288 exp(—0.09(V + 12)) s™%;

Io = 850 y*(145pk, ~ L.3rk:) /(1 + y + 52.8y7),
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with y = L3rp./ (145pg,).

rre = (L+exp(V/23))70 and pry =1 = ray.

Background current:
Iy, + oy + f5y. Where

Iy, = 0.123(V — 40),
Iy, = 309.5y3(145pxr = L5rpr) /(14 1 + uf + L.5y3),
Iy, = 1476V + 65|y3(145ppr — 10.7rg,) /(1 + y2 + 9y3).

Y1 = L7k /(145pKe), y2 = 10.7ry, /(145pk, ).

Calcium ion current:

Ica = 20d(8) f(£)(9(8))(V - 40).

d(t) = ~(aa + Ba)d(t) + ou;
f&) = =(ay + B} () + ay;
ag = 2600 exp(—0.02V)/(exp(=0.15V) + 1) s~!;
Ba = 1780 exp(—=0.17(V + 39))/(exp(~0.072(V + 39)) + 1) s~};
oy = 0.025 exp(—~0.1V) s™1;

By = 0.25V/(1 - exp(—0.2V)) s~1;
§ = —=g[Ca)/(5x10™%) + (1 — g)/(0.025(1 + exp(0.10(V + 50)))), where
[Ca;] is the internzl calcium ion concentration (;nol/liter), with

[Cai] = —13x107%1¢, + 80(10™7 — [ Ca;]).



Chapter 4

Overdrive suppression of
spontaneously beating chick heart
cell aggregates: Experiment and
theory

4.1 Foreword

Single or sustained periodic stimulation can affect the properties of pacemaker car-
diac tissue. In particular, rapid stimulation at a rate faster than the intrinsic fre-
quency of the preparation will often lead to a transient slowing of the spontaneous
rhythm. This effect is called “overdrive suppression™ [173]. Overdrive suppression
has been observed in cardiac tissues derived from many species [174, 172, 173, 74, 36,
66, 143, 106, 134, 41, 101, 149]. Vassalle demonstrated that an important mechanism
underlying overdrive suppression in dog and sheep Purkinje fibers is the activation
of an electrogenic Na/K pump [172]. Although subsequent studies have confirmed
the role of the electrogenic Na/K pump {143, 118, 36, 61, 41, 173], other ionic mech-~
anisms including extracellular potassium accumulation [106, 172], and intracellular
calcium accumulation [134, 74] play a role in the overdrive suppression.

Recently, we characterized overdrive suppression in spontaneously beating chick
heart cell aggregates [186]. We studied the kinetics of buildup and decay of the over-
drive suppression following stimulation at constant frequency, and demonstrated the
role of overdrive suppression in the evolution of rhythms during periodic stimula-
tion. The current paper extends this work by considering the effects of stimulation
frequency, amplitude, and duration of pacing on overdrive suppression. Although we
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are interested in the detailed tonic mechanisms of the heart cell aggregates [105], we
believe that development of simplified theoretical models can play a complementary
role to the ionic models by providing easily understandable equations demonstrat-
ing the main phenomena. In the current paper we propose a system of nonlinear
ordinary differential equations to model the cardiac oscillator based on the van der
Pol equation {170, 57]. This oscillator equation is modified by implementing an ad-
ditional equation to account for overdrive suppression based on the hypothesis that
rapid stimulation induces an electrogenic outward current 172, 173]. We assume that
each action potential induces an outward current that decays slowly during diastole.
At rapid stimulation rates there is inadequate time between action potentials for the
outward current to return to control levels leading to an increased outward current
and lower spontaneous frequency. The outward current plays a role during control
activity as well as during electrical stimulation. The experimental results concerning
the buildup and decay of overdrive suppression found in the current work are in good
agreement with the simulations of the theoretical model.

4.2 Experimental protocols

Experiments were carried out in 20 preparations. 15 focused on overdrive at dif-
ferent frequencies, 5 on overdrive suppression for different numbers of stimuli. The
electrical activity of the aggregate was recorded in the absence of external stimulation

for five to ten minutes. Aggregates displaying marked {more than 5%) variability in
the IBI were discarded.

4.2.1 Overdrive suppression for different numbers of stimuli

The aggregates were stimulated with increasing numbers of stimuli. Successive trains
of 1,2,4,6,8,10,15,25,50 and 100 stimuli were delivered, separated by rest periods of
approximately 30 seconds. The period of stimulation was typically of about 0.6
To (To is the control cycle length of the preparation) and in all cases there was
1:1 entrairment between the stimulator and the preparation. All measured time
intervals were normalized to the control cycle length defined as the average of the
5 cycle lengths preceding the drive. The post-drive cycle length was evaluated as
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a function of stimulation duration. The subsequent decay of overdrive was plotted
on the same time scale. In some instances, the protocol was repeated for several
different amplitudes of stimulation to investigate the relationship between overdrive

suppression and the intensity of the stimulus.

4,2.2 Overdrive suppression at different frequencies

Trains of 50 or 100 stimuli were delivered at different stimulation periods {T,) with
a rest of 30 seconds between successive trains to allow the cvcle time to return
to control. The period of stimulation was automatically decremented. Different
stimulation strengths were also used to investigate the relationship between overdrive
suppression and the intensity of the stimulus as well as the entrainment rhythms.
The measured time intervals were normalized following the procedure described in
the previous protocol.

4.3 Theoretical model

Since the pioneering work of van der Pol and van der Mark [170], simple systems of
ordinary differential equations (ODE’s) have been used to model qualitative features
of biological oscillators [70, 181, 57). We have chosen a piecewise linear approxima-
tion to the van der Pol equations that contains a stable oscillating solution, e limit
cycle, to represent the cardiac cycle. For technical details concerning the mathem-
atics, see the Appendix.

The theoretical model is designed to capture the important qualitative properties
of overdrive suppression in a schematic fashion. The main assumption of this work
is that overdrive suppression arises as a consequence of @ hyperpolarizing (outward)
current that is induced by action potentiels. Although we imagine that this current
is associated with the transport of positive ions from the intracellular space to the
extracellular space during the cycle, we develop the theoretical model in a general
way that is consistent with a number of different ionic mechanisms. Therefore,
the present simplified theoretical model can provide a complementary approach to
traditional ionic modeling and represents an important step in our understanding of
overdrive suppression.
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In order to carry out this task, the equations for the cardiac oscillator are moditied
to include a history dependent hyperpolarizing current. The prolongation of the
intrinsic cycle length following rapid stimulation is primarily due to a decrease in
the slope of diastolic depolarization and, to a lesser extent, to changes in action
potential duration, maximum diastolic and threshold potentials [186].

The differential equations that we adopt for the periodically stimulated eardiac
cells .re

dv 1 .

- = ;(y-f(‘”)),

dy . VA

E = O.’(‘ \—5Z+—k\ (4‘1)
dZ Z

i —7m+525(t —tar),

where V(t} corresponds to the experimentally observed transmembrane voltage, y
controls the timing of the phases of the action potential, and Z is the variable as-
sociated with the history dependent hyperpolarizing current. The properties of the
oscillation in the absence of Z are determined by the piecewise linear functions f(V')
and afV) (see Appendix). Finally ¢, 8,v,AZ are positive constants, § is the Dirac
delta function and {4p represents the time of ups troke of the action potential.

The physical interpretation of this equation is as follows. If we first fix Z = 0
there will be a stable oscillation of V and y. For 0 < € << 1, the oscillation is similar
to a cardiac action potential with periodic rapid increases in V that we associate
with the successive onsets of the action potential. Now consider what happens when
Z is allowed to vary. The onset of the action potential leads to an instantaneous
increment, AZ, of the factor Z. Meanwhile, during the entire cycle, the level of Z
is reduced following some Z-dependent rate. There is an associated term, —f3 Zi'-i-k‘
influencing the dynamics of y in the second equation. This term prolongs the duration
of the depolarizing (pacemaker) phase of the cardiac cycle, and to a lesser extent,
decreases the duration of the plateau of the action potential. Therefore, the removal
of Z can be associated with a hyperpolarizing current, where the magnitude of the
current is proportional to -5‘;2_; The Appendix gives further details.

Numerical simulations were carried out by integrating Equation (4.1) using a
fourth order Runge-Kutta method. In order to eliminate transients, initial conditions
were chosen to lie on the limit cycle. The parameters of Equation (4.1) were adjusted
for each aggregate studied using the method described in the Appendix.
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4.4 Results

4.4.1 Overdrive suppression at fixed stimulation frequency
for different numbers of stimuli and different stimulus
intensities

In this protocol the aggregates were stimulated for several different durations main-
taining a constant stimulation frequency. Figure 4.1 shows a typical experiment
from an aggregate with a basic cycle length Ty of 520 msec stimulated at a stimu-
lation period of 300 msec (= 0.58 Tp). Initiation of the drive is generally followed
by a transient depolarization which may reflect changes in jonic gradients across
the membrane. A hyperpolarization (increase in maximum diastolic potential) can
sometimes be observed during the longer (1 min. at 3 Hz) drives in spontaneously
beating embryonic chick heart cell aggregates [143], but was not clearly present in
our experiments. After 4 (top panel), 15 (middle panei), and 50 (bottom panel)
stimuli, the first interbeat interval following the drive, T, was prolonged by 20%,
70% and 160%, respectively, over control.

The results of periodic stimulation for the same number of stimuli and the same
stimulus periods in the theoretical model are shown in the right hand side of Figure
4.1. The degree of post-drive suppression of activity is roughly comparable to what is
observed in the experimental system. However, because the time-dependent process
described in Equation 1 does not influence the geometry of the limit cycle, no drive
induced hyperpolarization in MDP (maximum diastolic potential) is found in the
theoretical results (see Appendix).

Figure 4.2 illustrates how overdrive suppression is induced in the theoretical
model during periodic stimulation (1, 4, 15 stimuli} at a rate faster than control.
In each of the 3 panels, the top trace shows V(t). The corresponding changes in
the level of Z are presented in the bottom trace. The control cycle length is 500
msec and the stimulus period 300 msec. The upstroke phase of the action potential
is associated with a significant increase (= 30%) in the level of Z. Under control
conditions (prior to stimulation), the same quantity of cations Z is removed by the
electrogenic mechanism active during the entire cycle. During periodic stimulation,
increased action potential frequency results in accumulation of Z which stimulates
the electrogenic mechanism hence reducing the slope of diastolic depolarization. As

32



A experiment B model

4 stimyti

WOLL b

15 stimal

11| WY

MM/W/ -

Figure 4.1: Tracings of membrane voltage showing overdrive suppression following in-
creasing numbers of stimuli of fixed frequency. Stimulation of an atrial aggregate (ag-
gregate AK 71} with a basic cycle length of 470 msec for several different durations
maintaining a constant stimulation period of 280 msec (.65 Ty): 4 (top panel), 15
(middle panel), and 50 (bottom panel) stimuli results in increasing post-drive suppres-
sion of automaticity (overdrive suppression). The pulse amplitude was 40 nA and the
stimulus duration was 20 msec (in al! experimental traces). The stimulus artefacts appear
as the off-scale deflections. The left hand panels show the experiments and the night
hand panels show the simulations. The values of the parameters used in this simulation
(and for all other protocols and aggregates as well) can be found in Table 4.1. In all
the figures, the vertical calibration bar indicates 50 mV and the horizontal calibration bar
shows 1 sec, The top of the vertical calibration bar indicates zero potential.
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in Figure 4.1, the apparent decrease in action potential duration during overdive
in the model is due to the geometry of the limit cycle (see Appendix). Following
cessation of stimulation, the ievel of £ decays due to the increased extrusion via
the hyperpolarizing current and to the slow down of spontancous activity (overdrive
suppression). After 15 stimuli, the two-fold increase in the level of Z is associated
with a 50% lengthening of the cycle length. Six seconds after cessation of stimulation
the level of Z is only 10% above normal and control activity has almost resumed.

A composite picture of overdrive suppression, expressed as T'/Ty versus stimu-
lation time is shown in Figure 4.3 for 2 different atrial aggregates stimulated with
respectively T,=300 and 310 msec. The post-drive pause developed slowly with the
number of stimuli applied. As the number of stimuli applied increased even further,
the post-drive prolongation sometimes shows a tendency to saturate [186]. The right
hand panel of Figure 4.3 shows the results of simulation. There is good agreement
between the numerical simulation and experimental data concerning the magnitude
of the overdrive effect and its dependence on the number of stimuli applied. In the
numerical simulation however, the decay rate of overdrive suppression is initially too
slow and then becomes too fast.

During sustained periodic stimulation at a fixed frequency, the observed entrain-
ment pattern is often a function of the stimulus intensity {75, 79, 186, 105]. For
example, as the amplitude of the stimulus is varied while the period of stimulation
is maintained constant, different types of N:M locking between the stimulator and
the preparation can be observed. The tracings shown in Figure 4.4 were obtained
by maintaining a constant period of stimulation (T,=145 msec), but with the stim-
ulation intensities of = 18 nA in panel A, = 28 nA in panel B, and = 40 nA in
panel C. As the stimulation intensity increases there are different coupling patterns
between the stimulus and the aggregate with 2:1 locking in panel A, 3:2 locking in
panel B, and 1:1 locking in panel C. The changes in the locking ratio are associated
with changes in overdrive suppression. Following stimulation leading to 1:1 phase
locking, the post-drive prolongation reached 340% over control but this was reduced
to 120% over control following 3:2 locking and 70% over control following the 2:1
locking. Similar results were obtained in 6 other preparations. This demonstrates
that it is the frequency of the action potentials, rather than the period of stimulation
which is most critical in determining the magnitude of overdrive suppression.
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Figure 4.2: Numerical simulations of the model showing the relationship between over-
drive suppression and the level of Z. The parameters in the model were adjusted to
obtain a control cycle length of 500 msec. Trains of 1, 4 and 15 stimuli (top to bottom,
T, = 300 msec) were applied (1:1 entrainment) and the resulting tracings for V/(t) and
Z(t) (in units of k) are presented in each panel. Under control conditions the level of
Z varies by = 30% within the cycle. Overdrive suppression is due to an increased mag-
nitude of the Z-sensitive electrogenic current because high action potential frequency
during periodic stimulation causes accumulation of Z. This overdrive suppression decays
subsequently and within 10 to 15 seconds control activity is restored.
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Figure 4.3: A composite picture of overdrive suppression as a function of stimulation
time for 2 different atrial aggregates (AK 61 and AK 71) stimulated with T,= 310 msec
and T,=300 ms, respectively. The interbeat intervals following the drive, normalized
to the control cycle leagth (T7/T}), are shown for increasing stimulus train durations.
Following the drive, the first cycle length is the longest and normal activity is restored
after 10 to 30 seconds. The left hand panels show the experiments and the right hand
panels show the simulations.
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Figure 4.4: Recordings showing the dependence of overdrive suppression on action po-
tential frequency. An atrial aggregate of diameter 180 zm and control cycle length 470
msec (aggregate AK71) was stimulated with trains of 50 pulses of fixed period (7,= 145
msec), but different stimulus intensities. In panels A to C respectively: A 2:1 locking,
pulse amplitude = 18 nA; B 3:2 locking, stimulus intensity = 28 nA; C 1:1 locking,
stimulus amplitude = 40 nA. For a fixed rate of pacing, overdrive suppression is directly
proportional to action potential frequency. For clarity, not all the pulses are shown.
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4.4.2 Overdrive suppression at different frequencies

During periodic stimulation, different coupling rhythms between the stimuius and
the preparation can be observed by either changing stimulation intensity or stimu-
lation frequency [75, 79, 186, 105]. In the range of 1:1 entrainment during periodic
stimulation with T, < Ty, there is overdrive suppression, where the increase in the
magnitude of the slowing of the intrinsic rate is inversely proportional to the period
of stimulation T,. This is illustrated in Figure 4.5 which shows three tracings recor-
ded from a 180 pum, 7-day old atrial aggregate with control cycle length of 520 msec.
The aggregate was stimulated for 50 stimuli at three different periods of stimulation:
145, 250 and 355 msec. In all three cases, there was stable 1:1 entrainment between
the stimulator and the aggregate. After the drive, the first interbeat interval was
prolonged by respectively 300%, 140% and 40% over control. Thus, the post-drive
prolongation following a fixed number of stimuli increases as the period of stimulation
decreases, provided there is a maintained constant rhythm.

An interesting property of the experimental preparation is that it can be entrained
in 1:1 fashion to periodic depolarizing stimuli with T, > Ty. However, this effect
is much more difficult to observe than the 1:1 entrainment with T, < T and could
be measured in 4 preparations only, as illustrated in Figure 4.6. In these cases,
following cessation of stimulation, the intrinsic rate is slightly elevated, an effect that
has been called underdrive acceleration [173]. The importance of this effect is that
it indicates a contribution of an electrogenic hyperpolarizing current even during
control conditions, which is consistent with the theoretical model.

As the stimulation frequency increases, maintaining the stimulation intensity
fixed, there is typically a critical stimulation frequency that sets the fastest rate
at which 1:1 entrainment can be maintained [79, 186, 105]). In the 1:1 entrainment
zone, the length of the first beat following the drive is inversely proportional to the
period of pacing. At faster stimulation frequencies there are N:M rhythms with
N>M, such as were shown in Figure 4.4 where the magnitude of the overdrive effect
decreases as a consequence of the dropped beats. In all the preparations studied,
this “peaking” phenomenon was related to sudden changes in action potential fre-
quency resulting from the transition from N:M to N“M’ phase locking with % > %
This is illustrated in panels A and B of Figure 4.7 which show the duration of the
first beat following overdrive stimulation in a single aggregate at 2 different stim-
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Figure 4.5: Dependence of overdrive suppression (1:1 entrainment} upen stimulation
frequency. Tracings from a 180 um, 7-day old atrial aggregate with control cycle length
of 470 msec (AK 71, same as in Figure 6). The aggregate was stimulated for 50 stimuli at
three different periods of stimulation: 145, 250 and 355 msec, during which 1:1 locking
was maintained during the stimulation. The pulse amplitude was fixed at = 40 nA. The
post-drive prolongation increases with the shorter periods of stimulation (higher action
potential frequencies).
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Figure 4.6: Periodic stimulation at a rate slower than the intrinsic frequency, but main-
taining 1:1 locking, in a 150 um atrial aggregate (AK 61) with a contro! cycle length of
560 msec. The top trace shows a sample of control activity prior to stimulation. In the
bottom recording, the aggregate is stimulated in a 1:1 fashion using = 20 nA pulses.
The timing of the pulses is indicated by the off-scale vertical deflections. The stimulation
period was 580 msec. The length of the successive interbeat intervals (in msec) after
the pulse train is indicated below the experimental trace. Following the termination of
stimulation there is a slight acceleration of the intrinsic rhythm, or underdrive accel-
eration (here about 6%), with a slow recovery to control. This effect shows that the
electrogenic mechanism is active even under control conditions, which is in agreement
with the theoretical model.
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ulation intensities for 50 stimuli. At the higher stimulation intensity (right panel),
the 1:1 entrainment was maintained for shorter stimulation periods (T,/Ty = 0.3).
whereas with the weaker stimulation intensity (left panel). the 1:1 entrainment was
maintained until T,/Ty = 0.45. Panel C shows data in the same format superim-
posed for six different aggregates. including panels A and B. using different stimulus
amplitudes. For each aggregate, the post-drive prolongation and the period of stim-
ulation have been normalized to the respective control cycle length. For stimulation
periods where 1:1 entrainment was found for all 6 aggregates, overdrive suppression,
scaled to the intrinsic cycle length, was approximately the same independent of the
preparation and the stimulus strength.

Figure 4.8 shows a composite picture of the first post overdrive cycle length
following 50 stimuli as a function of the period of the stimulation, for 5 different
aggregates (filled symbols), superimposed on the theoretical simulation (sotid line).
The measured time intervals are normalized to the control cycle length of the prepar-
ation. The parameters used in the numerical simulation were set for each aggregate
according to the procedure described in the Appendix. The values used in the nu-
merical simulation are presented in Table 4.1. In all 5 aggregates there is a similar
dependence of overdrive suppression on the period of stimulation (scaled to intrinsic

cycle length). This behavior is consistent with the numerical simulation of the the-
oretical model.

4.5 Discussion

In this study we have documented the effects of stimulation history on the overdrive
suppression of spontaneous activity of chick atrial heart cell aggregates. The mag-
nitude of overdrive suppression is, for a given entrainment pattern, proportional to
the duration of the stimulation and inversely proportional to the period of stimu-
lation. These findings are consistent with previous observations in chick heart cell
aggregates [143, 186] as well as studies in a number of different preparations in-
cluding Purkinje fibers in sheep [172, 173] and dog [172, 173, 66], sinoatrial node
in rabbits {149, 150, 134], guinea pigs [74], and humans [101]. In chick heart cell
aggregates and other preparations, very fast pacing may lead to a partial block of
activity [79, 186]. Under such circumstances, for a fixed number of stimuli, overdrive
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Figure 4.7: The duration of the first beat following overdrive stimulation in a single
aggregate (panels A and B, aggregate AK 71) at 2 different stimulation intensities for
50 stimuli, and for 5 different aggregates (panel C), as a function of stimulus period.
In panels A and B: at the higher stimulation intensity (right panel), the 1:1 entrainment
was maintained for shorter stimulation periods (T,/Tp = 0.3), whereas with the weaker
stimulation intensity (pane! A), the 1:1 entrainment was maintained until T, /7, = 0.435.
Panel C shows a composition of data from 5 different aggregates (AK34: crosses, AK36:
closed squares, AK70: open triangles, AK71: crossed circles, AK78: open squares), with
the post-drive prolongation and the period of stimulation normalized to the respective
control cycle lengths. In the 1.1 entrainment region, the magnitude of overdrive sup-
pression is not a function of amplitude of stimulation and is approximately the same
for all preparations. The decrease in overdrive suppression observed at high stimulation
frequencies corresponds to increasing degrees of block (lower action potential frequency)
during stimulation.
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Figure 4.8: Composite picture of the first cycle length following 50 stimuli as a function
of the period of the stimulation, for 5 different aggregates (filled symbols), superimposed
on the theoretical simulation (solid line). The data shown in panels E and F was obtained
from the same aggregate using two different stimulus amplitudes. The values of the
parameters used in the simulations for each aggregate can be found in Table 4.1 using

the identification code in the lower corner of each panel.
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suppression decreases with increasing degree of block (i.e. lower action potential fre-
quency). This is in agreement with the idea that the frequency of action potentials is
the major determinant of the post-drive prolongation in the cycle length [172, 173)].

The development of the theoretical model was motivated by a desire to present a
relatively clear mathematical picture based on physiologically plausible assumptions
and in reasonable agreement with qualitative experimental evidence. The formulation
adopted in this paper offers several advantages: 1) the model is based on a two-
dimensional approximation te the cardiac oscillator which is not preparation specific
and may therefore be applicable to a wide class of biological systems; and 2) this
comparatively simple model can represent a useful step towards the integration of
an overdrive inducing mechanism in a high-dimensional ionic model since it captures
most of the qualitative aspects of overdrive suppression in this preparation. Such a
[ully developed ionic model may be necessary to overcome some of the limitations
imposed by the low-dimensional nature of the present formulation. For example, the
apparent shortening of the action potential during overdrive (Figure 4.1) is due to
the simple geometry of the strongly attracting limit cycle. In the model, the action
potential corresponds to the downward branch of the limit cycle (see Appendix).
Shorter action potentials arise when a strong stimulus is applied early during phase
4 causing the trajectory to join the downward branch of the limit cycle towards
the end of the action potential. In view of this, given the relative simplicity of
the theoretical model presented in this chapter, we believe that our assumptions
concerning the major role of changes in slope of phase 4 in overdrive suppression in
this preparation represent a valuable step towards understanding the determinants
of overdrive suppression.

Another limitation of the model is its inadequacy in reproducing the experiment-
ally observed phase-resetting behavior. The details of the phase-resetting depend on
a complex interplay of several ionic currents [105] which are not expressed in the
present model. Numerous ionic models exist which incorporate electrogenic currents
[178] and can provide a platform for studying overdrive suppression. However, these
models are often preparation specific, and are generally not very transparent. Thus,
the present formalism provides a complementary approach to the modeling of cardiac
activity simpler than traditional ionic models.

Overdrive suppression has been related to several mechanisms such as the stim-
ulation of the sodium-potassium pump vie an increased level of internal sodium
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[143. 118,36, 61, 41, 172, 173], accumulation of potassium outside the cells [106, 172],
augmented uptake of calcium {134, 7], and the release of neuromediators [175].
In embryonic chick heart cells. overdrive suppression was found to be reduced by
ouabain. an extracellular blocker of the Na/K pump [143, 118]. Since the Na/K
pump plays a major role in overdrive suppression in chick heart cell aggregates, it
is tempting to believe that, for this preparation. the theoretical model is a crude ap-
proxim~tion to the mechanisms underlying ihe influx (fast sodium current) and the
active transport (sodium pump) of sodium ions. A connection can be made between
the model and the induction of overdrive suppression by assuming that the influx
of cations Z which enters the cell during the upstroke phase of the action potential
represents the influx of sodium ions. In order to maintain a constant beat-to-beat
level of intracellular Z, this same quantity of ions Z is extruded via some Z-sensitive
(Michaelis-Menten kinetics) electrogenic mechanism active during the entire cycle.
Increased entry of cations Z during fast pacing (higher AP frequency) activates the
electrogenic mechanism which in turn slows down diastolic depolarization, transi-
ently suppressing automatic activity. Following the drive, the intracellular level of Z
is gradually restored and the cycle length returns to control. After a fixed number
of stimuli, the post-drive prolongation is longer for faster stimulation rates. Thus,
the theoretical model is consistent with a wide body experimental results that has
been accumulated over the past 25 years [172, 173, 101].

However, the theoretical model offers possibilities for other types of kinetic be-
haviors. For example, it appears that overdrive suppression generally saturates fol-
lowing stimulation of long duration [172, 74]. However, in the theoretical model
whether or not the overdrive suppression saturates depends on the parameters for
the kinetics of the inflow and extrusion of Z, as well as the frequency of stimulation.
When very high frequency stimulation is applied, the influx of cations Z may exceed
the extrusion capacity of the fully activated electrogenic mechanism. Under these
conditions, provided that 1:1 entrainment can be maintained, the theoretical model
predicts that post-drive prolongation would not saturate, and that there could be
very long prolongations until activity resumed. This could be of potential clinical
relevance in the setting of prolonged supraventricular tachycardia.

In order to be able to account for the overdrive suppression following a single
premature AP, we must assume 2 very significant variation (up to 30%) in the level
of Z during the cycle. The present theoretical model does not incorporate any
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assumptions concerning the structure and the geometry of the intracellular space.
Consequently, one may suppose that the large changes in the level of Z remain con-
fined to a partition of the intracellular space which is available to the Z-sensitive
clectrogenic mechanism. In fact, in order to properly describe the sodium-calcium
exchange in excitable cells, several authors suggest a hypothetical compartmentaliz-
ation of the intracellular cpace available to incoming sodium ions {112, 22]. Although
the existence of this “fuzzy space” remains unproven, it offers a possible explanation
for the large changes in the level of Z we must assume in the theoretical model.
The current study may have implications in the study of rhythms observed in
other systems. For example, sustained periodic stimulation at fast frequencies may
induce “fatigue” in the AV node [13] and changes in the Purkinje fiber conduction
properties [66], sometimes leading to a complex evolution of rhythms [167]. In pa-
tients undergoing the sinus node recovery test, an unusually long post-drive suppres-
sion of activity is often associated with sick sinus syndrome [101]. During this clinical
test, as the frequency of the stimulation is increased, the post-drive pause reaches
a maximum then diminishes {101]. The present study suggests that this “peaking”
phenomenon may be related to changes in action potential frequency during periodic
stimulation. However, the actual mechanisms responsible for overdrive suppression
in the sino-atrial node may be very different from those in the atrial aggregates and
there may be rate-dependent contributions from changes in neurohumoral factors

[175], as well as changes in sinoatrial conduction during overdrive.

4.6 Appendix

4.6.1 The theoretical model

In the Appendix we provide technical details on the properties of the differential
equation used to model the cardiac oscillator. The two-dimensional system of ordin-
ary differential equations that is used to model the action potential in the absence
of the hyperpolarizing current is based on a modified version of the van der Pol
equation {170, 57], and is given by

= -,
Y = o), (42)
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where f(17) and a(17) ure piecewise linear functions of 1, and ¢ is a positive constant.
For 0 < € << 1, this equation is taken as a prototypical example of a limit cycle
oscillation with fast relaxation to the limit evele. The parameters and functions in
the equation were selected so that Vyt) corresponds roughly to the experimentally

observed transmembrane voltage. For the heart cell aggregates, we assume that
L+4 . V< —do,
fV)= —g+1 . —60< 1 <,
5 = I .V >20.
and e is a piecewise constant function of V" such that
ay . V<0,

a(\«") =
—aapp .« V 20,

where a4 and aspp are positive constants related to the duration of phase 4 (diastolic
depolarization) and the action potential duration, respectively (see below),

A representation of the limit cycle in the V' — y plane, phase plane. is shown in
Figure 4.9A. The phase plane is divided into several regions corresponding to the
phases of the cardiac cycle: the upstroke (Region I), the plateau of of the action
potential (Region [I}, and the repolarization (Region IIl}, diastolic depolarization
(Region IV). The solid line represents the V nullcline, i.e. the set of points such that
%:0. The dotted line shows the trajectory of a phase point as it travels on the limit
cycle. Provided 0 < € << 1, (we will assume in what follows that ¢ = 25000™!) the
cycle can be divided into 2 phases, the action potential and phase 4. The durations
of the action potential, ¢ pp, and phase 4, ¢, and can be found by direct integration
of equation 2. The duration of phase 4 is the length of time for y to increase from 0
to 1. Since dy/dt = 1/a, during phase 4, we immediately find

1
t4 —_ e
ay
Similarly, .
tapp = .
xAPD

The relationship between ay, c4pp and the V variable is summarized in Panel B of
Figure 4.9. An example of an action potential generated by this equation is shown
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in Figure 4.9C. In numerical simulations. the model is driven by periodically adding
a positive (depolarizing stimulus} constant to the V' variable. Since the limit cyvcle
is strongly attracting, high amplitude stimulation at an early phase of the cycle
may elicit a premature action potential with shortened duration (see Figures 4.1 and
4.2). Although this is inconsistent with experimentally measured behaviour. it is
observed that changes in action potential duration play a negligible role in overdrive
suppression in this preparation [136].

In the presence of the hyperpolarizing current associated with Z the dynamics
are given by Equation (4.1) in the text which is repeated here for completeness, with

the substitution g(Z) = 2%

dv 1 .

i'_t = =(y=fV)),

d_st' = a(V) - 39(Z). (4.3)
dZ

— = —19(2)+AZd(t- tap),

where 8, v, and AZ are positive constants, and t4p is the time of the onset of the
action potential. We assume that the removal of Z follows Michaelis-Menten kinetics
so that g(Z) = f%, where k is a parameter that sets the scale of Z. As before,
simulation of stimulation is carried out by adding a positive (depolarizing) constant
to the V' variable. We associate the start of the action potential with the time when

the trajectory crosses the line f(V) = —-:3 + % while V increases.

4.6.2 Analysis of the theoretical model

For each aggregate it is necessary to specify 6 parameters: oy, @app, 8,7, AZ, k. We
briefly give our strategy for determining the values of these parameters, and then
give the details.

One of the experimental findings is that the slope of phase 4 following overdrive
suppression may be quite small but is never negative. In the context of the theoretical
model this means that 8 = ay, so that with maximum overdrive the slope of phase 4
approaches 0. The parameter % is used to set the scale of Z, so it is arbitrary. In the
computations we will express the concentrations of Z in units of k. The parameters
o, aapp are related to the duration of phase 4 and the action potential duration,
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Figure 4.9: The geometry of the functions f(V) and e(V) in equation (4.3) assuming
that Z is fixed at 0, and ¢ << 1. The V — y phase plane is shown in panel A. The
solid line is the nullcline (i.e. the set of points such that S = 0) and corresponds to the
function f(V) in the text. The dashed line is an approximate sketch of the limit cycle,
with various regions associated with the phases of the action potential. In panel B: a
geometrical representation of the discontinuous function a(V). In regions !l and IV of
the phase plane the value of a(V/) is directly proportional to %. Panel C shows the result
of the corresponding simulation of V'(¢). The different phases of the action potential are
indicated. Exceptionally, in this figure, the horizontal calibration bar indicates 100 msec
and the vertical calibration bar shows 20 mV.
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respectively, using relations we give below, and are computed from measured values
of these phases of the action potential appropriately modified by the effects of the
overdrive term under control conditions. This only leaves 2 parameters, v and AZ.
We derive expressions that relate these 2 parameters to the cycle length at control
(7o), the cycle length that is found in the cycle following a cyvcle induced by a stimulus
delivered at phase ¢ during phase 4 (T7(¢)). and the mean value of Z during a control
cycle, (Zo).

For the computations that follow, in which it is necessary to compute the duration
of various phases of the cycle, it is convenient to approximate the function g(Z) by
its mean value during a cycle. The justification for this approximation is based on
the power series expansion around the mean value Z during the cycle. We find that

Z k
) =7 kT TEH

(Z-2)+---.

Comparison of the magnitudes of the first terms shows that the first order term is
at least ten times smaller than the zeroth order term as long as [Z — Z| is less than
0.4 k. Under control conditions or following a single premature AP, the changes in
the level of Z are at most of the order of 0.5 k for all the aggregates studied (see
Table 4.1 and Figure 4.2 in text). During the cycle, we can therefore approximate
the function g(Z(t)) by

. z
Z) = m——. .
o(2) = 30 (44)
The duration of phase 4 (diastolic depolarization), ¢4, can be calculated from the

above equations. The duration of phase 4 is determined by the integral

1= [ “dy = / “ ds(as — aug(2(s))).

Since at the end of phase 4 we have y(t)=1, the duration of phase 4 can be approx-

imated )
= —————. 4.5
T g — 0ug(2) (49)
A similar expression can also be obtained for the action potential duration
1
APD = —. 4.6
aapp + aug(Z) (46)

The expressions for the effects of overdrive stimulation of the heart cell aggregates
are in qualitative agreement with experimental observations, the duration of phase
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4 increases while the action potential duration decreases. However, since aqpp is
approximately twice the magnitude of ay (see Table 1), the effect of overdrive on
the action potential duration (after the drive) is small compared to the effect on
the duration of phase 4. Counsequently, to facilitate computations, in the estimation
of parameters we will assume that the action potential duration is constant so that
under control conditions, the cycle length is

1
To=APD + ——4m8M ———. 4.7
° ay — aug(Zy) (1)

We now consider the effect of a single stimulus on the cycle length delivered at a
phase ¢ during phase 4 of a control cvcle that induces an action potential. The period
of the cycle following the stimulus is T’ and the mean value of Z during the cycle
is Z. Since the resulting perturbation in the cycle length is small (experimentally

measured: about 7% on average for ¢ = 0.5}, we obtain (see Figure 4.2 in text)
Z =20+ AZ(1 - ¢). (4.8)
From equation (4.5) we now find

T'—APD_Q.;—Q.‘Q(ZQ)_Z-FL? 19)

To—APD - m—ag(2)  Zotk ¢
Substituting for Z from equation (4.8) into equation (4.9), and solving for AZ, we
find,

T —APD Lotk

TO—APD—l)(l—qb)' (4.10)
Under control conditions, the influx of cations, AZ that enter during the action

potential must balance the ions removed by the electrogenic pump. Consequently,

from equation (4.3} we find

AZ =(

79(20)To = AZ. (4.11)
Approximating g(Z,) from equation (4) and solving for v we obtain
_AZ(Zo+k)
¥= T (4.12)

To summarize the procedure used to set the parameters: we first use Equation (4.5)
to obtain a4 from the experimentally measured duration of phase 4 (at control),
ty = To — APD. Equation (4.6) and the experimentally measured APD are then
used to compute aapp 2as a function of Z. In the next step, by means of Equation
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Table 4.1: Summary of the parameters used in the numerical simulations.

aggregate | Ty, APD | T"(6=05)/Tv | aqvaapp | AZ | v stim. amplitude
(msec) (sec™!) (k) | (ksec™!)

AKTI 520, 80 1.07 5.68,9.09 | 0.41 ] 1.33 90 and 100

AKTS 620,85 | 1.08 4.67,896 | 046 ] 1.25 100

AKTO0 620, 100 | 1.07 4.81,7.11 | 042 1.12 97

AK34 470, 65 .07 6.17,11.68 | 0.41 | 1.44 93

AK36 640, 100 | 1.07 4.63,7.22 (041 | 1.08 97

AK61 240, 80 1.07 5.43.9.24 | 041 | 1.27 120

(4.10), we compute AZ from the perturbed cycle length following a premature AP
elicited at phase ¢. Finally we calculate 4 using the steady state condition (4.12).
Therefore, both the degree of post-drive prolongation and the rate of the subsequent
decay to control cycle length are controlled by a single parameter (T') determined
from single pulse experiments which suggests that the kinetics of dissipation of over-
drive suppression are mainly governed by a steady state condition for beat to beat
variations in the level of Z (Equation (4.11)).

All of the above parameters are a function of Zo. Since we have no direct way
of measuring Zy for each aggregate, we used the following method. A complete
set of parameters was calculated for several values of Z,. For each value of Zy,
the model was simulated to obtain a graph of overdrive suppression at different
frequencies of stimulation. The resulting family of curves was superimposed on the
corresponding experimental data as shown in Figure 4.10. For Z, between 1.25 &
and 1.73 k, there is good agreement between numerical simulation and experiment.
Since qualitative aspects of overdrive suppression at different frequencies (in the 1:1
entrainment zone) are similar in all preparations (Figure 4.7), an average value of
Zy = 1.50 k was assumed for all the experiments considered.

Finally, the amplitude of the stimulus employed in the numerical simulation was
adjusted by matching the range of the 1:1 entrainment zone in the numerical simu-
lation with the corresponding experimental results.

The values of the different parameters are summarized iz Table 4.1.

The simple geometry of the limit cycle and the mode of action of the time-
dependent component which affects the y variable but not V' {Equation 4.1) is re-
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Figure 4.10: Figure showing the procedure to determine the value of the parameter
Z, (average control level of Z). The open circles show typical experimental data for
overdrive suppression at different periods of stimulation (aggregate AK71), normalized
to the control cycle length. The results of the corresponding simulation using 6 different
values of Z, {as indicated in the left part of the figure, in units of k) are shown as
the solid lines. For Z, between 1.25 k and 1.75 k, there is good agreement with the
experimental data. The average value of Zy = 1.50 k was therefore retained.
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sponsible for the lack of effect of the hyperpolarizing current on MDP in the numerical
sitnulations. Indeed, such a hyperpolarization of MDP is sometimes observed during
prolonged (longer than 1 min. at 3Hz) overdrive in spontaneously beating embryonic
chick heart cell aggregates [143] and may contribute to the post-drive pause. Be-
cause of the short {tvpically less than 30 sec) duration of the drives used in our
experimental protocols as well as the low value of membrane resistance at MDP,
only a small effect of overdrive on MDP would be expected. This may explain the
apparent lack of hyperpolarization of MDP observed in our overdrive protocols. In
the context of the present theoretical model, such overdrive induced changes in MDP
could potentially be incorporated by letting the geometry of the limit cycle itself be
influenced by increased action potential frequency. However. in view of the small
magnitude of hyperpolarization observed in our experiments, such modifications are

not warranted at the present time.
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Chapter 5

Overdrive suppression and phase
resetting in a model for paroxysmal
tachycardias

5.1 Foreword

Tachycardias are a leading cause of patient mortality and morbidity. A comparat-
ively infrequent, but nevertheless important class of arrhythmias are incessant or
repetitive paroxysmal tachycardias. [140] Such tachycardias can be supraventricular
[18, 107, 39] or ventricular [40, 114], and are characterized by their sudden onset and
offset. At least two mechanisms might underly the generation of these arrhythmias.
The tachycardia could be set by the rhythm of rapidly bursting spontaneous cells.
Alternatively, the arrhythmia can be due to physiological properties of the tissue
composing the reentrant pathways (circuits followed by the reentrant excitation),
as proposed for some supraventricular tachycardias [107]. In the current paper, we
examine an experimental model for paroxysmal tachycardias generated by a reentry
mechanism that reproduces many of the qualitative features of these arrhythmias,
We develop a simple nonlinear model, based on the interaction between overdrive
suppression and the excitability of the preparation, described in terms of difference
equations. We also propose a modified version of the Shrier-Clay ionic model of
electrical activity that includes a simplified sodium pump term. The results of the
computer simulations are in good accord with experimental findings.

The experimental model consists of spontaneously beating aggregates of em-
bryonic chick atrial heart cells. Under the experimental conditions, this preparation
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beats with a regular thythm (75, 78, 79. 105, 111]. The reentry loop is modeled by in-
troducing an artificial electronic delay after which the pacemaker receives a stimulus.
This fixed delay and the intensity of the stimulus can be experimentally modified.
This preparation is similar to experimental models of atrial pathways in which atria
are stimulated at a fixed delay following ventricular activation [163. 133, 13, 166].
in the current case, the stimuli shift the membrane potential thereby influencing the
tonic mechanisms of the preparation. A previous publication from our group {183]
contained preliminary observations that rhythms consisting of bursts of excitation
could be observed for certain values of the delay. However, this effect was not studied
systematically and a detailed mechanism for the bursting behavior was not proposed.

In the present manuscript, we characterize the dynamics observed for a variety of
different delays. We show that in order to understand these rhythms it is necessary to
understand the interactions between two different phenomena: the phase resetting of
the spontaneous oscillations [79, 105] and the development of overdrive suppression
during fast drive [186, 111]. The complex bursting patterns that are observed emerge
naturally from a consideration of the interplay of these factors.

5.2 Experimental protocols

Experiments were carried out on 10 different preparations. During each experiment,

three different protocols were executed:

5.2.1 Fixed delay stimulation

20 msec depolarizing current puises were delivered at a fixed time delay following
the upstroke of every action potential. The duration of the protocol was between
90 and 300 seconds. After a rest period of 30 seconds to allow the cycle length to
return to control, the protocol was repeated at increasingly shorter delays and for

several different amplitudes of the stimulus.
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5.2.2 Phase resetting

The phase resetting curve. PRC. describes the perturbation in the evele length Jue
to a single depolarizing stimuli as a function of the phase of the stinmli. Call the
intrinsic period of the oscillator Ty. The coupling interval of a stimulus, £, is the time
interval from the start of the preceding action potential to the stimulus. The phase
of the stimulus, ¢ is defined by ¢=2. see Figure 5.1A. Note that the upstroke of the
action potential is defined to have zero phase. For o given amplitude of stimulation.
the PRC is obtained by applying single depolarizing stimuli of 20 msec duration at
increasing coupling intervals after the last upstroke of an action potential, every 10
action potentials. The perturbed cvcle length is the time interval from the upstroke
of the last spontaneous AP before the stimulus to the upstroke of the first AP after
the current pulse. The PRC is a plot of the perturbed cycle length, normalized to
control. as a function of the phase ¢.

5.2.3 Overdrive suppression

The aggregates were stimulated using different drive durations. Trains of 2,4,6.8,15.30
and 100 stimuli were applied, separated by time intervals of approximately 30 seconds
to allow the cycle length to return to control. The period of the stimulation was about
60% of the control cycle length and 1:1 entrainment between the stimulator and the
preparation was always maintained. A representative voltage trace obtained during
overdrive stimulation is shown in Fig 5.1B to illustrate this procedure. Spontaneous
AP’s appear on the left, followed by a train of 50 depolarizing stimuli (for clarity,
not all are shown). Cessation of stimulation was followed by a transient decrease of
the intrinsic frequency of the preparation: the first interbeat interval following the
drive was 170 % of To. The intrinsic cycle length following the stimulatiun is denoted
by T" which gradually returns to To. An experiment is represented by plotting the
normalized interbeat intervals % as a function of time on a single graph.

5.3 Theoretical modeling

Two different types of theoretical model were employed in this work. The first is a
simplified nonlinear dynamical model similar to models used previously in related
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Figure 5.1: Phase resetting and overdrive suppression protocols in embryonic chick heart
cell aggregates. Panel A: illustration of phase resetting protocol. Single depolarizing
stimuli are injected every 10 spontaneous AP’s, for increasing values of £,. The perturbed
cycle length normalized to control (Ts) is measured as a function of the phase 0 = 2.
Panel B: Overdrive suppression. The spontaneously beating aggregate is periodicalfy
stimulated at a rapid rate (0.6 Tg), in 1:1 entrainment. A transient decrease in the
intrinsic firing frequency (overdrive suppression) is observed at the end of the drive.
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contexts {26, 111, 136]. This model accounts in a qualitative way for the interaction
of overdrive and phase resetting in the context of fixed delay stimulation. Although
this style of theoretical model gives insight into the dynamies, it is not adequate

to deal with the ionic mechanisms. The nonlinear model is presented in the results
section.

In order to account for the ionic mechanisms in this system, we employ the Sheier-
Clay ionic model for embryonic chick atrial heart cell aggregates [105]. The ionic
model needs to be modified to a account for overdrive suppression by including a sim-
plified electrogenic sodium pump term. The present model consists of 6 components,
namely: [nq, the fast inward sodium current responsible for the rapid upstroke of the
action potential; /c,. the calcium current responsible for the final part of the upstroke
and (primarily) for keeping membrane depolarization throughout the plateau phase
of the action potential; [k, the time dependent outward current which underlies the
initial repolarization at the end of the plateau phase of the action potential; /..
the time dependent inwardly rectifying outward current involved in the later phase
of repolarization; I, a three-component background current which underlies depol-
arization during phase 4 of the cardiac cycle; and I, a simplified hyperpolarizing
voltage independent sodium pump term, with a 3:2 (Na*:K*) stoichiometry, which
depends on the internal sodium concentration following Michaelis-Menten kinetics
and is responsible for overdrive suppression. Further details concerning the kinetics
of the first five components and the applicability of the original ionic model to ex-
perimental work can be found in Reference {105]. The details of the modified ionic
model are given in Appendix A.

5.4 Experimental results

5.4.1 Fixed delay stimulation

During fixed delay stimulation, current pulses are injected at a constant time interval
following each action potential. Figure 5.2 illustrates typical behavior observed dur-
ing fixed delay stimulation for several values of the delay §. The data was obtained
from a 120 gm embryonic chick heart cell aggregate (coutrol cycle length Ty = 760
msec); the stimulus intensity was 24 nA. In each panel of Figure 5.2, we show: (a)
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a 12 second representative voltage trace showing the tvpical rhythm found for that
value of the delay (left panels, the stimuli appear as the off-scale deflections): (b) a
graph of the evolution of the interbeat intervals before, during and after stimulation.
the beginning and the end of the drive are indicated by solid arrows (right panels,
the dashed horizontal line corresponds to the control cycle length). The length of
the delay decreases from A to F. For the longest delays (A to D) series of premature
action potentials are interrupted by prolonged cycles {“bursting behavior™). The
average number of action potentials per burst as well as the duration of the pauses
separating the sequences decrease as the delay is shortened. In Panel A (delay = 400
msec), there is a sequence of 45 premature action potentials before failure of excita-
tion occurs. This pattern roughly repeats itself, as shown in the graph on the right
(1BI vs time), during the latter part of the protocol. During each bursting sequence,
the interbeat intervals are shortest at the beginning of the sequence, then gradually
increase until the sequence ends. In some instances, an oscillation in the interbeat
intervals is observed before loss of entrainment. The first sequence at the beginning
of the drive is usually the longest. Its termination is often associated with the emer-
gence of a relatively stable bursting pattern. Cessation of stimulation is followed by
a marked prolongation in the intrinsic cycle length (overdrive suppression [173], i.e.
a transient decrease in the intrinsic firing rate following sustained stimulation at a
frequency faster than control). The duration of the first interbeat interval after the
drive is comparable to the length of the pause separating successive burst sequences
towards the end of the drive. In panel A, the first cycle length following the drive is
about 280% of the control cycle length.

The number of action potentials {AP’s) per burst sequence is directly proportional
to the delay. Accordingly, for delays somewhat longer than 410 msec, 1:1 entrainment
could be maintained without occasional failed excitations (not shown). At a delay of
410 msec, the typical number of action potentials per sequence was 20 to 35 (apart
form the much longer initial sequence). At a delay of 360 msec (Panel B), 6 to
10 AP’s per burst can be seen. In Panel C (delay = 310 msec), there are only 4
to 6 AP’s per burst. Finally, in Panel D, the bursting sequences are short (2 to
4 AP’s). Although the frequency of stimulation during bursting is now higher, the
post-drive pause is shorter, due to lower average action potential frequency [111].
At intermediate delays, other bursting sequences can indeed be found.

In Panel E (delay of 220 sec). there are doublets of action potentials as well as
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Figure 5.2: Fixed delay stimulation in a 180 um embryonic chick heart cell aggregate,
for several values of the delay. In each panel, left: 12 seconds voltage trace; right: graph
of the interbeat intervals as a function of time, corresponding to the entire protocol. The
tics on the horizontal axis are 10 seconds apart. The dashed line corresponds to control
cycle length (760 msec). The arrows indicate the beginning and the end of the protocol.
The stimuli appear as the off-scale deflections. Stimulus amplitude: 24 nA.
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delaved action potentials. For this value of the delay, stimuli fall close to the refract-
ory period of the preparation resulting in either delaved or premature AP’s. In Panel
FF. the delay is too short (200 msec) for the stimuli to consistently evoke premature
action potentials: almost all the AP’s are delayed. As the drive progresses. the in-
terbeat intervals decrease. In addition. following cessation of stimulation there is a
progressive increase in the cycle length back to the control levels (underdrive accel-
eration). We show later than a single unified mechanism can account for underdrive

acceleration as well as overdrive suppression.

The dependence of the number of action potentials per burst upon the time delay
is summarized in Figure 5.3. [n this figure, n (symbol) is the number of AP’s in
the initial (transient) burst while m is calculated as the average number of AP’s per
sequence during the last 30 seconds of the protocol. We assume that m approximates
the number of AP’s per burst under steady state overdrive conditions. n and m are
increasing functions of the delay. 1:1 entrainment is found for delays greater than
460 msec (n and m are infinite). In general, m is significantly smaller than n. These
experimentally measured values of n and m as a function of the delay can be - =d to

help set the parameters in the nonlinear theoretical model (see below and Appendix

B).

Fixed delay stimulation often results in the onset of irregular rhythms. In partic-
ular, the number of AP’s per burst can vary considerably throughout the fixed delay
protocol. For example, in Figure 5.2D, sequences of 2 to 4 AP’s are intermixed. A
more striking example of an irregular rhythm is illustrated in Figure 5.4, for a 150
pm aggregate (Tp = 580 msec) with a delay of 180 msec. The stimulus amplitude was
30 nA. A 64 seconds voltage trace is shown in Panel A (each segment corresponds "o
16 seconds). 6 spontaneous AP's appear at the beginning of the trace. Immedia:ely
following the onset of fixed delay stimulation, short bursts alternate with pairs of
slightly delayed AP’s. Subsequently, delayed action potentials predominate (end of
second and beginning of third segments) until a pattern analogous to the beginning
of the trace reemerges. The irregularity of the rhythm is even more apparent in
Panel B, which shows the evolution of the interbeat intervals during the drive. Slight
overdrive suppression is observed at the end of the drive. Other irregular traces (as
well as rhythms similar to those described in the previous figure) were found in all
the aggregates in this study at several stimulus intensities.
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protocol) upon the delay, for the data presented in Figure 6.2.
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Figure 5.4: lrregular rhythms during fixed delay stimulation. The aggregate was 150
um in diameter (Tp = 580 msec, stimulus amplitude = 30 nA). Panel A: 64 second
voltage trace presented in 4 segments, during fixed delay stimulation. The delay was
180 msec. 6 spontaneous AP’s appear at the beginning of the trace. The stimuli appear
as the off-scale deflections. Note the irregular rhythm. Panel B: evolution of the interbeat

intervals versus time throughout the entire protocol. The tics on the horizontal axis are
10 seconds apart.
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5.4.2 Phase resetting

The response of biological oscillators to an isolated stimulus depends upon the phase
at which the stimulus was injected and the intensity of the stimulus [181, 70, 184, 78,
79]. The results in these experiments were similar to those in previous studies. Since
the PRC is essential in interpretation of the rhythms during fixed delay stimulation
we show a representative tracing.

Figure 5.5A shows a PRC obtained for the same aggregate as in Figures 5.1 and
5.2 and for the same stimulus intensity of 24 nA. Stimuli delivered at early phases
delayed the onset of the next spontaneous AP so that PRC(¢) > 1. Stimuli injected
at later phases induced premature excitation and PRC(é) < 1. We identify the
critical phase, &., as the phase that separates the regions of advance and delay of the

action potential. In any given preparation, the critical phase decreases as stimulus
amplitude increases.

5.4.3 Overdrive suppression

Overdrive suppression [173] is the transient prolongation in the intrinsic cycle length
as a result of stimulation at a rate faster than control. Previous extensive studies
of this phenomenon in embryonic chick heart cell aggregates have shown that the
magnitude of overdrive suppression depends upon the number of stimuli applied as
well as the action potential frequency during the drive [186, 111]. Since overdrive
suppression plays a major role in the evolution of rhythms during fixed delay pro-
tocols, it was characterized in each preparation. Results of an overdrive stimulation
experiment for the same aggregate and stimulation intensity as in Figure 5.2 are
shown in Figure 5.5B. We plot % for trains of 2,4,6,8,10,30,50 and 100 stimuli. Fol-
lowing the drive, the cycle length gradually returned to control. After 30 seconds
of rest, the preparation had fully recovered from overdrive. The first interbeat in-
terval following the drive was directly proportional to the duration of stimulation.
Following 20 stimuli, it was prolonged by approximately 60%. After 100 stimuli,
there was a 2.5-fold increase in cycle length. These experimental findings agree well
with previous studies in the same preparation [186, 111].
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Figure 5.5: Phase resetting and overdrive suppression in embryonic chick heart cell
aggregates (same aggregate as in Figures 5.1 and 5.2). The phase resetting curve
(PRC(©)) is shown in Panel A (amplitude=24 nA). Stimuli injected earlier than the
critical phase ¢, delay the onset of the next spontaneous AP. Premature excitation occurs
when ¢ > ¢.. Panel B: build-up of overdrive suppression. The panel shows the time
course of the normalized cycle length following stimulation (at 0.6 Tp, 1:1 entrainment,
see Fig. 5.1B) of increasing duration. The first interbeat after the drive is the longest
and increases with the duration of the drive. The subsequent decay in cycle length follows
an exponential time course (time constant == 15 sec).
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5.5 A nonlinear theoretical model

The excitability of cardiac tissue is often described as a function of the time elapsed
since the previous activation. For example, extensive studies from our group 79,
73, 70. 184} assumed that during periodic stimulation. the effect of a single stimulus
depended solely on the phase of the stimulus. The current experiment was designed

specifically to study a situation in which that hypothesis breaks down.

During fixed delay stimulation, all the stimuli are delivered at the same coupling
interval following the previous action potential. Based on the earlier work we would
expect that the effect of all the stimuli would be identical. However, subsequent
studies from our group [186. 111] documented that the definition of phase based
simply on the coupling interval needs to be modified in circumstances in which
the intrinsic cycle length changes due to stimulation history. We now develop a
theory that can account in a qualitative way for the experimental data of Figures
5.2 and 5.4. In particular, we propose a nounlinear model to account the way in
which stimulation history modulates the excitability of the preparation and .u this
fashion we account for the experimentally observed evolution of rhythms and bursting
behaviour (Figures 5.2 and 5.4).

5.5.1 Interaction between excitability and history dependent
effects

During the course of stimulation with fixed delay, there is a successive train of action
potentials. We denote the successive interbeat intervals between actions potentials as
IBL, IBI;, IBls,.... Asa consequence of the stimulation, the intrinsic cycle length
(as modified by stimulation history) will in general vary from its control value, To.
We denote the successive values of the intrinsic cycle length by TY,T3,73,.... For
example, as shown during the analysis of overdrive suppression, a consequence of a
rapid burst of action potentials is to increase the intrinsic cycle length to a value
greater than To.

The nonlinear model relies on the assumption that the phase of the stimulus must
be rescaled to the instantaneous value of intrinsic cycle length. The dynamical effects
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of premature stimulation can thus be predicted based on the 2RC if we define an

effective phase, ¢/,
. 6
o=

The consequences of this assumption can be understood by consideration of Fig-

(5.1)

ure 5.6. The phase resetting curve is the same as in F.gure 5.5A. The topmost
horizontal line indicates the control cycle length. The vert:cal line corresponds to the
critical phase ¢,, the smallest phase where a single stir ulus can elicit a premature
action potential. Let ¢y denote the effective phase uf he first stimulus during the
fixed delay protocol. Since there is no prior stimulatic n history, & = -1%- In Figure
5.6. we choose ¢ = 0.4. During the stimulation, the preparation is initially entrained
in a 1:1 fashion, causing a gradual build-up of overdrive suppression which slowly
decreases the effective phase &', as indicated by ‘he arrow. Failure of excitation
occurs at beat ¢ if ¢! =< ¢.. If the stimulus does not initiate an action potential,
there is a prolonged interbeat interval. The cycie length of the prolonged interval
will be the sum of T and a term associated with the vesetting of the oscillation. This
in turn will lead to a decrease in the intrinsic ycle length. Consequently, there will
be an increase in ¢, initiating another bursting sequence. Thus the bursting is
associated with the modulation of the effective phase, as a consequence of the slow
buildup and rapid decrease of the overdrive suppression.

Based on the above qualitative descrintion, we develop a nonlinear model. The
basic equation is
IBL., = T: + PFJ(¢:)T0 —To, if ¢: < Dy (5.2)
IBLy, = max{d. PRC(¢})Tu}, if &.> &,
In this equation we make the assumption that the PRC is not rescaled, but only the
phase of the stimulus so that the phase resetting makes a small additive effect to the
prolongation of the cycle length fcllowing failure of the stimulus to elicit an action

potential. Finally, the second equation ensures that no premature action potential is
evoked before the stimulus is iniected.

In order to implement the above equations, it is necessary to determine the history
dependent intrinsic cycle length, T to rescale the phase using Equation 5.1.

The approach taken to incorporate the history dependence of the intrinsic cycle
length is similar to that of Zeng et al. {186]. The main assumptions are: 1) the
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Figure 5.6: Interaction between overdrive suppression and the excitability of the pre-
paration: qualitative model for the dynamics during fixed delay stimulation. To predict
the rhythms based on the PRC, the effective phase ¢' = #: is used in lieu of $. Same
PRC as in Figure 5.3. ¢’ decreases (increases) with overdrive suppression {underdrive
acceleration). Loss of entrainment (premature AP) occurs when ¢ is less (greater) than
Oc. The resulting change in overdrive levels re-initiates the original rhythm. Premature
AP’s can not be elicited prior to stimulation.
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intrinsic cycle length can be written as 7] = (1 + S5,}7y where S, represents the
historv-dependent effects (& > U corresponds to overdrive suppression whereas $ < 0
corresponds to underdrive acceleration); 2) each action potential contributes to § by
an amount that depends on the preceding interbeat interval; 3) § is a superposition
(sum) of the contributions from individual action potentials; 4) each contribution to
S decays exponentially with time constant v. Letting ¢ and { + | denote successive

beat to beat values of S, we can write

IBI;
Sivr = Siexp(=1Blin/7) +< (1 - T*) . (5.3)

where ¢ is the maximum change (normalized to the control interbeat interval) in
cycle length due to a single premature action potential (in the theoretical limit of a
premature AP elicited immediately after the preceding spontaneous AP [111]).

To summarize, given an initial phase éy = .rin, we find [ B, using Equation 5.2.
We then find 5 and T} by means of Equation 5.3 (and using Sp = 0). Equation 5.1
now serves to compute ¢} and we may proceed to subsequent iterates. Appendix A
describes the methods used to set the parameters of the model.

The results of the numerical simulations of the nonlinear model are shown in Fig-
ure 5.7, using the same format as in Figure 5.1 and the following set of parameters:
& = .065, 7 = 20 sec. For 6 values of the delay, each panel contains a simulated 20
second voltage trace resulting from iteration of Equations (5.1-5.3) (left) as well as
a graph showing the evolution of the interbeat intervals throughout and after fixed
delay stimulation (right). In the left hand panels, each spike is an action potential.
The values of the delay were chosen to closely reproduce the experimentally observed
dynamics. In general, the rhythms depicted in this figure are similar to the experi-
mental observations presented in Figure 5.2. When § = 410 msec, an initial transient
of 42 premature AP’s is followed by sequences containing 9 to 15 action potentials,
interspersed with long pauses (up to 210 % of Tp). Cessation of stimulation (arrow)
is followed by a marked transient prolongation in the cycle length. This effect de-
cays within 30 seconds. In some instances, an oscllation in the cycle length precedes
the interruption of a bursting sequence. In Panel B, an initial irregular transient is
followed by periodic sequences of 7 action potentials. The rhythm appears irregu-
lar in Panel C, with an alternation of sequences of 3 to 4 action potentials. In D,
doublets and triplets are interspersed in a slightly irregular fashion. For a delay of

120



230 msec, the dvnamics are characterized by an irregular pattern of delaved AP's
interspersed with doublets. In Panel F (delay = 190 msec). delayed action potentials
predominate over occasional premature excitations, following a long initial sequence
of delayed activations {which terminates due to time-dependent shortening of the
intrinsic cycle length). Underdrive acceleration (faster intrinsic rhythm, 83 S0 of
control cycle length) is found at the end of the drive. The values of the delay used

in this figure are within 10 % of the experimental time delays.

5.5.2 Ionic model

One of the hallmarks of experimental data obtained during fixed delay protocols
is the presence of very long pauses between successive bursts of action potentials.
In many cases, following a burst of § to 10 AP’s, the duration of such pause may
well equal 4 or 5 times the control cycle length. Termination of the protocol is
also followed by a transient prolongation of the intrinsic cycle length that is of
the same magnitude. Previous studies have shown that ouabain, a blocker of the
sodium potassium pump (in micromolar concentrations), markedly reduced overdrive
suppression in this preparation [143}]. We have therefore modified the latest version
of the Shrier~-Clay ionic model of electrical activity for embryonic chick heart cell
aggregates to include a simplificd sodium pump term. A detailed description of
this new component can be found in the Appendix B. The original Shrier-Clay ionic
model of electrical activity is reviewed in Reference [105].

The Shrier-Clay ionic model reproduced the electrical activity and the excitability
properties of small, rapidly beating aggregates, (BCL = 380 msec). Since the addi-
tion of the sodium pump term increased the intrinsic cycle length by 30% (BCL=520
msec), the maximum amplitude of the background current was adjusted [105] to re-
store the original rate of firing as well as the adequate phase resetting bebhavior. A
10 second voltage trace of spontaneous activity is shown in the top, left panel of
Figure 5.8. The control cycle length is 380 msec. A phase resetting curve obtained
with 33 nA stimuli is shown in the top right panel. The amplitude of the stimulus
was chosen to closely match the shape of the experimental PRC in Figure 5.5A. The
values for the critical phase ¢, and the maximum prolongation T, are in close agree-
ment with experimental data. A short study of overdrive suppression in the modified
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Figure 5.7:

Numerical simulations of nonlinear model using parameters described in

text. Fixed delay stimulation for different delay values. Left hand panels show simulated
voltage traces (20 sec, spikes are AP's). The evolution of the interbeat intervals (IBI)
is shown on the right. The dashed line indicates control cycle length. The arrow marks
the end of stimulation. Compare with the experimental data of Figure 5.2.



ionic model is presented in the bottom part of the figure. A 10 second voltage trace
illustrating overdrive suppression after 50 periodic stimuli (stimulus period = .55
Tp. 1:1 entrainment) is shown in Panel a. The first cycle length following the drive
is 160 % of control cycle length. The slow decay of overdrive suppression appears
clearly in this figure. Panel b illustrates the build-up of the internal levels of sodium
during and after the rapid periodic drive. The average beat to beat concentration
of internal sodium under control conditions was set to be 15 mMol/L. The upstroke
phase of the action potentials is associated with a rapid increase in [Nq,] (by = 3
mDM) that is primarily due to entry of sodium ions through the fast sodium channels.
The extrusion of sodium ions by the sodium potassium pump during the cyele is
responsible for maintaining the steady state average sodium levels. The increased
action potential frequency during rapid stimulation (1:1 entrainment) results in a
marked build-up of the internal sodium levels and a corresponding potentiation of
the sodium pump current. When the drive terminates, the enhanced pump activity
causes a gradual decrease of the internal sodium levels while markedly prolonging the
intrinsic cycle length by virtue of its electrogenic nature. Panel ¢ shows a study of
the build-up of overdrive suppression as a function of the number of stimuli applied
(Ts = .35Tp). The format of this panel is identical to Figure 5.5B. There is good
agreement with experimental data.

The results presented in Figure 5.9 were obtained by numerical integration of
the modified ionic model described in the present paper. The format of the figure
is identical to that of Figures 5.2 and 5.7. In Panel A (delay of 133 msec), there is
a stable reentrant (1:1) pattern followed by marked overdrive (about 350 % of con-
trol cycle length) after stimulation has ceased. This overdrive suppression decays
within 30 seconds. As in Figure 5.2, bursting behavior is observed with most of the
delays (panels B to E), and the number of action potentials per burst decreases as
the delay becomes shorter. In Panels B to D, bursting patterns almost identical to
the corresponding panels of Figure 5.2 can be seen. In particular, long sequences
of AP’s (bursts) are associated with prolonged inter-burst pauses. However, these
patterns occur for a range of delays that is much narrower than in the experimental
context. This suggests, in the present simplified formulation, the build-up of over-
drive suppression during rapid firing does not properly influence the excitability of
the model aggregate. For some delays, a growing oscillation in the interbeat in-
tervals is observed before the sequence terminates. When normalized to the control

123



spontancous activity

phase rcsctting

) J
| X
' PRC(® |
@y 04
0.8
— -
2 e
o2 ]
[y o T o8 o8 "o
phase ¢
overdrive suppression
2 ¢
1 1038
0mV 3 : -
20 5 3 - .o .l..l.'-
—_— T.fr 0 ] ..... ....-‘. -‘. n.. -..
I ] BLRRLNLS
b= SO
Lok X5
[Na)) ]
204 —TSre ]
°% [ YR D 83 ™ » « %
time (sex) ume (se<)

Figure 5.8: Phase resetting and overdrive suppression in the modified Shrier-Clay ionic
model. Top left panel: spontaneous activity. The cycle length is 380 msec. Top right
panel: phase resetting curve (stimulus amplitude = 33 nA). Compare with Figure 5.5A.
Bottom: overdrive suppression in modified ionic model. Panel a: 10 second voltage
trace showing overdrive after 50 stimuli (T, = .55 T, 1:1 entrainment). The build-up
(decay) of internal sodium levels during (following) rapid stimulation is shown in panel
b. Panel ¢: build-up of overdrive suppression as a function of the number of stimuli

applied (same stimulation frequency). Compare with Figure 5.58B.
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cycle length {380 msec), the length of the post-drive prolongation is comparable with
experimental measurements. This overdrive suppression is closely related to the in-
ternal sodium levels that increase strongly during long bursting sequences. During
the stimulation protocol, the internal sodium concentration increases until the cor-
responding cvcle length is too long for the entrainment to be maintained. As for
the previous panels, the data presented in Panels E and F resembles strongly the
experimental observations. At a delay of 122.5 msec (Panel E), sequences of 3 AP's
are interspersed with episodes of delaved activations. For a slightly shorter delay, no
premature AP’s are evoked. Slight underdrive acceleration is observed following the
drive, that is related to the decreased intracellular sodium levels due to lower action

potential frequency during the drive.

5.6 Discussion

We have shown that fixed delay stimulation can result in a surprising variety of
rhythms that arise as a result of a complex interplay between overdrive suppression
and the excitation properties of the preparation as described by the phase resetting
curve. Because fixed delay stimulation can be viewed as a simplified model of a
reentrant loop, this study has implications in clinical investigations of arrhythmias,
in mathematical modeling of cardiac rhythmogenesis and in basic electrophysiology.
In the remainder of this section, we discuss some of the limitations as well as the
implications of the present study to our present understanding of the mechanisms
of cardiac activity and pathology. We also comment on the validity of the models
presented in this chapter and provide further details concerning our understanding
of the rhythms that arise during fixed delay stimulation.

Overdrive suppression has been studied in a variety of cardiac tissues, derived
from many species [174, 173, 143, 63, 134, 74]. Despite this wide body of data,
few attempts have been made to understand the influence of overdrive suppression
on the phase resetting properties of cardiac tissue. In a recent publication from
our group [186], a simple iterative model was proposed in which the PRC (both
the perturbed cycle length and the phase} was scaled according to the overdriven
cycle length. Although the model was successful at reproducing some of the exper-
imental data, the very mechanism in which overdrive modulates phase resetting is
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Figure 5.9: Numerical simulations of the modified Shrier-Clay ionic model during fixed
delay stimulation for different delays. Left hand panels: simulated voltage traces (12
seconds). A graph of successive interbeat intervals appears on right. The dashed line
shows the control cycle length. The arrow indicates the end of the protocol. Compare
with Figures 5.2 and 5.7.
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still poorly understood. The results presented in the current manuseript. obtained
during fixed delay stimulation. indicate that the length of the pauses separating suc-
cessive bursting sequences and the duration of the post-drive cycle length are almost
identical. According to the assumptions of the previous model, a prolongation of
30% in the control PRC would result in a corresponding 30% difference (in terms
of overdriven cycle length) between the lengths of the inter-burst and the post-drive
pauses. Therefore, our data suggests that, although the phase of the PRC may effect-
ively be scaled to the new cycle length. the length of the perturbed cycle length (in
msec) is not scalable. Consequently, for long bursting sequences. overdrive suppres-

sion dominates the contributions from phase resetting to the length of the inter-burst
pause.

The nonlinear model introduced in the present manuscript is an attempt to
provide a simple way of understanding the qualitative nature of the interaction
between the excitability of cardiac tissue and stimulation history and extends pre-
vious theoretical work [78, 70, 76] in which history dependent effects were not con-
stidered. Despite the relative simplicity of the mathematical formulation of these
effects, the simulations of the nonlinear model fare well at reproducing the experi-
mentally observed dynamics. Moreover, the nonlinear model is not preparation nor
protocol specific and its resuits may therefore be applicable to a variety of experi-
mental observations.

In the experimental context, very high action potential frequencies during pro-
longed rapid stimulation may cause the influx of sodium ions per unit time to exceed
the maximum capacity of the sodium potassium pump (when saturated). Under such
conditions, the first interbeat interval following the drive increases exponentially as a
function of the duration of the stimulation protocol (unpublished observation); there
is no saturation of overdrive suppression (provided that the original entrainment
pattern can be maintained). Although this behaviour can be reproduced with the
modified ionic model, the present mathematical description of history dependent ef-
fects in the nonlinear model necessarily implies an asymptotic approach to a steady
state in terms of overdrive levels. This mandatory saturation of overdrive suppres-
sion is one of the limitations of the nonlinear model, especially during very long and
rapid stimulation protocols.

The oscillations in interbeat intervals found in the numerical simulations are one

127



of the interesting results of this work. In general, the amplitude of these oscillations
increased before loss of entrainment. The eventual break-up of entrainment gen-
crally occurred following a short interbeat interval. Since the oscillation was often
(not always) of period 2, we may predict that, for some delays, alternations between
sequences of N and N+2k (k integer) AP’s per burst should be more common than
mixing of odd and even numbers of AP’s per burst. This seems to be the case in
Panels B and E where sequences of 6, 8, 10 and 1 and 3 AP’s per burst. respectively,
are found. However, in the experimental context, there are spontaneous fluctuations
in cycle length and action parameters (APD, V,, ) that may interact with the mechan-
isms responsible for this phenomenon. As a result, although there is some tendency
for analogous behavior, we have not found clear evidence for this oscillation in our
experimental data.

Most of the experimental data presented in this chapter was obtained during
stimulation of medium intensity. From the dynamical point of view, this range
of stimulus amplitudes is particularily interesting due to the general shape of the
phase resetting curve that allows the emergence of complex rhythms under various
stimulation protocols [185, 26, 70, 105]. However, the qualitative results obtained
with medium intensity stimulation are representative of other stimulus amplitudes
as well. For example, fixed delay stimulation at lower amplitudes was characterized
by increased stimulus to AP latencies, shorter interburst pauses (due to lower AP
frequencies during stimulation) as well as a decrease in the range of delays where
complex dynamics could be found. At high stimulus intensities, the range of delays
where bursting behaviour could be found was also narrower, with typically more
regular dynamics and very long interburst pauses (high AP frequencies).

5.6.1 Limitations of the ionic model

The development of the modified ionic model presented in the present manuscript
was motivated by the need for 2 simple way of incorporating overdrive suppression.
Previous studies in this preparation suggest that overdrive suppression is greatly re-
duced by ouabain, a blocker of the sodium pump [143]. Although the description of
the sodium pump is crude, it is based on physiologically plausible assumptions and
hence it may represent a useful step towards understanding the mechanisms of over-
drive suppression. In its present formulation, the sodium pump term is insensitive



to changes in extracellular potassium concentrations. This assumption is justified
by previous observations [164] that indicate that in contrast to other experimental
preparations, accumulation of extracellular potassium during overdrive is minimal
in embryonic chick heart cell aggregates.

In the present model. appreciable levels of overdrive are obtained at the cost
of seemingly unrealistic increases in internal sodium levels (Figure 5.8). This is
reminiscent of the notion of “fuzzy space™ introduced to allow for significant changes
in intracellular calcium concentrations in the context of developing models of the
sodium-calcium exchanger [112, 22]. Although the existence of this hypothetical
“fuzzy space” remains untested, it offers a possible explanation for our results.

In the ionic model. bursting behavior is found for a range of delays that is much
more restricted than in experimental data, despite good quantitative agreement in
terms of the magnitude of overdrive suppression. Therefore. in the present descrip-
tion of the ionic mechanisms underlying overdrive suppression, the modulation of
excitability by time-dependent effects is weaker than in experimental data, and other
subtle effects may also play a role in the complexity of the dynamics. In particular,
the oscillations in the tnterbeat intervals prior to loss of entrainment that appear
in Figure 5.9B and 5.9D are associated with noticeable changes in action potential
overshoot and duration as well as changes to the balance of currents underlying phase
resetting properties, which involves [, and the fast sodium current Iy, [105]. In
Figure 5.10, the top panel shows an enlarged portion of the voltage trace presen-
ted in Figure 5.9E. The action potential durations (APD, arbitrarily defined as the
time interval between successive crossings of the -45 mV threshold during the AP}
and overshoot potentials (V,,) are presented in Panels b and ¢. The respective
time courses of [y, and [y, are shown in Panels d and e. In this figure, the delay
corresponds approximatively to the critical phase of the PRC (see Figure 5.5). As
described previously [105], the advance (premature AP) or delay of excitation de-
pends primarily on a delicate balance between [, and Iy, at the time of stimulation.
In the present case, the APD and action potential overshoot are modulated by the
latency between the stimulus and the upstroke of the action potential. As a result, a
stimulus applied at a fixed delay after a slightly longer action potential (second one
in top trace) will fall closer relative to MDP, where a significant portion of /g, chan-
nels have not yet deactivated. Consequently, /x, dominates over [y, resulting in a
delayed AP. Because this AP has a lower overshoot and shorter APD (and because
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of the longer interbeat interval), a larger fraction of [, channels have deactivated
at the time of stimulation, resulting in a shorter delay of the next AP. Since the
subsequent AP’s have increasingly shorter durations, the domination of [y, over {4,
increases progressively until a marked shortening in the prolongation is observed.
Since this premature AP has the shortest duration, /v, dominates strongly when the
pulse is applied; the stimulus evokes an immediate action potential. Therefore, the
bursting patterns observed in the ionic model are also partly due to an interaction
between phase resetting and the modulation of action potential parameters by the
prematurity of the stimulus respective to MDP, that could be described in terms of

action potential restitution properties.

Rate-dependent changes in action potential characteristics have been studied in
various preparations [17 103]. As a result of this work, several mechanisms have
been identified that underly the modulation of AP morphology by the prematurity
of the stimulus. In many preparations, th.s phenomenon was attributed to an in-
terplay between currents responsible for the platean phase of the AP and the later
repolarization phase [17, 103]. Because some of these currents also play a role in
the time course of recovery from excitation (which is also describec by the phase
resetting curve}, our results suggest that phenomena described in the current pa-
per could also be found in other preparations. For example, an oscillation in the
conduction time prior to loss of sustained reentrant rhythm is often found in exper-
imental preparations [60, 163, 153, 166]. Because conduction time is a function of
the recovery properties of the preparation (related to APD), changes in conduction
time have often been modeled in terms of the evolution of APD during the drive
[60, 26, 166, 93]. Since the underlying ionic mechanisms may be similar, we believe
that our results may apply to a wider class of experimental phenomena.

5.6.2 Reentry

Previous studies have used an electronic circuit to model an accessory pathway in
the analysis of atrioventricular reentry tachycardia {163, 153, 13, 166]. The current
work extends these earlier studies by (1) delivering the stimulation directly to a
spontaneous oscillator, and (2) developing theoretical models to describe the experi-
mentally ohserved rhythms. Since the rhythms are similar to repetitive paroxysmal
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Figure 5.10: lonic mechanisms contributing to the complex rhythms during fixed delay
stimulation of the modified Shrier-Clay ionic model. In a: enlarged portion of voltage
trace from Figure 5.9E. In Panels b and ¢, respectively: evolution of action potential dur-
ation (APD) and overshoot potential (V,,) versus time. In Panels d and e, respectively:
time course of I, and Iy, corresponding to the voltage trace in a. Note the changes
in the magnitude of the currents as a function of the AP characteristics.
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tachycardia, we believe that the current work forms a basis for understanding the
dvnamics of these arrhythmias. Prominent novel features in our analysis are the
slow changes in the physiological rhythm associated with the buildup of overdrive
suppression, and the delicat~ interactions between sodium and potassium currents
that govern the excitability and refractoriness of the spontaneous oscillator.

Further work will be needed to determine the extent to which the features that
we observe here can be applied in other circumstances. Even though we use a very
simplified experimental model, certain characteristics of the dynamics can be found
in other settings. For example, it is not unusual to observe a subtle alternation in
cycle length prior to the cessation of supraventricular tachycardia [163. 153]. Since
understanding the origin of this oscillation is key to understanding the factors that
lead to the stabilization and destabilization of reentry tachycardia. it will be import-
ant to analyze in more detail the ionic mechanisms of this oscillation with particular
emphasis on its sensitivity to drugs. In particular drugs that alter action potential
duration and refractoriness are certain to play an important role in pharmacological

management of reentry tachycardias {23, 34].

5.7 Appendix A: description of the modified ionic
model

To incorporate an electrogenic sodium pump term (/) into the Shrier-Clay ionic
model we assume:

(1) Tue sodium pump term possesses 3:2 (Nat:K™) stoichionietry. It is sensitive
to the internal sodium concentration according to Michaelis-Menten kinetics and it
is voltage independent.

(2) The magnitude of the fully activated hyperpolarizing sodium pump term
(Ipmaz) is such that it equals the minimum value of the net inward current during
diastolic depolarization. If fully activated, the slope of diastolic depolarization will
equal zero. Under control conditions (steady state) we assume that, immediately
after the upstroke phase of the action potential, [, is about 60% of its maximal value
[111].

(3) Three mechanisms contribute to beat to beat changes in internal sodium
concentration: the entry of sodium ions during the upstroke phase of the action
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potential (fast sodium current, fxv,). the sodium pump, and the uptake of sodiwm
ions via other mechanisms of unknown nature. The latter component may include
mechanisms such as the sodium-calcium exchanger, the sodium-potassium-chloride
cotransporter. the background current or other ionic flows of passive nature. It
may also account for a hypothetical compartmentalization of the intracellular space
available to sodium ions (“fuzzy space™) [112, 22].

As a consequence of these assumptions. the equations describing the sodium
pump term and the changes in internal sodium concentration are

[p = [p muxM_- (:l-”

) [.\ (III + k
where [Vg;] is the internal sodium concentration. & is the half-activation constant
and [pmar has been defined above: and

d([Na])

T = —a(lvs +30) + A([Ncg])&(t —tap) (5.5)

where Iy, is the magnitude of the fast sodium current. a is a conversion constant
from charge to concentrations, A([Na;]} is the instantaneous change in internal so-
dium concentration due to the third component described in Assumption 3, t4p is
the time of the upstroke of the action potential and & is the Dirac delta function.
Finally, the value of & can also be modified to account for a hypothetical compart-
mentalization of the intracellular space avatlable to sodium ions.

During rapid drive, increased action potential frequency results in a build-up of
intracellular levels of sodium. This, in turn, stimulates the sodium pump resulting in
a decrease of the slope of diastolic depolarization and a corresponding increase in the
cycle length. After cessation of stimulation, the sodium pump continues to function
at a high rate while the action potential frequency is low (overdrive suppression).
As a result, the internal sodium concentration gradually returns to control values
and control electrical activity is resumed.

The method used to set the various parameters of the model is analogous to
that described in Reference [111]. Briefly, [, ma- is set according to Assumption 2
(minimum slope of phase 4 equals zero). The total increase A in internal sodium
levels during the upstroke of the AP is dependent upon the experimentally measured
magnitude of overdrive suppression. As in Reference [111], A is determined from

o= (- (82).
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where T is the experimentally measured overdriven cycle length following a single
premature AP elicited by a stimulus delivered at some phase ©. Since control con-
ditions are equivalent to a steady state in terms of beat to beat changes in internal
sodium levels. A([:Va,]) is set to a value that compensates for the net loss of sodium
ions due to the sum of the actions of [, and [, during the cycle. for the value of
A determined from Equation 3.6. This steady state condition is also used to set a.

according to
A

3LT,

which relates the net instantaneous change in [Va,] (upstroke of AP) to the decrease

o =

in sodium levels during one cycle due to the electrogenic nature of the sodium pump.

The values of the parameters retained for the remainder of this work are: [, mes
=5.7 nA ; k=10.0; [Va;]=15.0 immediately after the upstroke of the action potential;
a = 1.0; and A([Ne])=1.0. Because the ionic model was originally designed to
describe the electrical activity of small fast beating aggregates, the control cycle
length was kept at 380 msec. Numerical simulations were carried out using a variable
time step Euler iteration method [131] for the transmembrane potential and Rush
and Larsen iteration technique for the gating parameters [155].

5.8 Appendix B: setting of parameters in nonlinear
model

There are three parameters to be set in the nonlinear model. The control cycle
length Tj is directly obtained from experimental data. The quantities £ and T are
determined using the following procedure.

Let ¢, be the smallest fixed phase of stimulation where 1:1 entrainment can be
maintained (i.e. no bursting). From the description of the qualitative model, failure
of excitation occurs when the initial phase rescaled by the overdriven cycle length is
less than the critical phase ¢.. Thus, we may consider stimulation at the phase ¢y,
as the limit case where an infinite number of stimuli is necessary before the reentrant
pattern terminates. Assuming that each stimulus of the train immediately evokes an
AP (no latency), we have

IBI; = 6T, forall i, (5.7)
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so that Equation 5.3 becomes an infinite geometrical sum and

- . )\
b\\a = -':(1 - Om) ( o 1 . (S.S]
1 — exp(—"22)

ts the asymptotic value for the overdrive term following an infinite number of stimuli.

This equation can be further simplified since, in general, o T & 7 [186], so that

S“—-"':S “— 1_'?!\‘ {-.9
p (omro)( Om ) (5.9)

which, combined with the condition for loss of 1:1 entrainment at infinity

Om
1+ 5

= & (5.10)

can be solved for the product 7

(% ) (8nTo
re(Bo) (D), s

now expressed in terms of experimentally measurable quantities.

In a further step, we obtain the values of £ and 7 by deriving an approximate
analytical expression for the number of action potentials contained in the initial
sequence during fixed delay stimulation, as a function of the delay §. Let n denote
the number of action potentials in the initial bursting sequence (for a given delay ¢
and some stimulus intensity). If we assume again that each action potential of the
sequence is evoked immediately after the stimulus is injected, Equation 5.3 yields an
expression for the sum S, after n action potentials

= §\ (exp(~(n +1)§/7) = 1
5= (1 _.T;) ( exp(—é/7) =1 )v (5.12)

which is just the sum of a geometric series. Since the burst terminates when the
effective phase is below the minimum phase at which a premature AP can be elicited
(critical phase ¢., corresponds to refractory period), we find n by solving
5 _
To(l+Sa)
Because the above condition must be true at the time of the (n + 1)th stimulus, we
ought to find the smallest integer n such that

5
.
To(l +54) =

be- (5.13)

éﬁ ]
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where the first action potential in the bursting sequence is spontaneous and does not
contribute to overdrive suppression. Thus, § is computed over (n — 1) iterates and

! must be added to the solution to obtain the value of n. After some algebra. we

e =7y [ (B = Diexp(=6/7) = 1) ]
n—.!-i-].-\Tl:—é.—-ln( eI +1H. (5.14)

where [ NT is the integer function and all the quantities have been defined above.

have

Let's now suppose that the initial transient of n action potentials is followed
by regular bursting activity with m AP’s per burst. Since the level of overdrive
suppression is the key factor in timing the termination of the burst, this assumption
is equivalent to

Sn, - Sﬂ+mg (5-15)
where S, and S,.m are the values of the overdrive sum after n and (n + m} AP’s
respectively. This equation is simply a steady state condition for overdrive. After
the n initial AP's, overdrive is at a level S,. The long pause which follows the first
burst results in the decay of S, by a certain amount AS. When bursting activity
resumes, the new sequence terminates after m action potentials when
exp(—mé/r - 1)

exp(~=é/7—1)

where we must remember that the first AP of the burst does not contribute to the

Sp = (Sn— AS)exp{—mé/7) +¢(1 = §/T0) (5.16)

build-up of overdrive. In this equation, AS is itself a function of S, as well as of
T, the maximum prolongation in the cycle length due to a premature stimulus. It is
implicitly assumed that the maximum prolongation in the cycle length, T, is found
exactly when ¢ = ¢.. This approximation is realistic for moderate to high stimulus
intensities. Solving the above equation for m we obtain

m =21+ INT [1 -2 (in (-‘%) +0)], (5.17)

A=S,exp (—-f:-—l) +€(1—%)y

B [Snm (—(1 +S)To — (T = To)) v (1 _s. - 1‘2)] exp (_i) ,

T T T

o8l
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After using Equation 3.11 to compute the preduct 7 from experimentally meas-
ured quantities, we calculate the quantities n and m. as a function of the delay 4,
for several choices of ¢ and 7. subject to the condition 7 = constant. The resulting
curves are compared with experimental data to vield the best set of parameters, This
procedure is illustrated in Figure 5.11. The top panel shows the number of AP in
initial sequence, n, as a function of the delay § as determined experimentally (solid
squares, see Figure 5.3), and by means of Equations 5.14- 5.17. In the simulations,
o. = 210 msec, o, = 160 msec. Ty = 760 msec and T, = 970 msee, give o7 = 1.3,
As indicated. the four curves correspond to different values of ». The staircase shape
of the curves is a consequence of the integer function in Equation 5.14. The best fit
to experimental data is achieved when 7 = 20 sec. The corresponding values of m
are shown in Panel B. In contrast with Panel A, the general shape of the curves does
not depend strongly on the choice of 7. The values 7 = 20 sec and ¢ = .060 were
retained for the simuiations.
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Figure 3.11: The parameters ¢ and + are set by comparing the experimentally determined
number of AP's in the initial sequence n, as a function of the delay, with nume-ical
simulations of n (Equation 5.14) using different values of ¢ and 7 subject to the condition
&7 = constant, as determined from Equation 5.11. In this figure, &7 = 1.3. The best
fit is obtained when 7 = 20 seconds. Panel B: similar computation based on the steady
state number of AP’s per burst. The shape of the curves does not depend on the choice
of ¢ and 7.
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Chapter 6

Phase resetting and dynamics in
1solated atrioventricular nodal cell
clusters

6.1 Foreword

In the intact heart, the atrioventricular (AV) node is a small complex structure
which plays a crucial role in regulating impulse conduction between the atria and
the ventricles. AV nodal cells are in general characterized by slow action potential
upstroke velocities (7 to 30 V/s, to compare with 100 to 200 V/s for neighbour-
ing atrial or ventricular cells) which reflect the relatively slow kinetics of the ionic
mechanism underlying electrical activity [12, 128, 162]. Under normal conditions, an
electrical impulse generated by the primary pacemaker of the heart, the sinoatrial
(SA) node, propagates across the atria and reaches the AV node which forms the
only normal link between the atria and the ventricles. The functional aspects of the
AV node may be summarized as follows: 1) conduction through the AV node is slow
(and rate-dependent) therefore causing a delay in activation between the atria and
the ventricles (coordination of activation), 2) the AV node is able to block impulses
propagating from the atria to the ventricles hence protecting the latter from too rapid
or complex atrial rhythms. (filtering), 3) under circumstances where the SA node
fails in generating the heart rhythm, or when conduction is blocked between the atria
and the ventricles, the AV node is capable of serving as a subsidiary pacemaker to
the ventricles (pacemaking). In the clinical context, the AV node is therefore often
the target of therapeutical or surgical interventions.
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Since the pionecring work of Tawara [168]. there has been substantial progress
in our understanding of the excitability and conduction properties of the intact AV
node. For example. periodic premature stimulation protocols are often vsed to eval-
nate nodal excitability and its rate-dependent properties 1160, 167, 13. 14, 46]. In
this procedure, a premature stimulus is introduced at various coupling intervals after
sustained periodic pacing at a fixed frequency. The resulting recovery curve (con-
duction time S H versus recovery time HS) is a representation of the excitability of
the AV node. These recovery curves have been incorporated in an iterative mathem-
atical procedure to predict the various rhythms of AV block in patients during atrial
stimulation {160, 167].

In the last decade it has been shown that patterns similar to the rhythms of
atrioventricular block can be seen in vitro in a virtually isopotential preparation of
cardiac cells {78, 80]. These rhythms could largely be accounted for by analyzing
the response of the preparation to single premature stimuli [S0, 67]. Time-dependent
effects (overdrive suppression) analogous to "fatigue™ (rate-dependent prolongation
in AV nodal conduction time) during periodic stimulation of the AV node {13, 14}
were observed that could lead to an evolution of the entrainment pattern during
the drive [186]. Such in vitro experiments may therefore provide an excellent basis
for evaluating and modeling the dynamical response of AV nodal tissue to single or
premature stimulation. In combination with electrophysiological studies carried out
on single cellular preparations using the patch clamp technique, they can give us a
better understanding of the spatial organization of the AV nodal tissue and of the
ionic mechanisms underlying its functional properties.

In this study we characterize the response of AV nodal clusters to single and
periodic stimulation. We investigate the consequences of changes in action potential
morphology during periodic stimulation on the complexity of the experimentally
observed rhythms. We also observe time-dependent effects which may be analogous
to "fatigue” in the intact node.

6.2 Exper_i_riiéntal protocols

The following e.\';;erimenta.l procedures were performed on both types of prepara-
tions. Typical aggregate size was 180 pm with control cycle length between 470 and
650 msec. The control cvcle length of the spontaneously active AV nodal cell clusters
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was 300 to 520 msec.

6.2.1 Phase resetting

Single depolarizing current pulses of fixed amplitude were delivered every tenth
spontaneous action potential at an increasing coupling interval through the entire
spontaneous cycle. The duration of the pulse was typically of 20 msec. This protocol

was repeated at several intensities of stimulation.

6.2.2 Overdrive suppression

The preparation was stimulated with increasing numbers of stimuli, Successive trains
of 1.2,4,8,15,253,50,100,250 stimuli were delivered, separated by rest periods of ap-
proximately 30 seconds. All measured interbeat intervals were normalized to the
control cycle length defined as the average of the 5 cycle lengths preceding the drive.
The post drive cycle length was evaluated as a function of stimulation duration

6.2.3 Periodic stimulation

The preparation was stimulated with trains of 100 stimuli at different pacing fre-
quencies and stimulus amplitudes. Successive episodes of pacing were separated by
a 30 second rest period to allow for recovery from stimulation. The period of stim-
ulation was automatically decremented. The entrainment rhythm during periodic

simulation was determined by visual inspection of the recorded voltage traces.

6.3 Iteration of phase resetting curves (PRC’s)

The theory underlying the computation of phase locking based on the iteration of
phase resetting curves is discussed at length elsewhere [181, 80, 67]. Briefly, the
response of the preparation to periodic stimulation can be predicted from the cor-
responding PRC provided that the stimulation does not alter the intrinsic properties
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of the oscillator. The main idea is that a single stimulus instantaneously resets the
phase of the oscillation from one point of the cardiac cycle to another point on the
cycle. For a given amplitude of stimulation, the phase resetting curve (PRC) 1}%’1
{where Ty is the control cycle length and T(6) is the perturbed cycle length caused
by a stimulus delivered d at phase ¢) describes the perturbation in the cycle length
induced by a single stimulus delivered at phase ¢. Let now &; be the phase of the

" current pulse. We have.

6 = f(Gia1.0) =1 + iy — + 6@ (mod 1), (6.1)
where § = T, /T, with T, being the cycle length of the stimulus train, and ﬂ%‘—‘l is
obtained {rom the experimentally determined phase response curve PRC(¢). Under
the assumption that ¢ is the phase of the unperturbed spontaneous cvcle at which
the first stimulus of a train of periodic pulses is delivered, Equation (6.1) can be
numerically iterated to determine the dynamics.

During periodic stimulation, 3 types of behavior are observed in Equation (6.1):
quasiperiodicity, periodic orbits and chaotic dynamics. The Lyapunov number defined
as:

1 M
A= lim =3 In|f(¢:0), (6.2)
N—oo N =1

where N is the total number of iterations and f'(¢;,8) is the first derivative of the
function f evaluated at successive phases ¢:, can be used to discriminate between
these 3 types of behavior [70] . The Lyapunov number is zero for quasiperiodicity,
negative for periedic cycles and positive for chaos [87, 139].

Before carrying out the iteration procedures, the experimentally obtained phase
resetting curves were fitted to analytical functions in order to reduce experimental
noise (high local derivatives} due to fluctuations in cycle length. Based on our
present understanding of the ionic mechanisms underlying electrical activity in car-
diac preparations there is no e priori reason to choose a particular function to fit
the PRC’s. For the two highest amplitudes of stimulation, we used the functions:

T(9) b b
=1+ — + —, 6.3
To =% oo (63)
when ¢ < &g, and
T(o) . . . .
T = ¢ otherwise (immediate premature action potential). (6.4)
J
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Since we assume that there is a rapid return to the limit cvele after the stimulus, the
discontinuity in the PRC at 0wy (the phase of discontinuity) must be equal to 1 {57,
snd we have 0 = %j—b. Because the lowest amplitude stimulus induced almost
no changes in the cycle length of the preparation. we did not apply the iterative
method for this stimulus intensity. The remaining PRC seems to violate the con-
tinuity assumption outlined above. This case is analogous to previous experimental
observations reported in other cardiac preparations (see for example reference [70),
pp. 113-116). or to phase resetting of integrate and fire models [68]. Although the
presence ot this apparent discontinuity may be attributable to insufficient experi-
mental precision [70}, we nonetheless used a simple piecewise linear function to fit
the PRC. The theoretical implications of discontinuous phase resetting are further
discussed elsewhere [70, 67, 181]. The PRC’s were fitted using a graphics package
(SigmaPlot) un an IBM compatible computer. The exact functions used to fit the
experimental curves and the corresponding parameters are given in the legend of
Figure 6.4.

6.4 Results

6.4.1 Phase resetting

The response of biological oscillators to a single stimulus depends on the amplitude
of the stimulus and the phase of the oscillation where the stimulus is delivered
[181, 80, 67] Figure 6.1A describes the phase-resetting protocol and defines the meas-
urable quantities used throughout this part of the study. The control cycle length is
denoted by Tp. The upstroke of the action potential is defined to have zero phase. A
20 msec depolarizing stimulus introduced every tenth action potential at increasing
delay t, (or phase ¢ = %) after the upstroke of the action potential induces a per-
turbed cycle length T3. The time intervals from the last spontaneous AP to the j*
AP following the premature stimulus are denoted by T}, =1 to 5, as described in
Figure 6.1A. In Panels B through D of Figure 6.1 we present superimposed voltage
traces showing the response to stimulation in 3 different preparations. In all panels,
the stimuli appear as the off-scale deflections and all the voltage traces are aligned
on the upstroke of the last spontancous zction potential before stimulation. For
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short coupling intervals, the stimulus fails to elicit a premature AP and the onset
of the next spontaneous AP is generally delayed. For larger coupling intervals the
stimitlus evokes a premature action potential. In the atrial embryonic chick heart
cell aggregate (Panel B), the phase of the stimulus does not significantly affect the
size and shape of the premature AP. The traces presented in panels C and D were
obtained from two diflerent AV nodal clusters. The differences in spontaneous ac-
tion potential morphologies may simply reflect the histological helerogeneity of the
AV node (12, 128]. In both cases however, the premature action potential amp-
litudes, upstroke velocities and durations are strongly affected by the prematurity
of the stimulus. This is in agreement with previous observations from the intact
AV node {12] and may have important consequences on impulse conduction through
the AV node. For example, during sustrined periodic stimulation, the presence of
graded responses may increase the complexity of the rhythms observed. Also, in
the intact heart. a graded response to atrial stimulation may be insufficient to excite
neighbouring cells therefore resulting in failed conduction.

The ex, erimental protocol explained in Figure 6.1A can also be vsed to co- :ruct
the phase resetting curve (PRC) for a given amplitude of the stimulus. The PRC
describes the perturbation in the cycle length induced by a stimulus delivered at
various phases of the cycle. The perturbed cycle length % is plotted as a function of
the phase ¢ of the premature stimulus. Under the assumption that the cardiac rhythm
is a strongly attracting oscillation with rapid relaxation back to the cycle following
the stimulation, the PRC can be used to predict the response of the preparation to
sustained periodic stimulation [181, 67, 80]. In Figure 6.2 we present PRC’s obtained
from an AV nodal cell cluster for 4 different amplitudes of stimulation. In order to
emphasize the general shapes of the curves and the presence of time-dependent effects,
we chose to represent T}, j = 1 to 5 (as defined in Figure 6.1A), normalized to control
cvcle length Tp, versus the phase ¢. For the same reason, the original data obtained
for ¢ between 0 and 1 is also repeated 3 times on the phase axis. For the lowest
intensity of stimulation (24 nA, Panel A) a premature stimulus does not perturb
the cycle length significantly. The predominance of horizontal lines in this panel is
a hallmark of "weak” or "type 1" phase-resetting. In Panel B (48 nA, moderate
intensity), as the phase of the stimulus increases, there is a sudden induction of
premature AP’s producing large gaps between the segments of the curves: we havean
interesting example of an apparently discontinuous phase-resetting curve. In Panels
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Figure 6.1: Description of the phase resetting protocol {Panel A} and traces showing
response to premature stimulation for 2 different types of preparations (Panels B tc D).
Panel A: A 20 msec depolarizing stimulus of fixed amplitude is applied every 10 AP’'s
at increasing phase ¢ = % Panels B through D: Superimposition of traces showing
response to premature stimulation for 3 different preparations as the phase of the stimulus
increases. The inserts show the premature AP’s on a magnified scale. In Panel B (atrial
embryonic chick heart cell aggregate), To = 500 msec, amplitude = 30 nA. In Panels C
and D (AV nodal cell clusters), respectively, Ty = 320 msec, amplitude = 75 nA and T
= 550 msec, amplitude = 120 nA. All the data presented in the remaining figures of this
study was obtained for preparation C.



(" and D (96 and 120 nA respectively), as the phase of the stimulus increases, there
is first a delay in the onset of the next spontaneous AP. For larger stimulus phases,
a premature AP is evoked. The predominance of diagonal lines in these panels
indicates “strong” or “type 07 phase resetting. The relationship between "weak™.
"strong” or discontinuous phase resetting and the dynamics observed during periodic
stimulation is discussed thoroughly in the literature [I181, 67. 68].
Phase resetting normally implies that only the phase of the oscillation is affected
by the premature stimulus. However, single stimuli may produce long lasting effects.
‘or instance, in Panel C. a stimulus at phase ¢ = .85 first advances the phase of the
oscillation (7} = .85) but after 1 to 5 beats there is a net delay in the phase of the
oscillation (for instance: Ts & 5.2). This effect is primarily due to a prolongation of
the first interbeat interval {ollowing the premature AP (7> — T}) and is analogous to
phenomena observed in the intact heart. In Figure 6.3 we summarize the relationship
between the magnitude of this time-dependent effect and the phase of the stimulus
as well as the number of stimuli applied. We also draw a comparison between our
observations from AV nodal clusters (right hand panels) and atrial embryonic chick
heart cell aggregates (left hand panels). In the top panels we show the two first
normalized interbeat intervals ((T2 —~ 1) /Ty and (T3 — T,)/Tp respectively) after the
premature AP, as a function of the phase of the stimulus. In both preparations, the
initiation of a single premature AP is associated with a transient lengthening (up
to 10 % in atrial embryonic chick heart cell aggregates, up to 40 % in clusters of
AV nodal cells) of subsequent interbeat intervals. In atrial embryonic chick heart
cell aggregates, there is a direct relationship between the amount of post-drive pro-
longation and the prematurity of the evoked AP (open symbols, first cycle length
after premature AP, normalized to control). This time-dependent effect decays in
time (filled symbols, second cycle length after premature AP, normalized to control).
In clusters of AV nodal cells, there is a reverse relationship for the perturbation in
the first cycle after the premature AP. However, there is no significant difference
between the perturbation in the second cycle length as observed in embryonic chick
heart atrial cell aggregates or AV nodal cell clusters (respectively, Panels A and B,
filled symbols). This observation suggests that, in AV nodal clusters, two different
mechanisms play a role in prolonging {or shortening) the cycle length after premature
stimulation.

These changes in cycle length may have important effects on AV nodal excit-
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Figure 6.2: Phase resetting curves for AV nodal cell clusters using the protocol described
in Figure 6.1A. Current pulses of 4 different intensities: 24 nA (Panel A), 48 nA (Pane!
B), 96 nA (Panel C), 120 nA (Pane! D) were introduced eve:y tenth spontaneous acticn
potential. The normalized quantities ;’-,1 = 1 to 5 are plotted as a function of the
phase of the stimulus ¢ = . T is the average of five control cycie lengths before the
stimulus. Panel A shows “weak” and Panels C and D show “strong” resetting. In Panel
B, “discontinuous” resetting is observed. The lack of vertical translational symmetry
may indicate the presence of a time-dependent process.
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Figure 6.3: The effects of single or periodic stimulation on the interbeat interval (1Bi)
immediately following the pulse. Left hand panels: atrial embryonic chick aggregate.
Right hand panels: AV node cell cluster, In Panels A and B: First and second interbeat
intervals (T; — T, open symbols and Ty — T, filled symbols), normalized to control
cycle length, as a function of the phase ¢ of the premature stimulus. The data in Panel
B corresponds to the PRC shown in Figure 6.2D. In atrial chick heart aggregates, the
perturbation in the first cycle length after the stimulus increases with the prematurity of
the evoked action potential. In AV nodal clusters, a reverse relationship is observed for a
wide range of stimulus phases. However, the perturbation in the second IBl following the
stimulus is again an increasing function of the action potential prematurity. In Panels C
and D: first IBI (T") after cessation of stimulation, normalized to control cycle length To,
as a function of the number of stimuli applied. In both cases, the period of stimulation
was 0.6 T (1:1 entrainmentj. Note the striking differences in the magnitude of overdrive
effects between the two preparations.

148



el . . .

ability. For example, a prolonged interbeat interval may increase the refractoriness
of the preparation to forthcoming excitation. Given the considerable magnitude of
this effect (up to 40 %) and its rapid decay, we speculate that it may represent a

protective and stabilizing mechanism against undesirable premature excitation.

6.4.2 Overdrive suppression

Overdrive suppression can be defined as a transient suppression of automaticity tol-
lowing sustained periodic stimulation at a frequency faster than the intrinsic rate of
the preparation and is the mechanism which ensures, in the intact heart, the dom-
ination of the SA node over subsidiary pacemakers [173] (including the AV node).
Overdrive suppression has been studied extensively in a variety of preparations,
including embryonic chick heart cell aggregates [186, 111]. There have been sev-
eral theoretical attempts to model overdrive suppression in order to account for
rate-dependent effects in the heart and for the evolution of rhythms during periodic
stimulation [186, 111]. In some of these models, the change in the cycle len; "1 fol-
lowing a single stimulus was attributed to overdrive suppression. Following periodic
stimulation in atrial embryonic chick heart cell aggregates the length of the post-
drive pause increases with the numb er of stimuli and is directly proportional to
the action potential frequency during the drive [111]. In Panels C and D of Figure
6.3 we show the length o f the first interbeat interval after the drive normalized to
control cycle length, %, as a function of the number of stimuli applied. In all cases
1:1 entrainment was maintained between the stimulator and the preparation. In at-
rial aggregates, after 100 stimuli (pacing cycle length = .6 control cycle length), the
spontaneous interbeat interval is 3 times control. Under simiiar conditions, in AV
nodal cell clusters, we observe only 50 % of prolongation of the spontaneous cycle
length (roughly equal to the amount of single stimulus overdrive). Since various cell
parameters such as cell input impedance and the ionic basis of activity are different
for AV nodal cells than for cells from the surrounding myocardium [162, 128}, these
results are not surprising. This finding may be consistent with the distinct and
specialized functional properties of AV nodal tissue.
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6.4.3 Periodic stimulation

In the healthy heart. the SA node normally entrains the AV node rhythm ina 1:1 fash-
ion. However, in the clinical context, examples abound of other entrainment rhythms
which often correspond to distinct pathological situations. Different mechanisms are
generally believed to underly these various rhythms including Wenckebach. reverse
or alternating Wenckebach and Mobitz type Il atrioventricular block. Analogous
rhythms can also be found in in vitro preparations [80, 78]. These rhythms can
often be predicted using simple theoretical paradigms which suggests that they can
be describ 1 in terms of dynamical properties of excitable cardiac tissue [80, 67)].
in Figure 6 4 we identify some of the rhythms observed during periodic stimulation
of AV nodal cell clusters with different stimulation frequencies for the 4 intensities
corresponding to the PRC’s in Figure 6.3. For the 3 highest amplitudes of stimula-
tion, we draw a comparison between the experimentaliy observed rhythms (various
symbols) and some of the entrainment patterns obtained by iterating the correspond-
ing PRC’s (horizontal bars: 1:1, 2:1, 3:1 ohase locking; stippled: period doubling
bifurcations and irregular dynamics). The experimentally observed patterns of en-
trainment were determined by visual inspection of the voltage traces. Since there
was often an evolution of the rhythms during the drive, only stable rhythms were
represented. For reasons of clarity only the most important patterns of entrainment
are indicated. For example, at the lowest stimulus intensity, a plethora of quasiperi-
odic and Wenkebach rhythms can be found between 1:1 and 2:1 entrainment. In
general the structure of the phase-locking zones (where the same type of N:M en-
trainment is found for different frequencies and amplitudes of stimulation) is similar
to that observed in other in vitro preparations and to the theoretical predictions
based on simple models of biological oscillators [78, 80, 67]. As the frequency of
the stimulation increases, higher degrees of block are observed. The fact that we
observe a 2:2 rhythm and 3:2 rhythm for the same amplitude of stimulation (96 nA)
deserves special mention. A 2:2 rhythm corresponds to a period-2 oscillation in the
phase of the stimulus. As the frequency of stimulation is increased, loss of entrain-
ment will occur for one of the AP’s in the period-2 cycle: we expect to have 2:1
entrainment (although a narrow band of 3:2 entrainment can sometimes be found).
In view of this, our observation is interesting since it may suggest that a slow regen-
erative process is present that modulates AP duration. This is reminiscent of the
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rate-dependent modulation of the uction potential duration by the transient vutward
current in ventricular myocytes [1U3]. In some cases it is possible to drive the pre-
paration: in l:1 fashion at a rate slower than control. Interestingly, there are very
large zones where 2.2 and 1:2 entrainment is found. These entrainment patterns
as well as the irregular rhythms correspond to situations where the action potential
morphology is strongly modulated by stimulation {e.g. alternans). Because the PRC
does not carry information related to changes in AP morphology induced by prema-
ture stimulation, the iteration of the PRC does not predict the existence of the wide
regions where this type of complex action potential alternans and irregular dynamics
are experimentally observed.

A simple description of the changes in action potential morphology during peri-
odic stimulation can be obtained by calculating the area under the action potential
with respect to some arbitrary threshold. In order to illustrate some of the observed
rhythms, we show, in Figure 6.5, 9 voltage traces recorded during periodic stim-
ulation. The rhythms that we chose are indicated in Figure 6.4 by capital letters
referring to the panels of Figure 6.5. Under each trace, we show the corresponding
AP area as computed using a trapezoidal integration rule of the voltage traces with
respect to the -45 mV threshold (as shown in the insert of Panel A). For presenta-
tion reasons, only 5 seconds traces are shown. Since a large stimulation artifact is
present in our recordings, it may sometimes give rise to a sn:all area. A sample of
spontaneous activity is shown in Panel A. Under control conditions, there is no beat
to beat changes in AP area. The same result holds for 1:1 stimulation as shown in
Panels B. In Panel C, the preparation is underdriven (stimulus frequency lower than
intrinsic rate) in a 1:1 fashion. In this case (and in subsequent panels too), the small
area values are due to the stimulus artefact and ought to be ignored. Therefore, as in
the previous case (Panel B), the area under the AP is constant during the drive. In
Panels D and E, respectively, examples of 2:1 and 3:1 entrainment are shown. There
are again no changes in AP area during the drive. The situation is more complicated
in the remaining four panels (F through I). In Panel F, each stimulus evokes an AP
but the shape of the AP changes, repeating itself every 4 stimuli (4:4 entrainment).

This alternation in AP parameters is nicely described by the plot of the AP areca
as a function of time. In a number of similar cases, visual inspection of rhythms
can result in misleading interpretations. The measurement of the area under the
AP therefore represents a useful complementary tool in characterizing the observed
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Figure 6.4: Phase locking zones. The various symbols illustrate different phase locked
rhythms, as determined from visual inspection of experimental recordings obtained for 4
different amplitudes of stimulation, during sustained periodic stimulation for 100 stimuli
at different frequencies. The horizontal bars indicate regions where 1:1, 2:1 and 3:1
entrainment was predicted based on the iteration of the PRC’s {inserts). In the stippled
regions, period doubling bifurcations and ‘rregular dynamics were found. The abscissa
is the period of stimulation normalized to control. The amplitude of the stimulus (in
nA} is plotted on the vertical axis. The symbols represent 4:1 (4}, 6:2 (C). 3:1 (O),
4:2 (Q), 2.1 (7). 3:2 (4), 222 (Q), 11 (7). 45 (©). and irregular rhythms or long
period action potential alternans (). Note the prominence of the 2:2 zone and the large
number of irregular looking rhythms. The letters B to | refer to the panels in Figure 6.4
where a few experimental traces during sustained periodic stimulation are shown together
with information describing the evolution of action potential morphology during the drive.
The experimentally measured phase resetting curves (points) superimposed on the fitted
analytical functions (solid curves) used in iterative procedure are shown in the inserts At

the two highest amplitudes of stimulation (discontinuity = 1): Tm =1+ == oo —+ ; when
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was fitted using a piecewise linear function: —1.(31 = ad + b where a=1.06, b=1 when

¢ < 0.408 and a=1, b=0 otherwise.




dynamics. Other complicated rhythms can also be found. For example, in Panel
G. there is a great deal a variability in the shapes of the action potentials. super-
imposed on a 2:1 rhythm. However, from the evolution of AP area as a function of
time, a period-6 oscillation becomes transparent indicating that we have found 12:6
entrainment. Although the periodicity is not as clear in Panel H. this trace seetis
to correspond to 12:12 locking between the stimulator and the preparation. ln Panel
1. there are erratic changes in action potential morphology during stimnulation, This
recording is an example of an irregular rhythm. In all cases it is the changes in action
potential morphology that account for the complexity of the dynamies. Although our
measure of the area does not have a transparent physiological meaning, it is efficient
at detecting general changes in AP morphology. In the clinical context, such changes
may be important since they may influence impulse propagation through the AV
node.

6.4.4 Conclusions

[n this study, we showed that the action potential characteristics of AV nodal cell
clusters are modulated by the prematurity of the stimulus. These results are con-
sistent with previous observations from the intact AV node [12] and single cellular
preparations [162]. Moreover, single or sustained stimulation induces time-dependent
effects that alter the spontaneous activity of the preparation and its excitation prop-
erties. During periodic stimulation, we find a variety of entrainment patterns which
are analogous to the ventricular rhythms observed during atrial stimulation in the
clinical setting. In many of these rhythms, there are large beat to beat changes in
action potential morphology that increase the complexity of the observed dynamics
and are not accounted for by the iteration of the phase resetting curves,

In electrocardiography, the term "concealed conduction™ describes a situation
where an atrial excitation fails to transverse the entire AV node [121, 2, 147]. Al-
though active propagation is interrupted in this situation, remnant electrotonic cur-
rents will continue to propagate away from the site of block. The resulting sub-
threshold activity at sites distal to the site of action potential failure is related to
several phenomena that can affect the response of the AV node to subsequent activ-
ations (for review, see Pick et al. [147, ). In view of this, concealed conduction is
sometimes related to "electrotonic inhibition™ as described by Antzelevitch and Moe
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Figure 6.5: Experimental traces of recorded transmembrane potentials showing a few
chosen entrainment rhythms (see corresponding letters in Figure 6.4) observed during
sustained periodic stimulation (100 stimuli) at different frequencies and intensities of
For clarity, only 5 second traces are presented in each panel (Part a.).
The stimulus artefacts appear as the off-scale vertical deflections. In Panel A, a sample
of spontaneous activity is shown. The insert (right corner) describes the procedure for
calculating the area under the action potential which corresponds to the area comprised
between the experimental AP trace and the threshold fixed at -45 mV. In each panel, the
evolution of the area under the AP is shown in Part b. of the panel. In each panel, the
strength, the period of stimulation (normalized to control) and the visually determined
entrainment rhythm are indicated. Under certain circumstances, a failed action potential
may result in a small but non-zero measured area. In some cases, very complex bzhavior

is observed, associated with marked changes in AP characteristics.
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[2]. The possible relationship between these two phenomena is further discussed by
Liu et al. [121]. Our data collected during the phase-resetting protocol clearly shows
that a single stimulus can modulate action potential morphology and produce phase
dependent effects on intrinsic excitability cell. During periodic stimulation, we also
observe great variability in action potential characteristics. Under in vivo conditions,
graded responses may be insuflicient to propagate through the entire AV node, and
contribute to concealed conduction.

“Fatigue” is a rate-dependent prolongation in AV nodal conduction time that
may be responsible for the evolution of rhythms often observed experimentally during
sustained atrial pacing [13, 14]. For example, in healthy patients, atrial stimulation at
rates faster than the sinus rate disturbs AV nodal conduction and causes an evolution
of rhythms from 1:1 entrainment towards Wenkebach rhtyhms (periodic rhtyhms
showing a progressive increase or decrease in action potential to stimulus latency
before loss of entrainment) and higher degrees of AH block [24]. 1n our experimental
study, we observe analogous effects. We have shown that a single premature AP can
induce a significant change in the following interbeat interval (up to 40%). Periodic
stimulation at a rate faster than control is followed by post-drive pause (up to 50%)
that, for long episodes of pacing, is virtually independent of the duration of the drive,
which 1s in agreement with previous studies carried out in nodal tissue [T4]. This in
contrast with overdrive suppression in atrial embryonic chick heart cell aggregates
where the magnitude and the build-up of this effect are much more pronounced
[186, 111]. The discrepancy in the magnitude of overdrive suppression measured
in these two different preparations is likely to reflect the different nature of the
underlying ionic mechanisms. Previous studies suggest that, although the sodium
pump plays a major role in overdrive suppression in embryonic chick heart atrial cell
aggregates [143], other factors, including increased internal calcium concentration
and acethylcholine are determinant in overdrive suppression in nodal (SA) tissue
[74]. Since there is a great deal of similarity between SA nodal and AV nodal cells,
the same mechanisms may be involved in our experimental observations.

Under normal circumstances, there is 1:1 entrainment between the SA nodal and
the AV nodal rhythms. By changing the frequency and the amplitude of the stimula-
tion imposed on the AV nodal cell clusters, we investigated the response of AV nodal
tissue to stimulation protocols which may simulate real pathological situations. The
resulting rhythms, including Wenkebach and 2:1 block are analogous to experimental
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or clinical obsarvations. Recently, a number of simple iterative mathematical models
were developed to account for the dynamics during periodic stimulation. For ex-
ample, the structure of the phase-locking zones (different types of N:M entrainment)
in an amplitude versus period of stimulation diagram (such as in Figure 4) can be
predicted based on the topology of the experimentally determined PRC [181, 67. 68]
(e.g. “type 17 or "type 07). To date, most of the studies aimed at studying the dy-
namics during periodic stimulation were carried out in in vitro preparations which
consisted of cells charactecrized by high AP upstroke velocities and hence almost
ideal "one or noue” responses to stimulation. However, in our preparation, the pres-
ence of graded responses plays an important role in increasing the complexicy of
the dynamics. As a consequence, mathematical models that incorporate both time-
dependent effects in the cycle length and changes in action potential morphology
must be developed. For example, two pulse protocols could be designed to study
the relationship between the areas of successive premature action potentials, as well
as the influence of single stimulus overdrive on the phase resetting properties of the
preparation. Subsequently, a theoretical model, in the form of a pluri-dimensional
difference equation, could be designed to encompass phase resetting, action potential
area and overdrive, in an attempt to simulate the complex rhythms observed in the
experimental context.

There is still a poor understanding of the ionic mechanisms that underly the
electrical activity of AV nodal cells [162]. This task is made even more difficult by
the diversity of cell profiles found in the AV node [12, 133, 162]. In the intact heart,
a large number of hormonal, neural and mechanical inputs influence the properties
of the AV node. All of these factors can influence the results of in vive studies of the
intact AV node, but can be more easily controlled by using our in vitro preparation.
We hope that a combination of these different complementary approaches will give
us a better understanding of how the AV node responds to sustained atrial pacing.
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Conclusions

This thesis studies the time dependent properties of excitable cardiac tissue, and their
contribution to the dynamics during various stimulation protocols. Previous simpli-
fied models of the dynamics during sustained stimulation relied on the assumption
that stimulation resets the phase of the cycle without changing the intrinsic prop-
erties of the oscillation. The experimental protocols performed in this study were
specifically designed to examine situations where this assumption breaks down. The
theoretical models presented in this thesis were developed to capture the contribu-
tion of time dependent effects to the experimentally observed dynamics, based on
careful studies of the relationship between the excitability of the tissue and stimu-
lation history, and to better understand the mechanisms underlying rhythmogenesis
in the heart.

Overdrive suppression

Overdrive suppression (underdrive acceleration) is the transient decrease (increase)
in the intrinsic firing frequency following stimulation at a rate faster (slower) than
control [173]. In embryonic chick heart cell aggregates, the sodium potassium pump
is the major mechanism underlying overdrive suppression [143]. The qualitative
study presented in Chapter 4 shows that the leveis of overdrive suppression are
an increasing function of drive duration and of action potential frequency. For a
given stimulation frequency, overdrive suppression decreases with increasing degree
of block. Since maximal overdrive suppression is associated with the fastest possible
action potential frequency in a given entrainment regime, this finding may explain
the peaking of overdrive suppression at intermediate frequencies often observed dur-
ing the sinus node recovery test [101]. Overdrive suppression may also contribute to
the evolution of rhythms reported experimentally and clinically under various stimu-
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lation protocols [186]. The experimental study of Chapter 5 shows that, during fixed
delay stimulation, overdrive suppression is responsible for the gradual increase in
the interbeat intervals under conditions where the reentrant loop is maintained and
may lead to the termination of reentrant activity. Similar time dependent phenom-
ena (overdrive suppression, fatigue) may therefore play a crucial role in the sudden

onset or termination of potentially lethal tachvcardias.

Theoretical modeling

The theoretical models of overdrive suppression described in this thesis were de-
veloped using a double strategy: (1) nonlinear models were constructed to provide
a theoretical framework of relative transparency and simplicity, non preparation-
specific and therefore applicable to a variety of systems; (2) the Shrier-Clay ionic
model of electrical activity in embryonic chick heart cell aggregates was modified to
include a simplified sodium pump term, thereby providing the means of understand-
ing the experimentally observed dynamics in terms of the underlying ionic mechan-
isms.

The first of the nonlinear models is the classical iteration of the phase resetting
curve used to predict and understand the mathematical structure of the dynamics
arising during sustained periodic stimulation [78, 70]. Although this model is very
successful at moderate stimulation frequencies, the lack of time dependent contribu-
tions limits its usefulness at rapid stimulation rates. A review of the results obtained
by iteration of this model with phase resetting curves obtained experimentally or by
numerical simulation of the Shrier-Clay equations was presented in Chapter 3. Since
this class of models does not rely on preparation-specific ionic mechanisms, the res-
ults are applicable to a variety of oscillating or periodic systems [70, 181]. This
model was modified in Chapter 5 to include a time dependent term that modifies
the intrinsic beat rate by means of a weighted contribution of the preceding cycle
lengths. The main assumption is that, provided that the phase of the stimulus is
rescaled to the instantaneous cycle length of the preparation, the effects of a single
stimulus on the rhythmic activity may be predicted based on the experimentally
observed phase resetting curve. The success of this model lies partly in the fact
that it combines the experimentally determined, and hence realistic phase resetting
curves, with a reasonably efficient description of the overdrive-induced changes in
the intrinsic cycle length.
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Models based on iterative techniques necessarily imply a discretization of exper-
imental time. Since overdrive suppression in embryonic chick heart cell aggregates
is due to the increased activity of a hyperpolarizing current, a simplitied model
expressed in terms of ordinary differential equations was also developed. The theor-
etical model described in Chapter 4 is a simplified relaxation oscillator modified to
include a time dependent term. The main assumption is that overdrive suppression
1s due to a hyperpolarizing current that is induced by action potentials. Despite
good qualitative agreement with the experimentally obtained measurements of over-
drive suppression following periodic stimulation at different frequencies, stimulation
intensities and entrainment regimes, this theoretical model does not properly mimic
the details of the experimentally determined phase resetting curves. Thus, the use-
fulness of the model is limited to experimental situations where the detailed shape of
the phase resetting curve is not determinant to the rhythmic activity. However, the
model is based on physiologically plausible assumptions and captures the depend-
ence of overdrive suppression upon the duration of the drive and the stimulation
frequency. More importantly, appreciable levels of overdrive suppression can be at-
tained only by assuming large beat to beat changes in internal sodium levels. This
may suggest a possible compartmentalization of the intracellular space available to
sodium ions, as previously proposed [112, 22]. Finally, a close inspection of the
equations shows that, for very fast stimulation frequencies and 1:1 entrainment, the
beat to beat influx of sodium ions may exceed the maximal extrusion capacity of the
postulated electrogenic mechanism. As a result, some stimulation frequency may
exist above which the levels of overdrive suppression do not saturate following in-
creasing long stimulation episodes. Although not tested, this prediction may have
interesting implications in the experimental and clinical settings.

The results obtained by numerical simulation of the Shrier-Clay ionic model
of electrical activity were presented in Chapter 3. In this study, the results of the
Shrier-Clay ionic model were tested against experimental data obtained during phase
resetting and phase locking protocols. Numerically simulated phase resetting curves
were also iterated for comparison between this nonlinear iterative model of a cardiac
oscillator and the results from the simulation of a fully developed ionic model. The
success of the ionic model in mimicking the experimental phase resetting and phase
locking behaviours lies primarily in the quality of the present description of I, and
Ine whose interaction underlies the details of shase resetting in embryonic chick heart
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cell aggregates. In Chapter 3, | have presented a modified version of this ionic model
that incorporates a simplified sodium pump term. The description of the simplified
sodium pump term is similar to that introduced in the above-mentioned modified
relaxation oscillator model. In spite of appropriate phase resetting behaviour, the
simulations of the modified tonic model under fixed delay stimulation conditions suc-
cessfully mimic the experimental rhythms only for a relatively restricted range of
delays. Nonetheless, overdrive suppression is properly reproduced and further modi-
fications consisting of a model of the sodium calcium exchanger, a more elaborate
description of the sodium potassium pump as well as a possible future dynamical
description of all the important ion concentrations and of their effects on the indi-
vidual ionic currents, are steps to be made in the future. Given the extent of testing
against experimentally observed dynamics this model has undergone, it also comes
to mind that such extensive numerical experiments are seldom attempted with the
currently accepted ionic models of electrical activity. A carefu: examination of the
results of numerical integration of ionic models using various stimulation protocols
may therefore represent an important additional test for the validation of existing

or new jonic models.

Cardiac dynamics

‘The analysis and understanding of the dynamics observed during stimulation of em-
bryonic chick heart cell aggregates may be relevant to the interpretation of cardiac
arrhythmias. For example, the different degrees of block observed during sustained
periodic stimulation of this preparation have direct analogs in the intact heart, includ-
ing parasystole [95, 180] and atriovert. cular block [160]. In Chapter 5, fixed delay
stimulation of spontaneously beating chick heart cell aggregates is an experimental
model of a reentrant loop involving a pacemaker. The paroxysmal starting and stop-
ping of rapid activity observed during fixed delay stimulation may thus provide a
novel mechanism for paroxysmal tachycardias observed clinically. In addition, the
slight oscillation in cycle length prior to cessation of reentrant activity described
in Chapter 5 is 2 relatively common observation in the context of supraventricu-
lar tachycardias [153, 163]. The identification of the key factors underlying such
rhythms may therefore help design future treatments of this class of dysrhythmias.
Finally, the experimental rhythms of Chapter 6 strongly resemble clinically observed
atrioventricular dynamics.
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The heart is a complex physiological system. This anatomical complexity is re
flected by the variety of ionic mechanisms found in different cardiac cells. The mod-
eling of cardiac dynamics, at the cellular level, is thus hindered by the considerable
heterogeneity of the heart. An illustration of the differences in the dynamic proper-
ties of cell from distinct regions of the heart was given in Chapter 6. Atrioventricular
tissue is characterized by slow action potential upstroke velocities that reflect the
kinetics of the underlying ionic mechanisms [12, 128, 162]. In contrast to atrial cell
which exhibit “one or none” responses to premature stimulation, phase resetting in
spontaneously active AV nodal cell clusters often results in graded or incomplete ac-
tivations following stimulation. During periodic stimulation, such changes in action
potential morphology play an important role in complexifving the dynamices. Since
models based on the phase resetting curve do not carry information related to action
potential morphology, they are inadequate in describing the experimental rhythms.
Therefore, new theoretical models must be developed that encompass phase reset-
ting, time dependent phenomena and action potential changes in order to better
understand atrioventricular dynamics. This type of approach, complemented by the
development of ionic models of activity and the application of modern biomolecular

techniques, is an important direction towards understanding and preventing cardiac
arrhythmias.
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