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Abstract

Cervical lymph node detection and accurate classification are essential for the staging
and optimal management of patients with head and neck malignancies. While experts
can accurately identify large abnormal lymph nodes, the sensitivity for detecting early-
stage pathologic or metastatic lymph nodes, measuring 5-10 mm, remains suboptimal.
Consequently, invasive neck dissections or sentinel node biopsies are often required for
patients with head and neck cancers at high risk sites. To address this issue, there is
growing interest in employing radiomic and artificial intelligence (Al) methodologies for
precise diagnosis and classification of neck lymph nodes. A critical step in any
classification task is object detection and, depending on the approach, lesion
segmentation. Deep learning (DL) techniques have demonstrated exceptional
performance in various image analysis tasks, including semantic segmentation and
object detection. Nonetheless, lymph nodes present unique challenges due to their
small size and limited representation in computed tomography (CT) scans. This thesis
aims to develop a non-invasive algorithm for the detection and automatic segmentation
of cervical lymph nodes on contrast-enhanced CT scans, paving the way for future
diagnostic classification algorithms in research and clinical settings. To achieve this, we
employed various DL approaches to detect and segment small lymph nodes, ranging

from 5 to 10 mm in size. After evaluating multiple architectures, we attained a Dice



score of 0.8014, demonstrating that despite their small size, cervical lymph nodes can

be detected and segmented automatically using deep learning techniques.



Réesumé

La détection et la classification précise des ganglions lymphatiques cervicaux sont
essentielles pour la stadification et la prise en charge optimale des patients atteints de
tumeurs a la téte et au cou. Alors que les experts peuvent identifier avec précision les
gros ganglions lymphatiques anormaux, la sensibilité pour détecter les ganglions
lymphatiques pathologiques ou métastatiques a un stade précoce, mesurant 5 a 10
mm, reste sous-optimale.ll existe donc un intérét grandissant pour l'utilisation
d'approches radiomiques et de l'intelligence atrtificielle (Al) pour le diagnostic de
précision et la classification des ganglions lymphatiques au cou. Cependant, une étape
essentielle pour toute tache de classification est la détection d'objets et, en fonectionde
I'approche spécifique utilisée, la segmentation des lésions. Les techniques
d'apprentissage en profondeur (DL) ont donné d'excellents résultats pour une variété de
taches d'analyse d'images, y compris la segmentation sémantique et la détection
d'objets. Cependant, les ganglions lymphatiques posent des défis uniques parce que la
majorité sont petits et constituent un tres petit pourcentage de pixels ou de voxels
globaux sur une tomodensitométrie. L'objectif de cette thése est de construire un
algorithme non-invasif visant la détection et la segmentation automatique des ganglions
lymphatiques cervicaux dans les tomodensitométrie avec injection de contraste. Un tel
outil pourrait alors constituer I'élément de base de futurs algorithmes de classification de

diagnostique en recherche et, éventuellement, en clinique. A cette fin, nous avons



utilisé différentes techniques de DL pour la détection et la segmentation des ganglions
lymphatiques, nous concentrant sur les petits ganglions lymphatiques mesurant de 5 a
10 mm. De plusieurs architectures flrent évaluées, atteignant un coefficient de Dice de
0.8014. Grace a diverses techniques d'apprentissage en profondeur, nous démontrons
gue malgré leur petite taille, la détection et la segmentation automatiques des ganglions
lymphatiques cervicaux peuvent étre effectuées en utilisant I'apprentissage en

profondeur.



Acknowledgements

| want to express my sincere gratitude to my supervisor Dr. Reza Forghani for his
tremendous mentorship, support, and invaluable guidance throughout my graduate
studies. | have been fortunate to explore a wide range of fields under his supervision,
which has enriched my academic journey. | hope to one day be able to dedicate and
contribute to medicine as he does. | also appreciate my co-supervisor’s support, Dr.
Gerald Batist.

| would also like to thank my dear friend Dr. Padcha Tunlayadechanont, from whom |
have learned much. Her patience and dedication to this project are worth a lot to me.
Furthermore, | am grateful to her for our fantastic memories in Montreal.

| am deeply thankful to Mahfuz Al Hasan and Tahsin Mostafiz for their tremendous
assistance and support in the completion of my thesis.

Also, | would like to thank Kevin Pierre and Manas Gupta for all their valuable
contributions.

| am grateful to my dear friend Chantal for helping me write the French abstract of
this thesis. Also, | am thankful to the members of AIPHL, especially Dr. Caroline
Reinhold, Dr. Farhad Maleki and Ms. Rita Zakarian.

Lastly, | am extremely thankful to my family and friends for their continuous support and
love, especially my parents and brother, whose countless sacrifices have been the

foundation of my success.

Vi



Table of Contents

ADSEIACT . . . . i
RESUME . . . . e v
Acknowledgements . . ... ... : Vi
LISt Of FIQUIES . . . o X
Listof Tables . . ... Xiii
Contribution of Authors . ... ... i e Xiv
LiSt Of ACTONYMS . . . . et e e XV
INTRODUCTION
1.1 Motivation and Approach . . ......... .. . 2
1.20utline of Thesis . . . ... 6
1.3 CoNtribution . ... ... 7
BACKGROUND
2.1 Cervical Lymphnodes . ............ i 9
2.2 The challenqing task of lymph node detection and segmentation . . 14
23 AIINMEdICING . . ..o 15

Vi



2.3.1 PreproCeSSING . . o v v o v et e e e e e e

2.3.2Deep LearnNing . . . . oo o

2.3.31mage Segmentation . . . . ...

2.3.4 Evaluation MetriCs . .. ... ... e

2.3.5 Challenges of Deep Learning for Medical Image Segmentation

2.3.6 Related Work .. ...... ...

METHODOLOGY

3.l Datasel . ... ..

3.1.1 Dataset ACqQUISItION. . . . . . .. o

3.1.2 Dataset Preparation. . . . . ...

3.21mage PreproCcessing . . . . o oo v oo

3.3 Lymph Node Segmentation . . ... ....... ... ..

3.3.1 U-Net Architecture . . .. ... i

3.3.2 FOCUS NEeL. .. v vt e e e e

3.4 Experimental Setup . . . ... ..

3.4 1 Data Split. . .. ...

3.4.2TrainNing. . . .. oo o

3.4.3 Computational Resources and Hyperparameters. .. ......

3.4.4 Evaluation MetriCS . . . . . . oot

viii



6

RESULTS and Analysis

4.1 Lymph Node Segmentation . . ... ...... ...

A2 TraiNING -« v v v e e e e

4.3 Inference and Performance . . .. ... o

DISCUSSION AND CONCLUSION

5.1 Conclusion and Future Work . . . ... e

REFERENCES

56

58

63

74

75



List of Figures

1.1 Lymph-Node Levels in the Neck. The metastatic nodes' presence and location can

strongly affect the disease prognosis and potential therapeutics. .. ........... 3

2.1 Imaging of a patient with a metastatic lymph node. The white arrow in CECT

demonstrates a metastatic lymph node . ... ...... ... .. . . . . 10
2.2 Imaging-based classification of deep cervical nodes. . ... ............ ... 12
2.3 Reqgion of interesSt CroppinNg . . . - . . v ot o e e 16

2.4 The relationship between artificial intelligence, machine learning, and deep learning

17

2.5 The hidden convolutional unit structure. . .. .. .. .. .. i 21

2.6 Comparison of SegNet with FCN. a, b, c, and d represent the values in a feature

map. While FCN learns deconvolution operations, SegNet uses the maxpooling indices

to upsample the feature Maps . . . . .. o .o e 25

2.7 U-NEt StTUCIUIE . . . o o e e e e e e e e e e e e 27

3.1 The steps taken to prepare the ground truth: A. First, we find a LN (the red arrow is

representative of a cervical LN at level I). B. Then, we measure the size of the longest

axis of the LN. We have to move forward and backward of the subsequent slic. . 38

3.2 U-net structure used for the ground truth. . ... ... ... ... ... . ... . ... 42




3.3 The schematic of additive attention U-net. . . ... ........ . . ..., 43

3.4 The architecture of Attention U-Net for LN segmentation. . .............. 44
3.5 Atrous ConvolUtioN . . . . ... ot 48
3.6 The architecture of the FOCUSNEt . . . . .. .. i e i 50

4.1 Sample image of the dataset. Axial view of CT scan. Manually segmented Right

level IB LN (pink), Right level Il LNs (red and yellow), Left level IB LN (blue) and Left

level Il LNs (green and White). . .. . .. .o oo e e e e e 57

4.2 Whole 3D of LNs of the person in Figure 4.1. LNs in other levels, including level IA,

level Il (right side), level Il (Ieft side) and level 1V (left side), are presented as well 58

4.3 Part of the learning curve of the S-Net. (a) on the training dataset (b) on the

validation dataset. The horizontal axis indicates the number of epochs. The vertical axis

represents the performance of the learning model, shown and calculated as the Dice

COETiCIEBNT . . . . o o 60

4.4 Plot of Loss error of the S-Net. (a) over the training Epochs (b) over the validation

Epochs. The horizontal axis indicates the number of epochs. The vertical axis

represents the LOSS BITOr. . . . . . . ot e e e e e e 61

4.5 Multiple LNs and their segmentation results. (a) Image with segmented LNs. Expert

annotations are shown in red and model annotations are shown in blue. (b) The nodal

area is zoomed in for visual inspection. (c) Mask image. (d) The output of the model

............................................................... 65

Xi



4.6 Examples of segmentation performance of the S-Net model for Multiple LNs. Mask

is the expert annotations and output is the model annotations. . ........... 66

4.7 Spatial context network prediction for Lymph Node Segmentation: (a) accurate

prediction, (b) multiple lymph nodes prediction with low false positive. Continued on next

7= 1 [ 67

xii



List of Tables

4.1 Comparing the performance of the Attention U-Net, CaraNet model and S-Net

MOAElS . . . . e 64

xiii



Contribution of Authors

Saba Ghazimoghadam conducted part of the literature review and contributed to the
design of the study, working collaboratively with the multi-disciplinary team. She
participated in the curation of data and annotated/segmented the objects of interest
(lymph nodes), providing the data used for the training of the deep learning models.
Other members of the laboratory team wrote the code for the experiments. Saba
Ghazimoghadam contributed to the analysis of the data and preparation of the

manuscript that will be submitted for publication.

Xiv



List of Acronyms

2D

3D

AG

Al

ASPP

BCE

CECT

CNN

CT

DCAN

DCNN

DL

DICOM

DNN

DSC

FCN

FOV

GAN

Two-dimensional

Three-dimensional

Attention Gate

Artificial Intelligence

Atrous Spatial Pyramid Pooling
Binary Cross Entropy
Contrast-enhanced CT
Convolutional Neural Networks
Computed Tomography

Deep Contour Aware Network
Deep convolutional neural network
Deep Learning

Digital Imaging and Communications in Medicine
Deep Neural Network

Dice Similarity Coefficient

Fully Convolutional Network
Field-of-view

Generative Adversarial Network

XV



GPU Graphics Processing Units

HNSCC Head and Neck Squamous Cell Carcinoma

IOU Intersection Over Union

LN Lymph Nodes

ML Machine learning

MLP Multilayer perceptrons

MRI Magnetic Resonance Imaging

OLNM Occult Lymph Node Metastases

OSCC Oral Squamous Cell Carcinoma

RECIST Response Evaluation Criteria in Solid Tumors
ReLU Rectified Linear Unit

SAD Short Axis Diameter

XVi



Chapter 1

Introduction

Head and neck cancers encompass primary tumors found in the lips and oral cavity,
nasopharynx, oropharynx, hypopharynx, larynx, salivary glands, paranasal sinuses, in
addition to non-mucosal cancers such as those arising from the thyroid gland and other
less common sites (9). The Global Burden of Disease study revealed that 5.3% of all
cancer-related deaths could be attributed to head and neck cancers. Between 1990 and
2017, incidence rates declined for larynx and nasopharyngeal cancers but increased for
lip, oral cavity, and other pharyngeal cancers. The global burden of head and neck
cancers is projected to rise for both men and women by 2030 (10, 11). Tobacco use
and alcohol consumption are the leading risk factors (11).

Over 90% of mucosal head and neck cancers are classified as squamous cell
carcinomas or related variants. These cancers exhibit aggressive behaviour and are
prone to developing early cervical lymph node metastasis or late-stage distant

metastasis, even with effective treatment (12).



1.1 Motivation and approach

Head and neck cancers frequently metastasize to regional lymph nodes (LN) through
lymphatics, making routine cervical LN assessment essential (13). LN metastases
significantly impact disease staging and treatment strategy. Patients with head and neck
cancer and metastatic LNs may be treated with surgery, chemoradiation, or both. Nodal
staging influences treatment planning, including the extent of neck dissection surgery
and radiation therapy (14). Pathological cervical LNs are also crucial prognosticators for
overall survival (15, 16). For the sample, bilateral or multiple metastatic neck nodes, as
well as nodes contralateral to the primary tumour, significantly decrease patients’
survival rates (17).

In current clinical practice, the evaluation of LNs on CT is based on 2-dimensional
measurements. Despite significant advances in LN evaluation and classification, expert
discrimination of abnormal from normal LNs is imperfect, and the accuracy can be even
less when interpretation is performed by radiologists not subspecialized in head and
neck imaging. Particularly, detecting early nodal metastases in small LNs measuring
less than 1 cm remains a significant challenge (5, 14).

Managing patients without evidence of cervical LN metastasis upon clinical
examination, or “clinically negative (NO) necks,” remains controversial due to the
possibility of occult LN metastasis, which is undetectable radiologically and clinically.
Neck dissections are routinely performed for patients with clinically NO necks and high-

risk tumours, but this may lead to overtreatment with potential for complications in many



cases (17, 18). Consequently, there is significant interest in predictive models to
improve diagnostic accuracy and reduce unnecessary elective neck dissections (14,

19). Figure 1.1 demonstrates the anatomical stations of the neck LNs (3).

Sternocleidomastoid muscle

Figure 1.1. Lymph node Levels in
the Neck. The metastatic nodes'
presence and location can strongly
affect the disease prognosis and
potential therapeutics (3)

The reliability of a physical examination involving cervical palpation can be affected by
factors such as cervical node size, subcutaneous fat presence, and the examiner's

experience (18). Importantly, abnormal nodes located in deep nodal stations may not be



palpable on physical exam. Therefore, after conducting a comprehensive medical
history and thorough physical examination, medical imaging is performed for a more
accurate assessment, potentially upstaging the clinical assessment (3, 15, 19).

Imaging assists in determining clinical staging and the extent of neck dissection before
tumors resection surgery (20). Both contrast-enhanced CT (CECT) scans and magnetic
resonance imaging (MRI) can be used for the evaluation of cervical LN in head and
neck squamous cell carcinomas (HNSCCs) (18, 19). At many centers, CT is the first line
modality for the evaluation of mucosal cancers below the level of the hard palate.

CECT scans provide valuable quantitative information on LN sensity, shape, and texture
(16). However, LN identification can be time-consuming and challenging, requiring
specific expertise (13, 15). Importantly, the sensitivity for detection of early nodal
metastasis falls significantly in small lymph nodes less than 1 cm on anatomic imaging.
There is great interest in computer assisted evaluation of lymph nodes to assist
diagnosis. However, the first step for such analysis would be LN segmentation. Manual
segmentation of LNs in CT scans is complex and varies depending on the radiologist's
experience, and would be prohibitively time consuming for routine radiological practice,
highlighting the need for an automated detection and segmentation system in the
medical image analysis (13, 21). Automated segmentation approaches can also be
beneficial for therapy planning.

There has been a specific interest in using different radiomic or computer vision

approaches, including deep learning (DL), to improve LN detection and classification



accuracy. However, due to the small dimensions of LNs, the primary emphasis of
current approaches is on identifying and segmenting these objects. To achieve success,
it is essential to automate these processes. This prerequisite is necessary for the
integration of such tools into the busy clinical workflow, enabling their adoption in clinical
practice and ultimately improving patient care. The automated segmentation of LNs
using DL poses distinctive challenges due to their typically small size, occupying only a
small fraction of pixels on a given scan. This difficulty is especially prominent for the
nodes that have the potential for the most significant impact through machine-assisted
classification — specifically, the small nodes measuring less than 1 cm, where expert
evaluation tends to be less precise (13).

DL techniques have demonstrated outstanding performance in computer vision tasks,
including semantic segmentation, object detection, and regression prediction, and have
become popular for automated segmentation on medical images (22). Deep
convolutional neural network (DCNN) algorithms have gained popularity for automatic
segmentation in the medical images (21). However, its application in the evaluation of
small LNs in head and neck cancer remains limited. (23, 24). This thesis aims to
pioneer LN segmentation as a preliminary step in this field, with the objective of
enhancing patient management and quality of life by minimizing the extent or necessity

for elective neck dissections in head and neck cancer patients with a clinically NO neck.



1.2 Outline of Thesis

To the best of our knowledge, no studies have implemented a model for the automatic
segmentation of small non-metastatic cervical LNs in healthy individuals. Therefore, in
this project, we aim to develop a non-invasive clinical tool for segmenting neck LNs in
contrast-enhanced CT scans, enabling the extraction of high-level quantitative features
in the future. We will employ DL models to create algorithms for this purpose.

Previous studies have typically considered LNs with a minimal axial diameter greater
than 10 mm as abnormal, potentially overlooking metastases in LNs with a minimal axial
diameter of less than 10 mm (13, 25). We have broadened our criteria to include LNs
with a maximal axial diameter of 5 mm or larger to increase precision in detecting
smaller LNs.

This thesis aims to apply advanced DL methods for LN detection and segmentation in
contrast-enhanced neck CT scans and investigate state-of-the-art DL algorithms for LN
segmentation. Evaluating the proposed objective will help highlight experimental
research aspects in both medicine and computer science, ultimately leading to

enhanced disease identification and improved health outcomes over time.

Given that cancer is a leading cause of death worldwide and its prevalence is steadily
increasing, accurate identification and analysis of LNs are crucial for faster diagnosis

and more precise treatment decision-making.



The structure of this thesis is as follows: Chapter 2 provides a comprehensive overview
of the necessity of this work and reviews relevant literature in the field. Chapter 3 details
the project's methodology, outlining the steps performed. Chapter 4 presents the
visualization of experimental results and discussion. Lastly, Chapter 5 offers our

conclusions and directions for future research related to this project.

1.3 Contribution

We aim to contribute to the fields of artificial intelligence (Al) and medical imaging
analysis by demonstrating the promising results of our proposed algorithm in LN
localization and segmentation. The main contributions of this thesis can be summarized
as follows:

e Generating manual ground truth by annotating medical image data.

e Applying a preprocessing technique to the image dataset for effective and
accurate analysis by the proposed DL model.

e Developing a DL-based model using CECT scan images to aid physicians and
radiologists in rapidly diagnosing small LNs and facilitating accurate detection
and segmentation of cervical LNs.

e Conducting a comparative performance analysis of our proposed model with

other state-of-the-art methodologies, demonstrating that our algorithm can detect



and segment cervical LNs with high accuracy in contrast-enhanced CT scan

datasets using metrics such as Dice score and Jaccard index.



Chapter 2

Background

This section discusses the significance of cervical LNs in head and neck cancers, the
rationale for this project, and the various DL methods employed for LN segmentation.
We will also cover computational image analysis, which consists of data preparation,

data preprocessing, and DL model development.

2.1 Cervical Lymph nodes

In solid cancers, regional LN metastasis is an important prognostic indicator. Clinicians
routinely evaluate LN shape, morphology, and size in malignancies to assess disease
progression and determine therapeutic strategies (21, 26). In head and neck cancers,
metastasis to cervical LNs has a significant impact on prognosis and treatment. LN
metastasis is a crucial prognostic factor, and LN analysis plays an essential role in
cancer staging and treatment effectiveness (15, 20, 21). Thus, accurate detection of
metastatic LNs is important (26).

LN size, morphology, and functional metabolic activity help differentiate metastatic from
reactive LNs (5). Diagnostic imaging is essential for head and neck cancer evaluation

and staging, as it can identify metastatic LNs that are not clinically detectable (8).



Although comparative research is limited, CECT scans are often considered the first-
line, optimal imaging modality due to their reliability and accessibility (8). Figure 2.1
demonstrates a CECT of a patient with a metastatic LN detected through this imaging

technique.

Figure 2.1. Imaging of a patient with a normal LN.
The white arrow in CECT demonstrates an example
of a normal level IB LN (8).
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Imaging-based classification for cervical LNs is divided into seven levels, as illustrated
in Figure 2.2. Detailed descriptions of the landmarks for each level are beyond the
scope of this thesis and can be found in reference (5).

These levels can often help find the primary tumor site due to characteristic anatomic
lymphatic drainage patterns. Levels I, Il, and Il are frequently involved in the oral cavity
and lip cancers; levels Il, Ill, and IV are commonly involved in laryngeal, oropharyngeal,
hypopharyngeal, and thyroid cancer; and level V LNs are mostly involved in
nasopharyngeal cancers (27).

In head and neck cancers, the necessity for invasive LN evaluation through dissection
depends on the tumor's site and stage. For instance, due to the extensive lymphatic
network in supraglottic cancers, occult LN metastasis is highly probable. Consequently,
for T1 and T2 stage supraglottic cancers, it is strongly advised to consider radiotherapy
or neck dissection of bilateral LNs in levels 1l and Ill, even in the absence of clinical and

radiological signs of metastasis.
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Figure 2.2. Imaging-based
classification of deep cervical nodes

(5)

For T2b and T3 stage glottic cancers, the same elective treatment approach,
radiotherapy or surgery, is applied for bilateral LNs in levels I, 1ll, and IV. Depending on

nodal involvement in glottic tumors, treating LNs in levels 1b and V may be suggested

In oral squamous cell carcinoma (OSCC), the most common oral cavity malignancy,
there is a risk of occult metastasis to neck nodes even when there is no clinical or

radiological evidence of nodal disease. Neck nodal metastasis can reduce survival by

12



50%, highlighting its role as the most significant prognostic factor (29). Literature
suggests that elective neck dissections are recommended for levels I, Il, and Il as
metastatic LNs at levels IV and V are rarely seen (29, 30). One study found that 54% of
OSCCs with radiological NO had occult metastasis in neck nodes, with 44% in level I,
32% in level I, 14% in level 1ll, and 4% in level 1V, while none were found in level V
(29). Another study evaluated cervical occult LN metastases (OLNM) in primary parotid
carcinoma in patients with NO based on clinical and imaging examination. These
patients underwent elective neck dissection, revealing that 30.3% had OLNM, with 69%
in level Il, 22.5% in level 1ll, 20% in level |, 16% in level V, and 7.5% in level IV. Levels
I, 11l and V were the most common locations for OLNM (69%, 22.5%, and 16%,
respectively) (31). As malignant parotid carcinoma is rare, level V LNs are less clinically
significant regarding metastasis (31, 32). We did not include level V cervical LNs due to
their limited clinical significance.

Considering the possibility of harboring micrometastases, small LNs should be
evaluated for disease staging. Manual detection and segmentation of cervical LNs can
be time-consuming, error-prone, and dependent on the observer's experience (33). The

reasons for this are explained in more detail in the subsequent section.

13



2.2 The challenging task of lymph node detection

and segmentation

Detecting LNs can pose challenges for several reasons:

e LNs exhibit various sizes, shapes, and locations in CT scans, and their
appearances can be influenced by disease effects.

e Different radiologists or medical professionals may have significant variations in
interpreting LNs based on their expertise and experience. Additionally,
processing vast amounts of data and the large size of each scan can be time-
consuming and may lead to errors even among skilled professionals.

e Small lymph nodes can be difficult to distinguish from some other normal
structures such as small vessels.

¢ Noise and artifacts pose further challenges in LN detection, which can arise from
factors like scanner malfunctions, imaging protocols, and patient movement
during CT scans.

Consequently, fully automated approaches are necessary for rapid and accurate
detection and segmentation of the LNs (33). There is evidence in the literature that Al
can potentially transform the healthcare sector, particularly in the image recognition (1,
34). Thus, this project aims to develop a model for automatically segmenting head and

neck LNs.

14



2.3 Al in Medicine

The application of Al techniques is a growing trend for performing health-related data
and imaging analysis. Due to its significant advancements, Al has been utilized for
problem-solving and decision-making in various areas of medicine aimed at improving
the healthcare domain (35, 36).

Medical image analysis is a complex task that requires considerable specialist effort. It
may be affected by human error, and different experts can have varying interpretations.
Consequently, it is crucial to employ machine learning (ML) algorithms to automate the
image analysis (1). One of the essential steps before model development is image
preprocessing, where the proper application of different preprocessing techniques
results in more accurate image analysis. For example, a large portion of each CT slice
might be irrelevant and, therefore, not used in image analysis. By cropping the image
and reducing its size, preprocessing increases the relative amount of relevant imaging

data for analysis.

2.3.1 Preprocessing

Various preprocessing techniques are employed to make images more suitable for
analysis, such as cropping, resizing, artifact removal, and filtering. All images may need
to be scaled down to accelerate training. Cropping CT images should also be performed

to extract the main parts and remove redundant components before feeding the images

15



into the model (37). The data size of an original Digital Imaging and Communications in
Medicine (DICOM) image is 512 x 512, which can lead to a heavy computing workload.
Therefore, the CT images were resized and cropped to 224 x 224 only to include the

region of interest. Figure 2.3 demonstrates an example of the cropping operation (15).

[45]

512 i’
Figure 2.3. Region of interest cropping (15).

Another preprocessing technique for CT images is hormalization. Different CT scan
equipment may have variations in the field of view and multiple configurations.

Normalization operations can be applied to remove these differences using the following

formula:

Pixel — Pixel min
Pixel norm =

Pixel max — Pixel min

16



In the mentioned formula, Pixel norm refers to the normalized pixel data in CT images,
while Pixel max and Pixel min represent the maximum and minimum gray values in CT

images, respectively (15).

2.3.2 Deep Learning

Machine learning and DL models can be classified into different types of learning, such
as supervised, unsupervised, and reinforcement learning. Supervised learning uses
labelled datasets for classification or predictions, requiring human intervention to label
input data accurately. In contrast, unsupervised learning deals with unlabeled datasets,
discovering previously undetected patterns. Reinforcement learning is a process where
a model learns to make a sequence of decisions based on feedback to maximize the
reward (38).

DL is a subset of machine learning algorithms known for efficient performance in
various healthcare domains. It uses multiple layers to extract features from raw input,
with increasing interest in automated applications (Figure 2.4) (1, 39). Unlike machine
learning, DL does not require human expertise for feature selection, as the model itself

determines which features to use for the classification (40).
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Artificial Intelligence (AI)

Machine Learning

Deep Learning Artificial Neural
Network (DNN)

Convolutional Neural Network

Figure 2.4. The relationship between artificial
intelligence, machine learning, and deep learning

(1)

DL powers numerous Al applications that enhance automation and physical tasks (41).
Requiring minimal human input, DL uses raw pixel data and has outperformed existing
methods for detection and classification problems (42, 43).

A deep neural network (DNN) is an artificial neural network consisting of multiple layers
between input and output layers inspired by the human biological nervous system.
These networks simulate the human brain's functionality and can learn from large
amounts of data (41). Depending on the problem's complexity, one or more layers are
added between the input and output layers, called hidden layers. The number of layers
indicates the model's complexity and capacity (1).

The input data of a DNN undergoes processing, with the increasing complexity of data

representations in subsequent layers. The current output is then transferred to the next

18



layer. DNNs use a mathematical algorithm with various layered parameters in a
hierarchical fashion, trained and tested on labelled data through an iterative process to
minimize prediction error compared to the actual label. After training and developing the
model on labelled databases, neural networks can predict labels on new, unseen data
(1, 44-46).

In a feedforward neural network, each neuron of one layer connects to every neuron of
the next layer as a directed acyclic graph, which is inefficient with a large number of
inputs. Multilayer perceptrons (MLPSs), generative adversarial networks (GANS),
convolutional neural networks (CNN), and autoencoders are based on feedforward
networks (47).

CNN is a subclass of DNN and a state-of-the-art model with excellent performance for
object detection, segmentation, classification, and many other image-processing tasks
(7). CNN algorithms have been implemented for automated segmentation in different
anatomical sites with promising results, including CT scans of the liver and bladder,
PET/CT images of skeletal structures, and prostate magnetic resonance imaging (48-
51).

CNN contains a set of layers, each doing a particular operation such as convolution,
loss calculation and pooling. For functionality, CNN uses spatial associations of the data
and replaces neurons with convolutions; therefore, only a limited number of connections
between layers is needed, reducing memory requirements. After the beginning layer,

which is an input layer, a stack of convolutional layers performs convolutions on the

19



input. The convolution filters, also known as kernels, act as feature extractors. The
results of convolving on the input would be feature maps. Defined by the kernel size,
each neuron in the feature map responds only to a region of the previous layer, called
the receptive field.

Activation function, such as the rectified linear unit (ReLU), is applied to the network to
add nonlinearity. Then, pooling layers are applied to reduce the input dimensions and
increase the shift-invariance in the feature detection. The sequence of convolutional,
activation and pooling layers are stated as hidden convolutional units (figure 2.5) (7).
For the learning process, an input is fed to the neural network. The network analyzes
the input and predicts an output. The loss function indicates the difference between the
prediction output by the model and the expected output. The DL network training is
performed with the objective of optimizing and modifying the weights and biases based
on loss value (or cost function). Matrix convolution repetitively happens and
subsequently produces new hidden layers of neural maps. In the optimization process,
backpropagation and gradient descent are repeatedly applied to the network, updating
the network parameters until reaching a constant criterion. Commonly used evaluation
metrics to assess the performance of segmentation tasks are the Dice coefficient,

intersection over union and pixel accuracy (1, 47).
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2.3.3 Image Segmentation

According to the American Cancer Society's 2022 report, an estimated 608,570 cancer-
related deaths occurred in the United States, amounting to approximately 1,670 daily
deaths. Early detection of cancerous cells and taking appropriate measures can save
millions of lives. In object detection, only bounding boxes are generated, which do not
provide information about the shape of the cells. This is where the importance of image
segmentation arises ((1, 52).

Image segmentation refers to the process of dividing an image into several areas based
on different features such as geometric shapes, spatial texture, grayscale, and color.
Image segmentation is divided into semantic segmentation, instance segmentation and
panoramic segmentation. Semantic segmentation is the task of medical image
segmentation. There is no universal segmentation method appropriate for all images
(53).

Segmentation is a necessary step in obtaining more precise results for the following
steps in machine learning, such as image measurement and feature extraction (14).

In medical imaging segmentation, the area of interest is separated from the rest of the
image contents (54), detecting the pixels of organs or lesions from the original images,
such as MRI or CT scans (55). Medical image segmentation has been utilized for a wide
range of applications, such as treatment planning and tumor detection (56, 57)

Manual segmentation is a laborious and time-consuming task that requires expert input,

which may not be practically feasible as the number of images necessary for analysis is
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increasing exponentially due to advancements in imaging technology (1, 34). These
challenges highlight the need for artificial intelligence methods to address these issues.
The rapid progress of DL has allowed DL-based image segmentation algorithms to
achieve impressive results in the image segmentation (53).

Depending on the model complexity, segmentation can represent either the whole
object or one of its components. DL has surpassed traditional machine learning
methods regarding segmentation speed and accuracy, with CNNs demonstrating
notable superiority by providing unlimited accuracy and feature learning (34). Advances
in CNNs have improved both the classification and segmentation of images. CNNs have
been implemented in segmenting blood vessels in various areas, including the retina
and heart (58). They have also achieved state-of-the-art performance for segmentation
and classification in MRI images of head and neck cancers and brain tumors (59, 60).
This method has attained high Dice coefficients for segmenting other structures, such
as the bony orbit and its background (61).

Despite the significant advancements in CNNs, they do not adequately address the
complex challenges of image segmentation, leading to the emergence of other
segmentation networks, including U-net (1). The following sections will discuss DL-

based networks used for medical image segmentation.
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Fully Convolutional Network

The pioneering work of using the most advanced DL models for image segmentation
was the fully convolutional network (FCN) proposed by Long et al. (62). The typical FCN
consists of a series of convolution layers followed by a softmax layer to attain the
classification information of each pixel. The network takes an input of any size and
generates a correspondingly sized output. The feature map of the last convolution layer
is upsampled, and the classification of each pixel is carried out to accomplish image
segmentation. The FCN has been used widely used for segmentation, such as brain
tumor segmentation in multimodal 3D MRIs (63), optic disc and cup segmentation in
fundus images (64) and pathological lung tissue segmentation in CT scans (65).
However, FCN has some limitations, as its upsampling results might be fuzzy and not

sensitive enough to image details, leading to less accurate segmentation results (53).

SegNet

SegNet is a semantic segmentation model based on the FCN's segmentation task. In
essence, SegNet is a variant of FCN in the decoder part. SegNet consists of a stack of
encoders and a corresponding decoder network, followed by a softmax classification
layer to assign a class label to each pixel in the image. The main difference between
SegNet and FCN lies in the upsampling method during the decoding phase. While FCN
uses transposed convolution layers during decoding to upsample feature maps, SegNet

stores max-pooling indices during the encoding phase and uses them to upsample low-
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resolution feature maps during decoding. The upsampled feature maps are then
convolved with a trainable convolution kernel to produce a dense feature map. Finally,
the feature maps are upsampled to their original resolution and fed into the softmax
classifier, generating the final high-resolution segmentation (66). Figure 2.6 illustrates
the difference between SegNet and FCN decoders. Examples of SegNet applications
include automated brain tumor segmentation on 3D MRI dataset (67) and infected

tissue region segmentation in CT lung images (68).
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Figure 2.6. Comparison of SegNet with FCN. a, b, ¢, and d represent the values in a

feature map. While FCN learns deconvolution operations, SegNet uses the max-pooling
indices to upsample the feature maps. Figure adapted from (6).
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U-Net

To segment whole images, a network may not be able to process images beyond a
certain resolution due to memory limitations. Dividing large images into regions allows
the network to segment larger images. Ronneberger et al. modified the architecture of a
fully convolutional network and proposed a model that works with only a few annotated
images for training while delivering a more accurate segmentation (2). This novel
architecture, called U-Net due to its U-shaped structure, has gained traction in medical
image segmentation, leading to the development of its variants, such as 3D U-Net and
deep contour-aware network (DCAN) (55, 69, 70).

U-Net comprises the contraction section, the bottleneck section, and the expansion
section (Figure 2.7). The contraction section consists of several contraction blocks,
each with two 3x3 convolutions followed by a ReLU and a 2x2 max-pooling operation,
doubling the number of feature channels. The contracting path generates a dense
representation of the input image. Each stage of the expansion phase, consisting of two
3x3 convolutions followed by a ReLU, is followed by a 2x2 up-sampling layer, halving

the number of feature channels (1, 2).

Attention Gates in U-Net Model

CNN models have excessive use of model parameters and computational resources

due to repeated extraction of similar low-level features. To overcome this problem,
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attention gates (AG) were developed, which can be easily incorporated into CNN
structures and increase their prediction accuracy and sensitivity. AG in U-Net improves
its prediction performance while maintaining computational efficiency because the
model learns to focus on the most significant regions of the image while suppressing the

irrelevant or unimportant parts (71). More details on this model are described in Chapter
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Figure 2.7. U-Net structure (2)
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2.3.4 Evaluation Metrics

The performance of a segmentation model should be assessed using appropriate and
standardized metrics to ensure the model makes a significant contribution to the field.
Commonly used evaluation metrics include Accuracy, Precision, Recall, F1-score,

intersection over union (IOU), and Dice coefficient. The following equations represent

each of these metrics:

A B TP + TN
CCUraY=Tp ¥ TN + FP + FN

Precision — TP

recision = TP £ FP

Recall = i

€A TTP ¥ FN
2 x Precision x Recall

F1 Score =

Precision + Recall

TP, FP, TN, and FN refer to true-positive, false-positive, true-negative, and false-
negative, respectively (71).

IOU is calculated as the intersection of predicted regions and ground truth regions
divided by the union of both regions. The IOU can be represented with the following

formula:

TP

OV = 55 PP+ PN
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Dice similarity is an overlap metric often used to evaluate the quality of segmentation
maps by comparing generated segmentation against the ground truth. The following
formula is used to calculate the Dice similarity coefficient (DSC):

2G|
|G| + |T|

DSC
Where G represents the generated segmentation, and T represents the ground truth.
The numerator is the number of overlapping pixels from G and T multiplied by two, while
the denominator is the total number of pixels in both G and T. A DSC of 1 signifies
perfect overlap, and a DSC of 0 indicates no overlap (72, 73).
Other potential metrics for a proposed model include execution time and memory
footprint. While providing the time needed for training the network may not be essential,
it can assist other researchers or contribute to reproducibility. Additionally, Graphics
Processing Units (GPUSs), which are commonly used, may have limited memory. Thus,
reporting the peak and average memory footprint of a model can be helpful for

understanding implementation-dependent aspects (66).
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2.3.5 Challenges of Deep Learning for Medical Image

Segmentation

Limited Annotated Data and Overfitting

DL networks necessitate large datasets to achieve high accuracy in complex conditions,
such as medical image segmentation. Collecting a vast amount of annotated data for
medical images is both time-consuming and expensive (74). When the training dataset
is small, overfitting may occur, causing the model to perform well on the training data
but poorly on new, unseen data, resulting in a weak generalization (75)

Various approaches can help increase data size, improve DL model performance, and
address the overfitting problem:

1. Data Augmentation: This technique involves increasing the size of the training
data by applying transformations such as mirroring, rotating, cropping, flipping, or
adding noise to the original samples (76).

2. Patch-wise Training: In this method, an image is divided into smaller patches,
and the model is trained on each patch separately. However, this approach might
not be suitable for small organ segmentation, as random patching could lead to a
loss of contextual information and, consequently, an inaccurate segmentation
(55).

3. Sparse Annotation: This approach involves labelling only a small portion of the

data to reduce the time and cost associated with data annotation (77). However,
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the annotated data may not be representative of the entire dataset, leading to
poor generalization.
4. Transfer Learning: Fine-tuning a model, initially trained with a large dataset, on a

smaller dataset may enhance the model's performance.

Class Imbalance

Class imbalance occurs when only a small number of pixels belong to the region of
interest, while most patches correspond to the less important background area. This
issue is particularly prevalent in medical image processing. A network trained on such a
dataset could be biased toward the background, resulting in poor performance. To
overcome this problem, higher weights can be assigned to minority patches during

training (78, 79), and patch-wise training may also address class imbalance (80).

Computational Cost and training time

DL's ability to outperform humans comes at a cost. Justus et al. developed a model to
predict the computational cost of DL networks, specifically execution time (81). Training
networks to learn complex patterns from a dataset requires time and resources. Many
studies have focused on reducing execution time and achieving faster convergence.
Techniques such as batch normalization, down-sampling, and pooling have been

employed to facilitate faster convergence (48, 82).
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2.3.6 Related Work

Various DL architectures, such as U-Net and its variants, FCN, GAN, and others, have
been used for the task of organ segmentation (83). Numerous studies have utilized DL
algorithms to classify and predict cervical LN metastasis (84-87). However, to the best
of our knowledge, no studies have employed a model for the automatic segmentation of
non-metastatic cervical LNs in healthy individuals. Therefore, in this study, we aimed to
develop a DL model for robust LN segmentation in CECT scans of healthy individuals.
Avriji et al. used Detectnet and U-Net, for automatic segmentation and metastasis
detection in cervical LNs of patients with oral squamous cell carcinoma. Recall,
precision, and F1 scores were used to evaluate the model's performance for detecting
metastatic LNs, both overall and for each level separately. The recall values of
metastatic and non-metastatic LN segmentation were 0.742 and 0.782, respectively,
indicating insufficient performance that requires improvement (88, 89).

In another study by Tomita et al., CNN and transfer learning were employed to
differentiate between benign and metastatic cervical LNs in patients with squamous cell
carcinoma. The model's area under the curve (AUC) was calculated at 0.898, which
was higher than the radiologists' performance (90).

luga et al. (33) collected a dataset of 89 contrast-enhanced CT scans of the thorax
containing 4275 LNs. A radiologist segmented all the LNs semi-automatically,

evaluating the 3D volume of the LNs. A 3D fully convolutional neural network was

32



trained on this dataset using four-fold cross-validation. The total detection rates for
enlarged LNs were 76.9% in the training set and 69.9% in the testing set, respectively.
The detection rate of enlarged LNs, with a short-axis diameter (SAD) = 20 was much
better than that in the small LNs, with a SAD 5-10 mm, 91.6%

versus 62.2%, respectively.

Using a 3D CNN for extranodal extension detection in head and neck squamous cell
carcinoma by Kann and colleagues demonstrated that the CNN algorithm outperformed
radiologists (25).

A 3D foveal fully CNN (U-Net) was applied for automated detection and segmentation of
thoracic LNs using contrast-enhanced CT scans. The output was a probability map
indicating the likelihood of each voxel being an axillary or mediastinal LN. The algorithm
achieved excellent detection performance with reasonable generalizability and a DSC
value for segmentation accuracy, facilitating LN detection in routine clinical work (33).

It has been noted that while unidimensional measurement of LN SAD is routinely used
for nodal disease staging, two-dimensional (2D) approaches may underestimate lesion
size. Therefore, considering the entire volume of the LN is crucial for an accurate
segmentation (33, 91).

Manjunatha et al. proposed a two-stage approach for CT scans of mediastinal and
abdominal LNs. In Stage |, they used modified U-Net with ResNet architecture to have

high sensitivity, which was achieved with the cost of increased false positives, with
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sensitivities of 87% at 2.75 false positives per volume. For false positive reduction, they
used a 3D convolutional neural network classifier in stage Il (92).

Cai et al. developed a slice-wise label-map propagation algorithm on response
evaluation criteria in solid tumors (RECIST), inspired by weakly supervised image
segmentation and due to the expensive LN segmentation cost. They reached a mean
DSC of 92% on RECIST slices and 76% on the lesion volume (93).

Sartor et al. employed a CNN to automatically segment the clinical target volume of LNs
in patients with anorectal or cervical cancer. Using Dice scores and the distribution of
Mean Surface Distance for model evaluation, the CNN method achieved a high
performance (94).

Zhou et al. developed an FCN architecture for the segmentation of multiple organs in
3D CT images. Their model demonstrated promising results, achieving an acceptable
accuracy of 88.1% voxels for the training dataset and 87.9% voxels for the testing
dataset in segmenting 19 structures of interest. However, the authors acknowledged a
limitation of their network, which was its lower accuracy in segmenting smaller
structures (95).

Although DL models have been effectively employed in numerous fields, their use for
assessing small LNs in head and neck cancer is still scarce (16). Also, the
segmentation of objects which occupy only a small fraction of pixels remains a
challenging task (83). We will discuss this problem in more detail in the methodology

section.
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Chapter 3

Methodology

This chapter describes the whole workflow in detail. The first section contains the
dataset description and its preparation. The following sections are dedicated to a
comprehensive overview of the steps involved in this work, including the preprocessing,

training, and evaluation metrics in detail.

3.1 Dataset

3.1.1 Dataset Acquisition

The dataset consists of 221 head and neck contrast-enhanced CT scans obtained from
the Augmented Intelligence and Precision Health laboratory (AIPHL), which belongs to
the research institute and Department of Radiology of McGill University Health Center.
The institutional review board was approved at the McGill University Health Centre
Research Institute. The criteria for including participants in the study were as follows: (1)
The participants who have undergone a contrast-enhanced CT scan of the neck, (2) the
scan would have been interpreted as normal or with minor inconsequential incidental
findings, and (3) the participants would have been adults aged 18 years or older. The

criteria for excluding participants were: (1) The presence of any nodal disease or
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abnormality on the scans, (2) the presence of any known or suspected primary
malignancy on the scans, (3) the presence of significant inflammatory change or
abscess on the scans, and (4) any history of known malignancy.

Those CT scans belong to healthy individuals without any head and neck cancer.

3.1.2 Dataset preparation

The dataset was stored as DICOM files imported to an open-source software for
medical image visualization called 3D-slicer version 5.0.3. Imaging-based classification
for cervical LNs is divided into seven anatomical levels initially proposed by Som et al.
(20). Considering these levels, levels | to IV are the areas with the most remarkable
propensity for LN metastasis from HNSCC and of most significant clinical interest;
therefore, all levels | to IV of these CT scans, including 1A, IB, II, lll and IV, were
reviewed. Normal LNs with a long-axis diameter of > 5mm on axial planes were
manually segmented in the dataset by a trainee (S.G.) and a neuroradiologist (P.T.).
Figure 3.1 illustrates an example of this operation. Coronal planes would also be
reviewed when LN detection was challenging due to the surrounding soft tissues. The
remnants of each LN, which would be smaller than 5mm, were contoured in the
subsequent slices.

These annotations were then reviewed and modified as needed by a fellowship-trained

neuroradiologist and head and neck radiologist with over ten years of clinical practice
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experience (R.F.). The CT scans and their corresponding mask images were stored in

the format of NRRD files.

37



c d

Figure 3.1. The steps taken to prepare our ground truth: A. First, we find a LN (the red
arrow is representative of a cervical LN at level Il). B. Then, we measure the size of the
longest axis of the LN. We have to move forward and backward of the subsequent
slices on the CT image in order to find the slice where the LN is at its largest size. C. If
the longest axis is 3 5 mm, we would contour the whole LN. D. We would annotate the
subsequent slices containing the mentioned LN. Image D shows the last slice of the
mentioned LN.
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3.2 Image preprocessing

Preprocessing the data is one of the essential steps for getting the best image analysis.
This is why we took several steps for preprocessing consisting of center cropping,
windowing, clipping, and normalization.

In each CT image, slices above the bottom of the orbits and below the top of the lungs
were discarded. Each original DICOM image is 512 x 512 pixels. Many parts of each
slice would be redundant and should be removed to have a more accurate image
analysis. Also, during the training phase, the irrelevant regions in the original CT image
can cause a significant computational workload. Therefore, we center-cropped all
images to 384 x 384 pixels from the original image, which included the main anatomical
structures and our targets. For the final training, the process of the region-of-interest
extraction was automated and it was performed in the same way across all images.
Windowing maps the original pixel values of the image to a new specified range of
values, which helps improve the visibility of certain structures or tissues in the CT
image. We considered Slope 1, intercept 0, window center 40, and width 400, which are
the typical window center and window width values for the soft tissue in the head and

neck (96). We can visualize the LNs in these values properly.
Image = (Image x slope) + Intercept

window_min = level - (window_width / 2)
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window_max = level + (window_width / 2)
Based on the above formulas, the minimum and maximum values would be calculated

as:

window_min =40 - (400 / 2) =-160

window_max =40 + (400 / 2) = 240

Clipping is one of the common preprocessing techniques in image preprocessing.
Using the above formulas, the pixel values of CT slice images were limited to the range
of -160 to 240. Any pixel values below a lower bound or above an upper bound were
set to the corresponding bound values. By restricting the pixel values, clipping
enhances image contrast and visibility, making the image more appropriate for the

following processing. The formula for clipping an image can be written as:

clipped_image = max(min(original_image, 240), -160)

Where the original image is the input image and max and min are functions to compare
the pixel values in the input image to the maximum and minimum, returning them to
these values, respectively. After applying soft tissue windowing, the slices containing air
regions were removed from further analysis to improve the model's accuracy and

reduce the computational burden.
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Different CT scans might have various configurations. By deploying normalization in CT
images, the range of pixel intensity of the remaining values would be scaled between

zero and one using the following formula:

slice — min(slice)

Sli =
e norm = ax (slice) — min(slice)

Where slice is the source pixel data in CT images, slice norm is normalized CT images
pixel data, and max slice and min slice are the original CT images' maximum and

minimum gray values, respectively.

3.3 Lymph Node Segmentation

We trained and analyzed two different state-of-the-art architectures for LN

segmentation: U-Net with attention and Focus Net.

3.3.1 U-net Architecture

U-net and its variants have been widely used for segmentation in medical imaging. The
ability to work with small datasets and achieve high accuracy provides this model with
high utility in the analysis of medical images (2, 97, 98).

In the contracting path of the U-net, the input image goes through a series of

convolutional and pooling layers, which reduces the spatial resolution of the image and
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gives a compressed representation. Then the image goes through the expansive path, a
series of convolutional and upsamlping layers, which recover the spatial resolution and
result in the final prediction map. The training process is performed by calculating the
loss by comparing the model's predicted output with the ground-truth segmentation

mask. Figure 3.2 represents the fundamental architecture of the U-Net model.

Loss

prediction Mask

Compressed
Encoder representation Decoder

Figure 3.2. U-Net Structure used for the ground truth

Attention U-Net

Focusing on specific objects that are of importance and ignoring the irrelevant areas is a
desirable trait in the image processing network. The attention U-net achieves this trait
by using an AG. The expansive path of attention U-net has an AG implemented in the

skip connection of each layer. The corresponding features from the contracting path
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have to go through this AG before combining with the up-sampled features in the
expansive path. This AG also suppresses activations at irrelevant regions. Figure 3.3

describes an additive AG.

g—— IxIxl — 02 Resampler

E}-»J—» 1Xix1 — f —.B—®—.?<’

xX— 1Ixax1a — ‘

Figure 3.3. The schematic of additive attention U-net (4).

Based on Figure 3.3, each AG has two inputs: the gating signal (g) and the connection
from the corresponding encoder layer (x). Both inputs pass through separate 1 x 1 x 1
convolutions. Then the signals are combined; the aligned weights get larger while the
unaligned weights get relatively smaller. After passing through the ReLU activation, 1 x
1 x 1 convolution and the sigmoid activation, the output is up-sampled or resampled to
the same size as the input x. Finally, this output is multiplied element-wise to the original
x vector. By this mechanism, the network focuses on the most informative features,
which would improve its segmentation performance without requiring excessive

computational complexity (4).
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Based on the above definition of attention, we used a U-Net-based structure as our

baseline model. Figure 3.4 represents a schematic architecture of our U Net.

Encoder
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Predicted
Mask
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Figure 3.4. The architecture of Attention U-Net for LN segmentation.

The breakdown of the different components of the U-Net architecture is as follows:

1. Encoder path: The input image, as illustrated above, goes through multiple
convolutional blocks in the encoder. Convolutional operations are applied in each
block to extract features from the image. The output of the encoder path is a

compressed representation of the input image containing deep features.
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2. Decoder Path: This encoded representation from the encoder is then passed
through the decoder layers, consisting of a series of Transpose Convolution
blocks, also known as deconvolution blocks. These blocks upsample features
with the goal of reconstructing the original input image while preserving the
extracted features.

3. Skip Connections with Attentional Module: To improve contextual information
flow and retain fine-grained details, skip connections with attentional modules are
employed between the encoder and decoder layers.

4. Segmentation Mask Prediction: The final layer in the decoder applies the sigmoid
activation function to predict a segmentation mask. The sigmoid activation function is
a mathematical function that maps the input value to a value between 0 and 1 and
generates a pixel-wise probability for each class. Finally, the model would produce a
segmentation mask which is a binary mask that assigns a prediction value to each

pixel, highlighting the regions of interest.

In summary, this structure enables the extraction of significant image features and
maintains spatial information by employing skip connections with attentional modules,
resulting in producing a segmentation mask that identifies and categorizes different
regions within the image (99).

We used binary cross-entropy, which is a traditional loss function, to compare the
predicted segmentation map with the original segmentation map. This loss function is

commonly used for binary segmentation tasks in U-Net. For this purpose, we converted

45



these segmentation maps to a vector of probabilities. Binary cross entropy is mainly
used for classification tasks, but it can also be used for segmentation as a pixel-level

classification using the following formula:

Binary Cross Entropy Loss(y, p) = —(ylog(p) + (1 — y)log(1 — p))

Where p is the predicted segmentation probabilities by the prediction model, and y is

the true segmentation probabilities (100).

Limitations of Attention U-net

While attention U-Net has been widely used in the medical domain and has achieved
promising results for segmentation tasks, it has some limitations. The objects we are
targeting for segmentation are cervical LNs which are too small. The U-Net model
applies convolution and down-samples the image several times, 16 times down-
sampling as shown in figure 3.4. Too much down-sampling and excessive input
compression can result in the loss of high-resolution information. As each LN occupies
only a few voxels, this significant down-sampling causes the loss of information, which
is crucial to produce an accurate segmentation map. Combining low-level and high-level
features would provide only a partial solution and cannot address this issue thoroughly

(101).

46



Also, the foreground or the main region of interest in our images is very small compared
to the background area. For this imbalance, the traditional loss function might have poor
performance. To overcome these challenges, we deployed Focus Net and used binary

Tversky loss.

3.3.2 Focus Net

To address the mentioned limitations of U-Net, we adopted the spatial context network
from FocusNet. FocusNet applies down-sampling only twice in the encoder path, which
would help retain as much detail as possible. However, minimizing the information loss
comes with the cost of a limited receptive field. Downsampling the input images only
twice leads to a relatively small receptive field, hindering the network from capturing
high-level features and extensive contextual information. To overcome this,

we applied dense atrous spatial pyramid pooling (dense ASPP) module, which captures
contextual information from the same feature map at multiple scales. Before going
further, we delved into the concept of atrous convolution.

Atrous convolution, also known as dilated convolution, was developed to overcome the
limitation of traditional convolutions in capturing context at different scales and increase
the receptive field of a convolutional layer.

In a traditional convolution, a given kernel, also called filter, slides over the input feature

map using a fixed stride. Dissimilar to fixed stride convolutions, atrous convolution
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includes gaps between filter weights, leading to receptive field expansion without
requiring adding parameters. Traditional convolution concentrates on local features,
while atrous convolution provides the network with capturing a broader scope of

information by a parameter called the dilation rate. Figure 3.5 demonstrates their

difference.

Conv
Rate 1
<—
g h
3x3 kernel
Feature Map Feature Map

Figure 3.5. Atrous Convolution

For a two two-dimensional signal x, applying atrous convolution with a filter w yields the

output y following the equation:

K

yli] = Zx[i +r - Kw[K].
k=1

where the atrous rate r corresponds to the stride used to sample the input signal,

equivalent to convolving the input x with unsampled filters produced by inserting r - 1
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zero between two consecutive filter values along each spatial dimension. Standard
convolution is a particular case of atrous convolution with r = 1. We can modify the
filter's field-of-view (FOV) by changing the rate value.

Atrous Spatial Pyramid Pooling (ASPP) employs atrous convolutions to merge multiple
atrous-convolved features, each with a different dilation rate, to create a final feature
map representation. The dilation rates enable the network to capture information at
various scales (102). Due to a limited number of down-sampled features, ASPP would
have a small receptive field. To address this limitation, we adopted the densely
connected ASPP (DenseASPP), which connects a set of atrous-convolved features in a
dense way, enhancing the input image representation by information aggregation and
exchange across multiple scales (103).

Also, in DenseASPP, skip connections were introduced between features of the same
scales from the encoder to the decoder to prevent the loss of contextual information.
These connections aim to ensure the continuous flow of relevant information across the
network. Rather than a simple addition of the features, a technique called reverse axial
attention was applied to merge the encoder features with the decoder features,
enhancing the reconstruction results by emphasizing the relevant foreground regions
(104).

In our model inspired by FocusNet, following the two times downsampling and
application of dense ASPP, the resulting feature is up-sampled to restore its original

resolution and then concatenated with the original feature. As downsampling in the
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(1x384x384)

encoder layers was twice, the up-sampling step would be performed twice as well.
Finally, a sigmoid activation function would be applied to the concatenated feature,
which maps the values between 0 and 1. The sigmoid output is then used to predict a
segmentation mask.

Overall, the process involves downsampling, applying ASPP, up-sampling the feature,
concatenating it with the original feature, applying a sigmoid function, and finally
predicting the segmentation mask. Figure 3.6 describes the FocusNet architecture.
We fed our DL with raw data, and it produced the output; we did not have to do any

extra feature extraction, illustrated in Figure 3.6.
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Figure 3.6. The architecture of the FocusNet
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Due to the mentioned limitation for the traditional loss function, we used Binary Tversky
loss to evaluate our model. The Tversky index is a similarity measure that compares

two sets and is defined as:

Tversky Index = TP /(TP +a *FP + 3 * FN)

where TP represents the number of pixels correctly identified as positive, FP indicates
the number of pixels incorrectly identified as positive, and FN represents the number of
pixels incorrectly classified as negative. a and 3 are weighting parameters that regulate

the balance between false positives and false negatives.

Binary Tversky loss extends the Tversky index and serves to calculate the dissimilarity

between ground truth and predicted output segmentation masks.

Binary Tversky Loss = 1 - Tversky Index

The Binary Tversky loss function aims to minimize the dissimilarity between the
predicted and ground truth segmentation masks. By optimizing this loss function, the
model learns to accurately segment and classify regions of interest in the binary

segmentation task.
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3.4 Experimental Setup

3.4.1 Data Split

Data splitting was performed to avoid overfitting. The images and their corresponding
contours were used as inputs for the training phase of our DL-assisted models. The
221 CT exams were split into three sets: training, validation, and testing.

The first 160 CT scans were used as the training set to train the model. The subsequent
40 CT scans were used to validate the algorithm by tuning different hyperparameters.
Finally, the last 21 CT scans were used as the test set to assess the model's
performance and generalizability. It should be noticed that the data split was at the
patient level rather than the image level.

Overall, we had 18054 CT slices for training, 4463 slices for validation, and 2602 slices
for testing the model.

During the training phase, we encountered a significant imbalance in the distribution of
LN within the dataset. Of the total 18,054 slices, only 4,644 CT slices, which account for
25.7% of the total slices, contained LNs, resulting in a class imbalance at the dataset
level. This dataset-level class imbalance posed challenges during the learning phase,
and we also had to address the intra-sample (pixel-level) class imbalance to prevent

bias in the model's performance.

We implemented a uniform sampling strategy at the class level to alleviate this issue. In

each training epoch, we randomly selected an equal number of negative samples,
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defined as samples without LN, along with the positive training samples. This method

mitigates the problem and allows us to focus on improving the pixel-level imbalance.

3.4.2 Training

We used the S-Net architecture from FocusNet (101) as the backbone of our method
and incorporated reverse axial attention with the network. We also observed the effect

of training and finetuning the network with classification and localization, respectively.

3.4.3 Computational Resources and Hyperparameters

We used the PyTorch DL library. The procedures were performed on machines running
the Unix system (Fedora).

During the training process, a weighted Adam optimizer with a learning rate of 5e-5 was
utilized. We decided to use a relatively small learning rate based on the limited number
of available LN slices. The U-Net model was comprised of a total of 34,877,421
parameters. The Spatial Context Network with reverse axial attention, had a precise
count of 27,134,416 parameters. Additionally, the Spatial Context Network without
attention model was constructed with 821,613 parameters.

We used a batch size of 8 for each experiment with images of 384x384 (height x width).
We utilized two NVIDIA GeForce RTX 2080 graphics cards, each of them equipped with

a memory capacity of 12 GB.
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3.4.4 Evaluation metrics

We used the DSC and Jaccard index, also known as the Jaccard similarity coefficient,
as both are among the most popular metrics for evaluating segmentation tasks in

medical imaging.

Dice similarity coefficient

We assessed the performance of our DL models for cervical LN segmentation by
calculating the DSC, referred to as the Dice score, of the generated contours by the

model against the original contours.

2 x intersection

DSC =

" Total Predicted + Total Ground Truth

where intersection refers to the number of pixels correctly identified as positive in both
the ground truth and the predicted masks, Total predicted represents the overall number
of positive pixels in the predicted mask, and Total ground truth represents the total

count of positive pixels in the ground truth mask.

Jaccard Index

We also used the Jaccard index, commonly known as IOU, which is another similarity

measure between two sets and is calculated using the following formula:
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Jaccard Index = Intersection of the Sets / Union of the Sets

Both of these metrics range from 0 to 1 to quantify the segmentation accuracy. The
main difference between them lies in how their dominators are calculated; the DSCs
use the sum of the sizes of each set, while the Jaccard index uses the size of the union
of the sets. DSC tends to have more sensitivity to small differences. Conversely, the
Jaccard index is more commonly used for evaluating the overall similarity between sets.
Based on the emphasis on small variations or balanced similarity, each of them can be
chosen. The following formulas are written to provide an easier comparison between

these two metrics:

Dice Score = DSC = (2 *|A N B|) / (JA| + |B)

Jaccard Index=J=|ANB|/|A UB|

Where A and B are the two sets being compared, |A| and |B| represent the number of
elements of sets A and B, respectively, N represents the intersection of sets A and B,

and U represents the union of sets A and B (105-107).

55



Chapter 4

Results and Analysis

In this chapter, the results of the experiments mentioned in the previous chapter are
described in consecutive order.

We leverage the produced annotated data to establish the LN segmentation tools. The
DL pipeline developed in our laboratory by adapting existing pipelines is presented in

the following.

4.1 Lymph node Segmentation

The dataset used for the study consisted of 221 contrast-enhanced head and neck CT
images. All LNs with a long axis diameter of > 5mm on axial planes were detected,
manually contoured, and then reviewed by an expert neuroradiologist (Figures 4.1 and

4.2).
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Figure 4.1. Sample image of the dataset. Axial view of CT
scan. Manually segmented Right level IB LN (pink), Right level
I LNs (red and yellow), Left level IB LN (blue) and Left level Il
LNs (green and white). This person had multiple other LNs
with long axis of > 5 mm, which can be seen on the
subsequent slices on the CT scan.

57



Figure 4.2. Whole 3D of LNs of the person in Figure
4.1. LNs in other levels, including level IA, level llI (right
side), level lll (left side) and level IV (left side), are
presented as well.

4.2 Training

The annotated LNs were used to train our model. We trained both attentional U-Net and
Spatial Attention networks for our analysis. Comparing the predicted segmentation
mask with the original mask, we computed the DSC and Jaccard index to assess the
performance of the cervical LN segmentation.

Figures 4.3 and 4.4 visualize the training progression of the S-Net model, the increasing
trend of accuracy and the decreasing trend of the loss values as the model progress

through the epochs, respectively. The X-axis indicates the epoch number; each epoch
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indicates a complete pass of the entire training dataset through the model n mini-batch
format, with batch size 8. The Y-axis in Figures 4.3 (a) and 4.4 (a) represents the
corresponding matrix value.

At the end of each epoch, the model is saved and evaluated using the validation set.
The corresponding loss and dice-coefficient values of images from the validation set are
saved. The average values of loss and dice-coefficient achieved from the validation set
using the saved model after each epoch training are plotted in the graph. The training

process continues iteratively, using the saved model from the previous epoch as the
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starting point for the subsequent epoch.

Training_Avg_D_Coeff
160 Traming Avg D _Coeff

(a)

Validation_Avg_D_Coeff
180G Vahidation Avg D_Coel!

(b)

Figure 4.3. Part of the learning curve of the S-Net. (a) on the training dataset (b) on the
validation dataset. The horizontal axis indicates the number of epochs. The vertical axis
represents the performance of the learning model, shown and calculated as the Dice
coefficient.
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Train_Tversky_Loss
tag: Train, Tversiy_Loss

(a)

Validation_Twversky_Loss
tag Vabdabor Twverghy Lods

(b)

Figure 4.4. Plot of Loss error of the 5-Net. (a) over the training Epochs (b) over the
validation Epochs. The honzontal axis indicates the number of epochs. The verical axis
represents the Loss error.
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There is considerable variance in the matrix attributed to the output sensitivity of the
object size. Small lymph nodes result in a substantial inter-class variance in pixel levels,
as the number of background pixels greatly outnumbers that of foreground pixels,
referred to as lymph node pixels. Also, although we sampled negative samples likewise
positive sample numbers, this approach does not entirely address the class imbalance
problem at the image level. To tackle these problems, we adopted a focal Tversky loss
function that put emphasis on the losses by foreground pixels. This emphasis
considerably alleviates the impact of losses by background pixels during the training
phase, leading to better model performance.

Leveraging the focal Tversky loss helps the model to improve in the learning process
compared to training with traditional binary cross entropy (BCE) or focal loss.

The issue of inter and intra-sample level class imbalance remains an unsolved and
challenging problem in the computer vision field. Future research is required to address
this multifaceted imbalance in this complex setting where both inter-sample (within a
sample) and intra-sample (within samples of the entire dataset) class imbalances are
intense.

The variance in the matrix of validation graphs also hints toward the model overfitting,
as overfitting occurs due to the dominance of the background loss during the training
process. Despite using focal Tversky loss to mitigate the class imbalance, the extremely

small size of the target organs prevents this problem from being completely resolved. In
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other words, the imbalance problem cannot be fully addressed by only relying on
advanced loss functions.

Based on the explanation above, we carefully chose the model from a certain epoch
during its evaluation on the test set. We opted for a model from an earlier Epoch where
the loss function and DSC had consistent downward and upward trends, respectively,
specifically from Epoch 34. We extended the training process to Epoch 200 only with

the aim of observing the behaviour of the model and its learning procedure.

4.3 Inference and Performance

We evaluated the performance of our models by calculating the DSC and Jaccard
Index. Table 4.1. shows the LN segmentation performance of the Attention U-Net model
and S-Net models, with and without attention, on the test set. The S-Net adopted from
FocusNet outperforms the Attention U-Net even without spatial reverse attention
(0.7828 versus 0.7513). Our model also demonstrated better performance than the
CaraNet network proposed by Lou et al. (104), with a DSC value of 0.8014 versus
0.7707, respectively. CaraNet stands for Context Axial Reverse Attention Network, an
attention-based deep neural network aimed at improving the performance of small
object segmentation in medical imaging. It is worth considering that the backbone of
CaraNet is pre-trained on ImageNet, a dataset consisting of natural images that differ

considerably from medicalimages.
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As mentioned before, fewer downsampling leads to better pixel-level prediction and,
therefore, better segmentation performance and a higher DSC, as shown 0.8014 for
Spatial Context Network with reverse axial attention. Also, by incorporating the reverse
axial attention between the encoder and its corresponding decoder layers, the model
achieved a higher DSC compared to the baseline model without attention (0.8014

versus 0.7828).

Network DSC Jaccard Index
Attention U-Net 0.7513 0.7394
CaraNet 0.7707 0.7602
Spatial Context Network 0.7828 0.7740

without attention

Spatial Context Network 0.8014 0.78
with reverse axial attention

Table 4.1. Comparing the performance of the Attention U-Net model, CaraNet model
and S-Net models.

The Spatial Context Network with reverse axial attention showed enhanced
performance even in CT images with multiple LNs. Figure 4.5 indicates an example of
the multiple LN segmentation of our model. However, there were instances where the
model failed to detect the LNs or generated false positive LN detections. Figures 4.6

and 4.7 represent various segmentation outcomes achieved by our S-Net model.
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c d

Figure 4.5. Multiple LNs and their segmentation results by spatial context network. (a)
Image with segmented LNs. Expert annotations are shown in red and model annotations
are shown in blue. (b) The nodal area is zoomed in for visual inspection. (c) Mask
image. (d) The output of the model.
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Ifigufé 4.6. Examples of segmentation performance of the S-Net model for
Multiple LNs. Mask is the expert annotations and output is the model
annotations.



Figure 4.7. Spatial context network prediction for Lymph Node Segmentation:
(a) accurate prediction, (b) multiple lymph nodes prediction with low false
positive. Continued on next page.



Figure 4.7. (c) multiple lymph nodes prediction with low false positive, and (d)
failed cases.



Chapter 5

Discussion

The management of patients with HNSCC presenting clinically negative (NO) necks,
where there are no apparent signs of cervical lymph node metastasis upon
examination, remains a major challenge. The difficulty arises from the potential
existence of occult lymph node metastases that can be detected through neither
radiological nor clinical means. Neck dissections are commonly performed on patients
with clinically NO necks and high-risk tumors to tackle this issue, but this approach
might result in overtreatment and potential complications. In addition, the accurate
analysis of small lymph nodes for disease staging is essential as they may contain
micro-metastases. Still, the manual detection and segmentation of cervical lymph

nodes can be time-consuming, prone to errors, and reliant on the observer's expertise.

Our research demonstrates the power and potential of DL algorithms in segmenting
cervical LNs, a traditionally challenging task considering their small size. This research
developed and evaluated a novel DCNN algorithm capable of accurately and efficiently
segmenting cervical LNs with a long-axis diameter of = 5mm in levels | to IV from

contrast-enhanced CT datasets.
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Our research demonstrates the power and potential of DL algorithms in segmenting
cervical LNs, a traditionally challenging task considering their small size. This research
developed andevaluated a novel DCNN algorithm capable of accurately and efficiently
segmenting cervical LNs with a long-axis diameter of > 5mm in levels | to IV from

contrast-enhanced CT datasets.

Automatically segmenting LNs using DL algorithms has several potential benefits and
impactful applications. It can dramatically improve time efficiency by reducing the
labour-intensive process of manual segmentation, allowing clinicians to focus more on
diagnosis and treatment planning. It provides consistency in results, eliminating the
variability inherent to different human interpreters and thus increasing the reliability of
outcomes. Furthermore, it offers scalability that can handle large volumes of data - an
essential feature for large-scale studies or busy clinical settings. Importantly, this
automated approach lays crucial groundwork for subsequent studies focusing on the
development of classification algorithms aimed at facilitating the early detection of
subtle LN abnormalities that may not be visible to the human eye. This is particularly
pertinent when evaluating small LNs, where the detection of metastasis is traditionally
reliant on size. Consequently, our method is poised to bring transformative changes in
the assessment of these smaller nodes, providing a more accurate analysis that

extends beyond the conventional size-based evaluation. Ultimately, accurate
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segmentation and classification could reduce the necessity of invasive procedures like

elective neck dissections, decreasing associated complications and morbidity.

A key differentiator of our approach, compared to prior studies like Tomita et al. (90), is
the meticulous manual segmentation of regions of interest across all slices of the
targeted LNs, rather than relying on a single, largest dimension. Additionally, our
technique incorporates texture feature extraction to enhance the precision of our
analysis further. These methodological enhancements increase the accuracy and

robustness of our model, thus potentially improving LN evaluation in patients.

To ensure high-quality data input, our study concentrated on segmenting the borders
of LNs without including surrounding soft tissues, in contrast to the use of arbitrary-
sized squares employed in some previous methods. This selective segmentation
approach enhances the precision of our DL model by minimizing interference from
surrounding structures. A large amount of high-quality data enables the model to
learn generalizable patterns and achieve high performance. Poor manual
segmentations would inevitably lead to inaccuracy in the model’s output. To ensure
the best possible output, our LN annotations were meticulously reviewed by two
expert neuroradiologists separately and served as the definitive ground truth. Our S-

Net imitates how human physicians delineate medical images.
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We needed a quantitative evaluation of our algorithm and used the DSC, the most
commonly used statistic in the literature, to measure the similarity between the two
samples. In a study conducted by Li et al. (22), the U-Net model was employed,
achieving an overall DSC value of 0.6586 for LN segmentation in patients diagnosed
with nasopharyngeal cancer. In contrast, our S-Net model achieved a significantly
higher DSC of 0.8014. This improvement was partly due to the incorporation of the
ASPP module into our model, which enlarges the receptive field and facilitates the
capture of multi-scale contextual information from the input image.

DenseASPP demonstrates to achieve high-performance levels, even when paired witha
weak baseline model, leading to considerable improvement of the segmentation

performance of the base model (101, 103).

By incorporating reverse axial attention between the encoder and corresponding
decoder layers, our S-Net model surpasses the baseline model, achieving superior

outcomes with DSCs values of 0.8014 and 0.7828, respectively.

The attention U-Net we employed achieved a DSC of 0.7513 for LN segmentation. This
lower performance compared to our S-Net model can be attributed to too much down-
sampling in the U-Net and its limitations in representing complex features. The 3D
variants of U-Net have contributed to remarkable advancements in medical image

segmentation, but they still encounter challenges that cause suboptimal performance
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when it comes to small organ segmentation in the head and neck region due to the

issues mentioned earlier (101).

We must acknowledge the limitations of our study. These include the use of data from a
single source and occasional image quality issues, which may introduce potential bias
or impact model performance. Therefore, subtle changes may occur in the image
contrast while using other imaging protocols, but if the algorithm parameters are
reoptimized, the proposed model can be adapted to these changes. Also, by including
these lower-quality images, we mimic the realities of clinical practice and encourage
model generalization. Going forward, we intend to evaluate the impact of incorporating
data augmentation and expanding our dataset to include scans from other geographical

regions and diverse imaging protocols.
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Conclusion and Future Work

In this study, we developed an innovative and non-invasive DL-based algorithm for the
segmentation of cervical LNs in levels | to IV, demonstrating its potential as a valuable
tool in medical diagnostics. Beyond its immediate applicability to LN analysis, this
framework could provide a cornerstone for future algorithms designed to classify head
and neck LNs by extracting radiomic features, thereby helping to differentiate metastatic
from non-metastatic LNs. It could potentially detect small, early-stage nodal metastases
that are difficult to discern with the naked eye. This advancement could revolutionize
cervical LN assessment in CT scan imaging, a task traditionally challenging for both
clinicians and radiologists.

It's worth noting that our current model relies on 2D CT slices as the input data for
analysis. Given the potential benefits of a more comprehensive contextual
understanding, one of our future objectives is to enhance our model by incorporating
Three-dimensional (3D) voxel data, thereby capturing volumetric information and
improving the network's decision-making capabilities.

In summary, this study developed a novel algorithm with strong potential to improve
cervical LN segmentation, thus saving clinicians valuable time and potentially improving
patient care; in particular, the management of HNSCC patients with clinical NO necks
will be improved by enhancing disease identification and therefore, minimizing the

frequency or extent of elective neck dissections.
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