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Abstract

New methods for making sense of movement data continue to emerge in response to unprecedented

volume of geographic information on moving objects. Geo-computational techniques, including

spatial agent-based models, are presented with new opportunities for innovation as people, animals,

vehicles, and countless other objects are tracked across space and time at an ever-expanding scale

and resolution.

This thesis explores algorithmic approaches to agent-based modelling animal movement. Al-

gorithmic approaches to informing, calibrating, and/or validating agent-based models of spatial

systems are an open area of research in geographic information science. Following an introduction

to animal movement and the objectives of this thesis (chapter one) and a comprehensive literature

review of geosimulation approaches to modelling mobility, movement, and migration (chapter two),

chapter three demonstrates an innovative geospatial artificial intelligence technique for agent-based

simulation of olive baboon (Papio anubis) troop movement in Mpala, Kenya. This individual,

bottom-up animal movement simulation uses classification trees to develop local movement ratio-

nales for baboon-agents. Simulated trajectories depict real-world troop movement corridors across

the region. Unexpected emergent behaviour arises in the simulation as animal-agents cross a known,

although unprogrammed, river-crossing site. Extensive discussion of this baboon-agent model, along

with implications for modelling tightly-coupled socioecological systems follows chapter three.

This contribution to geosimulation and computational movement analysis is published in Trans-

actions in GIS and was presented at an IEEE workshop on geospatial visualisation and the ESRI

user conference. The method offers an innovative way of making sense of animal movement data

and simulating high-fidelity trajectories using inductive learning artificial intelligence technologies.
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Abrege

De nouvelles méthodes pour donner un sens aux données de mouvement continuent d’émerger

en réponse au volume sans précédent d’informations géographiques sur les objets en mouvement.

Les techniques géoinformatiques, y compris les modèles spatiaux basés sur des agents, offrent de

nouvelles possibilités d’innovation car les personnes, les animaux, les véhicules et d’innombrables

autres objets sont suivis dans l’espace et dans le temps à une échelle et à une résolution toujours

plus grandes.

Cette thèse explore les approches algorithmiques de la modélisation des mouvements d’animaux

à base d’agents. Les approches algorithmiques visant à informer, calibrer et/ou valider les modèles

de systèmes spatiaux basés sur des agents constituent un domaine de recherche ouvert dans les

sciences de l’information géographique. Après une introduction sur les mouvements d’animaux et

les objectifs de cette thèse (chapitre 1) et une revue complète de la littérature sur les approches de

géosimulation pour modéliser la mobilité, les mouvements et la migration (chapitre 2), le chapitre

3 démontre une technique innovante d’intelligence artificielle géospatiale pour la simulation à base

d’agents des mouvements de troupes de babouins olivâtres (Papio anubis) à Mpala, au Kenya.

Cette simulation individuelle et ascendante des mouvements d’animaux utilise des arbres de clas-

sification pour développer des logiques de mouvement local pour les agents babouins. Les trajec-

toires simulées décrivent avec précision les couloirs de déplacement des troupes dans le monde réel

à travers la région. Un comportement émergent inattendu apparâıt dans la simulation lorsque les

agents-animaux traversent un site de franchissement de rivière connu, bien que non programmé.

Le chapitre 3 présente une analyse détaillée de ce modèle babouin-agent, ainsi que ses implications

pour la modélisation de systèmes socio-écologiques étroitement couplés.

Cette contribution à la géosimulation et à l’analyse computationnelle des mouvements est publiée

dans Transactions in GIS et a été présentée lors d’un atelier de l’IEEE sur la visualisation géospatiale

et de la conférence des utilisateurs de l’ESRI. La méthode offre un moyen innovant de donner un

sens aux données sur les mouvements des animaux et de simuler des trajectoires de haute fidélité à

l’aide de technologies d’intelligence artificielle d’apprentissage inductif.
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1 Introduction

Spatiotemporal phenomena often include movement through geographic space and time. While all

phenomena can be characterised as occurring in some phase1 space, spatiotemporal phenomena are

definitively comprised of a change process with explicit, sometimes uncertain, spatial and temporal

attributes (Carnap, 1995; Gudmundsson et al., 2008, 2012; Shekhar, Jiang, et al., 2015). Movement

through complex phase space is routinely observed across systems and scales. Whether it be dis-

placement and human migration; cyclists’ preferred commuting paths through bustling city centres;

or transnational flows of state administered policy, movement through geographic space-time is an

important analytic for geographers and geographic information scientists (Laube, 2014; Li et al.,

2020; Young, 2002).

In this thesis, I present animal movement as complex spatiotemporal phenomena using Geo-

graphic Information Science (GIScience) and complexity theory; demonstrate a novel Geo-spatial

Artificial Intelligence (GeoAI) technique for modelling animal movement; and highlight critical con-

siderations for geographers modelling animal movement in tightly-coupled socioecological systems.

This work serves to emphasize common ground between geosimulation and computational move-

ment analysis (Crooks et al., 2008; Hadjieleftheriou et al., 2002). Formatted in the order I explored

my topic, this thesis introduces animal movement as an ecological problem amenable to Geographic

Information Systems (GIS) for managing location data and conducting geospatial analyses, then

continues on to include both model and model-making aspects of simulating of animal movement.

1.1 Animal Movement, a Complex Spatiotemporal Phenomena

Aristotle’s search for common process(es) underlying animal self-motion across species, system, and

scale; connecting the motion of all things, outlined in De Motu Anamalium, remains unresolved

and a growing area of research for biologists, ecologists, anthropologists, and geographers.

“Now we must consider in general the common reason for moving with any move-

ment whatever.” (Aristotle, in De Motu Anamalium, 384 – 322 before common era) (Farquhar-

son, 1912)

1complex n-dimensional space
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In line with the spirit of this statement, technologies designed to track or otherwise monitor

animals in geographic space and time have undergone substantial improvements in accessibility and

implementation. For example, Global Navigation Satellite System (GNSS) (i.e.,Global Positioning

System (GPS), GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS), Quasi-Zenith

Satellite System (QZSS), Galileo, BeiDou, or Navigation using Indian Constellation (NavIC)),

radio-telemetry, or Doppler-based Argos tags can be affixed to an individual to record location over

time. Owing to the expansion of tracking technologies, along with laudable initiatives enabling

open and free-to-use data-sharing platforms (e.g., movebank, Dryad), an unprecedented volume

of valuable tracking data exist across biological taxa2 and geographic region (Dodge et al., 2008;

Kays et al., 2022; Kranstauber et al., 2011; Wilmers et al., 2015). Similarly, innovations in applied

remote sensing, bio-logging, and geocomputation have led to better resolved environments (Dodge

et al., 2013), and more effective conservation policy (Katzner & Arlettaz, 2020). As traditional

methodologies are unable to keep-up, novel methods amenable to analyzing geospatial big (tracking)

data are required to take advantage of a growing and increasingly complex ecological and geographic

data (Demšar et al., 2015)).

Movement as an emergent complex spatiotemporal phenomena is best demonstrated by mobile

and social animal groups. Sumpter et al. (2008) notes that in such cohesive moving animal groups,

individual-level interactions between animals lead to movement patterns which are easy to observe,

but complex and difficult to characterize. For example, starling (Sturnidae sp.) murmurations

involve flocks of individuals which appear to turn in unison despite no individual leader, set of

leaders, or collective intelligence amongst starlings. Similarly, schools of fish – sometimes exist-

ing as massive moving shapes in our seas – avoid predators by morphing into unexpected vacuous

shapes seemingly at once. In early work on collective animal movement, Radakov (1973) would

frighten small portions of a school of silverside fish (Atheriniformes sp.). Radakov observed ”wave[s]

of agitation” spread across the school faster than displacement of any individual. This provided

verifiable evidence of directional information transfer, presumably as a key mechanism for main-

taining spatial cohesion in moving animal groups (Sumpter et al., 2008). More recently, analysis

focused on directional information transfer in moving animal groups has helped overturn prevailing

primatological theory on group navigation (King & Sueur, 2011; Strandburg-Peshkin et al., 2015),

establishing new lines of inquiry into collective behaviour from insects to whales (Hughey et al.,

2groups of biological organisms at any rank – species, order, family, kingdom etc.
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2018).

Interactions, like directional information transfer, come together in unexpected ways sometimes

resulting in unpredictable and emergent complex phenomena – as is the case for spatiotemporal

patterns of animal movement (Giuggioli et al., 2011; King & Sueur, 2011; Nathan et al., 2008;

Sumpter et al., 2008). Identifying which components, including when, where, and what interaction

a component engages in, is a challenging task traditionally requiring extensive in-field and direct-

observation of an animal species population, group, or individual. Although this inquiry is firmly

within the domain of wildlife biology, animal ecology, or primatology (Hebblewhite & Haydon, 2010),

how components and interactions are represented in-silico3 is particularly important to geographic

information scientists interested in modelling movement as complex spatiotemporal phenomena.

In an effort to unify how animal movement is conceptualised across species and systems, Nathan

et al. (2008) theorized four key components underlying all organismal movement: the internal state

of an individual, its motion capacity, its navigation capacity, and external factors (Holyoak et al.,

2008). This unifying conceptualisation, often referred to as the movement ecology paradigm or

framework, is well-adopted by ecologists, has cemented the role of movement ecology in social

animal conservation (Chapman & Reyna-Hurtado, 2019) and is well-suited for object-oriented4

(Grimm et al., 2020) simulation wherein an individual, group, or population is represented as a

moving object in digital environmental space.

1.2 Informing Agent-Based Models of Animal Movement

Modelling individual movement using object-oriented data structures enables explicit considerations

for both spatial heterogeneity in environment and individual heterogeneity in behaviour, while also

aligning with the movement ecology paradigm (Nathan et al., 2008). Spatial heterogeneity of

resource distribution; spatial dependence of geographic phenomena; and spatial auto-correlation in

data all suggest similar ongoing non-linear effects operating within spatial systems (Florax & De

Graaff, 2004). To adequately represent and simulate outcomes resulting from interactions between

and amongst objects of such a system, accommodations for both spatial and individual heterogeneity

are required (Ahearn et al., 2001; Tang & Bennett, 2010). That is, methods need to be able to

consider individual level differences in animal behavioural state, its motion capacity, and navigation

3scientific experimentation based on computation
4OOD envisions programmatic solutions to be based on classes emphasizing object interaction and characteristics
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capacity, as well as spatial variation in external factors as they are expressed at each location.

As popular object-oriented simulation methods, agent-based modeling frameworks equipped

with extensions for managing GIS data formats are ideal for modelling movement as an emergent

spatiotemporal phenomena (Bonnell, Ghai, et al., 2016; Tang & Bennett, 2010). Agents in object-

based, bottom-up simulations possess states, characteristics or attributes, and methods or functions

to enable interaction with one another and the simulated environmental space. Spatial Agent-Based

Models (sABMs) (S. Manson et al., 2020) are particularly popular methods for modelling animal

movement (Torrens, 2010). Often when agent-based approaches are implemented, expert knowledge

(usually acquired from wildlife biologists) is used to inform animal-agent behaviour. Agent-based

rules for navigating geographic space are usually derived from either (a) expert knowledge or direct

observations encoded as movement rationals; (b) a variant of Djisktra’s shortest path algorithms

(e.g., A*) to direct animal-agents between origins and destinations; or (c) using behavioural models

(e.g., isovist5 view sheds of the environment) (Chun et al., 2019; Rybarczyk, 2010).

Algorithmic methods offer unique advantages when extracting rationales from environmental

and trajectory data (Elith et al., 2006). Algorithmic methods assume data in natural systems are

produced in an unknown way, often described as having no prior assumptions about the underlying

data model (Bickel et al., 2006; Breiman, 2001). Algorithmic approaches to agent-based modelling

offer considerable upside to critical forms of GIScience as they enable methods without strict pri-

oritization of data authority (Sengupta & Sieber, 2007; Sieber & Haklay, 2015). As relationships

between inputs are emphasized by whichever dominant patterns are recognized in training data

(Breiman, 2001; Elith et al., 2008; Hastie et al., 2009), algorithmic approaches provide a strong

contrast to expert-informed models. Such approaches also enable gestalt approaches to simula-

tion, wherein simulated objects, environments, and interaction can be independently modelled and

incorporated into a simulation. Algorithmic approaches to informing, calibrating and validating

agent-based models are underappreciated despite advances enabling interesting applications.

1.3 Objective

Framed by GIScience, complexity theory, and computational movement analysis, this thesis demon-

strates how classification trees may be used to develop rules for agent movement for the purpose of

replicating real-world observed trajectories and established movement pathways. The core objec-

5geometric volume of space visible from a given point in space
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tive of this thesis is make use of large amounts of trajectory data at high spatiotemporal scale to

develop a GeoAI approach to bottom-up simulation of animal movement through geographic space.

This objective is pursued by using the following research questions to guide my work:

Can agent rules extracted from classification trees be incorporated into an agent-based simulation

of an animal group? Do simulated trajectories represent their real-world counterparts? Do animal-

agent and real-world animals appear to have similar space use patterns?

This contribution is published in Transactions in GIS (https://doi.org/10.1111/tgis.12770); pre-

sented at the IEEE workshop on information visualisation of geospatial networks, flows, and move-

ment; and presented at an ESRI user conference. Following discussion of this classification tree

based agent-based movement model, important considerations are provided for simulating tightly-

coupled socioecological systems. These considerations were presented at the most recent GIScience

workshop on Disruptive Movement Analysis, prompting considerable discussion of disruptive appli-

cations of computational movement analysis.
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2 Literature Review

This thesis contributes a novel algorithmic approach for calibrating agent-based models of animal

movement. To contextualise this work, a comprehensive review of geosimulation and computa-

tional movement analysis follows. The review of computational movement analysis cuts across

two domains: human mobility and animal movement ecology. Inspired by Laube’s topology for

a new geographic information object (Laube, 2014), this section is organized into three elements:

movement traces, spaces, and places.

2.1 Geosimulation

As geospatial data increases in amounts of available data (i.e., volume), better resolved data (i.e.,

veracity), and tools for processing, analysing, and presenting data in near real-time (i.e., velocity),

geosimulation is brimming with potential for computational movement analysis. At the most recent

GIScience session on Geosimulation, Heppenstall et al. (2023) introduced ExAMPLER, an exa-

scale agent-based model for real-time policy evaluation. Heppenstall et al. (2023) envision a tool

which ingests, processes, and provides real-time analysis of how information flows in a simulated

system. While ambitious, such a tool would be coveted by policy-planners, and could usher in a new

age for simulation. Although software and hardware required for an exa-scale agent-based model

remain elusive, spatial data and data management architectures required for peta-scale6 simulation,

analysis, or information visualisation are well-established (Fiore et al., 2018).

Geosimulations are not necessarily computational. For example, the Mississippi Basin Model

simulated water-flow for “an area of 1.25 million acres: rivers, tributaries, levees, dikes, flood-walls,

and control reservoirs” using 200 acres, folded screen wire, and brushed concrete (Grim et al., 2013;

Robinson, 1992). Similarly, the San Francisco Bay model (Huggins & Schultz, 1967) is a physical

hydrological simulation to link environmental outcomes with policy intervention. Although no

coherent definition of simulation exists, simulations are intended to be isomorphisms of real-world

systems in silico, often for the purpose of evaluating policy. It should be noted that computational

and physical simulation are fundamentally different as computers do not manipulate real-world

objects, as is done in physical simulation (Barberousse & Ludwig, 2008).

Despite recent advances and widespread application across social and natural sciences, consid-

6binary prefixes used to describe quantities of data: kilo, mega, giga, tera, peta, exa, etc.
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erable disagreement exists across science and philosophy of science on what constitutes computer

simulation, what epistemological potential it holds, and whether or not simulation science can

contribute to knowledge discovery (Hartmann, 1996; Humphreys, 2009). Simulation, broadly in-

terpreted, has led to ground-breaking discovery in a variety of fields. For example Unruh theorised

and later experimented with simulated ‘dumb’ black holes using sound waves, as opposed to grav-

itational waves, and has today become foundational to an entirely new approach to black holes

physics research (Dardashti et al., 2017; Unruh, 1981, 2016).

2.1.1 Movement, Mobility, and Migration

Two bottom-up simulation technologies in particular, agent-based models and cellular automata

models, have extended this potential for in-silico experimentation of spatial systems, contributing to

more comprehensive understanding of spatiotemporal phenomena. Torrens (2010) summarize the

application of agent-based models for spatial sciences, while O’Sullivan et al. (2016) review agent-

based models for land systems dynamics, and Tang and Bennett (2010) review agent-based models

of animal movement. Each of these reviews clarify how agent-based models employ simulated space

as a medium of interaction (Crooks et al., 2008). This simulated space can be geographically

explicit, making spatial ABMs well-suited to visually represent and simulate outcomes related to

animal movement in complex adaptive systems (Bonnell, Chapman, et al., 2016; Cenek & Franklin,

2017; J. Liu et al., 2007; Perez et al., 2018).

Modelling spatial decision-making in humans (Hölscher et al., 2013; Mohibullah & Julie, 2013;

Orellana et al., 2012; Torrens, 2012) and animals (Ahearn et al., 2001; J. H. Anderson et al., 2017;

Bishop & Gimblett, 2000; Tang & Bennett, 2010) has consistently been spurred by development

of agent-based models of spatial systems. For example, pedestrian movement through cities is an

active and productive area of GIScience and simulation research (Batty, 2001; Crooks et al., 2015;

Dijkstra et al., 2001; Haklay et al., 2001; Nasir et al., 2014; Torrens, 2012; Zou et al., 2012).

Simulations perform well in developing models of egress and evacuation in response to disasters

in buildings and regions (Y. Huang et al., 2023). Such tools are valuable for policy evaluation

given the extent to which individual action (e.g., panic), can aggregate to dire safety concerns

(Bernardini et al., 2014; Lin et al., 2010; Mordvintsev et al., 2014; Tan et al., 2015; Wagner &

Agrawal, 2014; Zheng et al., 2009). Mixing pedestrian and migration models, researchers have

explored crowd dynamics in hurricanes (Chen, 2008; Chen et al., 2006; Kar & Hodgson, 2008; W.
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Liang et al., 2015; Reilly et al., 2017; Widener et al., 2015; Widener et al., 2012; W. Yin et al., 2014),

earthquakes (Crooks & Wise, 2013; Lichter et al., 2015; Torrens, 2014), fires (Adam & Gaudou,

2017; Ren et al., 2009; Wagner & Agrawal, 2014), tsunamis (Kim et al., 2022; Takabatake et al.,

2017; Wang et al., 2016), and bioterrorism (Song et al., 2013). Kim et al. (2022) simulate disaster

response across multi-modal networks involving walking, cycling, and driving. In a similar vein,

calls to further develop data driven systems approaches to modelling resilience in urban systems

have become increasingly pressing with more frequent environmental disaster events (Altizer et al.,

2007; Yabe et al., 2022).

Forced human migration, resulting from armed conflict (Estrada et al., 2017; Perez et al., 2018;

Suleimenova et al., 2017), are new grounds for simulating movement and resource-allocation inquiry.

Global climate change and rapid environmental change have encouraged a number of disaster and

emergency related spatial agent-based models (Entwisle et al., 2016; Hassani-Mahmooei & Parris,

2012; Kniveton et al., 2011; Smith, 2014). Simulations of landslides (Avolio et al., 2010, 2017; Lai

et al., 2013) as well as fire spread risk (Gaudreau et al., 2016; Russo et al., 2014) using cellular

automata complement disaster related movement models.

Similarly, there is an extensive history of developing agent-based models of animal group dynam-

ics, collective behaviour, animal movement ecology, and verifying biological anthropological theory

(Bennett & Tang, 2006; Bernardes et al., 2011; Bonnell, Chapman, et al., 2016; Bryson et al., 2007;

Grosman et al., 2009; McLane et al., 2017; Musiani et al., 2010; Perez & Dragicevic, 2012; Pirotta

et al., 2014). More recently, agent-based models of movement have been developed with the intent

of considering contextual information in new ways, and providing alternative simulation methods

for trajectory data (J. H. Anderson et al., 2017; Diaz et al., 2021).

Interesting recent examples of agent-based animal movement models include: an African ele-

phant (Loxodonta africanus) spatially explicit agent-based model which showcased that simulating

high-fidelity trajectories is possible using “a resource-driven model with relatively simple decision

rules. . . ” (Diaz et al., 2021); time-geographic agent-based models of animal movement (Loraamm,

2020); and a Muscovy duck agent-based model, developed to offer an alternative simulation tech-

nique to correlated random walks (J. H. Anderson et al., 2017). Further algorithmic approaches to

agent-based models of animal movement include context-sensitive random walks that incorporate

local external factors to simulate movement of two female tigers at forest edges in Nepali commu-

nities (Ahearn et al., 2001); genetic algorithms to simulate representative relative-turn angles and
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step-distance of homing pigeons (Columba livia domestica) (Oloo & Wallentin, 2017); reinforce-

ment learning to contextualize risk and reward of agent behaviour (Bennett & Tang, 2006; Sutton

& Barto, 1999) and artificial neural networks to assign weights to link environmental features to an

agent’s internal, spatially-explicit map of its surroundings (Sutton & Barto, 1999).

Finally, a variety of free and open source agent-based modelling frameworks exist to simulate

complex spatiotemporal phenomena (e.g., MESA for python based object-oriented simulation with

GIS support) (Masad & Kazil, 2015). Many focus on movement, such as MATSIM, and are in use

at transportation authorities (Balmer et al., 2009). Recent agent-based models of transportation

geography have focused on delivering more sustainable transportation alternatives (Galland, Ansar-

Ul-Haque Yasar, et al., 2014; Galland, Knapen, et al., 2014; Hussain et al., 2015; Hussain et al.,

2016). As a result, simulations continue to play an active role in shaping urban policy. For example,

these models work to identify the optimal allocation, reallocation, and sharing of micro-mobility

vehicles (Diallo et al., 2023).

2.1.2 Urban Segregation

Urban and suburban segregation, or self-organization, is often modelled using agent-based models,

wherein agents move to locations with individual-specific desired attributes (Ardestani et al., 2018;

Crooks, 2010; Guo et al., 2019; Q. Huang et al., 2014; Koch, 2014; Spielman & Harrison, 2014;

L. Yin, 2009). Understanding the drivers and spatial dynamics of current gentrification patterns

(C. Liu & O’Sullivan, 2016; Nara & Torrens, 2005; Torrens & Nara, 2007) is at the core of a set

of current simulation modeling efforts (Jackson et al., 2008; Sabri et al., 2012; Sabri & Yaakup,

2008; Zou et al., 2012), combining cellular automata and agent-based approaches to longstanding

geographic questions. Similarly, there is an interest in developing simulations for policy evaluation

related to slum formation, expansion, and future establishment (Crooks et al., 2014; Diuana et al.,

2006; Diuana, de Farias, et al., 2007; Patel et al., 2012; Roy et al., 2014).

Further, concepts for model calibration, validation and testing borrow from established tech-

niques from urban systems science (Clarke-Lauer & Clarke, 2011; Hui-Hui et al., 2012; Y. Liang &

Liu, 2014; Mahiny & Clarke, 2012; Mathioulakis & Photis, 2017; Onsted & Clarke, 2011; Rienow

& Goetzke, 2015; Rienow & Stenger, 2014; Wu et al., 2010). For example, Chaudhuri and Clarke

(2014), Hua et al. (2014), Nigussie and Altunkaynak (2017), and Jantz et al. (2010) use a well

established cellular automata urban growth model – Slope, Land Use, Exclusion, Urban, Trans-
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portation, Hillshade (SLEUTH) – to calibrate simulations of urbanization. Similarly, Onsted and

Clarke (2011) develop a new method for informing SLEUTH with changing enrollments in a tax

concession program for farmers, while Rienow and Goetzke (2015) improve urban growth models

using Support Vector Machines (SVM).

2.1.3 Public Health

Spatially explicit epidemiological models started gaining popularity among geographers at the turn

of the century (for a detailed review see (Bian, 2013)). Enabled by individual and spatial het-

erogeneity, agent-based models of disease spread have been increasingly popular for geographers,

epidemiologists, and disease ecologists interested in simulating infection in agent-populations to

evaluate public health policy (Willem et al., 2017) . Spatial agent-based models of the spread

of measles (Perez & Dragicevic, 2009), influenza (Amouroux et al., 2010; Mao & Bian, 2010;

Rakowski et al., 2010; Yang et al., 2011) and cholera (Crooks & Hailegiorgis, 2014) clarify the role

of object-oriented and spatially explicit simulations of infectious disease dynamics. Similarly, agent-

based approaches to modelling forest insect epidemics (J. H. Anderson et al., 2017; T. Anderson

& Dragićević, 2015; Perez & Dragicevic, 2012; Pérez & Dragićević, 2011), and disease transmis-

sion across system and scale (Alderton et al., 2015; Bonnell et al., 2010; Braae et al., 2016; Dion

et al., 2011; Laperriere et al., 2009; Nunn et al., 2011) are well documented. Willem et al. (2017)

outline key epidemiological gaps left by agent-based simulation, including disease re-emergence and

theoretical verification. That is, agent-based models, despite their bottom-up emphasis have not

be used to understand how endemics re-emerge in new locales. Similarly, their use in verifying

epidemiological theory is limited.

Recently, simulation techniques gained popularity during the COVID-19 pandemic. For a num-

ber of nation states, public health policy was dependent upon administrative capacity to assess, as

well as communicate lockdown, masking, transmission risk (Currie et al., 2020; Nan et al., 2022).

Roles which agent-based simulations of disease transmission are well equipped to execute given

their geovisual outputs.

2.1.4 Spatial Systems

For effective object-based spatial simulation (S), movement traces, spaces, and places need to be

considered. Each element (i.e., the trajectory, the environmental space, and the anthropogenic
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place) has structural (s) as well as process (p) attributes defining a real-world system (R). Con-

sequently, the expression of emergent and continuously occurring spatiotemporal phenomena (P)

are observable as animal movement trajectories in geographic space (Gudmundsson et al., 2012;

Humphreys, 2009; Roy et al., 2014). Using these terms, computational simulation epistemology is

often either: a S, given s of R, to study P of R; or a S, given P, to study s of R (Humphreys, 2004).

Crooks et al. (2008) outline seven challenges for agent-based modelling complex adaptive spatial

systems, including validation, defining the purpose of the model, and the extent to which indepen-

dent theory informs model specifications and parametrization. Similarly, S. Manson et al. (2020)

outline open challenges for spatially-explicit agent-based modelling and provide a review of concepts

borrowed and shared across economics, ecology, and GIScience for the purpose of modelling spatial

systems. Manson et al., also include a comprehensive review for modelling geographic complexity,

paying particular attention to how models are evaluated (S. M. Manson, 2007). The capacity to

ascribe variable attributes to interacting objects is fundamental to successful spatial simulation

(del Mar Delgado et al., 2018). By programming autonomous objects within a model to interact,

simulation approaches enable observation and experimentation of how information may behave in

dynamic systems (DeAngelis & Diaz, 2019).

2.2 Computational Movement Analysis

Over the past two decades, an exciting subfield within GIScience has emerged. Termed computa-

tional movement analysis, this subfield extends quantitative approaches to accommodate the now

near ubiquitous generation of movement data across two domains – human mobility and animal

movement ecology (Ahas et al., 2010; Demsar et al., 2020; Dodge et al., 2016; Gudmundsson et

al., 2008, 2012; Laube, 2014; Long et al., 2018; Miller et al., 2019; Zook et al., 2015). As ob-

jects are either directly tracked (e.g., GPS traces) or recorded flowing through checkpoints (e.g.,

camera traps or turnstiles at transit stations), relative positions in space and time are collected

near-continuously and at unprecedented spatiotemporal resolutions (Dodge et al., 2008). Such a

substantial shift in data generation has fundamentally transformed how various domain experts

make sense of movement data (Dodge et al., 2016; Laube, 2015).

The spaces within which and through object movement is modelled can be physical or abstract

(Laube, 2014). An appreciation of the considerable breadth of what can be understood as movement

in both physical geographic space and abstract space is expressed across computational movement
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analysis literature (Dodge et al., 2020; Laube, 2014; Long & Nelson, 2013; Long et al., 2018).

Laube and Dodge propose new geographic information objects – movement traces (Laube, 2014),

and movement data science (Dodge et al., 2020) for coherent computational movement analysis.

While GIScience has inherited a largely static worldview from cartography (Laube, 2014), emphasis

on information visualisation has given way to information analysis. Therefore, GIS need to be re-

envisioned to accommodate a movement trace object oriented data science agenda (Dodge et al.,

2020; Laube, 2014; Miller et al., 2019; Purves et al., 2014) which can be better suited for analysing

movement traces.

2.2.1 Human Mobility

Human movement through geographic space has been analysed using a variety of approaches. Bar-

bosa et al. (2018) offer a review of quantitative human mobility models and applications ranging

from early vehicle surveys and traffic forecasting to more contemporary commuting behaviours and

intra-urban movement analysis (Ahas et al., 2010). Barbosa et al. (2018) discuss historical un-

derpinnings of the field, from contextualising geography as spatial interaction (Adey et al., 2014;

Barbosa et al., 2018; Ullman et al., 1980); to laws of human migration to explain economic con-

dition, growth, and urban phenomena (Ravenstein, 1885), physical gravity models (Zipf, 1940)

to simulate interaction between cities based on distance, and more recently, time geography and

simulation (Barbosa et al., 2018; Isaacman et al., 2012; Kwan, 2004; Long & Nelson, 2012) have

been used to understand human behaviour. Simulation of human mobility in urban systems have

garnered attention across computational sciences, with interesting applications bridging epistemo-

logical divides between experiment and simulation (Boldrini & Passarella, 2010; Xu et al., 2021;

Yabe et al., 2022).

Advances in human mobility data – that is, the availability and the overall capacity to manage,

process, and analyse human movement data at scale – have resulted in effective communication

of longstanding GIScience concepts such as the Modifiable Temporal Unit Problem (MTUP) or

scale (Su et al., 2022). These innovations however, come with considerable ethical and related

geo-privacy hurdles GIScience strives to address (Keßler & McKenzie, 2018). Exacerbating these

concerns, many contemporary GeoAI techniques have emerged, including a deep-learning model

to consider urban morphological, social, and spatial attributes together (Cornacchia et al., 2020);

a dedicated platform for sharing locations within social networks (McKenzie et al., 2022); time-
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geography approaches to geomasks (Barberousse & Ludwig, 2008); and agent-based simulations

incorporating spatial networks (Rosés et al., 2018). Additionally, Shekhar, Feiner, et al. (2015)

provide a detailed discussion of opportunities at the intersection of geocomputation and geoprivacy

(Shekhar, Feiner, et al., 2015).

2.2.2 Animal Movement Ecology

Computational movement analysis approaches in animal movement ecology focus on movement

traces during an individual’s lifespan. As such, data and associated methods are oriented to mod-

elling movement in ecological spaces. Resource Selection Function(s) (RSF) are the most commonly

used method for linking environmental features to animal location data. Contextualised as habitat

selection by individuals, groups, or populations of species, selection functions model paths animals

take as they move through a landscape (Thurfjell et al., 2014). As finer-scale extensions of RSF,

Step Selection Function(s) (SSF) can be used to consider variation between random possible next

steps within a buffer space of a point when adequate spatiotemporal resolution permits.

Hidden Markov Models (HMMs) estimate transition probabilities to query dependence of animal

states to their surrounding environment (Michelot et al., 2016; Patterson et al., 2009; Whoriskey

et al., 2017). HMMs often accurately determine behaviour selection or behavioural states using

movement data (Whoriskey et al., 2017). First-Difference Random Correlated Walks (DRCW)

determine complexity underlying animal behaviour states, accounting for temporally-irregularly

spaced observations and non-Gaussian errors (Jonsen et al., 2005). Traditionally, state-space ap-

proaches (i.e., inferences on what state an individual is based on their spatial attributes and vice

verse) have been focused on trajectory data objects (Edelhoff et al., 2016).

Path segmentation methods range in sophistication from simple variable thresholds to algorith-

mic approaches to breaking apart movement traces into different behavioural components (e.g.,

sleeping, foraging, idling). Calenge (2006) highlight a variety of approaches to individual animal

path segmentation in their foundational (and now almost legacy) R statistical software package

(Calenge, 2006). Like path segmentation approaches, a considerable build up of open methods for

analysing animal movement data exist (Joo et al., 2020), for example, to analyse trajectories (Long

& Nelson, 2013), link locations to environmental data (Dodge et al., 2013), and develop spatial

agent-based models (Marshall & Duthie, 2022).
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2.3 Movement Space

Following the movement ecology paradigm, wherein animal movement is thought to arise based

on interactions between an individuals internal state, motion capacity, navigation capacity, and

environmental factors, trajectories of individual movement without environmental linkages provide

insight into only one of four key components (Holyoak et al., 2008; Nathan et al., 2008; Neumann

et al., 2015). To complement review of movement traces above, I highlight the need for dedicated

remote sensing products.

2.3.1 Environmental Linkages

Ecological systems are in a constant state of change (Hastings, 2001; Schlüter et al., 2019). Al-

though non-linear interactions related to ecological dynamism can be modelled using generalized

mixed effects models (Hebblewhite & Merrill, 2008), they involve arduous processes when accom-

modating individual-level heterogeneity of animal behaviour. The most straightforward way to link

the dynamism of movement with changing environmental processes is to dynamically represent the

environment. For example, using time-series of spectral vegetation indices (Neumann et al., 2015),

or Bayesian updating of land-cover (Crowley et al., 2019). Although simulations of dynamism exist,

they introduce computational as well as overall model complexity (An et al., 2021). Sub-models of

forest dynamism (J. Liu & Ashton, 1998), dynamic airspace allocation (Pellegrini et al., 2020), and

land-use change in agrarian (Dai et al., 2020) as well as urban areas (Zhou et al., 2020) are active

fields of research.

Alternative approaches to environmental linkage are spurred by growth in bio-logging (Williams

et al., 2020) and advances in applied remote sensing (Neumann et al., 2015). These contribu-

tions have enabled innovations for collaboration, methods sharing, new opportunities for research

combining trajectory and environmental data in exciting ways. For example, Demšar (2022) has

innovated a four dimensional approach to combining geomagnetic data with trajectories of long

term bird migrations (Iyer et al., 2022) and simulating navigation (Zein et al., 2022).

2.3.2 Biologging

Bio-loggers, devices affixed to animals to study environment or individual physiological charac-

teristics have been used extensively across ecology (Barkley et al., 2020; Payne et al., 2014) and
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oceanography (Klemas, 2010; Lowerre-Barbieri et al., 2019). Calls for standardizing approaches to

bio-logging (Sequeira et al., 2021; Williams et al., 2020) are largely a response to ever cheaper log-

ging devices, availability of voluminous animal movement data; and well-adopted open-data sharing

platforms (e.g., movebank; EnvDATA). Similarly, new platforms for continuous, remote, and live

monitoring of wildlife (e.g., ICARUS) (Dodge et al., 2013; Kranstauber et al., 2011; Wikelski et al.,

2007) foster excitement for animal movement and bio-logging initiatives. For example, 4.8 billion

locations across 1288 taxa are available on movebank (Kranstauber et al., 2011) as of November

2023. Movebank also hosts 4.6 billion bio-logged sensor observations.

Potential of these data rests on their incorporation into movement models, wherein environ-

mental linkages can be made directly for each point in space and time. Kays et al. (2015) discuss

the potential for bio-logging and animal movement ecology studies as markers of global ecological

health. Wilmers et al. (2015) outline the extensive conservation potential for bio-logging to monitor

individuals, groups, as well as environmental spaces. While bio-loggers provide remarkable insight

into local environmental or biological processes, they may not be a reasonable choice for studies

with limited operating budgets (Williams et al., 2020) or hypotheses which could be answered using

traditional environmental linkage approaches.

2.3.3 Advanced Applied Remote Sensing

Systems for integrating animal movement trajectories with environmental data are fundamental

to relate movement trace to space (Demšar et al., 2015). Remote sensing products – that is,

outputs of remote sensing data collection and interpretation – are routinely linked with animal

movement trajectories (Dodge et al., 2013; Neumann et al., 2015). As data volume increases, with

new sensor and environmental data sources, research questions driving movement ecology studies

become increasingly multi-scalar (Neumann et al., 2015), innovative procedures for linking trace

and space data are required. For example, Crowley et al. (2019) develop a dynamic representation

of wildfire progression using an algorithmic approach - effectively making a dynamic product from

a series of static outputs and Bayesian Updating of Land Cover (BULC).

Although trajectories are representations of moving objects, temporal attributes can be lost.

For example, images of animal tracks left on snow, or collections of animal droppings, are traces of

an individual animals movement through space without temporal information. As rapid chemical

processes occur, hyperspectral remote sensing methods can aid in re-attributing time to logged posi-
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tions (Basille et al., 2014). Hyperspectral techniques peer into chemical composition and process of

remote-sensed objects across a wide variety of spatial use cases: sensing fire and fire characteristics

(Veraverbeke et al., 2018); geology and mineral exploration (Bedini, 2017); forest biodiversity as-

sessments (Ghiyamat & Shafri, 2010); soil conditions (Yu et al., 2020); and snow and ice properties

(Dozier & Painter, 2004).

As individual physiology and behaviour have longstanding linkages, thermal imagery enables

researchers the opportunity to remotely sense animal stress prior to slaughter (Sejian et al., 2022);

infer animal welfare and physiological state of cattle in milk-production facilities (Fuentes et al.,

2021); mange wildlife disease (Rietz et al., 2023); estimate roosting abundance in elusive bats (Mc-

Carthy et al., 2021); and of course, detect and track object (individual animal) movement (Havens

& Sharp, 2015; Kays et al., 2019; Oishi et al., 2018). Related to thermal imaging individual physi-

ology, McCafferty et al. (2015) outlines challenges for ecologists remote sensing body temperature

data to infer stress in avian species.

2.4 Movement Place

This review appends Movement Place to the topology offered by Laube (2014), including movement

trace and movement space as described above. Movement places capture sociological aspects, which

I use to highlight neglected information in the context of socioecological complex adaptive systems

(Aswani & Lauer, 2006; Eitzel et al., 2020; Haraway, 2004; Tyler et al., 2007).

2.4.1 Socioecological Complex Adaptive Systems

Coupled socioecological systems operate as places which are important for both animal conservation

and human livelihood (Farris et al., 2017; Le et al., 2008). Animals with large home daily ranges

often passing through multiple socioecological systems (Chapman et al., 2002; Deygout et al., 2009;

Fitterer et al., 2013; Rayfield et al., 2016; Wintle et al., 2005). Animal movements are intrinsically

linked to nearly all ecological processes (Williams et al., 2020; Winkler et al., 2014). As animals pass

through fuzzy socioecological systems, they become interdependent with socioecological relations

(Dragićević, 2010; Le et al., 2008; Wilson et al., 2015). Filatova, Verburg, Parker, and Stannard

(2013) outline challenges for agent-based modelling socioecological systems, highlighting design,

validation, spatial representation, and integration with existing theoretical models as key areas for

future contributions (Filatova et al., 2013).
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Socioecological complex adaptive systems definitively involve ongoing and mutable interactions

amongst social and environmental components (Cioffi-Revilla, 2016; Tang & Bennett, 2010). So-

cial components – people – are well situated to communicate their context and socioecological

relations (Haraway, 2004; Ramanath & Gilbert, 2004). People embedded within socioecological

systems have a right to self-determine and define adaptation to address issues (Eitzel et al., 2020;

Neeganagwedgin, 2019; Pasternak & King, 2019). For tightly coupled systems, an emphasis on

participatory action is critical as local cultural practices are forms of socioecological interaction

which collectively inform the capacity for a system to adapt to challenges (An et al., 2021; Poe

et al., 2014).

Simulating individual animal-agents as interacting in geographic space enables a readily inter-

pretable and intuitive geo-visual understanding of how changes in socioecological relations may

affect animal movements. Such an understanding can guide response to environmental policy as

communities face increasing climate variability and rapid social and environmental change (Tyler

et al., 2007). I offer the a list of examples to clarify these points. Habitat selection and space use by

tigers in south and southeast Asia overlaps considerably with where people live, work, and travel

through to maintain their livelihoods (Carter et al., 2013; Imron et al., 2011; Kanagaraj et al., 2013).

In the Saami reindeer pastoralism system, Saami express constraints placed by governance struc-

tures on herding practice to be the primary limiting factor to maintaining socio-cultural relations

with reindeer (Tyler et al., 2007). In the Calakmul Biosphere Reserve, white-lipped peccary are ex-

pected to continue their move south into more humid environments. As peccary are an important

food source for people in the dry season, prioritizing community determined research objectives

(i.e., conducting participatory research) when simulating changing animal movement patterns is

critical (Garcı´a-Marmolejo et al., 2015). The same can be said for Saami resisting state-policy,

Nepali prioritizing community safety over tiger conservation, and countless other tightly coupled

socioecological systems.

2.4.2 Participatory Systems

Distinguishing itself from conventional research methods, participatory mapping and Participatory

Geographic Information Systems (PGIS) approaches insist on a substantial change, or reversal, in

how power operates during the production of spatial knowledge. To clarify, participatory methods

necessarily involve community knowledge and perspectives as core components of research planning
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and decision-making (Corbett, 2009). Thereby reorienting research from an act done on people

to an act carried out with people. In the case of participatory mapping, this contrast is stark

as who engages in map-making also defines research priorities, the analysis and representation of

information, and the underlying context communicated by the map.

Participatory mapping can be enabled by diverse rationales and can employ a number of map-

ping techniques, including agent-based modelling (Corbett, 2009; Eitzel et al., 2020). In practice,

communities spatialize a collective understanding of their shared geography. It also commonly,

and perhaps definitively, emphasizes community-guided research objectives. In contrast, a strict

prioritization of data authority sources can be ascribed, in turn, amounts to a denial of people’s

role in the digital re-contextualization of themselves and their relations (Sieber & Haklay, 2015).

Participatory mapping and Participatory Geographic Information Systems, thus, aim to better in-

tegrate geographic information available with communities into the decision making process (Sieber

& Haklay, 2015).

2.5 Summary

Moving from movement trace to place, this literature review outlines how methods from complex

geosimulation and computational movement analysis may be synergistic in enabling innovative

agent-based simulations of animal movement ecology. With reference to movement traces, common

algorithmic methods for movement simulation are described. Following movement traces, I outlines

how movement spaces are conceived in human mobility and animal movement ecology domains

as dynamic (urban, ecological, or socioecological) complex adaptive systems. Finally, movement

places are discussed as spatial systems with sociological interaction with moving objects. This

review serves to introduce a new GeoAI approach to informing an agent-based model of animal

movement. Chapter three describes this approach, which uses a relatively simple algorithmic ap-

proach to extracting movement rationales to characterize animal-agent behaviour from movement

data, and outputs readily-interpretable visualisations of animal space use. While simulations of

spatial systems spans a number of geographic domains, agent-based modelling has remained rigid

in its dependence on expert-calibrated models.
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3 Transferring decision boundaries onto a geographic space

We develop a new spatial artificial intelligence technique for extracting agent rules from animal

movement data using classification trees. Often referred to as movement rationales, local rules

determine how simulated animal-agents interact with space. Agent-space interactions, over time,

emerge as trajectories of path selection and represent route selection of a troop of olive baboons

(Papio anubis). From abstract to discussion, text is formatted as published in Transactions in

GIS (https://doi.org/10.1111/tgis.12770). This work was also presented at an IEEE workshop on

geospatial visualisation and the ESRI user conference.

3.1 Contribution of Authors

Four authors were involved in this work: Professor Raja Sengupta (RS, McGill University); Profes-

sor Liliana Perez (LP, University of Montreal), Jeffrey Katan (JK, MSc. University of Montreal),

and myself. As the sole first author, I led this work: conceiving of the idea to extract decision

boundaries from a classification tree for the purpose of simulating animal-agent movement, digi-

tizing environmental features, processing movement data, performing path segmentation, building

a classification tree, developing behaviour selection surfaces, establishing core components of the

agent-based model, and leading all writing efforts.

RS supervised my work and played an active role in discussions related to each aspect of this

work including conceptualisation, feature digitization and agent-based modelling. RS played an

essential role in encouraging my ideas and best situating them with existing literature. RS also

provided critical feedback and helped shape all related research outputs.

LP supervised JK, provided critical discussion for each stage of this work, and ensured prompt

publication of our work. LP was instrumental in model conceptualisation, and agent-based mod-

elling aspects of the work. LP also provided valuable and constructive feedback on all outputs.

JK helped with validating environmental feature digitization and improving model performance.

JK was an especially valuable contributor as he provided ideas on agent-vision cone modulation,

provided critical feedback on writing and figures, and helped prepare the published manuscript for

submission.
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3.2 Abstract

We leverage applied machine learning to determine which environmental features are best asso-

ciated with the “moving” behaviour(s) of a troop of olive baboons (Papio anubis; collared with

GPS trackers at Mpala Research Centre, Kenya). Specifically, we develop a behaviour-selection

surface informed by classification trees trained using movement trajectories and remotely sensed

environmental features. Atop this surface, we simulate agent movement towards set destinations,

constrained by the relative extent to which sets of features are associated with behaviour(s). To

achieve our goal, we perform: (a) path segmentation using thresholding to label training data;

(b) agent-rule extraction using classification trees to associate the relative Euclidean distance of

a point from environmental features with behaviour; and (c) implementation of this information

into an agent-based model to provide a data-driven simulation of troop movement. We believe this

framework can accommodate intensification in data velocity, veracity, volume, and variety expected

from increasingly sophisticated biologgers and data-fusion techniques.

3.3 Introduction

Animal movement is increasingly being logged and availed using various technologies, ranging across

both ecological systems and spatiotemporal scale. For example, as of January 2021, 2.4 billion loca-

tions across 1,025 taxa are recorded on movebank.org—a popular open access repository for sharing

animal trajectory data (Kranstauber et al., 2011). The availability of these data (both in terms of

collection and dissemination) represents potential for new methods to complement traditional tech-

niques for modelling animal movement. Calls for an “integrated science of movement”, as well as

an “integrated biologging framework”, have made clear the continued contribution of geographers

to animal movement ecology research. These include data-oriented methods for movement ecology

with explicit considerations for geospatial processes, and a broader overlap and methods exchange

amongst applied movement domains of human mobility and animal movement ecology (Demsar

et al., 2020; Miller et al., 2019; Williams et al., 2020).

Four key components are thought to underlie the movement of individual organisms: (a) in-

ternal state; (b) motion capacity; (c) navigation capacity; and (d) external (often contextualized

as environmental) factors (Holyoak et al., 2008; Nathan et al., 2008). Motion, navigation, and

environmental factors are identifiable via either trajectories, remotely sensed capture of the scene,
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or a combination of the two. For example, motion manifests as the direction, magnitude, and peri-

odicity of movement, all of which can be extracted from time-series location information (Demšar

et al., 2015; Long et al., 2010; Long & Nelson, 2013). Additionally, it is common practice to

integrate telemetry-based movement data with spatial datasets (e.g., percentage canopy cover or

elevation) to identify external factors affecting movement across environments. Using fine-grained

spatiotemporal data, the field has evolved to develop understanding of individual mechanisms (e.g.,

spatio-cognitive memory and internal time measures) that result in emergent movement patterns

and behaviour (Nathan et al., 2008).

In parallel, Agent-Based Model(s) (ABMs) have been developed and designed to model dynam-

ics in complex systems, and are well equipped to explore variation in animal movement patterns,

contextualize their linkage to ecological processes, and simulate expected outcomes (Anderson et

al., 2017; Bonnell, Chapman, et al., 2016; Bonnell, Ghai, et al., 2016; DeAngelis & Diaz, 2019; Hol-

loway, 2018; Long & Nelson, 2012; Pérez & Dragićević, 2011). Representing dynamics as they relate

to individual behaviour and interactions within an environment (including non-linear interactions

of the environment and interactions amongst individuals) can be explicit with an agent-based mod-

elling framework. Modelling movement ecology using object-oriented data structures to represent

and simulate outcomes resulting from interactions of individuals, conspecifics, sympatric species,

and humans is demonstrated by “TIGMOD”: an early example of an agent-based movement model

with explicit considerations for: (a) space as the primary medium for interaction; and (b) individual

heterogeneity (Ahearn et al., 2001). More recently, agent-based models have been developed with

the intent of considering contextual information in new ways, and providing alternative simulation

methods for animal trajectory data (Anderson et al., 2017; Diaz et al., 2021). Specifically, an

African elephant (Loxodonta africanus) spatially explicit agent-based model showcased that sim-

ulating high-fidelity trajectories is possible using “a resource-driven model with relatively simple

decision rules . . . ”. As well, a Muscovy duck agent-based model was also developed to offer an

alternative simulation technique to correlated random walks. Collective decision-making, whereby

individual actions lead to the emergence of coordinated movement(s), is an ideal area of research for

agent-based modelling frameworks to aid in uncovering how individual interactions and variations

in behaviour lead to emergent characteristics (Cook et al., 2020; Hawkes, 2009; Hertel et al., 2020;

Kennedy et al., 2014; King & Sueur, 2011).

Agent-based models can be intuitive and readily interpretable simulations of dynamics involved
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in animal movement (Tang & Bennett, 2010). However, when agent-based simulations of animal

movement are implemented, they rely on insights provided by biologists or obtained from the

literature. Relying exclusively on expert insight results in two issues: (a) underlying factors cannot

be considered separately, as institutionalized ethological and ecological knowledge is interconnected

with countless unperceived or understudied phenomena as well as the researcher’s worldview; and

(b) animal ecology as a field has a historic focus on explicitly natural (as opposed to coupled)

systems (Martin et al., 2012). Tight coupling between what are commonly referred to as “human”

(or social) and “natural” (or ecological) systems has been documented across fields. Geographic

Information Science (GIScience) researchers working in social and ecological science domains have

clarified systems coupling using common terms rooted in complex systems science (Bennett &

McGinnis, 2008; Cenek & Franklin, 2017; Liu et al., 2007). Fundamentally, animal movement

(research) is not divorced from human interpretation, human behaviour or interaction, perception of

the environment, and/or environmental policy (Cresswell, 2011, 2012, 2014; Semeniuk et al., 2010).

The importance of explicitly considering tight coupling of natural and social systems is reinforced as

well-informed wildlife policy often inadvertently regulates human livelihoods (Beaumier et al., 2015;

Bennett & McGinnis, 2008; Liu et al., 2007; Perez et al., 2018; Tyrrell, 2007). Agent-based models

can provide a framework for understanding animal movement as a key emergent characteristic

of socio-ecological complex adaptive systems. Finally, as agent-based models are often spatially

explicit, integration is generally possible with any information that can be spatialized and digitized

into a Geographic Information System (GIS). Our method aims to provide a core component of

an adaptive agent-based movement ecology model that can appropriately consider and integrate

various forms of spatial information.

Algorithmic methods can offer considerable advantages when extracting movement rationales

from environmental or trajectory data. For example tree-based algorithms, like classification and

regression trees, can be used to enable modelling frameworks that make no assumptions about how

embedded processes become observable data; nor do they require extensive pre-processing steps or

data transformations (Breiman, 2001). Classification trees are recursive algorithms ideally suited

to explore data structures as well as analyse complex ecological data (Loh, 2011). Interesting work

using such technologies to identify potential environmental factors underlying animal movement,

determine population distributions, or predict zoonotic disease transmission risk is already well

documented (Ahearn et al., 2017; Elith et al., 2008; Han et al., 2015; Leathwick et al., 2006;
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Oloo & Wallentin, 2017; Torrens et al., 2011; Ward et al., 2016). With respect to using these

technologies to inform agent-based models, notable examples include: context-sensitive random

walks that incorporate local external factors to simulate the movement of tigers at Royal Chitwan

National Park in Nepal (Ahearn et al., 2001); genetic algorithms to simulate representative relative-

turn angles and step-distance of homing pigeons (Oloo & Wallentin, 2017); reinforcement learning

to contextualize the risk and reward of agent behaviour (Sutton & Barto, 1999; Tang & Bennett,

2010); and artificial neural networks to assign weights to link environmental features to an agent’s

internal spatially explicit map of its surroundings (Huse et al., 1999; Strand et al., 2002).

To demonstrate how algorithmic methods can uncover and explicitly consider environmental

features as external factors underlying animal movement, we use two simple artificial intelligence

technologies: (a) classification trees to extract rules that associate behaviours with environmental

features; and (b) agent-based modelling to build a bottom-up simulation of movement based on

extracted rules and environmental heterogeneity. Showcasing how high spatiotemporal trajectory

data allow for decision boundaries in classification trees tobe transferred onto a continuous surface

for agent simulation is the core objective of this article.

3.4 Methods

Strandburg-Peshkin et al. (2015) obtained data from 26 olive baboons (14 adults, 10 subadults, and

2 large juveniles) with GPS collars (e-Obs Digital Telemetry, Gruenwald, German; with a reported

average positional error of 0.26 m) between 1 and 14 August 2012 in collaboration with the Mpala

Research Centre, Laikipia Plateau, Kenya. The locations of these olive baboons were logged with a

relatively high temporal frequency (1 Hz: 1 record per second) continuously during daytime hours,

from 0600 to 1,800 hr local time. We obtained this data from Movebank (ID: 7023252) (Strandburg-

Peshkin et al., 2015). The study description noted that not all GPS collars transmitted location

data successfully throughout each day, resulting in 10 million observations of individual baboon

locations. We cleaned and spatially projected the collected trajectories with tools provided in

the tidyverse, lubridate, sp, and rgdal packages for R, removing 5,758 missing observations (of

10,402,385 total observations; 0.054) and projecting trajectories to Universal Transverse Mercator

(UTM) zone 37 North for Mpala, Kenya (R. Bivand et al., 2015; R. S. Bivand et al., 2013; R Core

Team, 2020; Wickham et al., 2019). We set aside days 3, 6, 9, and 11 and do not include these

trajectories in building our classification tree or parameterizing the agent-based model. Keeping

34



entire days as validation (as opposed to a random sample) enables more meaningful tests of our

simulation. Specifically, as the troop visit different destination sites throughout the 2-week period,

keeping multiple days aside provides validation across different destinations. Figure 1 shows the

observed trajectories of the olive baboon troop at Mpala Research Centre in Laikipia, Kenya.

Figure 1: Olive baboon (Papio anubis) trajectories collected at the Mpala Research Centre in Kenya

are displayed with a blue gradient denoting time. Google imagery used for satellite and Kenya inset

maps. Stamen watercolour imagery used for regional inset map of Africa

We extract environmental features from the scene (using a normalized difference vegetation in-

dex to define vegetation and clearings, and on-screen digitization for human trails and the river

network), which we contextualize as external factors underlying behaviour selection (and therefore

animal movement). Using Operational Land Imager imagery aboard Landsat 8 (dated 26 October

2018) and Google Earth/Digital Globe imagery (dated 25 June 2012), we identified four environmen-
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tal features: clearings (or open areas); the river; trees; and a regional network of human-made trails.

Strandburg-Peshkin et al. (2015) identified road-following and short-range avoidance of dense vege-

tation as possible environmental factors underlying path selection of the troop. Although innovative

remote sensing products exist to further identify features, we use just these four readily identifi-

able features to help demonstrate and highlight the key contribution of this work: a framework for

agent-based modelling that explicitly considers environmental heterogeneity as well as uncertainty

in unambiguous ways to model path selection. To link trajectory and environmental information,

we calculate the Euclidean distance between environmental features and each GPS logged posi-

tion. This expression of environmental heterogeneity (at each point) was then linked with different

(theoretical) behavioural states of the animal using path segmentation (Edelhoff et al., 2016). The

statistical signal provided with this linkage is reduced to the spatial resolution of environmental

features (i.e., 3 m spatial resolution of remote sensing products used to collect features).

We threshold our trajectories into two broad behaviour states: moving and sedentary. To

perform this segmentation, we use the adehabitat package for R to collect physical characteristics

at each logged position (Calenge, 2006). Specifically, we consider that any positions with velocity

greater than 3 m/s indicate moving behaviours. Sedentary points, those recorded with velocity

below 3 m/s, are in a category of behaviours which would require improved spatial resolution of

environmental features to extract decision boundaries (relevant to sedentary behaviours). We are

only able to consider velocity with such ease due to GPS positions having been logged at a relatively

high temporal resolution (1/s). To clarify, our environmental raster layers’ spatial resolution is 3 m.

And when individual baboons are moving at less than 3 m/s, we cannot make clear associations with

environmental data. Of the logged positions in the training dataset, 32,707 observations occurred

while baboons in the troop were travelling at greater than 3 m/s. To maintain class balance, we

generate 32,707 new random points within the bounding box of troop movements—the equivalent

of a “null” model. Figure 2 shows the resultant classification tree.

We use this subset (both null and moving points, 64,000 observations) to build a classification

tree using sci-kit learn (Pedregosa et al., 2011). Our classification tree is parameterized using the

Gini impurity as the splitting criterion, a minimum sample size of 20 observations, a maximum

depth of five layers, and a minimum impurity decrease of 1e−7. Each split (of the tree) or partition

(in data) only occurs if the Gini impurity decreases by at least 1e−7 units. It stops splitting once

nodes have fewer than 20 observations (“samples”), or once the tree reaches a depth of five layers.
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Figure 2: Classification tree with depth of 5; minimum sample size of 20 observations; minimum

Gini impurity decrease by 1e−7 units

These stoppage conditions are common “pruning” techniques for classification and regression trees

(Fournier & Crémilleux, 2000). Without these parameters, default values allow the tree to keep

building until it has overfit to training data (e.g., default for minimum impurity split is 0, meaning

subset data would not need to become more “pure” to continue splitting). The classification tree

queries data with partition rules, then selects partitions that result in a maximum decrease in

impurity. Subset impurity must decrease iteratively for the classification tree to be working. That

is, the perceived homogeneity of subsets must increase as they move down the classification tree.

This is due to the underlying algorithmic structure of (any type of) binary tree(s). The tree only

continues if its understanding of how to best classify data is improving. Here, the quantifiable

metric being minimized is the Gini impurity (as opposed to entropy or other measures in the

applied machine learning literature).

Each node of the tree represents a classification made as part of iterative partitions of data.

As well, nodes provide a relative expression of uncertainty (as the complement of the nodal Gini

impurity). Blue nodes suggest the classification tree interprets its input as a signal for movement.

Orange nodes suggest the tree interprets, and would classify, points as null if further iterations

are not possible. Local decision boundaries expressed by the tree are unidirectional and unidimen-

sional; nodal partition rules utilize only one logical operator (≤) and apply to only one feature per

iteration. Collectively, the classification tree is an algorithmic expression of how to optimally label

observed points, based on environmental heterogeneity, as either “moving” or not. This algorithmic

expression is often visualized as a binary tree, since querying a single feature using “≤” organizes

data into at most two child subsets. For example, in Figure 2, node1 categorizes each point as either

being 215.246 m or not from the edge of the trail feature. The tree selects this specific partition
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as its search found this decision boundary to maximize the homogeneity of its child subsets (node2

and node9). In our implementation, classification functions iteratively organize as many “moving”

points together as possible. A core relation to behaviour is being made on the basis that training

data provided to the classification tree are reflective of ecological reality. And that “moving”-type

behaviours are a meaningful conceptualization with respect to olive baboon ethology and ecology.

To consider these nodal rules and their associated information in aggregate, we rasterize each

local decision boundary. We take the complement of the Gini impurity, to quantify the relative

homogeneity result of the partition. This complement is a measure of certainty being expressed at

the node. The more impure subset datasets are, the less certainty the rule can offer in classifying

points. Aggregated, this becomes an understanding of certainty of classifying data as “moving”

based on the relative distance a point is from key environmental features at the regional (in terms

of geography) and global (in terms of computation) scale. To arrive at a spatially explicit surface,

we rasterize each partition rule based on nodal information. Specifically, the distance to an envi-

ronmental feature, nodal Gini impurity, and partition threshold are considered to transfer decision

boundaries onto a geographic space in the following way:

Desirability (movement selection) = (1 −G), if dE ≤ pt

Uncertainty (null selection) = −(1 −G), if dE > pt

When the partition rule is “True”, that is, when points are within the specified distance of the

environmental feature that is being partitioned, we ascribe a weighting based on the complement of

the Gini impurity at the specified node. If the signal provided to the training data reflects ecological

reality, this surface expression is a spatially explicit consideration of environmental heterogeneity

and its influence on behaviour selection. In the simplest terms, our derived behaviour selection is an

understanding of where the troop would engage in any “moving” or “>3 m/s” behaviours. Uncer-

tainty selection, expressed as the additive inverse of the complement of the Gini impurity, −(1−G),

is used when the classification tree organizes data as not belonging to “moving” behaviours. Since

both local movement and null selection are communicated via nodal information, we aggregate the

complement (1 − G) to reflect movement selection, and the additive inverse of the complement

−(1 −G) to reflect uncertainty. Figures 3 and 4 reflect standardized aggregations of these rasters,

which we term “Desirability” and “Uncertainty” selection surfaces. Sedentary points are reflected in
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“patches” of uncertainty in Figure 4, as the expression of environmental heterogeneity here suggests

null selection (and sedentary behaviours are likely to belong to null selection within the classification

tree). As a careful note, the classification tree is not able to classify points as sedentary; it is only

able to classify when environmental heterogeneity is thought to be capable of facilitating moving

behaviours. For example, if a known sedentary point is provided to our classification tree, the out-

puts will express a relatively high measure of how uncertain it is in classifying the observation. The

aggregated spatially explicit decision boundaries related to “moving” classification are expressed as

a movement behaviour selection surface. For “null” classification, the surface reflects uncertain be-

haviour selection. Both surfaces are then standardized to maintain their distribution, while ranging

from 0 to 1 (Figures 3 and 4). As such, the negative directionality of uncertain behaviour selection

is recontextualized such that higher uncertainty values indicate points where the classification tree

is relatively unsure of its classification of observations as belonging to “moving” behaviours. Atop

these behaviour selection surfaces, we simulate agents representing baboons (“baboon-agents”) to

navigate between presumed sleeping sites and destinations.

Figure 3: Movement selection surface for troop of olive baboons observed during 1–14 August 2012

at Mpala Research Centre, Kenya. Green indicates areas that express environmental heterogeneity;

the classification tree interprets these as spaces likely to facilitate “moving” behaviours. This surface

is queried by baboon-agents for movement-related decision-making
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Figure 4: Uncertain or null selection surface for troop of olive baboons observed during 1–14 August

2012 at Mpala Research Centre, Kenya. Green indicates areas that express environmental hetero-

geneity; the classification tree interprets these spaces as likely to facilitate sedentary or “other”

behaviours. This surface is queried by baboon-agents for vision cone modulation

Table 1: Internal movement logic of baboon-agents

I Face destination

II Check movement and uncertain selection surface values within the agent vision cone

III Take one step towards the cell with greatest movement selection value

IV Modulate agent vision cone by uncertainty

V If location has not changed over previous timesteps, take one step directly towards the

destination

We develop our agent-based model using NetLogo (and provide its internal logic in Table 1)

as it is an easy-to-use multi-agent modelling environment that can incorporate raster datasets.

The model consists of one agent representing an individual baboon moving between the origin and

user-set destinations. The origin and destinations were selected using kernel density estimation

of sedentary segments of observed trajectories. After facing a user-set destination, baboon-agents

query the movement selection surface within a 230° vision cone and depth of four cells. This angle
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and depth are also user-set but are then modulated by uncertainty expressed by the null selection

surface. We used 230° as the relative angle within moving segments of observed trajectories fell

within ±2 rad (4 rad 230°). This could be an artifact of moving behaviours as they invariably

have some component of directionality, or high-temporal resolution. We maintain a relatively crude

understanding of directionality in our model to test the utility of selection surfaces informed by

classification trees. To initiate agent movement from a starting position to an intended destination,

baboon-agents query the movement selection surface within their vision cone and select the cell

with the highest “movement selection”. Based on uncertainty expressed at that cell, the baboon-

agent vision cone angle is multiplied by a factor of (1 − Uncertainty), and the vision cone depth

by a factor of (1 + Uncertainty). Uncertainty, or null selection, here is connected to “not moving”

and presumably low directionality behaviours. We also set two optional conditions which direct

baboon-agents to resolve movement decisions by taking one step directly towards the destination

when too many paths lead to “dead ends” (baboon-agent has moved <11 units in last 25 ticks); or

when too few options force baboon-agents to continuously retrace their paths (baboon-agent has

moved <1.4 units in last 5 ticks). The spatial resolution of the agent model is 6.5 m, with temporal

resolution 20 s; thus baboon-agents move at an average velocity of 0.325 m/s. To provide an

ensemble of movement behaviour, we run our model 100 times for each day. As an important note,

our model does not incorporate time beyond using velocity to discern training moving behaviours.

Our framework for “transferring decision boundaries onto a geographic space” is visualized in Figure

5.

3.5 Results

Our procedure demonstrates how large spatiotemporal datasets with high temporal granularity can

aid in developing simulations of dynamics underlying animal movement. Specifically, we show how

environmental features can be explicitly incorporated into the internal movement logic of agent-

based models. There are two key steps to our procedure: first, the extraction of agent rules from

trajectory and environmental feature data; then, incorporation of this extracted information into an

agent model. Extracted information for agent rules (or movement rationales) is in the form of the

internal data partitions classification trees use to discern between “moving” and uncertain (or null

selection) behaviours—commonly referred to as decision boundaries. These decision boundaries are

aggregated into a surface atop which agents are simulated to move towards set destinations.
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Figure 5: Framework for transferring decision boundaries found in classification trees onto a geo-

graphic space for spatially explicit agent-based modelling movement

With respect to the first (information extraction) step, our classification tree achieved a classi-

fication accuracy of 80%, classification error of 20%, and sensitivity of 0.937. We interpret these

results as an indication that the classification tree can discern and correctly identify moving points

80% of the time when provided with unseen point data with linkages to environmental features.

Figure 2 is a visualization of the classification tree. Figure 5 describes how the output from the

tree is handled, as well as how this technology is used in our framework.

With respect to the second (information implementation) step, our agent-based model is visu-

alized in Figure 6 along with a kernel density estimate of observed trajectories. The origin, daily

destinations, and a river crossing site are labelled. This river crossing site is a visibly important site

in animations of troop trajectories, and interestingly is also picked up as a unique site for movement

in simulations. The proximity of simulated runs to observed trajectories, as well as the frequency
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with which the simulation preferred a certain path, are shown in Figure 7.

Figure 6: Agent-based model simulation outputs visualized by frequency (in orange) along with

kernel density estimations of observed olive baboon trajectories (in green). Note river crossing

feature, which was apparent as a unique point for movement in both observed trajectories and

simulation output. Basemap imagery provided by Digital Globe, Google Earth™

For each day, we calculated the Euclidean distance from the trajectory data and superimposed

it with the frequency output from our agent-based model. The distribution of movement selection

values in the frequency output map has a very strong right skewness. So, we used a natural

log transformation, followed by a linear rescaling, so that all days had the same range, resulting

in 10 frequency classes. We were then able to compare, by location, the relation between the

frequency map and its proximity to trajectory data. Figure 7 shows this validation effort, reasonably

replicating real trajectories for days 9 and 11. The observed troop frequents multiple destinations

each day throughout the 2-week data period, but especially on days 3 and 6 the troop stays in a

relatively small area for most of the day. For such days, because of the way destinations are handled

in our agent model (i.e., a single static destination is user-set for each day), outputs show simulated
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Figure 7: Agent-based model simulation outputs for validation days (3, 6, 9, and 11) visualized by

frequency (in orange) and proximity to observed trajectories (in blue). Path selection highlighted by

green indicates agreement between observed olive baboon movements and baboon-agent trajectories.

Basemap imagery is provided by Digital Globe, Google Earth™

trajectories taking a “shortcut” to final destinations, instead of the more circuitous route real olive

baboons took in the region.

While visually comparing the simulated and observed trajectories is helpful, they do not provide

a measure of the overall performance of our model. An alternative is to quantify the deviation (as

distance) between simulated and observed trajectories. The variation of distance between observed

and simulated trajectory is dependent on the distance between destinations and sleeping sites,

which varied greatly between each day; the further the destination, the farther “off-track” an agent

could go. To better compare performance between days, the mean distance between simulation

and observation of each day was rescaled by the maximum distance for that day, such that the

maximum for all days is 1. Figure 8 plots these deviations for each simulated day. Here, high-

frequency classes represent the cells that simulated trajectories often pass through. Low-frequency

classes were relatively unfrequented cells. The trend-line plotted with ±1 standard deviations
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Figure 8: Deviation of each frequency class from observed trajectories. Lower mean distance values

(y-axis) indicate overlap between observed trajectories and simulations. These values are rescaled

and are a relative measure of distance. Frequency classes denote categories of cells visited by

simulated trajectories, and how often trajectories use the cell. Validation days are highlighted

using dashed lines. Validation days 9 and 11 deviate less than the average of all days

represents an average, which improves as we consider where there are more simulated trajectories.

Validation days are represented with dashed lines and confirm what Figure 6 suggested—that days

9 and 11 performed best. In other words, our framework produced simulations where baboon-agents

travelled the same spaces as observed trajectories.

3.6 Discussion

Agent-based models have been used extensively to explore the impact of animal movement patterns

across space and time and predict environmental outcomes. Movement rationales expressed in such

models have often been based on expert knowledge about the behaviour of the species of interest

(Bonnell, Chapman, et al., 2016). While neglecting input from behavioural ecologists would be
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disingenuous, considerable surveillance bias in animal ecology provides impetus for methods that

can accommodate local knowledge as well as intensifications in data velocity, veracity, volume,

and variety expected from increasingly sophisticated biologgers and data-fusion techniques (Boyce,

2006; Hebblewhite & Haydon, 2010; Martin et al., 2012; Stallknecht, 2007).

Here we have demonstrated that a large spatiotemporal dataset with high temporal granularity

can be used to: (a) develop a surface to highlight environment-related selection of movement; and

(b) programme an agent-based model that uses the behaviour selection surface in combination with

simple rules of motion to simulate troop movements. This fits well within the broader area of

work GIScientists are engaging in towards an integrated science of movement (Miller et al., 2019;

Williams et al., 2020). With evermore sophisticated biologgers and data-fusion techniques there

will continue to be a rapid rise in volumes of valuable movement data. Our work indicates that

there is an opportunity to develop widely applicable methods to use such datasets, extract location-

specific movement behaviours, and convert and explicitly consider this information in agent-based

modelling frameworks.

Simulations using the described procedure could be tested against expert knowledge rationales

regarding preferred habitats, avoidance of high-risk predator or disease areas, territorial defence,

social behaviour, or weighted combinations of these rationales. For example, in Where the animals

go, this troop’s description suggests trajectories were collected over a 4-week period (Cheshire &

Uberti, 2017). Additionally, in these unseen data, there was report of a leopard which affected

troop sleeping site selection after 14 August. This unseen data could serve as further validation;

our framework could be adapted to test how simulations perform under these unique conditions.

Such an approach could augment expert interpretation to decipher an understanding of components

underlying movement behaviour selection.

While the current procedure is demonstrated with a single classification tree, it could be scaled

using ensemble techniques to consider and weight the different spaces where and times when moving

groups of animals might engage in specific behaviour (e.g., seasonal drought and changes in veg-

etation characteristics influencing foraging behaviour). Our framework could accommodate other

established representations of animal movement (like context-specific random walks) in conjunc-

tion with information from probability and uncertainty surfaces to determine path selection. The

core contribution of our methodological framework is the transfer of decision boundaries explicitly

expressed by classification trees onto a geographic space. Inherent aspects of this space include
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socio-cultural relations people have with animals, as well as embeddedness of socio-ecological com-

plex adaptive systems. Exciting work on collecting and spatializing local knowledge suggests a

wide variety of features (e.g., constructed fences, known migration routes or hunting sites) could

be incorporated into our approach (Aswani & Lauer, 2006)—as long as they are ascribed spatial-

ity in a GIS. Agent-based models, when informed by data-driven methods, are unique tools that

can accommodate voluminous data with unknown or inconsistent veracity and velocity, as well as

explicitly incorporate spatiality of local knowledge. There are two reasons for the overall flexibil-

ity of our approach: (a) classification trees’ capacity to handleexplanatory variables without data

transformations; and (b) the spatially explicit nature of our agent-based modelling platform. For

example, gradient descent using boosted classification trees could be used to reduce the relative

“sharpness” or abruptness visible in Figures 3 and 4, and new environmental features could be

identified and characterized using innovative remote sensing and hyperspectral processing tech-

nologies. The agent’s logic could also be improved in future work. For example, incorporating

viewshed analysis into the vision cone modulation would add towards recreating simulations of how

troops determine where to go. Cost weighting, informed by either landscape genetics or geographic

phenomena (such as urbanization or elevation), could be incorporated into classification tree(s) as

features to influence selection surfaces; or explicitly in an agent’s internal logic (e.g., for elevation,

additional cost surfaces could be fed into what information an agent is considering before moving).

Finally, to reduce the determinism of our model, we could programme agents to select from a range

of high-valued movement cells at random. Instead, our efforts focused on testing the informativeness

of selection surfaces.

While our model adequately replicates movement behaviour selection, there has been other re-

search in movement ecology that looks to identify behaviours within the environments in which

they occur. For example, “path segmentation” refers to changes recorded in an animal’s movement

behaviour based on observed trajectories (Edelhoff et al., 2016). Associated methods quantita-

tively describe the geometric properties or physical characteristics of trajectories, which combined

with time-series analysis methods can indicate changes in behaviour state. Further, innovative

methods exist that could be considered for segmenting animal movement trajectories, including

pattern mining and behavioural change point analysis (Zhang et al., 2019). The research ques-

tions commonly addressed using path segmentation methods include: (a) quantitative description

of movement patterns; (b) detection of significant change points; and (c) identification of underlying
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processes/hidden states. Of the latter, state-space models (e.g., hidden Markov models [HMMs])

can be built to estimate transition probabilities and test whether switching between states de-

pends on certain habitat characteristics (Whoriskey et al., 2017). Other models, such as advanced

first-difference random correlated walk (DCRW), go further by determining the complexity un-

derlying behavioural states, and also account for temporally irregularly spaced observations and

non-Gaussian errors (Jonsen et al., 2005). Admittedly, such frameworks necessarily incorporate

linkages due to time—something our model does not do. However, an ensemble approach that

weights information from trees based on when environmental features and trajectories are collected

could function within this framework as an adequate representation of time. Interesting work using

conceptualizations surrounding space-time prisms has also been demonstrated in a spatially explicit

agent-based movement model (Loraamm, 2020). Methods demonstrated here are a foundation to

understand the influence of environmental heterogeneity on behaviour selection. And could be

understood as a tool within a broader toolkit for agent-based modelling movement ecology.
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4 Discussion

Data-driven or algorithmic approaches to informing agent-based models contribute to a broader

call for GIScience methods to reduce emphasis on data authority (Sieber & Haklay, 2015). As

an alternative to expert-calibrated agent-based models, I have developed and demonstrated a new

data-driven calibration technique using inductive learning and classification trees. By considering

bottom-up (i.e., either data-driven agent-based models or participatory agent-based models) instead

of top-down (i.e., expert-calibrated agent-based models) methods to simulate movement in complex

systems, agent-based movement models are more likely to be locally valid (Buchholtz et al., 2020;

Carnap, 1995) and, potentially, nurture resilience in socioecological systems (Tyler et al., 2007).

In this discussion I extend ideas introduced in chapter three related to the olive baboon (Papio

anubis) troop agent-based model; suggest future directions for this baboon-agent model; and present

participatory methods as complimentary to data-driven approaches to modelling animal movement

in socioecological systems.

Methods and results discussed in the preceding chapter described an algorithmic GeoAI tech-

nique for informing an agent-based model of animal movement. Taking advantage of high temporal

resolution, this novel GeoAI technique aligns with the movement ecology framework as simula-

tions represent movement as emergent spatiotemporal phenomena based on interplay between an

individual baboon’s internal state, motion capacity, navigation capacity, and other, often social or

environmental, external factors (Holyoak et al., 2008; Nathan et al., 2008).

This thesis was guided by the following research questions:

Can agent rules extracted from classification trees be incorporated into an agent-based simulation

of an animal group? Do simulated trajectories represent their real-world counterparts? Do animal-

agent and real-world animals appear to have similar space use patterns?

An additional question arose during study:

Can people embedded within study systems play an active role in developing policy evaluation

tools?
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4.1 Baboon Agents

Baboon-agents, the artificial baboon individuals or groups in a simulated environment, move

through geographic space akin to their real-world counterparts (in chapter three, and in similar

work: (Di Fiore, 2021).) In my work, individual agents were calibrated using: a) species-specific

ecological knowledge to define what reasonable threshold exists for path segmentation; b) applied

machine learning literature on what are acceptable parameters for classification tree building and

pruning; c) the aggregate behaviour selection surfaces as defined by nodal rules of a classification

tree (as described in chapter three); and d) modulating step-selection and agent-vision cone angle.

The baboon-agent model is a demonstration of an innovative GeoAI technique for informing

agent-based models of animal movement. This technique - “Transferring decision boundaries onto

a geographic space” - extracts decision rules from classification trees and processes, re-weights, and

develops movement rationales for agents. As agents traverse simulated space, based on data-driven

movement rationales, they visualise animal-agent space use. Aggregated spatial rules are referred

to as a ‘behaviour selection surface’. Atop this selection surface, baboon-agents move from sleeping

site to set destinations. Simulated trajectories match actual observed trajectories with high fidelity

for two of four days. On the days the model did not match observed trajectories, the troop did not

venture to known destinations in the study area (Strandburg-Peshkin et al., 2015).

As discussed above, the purpose of this model is to showcase a new way of informing agent-based

models of animal movement. As Hebblewhite and Haydon (2010) argue for clearer boundaries be-

tween geo-spatial technological advancements and insight into ecological phenomena. Consequently,

we pay particular attention to this concern while developing big geospatial data approaches to mod-

elling animal movement - a role ecologists have outlined for geographers and geographic information

scientists (Williams et al., 2020).

4.1.1 Boosted-Baboons: Gradient Descent for Agent-Based Models

As the current baboon-agent model architecture is based on a single classification tree, it is amenable

to ensemble tree-based techniques. That is, taking an average of multiple trees, via either random

forest models or gradient boosted approaches, would not require substantial changes to the existing

model architecture. Boosted Regression Trees (BRTs) are decision trees applied iteratively to find

and average many rough rules, rather than operate on a single rule with limited predictive capacity
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(Elith et al., 2008). BRTs are a collection of many relatively inaccurate rules to create an accurate

prediction rule (Freund, Schapire, et al., 1996).

In gradient descent, at each iteration, or step-down, a new tree is selected based on some

predefined loss function. For example, deviance, can represent the loss in predictive performance

occurring due to a model being sub-optimal (Elith et al., 2008). Therefore, decreases in deviance

signify an increase in predictive performance. At each iteration, a new tree is added with increased

emphasis (or weight) on observations that were previously modelled poorly (Freund, Schapire, et

al., 1996; Friedman, 2001). While the initial tree is constructed and selected based on: desired

complexity; and whichever tree provides optimal performance, subsequent trees are selected based

on greatest further reductions in the loss function (Elith et al., 2008). This eventual crawl towards

some minima is gradient descent in action. This distinguishing characteristic of boosting is a forward

iterative process: increasing emphasis on observations that were poorly modelled by the collection

of trees that came before the latest additional tree. Trees continue to be added if reductions to the

loss function are greater than the pre-set tolerance for convergence.

Exciting work already exists using BRTs on short-finned eel (Anguilla australis) distribution in

New Zealand (Elith et al., 2008); identifying likely Rodentia reservoirs of zoonotic diseases (Han

et al., 2015); and habitat modelling for animal conservation (Leathwick et al., 2006; Wintle et al.,

2005). Related to the described context in chapter three (olive baboons in Mpala, Kenya), BRTs

may be better better suited to extract which places are best associated with different types of

movements or behaviours. Subsequently, their inclusion in the existing model architecture may

improve predictive performance related to which places (or units of space and time) might serve

a species best for a given type of species-specific movement. Additionally, ensemble approaches

could be used to improve baboon-agent model accuracy by incorporating a wider set of internal as

well as social or environmental features. Accordingly, model behaviour selection can become better

defined by various ecological processes. For example, an individual might choose to sleep (a type

of movement characterized by zero movement velocity, and unique internal states, like metabolism

at or near the expected Basal Resting Rate), in areas that are inaccessible to predators. While

it may be difficult to detect where predators are, areas that are inaccessible to predators may be

defined by some combination of environmental features. Red-bellied tamarins (Saguinus labiatus)

select their sleeping sites based on the degree of concealment a given location offers; tufted capuchin

monkeys (Cebus apella) prefer sleeping in the leaves of Jessina palms as access for predatory cats
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becomes limited; and bonobos (Pan paniscus) build their nests high in trees, presumably to avoid

predators (J. R. Anderson, 1998; Fruth & Hohmann, 1993; Goodall, 1962). Each of these could

be described, as is done in the current baboon-agent model, by the relative distance a point is to

environmental features; thick bush cover; Jessina palms; and tall trees can all be digitized using

remote sensing products and GIS. Should enough environmental features relevant to the ecology of

a given species be encoded, a broad interpretation of the region as it relates to how well a given

space and time facilitates a type of movement could be produced. Such outputs would be valuable

for wildife, conservation, or environmental policy.

4.1.2 Unexpected Behaviour

Baboon-agents in our model unexpectedly traversed across a shallow river point in the environment,

potentially an example of emergence (see Figure 6 and crossing point). Such characteristics of the

environment are a form of interaction between environment and individual navigation capacity

(Tang & Bennett, 2010). This remarkable point of alignment between simulated and real-world

trajectories may have occurred due to similarities in environmental structure in both real and

simulated systems. Acknowledging Occam’s razor, obvious simpler rationalisations include: issues

with river digitization which may have introduced geometry errors; or step modulation (see Table 1

of agent internal logic) having enabled animal-agents to directly pass the shallow river points when

stuck.

Examples of emergence in agent-based simulations appear across a variety of disciplines (Fromm,

2005). For example, segregation in cities and collective animal movements are popular examples

of an emergent pattern (Bonnell et al., 2013; Bouarfa et al., 2013; Helbing, 2012; Sun & Manson,

2015). As an alternative example: Bouarfa et al. (2013) model complex air transportation behaviour

and outline how their use of agent-based models and rare-event Monte Carlo simulations enable

‘lever’ point discovery of a complex sociotechnical system (i.e., air traffic management). Such

points amplify resilience or greatly affect outcomes, yet are not planned and appear on their own

in unknown ways.

Further, Janssen et al. (2019) developed methods to describe causality using graphs to visu-

alise linkages between parameters in an effort to better contextualise emergence across systems.

Batty and Torrens (2005) discussed how such information visualisation would be near impossible

to observe in reality (as opposed to in simulation). Heppenstall et al. (2021) reiterated the impor-
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tance of algorithmic approaches to better contextualise and communicate emergence in agent-based

simulations of spatial systems.

4.2 Humans in the Loop

The rationalisation for de-emphasizing data authority in agent-based approaches to modelling an-

imal movement is clear on multiple fronts. As eluded to in chapter three and earlier, people have

inherent situated knowledge of the ecosystems they inhabit (Haraway, 2004). Magnifying this bias,

animal ecology has a historic focus on ecological as opposed to socioecological systems (Martin et

al., 2012). As computational models, and especially agent-based models as policy evaluation tools,

inform environmental policy, peoples’ collective situated knowledge of their systems can be used to

validate insight from data-driven models. To counter the prevailing practice of expert-calibration,

agent-based approaches must accept input from people embedded within study systems being mod-

elled. That is, having people express their own socioecological relations using qualitative techniques

may aid in developing better situated agent-based models of animal movement. Therefore partic-

ipatory agent-based modelling is proposed as an innovative and complementary to data-driven,

method for informing agent based models of animal movement. Further discussion related to this

convergence between PGIS and ABMs follows.

4.2.1 Advancing Participatory Agent-Based Models of Animal Movement

While this thesis advanced an algorithmic approach to simulating animal movement, agent-based

models can also be co-designed with communities, potentially re-orienting the purpose and outputs

of participatory agent-based models to align with local objectives, values, and knowledge systems

(Eitzel et al., 2020). Local or traditional ecological knowledge in tightly-coupled systems holds

potential for improving computational movement analysis (Buchholtz et al., 2020). Participatory

agent-based models and spatial agent-based models are common techniques for simulating sys-

tems and linking outcomes with policy interventions (Bonnell, Ghai, et al., 2016; Eitzel et al.,

2020). Despite recent advancements, notably in spatial integrations for agent-based modeling (i.e.,

open source GIS integrations using shapely and geopandas for MESA) (Masad & Kazil, 2015);

object-oriented design standards (Grimm et al., 2020); and access to geo-computational resources,

participatory computational methods remain underutilised in movement research applications.
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Loarie et al. (2009) show the rate at which animal movements are changing is increasing, exac-

erbating concern regarding climate vulnerability and ecosystem collapse. Communities in socioeco-

logical systems facing vulnerability continue to adapt using a wide range of tools and technologies

(Gautam et al., 2013; Tirivangasi & Nyahunda, 2019). In some cases, having combined local and

scientific information in novel ways to achieve community determined objectives (Eitzel et al., 2020;

Ramanath & Gilbert, 2004; Roncoli et al., 2002; Schlingmann et al., 2021). Popular statistical tech-

niques for modeling animal movement (e.g., resource selection methods) have improved accuracy

when integrated with traditional or local ecological knowledge (Buchholtz et al., 2020). Like selec-

tion methods, ABMs are often calibrated using expert opinion. For both techniques people living

within study systems can better represent their socioecological relations, enabling improved com-

putational models of movement at, as Buchholtz et al., notes, local scales (Buchholtz et al., 2020).

Such disruptive movement analysis application would support adaptiveness of socioecological sys-

tems. Established object-oriented design protocols for agent based modelling (Grimm et al., 2020);

efforts towards a taxonomy of animal movement patterns (Dodge et al., 2008); and open source

geocomputational simulation tools (Masad & Kazil, 2015) encourage transfer and generalization of

techniques without outright disqualification of the potential for these to be adapted by Indigenous

people abiding by local conceptualisations of space (Eitzel et al., 2020).

Traditional ecological knowledge, particularly in Indigenous contexts, functions well in help-

ing communities to understand complex ecosystem traits and challenges (H. Huntington et al.,

2004; H. P. Huntington, 2000; Snively & Corsiglia, 2001). Community-determined adaptations

are a demonstration of essential knowledge necessary for new disruptive forms of simulation that

are focused on community adaptation in response to increasing climate vulnerability. Willcock

et al. (2023) discuss the importance of simulation methods’ capacity to handle ‘noise’, highlighting

the need for local information to better combat ecosystem collapse, while Ramanath and Gilbert

(2004) suggest techniques for effective participatory agent-based modelling drawing on software

engineering literature (Ramanath & Gilbert, 2004; Willcock et al., 2023). The adaptive capacity

of socioecological systems are particularly relevant to avoid global ecosystem collapse and various

related catastrophes (Altizer et al., 2007; Bradley & Altizer, 2007; Jenkins et al., 2015; Semeniuk

et al., 2010). Outlined below, animal movements are unique in their centrality to being effected

by and affecting both anthropogenic as well as environmental events. This centrality offers the

spatiotemporal phenomena of animal movement a position a sentinel marker of rapid social and en-
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vironmental change. This keystone position is fundamental to understanding system-level resilience.

Table 2: Centrality of animal movement in socioecological systems

Social components –> <– Animal movement –> <– Environment

Inuit hunting practices Caribou migration Ice phenology

Community-led tiger culling Tiger resource selection Changing forest resources

Saami herding practices Reindeer resource selection Food availability

Anishinaabe fire practices Bison resource selection Distribution of resources

Hunters of the Calakmul Peccary habitat selection Availability of water

Further, altering the power landscape underlying knowledge production can lead to more adap-

tive and resilient socio-ecological systems. By including people embedded within study systems

into model development and calibration phases, more locally valid representations of animal move-

ment and socio-ecological interaction can inform simulations (Buchholtz et al., 2020; Eitzel et al.,

2020). Model outputs from such better informed representations may be more culturally sensitive,

contextually relevant, locally valid, and importantly, less morally ambiguous.

4.3 Summary

This section expanded considerably into model-making aspects of agent-based simulations of ani-

mal movement, highlighting discussion points from chapter three; extending to future directions;

and relating these to contemporary literature. Enabled by ever-expanding scale and resolution of

movement data, our GeoAI approach enables improved agent-based modelling of a spatial systems

due to inductive learning and classification tree based techniques. A gradient descent baboon-

agent model could enhance model accuracy. Similarly, involving people embedded within study

systems may prove to be an effective means to improve models of socioecological systems. This

inclusion, is critical on multiple fronts and should be considered as part of a broader shift away

from expert-calibrated simulations of social systems.
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5 Conclusion

In this thesis I explored new ways of developing simulations of animal movement. Specifically,

an innovative technique for informing local agent-rules using classification trees and environmental

data, and participatory agent-based modelling as a disruptive application of computational move-

ment analysis. As simulation technologies premised upon artificial object-oriented design principles

(Grimm et al., 2020), agent-based models are effective tools for policy evaluation (Crooks et al.,

2008; Marshall & Duthie, 2022; Tang & Bennett, 2010). This thesis demonstrates and discusses

alternative means to informing such policy-oriented agent-based models of animal movement. That

is, by transferring decision boundaries onto a geographic space, and by proposing the inclusion of

peoples embedded in study systems.

5.1 Contribution to Geographic Information Science

Agent-based models are well suited to fill gaps between more formal, restricted models and thick

description of place (Page, 2008). Building bottom-up simulations can be understood as capturing

phenomena which emerges due to lower-level interactions; and/or as enabling a change in mate-

rial conditions for people embedded within study systems who decry state policy as the largest

hurdle to their adaptive capacity (Tyler et al., 2007). The baboon-agent model in chapter three

demonstrated an innovative GeoAI approach to simulating animal movement. This contribution to

GIScience, geosimulation, and computational movement analysis falls within and further encour-

ages data-driven methods for spatial simulation. Part of the rationale for algorithmic approaches to

agent-based modelling includes a necessary shift away from expert-calibrated simulation. An addi-

tional, and to be frank, obvious data source for non-expert calibrated models of animal movement

includes people who interact or otherwise share space with study species. As mentioned above in

chapter three and in discussion, people within tightly coupled socioecological systems hold impor-

tant situated knowledge of ecosystem traits, services, and challenges. This discursive contribution

to GIScience and geosimulation complements well with other increasingly computational participa-

tory approaches to modelling spatial systems. Both approaches respond to calls to de-emphasize

data authority in GIScience and social simulation.
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Whoriskey, K., Auger-Méthé, M., Albertsen, C. M., Whoriskey, F. G., Binder, T. R., Krueger, C. C.,

& Mills Flemming, J. (2017). A hidden markov movement model for rapidly identifying

behavioral states from animal tracks. Ecology and evolution, 7 (7), 2112–2121.

Widener, M. J., Horner, M. W., & Ma, K. (2015). Positioning disaster relief teams given dynamic

service demand: A hybrid agent-based and spatial optimization approach. Transactions in

GIS, 19 (2), 279–295.

Widener, M. J., Horner, M. W., & Metcalf, S. S. (2012). Simulating the effects of social networks

on people’s hurricane evacuation rates.

Wikelski, M., Kays, R. W., Kasdin, N. J., Thorup, K., Smith, J. A., & Swenson Jr, G. W. (2007).

Going wild: What a global small-animal tracking system could do for experimental biolo-

gists. Journal of Experimental Biology, 210 (2), 181–186.

Willcock, S., Cooper, G. S., Addy, J., & Dearing, J. A. (2023). Earlier collapse of anthropocene

ecosystems driven by multiple faster and noisier drivers. Nature Sustainability, 1–12.

Willem, L., Verelst, F., Bilcke, J., Hens, N., & Beutels, P. (2017). Lessons from a decade of

individual-based models for infectious disease transmission: A systematic review (2006-

2015). BMC infectious diseases, 17, 1–16.

Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I., Clay, T. A., de Grissac, S., Demšar,
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