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Abstract 

Poor fetal growth is associated with long-term behavioral, metabolic and 
psychiatric alterations, including impulsivity, insulin resistance, and mood disorders. 
However, the consumption of omega-3 polyunsaturated fatty acid (n-3 PUFA) seems to 
be protective for this population, improving inhibitory control and behavioral re- activity. 
We investigated whether the presence of the A allele of rs8887 SNP (PLIN4 gene), known 
to be associated with increased sensitivity to the consumption of n-3 PUFAs, interacts 
with fetal growth influencing inhibitory control. 152 five-year-old children were 
genotyped and performed the Stop Signal Task (SSRT). There was a significant 
interaction between birth weight and the presence of the A allele on SSRT performance, 
in which lower birth weight associated with poorer inhibitory control only in non-carriers. 
These results suggest that a higher responsiveness to n-3 PUFAS protects small for 
gestational age children from developing poor response inhibition, highlighting that 
optimizing n-3 PUFA intake may benefit this population.  

 

1 Introduction 

Nutrition has great influence on health both in childhood and adulthood. The 

current western diet, related to epidemic childhood obesity rates[1], has been implicated 

in programing cognitive[2] and  metabolic alterations[3]  throughout the lifespan. Recent 

evidence suggests that the brain may be particularly vulnerable to the effects of 

obesogenic diets during early life[2], reinforcing the importance of the quality of perinatal 

environment for preventing metabolic disease [4-6] and neuropsychopathology [7-13]. 

High dietary intake of omega 6 fatty acids (n-6 FAs) as occurs today in the western diet 

promotes the occurrence of many inflammatory and autoimmune diseases [14], whereas 

increased levels of omega 3 polyunsaturated fatty acids (n-3 PUFAs), exert suppressive 

effects [15, 16]. This balanced ratio of n-6 to n-3 is critical to human development during 

pregnancy and lactation, in the prevention of chronic diseases and in their management 

[17, 18]. Furthermore,  ‘in vitro’ and experimental research have shown that n-3 PUFAs 

influence regulation of gene expression in a number of pathways [19], supporting the 

relevance of these components and their genetic interactions. Recent evidence suggests 

that dietary FAs, influenced by genetic variation in FA metabolism, contribute to poor 

central nervous system functioning in children, with long-lasting outcomes [20]. 

Investigations on mental health and disease highlighted the importance of omics [21] 

(lipidomic, metabolomic, and genomic) for identification of risk biomarkers in subjects 

with vulnerable phenotypes, revealing biochemical abnormalities, such as the association 

with FA levels and psychological outcomes [22] [23, 24] [25].  
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Evidence suggests that exposure to an insult during early development modifies tissue 

differentiation through adaptive responses [26, 27]. Neurobiological systems are 

especially susceptible to both organizing and disorganizing influences, sometimes 

resulting in neuroadaptation impairments [28], particularly in sensitive pathways 

controlling the executive function (EF) [29]. EF is the group of self-regulatory processes 

composed by cognitive flexibility, working memory, and inhibitory control [30]. 

Inhibition underpins self-control and delayed gratification, and in early childhood is 

positively associated with later outcomes in academic achievement, health, risk-taking, 

happiness and socioeconomic status [31-33]. Impulsivity is comprised by a complexity 

of constructs and is commonly linked to a variety of psychiatric disorders [34-37] and 

with the development of obesity [38, 39]. Inefficient inhibitory control and 

heightened impulsivity are risk phenotypes associated with unhealthy eating in children 

[40]. Interestingly, a recent review demonstrated that deficits in inhibitory 

control/impulsivity are associated with a more obesogenic eating in young children 

compared with those who have disorders only in attention control/shifting and working 

memory dimensions [41]. Longitudinal studies found that general alterations in EF play 

an important role in the weight development of children [42], reinforcing the well-

documented association between inattentive and impulsive behaviors with unhealthy 

eating [43-46] and with attention-deficit hyperactivity disorder (ADHD) and obesity [47].  

Birth weight adjusted for gestational age is a predictor for ADHD, internalizing and 

externalizing problems [48, 49], and associated endophenotypes, including altered 

feeding behavior, overweight and obesity [50]. Small-for gestational age 

(SGA) individuals are more impulsive towards food rewards [50, 51], a phenotype 

associated with non-adaptive feeding behavior, characterized by enhanced food fussiness 

in childhood and external eating in adolescence [52, 53], which were linked to negative 

outcomes later in life. Recent studies by our research group have demonstrated that n-3 

PUFAs exert a protective effect in small-for gestational age individuals by limiting 

impulsive eating [52, 53]. Although not the scope of this work, it is necessary to highlight 

that the family is an important social context where children learn and 

adopt eating behaviors, in which parents play the role of health promoters, role models, 

and educators in the lives of children, influencing their food cognitions and choices. This 

effect was well documented in a systematic review and meta-analysis, demonstrating that 

a number of parental behaviors are strong correlates of child food consumption 
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behavior[54]. 

 

EFs depend on efficient processing in frontal and pre-frontal cortical regions and 

their sub-cortical connections. It is known that adequate intake of long chain PUFA (LC 

PUFA, fatty acids that contain > 12 carbon atoms) is important for proper neural 

development during prenatal and postnatal periods up to 2 years of age [55-57]. Linoleic 

acid (LA, n−6) and α-linolenic acid (ALA, n−3) are essential fatty acids (EFAs), as 

humans cannot synthesize them. In the human body, EFAs give rise to arachidonic acid 

(ARA, n−6), eicosapentaenoic acid (EPA, n−3), and docosahexaenoic acid (DHA, n−3) 

that play key roles in regulating body homeostasis. The n-3 PUFAs are involved in neural 

development and functioning [58-60], being essential in the regulation of neurochemical 

and behavioral aspects related to stress responses, mood [61], aggressiveness and 

impulsivity reactions [62, 63] , and modulating neurotransmitter systems such as the 

dopaminergic mesocorticolimbic pathway [64, 65]. DHA is the dominant n-3 PUFA in 

the brain [66] and accumulates, in areas associated with learning and memory, such as 

the cerebral cortex and hippocampus [67, 68]. DHA is incorporated into 

glycerophospholipids of the neuronal membrane where it regulates many neuronal and 

glial cell processes, including neurogenesis, neuroplasticity, neurite outgrowth, 

synaptogenesis and membrane fluidity, influencing signal transduction and 

neurotransmission [69-73]. DHA also improves vascular tone resulting in increased 

cerebral blood flow [74], and regulates the movement of glucose in endothelial cells [73]. 

Moreover, DHA is a natural ligand for various nuclear receptors that regulate gene 

expression and are precursors of neuroprotectins and resolvins that can buffer 

neuroinflammation and oxidative stress, increasing neuronal survival [69, 70, 75].  

The A allele of human PLIN4 single nucleotide polymorphism (SNP) rs8887 is 

associated with enhanced sensitivity to dietary n-3 PUFAs, showing protective effects of 

on metabolic outcomes [76]. In humans, the perilipin gene (PLIN) is located in 

chromosomal 15q26 [77], a region previously linked to obesity, hypertriglyceridemia, 

and diabetes [78, 79]. The PLIN4 protein, previously referred to S3–12, belongs to the 

PAT family [80] comprised of PLIN1/perilipin (PLIN), PLIN2/ADRP (adipose 

differentiation related protein), PLIN3/ TIP47 (tail interacting protein 47), and 

PLIN5/LSDP5 (Lipid Storage Droplet Protein 5) [80]. In humans, the expression of 
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PLIN4 protein is limited to white adipose tissue, heart and skeletal muscle, and its role is 

not well-characterized [81], but it appears to participate in triglyceride synthesis, acting 

as a co-activator [82] of the nuclear receptor peroxisome proliferator-activated receptor-

γ (PPARγ), an essential transcriptional regulator of adipogenesis [83]. In the basal state, 

PLIN4 is located throughout the adipocyte cytoplasm, but when stimulated by insulin and 

oleic acid, lipid droplets coated with PLIN4 form and relocate to the periphery of the 

adipocyte [84]. Taken together, this evidence [19, 76] have demonstrated anti-obesity 

effects of n-3 PUFAs which are thought to mediate their effects by modulating the activity 

of various transcription factors important to lipid metabolism. 

Therefore, it may be assumed that neurocognitive functions could be nutritionally 

programed in early in life by a combination of both dietary and genetic compounds, 

resulting in increased risk for maladaptive behaviors. Here we to investigate with an 

integrative model, the interplay between external and internal variables, such as 

associations with the early environment, a genetic variant and their phenotype correlates. 

Our hypothesis is that subjects born with reduced fetal growth and carrying the A allele 

of the SNP rs8887 have enhanced sensitivity to dietary n-3 PUFAs levels, presenting a 

protective effect on impulsivity traits. 

 

2 Material and Methods 

The study sample included 600 children recruited in Montreal (Quebec-CA) or 

Hamilton (Ontario-CA), as part of a prospective cohort established in 2003, the Maternal 

Adversity, Vulnerability and Neurodevelopment (MAVAN) Project [85]. MAVAN is a 

multidisciplinary and collaborative study designed to examine the consequences of fetal 

adversity as a function of the quality of the postnatal environment, focusing on mother-

child dyad interactions. The study recruited pregnant women in the second trimester of 

pregnancy, older than 18 years, from the Montreal and Hamilton areas (Canada), in 

obstetric clinics and hospitals. Exclusion criteria were serious obstetric complications 

during pregnancy or birth, extreme low birth weight, prematurity (gestational age <37 

weeks), and congenital diseases. The pregnant women were interviewed between 24 and 

36 weeks of gestational age; the children were evaluated at 3, 6, 12 and 18 months 

postpartum and annually from 24 months to 6 years of age. Several behavioral 

questionnaires and cognitive assessments were performed during study visits, as well as 

collection of material for laboratory biochemical, genetic and epigenetic analysis. At the 
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time of this analysis, 152 MAVAN participants included had completed the Cambridge 

Automated Neuropsychological Test Battery (CANTAB) at 60 months of age and had 

genotype data available for this SNP. 

 

2.1. Ethical considerations  

The study was approved by the hospitals and universities involved: ethics committees of 

McGill University, Université de Montréal, Royal Victoria Hospital, Jewish General 

Hospital, Hospital de l'Université de Montréal, Hôpital Maisonneuve-Rosemount, St 

Joseph's Hospital and McMaster University. MAVAN Project was approved by the 

Research Ethical Board of Douglas Mental Health Research Institute (number 03/ 45), 

and has therefore been performed in accordance with the ethical standards laid down in 

the 1964 Declaration of Helsinki and its later amendments. Informed consent was 

obtained from the participants.  

2.1. Ethical considerations  

The study was approved by the hospitals and universities involved: ethics committees of 

McGill University, Université de Montréal, Royal Victoria Hospital, Jewish General 

Hospital, Hospital de l'Université de Montréal, Hôpital Maisonneuve-Rosemount, St 

Joseph's Hospital and McMaster University. MAVAN Project was approved by the 

Research Ethical Board of Douglas Mental Health Research Institute (number 03/ 45), 

and has therefore been performed in accordance with the ethical standards laid down in 

the 1964 Declaration of Helsinki and its later amendments. Informed consent was 

obtained from the participants.  

Table 1 - Descriptive characteristics according to participants’ genotype.  

Sample characteristics rs8887 A allele 

carriers 

(n=103) 

 

Non-

carriers 

(n=49) 

P 

Females (%) 43 (41.7%) 29 (59.2%) 0.056 

Birth weight (g) 3364+0.05 3299+0.06 0.405 
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aStudent’s t-test and bChi-square test. Data are expressed as mean+SEM, or proportions 

(percentages). LICO=Low Income Cut Off.  

 

specific mean birth weight for each gestational age for the local population. Children are 

classified as IUGR if they have a BWR of < 0.85 [86]. Birth weight and gestational age 

were assessed using birth records obtained directly from the birthing units, and a 

Canadian reference was used [87]. Body mass index (BMI) was calculated as weight (kg) 

divided by squared height (m2), measured by trained researchers, during visits to the 

laboratory up to 60 months of life.  

.2.2. Food frequency questionnaire  

We used the semi-quantitative Food Frequency Questionnaire (FFQ) valid for the 

Canadian population [88]. It was applied to mothers at 48 and 72 months of age, 

containing 45 types of foods with the portion size and frequency consumed (times per 

day, per week or per month). This is a standard procedure used to assess eating behavior 

and habitual consumption in children [89,90]. Mothers were invited to report their 

children's food intake on a typical day, with the help of a food photo album and measures 

to estimate the portion size of each food [91]. Based on these reports, the quantitative 

analysis of total caloric and macronutrient intake, as well as n-3 PUFAs consumption, 

was derived using NutriBase software (Version NB7 Network) [Phoenix, AZ, US].  

Gestational age (weeks)a 38.98+0.11 39.06+0.18 0.697 

Maternal smoking during gestation (%)b 12 (12.9%) 5 (11.1%) 1.000 

Maternal education below 10 years of schooling 

(%)b 

4 (4.2%) 2 (4.2%) 1.000 

Family income below LICO (%)b 26 (25.7%) 15 (30.6%) 0.561 

Exclusive breastfeeding (weeks)a 12.30+0.99 11.21+1.42 0.532 

Mean daily n-3 PUFAs intake between 48-72 

months (g) 

2.27+0.26 1.52+0.34 0.107 

Body mass index (kg/m2) z-scores at 60 monthsa 

SSRT at 60 months 

0.28+0.10 

480.24+16.44 

0.15+0.18 

557.62+26.6

4 

0.534 

0.011 
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2.2.3. Stop-signal task  

The Stop-signal Reaction Time (SSRT) is a measure derived from the Stop Signal task, 

part of CANTAB battery that measures the ability to exert volitional control over a 

response that has already been initiated rather than choice selection [92–95]. During the 

task, individuals are asked to press a button when they perceive a GO stimulus on a screen 

(i.e., an arrow pointing left or right), unless they hear a 300 Hz sound stimulus (the STOP 

signal) after the GO signal, which occurs approximately once every four tests. This 

establishes a conflict between the reaction time for the initial task, which is to press the 

button in response to the GO stimulus, and the inhibitory process triggered by the sound 

(STOP stimulus). Depending on the speed of the stopping process of an individual (with 

faster stopping responses allowing faster inhibition) and the delay between the GO 

stimulus and the start of the STOP signal (signal stop delay-SSD), the responses to the 

signal GO on a given STOP test will be successfully deleted or not. The SSD for a given 

individual is calculated around the 50% performance level, increasing or decreasing 

depending on the primary inhibition response. When the percentage of successfully 

repressed responses is 50%, the difference between the SSD and the mean reaction time 

for correct GO assays when there is no STOP signal is an estimate of SSRT, with higher 

values indicating a less robust inhibitory process [96]. The stop-signal test was 

administered as part of a larger testing protocol done at or within a few weeks of each 

child's 60-month birthday. Mothers were instructed to arrive at the laboratory for testing 

between 0900 and 1000 hours.  

2.2.4. Genotyping  

Genotyping for rs8887 was extracted from the PsychArray/ PsychChip from Illumina, 

according to the manufacturer's guidelines, with 200 ng of genomic DNA derived from 

cells of the oral mucosa.  

2.2.5. Statistical analysis  

We categorized the sample into two groups according to the presence of allele A of the 

SNP rs8887. Descriptive statistics were per- formed comparing children groups including 

sex, birth weight, gestational age maternal smoking during gestation, maternal education 
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and family income, duration of exclusive breastfeeding, BMI at 60 months and mean n-3 

PUFAs intake from 48 and 72 months FFQ data using Student's t-tests (for continuous 

variables) and chi-squared tests (for categorical variables). Sex was included in the 

regression model. Pearson's chi-square test was used to assess Hardy-Weinberg 

equilibrium (HWE). A linear regression model was performed to investigate the 

interaction between BWR and the presence of the A allele in the SSRT task, adjusted of 

not by ADHD symptoms from the Child Behavior Checklist applied at 48 months [97].  

Analyzes were performed using the Statistical Package for the Social Sciences (SPSS) 

22.0, considering significant values when p < 0.05.  

3. Results  

There were no significant differences between the A allele carriers and non-carriers on 

the main confounders such as birth weight, gestational age, breastfeeding duration, 

maternal schooling and income, smoking during gestation and n-3 PUFAs intake in 

infancy, as shown in Table 1. Sex rate almost reach significance for being different 

between the genotype groups (p=0.056), therefore sex was included in the subsequent 

models. PLIN4 genotype was in HWE for the A allele in the population study, with the 

frequency of 44% (P = 0.712) (Table 2). As depicted in Table 1, non-carriers of the A 

allele had less robust inhibitory process on SSRTs than the carriers group (Student's T 

Test, t (150) = 2.572, p = 0.011), in agreement with the work of Richardson et al.[76], in 

which the protective effect appears only for the A allele carriers of the rs8887 SNP.  

As hypothesized, there was a significant interaction between BWR and the 

presence of the A allele on SSRT task performance (p= 0.014) in the predicted direction, 

such that an association between lower birth weight and poorer inhibitory control was 

seen only in the non-carrier subjects (B=-586.81, beta=-1.452, t=2.019, p=0.045), as 

depicted in Figure 1. Thus, the rs8887 SNP may protect small for gestational age children 

from developing poor response inhibition early in life. Adjusting the analysis for ADHD 

symptoms did not change the results (B=-708.01, beta=-1.827, t=-2.41, p=0.017). 

 

Table 2- Genotypic and allelic distribution of SNP PLIN4 rs8887 
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Plin 4 (rs8887) G>A    

Genotype n (%) Allele n (%) P 

GG 49 (32.2%) G 177 (58.23%) 0.712 

GA 79 (52%) A 127 (41.77%)  

AA 

Total 

24 (15.8%) 

152 

   

Data expressed in absolute (n) and relative (%) frequencies. A: Adenosine G: Guanine. 

 

 

Figure 1. Interaction between BWR and the presence/absence of the A allele of the rs8887 

SNP 

 

4 Discussion 

The current study identified an interaction between the genotype and fetal growth 

in response to the inhibitory control task. In accordance with previous studies [52, 53, 98, 

99], we found a negative correlation between fetal growth rate and SSRT performance 

for non-carriers of the A allele of the rs8887 SNP, in which the lower the birth weight, 
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the worse the performance in the inhibitory control task (longer SSRTs). We also report 

an important new finding for A allele carriers, who do not exhibit an association between 

fetal growth and worse inhibitory control, suggesting a protective role of this genetic 

variant in this sub-population. Our findings provide important clues for the 

comprehension of variables involved in early neural programming. 

Early neural development is central to current models of mental health and 

disorder. Understanding both intrinsic and environmental risk factors for mental disorder 

requests a relational system of psychobiological development in a temporal dimension 

[100]. In this study, we analyzed developmental outcomes as a consequence of the 

interaction of at least two components (environmental and genetic) of the system on a 

specific temporal dimension.  

In the intrauterine period and up to six months after birth, the child depends on 

the maternal transfer of LC PUFAs through umbilical cord and breast milk [101, 102], 

because placenta lacks the delta-5 and delta-6 desaturases to convert EFAs into LC 

PUFAs, and the enzymatic activity in the fetus and child under six months is very limited. 

As a compensatory mode, during pregnancy, the placenta tends to prioritize the transport 

of LC PUFAs into the fetal blood, demonstrating a preference for blood enrichment by 

DHA> AA> ALA> LA [103]. Maternal glucocorticoid exposure is considered a model 

of prenatal stress [104], as such as chronic stress and/or maternal dietary factors during 

pregnancy has been associated with increased risk for the development of mental illness 

later in life[105, 106]. High glucocorticoid exposure during pregnancy has been 

associated with higher incidence of neuropsychopatology[107], and new evidence has 

shown alterations in placental LC PUFAs metabolism in human IUGR (intrauterine 

growth restriction) [108].  Fetal LC PUFA supply during pregnancy is of major 

importance, particularly DHA, that is an essential component of the nervous system cell 

membranes with direct effects on neural and visual development [57]. DHA can alter 

brain development and function through effects related to neurogenesis, dendritic 

arborization, synaptogenesis, selective pruning and myelination [109],  acting at 

molecular levels for neuronal cell growth and differentiation and in neuronal signaling 

[105, 110, 111] . The large membrane surface areas of neural cells, astrocytes, 

oligodendrites and microglia, with branch of dendrites that continuously change shape 

and length during development and learning suggests that inadequate DHA levels alter 

brain development through effects associated to cellular structures [112]. Recent evidence 
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suggests associations with early insult and altered placental LC PUFAs metabolism in 

IUGR individuals, with altered expression of FA transport proteins (FATP), translocases 

and the cytosolic protein perilipin [108]. Integrated analysis of multivariate imaging and 

genetic data suggests a relationship between PPAR signaling and variability in preterm 

white matter development, with functional networks enriched for the PLIN1 gene [113]. 

Moreover, experimental and cell culture studies have shown alteration in the expression 

of PLIN proteins related to aging or with anti-inflammatory astrocytic activity, suggesting 

that PLIN genes are implicated in lipid metabolism during stress and inflammatory 

activity [114-116]. This suggests a mechanism for modulation of DHA and PLIN genes 

induced by early life neural programming and insults, with individuals carrying the minor 

allele of the PLIN4 had buffered the undesirable effects of early neurodevelopmental 

programming, with enhanced sensitivity for n-3 PUFAs. 

 Self-regulatory abilities such as inhibitory control and capacity to delay 

gratification are crucial in regulating reward-driven behavior. Impulsive individuals, 

often deficient in self-regulation, are more prone to engage in reward-driven behaviors 

than non-impulsive ones [117]. In addition, early life inhibitory control combined to birth 

weight appear to be quite predictive of outcomes throughout life [50, 118]. The 

mesocorticolimbic system, comprising DA cells within the ventral tegmental area (VTA) 

that mainly project to the nucleus accumbens (NAc) and prefrontal cortex (PFC), has an 

important role in value attribution and inhibitory control [119], considering that frontal 

lobes and basal ganglia inhibit ongoing responses derived from Stop-signal tasks [120]. 

As a consequence of prenatal adversities comprised by altered neurochemical signaling 

[121], the fetal nervous system undergoes neuroadaptations [122], with late behavioral 

changes, by altering the response to rewarding stimuli [123, 124]. Moreover, DHA 

deficiency is strongly associated with changes in mesocorticolimbic dopaminergic 

activity [64, 65, 125]. Evidence from human neuroimaging studies further suggests that 

psychiatric disorders initially emerging in childhood and adolescence associated with low 

peripheral DHA levels are characterized by frontal circuit deficits compared with healthy 

developing youth [126-128]. A recent methylome-wide study [129] suggests that altered 

early life methylation in the peroxisomal network, which is essential in DHA formation, 

could contribute to an impulsivity phenotype, including ADHD. This suggests that our 

current results, in agreement to our previous findings, corroborate to the idea that n-3 

PUFAs are important moderators of the association between IUGR and impulsivity [52, 
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53], possibly through involvement of the PPAR signaling pathway[82, 130], inferred with 

the PPAR network regulating PLIN genes[130]. Richardson et al.  meta-analysis of PLIN4 

SNPs detected for the minor allele of PLIN4 rs8887 an association with increased 

adiposity and a interaction with omega-3 PUFA, such that higher omega-3 PUFA intake 

was associated with lower anthropometric traits, which suggests possible molecular 

mechanism involving the creation of a new micro RNA regulatory binding site (miR-522) 

[76, 131] by the PLIN4 variant regulated n-3 PUFA through PPAR mediated pathways 

[82].  

 Despite of studies describing the effect of the minor allele of PLIN4 rs8887 on 

anthropometric traits in association with n-3 PUFA [76], the role of this SNP is still not 

fully understood.  Our genetic result of a moderating action on impulsivity traits adds a 

new function to the minor allele of this PLIN4 variant, and supports previous work from 

Richardson et al.[76], reinforcing the integrative approach of genetic and environmental 

developmental systems. As we did not detect between-group differences in the 

consumption of n-3 PUFAs, we suggest that for the same amount of n-3 dietary intake, 

the A allele carriers are more sensitivity to the consumption of these dietary lipids. The 

mechanism of this association is unknown, and there are controversial results for the 

association of the PLIN4 variant protein expression. Moreover, experimental studies have 

demonstrated anti-obesity effects of n-3 PUFAs by modulating the activity of various 

transcription factors important to lipid metabolism [19]. 

Limitations of this study include the coexistence of more than one SNP for the 

PLIN4 gene in the same subject, and the possible triple interactions with sex, for which 

our sample size does not have the necessary power to explore. The use of a food frequency 

questionnaire, an indirect dietetic measure to determine n-3 PUFAs consumption, may 

not be ideal for quantifying the intake of specific nutrients. Many efforts have been made 

to identify genetic involvement on complex common diseases and genome-wide plus 

candidate-genes studies have identified numerous disease-related SNPs, but many of 

these associations were not replicated in part because of methodological differences 

[132]. For neurobehavioral research it is a challenge to identify relevant gene–

environment interactions regarding specific developmental outcomes and the appropriate 

investigation method.  

5 Conclusion 
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The current research can be considered as a neuroscience based clinical candidate 

gene study, examining an important SNP which could have significant implications for 

informing novel early intervention strategies in primary prevention of conditions 

associated with inhibitory control deficits in this population.  
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