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Abstract 

Cervical lymph node detection and accurate classification are essential for the staging 

and optimal management of patients with head and neck malignancies. While experts 

can accurately identify large abnormal lymph nodes, the sensitivity for detecting early-

stage pathologic or metastatic lymph nodes, measuring 5-10 mm, remains suboptimal. 

Consequently, invasive neck dissections or sentinel node biopsies are often required for 

patients with head and neck cancers at high risk sites. To address this issue, there is 

growing interest in employing radiomic and artificial intelligence (AI) methodologies for 

precise diagnosis and classification of neck lymph nodes. A critical step in any 

classification task is object detection and, depending on the approach, lesion 

segmentation. Deep learning (DL) techniques have demonstrated exceptional 

performance in various image analysis tasks, including semantic segmentation and 

object detection. Nonetheless, lymph nodes present unique challenges due to their 

small size and limited representation in computed tomography (CT) scans. This thesis 

aims to develop a non-invasive algorithm for the detection and automatic segmentation 

of cervical lymph nodes on contrast-enhanced CT scans, paving the way for future 

diagnostic classification algorithms in research and clinical settings. To achieve this, we 

employed various DL approaches to detect and segment small lymph nodes, ranging 

from 5 to 10 mm in size. After evaluating multiple architectures, we attained a Dice 
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score of 0.8014, demonstrating that despite their small size, cervical lymph nodes can 

be detected and segmented automatically using deep learning techniques. 
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Résumé 

La détection et la classification précise des ganglions lymphatiques cervicaux sont 

essentielles pour la stadification et la prise en charge optimale des patients atteints de 

tumeurs à la tête et au cou. Alors que les experts peuvent identifier avec précision les 

gros ganglions lymphatiques anormaux, la sensibilité pour détecter les ganglions 

lymphatiques pathologiques ou métastatiques à un stade précoce, mesurant 5 à 10 

mm, reste sous-optimale.Il existe donc un intérêt grandissant pour l'utilisation 

d'approches radiomiques et de l'intelligence artificielle (AI) pour le diagnostic de 

précision et la classification des ganglions lymphatiques au cou. Cependant, une étape 

essentielle pour toute tâche de classification est la détection d'objets et, en fonectionde 

l'approche spécifique utilisée, la segmentation des lésions. Les techniques 

d'apprentissage en profondeur (DL) ont donné d'excellents résultats pour une variété de 

tâches d'analyse d'images, y compris la segmentation sémantique et la détection 

d'objets. Cependant, les ganglions lymphatiques posent des défis uniques parce que la 

majorité sont petits et constituent un très petit pourcentage de pixels ou de voxels 

globaux sur une tomodensitométrie. L'objectif de cette thèse est de construire un 

algorithme non-invasif visant la détection et la segmentation automatique des ganglions 

lymphatiques cervicaux dans les tomodensitométrie avec injection de contraste. Un tel 

outil pourrait alors constituer l'élément de base de futurs algorithmes de classification de 

diagnostique en recherche et, éventuellement, en clinique. À cette fin, nous avons 



 v 

utilisé différentes techniques de DL pour la détection et la segmentation des ganglions 

lymphatiques, nous concentrant sur les petits ganglions lymphatiques mesurant de 5 à 

10 mm. De plusieurs architectures fûrent évaluées, atteignant un coefficient de Dice de 

0.8014. Grâce à diverses techniques d'apprentissage en profondeur, nous démontrons 

que malgré leur petite taille, la détection et la segmentation automatiques des ganglions 

lymphatiques cervicaux peuvent être effectuées en utilisant l'apprentissage en 

profondeur. 
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Chapter 1 

 
Introduction 

Head and neck cancers encompass primary tumors found in the lips and oral cavity, 

nasopharynx, oropharynx, hypopharynx, larynx, salivary glands, paranasal sinuses, in 

addition to non-mucosal cancers such as those arising from the thyroid gland and other 

less common sites (9). The Global Burden of Disease study revealed that 5.3% of all 

cancer-related deaths could be attributed to head and neck cancers. Between 1990 and 

2017, incidence rates declined for larynx and nasopharyngeal cancers but increased for 

lip, oral cavity, and other pharyngeal cancers. The global burden of head and neck 

cancers is projected to rise for both men and women by 2030 (10, 11). Tobacco use 

and alcohol consumption are the leading risk factors (11).  

Over 90% of mucosal head and neck cancers are classified as squamous cell 

carcinomas or related variants. These cancers exhibit aggressive behaviour and are 

prone to developing early cervical lymph node metastasis or late-stage distant 

metastasis, even with effective treatment (12). 
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1.1 Motivation and approach 

Head and neck cancers frequently metastasize to regional lymph nodes (LN) through 

lymphatics, making routine cervical LN assessment essential (13). LN metastases 

significantly impact disease staging and treatment strategy. Patients with head and neck 

cancer and metastatic LNs may be treated with surgery, chemoradiation, or both. Nodal 

staging influences treatment planning, including the extent of neck dissection surgery 

and radiation therapy (14). Pathological cervical LNs are also crucial prognosticators for 

overall survival (15, 16). For the sample, bilateral or multiple metastatic neck nodes, as 

well as nodes contralateral to the primary tumour, significantly decrease patients' 

survival rates (17). 

In current clinical practice, the evaluation of LNs on CT is based on 2-dimensional 

measurements. Despite significant advances in LN evaluation and classification, expert 

discrimination of abnormal from normal LNs is imperfect, and the accuracy can be even 

less when interpretation is performed by radiologists not subspecialized in head and 

neck imaging. Particularly, detecting early nodal metastases in small LNs measuring 

less than 1 cm remains a significant challenge (5, 14).  

Managing patients without evidence of cervical LN metastasis upon clinical 

examination, or “clinically negative (N0) necks,” remains controversial due to the 

possibility of occult LN metastasis, which is undetectable radiologically and clinically. 

Neck dissections are routinely performed for patients with clinically N0 necks and high-

risk tumours, but this may lead to overtreatment with potential for complications in many 
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cases (17, 18). Consequently, there is significant interest in predictive models to 

improve diagnostic accuracy and reduce unnecessary elective neck dissections (14, 

19). Figure 1.1 demonstrates the anatomical stations of the neck LNs (3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The reliability of a physical examination involving cervical palpation can be affected by 

factors such as cervical node size, subcutaneous fat presence, and the examiner's 

experience (18). Importantly, abnormal nodes located in deep nodal stations may not be 

Figure 1.1. Lymph node Levels in 

the Neck. The metastatic nodes' 
presence and location can strongly 
affect the disease prognosis and 

potential therapeutics (3) 
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palpable on physical exam. Therefore, after conducting a comprehensive medical 

history and thorough physical examination, medical imaging is performed for a more 

accurate assessment, potentially upstaging the clinical assessment  (3, 15, 19). 

Imaging assists in determining clinical staging and the extent of neck dissection before 

tumors resection surgery (20). Both contrast-enhanced CT (CECT) scans and magnetic 

resonance imaging (MRI) can be used for the evaluation of cervical LN in head and 

neck squamous cell carcinomas (HNSCCs) (18, 19). At many centers, CT is the first line 

modality for the evaluation of mucosal cancers below the level of the hard palate. 

CECT scans provide valuable quantitative information on LN sensity, shape, and texture 

(16). However, LN identification can be time-consuming and challenging, requiring 

specific expertise (13, 15). Importantly, the sensitivity for detection of early nodal 

metastasis falls significantly in small lymph nodes less than 1 cm on anatomic imaging. 

There is great interest in computer assisted evaluation of lymph nodes to assist 

diagnosis. However, the first step for such analysis would be LN segmentation. Manual 

segmentation of LNs in CT scans is complex and varies depending on the radiologist's 

experience, and would be prohibitively time consuming for routine radiological practice, 

highlighting the need for an automated detection and segmentation system in the 

medical image analysis (13, 21). Automated segmentation approaches can also be 

beneficial for therapy planning. 

There has been a specific interest in using different radiomic or computer vision 

approaches, including deep learning (DL), to improve LN detection and classification 
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accuracy. However, due to the small dimensions of LNs, the primary emphasis of 

current approaches is on identifying and segmenting these objects. To achieve success, 

it is essential to automate these processes. This prerequisite is necessary for the 

integration of such tools into the busy clinical workflow, enabling their adoption in clinical 

practice and ultimately improving patient care. The automated segmentation of LNs 

using DL poses distinctive challenges due to their typically small size, occupying only a 

small fraction of pixels on a given scan. This difficulty is especially prominent for the 

nodes that have the potential for the most significant impact through machine-assisted 

classification – specifically, the small nodes measuring less than 1 cm, where expert 

evaluation tends to be less precise (13). 

DL techniques have demonstrated outstanding performance in computer vision tasks, 

including semantic segmentation, object detection, and regression prediction, and have 

become popular for automated segmentation on medical images (22). Deep 

convolutional neural network (DCNN) algorithms have gained popularity for automatic 

segmentation in the medical images (21). However, its application in the evaluation of 

small LNs in head and neck cancer remains limited. (23, 24). This thesis aims to 

pioneer LN segmentation as a preliminary step in this field, with the objective of 

enhancing patient management and quality of life by minimizing the extent or necessity 

for elective neck dissections in head and neck cancer patients with a clinically N0 neck. 
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1.2 Outline of Thesis 

To the best of our knowledge, no studies have implemented a model for the automatic 

segmentation of small non-metastatic cervical LNs in healthy individuals. Therefore, in 

this project, we aim to develop a non-invasive clinical tool for segmenting neck LNs in 

contrast-enhanced CT scans, enabling the extraction of high-level quantitative features 

in the future. We will employ DL models to create algorithms for this purpose. 

Previous studies have typically considered LNs with a minimal axial diameter greater 

than 10 mm as abnormal, potentially overlooking metastases in LNs with a minimal axial 

diameter of less than 10 mm (13, 25). We have broadened our criteria to include LNs 

with a maximal axial diameter of 5 mm or larger to increase precision in detecting 

smaller LNs. 

This thesis aims to apply advanced DL methods for LN detection and segmentation in 

contrast-enhanced neck CT scans and investigate state-of-the-art DL algorithms for LN 

segmentation. Evaluating the proposed objective will help highlight experimental 

research aspects in both medicine and computer science, ultimately leading to 

enhanced disease identification and improved health outcomes over time. 

 

Given that cancer is a leading cause of death worldwide and its prevalence is steadily 

increasing, accurate identification and analysis of LNs are crucial for faster diagnosis 

and more precise treatment decision-making. 
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The structure of this thesis is as follows: Chapter 2 provides a comprehensive overview 

of the necessity of this work and reviews relevant literature in the field. Chapter 3 details 

the project's methodology, outlining the steps performed. Chapter 4 presents the 

visualization of experimental results and discussion. Lastly, Chapter 5 offers our 

conclusions and directions for future research related to this project. 

 

1.3 Contribution 

We aim to contribute to the fields of artificial intelligence (AI) and medical imaging 

analysis by demonstrating the promising results of our proposed algorithm in LN 

localization and segmentation. The main contributions of this thesis can be summarized 

as follows: 

 Generating manual ground truth by annotating medical image data. 

 Applying a preprocessing technique to the image dataset for effective and 

accurate analysis by the proposed DL model. 

 Developing a DL-based model using CECT scan images to aid physicians and 

radiologists in rapidly diagnosing small LNs and facilitating accurate detection 

and segmentation of cervical LNs. 

 Conducting a comparative performance analysis of our proposed model with 

other state-of-the-art methodologies, demonstrating that our algorithm can detect 
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and segment cervical LNs with high accuracy in contrast-enhanced CT scan 

datasets using metrics such as Dice score and Jaccard index. 
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Chapter 2 
 
Background 

This section discusses the significance of cervical LNs in head and neck cancers, the 

rationale for this project, and the various DL methods employed for LN segmentation. 

We will also cover computational image analysis, which consists of data preparation, 

data preprocessing, and DL model development. 

 

2.1 Cervical Lymph nodes 

In solid cancers, regional LN metastasis is an important prognostic indicator. Clinicians 

routinely evaluate LN shape, morphology, and size in malignancies to assess disease 

progression and determine therapeutic strategies (21, 26). In head and neck cancers, 

metastasis to cervical LNs has a significant impact on prognosis and treatment. LN 

metastasis is a crucial prognostic factor, and LN analysis plays an essential role in 

cancer staging and treatment effectiveness (15, 20, 21). Thus, accurate detection of 

metastatic LNs is important (26).  

LN size, morphology, and functional metabolic activity help differentiate metastatic from 

reactive LNs (5). Diagnostic imaging is essential for head and neck cancer evaluation 

and staging, as it can identify metastatic LNs that are not clinically detectable (8). 
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Although comparative research is limited, CECT scans are often considered the first-

line, optimal imaging modality due to their reliability and accessibility (8). Figure 2.1 

demonstrates a CECT of a patient with a metastatic LN detected through this imaging 

technique. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. Imaging of a patient with a normal LN. 
The white arrow in CECT demonstrates an example 
of a normal level IB LN (8). 
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Imaging-based classification for cervical LNs is divided into seven levels, as illustrated 

in Figure 2.2. Detailed descriptions of the landmarks for each level are beyond the 

scope of this thesis and can be found in reference (5).  

These levels can often help find the primary tumor site due to characteristic anatomic 

lymphatic drainage patterns. Levels I, II, and III are frequently involved in the oral cavity 

and lip cancers; levels II, III, and IV are commonly involved in laryngeal, oropharyngeal, 

hypopharyngeal, and thyroid cancer; and level V LNs are mostly involved in 

nasopharyngeal cancers (27). 

In head and neck cancers, the necessity for invasive LN evaluation through dissection 

depends on the tumor's site and stage. For instance, due to the extensive lymphatic 

network in supraglottic cancers, occult LN metastasis is highly probable. Consequently, 

for T1 and T2 stage supraglottic cancers, it is strongly advised to consider radiotherapy 

or neck dissection of bilateral LNs in levels II and III, even in the absence of clinical and 

radiological signs of metastasis. 
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. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For T2b and T3 stage glottic cancers, the same elective treatment approach, 

radiotherapy or surgery, is applied for bilateral LNs in levels II, III, and IV. Depending on 

nodal involvement in glottic tumors, treating LNs in levels 1b and V may be suggested 

(28). 

In oral squamous cell carcinoma (OSCC), the most common oral cavity malignancy, 

there is a risk of occult metastasis to neck nodes even when there is no clinical or 

radiological evidence of nodal disease. Neck nodal metastasis can reduce survival by 

Figure 2.2. Imaging-based 
classification of deep cervical nodes 
(5) 
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50%, highlighting its role as the most significant prognostic factor (29). Literature 

suggests that elective neck dissections are recommended for levels I, II, and III as 

metastatic LNs at levels IV and V are rarely seen (29, 30). One study found that 54% of 

OSCCs with radiological N0 had occult metastasis in neck nodes, with 44% in level I, 

32% in level II, 14% in level III, and 4% in level IV, while none were found in level V 

(29). Another study evaluated cervical occult LN metastases (OLNM) in primary parotid 

carcinoma in patients with N0 based on clinical and imaging examination. These 

patients underwent elective neck dissection, revealing that 30.3% had OLNM, with 69% 

in level II, 22.5% in level III, 20% in level I, 16% in level V, and 7.5% in level IV. Levels 

II, III, and V were the most common locations for OLNM (69%, 22.5%, and 16%, 

respectively) (31). As malignant parotid carcinoma is rare, level V LNs are less clinically 

significant regarding metastasis (31, 32). We did not include level V cervical LNs due to 

their limited clinical significance. 

Considering the possibility of harboring micrometastases, small LNs should be 

evaluated for disease staging. Manual detection and segmentation of cervical LNs can 

be time-consuming, error-prone, and dependent on the observer's experience (33). The 

reasons for this are explained in more detail in the subsequent section. 
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2.2 The challenging task of lymph node detection 

and segmentation 

Detecting LNs can pose challenges for several reasons: 

 LNs exhibit various sizes, shapes, and locations in CT scans, and their 

appearances can be influenced by disease effects. 

 Different radiologists or medical professionals may have significant variations in 

interpreting LNs based on their expertise and experience. Additionally, 

processing vast amounts of data and the large size of each scan can be time-

consuming and may lead to errors even among skilled professionals. 

 Small lymph nodes can be difficult to distinguish from some other normal 

structures such as small vessels. 

 Noise and artifacts pose further challenges in LN detection, which can arise from 

factors like scanner malfunctions, imaging protocols, and patient movement 

during CT scans. 

Consequently, fully automated approaches are necessary for rapid and accurate 

detection and segmentation of the LNs (33). There is evidence in the literature that AI 

can potentially transform the healthcare sector, particularly in the image recognition (1, 

34). Thus, this project aims to develop a model for automatically segmenting head and 

neck LNs. 
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2.3 AI in Medicine 

The application of AI techniques is a growing trend for performing health-related data 

and imaging analysis. Due to its significant advancements, AI has been utilized for 

problem-solving and decision-making in various areas of medicine aimed at improving 

the healthcare domain (35, 36). 

Medical image analysis is a complex task that requires considerable specialist effort. It 

may be affected by human error, and different experts can have varying interpretations. 

Consequently, it is crucial to employ machine learning (ML) algorithms to automate the 

image analysis (1). One of the essential steps before model development is image 

preprocessing, where the proper application of different preprocessing techniques 

results in more accurate image analysis. For example, a large portion of each CT slice 

might be irrelevant and, therefore, not used in image analysis. By cropping the image 

and reducing its size, preprocessing increases the relative amount of relevant imaging 

data for analysis. 

 

2.3.1 Preprocessing 

Various preprocessing techniques are employed to make images more suitable for 

analysis, such as cropping, resizing, artifact removal, and filtering. All images may need 

to be scaled down to accelerate training. Cropping CT images should also be performed 

to extract the main parts and remove redundant components before feeding the images 
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into the model (37). The data size of an original Digital Imaging and Communications in 

Medicine (DICOM) image is 512 x 512, which can lead to a heavy computing workload. 

Therefore, the CT images were resized and cropped to 224 x 224 only to include the 

region of interest. Figure 2.3 demonstrates an example of the cropping operation (15). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Another preprocessing technique for CT images is normalization. Different CT scan 

equipment may have variations in the field of view and multiple configurations. 

Normalization operations can be applied to remove these differences using the following 

formula: 

Pixel norm =
Pixel  −  Pixel min

Pixel max −  Pixel min
 

 

Figure 2.3. Region of interest cropping (15). 
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In the mentioned formula, Pixel norm refers to the normalized pixel data in CT images, 

while Pixel max and Pixel min represent the maximum and minimum gray values in CT 

images, respectively (15). 

 

2.3.2 Deep Learning 

Machine learning and DL models can be classified into different types of learning, such 

as supervised, unsupervised, and reinforcement learning. Supervised learning uses 

labelled datasets for classification or predictions, requiring human intervention to label 

input data accurately. In contrast, unsupervised learning deals with unlabeled datasets, 

discovering previously undetected patterns. Reinforcement learning is a process where 

a model learns to make a sequence of decisions based on feedback to maximize the 

reward (38). 

DL is a subset of machine learning algorithms known for efficient performance in 

various healthcare domains. It uses multiple layers to extract features from raw input, 

with increasing interest in automated applications (Figure 2.4) (1, 39). Unlike machine 

learning, DL does not require human expertise for feature selection, as the model itself 

determines which features to use for the classification (40). 
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DL powers numerous AI applications that enhance automation and physical tasks (41). 

Requiring minimal human input, DL uses raw pixel data and has outperformed existing 

methods for detection and classification problems (42, 43). 

A deep neural network (DNN) is an artificial neural network consisting of multiple layers 

between input and output layers inspired by the human biological nervous system. 

These networks simulate the human brain's functionality and can learn from large 

amounts of data (41). Depending on the problem's complexity, one or more layers are 

added between the input and output layers, called hidden layers. The number of layers 

indicates the model's complexity and capacity (1). 

The input data of a DNN undergoes processing, with the increasing complexity of data 

representations in subsequent layers. The current output is then transferred to the next 

Figure 2.4. The relationship between artificial 

intelligence, machine learning, and deep learning 
(1) 
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layer. DNNs use a mathematical algorithm with various layered parameters in a 

hierarchical fashion, trained and tested on labelled data through an iterative process to 

minimize prediction error compared to the actual label. After training and developing the 

model on labelled databases, neural networks can predict labels on new, unseen data 

(1, 44-46). 

In a feedforward neural network, each neuron of one layer connects to every neuron of 

the next layer as a directed acyclic graph, which is inefficient with a large number of 

inputs. Multilayer perceptrons (MLPs), generative adversarial networks (GANs), 

convolutional neural networks (CNN), and autoencoders are based on feedforward 

networks (47). 

CNN is a subclass of DNN and a state-of-the-art model with excellent performance for 

object detection, segmentation, classification, and many other image-processing tasks 

(7). CNN algorithms have been implemented for automated segmentation in different 

anatomical sites with promising results, including CT scans of the liver and bladder, 

PET/CT images of skeletal structures, and prostate magnetic resonance imaging (48-

51).  

CNN contains a set of layers, each doing a particular operation such as convolution, 

loss calculation and pooling. For functionality, CNN uses spatial associations of the data 

and replaces neurons with convolutions; therefore, only a limited number of connections 

between layers is needed, reducing memory requirements. After the beginning layer, 

which is an input layer, a stack of convolutional layers performs convolutions on the 
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input. The convolution filters, also known as kernels, act as feature extractors. The 

results of convolving on the input would be feature maps. Defined by the kernel size, 

each neuron in the feature map responds only to a region of the previous layer, called 

the receptive field.   

Activation function, such as the rectified linear unit (ReLU), is applied to the network to 

add nonlinearity. Then, pooling layers are applied to reduce the input dimensions and 

increase the shift-invariance in the feature detection. The sequence of convolutional, 

activation and pooling layers are stated as hidden convolutional units (figure 2.5) (7). 

For the learning process, an input is fed to the neural network. The network analyzes 

the input and predicts an output. The loss function indicates the difference between the 

prediction output by the model and the expected output. The DL network training is 

performed with the objective of optimizing and modifying the weights and biases based 

on loss value (or cost function). Matrix convolution repetitively happens and 

subsequently produces new hidden layers of neural maps. In the optimization process, 

backpropagation and gradient descent are repeatedly applied to the network, updating 

the network parameters until reaching a constant criterion. Commonly used evaluation 

metrics to assess the performance of segmentation tasks are the Dice coefficient, 

intersection over union and pixel accuracy (1, 47).  
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Figure 2.5. The hidden convolutional unit structure (7) 
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2.3.3 Image Segmentation 

According to the American Cancer Society's 2022 report, an estimated 608,570 cancer-

related deaths occurred in the United States, amounting to approximately 1,670 daily 

deaths. Early detection of cancerous cells and taking appropriate measures can save 

millions of lives. In object detection, only bounding boxes are generated, which do not 

provide information about the shape of the cells. This is where the importance of image 

segmentation arises ((1, 52).  

Image segmentation refers to the process of dividing an image into several areas based 

on different features such as geometric shapes, spatial texture, grayscale, and color. 

Image segmentation is divided into semantic segmentation, instance segmentation and 

panoramic segmentation. Semantic segmentation is the task of medical image 

segmentation. There is no universal segmentation method appropriate for all images 

(53). 

Segmentation is a necessary step in obtaining more precise results for the following 

steps in machine learning, such as image measurement and feature extraction (14). 

In medical imaging segmentation, the area of interest is separated from the rest of the 

image contents (54), detecting the pixels of organs or lesions from the original images, 

such as MRI or CT scans (55). Medical image segmentation has been utilized for a wide 

range of applications, such as treatment planning and tumor detection (56, 57) 

Manual segmentation is a laborious and time-consuming task that requires expert input, 

which may not be practically feasible as the number of images necessary for analysis is 
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increasing exponentially due to advancements in imaging technology (1, 34). These 

challenges highlight the need for artificial intelligence methods to address these issues. 

The rapid progress of DL has allowed DL-based image segmentation algorithms to 

achieve impressive results in the image segmentation (53). 

Depending on the model complexity, segmentation can represent either the whole 

object or one of its components. DL has surpassed traditional machine learning 

methods regarding segmentation speed and accuracy, with CNNs demonstrating 

notable superiority by providing unlimited accuracy and feature learning (34). Advances 

in CNNs have improved both the classification and segmentation of images. CNNs have 

been implemented in segmenting blood vessels in various areas, including the retina 

and heart (58). They have also achieved state-of-the-art performance for segmentation 

and classification in MRI images of head and neck cancers and brain tumors (59, 60). 

This method has attained high Dice coefficients for segmenting other structures, such 

as the bony orbit and its background (61).  

Despite the significant advancements in CNNs, they do not adequately address the 

complex challenges of image segmentation, leading to the emergence of other 

segmentation networks, including U-net (1). The following sections will discuss DL-

based networks used for medical image segmentation. 
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Fully Convolutional Network 

The pioneering work of using the most advanced DL models for image segmentation 

was the fully convolutional network (FCN) proposed by Long et al. (62). The typical FCN 

consists of a series of convolution layers followed by a softmax layer to attain the 

classification information of each pixel. The network takes an input of any size and 

generates a correspondingly sized output. The feature map of the last convolution layer 

is upsampled, and the classification of each pixel is carried out to accomplish image 

segmentation. The FCN has been used widely used for segmentation, such as brain 

tumor segmentation in multimodal 3D MRIs (63), optic disc and cup segmentation in 

fundus images (64) and pathological lung tissue segmentation in CT scans (65). 

However, FCN has some limitations, as its upsampling results might be fuzzy and not 

sensitive enough to image details, leading to less accurate segmentation results (53). 

 

SegNet 

SegNet is a semantic segmentation model based on the FCN's segmentation task. In 

essence, SegNet is a variant of FCN in the decoder part. SegNet consists of a stack of 

encoders and a corresponding decoder network, followed by a softmax classification 

layer to assign a class label to each pixel in the image. The main difference between 

SegNet and FCN lies in the upsampling method during the decoding phase. While FCN 

uses transposed convolution layers during decoding to upsample feature maps, SegNet 

stores max-pooling indices during the encoding phase and uses them to upsample low-



 25 

resolution feature maps during decoding. The upsampled feature maps are then 

convolved with a trainable convolution kernel to produce a dense feature map. Finally, 

the feature maps are upsampled to their original resolution and fed into the softmax 

classifier, generating the final high-resolution segmentation (66). Figure 2.6 illustrates 

the difference between SegNet and FCN decoders. Examples of SegNet applications 

include automated brain tumor segmentation on 3D MRI dataset (67) and infected 

tissue region segmentation in CT lung images (68). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.6. Comparison of SegNet with FCN. a, b, c, and d represent the values in a 
feature map. While FCN learns deconvolution operations, SegNet uses the max-pooling 
indices to upsample the feature maps. Figure adapted from (6). 
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U-Net  

To segment whole images, a network may not be able to process images beyond a 

certain resolution due to memory limitations. Dividing large images into regions allows 

the network to segment larger images. Ronneberger et al. modified the architecture of a 

fully convolutional network and proposed a model that works with only a few annotated 

images for training while delivering a more accurate segmentation (2). This novel 

architecture, called U-Net due to its U-shaped structure, has gained traction in medical 

image segmentation, leading to the development of its variants, such as 3D U-Net and 

deep contour-aware network (DCAN) (55, 69, 70). 

U-Net comprises the contraction section, the bottleneck section, and the expansion 

section (Figure 2.7). The contraction section consists of several contraction blocks, 

each with two 3x3 convolutions followed by a ReLU and a 2x2 max-pooling operation, 

doubling the number of feature channels. The contracting path generates a dense 

representation of the input image. Each stage of the expansion phase, consisting of two 

3x3 convolutions followed by a ReLU, is followed by a 2x2 up-sampling layer, halving 

the number of feature channels (1, 2). 

 

Attention Gates in U-Net Model 

CNN models have excessive use of model parameters and computational resources 

due to repeated extraction of similar low-level features. To overcome this problem, 
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attention gates (AG) were developed, which can be easily incorporated into CNN 

structures and increase their prediction accuracy and sensitivity. AG in U-Net improves 

its prediction performance while maintaining computational efficiency because the 

model learns to focus on the most significant regions of the image while suppressing the 

irrelevant or unimportant parts (71). More details on this model are described in Chapter 

3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7. U-Net structure (2)  
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2.3.4 Evaluation Metrics 

The performance of a segmentation model should be assessed using appropriate and 

standardized metrics to ensure the model makes a significant contribution to the field. 

Commonly used evaluation metrics include Accuracy, Precision, Recall, F1-score, 

intersection over union (IOU), and Dice coefficient. The following equations represent 

each of these metrics: 

Accuracy =
TP +  TN

TP +  TN +  FP +  FN
 

Precision =
TP

TP +  FP
 

Recall =
TP

TP +  FN
 

 

F1 Score =
2 x Precision x Recall 

Precision +  Recall
 

TP, FP, TN, and FN refer to true-positive, false-positive, true-negative, and false-

negative, respectively (71). 

 IOU is calculated as the intersection of predicted regions and ground truth regions 

divided by the union of both regions. The IOU can be represented with the following 

formula: 

IOU =
TP

TP + FP + FN
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Dice similarity is an overlap metric often used to evaluate the quality of segmentation 

maps by comparing generated segmentation against the ground truth. The following 

formula is used to calculate the Dice similarity coefficient (DSC): 

DSC =
2|G  T|

|G|  +  |T|
 

 

Where G represents the generated segmentation, and T represents the ground truth. 

The numerator is the number of overlapping pixels from G and T multiplied by two, while 

the denominator is the total number of pixels in both G and T. A DSC of 1 signifies 

perfect overlap, and a DSC of 0 indicates no overlap (72, 73). 

Other potential metrics for a proposed model include execution time and memory 

footprint. While providing the time needed for training the network may not be essential, 

it can assist other researchers or contribute to reproducibility. Additionally, Graphics 

Processing Units (GPUs), which are commonly used, may have limited memory. Thus, 

reporting the peak and average memory footprint of a model can be helpful for 

understanding implementation-dependent aspects (66). 

 

 

 



 30 

2.3.5 Challenges of Deep Learning for Medical Image 

Segmentation 

Limited Annotated Data and Overfitting  

DL networks necessitate large datasets to achieve high accuracy in complex conditions, 

such as medical image segmentation. Collecting a vast amount of annotated data for 

medical images is both time-consuming and expensive (74). When the training dataset 

is small, overfitting may occur, causing the model to perform well on the training data 

but poorly on new, unseen data, resulting in a weak generalization (75) 

Various approaches can help increase data size, improve DL model performance, and 

address the overfitting problem: 

1. Data Augmentation: This technique involves increasing the size of the training 

data by applying transformations such as mirroring, rotating, cropping, flipping, or 

adding noise to the original samples (76). 

2. Patch-wise Training: In this method, an image is divided into smaller patches, 

and the model is trained on each patch separately. However, this approach might 

not be suitable for small organ segmentation, as random patching could lead to a 

loss of contextual information and, consequently, an inaccurate segmentation 

(55). 

3. Sparse Annotation: This approach involves labelling only a small portion of the 

data to reduce the time and cost associated with data annotation (77). However, 
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the annotated data may not be representative of the entire dataset, leading to 

poor generalization. 

4. Transfer Learning: Fine-tuning a model, initially trained with a large dataset, on a 

smaller dataset may enhance the model's performance. 

 

Class Imbalance 

Class imbalance occurs when only a small number of pixels belong to the region of 

interest, while most patches correspond to the less important background area. This 

issue is particularly prevalent in medical image processing. A network trained on such a 

dataset could be biased toward the background, resulting in poor performance. To 

overcome this problem, higher weights can be assigned to minority patches during 

training (78, 79), and patch-wise training may also address class imbalance (80). 

 

Computational Cost and training time 

DL's ability to outperform humans comes at a cost. Justus et al. developed a model to 

predict the computational cost of DL networks, specifically execution time (81). Training 

networks to learn complex patterns from a dataset requires time and resources. Many 

studies have focused on reducing execution time and achieving faster convergence. 

Techniques such as batch normalization, down-sampling, and pooling have been 

employed to facilitate faster convergence (48, 82). 
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2.3.6 Related Work 

Various DL architectures, such as U-Net and its variants, FCN, GAN, and others, have 

been used for the task of organ segmentation (83). Numerous studies have utilized DL 

algorithms to classify and predict cervical LN metastasis (84-87). However, to the best 

of our knowledge, no studies have employed a model for the automatic segmentation of 

non-metastatic cervical LNs in healthy individuals. Therefore, in this study, we aimed to 

develop a DL model for robust LN segmentation in CECT scans of healthy individuals. 

Ariji et al. used Detectnet and U-Net, for automatic segmentation and metastasis 

detection in cervical LNs of patients with oral squamous cell carcinoma. Recall, 

precision, and F1 scores were used to evaluate the model's performance for detecting 

metastatic LNs, both overall and for each level separately. The recall values of 

metastatic and non-metastatic LN segmentation were 0.742 and 0.782, respectively, 

indicating insufficient performance that requires improvement (88, 89). 

In another study by Tomita et al., CNN and transfer learning were employed to 

differentiate between benign and metastatic cervical LNs in patients with squamous cell 

carcinoma. The model's area under the curve (AUC) was calculated at 0.898, which 

was higher than the radiologists' performance (90). 

Iuga et al. (33) collected a dataset of 89 contrast-enhanced CT scans of the thorax 

containing 4275 LNs. A radiologist segmented all the LNs semi-automatically, 

evaluating the 3D volume of the LNs. A 3D fully convolutional neural network was 
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trained on this dataset using four-fold cross-validation. The total detection rates for 

enlarged LNs were 76.9% in the training set and 69.9% in the testing set, respectively. 

The detection rate of enlarged LNs, with a short-axis diameter (SAD) ≥ 20 was much 

better than that in the small LNs, with a SAD 5–10 mm, 91.6% 

versus 62.2%, respectively. 

Using a 3D CNN for extranodal extension detection in head and neck squamous cell 

carcinoma by Kann and colleagues demonstrated that the CNN algorithm outperformed 

radiologists (25). 

A 3D foveal fully CNN (U-Net) was applied for automated detection and segmentation of 

thoracic LNs using contrast-enhanced CT scans. The output was a probability map 

indicating the likelihood of each voxel being an axillary or mediastinal LN. The algorithm 

achieved excellent detection performance with reasonable generalizability and a DSC 

value for segmentation accuracy, facilitating LN detection in routine clinical work (33).  

It has been noted that while unidimensional measurement of LN SAD is routinely used 

for nodal disease staging, two-dimensional (2D) approaches may underestimate lesion 

size. Therefore, considering the entire volume of the LN is crucial for an accurate 

segmentation (33, 91). 

Manjunatha et al. proposed a two-stage approach for CT scans of mediastinal and 

abdominal LNs. In Stage I, they used modified U-Net with ResNet architecture to have 

high sensitivity, which was achieved with the cost of increased false positives, with 
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sensitivities of 87% at 2.75 false positives per volume. For false positive reduction, they 

used a 3D convolutional neural network classifier in stage II (92). 

Cai et al. developed a slice-wise label-map propagation algorithm on response 

evaluation criteria in solid tumors (RECIST), inspired by weakly supervised image 

segmentation and due to the expensive LN segmentation cost. They reached a mean 

DSC of 92% on RECIST slices and 76% on the lesion volume (93). 

Sartor et al. employed a CNN to automatically segment the clinical target volume of LNs 

in patients with anorectal or cervical cancer. Using Dice scores and the distribution of 

Mean Surface Distance for model evaluation, the CNN method achieved a high 

performance (94). 

Zhou et al. developed an FCN architecture for the segmentation of multiple organs in 

3D CT images. Their model demonstrated promising results, achieving an acceptable 

accuracy of 88.1% voxels for the training dataset and 87.9% voxels for the testing 

dataset in segmenting 19 structures of interest. However, the authors acknowledged a 

limitation of their network, which was its lower accuracy in segmenting smaller 

structures (95). 

Although DL models have been effectively employed in numerous fields, their use for 

assessing small LNs in head and neck cancer is still scarce (16). Also, the 

segmentation of objects which occupy only a small fraction of pixels remains a 

challenging task (83). We will discuss this problem in more detail in the methodology 

section. 
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Chapter 3  

Methodology  

This chapter describes the whole workflow in detail. The first section contains the 

dataset description and its preparation. The following sections are dedicated to a 

comprehensive overview of the steps involved in this work, including the preprocessing, 

training, and evaluation metrics in detail.   

 

3.1 Dataset  

3.1.1 Dataset Acquisition  

The dataset consists of 221 head and neck contrast-enhanced CT scans obtained from 

the Augmented Intelligence and Precision Health laboratory (AIPHL), which belongs to 

the research institute and Department of Radiology of McGill University Health Center. 

The institutional review board was approved at the McGill University Health Centre 

Research Institute. The criteria for including participants in the study were as follows: (1) 

The participants who have undergone a contrast-enhanced CT scan of the neck, (2) the 

scan would have been interpreted as normal or with minor inconsequential incidental 

findings, and (3) the participants would have been adults aged 18 years or older. The 

criteria for excluding participants were: (1) The presence of any nodal disease or 
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abnormality on the scans, (2) the presence of any known or suspected primary 

malignancy on the scans, (3) the presence of significant inflammatory change or 

abscess on the scans, and (4) any history of known malignancy. 

Those CT scans belong to healthy individuals without any head and neck cancer. 

  

3.1.2 Dataset preparation  

The dataset was stored as DICOM files imported to an open-source software for 

medical image visualization called 3D-slicer version 5.0.3. Imaging-based classification 

for cervical LNs is divided into seven anatomical levels initially proposed by Som et al. 

(20). Considering these levels, levels I to IV are the areas with the most remarkable 

propensity for LN metastasis from HNSCC and of most significant clinical interest; 

therefore, all levels I to IV of these CT scans, including 1A, IB, II, III and IV, were 

reviewed. Normal LNs with a long-axis diameter of  5mm on axial planes were 

manually segmented in the dataset by a trainee (S.G.) and a neuroradiologist (P.T.). 

Figure 3.1 illustrates an example of this operation. Coronal planes would also be 

reviewed when LN detection was challenging due to the surrounding soft tissues. The 

remnants of each LN, which would be smaller than 5mm, were contoured in the 

subsequent slices. 

These annotations were then reviewed and modified as needed by a fellowship-trained 

neuroradiologist and head and neck radiologist with over ten years of clinical practice 

bookmark://_ENREF_20/
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experience (R.F.). The CT scans and their corresponding mask images were stored in 

the format of NRRD files.  
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Figure 3.1. The steps taken to prepare our ground truth: A. First, we find a LN (the red 
arrow is representative of a cervical LN at level II). B. Then, we measure the size of the 
longest axis of the LN. We have to move forward and backward of the subsequent 
slices on the CT image in order to find the slice where the LN is at its largest size. C. If 
the longest axis is ³ 5 mm, we would contour the whole LN. D. We would annotate the 
subsequent slices containing the mentioned LN. Image D shows the last slice of the 
mentioned LN. 
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3.2 Image preprocessing 
  
Preprocessing the data is one of the essential steps for getting the best image analysis. 

This is why we took several steps for preprocessing consisting of center cropping, 

windowing, clipping, and normalization.  

In each CT image, slices above the bottom of the orbits and below the top of the lungs 

were discarded. Each original DICOM image is 512 × 512 pixels. Many parts of each 

slice would be redundant and should be removed to have a more accurate image 

analysis. Also, during the training phase, the irrelevant regions in the original CT image 

can cause a significant computational workload. Therefore, we center-cropped all 

images to 384 × 384 pixels from the original image, which included the main anatomical 

structures and our targets. For the final training, the process of the region-of-interest 

extraction was automated and it was performed in the same way across all images.  

Windowing maps the original pixel values of the image to a new specified range of 

values, which helps improve the visibility of certain structures or tissues in the CT 

image. We considered Slope 1, intercept 0, window center 40, and width 400, which are 

the typical window center and window width values for the soft tissue in the head and 

neck (96). We can visualize the LNs in these values properly.  

  

Image = (Image x slope) + Intercept  

  

window_min = level - (window_width / 2)  
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window_max = level + (window_width / 2)   

Based on the above formulas, the minimum and maximum values would be calculated 

as:  

  

window_min = 40 - (400 / 2) = -160  

window_max = 40 + (400 / 2) = 240  

  

Clipping is one of the common preprocessing techniques in image preprocessing.  

Using the above formulas, the pixel values of CT slice images were limited to the range 

of -160 to 240.  Any pixel values below a lower bound or above an upper bound were 

set to the corresponding bound values. By restricting the pixel values, clipping 

enhances image contrast and visibility, making the image more appropriate for the 

following processing. The formula for clipping an image can be written as:  

  

clipped_image = max(min(original_image, 240), -160)  

  

Where the original image is the input image and max and min are functions to compare 

the pixel values in the input image to the maximum and minimum, returning them to 

these values, respectively. After applying soft tissue windowing, the slices containing air 

regions were removed from further analysis to improve the model's accuracy and 

reduce the computational burden. 
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Different CT scans might have various configurations. By deploying normalization in CT 

images, the range of pixel intensity of the remaining values would be scaled between 

zero and one using the following formula:  

  

𝑆𝑙𝑖𝑐𝑒 𝑛𝑜𝑟𝑚 =
𝑠𝑙𝑖𝑐𝑒 − min(𝑠𝑙𝑖𝑐𝑒)

𝑚𝑎𝑥  (𝑠𝑙𝑖𝑐𝑒) − min(𝑠𝑙𝑖𝑐𝑒)
 

  

Where slice is the source pixel data in CT images, slice norm is normalized CT images 

pixel data, and max slice and min slice are the original CT images' maximum and 

minimum gray values, respectively.  

  

3.3 Lymph Node Segmentation  

We trained and analyzed two different state-of-the-art architectures for LN 

segmentation: U-Net with attention and Focus Net.  

  

3.3.1 U-net Architecture   

U-net and its variants have been widely used for segmentation in medical imaging. The 

ability to work with small datasets and achieve high accuracy provides this model with 

high utility in the analysis of medical images (2, 97, 98).    

In the contracting path of the U-net, the input image goes through a series of 

convolutional and pooling layers, which reduces the spatial resolution of the image and 
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gives a compressed representation. Then the image goes through the expansive path, a 

series of convolutional and upsamlping layers, which recover the spatial resolution and 

result in the final prediction map. The training process is performed by calculating the 

loss by comparing the model's predicted output with the ground-truth segmentation 

mask. Figure 3.2 represents the fundamental architecture of the U-Net model.  

  

 

  

 

 

 

 

 

 

Attention U-Net  

Focusing on specific objects that are of importance and ignoring the irrelevant areas is a 

desirable trait in the image processing network. The attention U-net achieves this trait 

by using an AG. The expansive path of attention U-net has an AG implemented in the 

skip connection of each layer. The corresponding features from the contracting path 

Figure 3.2. U-Net Structure used for the ground truth 
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have to go through this AG before combining with the up-sampled features in the 

expansive path. This AG also suppresses activations at irrelevant regions. Figure 3.3 

describes an additive AG.  

  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on Figure 3.3, each AG has two inputs: the gating signal (g) and the connection 

from the corresponding encoder layer (x). Both inputs pass through separate 1 × 1 × 1 

convolutions. Then the signals are combined; the aligned weights get larger while the 

unaligned weights get relatively smaller. After passing through the ReLU activation, 1 × 

1 × 1 convolution and the sigmoid activation, the output is up-sampled or resampled to 

the same size as the input x. Finally, this output is multiplied element-wise to the original 

x vector. By this mechanism, the network focuses on the most informative features, 

which would improve its segmentation performance without requiring excessive 

computational complexity (4). 

Figure 3.3. The schematic of additive attention U-net (4). 
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Based on the above definition of attention, we used a U-Net-based structure as our 

baseline model. Figure 3.4 represents a schematic architecture of our U Net. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The breakdown of the different components of the U-Net architecture is as follows: 

1. Encoder path: The input image, as illustrated above, goes through multiple 

convolutional blocks in the encoder. Convolutional operations are applied in each 

block to extract features from the image. The output of the encoder path is a 

compressed representation of the input image containing deep features.  

Figure 3.4. The architecture of Attention U-Net for LN segmentation. 
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2. Decoder Path: This encoded representation from the encoder is then passed 

through the decoder layers, consisting of a series of Transpose Convolution 

blocks, also known as deconvolution blocks. These blocks upsample features 

with the goal of reconstructing the original input image while preserving the 

extracted features.  

3. Skip Connections with Attentional Module: To improve contextual information 

flow and retain fine-grained details, skip connections with attentional modules are 

employed between the encoder and decoder layers. 

4. Segmentation Mask Prediction: The final layer in the decoder applies the sigmoid 

activation function to predict a segmentation mask. The sigmoid activation function is 

a mathematical function that maps the input value to a value between 0 and 1 and 

generates a pixel-wise probability for each class. Finally, the model would produce a 

segmentation mask which is a binary mask that assigns a prediction value to each 

pixel, highlighting the regions of interest. 

In summary, this structure enables the extraction of significant image features and 

maintains spatial information by employing skip connections with attentional modules, 

resulting in producing a segmentation mask that identifies and categorizes different 

regions within the image (99). 

We used binary cross-entropy, which is a traditional loss function, to compare the 

predicted segmentation map with the original segmentation map. This loss function is 

commonly used for binary segmentation tasks in U-Net. For this purpose, we converted 
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these segmentation maps to a vector of probabilities. Binary cross entropy is mainly 

used for classification tasks, but it can also be used for segmentation as a pixel-level 

classification using the following formula: 

  

Binary Cross Entropy Loss(y, p) = −(ylog(p) + (1 − y)log(1 − p)) 

 

 Where p is the predicted segmentation probabilities by the prediction model, and y is 

the true segmentation probabilities (100). 

 

Limitations of Attention U-net 

While attention U-Net has been widely used in the medical domain and has achieved 

promising results for segmentation tasks, it has some limitations. The objects we are 

targeting for segmentation are cervical LNs which are too small. The U-Net model 

applies convolution and down-samples the image several times, 16 times down-

sampling as shown in figure 3.4. Too much down-sampling and excessive input 

compression can result in the loss of high-resolution information. As each LN occupies 

only a few voxels, this significant down-sampling causes the loss of information, which 

is crucial to produce an accurate segmentation map. Combining low-level and high-level 

features would provide only a partial solution and cannot address this issue thoroughly 

(101). 
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Also, the foreground or the main region of interest in our images is very small compared 

to the background area. For this imbalance, the traditional loss function might have poor 

performance. To overcome these challenges, we deployed Focus Net and used binary 

Tversky loss. 

 

3.3.2 Focus Net 

To address the mentioned limitations of U-Net, we adopted the spatial context network 

from FocusNet. FocusNet applies down-sampling only twice in the encoder path, which 

would help retain as much detail as possible. However, minimizing the information loss 

comes with the cost of a limited receptive field. Downsampling the input images only 

twice leads to a relatively small receptive field, hindering the network from capturing 

high-level features and extensive contextual information. To overcome this, 

we applied dense atrous spatial pyramid pooling (dense ASPP) module, which captures 

contextual information from the same feature map at multiple scales. Before going 

further, we delved into the concept of atrous convolution.  

Atrous convolution, also known as dilated convolution, was developed to overcome the 

limitation of traditional convolutions in capturing context at different scales and increase 

the receptive field of a convolutional layer. 

In a traditional convolution, a given kernel, also called filter, slides over the input feature 

map using a fixed stride. Dissimilar to fixed stride convolutions, atrous convolution 
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includes gaps between filter weights, leading to receptive field expansion without 

requiring adding parameters. Traditional convolution concentrates on local features, 

while atrous convolution provides the network with capturing a broader scope of 

information by a parameter called the dilation rate. Figure 3.5 demonstrates their 

difference. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

  

For a two two-dimensional signal x, applying atrous convolution with a filter w yields the 

output y following the equation:  

  

  

where the atrous rate r corresponds to the stride used to sample the input signal, 

equivalent to convolving the input x with unsampled filters produced by inserting r - 1 

Figure 3.5. Atrous Convolution  
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zero between two consecutive filter values along each spatial dimension. Standard 

convolution is a particular case of atrous convolution with r = 1. We can modify the 

filter's field-of-view (FOV) by changing the rate value. 

Atrous Spatial Pyramid Pooling (ASPP) employs atrous convolutions to merge multiple 

atrous-convolved features, each with a different dilation rate, to create a final feature 

map representation. The dilation rates enable the network to capture information at 

various scales (102). Due to a limited number of down-sampled features, ASPP would 

have a small receptive field. To address this limitation, we adopted the densely 

connected ASPP (DenseASPP), which connects a set of atrous-convolved features in a 

dense way, enhancing the input image representation by information aggregation and 

exchange across multiple scales (103). 

Also, in DenseASPP, skip connections were introduced between features of the same 

scales from the encoder to the decoder to prevent the loss of contextual information. 

These connections aim to ensure the continuous flow of relevant information across the 

network. Rather than a simple addition of the features, a technique called reverse axial 

attention was applied to merge the encoder features with the decoder features, 

enhancing the reconstruction results by emphasizing the relevant foreground regions 

(104). 

In our model inspired by FocusNet, following the two times downsampling and 

application of dense ASPP, the resulting feature is up-sampled to restore its original 

resolution and then concatenated with the original feature. As downsampling in the 
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Figure 3.6. The architecture of the FocusNet  

 

encoder layers was twice, the up-sampling step would be performed twice as well. 

Finally, a sigmoid activation function would be applied to the concatenated feature, 

which maps the values between 0 and 1. The sigmoid output is then used to predict a 

segmentation mask.  

Overall, the process involves downsampling, applying ASPP, up-sampling the feature, 

concatenating it with the original feature, applying a sigmoid function, and finally 

predicting the segmentation mask. Figure 3.6 describes the FocusNet architecture. 

We fed our DL with raw data, and it produced the output; we did not have to do any 

extra feature extraction, illustrated in Figure 3.6.  

 

 

  

 

.  
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Due to the mentioned limitation for the traditional loss function, we used Binary Tversky 

loss to evaluate our model. The Tversky index is a similarity measure that compares 

two sets and is defined as: 

Tversky Index = TP / (TP + α * FP + β * FN) 

where TP represents the number of pixels correctly identified as positive, FP indicates 

the number of pixels incorrectly identified as positive, and FN represents the number of 

pixels incorrectly classified as negative. α and β are weighting parameters that regulate 

the balance between false positives and false negatives.  

Binary Tversky loss extends the Tversky index and serves to calculate the dissimilarity 

between ground truth and predicted output segmentation masks.  

Binary Tversky Loss = 1 - Tversky Index 

The Binary Tversky loss function aims to minimize the dissimilarity between the 

predicted and ground truth segmentation masks. By optimizing this loss function, the 

model learns to accurately segment and classify regions of interest in the binary 

segmentation task.  
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3.4 Experimental Setup  

3.4.1 Data Split  

Data splitting was performed to avoid overfitting. The images and their corresponding 

contours were used as inputs for the training phase of our DL-assisted models.  The 

221 CT exams were split into three sets: training, validation, and testing.  

The first 160 CT scans were used as the training set to train the model. The subsequent 

40 CT scans were used to validate the algorithm by tuning different hyperparameters. 

Finally, the last 21 CT scans were used as the test set to assess the model's 

performance and generalizability. It should be noticed that the data split was at the 

patient level rather than the image level. 

Overall, we had 18054 CT slices for training, 4463 slices for validation, and 2602 slices 

for testing the model. 

 During the training phase, we encountered a significant imbalance in the distribution of 

LN within the dataset. Of the total 18,054 slices, only 4,644 CT slices, which account for 

25.7% of the total slices, contained LNs, resulting in a class imbalance at the dataset 

level. This dataset-level class imbalance posed challenges during the learning phase, 

and we also had to address the intra-sample (pixel-level) class imbalance to prevent 

bias in the model's performance. 

We implemented a uniform sampling strategy at the class level to alleviate this issue. In 

each training epoch, we randomly selected an equal number of negative samples, 
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defined as samples without LN, along with the positive training samples. This method 

mitigates the problem and allows us to focus on improving the pixel-level imbalance.  

3.4.2 Training  

We used the S-Net architecture from FocusNet (101) as the backbone of our method 

and incorporated reverse axial attention with the network. We also observed the effect 

of training and finetuning the network with classification and localization, respectively. 

 

3.4.3 Computational Resources and Hyperparameters 

We used the PyTorch DL library. The procedures were performed on machines running 

the Unix system (Fedora).   

During the training process, a weighted Adam optimizer with a learning rate of 5e-5 was 

utilized. We decided to use a relatively small learning rate based on the limited number 

of available LN slices. The U-Net model was comprised of a total of 34,877,421 

parameters. The Spatial Context Network with reverse axial attention, had a precise 

count of 27,134,416 parameters. Additionally, the Spatial Context Network without 

attention model was constructed with 821,613 parameters. 

We used a batch size of 8 for each experiment with images of 384x384 (height x width). 

We utilized two NVIDIA GeForce RTX 2080 graphics cards, each of them equipped with 

a memory capacity of 12 GB.   
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3.4.4 Evaluation metrics 
  
We used the DSC and Jaccard index, also known as the Jaccard similarity coefficient, 

as both are among the most popular metrics for evaluating segmentation tasks in 

medical imaging. 

  

Dice similarity coefficient  

We assessed the performance of our DL models for cervical LN segmentation by 

calculating the DSC, referred to as the Dice score, of the generated contours by the 

model against the original contours. 

 

𝐷𝑆𝐶 =
2 ∗ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 + 𝑇𝑜𝑡𝑎𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
   

 

where intersection refers to the number of pixels correctly identified as positive in both 

the ground truth and the predicted masks, Total predicted represents the overall number 

of positive pixels in the predicted mask, and Total ground truth represents the total 

count of positive pixels in the ground truth mask. 

 

Jaccard Index 

We also used the Jaccard index, commonly known as IOU, which is another similarity 

measure between two sets and is calculated using the following formula: 
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Jaccard Index = Intersection of the Sets / Union of the Sets 

 

Both of these metrics range from 0 to 1 to quantify the segmentation accuracy. The 

main difference between them lies in how their dominators are calculated; the DSCs 

use the sum of the sizes of each set, while the Jaccard index uses the size of the union 

of the sets. DSC tends to have more sensitivity to small differences. Conversely, the 

Jaccard index is more commonly used for evaluating the overall similarity between sets. 

Based on the emphasis on small variations or balanced similarity, each of them can be 

chosen. The following formulas are written to provide an easier comparison between 

these two metrics: 

 

 

Dice Score = DSC = (2 * |A ∩ B|) / (|A| + |B|) 

Jaccard Index = J = |A ∩ B| / |A ∪ B| 

 

Where A and B are the two sets being compared, |A| and |B| represent the number of 

elements of sets A and B, respectively, ∩ represents the intersection of sets A and B, 

and ∪ represents the union of sets A and B (105-107). 
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Chapter 4 

Results and Analysis 

In this chapter, the results of the experiments mentioned in the previous chapter are 

described in consecutive order. 

We leverage the produced annotated data to establish the LN segmentation tools. The 

DL pipeline developed in our laboratory by adapting existing pipelines is presented in 

the following. 

 

4.1 Lymph node Segmentation 

The dataset used for the study consisted of 221 contrast-enhanced head and neck CT 

images. All LNs with a long axis diameter of  5mm on axial planes were detected, 

manually contoured, and then reviewed by an expert neuroradiologist (Figures 4.1 and 

4.2). 
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Figure 4.1. Sample image of the dataset. Axial view of CT 
scan. Manually segmented Right level IB LN (pink), Right level 
II LNs (red and yellow), Left level IB LN (blue) and Left level II 
LNs (green and white). This person had multiple other LNs 

with long axis of  5 mm, which can be seen on the 
subsequent slices on the CT scan. 
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4.2 Training 

The annotated LNs were used to train our model. We trained both attentional U-Net and 

Spatial Attention networks for our analysis. Comparing the predicted segmentation 

mask with the original mask, we computed the DSC and Jaccard index to assess the 

performance of the cervical LN segmentation.  

Figures 4.3 and 4.4 visualize the training progression of the S-Net model, the increasing 

trend of accuracy and the decreasing trend of the loss values as the model progress 

through the epochs, respectively. The X-axis indicates the epoch number; each epoch 

Figure 4.2. Whole 3D of LNs of the person in Figure 
4.1. LNs in other levels, including level IA, level III (right 
side), level III (left side) and level IV (left side), are 
presented as well. 
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indicates a complete pass of the entire training dataset through the model n mini-batch 

format, with batch size 8. The Y-axis in Figures 4.3 (a) and 4.4 (a) represents the 

corresponding matrix value. 

At the end of each epoch, the model is saved and evaluated using the validation set. 

The corresponding loss and dice-coefficient values of images from the validation set are 

saved. The average values of loss and dice-coefficient achieved from the validation set 

using the saved model after each epoch training are plotted in the graph. The training 

process continues iteratively, using the saved model from the previous epoch as the 
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starting point for the subsequent epoch. 
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There is considerable variance in the matrix attributed to the output sensitivity of the 

object size. Small lymph nodes result in a substantial inter-class variance in pixel levels, 

as the number of background pixels greatly outnumbers that of foreground pixels, 

referred to as lymph node pixels. Also, although we sampled negative samples likewise 

positive sample numbers, this approach does not entirely address the class imbalance 

problem at the image level. To tackle these problems, we adopted a focal Tversky loss 

function that put emphasis on the losses by foreground pixels. This emphasis 

considerably alleviates the impact of losses by background pixels during the training 

phase, leading to better model performance. 

Leveraging the focal Tversky loss helps the model to improve in the learning process 

compared to training with traditional binary cross entropy (BCE) or focal loss.  

The issue of inter and intra-sample level class imbalance remains an unsolved and 

challenging problem in the computer vision field. Future research is required to address 

this multifaceted imbalance in this complex setting where both inter-sample (within a 

sample) and intra-sample (within samples of the entire dataset) class imbalances are 

intense. 

The variance in the matrix of validation graphs also hints toward the model overfitting, 

as overfitting occurs due to the dominance of the background loss during the training 

process. Despite using focal Tversky loss to mitigate the class imbalance, the extremely 

small size of the target organs prevents this problem from being completely resolved. In 
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other words, the imbalance problem cannot be fully addressed by only relying on 

advanced loss functions. 

Based on the explanation above, we carefully chose the model from a certain epoch 

during its evaluation on the test set. We opted for a model from an earlier Epoch where 

the loss function and DSC had consistent downward and upward trends, respectively, 

specifically from Epoch 34. We extended the training process to Epoch 200 only with 

the aim of observing the behaviour of the model and its learning procedure.  

 

4.3 Inference and Performance 

We evaluated the performance of our models by calculating the DSC and Jaccard 

Index. Table 4.1. shows the LN segmentation performance of the Attention U-Net model 

and S-Net models, with and without attention, on the test set. The S-Net adopted from 

FocusNet outperforms the Attention U-Net even without spatial reverse attention 

(0.7828 versus 0.7513).  Our model also demonstrated better performance than the 

CaraNet network proposed   by Lou et al. (104), with a DSC value of 0.8014 versus 

0.7707, respectively. CaraNet stands for Context Axial Reverse Attention Network, an 

attention-based deep neural network aimed at improving the performance of small 

object segmentation in medical imaging. It is worth considering that the backbone of 

CaraNet is pre-trained on ImageNet, a dataset consisting of natural images that differ 

considerably from medical images. 



 64 

As mentioned before, fewer downsampling leads to better pixel-level prediction and, 

therefore, better segmentation performance and a higher DSC, as shown 0.8014 for 

Spatial Context Network with reverse axial attention. Also, by incorporating the reverse 

axial attention between the encoder and its corresponding decoder layers, the model 

achieved a higher DSC compared to the baseline model without attention (0.8014 

versus 0.7828). 

 

Network DSC Jaccard Index  

Attention U-Net  0.7513 0.7394 

CaraNet 0.7707 0.7602 

Spatial Context Network 

without attention 

0.7828  0.7740  

Spatial Context Network 
with reverse axial attention 

0.8014  0.78  

Table 4.1. Comparing the performance of the Attention U-Net model, CaraNet model 

and S-Net models. 
 
 
 

The Spatial Context Network with reverse axial attention showed enhanced 

performance even in CT images with multiple LNs. Figure 4.5 indicates an example of 

the multiple LN segmentation of our model. However, there were instances where the 

model failed to detect the LNs or generated false positive LN detections. Figures 4.6 

and 4.7 represent various segmentation outcomes achieved by our S-Net model. 
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Figure 4.5. Multiple LNs and their segmentation results by spatial context network. (a) 

Image with segmented LNs. Expert annotations are shown in red and model annotations 
are shown in blue. (b) The nodal area is zoomed in for visual inspection. (c) Mask 
image. (d) The output of the model. 
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Figure 4.6. Examples of segmentation performance of the S-Net model for 
Multiple LNs. Mask is the expert annotations and output is the model 
annotations. 
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Figure 4.7. Spatial context network prediction for Lymph Node Segmentation: 

(a) accurate prediction, (b) multiple lymph nodes prediction with low false 

positive. Continued on next page. 
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Figure 4.7. (c) multiple lymph nodes prediction with low false positive, and (d) 

failed cases. 
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Chapter 5 

Discussion 

The management of patients with HNSCC presenting clinically negative (N0) necks, 

where there are no apparent signs of cervical lymph node metastasis upon 

examination, remains a major challenge. The difficulty arises from the potential 

existence of occult lymph node metastases that can be detected through neither 

radiological nor clinical means. Neck dissections are commonly performed on patients 

with clinically N0 necks and high-risk tumors to tackle this issue, but this approach 

might result in overtreatment and potential complications. In addition, the accurate 

analysis of small lymph nodes for disease staging is essential as they may contain 

micro-metastases. Still, the manual detection and segmentation of cervical lymph 

nodes can be time-consuming, prone to errors, and reliant on the observer's expertise. 

 

Our research demonstrates the power and potential of DL algorithms in segmenting 

cervical LNs, a traditionally challenging task considering their small size. This research 

developed and evaluated a novel DCNN algorithm capable of accurately and efficiently 

segmenting cervical LNs with a long-axis diameter of ≥ 5mm in levels I to IV from 

contrast-enhanced CT datasets. 
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Our research demonstrates the power and potential of DL algorithms in segmenting 

cervical LNs, a traditionally challenging task considering their small size. This research 

developed and evaluated a novel DCNN algorithm capable of accurately and efficiently 

segmenting cervical LNs with a long-axis diameter of ≥ 5mm in levels I to IV from 

contrast-enhanced CT datasets. 

 

Automatically segmenting LNs using DL algorithms has several potential benefits and 

impactful applications. It can dramatically improve time efficiency by reducing the 

labour-intensive process of manual segmentation, allowing clinicians to focus more on 

diagnosis and treatment planning. It provides consistency in results, eliminating the 

variability inherent to different human interpreters and thus increasing the reliability of 

outcomes. Furthermore, it offers scalability that can handle large volumes of data - an 

essential feature for large-scale studies or busy clinical settings. Importantly, this 

automated approach lays crucial groundwork for subsequent studies focusing on the 

development of classification algorithms aimed at facilitating the early detection of 

subtle LN abnormalities that may not be visible to the human eye. This is particularly 

pertinent when evaluating small LNs, where the detection of metastasis is traditionally 

reliant on size. Consequently, our method is poised to bring transformative changes in 

the assessment of these smaller nodes, providing a more accurate analysis that 

extends beyond the conventional size-based evaluation. Ultimately, accurate 
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segmentation and classification could reduce the necessity of invasive procedures like 

elective neck dissections, decreasing associated complications and morbidity. 

 

A key differentiator of our approach, compared to prior studies like Tomita et al. (90), is 

the meticulous manual segmentation of regions of interest across all slices of the 

targeted LNs, rather than relying on a single, largest dimension. Additionally, our 

technique incorporates texture feature extraction to enhance the precision of our 

analysis further. These methodological enhancements increase the accuracy and 

robustness of our model, thus potentially improving LN evaluation in patients. 

 

To ensure high-quality data input, our study concentrated on segmenting the borders 

of LNs without including surrounding soft tissues, in contrast to the use of arbitrary-

sized squares employed in some previous methods. This selective segmentation 

approach enhances the precision of our DL model by minimizing interference from 

surrounding structures. A large amount of high-quality data enables the model to 

learn generalizable patterns and achieve high performance. Poor manual 

segmentations would inevitably lead to inaccuracy in the model’s output. To ensure 

the best possible output, our LN annotations were meticulously reviewed by two 

expert neuroradiologists separately and served as the definitive ground truth. Our S-

Net imitates how human physicians delineate medical images. 
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We needed a quantitative evaluation of our algorithm and used the DSC, the most 

commonly used statistic in the literature, to measure the similarity between the two 

samples. In a study conducted by Li et al. (22), the U-Net model was employed, 

achieving an overall DSC value of 0.6586 for LN segmentation in patients diagnosed 

with nasopharyngeal cancer. In contrast, our S-Net model achieved a significantly 

higher DSC of 0.8014. This improvement was partly due to the incorporation of the 

ASPP module into our model, which enlarges the receptive field and facilitates the 

capture of multi-scale contextual information from the input image. 

DenseASPP demonstrates to achieve high-performance levels, even when paired with a 

weak baseline model, leading to considerable improvement of the segmentation 

performance of the base model (101, 103).  

 

By incorporating reverse axial attention between the encoder and corresponding 

decoder layers, our S-Net model surpasses the baseline model, achieving superior 

outcomes with DSCs values of 0.8014 and 0.7828, respectively. 

 

The attention U-Net we employed achieved a DSC of 0.7513 for LN segmentation. This 

lower performance compared to our S-Net model can be attributed to too much down-

sampling in the U-Net and its limitations in representing complex features. The 3D 

variants of U-Net have contributed to remarkable advancements in medical image 

segmentation, but they still encounter challenges that cause suboptimal performance 
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when it comes to small organ segmentation in the head and neck region due to the 

issues mentioned earlier (101). 

 

We must acknowledge the limitations of our study. These include the use of data from a 

single source and occasional image quality issues, which may introduce potential bias 

or impact model performance. Therefore, subtle changes may occur in the image 

contrast while using other imaging protocols, but if the algorithm parameters are 

reoptimized, the proposed model can be adapted to these changes. Also, by including 

these lower-quality images, we mimic the realities of clinical practice and encourage 

model generalization. Going forward, we intend to evaluate the impact of incorporating 

data augmentation and expanding our dataset to include scans from other geographical 

regions and diverse imaging protocols. 
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Conclusion and Future Work 

In this study, we developed an innovative and non-invasive DL-based algorithm for the 

segmentation of cervical LNs in levels I to IV, demonstrating its potential as a valuable 

tool in medical diagnostics. Beyond its immediate applicability to LN analysis, this 

framework could provide a cornerstone for future algorithms designed to classify head 

and neck LNs by extracting radiomic features, thereby helping to differentiate metastatic 

from non-metastatic LNs. It could potentially detect small, early-stage nodal metastases 

that are difficult to discern with the naked eye. This advancement could revolutionize 

cervical LN assessment in CT scan imaging, a task traditionally challenging for both 

clinicians and radiologists. 

It’s worth noting that our current model relies on 2D CT slices as the input data for 

analysis. Given the potential benefits of a more comprehensive contextual 

understanding, one of our future objectives is to enhance our model by incorporating 

Three-dimensional (3D) voxel data, thereby capturing volumetric information and 

improving the network's decision-making capabilities. 

In summary, this study developed a novel algorithm with strong potential to improve 

cervical LN segmentation, thus saving clinicians valuable time and potentially improving 

patient care; in particular, the management of HNSCC patients with clinical N0 necks 

will be improved by enhancing disease identification and therefore, minimizing the 

frequency or extent of elective neck dissections. 
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