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Abstract

Variable selection plays an important role in statistical modeling and prediction. It can

discriminate between variables that are critical to predicting the outcome and the noise

variables which are irrelevant or redundant for the purpose. Thus the “best” subset of

variables can be identified for prediction. In addition, in a high-dimensional setting where

the sample size is less than the number of covariates, variable selection can circumvent the

identifiability issue by removing noise variables, and construct a valid predictive model.

In practice, researchers often have knowledge of the relationships among covariates. For

instance, an interaction is obtained from the product of two or more other variables (main

terms). Taking such relationships into account in the implementation of variable selection can

help to identify the relevant variable subsets and thus improve the prediction accuracy. My

doctoral thesis establishes a general framework for incorporating these known relationships

into variable selection, broadening its utility in applications and extending it to more types

of data.

In the first manuscript, I propose a novel framework by first introducing the mathemati-

cal language of expressing selection rules (dependencies among the selection of variables).

Then, I show that the resulting combination of permissible sets of selected variables (“selec-

tion dictionary”) can be derived. I also bridge the proposed framework to existing penalized

regression by offering a condition that relates to the selection dictionary: a postulated group-

ing structure (i.e., how to group variables in penalized regression) respecting the imposed

selection rule.

The second manuscript involves an application of the theory and methods developed in the

first one. The aim is to identify predictors of major bleeding among hospitalized hyperten-

sive patients using oral anticoagulants for atrial fibrillation, where adherence and drug-drug

interactions are considered. I illustrate how to use the framework in practice and provide

a roadmap of how to identify the grouping structure to respect some common selection
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rules.

In the third manuscript, I focus on a versatile (in terms of respecting selection rules) penalized

regression, the overlapping group Lasso, and extend it to be used in the Cox model with

time-dependent covariates. Technical details are presented in a more straightforward way

to reach a broader audience. Simulation studies show that the proposed method is able to

handle complex selection rules with the use of the framework. Furthermore, it can better

identify the variables whose coefficients are non-zero, and is associated with a lower mean

squared error as compared to the non-structured variable selection method.

In summary, the proposed framework highlights the importance of incorporating a priori

knowledge of relationships among covariates into variable selection, advances the develop-

ment of variable selection, and extends the use of existing methods.
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Abrégé

La sélection de variables joue un rôle important dans la modélisation statistique et la pré-

diction. Cette méthode peut discriminer les variables authentiques, essentielles pour prédire

le résultat, des variables nuisibles, qui ne sont pas pertinentes ou redondantes à cet effet.

Ainsi, le « meilleur » sous-ensemble de variables peut être identifié pour la prédiction. De

plus, dans un contexte de dimensionalité élevée où la taille d’échantillon est inférieure au

nombre de covariables, la sélection de variables peut contourner le problème d’identifiabilité

en supprimant les variables nuisibles et construire un modèle prédictif valide. En pratique,

les chercheurs ont souvent une idée des relations entre les covariables. Par exemple, une

variable (interaction) est obtenue à partir du produit de plusieurs autres variables (termes

principaux). La prise en compte de ces relations dans la procédure de sélection de variables

est utile afin de reconnaître les variables authentiques et ainsi améliorer la précision de la

prédiction. Dans ma thèse doctorale, je me consacre à l’établissement d’un cadre général

afin d’incorporer ces relations dans la sélection de variables, en élargissant son utilité aux

applications et en le proposant pour d’autres types de données.

Dans le premier manuscrit, je propose le nouveau cadre en introduisant d’abord le langage

mathématique d’expression des règles de sélection (dépendances entre la sélection des vari-

ables). Ensuite, la combinaison résultante d’ensembles autorisés de variables sélectionnées

("dictionnaire de sélection") peut être dérivée. Je relie également le cadre à la régression

pénalisée existante en proposant une condition relative au dictionnaire de sélection : une

structure de regroupement postulée (c’est-à-dire, comment regrouper les variables dans la

régression pénalisée) respectant la règle de sélection imposée.

Le deuxième manuscrit accompagne le premier. L’objectif est d’identifier les facteurs prédic-

tifs d’hémorragie majeure parmi les patients hospitalisés hypertendus utilisant des antico-

agulants oraux pour la fibrillation auriculaire, où l’adhésion et l’interaction médicamenteuse

sont prises en compte. En cours de route, j’illustre comment utiliser le cadre en pratique
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et fournit une feuille de route sur la façon d’identifier la structure de groupement afin de

respecter certaines règles de sélection communes.

Dans le troisième manuscrit, je me concentre sur une régression pénalisée polyvalente (en

termes du respect des règles de sélection), le Group Lasso de chevauchement, et la développe

pour le modèle de Cox avec des covariables dépendant du temps. Les détails techniques

sont présentés de manière plus simple pour un public plus large. Des études de simulation

démontrent que notre méthode peut gérer des règles de sélection complexes avec l’utilisation

du cadre. De plus, elle permet de mieux identifier les variables dont les coefficients sont non

nuls et est associée à une erreur quadratique moyenne inférieure par rapport à la méthode

de sélection de variables non structurée.

En résumé, le cadre proposé met en évidence l’importance d’incorporer une connaissance

a priori des relations entre les covariables dans la sélection de variables, fait progresser

le développement de la sélection des variables et élargi l’utilisation des méthodes exis-

tantes.
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Chapter 1

Introduction

This thesis is concerned with variable selection that incorporates covariate structure, which

indicates selection dependencies among variables. I focus on two important challenges. The

first is to establish a new framework for variable selection that can integrate a priori knowl-

edge about covariate structure, followed by an application to illustrate the framework. The

second is to build a tool based on penalized regressions that can select structured time-

dependent covariates when the outcome is time-to-event.

Model selection is a broad concept in statistics. It aims at selecting a statistical model (which

may be non-linear) that satisfies a given condition. (Linhart and Zucchini, 1986; Zucchini,

2000; Johnson and Omland, 2004) Variable selection is a sub-concept of model selection.

Under some assumptions made for statistical models (for example, the expected outcome is

linearly dependent on covariates), we have some candidate (linear) models. Variable selection

can then optimizes some criteria over the space of candidate models. (Kuo and Mallick, 1998;

George, 2000)

Variable selection can be useful in many scenarios. For instance, when the number of covari-

ates is larger than the sample size, it is infeasible to fit a regression model. One solution is

to select variables, where the number is less than the sample size, that are most individually
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predictive of the outcome, and then proceed with the regression. Another scenario is when

researchers desire to learn the sparsity pattern of the data (i.e. which variables have non-

zero coefficients). When there are many covariates in the data, variable selection can assist

practitioners in identifying the variables that are most predictive of or most associated with

the outcome.

Both constructing a predictive model in high dimensional data and identifying predictors

are important in practice, notably in health science (Greenland, 1989), social science, (Han-

dorf et al., 2020; Wu et al., 2020) and engineering (Peres and Fogliatto, 2018). In real-data

applications, practitioners often have a priori knowledge of the covariate structures. For

example, an interaction is derived from the product of main terms. As a second example,

a categorical variable is typically represented by several dummy variables in the regression.

See Chapter 2.1.2 for more examples. In variable selection, we can take this covariate struc-

ture into account by restricting the permissible variable combinations in the selected model

to be compatible with the covariate structure. We refer to such restrictions as selection

rules. For instance, if an interaction is selected, then main terms must be selected or as

another example, dummy variables representing a categorical variable should all be selected

collectively.

Integrating selection rules into variable selection can bring at least two benefits. First, it can

ensure the interpretability of the selected model. For example, in predictor identification,

if the interaction is selected without main terms, the interpretation of the coefficient would

be different from the interpretation in the presence of the main terms. Second, variable

selection techniques that respect selection rules have a higher chance of recovering the true

sparsity pattern. (Yuan and Lin, 2006; Bhatnagar et al., 2020)

There is a substantial literature in the field of penalized regression and variable selection see

Fan and Lv 2010 and references therein. Notably, group Lasso and its variations (Yuan and

Lin, 2006; Wang and Leng, 2008; Jacob et al., 2009; Friedman et al., 2010b; Mairal et al.,
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2010; Jenatton et al., 2011a; Bach et al., 2012a) can respect a certain types of selection rules,

but not all. How to impose an arbitrary set of selection rules in variable selection is still an

open question.

In this thesis, based on the identified research gap, I establish a new framework for variable

selection that can respect any selection rule, and enrich some of the current solutions by

extending it to accommodating survival outcomes and time-dependent covariates. In Chapter

2, I provide a detailed review of the motivation and current literature. In particular, I discuss

variable selection recognizing covariate structures, penalized regression, and Cox models with

time-dependent covariates.

In Chapter 3, I illustrate the new framework and its application to penalized regression and

development of new variable selection methods. New definitions of mathematical objects are

introduced, and their properties are investigated. The completeness and usefulness of the

framework is also discussed.

In Chapter 4, I use an application in pharmacoepidemiology to demonstrate the utility of

the framework and extend it by providing roadmaps of how to group variables in penalized

regression for some common selection rules. The data used were compiled from a subset of

the Régie de l’Assurance Maladie du Québec (RAMQ) drug and medical services database

linked to the Med-Echo hospitalization database using encrypted patient healthcare insur-

ance numbers. (Tamblyn et al., 1995; Wilchesky et al., 2004; Eguale et al., 2010; Perreault

et al., 2020) The goal of the study is to identify predictors of major bleeding among hospi-

talized hypertensive patients using oral anticoagulants for atrial fibrillation.

In Chapter 5, I extend a versatile variable selection technique, developed by Mairal et al.

(2010), to the Cox model with time-dependent covariates. Some challenges encountered

in this setting are investigated, including algorithm design and computational burden. A

simulation is conducted to show the advantages of the proposed method.

Chapters 3 and 4 were written as stand-alone manuscripts. In Chapter 6, I review the
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significance of the research in this thesis, along with the limitations and future work.
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Chapter 2

Literature review

In this Chapter, I review the variable selection problem in general, and specifically, address

the importance of incorporating the covariate structure into variable selection. Then, I focus

on penalized regression methods for variable selection, reviewing a few methods that can

incorporate the covariate structure. Lastly, I review the Cox proportional hazards model in

survival analysis and its extension to time-dependent covariates.

2.1 Variable selection incorporating covariate structures

2.1.1 The variable selection problem

Variable selection has drawn great attention as a statistical problem in recent decades.

(Mehmood et al., 2012; Heinze et al., 2018) It is often referred to as the problem of se-

lecting a subset of candidate explanatory variables (predictors) to predict the outcome.(Kuo

and Mallick, 1998)

Variable selection can serve many goals in statistical analysis. First, it makes it possible to

construct a predictive regression model with high dimensional data (where the sample size is

less than the number of covariates) by selecting a limited number of predictors. Second, even
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outside of the high-dimensional setting, removing spurious predictors in the predictive model

can prevent the model from over-fitting and thus achieve a desirable prediction accuracy.

Third, it can identify predictors among the candidate variables and thus provides both

mechanistic insight of the prediction and improved prediction accuracy. (Heinze et al.,

2018)

In general, variable selection addresses the scientific principle of parsimony, meaning that

simpler models for describing reality are prioritized over complex ones. (Blumer et al., 1987;

Seasholtz and Kowalski, 1993; Yarkoni and Westfall, 2017; Gauch Jr, 2002), In particular,

variable reduction increases model utility and applicability, which improves accessibility for

domain users such as clinicians.

Variable selection is often conducted under some model assumptions. For instance, it is

commonly assumed that the outcome is linearly or non-linearly dependent on the predictors.

Performing variable selection via non-parametric approaches or under non-linear assumptions

(Smith and Kohn, 1996; Wang and Yin, 2008; Chung and Dunson, 2009; Genuer et al., 2010;

Huang et al., 2010) may result in the selected model being less interpretable. In this thesis,

I address goals related to retaining the interpretability of the selected model and thus focus

on parametric specifications of the conditional mean outcome function.

“All subset selection" (Efroymson, 1960; Breaux, 1967) is one of the earliest developed model

selection procedures. It was originally proposed as an exhaustive search method. Under the

given model assumptions, with p covariates, it requires screening all possible (2p) models

based on a given criterion. Various of criteria can be considered, such as the greatest adjusted

R2; lowest Mallow’s Cp (Mallows, 2000), lowest Akaike Information Criterion (AIC) (Akaike,

1998), AICc (Hurvich and Tsai, 1989), Bayesian Information Criterion (BIC), (Schwarz,

1978) or Hannan-Quinn information criterion (HQIC) (Hannan and Quinn, 1979), lowest

cross-validated prediction error (Stone, 1974), etc. Stepwise regression can be implemented

by the R package leaps (based on Fortran code by Alan Miller, 2020) for linear models.
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However, this procedure is infeasible for a large p.

To overcome the large search space issue, backward and forward selection in stepwise regres-

sion were proposed. For instance, forward selection starts from a null model and adds one

variable at a time to test its performance increment, where the performance is decided by a

given criterion. Then the best move (addition of a given variable) can be determined. How-

ever, the methods were proved to be biased in estimation and inconsistent in selection; see

(Hurvich and Tsai, 1990; Steyerberg et al., 1999; Whittingham et al., 2006; Doornik, 2009)

for the proofs and discussion. Furthermore, when the covariates are of high dimension and

no restriction is applied to the model space, such methods are infeasible to implement.

From the perspective of the bias-variance trade-off, one can fit a penalized regression where

the coefficients are penalized toward 0, so that the model can achieve a better performance

(for example, lower mean-squared error or prediction error at a price of a biased estimator).

Hoerl and Kennard (1970) first introduced this concept by developing ridge regression. Later

on Frank and Friedman (1993) developed bridge regression. Such methods were not designed

directly to select variables, but the ideas generated further research on variable selection via

penalized regression, which is introduced in section 2.2.

2.1.2 Covariate structures and selection rules

Covariate structures, or dependencies among the covariates, are often desirable depending

on the data structure. They are not only beneficial when the goal is estimation, but also in

variable selection.

In practice, there are different classes of covariate structures. Some examples are:

1. An interaction is the product of its main terms. Thus there are dependencies in how

these terms are selected into the model.

2. Binary indicators (dummy variables) representing a categorical variable are correlated
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to each other.

3. Tree-structured dependencies: for instance, in natural language processing, a topic is

dependent on all of its sub-topics.

Incorporating those covariate structures into variable selection is beneficial, as doing so can

better recover sparsity patterns and improve the prediction accuracy of the resulting mod-

els. More importantly, those dependencies are closely related to the interpretability of the

resulting model. (Heinze et al., 2018; Thompson, 2009; Huang and Zhang, 2010; Obozinski

et al., 2010) Failing to consider them may result in a model that is less interpretable, with

a loss of mechanistic insight or conceptual understanding to the domain users. (Harrell Jr

et al., 1984; Andersen and Bro, 2010)

One way to incorporate covariate structure into variable selection is to set selection rules. Ex-

amples of proper selection rules corresponding to the above examples are listed below.

1. If an interaction is selected, then all of its main terms must be selected, which is

referred to as strong heredity, (Haris et al., 2016b; Bhatnagar et al., 2020) or, if an

interaction is selected, then at least one of the main terms must be selected, which is

referred to as weak heredity. (Yuan et al., 2009)

2. The dummy variables representing a categorical variable should be selected collectively,

(Yuan and Lin, 2006) so that the categorical variable (e.g., race, age group) as a whole

can be said to be predictive or not, rather than a single level. In addition, if they are

not all selected, the reference group becomes heterogeneous.

3. In classifying online postings to newsgroups (for example, alt.atheism and talk

.religion.misc (Lacoste-Julien et al., 2008; Zhu et al., 2012)), when covariates in-

clude both topics (e.g., sports) and its sub-topics (e.g., basketball), a selection rule can

be set as “if the sub-topic is selected, then its topic should be selected.”

We firstly propose and formalize the concept of selection rule in Chapter 3, and then develop
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methods to express it in a systematic mathematical language.

As mentioned in section 2.1.1, it is often of interest to restrict the search space in stepwise

and all-subsets regression. One byproduct of integrating the selection rule is the reduction

of the number of candidate models while ensuring the model interpretability.

Much research has been done to incorporate selection rules into variable selection. They can

be applied in many research fields, such as medical research (Wang et al., 2009), bioinfor-

matics (Jacob et al., 2009; Kim and Xing, 2010), topic modeling (Jenatton et al., 2011b)

and computer vision (Huang et al., 2011). Next, from the perspective of respecting selection

rules, we review a selection of penalized regression techniques that are used in Chapters 3,

4 and 5.

2.2 Penalized regression for variable selection

Different techniques correspond to different types of selection rules. We use linear regres-

sion and its square loss as an example to illustrate these penalized regression methods for

variable selection, but the methods have been extended to other model and loss function

specifications.

Suppose the data consist of n observations and p covariates, and the covariates are cen-

tered about 0 (thus we omit the intercept). A linear model describes the following relation-

ship

y = Xβ + ϵ,

where y ∈ Rn,X = {x1, . . . ,xp} ∈ Rn×p,β ∈ Rp, ϵ ∈ Rn are the outcome, covariate matrix,

coefficient vector, and i.i.d random errors respectively.
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Penalized regression in general solves

min
β

ℓ(β) + Ω(β,θ), (2.1)

where ℓ(β) is a convex loss function, in our case ℓ(β;y,X) = 1
2n
∥y − βX∥22 (which can also

be generalized to weighted least-squares), θ is a vector of hyper parameters, and the penalty

term Ω(β,θ) is a function of β and θ.

The value of θ controls the level of penalization. For example, in Lasso, a higher level

of penalization corresponds to a smaller set of variables being selected. The shrinkage of

coefficients usually improves the prediction accuracy because of the bias-variance trade-off.

The value of θ is often determined by cross-validation. Two criteria can be applied:

1. choose the θ such that the cross-validated prediction error reaches its minimum value

(min rule) (Hastie et al., 2009), or

2. choose the maximum θ such that the cross-validated prediction error is within one-

standard error of the errors. (1se rule) (Hastie et al., 2009; Breiman et al., 2017)

The choice of criteria should be based on the goal of conducting variable selection. (Mein-

shausen and Bühlmann, 2006) When the goal is to select a model with the highest prediction

accuracy, the min rule should be used. When the goal is to recover the sparsity pattern,

that is, select the most parsimonious model while maintaining the prediction accuracy, the

1se rule should be applied. (Hastie et al., 2009; Chen and Yang, 2021)

Different specifications of Ω result in different regularization methods, with different variable

selection results. In general, the penalty term can be presented as a sum of norms of groups of

coefficients of variables. Therefore, the specification of Ω always requires the specification of

a grouping structure, which assigns different groups of coefficients of covariates into multiple

norms.

A grouping structure G := {gi, i = 1, ..., I} is a set of non-empty subsets of the candidate
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variables whose union is the set of all candidate variables. Let β|g be a vector of the same

length as β whose coordinates are equal to those of β for indices in the set g and 0 otherwise.

We can thus replace Ω(β,θ) by Ω(β|g,θ) in (2.1), so that we can use harmonized notation

to introduce the following methods.

One can assess the properties of variable selection methods by the following criteria:

1. Selection consistency. An estimator is said to be consistent in selection if, as n→∞,

each coefficient converges to a non-zero value when its true value is also non-zero,

(Zhao and Yu, 2006; Yuan and Lin, 2007) and

2. The oracle property, which is a stronger property than selection consistency. The

oracle property states that the asymptotic distribution of the estimator is the same as

the asymptotic distribution of the maximum likelihood estimator on the true support.

(Zou, 2006; Fan and Li, 2001) That is, the estimator performs as well as if the true

model was known.

2.2.1 Best subset selection via optimization

Best subset selection, such as stepwise regression, is not implementable when the covariates

are of high dimension, not only because of the computational burden, but also because,

when n < p, it is infeasible to fit a regression model. Bertsimas et al. (2016) developed a

computationally tractable method that converts best subset selection into a regularization

problem, which constrains the number of variables being selected. It solves

min
β

1

2n
∥y − βX∥22 s.t. ∥β∥0 ⩽ k, (2.2)

where ∥β∥0 =
∑︁p

i=1 1(βi ̸= 0), and k is a tuning parameter. The problem can be reformulated

as a mixed integer optimization problem (Bertsimas and Weismantel, 2005; Pochet and
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Wolsey, 2006)

min
β

1

2n
∥y − βX∥22 s.t.−Mzi ⩽ βi ⩽ Mzi, zi ∈ {0, 1},

p∑︂
i=1

zi ⩽ k, i = 1, . . . , p,

where M is a positive number that is no less than the maximum value in the solution

vector of the above problem. Practically, it is chosen to be large enough to obtain the

solution that equals the solution to (2.2). The proposed algorithm is based on projected

gradient descent methods in first-order convex optimization (Nesterov, 2003) and was then

generalized to the discrete optimization problem. (Bertsimas et al., 2016) The algorithm

was proven to converge, but its selection consistency and oracle properties have not yet been

established.

The current version of best subset selection cannot incorporate any selection rule, i.e., each

covariate has a chance to be selected or not and it is not dependent on the selection of any

other covariate. In Chapter 3, we propose some optimization problems that can integrate

certain classes of selection rules.

2.2.2 Lasso

For the squared loss, Lasso (Least absolute shrinkage and selection operator) (Tibshirani,

1996) solves

min
β

1

2n
∥y − βX∥22 + λ ∥β∥1 , (2.3)

where λ > 0 is a regularization parameter. Note that here there is only one hyper parameter

λ, corresponding to θ in (2.1). The L1 penalty shrinks each coefficient individually towards

0 and the correlation among each covariates is not considered. No selection rule can be

integrated into standard Lasso. The problem (2.3) is a convex optimization problem, which

can be solved efficiently by least angle regression (Efron et al., 2004) or the coordinate
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gradient descent algorithm (Friedman et al., 2007; Wu and Lange, 2008; Friedman et al.,

2010a). Bertsimas et al. (2016) showed that Lasso is a weaker relaxation than best subset

selection via optimization, in the sense that the minimum of problem (2.2) is lower-bounded

by the optimum objective value of Lasso. Additionally, the algorithm for solving (2.2)

performs better than Lasso in recovering the sparsity pattern.

Lasso suffers from a few drawbacks. It produces biased estimators for large coefficients

(Fan and Li, 2001) and is consistent in selection only under certain conditions (Zou, 2006).

Therefore, it does not enjoy the oracle property.

2.2.3 Adaptive Lasso

Several methods were developed to produce estimators possessing the oracle property. Adap-

tive Lasso (Zou, 2006) achieves the goal by a two-stage procedure. The adaptive Lasso

solves

min
β

1

2n
∥y − βX∥22 + λ

p∑︂
j=1

ωj|βj|, (2.4)

where ωj is a positive weight for each of the coefficients. The first stage of the procedure is to

specify the weights. Denote the jth estimator from linear regression by β̂j. Practically, the

weight ωj can be 1/|β̂j|, j = 1, . . . , p. Then, the second stage is to fit the “weighted” Lasso.

Intuitively, the two-stage procedure penalizes large coefficients less, resulting in an estimator

with the oracle property. (Zou, 2006) The adaptive lasso can be solved as efficiently as Lasso

using similar algorithms.
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2.2.4 Smoothly Clipped Absolute Deviations (SCAD) and Minimax

Concave Penalty (MCP)

While the adaptive Lasso reduces bias compared to Lasso by using a two-stage approach,

single-stage methods can also achieve the same goal by setting nonconvex penalties, which

have the advantage of penalizing less when the coefficients are larger. For example, denote

Ω as Ω(β;θ) =
∑︁p

j=1 P (βj;λ, γ). The SCAD penalty (Fan and Li, 2001) is defined as

P (βj;λ, γ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
λ|βj|, if |βj| ⩽ λ,

2γλ|βj |−β2
j−λ2

2(γ−1)
, if λ < |βj| < γλ,

λ2(γ+1)
2

, if |βj| ⩾ γλ,

(2.5)

where γ > 2, and the MCP is defined as

P (βj;λ, γ) =

⎧⎪⎪⎨⎪⎪⎩
λ|βj| −

β2
j

2γ
, if |βj| ⩽ γλ,

1
2
γλ2, if |βj| > γλ,

(2.6)

where γ > 1. Both λ and γ are tuning parameters. Such penalties are often referred to as

folded concave penalties: it is concave on both the positive and negative sides of |βj| and

also symmetric (or folded). We use Figure 2.1 (Breheny and Huang, 2015) to show how they

reduce the bias as compared to Lasso when β is a single dimension coefficient. As we can

see, with the increasing of the absolute values of the coefficient, the rate of penalization by

Lasso does not change, whereas the SCAD and MCP level off, with the MCP penalizing less

than the SCAD.

Both methods have the oracle property. The hyper parameter λ is chosen by cross-validation

similar to Lasso and adaptive Lasso. Another hyper parameter γ, controls the concavity of

the penalty. As γ →∞, both the SCAD and MCP converge to Lasso, and as γ approaches its

minimum, the corresponding estimators are the least biased, but the estimates are unstable
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(a) Penalty functions (b) Derivatives of penalty functions

Figure 2.1: Penalty functions and their derivatives of Lasso, SCAD and MCP (Breheny and
Huang, 2015)

in the sense that there are multiple local minima in the optimization problems. (Breheny

and Huang, 2015) In practice, γ is recommended to be 3.7 and 2.7 in the SCAD and MCP

respectively. For more discussion on the choice of γ see (Mazumder et al., 2011; Breheny

and Huang, 2011).

The nonconvex penalties can be approximated by local linear approximation (Zou and Li,

2008), and thus the objective functions of the SCAD and MCP can be optimized by the

least angle regression algorithm. Alternatively, the nonconvex problem can also be solved

by coordinate descent algorithms. (Breheny and Huang, 2011)

Though the methods described above cannot incorporate selection rules, they are the base

of variable selection techniques. The ideas of bias reduction from the adaptive Lasso, the

SCAD, and MCP can be utilized when penalizing the coefficients in a group fashion, which

we introduce below.

2.2.5 Group Lasso and its variation

When the penalty term is defined as a function of |βj|, j = 1, . . . , p, the penalized regression

selects variables individually. That is, the selection of each variable is independent from the
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selection of others. Intuitively, if the penalty term is defined as a function of the norm of a

group of coefficients, that is,
⃦⃦
β|g

⃦⃦
, g ∈ G, then the penalized regression can select variables

in a group fashion.

Notably, Yuan and Lin (2006) developed the group Lasso, which solves

min
β

1

2n
∥y − βX∥22 + λ

∑︂
g∈G

ωg

⃦⃦
β|g

⃦⃦
2
,

where ωg is a positive weight for group g. In practice, it is suggested to use ωg =
√︁
|gj|.

While the L1 norm penalty of a vector produces sparsity among the coefficients in the vector,

the L2 norm penalty of a vector forces the coefficients in the vector to be selected collectively,

i.e., they have to be selected/unselected together. The group Lasso was first proposed to

be solved by the group least angle regression algorithm (Yuan and Lin, 2006) and was later

proved to be solved more efficiently by the groupwise majorization descent algorithm (Yang

and Zou, 2015; Lange et al., 2000).

Due to the similarity between Lasso and the group Lasso, the latter also lacks the oracle

property. To overcome this issue, the adaptive group Lasso (Wang and Leng, 2008), the

group SCAD (Wang et al., 2007,0; Breheny and Huang, 2015), and the group MCP (Huang

et al., 2012; Breheny and Huang, 2015) were proposed, which replace the βj by
⃦⃦
β|g

⃦⃦
2

in

(2.4), (2.5) and (2.6) respectively. All three methods enjoy the oracle property.

The group Lasso and its variations can incorporate selection rules such as “select variables in

a group g collectively”. In other words, they select zero or all variables in a group of variables

g. However, these methods require that G = {gi, i = 1 . . . , I} is a non-overlapping partition

of the set of candidate covariates, meaning that the intersection of any two groups must be

the empty set: gi ∩ gj = ∅,∀gi ∈ G,∀gj ∈ G, i ̸= j. This limits the incorporation of more

complex selection rules.

16



2.2.6 Sparse group Lasso

The above methods create sparsity at a group level, but not at the level of individual vari-

ables, though this latter property is sometimes desired simultaneously. For example, in

studying gene expression data, genes in a same pathway do not function independently in

genetic conditions – some genes in a given pathway are collectively predictive of the outcome.

The goal is to select both the predictive pathways and individual genes in the pathways. In

this scenario, we would like to identify the active pathways in addition to selecting the driv-

ing genes indicated in the genetic condition or equivalently, identify the pathways and genes

simultaneously.

Simon et al. (2013) developed the sparse group Lasso which is suitable for the above scientific

and statistical goals. The corresponding penalty can be viewed as a convex combination of

Lasso (L1 penalty) and the group Lasso (L2 penalty). The sparse group Lasso solves

min
β

1

2n
∥y − βX∥22 + (1− α)λ

∑︂
g∈G

ωg

⃦⃦
β|g

⃦⃦
2
+ αλ ∥β∥1 ,

where α ∈ [0, 1], and gi∩gj = ∅,∀gi ∈ G,∀gj ∈ G, i ̸= j. With such a penalty, the selection of

an individual variable is affected by both its own predictability and the predictability of the

group that it belongs to. The authors proposed a blockwise descent algorithm to solve the

optimization problem, where an accelerated gradient descent with backtracking line search is

used to solve the estimators in each group. An improved version, called the adaptive sparse

group Lasso (Poignard, 2016) (similar to the adaptive group Lasso) has the oracle property.

Note that it is not the only technique (but may be the most popular one) that can handle

such selection rules; the group bridge (Huang et al., 2009), the composite MCP (Breheny

and Huang, 2009), and some methods introduced later can achieve the goal as well. See

Huang et al. (2012) for a detailed review.

The above methods can respect selection rules such as “select groups of variables collectively,
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and then select a number of variables in the selected groups”, or equivalently, “select a number

of variables in each of the selected groups”. Note that the number of groups being selected

and the number of variables being selected in each selected group cannot be pre-specified

because they are entirely determined by the tuning parameters.

2.2.7 Exclusive (group) Lasso

With the above described data, researchers sometimes presume or know a priori that all the

pathways are active, but only want to identify the representative genes in each pathway.

In this case, it is still beneficial to consider the correlation among the variables in each

group.

Zhou et al. (2010) developed the Exclusive Lasso, which solves

min
β

1

2n
∥y − βX∥22 + λ

∑︂
g∈G

⃦⃦
β|g

⃦⃦2

1
,

where gi ∩ gj = ∅,∀gi ∈ G,∀gj ∈ G, i ̸= j. Note that λ1

∑︁
g∈|G|

⃦⃦
β|g

⃦⃦2

1
and λ2

√︂∑︁
g∈|G|

⃦⃦
β|g

⃦⃦2

1

can produce equivalent sparsity with two different values of λ1 and λ2. (Bach et al., 2012b)

In comparison with the sparse group Lasso, whose penalty is a convex linear combination

of L1 and L2 norm penalties, the penalty in exclusive Lasso is called a composite of L1

and L2 norm penalties. (Campbell and Allen, 2017) To have a better understanding of the

relationship among Lasso (L1 norm penalty), the group Lasso (L2,1 norm penalty), and the

exclusive Lasso (L1,2 norm penalty), we show the comparison of their penalty mechanisms

in Figure 2.2 (Sun et al., 2020). Variables are represented by grids, and grids with the same

color are specified in a same group. Lasso prompts sparsity at the individual variable level

by introducing L1 norm among the variables; the group Lasso enforces sparsity among the

groups by applying L1 norm to the groups, where the variables in each group are subject to

L2 penalty so that they must be selected collectively; the exclusive Lasso encourages sparsity

among the variables in a same group through the L1 penalty on the variables but, as a result
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(a) Lasso (b) group Lasso (c) exclusive Lasso

Figure 2.2: A comparison of the penalties of Lasso, group Lasso and exclusive Lasso (Sun
et al., 2020)

of introducing L2 penalty into the groups, at least one variable in each of the groups must

be selected.

Coordinate descent can fit the exclusive Lasso, and it was proved that the algorithm converges

to the global minimum. (Sun et al., 2020)

While the exclusive Lasso requires the groups to be non-overlapping, Kong et al. (2014)

developed the so-called exclusive group Lasso which relaxes this limitation. Multiple methods

address this optimization problem, including an iteratively re-weighted algorithm (Kong

et al., 2014; Yamada et al., 2017), a dual Newton based preconditioned proximal point

algorithm (for a weighted version of the exclusive group Lasso) (Lin et al., 2019), and the

active set algorithm (Gregoratti et al., 2021). They can converge to the global minimum

with a fast convergence rate.

Under some conditions, the exclusive (group) Lasso is selection consistent, but its oracle

property has not yet been established.

The exclusive (group) Lasso can respect selection rules of the type “select at least one variable

in each (overlapped) group”, which can restrict the number of variables being selected at a

certain level (that is, at least one) in each group. If all the variables in a same group are

correlated, then the method can be viewed as an approach to select uncorrelated variable sets.

However, it still cannot respect selection rules of the type “selecting exactly c variables”.
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2.2.8 Overlapping group Lasso

In variable selection where interactions are of interest, because of the model interpretability

and the principle of parsimony, common selection rules are strong heredity (“if an interaction

is selected, then all the main terms must be selected”), and weak heredity (“if an interaction

is selected, then at least one of the main terms must be selected”). (Yates, 1937; Hamada

and Wu, 1992; Chipman, 1996; Joseph, 2006) Related research includes Strong Heredity

Interaction model (SHIM) (Choi et al., 2010), Variable selection using Adaptive Nonlin-

ear Interaction Structures in High dimensions (VANISH) (Radchenko and James, 2010),

Strong Hierarchical Lasso (HIERNET) (Bien et al., 2013), Group Lasso Interaction Net-

work (GLINTERNET) (Lim and Hastie, 2015), Framework for Modeling Interactions with

a Convex Penalty (FAMILY) (Haris et al., 2016a), Group Regularized Estimation under

Structural Hierarchy (GRESH) (She et al., 2018), and Sparse Additive Interaction Learning

(SAIL) (Bhatnagar et al., 2018). The ideas are mainly to apply separate penalties (using

the L1, L2, or L∞ norm, depending on the method) to coefficients of main terms and inter-

actions. However, these methods focus only on interaction selection and it is not trivial to

incorporate selection rules where interactions are not included.

To incorporate a wider spectrum of selection rules, it is possible to extend the group Lasso,

further relaxing the non-overlapped groups assumption. Related research started from a

special structure of groups which required that a smaller group must be nested in a larger

one. (Zhao et al., 2009; Jenatton et al., 2011b; Kim and Xing, 2012) Notably, Mairal et al.

(2010) developed a method (which we call “overlapping group Lasso”) that has no restriction

on the structure of the groups. In Chapter 5, we extend this method to accommodate data

containing survival outcomes and time-dependent covariates. We first introduce the method

in this chapter below.
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The overlapping group Lasso solves

min
β

1

2n
∥y − βX∥22 + λ

∑︂
g∈G

ωg

⃦⃦
β|g

⃦⃦
∞ .

Note that the penalty here is the sum of L∞ norms (which is the maximum value of the

vector β|g) rather than the L2 norm in group Lasso. Both norms can achieve the goal of

forcing a group of variables to be selected collectively, but the L∞ norm is piece-wise linear

with respect to the vector inside of the norm.

Generalizing, we replace 1
2n
∥y − βX∥22 with ℓ(β), defined as a generic continuously differ-

entiable convex function. We then describe how to solve the above optimization problem.

Because the penalty term is non-differentiable, Mairal et al. (2010) proposed to utilize the

proximal method (Moreau, 1962) to overcome this issue. In each iteration of the proximal

method, instead of updating the estimate with respect to the gradient of the objective func-

tion (as gradient descent methods do), it updates estimates that stay close to the gradient

update for the differentiable function ℓ(β), while also making the non-differentiable penalty

term small. (Beck and Teboulle, 2009; Nesterov, 2013a) It is proven to converge at fairly

fast rates. (Nesterov, 2007; Beck and Teboulle, 2009; Beck, 2017) More specifically, by the

Taylor expansion, in each iteration, denoting the value of β from the last update as β̃, it

solves

min
β

ℓ(β̃) + (β − β̃)⊤∇ℓ(β̃) + λ
∑︂
g∈G

ωg

⃦⃦
β|g

⃦⃦
∞ +

L

2

⃦⃦⃦
β − β̃

⃦⃦⃦2

2
,

where L > 0 is an upper bound on the Lipschitz constant of the gradient of ℓ,∇ℓ. The above

problem can be further written as

min
β

1

2
∥u− β∥22 +

λ

L

∑︂
g∈G

ωg

⃦⃦
β|g

⃦⃦
∞ , (2.7)
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where u = β̃− 1
L
∇ℓ(β̃). Mairal et al. (2010) further proposed to solve its dual, which is

min
ξ

1

2

⃦⃦⃦⃦
⃦u−∑︂

g∈G

ξ|g

⃦⃦⃦⃦
⃦
2

2

, s.t. ∀g ∈ G,
⃦⃦
ξ|g

⃦⃦
1
⩽ λωg and ξ|g,j = 0 if j /∈ g. (2.8)

Denote the solution of (2.7) and (2.8) by β∗ and ξ∗ respectively. Then β∗ = u− ξ∗.

However, due to the nature of overlapping groups, solving (2.8) is still non-trivial. Mairal

et al. (2010) further proposed to convert the problem to a quadratic min-cost flow problem

(Hochbaum and Hong, 1995), which has been studied in operational research. One can use

the network flow algorithm to solve the quadratic min-cost flow problem. Mairal et al. (2010)

proposed a novel algorithm based on the network flow algorithm to solve (2.8), which was

shown to have a better performance than the classic network flow algorithm in practice. It

was proven that the proposed algorithm solves (2.8) and converges in a finite and polynomial

number of operations. However, whether the estimator has the oracle property is currently

unknown.

The network flow algorithm was developed and applied mainly in engineering and machine

learning contexts (Varoquaux et al., 2011; Jenatton et al., 2012; Zhou et al., 2012; Mairal

et al., 2014). Understanding the algorithm requires the knowledge of graph models (Gallo

et al., 1989; Babenko and Goldberg, 2006) and thus remains challenging for researchers who

do not have sufficient background in operational research and machine learning. Therefore,

the overlapping group Lasso has not been broadly recognized and implemented in other fields

such as biostatistics. In Chapter 5, as a component of the extension of the overlapping group

Lasso, we present the algorithm in a more straightforward way to reach a broader audience,

which avoids knowledge of graph models.

Depending on the grouping structure and the tuning parameters, the selected variables from

the application of the overlapping group Lasso are the remaining variables that do not belong

to the groups of variables whose coefficients are shrunk to zero. Therefore, the overlapping
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group Lasso can respect some of the selection rules in the if-then rules family (in Chapter

3, we use → to code the logic “if-then”). For example, “if at least one variable in a set is

selected, then all the variables in another set must be selected”. This corresponds to the

strong heredity when the first set contains only one variable. However, how to define the

grouping structure to respect such selection rules has not yet been well-studied.

The overlapping group Lasso is still not versatile enough to respect all types of selection

rules. In addition, the overlapping group Lasso, just like Lasso and the group Lasso, may

always arrive at results such as “no variable is selected” and “all variables are selected”. In

other words, the overlapping group Lasso cannot respect the selection rule which leads to

excluding the above possible results.

2.2.9 Latent overlapping group Lasso

While the overlapping group Lasso selects variables by excluding the union of groups of

variables whose coefficients are shrunk to zero, Obozinski et al. (2011a) developed a method

(which we called “latent overlapping group Lasso”) that can select variables by selecting

the union of the groups of variables whose coefficients are not shrunk to zero. Figure 2.3

(Obozinski et al., 2011a) illustrates the two strategies of selection. It turns out that this

strategy of selection can respect more types of selection rules. In Chapter 4, we use this

method to show how to apply the framework established in Chapter 3 in identifying predictors

of major bleeding among hospitalized hypertensive patients using oral anticoagulants for

atrial fibrillation. The latent overlapping group Lasso solves

min
α,β

1

2n
∥y − βX∥22 + λ

∑︂
g∈G

ωg

⃦⃦
α|g

⃦⃦
2

s.t.
∑︂
g∈G

α|g = β,
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(a) the overlapping group Lasso (b) the latent overlapping group Lasso

Figure 2.3: Two strategies of selection. Given groups G1 (corresponds to g1), G2, and G3 in
different colors, the coefficients are denoted by wg1 (corresponds to β|g1), wg2 , and wg3 , and
the latent variables are denoted by v1 (corresponds to α|g1), v2, and v3. (a): the overlapping
group Lasso, when the coefficients of variables in G1 and G3 are shrunk to zero, the selected
variables are the left variables in G2 but not in G1 or G3 (the variables in violet only). (b):
the latent overlapping group Lasso, when v1 and v3 are non-zero, the selected variables are
the union of the variables whose coefficients correspond to the positions of v1 and v3, the
unselected variables are the variables in G2 but not in G1 or G3. (Obozinski et al., 2011a)

where α is a latent variable set, of size p. Equivalently, it can also be formulated as an

optimization problem that minimizes β only

min
β

1

2n
∥y − βX∥22 + λΩ(β), Ω(β) ≜ min

α,
∑︁

g∈G α|g=β

∑︂
g∈G

ωg

⃦⃦
α|g

⃦⃦
2
.

The associated algorithm combines the block-coordinate decent (Meier et al., 2008) and

the working set strategy (Roth and Fischer, 2008). In addition, the method can adapt

SCAD and MCP penalties by replacing the βj in (2.5) and (2.6) to
⃦⃦
α|g

⃦⃦
2
. The R package

grpregOverlap can implement all three of these penalties. The latent overlapping group

Lasso can achieve selection consistency when certain conditions are satisfied, but if it possess

the oracle property is unknown. The choice of weight is more important in the latent

overlapping group Lasso because it significantly affects the selection consistency and the

false negative and false positive rates. Obozinski et al. (2011a) discuss in length how to set
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the weights in several scenarios. We omit the details here.

Due to the nature of this selection strategy, the latent overlapping group Lasso can respect

some selection rules that the overlapping group Lasso cannot, such as weak heredity. How-

ever, it shares the same limitation that all the above techniques have, that is, “no variable

is selected” and “all variables are selected” are always possible results.

2.3 Survival analysis

2.3.1 General formulation of survival analysis

In many fields, especially in biological and epidemiological research, a time-to-event variable

(denoted by T ) is often of interest as the outcome. (Bartelink et al., 2001; Primrose et al.,

2014; Andell et al., 2014; Banankhah et al., 2015) Analysis of such variables as the outcome

is referred to as survival analysis. To characterize the distribution of time-to-event variables,

we next introduce some functions.

Let f(t) and F (t) denote the probability density function and cumulative density function

of T , respectively. The survival function

S(t) = 1− F (T ) = P (T > t) =

∫︂ ∞

t

f(x)dx

is defined as the probability that the event occurs after a time t (the probability of survival

at t). (Kalbfleisch and Prentice, 2011) Another way to characterize the distribution of T is

through the hazard function h(t), which is the instantaneous risk of the event occuring at t

conditional on event-free survival until t:

h(t) = lim∆t→0
P (t ⩽ T < t+∆t|T > t)

∆t
=

f(t)

S(t)
.

The cumulative hazard function, H(t) =
∫︁ t

0
h(x)dx, is the cumulative risk from time zero to
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t. (Cleves et al., 2008)

Interestingly, the above functions have some one-to-one relationships (Kalbfleisch and Pren-

tice, 2011)

h(t) =
F ′(t)

S(t)
= −S ′(t)

S(t)
=

f(t)

S(t)
and S(t) = exp{−H(t)}.

Censoring is an important component in survival analysis. It occurs when the time-to-event

cannot be exactly recorded. Right censoring, the most common type of censoring, refers to

the cases where the event is unobserved but is known to occur after a certain time point.

Reasons for right censoring include loss to follow-up or termination of the study before the

subject has the event (also known as administrative censoring). In the presence of right

censoring, the time-to-event variable T is not observed for all subjects. Denote the observed

time to either censoring or the event by U , and the censoring indicator by δ (binary, 1 if the

time-to-event is observed, 0 otherwise). Then the outcome can be coded as a pair (U, δ).

That is, if δ = 1 then T = U or if δ = 0 then T > U .

For a dataset consisting of n subjects, if the event occurs for subject i, its contribution

to the likelihood is the density at the time-to-event. Otherwise, assuming non-informative

censoring (Kalbfleisch and Prentice, 2011), the contribution of the censored subject would

be the survival probability, as we only know the subject survives until the censoring time.

The likelihood function can then be written as

n∏︂
i=1

f(ti)
δiS(ti)

1−δi =
n∏︂

i=1

h(ti)
δiS(ti).

Many methods can model time-to-event outcomes under different assumptions. Of these,

the Cox proportional hazards model (Cox, 1972) is the most popular and has become the

standard method in medical research. It is a semi-parametric model which does not require

assuming the distribution of the event times. Next, we first introduce the Cox model and then
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review some penalization methods that can be applied to the estimation of the parameters

of the model. We then illustrate how time-dependent covariates can be incorporated in the

Cox model.

2.3.2 Cox proportional hazards model

The Cox proportional hazards model is specified as

h(t|X) = h0(t)exp(Xβ),

where X ∈ Rn×p and β ∈ Rp are the covariate matrix and the vector of coefficients, respec-

tively. The baseline hazard function h0(t) is a function of t that describes the hazard at t

when X = 0. Essentially, this model assumes that 1) the hazard of a subject at t is propor-

tional to the baseline hazard and 2) the logarithm of the hazard can be written as a linear

combination of the covariates. The coefficient of one covariate x can then be interpreted

as the logarithm of the hazard ratio for a one unit increase in x, holding other covariates

constant.

Cox (1972) proposed to use the partial likelihood for estimation. Let j = 1, . . . ,m be the

index of ordered unique observed follow-up times in the dataset, and t1 ⩽ t2 ⩽ . . . ⩽ tm

be an ordered list of unique time-to-events. There are dj tied events occurring at the jth

distinct survival time. Let Dj and Rj be the index sets of subjects whose event occurred at

time tj or are at risk at time tj, respectively. Being “at risk” at time t means that the event

has not yet happened before time t, and the subject was not censored before or at time t.

The partial likelihood can then be written as

L(β) ≈
n∏︂

j=1

{︃
exp(X iβ)∑︁
l∈Ri

exp(X lβ)

}︃δi

.
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Using the Breslow approximation to accommodate the tied events (Breslow, 1974), the partial

likelihood and the log partial likelihood can be approximated as

L(β) ≈
m∏︂
j=1

exp
{︂(︂∑︁

l∈Dj
X l

)︂
β
}︂

{︂∑︁
l∈Rj

exp(X lβ)
}︂dj

, and

log{L(β)} ≈
m∑︂
j=1

⎡⎣⎛⎝∑︂
l∈Dj

X l

⎞⎠β − dj log

⎧⎨⎩∑︂
l∈Rj

exp(X lβ)

⎫⎬⎭
⎤⎦ ,

respectively. It is well known that the log partial likelihood is a concave function. (Elston

et al., 2002) Define the partial likelihood score as the derivative of the log partial likelihood

with respect to β. The estimated β can then be obtained by setting the partial likelihood

score to 0.

While most of the variable selection techniques mentioned in section 2.2 are developed and

applied in the context of multiple linear regression, many of them (except for the best subset

selection via optimization, the exclusive Lasso, and the overlapping group Lasso) have been

extended to the Cox model and the theoretical properties were investigated. (Tibshirani,

1997; Zhang and Lu, 2007; Ma et al., 2007; Wang et al., 2009; Benner et al., 2010; Breheny and

Huang, 2011; Bradic et al., 2011; Sun et al., 2014; Tang et al., 2019) When the covariates

are time-dependent, Wallace (2014) proposed a time-dependent tree-structured model for

variable selection with a survival outcome, but no selection rule can be incorporated.

2.3.3 Time-dependent Cox model

In many research domains, data are collected longitudinally, which can provide non-negligible

information for predicting the outcomes. (Fisher and Lin, 1999) For instance, in medical

research, treatment assignment, blood pressure, weight, disease history, and hospitalization

information may be recorded at selected times over the course of a patient’s follow-up. The

time-varying values of these characteristics over time may be helpful in predicting the time-
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to-event. Next, we introduce how to accommodate time-dependent covariates in the Cox

model.

For ease of notation, we code all covariates as time-dependent, i.e. X i(t) = (xi1(t), xi2(t), · · · ,

xip(t)), i = 1, . . . , n, though some may be fixed at baseline or constant over time. We assume

that the hazard of subject i at time t only depends on the covariates through their current

values at time t. Then the time-dependent Cox model (Christensen et al., 1986; Fisher and

Lin, 1999) assumes that the conditional hazard function is hi{t|X i(t)} = h0(t) exp{X i(t)β}.

The partial likelihood and the log partial likelihood can be approximated as

L(β) ≈
m∏︂
j=1

exp
[︂
{
∑︁

l∈Dj
X l(tj)}β

]︂
[︂∑︁

l∈Rj
exp{X l(tj)β}

]︂dj ,
and

log{L(β)}) ≈
m∑︂
j=1

⎛⎝⎧⎨⎩∑︂
l∈Dj

X l(tj)

⎫⎬⎭β − dj log

⎡⎣∑︂
l∈Rj

exp{X l(tj)β}

⎤⎦⎞⎠ , (2.9)

respectively. Estimating the coefficients of time-dependent covariates is similar to estimation

under the standard Cox model.

While other specifications of time-dependent Cox models exist (de Bruijne et al., 2001),

in Chapter 5, we extend the overlapping group Lasso to this form of time-dependent Cox

model.
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Chapter 3

A general framework for identification of

permissible variable subsets and

development of structured variable

selection methods

Preamble to Manuscript 1. As explained in Chapter 2.1.2, inherent covariate structures

are often present in data analysis. Much research has been done to accommodate such

structures. However, no theory or method addresses the problem in full generality. In this

chapter, we provide a new perspective on structured variable selection that can incorporate

universal structural constraints. We first develop a mathematical language for constructing

selection dependencies according to the corresponding covariate structures, which we call

“selection rules”. Then we derive an algorithm to determine all permissible subsets of covari-

ates that respect the selection rules, which we call “selection dictionary”. We then show that

the theoretical framework can help to 1) identify the grouping structure in existing penal-

ized regression methods, and 2) formulate structured variable selection into Mixed-Integer
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Optimization (MIO) problems which can be solved by existing software. The significance of

the theoretical framework and its two applications are then discussed. This manuscript was

submitted to Annals of Statistics.

Note that the supplementary material for this chapter can be found in Appendix

A.
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Abstract

In variable selection, a selection rule that prescribes the permissible sets of selected vari-

ables (called a “selection dictionary”) is desirable due to the inherent structural constraints

among the candidate variables. The methods that can incorporate such restrictions can

improve model interpretability and prediction accuracy. Penalized regression can integrate

selection rules by assigning the coefficients to different groups and then applying penalties

to the groups. However, no general framework has been proposed to formalize selection

rules and their applications. In this work, we establish a framework for structured variable

selection that can incorporate universal structural constraints. We develop a mathematical

language for constructing arbitrary selection rules, where the selection dictionary is formally

defined. We show that all selection rules can be represented as a combination of operations

on constructs, which can be used to identify the related selection dictionary. One may then

apply some criteria to select the best model. We show that the theoretical framework can

help to identify the grouping structure in existing penalized regression methods. In addi-

tion, we formulate structured variable selection into MIO problems which can be solved by

existing software. Finally, we discuss the significance of the framework in the context of

statistics.
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3.1 Introduction

Variable selection has become an important technique in statistics and data science, espe-

cially with large-scale and high-dimensional data becoming increasingly available. Variable

selection can be used to identify covariates that are associated with or predictive of the out-

come, remove spurious covariates, and improve prediction accuracy. (Guyon and Elisseeff,

2003; Reunanen, 2003; Wasserman and Roeder, 2009) General techniques to conduct statis-

tical variable selection include best subset selection, penalized regression, and nonparametric

approaches like random forest. (Heinze et al., 2018; Chowdhury and Turin, 2020)

When selecting variables for the purpose of developing an interpretable model, understanding

and formalizing the structure of covariates can lead to more interpretable variable selection.

Covariates may have a structure due to

1. Variable type. For example, when including a categorical variable in a regression model,

each non-reference category is represented by a binary indicator. It may be desirable

to collectively include or exclude these binary indicators as a group.

2. Variable hierarchy. For example, one may define a hierarchical structure for sets of

covariates A and B such that if A is selected, then B must be selected. One application

is interaction selection with strong heredity (Haris et al., 2016a), that is “the selection of

an interaction term requires the inclusion of all main effect terms”. A second application

is when one covariate is a descriptor of another, such as medication dose (0-10mL) and

medication usage (yes/no).

Such restrictions on the resulting model, which we call “selection rules”, can be incorporated

in the variable selection process so that the resulting model satisfies the rules after statistical

selection is carried out. Practitioners can define any selection rule based on their a priori

knowledge of the covariate structure.

Lasso (Tibshirani, 1996) and best subset selection via optimization (Bertsimas et al., 2016)
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are two approaches that do not restrict the composition of the resulting model. However,

certain types of selection dependencies have been integrated into covariate coefficient pe-

nalization. For instance, group Lasso (Yuan and Lin, 2006) can select a group of variables

collectively. Exclusive Lasso (Campbell and Allen, 2017) can achieve within group selection

by selecting at least one variable in each group. Overlapping group Lasso (Mairal et al., 2010)

and latent overlapping group Lasso (Obozinski et al., 2011a) achieve hierarchical selection

by requiring that a group of variables be selected when another group has been selected.

Note that each method can respect one or more types of selection rules.

In the absence of a selection rule, there are no restrictions on the potential resulting model

– all combinations of covariates are allowed to be selected. Given a selection rule, this set

becomes restricted to only include combinations of covariates that respect the selection rule.

We call the set of all potential sets of covariates a “selection dictionary”. Currently, there is

no unifying framework for structured selection or generic algorithm that can generate the se-

lection dictionary respecting any given selection rule. Manually constructing selection rules

for specific settings can be tedious and prone to errors, even in low-dimensional covariate

settings and especially when the selection rules are complicated. In this work, we develop

a general framework for variable selection that can represent any selection rule in a formal

mathematical language, allowing us to catalogue the selection dictionary for any given selec-

tion rule. In low-dimensional settings, once the selection dictionary is known, goodness-of-fit

measures like AIC or BIC, or prediction accuracy measures like cross-validated prediction

error, can be used to select the best model out of all allowable models.

Penalized regression offers an alternative to variable selection and is especially useful for

higher covariate dimensions. Given a penalized regression method, an existing gap in the

literature is a general approach to grouping covariates that enforces respect of a selection

rule. While grouping structures have been developed for specific rules (Lim and Hastie,

2015; Yuan and Lin, 2006; Mairal et al., 2010; Jenatton et al., 2011a; Campbell and Allen,
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2017; Yan et al., 2017), how to define grouping structures for more complex selection rules

has not been well-studied. For example, suppose that we have three categorical variables

and are also interested in two-way interactions between these variables. Our selection rule

is to select an interaction only if at least one of main terms is also selected. We also want

to select the dummy variables as a group, both as main terms and in the interactions. How

to group the three main terms and their interactions in latent overlapping group Lasso is

not trivial. In this work, we identify the sufficient and necessary condition of a grouping

structure that, when coupled with latent overlapping group Lasso, will respect any selection

rule. This result can then guide us in how to group variables.

In addition, current penalized regression methods for structured variable selection cannot

respect all possible selection rules, in particular those that control the number of selected

covariates. Based on the defined framework, we formulate solvable optimization problems

based on penalization by the L0 norm which open the door for the development of methods

that can respect broader classes of selection rules.

This paper is organized as follows. In section 3.2, we give an overview of the results presented

in the rest of the paper. In section 3.3 we formally introduce the language for constructing

selection rules, and describe how to express an arbitrary selection rule and how to determine

the selection dictionary. Next, in section 3.4, we apply the framework to existing penalized

regression methods by defining penalization structure and giving the sufficient and necessary

condition for respecting a rule with latent overlapping group Lasso. In section 3.5, we

propose selection rule-based variable selection techniques that can respect the generic unit

rules and any binary operation on these. Lastly, we discuss the significance of the proposed

framework.
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3.2 Overview

In this section, we outline and explain our framework, and its applications in grouping

structure identification and constructing selection rule-based variable selection methods.

More rigorous development along with additional examples are given in sections 3.3, 3.4

and 3.5.

Suppose that we have a set of candidate variables V. We define a selection rule on this set

as the selection dependencies among all candidate variables. For example, consider a study

where we want to investigate which of the following variables should be included in a model

for blood pressure: age (A), age squared (A2), and race as a categorical variable with 3

levels, represented by dummy variables B1 and B2. We are also interested in the interaction

of age with race (AB1, AB2). So we have V = {A,A2, B1, B2, AB1, AB2}. In this example,

standard statistical practice requires that the resulting model must satisfy a selection rule

defined by the following three conditions: 1) if the interaction is selected, then both age

and race must be selected, 2) if age squared is selected, then age must be selected, 3) the

dummy variables representing race must be collectively selected, and 4) the two categorical

interaction terms must also be collectively selected. The combination of these four rules is

the selection rule that must be respected.

We next define a selection dictionary as the set that contains all subsets of V that respect the

selection rule. When we say a dictionary respects a selection rule, we mean the dictionary

is congruent to the selection rule in the sense that the selection dictionary contains all

(rather than some) subsets of V that respect the selection rule. Theorem 1 states that

every selection rule has a unique dictionary. The dictionary for the above example would

be {∅ , {A} , {B1, B2} , {A,B1, B2} , {A,A2} , {A,A2, B1, B2} , {A,B1, B2, AB1, AB2} ,

{A,A2, B1, B2, AB1, AB2}}. Despite a total of 64 possible subsets of V, there are only 8

possible models that can be selected under this rule.

We are interested in the general problem of finding the selection dictionary given an arbitrary
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selection rule. We start by defining unit rules as the building blocks of selection rules. For

a given set of candidate variables V with F ⊆ V, a unit rule is a selection rule of the form

“select a number of variables in F.” The unit rule depends on the set C which contains the

numbers of variables that are allowed to be selected from F. In our running example, one

unit rule is “select zero or two variables from the set F = {B1, B2}”. This is equivalent to

saying that B1 and B2 must be selected together, i.e. select neither or both.

In Theorem 2, we give a formula for the dictionary related to any given unit rule. This

formula shows that the dictionary is all unique unions of sets 1) of variables in F where

the number of variables is in C and 2) of variables outside of F. Applying this formula, we

can see that the unit rule “select zero or two variables (that is, C = {0, 2}) from the set

F = {B1, B2}” has a dictionary that is the set incorporating ∅ and {B1, B2} and all unions

of ∅ and {B1, B2} with any of the other elements in V, respectively.

We then define five useful operations on selection rules in Table 3.2. For example, ∧ being

applied to two selection rules indicates that both of the selection rules must be respected.

An arrow → indicates if the selection rule on the left hand side is being respected, then the

selection rules on the right hand side must be respected. For each operation, we can show

how the operation on selection rules is related to an operation of the respective dictionaries.

Therefore if we are combining or constructing more complex rules from operations on unit

rules, we can always derive the resulting dictionary. Our most important result is Theorem 3,

stating that through operations on unit rules, we can derive any rule.

To illustrate these ideas in our running example, define unit rules 1) u1: “select zero or two

variables in {AB1, AB2},” 2) u2: “select zero or two variables in {B1, B2},” 3) u3: “select

two variables in {AB1, AB2},” 4) u4: “select three variables in {A,B1, B2},” 5) u5: “select

one variable in {A2},” 6) u6: “select one variable in {A}”. The same selection rule that we

defined when we introduced the example can be expressed through operations on these unit

rules as: (u1 ∧ u2) ∧ (u3 → u4) ∧ (u5 → u6).
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Section 3.4 involves describing how to assign group-specific penalties in penalized regression

in order to respect a selection rule with the aid of the determined selection dictionary. By

the properties of these penalized regression methods, a given method with a given grouping

structure (i.e. grouping of variables in the penalty terms) results in a unique dictionary. This

dictionary contains all subsets of V that could potentially result from the application of the

penalization method on the dataset. So if the dictionary related to a penalized regression

method with a specific grouping structure is equal to a selection rule’s dictionary, then

the method is “congruent” to the rule. Essentially, the grouping structure in the penalty

terms in a specific penalization regression determines the selection rule that the method can

respect.

Focusing on latent overlapping group Lasso, Theorem 4 gives the sufficient and necessary

condition under which a grouping structure respects a selection rule. This lets us find

a grouping structure that respects the selection rule. In the example, one penalization

structure that is congruent with the selection rule is latent overlapping group Lasso paired

with the grouping structure {{A} , {A,A2} , {B1, B2} , {A,B1, B2, AB1, AB2}}.

Existing penalized regression methods were developed for respecting a certain type(s) of

selection rules. In Section 3.5, inspired by the method that constructing the selection rules

and mixed-integer optimization (MIO), we developed optimization problems that can directly

control the number of variables being selected in a subset of candidate variables, so that it

can respect unit rules and also their operations. The proposed problems can be solved by

existing software, and thus enriches the scope of a priori knowledge that can be incorporated

in variable selection.

Section 4.5 explains the significance of the framework within the broader scope of statistical

variable selection methods. As an example, we describe the limitation of (latent) overlapping

group Lasso in respecting selection rules.
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3.3 Selection rules and selection dictionaries

In this section, we introduce the mathematical language for expressing selection rules, which

enables us to design algorithms to incorporate selection dependencies into model selection.

Two fundamental concepts are being introduced first: the selection rule and its dictionary.

Then we introduce unit rules and operations on unit rules as the building blocks of selection

rules. We show that we can construct any selection rule from unit rules and also derive the

unit dictionary from set operations on the dictionaries belonging to the unit rules. Finally,

we investigate some properties of the resulting abstract structures.

Unless specified otherwise, we use normal math (for example F ), blackboard bold (F/f),

Fraktur lowercase (f), and calligraphy uppercase fonts (F) to represent a random variable,

set, rule, and operator respectively. P(F) represents the power set (collection of all possible

subsets) of F, P2(F) denotes the power set of the power set of F, and |F| represents the

cardinality of F. The maximum integer of a set of integers F is denoted by max(F). We

say two sets are equivalent if they contain the same elements, regardless their multiplicity.

For example {A,A,B,B,C,C} = {A,B,C}. Graphs are helpful to show the dependencies

among candidate covariates. For example, an arrow in a graph can indicate that the children

nodes are constructed based on their parent nodes.

We take two examples to illustrate the concepts throughout this section.

Example 1. Suppose that we have 4 candidate variables, V = {A,B,C,D}, that have no

structural relationship. The corresponding graph is shown in Figure 3.1.

Example 2. Suppose we have three variables: a continuous variable A and a three-level

categorical variable B (represented by two dummy indicators B1 and B2). We also consider

their interactions represented by AB1 and AB2. The corresponding graph is shown in Figure

3.2 with nodes V = {A,B1, B2, AB1, AB2}. The arrows indicate that the child nodes are

derived from their parents.
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ri Selection dependencies Dri Selection dictionaries
r1 Select at least one variable in {A,B}.

{︁
{A}, {B}, {A,B}, {A,C}, {B,C}, {A,B,C}

}︁
r2 If A is selected, then B must be selected.

{︁
∅, {B}, {A,B}, {C}, {B,C}, {A,B,C}

}︁
r3 Respect both r1 and r2.

{︁
{B}, {A,B}, {B,C}, {A,B,C}

}︁
Table 3.1: Examples of selection rules and their dictionaries, V = {A,B,C}

A B

C D

Figure 3.1: Graph for Example 1

A B1 B2

AB1 AB2

Figure 3.2: Graph for Example 2

Next, we introduce the concept of selection rule.

Definition 1 (Selection rule). A selection rule r of V is defined as selection dependencies

among the variables in V.

The selection dependency is a general concept regarding limitations on which combinations

of variables are allowed to be selected into a model.

Table 3.1 gives some examples of selection rules for a covariate set V = {A,B,C}. There

may be many possible subsets of variables that respect a given selection rule. We define

the set of all possible subsets respecting a given selection rule as the corresponding selection

dictionary. Before introducing selection dictionary, we define a general dictionary first.

Definition 2 (Dictionary). Given a finite set of candidate variables V, a dictionary D ⊆

P(V) of V is a set of subset(s) of V.

For example, a dictionary of candidate variables V = {A,B,C,D} can be {{A}, {B}},
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{∅ , {A,B,C,D} , {A}} or P(V) etc.

Definition 3 (Selection dictionary). For a given V, selection dictionary Dr is a dictio-

nary that contains all subsets of V that respect the selection rule r.

The definition stresses that all sets in a selection dictionary must be a subset of P(V). This

allows us to list all “allowable” sets of variables that could result from a variable selection

process respecting the selection rule. Some examples of selection dictionaries corresponding

to selection rules are shown in Table 3.1. It is also possible to have selection rules that are

contradictory/incoherent, meaning that they require more variables to be selected than the

number of variables in the given set. In this case, we define the selection dictionary to be

the ∅. For instance, if the selection rule is “select 3 variables from {A,B},” with V = {A,B},

then the corresponding selection dictionary is ∅. When a selection rule is for example, “select

0 variables from {A,B},” which is coherent but trivial, then the selection dictionary is the

empty set {∅}.

By the definitions above, there is a mapping from a selection rule to a selection dictionary.

The theorem below gives the uniqueness of the mapping with proof in Appendix A.1.

Theorem 1. Given a selection rule on a set, there is a unique selection dictionary.

We say the unique selection dictionary is congruent to its selection rule, which is denoted by

Dr
∼= r, or equivalently, r ∼= Dr. In our context, it is equivalently saying a selection dictionary

respects a selection rule. However, it is possible that more than one selection rule results

in the same selection dictionary. Therefore, we define an equivalence class of selection rules

below.

Definition 4 (Equivalence class of selection rules). For a given candidate set V, and given
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a selection rule r1 with selection dictionary D, the equivalence class of r1, denoted by

R := {r : r ∼= D}, is a set of all selection rules in V that are congruent to the same selection

dictionary.

Corollary 1. By Definition 4 and Theorem 1, there is a one-to-one mapping from an

equivalence class of a selection rule to a selection dictionary.

For a given (finite) V, we define R as the selection rule space containing all equivalence

classes of selection rules on V. Because the number of possible combinations of selected

variables is finite, the number of possible dictionaries is finite. Thus, because of the one-to-

one correspondence between dictionaries and rules, the space of rules R is also finite.

The above definitions provide us with a broad view of the language for expressing selection

rules generally. Next we introduce the grammar of this language which allows for the ex-

ploration of theoretical properties of selection rules and of further algorithmic development.

We start by defining unit rules and their dictionaries, and then introduce the operations

between unit rules. Then more complex selection rules can be assembled by unit rules and

their operations, and the related selection dictionaries can be determined.

Definition 5 (Unit rule and its dictionary). For a given V and a given F ⊆ V, a unit rule

uC(F) is a selection rule, where the selection dependency takes the form “there are a number

of variables in F to be selected”, and the number of variables to be selected is constrained by

C, a set of numbers. A unit dictionary Du is a dictionary that contains all subsets of V

that respect the unit rule uC(F).

Remark 1. The set C is a set of numbers which constrains the number of variables to be

selected in F. For example, if |F| = 3 and C is {1} or {0, 2}, then the rule in uC(F) translates

to “there is one variable to be selected” or “there are zero or two variables to be selected” from
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F, respectively. Any C with elements greater than |F| would result in an incoherent unit rule

because variable selection is done without replacement and so we cannot select more than the

cardinality of the set.

In the context where we investigate more than one unit rule for a given V, we use ui to

represent uCi
(Fi), i ⩾ 1. Among the examples in Table 3.1, only r1 is a valid unit rule, which

can be expressed as u{1,2}({A,B}), and the unit dictionary Du = Dr1 is given.

Given a unit rule and its dictionary, there is a one-to-one mapping from the F in the unit

rule to the corresponding unit dictionary, which is characterized by a unit function fC.

Definition 6 (Unit function). Each unit rule relates to a unit function fC with some

input F ⊆ V. A unit function fC maps the subset F to the unit dictionary Du ∈ P2(V) that

respects uC(F).

Therefore, for a given unit rule, we can write uC(F) ∼= Du = fc(F). This is a valid function

because a unit dictionary is defined as the set of all possible subsets of V that respect the

unit rule; thus, given a fixed constraint and set F, there is a unique dictionary output.

The following theorem characterizes unit functions, providing a formula for the unit dic-

tionary, so that when a unit rule is given on F, the corresponding unit dictionary can be

determined.

Theorem 2. Each unit function in V is a C-specific function fC(·), with domain P(V),

defined by

F ↦→ Du =

{︄
{a ∪ b : ∀a ⊆ F s.t. |a| ∈ C, ∀b ⊆ V \ F}, if |F| ⩾ max(C)

∅, otherwise,

where F ∈ P(V).
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When |F| ⩾ max(C), the unit rule uC(F) is coherent, and the unit function is a bijection with

domain M = {F, s.t. F ∈ P(V), |F| ⩾ max(C)} and image {a ∪ b,∀a ⊆ F s.t. |a| ∈ C,∀b ⊆

V \ F,∀F ∈ M}.

This means that when the unit rule is coherent, the unit dictionary contains all sets that are

unions between a subset of F that respects the constraint C and a subset of the remaining

covariates in V (excluding F). The proof is given in Appendix A.2. Corollary 2 gives a

special case of Theorem 2, characterizing the mapping of V to a unit dictionary by a unit

function. Corollary 3 gives an interesting property of a unit dictionary. The proofs are direct

consequences of Theorem 2.

Corollary 2. When the input of a unit function is V, with a constraint C resulting in a

coherent unit rule, the resulting unit dictionary is fC(V) = {n ∈ P(V) : |n| ∈ C}.

Corollary 3. When C ̸= {0} for a given coherent unit rule, the corresponding unit dictio-

nary Du satisfies ∪iDu,i = V, where Du,i is the ith set in Du.

To further investigate the relationships among unit functions with different constraints, we

provide the following corollaries.

Corollary 4. For a given F ∈ P(V), f(·)(F) is injective with respect to the argument C

when at least one constraint (C1 or C2) results in a coherent rule applied to F. That is,

fC1(F) ̸= fC2(F) whenever C1 ̸= C2. This means that two distinct unit functions (related

to two distinct unit rules) will result in different dictionaries even when the inputs are the

same.

Corollary 5. For C = {0, . . . , |F|} then fC(F) = P(V),∀F ⊆ V. This means that when
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there is effectively no constraint on the selection (i.e. any number of variables can be se-

lected), the unit dictionary is the power set of V. A consequence is that two different unit

functions with nonrestrictive constraints can result in the same dictionary even when the

inputs are different.

The proofs of corollaries 4 and 5 are in Appendix A.3 and A.4, respectively.

The goal is to build selection rules out of unit rules. This will allow for an algorithm to

determine the resulting selection dependencies and dictionary. To do this, we define some

operations among selection rules. Because a unit rule is also a selection rule, the operations

can be applied to unit rules.

Definition 7 (Operations on selection rules). Given selection rules on V, define an op-

eration on selection rules O as a function that maps a single selection rule or pair of

selection rules to another selection rule rO.

Operation Interpretation DO

¬r1 r1 is not being respected P(V) \ Dr1

r1 ∧ r2 both r1 and r2 are being respected Dr1 ∩ Dr2

r1 ∨ r2 either r1 or r2, or both is/are being respected Dr1 ∪ Dr2

r1 → r2 if r1 is being respected, then r2 is being respected (P(V)\Dr1)∪(Dr1∩Dr2)

r1 ⇒ r∗2 r1 is being respected first and selection is carried
out, then respect r2 given the output m ∈ Dr1 of
the first step

{a : a ∈ Dr2 , a ⊆ m}

Selection rule ri on V is congruent to Dri , i = 1, 2.
∗ This operation requires the variables potentially being selected by r1 are the same with the ones in r2.

Table 3.2: Operations for selection rules and the resulting selection dictionaries.

The rule rO resulting from the operation is congruent to a unique selection dictionary which

is congruent to rO, DO. We define five operations in Table 3.2. Given an operation on
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rules, we can derive the corresponding operation on the related dictionaries that will result

in the selection dictionary DO. Table 3.2 shows the resulting dictionary for each operation.

The derivation of each result is given in Appendix A.5. These results allow us to develop

algorithms to output selection dictionaries for complex rules through operations on simpler

rules.

We use the running example in Table 3.1 to illustrate the second and forth operations on

unit rules as a special case.

Define u1 := u{1,2}({A,B}) ∼= Du1 =
{︁
{A}, {B}, {A,B}, {A,C}, {B,C}, {A,B,C}

}︁
,

u2 := u{1}({A}) ∼= Du2 =
{︁
{A}, {A,B}, {A,C}, {A,B,C}

}︁
,

u3 := u{1}({B}) ∼= Du3 =
{︁
{B}, {A,B}, {B,C}, {A,B,C}

}︁
.

The r2 in Table 3.1 is “if A is selected, then B must be selected,” which can be expressed as

r2 := u2 → u3. According to Table 3.2, r2 is congruent to
{︁
∅, {B}, {A,B}, {C}, {B,C}, {A,B,

C}
}︁
, which is exactly the Dr2 in Table 3.1. Note that, by Definition 1, the operation on two

selection rules results in a selection rule, thus the results of an operation on two selection

rules can be an input of a second operation. We use parentheses to differentiate the order

of operations. The r3 in Table 3.1 is “select at least one variable in {A,B}” ∧ r2. Thus,

r3 := u1 ∧ (u2 → u3) is a valid operation resulting in a rule that is congruent to the selection

dictionary
{︁
{B}, {A,B}, {B,C}, {A,B,C}

}︁
(according to Table 3.2), which is exactly the

Dr3 in Table 3.1.

Now we use another example to illustrate the last operation. Suppose V = {A,B,C,D}, and

r1 is “{A,B} must be selected collectively, same for {C,D}”. That is, r1 = u{0,2}({A,B})

∧ u{0,2}({C,D}). Suppose r2 is “if A is selected, then B must be selected, and if C is

selected, then D must be selected”. That is, r2 =
{︁
u{1}({A})→ u{1}({B})

}︁
∧
{︁
u{1}({C})→

u{1}({D})
}︁
. If the result after respecting r1 is m = {A,B}, then according to Table 3.2, the

dictionary that is congruent to r1 ⇒ r2 should be {∅, {B}, {A,B}}. Note that it is not Dr2 ,

as Dr2 =
{︁
∅, {B}, {A,B}, {D}, {C,D}, {B,D}, {B,C,D}, {A,B,D}, {A,B,C,D},

}︁
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We provide some useful properties of operations below, which can be verified by checking

the resulting dictionaries for both sides of the equations. These properties can be used to

identify which selection rules are in a same equivalence class.

Proposition 1. Given r1 ̸= r2 ̸= r3 (in the sense that the congruent dictionaries are

distinct), then

1. Commutative laws: r1 ∧ r2 = r2 ∧ r1; r1 ∨ r2 = r2 ∨ r1

2. Associative laws: (r1 ∧ r2) ∧ r3 = r1 ∧ (r2 ∧ r3); (r1 ∨ r2) ∨ r3 = r1 ∨ (r2 ∨ r3)

3. Non-distributive laws: r1 ∨ (r2 ∧ r3) ̸= (r1 ∨ r2) ∧ (r1 ∨ r3);

r1 ∧ (r2 ∨ r3) ̸= (r1 ∧ r2) ∨ (r1 ∧ r3)

4. Sequential laws (r1 → r2) ∧ (r1 → r3) = r1 → (r2 ∧ r3);

(r1 → r2) ∨ (r1 → r3) = r1 → (r2 ∨ r3)

The next theorem confirms that, equipped with operations and unit rules, we can now

effectively express any selection rule in a mathematical language which allows us to develop

algorithms to combine multiple rules and generate resulting dictionaries.

Theorem 3. All selection rules can be expressed by either unit rules or operations on unit

rules using ∧ and ∨.

The proof is given in Appendix A.6. Next, we use Examples 1 and 2 with a hypothetical data

structure to illustrate how to express some common selection dependencies by unit rules and

operations. The corresponding selection dictionaries are also provided.

Example 1.1 (Individual selection) In Example 1, suppose all variables are continuous or

binary, and no structure is imposed. We can set the selection rule as selection between 0 to

4 variables r = u{0,1,2,3,4}(V), and then Dr = P(V).
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Example 1.2 (Groupwise selection) In Example 1, suppose we have 2 three-level categorical

variables. Denote F1 = {A,B},F2 = {D,E}. Let the variables in F1 be the dummy variables

representing a categorical variable, and similarly for the variables in F2. In an analysis, we

would like to select F1 collectively, same for F2. We can then set r = u{0,2}(F1) ∧ u{0,2}(F2).

(Yuan and Lin, 2006) In addition, Dr = {∅,F1,F2,F1 ∪ F2}.

Example 1.3 (Within group selection) If variables in F1 are one group, and F2 represents a

second group, and the goal is to select at least one variable from both groups, (Campbell and

Allen, 2017) then we set r = u{1,2}(F1)∧u{1,2}(F2), meaning there is at least one variable must

be selected in F1 and F2 respectively. In addition, Dr =
{︁
{A,C}, {B,C}, {A,B,C}, {A,D} ,

{B,D}, {A,B,D}, {A,C,D}, {B,C,D}, {A,B,C,D}
}︁

Example 1.4 (Sparse group selection) Consider the following selection rule: first select F1

and/or F2, or neither, as groups; then select individual variables from the selected group(s)

if at least one group is selected. (Breheny and Huang, 2009; Simon et al., 2013) We set

r =
(︁
u{0,2}(F1) ∧ u{0,2}(F2)

)︁
⇒

(︁
u{0,1,2}(F1) ∧ u{0,1,2}(F2)

)︁
, meaning we first execute the

same variable selection techniques in Example 1.2, and then select individual variables in

the set of variables selected by the previous step. The selection rule dictionary depends

on the result from the first step. If the result is none, then Dr = {∅}, if the result is F1,

then Dr = {∅, {A}, {B}, {A,B}}, similarly if the result is F2. If the result is F1 ∪ F2, then

Dr = P(V).

Example 2.1 (Categorical interaction selection with strong heredity) In Example 2, because

{B1, B2} are dummy variables representing a same categorical variable, so they have to

be collectively selected. Similarly for {AB1, AB2}. In addition, there is a common rule

that is being applied in interaction selection, which is called strong heredity (Haris et al.,

2016a; Lim and Hastie, 2015): “if the interaction is selected, then all of its main terms must

be selected”. Define u1 = u{0,2}{B1, B2}, u2 = u{0,2}{AB1, AB2}, u3 = u{1,2}{AB1, AB2},

u4 = u{3}{A,B1, B2}. The selection rule r = (u1 ∧ u2) ∧ (u3 → u4) satisfies the common
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selection dependencies imposed for categorical interaction selection and strong heredity. In

addition, Dr = {∅, {A}, {B1, B2}, {A,B1, B2}, {A,B1, B2, AB1, AB2}}.

Example 2.2 (Categorical interaction selection with weak heredity) Another common rule

that can be applied on interaction selection is weak heredity (Haris et al., 2016a): “if the

interaction is selected, then at least one of its main terms must be selected”. To satisfy

weak heredity, we further define u5 = u{1,3}{A,B1, B2}. Then with the predefined unit

rules in Example 2.1, the selection rule r = (u1 ∧ u2) ∧ (u3 → u5) satisfy the common

selection dependencies imposed for categorical interaction selection and weak heredity. In

addition, the corresponding selection dictionary is the union of the Dr in Example 2.1 and

{{A,AB1, AB2}, {B1, B2, AB1, AB2}}.

3.4 Penalization structure and grouping structure iden-

tification

Many existing penalized regression methods (i.e. regularization methods) can respect non-

trivial selection rules. (Yuan and Lin, 2006; Campbell and Allen, 2017; Simon et al., 2013;

Breheny and Huang, 2009; Haris et al., 2016a; Yuan et al., 2011; Jenatton et al., 2011a;

Obozinski et al., 2011a) In fact, the different regularization methods were developed in order

to respect different types of rules. In this section, we formalize the framework for penalization

structures and describe how it connects to the developed mathematical language. For a

regularization method that allows for respecting a given selection rule, this work provides

guidance on how to assign grouped variables in penalty terms in order to respect a selection

rule.

For a given covariate set V and outcome O, let D = (V, O) and denote the coefficients of

covariates in the penalized regression by β. Suppose the data are centered at 0, so that we
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omit the intercept, the penalized regression solves

min
β

ℓ(β;D) + Ω(β,θ), (3.1)

where ℓ(β;D) is a convex loss function, θ is a vector of hyper parameters, and penalty term

Ω(β,θ) is a function of β and θ. Different specifications of Ω result in different regularization

methods, with different variable selection results. A grouping structure G := {gi, i = 1, ..., I}

is a set of non-empty subsets gi ⊆ V s.t. ∪Ii=1gi = V. Let β|g be a vector of the same length

as β whose coordinates are equal to those of β for indices in the set g and 0 otherwise. ∥·∥q

indicates the Lq norm.

Table 3.3 summarizes five types of penalties with some key rules that they can respect.

Each regularization method M has restrictions on which grouping structures are allowed.

We say that the grouping structure is not compatible with a regularization method when

the grouping structure does not satisfy the method’s restrictions. For example, when some

groups contain more than one element, i.e. |g| > 1, for any g ∈ G, the grouping structure G

is not compatible with Lasso or Adaptive Lasso.

Method,M Ω(β;θ) Condition on g Key rules
Lasso λ

∑︁
g∈G

⃦⃦
β|g

⃦⃦
1

|g| = 1,∀g u{0,...,|V|}(V)

Adaptive Lasso λ
∑︁

g∈G ωg

⃦⃦
β|g

⃦⃦
1

|g| = 1,∀g u{0,...,|V|}(V)

Group Lasso λ
∑︁

g∈G

√︁
|g|

⃦⃦
β|g

⃦⃦
2

gi ∩ gi′ = ∅, i ̸= i′,∀g ∧iu{0,|gi|}(gi)

Exclusive Lasso λ
∑︁

g∈G

⃦⃦
β|g

⃦⃦2

1
gi ∩ gi′ = ∅, i ̸= i′,∀g ∧iu{1,...,|gi|}(gi)

SGL (1−γ)λ
∑︁

g∈G

√︁
|g|

⃦⃦
β|g

⃦⃦
2
+

γλ ∥β∥1
gi ∩ gi′ = ∅, i ̸= i′,∀g [∧iu{0,|gi|}(gi)] ⇒

[∧iu{0,...,|gi|}(gi)]

LOG λ
∑︁

g∈G ωg

⃦⃦
α|g

⃦⃦∗
2

NA ∧i,j
[︁
uCi

(gi)→ uCj
(gj)

]︁
*
∑︁

g∈G α|g = β
SGL: Sparse group Lasso, LOG: latent overlapping group Lasso

Table 3.3: Summary of some penalization methods
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Given a selection rule and some existing regularization method that could potentially satisfy

the selection rule, our framework aims to illustrate how to specify β|g, i.e., how to group

variables in the penalty term Ω. The framework can be generalized to accommodate more

complicated penalties.

We first characterize a “penalization structure” according to a given method and grouping

of variables in the penalty term.

Definition 8 (Grouping structure and penalization structure). For a given V, a penaliza-

tion structure consists of a grouping structure and a compatible regularization method

M. A grouping structure G := {gi} s.t. ∪Ii=1gi = V is any collection of non-empty subsets

of V, whose union is V.

A grouping structure defines how to assign variables into various groups in the penalty

term Ω. The objective of pairing a regularization method with a grouping structure is to

implement restrictions on the combinations of variables that can be selected together (which

corresponds to respecting a selection rule). The actual variables selected in an analysis will

depend on the data, D. Similar to the selection rule dictionary, we define the penalization

structure dictionary below.

Definition 9 (Penalization structure dictionary). Given a method M, and a compatible

grouping structure G on V, there is one corresponding penalization structure dictionary

DM
G , which is a dictionary that contains all subsets of V that could potentially result from the

application of the penalization structure on sample data.

Similar to the relationship between selection rules and selection rule dictionaries, we say

the resulting penalization structure dictionary is congruent to the penalization structure,

denoted by {M,G} ∼= DM
G . When the penalization structure dictionary DM

G equals a selection
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dictionary Dr of a rule r, we say that the penalization structure {M,G} respects the selection

rule r. That is, when {M,G} ∼= DM
G = Dr

∼= r, the penalization structure {M,G} respects

(or is congruent to) the selection rule r.

The grouping structure can be shown graphically, where the variables in a same group g

are in the same closed curve. We use the previous examples to illustrate various grouping

structures with different regularization methods. The related selection rule is given in each

example.

A B

C D

Figure 3.3: Grouping structure that is com-
patible with Lasso and Adaptive Lasso

A B

C D

Figure 3.4: Grouping structure that is com-
patible with Group Lasso

A B1 B2

AB1 AB2

Figure 3.5: Grouping structure that is com-
patible with latent overlapping group Lasso

A B1 B2

AB1 AB2

Figure 3.6: Grouping structure that is com-
patible with latent overlapping group Lasso

Example 1.5 ([Adaptive] Lasso) In Example 1, we can use Lasso (Tibshirani, 1996) or Adap-

tive Lasso (Zou, 2006) to respect the selection rule in Example 1.1: r = u{0,1,2,3,4}(V) with V =

{A,B,C,D}. Then the grouping structure given in Figure 3.3 is G =
{︁
{A}, {B}, {C}, {D}

}︁
.

Example 1.6 (Group Lasso) Group Lasso (Yuan and Lin, 2006) can achieve the groupwise

selection described in Example 1.2: r = u{0,2}(F1) ∧ u{0,2}(F2), where F1 = {A,B}, and

F1 = {C,D}. The corresponding grouping structure in Figure 3.4 is G =
{︁

F1,F2

}︁
.

Example 1.7 (Exclusive Lasso) Exclusive Lasso (Zhou et al., 2010; Campbell and Allen,
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2017) can achieve the within group selection in Example 1.3: r = u{1,2}(F1)∧ u{1,2}(F2). The

corresponding grouping structure in Figure 3.4 is G =
{︁

F1,F2

}︁
.

Example 1.8 (Sparse group Lasso) Sparse group Lasso (Simon et al., 2013) can achieve

the sparse group selection in Example 1.5: r =
(︁
u{0,2}(F1) ∧ u{0,2}(F2)

)︁
⇒

(︁
u{0,1,2}(F1) ∧

u{0,1,2}(F2)
)︁
. The corresponding grouping structure in Figure 3.4 is G =

{︁
F1,F2

}︁
.

Example 2.3 (Latent overlapping group Lasso) Latent overlapping group Lasso (Obozinski

et al., 2011a) can achieve categorical interaction selection with strong heredity in Exam-

ple 2.1 (Lim and Hastie, 2015):
(︁
u{0,2}{B1, B2} ∧ u{0,2}{AB1, AB2}

)︁
∧
(︁
u{1,2}{AB1, AB2} →

u{3}{A,B1, B2}
)︁
. The corresponding grouping structure G =

{︁
{A}, {B1, B2}, {A,B1, B2, AB1 ,

AB2}
}︁

is shown in Figure 3.5. When a variable appears in more than one group, for example,

A in both the first and third group, we say these two groups overlap.

Example 2.4 (Latent overlapping group Lasso) The method can also achieve categorical

interaction selection with weak heredity in Example 2.2:
(︁
u{0,2}{B1, B2}∧u{0,2}{AB1, AB2}

)︁
∧

(︁
u{1,2}{AB1, AB2} → u{1,3}{A,B1, B2}

)︁
. The corresponding grouping structure G ={︁

{A}, {B1, B2}, {A,B1, B2, AB1, AB2}, {A,AB1, AB2}, {B1, B2, AB1, AB2, }
}︁

is shown in Fig-

ure 3.6.

In Example 1.5, we see that different penalization structures can respect the same selection

rule. In Examples 1.7 and 1.8, we see that a same grouping structure with different reg-

ularization methods can respect different selection rules. In Examples 2.3 and 2.4, we see

that with different grouping structures, the same regularization method can achieve various

selection rules. However, one penalization structure can only respect one selection rule.

For a given regularization method, it is also possible to establish sufficient and necessary

conditions under which grouping structures satisfy selection rules. We focus on latent over-

lapping group Lasso which can respect many different types of selection rules. The proof of

Theorem 4 is given in Appendix A.7.
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Theorem 4. For a given V, with latent overlapping group Lasso, the sufficient and necessary

condition of a grouping structure G := {gi, i = 1, . . . , I} to be congruent to a selection rule r

is Dr = {∪g∈Qj
g, j = 1, . . . , 2I}, where Qj, j = 1, ..., 2I are all unique subsets of G.

With latent overlapping group Lasso, the penalization structure dictionary is a set of sets,

where each set is a union of groups in a subset of G. When the penalization structure

dictionary is the same as the selection dictionary that is congruent to the desired selection

rule, the penalization structure is congruent to the selection rule. Theorem 4 provides us

with an equation to check if latent overlapping group Lasso can respect a given selection

rule, and if so, whether a postulated grouping structure respects the selection rule. Similar

theorems can be developed for other regularization methods allowing for grouping structures.

For instance the corresponding theorem for overlapping group Lasso is given in Appendix

A.8. The proof is similar to the one in Appendix A.7.

Even though Theorem 4 does not tell us how to define a grouping structure for a selection

rule, it inspires us how to postulate a grouping structure: starting from the selection rule

dictionary, we seek all groups that satisfy the condition. However, it remains a non-trivial

task to actually construct this for complex selection rules.

3.5 Selection rule-based variable selection via optimiza-

tion

While penalized regression methods can be used for variable selection, they cannot control the

exact number of variables being selected. This limits their ability to respect certain selection

rules. In this section, we use the theoretical framework developed in Section 3.3 to define

new optimization techniques that can respect any selection rule that can be represented by

a binary operation on unit rules.
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Inspired by the optimization technique for best subset selection (Bertsimas et al., 2016;

Bertsimas and King, 2017), we propose to use the L0 norm to directly control the number

of variables selected from a specified set. The L0 norm of a vector counts the non-zero

elements in the vector. In a variable selection context, if β represents the vector of covariate

coefficients, ∥β∥0 is the number of variables selected. The optimization problem for the best

subset selection can then be formulated as

min
β

ℓ(β;D) s.t. ∥β∥0 ⩽ k. (3.2)

where k ⩽ |V| is a tuning parameter that controls the maximum number of selected variables.

Unlike the L1, L2, and L∞ norms that penalize by coefficient magnitude, this norm penalizes

the number of variables being selected. Best subset selection corresponds to the same trivial

selection rule as Lasso, i.e. u{0,...,|V|}(V).

Equation (3.2) can be reformulated to a MIO problem (Bertsimas and Weismantel, 2005)

min
β,z

ℓ(β;D) s.t. −Mz ⩽ β ⩽ Mz; 1⊺z ⩽ k, (3.3)

where z ∈ {0, 1}|V| and M =
⃦⃦⃦
β̂
⃦⃦⃦
∞

, where β̂ is the solution of (3.3). The tuning parameter

M is chosen to be large enough so that the solution to (3.2) equals the solution to (3.3).(Bert-

simas et al., 2016) Decision variable z corresponds to a binary vector that indicates which

variables from V are selected.

When ℓ(β, D) is a quadratic loss the above amounts to a mixed-integer quadratic program

problem (Lazimy, 1982). The algorithm to solve (3.3) is based on a discrete extension of

modern first-order continuous optimization methods, and it can provide near-optimal solu-

tions for the best subset problem in high-dimensional data. (Bertsimas et al., 2016) The

algorithm can be implemented by the well-known, powerful heuristic solvers Gurobi (Gurobi

Optimization, LLC, 2022). The authors also showed via simulation that the method is supe-
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rior in identifying the true model covariates relative to Lasso (Tibshirani, 1996), Sparsenet

(a family of concave penalties) (Mazumder et al., 2011) and the stand-alone discrete first-

order method. More generally, when ℓ(β, D) is convex but non-differentiable, one can use

proximal gradient descent algorithm (Moreau, 1962; Nesterov, 2013b) where each iteration

solves an MIO.

While the best subset selection controls the number of selected covariates; the unit rule

controls the number of variables being selected from a subset of candidate variables. The

best subset selection can be viewed as searching for the best model within the space of all 2|V|

possible candidate model; incorporation of the selection rule shrinks the space of candidate

models. We first formulate the optimization problem corresponding to an arbitrary unit

rule.

1. A unit rule restricts the number of variables being selected in a subset of candidate

variables, and does not restrict the others. To respect a unit rule uC(F), we wish to

solve

min
β

ℓ(β;D) s.t. (
⃦⃦
β|F

⃦⃦
0
,
⃦⃦
β|V\F

⃦⃦
0
) ∈ C× N⩽k,

where × is the Cartesian product of two sets, and N⩽k = {0, . . . , k} is a set that

contains all non-negative integers that are less than or equal to k. This is equivalent

to the reformulation of solving {Optc : c ∈ C}, where

Optc : min
β,z

ℓ(β;D) s.t. −Mz ⩽ β ⩽ Mz; 1⊺z|F = c; 1⊺z|V\F ⩽ k.

For a convex loss function ℓ, each Optc is a convex MIO with linear constraints and

thus can be solved by optimization solvers. We can solve |C| distinct problems in

parallel, and then compare the values of the |C| objective functions fitted with their

local minimizers (the estimated β such that the Optc is minimal). Then the final
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solution of {Optc : c ∈ C} would be the the minimizer such that ℓ(β, D) reaches its

global minimum, for all c ∈ C.

We can also define optimization problems corresponding to the binary operations defined in

Table 3.2 applied to unit rules.

2. The optimization problem for the selection rule ¬uC(F) parallels the one for the unit

rule. We can solve

min
β

ℓ(β;D) s.t. (
⃦⃦
β|F

⃦⃦
0
,
⃦⃦
β|V\F|

⃦⃦
0
) ∈ (N⩽|F \ C)× N⩽k.

This is equivalent to {Optc : c ∈ N⩽|F| \ C}. In this case, we solve |N⩽|F| \ C| distinct

MIOs in parallel.

3. For the selection rule uC1(F1) ∧ uC2(F2), we need to control the numbers of variables

being selected in two subsets, and the rest of the variables are unrestricted. We then

solve

min
β

ℓ(β;D) s.t. (
⃦⃦
β|F1

⃦⃦
0
,
⃦⃦
β|F2

⃦⃦
0
,
⃦⃦
β|V\(F1∪F2)

⃦⃦
0
) ∈ C1 × C2 × N⩽k,

which is equivalent to {Optc1,c2 : (c1, c2) ∈ C1 × C2}, where

Optc1,c2 : min
β,z

ℓ(β;D) s.t. −Mz ⩽ β ⩽ Mz;1⊺z|F1 = c1;

1⊺z|F2 = c2;1
⊺z|V\(F1∪F2) ⩽ k,

which requires solving |C1| × |C2| distinct MIOs in parallel.

4. For the selection rule uC1(F1)∨uC2(F2), we need to satisfy at least one unit rule, which
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solves

min
β

ℓ(β;D) s.t. (
⃦⃦
β|F1

⃦⃦
0
,
⃦⃦
β|V\F1

⃦⃦
0
) ∈ C1 × N⩽k1 or

(
⃦⃦
β|F2

⃦⃦
0
,
⃦⃦
β|V\F2

⃦⃦
0
) ∈ C2 × N⩽k2 ,

which is equivalent to the optimization problem of finding the minimizer of {Opt1c1 :

c1 ∈ C1} and {Opt2c2 : c2 ∈ C2}, where

Optici : min
β,z

ℓ(β;D) s.t. −Mz ⩽ β ⩽ Mz; 1⊺z|Fi
= ci; 1

⊺z|V\Fi
⩽ ki,

where i = 1, 2. It requires solving |C1|+ |C2| distinct MIOs in parallel with two tuning

parameters, k1 and k2.

5. For the selection rule uC1(F1)→ uC2(F2), it is equivalent to say if uC1(F1) is respected,

then respect uC2(F2), if uC1(F1) is not respected, then we do not impose a constraint

on F2. That is, uC1(F1)→ uC2(F2) = {uC1(F1) ∧ uC2(F2)} ∨ {¬uC1(F1)}. Thus we wish

to solve

min
β

ℓ(β;D) s.t. (
⃦⃦
β|F1

⃦⃦
0
,
⃦⃦
β|F2

⃦⃦
0
,
⃦⃦
β|V\(F1∪F2)

⃦⃦
0
) ∈ C1 × C2 × N⩽k1 or

(
⃦⃦
β|F1

⃦⃦
0
,
⃦⃦
β|V\F1

⃦⃦
0
) ∈ (N⩽|F1| \ C1)× N⩽k2 ,

It can be reformulated the optimization problem of finding the minimizer of {Opt1c1,c2 :

(c1, c2) ∈ C1 × C2} and {Opt2c3 : c3 ∈ N⩽|F1| \ C1}, where

Opt1c1,c2 : min
β,z

ℓ(β;D) s.t. −Mz ⩽ β ⩽ Mz;1⊺z|F1 = c1;

1⊺z|F2 = c2;1
⊺z|V\(F1∪F2) ⩽ k1,

Opt2c3 : min
β,z

ℓ(β;D) s.t. −Mz ⩽ β ⩽ Mz; 1⊺z|F1 = c3; 1
⊺z|V\F1 ⩽ k2,
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Both of Opt1c1,c2 and Opt2c3 are MIOs. Similar to the above procedures, by solving

|C1| × |C2| times of Opt1c1,c2 , and |N⩽|F1| \C1| times of Opt2c3 in parallel and comparing

all the objective functions fitted with their local minimizers, one can thus find the

global minimizer.

While this provides an interesting and potentially useful application of our framework, the

above development is limited to binary operations on unit rules, which does not cover all

possible selection rules. Though we provide the optimization formulations for unit rules and

their operations, the theoretical properties of the estimators are not investigated. Both of

these topics merit further research.

3.6 Discussion

Structured variable selection can improve model interpretability and also prediction accuracy.

Past work has focused on respecting a specific class of selection rules. Our contribution in

this paper is the development of a mathematical framework for structured variable selection

in full generality, allowing for the incorporation any a priori knowledge about covariate

structure into the variable selection to arrive at an interpretable selected model.

Our framework allows for a universal formulation of a priori selection structures using a

mathematical language. We then presented a bridge between an arbitrary rule and the

related selection dictionary, which is the space of all allowable covariate subsets. The formula

that allows for the derivation of the selection dictionary is useful even in a low-dimensional

covariate setting since manually listing the selection dictionary requires a great amount

of work and is error-prone. The properties and relationships of the defined mathematical

objects were also investigated, which was helpful to understand the framework and identify

potential future development.

In addition, we established that the selection dictionary is the key to connecting the selection
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rule to the implementation of a penalized regression method, which can identify the grouping

structure. More importantly, we show in Section 3.5 that the framework can be used to

develop new optimization techniques to satisfy a wider spectrum of selection rules.

Our framework unifies the structured variable selection problem, and creates a paradigm

where researchers can view the problem generically, rather than starting from a specific class

of covariate structure. Generic guidance for variable selection rules would allow practitioners

to scrutinize the covariate structures in their application carefully and potentially incorpo-

rate a larger scope of desirable selection rules. Given the increasing complexity of data

and applications, if new types of selection rules emerge in the future, we expect that our

framework will be able to incorporate them.

The framework is helpful in recognizing the scope of selection rules that a method can

respect, and understanding the reasons. Theorems 4 and 5 provide conditions for a grouping

structure to respect a selection rule in (latent) overlapping group Lasso, which are examples

of applying the framework to penalized regression. We know that though the two methods

can respect many types of selection rules, it is not always possible – in such a case, no

grouping structure can satisfy the equation in theorem 4. For instance, given V = {A,B,C},

latent overlapping group Lasso cannot respect the unit rule u{2}({A,B,C}) (with resulting

unit dictionary
{︁
{A,B}, {B,C}, {A,C}

}︁
). The reason follows: from Theorem 4, {∅} is a

subset of G, as well as the G itself. Therefore, the penalization structure dictionary always

contain {∅} and the universal set (of V, since the union of all elements in G must be V

according to the definition of grouping structure). That is, any selection dictionary that

not includes these two sets would never equals the penalization structure dictionary when

the method used is the latent overlapping group Lasso (similar for the overlapping group

Lasso, see Theorem 5). In other words, (latent) overlapping group Lasso can only respect

a unit rule when the C contains both 0 and |F|. In addition, from Table 3.2, the selection

dictionary obtained from some operations (∧,∨,→) of such unit dictionaries still contain
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these two sets. Therefore, the (latent) overlapping grouping Lasso also cannot respect the

selection rules that operated from such unit rules.

Ongoing work involves leveraging the theorems to provide roadmaps for the construction

of the appropriate grouping structure to respect different types of selection rules. Further

conditions and roadmaps for other penalized regression methods are interesting future direc-

tions.

We show in section 3.5 that variable selection under unit rules and binary operations on

these can be formulated as MIOs, which can be solved by optimization solvers. Though the

associated statistical properties are not investigated here, this opens up a research area in

structured variable selection , including selection rule classes that cannot be respected by

penalized regression methods. It reverses the perspective of the implementation of variable

selection methods – rather than starting from existing methods that can respect certain types

of selection rules, users can start from their a priori knowledge, set the desired selection rules,

and then identify or set up the corresponding methods.
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Chapter 4

Structured variable selection: an

application in identifying predictors of

major bleeding among hospitalized

hypertensive patients using oral

anticoagulants for atrial fibrillation

Preamble to Manuscript 2. In Chapter 3, I developed a new framework for structured

variable selection. In this chapter, I use a complex example in pharmacoepidemiology to

demonstrate an application of the framework to penalized regression (the latent overlapping

group Lasso), give a step-by-step demonstration of how to derive the selection dictionary

and group variables, and also give roadmaps for grouping structure identification for some

common selection rules. We use a linked dataset extracted from claims and medical services

databases to identify predictors of major bleeding among hospitalized hypertensive patients

using oral anticoagulants for atrial fibrillation. In this application, we consider the variable
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“the proxy of the adherence to anticoagulant medication” and its interactions with dose and

type of oral anticoagulants, respectively. We also consider drug-drug interactions. Seven

important selection rules are integrated into the variable selection. Unlike the (adaptive)

Lasso, which does not incorporate the selection rules, the selected model from the latent

overlapping group Lasso with our defined grouping structure respects the combination of

all selection rules, and also resulted in a lower cross-validated risk. This manuscript was

submitted to Statistics in Medicine.

Note that the supplementary material for this chapter can be found in Appendix

B.
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Abstract

Predictor identification is important in medical research as it can help clinicians to have

a better understanding of disease epidemiology and identify patients at higher risk of an

outcome. Variable selection is often used to reduce the dimensionality of a prediction model.

When conducting variable selection, it is often beneficial to take selection dependencies into

account. Selection dependencies can help to improve model interpretability, increase the

chance of recovering the true model, and augment the prediction accuracy of the resulting

model. The latent overlapping group lasso can achieve the goal of incorporating some types

of selection dependencies into variable selection by assigning coefficients to different groups

of penalties. However, when the selection dependencies are complex, there is no roadmap for

how to specify the groups of penalties. Wang et al. (2021) proposed a general framework for

structured variable selection, and provided a condition to verify whether a penalty grouping

respects a set of selection dependencies. Based on this previous work, we construct roadmaps

to derive the grouping specification for some common selection dependencies and apply them

to the problem of constructing a prediction model for major bleeding among hypertensive

patients recently hospitalized for atrial fibrillation and then prescribed oral anticoagulants.

In the application, we consider a proxy of adherence to anticoagulant medication and its

interaction with dose and oral anticoagulants type, respectively. We also consider drug-drug

interactions. Our method allows for algorithmic identification of the grouping specification

even under the resulting complex selection dependencies.
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4.1 Introduction

In medical research, identifying important predictors for an outcome can help clinicians de-

velop a better understanding of disease epidemiology, i.e., which factors are associated with

a higher risk of a disease, and the independent contribution of each one to the overall pre-

diction. (Schooling and Jones, 2018) In addition, the ensuing predictive models can assist

clinicians in identifying patients who are at higher risk, in order to potentially provide differ-

ent care or more intensive follow-up. Predictor identification can also be regarded as model

exploration for causal hypotheses: the predictors being identified can be potentially investi-

gated in future causal analyses and randomized controlled trials. (Shmueli, 2010; Kalisch and

Bühlman, 2007; Shortreed and Ertefaie, 2017) In this context, constructing a non-parametric

predictive model may be less preferable because black box models are difficult to interpret

and prediction accuracy is not the only goal that we pursue. To strike a balance between

prediction accuracy and interpretability, a vast literature of variable selection techniques

under generalized linear models has emerged. (Tibshirani, 1996; Zou, 2006; Yuan and Lin,

2006; Bhatnagar et al., 2020; Breheny and Huang, 2009; Mairal et al., 2010; Jacob et al.,

2009)

Selection dependencies are often inherent or desirable in variable selection. For example,

all non-reference binary indicators representing a categorical variable should be selected

collectively. As a second example, the selection of a variable (for instance, the interac-

tion) can depend on whether other variables (for instance, main terms) are also selected.

Such selection dependencies constrain the candidate models: there are a limited number

of models, consisting of different combinations of covariates, that can satisfy the selection

dependencies. Models that satisfy such selection dependencies ensure the interpretability of

the results.

Recently, Wang et al. (2021) developed a framework for structured variable selection that

allows practitioners to respect any combination of selection dependencies, called a “selection
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rule". The framework enables one to express the selection dependencies using a uniform

mathematical language, and then construct the corresponding selection dictionary, which

is a set that contains all subsets of candidate variables that respect the selection rule. We

can perform model selection by fitting each candidate model in the selection dictionary,

and select the model that has the best performance in some sense (for example, the lowest

cross-validated risk under some loss function).

When the covariates considered in an application are of greater dimension, applying this

exhaustive method is computationally inefficient. Another solution to accommodate compli-

cated selection dependencies in variable selection is penalized regression, where the selection

dependency is achieved by specifying a grouping structure, that is, assigning (possibly over-

lapping) groups of coefficients of covariates in the penalty term. However, how to identify

the grouping structure is not trivial. Wang et al. (2021) gave a sufficient and necessary

condition for a grouping structure to respect a selection dependency with latent overlapping

group lasso (Obozinski et al., 2011b), given a known selection dictionary. However, it does

not tell us exactly how identify the grouping structure.

With the increasing use of administrative claims and electronic health records (EHR), higher

dimensional patient information is accessible which may allow for more powerful predictive

modeling. However, the selection dependencies may be complex in such data. In this work,

we apply and demonstrate the practical use of the framework developed in Wang et al.

(2021) to identify predictors of major bleeding among hypertensive patients hospitalized for

atrial fibrillation and prescribed oral anticoagulants (OACs) after hospital discharge. In this

application, a proxy of adherence to OACs and drug-drug interactions are considered. In our

modeling, we retain the structure of the data, and take desirable selection dependencies into

account. We also provide related roadmaps for grouping structure identification for some

common selection rules.

The remainder of the paper is organized as follows. Section 4.2 introduces the data example.
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Section 4.3 gives a brief introduction of the framework developed by (Wang et al., 2021), and

illustrates how can we apply and extend the framework. The results of the data analyses are

given in section 4.4, followed by a discussion in section 4.5.

4.2 Application: identification of predictors for major

bleeding in patients taking OACs

Atrial fibrillation is a disease characterized by an irregular heartbeat, which is due to electri-

cal signal disturbances of the heart. Patients with this condition have a higher risk of stroke,

heart failure, and other cardiovascular complications. (Lip and Tse, 2007) To decrease the

occurrence of stroke, most patients have to take anticoagulants long-term. (Yamashiro et al.,

2019) Warfarin (vitamin K antagonist) was the mainstay anticoagulant for non-valvular atrial

fibrillation. (Friberg et al., 2012) However, close monitoring of the International Normalized

Ratio (INR) and frequent dose adjustments due to numerous drug interactions are required

when taking warfarin. (Connolly et al., 2008) In recent decades, DOACs, including Rivaroxa-

ban, Dabigatran, and Apixaban, became available to non-valvular atrial fibrillation patients.

As alternatives to warfarin, they do not require such routine monitoring and are given as

fixed doses based on patient characteristics. Nevertheless, non-compliance (Obamiro et al.,

2016; Garkina et al., 2016), different dose levels, drug interactions (Raccah et al., 2018; Burn

and Pirmohamed, 2018) and contraindications (Schnitzer et al., 2020) complicate the usage

of anticoagulants. Patients taking different anticoagulants with various doses and adherence

patterns may have different risks of major bleeding. Beyond that, many known or unknown

factors may also contribute to the variability of outcomes. Therefore, before measuring the

effects of anticoagulants, or predicting the risk of major bleeding, we are interested in in-

vestigating the predictors that are associated with or predictive of major bleeding through

modeling. (Tripodi et al., 2018; Claxton et al., 2018)

Data source and population-based cohort definition
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We use the dataset from Qazi et al. (2021), which was compiled from a subset of the Régie de

l’Assurance Maladie du Québec (RAMQ) drug and medical services database linked with the

Med-Echo hospitalization database using encrypted patient healthcare insurance numbers.

(Tamblyn et al., 1995; Perreault et al., 2020; Eguale et al., 2010; Wilchesky et al., 2004)

They identified patients hospitalized for any cause and discharged alive in the community

from 2011 to 2017 with a primary or secondary diagnosis of atrial fibrillation. Cohort entry

(index date) was defined as the time of the first OAC claim.

We are particularly interested in assessing if adherence (high/low) to the prescribed OAC

is associated with the risk of major bleeding (Perreault et al., 2019). However, the history

of OAC usage is not available because the cohort consists of the patients who used OACs

for the first time. We thus used the history of hypertension drug usage, which are also

taken chronically, as a proxy of the adherence to OACs. (Sabaté and Sabaté, 2003) We thus

limited the cohort to patients with a previous diagnosis of hypertension who were prescribed

at least one hypertension drug in the three months prior to the index date. The complete

inclusion and exclusion criteria with patient totals are shown in supplementary material 1

Section B.1.

Study outcome, baseline characteristics and predictor candidates

The outcome is defined as incident major bleeding within 1 year of follow-up. Validated

ICD-9 and ICD-10 codes for the outcome are given in supplementary material 2. (Villines

et al., 2015; Yao et al., 2016; Lauffenburger et al., 2015; Maura et al., 2015; Graham et al.,

2015; Go et al., 2017)

We screened the dataset and selected variables that were either known to be predictive of

major bleeding or of particular clinical interest, (Qazi et al., 2021; Landefeld and Goldman,

1989; Roldán et al., 2013; Chao et al., 2018) and the availability of data.

When available, we included the variables in the HAS-BLED (Hypertension, Abnormal

Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly,
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Name Definition
DOAC 1 if the patient was prescribed DOAC, 0 if the patient was prescribed

warfarin at cohort entry

Apixaban 1 if the patient was prescribed Apixaban at cohort entry, 0 otherwise

Dabigatran 1 if the patient was prescribed Dabigatran at cohort entry, 0 otherwise

High-dose-DOAC 1 if the patient was prescribed high-dose-DOACs at cohort entry, 0
otherwise

High-adherence* 1 if the patient’s adherence level was greater than or equal to 0.8

*For the complete definition of adherence, see supplementary material 2

Table 4.1: Definitions of variables related to OAC usage

Drugs/Alcohol Concomitantly) chart (Pisters et al., 2010) and known risk factors of bleed-

ing when taking OACs (Lane and Lip, 2012); the definitions of these variables are given

in supplementary material 2. The potential predictors in our analysis included age, sex,

CHA2DS2-VASc score, comorbidities within 3 years before cohort entry, OAC usage at co-

hort entry, concomitant medication usage within 2 weeks before cohort entry, and the drug-

drug interactions between OAC type and concomitant medications. Definitions of the main

terms (binary) variables related to OAC usage are given in Table 4.1. DOAC indicates that a

patient was prescribed a DOAC, with warfarin as the alternative. We also included indica-

tors of Apixaban and Dabigatran prescriptions with Rivaroxaban being the reference DOAC.

DOACs can also be prescribed at high or low-doses. Our variable High-dose-DOAC indicates

that a patient was receiving a high-dose of a DOAC, where High-dose-DOAC= 0 means that

the patient was either receiving low-dose-DOAC or warfarin. Note that the dosing of war-

farin is individualized and not considered in this analysis. Adherence was calculated as the

number of days of dispensed hypertension drugs divided by the duration of the prescription

period prior to the index date. The variable High-adherence was defined as ⩾ 80% adher-

ence to hypertension drugs.

Selection rules
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Given these covariates and the interactions of interest, we consider three types of selection

rules. We assume strong heredity (Haris et al., 2016b) for all interactions: if the interaction

is selected, its main terms must be selected. The rationale for each rule follows.

1. Selection rules for OAC usage:

1.1. If High-dose-DOAC is selected, then DOAC must be selected.

1.2. If Apixaban is selected, then DOAC must also be selected.

1.3. If Dabigatran is selected, then DOAC must also be selected.

1.4. If the interaction of DOAC and High-adherence is selected, then both DOAC and

High-adherence must be selected.

1.5. When the interaction of High-dose-DOAC and High-adherence is selected, then

the model must also include: DOAC, High-adherence, High-dose-DOAC and the

interaction of DOAC and High-adherence.

2. Selection rule for drug-drug interaction: If a drug-drug interaction is selected, both

DOAC and the other medication must be selected. (Note that we only include drug-

drug interactions between DOAC and concomitant medications.)

3. Selection rule for pre-selected variables: The following established predictors for ma-

jor bleeding are forced into the model: 1) Age, 2) Sex, 3) Stroke, 4) Anemia, 5)

Malignancy, 6) Liver diseases, 7) History of major bleeding, 8) Renal diseases,

9) Antiplatelets, 10) NSAIDs.

Rule 1.1 is needed since when DOAC is in the model, and if High-dose-DOAC is selected,

then the interpretation of the coefficient of High-dose-DOAC is the contrast (e.g. log odds

ratio) of high-dose-DOAC versus low-dose-DOAC, which is of interest. If Apixaban and

Dabigatran are also in the model, the coefficient of High-dose-DOAC represents the con-

trast between high-dose-Rivaroxaban versus low-dose-Rivaroxaban. However, without DOAC
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in the model, these relevant interpretations would be lost. Rule 1.2 is needed since when

DOAC is in the model, and if Apixaban is selected, then the interpretation of the coefficient

of Apixaban is the contrast of Apixaban and Rivaroxaban. If High-dose-DOAC is also in

the model, the interpretation would be the contrast of low-dose-Apixaban versus low-dose-

Rivaroxaban. However, without DOAC, the coefficient of Apixaban would represent a contrast

against warfarin and Rivaroxaban combined, which is less interpretable. The same rationale

applies for Dabigatran in rule 1.3. The rationale for rule 1.5 is that: 1) according to strong

heredity, both High-dose-DOAC and High-adherence must be in the model when the in-

teraction of High-dose-DOAC and High-adherence is selected, 2) when High-dose-DOAC is

in the model, DOAC must be selected, which is justified by the rule 1.1, and 3) the interac-

tion of High-dose-DOAC and High-adherence represents a three-way interaction between

High-dose-DOAC, DOAC, and High-adherence. Therefore, by the rationale of strong hered-

ity, we must include the lower order interaction between DOAC and High-adherence. If we

do not, we are assuming that High-adherence has the same impact whether a patient takes

warfarin or low-dose-DOAC but the impact is different for a high-dose-DOAC. The coeffi-

cient of the main term High-adherence would then be less interpretable. The rules 1.4 and

2 are straight-forward applications of strong heredity. Rule 3 is based on the findings from

Lane and Lip (2012).

4.3 Statistical methods

4.3.1 Selection rule and selection dictionary

We next present the method to derive the selection dictionary for the defined selection rules,

which is rooted in the framework developed by Wang et al. (2021). Recall that the “selection

dictionary” is the set that contains all subsets of candidate variables that respect a given

selection rule.

Denote the set of candidate covariates by V, with non-empty subsets F1 and F2. We use
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P(V) to denote the power set of V, which is the set of all subsets of V. This represents the

dictionary without any selection rules applied.

1. Define a unit rule u(F1) as “select F1”, meaning that this selection rule forces the set F1

into the model. The related selection dictionary Du1 (called “unit dictionary”) contains

all sets which are the union of F1 and any subset of V \ F1. That is, Du1 = {F1 ∪ m :

m ∈ P(V) \ F1}. We define u(F2) and Du2 similarly with respect to F2.

2. Define an if-then rule r as “if F1 is selected, then F2 is selected”, or equivalently, “if

the unit rule u(F1) is respected, then the unit rule u(F2) must be respected”. This is

denoted by r = u(F1) → u(F2). The selection dictionary corresponding to the if-then

rule is given by Dr = {P(V) \ Du1} ∪ (Du1 ∩ Du2).

We observed that all the selection rules defined in the previous section can be represented by

unit rules and if-then rules. We next show how to derive the corresponding selection dictio-

nary that respects all the selection rules using set operations on the rule-specific dictionaries

in Algorithm 1. We also show the exhaustive search method in Algorithm 2. Algorithm

1 constructs the selection dictionary by the unit dictionaries and their operations; whereas

Algorithm 2 eliminates the sets in P(V) that do not respect the rules. Since rule 3 forces the

selection of variables, they have to be in each set of the selection dictionary. Both algorithms

are available in the Github https://github.com/Guanbo-W/SelectionDictionary.

After running the algorithms, we found that the cardinality of the selection dictionary cor-

responding to the combination of our 7 rules is 32512. Algorithm 2 took 5 minutes while the

exhaustive search took 3.5 seconds on a local computer without the use of parallel comput-

ing. Note that though the former approach took longer, it is a generic procedure that can

be applied to more complex rule operations outside of our application.
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Algorithm 1 Steps of deriving the selection dictionary by set operations
Denote the variables in rule 3 by A.

Define V as a set that contains all candidate variables except A.

Conduct steps 1 and 2 for each if-then rule (1.1-2) rj = uj,1(Fj,1)→ uj,2(Fj,2):

Step 1: Derive the unit dictionaries Duj,1 = {Fj,1 ∪ m : m ∈ P(V) \ F1}. Similarly
for Duj,2 .

Step 2: Derive the selection dictionary of rj as Drj = {P(V) \ Duj,1} ∪ (Duj,1 ∩ Duj,2).

Step 3: Derive the selection dictionary that respects all rules 1.1-2 by Dr = ∩jDrj .

Step 4: The final selection dictionary is {A ∪ n : n ∈ Dr}.

Algorithm 2 Steps of deriving the selection dictionary by exhaustive search
Denote the variables in rule 3 by A.

Define V as a set containing all candidate variables except A.

For each subset of P(V), denoted x:

Step 1: for all if-then rules (1.1-2) denoted rj = uj,1(Fj,1) → uj,2(Fj,2), check if x sat-
isfies the following condition: (Fj,1 ∈ x and Fj,2 ∈ x) or Fj,1 /∈ x.

Step 2: Collect all the x that satisfy the above condition, and denote the collection
as Dr.

Step 3: The final selection dictionary is {A ∪ n : n ∈ Dr}.
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4.3.2 Variable selection via penalized regression

To conduct variable selection while respecting the defined selection rules, one can fit a penal-

ized regression. However, how to define the grouping structure to satisfy a general selection

rule is not well studied. To our knowledge, the most versatile penalized regression in terms

of respecting selection rules is the latent overlapping group lasso (Obozinski et al., 2011b).

We next show how to apply it to fulfill our objectives.

Denote the outcome by Y , the candidate covariate matrix by X, and the model coefficients

by β. Note that the covariate matrix X corresponds to the full set of candidate variables,

denoted by V. Suppose we fit a logistic model logit{E(Y |X; β0,β)} = β0 + Xβ. The

grouping structure G := {gi,∪Ii=1gi = V} can be defined as a collection of non-empty subsets

gi ⊆ V such that their union is V. Define a set of latent variables ᾱ = (αgi)gi∈G such that∑︁I
i=1α

gi = β, where αgi is a vector of the same length as β whose coordinates are non-zero

for indices in the set gi and 0 otherwise. The latent overlapping group lasso solves

min
β

ℓ(β;D) +
∑︂
gi∈G

ωgif(α
gi ;η),

where the level of penalization is controlled by the possibly multivariate hyper-parameter η,

ωgi is a positive weight applied to the coefficients in the group gi, ℓ(·) is a convex loss function

(in our application, logistic loss (Cox, 1958)), and f(·) is a penalization function.

In practice, the convex loss function ℓ(·) can be an L2 norm with single hyperparameter η = λ

(Obozinski et al., 2011b), minimax concave penalty (MCP) with hyperparameters η = (λ, γ)

(Zhang, 2010; Huang et al., 2012), or smoothly clipped absolute deviation (SCAD) with

η = (λ, γ) (Fan and Li, 2001; Breheny and Huang, 2015). The latter two penalties have the

oracle property (Breheny and Huang, 2011) and retain the penalization rate of the L2 norm

for small coefficients, but continuously relax the rate of penalization as the absolute value

of the coefficient increases. The rate of relaxation is larger in MCP, compared with SCAD.
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The specifications of f(·) for these three penalties are given in supplementary material 1,

Section B.2.

4.3.3 Constructing the grouping structure

In the latent overlapping group lasso, the selected variables must be the union of a subset

of the groups in the grouping structure. (Obozinski et al., 2011b) Therefore, different spec-

ifications of grouping structures result in different combinations of subsets of variables that

can be potentially selected. When the set of all combinations of group subsets is equivalent

to the selection dictionary for the defined selection rules, we can say the grouping structure

used with the latent overlapping group lasso respects the selection rules. (Wang et al., 2021)

Correspondingly, Wang et al. (2021) developed a sufficient and necessary condition used with

the latent overlapping group lasso for a grouping structure to respect a selection rule: the

selection dictionary must be equal to {∪g∈Qj
g, j = 1, . . . , 2I}, where Qj, j = 1, ..., 2I are all

unique subsets of the grouping structure G. However, the previous work does not show how

to identify the grouping structure.

Based on Theorem 4 in Wang et al. (2021) and the nature of the latent overlapping group

lasso, we develop roadmaps of grouping structure identification for some common selec-

tion rules, including the ones seen in this application. Define A = {A1, . . . , An}, and

B = {B1, . . . , Bm} as two non-overlapping sets of binary or continuous variables. Table

4.2 gives four types of selection rules with the corresponding roadmaps for constructing the

corresponding grouping structure. More details of the roadmaps are given in Appendix B.3.

Since our selection rules 1.1-1.5 and 2 are represented in the form of “if one variable is selected,

then some other variables must be selected”, we will only need the first roadmap in Table 4.2.

For example, for rule 1.4, we create single-variable groups for DOAC and High-adherence and

a third group that contains DOAC, High-adherence, and their interaction. We do this for
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Selection rule Roadmap of grouping variables
If all variables in A are selected, then
all variables in B must be selected

Specify m single-variable groups for
B1 . . . , Bm, then specify another group
that contains A and B.

If at least one variable in A is selected,
then all variables in B must be selected

Specify m single-variable groups for
B1 . . . , Bm, then specify n groups, each
containing B and Ai, for i = 1, . . . , n.

If all variables in A are selected, then at
least one variable in B must be selected

Specify m single-variable groups for
B1 . . . , Bm, then specify m groups, each
containing Bj and A for j = 1, . . . ,m.

If at least one variable in A is selected,
then at least one variable in B must be
selected

Specify m single-variable groups for
B1 . . . , Bm, then specify n × m groups,
where each group contains one variable from
each set, i.e. each group contains Ai and Bj

for some i = 1, . . . , n, j = 1, . . . ,m.

Table 4.2: Roadmaps of grouping structure identification for the latent overlapping group
lasso; A = {A1, . . . , An}, and B = {B1, . . . , Bm} are two non-overlapping sets of binary or
continuous variables.

each rule 1.1-2, removing duplicate groups. To implement rule 3, which cannot strictly be

respected by latent overlapping group lasso, we modified it to “select either none or all of the

10 variables”, which is practically the same as the original version (details in Appendix B.4).

The modified rule can be implemented in the latent overlapping group lasso by specifying a

group for those 10 variables.

Following the above steps, we established the grouping structure in the application, given in

supplementary material 1, Section B.5. Then we used the R package grpregOverlap (Zeng

and Breheny, 2016) to implement the latent overlapping group lasso with various penalties.

The weights for each group were set to be the square root of the number of variables in the

group. (Obozinski et al., 2011b) We next compare the results from the latent overlapping

group lasso with those of lasso (Tibshirani, 1996) and adaptive lasso (Zou, 2006). Note that

compared to lasso, adaptive lasso possesses the oracle property, namely, for large sample

size, it performs as well as if the true underlying model were given in advance and thus

78



the results are more trustworthy. (Zou, 2006). All code for this analysis is available at

https://github.com/Guanbo-W/SelectionDictionary.

4.4 Results

The rate of the outcome (major bleeding) is 3.47 per 100 person-years, and the percentage of

patients who experienced major bleeding is 3.1%. Table 4.3 presents the means and standard

errors or proportions of all variables stratified by the outcome. The summary statistics of

variables stratified by high-dose-DOAC, low-dose-DOAC and warfarin are given in supple-

mentary material 1 Section B.6.

Variable name (non-reference/reference level) Non-bleeding Bleeding

n=20,671 (96.90%) n=661 (3.10%)

Baseline covariates

1. Age, Mean (SD) 79.98 (8.79) 81.49 (7.93)

2. Sex (proportion female) 0.58 0.54

3. CHA2DS2-VASc Score (⩾3/<3) 0.88 0.92

Comorbidities within 3 years before cohort entry

4. Stroke(yes/no) 0.28 0.26

5. Anemia (yes/no) 0.10 0.17

6. Malignancy (yes/no) 0.26 0.30

7. Liver disease (yes/no) 0.02 0.05

8. History of major bleeding (yes/no) 0.34 0.49

9. Renal diseases (yes/no) 0.27 0.34

10. Heart disease(yes/no) 0.63 0.72

11. Diabetes (yes/no) 0.36 0.46

12. COPD/asthm (yes/no) 0.39 0.46

13. Dyslipidemia (yes/no) 0.58 0.64

OAC use at cohort entry

14. DOAC (DOACs/warfarin) 0.57 0.50

15. Apixaban (yes/no) 0.30 0.21

16. Dabigatran (yes/no) 0.10 0.12
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17. High-dose-DOAC (high-dose-DOACs/low-dose-DOACs or

warfarin)

0.33 0.25

18. High-adherence (high/low) 0.87 0.25

19. Interaction of DOAC and High-adherence 0.49 0.43

20. Interaction of High-dose-DOAC and High-adherence 0.28 0.22

Concomitant medication use within 2 weeks before cohort entry

21. Antiplatelets (yes/no) 0.32 0.40

22. NSAIDs (yes/no) 0.01 0.01

23. Antidepressants (yes/no) 0.18 0.22

24. PPIs (yes/no) 0.44 0.44

Potential drug-drug interaction*

25. Interaction of DOAC and Antiplatelets 0.16 0.16

26. Interaction of DOAC and NSAIDs 0.01 0.01

27. Interaction of DOAC and Antidepressants 0.10 0.10

28. Interaction of DOAC and PPIs 0.23 0.19

*the variables are defined as the product of two drugs

Table 4.3: Covariate descriptive statistics (prevalences for binary covariates and means and
standard errors for continuous covariates) stratified by the outcome

Crude (univariate analyses) and adjusted odds ratios (obtained from the logistic regression

model adjusting for key covariates) and 95% confidence intervals are given in supplementary

material 1, Section B.7.

Table 4.4 gives the odds ratios of each variable estimated by lasso, adaptive lasso, and

latent overlapping group lasso, with the latter under different penalties. For all methods, we

selected the tuning parameter λ at the minimum cross-validated risk, the tuning parameter

γ of MCP and SCAD are set to 3 and 4 respectively.

Non-grouped LOGL*

Variable name lasso alasso** L2 MCP SCAD

cross-validated risk 0.271 0.060 0.031 0.031 0.031

Baseline covariates

1. Age (⩾75/<75) 1.21 1.09 1.24 1.24 1.24
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2. Sex (female/male) 0.88 - 0.87 0.86 0.86

3. CHA2DS2-VASc Score (⩾3/<3) 1.19 1.04 - 1.24 1.24

Comorbidities within 3 years before cohort entry

4. Stroke (yes/no) 0.95 - 0.95 0.94 0.94

5. Anemia (yes/no) 1.35 1.35 1.35 1.38 1.38

6. Malignancy (yes/no) 1.07 - 1.08 1.09 1.09

7. Liver disease (yes/no) 1.92 1.98 1.92 2.01 2.01

8. History of major bleeding (yes/no) 1.59 1.60 1.53 1.62 1.62

9. Renal diseases (yes/no) - - 0.97 0.96 0.96

10. Heart disease (yes/no) 1.20 1.13 1.21 1.22 1.22

11. Diabetes (yes/no) 1.28 1.22 1.28 1.31 1.31

12. COPD/asthma (yes/no) 1.13 1.02 1.13 1.15 1.15

13. Dyslipidemia (yes/no) 1.07 - 1.07 1.09 1.09

OAC use at cohort entry

14. DOAC (DOACs/warfarin) 1.18 - 1.29 1.39 1.39

15. Apixaban (yes/no), ref: Rivaroxaban 0.69 0.72 0.67 0.62 0.62

16. Dabigatran (yes/no), ref: Rivaroxaban 1.11 - 1.03 - -

17. High-dose-DOAC (high-dose-DOACs/low-dose-DOACs

or wafarin)

0.88 0.89 0.81 0.81 0.81

18. High-adherence (high-adherence/low-adherence) - - 1.01 - -

19. Interaction of DOAC and High-adherence - - 0.96 - -

20. Interaction of High-dose-DOAC and High-adherence - - 1.05 - -

Concomitant medication use within 2 weeks before cohort entry

21. Antiplatelets (yes/no) 1.35 1.17 1.30 1.51 1.51

22. NSAIDs (yes/no) - - 1.28 1.35 1.35

23. Antidepressants (yes/no) 1.13 - 1.15 1.16 1.16

24. PPIs (yes/no) 0.87 - 0.88 0.80 0.80

Potential drug-drug interaction

25. Interaction of DOAC and Antiplatelets 0.81 - 0.86 0.68 0.68

26. Interaction of DOAC and NSAIDs 1.41 1.01 - - -

27. Interaction of DOAC and Antidepressants - - 0.94 - -

28. Interaction of DOAC and PPIs 0.91 - 0.92 - -

*the latent overlapping group lasso; ** adaptive lasso
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Table 4.4: Coefficients estimates from various methods. - indicates the variable was not
selected.

From the results, we see that lasso selected the most variables, while adaptive lasso selected

the fewest variables. The resulting (averaged 10-fold) cross-validated risks were 0.271 and

0.060, respectively. However, neither method can incorporate selection rules. In fact, we

see that both of them violated rule 3. In addition, both lasso and adaptive lasso selected

the interaction of DOAC and NSAIDs, but not NSAIDs, violating strong heredity. Additionally,

adaptive lasso selected Dabigatran, but not DOAC, which complicates the interpretation of the

coefficient of Dabigatran. It selected Dose but not DOAC, which gives us a contrast between

high-dose-DOACs versus low-dose-DOACs or warfarin, which is less interpretable than a

contrast between high and low-dose-DOACs. Furthermore, adaptive lasso did not select

Sex, Stroke, Malignancy, Renal diseases, which are well-known predictors of bleeding

on oral anticoagulation, resulting in a model that would not be accepted by subject matter

experts.

The latent overlapping group lasso reduced the cross-validated risk to 0.031. By design, the

variable selection respects the selection rules, resulting in a model with better interpretability.

Though the cross-validated risks of using different penalties in the latent overlapping group

lasso were the same, the set of variables selected were different depending on the penalty

type. The results derived from MCP and SCAD were similar, likely due to both of them

having oracle properties. These methods penalize coefficients less when the estimated odds

ratios deviate from 1. So we see that the estimated odds ratios from MCP and SCAD were

further from 1 compared to those using the L2 penalty. In addition, these two penalties

resulted in fewer variables being selected. In contrast with the L2 penalty, they did not

select High-adherence, the interaction of DOAC and High-adherence, the interaction of

High-adherence and High-dose-DOAC, the interaction of DOAC and Antiplatelets, and

the interaction of DOAC and PPIs. Nevertheless, the estimated odds ratios of these variables
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under the L2 penalty were close to 1.

From MCP and SCAD, the most predictive factors associated with higher risk of major

bleeding (odds ratios above 1.50) were liver disease (2.01), History of major bleeding

(1.62) and Antiplatelets (1.51). Important predictors that were associated with lower risk

of major bleeding (odds ratios below 0.8) are Dabigatran (0.62) and the interaction of

DOAC and Antiplatelets (0.68). From the results, we can also summarize the estimated

odds ratios of taking different types of DOACs versus warfarin in Table 4.5, which are also of

interest. The method to obtain these additional contrasts is given in supplementary material

1, Section B.8.

Contrasts with warfarin as reference Estimated odds ratios
High-dose-Apixaban 0.70

High-dose-Dabigatran 1.13

High-dose-Rivaroxaban 1.13

Low-dose-Apixaban 0.86

Low-dose-Dabigatran 1.39

Low-dose-Rivaroxaban 1.39

Table 4.5: Estimated odds ratios of taking different types of DOACs versus warfarin from
the selected model by the latent overlapping group lasso MCP/SCAD

4.5 Discussion

This work represents the first application of the framework of structured variable selection

developed by Wang et al. (2021), which we used to respect a complex series of selection rules

while constructing a predictive model. Specifically, our application identified predictors of

major bleeding among hospitalized hypertensive patients using OACs for atrial fibrillation

using the data collected from administrative health databases.
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We gave the implementation details for how to identify the selection dictionary related to

the series of rules, and presented guidance in the form of roadmaps for how to develop

an appropriate grouping structure for the latent overlapping group lasso. The R codes are

also available, which provide a template to facilitate future applications. Overall, these

tools can help to guide practitioners to carefully design selection rules informed by specific

applications, derive the selection dictionary, identify the grouping structure and arrive at an

interpretable predictive model.

The proposed methods can be easily implemented if the set of covariates that are affected by

the selection rules is low-dimensional or can be divided into non-overlapping low-dimensional

subsets, regardless of the dimension of the number of total variables. In such scenarios, one

does not need to derive the selection dictionary for all variables. For example, suppose that

only 10 variables are constrained by selection rules, and the other 1000 variables can be

independently selected. We can first derive the sub-selection dictionary regarding these 10

variables (treating V as the set of these 10 variables), and then identify the sub-grouping

structure for the 10 variables. Then the remainder of the complete grouping structure

involves an additional 1000 single-variable groups for each of the remaining variables.

Even though the latent overlapping group lasso is the most versatile variable selection tech-

nique, there are some selection rules that it cannot respect. Examples include “select a

number (between 0 and the cardinality of the subset) of variables in a subset of candidate

variables”, and “if a number of variables in a subset of candidate variables is selected, then se-

lect a number of variables in a (possibly distinct) subset of candidate variables”. Given these

limitations of the latent overlapping group lasso, future work could focus on the development

of more general regularization methods that can respect an arbitrary selection rule. Another

limitation of the application of the latent overlapping group lasso is that post-selection infer-

ence has not yet been developed for this method, so that post-selection confidence intervals

are not currently available. Furthermore, the latent overlapping group lasso is also not able
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to accommodate time-dependent covariates when the outcome is time-to-event. Future work

involves applying the latent overlapping group lasso technique to the time-dependent Cox

model.

In our development of an interpretable predictive model for major bleeding, we considered

medication adherence, the interaction of adherence and DOAC, the dose of DOACs, and the

interaction between the dose of DOACs and adherence. In addition, we also incorporated

selection dependencies arising from the selection of drug-drug interactions. For all inter-

actions, we applied strong heredity, resulting in a complex set of selection rules that our

method was able to respect. In contrast, the selected models resulting from standard lasso

and adaptive lasso violated selection rules, and thus lacked interpretability.

Interpretable prediction modeling can guide clinicians in identifying patients at risk of an

outcome by highlighting which factors are predictive of the outcome of interest and their

importance in prediction. However, when the unique goal of modeling is the determination

of patient risk, black box methods (i.e. those not restricted to a semiparametric model to

the extent that the fitted model cannot be interpreted by the ultimate user) may be more

powerful. They may thus be preferred as a decision-making aid. However, much clinical

practice remains unassisted by such algorithms and thus interpretable modeling continues

to provide important contributions to medical knowledge.

Supplementary materials

Supplementary materials 1 contains some technical details of the method and numerical

results from the analysis.

Supplementary materials 2 is the variable definitions of variables considered in the analy-

sis.

Codes for deriving the selection dictionary, and analysis, and the resulting selection dictio-
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nary are seen in the Github https://github.com/Guanbo-W/SelectionDictionary.
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Chapter 5

Structured variable selection in Cox

model with time-dependent covariates

This chapter is not a stand-alone manuscript, much of the literature review can be found in

Chapter 2. The overlapping group Lasso was developed and applied mainly in the context

of engineering and machine learning, where the outcome is often continuous or binary. In

medical research, one common outcome of interest is time-to-event. Therefore, to broaden

the use of the overlapping group Lasso, in this chapter, we extend it to accommodate data

consisting of survival outcomes and time-dependent covariates. We present the algorithm of

the overlapping group Lasso in the context of survival data in a straightforward way, which

avoids knowledge of graph models. In the simulation study, we design complex covariate

structures and show how to use the group variables based on Theorem 5 in Chapter 3.

Various metrics of the performance of the estimator are assessed, and compared to the

standard Lasso penalization in time-dependent Cox.

Note that the supplementary material for this chapter can be found in Appendix

C.

87



5.1 Methods

In this section, we present the specific statistical objective and demonstrate how to solve the

problem by leveraging the algorithm developed by Mairal et al. (2010) while incorporating

backtracking line search, and connect the problem to the framework developed in Chapter

3.

5.1.1 The objective function

We reviewed the overlapping group Lasso and the time-dependent Cox model in Sections

2.2.8, and 2.3.3, respectively. To accommodate the time-dependent Cox model into the

overlapping group Lasso, we essentially need to solve the following problem

min
β

f(β) + λΩ(β), (5.1)

where

f(β) = − 1

n
log{L(β)} = −

m∑︂
j=1

⎛⎝⎧⎨⎩∑︂
l∈Dj

X l(tj)

⎫⎬⎭β − dj log

⎡⎣∑︂
l∈Rj

exp{X l(tj)β}

⎤⎦⎞⎠
is the averaged negative log partial likelihood defined in (2.9), and Ω(β) =

∑︁
g∈G ωg

⃦⃦
β|g

⃦⃦
∞

is the weighted sum of L∞ norms of pre-defined groups of coefficients β|g,∀g ∈ G. While

f(β) is a convex differentiable function, Ω(β) is not differentiable on all of its support. Thus,

the optimization of the penalized likelihood requires the proximal method.

The main difference between our proposed method and the overlapping group Lasso is the

definition of f(β). Since we consider survival data, f(β) is not a square or logistic loss,

which results in the difference in estimating the model coefficients.
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5.1.2 Optimization

To solve the above optimization problem, we need to overcome two challenges: 1) a non-

differentiable penalty and 2) a penalty consisting of overlapping groups of coefficients. We

next give the details of how to leverage a proximal operator (and its duality), network

flow algorithms, and backtracking line search to solve the problem in our context. For

accessibility for a statistics readership, we sketch the network flow algorithm in a relatively

straightforward way avoiding knowledge of theorems in graph models.

The proximal method and its duality

The proximal method (Moreau, 1962) has been successfully applied in many research areas

including signal processing (Wright et al., 2009; Becker et al., 2011; Combettes and Pesquet,

2011) and machine learning (Bach, 2010). In order to conquer the computational problem

caused by the non-smooth component in the objective function, in each iteration, instead of

updating the estimate with respect to the gradient, it uses a proximal operator, so that the

updated estimates stay close to the gradient update for the differentiable function, while also

making the non-differentiable function small. (Beck and Teboulle, 2009; Nesterov, 2013a) It

is proven to converge at fairly fast rates. (Nesterov, 2007; Beck and Teboulle, 2009; Beck,

2017)

The proximal operator Prox is defined as

Proxt,λ,Ω(u) = argmin
v

1

2t
∥u− v∥22 + λΩ(v).

We then approach the optimization problem (5.1) by proximal gradient descent. In each

iteration of the following algorithm, let the updated value of β be β+ and the current value
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of β be β̃. Then using a Taylor expansion (Moreau, 1962), we have

β+ =argmin
β

f(β̃) + (β − β̃)∇f(β̃) + λΩ(β) +
1

2t

⃦⃦⃦
β − β̃

⃦⃦⃦2

2

=argmin
β

1

2t

⃦⃦⃦
β − {β̃ − t∇f(β̃)}

⃦⃦⃦2

2
+ λΩ(β)

=Proxt,λ,Ω
{︂
β̃ − t∇f(β̃)

}︂
,

(5.2)

where t is a step size parameter and the upper bound of 1
t
> 0 is the Lipschitz constant of

∇f(β).

In many cases, the proximal operator has closed form solutions, so it can be implemented

with ease. However, with an overlapping grouping structure where some coefficients are

included in different groups of penalties, the closed form solution does not exist (Jenatton

et al., 2011b). Alternatively, the proximal operator can be expressed as the residual of the

projection of a vector onto a ball of the dual-norm ∥·∥∗, where ∥κ∥∗ := max∥z∥⩽1z
Tκ. (Wright

et al., 2009; Jenatton et al., 2011b; Combettes and Pesquet, 2011) Closely following Jenatton

et al. (2011b), we next derive the dual of (5.2) in Lemma 1, and provide the conditions under

which the primary-dual variables are optimal. The proof and additional details on Lemma

1 are provided in the Appendix C.1.

Lemma 1. The right hand side of (5.2) can be expressed by a dual formulation

argmin
ξ∈Rp×|G|

1

2t

⎡⎣⃦⃦⃦⃦⃦{︂β̃ − t∇f(β̃)
}︂
−

∑︂
g∈G

ξ|g

⃦⃦⃦⃦
⃦
2

2

−
⃦⃦⃦
β̃ − t∇f(β̃)

⃦⃦⃦2

2

⎤⎦ s.t.∀g ∈ G,
⃦⃦
ξ|g

⃦⃦
∗ ⩽ λωg

(5.3)

with dual variable ξ, meaning that strong duality holds between (5.2) and (5.3). The pair of
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primal-dual variables {β, ξ} is optimal if and only if ξ satisfies the constraint in (5.3), and

β =
{︂
β̃ − t∇f(β̃)

}︂
−

∑︂
g∈G

ξ|g, ∀g ∈ G, (5.4)

ξ|g =
∏︂

∥·∥∗⩽λωg

(β|g + ξ|g) =
∏︂

∥·∥∗⩽λωg

⎛⎝[︄
β̃ − t∇f(β̃)−

∑︂
h ̸=g

ξ|h

]︄
|g

⎞⎠ , (5.5)

where
∏︁

∥·∥∗⩽λωg
denotes the orthogonal projection onto the ball {κ ∈ Rp; ∥κ∥∗ ⩽ λωg}.

While the Lemma makes it possible to solve the optimization problem, how to compute∑︁
g∈G ξ|g is not trivial. This is because of the overlapping structure among the β|gs, and thus

the ξ|gs. Next we show how the network flow algorithm can overcome this challenge.

Network flow algorithm

Different approaches have been proposed to solve the proximal operator when the groups are

in special structures. For instance, when all groups are nested (called a tree structure), the

dual can be computed by block coordinate ascent. (Bertsekas et al., 1999; Jenatton et al.,

2011b) However, the general case of overlapping groups is more challenging.

Mairal et al. (2010) tackled the problem by a network flow algorithm. The authors devel-

oped and evaluated the method based on graph models, and applied it to image processing

problems. However, the relevant technical development is rather involved and thus hinders

understanding for readers without sufficient background in computer science and operational

research. Though the target question can be well formulated by graph models, it does not

have to be in our scenario, and thus we present it in a way that circumvents understanding

of the complex theorems.

Briefly, based on Lemma 1, Mairal et al. (2010) showed that the target problem is dual to

a quadratic min-cost flow problem, which can be solved by the mini-cut theorem (Ford and

Fulkerson, 1956). For readers who enjoy technical details, additional relevant theorems can
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be found in (Goldberg and Tarjan, 1988; Cherkassky and Goldberg, 1997; Bertsekas, 1998;

Mairal et al., 2010).

Based on Lemma 1 and the network flow algorithm, we next provide the algorithm adapted

to our context, to solve (5.2) in Algorithm 3. Informally, the network flow algorithm obtains∑︁
g∈G ξ|g by applying the function computeFlow, which is based on the following steps:

1. Projection step: find the projection of the vectors ξ|g, γ = (γ1, . . . ). It is done by

solving a relaxed version of (5.3), which finds the value of γ which is the lower bound

of 1
2t

⃦⃦⃦{︂
β̃ − t∇f(β̃)

}︂
− γ

⃦⃦⃦2

2
, and

∑︁
j γj ⩽ λ

∑︁
|g∈G ω|g.

2. Updating step: update (
∑︁

g∈G ξj|g)xj∈V by maximizing
∑︁

xj∈V

∑︁
g∈G ξj|g, while keeping∑︁

xj∈g ξ
j
|g ⩽ λωg. By doing so, we can ensure that the constraint in (5.3) holds. This

can be done by the max flow algorithm. Details of the implementation can be found

in Appendix C.2.

3. Recursion step/divide and conquer: According to the mini-cut theorems (Ford and

Fulkerson, 1956), define V∗ = {xj ∈ V :
∑︁

g∈G ξj|g = γj}, and G∗ = {g ∈ G :
∑︁

xj∈g ξ
j
|g <

λωg}. Then apply steps 1 and 2 to (V∗,G∗) and their respective complements until

(
∑︁

g∈G ξj|g)xj∈V (obtained from step 2) matches γ (obtained from step 1).

The algorithm is equivalent to the network flow algorithm, but with a different presenta-

tion. Therefore, the algorithm enjoys the fast convergence property as well. However, the

presentation of the algorithm 1) connects to the general framework for structured variable

selection, and is consistent with the research problem in our context, 2) offers the possibility

of using backtracking line search and 3) is helpful to understand the skeleton as well as the

essence of the network flow algorithm.
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Algorithm 3 Solving (5.2) using quadratic min-cox flow
Inputs: The estimate in the kth step βk ∈ Rp, step size t, set of variables V and groups G,
group weights ωg, regularization parameter λ

Set ξ = 0

Compute
∑︁

g∈G ξ|g ← computeFlow(V,G)

return βk − t∇f(βk)−
∑︁

g∈G ξ|g

Function computeFlow(V,G)
Projection step: γ ← argminγ

∑︁
j:xj∈V

1
2t
(βk

j − t∇f(βk
j )− γj)

2 s.t.
∑︁

j:xj∈V γj ⩽ λ
∑︁

g∈G ωg

Updating step: update (
∑︁

g∈G ξj|g)xj∈V ← argmax(
∑︁

g∈G ξj|g)xj∈V

∑︁
xj∈V

∑︁
g∈G ξj|g

s.t.
∑︁

xj∈g ξ
j
|g ⩽ λωg

Recursion step:
if ∃xj ∈ V s.t. ,

∑︁
g∈G ξj|g ̸= γj then

Denote V∗ = {xj ∈ V :
∑︁

g∈G ξj|g = γj}, and G∗ = {g ∈ G :
∑︁

xj∈g ξ
j
|g < λωg}

(
∑︁

g∈G ξj|g)xj∈V∗ ← computeFlow(V∗,G∗)

(
∑︁

g∈G ξj|g)xj∈V\V∗ ← computeFlow(V \ V∗,G \ G∗)

end
return (

∑︁
xj∈g ξ

j
|g)xj∈V

The bold Greek letters denote vectors of length p, and ones with subscript j (or superscript for ξ|g) denotes
the value of the vector in the correspond indexed position.

Backtracking line search

Having the algorithm to solve the dual of the proximal operator, we can thus use proximal

gradient descent with backtracking line search (Bertsekas, 1997) to solve (5.1). Backtracking

line search is a technique in optimization that can determine the step size properly. It starts

with a pre-defined step size for updating along the search direction, and shrinks the step size

(i.e., “backtracking”) iteratively until a decrease of the loss function fairly corresponds to the

expected decrease, based on the local gradient of the loss function. Moreover, it speeds up
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the convergence.

Different from the work by Mairal et al. (2010) and Jenatton et al. (2011b), the proximal

operator defined in (5.2) includes the step size t, which makes it possible for us to incorporate

backtracking line search. The proposed algorithm is shown in Algorithm 4.

Algorithm 4 Solving (5.1) using proximal gradient descent with backtracking line search
Inputs: covariate xi(t)(i = 1, . . . , n), survival time Ti, censored indicator δi, set of variables
V and groups G, group weights ωg, regularization parameter λ, convergence threshold r,
shrinkage rate α < 1, step size t

Set β0 = 0, k = 0

repeat
β+ ← Proxt,λ,Ω

(︁
βk − t∇f(βk)

)︁
▷ call Algorithm 3

if f(β+) ⩽ f(βk) +∇f(βk)⊺(β+ − βk) + 1
2t

⃦⃦
β+ − βk

⃦⃦2

2

then
k = k + 1;

βk+1 ← β+

exit;
else

t← αt

end
until

⃦⃦
βk − βk−1

⃦⃦
1
< r;

return β̂ ← βk+1

5.2 Simulation

Our first goal in this simulation is to apply the framework in Chapter 3 to derive the desired

selection dictionary and grouping structure to incorporate the needed selection rules with

a relatively complex data structure. Another goal of the simulation study is to empirically

evaluate our method’s properties. This is done by comparing our penalty with the included

grouping structure to the unstructured L1 penalty when implemented in a Cox model with

time-dependent covariates. In this simulation, we generate data which contain three main
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terms (two of them are categorical variables) and two interactions (also of categorical vari-

ables).

5.2.1 Simulation design

Covariate

We generate 3 independent variables (potential predictors) A,B and C, where the values of

each variable for each subject randomly change over time in a piece-wise constant fashion.

We include 50 time points at which the values of any variable can potentially change, but

we hold the value of a variable constant for at least 5 and at most 10 time points. A and

C are three-level categorical variables, represented by two dummy variables denoted by A1

and A2, and C1 and C2, respectively. B is a continuous variable.

See below the algorithm for generating A and C. B was generated in a similar fashion

except that in Step 1, we generated a series of numbers following a standard normal distri-

bution.

Algorithm 5 Steps for generating each time-dependent categorical variable
For each subject i:

Step 1: with replacement, sample 10 integers from 1, 2, 3 with equal probability to
represent the three categories of the variables.

Step 2: for each sampled value, repeat the value Ri times, where Ri is sampled from
5, 6, . . . , 10 with equal probabilities. Then, concatenate these repeated values all together,
resulting in a single vector with length between 50 and 100.

Step 3: take the first 50 elements as the values of the categorical variable.

Outcome

We generated the time-to-event outcome by a permutation algorithm developed by Sylvestre

and Abrahamowicz (2008) using the R function PermAlgo (Sylvestre et al., 2010). The

generated event times are dependent on time-dependent potential predictors according to
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the proportional hazards model

h(t|X) = h0(t)exp{β⊺x(t)},

where h(t|X) and h0(t) are the hazard and baseline hazard at time t, x(t) is the vector of

predictor values at time t, X = {x(t), t = 1, . . . .50}, and β is the vector of log hazard ratios

of the predictors. The outcome had around 50% random censoring. The median event time

was at around time 25 among those not censored.

The (potential) predictors in the Cox model were A, B, C, and two interactions 1) AB: the

interaction of A and B, and 2) BC: the interaction of B and C. Recall that all covariates ex-

cept B are three-level categorical variables. We thus have x(t) = (A1, A2, B,A1B,A1B,C1 ,

C2 , C1B , C2B), and β is a vector of length 9.

We generated two scenarios regarding the β:

1. β =(log(3), log(3), 0, 0, 0, 0, 0, 0, 0). That is, only A1 and A2 are predictive of the

outcome, which corresponds to a sparse covariate structure.

2. β =(log(3), log(3), log(4), log(3), log(3), 0, 0, 0, 0). That is, there are five true

predictors (A1, A2, B,A1B,A2B) and four noise variables, which corresponds to a less

sparse covariate structure.

Selection rules and grouping structure

In our method, we incorporated the selection rules:

1. The dummy variables representing a categorical variable should be selected collectively.

2. If an interaction is selected, the main terms must be selected, and

To respect the selection rules, we followed Chapter 3 and derived the selection dictionary

using R by following Table 3.2 in Chapter 3. Our resulting selection dictionary is: {∅ , {B} ,

96



{C1, C2} , {B,C1, C2} , {B,C1, C2, C1B,C2B} , {A1, A2} , {A1B,A2B,B} , {A1, A2, C1 ,

C2} , {A1, A2, A1B,A2B,B} , {A1, A2, B, C1, C2} , {A1, A2, B, C1, C2, A1B,A2B} , {A1, A2, B ,

C1, C2, C1B,C2B} , {A1, A2 , B,A1B,A2B,C1, C2, C1B,C2B}}. The R code is available at

the GitHub repository linked below. In Appendix C.3, we show how to use the selection

dictionary to determine the grouping structure. The result is given below.

g1 = {A1, A2, A1B,A2B}, g2 = {B,A1B,A2B,C1B,C2B},

g3 = {A1B,A2B}, g4 = {C1, C2, C1B,C2B}, g5 = {C1B,C2B}.

One can verify the correctness of the derived selection dictionary using Theorem 5 in Chapter

3.

Sample size

We included four settings, with sample sizes N=100, 500, 1000, and 2000 respectively.

Comparison

The R package glmnet (Friedman et al., 2010a; Simon et al., 2011) can perform “Lasso” (by

penalizing by the L1 norm of coefficients) in Cox models with time-dependent covariates. We

thus compared this method with ours. That is, we compared our method with unstructured

variable selection. We also compared two methods to select the tuning parameter: the

“one-standard-error-rule” (1se) and the “select the tuning parameter which has the minimum

averaged cross-validated error” (min). We denote our method used with 1se and min by

OLG.1se and OLG.min respectively, and Lasso used with 1se and min by L.1se and L.min

respectively.
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Performance statistics

We used the following measures to compare the performance of the two methods. Each

measure is calculated for each individual simulated dataset, then averaged to obtain the

performance statistics.

1. Joint Detection Rate (JDR): binary, JDR=1 if all the selected variables are true pre-

dictors (but also possibly selected some other noise variables), 0 otherwise.

2. Missing Rate (MR): the percentage of variables not selected among the true predictors.

3. False Alarm Rate (FAR): the percentage of selected variables among the noise variables.

4. Consistency of Categorical Variable Selection (CCVS): indicator of whether the result-

ing selected model satisfied selection rule 1.

5. Consistency of Strong Hierarchy (CSH): indicator of whether the resulting selected

model satisfied selection rule 2.

6. Refitted C Index (RCI): The C index of the model with the selected variables.

7. Mean Squared Errors (MSE): mean squared difference between the coefficients in the

data generating mechanism and the estimates resulting from implementing the method.

8. Averaged cross-validated errors (CV-E): cross-validated error.

The CV-E is defined as follows. Suppose we perform K-fold cross-validation, denote β̂
−k

by

the estimate obtained from the rest of K-1 folds (training set). The error of the k-th fold

(test set) is defined as 2(P-Q)/R, where P is the log partial likelihood evaluated at β̂
−k

using

the entire dataset, Q is the log partial likelihood evaluated at β̂
−k

using the training set, and

R is the number of events in the test set. We do not use the negative log partial likelihood

evaluated at β̂
−k

using the test set because the former definition can efficiently use the risk

set, and thus it is more stable when the number of events in each test set is small (think of

leave-one-out). The CV-E is used in parameter tuning. To account for balance in outcomes
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among the randomly formed test set, we divide the deviance 2(P-Q) by R.

Each statistic in Table 5.1 represents the mean of the above measurements among 100

runs.

Implementation Details

The simulation was performed in R version 4.0.5 (R Core Team, 2021) and the code is

available at https://github.com/Guanbo-W/StructuralTDCox. The code calls the R func-

tions spams.proximalGraph (for C++ SPAMS code et al., 2017) and coxph (Therneau,

2021).

All simulations used 10-fold cross-validation. The weight ωg for each group in the penaliza-

tion term was set equal to one. In the cross-validation, we needed to specify the range of

the tuning parameter λ. In scenario 1, λ values ranged from 0.0001 to 0.2, and in scenario

2 from 0.0001 to 0.5. The λ sequences increase on a log scale. In the implementation of our

algorithm in the simulation, the step size and step size shrinkage rate were set to 1 and 0.8,

respectively. The convergence criterion (the sum of absolute difference between the estimates

from the two steps) was 10−5. Each simulation had 100 runs (double the number used in

Tibshirani 1997).

5.2.2 Simulation Results

The results are given in Table 5.1. Our method’s CCVS and CSH were always 1, which

means the results from our method always respected the given selection rules. This was

not true when using the unstructured L1 penalty. L.min failed to respect the categorical

selection rule 20%-40% of the time, while it broke the strong heredity rule 80% of the time

in some settings; this did not improve with increased sample size. Though the performance

of L.1se was better, and though it may respect rules with a very large sample size when

the rules are satisfied in the true model, it cannot guarantee it in finite samples. Note that
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Scenario 1 (A̸=0) 2 (A, B, AB ̸=0)
Method OLG.1se OLG.min L.1se L.min OLG.1se OLG.min L.1se L.min

N=100
JDR 0.18 0.98 0.00 0.66 0.90 1.00 0.02 0.44
MR 0.82 0.02 0.85 0.26 0.08 0.00 0.41 0.16
FAR 0.02 0.65 0.03 0.40 0.04 0.53 0.06 0.49
CCVS 1.00 1.00 0.88 0.70 1.00 1.00 0.84 0.72
CSH 1.00 1.00 0.75 0.38 1.00 1.00 0.39 0.35
RCI 0.53 0.67 0.54 0.64 0.91 0.92 0.91 0.92
MSE 0.24 0.06 0.27 0.14 0.27 0.10 0.41 0.30
CV-E 6.87 6.74 6.68 6.59 4.70 4.36 4.74 4.33

N=500
JDR 0.88 1.00 0.50 1.00 1.00 1.00 0.08 0.98
MR 0.12 0.00 0.32 0.00 0.00 0.00 0.36 0.04
FAR 0.02 0.70 0.01 0.54 0.00 0.15 0.05 0.59
CCVS 1.00 1.00 0.90 0.57 1.00 1.00 0.94 0.78
CSH 1.00 1.00 0.79 0.22 1.00 1.00 0.45 0.62
RCI 0.60 0.63 0.58 0.63 0.91 0.91 0.91 0.91
MSE 0.14 0.02 0.22 0.03 0.14 0.04 0.31 0.07
CV-E 6.79 6.70 6.81 6.68 4.38 4.26 4.40 4.26

N=1000
JDR 1.00. 1.00. 0.94 1.00 1.00 1.00 0.20 0.98
MR 0.00 0.00 0.04 0.00 0.00 0.00 0.20 0.02
FAR 0.02 0.73 0.02 0.58 0.00 0.08 0.04 0.66
CCVS 1.00 1.00 0.97 0.70 1.00 1.00 0.90 0.82
CSH 1.00 1.00 0.94 0.31 1.00 1.00 0.53 0.65
RCI 0.61 0.62 0.60 0.62 0.91 0.91 0.91 0.91
MSE 0.10 0.01 0.15 0.02 0.12 0.02 0.29 0.08
CV-E 6.76 6.68 6.76 6.67 4.33 4.25 4.36 4.24

N=2000
JDR 1.00 1.00 1.00 1.00 1.00 1.00 0.74. 1.00
MR 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00
FAR 0.00 0.06 0.00 0.54 0.00 0.00 0.04 0.57
CCVS 1.00 1.00 1.00 0.60 1.00 1.00 0.93 0.76
CSH 1.00 1.00 0.99 0.20 1.00 1.00 0.79 0.57
RCI 0.61 0.61 0.61 0.61 0.91 0.91 0.91 0.91
MSE 0.06 0.00 0.10 0.01 0.12 0.05 0.23 0.01
CV-E 6.71 6.66 6.72 6.66 4.30. 4.23 4.31. 4.23

L: non-structured L1 penalty (glmnet with cox); OLG: our method; 1se: applying
“one-standard-error-rule”; min: selecting the model with the least CV-E.

Table 5.1: Simulation results
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in scenario 2 (where the true data generating mechanism involved the coefficients of one

interaction and its main terms all being non-zero), the unstructured L1 penalty had a higher

chance of breaking the rules as compared to scenario 1.

If applying the min rule, which selects the model that has the lowest CV-E, the JDR and

MR in both methods can achieve 1 and 0 respectively relatively fast with increasing sample

sizes, though ours was faster. However, if applying the 1se rule, while the JDR and MR of

our method converged to 1 and 0 respectively relatively fast, this was not the case under the

unstructured L1 penalty. This means that by using our method, we have a higher chance

of successfully selecting the variables that should be selected (even with a relatively small

sample size).

For both methods, the FAR deviated from 0 when not using the 1se rule, meaning that the

methods selected many variables whose coefficients are actually zero in the data generating

mechanism. This is because the CV-E can be regarded as the “prediction accuracy”. Our

setting is not a high-dimensional setting, so if the goal is to recover the sparsity pattern,

one should avoid selecting the model that has the lowest CV-E (though the FAR of our

method converged to 0 relatively fast with the increasing sample size). If applying the 1se

rule, we observed that in the less sparse setting (scenario 2), our method had a lower chance

of selecting the variables that should not be selected.

The simulation results also showed that our method can achieve better estimation, because

the MSE of our method was smaller than its counterpart, and in some cases substantially

smaller. We can also see that our method converged faster.

The cross-validated errors and prediction accuracies (of the refitted models) of both methods

were similar across all the settings. Overall, the simulation verified that when the considered

covariates had structures corresponding to structures in the true data generating model,

incorporating selection rules in variable selection can better recover the sparsity pattern and

results in a better estimation. We also recommend applying the 1se rule, especially when
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the goal is to recover the sparsity pattern.

5.3 Discussion

In the work presented in this chapter, we developed methods for structural learning in Cox

models with time-dependent covariates, which broadens the scope of structural learning. The

relevant optimization technique borrows from the work by Mairal et al. (2010), but with a

different presentation, we connected the algorithm to the framework proposed in Chapter

3 and the target research question. In addition, backtracking line search was applied to

the proposed method, which improves the algorithm’s efficiency. The results demonstrated

the benefits of employing our method over a non-structural learning approach when the

structure is informative of the true model. Though no theoretical properties of overlapping

group Lasso have been established yet for the Cox model, our simulation results may shed

light on the future theoretical development of the proposed method.

While our method deals with selecting variables when the outcomes are time-to-event and

covariates are time-varying, there are several evident avenues for future work. For instance,

one could relax the assumption that the hazard is dependent on the current value of the

covariates, assume event times follow a parametric distribution by using accelerated failure

time models (Kalbfleisch and Prentice, 2011), generalize to different penalty types (for ex-

ample, minimax concave penalty, Zhang 2010, or smoothly clipped absolute deviation, Fan

and Li 2001), and/or investigate the impact of applying different weighting schemes.

The sequence of values considered for the penalization parameter λ in overlapping group

Lasso needs to be set properly according to the specific question. A method to find the

maximum value such that all coefficients reach 0 would be desired for automation. However,

due to the complexity of the penalty, it needs more theoretical work.

More simulation can be done in the future to test 1) if the percentage of censoring plays
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a role in the performance of the methods, and 2) if the method can handle the non-linear

transformation of variables.

As a counterpart of overlapping group Lasso, Jacob et al. (2009) developed latent overlapping

group Lasso, which approaches structural learning in another way by setting latent variables

for a candidate variable, and then penalizing groups of latent variable coefficients. It would be

interesting to extend the technique to accommodate time-dependent covariates, and compare

to ours.
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Chapter 6

Conclusion

6.1 Summary

This thesis focused on improving the interpretability and prediction accuracy of models

resulting from variable selection. One solution is to incorporate covariate structures into

variable selection. Towards this end, this thesis answered the following questions: 1) how

to define the structures in variable selection, 2) how should existing methods incorporate

the structures, 3) can the existing methods be used for survival data with time-dependent

covariates, and 4) are there any new techniques that can incorporate a wider range of struc-

tures.

In Chapter 3, I established a theoretical framework for variable selection to formally formu-

late selection rules, selection dictionaries and their relationship to each other. The newly

proposed concepts unify how researchers can approach variable selection problems, and en-

courage practitioners to incorporate their a priori knowledge in the analysis. The complete-

ness of the framework enables practitioners to integrate any arbitrary covariate structures in

variable selection. Next, I connected the framework to existing penalized regression meth-

ods, and provided theorems that can verify if a postulated grouping structure used with the
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(latent) overlapping group Lasso can respect a given selection rule. The theorems inspired

the construction of roadmaps for grouping structure identification in Chapters 4, which pro-

vide guidance on how to practically use the (latent) overlapping group Lasso to incorporate

covariate structures. However, the existing methods cannot respect all selection rules. To

overcome this issue, I showed that the task of incorporating selection rules can be formulated

as optimization problems, which can be solved by MIO solvers. This enlarges the scope of

covariate structures that can be incorporated into variable selection.

In Chapter 4, I showed how to use the framework and the latent overlapping group Lasso

to identify predictors of major bleeding among hospitalized hypertensive patients using oral

anticoagulants for atrial fibrillation. In this application, complex covariate structures arose

from the relationships among the drugs of interest, the related dose and adherence to regular

usage, and the drug-drug interactions, and these were integrated into the selection strate-

gies. The selected model had a higher cross-validated risk than the model selected without

the selection rules, but retained its interpretability. The results of this application will be

informative for clinicians in terms of identifying which factors are more predictive of major

bleeding, allowing them to identify patients at higher risk and potentially offer a more inten-

sive or alternative follow-up. In addition, based on the theorems developed in Chapter 3, I

produced roadmaps for grouping structure identification for respecting the types of selection

rules used in the application, which serve as a practical guide for using latent overlapping

group Lasso to incorporate covariate structures.

In Chapter 5, I focused on the overlapping group Lasso, and extended it to the time-

dependent Cox model. Though the algorithm for overlapping group Lasso is fully devel-

oped, it is challenging to understand for researchers who lack the background in operational

research and machine learning. To break the knowledge barrier, I presented the algorithm

in an accessible form in the context of survival data. Furthermore, a simulation study was

conducted to show how to practically incorporate covariate structure by using the framework
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developed in 3 and the overlapping group Lasso, and the superior performance as measured

by various statistics compared to the Lasso penalty (applied in the time-dependent Cox

model).

6.2 Future work

To facilitate the practice of incorporating covariate structures using existing methods, I have

begun developing software, including an R Shiny app, to enable the automated identification

of selection dictionaries and grouping structures.

We formulated rule-based variable selection optimization problems in Chapter 3, but the

theoretical properties of the associated estimators remain unknown. It is of interest to

investigate those optimization problems from a theoretical and empirical perspective. This

work may lead to a new paradigm of structured variable selection methods.

I have made much progress on an R package that can perform the structured variable selection

in time-dependent Cox models from Chapter 5. Combined with the software for grouping

structure identification, one would then be able to incorporate a wide range of selection rules

in an application with a time-to-event outcome and time-varying covariates.

6.3 Concluding remarks

Predictive models that focus merely on prediction accuracy may lack interpretability. There-

fore, users may be reluctant to use them. Increasing the interpretability of predictive model

can boost confidence in their usage, and also provide mechanistic insight. We have con-

tributed to the body of research that develops penalized regression methods with the goal of

developing interpretable predictive models. Despite a large body of literature on the topic,

none of the existing methods solves the problem in full generality. We therefore unified the

structured variable selection problem by proposing a general framework that can integrate
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universal selection rules. The framework does not only facilitate the use of existing methods,

but also makes it possible to develop new classes of optimization problems with the goal of

being able to respect any arbitrary selection rule.
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APPENDIX A

Appendix to Manuscript 1

A.1 Proof of Theorem 1

Proof. Suppose Dr,1 and Dr,2 respect the same selection rule r. Denote a subset of V by d.

If d ∈ Dr,1, then d ∈ Dr,2 by Definition 3. Without loss of generality, now suppose d /∈ Dr,1,

then by Definition 3, d does not respect r, so d /∈ Dr,2. Therefore, Dr,1 = Dr,2. Therefore,

there is a unique dictionary for a given selection rule.

A.2 Proof of Theorem 2

Proof. When |F| < max(C) then uC(F) is incoherent and the resulting unit dictionary is

defined as the ∅.

When uC(F) is a coherent unit rule, suppose d ∈ P(V) respects uC(F). Let a = d∩F ⊆ F such

that |a| ∈ C. Let b = d ∩ (V \ F). Then d = a ∪ b ∈ {a ∪ b, ∀a ⊆ F s.t. |a| ∈ C,∀b ⊆ V \ F}.

Now suppose d ∈ P(V) does not respect uC(F). Then d ∩ F does not respect uC(F). Neces-

sarily, it means that |d ∩ F| /∈ C. Therefore d ∩ F /∈ {a ∪ b,∀a ⊆ F s.t. |a| ∈ C,∀b ⊆ V \ F},

which implies d /∈ {a ∪ b,∀a ⊆ F s.t. |a| ∈ C,∀b ⊆ V \ F}.
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Now we prove that when uC(F) is a coherent unit rule, the related unit function is a bijection.

We prove by contradiction. Suppose there exists two non-empty sets F1 ̸= F2, necessarily

respecting |F1| ⩾ max(C), |F2| ⩾ max(C), such that fC(F1) = fC(F2). Denote M = {a ∪ b :

∀a ⊆ F1 s.t. |a| ∈ C,∀b ⊆ V \ F1}, and N = {a ∪ b : ∀a ⊆ F2 s.t. |a| ∈ C,∀b ⊆ V \ F2}. So

that ∀m ∈ M, m satisfies |m ∩ F1| ∈ C, and ∀n ∈ N, n satisfies |n ∩ F2| ∈ C. By the previous

result, if fC(F1) = fC(F2), then M = N. If F1 ̸= F2, then there exists some non-empty x

such that x ⊆ F1 and x ⊈ F2. Suppose that |x| ⩾ min(C). Then ∃y such that y ⊆ x and

|y| = min(C). Such y is necessarily an element of M. Because M = N, y is necessarily an

element of N. According to the definition of N, y = a1 ∪ b1 where a1 satisfies a1 ⊆ F2 such

that |a1| ∈ C, and b1 ⊆ V \ F2. So necessarily, |a1| = min(C) and b1 = ∅. This contradicts

y ⊈ F2, because y = a1 ⊆ F2.

Now suppose that |x| < min(C). Because the rule is coherent, there exists m such that

x ⊂ m ⊆ F1 and |m| = min(C). So m ∈ M = N. Because m ∈ N, we have m = a2 ∪ b2, and

necessarily |a2| = min(C), so b2 = ∅ and m = a2 ⊆ F2. Therefore, x ⊆ F2, which contradicts

x ⊈ F2.

A.3 Proof of corollary 4

Proof. Without loss of generality, suppose uC1(F) is a coherent unit rule, and ∃c1 ∈ C1 such

that c1 /∈ C2. By Theorem 2, ∃d ∈ fC1(F) such that |m ∩ F| = c1. Then by Theorem 2,

because c1 /∈ C2, d /∈ fC2(F).

A.4 Proof of corollary 5

Proof. By Corollary 2, the property holds when F = V. Now suppose F ⊂ V. By Theorem

2, fC(F) = {a ∪ b,∀a ⊆ F,∀b ⊆ V \ F} when |F| ⩾ max(C), which is P(V). Thus, fC(F) =
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P(V),∀F ⊆ V.

A.5 Proof of mapping rules on dictionaries

Proof. For each operation on rules r1 and r2 with respective dictionaries Dr1 and Dr2 in Table

3.2, we prove that the rule Or(r1, r2) is congruent to the operation on dictionaries in the

third column.

1. Or(r1) = ¬r1: suppose there is a set d ∈ P(V) such that it does not respect r1. Then

by Definition 5, d ∈ P(V) \ Dr1 . Now suppose d is a set that does respect r1. Then

d ∈ Dr1 , and thus d /∈ P(V) \ Dr1 . So, the dictionary congruent to ¬r1 is P(V) \ Dr1 .

2. Or(r1, r2) = r1 ∧ r2: suppose there is a set d ∈ P(V) such that it respects r1 and r2.

Then by Definition 5, d ∈ Dr1 ∩ Dr2 . Without loss of generality, now suppose d is a

set that does not respect r1, then d ∈ P(V) \ Dr1 , and thus d /∈ Dr1 ∩ Dr2 . Thus, the

dictionary congruent to r1 ∧ r2 is Dr1 ∩ Dr2 .

3. Or(r1, r2) = r1 ∨ r2: suppose there is a set d ∈ P(V) such that it respects r1 and/or r2.

Then by Definition 5, d ∈ Dr1 ∪Dr2 . Now suppose d is a set that respects neither r1 nor

r2, then d ∈
(︁
P(V) \ Dr1

)︁
∩
(︁
P(V) \ Dr2

)︁
, and thus d /∈ Dr1 ∪ Dr2 . Thus, the dictionary

congruent to r1 ∨ r2 is Dr1 ∪ Dr2 .

4. Or(r1, r2) = r1 → r2: an arbitrary set d ∈ P(V) falls into one of four categories, 1) d

respects both r1 and r2, 2) d respects neither r1 nor r2, 3) d respects only r2 but not r1,

and 4) d respects only r1 but not r2. A set d in the first three categories respects r1 → r2.

We first show that sets d in the first three categories belong to (P(V)\Dr1)∪(Dr1∩Dr2),

and a set d in category 4) does not.

(a) If d is in category 1), then d ∈ Dr1∩Dr2 , which belongs to
(︁
P(V)\Dr1

)︁
∪(Dr1∩Dr2).

(b) If d is in category 2), then d ∈
(︁
P(V) \ Dr1

)︁
∩
(︁
P(V) \ Dr2

)︁
, which belongs to(︁

P(V) \ Dr1

)︁
∪ (Dr1 ∩ Dr2).
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(c) If d is in category 3), then d ∈
(︁
P(V) \Dr1

)︁
∩Dr2 , which belongs to

(︁
P(V) \Dr1

)︁
∪

(Dr1 ∩ Dr2).

(d) If d is in category 4), then d ∈ Dr1 ∩
(︁
P(V) \ Dr2

)︁
, which does not belong to(︁

P(V) \ Dr1

)︁
∪ (Dr1 ∩ Dr2).

This completes the proof.

5. This operation contains two selection steps. We have to know the result of the first

selection step, m ∈ Dr1 , to obtain the resulting selection dictionary. To understand

the general proof, we consider the example illustrated in the main text. Suppose

V = {A,B,C,D}. The first selection rule r1 is “select {0, 2} in {A,B} and select {0, 2}

in {C,D}”, and Dr1 =
{︁
∅, {A,B}, {C,D}, {A,B,C,D}

}︁
. The second rule r2 is “if A is

selected, then B must be selected, and if C is selected, then D must be selected”, so

Dr2 =
{︁
∅, {B}, {A,B}, {D}, {C,D}, {B,D}, {B,C,D}, {A,B,D}, {A,B,C,D}

}︁
.

The operation is r1 ⇒ r2. Suppose that the first step selects m = {A,B}. The resulting

dictionary that is congruent to r1 ⇒ r2 is denoted Am = {a : a ∈ Dr2 , a ⊆ m}, which is

a set of sets, where each set must be 1) an element in Dr2 and 2) be a subset of m. In

the example we get Am = {∅, {B}, {A,B}}.

Now we prove it formally. As before, let m be the result of a selection step respecting

r1 and Am is defined as above. Suppose d respects r1 ⇒ r2. Then d must respect Dr2 ,

and d must also be a subset of m because the second selection step follows the first one

that selected m. Now suppose d does not respect r1 ⇒ r2, then d must satisfy one of

the following conditions: 1) r1 is not being respected, regardless of whether r2 is being

respected, so d ∈ P(V) \ Dr1 . 2) r1 is being respected, but given the resulting set of

selected variables m, r2 is not being respected, then d ∈ {b : b ⊆ m,b /∈ Dr2}. Any d

satisfying the above conditions does not belong to Am, which completes the proof.
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A.6 Proof of Theorem 3

Proof. The theorem is equivalent to saying that for a given rule r on V, the related dictionary

D can be obtained by unions and/or intersections of unit dictionaries.

Suppose that the selection dictionary has cardinality 0. Then it is equal to a unit dictionary

of an incoherent unit rule.

Now suppose that the selection dictionary is a set with cardinality 1. Let Dr = {F}, for

some F ⊆ V. Let Du1 and Du2 be dictionaries corresponding to unit rules u1 = u{|F|}(F) and

u2 = u{0}(V \ F), respectively. Then Dr can be expressed as Du1 ∩ Du2 . Thus, r = u1 ∧ u2.

We have demonstrated that we can construct a selection dictionary with a single element

using unit dictionaries. Selection dictionaries containing more than one element can be

constructed by taking the unions of selection dictionaries with single elements.

A.7 Proof of Theorem 4

Proof. The variables being selected by latent overlapping group Lasso (LOGL) is the union

of groups of variables whose latent coefficients are estimated as non-zero. (Obozinski et al.,

2011a) Mathematically, let supp(V̂) be the variables being selected by LOGL, and let Q ⊆ G

be the set of groups g with the estimate of latent coefficients α̂|g such that α̂|g ̸= 0. Then

supp(V̂) = ∪g∈Qg. Note that Q is an element of the power set of G.

For a given V with grouping structure G := {gi, i = 1, . . . , I}, by definition of grouping

structure ∪Ii=1gi = V. Depending on the estimation, there are 2I possible combinations of

groups with non-zero latent coefficients α̂|g. That is, there are 2I possible Qs. List these as

Qj, j = 1, ..., 2I . Given Qj, the variables that are selected into the model by LOGL are the

covariates in [any of the groups in] Qj. We can represent these covariates by dj = ∪g∈Qj
g.

By definition, each dj, j = 1, ..., 2I is an element of the dictionary, i.e. one possible set of

covariates that can be selected. So the congruent dictionary under this penalization structure
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(M,G) is DM
G = {dj, j = 1, ..., 2I}. So any selection rule with congruent dictionary equal to

DM
G is congruent to the penalization structure (M,G). Every step is necessary and sufficient

so this completes the proof.

A.8 Theorem for overlapping group Lasso

Theorem 5. For a given V, with overlapping group Lasso, the necessary condition of a

grouping structure G := {gi, i = 1, . . . , I} being congruent to a selection rule r is Dr \ V =

{(∪g∈Qj
g)c, j = 1, . . . , 2I}, where Qj, j = 1, ..., 2I are all unique subsets of G.
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B.1 Population-based cohort definition flowchart

Figure B.1: Population-based cohort definition flowchart.
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Penalty Specification
L2 f(x;λ) = λ ∥x∥2

MCP f(x;λ) =

{︄
λ|x| − x2

2γ
, if |x| ⩽ γλ

1
2
γλ2, if |x| > γλ

γ > 1

SCAD f(x;λ) =

⎧⎪⎨⎪⎩
λ|x|, if |x| ⩽ λ,
2γλ|x|−x2−λ2

2(γ−1)
, if λ < |x| < γλ,

λ2(γ+1)
2

, if |x| ⩾ γλ

γ > 2

Table B.1: Different specification of penalties. In MCP and SCAD, x should be replaced by
∥αgi∥2.

B.2 Different specification of penalties

B.3 More details of the roadmaps

There are more than one grouping structure that can respect a same selection rule used

with the latent overlapping group lasso. The roadmap provided in Table 4.2 shows the way

to identify the most efficient grouping structure in the sense that the grouping structure

contains the least number of groups among all eligible grouping structures.

Within the interaction selection application, when all the variables in A are the interactions

of the variables in B, selection rule 1 and 2 in Table 4.2 correspond to strong and weak

heredity respectively. (Haris et al., 2016a) When n = 1 and m = 2, the two selection rules

degrade to two-way interaction selection. In this simple case, the grouping structure identi-

fication was mentioned by (Yan et al., 2017).

Note that the roadmap works with conditions: all variables in A and B are continuous or

binary variables, and A ∩ B = ∅. When there are categorical variables in B, and thus A, one

should be more careful to specify the grouping structure in the sense that it is necessary to

group the dummy variables in B representing a categorical variable, but not the ones in A.

In addition, the grouping structure desires to be specified case by case when there are more

than one rules being applied in a set of variables. For example, if the selection rule is “if
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A is selected, the {B, C} must be selected” and “if D is selected, then {A,B,C} must be

selected”. Then the grouping structure should be
{︁
{B}, {C}, {A,B,C}, {A,B,C,D}

}︁
. {A}

should not be a single group because it cannot be selected alone.

B.4 Rationale of the modification of rule 3

The the latent overlapping group lasso cannot practically respect the selection rule 3: all the

10 variables must be selected. This is because, first, the latent overlapping group lasso re-

quires that all variables must belong to at least one group in the penalty term: all coefficients

of variables must be penalized at a certain level. That is, once a group is specified, the group

of variables are possibly not being selected theoretically. Second, since the weight ωg must

be positive, one may attempt to set the weight of the group to a fairly small number close

to 0, which is effectively the same as no penalization on those 10 variables. However, the

estimates of the latent overlapping group lasso are very sensitive to the weights specification.

A zero weight for a group would ruin the estimates, see details in (Obozinski et al., 2011a).

We set the rule 3 because from the literature we know that these variables must be predictive.

With this knowledge, the modified rule is effectively the same as the original selection rule,

because it would be impossible to select none of those variables from the application.

B.5 Grouping structure in the application

Define

g1={CHA2DS2-VASc Score},

g2={Heart Disease},

g3={Diabetes},

g4={COPD},

g5={Dyslipidemia},

118



g6={OAC type},

g7={OAC type, Dose},

g8={OAC type, Apixaban},

g9={OAC type, Dabigatran},

g10={Adherence},

g11={OAC type, Adherence, Interaction of OAC type and Adherence},

g12={OAC type, Adherence, Interaction of OAC type and Adherence, Dose, Interaction of

Dose and Adherence},

g13={OAC type, Interaction of OAC type and Antiplatelets},

g14={OAC type, Interaction of OAC type and NSAIDs},

g15={Antidepressants},

g16={OAC type, Antidepressants, Interaction of OAC type and Antidepressants},

g17={PPI},

g18={OAC type, PPI, Interaction of OAC type and PPI},

g19={Age, History of major bleeding, Stroke, Anemia, Sex, Renal diseases, Liver disease,

Malignancy, Antiplatelets, NSAIDs}.

The grouping structure is the G = {gi, i = 1, . . . , 19}

B.6 Demographic and characteristics of patients strati-

fied by DOAC dose and warfarin

DOAC

Variable name (non-reference/reference level) High dose Low dose warfarin

Mean (SD) Mean (SD) Mean (SD)

n=7022 (32%) n=5067 (24%) n=9243 (43%)

Baseline covariates

1. Age (⩾75/<75) 0.55 (0.50) 0.91 (0.29) 0.77 (0.42)

2. Sex (female/male) 0.50 (0.50) 0.66 (0.47) 0.59 (0.49)
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3. CHA2DS2-VASc Score (⩾3/<3) 0.79 (0.41) 0.95 (0.22) 0.91 (0.29)

Comorbidities within 3 years before cohort entry

4. Stroke (yes/no) 0.25 (0.66) 0.27 (0.69) 0.30 (0.72)

5. Anemia (yes/no) 0.06 (0.24) 0.09 (0.29) 0.13 (0.34)

6. Malignancy (yes/no) 0.27 (0.44) 0.26 (0.44) 0.26 (0.44)

7. Liver disease (yes/no) 0.02 (0.15) 0.02 (0.13) 0.02 (0.15)

8. History of major bleeding (yes/no) 0.28 (0.45) 0.36 (0.48) 0.37 (0.48)

9. Renal diseases (yes/no) 0.18 (0.38) 0.27 (0.45) 0.35 (0.48)

10. Heart disease (yes/no) 0.55 (0.50) 0.65 (0.48) 0.69 (0.46)

11. Diabetes (yes/no) 0.36 (0.48) 0.30 (0.46) 0.40 (0.49)

12. COPD/asthma (yes/no) 0.38 (0.49) 0.37 (0.48) 0.41 (0.49)

13. Dyslipidemia (yes/no) 0.59 (0.49) 0.55 (0.50) 0.59 (0.49)

OAC use at cohort entry

14. OAC type (DOAC/warfarin) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)

15. Apixaban 0.54 (0.50) 0.50 (0.50) 0.00 (0.00)

16. Dabigatran 0.11 (0.31) 0.28 (0.45) 0.00 (0.00)

17. Dose (high dose DOAC/low dose DOAC or war-

farin)

1.00 (0.00) 0.00 (0.00) 0.00 (0.00)

18. Adherence (high/low) 0.85 (0.35) 0.86 (0.35) 0.88 (0.32)

19. Interaction of OAC type and Adherence 0.85 (0.35) 0.86 (0.35) 0.00 (0.00)

20. Interaction of Dose and Adherence 0.85 (0.35) 0.00 (0.00) 0.00 (0.00)

Concomitant medication use within 2 weeks before cohort entry

21. Antiplatelets (yes/no) 0.27 (0.44) 0.32 (0.47) 0.37 (0.48)

22. NSAIDs (yes/no) 0.01 (0.12) 0.01 (0.10) 0.01 (0.10)

23. Antidepressants (yes/no) 0.18 (0.38) 0.20 (0.40) 0.18 (0.38)

24. PPIs (Proton pump inhibitors) (yes/no) 0.37 (0.48) 0.44 (0.50) 0.49 (0.50)

Potential drug-drug interaction

25. Interaction of OAC type and Antiplatelets 0.27 (0.44) 0.32 (0.47) 0.00 (0.00)

26. Interaction of OAC type and NSAIDs 0.01 (0.12) 0.01 (0.10) 0.00 (0.00)

27. Interaction of OAC type and Antidepressants 0.18 (0.38) 0.20 (0.40) 0.00 (0.00)

28. Interaction of OAC type and PPIs 0.37 (0.48) 0.44 (0.50) 0.00 (0.00)

Outcome
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29. Major bleeding 0.02 (0.15) 0.03 (0.18) 0.04 (0.19)

Table B.2: Covariates descriptive statistics stratified by Dose

B.7 Crude and adjusted odds ratios and 95% confidence

intervals of variables

Variable name (non-
reference/reference level)

Crude OR (95% CI) Adjusted OR (95% CI)

Elderly (>65/⩽ 65) 2.51 (1.53, 4.48) 2.43 (1.48, 4.35)

History of major bleeding (yes/no) 1.87 (1.60, 2.19) 1.78 (1.51, 2.08)

Liver diseases (yes/no) 2.35 (1.60, 3.34) 2.15 (1.46, 3.06)

Renal diseases (yes/no) 1.36 (1.15, 1.60) 1.14 (0.96, 1.34)

Stroke (yes/no) 0.96 (0.85, 1.07) 0.93 (0.82, 1.04)

Drugs* (yes/no) 1.23 (1.04, 1.45) 1.18 (1.00, 1.40)

Table B.3: Crude (univariate) and adjusted odds ratios from simple and multivariate logistic
regression models, respectively and 95% confidence intervals using the variables in HAS-
BLED chart (2012, Circulation, Lane at el.)
* Drugs: a binary variable, it is 1 if the patient had at least 1 dispensation of the following drugs in the 3
years preceding the index date or during the AF hospitalization: Clopidogrel, low dose of ASA (daily dose
< 100 mg), NSAID.
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Variable name (non-
reference/reference level)

Crude OR (95% CI) Adjusted OR (95% CI)

Age (⩾75/<75) 1.28 (1.07, 1.55) 1.29 (1.07, 1.56)

Sex (female/male) 0.84 (0.72, 0.98) 0.86 (0.73, 1.01)

Adherence (high/low) 1.04 (0.83, 1.32) 1.03 (0.82, 1.32)

History of major bleeding (yes/no) 1.87 (1.60, 2.19) 1.68 (1.43, 1.98)

Renal diseases (yes/no) 1.36 (1.15, 1.60) 1.05 (0.88, 1.25)

Liver diseases (yes/no) 2.35 (1.60, 3.34) 2.09 (1.42, 2.99)

Stroke (yes/no) 0.96 (0.85, 1.07) 0.94 (0.83, 1.05)

Anemia (yes/no) 1.86 (1.50, 2.28) 1.46 (1.16, 1.81)

Malignancy (yes/no) 1.21 (1.02, 1.43) 1.09 (0.91, 1.29)

Antiplatelets (yes/no) 1.40 (1.19, 1.64) 1.31 (1.11, 1.54)

NSAIDs (yes/no) 1.15 (0.54, 2.11) 1.29 (0.61, 2.38)

Other medications* (yes/no) 1.22 (1.03, 1.46) 1.06 (0.88, 1.27)

Table B.4: Crude (univariate) and adjusted odds ratios from simple and multivariate logistic
regression models, respectively and 95% confidence intervals using the risk factors of bleeding
on Oral anticoagulation (2012, Circulation, Lane at el.)
Other medications: a binary variable, it is 1 if the patient had at least 1 dispensation of the following drugs
within the 2 weeks prior to index date: Antidiabetics, Antidepressants, PPIs, Antibiotics, Antiarrhythmics,
PGP inhibitors.
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Variable name (non-reference/reference level) Crude OR (95% CI) Adjusted OR (95% CI)

Baseline covariates

1. Age (⩾75/<75) 1.28 (1.07, 1.55) 1.23 (1.00, 1.54)

2. Sex (female/male) 0.84 (0.72, 0.98) 0.86 (0.73, 1.02)

3. CHA2DS2VASc score (⩾3/<3) 1.54 (1.17, 2.06) 1.24 (0.90, 1.75)

Comorbidities within 3 years before cohort entry

4. Stroke (yes/no) 0.96 (0.85, 1.07) 0.94 (0.83, 1.05)

5. Anemia (yes/no) 1.86 (1.50, 2.28) 1.38 (1.10, 1.72)

6. Malignancy (yes/no) 1.21 (1.02, 1.43) 1.09 (0.91, 1.30)

7. Liver diseases (yes/no) (yes/no) 2.35 (1.60, 3.34) 2.01 (1.36, 2.89)

8. History of major bleeding (yes/no) 1.87 (1.60, 2.19) 1.62 (1.37, 1.91)

9. Renal diseases (yes/no) 1.36 (1.15, 1.60) 0.96 (0.80, 1.15)

10. Heart disease (yes/no) 1.51 (1.27, 1.80) 1.23 (1.02, 1.48)

11. Diabetes (yes/no) 1.49 (1.27, 1.74) 1.30 (1.10, 1.54)

12. COPD/asthma (yes/no) 1.33 (1.14, 1.55) 1.15 (0.98, 1.35)

13. Dyslipidemia (yes/no) 1.28 (1.09, 1.50) 1.09 (0.92, 1.30)

OAC use at cohort entry

14. OAC type (DOACs/warfarin) 0.76 (0.65, 0.89) 1.69 (0.94, 2.98)

15. Apixaban (yes/no), ref: Rivaroxaban 0.63 (0.52, 0.76) 0.64 (0.50, 0.82)

16. Dabigatran (yes/no), ref: Rivaroxaban 1.17 (0.91, 1.47) 1.07 (0.78, 1.45)

17. Dose (high dose DOACs/low dose DOACs or war-

farin)

0.68 (0.56, 0.81) 0.66 (0.36, 1.19)

18. Adherence (high/low) 1.04 (0.83, 1.32) 1.02 (0.72, 1.48)

19. Interaction of OAC type and Adherence 0.79 (0.67, 0.92) 0.82 (0.47, 1.45)

20. Interaction of Dose and Adherence 0.71 (0.58, 0.85) 1.29 (0.69, 2.42)

Concomitant medication use within 2 weeks before cohort entry

21. Antiplatelets (yes/no) 1.40 (1.19, 1.64) 1.48 (1.18, 1.86)

22. NSAIDs (yes/no) 1.15 (0.54, 2.11) 1.03 (0.25, 2.78)

23. Antidepressants (yes/no) 1.27 (1.05, 1.52) 1.22 (0.93, 1.59)

24. PPIs (yes/no) 1.03 (0.88, 1.20) 0.85 (0.68, 1.07)

Potential drug-drug interaction

25. Interaction of OAC type and Antiplatelets 0.95 (0.76, 1.17) 0.71 (0.51, 0.99)
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26. Interaction of OAC type and NSAIDs 1.26 (0.49, 2.62) 1.52 (0.38, 7.42)

27. Interaction of OAC type and Antidepressants 0.98 (0.75, 1.26) 0.90 (0.61, 1.32)

28. Interaction of OAC type and PPIs 0.78 (0.64, 0.95) 0.88 (0.63, 1.22)

Table B.5: Crude (univariate) and adjusted odds ratios from simple and multivariate logistic
regression models, respectively and 95% confidence intervals using the covariates in in the
analysis

B.8 Derivation of estimated odds ratios of taking differ-

ent types of DOACs versus warfarin from the se-

lected models

We focus on the selected model resulting from the latent overlapping group lasso using

MCP/SCAD penalty. Based on the current variable definitions, we show the corresponding

variable values when the patient took different type of OACs below.

Category/Variable name OAC Type Dose Apixaban Dabigatran
High dose Apixaban 1 1 1 0

High dose Dabigatran 1 1 0 1

High dose Rivaroxaban 1 1 0 0

Low dose Apixaban 1 0 1 0

Low dose Dabigatran 1 0 0 1

Low dose Rivaroxaban 1 0 0 0

warfarin 0 0 0 0

Table B.6: Variable values when the patient took different types of OACs (category)

124



Suppose we fit a logistic regression

logit{E(Y )} = β0 + β1OAC Type + β2Dose + β3Apixaban + β4Dabigatran + ...,

where Y is the outcome, major bleeding. For brevity, we omit the other variables. Then the

estimated probabilities of major bleeding for different types of OACs are given in Table B.7.

Subject who took... Estimates
High dose Apixaban ilogit(β̂0 + β̂1 + β̂2 + β̂3 + . . . )

High dose Dabigatran ilogit(β̂0 + β̂1 + β̂2 + β̂4 + . . . )

High dose Rivaroxaban ilogit(β̂0 + β̂1 + β̂2 + . . . )

Low dose Apixaban ilogit(β̂0 + β̂1 + β̂3 + . . . )

Low dose Dabigatran ilogit(β̂0 + β̂1 + β̂4 + . . . )

Low dose Rivaroxaban ilogit(β̂0 + β̂1 + . . . )

warfarin ilogit(β̂0 + . . . )

Table B.7: Estimated mean outcomes
*ilogit: inverse logit

Thus, the interpretation of the parameters are given in Table B.8.
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Contrasts Parameter(s) Estimated odds ratios
High dose Apixaban exp(β̂1 + β̂2 + β̂3) 0.70

High dose Dabigatran exp(β̂1 + β̂2 + β̂4) 1.13

High dose Rivaroxaban exp(β̂1 + β̂2) 1.13

Low dose Apixaban exp(β̂1 + β̂3) 0.86

Low dose Dabigatran exp(β̂1 + β̂4) 1.39

Low dose Rivaroxaban exp(β̂1) 1.39

Table B.8: Estimated odds ratios of taking different types of DOACs versus warfarin from
the model selected by the latent overlapping group lasso MCP/SCAD
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APPENDIX C

Appendix to Chapter 5

C.1 Proof of Lemma 1

Let us consider the conic duality (Boyd and Vandenberghe, 2004). First we introduce the

cone defined on two variables β and z: C := {(β, z) ∈ Rp+1; ∥β∥ ⩽ z}. Next we can rewrite

the problem (5.1) using an additional primary variable z = (zg)g∈G ∈ R|G| that satisfies |G|

conic constraints (β|g, zg) ∈ C, for g ∈ G.

min
β∈Rp,z∈R|G|

1

2t

⃦⃦⃦
β − {β̃ − t∇f(β̃)}

⃦⃦⃦
+ λ

∑︂
g∈G

ωgzg, s.t.(β|g, zg) ∈ C, ∀g ∈ G.

We can then convert the above optimization problem into a dual problem by introducing

the dual variables τ = (τg)g∈G ∈ R|G|, ξ = (ξ|g)g∈G ∈ Rp×|G|, and C’s dual counterpart

C∗ := {(ξ⃗, τ) ∈ Rp+1; ∥ξ⃗∥∗ ⩽ τ}. The generalized conic inequalities also can be applied on

both C and C∗, thus the strong duality holds because the primary problem is convex and

satisfies Slater’s conditions (Boyd and Vandenberghe, 2004; Jenatton et al., 2011b). Consider
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the Lagrangian

L(β, z, τ , ξ) = 1

2t

⃦⃦⃦
β − {β̃ − t∇f(β̃)}

⃦⃦⃦2

2
+ λ

∑︂
g∈G

ωgzg −
∑︂
g∈G

⎛⎜⎝ zg

β|g

⎞⎟⎠
⊤⎛⎜⎝ τg

ξ|g

⎞⎟⎠ . (C.1)

To obtain the dual function, we minimize out the primary variables by taking derivatives of

L with respect to the primary variables β and z respectively and setting the derivatives to

zeros, which gives us

β − {β̃ − t∇f(β̃)} −
∑︂
g∈G

ξ|g = 0

λωg = τg,∀g ∈ G,

and thus the dual function (5.3) can be obtained by plugging in the dual variable into (C.1)

and flipping (without loss of generality) the sign of ξ.

Next, we derive the optimality conditions from the Karush-Kuhn-Tucher conditions. We

have that {β, z, τ , ξ} achieve the optimal values if (again, without loss of generality, we flip

the sign of ξ)

∀g ∈ G, zgτg − β⊺
|gξ|g = 0, (C.2)

∀g ∈ G, (β|g, zg) ∈ C, ∀g ∈ G, λωg − τg = 0, (C.3)

∀g ∈ G, (ξ|g, τg) ∈ C∗, ∀g ∈ G,β − (β̃ − t∇f(β̃) +
∑︂
g∈G

ξ|g = 0. (C.4)
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Therefore, we have

∀g ∈ G, λzgωg =β⊺
|gξ|g by (C.2)&(C.3)

⩽
⃦⃦
β|g

⃦⃦ ⃦⃦
ξ|g

⃦⃦
∗ by the definition of dual-norm

⩽zg

⃦⃦
ξ|g

⃦⃦
∗ by conic inequality

⩽λzgωg. by the definition of dual-norm&(C.3)

From the above equation/inequalities, we have that β⊺
|gξ|g =

⃦⃦
β|g

⃦⃦ ⃦⃦
ξ|g

⃦⃦
∗, and zg

⃦⃦
ξ|g

⃦⃦
∗ =

λzgωg. We know that due to the conic inequality, if β|g ̸= 0, then zg ̸= 0, which implies⃦⃦
ξ|g

⃦⃦
∗ = λωg. Combine those two equations, we have

ξ|g =

⎧⎪⎨⎪⎩λωg

⃦⃦
β|g

⃦⃦
(β|g)

−1, if β|g ̸= 0

ξ|g, if β|g = 0.

We can also rewrite the above equation using the projection concept, which is called the

projection on a dual ball

ξ|g =
∏︂

∥·∥∗⩽λωg

(β|g + ξ|g) =
∏︂

∥·∥∗⩽λωg

⎧⎨⎩
[︄
β̃ − t∇f(β̃)−

∑︂
h ̸=g

ξ|h

]︄
|g

⎫⎬⎭ , (C.5)

where the definition of projection on a dual ball can be found in (Jenatton et al., 2011b;

Borwein and Lewis, 2010): Let w ∈ Rp and t > 0. We express κ as the projection of w on

the dull norm with the length t, and

κ =
∏︂

∥·∥∗⩽t

(w) =

⎧⎪⎨⎪⎩w if ∥w∥∗ ⩽ t,

κ : ∥κ∥∗ = t, and κ⊤(w − κ) = ∥κ∥∗ ∥w − κ∥ otherwise.
(C.6)

We can see from the definition of projection onto a dual ball (C.6) that, if the dual norm of

the vector/function to be projected is less than the radius of the dual ball, then the projection
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is itself; otherwise, it is the maximum vector/function that satisfies two conditions: 1) the

dual norm is the length of the radius, and 2) for any ∥w − κ∥ ⩽ 1, the dual norm of κ

achieves the value that maximizes κ⊤(w − κ).

In this way, we can then see ξ|g as the projection of β|g + ξ|g onto the dual ball with the

radius λωg of the dual norm ∥·∥∗.

C.2 Details of implementing the max flow algorithm

The max flow problem requires several inputs, namely vertices V , arcs E, source s, sink n.

In addition, each arc has flow f , capacity c, and cost y . To solve the inverse projection step

in the algorithm, we need to translate those elements into our context.

Define a node as a single variable (xj ∈ V) or a set of variables (gk ∈ G). Let V be V ∪ G,

and E ⊆ V × V . E contains three types of arcs. We show them with their flow, capacity

and flow below.

Type From To Flow f Capacity c Cost y

1 s gk ∈ G
∑︁

xj∈V

∑︁
g∈G ξj|g λωg 0

2 gk xj ∈ gk ξj|g ∞ 0

3 xj ∈ V n (
∑︁

g∈G ξj|g)xj∈V ∞ M∗

∗M = 1
2t
[βk

j − t∇f(βk
j )− (

∑︁
g∈G ξj|g)xj∈V]

2

Table C.1: Corresponding inputs of the max flow algorithm

After having the corresponding input, we can implement the max flow algorithm, and thus

proceed with the inverse projection step, i.e., updating (
∑︁

g∈G ξj|g)xj∈V by finding its maxi-

mum value with the minimum cost while satisfying relevant constraints: each flow is smaller

than the capacity.
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C.3 Grouping structure identification

Overlapping group Lasso can enforce a number of groups of variable coefficients to be 0 with

a certain level of penalization. The remaining variables are said being selected.

Consider the selection dependency “if {A1B,A2B} is selected, then {A1, A2, B} must be

selected”. Suppose for now all candidate variables are V = {A1, A2, B,A1B,A2B}, which are

the variables that are involved in this rule. According to Table 3.2 in Chapter 3, the selection

dictionary (all permissible subsets of covariates that respect the selection dependency) is D =

{∅, {A1, A2}, {B}, {A1, A2, B}, {A1, A2, B,A1B,A2B}}. Based on Theorem 5 in Chapter 3,

we need to create groups whose complements (and their combinations) are equal to D\V. We

thus postulate three groups: {A1, A2, A1B,A2B} , {B,A1B,A2B} and {A1B,A2B}, which

satisfy the requirement. Similarly, to respect the selection dependency “if {C1B,C2B} is

selected, then {C1, C2, B} must be selected”, we postulate another three groups {C1, C2 ,

C1B , C2B} , {B,C1B,C2B} and {C1B,C2B}.

However, the two dependencies share a same variable B: if either {A1B,A2B} or {C1B,C2B}

is selected, then B must be selected. To satisfy this requirement, we need to merge the

two groups {B,A1B,A2B} and {B,C1B,C2B} into one group {A1B,A2B,B,C1B,C2B}

to prevent the occurrence of rule-breaking combinations for example, {C1B,C2B} being

selected without B.

We also need to respect another selection dependency: the dummy variables for a categorical

variable need to be selected collectively. The categorical interaction variables AB and BC

are already being selected collectively because of the above selection dependencies. However,

additional groups for {A1, A2} are unnecessary as this would make it possible to select

{A1B,A2B} without A. In addition, with the above groups, A1, and A2 would never be

selected individually because they are always in a same group.
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Therefore, we have 5 defined groups listed below

g1 = {A1, A2, A1B,A2B}, g2 = {B,A1B,A2B,C1B,C2B},

g3 = {A1B,A2B}, g4 = {C1, C2, C1B,C2B}, g5 = {C1B,C2B}.
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