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Abstract 

Pathological cardiac remodelling is an adaptive response to various stressors placed on the 

heart, such as sustained hypertension or following myocardial infarction. The remodelling attempts 

to preserve cardiac function and contractility through increased left ventricular wall thickness via 

a hypertrophic response in cardiomyocytes. At the same time, cardiac fibroblasts are activated and 

mediate a fibrotic response in damaged areas to maintain structural integrity and aid in wound 

healing. While initially adaptative, chronic activation of these processes can lead to left ventricle 

dilation and heart failure, where the heart is no longer able to maintain the necessary cardiac output. 

This remodelling is predominantly mediated through neurohormonal activation of multiple G 

protein-coupled receptors (GPCRs), as well as their Gα and Gβγ partner proteins, to elicit 

intracellular signalling cascades in the different cell types. Currently, the primary therapies are 

aimed at blocking these receptors. Despite modest clinical success of these therapies, heart failure 

remains a leading cause of mortality in Canada. Therefore, development of new approaches are 

required to understand and impact disease progression and improve patient prognosis.  

GPCR signalling pathways converge on the transcriptional machinery to regulate gene 

expression changes critical for the development of pathological cardiac remodelling. Due to the 

integration of multiple pathological signals by the transcriptional machinery, therapies targeting 

these processes are an attractive prospect that may have greater efficacy than current options. This 

thesis describes how GPCR signalling pathways alter the activity of the transcriptional machinery 

to regulate the gene expression changes underlying pathological cardiac remodelling. Herein, we 

identify the differential activation of Gαs/cAMP/PKA signalling between two GPCRs that drive 

hypertrophy, the α1-adrenergic receptor and the endothelin-1 receptor, in both primary rat neonatal 

cardiomyocytes and a heterologous HEK 293 cell system. Furthermore, we demonstrate the 

implications of the differential signalling between the α1-adrenergic and endothelin-1 receptors on 

positive transcription elongation factor b (P-TEFb) recruitment mechanisms employed by either 

receptor to promote cardiomyocyte hypertrophy. Additionally, we demonstrate the regulatory role 

of an interaction between Gβγ and RNA polymerase II on fibrotic gene expression downstream of 

the angiotensin II type I receptor in primary rat neonatal cardiac fibroblasts. Overall, this thesis 

expands our understanding of how GPCR signalling regulates the transcriptional machinery and 

proposes important considerations for the use and development of therapies for heart failure.  
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Resumé 

Le remodelage cardiaque pathologique est un phénomène qui affecte le coeur en réponse 

aux différents stress qu’il peut subir, tels que l’hypertension ou un infarctus du myocarde. Ce 

remodelage tente de préserver la fonction cardiaque et sa contractilité en augmentant l’épaisseur 

de la paroi du ventricule gauche suite à une réponse hypertrophique des cardiomyocytes. Au même 

moment, l’activation des fibroblastes cardiaques déclenche une réponse fibrotique qui permet de 

maintenir l’intégrité structurelle et la réparation des blessures dans les régions affectées. Ces 

processus sont considérés au départ comme une adaptation aiguë, mais ils peuvent devenir 

chroniques et mener ainsi à la dilation du ventricule gauche et à l'insuffisance cardiaque, le cœur 

n’étant plus en mesure de maintenir sa fonction. Ce remodelage est médié de manière 

prédominante par l’activation neurohormonale de nombreux récepteurs couplés aux protéines G 

(RCPGs) et leurs partenaires protéiques Gα et Gβγ déclenchant des voies de signalisation 

intracellulaires dans différents types de cellules. À ce jour, les traitements cliniques principaux ont 

pour but de bloquer ces récepteurs et leur efficacité est modeste. Linsuffisance cardiaque étant 

actuellement une des causes principales de la mortalité au Canada, l’élaboration de nouvelles 

études est donc nécessaire pour comprendre et cibler la progression de la maladie afin d’améliorer 

le pronostic du patient. 

Les mécanismes de signalisation des RCPGs semblent être associés à la machinerie 

transcriptionnelle régulant les changements d’expression génique qui influencent le remodelage 

cardiaque pathologique. Les thérapies ciblant ces processus sont une approche intéressante par 

rapport aux traitements actuels car elles incluent de nombreux signaux pathologiques reliés à cette 

machinerie transcriptionnelle. Cette étude décrit le niveau auquel les mécanismes de signalisation 

des RCPGs affectent l’activité de la machinerie transcriptionnelle lors des changements de la 

régulation de l’expression génique reliés au remodelage cardiaque pathologique. Dans un premier 

temps, le mécanisme de signalisation de Gαs/cAMP/PKA semble être activé différemment par 

deux RCPGs qui contrôlent l’hypertrophie, soit le récepteur α1-adrenergique et le récepteur 

endotheline-1, dans les cardiomyocytes néonatales de rat et les cellules HEK 293 exprimant ces 

récepteurs de façon hétérologue. Par la suite, nous démontrons l’implication des différents 

mécanismes de signalisation des récepteurs α1-adrenergique et le récepteur endotheline-1 sur les 

mécanismes de recrutement du facteur positif d’élongation de la transciption b (PTEF-b) utilisés 

par chaque récepteur afin de promouvoir l’hypertrophie des cardiomyocytes. De plus, l’interaction 
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entre Gβγ et l’ARN polymerase II semble avoir un rôle de régulation sur l’expression génique 

fibrotique en aval du récepteur d’angiotensine de type I dans les fibroblastes cardiaques primaires 

de rats nouveaux-nés. En conclusion, cette thèse cette thèse étend nos connaissances au niveau de 

la régulation de la signalisation des RCPGs qui affecte la machinerie transcriptionnelle en 

proposant le développement de nouvelles thérapies pour les maladies cardiovasculaires.  
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CHAPTER 1: General Introduction 
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1.1. Cardiac Remodelling and Heart Failure 

Heart failure is a complex, multifactorial disease that develops following structural or 

functional impairments to cardiac function [1]. Heart failure with left ventricular dysfunction 

reflects the inability of the heart to maintain sufficient cardiac output for the body. The lack of 

blood and oxygen supply to peripheral tissues results in symptoms such as shortness of breath and 

fatigue [2]. Heart failure remains a main cause of mortality and morbidity in Canada with 600 000 

people (~1.5% of the population) as of 2019 living with heart failure and 50 000 new cases 

diagnosed each year. These rates are expected to continue to rise due to the aging population and 

as current treatments enable patients to live longer following cardiovascular insults such as 

myocardial infarctions [3]. While medical advances have improved disease management for these 

conditions, they are not effective in preventing progressive cardiac remodelling processes which 

lead to heart failure. The failure of effective therapies has dire complications for these patients as 

the 5 year mortality rate following heart failure is currently between 25-50% [2]. New therapies 

are required to prevent, delay or reverse pathological cardiac remodelling leading to heart failure 

and ultimately improve patient prognosis.  

Cardiac remodelling occurs secondary to other cardiovascular diseases such as chronic 

hypertension, coronary artery disease, myocarditis, hypertrophic cardiomyopathy, and myocardial 

infarction [2, 4]. Although initiating processes differ, similar changes in systemic and cellular 

processes function in concert to remodel the myocardium and initially maintain cardiac output [2]. 

The various stressors on the myocardium affect diverse populations of cells, including 

cardiomyocytes, fibroblasts, immune and endothelial cells. For the purposes of this thesis, I will 

focus on the regulation of cardiomyocyte and fibroblast function in cardiac remodelling. The 

morphological changes are mediated by local increases in inflammatory cytokines as well as 

systemic increases in neurohormones, such as catecholamines, capable of activating G protein-

coupled receptors (GPCRs). The stress-induced remodelling is initially adaptive, with increased 

left ventricular wall thickness due to cardiomyocyte hypertrophy. Chronic cardiomyocyte 

stimulation by neurohormones can also lead to cardiac arrhythmias and cardiomyocyte apoptosis. 

The decrease in healthy cardiomyocyte numbers puts greater contractile demand on the remaining 

cardiomyocytes, creating a positive feedback loop with further apoptosis [2]. Furthermore, there 

is an activated fibrotic response altering the extracellular matrix (ECM) in order to maintain 

structural integrity in areas of damage. The resulting accumulation of interstitial collagen decreases 
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contractility and increases left ventricular wall stiffness. Fibrosis reduces oxygen diffusion through 

the myocardium leading to further cardiomyocyte apoptosis [5, 6]. Heart failure develops when 

the heart is unable to maintain cardiac output due to cardiomyocyte loss and dilation of the left 

ventricle wall (Figure 1.1). A desirable therapeutic strategy is to target these processes to prevent 

progression to heart failure and reverse the pathological remodelling. 

 

Figure 1.1. Progression of pathological cardiac remodelling. 

In response to various stressors, the healthy heart undergoes a response characterized by increased 

sympathetic activation and inflammation which increase left ventricle hypertrophy and fibrosis. 

These processes lead to increased oxidative stress and cellular apoptosis, which can result in the 

development of ventricular dilatation, contractile dysfunction, arrhythmias and eventual heart 

failure. Figure adapted from [7]. 

 

1.1.1. Hypertrophy 

In the face of chronic stress imposed by cardiovascular disease, the myocardium undergoes 

compensatory hypertrophic growth in the left ventricular wall to maintain cardiac output and 

reduce wall stress and oxygen consumption. The growth of the left ventricle is due to hypertrophy 

of cardiomyocytes, as these cells are terminally differentiated and unable to proliferate. The local 

and systemic increase in neurohormonal factors (i.e. catecholamines, angiotensin II, endothelin-1) 

modulate intracellular signalling events through GPCRs that culminate in a hypertrophic 

phenotype [8]. Cardiomyocyte hypertrophy also reflects the reactivation of a fetal-like gene 

expression program. That is, the gene expression in the adult cardiomyocytes begins to resemble 

the expression profile of cardiomyocytes early in development. For example, two common 
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markers of the fetal gene expression program are the natriuretic peptide A (Nppa) and natriuretic 

peptide B (Nppb), which show increased expression in hypertrophic cardiomyocytes [9]. These 

peptides are secreted into the blood to regulate blood pressure and volume through vasodilation, 

sodium removal in the kidney, and to inhibit cardiomyocyte hypertrophy through direct actions on 

cardiomyocytes [10, 11]. Furthermore, circulating BNP (protein encoded by the Nppb gene) and 

N-terminal proBNP are considered primary biomarkers of heart failure in the clinic [12]. The 

transition to a fetal gene expression program alters several aspects of cardiomyocyte function, 

including calcium handling [13, 14], sarcomere structure [15], and metabolism [16-20]. 

Cardiomyocyte contractile function depends on the proper mobilization of intracellular Ca2+ 

regulated by a process termed excitation-contraction coupling (ECC). When a cardiomyocyte 

becomes depolarized by an action potential during systole, voltage-gated L-type Ca2+ channels 

(LTCC) open and allow extracellular Ca2+ entry into the cell. The intracellular Ca2+ activates 

ryanodine receptors (RyR2) in the sarcoplasmic reticulum (SR) leading to the release of SR Ca2+ 

into the cytoplasm. The large increase in cytosolic Ca2+ concentration activates contractile proteins 

in the sarcomere leading to the ATP-dependent cardiomyocyte contraction. The Ca2+ is then 

removed from the cytoplasm to facilitate relaxation and diastole by several calcium channels, such 

as back into the SR by the sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) [21]. While 

cardiomyocyte SERCA2a expression increases throughout development, expression and activity 

are decreased in cardiac remodelling [13]. The decreased expression results in impaired removal 

of Ca2+ from the cytoplasm and consequently an increased cytoplasmic Ca2+ concentration and 

decreased SR Ca2+ concentration during diastole. The altered Ca2+ handling reduces systolic 

contraction and increases the time of diastolic relaxation in failing human myocardium [14]. 

Reversion to the fetal gene expression program in hypertrophic cardiomyocytes leads to 

functional changes to the contractile sarcomeres. A common marker for cardiac remodelling, 

among other sarcomere proteins with altered expression, is the transcriptional switch between two 

myosin heavy chain (MHC) ATPase isoforms [15]. In rodent models, the β-MHC is more abundant 

early in development, with a switch to predominantly α-MHC expression occurring throughout 

aging [22]. Hypertrophic cardiomyocytes revert back to predominantly β-MHC expression, and 

therefore the ratio of these two isoforms is a commonly used marker of heart failure [23-25]. 

Although there is not a developmental isoform switch in humans, the ratio of α-MHC to β-MHC 

still decreases in myocardium from failing human hearts [25, 26]. The small alterations in MHC 
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composition have profound effects on cardiomyocyte contractility as a 12% increase in α-MHC 

expression in rat cardiomyocytes increased power output by 52%  [27]. The increased relative 

amount of β-MHC, which has low ATPase activity, is part of an adaptive response to reduce energy 

consumption that also alters expression of genes controlling metabolic activity and energy use 

[28]. 

The heart is one of the largest energy consumers in the body and requires a constant supply 

of ATP to continue contracting. Fetal cardiac tissue utilizes carbohydrates that are metabolized by 

the glycolytic pathway, such as glucose and lactate, as the predominant energy source [29, 30]. 

Glycolysis is favoured as there are high levels of the appropriate substrates, and it is more suitable 

for the low oxygen environment in the uterus. Furthermore, the fetal cardiomyocyte predominantly 

expresses metabolic enzymes involved in glycolysis, switching to lipid metabolism for energy in 

postnatal development [31]. In the adult heart, lipid oxidation is predominant as there is high lipid 

concentration and oxygenation of the blood [32]. Cardiac hypertrophy alters the balance of energy 

production from long-chain fatty acid oxidation back to anaerobic glycolysis as the myocardium 

becomes hypoxic [2, 20]. This metabolic adaption is accompanied by reactivation of the fetal gene 

expression program with reduced lipid oxidation enzyme and increased glycolytic enzyme 

expression and activity [16-19]. 

 

1.1.2. Fibrosis 

The ECM is a common, non-cellular component in all organs that provides structural support 

and regulates changes in cellular phenotypes through interactions with cell surface proteins [33]. 

The ECM is a dynamic structure, with a network of structural proteins continually being 

remodelled to adapt to the current status of the tissue. The particular ECM components differ 

between each organ to match specific requirements, with the cardiac ECM predominantly 

composed of structural proteins, such as collagen, and other non-structural proteins [34]. During 

cardiac remodelling, myofibroblasts regulate a fibrotic response involving extensive ECM 

remodelling and collagen deposition. Fibrosis occurs in a localized manner, termed replacement 

or reparative fibrosis, following myocardial infarction that replaces the damaged tissue with 

fibrotic tissue to maintain structural integrity during healing. Another form involving diffuse ECM 

remodelling, termed interstitial or reactive fibrosis, occurs at sites distal to the area of damage 

following myocardial infarction and throughout the myocardium in many other cardiovascular 
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diseases, such as hypertensive heart disease [35, 36]. Again, fibrosis is initially an adaptive 

response to preserve the structural integrity of the myocardium, but a prolonged response leads to 

excess deposition of ECM proteins and increased myocardial stiffness. The excess ECM impairs 

cardiac output by disrupting electrical coupling between cardiomyocytes, which can lead to the 

development of arrhythmias, and reduces the diffusion of oxygen and nutrients into the tissue 

leading to cardiomyocyte death [6, 37, 38]. 

In the healthy heart, fibroblasts are responsible for maintaining the ECM through continuous 

turnover of structural proteins. Fibroblasts achieve this through both enzymatic and non-enzymatic 

mechanisms. First, fibroblasts secrete matrix metallopeptidases (MMPs) capable of breaking down 

collagen fibres and tissue inhibitors of metalloproteinases (TIMPs) to inhibit degradation [39, 40]. 

Second, fibroblasts secrete collagen type I and collagen type III, which form collagen fibres, and 

other structural proteins, such as fibronectin [36]. In the damaged heart, fibroblast differentiation 

to myofibroblasts alters the balance between collagen degradation and secretion to increase ECM 

components. Myofibroblasts are primarily characterized by the expression of α-smooth muscle 

actin and are not found in the healthy heart [41, 42]. Pertinent to this thesis is the role of fibroblasts 

and their differentiation to myofibroblasts, although several other cell types differentiate to cardiac 

myofibroblasts [43].  

Reparative fibrosis following myocardial infarction is regulated through a sequential process 

from injury to fibroblast differentiation to scar tissue formation. In the infarct region, extensive 

cell death elicits an initial immune response to remove the cellular debris and extracellular matrix. 

The immune response creates space for fibroblasts to migrate to and proliferate in the infarct area. 

Inflammatory cytokines released in damaged areas, such as transforming growth factor β1 (TGF-

β1), lead to the differentiation of fibroblasts into myofibroblasts [44, 45]. Furthermore, TGF-β1 

increases the local production of angiotensin II (Ang II), which signals in an autocrine manner 

through the angiotensin II type 1 receptor (AT1R) to elicit a positive feedback loop further 

increasing TGF-β1 production [43]. Concurrently, cardiac injury increases systemic levels of 

catecholamines to overcome reduced cardiac function by increasing heart rate and inotropy [44, 

46]. The increased systemic catecholamine levels promote the secretion of renin and angiotensin 

II from the kidneys into the circulation, which further elevates AT1R signalling in the myocardium 

[44]. The activated myofibroblasts secrete and deposit collagen to form scar tissue in the infarct 

area preventing wall rupture. Alongside collagen deposition, myofibroblasts secrete inflammatory 
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and pro-fibrotic cytokines, eliciting autocrine and paracrine signalling and further activating 

myofibroblasts [43]. After reparation of the infarct, myofibroblasts persist in the area of damage 

and continue cytokine secretion and diffusion into the surrounding tissue. These cytokines 

facilitate the further transition of fibroblasts into myofibroblasts in distal areas of the heart and 

subsequent development of interstitial fibrosis, continuing the positive feedback loop in these areas 

[36, 47]. In order to develop effective therapies to prevent the adverse aspects of fibrosis, we must 

understand how signalling mechanisms elicit the transition to myofibroblasts and their function in 

an active secretory state.  

  

1.2. G protein-coupled receptors  

GPCRs comprise a family of transmembrane proteins that transduce extracellular signals 

across the cell membrane to elicit intracellular signalling events. This family of proteins responds 

to a diverse range of stimuli, including peptides, lipids, odorants and light [48]. The range of 

diversity is reflected in the more than 800 genes encoding members of the GPCR family. GPCRs 

are expressed in many cell types throughout the body and while initially thought to localize only 

to the cell surface, recent evidence has indicated GPCRs localize and signal from intracellular 

organelles, such as the nucleus [49]. The pathological role of GPCRs has led to many drug 

development programs focusing on these receptors, with ~40% of current drug therapies on the 

market targeting a small subset of these receptors [50]. 

The GPCR family is characterized structurally by the presence of seven transmembrane 

helices connected by three intracellular and three extracellular loops, an extracellular N-terminal 

domain and an intracellular C-terminal tail. Despite these gross structural similarities, there is 

significant diversity in primary sequence, structure and function within the GPCR family. 

Phylogenetic analysis of the human GPCRs led to the ‘GRAFS’ classification system comprised 

of five main subfamilies: Glutamate, Rhodopsin, Adhesion, Frizzled/taste2 and Secretin [51]. The 

rhodopsin family, with ~670 members, is the largest family with intrafamily diversity 

predominantly found within the transmembrane regions [52]. Compared to the other families, the 

rhodopsin family lacks an extended N-terminal that contains the ligand-binding domains of the 

secretin and glutamate families, the diverse functional domains of the adhesion family or the large, 

cysteine-rich domain of frizzled receptors [52]. Across the five families, ligand binding elicits a 
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conformational change to the receptor leading to activation of intracellular signalling cascades 

(Figure 1.2). For the purposes of this thesis, I will focus on GPCRs in the rhodopsin family.  

 

Figure 1.2. Crystal structure the β2-adrenergic receptor.  

Side (left) and cytoplasmic (right) view of the active β2-AR (green) structure in complex with the 

heterotrimeric G protein complex (removed in the picture) or the inactive receptor bound by the 

inverse agonist carazolol (blue). Overlap of the two structures illustrates the extension of TM5 and 

14 Å outward movement of TM6 in the active structure. The agonist BI-167107 occupies the 

binding pocket on the extracellular side (yellow). Figure adapted from [53]. 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Nature, “Crystal structure of the β2 adrenergic receptor-Gs protein complex,” Rasmussen SG et 

al., Jul 19;477(7366):549-55, Copyright 2011. See Appendix.  

 

1.2.1. An overview of G protein signalling 

Since the first crystal structure of rhodopsin in complex with 11-cis-retinal two decades ago, 

there have been tremendous technological advances enabling structural analysis of many other 

receptors, predominantly in the rhodopsin family, in a variety of states [54, 55]. Crystal structures 

have identified a common activation mechanism following ligand binding, as illustrated by the β2-

adrenergic receptor (β2-AR) crystal structure in Figure 1.2. The ligand binds a site typically formed 

within the bundle of transmembrane helices, which leads to an outward movement of 

transmembrane domain 6 (TM6) and an extension of transmembrane domain 5 (TM5) on the 

cytoplasmic side of the receptor (Figure 1.2) [53, 55]. The structural rearrangement reveals an 

intracellular pocket required for recruitment of G proteins and other signalling partners. Additional 
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biophysical approaches have revealed a highly dynamic nature to GPCR conformation. For 

example, spectroscopy-based methods identified two, rapidly interchanging, inactive states of the 

unbound β2-AR. In the presence of an agonist, the receptor conformation shifted towards an 

activated state capable of interacting with the G protein. The transition to an active state was 

incomplete, as a population of intermediate states were also detectable, requiring the presence of 

the G proteins for a complete shift [55]. Importantly, similar requirements were identified for the 

μ-opioid receptor indicating these are general features of the GPCR family [56, 57]. 

A common characteristic of GPCR subfamilies, except for frizzled, is the activation of 

heterotrimeric G proteins. Discovered over 40 years ago, the heterotrimer consists of a Gα subunit 

and an obligate heterodimer of a Gβ and Gγ subunit [58, 59]. Numerous genes encode isoforms of 

the three subunits and many combinations between isoforms are capable of being formed. The 

abundance of isoforms and their diverse combinations enable GPCRs to regulate numerous 

signalling pathways depending on the G protein activated. 

 

1.2.1.1. Gα subunits 

The Gα family is encoded by 16 different genes in mammals, and consists of at least 21 

protein isoforms, which can be classified into four different families: Gαq/11, Gαi/o/t, Gαs/olf and 

Gα12/13 [60]. The classification is based on sequence similarity of isoforms as well the primary 

canonical effector protein regulated. The Gαq/11 family activates phospholipase Cβ (PLCβ), 

leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol 

(DAG) and inositol trisphosphate (IP3) [61]. The Gαi/o and Gαs families inhibit or activate  

adenylyl cyclase activity and cAMP production, respectively [62]. Lastly, the Gα12/13 family 

canonically activates the Rho-signalling pathway [63]. The isoforms within each family are 

expressed to varying degrees in different cell types throughout the body and are critical 

intracellular signalling mediators following GPCR activation. 

Gα contains two distinct domains, a Ras-like domain with GTPase activity and an α-helical 

domain. Interactions with the Ras-like domain and the receptor binding pocket formed by 

translocation of TM5 and TM6 recruit the heterotrimeric G protein complex to a receptor (Figure 

1.3A) [53]. In the inactive state, Gα contains a GDP molecule in a binding pocket formed by both 

the Ras-like and α-helical domain. The inactive state of Gα interacts with Gβγ through two 

interaction sites comprised of the Gα N-terminal α-helix and the side of the Gβ β propeller and the 
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Gα switch II domain and the top of the Gβ propeller (Figure 1.3B) [64-66]. The open Gα state 

formed upon receptor binding is rapidly converted to an active state by the binding of a GTP 

molecule, displacing the GDP. The binding of GTP leads to functional dissociation from the 

receptor and of the heterotrimeric complex, with the Gα and Gβγ free to modulate effector protein 

activity. Gα remains active until the hydrolysis of the bound GTP to GDP. The GTPase activity of 

each Gα subunit varies, serving as a molecular clock regulating the duration of G protein activation 

(Figure 1.3C) [67]. Individual GPCRs only activate a small subset of the available Gα proteins. 

Although the mechanisms of selective Gα activation are not fully understood, bioinformatic 

approaches have identified specific residues in the GPCR and Gα interacting regions important for 

specificity [68]. 

  

 

Figure 1.3. Structure and activation of heterotrimeric G proteins. 

 Illustration of the β2-AR in complex with the G protein heterotrimer through interactions of 

the Gα Ras-like domain and the binding pocket on the receptor. Figure adapted from [53]. 

 Crystal structure of heterotrimeric Gαiβ1γ2 complex. The Gα subunit’s Ras-like domain is 

green, the α-helical domain is beige, the N-terminal α-helix is yellow, and the switch II domain is 

dark blue. The Gβ β propeller structure is teal and the N-terminal helix is red. Lastly, the Gγ subunit 

is light blue. The interactions between the Gα switch II and N-terminal α-helix with the end or side 

of the Gβ β propeller, respectively, are evident. Figure adapted from [65] 

A 

B 

C 

A 
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 Agonist binding induces a conformational change in the GPCR (R) to an activated state (R*) 

enabling the binding of the heterotrimer G proteins. R* functions as a guanine exchange factor, 

promoting exchange of a GTP for the GDP bound to the Gα subunit and subsequent dissociation 

of the G proteins from the receptor. The Gα and Gβγ dissociate to regulate respective effector 

proteins, such as Gα regulation of adenylyl cyclases (ACs) and Gβγ regulation of Ca2+ channels, 

as illustrated. GTP hydrolysis by the Gα subunit leads to reassembly of the heterotrimer and 

inactivation, beginning the cycle again. Figure adapted from [53]. 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Cellular and Molecular Life Sciences, “G protein βγ subunits: Central mediators of G protein-

coupled receptor signaling,” Smrcka, AV., May 19;65(14):2191-214, Copyright 2008. See 

Appendix.  

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Nature, “Crystal structure of the β2 adrenergic receptor-Gs protein complex,” Rasmussen SG et 

al., Jul 19;477(7366):549-55, Copyright 2011. See Appendix.  

 

1.2.1.2. Gβ and Gγ subunits 

As mentioned, the other component of the heterotrimeric G protein complex is the obligate 

heterodimer comprised of a Gβ and Gγ subunit. Gβ and Gγ require dimer formation for proper 

expression, as evident by formation of aggregates due to misfolding when a single subunit was 

expressed in the Sf9 insect cell line [69]. When the heterotrimeric G protein complex was 

discovered, the Gβγ dimer was thought to function solely as a negative regulator of Gα-mediated 

signalling pathways [67]. The discovery that Gβγ activated the muscarinic acetylcholinergic 

receptor-activated inwardly rectifying K+ channel changed our understanding of the dimer’s 

function [70]. Since then, the list of effector proteins regulated by Gβγ subunits has expanded 

dramatically and now includes adenylyl cyclases, phospholipase Cβ, voltage-gated calcium 

channels, and other effectors, which are typically referred to as the canonical pathways [71, 72].  

The mammalian genome encodes five Gβ isoforms (Gβ1-5) and twelve Gγ isoforms (Gγ1-5, 7-

13). Within the Gβ family, Gβ1-4 are highly similar with between 79-80% sequence similarity, 

whereas Gβ5 is more divergent, with only 52% sequence similarity to the other four isoforms [72]. 

Furthermore, endogenous Gβ5 does not dimerize efficiently with Gγ, although heterologous 

overexpression drove heterodimer formation with Gγ2 [73]. For the purposes of this thesis, 
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discussion of Gβγ refers to Gβ1-4 isoforms only, unless otherwise stated. On the other hand, the Gγ 

family has more diversity with isoforms possessing 26-76% sequence similarity [72]. Despite the 

sequence diversity within each family, the majority of Gβ and Gγ subunits form stable complexes 

with similar structure, although interaction affinities between pairs vary [74]. The first crystal 

structures of the heterotrimeric G protein complex revealed Gβ belongs to the WD40 repeat protein 

family. The Gβ subunit forms a circular, seven-bladed β propeller structure and an α-helical N-

terminus. The Gγ subunit has an extended α-helical structure and forms a coiled-coiled structure 

with the N-terminal α-helix of Gβ (Figure 1.4A) [75-77]. Furthermore, Gα interacts with the dimer 

through Gβ only (Figure 1.3A). A comparison between the Gα-bound (inactive) and free (active) 

dimer demonstrated that the Gβγ dimer does not undergo a conformational change upon activation. 

Instead, the release from Gα unmasks Gβγ surfaces required for interaction with effector proteins 

[71]. Gβγ does not possess any intrinsic catalytic activity and instead mediates cellular processes 

through protein-protein interactions. The top of the Gβ propeller consists of a ‘hot spot’ for 

interactions with effector proteins  (Figure 1.4B), however, the N-terminus also mediates specific 

interactions [78-80].   

  

Figure 1.4. Protein binding surfaces on structure of Gβγ. 

(A) Ribbon model of Gβ1γ2 heterodimer with the 7 blades of the Gβ β propeller structure indicated 

and the N-terminal α-helix in red. The Gβ N-terminal α-helix forms a coiled-coiled with the Gγ 

subunit (light blue). 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Cellular and Molecular Life Sciences, “G protein βγ subunits: Central mediators of G protein-

coupled receptor signaling,” Smrcka, AV., May 19;65(14):2191-214, Copyright 2008. See 

Appendix.  

A B 
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(B) Space-filled model of the Gβ1 (grey) and Gγ2 (beige) heterodimer with the two surfaces 

involved with protein-protein interactions identified. Gβ interacts with the N-terminal α-helix of 

Gα on the side and the switch II domain of Gα and downstream effector proteins on the top. Figure 

adapted from [71] 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Cellular and Molecular Life Sciences, “G-protein βγ subunits as multi-functional scaffolds and 

transducers in G-protein-coupled receptor signaling,” Rasmussen SG et al., Aug 21;76(22):4447-

59, Copyright 2019. See Appendix.  

 

As Gβγ does not contain any catalytic activity, small molecule inhibitors must disrupt the 

relevant protein-protein interactions. The first Gβγ inhibitor required the expression of the Gβγ 

interacting region of G protein-coupled receptor kinase 2 (GRK2) comprising the C-terminal 192 

residues (GRK2ct) [81]. The peptide selectively inhibited Gβγ signalling, with no observed effect 

on Gα signalling [82, 83]. A crystal structure of Gβγ and GRK2 revealed the C-terminus interacted 

with the top of the Gβ β propeller, which is masked by the Gα switch II domain in the heterotrimer 

[84]. Subsequent peptide-based approaches identified two inhibitors: a short sequence from 

adenylyl cyclase II (ACII) termed QEHA, and a short peptide referred to as the SIRK peptide [78, 

85]. Crosslinking studies with QEHA and characterization of the Gβ1γ2-SIGK (an analogue of 

SIRK) structure revealed these peptides also interacted with the Gβ region masked by the Gα 

switch II domain [86, 87]. The identification of a common Gβ surface mediating interactions with 

effector proteins led to the characterization of a Gβ ‘hot spot’. The ‘hot spot’ comprises a core set 

of residues with which effector proteins have distinct dependencies [88]. For example, 

mutagenesis of Gβ ‘hot spot’ residues revealed differential effects on PLCβ2, PLCβ3, and ACII 

regulation, with PLCβ and ACII requiring residues on opposing sides of the β propeller [89]. 

Similarly, SIRK blocked Gβγ-dependent activation of PLCβ and phosphoinositide 3-kinase 

(PI3K), but not Gβγ-dependent inhibition of voltage-gated calcium channels or ACI activity 

stimulated by Gαs [78]. The differential inhibition by SIRK was the first evidence that Gβγ 

signalling pathways could be selectively inhibited [88].  

The success of Gβγ inhibitory peptides led to a computational screen to identify small 

molecules able to bind to the Gβ ‘hot spot’. The relative affinities of identified hits were assessed 

by the ability to compete with SIRK for binding to Gβ1γ2 at a range of doses. A subsequent search 
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looked for structurally similar molecules to the high affinity hits. The screen identified M119 and 

M201, which were validated by further functional experiments to confirm their ability to inhibit 

the GRK2-Gβγ interaction. M119 prevented Gβγ interactions with PLCβ2/3 and PI3Kγ, whereas 

M201 potentiated the binding with PLCβ3 and PI3K, but not PLCβ2, in vitro [90]. A subsequent 

study identified the structurally related small molecule gallein and characterized its ability to 

inhibit Gβγ-dependent activation of PI3Kγ and Rac1 [91]. Lastly, the structurally distinct, Gβ ‘hot 

spot’ targeting small molecule 12155 was identified. In contrast to the other inhibitors, 12155 

disrupted the interaction between Gβγ and GDP-bound Gαi independently of Gα nucleotide 

exchange. Furthermore, 12155 treatment in a neutrophil cell line led to receptor-independent 

activation of PLCβ, PI3K and extracellular signal regulated kinases 1/2 (ERK1/2). The 

identification of 12155 provides a tool to directly activate Gβγ independently of a GPCR and its 

many signalling pathways [92]. The development of these small molecules has enabled 

interrogation of Gβγ signalling in disease states, such as pathological cardiac remodelling, which 

I will discuss in Section 1.2.2.3. 

Whereas Gβ mediates interactions with various effector proteins, the Gγ subunit is required 

to tether the complex to the membrane. The Gγ C-terminus contains a cysteine-aliphatic-aliphatic-

X (CaaX) motif, which is modified by post-translational isoprenylation [71]. The isoprenyl 

modification is not required for dimer formation but is essential to retain the ability to regulate 

effector proteins [93]. Furthermore, variation in the length of the isoprenyl group altered the 

dimer’s membrane affinity and interactions with effector proteins [94, 95]. Although initially 

thought to tether to the plasma membrane solely, it is now evident that Gβγ can translocate from 

the plasma membrane to the membranes of intracellular organelles [96, 97]. Furthermore, non-

canonical Gβγ signalling pathways and interactors have recently been discovered in intracellular 

organelles such as the ER, Golgi apparatus, mitochondria and nucleus [98]. For example, cellular 

fractionation coupled with tandem affinity purification (TAP) followed by mass spectroscopy of 

TAP-tagged Gβ1 identified numerous nuclear interactors including heterologous nuclear 

ribonucleoprotein (hnRNP) family members, proteins which facilitate translocation between the 

nucleus and cytoplasm such as importin 7 and exportin 1, and the transcription factor (TF) NF-κB 

[99]. Of particular importance to this thesis is the increasing evidence of Gβγ-dependent 

transcriptional regulation, which will be discussed further in Section 1.3.5. 
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1.2.2. GPCR signalling in pathological cardiac remodelling 

Among the more than 800 GPCRs in the genome, expression of approximately 200 of them 

has been detected in the heart [100]. Many cell types in the heart express GPCRs that are activated 

by local or systemic increases of their endogenous ligands. Importantly, GPCRs’ intracellular 

signalling cascades regulate many aspects of pathological cardiac remodelling. Here I will focus 

on GPCRs that regulate cardiomyocyte hypertrophy and fibrosis in animal models and how this 

has been translated to the clinic, with a focus on GPCRs relevant to chapters contained in this 

thesis.  

Three common animal models, among others that will be referred to, are mice with cardiac-

specific overexpression of a transgene, transverse aortic constriction (TAC) and systemic infusion 

of GPCR agonists [101]. First, placing a transgene downstream of the α-MHC promoter drives 

cardiac-specific expression at high levels in adult cardiomyocytes. Therefore, these studies are 

limited to identifying in vivo regulatory functions in cardiomyocytes. Throughout this thesis, 

cardiac-specific overexpression refers to α-MHC driven expression unless otherwise stated. 

Transgenes under the control of a periostin (Postn) promoter can target expression to 

myofibroblasts but not in a tissue-specific manner, adding a potential confound to these 

experiments [102].  Second, the pressure-overload TAC model is a surgical method that increases 

left ventricle afterload resulting in pathological remodelling of the left ventricle and, ultimately, 

heart failure. A main limitation is the rapid onset of pressure overload following surgery compared 

to the slow progression in a clinical setting. Lastly, surgical implantation of an osmotic pump 

provides continuous, systemic infusion of hypertrophic inducers. A drawback is the effects on 

other organ systems due to elevated systemic levels that may confound the direct effects on cardiac 

cells [101]. 

 

1.2.2.1. Gαs-coupled GPCRs 

GPCR signalling through Gαs activation exerts positive effects on the force (inotropy), 

frequency (chronotropy), and relaxation rate (lusitropy) of cardiomyocyte contractility [103]. Gαs 

signalling results in activation of ACs, elevating intracellular cAMP levels and subsequent 

activation of protein kinase A (PKA) [104]. In the cardiomyocyte, PKA regulates contractility 

through phosphorylation of critical proteins involved in excitation-contraction coupling. PKA 

phosphorylation potentiates LTCC activity [105, 106], enhances RyR2 Ca2+ sensitivity [107], and 
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reduces phospholamban (PLB) inhibition of SERCA2a [108]. Furthermore, PKA phosphorylates 

the sarcomeric proteins cardiac myocyte binding protein-c (cMyBP-C) and troponin I [109, 110]. 

Altogether, these PKA-mediated phosphorylation events increase calcium release during systole, 

increasing inotropy, and the removal of calcium during cytosol, increasing lusitropy. Furthermore, 

PKA is also an important regulator of gene expression through phosphorylation of TFs, such as 

cyclic AMP-responsive element-binding protein (CREB) and histone deacetylase 5 (HDAC5) 

[111].  

While acute PKA activation has positive effects, long term activation can lead to detrimental 

cardiac remodelling. Prolonged PKA substrate phosphorylation impairs calcium handling, 

negatively impacting contractility and cardiac output [21]. The pathological effects of chronic 

PKA activation are evident in transgenic mice with cardiac-specific Gαs overexpression. These 

mice developed the hallmarks of cardiac remodelling late in life, including fibrosis and 

cardiomyocyte hypertrophy [112]. Similarly, transgenic mice with cardiac-specific overexpression 

of PKA showed impaired contractility and cardiomyocyte hypertrophy, followed by the 

development of dilated cardiomyopathy and hyperphosphorylation of RyR2 and PLB [113]. 

Furthermore, transgenic mice with myofibroblast-specific overexpression of the PKA catalytic 

subunit α (PKAcα) also develop cardiac hypertrophy due to increased secretion of paracrine factors 

[114]. Depending on the substrate assessed, there are reports of enhanced or decreased PKA 

activity in cardiac tissue from failing human hearts. For example, cardiac tissue from patients with 

ischemic cardiomyopathy or idiopathic dilated cardiomyopathy exhibited RyR2 

hyperphosphorylation [115]. Furthermore, human failing myocardium also exhibited increased 

LTCC currents, suggesting hyperphosphorylation by PKA [116]. Other studies have shown that 

cardiac tissue from human heart failure patients exhibits decreased phosphorylation of cMyBP-C 

[117], troponin I [118], and PLB [119]. The differential phosphorylation status of PKA targets 

may be due to the highly compartmentalized regulation of cAMP signalling.  

A-kinase anchoring proteins (AKAPs) assemble and localize components required for 

cAMP production and degradation and effector proteins to specific subcellular sites [120]. The 

localized nature of PKA activation has differential impacts on cardiomyocyte function. For 

example, cytoplasmic PKA activation in neonatal rat cardiomyocytes enhanced contractility, 

whereas nuclear activation led to hypertrophy [121]. As neonatal rat cardiomyocytes can be 

cultured in vitro for a limited time before losing their cardiomyocyte phenotype, the lack of a 
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hypertrophic effect may be due to insufficient length of PKA activation to see such effects. 

Conversely, PKA-activated TFs CREB and HDAC5 do not promote adverse cardiac remodelling 

and instead appear to be cardioprotective [122, 123]. While activation of these two TFs is not pro-

hypertrophic, activation of nuclear PKA is, suggesting additional pro-hypertrophic targets in the 

nucleus, one of which I will discuss further in Chapter 3. Furthermore, the localization of PKA 

signalling also differs between non-failing and failing hearts. In a rabbit model of heart failure, the 

balance of PKA signalling shifted from the sarcolemma to the myofilaments [124]. While 

localization of phosphorylated PKA substrates in human heart failure patients is opposite 

(decreased myofilament protein and increased SR protein phosphorylation), the results indicated 

that the temporal and spatial dynamics of PKA signalling are dependent on the cardiomyocyte’s 

health status.  

 

1.2.2.1.2. β-adrenergic receptors (β-AR) 

The β-AR family is composed of three different isoforms: β1-AR, β2-AR, and β3-AR. The 

β1-AR and β2-AR are the important mediators of cardiac function expressed at a ~4:1 ratio in 

cardiomyocytes, whereas the β3-AR is expressed at low levels [125]. In non-myocyte cells, β2-AR 

and β3-AR are abundant and there is low β1-AR expression [126, 127]. All three receptors signal 

through activation of Gαs, with the β2-AR and β3-AR also coupling with Gαi [127]. These 

receptors respond to the catecholamines epinephrine and norepinephrine released by the 

sympathetic nervous system, altering cardiomyocyte contractility through PKA signalling as 

previously described [128]. In cardiovascular disease, there is both a local and systemic increase 

in catecholamine levels leading to chronic receptor activation [129]. The sustained signalling 

decreases β1-AR expression and cell surface receptor density, thereby altering the ratio of β1-AR 

to β2-AR [130-132].  

A variety of animal models have demonstrated the pathological response to β-AR activation. 

Chronic infusion of the β-AR specific ligand isoproterenol in mice led to the development of 

pathological cardiac remodelling [133] and isoproterenol treatment of neonatal rat cardiomyocytes 

in vitro reactivated the fetal gene program and elicited a hypertrophic phenotype [134]. In cardiac 

fibroblasts, β2-AR knockout decreased migration and secretion of pro-fibrotic factors in response 

to isoproterenol, indicating the β2-AR promotes fibrosis in wild-type conditions [114]. Transgenic 

mice with cardiomyocyte specific overexpression of the β-AR isoforms revealed isoform specific 
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roles. Cardiac-specific β1-AR overexpression in mice initially enhanced cardiac function, but 

progressed to pathological cardiomyocyte hypertrophy, apoptosis and interstitial fibrosis [135]. 

On the other hand, low levels of cardiac-specific β2-AR overexpression enhanced cardiac function, 

with pathological remodelling observed only at very high levels of expression [136, 137]. The 

differential effect of β1-AR and β2-AR suggests the increased levels of cardiomyocyte β2-AR in 

heart failure patients is a cardioprotective mechanism [125]. The fact that β-AR antagonists are 

still used in the clinic to treat end-stage heart failure exemplifies the critical role of the β-ARs in 

heart failure.  

The clinical benefit of β-AR antagonists in reducing hypertension was identified almost 60 

years ago, with propranolol as the first approved small molecule [138, 139]. Since then several β-

AR antagonists have been developed and used in clinical trials for a variety of cardiovascular 

diseases such as hypertension, ischemic heart disease, and heart failure (although initially 

contraindicated for heart failure) [140]. Antagonist treatment prevents overactivation of β-AR 

signalling, thereby reducing desensitization and normalizing the surface expression of the receptor 

family [141]. β-AR antagonists with varying degrees of β1-AR selectivity were developed as 

animal studies indicated this subtype as the family member predominantly driving pathological 

remodelling. Both β1-AR-selective antagonists such as metoprolol, and non-selective antagonists, 

such as carvedilol, demonstrated reduced mortality and improved cardiac function in patients with 

heart failure in clinical trials [142-144]. Meta-analysis comparing the clinical benefit of multiple 

β-AR antagonists revealed that carvedilol treatment had the highest reduction in mortality, 

although this may be potentially due to properties other than β-AR antagonism [145]. Although β-

AR antagonists are an important tool in the clinical setting, they only target one aspect of the 

complex signalling network in cardiovascular diseases.  

  

1.2.2.2 Gαq-coupled GPCRs 

Gαq-coupled GPCR signalling is a strong driver of cardiomyocyte hypertrophy and 

fibroblast proliferation through the sustained mobilization of intracellular calcium. Gαq signals 

through activation of PLCβ, which hydrolyzes PIP2 into DAG and IP3. Increased IP3 activates the 

IP3R on the SR membrane, releasing Ca2+ into the cytoplasm. The increased Ca2+ activates protein 

kinase C (PKC), various TFs (i.e. NFAT) and other pro-growth pathways. Alongside IP3 pathways, 

DAG directly activates PKC. A variety of transgenic mice models have demonstrated the role of 
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Gαq in pathological cardiac remodelling. Transgenic mice with four-fold greater cardiac-specific 

expression of Gαq developed several characteristics of pathological cardiac remodelling: increased 

heart weight due to cardiomyocyte hypertrophy, reactivation of fetal gene expression, and 

impaired contractility [146]. Furthermore, mice expressing constitutively active Gαq developed 

severe cardiomyopathies, potentially due to pronounced cardiomyocyte apoptosis [147, 148]. On 

the other hand, cardiac-specific Gαq (and Gα11) knockout in mice prevented pathological cardiac 

remodelling in response to aortic banding, another model of pressure overload-induced heart 

failure [149]. These studies have altered Gαq activity solely in cardiomyocytes, but Gαq signalling 

is also an important regulator of fibrosis. Assessing signalling pathways regulating fibrosis has 

predominantly been done with primary cultures and activation of Gαq-GPCRs, which will be 

discussed in the upcoming sections. The Gαq-GPCRs associated with the pathological cardiac 

remodelling in cardiomyocytes and cardiac fibroblasts, and pertinent to this thesis, include the 

angiotensin II receptors (ATR), endothelin-1 receptors (ETR) and α1-adrenergic receptors (α1-

AR).   

 

1.2.2.2.1. Angiotensin II Receptors (ATR) 

Two isoforms of the angiotensin II receptor, the angiotensin II type I receptor (AT1R) and 

type II receptor (AT2R), are expressed in cardiac tissue of rodents and humans, with rodents 

expressing two AT1R isoforms [150-152]. Both the AT1R and AT2R are expressed in 

cardiomyocytes and cardiac fibroblasts [153, 154]. The development of heart failure leads to 

different changes in isoform expression between rodent models and humans. Whereas in rodent 

heart failure models there is increased AT1R and AT2R expression, cardiac tissue from human 

heart failure patients displayed decreased AT1R and stable or increased AT2R expression [151, 

155-157]. In pathological cardiac remodelling, there is enhanced receptor signalling through 

increased levels of the endogenous ligand angiotensin II (Ang II) following systemic and local 

increase in activity of the renin-angiotensin aldosterone system (RAAS).  

Several models have indicated that the RAAS exerts pathologic effects through the AT1R 

subtype. First, the AT1R-specific antagonist losartan prevented cardiac remodelling in mice 

following TAC surgery [158]. The pathological effects of AT1R were further demonstrated by the 

development of cardiomyocyte hypertrophy, fibrosis and reactivation of the fetal gene expression 

program in mice with cardiac-specific AT1R expression [159]. The AT1R is also the functional 
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isoform regulating cardiac fibroblast differentiation to myofibroblasts, proliferation, and secretion 

of cytokines and collagen [160-162]. Conversely, transgenic mice with cardiac-specific AT2R 

expression showed reduced cardiac remodelling following myocardial infarction, indicating a 

cardioprotective role of this isoform [163]. Alternatively, several studies have shown that Ang II-

mediated cardiomyocyte hypertrophy may be due to alterations in paracrine signalling between 

fibroblasts and cardiomyocytes and not direct actions on cardiomyocytes per se. For example, 

TGF-β1 knockout mice did not develop signs of pathological cardiac remodelling observed in 

wildtype mice following chronic Ang II infusion [164]. Furthermore, Ang II-mediated hypertrophy 

of neonatal rat cardiomyocytes required co-culture with cardiac fibroblasts. The Ang II effect was 

prevented by co-treatment with an ETR antagonist, suggesting ET-1 paracrine signalling from 

cardiac fibroblasts is also required [165].  

Small molecules targeting elements of the RAAS are commonly employed as therapies for 

patients with cardiovascular disease. Two common treatments are angiotensin-converting enzyme 

(ACE) inhibitors and angiotensin II receptor blockers (ARBs), specifically AT1R antagonists. The 

therapeutic strategies target the RAAS at two distinct parts of the pathway: the conversion of Ang 

I to Ang II by ACE by ACE inhibitors or Ang II interactions with the receptor by ARBs. A meta-

analysis of 32 heart failure clinical trials assessing ACE inhibitors identified a significant reduction 

in risk of death and hospitalization [166]. Although there were significant benefits to ACE 

inhibitors, the reduction in risk of death is minimal with one clinical trial identifying a 16% 

reduction compared to placebo in patients with heart failure [167] and another found a 29% 

reduction in asymptomatic patients with reduced left ventricular ejection fraction [168]. Similar 

decreases in mortality were observed in clinical trials for ARBs, with one identifying a 13.2% 

reduction in mortality and morbidity [169]. However, a meta-analysis of 22 ARB clinical trials for 

heart failure identified a nonsignificant reduction in mortality and hospitalizations [170, 171]. The 

moderate benefits of targeting the RAAS system highlights again the difficulties in preventing 

disease progression when targeting a single aspect of the complex regulatory signalling network.  

 

1.2.2.2.2. Endothelin-1 Receptors (ETR) 

Endothelin-1 (ET-1) is the predominant endothelin isoform (of four) regulating 

cardiovascular function through activation of the ETA receptor (ETAR) or ETB receptor (ETBR). 

Fibroblasts from the rat left ventricle exhibit similar isoform expression, whereas cardiomyocytes 
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predominantly express the ETAR isoform [172]. Following myocardial infarction in rats, ET-1, 

ETAR and ETBR expression increased in the left ventricle [173]. Similar altered expression was 

observed in the left ventricle of patients with heart failure due to idiopathic dilative 

cardiomyopathy, although no change or decreased ETBR expression was observed [174, 175]. The 

increased ET-1 expression corresponds to its role in promoting pathological cardiac remodelling. 

ET-1 primarily functions in a paracrine manner and is produced locally by cardiomyocytes, 

endothelial cells and fibroblasts [176]. The pathological effect of ET-1 was demonstrated in 

transgenic mice with cardiac-specific ET-1 overexpression. These mice developed left ventricle 

dilation, cardiomyocyte hypertrophy and increased expression of inflammatory cytokines [177]. 

The pathological effects of ET-1 are mediated through activation of the ETAR subtype. In 

primary rat and human cardiac fibroblasts, ETAR signalling increased collagen synthesis and 

proliferation [178, 179]. In neonatal rat cardiomyocytes, the hypertrophic response to ET-1 was 

inhibited by co-treatment with an ETAR-specific antagonist [180]. Corresponding to this, systemic 

ETAR-specific antagonist treatment prevented pathological cardiac remodelling following aortic 

banding in rats [181, 182]. Interestingly, a time-dependent effect of ETAR antagonist treatment 

was observed in a myocardial infarction model. Antagonist treatment beginning within 24 h of the 

MI surgery did not alter survival, impaired scar healing and led to greater left ventricle dilation 

[183]. Conversely, antagonist treatment starting ten days after MI surgery improved survival and 

cardiac function [182]. These studies suggest ET-1 is initially cardioprotective, with the 

detrimental effects requiring chronically elevated levels. Although ETAR antagonists reduce 

pathological cardiac remodelling in animal models, clinical trials with these compounds for heart 

failure have not been successful [184]. 

 

1.2.2.2.3. α1-adrenergic receptors (α1-AR) 

The α1-AR family, composed of the α1A-AR, α1B-AR, and α1D-AR isoforms, is activated by 

the endogenous catecholamines epinephrine and norepinephrine. Cardiomyocytes express the α1A-

AR and α1B-AR, with predominant α1B-AR expression, whereas cardiac fibroblasts do not express 

any α1-AR isoforms [185]. Similarly, the human heart expresses the α1A-AR and α1B-AR isoforms, 

with the α1B-AR the predominant isoform [186]. In the healthy heart, the α1-AR comprise a small 

proportion of the total adrenergic receptors (which also includes the β-AR). The relative proportion 

increases in human heart failure as there is a slight increase in α1-AR expression and a substantial 
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decrease in the β1-AR expression. It has been postulated that the increased relative α1-AR 

expression functions as a reserve to sustain the positive inotropic effects of catecholamines in the 

heart [185].  

Animal models assessing the functional role of the α1-ARs suggest the α1A-AR isoform is 

cardioprotective and the α1B-AR isoform promotes pathological cardiac remodelling. Transgenic 

mice with overexpression of an α1B-AR constitutively active mutant (CAM) under a heart-specific 

or its endogenous promoter develop cardiac hypertrophy [187, 188]. At three months of age, 

transgenic mice with cardiac-specific overexpression of wild-type α1B-AR exhibited impaired left 

ventricular function without the development of cardiac remodelling. By nine months of age, these 

transgenic mice died with the hallmarks of dilated cardiomyopathy, including decreased left 

ventricle function, chamber dilation and reactivated fetal gene expression [189-191]. On the other 

hand, transgenic mice with cardiac overexpression of wild-type α1A-AR did not develop cardiac 

hypertrophy up to six months of age and displayed enhanced contractility [192]. Lastly, α1A-AR 

and α1B-AR double knockout mice developed more severe dilated cardiomyopathy and had higher 

mortality rates following TAC surgery than wild-type [193]. Replacing a single subtype in the 

cardiomyocytes from the double knockout mice revealed that the α1A-AR, and not the α1B-AR, 

mediated pro-survival signalling in cardiomyocytes [194]. Furthermore, hearts were protected 

from ischemic injury in transgenic mice with an α1A-AR CAM, and not an α1B-AR CAM, under 

the endogenous promoter [195, 196]. The various transgenic mouse models suggest the α1A-AR 

mediates cardioprotective signalling, whereas the α1B-AR is involved with pathological cardiac 

remodelling. While the animal models suggest isoform specific effects in the heart, clinical trials 

clearly demonstrated a cardioprotective role of the α1-AR family. Clinical trials with pan-α1-AR 

antagonists demonstrated that antagonist treatment led to increased heart failure rates in patients 

with hypertension and increased mortality in heart failure patients [197, 198].  

Although the pathological role of the α1-AR is not clear, specific agonists are used to model 

cardiomyocyte hypertrophy with neonatal rat cardiomyocytes. The hypertrophic effect of the α1-

AR specific agonist phenylephrine (PE) on neonatal rat cardiomyocytes was observed almost 40 

years ago and is still used to model hypertrophy [199, 200]. Activation of the α1-AR elicits an 

increase in cell size and similar reactivation of the fetal gene expression observed with in vivo 

models, allowing for a defined system to assess specific cellular processes [185]. 
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1.2.2.3. Gβγ signalling  

The functional role of the receptors previously discussed is typically associated with their 

activation of a specific Gα isoform, with less known about Gβγ-mediated effects. Initial in vivo 

studies with cardiac-specific overexpression of GRK2ct, an inhibitor of Gβγ, prevented 

remodelling in a genetic mouse [201] and a rabbit heart failure model [202]. Development of Gβγ 

small-molecule inhibitors enabled the functional role of Gβγ to be further assessed without 

transgenic expression of peptide inhibitors. The systemic, daily treatment of the inhibitor M119 

prevented cardiac remodelling in response to chronic infusion of the β-AR agonist isoproterenol 

in mice. In the same study, daily injections of the chemically related inhibitor gallein prevented 

the progression of pre-established heart failure in a mouse genetic model [203]. A subsequent 

study investigated the functional pathways targeted by Gβγ inhibition to prevent cardiac 

remodelling following TAC surgery. Gallein restored β-AR surface expression in the heart and the 

adrenal gland, reducing catecholamine secretion and plasma levels in the mice. Therefore, 

systemic Gβγ treatment prevents the progression of heart failure through direct actions on the heart 

as well as other organs [204].  

Further studies using primary cardiac fibroblasts and cardiomyocytes addressed the direct 

role of Gβγ on the heart. In mouse cardiac fibroblasts, gallein reduced myofibroblast activation in 

response to TGF-β, which was associated with increased intracellular cAMP due to restored β-AR 

density. A similar reduction in myofibroblast activation and increased cAMP occurred in human 

cardiac fibroblasts from heart failure patients treated with gallein [205]. Lastly, Gβγ signalling 

positively regulated hypertrophy of neonatal rat cardiomyocytes and increased fetal gene 

expression in adult rat cardiomyocytes following ETR activation. Both gallein and Golgi-targeted 

GRK2ct demonstrated that Gβγ signalling at the Golgi apparatus is required to activate PLCε 

signalling and a subsequent hypertrophic response [206]. In general, canonical Gβγ signalling 

pathways proximal to the receptor have been implicated in cardiac remodelling. As already 

discussed, extensive work has identified nuclear Gβγ-dependent regulation of RNAPII 

transcription through interactions with TFs. In Chapter 4, I will describe a new role for Gβγ in 

regulating RNAPII transcription. 
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1.3. RNA Polymerase II-mediated Transcription 

1.3.1. Discovery of eukaryotic RNA polymerases 

RNA polymerase activity in eukaryotes was first identified in rat liver homogenates in 1959 

[207]. At the time, a single bacterial RNA polymerase was known to produce the three major 

classes of RNA: rRNA, tRNA, and mRNA, while little was known about the eukaryotic 

polymerase [208]. A decade after identification of eukaryotic RNA polymerase activity, three 

distinct RNA polymerases were purified by chromatography from sea urchin embryos, rat liver 

and yeast [209]. The three polymerases were termed RNA polymerase I (RNAPI), RNA 

polymerase II (RNAPII) and RNA polymerase III (RNAPIII) based on the order of elution. Unlike 

bacteria, the three eukaryotic RNA polymerases each transcribe a different class of RNA from a 

DNA template. Using the toxin α-amanitin, which has differential effects on the activity of each 

polymerase in vitro, RNAPI, RNAPII and RNAPIII were determined to transcribe rRNA, mRNA, 

and tRNA, respectively [210-214]. Subsequent identification of the components comprising each 

polymerase, revealed a set of shared proteins and polymerase-specific components required for 

specific transcriptional functions [208]. RNAPI, RNAPII, and RNAPIII contain 14, 12, and 17 

subunits, respectively, with five subunits shared among the polymerases [215]. These five core 

subunits are conserved from bacteria, archaea and eukaryotes [216], reflecting the highly 

conserved mechanism employed for transcription throughout evolution. While the RNAPII-

specific subunits were initially discovered in yeast [217], these subunits are conserved across 

eukaryotes [218].  

 

1.3.2. Structure of RNA polymerase II 

Various structural methods have enabled generation of highly detailed structures of the large 

multi-subunit RNAPII in complex with DNA, RNA and a variety of different transcriptional 

regulators. These structures have defined core features conserved across species and provided 

insights into how transcription regulators alter RNAPII function. While low resolution structures 

had previously been determined [219], the first high resolution structures of RNAP defined our 

mechanistic understanding of transcription. The first structure was derived from the bacterial 

Thermus aquaticus RNAP core enzyme [220], which was quickly followed by structures of the 

Saccharomyces cerevisiae 10-subunit core RNAPII without [221, 222] and with DNA [223], the 
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complete 12 subunit S. cerevisiae RNAPII [224, 225] and human RNAPII [226]. The various 

structures revealed a general architecture creating the catalytic core of the RNAPII defined by the 

conserved five subunits: Rpb1, Rpb2, Rpb3, Rpb6, Rpb11. The remaining unique RNAPII 

subunits provide additional functional and regulatory features.  

The architecture is similar to a crab claw, with four large flexible regions termed the core, 

clamp, shelf and jaw (Figure 1.5A) [227]. The jaw region maintains contact with downstream 

DNA throughout transcription, orienting entry of DNA into the active site [228, 229]. During 

transcription, the negatively charged DNA template enters the active site through the positively 

charged cleft. The clamp region undergoes an extensive conformational change upon DNA binding 

to secure the template DNA in the active site (Figure 1.5B) [221-223, 229]. The polymerase melts 

the double-stranded DNA as it enters the cleft and inserts the template strand into the active site. 

In order to facilitate nucleotide catalysis at the active site, RNAPII requires Mg2+ and the entry of 

an appropriate nucleotide triphosphate (NTP) through the pore. Downstream of the active site, a 

nine base pair RNA-DNA hybrid extends perpendicular to the entry DNA due to the wall domain 

near the active site, which along with regions of Rpb1 and Rpb2 stabilizes the open transcription 

bubble [223].  

The RNA-DNA hybrid is melted through the coordinated actions of the lid, rudder and fork 

loop 1. The fork loop contacts and stabilizes the hybrid, the lid functions as a wedge to separate 

the RNA and DNA, and the rudder’s interaction with the released single-stranded DNA prevents 

the hybrid from reannealing [230]. Additionally, the lid guides the RNA into the polymerase’s 

RNA exit channel, placing the RNA close to a critical regulatory domain of co-transcriptional 

RNA processing (Figure 1.5C). Rpb1 contains a C-terminal domain (CTD) near the exit site that 

is comprised of multiple repeats, from 26 in S. cerevisiae to 52 in mammals, of the consensus Tyr1-

Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad repeat [231]. Although not identified in structural studies 

due to its intrinsic disorder, the CTD undergoes dynamic changes in phosphorylation throughout 

the transcription cycle that is required for the recruitment of transcription co-factors at specific 

stages of transcription [232, 233]. The role of specific phosphorylation events will be discussed 

further in the subsequent sections. 
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Figure 1.5. Structure of RNAPII. 

 Ribbon model of core 10-subunit RNAPII structure with the core (grey), jaw (blue), shelf 

(pink) and clamp (orange) module indicated.  

 Space filled model of RNAPII coloured according to the surface charge. The majority of the 

RNAPII surface area is negatively charged (red), with the cleft positively charged (blue) to guide 

negatively charged DNA towards the active site.  

 Diagram of transcribing RNAPII with DNA template strand (blue), non-template strand 

(green), RNA (red) and Mg2+ (purple). The rudder is shown melting the RNA-DNA hybrid as it 

leaves the active site, with the lid guiding the RNA to the exit groove. Figure adapted from [230]. 

From Cramer, P., D.A. Bushnell, and R.D. Kornberg, Structural basis of transcription: RNA 

polymerase II at 2.8 angstrom resolution. Science, 2001. 292(5523): p. 1863-76. Reprinted with 

permission from AAAS. See Appendix. 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer, Nature 

Structural & Molecular Biology, “Structure and mechanism of the RNA polymerase II 

transcription machinery,” Hahn, S., 11(5):394-403, Copyright 2004. See Appendix.  

 

The initial RNAPII structures provided detailed mechanistic information on the enzymatic 

activity involved in transcription. However, many of these initial structures were of RNAPII alone, 

a state that does not reflect the highly coordinated transcription that occurs in the cellular 

environment. This process is highly regulated at various stages to ensure proper gene expression 

and to elicit adaptive responses to the many forms of cellular stress. A host of other proteins are 

recruited to RNAPII in a spatiotemporally regulated manner to ensure proper gene expression 

under a variety of conditions. Advances in structural biology have enabled the generation of 

RNAPII in complex with a variety of different transcriptional regulators, which, along with 

biochemical data, has expanded our knowledge of the regulatory stages. 

B C A 
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1.1.3. Regulatory stages of RNA Polymerase II transcription 

RNAPII transcription occurs in several stages termed initiation, elongation and termination 

(Figure 1.6). The initiation stage recruits RNAPII to a gene promoter in the proper orientation, 

establishes the transcription bubble and promotes promoter-clearance, enabling RNAPII to begin 

transcription (Step 1 and 2). At a plurality of genes (30-90% in metazoans depending on the 

organism and cell type in question), this transcript elongation phase is interrupted ~30-50 bp 

downstream of the transcription start site, where it enters an intermediate stage of promoter-

proximal pausing (Step 3) [234]. Following release from the paused state, productive elongation 

begins along the gene body where the nascent RNA transcript is produced and co-transcriptionally 

processed (Step 4). At the 3’ end of the gene, termination releases the RNA transcript from the 

polymerase and the polymerase from the DNA (Step 5 and 6). Regulation of each stage requires 

the recruitment of transcriptional regulators to ensure proper gene expression. The Rpb1 CTD is a 

critical regulator of the transcription cycle, serving as a scaffold for the proper spatiotemporal 

recruitment of transcriptional regulators. Dysregulation of transcription occurs in a variety of 

human diseases, either through aberrant signalling or mutation in critical proteins leading to 

improper recruitment of transcriptional machinery and alterations in gene expression.  

 

Figure 1.6. Simplified schematic of RNAPII transcription cycle stages. 
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(1) The concerted actions of general transcription factors, Mediator, chromatin remodelling 

complexes and other co-activators form the preinitiation complex  

(2) Phosphorylation of serine 5 in Rpb1’s CTD heptad repeat promotes dissociation of RNAPII 

from the preinitiation complex. RNAPII transcribes ~30-50 base pairs before promoter proximal 

pausing. 

(3) P-TEFb, a dimer of Cdk9 and cyclin T, releases paused RNAPII through phosphorylation of 

transcriptional machinery. 

(4) RNAPII enters the elongation stage throughout the gene body, recruiting RNA processing 

factors and elongation factors in a spatiotemporal manner through phosphorylation of Rpb1’s 

CTD. 

(5 and 6)  At the 3’ end of the gene, the RNA transcript is processed and RNAPII dissociated from 

the DNA. 

Reprinted from DNA Repair, 9(3), Aygün, O., Svejstrup, JQ., RECQL5 helicase: connections to 

DNA recombination and RNA polymerase II transcription, 345-353, Copyright (2010), with 

permission from Elsevier. See Appendix. 

 

1.3.3.1. Initiation  

Initiation is the first rate-limiting regulatory stage of RNAPII transcription whereby the 

polymerase is loaded onto the DNA template and begins transcribing. Initiation consists of several 

intricate steps to form a preinitiation complex (PIC) composed of RNAPII and the general TFs 

(GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. PIC formation is regulated at individual 

genes by the presence of local cis-regulatory DNA sequences termed promoters and distal regions 

termed enhancers. Genome-wide analysis identified sequence motifs commonly found within 

promoter regions required for GTF recruitment [235]. Furthermore, promoters and enhancers 

contain sequence motifs capable of recruiting sequence-specific TFs (Figure 1.7A) [236]. [236]. 

TFs promote PIC formation through a complex set of mechanisms involving multiple interactions.  

For example, TFs promote local and long-range effects on chromatin structure and chromosome 

architecture. TFs interact with chromatin remodellers and modifiers, to alleviate nucleosome 

barriers and create accessible DNA for the transcriptional machinery (Figure 1.7B) [237]. [237]. 

For example, TFs promote dynamic alterations in histone acetylation by histone acetyltransferases 

(HAT) and HDACs at promoters and enhancers. Increased histone acetylation corresponds to 
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increased DNA accessibility at these genomic loci and correlates with increased TF binding and 

transcriptional activity [238, 239]. Functional cooperation between TFs and chromatin-modifying 

factors is an important feature of transcriptional responses following environmental changes to the 

cell.  

 

Figure 1.7. Schematic of RNAPII initiation steps. 

(A and B) Transcription factors recognize their sequence motifs in enhancers and recruit chromatin 

remodellers to promote accessible DNA for the recruitment of transcriptional machinery. 

(C) Mediator and GTFs recruit RNAPII to the developing preinitiation complex. 

(D) Phosphorylation of serine 5 of Rpb1 CTD heptad repeat promotes RNAPII promoter escape. 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Nature Reviews Molecular Cell Biology, “Transcription regulation by the Mediator complex,” 

Soutourina, J., Dec 6;19(4):262-274, Copyright 2017. See Appendix.  

 

TFs can also function through the Mediator complex. Mediator is a multi-subunit complex  

(up to 30 subunits in humans) that is bound to RNAPII not engaged in RNA synthesis [237]. The 

~1.4 mDa complex serves as a bridge between gene-specific TFs bound at promoters and 

enhancers and the RNAPII transcription machinery [240]. Most gene-specific TFs do not directly 

contact RNAPII and instead interact with Mediator through activation domains, enabling 

integration of multiple TF signals to modulate RNAPII recruitment [241]. Beyond direct 

interactions with RNAPII, Mediator also promotes RNAPII recruitment by regulating GTF 

function and recruitment (Figure 1.7C). Furthermore, Mediator facilitates the long-range 
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interactions required for enhancer transcriptional regulation by altering the 3D organization of the 

chromatin, forming enhancer-promoter gene loops [241].  

TFIID, a complex consisting of TBP and TAFs 1-13, interactions with regulatory elements 

at the core promoter, such as TBP recognition of the TATA box, initiate PIC formation [242-244]. 

However, additional core promoter elements are recognized by TAFs that are essential at non-

TATA box promoters [245]. Recruitment of TFIIA and TFIIB stabilizes the TBP-promoter 

complex and assists with proper orientation, although transcription in vitro does not require TFIIA 

[246-249]. In the intact PIC, TFIIB extends into the catalytic site of RNAPII through the RNA exit 

channel to modulate catalytic activity and transcription start site selection [250-252]. The growing 

PIC recruits the TFIIF-RNAPII complex, followed by recruitment of TFIIE and TFIIH to form the 

complete initiation complex [230, 253]. TFIIH consists of a core domain, which contains the 

helicase subunit XBP and a kinase domain that includes the cyclin-dependent kinase CDK7 [254]. 

The ATP-dependent helicase XPB is required to melt the promoter DNA, transitioning the PIC to 

an open complex with the template DNA in the active site of RNAPII [255, 256].  

The open initiation complex begins transcribing RNA as it undergoes promoter clearance, 

an inefficient process in vitro with RNAPII undergoing multiple rounds of abortive transcription 

resulting in the production of short (~10 nt) nascent RNA transcripts [257, 258]. The growing 

RNA transcript displaces TFIIB from the RNA exit channel of RNAPII, promoting release from 

the GTFs [259, 260]. Phosphorylation of Ser5 of the Rpb1 CTD (pSer5) by the TFIIH subunit 

CDK7 disrupts the RNAPII-Mediator interaction, further promoting RNAPII release (Figure 1.7D) 

[261]. The phosphorylation also facilitates the recruitment of capping enzyme to modify the 5’ end 

of the nascent RNA with a methyl-guanosine cap. Continued RNAPII transcription disrupts the 

interactions with other GTFs, although TFIIF can also interact with elongating complexes [262]. 

A subset of GTFs and Mediator remain at the promoter forming a reinitiating scaffold to maintain 

a higher rate of initiation at some genes [263-265]. After transcribing 30-50 bp, RNAPII enters a 

promoter-proximal paused state mediated by the recruitment of several negative elongation factors 

[266]. 

   

1.3.3.2. Promoter-Proximal Pausing 

The first evidence of promoter-proximal RNAPII pausing in mammalian cells was found at 

Drosophila melanogaster heat shock protein (Hsp) genes and subsequently at other immediate 
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early genes, such as c-Fos and c-Myc [267-270]. The advent of next-generation sequencing 

enabled the development of genome-wide methodologies that have identified promoter-proximal 

RNAPII at a large number of genes, with estimates ranging between 30-90% of genes with paused 

RNAPII depending on the method and criteria [271-273]. These genome-wide methods 

demonstrated that promoter-proximal pausing is abundant at genes involved with development, 

differentiation and response to extracellular stimuli [274]. The paused RNAPII complex is highly 

stable with a mean half-life of 6.9 min. The stability was proposed to facilitate integration of 

multiple signals and create a transcriptional checkpoint for co-transcriptional processing [275]. 

Furthermore, researchers have proposed pausing exerts important regulatory functions on the 

synchronization of gene induction and speed of gene induction [266, 276]. Promoter-proximal 

pausing requires the actions of the negative elongation factors 5,6-dichloro-1-β-D-

ribofuranosylbenzimidazole (DRB) Sensitivity Inducing Factor (DSIF) and Negative Elongation 

Factor (NELF) [234, 277, 278].  

Following promoter clearance, negative elongation factors are recruited to the actively 

transcribing RNAPII to establish pausing. First, DSIF is recruited and forms extensive interactions 

with RNAPII, upstream DNA and RNA  [279, 280]. The recruitment of DSIF requires many of 

the GTFs to be released as these factors share several interaction sites with RNAPII (Figure 1.8A) 

[280]. For example, competition between TFIIE and DSIF for binding to the clamp domain of 

RNAPII has been observed [279, 281]. The Kyrpides, Ouzounis, Woese (KOW) 4 and KOW5 

domains of Spt5 are required to establish RNAPII pausing, forming a clamp around the RNA 

exiting RNAPII (Figure 1.8B) [280, 282]. DSIF recruits and cooperatively regulates RNAPII 

pausing with the four subunit NELF complex [277, 283]. NELF restrains RNAPII mobility through 

interactions with the face opposite of the cleft domain [284]. Of the four subunits, the N-terminal 

domain of NELF-A regulates RNAPII pausing and interactions with the DSIF-RNAPII complex 

[284, 285]. Initial studies indicated that the depletion of DSIF or NELF led to reduced promoter-

proximal paused RNAPII at the hsp90 gene promoter in D. melanogaster [286]. Chromatin 

immunoprecipitation followed by next-generation sequencing (ChIP-seq) for NELF-A and Spt5 

demonstrated genome-wide co-occupancy of these factors with promoter-proximal paused 

RNAPII [271]. While the majority of NELF resides at genomic loci with paused RNAPII, DSIF 

also occupies gene bodies with another peak at the 3’ end of the gene 
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Figure 1.8. Spaced-filled model of partial preinitiation or paused RNAPII complex. 

(A) RNAPII in complex with TBP, TFIIB, TFIIF and TFIIE (left) or DSIF and NELF (right). A 

comparison of the two structures illustrates the common RNAPII binding surfaces required for 

GTF and DSIF. Figure from [287]. 

(B) Two views of RNAPII in complex with NELF and DSIF rotated 180°. NELF binds to RNAPII 

on the opposite side of the cleft where DNA enters. DSIF interacts with upstream DNA and the 

Spt5 KOW4 and KOW5 domains localize around the RNA exit channel. Figure from [287]. 

 

Positive transcription elongation factor b (P-TEFb), a heterodimer of cyclin-dependent 

kinase 9 (CDK9) and cyclin T, phosphorylates and releases the transcriptional machinery from the 

paused state. TFs, bromodomain-containing protein 4 (Brd4), and the multi-subunit Super 

Elongation Complex (SEC) recruit P-TEFb to the chromatin., which will be discussed further in 

Section 1.3.4. The genome-wide role of P-TEFb in promoter-proximal pause release was initially 

demonstrated in mouse embryonic fibroblasts using the CDK9 inhibitor flavopiridol and RNAPII 

ChIP-seq. Following flavopiridol treatment, RNAPII occupancy increased at the promoter-

proximal pause site and decreased throughout the gene body, leading to an increased pausing index 

A 

B 
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(Pausing Index =  
Promoter Proximal Occupacy

Gene Body Occupancy
) [271]. P-TEFb stimulates the transcriptional 

machinery through phosphorylation of NELF, DSIF and RNAPII. Although not every gene 

contains paused RNAPII, transcription of >95% of actively transcribed genes required P-TEFb 

activity [275]. 

P-TEFb phosphorylates the NELF subunits NELF-A and NELF-E [285, 288]. The NELF-A 

phosphorylation sites reside within the region required for RNAPII pausing, with alanine 

mutagenesis of these residues preventing P-TEFb-dependent pause release [284, 289]. 

Furthermore, phosphorylation of NELF-E released NELF from the transcriptional machinery and 

relieved its transcriptional repression [288]. P-TEFb also phosphorylates the DSIF subunit Spt5 

within the linker region between the KOW4 and KOW5 domains and at threonine 4 in the first C-

terminal repeat region 1 (CTR1) [290, 291]. Phosphorylation of the KOW linker is thought to open 

the RNA clamp formed by KOW4 and KOW5 and assist with pause relief [284]. Similar to Rpb1 

CTD, the Spt5 CTR1 provides an important scaffold to recruit transcriptional regulators, histone 

modifiers and RNA processing enzymes [292, 293]. Lastly, P-TEFb activity has canonically been 

ascribed to RNAPII CTD Ser2 phosphorylation (pSer2), a mark of elongating polymerase [294]. 

The initial characterization was mainly due to indirect studies that correlated CDK9 depletion with 

decreased pSer2 [295], whereas direct assessment of Cdk9 substrate-specificity identified 

preferential phosphorylation of Ser5 [294, 296]. Although a recent study suggested 

phosphorylation of tyrosine 1 of the CTD heptad repeat alters the specificity to Ser2 [297]. The 

identification of CDK12 and CDK13 as Ser2 kinases in vivo adds another regulatory layer to pSer2 

[298]. Following the P-TEFb dependent pause-release, RNAPII enters into productive elongation 

to transcribe the gene body.   

 

1.3.3.3. Elongation 

As RNAPII transcribes through the gene body, the coordinated spatiotemporal alterations in 

the transcriptional machinery are regulated predominantly through the phosphorylation status of 

the RNAPII CTD and the Spt5 CTR1. The numerous repeats with varying combinations of post-

translational modifications in each domain serve as a functional code. Alterations in the code as 

RNAPII transcribes enables properly timed recruitment of transcriptional machinery as they ‘read’ 

the code, such as the already mentioned capping enzyme recruitment to pSer5 [231]. These factors 
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typically promote transcription, with elongation rates accelerating through the gene body and 

ranging from 0.5 to 4 kb/min [275]. For example, P-TEFb phosphorylation of DSIF and RNAPII 

facilitates the recruitment of the RNA polymerase-associated factor complex (PAFc). PAFc further 

promotes the P-TEFb dependent ejection of NELF from the transcriptional machinery [299, 300]. 

The multi-subunit PAFc localizes with RNAPII and promotes transcription through the chromatin 

template and deposition of co-transcriptional histone modifications [301, 302]. Furthermore, the 

PAFc regulates pSer2 throughout the gene body by recruitment of CDK12, increasing pSer2 as 

RNAPII proceeds to the 3’ end [303, 304]. The pSer2 facilitates the recruitment of RNA processing 

factors, such as the spliceosome, to co-transcriptionally produce the mature RNA [305]. The 

elongating complex continues through the gene body until reaching the polyadenylation (polyA) 

site, a signal for RNAPII to terminate transcription.  

 

1.3.3.4. Termination  

Termination requires dissociation of the nascent RNA from RNAPII and the subsequent 

release of the polymerase from the DNA template [305]. An essential polyA signal (PAS) at the 

3’ end of a gene begins termination by recruiting the polyA complex [306]. This complex adds an 

adenosine tail to the RNA transcript that improves RNA stability and regulates downstream 

translation [307]. Two models were proposed to explain the mechanism behind the promoted 

termination by recruitment of the polyA complex. The first, referred to as the allosteric model, 

suggests these factors alter the RNAPII elongation complex conformation to a state more prone to 

termination [308]. The second, referred to as the torpedo model, involves the recruitment of the 5’ 

to 3’ exonuclease Xrn2 to the newly formed, uncapped 5’ end of the RNA tethered to RNAPII 

following cleavage of the transcript. Xrn2 degrades the nascent transcript remaining tethered to 

RNAPII, eventually catching up to the polymerase and displacing it from the DNA [308, 309]. 

Recently, a study proposed a unified model of the two hypotheses referred to as the sitting duck 

torpedo mechanism (Figure 1.9). Here, the cleavage and polyA complex recruits phosphatase 1 

nuclear targeting subunit (PNUTS)-PP1 to dephosphorylate DSIF, aligning with the decreased 

DSIF phosphorylation immediately downstream of the PAS identified by ChIP-seq. DSIF 

dephosphorylation slows RNAPII transcription to 0.1-0.9 kb/min through an allosteric 

conformational change of the complex [310]. The slow rate of RNAPII leads to the accumulation 

of polymerase immediately downstream of the PAS, a common signal in RNAPII ChIP-seq [311]. 
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The decreased RNAPII speed leaves it as a ‘sitting duck’ for Xrn2, the ‘torpedo,’ to quickly catch 

up to, which aligns with previous evidence that slower RNAPII complexes terminate sooner [310, 

312]. The released RNAPII remains functional and can begin another round of transcription, 

potentially at the same gene as it is released close to the promoter through looping mechanisms 

connecting the 5’ and 3’ end of the gene [305]. 

 

Figure 1.9. “Sitting duck torpedo” mechanism of RNAPII termination. 

Recognition of the PAS by cleavage and polyadenylation (CPA) factors recruits the PNUTS-PP1 

phosphatase to the transcriptional machinery. PNUTS-PP1 dephosphorylates the Spt5 CTR1, 

decreasing RNAPII’s elongation rate. The slow elongation rate converts RNAPII to a “sitting 

duck” for the “torpedo” Xrn2 to catch up with and terminate transcription. 

Reprinted from Molecular Cell, 76(6), Cortazar, MA., et al., Control of RNA Pol II Speed by 

PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a “Sitting Duck Torpedo” 

Mechanism, 896-908, Copyright (2019), with permission from Elsevier. See Appendix.  

 

1.3.4. Positive transcription elongation factor b (P-TEFb) 

Cyclin-dependent kinases (CDKs) canonically regulate specific stages of the cell cycle. As 

a member of the transcriptional CDK family, P-TEFb does not have a pronounced regulatory role 

in the cell cycle and instead is critical for RNAPII regulation. P-TEFb is a heterodimer comprised 

of CDK9 and its cyclin partner cyclin T1 or T2 [294]. P-TEFb is predominantly localized 
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throughout the nucleus, with a small proportion also identified in the cytoplasm [313]. P-TEFb 

was independently identified and characterized in humans and D. melanogaster around 30 years 

ago. The sequence of CDK9 was first cloned from the human genome through a search for CDKs 

related to the cell-cycle regulatory cyclin-dependent kinase 1 (CDK1) [314]. The identification of 

a Pro-Ile-Thr-Ala-Leu-Arg-Glu (PITALRE) motif in the N-terminus, highly similar to the 

PSTAIRE box conserved in the CDK family, led to the original protein name PITALRE. The in 

vitro kinase activity differed from CDK1 indicating a different target site preference and, 

surprisingly at the time, it’s activity did not oscillate during cell cycle progression like other 

kinases in the family [314].  

Around the same time, researchers working with D. melanogaster identified P-TEFb. The 

P-TEFb dimer, comprised of a 43 and 124 kDa subunit, was identified as a complex which 

stimulated RNAPII elongation in vitro in a manner that was sensitive to inhibition by the small 

molecule DRB [315]. A subsequent study demonstrated that P-TEFb phosphorylation of the Rpb1 

CTD led to increased productive elongation in vitro [316]. Following cloning of the 43 kDa D. 

melanogaster subunit, a search for homologous proteins revealed 72% sequence similarity to the 

human PITALRE protein. Furthermore, P-TEFb was able to rescue the ability to produce DRB-

sensitive transcripts from HeLa nuclear extract depleted of PITALRE [317]. Similar to other 

CDKs, and as the names suggest, P-TEFb requires the presence of cyclin T for its function [318]. 

The cyclin partner discovered soon after was cyclin T in D. melanogaster and either cyclin T1 or 

T2 in the human dimer [318, 319]. Lastly, a larger, second CDK9 isoform with an extended N-

terminus and similar in vitro kinase activity was identified [320]. Although the presence of two 

isoforms has been known for many years, most functions have been associated with the smaller 

CDK9 and will be the isoform discussed unless otherwise stated [294].  

A prominent role for P-TEFb in human immunodeficiency virus 1 (HIV-1) infection was 

identified soon after the heterodimer was discovered [321]. This model has been used to 

understand many aspects of P-TEFb regulation, and therefore a basic introduction is required 

before delving into the various regulatory mechanisms. The HIV-1 genome encodes the 

transactivator Tat protein that is responsible for driving expression from the viral genome’s long 

terminal repeat (LTR) promoter. The HIV-1 LTR promoter recruits RNAPII transcriptional 

machinery that beings transcribing before entering promoter-proximal pausing. The 5’ end of the 

RNA transcript contains a stem-loop structure referred to as the trans-activation response (TAR) 
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element. Tat interacts with P-TEFb and the TAR element, bringing P-TEFb to the viral promoter 

and stimulating RNAPII pause release (Figure 1.10) [322]. 

 

Figure 1.10. Transcription from the HIV-1 LTR by Tat and P-TEFb. 

RNAPII transcription from the HIV-1 LTR promoter generates a nascent RNA transcript with a 

hairpin loop structure referred to as the TAR element. The transactivator Tat interacts with the 

TAR element, bringing P-TEFb with it to phosphorylate the transcriptional machinery and promote 

RNAPII pause release. Figure adapted from [323]. 

 

1.3.4.1. Structure of P-TEFb 

X-ray crystallography of the human cyclin T1 N-terminal, CDK9/cyclin T1 heterodimer and 

free cyclin T2 provided important structural information for P-TEFb [324, 325]. The Cyclin T1 

and T2 tertiary structures consist of two canonical cyclin box motifs with five α-helices and 

additional N-terminal and C-terminal α-helices (Figure 1.11A, green and red, respectively) [325]. 

In cell-cycle cyclins, the N-terminal makes important regulatory interactions with the kinase that 

are absent in cyclin T. In contrast, the cyclin T C-terminal helix is required for interactions with 

regulatory proteins, whereas this helix does not have important functions in cell cycle cyclins. The 

tertiary structure of CDK9 is typical of protein kinases with the active site between the N-terminal 

and a C-terminal lobe and an activation T-loop near the entry to the ATP-binding site [294]. The 

N-terminal cyclin fold of cyclin T mediates the interaction between cyclin T (Figure 1.11A, 

yellow) and the N-terminal lobe of CDK9, with a large rotation of cyclin T and less contact area 

between the two subunits than cell-cycle cyclins. Comparison between free cyclin T1 and the 

cyclin T1-CDK9 dimer demonstrated minimal conformational changes to the cyclin fold. A 

common mechanism of CDK activation is a conformational change to an activated state by T-loop 

phosphorylation [326]. Analysis of the P-TEFb structure revealed that phosphorylation of CDK9 
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at threonine 186 in the T-loop (Figure 1.11B, red dot) promoted an active conformation. However, 

the conformational changes are currently unknown due to the lack of an unphosphorylated 

structure [325, 327]. Successful P-TEFb crystallization enabled the detailed understanding of the 

binding mechanism of CDK9 inhibitors, such as flavopiridol, and in silico small-molecule docking 

to identify new lead molecules [325, 328].  

           
 

Figure 1.11. Ribbon model of (A) cyclin T1 or (B) P-TEFb structure. 

(A) Cyclin T1 structure with the five α-helices in each cyclin fold identified, N-terminal helix in 

green, C-terminal helix in red and CDK9 interacting residues in yellow. 

(B) CDK9 (green) and cyclin T1 (brown) structure with the T-loop threonine 186 marked by a red 

dot. Figure reprinted from [325] with permission. See Appendix. 

 

1.3.4.2. Sequestering P-TEFb in the 7SK snRNP 

The main mechanism regulating P-TEFb activity involves the assembly of the multi-subunit 

7SK small nuclear ribonucleoprotein (snRNP). P-TEFb is dynamically and reversibly assembled 

in the complex to inhibit P-TEFb kinase activity, with approximately half of cellular P-TEFb 

sequestered in unstimulated cells [329, 330]. The small, non-coding 7SK RNA serves as a scaffold 

to assemble the multiple components necessary to sequester P-TEFb. The 7SK snRNP is 

comprised of a hexamethylene bisacetamide-induced protein 1 or 2 (HEXIM1/2) dimer, 

methylphosphate capping enzyme (MePCE) and La-related protein 7 (LARP7) (Figure 1.12A) 

[331-333]. MePCE protects the 7SK RNA from exonuclease degradation through the co-

transcriptional addition of a 5’ monomethyl γ-phosphate cap modification [334, 335]. The addition 

of LARP7 at a U-rich region within the 7SK RNA 3’ stem loop improves the stability of 7SK RNA 

A B 
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and inhibits MePCE methyltransferase activity to prevent 7SK RNA de-capping [336, 337]. The 

stable complex formed by 7SK RNA, MePCE and LARP7 is insufficient to inhibit P-TEFb activity 

and requires the dynamic association of a homo- or heterodimer comprised of HEXIM1 and/or 

HEXIM2 [327, 338-340]. HEXIM1 interactions with the 7SK snRNA promotes a conformational 

change enabling P-TEFb inhibition [341]. In fact, while MePCE and LARP7 are required for 7SK 

RNA stability in vivo they are dispensable for P-TEFb recruitment to a HEXIM1-7SK RNA 

complex in vitro [331, 342, 343]. P-TEFb  is recruited to the 7SK snRNP by a HEXIM1 interaction 

with cyclin T N-terminal helix and a LARP7 interaction with CDK9 [332, 344, 345]. Within the 

7SK snRNP, P-TEFb is inhibited due to HEXIM1 interactions with the CDK9 catalytic site 

interfering with substrate binding [345]. Furthermore, phosphorylation of CDK9 at threonine 186 

within the T-loop, a hallmark of activated CDKs, is required for recruitment to the 7SK snRNP 

[327, 346]. The removal of P-TEFb coincides with Hexim1 removal from the 7SK snRNP and 

association of hnRNPs with the remaining 7SK snRNP components [347].   

 

 

Figure 1.12. 7SK snRNP components and identified post-translational modifications. 

(A) Diagram of 7SK snRNP complex comprised of a HEXIM dimer, CDK9, cyclin T, MePCE 

and LARP7. C Quaresma AJ., et al., Cracking the control of RNA polymerase II elongation by 

7SK snRNP and P-TEFb, Nucleic Acids Research, 2016, 44, 16, 7527-39, by permission of Oxford 

University Press. See Appendix. 

B A 
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(B) Schematic of CDK9, cyclin T1 and HEXIM1 domains, enzymes responsible for post-

translational modifications, and interacting regions.  indicates the enzyme negatively regulates 

the post-translational modification and  indicates positive regulation. The lines underneath and 

the corresponding protein indicate regions required for interacting with the respective protein.  BR 

– basic region, AR – acidic region, CR1/2 – coiled region 1/2, TRM – Tat-TAR recognition motif. 

Figure adapted from [348].  

 

1.3.4.3. P-TEFb post-translational modifications 

Cellular signals regulate P-TEFb activity through a variety of post-translational 

modifications, including phosphorylation, acetylation, ubiquitination, and sumoylation. Although 

the numerous post-translational modifications were studied in response to select receptor 

activation, these protein kinases and enzymes respond to a plethora of stimuli suggesting these 

mechanisms may be utilized in other contexts as well.  

P-TEFb is regulated by phosphorylation of three residues in the C-terminal domain (S347, 

T362, T363), T186 in the T-loop, and T29 (Figure 1.12B) [325, 349]. These residues were initially 

identified as autophosphorylation sites, but other kinases have since been identified for some of 

the residues. First, phosphorylation of the C-terminal residues was required for the interaction of 

Tat-P-TEFb with the TAR element and activation of the HIV-1 LTR promoter [350]. Although 

primarily characterized as CDK9 autophosphorylation sites, PKA-mediated S347 phosphorylation 

also promoted the formation of the P-TEFb-Tat-TAR complex [350]. As mentioned, T186 

phosphorylation is required for incorporation into the 7SK snRNP and also increases P-TEFb 

activity [327, 351]. To transition between the inactive complex and free active P-TEFb, T186 is 

dephosphorylated and subsequently re-phosphorylated. Following cellular stress, Ca2+–

calmodulin–protein phosphatase 2B (PP2B) facilitates a conformational change of the 7SK snRNP 

followed by protein phosphatase 1α (PP1α) mediated T186 dephosphorylation [348]. The 

dephosphorylated P-TEFb is recruited to the PIC and remains inactive until RNAPII has 

transcribed a short RNA [352]. P-TEFb at the PIC is proposed to be activated through 

phosphorylation of T186 by the TFIIH subunit CDK7 or Brd4 [353-355]. Other T186 phosphatases 

identified include protein phosphatase, Mg2+/Mn2+ dependent 1A (PPM1A) and 1G (PPM1G) 

[356, 357]. Furthermore, P-TEFb T29 autophosphorylation inhibits kinase activity. Similar to Tat 

regulation of the HIV-1 genome, the human T- lymphotropic virus type 1 (HTLV-1) genome 
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contains the transactivator Tax. Tax stimulates T29 phosphorylation and recruits the 

phosphorylated P-TEFb to the viral promoter. As Tax also requires P-TEFb for transactivation, it 

was proposed that T29 is dephosphorylated once recruited to the PIC [349]. Brd4 was later 

demonstrated to either stimulate autophosphorylation or directly phosphorylate T29 at the PIC to 

inhibit HIV-1 transcription, which was removed following Brd4 release from the transcription 

complex [355, 358]. While these residues (T29, T186, S347, T362, T363) are currently the only 

auto-phosphorylated sites with known in vivo functions, in vitro autophosphorylation identified a 

total of seven phosphorylated forms indicating other potential regulatory sites [325].  

Two other CDK9 phosphorylation sites with characterized regulatory roles are S90 and S175 

(Figure 1.12B). First, CDK2 mediated S90 phosphorylation increased Tat-dependent HIV-1 

transcription, indicating a link between cell-cycle and P-TEFb activity [359]. Lastly, conflicting 

studies stated S175 phosphorylation either did not alter [327] or increased CDK9 activity [346] in 

vitro. Whereas an in vivo study indicated a CDK9- S175A mutant was active and the 

phosphomimetic S175D mutant was inactive. Furthermore, PP1α was required to dephosphorylate 

S175 and increased expression from an HIV-1 LTR reporter gene [360]. Although the role in 

regulating kinase activity is unclear, phosphorylation-dependent changes in P-TEFb interactions 

are evident. CDK9 phosphorylated at S175 was excluded from the 7SK snRNP and promoted the 

interaction with Brd4, potentially through eliciting a conformational change of P-TEFb [360-362]. 

Acetylation of CDK9 and cyclin T regulate P-TEFb activity and incorporation into the 7SK 

snRNP (Figure 1.12B). The concerted actions of acetyltransferases (p300, GCN5, and p300/CBP-

associated factor (PCAF)) and HDAC1 and HDAC3 regulate the acetylation of CDK9 K44 [363, 

364]. Nuclear receptor co-repressor 1 (N-CoR) interacts with HEXIM1 and recruits HDAC3 to 

maintain the deacetylation of CDK9 K44. Disruption of the complex through knockdown of N-

CoR increased CDK9 K44 acetylation and activity [363]. In contrast, CDK9 K48 acetylation, 

mediated by p300, GCN5 and PCAF acetyltransferases and the deacetylase sirtuin 2 (SIRT2), 

inhibits kinase activity [364, 365]. K48 is critical for the proper orientation of ATP and Mg2+ in 

the active site, with acetylation disrupting the interaction between ATP and CDK9 and thereby 

reducing kinase activity [348, 364]. Additionally, the deacetylase sirtuin 7 (SIRT7) was shown to 

positively regulate release of P-TEFb from the 7SK snRNP through deacetylating CDK9. The 

limited effect on 7SK snRNP formation by CDK9 K44 and K48 acetylation previously observed 

suggests SIRT7 deacetylates a currently unidentified residue critical for complex formation [366]. 
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With regards to cyclin T post-translational modifications, acetylation of K380, K386, K390, and 

K404 by p300 acetyltransferase dissociates P-TEFb from the 7SK snRNP. Acetylation of these 

cyclin T residues was necessary for NF-κB-mediated interleukin-8 expression, but not for Tat 

transactivation of the HIV-1 genome [367]. This differential effect was potentially due to cyclin T 

acetylation promoting the interaction between P-TEFb and Brd4, an activation complex for NF-

κB-dependent transcription and not Tat transactivation [348, 368]. 

The addition of ubiquitin and small ubiquitin-like modifier (SUMO) to the CDK9 subunit 

regulates P-TEFb degradation and activity (Figure 1.12B). Cellular signals dynamically regulate 

P-TEFb ubiquitination and subsequent CDK9 degradation by the proteasome. Cyclin T1 interacts 

with the E3 ubiquitin ligase Skp2 through its PEST (rich in proline, glutamate, serine, and 

threonine) domain to facilitate the ubiquitination of an unidentified residue on CDK9 and 

subsequent degradation by the proteasome. Interferon-γ (IFN-γ) negatively regulates P-TEFb 

degradation to increase transcription from the class II major histocompatibility complex promoter. 

IFN-γ increased cellular P-TEFb levels through decreasing Skp2 expression and consequently 

decreasing P-TEFb degradation [369]. Alternatively, the formation of the P-TEFb-Tat-TAR 

element complex and activation of the HIV-1 genome required Skp2 in mouse embryonic 

fibroblasts. CDK9 ubiquitination did not alter cyclin T1 binding, kinase activity or Tat recruitment 

to the HIV-1 promoter. Instead it was suggested ubiquitination relieved autoinhibitory 

intramolecular interactions within cyclin T1, although an exact mechanism was not determined 

[370]. On the other hand, sumolyation negatively regulates P-TEFb activity. CDK9 sumoylation 

prevented the formation of P-TEFb by disrupting the interaction between CDK9 and cyclin T [371, 

372]. The SUMO E3 ligase tripartite motif containing 28 (TRIM28) mediated sumoylation of 

CDK9 K44, K56 and K86 [372]. Overexpression of the oncogenic TF MYC prevented CDK9 

sumoylation in order to elicit its transcriptional regulatory role [271, 371]. In addition to those 

discussed, mass spectrometry-based methods have identified other phosphorylated, acetylated and 

methylated P-TEFb residues with undetermined functional significance [361].  

 

1.3.4.4. 7SK snRNP post-translational modifications 

In addition to directly modifying the P-TEFb heterodimer, cellular signals alter the stability 

of the 7SK snRNP to indirectly alter P-TEFb activity. Phosphorylation of the 7SK snRNP subunit 

HEXIM1 regulates the ability to sequester P-TEFb in the inactive complex (Figure 1.12B) [337]. 
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Hexamethylene bisacetamide (HMBA) increased expression of the HIV-1 genome through 

activation of the PI3K/Akt signalling cascade in Jurkat T cells. Akt phosphorylated HEXIM1 at 

T270 and S278, two residues within the cyclin T binding domain, to disrupt the interaction between 

P-TEFb and HEXIM1, releasing the kinase and enabling recruitment to the viral genome [373]. 

Along with PI3K-Akt signalling, HMBA promoted HIV-1 expression through PKCμ signalling, 

although the phosphorylation target was not identified [374]. TCR signalling pathways in T cells 

also modulated HEXIM1 S158, Y271 or Y274 phosphorylation. PKCθ activation by phorbol 

myristyl acetate (PMA) or following TCR activation increased HEXIM1 S158 phosphorylation, 

preventing HEXIM1 interaction with the 7SK snRNP and inhibition of P-TEFb [375]. PKA 

signalling in autosomal dominant polycystic kidney disease also disrupts 7SK snRNP through 

S158 phosphorylation [376]. Interestingly, these authors did not observe disruption of the 7SK 

snRNP with a phosphomimetic mutation (S158E), whereas the initial study found an S158A 

mutation prevented PCKθ-mediated 7SK snRNP disruption [375, 376]. TCR activation in T cells 

also disrupts the 7SK snRNP complex via ERK-dependent phosphorylation of HEXIM1 Y271 and 

Y274, another two residues within the cyclin T interaction domain. Mutation of these residues to 

phenylalanine prevented the release of P-TEFb from the 7SK snRNP and expression of the HIV-

1 genome [377, 378].  

HEXIM1 activity is also regulated by ubiquitination, independently of degradation. One E3 

ubiquitin ligase regulating HEXIM1 is human double minute-2 protein (HDM2). HDM2-mediated 

ubiquitination increased the inhibitory action of HEXIM1 on P-TEFb, reducing Tat transactivation 

of the HIV-1 genome [379]. The hybrid E2-E3 ubiquitin ligase ubiquitin-conjugating enzyme E2 

O (UBE2O) also mediated HEXIM1 ubiquitination. Interestingly, UBE2O was recruited to 

HEXIM1 by Tat in the cytoplasm. Ubiquitinated HEXIM1 was sequestered in the cytoplasm and 

released P-TEFb to translocate to the nucleus and activate HIV-1 genome expression. While the 

mechanism was assessed in the context of Tat transactivation, treatment with DRB also led to 

similar P-TEFb translocation suggesting this regulatory mechanism is used in other contexts as 

well [380]. 

 

1.3.4.5. Chromatin recruitment of P-TEFb 

P-TEFb release from the 7SK snRNP is insufficient for selective gene expression in response 

to cellular signals. Other proteins must recruit active P-TEFb to chromatin in order to 
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phosphorylate its substrates, and release promoter-proximal paused RNAPII into productive 

elongation. The recruitment occurs through four mechanisms that will be discussed: sequence-

specific TFs, Brd4, SEC and 7SK snRNP (Figure 1.13). 

 

Figure 1.13. Mechanisms of P-TEFb chromatin recruitment. 

TFs (right), the SEC (bottom), Brd4 (left) or the 7SK snRNP (top) recruit P-TEFb to the chromatin. 

 

1.3.4.5.1. Transcription factors 

TFs recognize specific sequence elements within genomic regulatory regions. The recruited 

TFs regulate gene expression by altering the chromatin landscape and assembly of the transcription 

complex through enzymatic activity or protein-protein interactions with other factors. The human 

genome contains over 1600 TFs, expressed in a cell-type specific manner, that are critical in 

regulating all manner of physiological and pathological cellular processes [381]. For example, 

GPCR signalling in cardiac cell types alters the activity of numerous TFs (i.e. nuclear factor κ-

light-chain-enhancer of activated B cells (NF-κB), GATA binding protein 4 (GATA4), myocyte 

enhancer-factor 2 (MEF2)) to reprogram gene expression patterns [382, 383]. Similar to the many 

signalling cascades converging on P-TEFb and the 7SK snRNP, a range of post-translational 

modifications modify each TF, enabling the integration of inputs from multiple cellular signalling 

pathways. Particular to this thesis, one mechanism employed by these TFs to activate transcription 



67 

is the recruitment of P-TEFb. For example, NF-κB recruits P-TEFb to the transcriptional 

machinery following TNF-α stimulation. An in vitro GST pull-down experiment with recombinant 

GST-tagged cyclin T1 and NF-κB subunit RelA demonstrated a direct interaction between the two 

proteins, which also occurred in COS cells with heterologous overexpression of each protein. 

Furthermore, CDK9 inhibition with DRB increased promoter-proximal and decreased gene body 

RNAPII occupancy at IL8 in response to TNF-α [384]. Similarly, recombinant GATA4 and CDK9 

co-immunoprecipitated in an in vitro GST pull down experiment. In neonatal rat cardiomyocytes, 

PE increased expression of ANP through increased recruitment of a Cdk9/GATA4/p300 complex 

to the ANP promoter [385]. In another study, GST-tagged Mef2 family members Mef2A, B and 

C co-immunoprecipitated P-TEFb from cell lysates. Decreased P-TEFb activity through 

knockdown or increased activity through overexpression of cyclin T1 led to decreased or increased 

expression, respectively, from a MEF2 reporter gene in the mouse myoblast cell line C2C12 [386]. 

While these examples are from a select few TFs, they highlight the ability of TFs to recruit P-

TEFb to the chromatin to stimulate gene expression. 

 

1.3.4.5.2. Bromodomain-containing protein 4 

Brd4 is a member of the bromodomain and extra-terminal (BET) family of proteins 

consisting of Brd2, Brd3 and the testis-specific BrdT (Figure 1.14A) [387]. This family is 

characterized by the presence of two tandem bromodomains (BD1 and BD2) and an extraterminal 

(ET) domain. The BDs mediate the interaction with acetyl-lysine residues on target proteins, such 

as TFs and histones, whereas the ET domain mediates protein-protein interactions [388, 389]. BDs 

are a highly conserved domain abundant in chromatin-associated proteins. The domain is formed 

by a left-handed four-helix bundle with two long loops, the ZA loop located between helices αZ 

and αA and the BC loop located between αB and αC (Figure 1.14B). The loops form a hydrophobic 

pocket at the end of the bundle where the acetyl-lysine residue is inserted (Figure 1.14C). While 

the four helices are highly conserved across bromodomains, the divergent sequences in the ZA and 

BC loops confer substrate specificity [388]. Although BDs can interact with a single acetyl-lysine, 

the presence of multiple modifications greatly enhances the binding affinity. For example, BDs in 

Brd2 bind monoacetylated H4K12ac with a KD of 2.9 mM, decreasing almost 10-fold to 360 μM 

when binding to the diacetylated H4K5acK12ac [390]. Similarly, Brd4 BD1 binding affinity for 

H4K5ac9ac was 30-times greater than its affinity for H4K5ac [390]. Structural studies for Brd4 



68 

and BrdT suggested the synergistic effect is due to the recognition of two acetylated residues by a 

single bromodomain [390, 391]. The two BET BDs differ in their affinities for acetylated peptides, 

with BD1 preferentially interacting with a Kac-X-X-Kac consensus sequence and BD2 displaying 

minimal selectivity for di- and tri-acetylated peptides [390].  

 

 

 

Figure 1.14. BET family and structure the characteristic bromodomain. 

(A) Human BET family members and their respective domains. A and B are two conserved 

regions among the family members. BD1 – bromodomain 1, BD2 – bromodomain 2, ET – 

extraterminal domain, CTM – C-terminal motif, SEED - Ser (S)/Glu (E)/ Asp (D) motif, PDID – 

phosphorylation-dependent interaction domain, NPS – N-terminal phosphorylation sites, BID – 

basic-residue enriched interaction domain, CPS – C-terminal cluster of phosphorylation sites [392, 

393]. 

(B) Ribbon model of Brd4 BD1 with the BC loop indicated and the AZ loop comprised of αZ’, 

αZ’’, αZ’’’. Figure adapted from [394]. 

(C) Ribbon model of Brd4 BD1 in complex with a histone H3 peptide acetylated at K14 inserted 

into BD binding pocket. Figure adapted from [394]. 

 

A B 

C 
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Among the BET family members, Brd4 has been the most extensively studied due to its 

prominent roles in cancer, inflammation, and cardiovascular disease [395]. The functional roles of 

the other family members have been described as well. For example, an in vitro transcription assay 

indicated Brd2 and Brd3 contain histone chaperone activity enabling them to promote RNAPII 

transcription through chromatin [396]. BrdT, expressed in the testis and aberrantly activated in 

some cancers, regulates chromatin compaction in sperm [397]. Brd4 was initially identified as a 

member of the multi-subunit Mediator complex, although its function was not determined [398]. 

A few years later, it was observed that Brd4 maintained associated with mitotic chromosomes and 

was critical for cell-cycle progression [399]. The chromatin-bound Brd4 is thought to impart 

memory to the post-mitotic cell, facilitating re-activation of the proper genes [400].  

Three Brd4 isoforms have been discovered which are functionally distinct: Brd4-A (also 

referred to as Brd4L), Brd4-B, and Brd-C (also referred to as Brd4-S) (Figure 1.14A). First, Brd4-

B is comprised of the Brd4L N-terminal and a unique 75 residue C-terminus. This isoform 

inhibited the DNA damage response in an osteosarcoma cell line through recruitment of the 

condensing II complex to promote chromatin compaction [401]. Brd4-C also contains the Brd4L 

N-terminus and three unique residues at the C-terminus. Brd4-C promoted formation of liquid-

liquid phase separation (LLPS) condensates that contain transcriptional activators, such as 

RNAPII, P-TEFb and Mediator, to promote gene expression [402]. Finally, the transcriptional 

activation by Brd4-A is primarily dependent on its ability to interact with and recruit P-TEFb to 

chromatin [362, 403]. For the purposes of this thesis, I will focus on the role of Brd4-A in 

regulating transcription and this will be the isoform I am referring to when discussing Brd4. 

Among the BET family, Brd4 and BrdT are the only members that interact with P-TEFb. 

The common mechanism requires a short P-TEFb interacting motif at the C-terminal of the 

respective protein termed the C-terminal motif (CTM), which interacts with CDK9 and cyclin T 

(Figure 1.14A) [404]. As already discussed, Brd4 also interacts with cyclin T acetylated at K380, 

K386, and K390 in a BD2-dependent manner [368]. The interaction between P-TEFb and Brd4 

serves two functions: P-TEFb removal from the 7SK snRNP and recruitment to chromatin. Brd4-

dependent transcriptional activation of P-TEFb responsive genes requires both modes of 

interaction between Brd4 and P-TEFb. In the absence of the CTM, the Brd4 BD2-cyclin T 

interaction mediated a Brd4-P-TEFb interaction, but the complex remained associated with 7SK 

snRNP. The CTM was required to remove P-TEFb from the inhibitory complex, with 
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overexpression of this domain alone leading to P-TEFb dissociation but not transcriptional 

activation [368]. In the absence of a Brd4-P-TEFb structure, the mechanism of P-TEFb removal 

is unclear. The proposed model involves cyclin T acetylation recruiting Brd4, which elicits a 

conformational change in Brd4, exposing the CTM to promote removal of P-TEFb from the 

complex [368].  

Despite Brd4’s important regulatory role in steady-state transcriptional programs, small 

molecule inhibitors preferentially reduce disease state transcription. The selective effect is 

primarily due to the prevalence of super-enhancers in regulating these disease states. Super-

enhancers were first characterized in mouse embryonic stem cells, which was followed by the 

identification in a broad range of human cell types [405, 406]. Super-enhancers are large genomic 

regions (>20 kb on average) abundant in key transcriptional activators, such as Mediator, Brd4, 

TFs, p300, and active enhancer histone marks, such as H3K27ac and H3K4me1 [407]. In somatic 

cells, super-enhancers regulate genes critical for cell-identity and cell-specific biological processes  

[405, 407]. Furthermore, disease-associated single nucleotide polymorphisms (SNPs) are enriched 

in these genomic regions [405]. The abundance and cooperativity of transcriptional regulators at 

super enhancers confers a high sensitivity of gene expression to slight perturbations in protein 

occupancy along these regions [408]. Therefore, these regions are perturbed with low 

concentrations of BET inhibitors, while genes regulated by typical enhancers and promoters are 

not affected. 

In addition to their role in initiating PIC formation and P-TEFb recruitment, TFs regulate 

recruitment of Brd4 to specific genomic loci either directly or indirectly. Through these 

mechanisms, signalling pathways regulate Brd4 recruitment in a context dependent manner [387]. 

First, TFs interact with Brd4 in a non-BD dependent manner through the ET domain of Brd4 and 

a phosphorylation-dependent manner with N-terminal phosphorylation site (NPS) region of Brd4 

(Figure 1.15) [389, 409]. The NPS, which contains seven casein kinase II (CKII) consensus 

sequences, resides in the phosphorylation-dependent interaction domain (PDID) along with the 

basic residue-enriched interaction domain (BID) (Figure 1.14A). In the unphosphorylated state, 

the NPS prevents BD2’s interaction with acetyl-lysine residues. CK2 phosphorylation increases 

the negative charge of the NPS, shifting its interaction from BD2 to the BID and releasing the 

inhibitory effect on BD2. The conformational change also promotes interactions between the NPS 

and TFs, such as p53 and NF-κB [410]. Although CK2 and CK1δ are the only two kinases currently 
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shown to directly phosphorylate Brd4 in vivo, PKA and IKKε phosphorylated the PDID in an in 

vitro kinase assay [409, 411]. Furthermore, the protein kinases p38 and CDK9 regulated Brd4 

chromatin occupancy, although the mechanism was undetermined [412, 413]. Second, BD-

dependent interactions with acetylated lysine residues on TFs recruit Brd4. For example, Brd4 

interacts with the NF-κB RelA subunit acetylated at lysine 310 to promote transcription of its target 

genes [414]. Lastly, TFs recruit acetyltransferases, such as p300, to the chromatin to acetylate 

proximal histones at enhancers and promoters, which recruits Brd4 in a BD-dependent manner 

[387, 415, 416]. Altogether, these mechanisms enrich Brd4 at regulatory genomic regions to 

promote assembly of the RNAPII transcriptional machinery and release into productive 

elongation.  

 

Figure 1.15. Phosphorylation-dependent conformational change of Brd4 regulates BD2 and 

TF interactions. 

NPS phosphorylation by CK2 leads to a conformational change removing the inhibitory 

intramolecular interactions between the NPS and BD2. NPS phosphorylation also promotes 

interactions between the NPS and TFs. Figure adapted from [410]. 

Reprinted from Drug Discovery Today: Technologies, 19, Chiang, CM., Phospho-BRD4: 

transcription plasticity and drug targeting, 17-22, Copyright (2016), with permission from 

Elsevier. See Appendix. 

 

Although typically associated with P-TEFb dependent transcriptional regulation, Brd4 also 

regulates transcription through P-TEFb-independent mechanisms. First, Brd4 co-localizes with the 

Mediator complex along cis-regulatory genomic regions to coordinate PIC formation. 

Displacement of Brd4 from chromatin leads to reduced Mediator occupancy as well, suggesting 

Brd4 is an important regulator of Mediator recruitment [417]. Second, the Brd4 N-terminal is an 
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atypical kinase that is able to phosphorylate the RNAPII CTD Ser2 in vitro and in vivo and was 

proposed to stimulate transcription in a kinase-dependent manner [418]. A subsequent study 

demonstrated kinase-dependent crosstalk amongst Brd4, CDK9 and CDK7. At low concentrations, 

Brd4 activated P-TEFb through phosphorylation of CDK9 T186, whereas at high concentrations, 

Brd4 repressed P-TEFb through CDK9 T29 phosphorylation. Furthermore, Brd4 relieved CDK7 

and CDK9 inhibition by the TFIID subunit TAF7 in a phosphorylation-dependent manner [355]. 

Third, Brd4 histone chaperone activity stimulated RNAPII transcription through hyperacetylated 

histones [419]. Fourth, Brd4 acetylated histone H3 and H4 through its C-terminal HAT domain. 

Brd4 HAT activity destabilized nucleosomes through acetylation of H3K122, promoting 

chromatin decompaction at cis-regulatory regions [420]. Lastly, Brd4 interacts with the splicing 

machinery in a BD-independent manner, modulating exon usage in T cell acute lymphoblastic 

leukemia [421].  

The BET family has proven to be highly conducive to small-molecule drug discovery 

programs with numerous molecules entering clinical trials for various types of cancer [422]. The 

inhibition strategy centers around competitive inhibition of the BD-acetyl-lysine interaction, 

thereby blocking chromatin recruitment. Two first in-class pan-BET inhibitors developed were 

JQ1 and I-BET, which targeted BET BDs with nanomolar affinities [423, 424]. The initial 

characterization of JQ1 demonstrated its ability to reduce proliferation of NUT midline carcinoma 

cell lines and patient-derived xenograft models driven by a Brd4-NUT fusion protein [424]. I-BET 

prevented LPS-induction of inflammatory genes in activated macrophages [423]. The anti-

proliferative and anti-inflammatory effect of BET inhibitor treatment has since expanded to 

include hematological cancers (i.e. multiple myeloma [425]), solid tumours (i.e. neuroblastoma 

[426]), rheumatoid arthritis [427], and heart failure [428] to name a few. In recent years, new small 

molecule inhibitors have been developed with specificity for BD1 or BD2, which have enabled 

the identification of BD specific functions. For example, inhibition of BD1 disrupted BET protein 

chromatin occupancy and reduced gene expression in cancer cell lines similar to pan-BET 

inhibitors. However, BD2 inhibition did not displace chromatin-bound BET proteins or alter 

established gene expression programs in cancer cell lines. Instead, BD2 inhibition prevented gene 

induction following treatment with the pro-inflammatory factor IFNγ and improved disease status 

in a variety of rat inflammatory disease models [429]. Importantly, these inhibitors still targeted 
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all members of the BET family and it remains to be determined whether Brd4 specific inhibitors, 

such as the recently designed Brd4 BD1 specific ZL0580, will elicit similar responses [430].  

 

1.3.4.5.3. Super elongation complex (SEC) 

The SEC is another multi-subunit complex that promotes RNAPII transcription through several 

mechanisms, including the recruitment of P-TEFb. The SEC name refers to a family of complexes 

with different combinations of an AF4/FMR family (AFF) member 1, 2, 3, or 4, eleven-nineteen 

Lys-rich leukemia (ELL) 1, 2, or 3, ELL associated factor (EAF) 1 or 2, eleven-nineteen leukemia 

(ENL) or ALL1-fused gene from chromosome 9 (AF9), and P-TEFb (Figure 1.16). The complex 

promotes various aspects of RNAPII transcription, such as pause release and elongation rate [431]. 

SEC-mediated regulation of these processes is critical for the rapid upregulation of gene 

expression, such as following heat shock or differentiation signals to embryonic stem cells [432, 

433]. Furthermore, the SEC is a driver of oncogenic gene expression in various forms of leukemia 

and MYC-driven cancers [434]. 

 

Figure 1.16. SEC composition in Drosophila melanogaster and mammals. 

(A) In Drosophila melanogaster, a single isoform for each subunit assemble into a single SEC. In 

mammals, there are four AFF isoforms, two EAF isoforms, three ELL isoforms and the mutually 

exclusive AF9 and ENL. The multiple isoforms form many distinct complexes referred to as the 

SEC (with AFF1/4 and all subunits) or SEC-L2 or SEC-L3 with AFF2 or AFF3, respectively, and 

lacking an ELL and EAF isoform.  
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(B) A separate ELL complex has been identified in Drosophila melanogaster referred to as the 

little elongation complex (LEC). This complex contains ELL, EAF, and the unique proteins ICE1 

and ICE2. In mammals, ELL1 forms this complex to regulate snRNA expression. 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Nature Reviews Molecular Cell Biology, “The super elongation complex (SEC) family in 

transcriptional control,” Luo, Z., et al., Aug 16;13(9):543-7, Copyright 2012. See Appendix.  

 

Several of the subunits, such as AFF1, AF9, and ENL, were initially identified as partner 

genes of translocated mixed lineage leukemia (MLL) that formed oncogenic drivers of leukaemia 

[435]. In MLL translocations, MLL loses its histone H3K4 methyltransferase domain and retains 

its DNA binding ability. The DNA binding activity enables the aberrant recruitment of the fusion 

partners to MLL target genomic loci. In the case of fusion with SEC components, the aberrant 

recruitment promotes SEC assembly and transcription of MLL target genes. The aberrant 

transcription leads to the transformation of healthy haematological stem/progenitor cells to 

leukemic blasts [436]. Before characterization of the full complex, functions of individual subunits 

had been described to better understand the MLL-translocations. For example, purified ELL was 

shown to stimulate RNAPII elongation in an in vitro transcription assay [437]. The term super 

elongation complex was coined a decade ago in a study assessing the common interactors of these 

MLL fusion proteins by affinity purification mass spectrometry [433]. Around the same time as 

identification of the SEC, Tat transactivation was demonstrated to recruit P-TEFb as a member of 

the SEC through interactions with the AFF4 subunit, providing further functional significance to 

the complex [438, 439].  

In the SEC, the AFF1/4 subunits function as the central scaffold holding the various subunits 

together [433]. The AFF1/4 C-terminal contains a conserved C-terminal homology domain (CHD) 

required for the formation of AFF4 homodimers or AFF1/4 heterodimers and that mediates an 

interaction with RNA and DNA in vivo [440, 441]. Furthermore, P-TEFb phosphorylated the CHD 

in vitro, which was required for proper assembly of the complex [440, 442]. Although AFF1/4 

heterodimers are observed and correlate with the MLL-fusion protein’s oncogenic potential in 

vivo, the two proteins form separate and distinct SECs with a single AFF protein, suggesting a 

separate function of the heterodimers [441, 443]. The AFF1-SEC and AFF4-SEC are thought to 

regulate distinct sets of genes, as evident by AFF1 or AFF4 knockdown in HEK 293 cells followed 
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by RNA-seq. The gene-specificity was also evident by the requirement of the AFF4-SEC for 

Hsp70 upregulation following heat shock, whereas AFF1-SEC was more efficient in Tat 

stimulated removal of P-TEFb from the 7SK snRNP [443]. In contrast, AFF1 and AFF4 ChIP-seq 

exhibit similar occupancy patterns throughout the genome, although the comparison of gene 

expression changes between respective knockdowns was not performed in the study [444, 445]. A 

model with sequential AFF1-SEC and AFF4-SEC recruitment to facilitate P-TEFb 

phosphorylation of distinct substrates has been proposed [289]. The different gene expression 

changes following AFF1 or AFF4 knockdown may indicate differential requirement for P-TEFb 

target phosphorylation at specific genes. Lastly, AFF2 and AFF3 form multi-subunit complexes, 

termed SEC-like complex (SEC-L) 2 or 3, respectively, which lack an ELL and EAF subunit [431]. 

The presence of these complexes provides further gene specific regulatory control. For example, 

AFF4-SEC, and not SEC-L2 or SEC-L3, was recruited to Hsp70 following heat shock and 

knockdown of the specific AFF led to different gene expression changes [434]. 

AFF1/4 contain an intrinsically disordered N-terminal that mediates interactions with the 

various components through short hydrophobic regions [446]. First, AFF1/4 recruits P-TEFb 

through interactions between its N-terminus and cyclin T [447]. AFF4 also contains an ELL 

interacting domain that contacts the C-terminus of ELL2 [448]. The ELL family promotes RNAPII 

elongation through their ability to maintain the 3’ end of nascent RNA in the polymerase’s catalytic 

site [437, 449-451]. In addition to interactions with AFF4 and RNAPII, interactions with EAF1 or 

EAF2 stimulate ELL activity [452]. Outside of the SEC, ELL1 has been identified in the little 

elongation complex (LEC) comprised of EAF1/2 and ELL1 and interacts with carboxyl terminus 

of ELL (ICE) 1 and 2 that LEC regulates snRNA expression [453]. Lastly, the ENL and AF9 

ANC1 homology domains (AHD) interact with AFF4 in a mutually exclusive manner [454, 455]. 

AF9/ENL are also a part of a separate complex containing the H3K79 methyltransferase Dot1L, 

which competes with AFF4 for interaction with the AHD domain [454]. The N-terminus of 

ENL/AF9 contains a YEATS domain responsible for an interaction with the PAFc and H3K9ac 

[454, 456]. While biochemical methods have identified complexes containing the full subunits, 

whether they are recruited together and remain together throughout the gene body remains to be 

determined. For example, ELL2 and AFF4 ChIP-seq identified differential enrichment of ELL2 

and AFF4, with greater ELL2 at the TSS and AFF4 downstream of the paused RNAPII. 

Furthermore, there was only 50% overlap between AFF4 and ELL2 peaks, suggesting dynamic 
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assembly of the various subunits and their isoforms at specific stages of RNAPII transcription 

[432]. 

SEC recruitment in MLL-fusion leukemia and to the HIV-1 genome has been extensively 

studied, but its gene-specific recruitment in a physiological state is less well understood. In a native 

context, the SEC is recruited in a gene-specific manner suggesting TFs are able to mediate 

recruitment of the complex. For example, in response to retinoic acid the SEC was recruited to 

retinoic acid receptor (RAR) target genes in mouse embryonic stem cells. The authors suggested 

this was due to RAR targeting the SEC, although an interaction was not assessed [432]. TF-

directed recruitment is potentially mediated through intermediates (i.e. Mediator) which, as 

already discussed, interact with TFs. First, the Mediator MED26 subunit recruits the SEC to 

promote RNAPII pause-release through interactions with the EAF1/2 subunit [457]. Through 

interactions with Mediator, the TF T-bet promotes recruitment of a P-TEFb-containing SEC to 

super-enhancers [458]. The SEC is also recruited through ENL/AF9 subunits’ YEATS domain. 

The YEATS domain interacts with PAFc and was required for the Tat-independent activation of 

an HIV-1 luciferase gene reporter. Furthermore, knockdown of the PAFc subunit PAF1 reduced 

the recruitment of P-TEFb to the chromatin [454]. The YEATS domain also interacts directly with 

acetylated chromatin, which was critical for the maintenance of the oncogenic state driven by other 

MLL translocations [456, 459]. Lastly, AF9 interacts with TFIID’s TAF subunits through a poly-

Ser domain adjacent to the YEATS domain, which mediates recruitment of the full SEC to 

chromatin [460]. 

Small molecule inhibitors targeting specific functions of the SEC have recently been 

developed. As a potential therapeutic for MLL-fusion and non-MLL-fusion leukemias, small 

molecule competitive antagonists towards the ENL YEATS domain-acetylated histone interaction 

were developed [459, 461-463]. For example, the inhibitor XL-13m reduced ENL chromatin 

recruitment and oncogenic gene expression in a leukemia cell line [463]. More pertinent to this 

thesis, is the development of small molecules targeting SEC recruitment of P-TEFb. A high 

throughput screen for small molecules that disrupt the AFF4-cyclin T1 interaction identified the 

small molecules KL-1 and KL-2. The small molecules reduced AFF1/4 chromatin occupancy, 

increased RNAPII pausing index, and slowed RNAPII elongation rate in HEK 293T cells. These 

compounds also prevented rapid gene upregulation following heat shock and Myc-dependent gene 

expression, two responses with established SEC dependency [445].  
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1.3.4.5.4. Recruitment of 7SK snRNP 

While the majority of 7SK snRNP is diffuse throughout the nucleoplasm, a chromatin-bound 

7SK snRNP fraction was identified through co-immunoprecipitation of 7SK snRNP subunits and 

components of the RNAPII PIC [464, 465]. The co-immunoprecipitation of these proteins led to 

the identification of 7SK snRNP occupancy at the HIV-1 LTR promoter [464]. Subsequent CDK9, 

HEXIM1, and LARP7 ChIP-seq identified Kruppel-associated interacting protein 1 (KAP1)-

mediated recruitment of the 7SK snRNP to promoter-proximal genomic regions through a KAP1- 

LARP7 interaction [466]. A genome-wide method analogous to ChIP for RNA, chromatin 

isolation by RNA purification (ChIRP)-seq, identified 7SK RNA chromatin occupancy along 

transcribed genes, similar to RNAPII, and cis-regulatory genomic regions, including promoters 

and super-enhancers, in mouse and human embryonic stem cells. Overlap with HEXIM1 ChIP-

seq revealed that the canonical 7SK snRNP occupies promoters and gene bodies but not super-

enhancers, with subsequent experiments identifying 7SK RNA P-TEFb-independent functions at 

these sites [467]. The inhibitory complex is also recruited by a direct interaction between 7SK 

RNA and the repressive histone modification H4K3me2(s) along certain enhancers [468] and via a 

7SK snRNP, COUP-TF-interacting protein 2 (CTIP2), and high mobility group protein HMG-

I/HMG-Y (HMGA1) complex to the HIV-1 and human gene promoters [469]. The chromatin-

bound 7SK snRNP is thought to increase local P-TEFb levels rapidly in order to accelerate the 

kinetics of gene activation by TFs [465].  

Chromatin-bound P-TEFb-7SK snRNP is inactive and requires further factors to release P-

TEFb in an active form. The 7SK snRNP is recruited to anti-pause enhancers, occupied by Brd4 

and the demethylase Jumonji domain containing 6 (JMJD6), by a 7SK snRNA interaction with the 

repressive H4K3me2(s). Brd4 recruits JMJD6 to demethylate H4K3 and remove the methyl cap on 

7SK RNA, leading to dissociation of HEXIM and the activation of P-TEFb [468]. The Brd4 

dependent activation of chromatin-bound P-TEFb was also identified using a chemical degrader 

of BET proteins, dBET6. The chemical degrader is a bifunctional small molecule, interacting with 

both the BET BD and the E3 ubiquitin ligase cereblon. The small molecule mediated proximity 

between the two target proteins induces ubiquitination and degradation of the BET proteins [470]. 

BET degradation reduced pSer2 levels and RNAPII elongation independently of altered P-TEFb 

recruitment. The authors proposed the effect was due to Brd4 regulating formation of the 
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transcriptional machinery as there was reduced Spt5, NELF and MED1 chromatin occupancy 

[471]. The results also suggest Brd4 was required for P-TEFb release from chromatin-bound 7SK 

snRNP in order to phosphorylate RNAPII, although additional experiments are required to address 

this possibility. The mechanisms identified at promoters rely on a different repertoire of proteins 

including PPM1G, the DEAD-box RNA helicase DDX21, and serine and arginine rich splicing 

factor 1 or 2 (SRSF1/2). With regards to PP1MG, TFs recruit the protein phosphatase to 

dephosphorylate CDK9’s T-loop leading to the release of P-TEFb [472]. PPM1G remains bound 

to the 7SK snRNP following P-TEFb release to further promote transcription by preventing 

reassembly of P-TEFb [356]. DDX21 is recruited to promoters and disassembles the 7SK snRNP 

through alterations to the 7SK RNA secondary structures via its helicase activity [473]. Lastly, 

SRSF1/2 has also been identified as a component of promoter 7SK snRNP that is recruited to 

nascent RNA once RNAPII begins transcription and promotes P-TEFb release from the inhibitory 

complex [474].  

 

1.3.5. Regulation of transcription by Gβγ 

While the canonical role of Gβγ involves modulating activity of effector proteins in the 

cytoplasm, it also has important functional roles in the nucleus. Specifically, Gβγ regulates 

RNAPII transcription through a variety of mechanisms upon GPCR activation in several cell types. 

First, Gβγ indirectly impacts RNAPII transcription through modulating receptor proximal 

signalling pathways that alter TF activity (Figure 1.17). For example, activation of the dopamine 

D2 receptor (D2R) increased IP3 receptor (IP3R)-1 expression via a Gβγ-PLC-Ca2+ signalling 

pathway in primary mouse cerebral cortical neurons. Here, D2R activation led to Gβγ-dependent 

translocation of the TF nuclear factor of activated T cells 4 (NFATc4) from the cytoplasm to the 

nucleus and recruitment to the IP3R-1 promoter alongside the TF activator protein 1 (AP-1) [475]. 

D2R-mediated Gβγ signalling also regulates the TF early growth response protein 1 (Egr1), also 

referred to as Zif268, in the differentiated dopaminergic-like SH-SY5Y cell line and rat midbrain 

slices. In response to D2R activation, Egr1 recruitment to the glial cell line-derived neurotrophic 

factor (GDNF) promoter and GDNF expression increased in a Gβγ- and ERK1/2-dependent 

manner [476]. Additionally, Gβγ activation of MAPK signalling was implicated in 

phosphorylation of the TF CREB in striatal neurons. Corticotropin-releasing factor (CFR) receptor 

1 activation led to Gβγ- and MAPK-dependent CREB phosphorylation, independent of canonical 
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PKA-dependent CREB phosphorylation [477]. Similarly, GABAB receptor activation in cerebellar 

granule neurons led to Gβγ- and ERK1/2-dependent CREB phosphorylation [478]. Furthermore, 

Gβγ-dependent regulation of calcium signalling regulates transcription of the interleukin-2 (IL-2) 

gene following T cell receptor (TCR) activation in CD4+ T helper cells. Gβ1 knockdown and Gβγ 

inhibition with the small molecule gallein, but not Gβ2 knockdown, potentiated TCR-mediated 

Ca2+ signalling, increasing translocation of the TFs nuclear factor of activated T cells 1 (NFAT1) 

and nuclear factor of activated T cells 2 (NFAT2) into the nucleus to positively regulate IL-2 

expression [479]. Lastly, Gβγ signalling negatively regulates thyroid stimulating hormone receptor 

(TSHR)-induced transcription in the process of thyroid differentiation. TSHR signalling through 

Gαs-cAMP increased recruitment of the TF Pax8 to the sodium iodide symporter (NIS) promoter 

to increase NIS expression. Conversely, the THSR negatively regulated Pax8 through increased 

Gβγ-dependent PI3K/rac-alpha serine/threonine-protein kinase (Akt) signalling which excludes 

Pax8 from the nucleus [480].  

 

Figure 1.17. Indirect or direct regulation of transcription factors by Gβγ.  

Gβγ signalling modulates TF activity (indirect), or Gβγ interacts with TFs altering their activity 

(direct). Figure adapted from [481]. 
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Reprinted from GPCRs, Martin, RD., Bouazza CA., Hébert, TE., Organellar Gβγ signalling- 

GPCR signalling beyond the cell surface, 257-267, Copyright (2020), with permission from 

Elsevier. See Appendix 

 

Other studies have demonstrated activation of the signal transducer and activator of 

transcription (STAT) family of TFs by Gβγ. For example, of 48 different Gβ and Gγ combinations 

co-expressed in HEK 293 cells, 13 dimers increased the levels of active, phosphorylated STAT3. 

This study did not determine the Gβγ-dependent mechanism for STAT3 activation [482]. A 

separate study identified a potential Gβγ-dependent mechanism for the activation of STAT5B 

downstream of the δ-opioid receptor heterologously expressed in HEK 293 cells. Here, Gβγ 

interacted with STAT5B to form a constitutive complex at the δ-opioid receptor, and functions as 

a scaffold to recruit c-Src to the receptor and phosphorylate STAT5B [483]. Interestingly, this 

study characterized Gβγ-dependent activation of TFs at the plasma membrane instead of the 

nucleus, as in the other examples. These studies demonstrate that Gβγ indirectly regulates TF 

activity through its canonical pathways. 

Several studies have identified negative regulation of TF activity through interactions with 

Gβγ (Figure 1.17). One of the first identified was the direct interaction, as determined by a yeast-

two hybrid assay, between Gβγ5 and adipocyte enhancer-binding protein (AEBP1) to negatively 

regulate its activity in adipocyte-like 3T3-L1 cells [484]. Gβ1γ2 interacts with histone deacetylase 

4 (HDAC4)/histone deacetylase 5 (HDAC5) and relieves their inhibitory effect on transcription in 

response to α2A-adrenergic receptor activation in HEK 293A cells. Under basal conditions, 

HDAC5 interacted with and inhibited the TF myocyte enhancer factor 2C (MEF2C). Following 

receptor activation, Gβ1γ2 disrupted the HDAC5-MEF2C interaction enabling MEF2C activity, as 

assessed by increased MEF2C reporter gene expression [485]. Similar Gβγ-dependent disruption 

of the HDAC5-MEF2 interaction occurred following EP3 receptor stimulation in neonatal rat 

cardiomyocytes. Although here the authors suggested the disruption was due to Gβγ-dependent 

activation of protein kinase D (PKD) and its phosphorylation of HDAC5 leading to exclusion from 

the nucleus [486]. In contrast, the ability of Gβγ to interact with HDACs negatively regulates the 

TF AP-1 in HEK 293 cells and LβT2 gonadotrope cells. In response to stimuli, Gβ1γ recruited an 

HDAC to the AP-1 dimer, inhibiting transcriptional activation of an AP-1 reporter gene [487]. 

Lastly, Gβγ also inhibits glucocorticoid receptor (GR)-mediated activation of glucocorticoid 
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response genes (GREs) through direct interaction with the GR. Following GR activation with 

dexamethasone, Gβ2γ translocated with the GR into the nucleus and co-occupied GREs, preventing 

the function of the GR activation function 2 (AF2) domain [488]. 

A role for Gβγ as an activator of TF activity has also been identified (Figure 1.17). In HEK 

293 cells with heterologous AT1R expression (HEK 293-AT1R), Gβ2γ translocated to the nucleus 

in response to receptor activation with Ang II. Activation of endogenous AT1R in human aortic 

smooth muscle cells, neonatal rat cardiomyocytes and adult rat ventricular cardiomyocytes led to 

similar Gβ2γ translocation. In HEK 293-AT1R cells, nuclear Gβγ interacted with HDAC5, aligning 

with the previously observed Gβγ-HDAC5 interaction. Furthermore, Gβ2γ interacted with myocyte 

enhancer factor 2A (MEF2A), histone H3 and H4, TATA-binding protein (TBP) and the TBP-

associated factor (TAF) complex. Gβ2γ mediated the synergistic activation of a MEF2 reporter 

gene by MEF2 and the TBP/TAF complex at the promoter. Furthermore, the authors identified a -

LLTPPG- motif in MEF2A which interacted with the Gβ2 WD repeat. This repeat was also present 

in the Gβ2γ interacting TFs NFAT and STAT1/3 (another potential mechanism of Gβγ regulation 

of the STAT family). Similar to the MEF2 reporter gene, transcriptome microarray analysis 

revealed a reduction in AT1R mediated gene expression of these TFs’ target genes when Gβ2 was 

knocked down [489]. Additionally, a ChIP-on-chip experiment of HEK 293 cells identified Gβ1 

occupancy on more than 700 promoters [490].  

 

1.3.6. Regulation of RNAPII in pathological cardiac remodelling 

The adaptive response to stress in the heart requires dynamic alterations in gene expression 

networks in cardiac fibroblasts and cardiomyocytes. As previously described, a defining 

characteristic is the reactivation of a fetal-like gene expression program. These changes require 

the altered expression and activity of cardiac TFs whose DNA sequence-motifs reside within cis-

regulatory regions of differentially expressed genes [491]. Knockout and gain-of-function studies 

have identified several critical TFs for cardiomyocyte hypertrophy and fibrotic gene expression in 

cardiac fibroblasts, such as NFAT, MEF2, NF-κB, and GATA4 [492, 493]. Cardiac TFs co-occupy 

many genomic regions, interact with each other and regulate RNAPII transcription synergistically 

[494-496]. The combinatorial recruitment of TFs has been proposed to be required for specific 

cardiac gene expression program, as these factors are also individually expressed in other tissues 

[497]. As discussed earlier, TFs primarily activate transcription through the recruitment of GTFs 
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and other co-activators to their target genomic loci. While the interactions with the general 

transcriptional machinery have not been clearly defined in cardiac cell types for many of the TFs, 

interactions have been identified in other systems. For example, human NFATp interacts with and 

recruits the TFIID subunit TAF4 to target assembly of the TFIID complex in Cos-1 cells [498]. In 

a human liver hepatoma cell line, GATA4 was demonstrated to interact with the Mediator complex 

[499]. Studies in the embryonic myocardium and in models of heart failure have identified 

interactions of TFs with various transcriptional co-activators. For example, GATA4 and NF-κB 

interact with and are acetylated by the acetyltransferase p300, which enhanced their respective 

transcriptional activation activity [500]. Furthermore, GATA4 chromatin recruitment of p300 

increased the level of proximal histone acetylation in the embryonic mouse heart [501]. These are 

a few examples of how TFs interface with GTFs and co-activators to regulate assembly of the PIC 

or alterations in the chromatin, promoting recruitment of other transcriptional activators.  

The role of GTFs involved with initiation in the development of pathological cardiac 

remodelling has not been extensively studied. One study assessed the role of TFIIB in regulating 

gene expression changes in the TAC model. TFIIB was constitutively bound at housekeeping and 

RNAPII paused genes, whereas it was dynamically recruited to TAC-induced genes regulated by 

de novo RNAPII recruitment. TFIIB knockdown prevented the upregulation of stress-induced 

genes and cardiac remodelling in neonatal rat cardiomyocytes treated with ET-1 and an in vivo 

TAC model [502]. While the role of other GTFs has not been extensively studied in cardiac 

remodelling, SNPs in the TFIID subunit TAF10 were associated with primary familial 

hypertrophic cardiomyopathy [503]. Although the functional significance is currently unknown, 

the association suggests alterations in TFIID may lead to the development of a hypertrophic 

phenotype. 

On the other hand, positive regulation of RNAPII promoter-proximal pausing in pathological 

cardiac remodelling was identified almost two decades ago. The initial study pursued the kinase 

responsible for the increased hyperphosphorylated RNAPII following treatment of 

cardiomyocytes with the α1-AR agonist PE and in cardiac tissue from the in vivo TAC model [504]. 

Through a combination of in vivo mouse models and in vitro kinase assays with protein extracts 

from hypertrophic cardiac tissue, the authors identified Gαq and calcineurin-dependent RNAPII 

hyperphosphorylation through increased P-TEFb activity. The role of P-TEFb was also observed 

in neonatal rat cardiomyocytes treated with ET-1. The CDK9 small molecule inhibitor DRB or 
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overexpression of a dominant negative CDK9 prevented hypertrophy of neonatal rat 

cardiomyocytes. Furthermore, transgenic mice with cardiac-specific overexpression of cyclin T1 

developed pathological cardiac remodelling and exhibited increased cardiomyocyte hypertrophy 

in response to stress through alterations in the expression of mitochondrial proteins [505, 506].  

P-TEFb activation was dependent on removal from the inhibitory 7SK snRNP in cardiac 

hypertrophy [505], potentially through JAK/STAT and calcium signalling [352, 507]. Mice with 

disrupted 7SK snRNP due to heterozygous HEXIM1 knockout developed enhanced cardiac 

hypertrophy in an in vivo pressure overload model [508]. When bred with transgenic mice with 

cardiac specific overexpression of cyclin T1, the double transgenic mice developed synergistic 

compensatory hypertrophy [509]. Similar enhanced cardiac remodelling was observed when the 

HEXIM1 heterozygous mice were bred with transgenic mice with cardiac-specific overexpression 

of angiotensinogen, which increased local Ang II levels due to the elevated precursor expression. 

Interestingly, HEXIM1 heterozygous cardiac fibroblasts had enhanced transcriptional responses 

to TGF-β1 and Ang II treatment, as measured by α-smooth muscle actin and Nox4, indicating the 

important role of P-TEFb in fibrotic gene expression. The increased transcription in cardiac 

fibroblasts correlated with increased fibrosis and fibrotic gene expression in vivo [510].  

P-TEFb recruitment to the chromatin by Brd4 is required for pathological cardiac 

remodelling. Two studies independently characterized the requirement of Brd4 in cardiomyocyte 

hypertrophy. The first was through a BET-focused approach and the second identified the BET 

inhibitor JQ1 through a high-throughput screen [511, 512]. BET inhibitors reduced hypertrophy 

of primary neonatal rat cardiomyocytes treated with PE and the PKC activator PMA in vitro [511, 

512]. Brd4 knockdown with short hairpin RNA (shRNA) recapitulated the inhibitor effect of JQ1 

on PE-induced hypertrophy in vitro, indicating BET inhibitors were blocking hypertrophy through 

Brd4 inhibition [511]. Furthermore, JQ1 improved left ventricle hemodynamic function and 

reduced cardiomyocyte hypertrophy and fibrosis in the in vivo TAC model [511, 512]. In TAC 

hearts, increased RNAPII pause release was observed as there was a decrease in RNAPII pausing 

index compared to sham operated hearts. Systemic treatment with JQ1 in TAC mice prevented the 

decrease in RNAPII pausing index and reduced total pSer2 levels [511]. ChIP experiments also 

demonstrated reduced pSer2 following Brd4 inhibition at Brd4 target gene TSSs following PE 

treatment [513]. Together these results indicate Brd4 inhibition prevented cardiac remodelling due 

to the reduced recruitment of P-TEFb  Additionally, genome-wide gene expression methods from 
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in vitro and in vivo models identified enrichment of inflammatory and fibrotic biological processes 

in the JQ1 attenuated genes [428, 511].  

 

Figure 1.18. Model of Brd4 regulation in cardiomyocyte hypertrophy. 

Hypertrophic stimuli increase HDAC activity to repress expression of the Brd4 targeting miR-9. 

Decreased miR-9 expression enables increased Brd4 protein expression and increased recruitment 

to super-enhancers and promoters of pro-hypertrophic genes. Chromatin-bound Brd4 recruits P-

TEFb to activate the pathological gene expression through phosphorylation of the transcriptional 

machinery. Figure adapted from [513]. 

 

Brd4 ChIP-seq with neonatal rat cardiomyocytes identified increased Brd4 abundance at 

promoters and super-enhancers of PE upregulated genes. The authors proposed that the increased 

Brd4 occupancy was due to increased protein production through stimulus-dependent 

downregulation of miR-9a, which targets the 3’ untranslated region (UTR) of Brd4 (Figure 1.18) 

[513]. In order to understand how Brd4 was selectively recruited, potential TF-mediated 

recruitment of Brd4 was assessed in several studies. First, TF motif enrichment of super-enhancer 

sequences identified enrichment of AP-1 motifs. Interestingly, overexpression of a dominant 

negative AP-1 reduced Brd4 chromatin occupancy, indicating a causal role in Brd4 recruitment. 

Second, transcriptome analysis of human induced pluripotent stem cells (iPSCs) treated with ET-

1 and in vivo heart failure models identified enrichment of NF-κB and GATA4 target genes in JQ1 

attenuated genes, suggesting a co-regulatory role with Brd4 [428, 511].  

Brd4 regulates signal-dependent processes in other cardiac cell types as well. Brd4 has a 

critical role in regulating cardiac fibroblast activation in response to TGF-β. TGF-β signalling, 

potentially through p38 kinase, increased Brd4 occupancy at promoters and super-enhancers. The 

increased Brd4 occupancy corresponded with increased RNAPII elongation and expression of 
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genes critical for cardiac fibroblast activation. Importantly, JQ1 treatment prevented TGF-β and 

TAC-induced gene expression changes leading to reduced cardiac fibroblast activation [413]. 

Lastly, TAC-induced Brd4 expression was also identified in cardiac endothelial cells. Brd4 activity 

was required for endothelial cell conversion to fibroblasts through the process of endothelial-

mesenchymal transition (EndMT) [514]. Altogether, a critical role for Brd4 in regulating 

pathological gene expression changes in several cardiac cell types and a variety of pre-clinical 

models has been identified [511, 515]. 

The therapeutic potential of BET inhibition was further addressed in a more clinically 

relevant model of heart failure, where the therapy commonly begins after the patient has 

established pathological cardiac remodelling. Here, the authors began systemic JQ1 treatment 

following development of cardiac remodelling in the TAC and myocardial infarction mouse 

models. The delayed JQ1 treatment retained its ability to improve left ventricle hemodynamic 

function, reduce cardiomyocyte hypertrophy and fibrotic area, and attenuate upregulated gene 

expression [428]. The success of BET inhibitors in relevant pre-clinical models has led to an 

increased interest of BET inhibitor clinical trials for cardiovascular disease. A phase III clinical 

trial with the BET BD2 selective inhibitor apabetalone assessed the time until a major adverse 

cardiovascular event in patients with type 2 diabetes and low HDL-C after an acute coronary 

syndrome (ClinicalTrials.gov, NCT02586155). RVX 208 did not significantly reduce time until a 

major adverse cardiovascular event, although there was a trend for improvement (10% RVX-208 

vs 12.4% placebo, p = 0.11). Furthermore, RVX 208 reduced hospitalizations for congestive heart 

failure [516]. Although the clinical trial was performed in a form of cardiovascular disease not 

relevant to this thesis, it demonstrates the potential and interest for BET inhibition in 

cardiovascular diseases.  

As BET proteins regulate critical processes throughout the body, there is a risk for off-target 

side effects. Although initial mouse models did not identify cardiac toxicity to systemic JQ1 

treatment, subsequent work in healthy male mice and rats identified functional and metabolic 

alterations in the heart with systemic treatment of the BET inhibitor I-BET-151 [511, 517]. 

Furthermore, other side effects in mice include reduced weights of the thymus and spleen, altered 

hematopoiesis and reduced small intestine stem cell population. Lastly, BET inhibitor clinical 

trials for various cancers have reported thrombocytopenia, fatigue, nausea, vomiting and diarrhea 

as common toxicities to drug treatment [518]. It is thought that current efforts to improve drug 



86 

specificity for the different BET family members or one of the BDs will reduce the side effects 

and increase efficacy of these therapies [518]. 

 

1.4. Rational and objective of study 

For decades, the common therapeutic approach for heart failure has been to inhibit 

extracellular ligands from eliciting intracellular signalling cascades. As discussed, targeting GPCR 

signalling in particular has provided modest success in modifying disease progression and 

preventing patient mortality. Due to the multifactorial nature of pathological cardiac remodelling, 

targeting a single signalling pathway has limited beneficial effects. An emerging therapeutic 

strategy is to target molecular processes downstream of GPCR activation instead. The pronounced 

transcriptional alterations in cardiac cell types in response to stress suggests altering this response 

could have beneficial outcomes. Transcriptional responses integrate numerous signalling cascades 

through post-translational modifications of TFs, P-TEFb, 7SK snRNP components, and Brd4, 

among other transcriptional regulators. The signalling integration by transcriptional regulators 

suggests that therapies targeting these processes will be effective in altering disease progression in 

a broad range of patients. Developing successful treatments requires a deeper understanding of 

how transcription is regulated during the development of pathological cardiac remodelling in 

cardiac cell types to identify potential therapeutic targets. Furthermore, understanding how various 

stimuli modulate gene expression will enable identification of commonalities and differences in 

employed mechanisms, indicating how broadly the treatment will be effective.  

The overall objective of this thesis was to determine mechanisms employed by GPCRs and 

their signalling partners to modulate gene expression leading to cardiomyocyte hypertrophy and 

the fibrotic response in fibroblasts. We hypothesized that different GPCRs modulate transcription 

through distinct mechanisms due to their unique signalling profile. The specific objectives are: 

1. To characterize a non-canonical signalling pathway downstream of the α1-AR. 

Transcriptome analysis of neonatal rat cardiomyocytes following activation of the 

canonically Gαq-coupled α1-AR and ETR indicated activation of a cAMP pathway 

following α1-AR activation. We assessed the potential for α1-AR to increase intracellular 

cAMP in HEK 293 cells with heterologous expression of either receptor using various 

genetically encoded biosensors. 
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2. To determine the role of P-TEFb containing complexes in the development of 

cardiomyocyte hypertrophy following activation of distinct GPCRs. Here, we assessed the 

role of Brd4 and SEC mediated P-TEFb recruitment in regulating cardiomyocyte 

hypertrophy following activation of the α1-AR or ETR. Comparison of the two receptors 

identified a novel mechanism of Brd4 activation required for the hypertrophic response. 

3. To determine the role of Gβγ recruitment to RNAPII in regulating gene expression in 

cardiac fibroblasts. AT1R signalling activates pro-fibrotic gene expression and an 

interaction of Gβγ with RNAPII. We addressed the regulatory role of the Gβγ-RNAPII 

interaction on fibrotic gene expression. 
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2.1. Preface 

This study was initiated to compare signalling profiles of two GPCRs, the ETR and α1-AR, 

commonly used to study hypertrophy of neonatal rat cardiomyocytes. The hypertrophic response 

following receptor activation has been ascribed to their ability to stimulate intracellular signalling 

cascades through Gαq. In the literature, we noticed few studies with direct comparisons of their 

signalling profiles able to identify unique pathways and mechanisms employed to induce 

cardiomyocyte hypertrophy. Furthermore, previous studies assessing GPCR regulation of P-TEFb 

activity and recruitment used ligands for the ETR or the α1-AR, assuming the signalling profiles 

to be highly similar. We hypothesized that these distinct receptors had unique signalling profiles 

that need to be considered when assessing transcriptional regulation in cardiomyocytes. Therefore, 

in order to identify signalling differences between these receptors in an unbiased manner, we 

assessed transcriptome changes following 1.5 h or 24 h receptor activation by RNA-seq. From our 

transcriptome analysis, we identified a unique signalling pathway activated by the α1-AR not 

previously thought to be activated by this receptor. Throughout the study, we used a variety of 

genetically encoded biosensors to further understand the α1-AR subtype and compartment 

specificity in activating the novel pathway. This chapter expands our understanding of signalling 

pathways activated by the α1-AR with direct implications for its regulation of cardiomyocyte 

function.  

 

2.2. Abstract 

The signalling functions of many G protein-coupled receptors (GPCRs) expressed in the 

myocardium are incompletely understood. Among these are the endothelin receptor (ETR) family 

and α1-adrenergic receptor (α1-AR), which are thought to couple to the G protein Gαq. In this 

study, we used transcriptome analysis to compare the signalling networks downstream of these 

receptors in primary neonatal rat cardiomyocytes. This analysis indicated increased expression of 

target genes of cAMP responsive element modulator (CREM) after 24h treatment with the α1-AR 

agonist phenylephrine, but not the ETR agonist endothelin-1, suggesting a specific role for the α1-

AR in promoting cAMP production in cardiomyocytes. To validate the difference observed 

between these two GPCRs, we used heterologous expression of the receptors and genetically 

encoded biosensors in HEK 293 cell lines. We validated that both α1A- and α1B-AR subtypes were 



90 

able to lead to the accumulation of cAMP in response to phenylephrine in both the nucleus and 

cytoplasm in a Gαs-dependent manner. However, the ETR subtype ETA did not affect cAMP 

levels in either compartment. All three receptors were coupled to Gαq signalling as expected. 

Further, we showed that activation of PKA in different compartments was α1-AR subtype specific, 

with α1B-AR able to activate PKA in the cytoplasm and nucleus and α1A-AR only able to in the 

nucleus. We provide evidence for a pathway downstream of the α1-AR, and show that distinct 

pools of a receptor lead to differential activation of downstream effector proteins dependent on 

their cellular compartment. 

 

2.3. Introduction 

G protein-coupled receptors (GPCRs) comprise a diverse family of seven transmembrane 

domain-containing receptors represented by over 800 genes in humans. GPCRs respond to a range 

of stimuli, including peptides, hormones, growth factors, lipids, odorants, and light [1]. Upon 

ligand binding, GPCRs activate heterotrimeric G proteins, consisting of an α, β, and  subunits, 

which subsequently activate downstream effectors and signalling cascades. Cardiovascular tissues 

(heart, aorta and smooth muscle) express more than 150 GPCRs [2], but in many cases their 

signalling and physiological roles remain incompletely understood.  

Two GPCR subtypes of interest in the myocardium are the endothelin receptor (ETR) and 

the α1-adrenergic receptor (α1-AR). Upon ligand binding, these receptors canonically activate the 

Gαq protein leading to activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-

bisphosphate into diacylglycerol (DAG) and inositol 1, 4, 5-triphosphate (IP3), and a subsequent 

increase in intracellular Ca2+ levels and protein kinase C (PKC) activation. ETR and α1-AR, in 

response to endothelins or the endogenous catecholamines epinephrine and norepinephrine 

respectively, mediate signalling events important for cardiac function and pathology (reviewed in 

[3]). 

The ETR family contains two subtypes, ETA and ETB, that are expressed at similar levels 

in the heart [4-7]. ETR subtypes are able to regulate multiple signalling pathways including 

phospholipase D, phospholipase A2, Na+/H+ exchangers, cAMP and cGMP production, mitogen 

activated protein kinase (MAPK) pathways, and tyrosine kinases [8-15]. In the heart, ETR 

signalling has inotropic and chronotropic effects [16, 17] and mediates cardiac remodelling in 
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hypertrophy, myocardial infarction, and congestive heart failure [18-20]. In these various cardiac 

pathologies, ETR signalling through endothelin-1 is increased and the associated cardiac 

hypertrophy can be blocked with an ETAR-specific antagonist [21-24]. 

The α1-AR family consists of multiple subtypes, including the α1A-, α1B- and α1D-ARs [25, 

26]. A role for α1-ARs has been demonstrated in the regulation of phospholipase D, phospholipase 

A2, MAPK pathways, Na+/H+ exchangers, tyrosine kinases, as well as cAMP and cGMP 

production [10, 14, 15, 27-32]. Cardiac α1-ARs have some inotropic and chronotropic effects and 

also regulate cardiac remodeling in hypertrophy and following myocardial infarctions (reviewed 

in [33, 34]). All three subtypes are expressed in cardiomyocytes but only α1A-AR and α1B-AR are 

detectable at the protein level [35]. Differences between the receptor subtypes in mediating cardiac 

pathologies have been identified through the use of transgenic mice. Cardiac specific 

overexpression of α1B-AR led to an exacerbated hypertrophic response to pressure overload and 

dilated cardiomyopathy, whereas overexpression of α1A-AR did not affect the response [36-39].   

Initially, studies of GPCRs predominantly assessed the signalling pathways downstream of 

receptors on the cell surface. There is now an understanding that GPCRs can localize to and signal 

from various intracellular compartments, such as the nucleus (reviewed in [40]). These 

intracellular pools of receptors can lead to distinct signalling pathways from those activated by the 

same receptor at the cellular surface. In adult rat ventricular cardiomyocytes, ETBR localizes along 

the nuclear membrane, whereas ETAR is mainly found at the cell surface [41]. In the α1-AR family, 

both subtypes found in adult cardiomyocytes localize to the nucleus and to a lesser extent the cell 

surface [42]. The nuclear GPCR population activates proximal signalling pathways similar to those 

on the cell membrane, but also have more direct effects on nuclear activities such as transcription 

initiation and gene expression (reviewed in [40, 43]). Studies assessing these nuclear specific 

events have used both the ETR and α1-AR interchangeably as both are thought to predominantly 

couple to Gαq. Furthermore, the receptor subtype-specific signalling that occurs in distinct cellular 

compartments has not been addressed.  

Here, we have used transcriptome analysis of primary neonatal rat cardiomyocytes treated 

with either the ETR agonist endothelin-1 or the α1-AR agonist phenylephrine to assess differences 

in their respective signalling networks, and further probed these differences using a panel of 

fluorescent resonance energy transfer (FRET)- and bioluminescent resonance energy transfer 

(BRET)-based biosensors. We also used genetically-encoded biosensors targeted to specific 



92 

cellular compartments to compare differential signalling by distinct GPCR populations. These 

experiments revealed unexpected specificity in signalling function, both among the receptor 

subtypes tested and between subcellular compartments.  

 

2.4. Methods 

2.4.1. Constructs 

Wild type ETA receptor in pcDNA3.1+, wild-type α1A-adrenergic receptor in pCAGGS [44], 

wild-type α1B-adrenergic receptor in pcDNA3.1+ (Missouri S&T cDNA Resource Center), 

GFP10-EPAC-RlucII in pcDNA3.1 [45] were a generous gift from Dr. Michel Bouvier (Université 

de Montréal). Mammalian wild-type Gαs construct was a generous gift from Dr. Peter Chidiac 

(Western University). The Gαq biosensor was described by Namkung et al. (2016) [46]. The 

AKAR4-NLS construct, as described in [47], was a generous gift from Dr. Jin Zhang (UCSD). 

The AKAR3EV-NES construct [48] was a generous gift from Dr. Michiyuki Matsuda (Kyoto 

University).  

To generate the GFP10-EPAC-RLucII-NLS and GFP10-EPAC-RLucII-NES constructs, we 

first excised the stop codon at the end of RLucII with XhoI and PmeI restriction enzymes and 

replaced it with polymerase chain reaction (PCR) amplified linkers 

(SGPIESSILAQRRLINPGLNS) containing MfeI and PmeI restriction sites at the 3’ end. Then, 

two oligonucleotides were annealed together to create a double stranded DNA coding for the 

nuclear localization sequence of SV40 (PKKRKVENA) or the nuclear export sequence of Heat 

Stable Inhibitor of cAMP-dependent protein kinase (LALKLAGLDI) bordered by a 5’ MfeI 

restriction site and a 3’ PmeI restriction site. Finally, the annealed oligonucleotides were 

introduced in the new GFP10-EPAC-RLucII-linker vector using MfeI and PmeI digestion. 

 

2.4.2. RNA-seq Analysis 

RNA was isolated with the RNeasy Mini Kit (Qiagen) according to manufacturer’s 

instructions. Library preparation with the KAPA Stranded RNA-Seq kit with RiboErase (HMR) 

and paired-end 125bp sequencing on the Illumina HiSeq 2500 was performed at the McGill 

University and Génome Québec Innovation Centre, Montréal, Canada. Illumina adapter 

sequences were removed with Cutadapt [49] and reads were aligned to the rat genome (Rnor.6) 
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with STAR [50] (default settings). Counts were obtained with featureCounts (-Q 3) [51] and 

differential gene expression analyzed with DESeq2. Upstream regulators were predicted through 

the use of Ingenuity Pathway Analysis (IPA, QIAGEN Inc., https://www.qiagenbio- 

informatics.com/products/ingenuity-pathway-analysis) [52]. 

 

2.4.3. Cardiomyocyte Isolation and Culture 

Unless otherwise stated, all reagents were obtained from Sigma. Cardiomyocytes were 

isolated from 1-3 day old Sprague-Dawley pups (Charles River Laboratories, St-Constant, 

Quebec) as previously described by Colombo et al. (2013). After isolation, cardiomyocytes were 

plated on 10 cm dishes coated with 10 g/mL fibronectin and 0.1% gelatin in low glucose DMEM, 

7% (v/v) fetal bovine serum, 1% (v/v) pencillin and streptomycin and 10 M cytosine β-D-

arabinofuranoside for 24h. Media was changed to maintenance media [low glucose DMEM and 

1% (v/v) insulin/selenium/transferrin] and 10 M cytosine β-D-arabinofuranoside. After 24h, 

media was replaced with fresh maintenance media and experiments completed 24h later. 

Cardiomyocytes were treated with 100 nM endothelin-1 (Bachem), 10 M phenylephrine, or 

vehicle (0.001% acetic acid) with DMSO for 1.5h or 24h prior to RNA isolation. Cardiomyocytes 

were maintained in a controlled environment at 37C and 5% CO2. 

 

2.4.4. Cell Culture and Transfection 

HEK 293SL, HEK 293 parental (PL) and CRISPR-mediated Gαs knockout (Gαs) [53] cell 

lines were maintained in Dulbecco’s Modified Eagle’s medium (DMEM) high glucose, 5% (v/v) 

fetal bovine serum and 1% (v/v) penicillin/streptomycin. All cell lines were grown in a controlled 

environment at 37C and 5% CO2. For transfection, cells were plated at a density of 2x105 cells 

per well in 6-well plates (Thermo Scientific, 140675) for HEK 293SL and HEK 293PL and 2.1x105 

cells per well for HEK 293Gαs cells. Cells were transfected with Lipofectamine 2000 

(Invitrogen) according to the manufacturer’s instructions 24h after plating. For each well, 1 g of 

the respective biosensor DNA and 0.5 g of the receptor DNA was transfected. For the Gαs rescue, 

0.2 g of receptor DNA was transfected and 0.3 g of wild type Gαs or pcDNA3.1(-). After 24h 

incubation, cells were detached with 0.25% trypsin-EDTA (Wisent) and plated at a density of 

4x104 cells/well in a poly-L-ornithine (Sigma-Aldrich)-coated 96-well white bottom plate 
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(Thermo Scientific, 236105) for BRET or a similar black bottom plate (Costar, 3916) for FRET. 

Cells were incubated for another 24h prior to biosensor experiments. 

 

2.4.5. BRET Biosensors 

After 24h incubation in a 96-well plate, the media was removed and cells washed once with 

Krebs buffer (146 mM NaCl, 42 mM MgCl2, 10 mM HEPES pH 7.4, 1g/L D-glucose) and 

incubated for 2h at room temperature in Krebs buffer. Coelenterazine 400A (Cedarlane) was 

added, to a final concentration of 5 M, to each well and incubated for 5 min prior to basal reading. 

For pretreatment with 1 M alprenolol, the β-adrenergic receptor (βAR) antagonist was added 30 

min prior to the addition of coelenterazine 400A. Each agonist was added to the indicated final 

concentration and the plate was read after a 15 min stimulation. BRET ratios were calculated as 

the emission at 515 nm/emission at 400 nm. For all experiments, BRET refers to: (Stimulated 

Agonist BRET Ratio – Basal Agonist BRET Ratio) – (Stimulated vehicle BRET Ratio – Basal 

vehicle BRET Ratio). The average of three technical replicates was taken for all treatments. BRET 

experiments were performed using a Victor X Light plate reader (Perkin Elmer). For validation of 

the HEK 293Gαs cell line, experiments were performed using a TriStar2 multimode plate reader 

(Berthold Technologies). The normalized BRET ratio was computed by dividing the fluorescence 

by the luminescence for the stimulated cells divided by the basal BRET;
𝐵𝑅𝐸𝑇𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝐵𝑅𝐸𝑇𝑏𝑎𝑠𝑎𝑙
. 

 

2.4.6. FRET Biosensors 

After 24h incubation in a 96-well plate, the media was removed and replaced with Krebs 

solution and incubated for 1h at 37C. For pretreatment with 1 M alprenolol, the βAR antagonist 

was added 30 min prior to the basal FRET reading. Following the basal FRET readings, each 

agonist was added to the indicated final concentration and a reading taken after 15 min. Each well 

was excited with 420 nm light and emissions read at 485 nm and 528 nm separately. The FRET 

ratio was calculated by emission at 485 nm/emission at 528 nm. For all experiments, FRET 

refers: (Stimulated Agonist FRET Ratio – Basal Agonist FRET Ratio) – (Stimulated vehicle FRET 

Ratio – Basal FRET Ratio). The average of three technical replicates was taken for all treatments. 

All FRET experiments were performed using a Synergy2 plate reader (Biotek) at 37C. 
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2.4.7. Immunofluorescence 

HEK 293SL cells expressing EPAC-NLS or EPAC-NES were fixed with 4% 

paraformaldehyde at room temperature for 10 min and subsequently stained with Draq5 for 10 min 

at room temperature. Images were obtained with an Opera Phenix high content microscope (Perkin 

Elmer) using the confocal setting with 63x magnification. The GFP10 channel was obtained with 

a 375 nm excitation laser and emission filter at 500-550 nm and Draq5 channel with a 650 nm 

excitation and emission filter at 650-760 nm. 

 

2.4.8. Statistical Analysis 

All statistical analysis was performed using GraphPad Prism 6.0 software. Data is 

represented as mean  standard error (SE). Dose response curves were plotted using a four-

parameter (variable slope) non-linear regression and logEC50 values were compared with an extra 

sum-of-squares F test. The activation of Gαq, EPAC-NES and EPAC-NLS were evaluated with a 

one-sample t test (Figure 2.2, Figure 2.5). One-way analysis of variance was performed followed 

by Bonferroni-corrected t-tests for validation of HEK 293Gαs (Supplemental Figure 2.1). Two-

way analysis of variance was performed followed by Bonferroni-correct t-tests for Gαs rescue 

experiments (Figure 2.3E,F). For the upstream analysis prediction (Figure 2.1A), the p-value was 

obtained by a Fisher’s Exact Test completed by the Ingenuity Pathway Analysis software package. 

 

2.5. Results 

2.5.1. Transcriptome analysis suggests cAMP signalling may be regulated by the α1-

adrenergic receptor but not the endothelin receptor 

In order to compare the responses induced by distinct hypertrophic stimuli in neonatal rat 

cardiomyocytes, RNA-seq analysis was performed to assess the differential gene expression 

following treatment with 100 nM ET-1, 10 M PE or vehicle for 1.5h or 24h. In this regard, we 

used conditions similar to those used in previous studies of gene expression in the hypertrophic 

response [54]. Pathway analysis of genes differentially expressed between treatment groups at 24h 

revealed a significant increase in cAMP responsive element modulator (CREM) target genes in 

cells treated with PE, suggesting that CREM activity was increased (activation z-score=0.894, p-
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value=5.58x10-8) (Figure 2.1A). In contrast, ET-1 treatment was associated with a slight decrease 

in apparent activity of CREM (activation z-score=-0.355, p-value=5.46x10-6). CREM mRNA 

expression was strongly upregulated by PE but not ET-1 at the earlier 1.5h time point, consistent 

with subsequent increase in CREM activity (Figure 2.1B), whereas neither treatment affected 

CREM expression at 24h (Figure 2.1C). Transcription of CREM mRNA and its subsequent 

transcriptional activity is regulated by cAMP, which is not a canonical downstream signalling 

pathway of either the α1-AR or ETAR.  

 

Figure 2.1. Transcriptome analysis of neonatal rat cardiomyocytes suggests cAMP signalling 

may be downstream of α1-adrenergic receptor activation. 

A) Upstream regulator prediction by Ingenuity Pathway Analysis. A positive z-score predicts an 

increase in activity of the transcription factor, whereas a negative z-score predicts a decrease in 

activity. B) CREM expression changes in response to phenylephrine or endothelin-1 after 1.5h. C) 

CREM expression changes in response to phenylephrine or endothelin-1 after 24h. Significant 

gene expression was determined by DESeq2 from two independent biologic replicates. (* p < 

0.05). 

 

2.5.2. α1A- and α1B-adrenergic receptor activation lead to accumulation of cAMP 

To validate the predicted cAMP signalling pathway activity from our transcriptome analysis, 

a panel of genetically-encoded biosensors and the relevant GPCRs were co-expressed in HEK 293 

cells. First, a BRET-based Gαq sensor (Figure 2.2A) was used to validate that the different 

receptors activated their canonical G protein partner. The α1A- and α1B-ARs as well as ETAR 

efficiently activated Gαq (Figure 2.2B). We next assessed the accumulation of cAMP following 



97 

receptor activation using a BRET-based whole-cell EPAC biosensor. Binding of cAMP to this 

biosensor induces a conformational change resulting in a decrease in BRET signal, thus a decrease 

in BRET indicates an increase in total cellular cAMP concentration. The α1A- and α1B-ARs both 

lead to a dose-dependent accumulation of cAMP in response to phenylephrine (Figure 2.3A), 

whereas endothelin-1 stimulation of the ETAR did not affect cAMP levels (Figure 2.3B). 

 

Figure 2.2. α1-adrenergic and endothelin-A receptors activate Gαq. 

A) Schematic illustrating principal of the Gαq BRET biosensor. B) Activation of Gαq in response 

to receptor activation. HEK 293SL cells were transiently transfected with ETAR, α1A-AR or α1B-

AR and the vector encoding the BRET-based Gαq biosensor. All readings were made using a 

Victor X Light microplate reader (Perkin Elmer) 1min after activation and are expressed as 

BRET. Data are presented as mean  SE for three independent experiments. One sample t-test 

was performed to determine if response was significantly different than control (* p < 0.05, ** p 

< 0.01). 

 

Although it is considered a specific α-AR agonist, phenylephrine is known to have effects 

on the βAR at high concentrations [55]. In order to determine that the observed effect was not 

through off-target activation of the βAR, cells expressing α1A- and α1B-ARs were treated with the 

β-blocker alprenolol prior to activation with phenylephrine. In the presence of alprenolol, both the 

α1A- and α1B-AR still led to accumulation of cAMP following treatment with phenylephrine 

(Figure 2.3C,D). There was a slight rightward shift in the responses measured in the presence of 

alprenolol (α1A-AR, control 6.4 +/- 0.1 versus 5.9 +/- 0.1 log EC50; α1B-AR, control 6.7 +/- 0.2 

versus 6.2 +/- 0.1 log EC50) suggesting that coupling to both βAR (as an off-target effect of 

phenylephrine) and α1-AR occurs.  
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Figure 2.3. α1-adrenergic receptors, but not the endothelin-A receptor, increase cAMP 

production in a dose-dependent and Gαs-dependent manner. 

HEK 293SL cells were transiently transfected with α1A-AR (A), α1B-AR (A) or ETAR (B) with a 

vector encoding a global whole cell BRET-based EPAC biosensor. C and D) HEK 293PL or Gαs 

cells were transfected with α1A-AR (C) or α1B-AR (D), respectively, and the global BRET-based 

EPAC biosensor. E and F) HEK 293Gαs cells were transfected with pcDNA3.1- or wild-type 

Gαs alongside α1A-AR (E) or α1B-AR (F). Cells were pretreated with 1 M alprenolol or vehicle 

for 30 min prior to stimulation with phenylephrine. All readings were made using a Victor X Light 

microplate reader (Perkin Elmer) 15 min after treatment and are expressed as BRET. Data are 

presented as mean  SE for three independent experiments.  Two-way analysis of variance was 

performed followed by Bonferroni corrected t-tests (** p < 0.01). 

 

Accumulation of cAMP mediated by adenylyl cyclase activation is a prototypical 

consequence of Gαs signalling. In order to assess the dependence on Gαs for the α1A- and α1B-

ARs, a CRISPR-mediated Gαs knockout HEK 293 line was used (validated in Supplemental 

Figure 2.1). The BRET-based EPAC biosensor was transfected into the HEK 293 parental line 

(PL) or Gαs knockout (Gαs) with either the α1A- or α1B-AR. Accumulation of cAMP downstream 
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of either receptor was dependent on the presence of Gαs (Figure 2.3C,D). Lastly, we performed a 

rescue experiment in the HEK 293Gαs cells by reintroducing wild-type Gαs. When Gαs was 

reintroduced, α1A- and α1B-AR activation again led to an accumulation of cAMP (Figure 2.3E,F).  

 

2.5.3. Differential activation of PKA by receptor subtypes in specific cellular compartments 

As both the α1A- and α1B-AR lead to accumulation of cAMP, we next assessed their ability 

to activate PKA in specific cellular compartments. We utilized a FRET-based PKA sensor 

engineered with either a nuclear export sequence (NES) or a nuclear localization sequence (NLS) 

to determine compartment-specific PKA activation by the ETAR, α1A- and α1B-AR in response to 

agonist. In these assays, an increase in FRET indicates an increase in PKA activity. Again, the 

ETAR did not activate PKA in either the cytoplasm or the nuclear compartment (Figure 2.4A,D). 

There was again a slight rightward shift in the responses measured in the presence of alprenolol 

(AKAR-NES- α1A-AR, control 6.8 +/- 0.9 versus 6.5 +/- 1.0 log EC50; α1B-AR, control 6.0 +/- 0.3 

versus 6.7 +/- 0.2 log EC50, AKAR-NLS- α1A-AR, control 6.3 +/- 0.3 versus 6.1 +/- 0.4 log EC50; 

α1B-AR, control 7.4 +/- 0.2 versus 6.8 +/- 0.4 log EC50) suggesting off-target coupling to 

endogenous βAR in response to phenylephrine. Stimulation of the α1A-AR increased PKA activity 

in the nucleus but not the cytoplasm, and the nuclear PKA activation was again dependent on the 

presence of Gαs (Figure 2.4B,D). Activation of the α1B-AR led to Gαs-dependent increases in PKA 

activity in both the cytoplasm and the nucleus (Figure 2.4C,E). Thus, there is a localized specificity 

to PKA signalling in response to activation of different α1-AR subtypes. 
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Figure 2.4. α1-adrenergic receptors show subtype specific activation of PKA in different 

cellular compartments. 

A) The vector encoding an AKAR3EV-NES biosensor was transiently transfected alongside the 

ETAR into HEK 293PL. AKAR3EV-NES was transiently expressed alongside the α1A-AR (B) or 

α1B-AR (C) into HEK 293PL or Gαs cells. D) HEK 293SL were transiently transfected with 

AKAR4-NLS biosensor and ETAR and stimulated with endothelin-1. HEK 293PL or Gαs cells 

were transiently transfected with AKAR4-NLS biosensor and α1A-AR (E) or α1B-AR (F). Cells 

were pretreated with 1 M alprenolol or vehicle for 30 min prior to stimulation with phenylephrine. 

All readings were obtained using a Synergy2 microplate reader (Biotech) 15 min after treatment 

and are expressed as FRET. Data are presented as mean  SE for three (α1A-AR and α1B-AR) or 

four (ETAR) independent experiments.    

 

2.5.4. cAMP accumulates in the nucleus and cytoplasm following activation of the α1A- and 

α1B-adrenergic receptors 

In order to determine if the localized activation of PKA was due to localized cAMP 

production, we used BRET-based EPAC cytoplasmic and nuclear-localized biosensors (Figure 

2.5A). α1A-AR activation led to an accumulation of cAMP in both the nucleus and cytoplasm 

following stimulation with phenylephrine for 15min (Figure 2.5B,C). We also found that the α1B-

AR increased cAMP levels after 15 min in response to phenylephrine (Figure 2.5B,C). Thus, 
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although both the α1A- and α1B-AR are able to increase cAMP production in the nucleus and 

cytoplasm, downstream PKA activation is compartmentalized.  

 
 

Figure 2.5. cAMP increases in the cytoplasm and nucleus upon activation of the α1-

adrenergic receptors. 

A) Immunofluorescent images of HEK 293SL cells expressing BRET-based EPAC biosensors 

targeted to the cytoplasm (EPAC-NES, top panel) or nucleus (EPAC-NLS, lower panel). Images 

for Draq5 (left image) and GFP (middle iamged) were captured and presented as merged images 

(left image). HEK 293SL cells were transiently transfected wit α1A-AR or B and α1B-AR with a 

BRET-based EPAC-NES (B) or EPAC-NLS (C) biosensor. HEK 293SL cells were pretreated for 

30 min with vehicle or 1 M alprenolol prior to stimulation with 10 M phenylephrine. All 

readings were taken on a Victor X Light microplate reader (Perkin Elmer) 15 min after treatment 

and are expressed as BRET. Data are presented as mean  SE for 3-5 independent experiments. 

One sample t-test was performed to determine if response was significantly different than control 

(* p < 0.05, ** p < 0.01).    

 

2.6. Discussion 

Here we have shown that two GPCR subtypes thought to trigger similar signalling events by 

coupling to Gαq in fact regulate different signalling networks via coupling to distinct G proteins. 

Thus global effects regulated by both receptors in events such as cardiac hypertrophy should be 

assessed independently. We first demonstrated distinct signalling pathway responses activated by 

the α1-AR compared to the ETR in hypertrophic cardiomyocytes. The upregulation of CREM 

expression after 1.5h stimulation of the α1-AR suggested a concomitant increase in cAMP levels 

following receptor activation, as some CREM isoforms are upregulated in response to cAMP [56, 

57]. We explored this potential signalling pathway further as upregulation of cAMP synthesis by 
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catecholamines, the endogenous ligands for α1-AR, is usually associated with βAR receptor 

activation. We used a heterologous expression system with a panel of FRET- and BRET-based 

biosensors in HEK 293SL cells and the pertinent subtypes of the α1-AR and ETR that regulate 

cardiac hypertrophy. Whereas ETAR stimulation did not increase cAMP production or PKA 

activity, both α1A-AR and α1B-AR were able to generate cellular cAMP accumulation and PKA 

activation in a Gαs-dependent manner. This expands the current view of the α1-AR subfamily, 

which is classically associated with Gαq, to include regulation of cAMP and PKA through Gαs.  

Previous studies have demonstrated the ability of the α1-AR to lead to accumulation of 

cAMP through different mechanisms. Such increases were found to be secondary to activation of 

protein kinase C [58, 59] or through direct activation of Gαs [27, 28, 30, 60]. These studies 

assessed cAMP production in the whole cells and determined signalling pathways using small 

molecule inhibitors or co-immunoprecipitation of G proteins. Here we show directly that the 

increase in cAMP downstream of the α1-AR is dependent on the presence of Gαs. On the other 

hand, heterologous ETAR expression in Chinese hamster ovary cells showed the ability of the 

receptor to activate Gαs [61, 62], whereas ETAR activated PKA in a cAMP-independent manner 

in HeLa cells [63]. We have demonstrated that in HEK 293, ETAR does not activate PKA, either 

in a Gαs-dependent or -independent manner. Therefore, depending on the cellular context and the 

complements of G proteins, ETAR may be able to functionally couple to distinct signalling 

pathways. Increases in α1-AR densities have been noted during the progression to heart failure, 

especially in patients treated with β-blocking agents [64, 65]. This leads to an increase of the α1-

AR to βAR ratio. It has been suggested that α1-AR may therefore assume a greater functional role 

in the failing heart by acting as a secondary inotropic system when β-adrenergic signalling is 

compromised by drugs or downregulation of βAR. 

Although we observed increases in α1-AR mediated cAMP production separately in the 

nucleus and cytoplasm, compartment specificity was observed for PKA activation. GPCRs and 

their effector proteins are commonly found in multiprotein signalosomes with A-kinase anchoring 

proteins (AKAPs) serving as scaffolds [66]. These AKAPs bring the components of signalling 

cascades into close proximity with one another, including the GPCR, adenylyl cyclases, cAMP 

phosphodiesterases, PKA, as well as different substrates [67, 68]. These complexes contain both 

positive and negative regulators of cAMP synthesis, which allows for discrete localized signalling 

and activation of specifically-localized subsets of PKA near their substrates [69]. PKA substrate 
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phosphorylation following α1-AR stimulation was observed to be highly compartmentalized 

within the cell, and was delocalized by microtubule disruption [27]. More recently, an AKAP-Lbc 

signaling complex was shown to regulate α1-AR signalling through RhoA [70]. The nuclear-

specific activation of PKA by the α1A-AR, despite cAMP production in both the cytoplasm and 

nucleus suggests interaction with different AKAP complexes. Multiple AKAPs have been shown 

to interact with the same GPCR. For example, the βAR interacts with both AKAP250 and 

AKAP150. To determine the compartment-specific AKAP interactions, future experiments with 

isoform specific AKAP disrupting peptides could be performed [71].  

PKA signalling in the nucleus was thought to be due to the translocation of the catalytic 

subunit upon activation from the cytoplasm to the nucleus via diffusion [72]. However, a new 

understanding has emerged, as both the regulatory and catalytic subunits have been identified in 

the nucleus and functionally separate from the cell surface [73-75]. Functional differences between 

the two pools of PKA have been identified in cardiomyocytes, with cytoplasmic PKA exerting 

inotropic effects and the nuclear pool regulating hypertrophic responses [47]. The compartment 

specific activation of PKA by different subtypes of the α1-AR adds another dimension to their 

differential physiological and pathological roles. Subtype selective agonists or antagonists could 

be used to assess these differences in cardiomyocytes.  

 

2.7. Conclusion 

In conclusion, we have provided evidence that the α1-AR family activates the cAMP/PKA 

pathway in a Gαs-dependent manner. Within this subfamily, there is subtype specific activation of 

PKA in various cellular compartments. Furthermore, the inability of the ETAR to activate PKA 

highlights that when studying global effects in cardiac hypertrophy, agonists for GPCRs that 

canonically couple to Gαq need to be assessed independently for additional signalling phenotypes. 
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2.10. Supplemental Figures 

 

Supplemental Figure 2.1. Functional validation of ΔGαs cells. 

Gαs-mediated signaling in HEK 293 parental cells was compared to the CRISPR-Cas9 genome 

edited ΔGαs cells to validate the loss of Gαs in the engineered cells. Cells were transiently 

transfected with a BRET-based EPAC biosensor. HEK 293ΔGαs were also transiently transfected 

with wild-type Gαs. Cells were stimulated with vehicle (ascorbic acid) or 10 µM isoproterenol and 

readings taken on Tristar microplate reader (Berthold Technologies) 15 min after treatment. 

Readings are expressed as normalized BRET ratios. Data represent mean ± SE of three 

independent experiments. One-way analysis of variance was performed followed by Bonferroni-

corrected t-tests (*** p < 0.001). 
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3.1. Preface 

In Chapter 2, we demonstrated that α1-AR subtypes coupled to Gαq and increased 

intracellular cAMP levels and PKA activity through Gαs, whereas the ETAR coupled with Gαq 

and not Gαs. Previous studies have stimulated the α1-AR or ETR to assess P-TEFb function in 

cardiomyocytes, assuming similar signalling and therefore similar P-TEFb regulation. In this 

chapter, we describe the functional implication of the identified signalling difference in Chapter 2 

on P-TEFb regulation in cardiomyocytes. We utilized a variety of small molecules to inhibit P-

TEFb activity, P-TEFb recruitment, and receptor signalling pathways following activation of the 

α1-AR or ETR in primary neonatal rat cardiomyocytes. With these pharmacological tools, we 

demonstrated the α1-AR specific requirement for Brd4-mediated, and the common requirement for 

SEC-mediated, P-TEFb recruitment to induce cardiomyocyte hypertrophy. Transcriptome analysis 

revealed BET inhibition selectively attenuated pathways involved with cardiomyocyte 

hypertrophy and inflammation following α1-AR activation. Furthermore, we demonstrated Brd4 

recruitment in response to α1-AR activation required PKA signalling. In this chapter, we propose 

the addition of PKA signalling shifts the balance of P-TEFb complexes required for hypertrophy.  

 

3.2. Abstract 

Pathological cardiac hypertrophy is driven by neurohormonal activation of specific G 

protein-coupled receptors (GPCRs) in cardiomyocytes and is accompanied by large-scale changes 

in cardiomyocyte gene expression. These transcriptional changes require activity of positive 

transcription elongation factor b (P-TEFb), which is recruited to target genes by the bromodomain 

protein Brd4 or the Super Elongation Complex (SEC). Here we describe GPCR-specific regulation 

of these P-TEFb complexes and a novel mechanism for activating Brd4 in primary neonatal rat 

cardiomyocytes. The SEC was required for the hypertrophic response downstream of either the 

α1-adrenergic receptor (α1-AR) or the endothelin receptor (ETR). In contrast, Brd4 inhibition 

selectively impaired the α1-AR response. This was corroborated by the finding that activation of 

α1-AR, but not ETR, increased Brd4 occupancy at promoters and super-enhancers of hypertrophic 

genes. Transcriptome analysis demonstrated that activation of both receptors initiated similar gene 

expression programs, but that Brd4 inhibition attenuated hypertrophic genes more robustly 

following α1-AR activation. Finally, we show that protein kinase A (PKA) is required for α1-AR 
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stimulation of Brd4 chromatin occupancy. The differential role of the Brd4/P-TEFb complex in 

response to distinct GPCR pathways has potential clinical implications as therapies targeting this 

complex are currently being explored for heart failure. 

 

3.3. Introduction 

The heart undergoes extensive remodelling in response to various mechanical and hormonal 

stressors during the progression to heart failure following myocardial infarction and/or sustained 

hypertension (1, 2). This includes hypertrophy of terminally differentiated cardiomyocytes in order 

to sustain cardiac output (3). While initially adaptive, prolonged cardiomyocyte hypertrophy leads 

to cardiomyocyte death, fibrosis and progression to chronic heart failure (4). Cardiomyocyte 

hypertrophy is initiated in part by neurohormonal activation of G protein-coupled receptors 

(GPCRs), such as the α1-adrenergic receptor (α1-AR), endothelin-1 receptor (ETR), and β-

adrenergic (β-AR) families (5, 6). Upon ligand binding, GPCRs activate heterotrimeric G proteins 

comprised of a Gα subunit and the obligate heterodimer Gβγ. Both the α1-AR and ETR canonically 

activate Gαq signalling, whereas the β-AR activates Gαs signalling. Cardiac-specific 

overexpression of Gαq and Gαs isoforms in mice leads to cardiomyopathy phenotypes, including 

cardiomyocyte hypertrophy (7, 8). The Gα isoforms elicit distinct signalling pathways involving 

calcium release and cyclic AMP (cAMP) formation respectively, which are capable of activating 

transcription factors and a gene expression program culminating in cardiomyocyte hypertrophy (9, 

10). These pathological gene expression changes also require the coordinated interplay between 

dynamic alterations in chromatin structure, various master transcription factors and general 

transcriptional regulators, such as positive transcription elongation factor b (P-TEFb) (9, 11, 12). 

P-TEFb, a heterodimer consisting of cyclin-dependent kinase 9 and cyclin T, positively 

regulates the release of RNA polymerase II (RNAPII) from a promoter proximal paused state into 

productive elongation. P-TEFb phosphorylates multiple proteins in the RNAPII elongation 

complex, including the C-terminal repeat domain of RNAPII itself, DRB sensitivity inducing 

factor (DSIF), and negative elongation factor (NELF) (13). In cardiomyocytes, P-TEFb activity is 

regulated by Gαq signalling as evidenced by cardiac-specific overexpression of Gαq in mice and 

ETR activation in primary neonatal rat cardiomyocytes (11). P-TEFb is a critical regulator for 

cardiomyocyte hypertrophy, with inhibition preventing the gene expression and cell size changes 

characteristic of cardiomyocyte hypertrophy (11). These transcriptional events require recruitment 
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of the active P-TEFb complex to chromatin. P-TEFb recruitment is predominantly regulated 

through interactions with the bromodomain and extra-terminal (BET) protein Brd4 or through 

interactions with the super elongation complex (SEC) (14, 15). 

Like other BET family members (Brd2, Brd3, and testis specific BrdT), Brd4 contains two 

N-terminal bromodomains, which bind to acetylated lysines on histone proteins leading to 

recruitment of Brd4 to chromatin, as well as an extra-terminal domain, which interacts with 

multiple transcriptional regulators (16). Brd4 and BrdT contain an additional domain that interacts 

with P-TEFb (17). The importance of Brd4 as a regulator of P-TEFb and transcription elongation 

in cardiomyocyte hypertrophy has been demonstrated using small molecule inhibitors of the BET 

bromodomain/acetyl lysine interaction such as JQ1 (18-21). JQ1 treatment reduced stress-induced 

gene expression and cardiomyocyte hypertrophy in primary culture models and in mice subjected 

to pressure overload via transverse aortic constriction (TAC), a potent inducer of cardiac 

hypertrophy in vivo (18, 21). Brd4 inhibition was also able to partially reverse pre-established 

signs of heart failure in a mouse model of myocardial infarction and pressure overload (20). These 

effects are correlated with the loss of Brd4 from super-enhancers and promoters of hypertrophic 

genes in cardiomyocytes, as well as reduced RNAPII elongation.  

Multiple forms of SEC have been found in mammalian cells, comprised of P-TEFb, AF9, 

ENL, the three ELL family members (ELL1/2/3), EAF1/2, AFF1 and AFF4 (22). The SEC 

positively regulates release of RNAPII from promoter proximal-pausing to productive elongation 

(23). Aberrant targeting and activity of the SEC underlies development of various cancers and 

developmental diseases. For example, mixed lineage leukemia 1 (MLL) is fused to various SEC 

subunits in certain types of acute leukemias (24) and a germline Aff4 gain-of-function mutation 

leads to the developmental syndrome CHOPS (Cognitive impairment and coarse facies, Heart 

defects, Obesity, Pulmonary involvement and Short stature and skeletal dysplasia) (25). Although 

RNAPII promoter proximal pausing is dysregulated in cardiac hypertrophy, the role of the SEC in 

regulating the hypertrophic gene expression program in cardiomyocytes has not been investigated.  

How diverse signaling pathways involved in cardiac remodelling cooperate to orchestrate 

the hypertrophic gene expression program in vivo remains poorly understood. Although 

neurohormonal signals induce similar hypertrophic responses in primary cardiomyocytes, distinct 

signalling pathways are initiated through activation of their cognate GPCRs (26). Such effects are 

generally attributed to differential G protein coupling, however receptor-specific differences in 
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downstream effector protein activation of the same Gα subunit have also been demonstrated (27). 

The coordination between these signalling pathways, and the fact that each activates a unique 

combination of transcription factors, suggests that there may be differences in how they regulate 

gene expression. However, comparison of changes in gene expression have only been assessed for 

a limited repertoire of genes (28, 29). How different receptors alter global transcriptional 

regulation has not been systematically compared. Such differences may have important therapeutic 

implications for treating patients with heart disease stemming from varied clinical origins.      

In this study we focused on the differential impact of cardiomyocyte GPCR signalling 

pathways on mechanisms regulating transcription. We investigated the role of P-TEFb and its 

interacting partners, Brd4 and SEC, in cardiomyocyte hypertrophy caused by activation of either 

of two GPCRs, the α1-AR or ETR. These receptors are canonically thought to elicit their 

hypertrophic responses through Gαq activation, with both receptors also able to activate additional 

Gα subunits which has not been thoroughly assessed. We found that P-TEFb activity and the SEC 

are required for cardiomyocyte hypertrophy induced by activation of either GPCR. However, only 

the α1-AR response was attenuated by Brd4 inhibition. Transcriptome analysis after Brd4 

inhibition indicated attenuation of α1-AR upregulated genes that were enriched for pathways 

involved in the pathophysiology of cardiomyocyte hypertrophy. Brd4 chromatin occupancy at 

promoters and super-enhancers of hypertrophic genes was specifically induced by α1-AR 

activation, an effect that was dependent on the activity of PKA. Lastly, we demonstrated that the 

hypertrophic response downstream of another receptor known to signal through PKA, the β-AR, 

was also attenuated by Brd4 inhibition. Our study suggests receptor-specific regulation of P-TEFb 

function and expands the currently known cellular repertoire of protein kinases capable of 

regulating Brd4 function. Further, our findings suggest that the clinical efficacy of BET inhibitors 

for heart failure may depend on patients’ specific neurohormonal signalling patterns. 

 

3.4. Methods 

3.4.1. Primary neonatal rat cardiomyocyte isolation, tissue culture, transfection and 

treatments 

Unless otherwise stated, all reagents were obtained from Sigma. Primary rat cardiomyocytes 

were isolated from 1-3 day old Sprague-Dawley rats (Charles River Laboratories, St-Constant, 
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Quebec) as previously described with minor modifications (81). Following isolation, 

cardiomyocytes were seeded at a density of 40 000 cells/cm2 on tissue culture dishes coated with 

0.1% gelatin and 10 μg/mL fibronectin in DMEM low glucose (Wisent) supplemented with 7% 

FBS (Wisent) (v/v), 1% (v/v) penicillin/streptomycin (P/S), and 10 μM cytosine-β-d-arabinoside 

(MP Biomedicals). After 24 h, plates were washed twice with DMEM low glucose and media 

changed to cardiomyocyte maintenance media (DMEM low glucose, 1% (v/v) 

insulin/selenium/transferrin (Wisent), and 1% (v/v) P/S) with 10 μM cytosine-β-d-arabinoside. 

Twenty-four hours later, media was replaced with fresh cardiomyocyte maintenance media and 

experiments were initiated 24h later. Cardiomyocytes were maintained at 37°C with 5% CO2 and 

typical cultures contained >90% cardiomyocytes. Cardiomyocytes were treated with endothelin-1 

(Bachem), phenylephrine, iCdk9 (Novartis), KL-2 (ProbeChem Biochemicals), JQ1, alprenolol, 

KT5720, forskolin, 3-isobutyl-1-methylxanthine (IBMX), or isoproterenol. 

For small interfering RNA (siRNA) transfection (siGENOME SMARTPool, Horizon 

Discover), cardiomyocytes were pelleted at 400 g for 5 min at 4°C after isolation, resuspended in 

DMEM low glucose supplemented with 2.5% (v/v) FBS and plated at a density of 60 000 cells/cm2. 

Cardiomyocytes were transfected with 50 nM siRNA for the specified target gene with 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. After 5h 

incubation, the media was replaced with DMEM low glucose supplemented with 7% FBS (v/v), 

1% (v/v) penicillin/streptomycin (P/S), and 10 μM cytosine-β-d-arabinoside and cultured as 

previously described. 

 

3.4.2. Immunofluorescence and measurement of cell area  

Cardiomyocytes were plated in 96-well plates and cultured as described. Following indicated 

treatment, cells were fixed with methanol for 5 min at -20°C, permeabilized with 0.2% Triton X-

100 (v/v) in PBS for 5 min at room temperature and blocked with 10% horse serum (Wisent) in 

PBS for 1 h at room temperature. Primary anti-α2-actinin antibody (Sigma, A7811; 1/200) in 10% 

horse serum/PBS was incubated with cardiomyocytes overnight at 4°C. The following day, the 

fixed cardiomyocytes were incubated with anti-mouse Alexa Fluor 488 secondary antibody 

(Invitrogen, A-11029; 1/500) in 10% horse serum/PBS for 1 h at room temperature and 10 min 

with Hoechst dye (Invitrogen) (1 μg/μL) in PBS at room temperature. Stained cardiomyocytes 

were imaged with an Operetta high-content screening system (PerkinElmer) with 20X 
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magnification and analyzed with Columbus Image Analysis System (PerkinElmer). Hoechst dye 

was excited with a 360-400 nm filter and emissions detected at 410-480 nm and Alexa 488 was 

excited with a 460-490 nm filter and emissions detected at 500-550 nm. The average of two 

technical replicates was taken for all treatments.  

 

3.4.3. AKAR4-NLS AAV transduction and FRET experiments  

The AKAR4-NLS construct was a gift from Dr. Jin Zhang (UCSD) and the pAAV-CAG-

GFP was a gift from Dr. Karel Svoboda (Addgene plasmid #28014) (82, 83). To generate the 

AKAR4-NLS biosensor for adeno-associated virus (AAV) production, AKAR4-NLS biosensor 

was excised and cloned into the pAAV backbone using BamHI and EcoRI (New England Biolabs) 

at the 5’ and 3’ end, respectively. For AAV production, HEK 293T cells were maintained in 

DMEM high glucose supplemented with 10% (v/v) FBS and 1% (v/v) P/S in a controlled 

environment of 37°C and 5% CO2. Adeno-associated viruses were produced as previously 

described (84).  

Twenty-four hours after plating cardiomyocytes, media was changed to cardiomyocyte 

maintenance media with AAV9-packaged AKAR4-NLS biosensor at a multiplicity of infection 

(MOI) of 5000. Following 24 h transduction, media was changed to cardiomyocyte maintenance 

media and changed every 24 h until experiment. After 48 h incubation, cardiomyocyte 

maintenance media was removed and cells were washed with Krebs solution (146 mM NaCl, 

4.2 mM KCl, 0.5 mM MgCl2, 1 mM CaCl2, 10 mM HEPES pH 7.4, 1 g/L glucose) and incubated 

for 1 h at 37°C with 5% CO2 in Krebs solution prior to FRET readings. All cardiomyocyte FRET 

experiments were performed using the Opera Phenix™ High Content Screening System 

(PerkinElmer) with the confocal setting at 40X magnification at 37°C and 5% CO2 and analyzed 

with Columbus Image Analysis System (PerkinElmer). Each well was excited with 425 nm light 

and emissions detected at 434-515 nm for CFP and 500-550 nm for YFP. Basal FRET images were 

obtained prior to addition of agonist and stimulated FRET images were obtained 15 minutes after 

addition of agonist to indicated final concentration. For experiments requiring a β-AR antagonist, 

1 μM alprenolol was added to cardiomyocytes 30 minutes prior to obtaining basal FRET images. 

The FRET ratio was calculated as YFP emission/CFP emission. For all experiments, FRET refers 

to: (Stimulated Agonist FRET Ratio – Basal Agonist FRET Ratio) – (Stimulated vehicle FRET 

Ratio – Basal FRET Ratio). The average of three technical replicates was taken for all treatments.  
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Following FRET experiments, cardiomyocytes were stained with 5 μM Draq5 at room 

temperature for 5 minutes. Images were obtained on the Opera Phenix™ High Content Screening 

System (PerkinElmer) using the confocal setting at 40X magnification. Draq5 was imaged using 

640 nm excitation and emissions detected at 650-760 nm, YFP using 425 nm excitation and 

emission detected at 434-515 nm, and CFP using 425 nm excitation and emission detected at 500-

550 nm. 

 

3.4.4. RT-qPCR 

Following indicated treatments of cardiomyocytes, cells were lysed in TRI reagent and RNA 

was extracted following the manufacturer’s protocol. Reverse transcription was performed with 

random hexamer primers using an MMLV-RT platform (Promega) according to the 

manufacturer’s protocol. Subsequent qPCR analysis was performed with BrightGreen 2x qPCR 

Master mix (Applied Biological Materials Inc.) on a Bio-Rad 1000 Series Thermal Cycling CFX96 

Optical Reaction module. Ct values were normalized to U6 snRNA and fold change over 

respective control was calculated using 2-ΔΔCt method. Primer sequences were the following: Nppb 

(5’ CAATCCACGATGCAGAAGCTG 3’ and 5’ TTTTGTAGGGCCTTGGTCCTTT 3’), Nppa 

(5’ CCTGGACTGGGGAAGTCAAC 3’ and 5’ ATCTATCGGAGGGGTCCCAG 3’), Serpine1 

(5’ TCCTCGGTGCTGGCTATGCT 3’ and 5’ TGGAGAGCTTTCGGAGGGCA 3’), and U6 

snRNA (5’ TGGAACGATACAGAGAAGATTAG 3’ and 5’ GAATTTGCGTGTCATCCTTG 

3’). 

 

3.4.5. RNA-seq analysis 

RNA was isolated with the RNeasy Mini Kit (Qiagen) according to manufacturer’s 

instructions. Libraries were prepared using the NEBNext rRNA-depleted (HMR) stranded library 

kit and single-read 50bp sequencing completed on the Illumina HiSeq 4000 at the McGill 

University and Génome Québec Innovation Centre, Montréal, Canada. Reads were trimmed with 

TrimGalore (0.6.0) (85, 86) using the following settings: --phred33 --length 36 -q 5 --stringency 1 

-e 0.1. Following processing, reads were aligned to the Ensembl rat reference genome 

(Rattus_norvegicus.Rnor_6.0.94) (87) with STAR (2.7.1a) (88). Transcripts were assembled with 

StringTie (1.3.4d) (89) and imported into R (3.6.1) with tximport (1.12.3) (90). Differential gene 
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expression was assessed with DESeq2 (1.24.0) (91) with the independent hypothesis weighting 

(IHW) library for multiple testing adjustment (92). Heatmaps and K-means clustering was 

completed with pheatmap and the removeBatchEffect function from limma (3.40.6) (93) was used 

prior to data visualization. Pathway analysis was completed with Ingenuity Pathway Analysis 

(IPA, QIAGEN Inc., https://www.qiagenbio- informatics.com/products/ingenuity-pathway-

analysis) (94). The data is available at the NCBI Gene Expression Omnibus (GEO) with the 

accession GSE147402. Our code to analyze the RNA-seq data is available at 

https://github.com/tannylab/Cardiomyocyte-RNA-seq.git. 

 

3.4.6. Chromatin immunoprecipitation-qPCR  

Preparation and immunoprecipitation of cardiomyocyte chromatin was performed as 

previously described, with minor modifications (95). Following the indicated treatments, 

cardiomyocytes were crosslinked with 1% formaldehyde in DMEM low glucose for 10 min at 

room temperature with slight agitation. Crosslinking was quenched by addition of glycine to 125 

mM final concentration and incubated for 5 min at room temperature with slight agitation. 

Cardiomyocytes were placed on ice following fixation, washed once with cold PBS, scraped into 

PBS with 1 mM PMSF and pelleted at 800 g for 5 min at 4C. The pellet was resuspended in lysis 

buffer (10 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.5 mM EGTA, 0.25% Triton X-100, 1 mM 

PMSF, 1x protease inhibitor cocktail) and incubated for 10 min at 4C on a nutator. Nuclei were 

pelleted at 800 g for 5 min at 4C and resuspended in nuclei lysis buffer (50 mM TrisHCl pH 8.0, 

10 mM EDTA, 1% SDS, 1 mM PMSF, 1x protease inhibitor cocktail). Nuclei were incubated for 

15 min on ice followed by sonication with a BioRuptor (Diagenode) (18 cycles, 30 s on/off, high 

power). Insoluble cellular debris was removed by centrifugation at 14 000 g for 10 min at 4C. A 

small aliquot was taken for quantification and the remaining sample stored at -80C until use. The 

aliquot was incubated at 65C overnight to reverse crosslinks, treated with RNase A (50 μg/mL) 

for 15 min at 37C, and then treated with proteinase K (200 μg/mL) for 1.5 h at 42C. Protein was 

removed by phenol/chloroform extraction and DNA precipitated at -80C with 0.3M sodium 

acetate pH 5.2, 2.5 volumes of 100% ethanol, and 20  µg of glycogen. Samples were centrifuged 

for 20 min at 16 000 g, the pellet was washed with 70% ethanol, resuspended with ddH2O and 
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quantified using a NanoDrop spectrophotometer (Thermo Fisher) to determine concentration of 

chromatin for each sample. 

For immunoprecipitations, 10 μg of chromatin was diluted 9x with dilution buffer (16.7 mM 

Tris-HCl pH 8.0, 1.2 mM EDTA, 167 mM NaCl, 0.01% SDS, 1.1% Triton X-100, 1x protease 

inhibitor cocktail). S. pombe chromatin, prepared as previously described (96), was spiked-in to 

each sample for normalization. A rabbit anti-Brd4 antibody (Bethyl, A301-985A; 5ug) or rabbit 

IgG antibody (Millipore, 12-370; 5 μg), as well as anti-S. pombe H2B antibody (Abcam, 

ab188271), were added to respective IPs and 1% input sample taken for subsequent analysis. Each 

IP was incubated at 4C overnight on a nutator, followed by addition of 15 μL Protein G 

Dynabeads (Invitrogen) in dilution buffer for 4 h. Beads were washed 2X with low salt buffer (20 

mM Tris-HCl pH 8.0, 2 mM EDTA, 150 mM NaCl, 0.1% SDS, 1% Triton X-100), 2X with high 

salt buffer (20 mM Tris-HCl pH 8.0, 2 mM EDTA, 500 mM NaCl, 0.1% SDS, 1% Triton X-100), 

1X with LiCl buffer (10 mM Tris pH 8.0, 1 mM EDTA, 0.25M LiCl, 1% NP-40, 1% 

deoxycholate), 1X with TE buffer (10mM Tris-HCl pH 8.0, 1 mM EDTA) at 4C. Beads were 

resuspended in elution buffer (200 mM NaCl, 1% (w/v) SDS) and heated at 65C for 20 min to 

elute chromatin. The eluted chromatin was incubated at 65C overnight to reverse crosslinks and 

then incubated with proteinase K (200 μg/mL) for 2 h at 37C. DNA was purified and quantified 

as described above.  

Localization was assessed by qPCR with primers for specific genomic loci; a primer pair 

amplifying S. pombe cdc2+ was used for normalization. All qPCR reactions were performed using 

a Bio-Rad 1000 Series Thermal Cycling CFX96 Optical Reaction module and iQ SYBR Green 

Supermix (Bio-Rad). For each primer pair in a given experimental condition, percent input for IgG 

control IP was subtracted from the percent input for the Brd4 IP, followed by normalization to the 

percent input of S. pombe cdc2+. Primer sequences were the following: Nppb SE (chr5:164778453-

164778528, 5’ AGGTGGCACCCCCTCTTCTAC 3’ and 5’ TTGGGGGAGTCTCAGCAGCTT 

3’), Nppb TSS (chr5:164796330-164796402, 5’ TTTCCTTAATCTGTCGCCGC 3’ and 5’ 

GGATTGTTCTGGAGACTGGC 3’), Nppa TSS (chr5:164808403-164808456, 5’ 

GTGACGGACAAAGGCTGAGA 3’ and 5’ ATGTTTGCTGTCTCGGCTCA 3’), Serpine1 SE 

#1 (chr12:22636488-22636538, 5’ TCCCCCGCTAACTCGAACGC 3’ and 5’ 

TTGTTTGGAGAGCCACCAGGC 3’), Serpine1 SE #2 (chr12:22634466-22634539, 5’ 

TTGAGTGGCAGACAGCCGACA 3’ and 5’ GGCGGCCTCCAACATTCCTC 3’), Serpine1 
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TSS (chr12:22640931-22641011, 5’ AGCCCCACCCACCTTCTAACTC 3’ and 5’ 

TACTGGGAGGGAGGGAAGGAGA 3’), Ctgf SE #1 (chr1:21871291-21871393, 5’ 

AGCCCTGGAATGCTGTTT 3’ and 5’ ACCGCATGATATCTCCTAAACC 3’), Ctgf SE #2 

(chr1:21984665-21984753, 5’ AGTGAGTCAGGGAGGAAGAA 3’ and 5’ 

CTCCTGCAGCCTGTGATTAG 3’), Ctgf TSS (chr1:21854660-21854725, 5’ 

CAGACCCACTCCAGCTCCGA 3’ and 5’ GTGGCTCCTGGGGTTGTCCA 3’), Fos TSS 

(chr6:109300463-109300526, 5’ GACTGGATAGAGCCGGCGGA 3’ and 5’ 

CAGAGCAGAGCTGGGTGGGA 3’), S. pombe cdc2+ (II:1500254-1500328, 5’ 

ATCATTCTCGCATCTCTATTA 3’ and 5’ ATTCTCCATTGCAAACCACTA 3’). 

 

3.4.7. Protein extraction and western blot 

Treated cardiomyocytes were lysed in RIPA buffer (1% NP-40, 50 mM Tris-HCl pH 7.4, 

150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 0.1% SDS, 0.5% sodium deoxycholate) and protein 

quantified by Bradford assay. Proteins were denatured at 65°C for 15 min in Laemmilli buffer and 

protein expression was assessed by western blot. Western blots were probed with anti-Brd4 

(Bethyl, A301-985A; 1:1000) or anti-Hsp90 (Enzo Life Sciences, AC88; 1:1000) in 5% milk 

overnight at 4C. The following day, blots were visualized with peroxidase-conjugated secondary 

antibodies and an AmershamTM Imager 600.   

 

3.4.8. Statistical Analysis 

All statistical analysis was performed using GraphPad Prism 8 software. Two-way analysis 

of variance was performed followed by post-hoc t-tests with Bonferroni correction (Figure 3.1B, 

Figure 3.2B/C/E, Figure 3.3B/C, Figure 3.5B/C, Figure 3.9A/C). Unpaired t-test was completed 

for validation of gene knockdown by siRNA (Figure 3.2D, Figure 3.5A) and for Brd4 ChIP with 

forskolin and IBMX (Figure 3.9B). One-way analysis of variance followed by Dunnett’s post-hoc 

comparison was performed for Brd4 ChIP (Figure 3.6A) and Brd4 protein expression (Figure 

3.6C) following 24 h receptor activation. For DAVID GO term enrichment (Figure 3.7G), the false 

discover rate (FDR) was calculated by a Fisher’s Exact Test completed within DAVID. For the 

upstream regulator prediction (Figure 3.7H), the p-value was obtained by a Fisher's Exact Test 

completed within the Ingenuity Pathway Analysis software.  
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3.5. Results 

3.5.1. Evidence for receptor-specific P-TEFb regulation in cardiomyocyte hypertrophy 

We first revisited the requirement of P-TEFb activity for the hypertrophic response in 

primary neonatal rat cardiomyocytes (NRCMs). Previous experiments used the ATP analog 5,6-

dichlorobenzimidazone-1-β-D-ribofuranoside (DRB), a cyclin-dependent kinase inhibitor that 

affects Cdk9, to implicate P-TEFb activity in the hypertrophic response (11). To confirm these 

results, we repeated this experiment using iCdk9, a Cdk9 inhibitor that is ~1000 times more potent 

and ~100 times more selective than DRB (30). Following 24 h treatment, agonists for the ETR 

(endothelin-1; ET-1) or α1-AR (phenylephrine; PE) increased cardiomyocyte surface area by 35-

40% relative to control, as assessed by analysis of α2-actinin immunostaining using high-content 

microscopy (Figure 3.1A and Figure 3.1B). Simultaneous treatment with 0.2 µM iCdk9 completely 

abolished the increase in cardiomyocyte size elicited by either agonist, confirming a stringent 

requirement for P-TEFb activity in cardiomyocyte hypertrophy (Figure 3.1A and Figure 3.1B).   

 

Figure 3.1. Inhibition of the P-TEFb kinase subunit Cdk9 prevents cardiomyocyte 

hypertrophy in response to α1-AR or ETR activation.  

(A) NRCMs were treated with PE or ET-1 for 24 h as indicated. Cardiomyocytes were stained 

with Hoechst dye and identified by staining for the cardiomyocyte-specific marker α2-actinin. (B) 

Fold change in cardiomyocyte surface area following 24 h treatment over the surface area of 

cardiomyocytes from the same biological replicate at 0 h.  Data is presented as mean ± S.E.M with 
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each point representing a biological replicate. Two-way ANOVA followed by post-hoc t-tests with 

Bonferroni correction was performed (***p<0.001, ****p<0.0001). 

 

To further characterize P-TEFb function in the hypertrophic response, we assessed the roles 

of the SEC and Brd4, two key P-TEFb-interacting proteins (31). To perturb the P-TEFb/SEC 

interaction, we used KL-2, which prevents the interaction between the cyclin T component of P-

TEFb and the SEC scaffolding subunit Aff4 (32). KL-2 treatment blocked the increase in cell size 

in response to both ETR and α1-AR activation, similar to the effect of Cdk9 inhibition (Figure 

3.2A and Figure 3.2B). To determine whether disruption of the P-TEFb/SEC interaction also 

affected the expression of hypertrophic genes, we monitored changes in mRNA levels for 

established hypertrophy marker genes Nppa, Nppb, and Serpine1 using RT-qPCR. Whereas 

mRNA levels for these genes were robustly increased in response to activation of either receptor, 

induction of Nppb and Nppa was blocked by KL-2 co-treatment (Figure 3.2C). Interestingly, 

Serpine1 induction was unaffected by KL-2 treatment indicating a gene-specific aspect to SEC 

function. To confirm the observed effect was due to disruption of SEC function, we next reduced 

Aff4 levels using siRNA and verified knockdown by RT-qPCR (Figure 3.2D). Similar to KL-2 

treatment, knockdown of Aff4 blocked the increase in cell size following activation of either 

receptor (Figure 3.2E).  

We next tested the role of Brd4 using the pan-BET small-molecule inhibitor JQ1. JQ1 targets 

the BET family bromodomains, acting to competitively inhibit their interaction with acetylated 

lysine residues (33). Interestingly, BET inhibition attenuated the hypertrophic response in a 

receptor-specific manner: the response to α1-AR activation was decreased, whereas there was no 

effect on ETR-mediated increase in cell size (Figure 3.3A and Figure 3.3B). We also observed that 

JQ1 treatment more strongly reduced expression of hypertrophic marker genes in cells stimulated 

with the α1-AR agonist compared to cells stimulated with an ETR agonist (Figure 3.3C). One 

possible explanation for the receptor-specific effect of JQ1 is that the dose of ET-1 used to drive 

hypertrophy was sufficiently high to overcome JQ1 inhibition. To address this, we tested the effect 

of JQ1 on the ET-1-driven hypertrophic response over a wide range of ET-1 doses. The ET-1 

response was insensitive to JQ1 at all doses tested (Figure 3.4). Thus, receptor-specific differences 

in JQ1 sensitivity likely reflect intrinsic differences in the respective GPCR signalling outcomes. 
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These data suggest that the SEC is generally required for P-TEFb function in the hypertrophic 

response, whereas the P-TEFb/Brd4 complex mediates receptor-specific functions.   

 

Figure 3.2. Disruption of SEC-P-TEFb interaction blocks the hypertrophic response 

following activation of either receptor.  

(A) NRCMs were treated for 24 h as indicated. Cardiomyocytes were stained with Hoechst dye 

and identified by staining of the cardiomyocyte-specific marker α2-actinin. (B) Fold change in 

surface area of identified cardiomyocytes over siRNA control-transfected cardiomyocytes from 

the same biological replicate at 0 h. Two-way ANOVA followed by post-hoc t-tests with 
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Bonferroni correction was performed. (C) Expression of three genes previously identified as 

upregulated in hypertrophic cardiomyocytes, Nppb, Nppa and Serpine1, was determined by RT-

qPCR.  Two-way ANOVA followed by post-hoc t-tests with Bonferroni correction was performed. 

(D) Aff4 knockdown in cardiomyocytes 72 h after transfection with Aff4 targeted siRNA was 

validated by RT-qPCR. An unpaired t-test was performed. (E) Fold change in surface area of 

identified cardiomyocytes over the surface area of siRNA control-transfected cardiomyocytes 

from the same biological replicate at 0 h. Cardiomyocytes were transfected 72 h prior to treatment 

with 50 nM of the specified siRNA. Data is presented as mean ± S.E.M with each point 

representing a biological replicate. Two-way ANOVA followed by post-hoc t-tests with 

Bonferroni correction was performed (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).  

 

Figure 3.3. Effects of BET inhibitor JQ1 on cardiomyocyte hypertrophy are specific to the 

receptor driving the response. 

 (A) NRCMs treated for 24 h were fixed and stained with Hoechst dye and identified by staining 

for the cardiomyocyte-specific marker α2-actinin. (B) Fold change in surface area of 

cardiomyocytes over surface area of cardiomyocytes at 0 h from the same biological replicate. 

Two-way ANOVA followed by post-hoc t-tests with Bonferroni correction was performed. (C) 
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Expression of genes previously demonstrated to be upregulated in hypertrophic cardiomyocytes 

was determined by RT-qPCR. Data is presented as mean ± S.E.M with each point representing a 

biological replicate. Two-way ANOVA followed by post-hoc t-tests with Bonferroni correction 

was performed (**p<0.01, ***p<0.001, ****p<0.0001). 

 

Figure 3.4. ETR-mediated hypertrophy is insensitive to BET inhibition independent of ET-

1 concentration. 

Dose response curves were generated to assess the effect of JQ1 on cardiomyocyte surface area at 

a range of ET-1. Cardiomyocytes were treated for 24 h as indicated followed by fixation and 

staining with Hoechst dye and for α2-actinin to identify NCRMs. Fold change in surface area over 

cardiomyocytes from the same biological replicate at 0 h was determined. Data is presented as 

mean ± S.E.M for n=3-4 independent experiments. Dose response curves were plotted using 

sigmoidal dose response (variable slope) curves by non-linear regression. 

 

As JQ1 inhibits all members of the BET family of bromodomain proteins, we confirmed the 

effects on hypertrophy were mediated by Brd4 and not Brd2 and/or Brd3. Brd2, Brd3, and Brd4 

were individually depleted in NRCMs using siRNA (Figure 3.5A). Hypertrophic responses were 

then induced through activation of the α1-AR or ETR. Brd2 and Brd3 knockdown reduced the 

basal size of NRCMs relative to control siRNA (Figure 3.5B), but the response following 

activation of either receptor was comparable to that observed with control siRNA (Figure 3.5C). 

In contrast, Brd4 knockdown recapitulated the effects observed with JQ1 in that it attenuated the 

response to α1-AR activation but did not affect ETR-mediated hypertrophy (Figure 3.5B and 

Figure 3.5C). These data argue that Brd4 inhibition accounts for the receptor-specific effects of 

JQ1 on cardiomyocyte hypertrophy.  
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Figure 3.5. Role of individual BET family members expressed in cardiomyocytes assessed 

after siRNA-mediated knockdown. 

(A) Brd2, Brd3, and Brd4 knockdown efficiency in NRCMs 72 h after transfection with targeted 

siRNA was determined by RT-qPCR. An unpaired t-test was performed. (B) Fold change in 

surface area over cardiomyocytes transfected with control siRNA from the same biological 

replicate at 0 h. Following 72 h knockdown with indicated siRNA, cardiomyocytes were treated 

for 24 h as indicted. Cardiomyocytes were fixed and identified by staining for the cardiomyocyte 

specific marker α2-actinin. Two-way ANOVA followed by post-hoc t-tests with Bonferroni 

correction was performed. (C) Change in cardiomyocyte size from (B) is presented relative to 
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respective vehicle/siRNA treatment to normalize for the difference in basal size. Data is presented 

as mean ± S.E.M with each point representing a biological replicate. Two-way ANOVA followed 

by post-hoc t-tests with Bonferroni correction was performed (*p<0.05, **p<0.01, ***p<0.001).  

 

To gain further insight into how Brd4 function is differentially affected by distinct GPCR 

signalling pathways, we assessed gene-specific Brd4 localization to chromatin using chromatin 

immunoprecipitation coupled to qPCR (ChIP-qPCR). ChIP was performed using an antibody 

recognizing endogenous Brd4 and was quantified by qPCR using primer pairs near the 

transcription start sites of Nppb, Nppa, and Serpine1. Occupancy at previously defined super-

enhancers for Nppb and Serpine1 in cardiomyocytes was also assessed (19). At all genomic loci 

tested, 24 h α1-AR activation increased Brd4 chromatin occupancy compared to vehicle treatment 

(Figure 3.6A). We observed no change in Brd4 occupancy compared to vehicle following ETR 

treatment, despite the fact that mRNA levels for the same genes were similarly induced by PE and 

ET-1 (Figure 3.2C and Figure 3.3C). The effects on Brd4 occupancy were not simply a reflection 

of altered Brd4 protein levels, as immunoblots performed on cell extracts from NRCMs treated 

with PE or ET-1 revealed slight decreases in expression compared to vehicle controls (Figure 3.6B 

and Figure 3.6C). This suggests that signalling through α1-AR, but not ETR, triggers recruitment 

of Brd4, making gene expression changes downstream of this receptor more sensitive to Brd4 

inhibition by JQ1. 
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Figure 3.6. Brd4 chromatin occupancy increases in response to α1-AR but not ETR 

activation. 

(A) Cardiomyocytes were treated for 24 h as indicated. Following treatment, crosslinked 

chromatin was immunoprecipitated with an anti-Brd4 antibody, followed by DNA purification and 

quantification by qPCR using primers at the indicated loci. Each immunoprecipitation was 

normalized to the % input for exogenous S. pombe spike-in DNA at the cdc2+ loci. Data was 

analyzed by one-way ANOVA followed by Dunnett’s post-hoc comparison. (B) A western blot of 

whole cell lysates to assess changes in Brd4 protein expression following the indicated treatment 

for 24 h. (C) Densitometry based quantification of Brd4 normalized to Hsp90 expression. Data is 

presented as mean ± S.E.M with each point representing a biological replicate. Data was analyzed 

by one-way ANOVA followed by Dunnett’s post-hoc comparison (*p<0.05, **p<0.01).  

 

3.5.2. RNA-seq reveals differences in GPCR-dependent signalling between hypertrophic 

agonists 

To comprehensively profile receptor-specific effects on cardiomyocyte hypertrophy, we 

performed RNA-seq on NRCMs following activation of either receptor for 24 h in the presence or 
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absence of JQ1 (Supplemental Table 1). When comparing agonist versus vehicle conditions, we 

observed robust gene expression changes [log2(Fold Change) > 1 and p-value < 0.05] for 

hundreds of genes following ETR (209 upregulated, 192 downregulated) or α1-AR activation (269 

upregulated, 279 downregulated). The genes regulated by either receptor overlapped significantly, 

although there were more genes uniquely regulated by α1-AR activation than by ET-1 activation 

(Figure 3.7A and Figure 3.7B). The combined effect of receptor agonists and JQ1 on differential 

expression was visualized by performing K-means clustering (Figure 3.7C and Figure 3.7D). This 

analysis identified three major gene clusters that were similarly regulated by agonist and JQ1: one 

in which genes were repressed by agonist in the presence or absence of JQ1 (cluster 1), one in 

which genes were activated by agonist and attenuated by JQ1 (cluster 2), and one in which genes 

were activated by agonist in the presence or absence of JQ1 (cluster 3). The observation that the 

primary effect of JQ1 was to dampen expression of genes regulated by receptor activation aligns 

with the known roles of Brd4 in recruiting P-TEFb to regulate pause-release and activate 

transcription (15), and is consistent with the effect of JQ1 on cardiac stress-induced genes 

previously characterized (20).  

We focused on groups of genes for which increased expression caused by activation of either 

receptor was attenuated by JQ1 [log2(Fold Change) < -0.5 compared to agonist alone; p-value < 

0.05]. JQ1 attenuated expression of 107 ETR-induced genes and 155 α1-AR-induced genes (termed 

receptor+/JQ1-) (Figure 3.7E). Roughly equal proportions of genes induced by activation of either 

receptor were JQ1-sensitive, irrespective of whether they were induced by one receptor or both 

(Figure 3.7F). Gene ontology term analysis of α1-AR+/JQ1- and ETR+/JQ1- gene sets revealed 

that the terms inflammatory response, defense response, cell adhesion, cardiac muscle tissue 

growth and heart growth, which correspond to the pathophysiology of cardiomyocyte hypertrophy 

and align with those previously identified to be affected by JQ1, were significantly enriched among 

the α1-AR+/JQ1- genes (Figure 3.7G) (20). In contrast, none of these terms were significantly 

enriched among ETR+/JQ1- genes, consistent with the selective effect of JQ1 on the α1-AR 

response. 

Previous studies have identified multiple transcription factors that are required to activate 

pro-hypertrophic genes in cardiomyocytes (9, 34). Some of these transcription factors have been 

associated with Brd4 activity in cardiomyocytes, either through motif enrichment in genomic loci 

with high Brd4 occupancy or various gene set enrichment methods for JQ1-sensitive genes. The 
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pathway-specific effect of Brd4 inhibition suggests that specific transcription factors may be 

dependent on Brd4 to activate transcription. We initially focused on those transcription factors that 

were previously implicated including, NF-κB, GATA4, and the AP-1 subunits Jun and Fos (18-

20). To determine the effect of JQ1 on these transcription factors, we used Ingenuity Pathway 

Analysis software (IPA; Qiagen) to predict changes in their activity (Figure 3.7H). IPA upstream 

regulator analysis provides a z-score, to indicate the predicted change in activity between the two 

treatment groups, and a Fisher’s exact test p-value, to indicate whether particular upstream 

regulator’s target genes are significantly enriched in the gene expression program. Interestingly, 

IPA predicted increased activity of these transcription factors following activation of either 

receptor (positive z-score, agonist/vehicle vs vehicle/vehicle), but activity was specifically 

attenuated by JQ1 following α1-AR activation (negative z-score, agonist/JQ1 vs agonist/vehicle) 

(Figure 3.7H). This suggests that receptor-specific activation mechanisms for these transcription 

factors dictate their dependence on Brd4 activity. When we expanded the analysis to include all 

activated transcription factors a more ubiquitous effect of Brd4 inhibition was observed. We 

identified 78 transcription factors with enhanced activity following α1-AR activation of which 

activity of 39 (50%) were attenuated by co-treatment with JQ1. In contrast, ETR activation was 

predicted to enhance activity of 50 transcription factors and only eight (16%) were attenuated by 

JQ1. Thus, although specific transcription factors may function to recruit Brd4 to specific loci, the 

more ubiquitous effect of Brd4 inhibition on α1-AR-mediated transcription factor activity suggests 

that α1-AR signalling may increase the pool of active Brd4.  
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Figure 3.7. Transcriptome analysis of gene expression programs mediated by receptor 

activation and the effect of Brd4 inhibition.  

(A) Venn diagram of significantly upregulated genes (log2FC > 1 for Agonist/Vehicle vs 

Vehicle/Vehicle, p-value < 0.05) or (B) downregulated genes (log2FC < -1 for Agonist/Vehicle vs 
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Vehicle/Vehicle, p-value < 0.05) following 24 h receptor activation. (C and D) Heat maps were 

generated for genes differentially regulated following activation of the specified receptor for 24 h. 

Each row was normalized, with the color representing the z-score for the specific row. K-means 

clustering was performed to identify subsets of genes with distinct patterns following Brd4 

inhibition. (E) Venn diagram of genes upregulated by respective receptor activation (log2FC > 1 

for Agonist/Vehicle vs Vehicle/Vehicle, p-value < 0.05) and attenuated by Brd4 inhibition from 

the activated state (log2FC < -0.5 for Agonist/JQ1 vs Agonist/Vehicle, p-value < 0.05). (F) 

Number of genes uniquely upregulated by either agonist or both and whether expression was 

attenuated by JQ1. Genes were first categorized as uniquely upregulated by α1-AR or ETR or 

upregulated by both receptors (log2FC > 1 for Agonist/Vehicle vs Vehicle/Vehicle, p-value < 

0.05). Within each category, genes were further characterized as JQ1 sensitive if they were 

attenuated by Brd4 inhibition from the activated state (log2FC < -0.5 for Agonist/JQ1 vs 

Agonist/Vehicle, p-value < 0.05).  In the category of genes upregulated by both receptors, genes 

were categorized if they were attenuated by Brd4 inhibition when upregulated by either receptor 

(Upregulated by both receptors/attenuated by JQ1) or if the effect of Brd4 inhibition was unique 

to a specific receptor. (G) Gene ontology enrichment for genes attenuated by JQ1 following 

receptor activation (from E) performed with DAVID. The false discovery rate (FDR) indicates 

whether the pathway was significantly enriched in the gene list. (H) Changes in transcription factor 

activity predicted by Ingenuity Pathway Analysis (IPA). The z-score represents the predicted 

change in transcription factor activity between the two treatment groups and the p-value indicates 

whether the transcription factor’s targets are significantly enriched in the gene set. The purple dots 

(left side) indicate the change in activity following agonist treatment alone (log2FC > 1 for 

Agonist/Vehicle vs Vehicle/Vehicle, p-value < 0.05). The green dots (right side) indicate the JQ1 

dependent decrease in activity from the activated state (log2FC < -0.5 for Agonist/JQ1 vs 

Agonist/Vehicle, p-value < 0.05). 

 

3.5.3. Signalling pathway regulating Brd4 recruitment to chromatin involves PKA 

We hypothesized that a distinct signalling pathway activated by the α1-AR determines 

differential recruitment of Brd4 and inhibitory effect of JQ1 on transcription factor activity. Brd4 

is activated following phosphorylation of its phosphorylation-dependent interaction domain 

(PDID). An in vitro kinase assay demonstrated that PKA was able to phosphorylate this region, 
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although the functional significance was not determined (35). We have previously demonstrated 

that α1-AR, but not ETR activation, led to Gαs-dependent activation of cAMP/PKA signalling in 

HEK 293 cells (36). We thus hypothesized that PKA, a protein kinase activated by cAMP, 

regulates the specific effects of α1-AR signalling on Brd4 in cardiomyocytes.  

We confirmed that α1-AR and not ETR signalling activated PKA in NRCMs. 

Cardiomyocytes were transduced with a nuclear-localized Förster resonance energy transfer 

(FRET)-based PKA biosensor (AKAR4-NLS) to monitor PKA activity (37). When 

phosphorylated, the biosensor undergoes a conformational change that moves the two fluorophores 

into closer proximity, leading to an increased FRET ratio. Nuclear localization of the AKAR 

biosensor was confirmed by fluorescence microscopy (Figure 3.8A). We then generated a dose-

response relationship for PKA activity following stimulation with ET-1 and PE. Alprenolol was 

included in the PE experiments to prevent off-target effects on the β-AR at high concentrations. 

We observed a dose-dependent increase in FRET, indicating an increase in PKA activity, 

following 15 min α1-AR activation. In contrast, no change in activity was observed following 15 

min ETR activation (Figure 3.8B). This demonstrated that the α1-AR uniquely activates PKA in 

the nucleus of cardiomyocytes, similar to what we detected in HEK 293 cells (36).  

 

Figure 3.8. α1-AR activation leads to increased nuclear PKA signalling. 

 (A) Cardiomyocytes were transduced with AAV9-AKAR4-NLS virus at a MOI of 5000 and 

imaged 72 h later. Nuclei were visualized by staining live cells with Draq5. (B) Dose-response 

curves for PKA activation following activation of the ETR or α1-AR were generated. Alprenolol 

was included to prevent off-target β-AR activation by high concentrations of PE. Data is presented 

mean ± S.E.M for three biological replicates. Dose response curves were plotted using sigmoidal 

dose response (variable slope) curves by non-linear regression. 
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In order to determine if PKA activity downstream of the α1-AR regulates Brd4 function in 

cardiomyocytes, we performed ChIP-qPCR after inhibition or activation of PKA. To inhibit PKA, 

we used the competitive inhibitor KT5720 (38). As we anticipated that long-term PKA inhibition 

could cause other changes in cellular physiology that would complicate interpretation of the 

experiments, we used a treatment time of 1.5 h. We quantified Brd4 localization using primer pairs 

near the transcription start site of c-Fos and Ctgf as well as previously defined super-enhancer 

regions of Ctgf (19). Activation of the α1-AR for 1.5 h enhanced Brd4 occupancy near the 

transcription start sites of both genes and along the previously defined Ctgf super-enhancers, 

whereas ETR stimulation had no effect (Figure 3.9A and Figure 3.9B). These data suggest that the 

specific effect of α1-AR signalling on Brd4 chromatin occupancy is maintained at the shorter 

treatment time. Pre-treatment with KT5720 abrogated the increase in Brd4 occupancy following 

α1-AR activation, consistent with a requirement for PKA activity for chromatin recruitment of 

Brd4 downstream of α1-AR signalling (Figure 3.9A and Figure 3.9B). PKA inhibition also 

increased the basal occupancy of Brd4 at these sites, perhaps reflecting a repressive function for 

PKA in unstimulated NRCMs. We also stimulated activation of PKA in NRCMs by increasing 

intracellular cAMP levels with forskolin and IBMX, an adenylyl cyclase activator and 

phosphodiesterase inhibitor, respectively (39). Sustained PKA activation (1.5 h) increased Brd4 

chromatin association at two of the four genomic loci assessed, reinforcing the key role of PKA in 

Brd4 activation (Figure 3.9C).   
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Figure 3.9. PKA signalling regulates recruitment of Brd4 to chromatin. 

 (A and B) Effect of PKA inhibition with the small-molecule inhibitor KT5720 on receptor-

mediated increases in Brd4 occupancy. Cardiomyocytes were pre-treated for 30 min with the PKA 

inhibitor prior to receptor activation for 1.5 h with the indicated agonists. Two-way ANOVA 

followed by post-hoc t-test comparisons with Bonferroni correction was performed. (C) PKA was 

activated for 1.5 h by increasing intracellular cAMP levels with forskolin and IBMX, an adenylyl 

cyclase activator and phosphodiesterase inhibitor respectively. Following indicated treatment, 

cardiomyocytes were fixed, and ChIP was performed with an anti-Brd4 antibody. ChIP was 
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quantified by qPCR using primers at the indicated loci. An unpaired t-test was performed. (D) 

After 24 h of the indicated treatments, NRCMs were fixed and stained with Hoechst dye and for 

the cardiomyocyte specific marker α2-actinin. (E) Fold change in surface area after 24 h of the 

indicated treatment over cardiomyocytes fixed at 0 h from the same biological replicate. Two-way 

ANOVA followed by post-hoc t-test comparisons with Bonferroni correction was performed. Data 

is presented as mean ± S.E.M with each point representing a separate biological replicate. 

(*p<0.05, ***p<0.001, ****p<0.0001). 

 

To test whether a regulatory link between PKA and Brd4 could be detected in response to 

other GPCRs coupled to Gαs, we examined the role of Brd4 downstream of the β-AR, activation 

of which is strongly pro-hypertrophic in cardiomyocytes (40, 41). The primary signalling pathway 

downstream of this receptor in cardiomyocytes (and other cell types as well) involves adenylyl 

cyclase activation, cAMP production, and increased protein kinase A activity (41). We thus 

predicted that hypertrophy mediated by the β-AR would also be attenuated by inhibition of Brd4 

with JQ1. Following 24 h treatment with the agonist isoproterenol, we observed a ~25% increase 

in surface area which was completely blocked by co-treatment with JQ1 (Figure 3.9D and Figure 

3.9E). This demonstrates that the observed connection between PKA and Brd4 is not unique to α1-

AR signalling and may reflect a general Gαs-coupled GPCR-dependent pathway for Brd4 

activation. Taken together, our results point to PKA and Brd4 as central players underlying 

receptor-specific gene regulatory mechanisms in hypertrophic cardiomyocytes (Figure 3.10). 
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Figure 3.10. Model of P-TEFb complex activation following activation of the α1-AR or ETR. 

Both the ETR and α1-AR activate a signalling cascade which increases active P-TEFb and requires 

subsequent recruitment through the SEC. The α1-AR activation also leads to Brd4-dependent 

recruitment due to the activation of a PKA signalling pathway. 

 

3.6. Discussion 

In this study, we showed that activation of distinct GPCRs in cardiomyocytes can result in 

hypertrophic responses and gene expression programs that are qualitatively similar, but that 

operate through different transcriptional regulatory mechanisms. We also identified a novel 

mechanism regulating Brd4 in the development of cardiomyocyte hypertrophy that expands our 

understanding of how specific signalling pathways regulate the recruitment of general transcription 

regulators and that may have relevance in other physiological contexts.  

Chromatin occupancy of Brd4 undergoes extensive redistribution in order to positively 

regulate expression of the cardiomyocyte hypertrophic gene program. These changes lead to 

enhanced Brd4 occupancy on specific super-enhancers and promoter regions. Previous Brd4 ChIP-

seq experiments have used primary cardiomyocytes treated with PE (in accord with our results), 

or cardiac tissue isolated from mice subjected to transverse aortic constriction (TAC) (19, 20). The 

increased genomic loading of Brd4 in heart failure models has been attributed to increases in Brd4 
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expression (19), similar to proposed mechanisms in various forms of cancer (42-44). In heart 

failure, increased Brd4 protein expression is thought to occur due to decreased expression of the 

Brd4 targeting microRNA miR-9 (21, 45). These reports assessed whole cardiac tissue not 

enriched for cardiomyocytes or in vitro cardiomyocyte studies which reported conflicting evidence 

regarding changes in Brd4 expression (18, 21). Following 24 h activation of the α1-AR or ETR in 

cardiomyocytes, we did not observe a significant change in Brd4 protein expression (Figure 3.6B). 

Instead, the increased Brd4 recruitment following α1-AR activation was dependent on cAMP/PKA 

signalling pathway.  

Phosphorylation of Brd4 is critical for its activation and also mediates alterations in its 

interactome. Brd4 hyperphosphorylation correlates with its oncogenic potential and increased 

phosphorylation levels lead to development of BET inhibitor resistance in certain types of cancer 

(46, 47). At present, casein kinase 2 (CK2) and CK1δ are the only protein kinase demonstrated to 

directly phosphorylate Brd4 in vivo, although others have been shown to regulate Brd4 activity 

(35, 46, 48, 49). The CK2 and CK1δ phosphorylation sites reside within the PDID domain, where 

phosphorylation results in a conformational change that unmasks the second bromodomain and 

enables interactions with acetyl-lysine residues (35). An in vitro kinase screen of the PDID domain 

identified PKA as a potential Brd4 kinase, aligning with the PKA regulatory effect on Brd4 we 

observed (35). This suggests that in cardiomyocytes, enhanced PKA activity could increase PDID 

phosphorylation and drive the conformational change required for Brd4 to interact with chromatin. 

Further work remains to identify the putative phosphorylated sites and elucidate their functional 

role(s). Conversely, we also observed an increase in basal Brd4 occupancy following PKA 

inhibition (Figure 3.9A). Such increased Brd4 occupancy may be related to PKA’s known role in 

regulating histone deacetylases (52). The balance between these two opposing processes regulated 

by PKA is likely linked to the highly localized nature of PKA signalling through interactions with 

A-kinase anchoring proteins (AKAPs) (53).  

RNA-seq analyses revealed that the transcriptional programs triggered by activation of α1-

AR or ETR were highly overlapping, consistent with the similar hypertrophic response 

downstream of either receptor. The mechanistic difference between the two pathways was instead 

linked to the fact that specific groups of genes relevant to the hypertrophic response were 

differentially sensitive to JQ1 downstream of α1-AR activation compared to ETR. Previous reports 

have identified inflammatory pathways enriched in JQ1-attenuated genes using both in vitro and 
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in vivo models of cardiomyocyte hypertrophy (20). We observed JQ1-selective attenuation of these 

inflammatory pathways following α1-AR activation (Figure 3.7G). We argue that this difference 

stems from a greater role for Brd4 downstream of α1-AR, consistent with our Brd4 ChIP results. 

Such inflammatory responses are characteristic of heart failure, and the production of several 

cytokines is increased during cardiac remodelling (54, 55). Importantly, inflammation is a driver 

of cardiomyocyte hypertrophy and inhibition of those pathways prevents the progression of heart 

failure (56, 57). Although specific pathways were not enriched among genes attenuated by JQ1 

follow ETR activation, a large number of genes did exhibit JQ1 sensitivity. We suspect the 

observed effects are likely due to functions of Brd2 and/or Brd3 in regulating these genes, although 

further work is required to confirm this.    

Further evidence for the effect of JQ1 on the inflammatory response is evident by the 

negative effect on inflammatory transcription factors such as NF-κB and AP-1 (Figure 3.7H) (34, 

58, 59). We focused on these transcription factors for two reasons: their gene expression signatures 

were previously identified in JQ1-sensitive, TAC-induced genes, or a causal role in regulating 

Brd4 recruitment in cardiomyocytes has been identified (18, 19). Importantly, these transcription 

factors are also directly implicated in driving pathological cardiomyocyte hypertrophy in various 

in vitro and in vivo models (60-64). Despite the fact that similar transcription factors were activated 

downstream of α1-AR and ETR, JQ1 only attenuated the α1-AR response. The receptor-specific 

attenuation of transcription factor activity may be due to distinct signalling mechanisms required 

for transcription factor activation, creating a differential dependence on Brd4 activity (65-68). 

However, the greater number of transcription factors attenuated by JQ1 following α1-AR activation 

suggests that it leads to an active form of Brd4 that more readily binds to chromatin and promotes 

the activity of transcription factors. Although we predict that PKA activates Brd4 directly, indirect 

activation through a downstream factor is also possible. Notably, a direct role for PKA activity in 

regulating P-TEFb has also been observed. For example, PKA-dependent phosphorylation of Cdk9 

promotes its association with the viral transactivator Tat and phosphorylation of hexamethylene 

bisacetamide inducible protein 1 (HEXIM1) by PKA releases P-TEFb from the inhibitory 7SK 

sRNP complex (50, 51). Thus, P-TEFb itself could be an important PKA target, although how 

these phosphorylation events impact its interaction with Brd4 is not known.  Further investigation 

is required to determine the effects of JQ1 on Brd4’s interactome and phosphorylation status 

following α1-AR or ETR activation.  
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Receptor-specific activation of Brd4 we identified may have implications for the clinical use 

of Brd4 inhibitors in cardiovascular disease. Efficacy will be dependent on the specific 

neurohormonal signalling pathways altered in a particular patient. Specifically, we would expect 

a negative correlation with a patient’s ET-1 levels. Therefore, more extensive characterization of 

signalling molecules in patients might be important predictors of drug efficacy. Importantly, we 

expect that Brd4 inhibition will be less effective in severe and/or late stages of heart failure as 

PKA activity is reduced (41) and levels of endothelin-1 or its precursors (69-71) increases. Chronic 

infusion of these neurohormones with mice is required to determine how the receptor-specific 

effects of Brd4 inhibition effects cardiac remodelling. Furthermore, although JQ1 has been 

demonstrated to reverse established heart failure in mouse TAC and myocardial infarction mouse 

models (20), we expect JQ1 efficacy would decrease as heart failure progresses.   

Our finding that JQ1 sensitivity is dependent on activation of PKA signalling raises the 

question of whether Brd4 inhibition is also an effective therapeutic for other pathologies associated 

with enhanced PKA signalling. For example, chronic activation of PKA is a hallmark of dopamine-

dependent neuronal pathologies such as cocaine addiction and L-DOPA induced dyskinesia (LID) 

(72, 73). Recent studies have implicated Brd4 in regulating the neuronal transcriptional programs 

and behavioural effects driven by dopamine signalling in these contexts. Systemic administration 

of JQ1 reduces reward seeking behaviour in addiction models and prevents LID development in 

Parkinson’s models (74, 75). The correlation between PKA and Brd4 activity in these cases 

suggests that the regulation of Brd4 chromatin occupancy by PKA might be a common regulatory 

mechanism for other GPCRs and cell types. Furthermore, certain adrenocortical adenomas are 

driven by enhanced basal PKA activity due to activating mutations in Gαs or the catalytic subunit 

of PKA (76, 77). We expect these adenomas would be highly sensitive to Brd4 inhibition, although 

further work is required to establish the requirement of Brd4 in progression of these cancers.   

Dysregulated activation and recruitment of P-TEFb is an underlying cause of several 

diseases and developmental disorders (78). While recruitment of P-TEFb is regulated either by 

Brd4 or the SEC, little is known about the functional relationship between these two complexes. 

It has been suggested that these complexes work together to target P-TEFb to different substrates 

whereas others have shown that Brd4 assists in recruiting the SEC (79, 80). Our results indicate 

the cooperative nature of these two complexes is dependent on the signalling pathway employed 

to activate transcriptional responses. Following ETR activation, the SEC alone is sufficient to elicit 
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a gene expression program required for cardiomyocyte hypertrophy, whereas the activation of the 

Gαs/cAMP/PKA pathway by the α1-AR leads to an additional dependence on Brd4. This suggests 

that the SEC form of P-TEFb may have a general transcriptional regulatory role whereas the form 

associated with Brd4 may have a more restricted signal-responsive role. The lack of an effect on 

Serpine1 expression by the small molecule KL-2, which is attenuated by JQ1, suggests these 

complexes do regulate different gene expression programs (as proposed) leading to similar 

phenotypic changes to cardiomyocytes. Further genome-wide investigation is required to assess 

whether these complexes have distinct or overlapping functions in cardiomyocytes. Furthermore, 

expanding our understanding of how signalling pathways activate these complexes is an important 

step to improve therapeutic approaches in diseases with dysregulated P-TEFb. 
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4.1. Preface 

In the previous chapters we characterized regulatory mechanisms utilized by GPCRs to 

recruit P-TEFb to the chromatin and activate pathological gene expression in cardiomyocytes. 

During this time, we were also interested in the P-TEFb-dependent transcription following AT1R 

activation in cardiac fibroblasts, which is a critical driver of the fibrotic response in pathological 

cardiac remodelling. Specifically, we identified a novel interaction between Gβγ and RNAPII 

following AT1R activation with unknown function, although the signalling mechanism regulating 

the interaction had been extensively characterized. Interestingly, the Gβγ-RNAPII interaction 

required P-TEFb activity, as P-TEFb inhibition ablated both the basal and agonist-stimulated 

interaction. In this chapter, we describe the role of specific Gβγ dimers in regulating fibrotic gene 

expression in response to AT1R activation using RT-qPCR-based gene arrays and ChIP-seq of 

Gβγ and RNAPII. We identify the role of Gβγ in negatively regulating RNAPII to supress fibrotic 

transcription following AT1R activation. 

 

4.2. Abstract 

Gβγ subunits are involved in many different signalling processes in various compartments 

of the cell, including the nucleus. To gain insight into the functions of nuclear Gβγ, we investigated 

the functional role of Gβγ signalling in regulation of GPCR-mediated gene expression in primary 

rat neonatal cardiac fibroblasts. Following activation of the angiotensin II type I receptor in these 

cells, Gβγ dimers interact with RNA polymerase II (RNAPII). Our findings suggest that Gβ1γ 

recruitment to RNAPII negatively regulates the fibrotic transcriptional response, which can be 

overcome by strong fibrotic stimuli. The interaction between Gβγ subunits and RNAPII expands 

the role for Gβγ signalling in cardiac fibrosis. The Gβγ-RNAPII interaction was regulated by 

signaling pathways in HEK 293 cells that diverged from those operating in cardiac fibroblasts. 

Thus, the interaction may be a conserved feature of transcriptional regulation although such 

regulation may be cell specific.  

 

4.3. Introduction 

In recent years, study of the role of paracrine interactions between cardiomyocytes and 

cardiac fibroblasts in modulating the response to cardiac damage has expanded dramatically. 
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Cardiac fibroblasts, in particular, respond dynamically following damage to the myocardium 

which is characterized by differentiation into myofibroblasts, increased proliferation and migration 

to areas of damage (1-3). This fibrotic response is modulated by the renin-angiotensin system, 

acting predominantly through the peptide ligand angiotensin II (Ang II) (4, 5). Ang II drives 

changes in fibroblast function both directly and indirectly by increasing expression of other pro-

fibrotic growth factors, such as transforming growth factor β1 (TGF-β1) (6). Collectively, these 

factors regulate alterations in cardiac architecture required for tissue repair by modulating the 

expression of genes encoding extracellular matrix proteins and proteases (7, 8). Ang II also 

promotes cytokine secretion, thereby triggering autocrine and paracrine signalling to elicit further 

responses (9, 10). These signalling events create a feedforward loop, amplifying the fibrotic 

response from the initial area of damage to more distal regions of the heart (11). While the process 

initially aids in wound healing, a prolonged, activated fibrotic response worsens adverse cardiac 

remodelling and accelerates progression to heart failure (1, 12). Inhibiting aspects of the fibrotic 

response reduces adverse cardiac remodelling (2, 13). Hence, deciphering how Ang II signalling 

regulates pro-fibrotic gene expression is an important step towards understanding how these 

processes might be targeted therapeutically. 

Cardiac fibroblasts respond to increased Ang II levels through the Ang II type I receptor 

(AT1R), a G protein-coupled receptors (GPCRs), and Ang II type II receptor (AT2R). Of these, 

the AT1R is responsible for positively regulating the fibrotic response in cardiac fibroblasts (1). 

The AT1R couples to multiple heterotrimeric G proteins composed of specific combinations of 

Gα and Gβγ subunits (14). G proteins serve as signal transducers to relay extracellular ligands 

bound to GPCRs into activation of different intracellular signalling pathways (15). Gβγ subunits, 

like the more extensively studied Gα subunits, modulate a wide variety of canonical GPCR 

effectors at the cellular surface such as adenylyl cyclases, phospholipases and inwardly rectifying 

potassium channels (15-17). However, compared with G-mediated events, Gβγ-mediated 

signalling is relatively understudied and is complicated by the existence of 5 Gβ and 12 Gγ subunits 

which can combine in multiple ways to form obligate dimers. Gβγ subunits also regulate a variety 

of non-canonical effectors in distinct intracellular locations, and a number of studies have 

described roles for Gβγ signalling in the nucleus (15, 18). Nuclear Gβγ subunits modulate gene 

expression through interactions with a variety of transcription factors, such as adipocyte enhancer 

binding protein 1 (AEBP1), the AP-1 subunit c-Fos, HDAC5 and MEF2A (19-22). Furthermore, 
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we have detected Gβ1 occupancy at numerous gene promoters in HEK 293 cells (23). While 

canonical Gβγ signalling has been implicated in both cardiac fibrosis and heart failure (24, 25), 

how nuclear Gβγ signalling impacts these events is currently unknown.  

Here, we describe a novel interaction between Gβγ subunits and RNA polymerase II 

(RNAPII) which regulates the cardiac fibrotic response to Ang II activation of AT1R. We 

characterize the GPCR-dependent, signalling pathway-specific regulation of this interaction in 

primary neonatal rat cardiac fibroblasts and in HEK 293 cells. To understand the potential role of 

individual Gβγ subunits, we knocked down Gβ1 and Gβ2 as exemplars of Gβ subunits highly 

expressed in these cells and characterized how nuclear Gβ1, in particular, is a key regulator of 

AT1R-driven transcriptional changes. 

 

4.3. Methods 

4.3.1. Reagents 

The following were all purchased from Sigma-Aldrich: carbachol, angiotensin II, BAPTA-

AM, KN-93, Gö6983, PTX, U0126, calyculin A, cyclosporin A, TRI reagent, isopropyl 

thiogalactopyranoside (IPTG), protease inhibitor cocktail, triton X-100, bovine serum albumin, 

ethylenediaminetetraacetic acid (EDTA), 70% NP-40 (Tergitol), sodium deoxycholate, 

magnesium chloride, lithium chloride, anti-rabbit IgG (whole molecule)-agarose antibody, anti-

mouse IgG (whole molecule)-agarose antibody, goat anti-rabbit IgG (whole molecule) conjugated 

to peroxidase secondary antibody, goat anti-mouse IgG (Fab specific) conjugated to peroxidase 

secondary antibody, anti-FLAG M2 antibody, and rabbit IgG (St. Louis, MO, USA). U71322 pan-

PKC inhibitor was purchased from Biomol International (Plymouth Meeting, PA, USA). 

Lysozyme (from hen egg white) and phenylmethylsulfonyl fluoride (PMSF) were purchased from 

Roche Applied Sciences (Laval, QC, Canada). Ethylene glycol bis (2-aminooethyl ether) 

N,N,N’,N’ tetraacetic acid (EGTA) and HEPES were purchased from BioShop (Burlington, ON, 

Canada). Sodium chloride, glutathione (reduced form), dithiothreitol (DTT) and Dynabeads 

protein G were purchased from Fisher Scientific (Ottawa, ON, Canada). Dulbecco's modified 

Eagle's medium (DMEM) (supplemented with 4.5 g/L glucose, L-glutamine and phenol red), 

DMEM low glucose (supplemented with 1.0 g/L glucose, L-glutamine and phenol red), Hank’s 

Balanced salt solution (HBSS), HBSS (with no phenol), Penicillin/Streptomycin solution, Tris 

base buffer, ampicillin sodium salt, and fetal bovine serum were purchased from Wisent (St. 
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Bruno, QC, Canada). Glutathione sepharose 4B GST beads was purchased from GE Healthcare 

(Mississauga, ON, Canada). Lipofectamine 2000 and Alexa Fluor 488 goat anti-mouse IgG were 

purchased from Invitrogen (Burlington, ON, Canada). Enhanced chemiluminescence (ECL) Plus 

reagent was purchased from Perkin Elmer (Woodbridge, ON, Canada). Moloney murine leukemia 

virus reverse transcriptase (MMLV-RT) enzyme and recombinant RNasin® ribonuclease inhibitor 

were purchased from Promega (Madison, WI, USA). Evagreen 2X qPCR MasterMix was 

purchased from Applied Biological Materials Inc. (Vancouver, BC, Canada) and iQ SYBR Green 

Supermix was purchased from Bio-Rad Laboratories (Mississauga, ON, Canada).  Anti-Gβ1-4 (T-

20) antibody, anti-RNA Polymerase I Rpa194 (N-16) antibody, anti-ERK1/2 antibody, anti-Gαq 

antibody and anti-Rpb1 (N20) were purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, 

USA). Anti-RNA polymerase II clone CTD4H8 (Rpb1) antibody was purchased from EMD 

Millipore (Temecula, CA, USA). Anti-Schizosaccharomyces pombe histone H2B (ab188271) 

antibody was purchased from Abcam Inc. (Toronto, ON, Canada). Polyclonal anti-Gβ1 and anti-

Gβ2 were a generous gift of Professor Ron Taussig (UT Southwestern). THZ1 was a gift from 

Nathanael S. Gray (Harvard University) and iCdk9 was a gift from James Sutton (Novartis). 

FLAG-Gβ1, FLAG-Gβ2, FLAG-Gβ3, FLAG-Gβ4 and FLAG-Gβ5 plasmids were obtained from 

UMR cDNA Resource (www.cdna.org). 

 

4.3.2. Tissue culture, transfection and treatments  

Human embryonic kidney 293 (HEK 293), HEK 293T cells and CRISPR/Cas9 generated 

∆Gαq/11/12/13 knockout HEK 293 cells (quadKO cells) (56), a generous gift from Dr. Asuka 

Inoue (Tohuku University, Sendai, Japan), were grown at 37°C in 5% CO2 in DMEM 

supplemented with 5% (v/v) fetal bovine serum and 1% (v/v) penicillin/streptomycin (P/S). HEK 

293 cells were transiently transfected with FLAG-Gβ1-5 using Lipofectamine 2000 as per the 

manufacturer’s recommendations. Primary rat neonatal cardiac fibroblasts were isolated from 1-3 

day old Sprague-Dawley rat pups (Charles River Laboratories, St-Constant, Quebec) as previously 

described (57). All procedures using animals were approved by the McGill University Animal 

Care Committee, in accordance with Canadian Council on Animal Care Guidelines. Two days 

after isolation, cells were detached with trypsin/EDTA and plated at a density of ~8 x 103 cells/cm2 

in fibroblast growth medium for 48h. For siRNA transfection, cardiac fibroblasts were plated at a 

density of ~20 x 103 cells/cm2 and transfected using Lipofectamine 2000 as per the manufacturer’s 
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instructions. For treatment of HEK 293F cells, HEK 293F quadKO cells or cardiac fibroblasts, 

cells were serum-deprived for 6 h with DMEM or overnight (~12 h) with DMEM low glucose 

(with no FBS and no P/S) respectively, and subsequently treated with pathway inhibitors, 1 mM 

carbachol or 1 μM Ang II for the treatment lengths indicated in the various assays.  

 

4.3.3. RT-qPCR  

Reverse transcription of RNA isolated from rat neonatal cardiac fibroblasts was performed 

as previously described (23).  Briefly, cells were lysed in TRI reagent and RNA was extracted 

using a protocol adapted from Ambion (Burlington, ON, Canada). Reverse transcription was 

performed on 1 μg of total RNA using an MMLV-RT platform according to the manufacturer’s 

protocol. Subsequent qPCR analysis was performed with Evagreen Dye qPCR master-mixes using 

a Corbett Rotorgene 6000 thermocycler or Bio-Rad 1000 Series Thermal Cycling CFX96 Optical 

Reaction module. mRNA expression data were normalized to housekeeping transcripts for U6 

snRNA. Ct values obtained were analyzed to calculate fold change over respective control values 

using the 2-ΔΔCt method. Primer sequences for all primers used are listed in Supplemental Table 

4.1. 

   

4.3.4. Ca2+ mobilization 

Cardiac fibroblasts were cultured as previously described following transfection with 

respective siRNA. Cardiac fibroblasts were washed and media replaced with HBSS (no phenol) 

and incubated for 1 h at 37°C and 5% CO2. Media was replaced with Fura 2-AM in HBSS and 

incubated for another 1 h at 37°C and 5% CO2. Fura 2-AM containing media was replaced with 

HBSS and Cardiac fibroblasts incubated for another 30 min at 37°C and 5% CO2 prior to 

recordings. Baseline recordings were obtained every 0.7 s for 10 s followed by injection of Ang II 

to a final concentration of 1 μM and recordings obtained every 0.7 s for a total of 1 min. A control 

well with no Fura-2 AM was included in order to control for background fluorescence. 

Fluorescence intensity was recorded using Bio-Tek Synergy 2 Multi-Mode Microplate Reader 

with fluorescence excitation at 340 nm or 360 nm and fluorescence emission at 516 nm. Data is 

presented as the ratio of fluorescence emission at 516 nm following 340 nm excitation over 360 

nm excitation. The ratio was normalized to the mean baseline ratio from control cells. 
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4.3.5. Nuclear isolation  

Nuclei from HEK 293 cells and cardiac fibroblasts were isolated as previously described 

(26). Briefly, cells seeded in T175 flasks (Corning) were treated as indicated, washed three times 

with 1X PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4), and harvested 

in 1X PBS by centrifugation. Pelleted cells were lysed in lysis buffer (320mM sucrose, 10 mM 

HEPES, 5 mM MgCl2, 1 mM DTT, 1 mM PMSF, 1% Triton X-100), added gently on top of a 

high-sucrose buffer (1.8 M sucrose, 10 mM HEPES, 5 mM MgCl2, 1 mM DTT, 1 mM PMSF), 

and centrifuged at 4600 g for 30 min at 4°C, separating unlysed nuclei from the cytosolic fraction. 

Pelleted nuclei were then resuspended in resuspension buffer (320 mM sucrose, 10 mM HEPES, 

5 mM MgCl2, 1 mM DTT, 1 mM PMSF), pelleted at 300 g for 5 min and subsequently lysed in 

1X RIPA buffer.  

 

4.3.6. Immunoprecipitation and western blotting 

Immunoprecipitation (IP) assays of Gβ and Rpb1 pull downs were performed as previously 

described, with minor alterations (20). Protein extracts from treated HEK 293 cells and cardiac 

fibroblasts lysed in RIPA (1% NP-40, 50 mM Tris-HCl ph 7.4, 150 mM NaCl, 1 mM EDTA, 1 

mM EGTA, 0.1% SDS, 0.5% sodium deoxycholate) were quantified by Bradford assay and 500 

μg of protein lysate was precleared with 15 μl of anti-rabbit IgG-agarose beads. Precleared lysates 

were then incubated with 1 μg anti-Gβ1-4, 2 μg of anti-Rpb1 or anti-Gβ1 serum or anti-Gβ2 serum 

overnight at 4°C with end-over mixing. The next day, 40 μl of washed agarose beads were added 

to each lysate/antibody mixture, incubated for 3.5 hours at 4°C with end-over mixing, and then 

beads were washed 3X with RIPA. Proteins were eluted off the beads by the addition of 4X 

Laemmli buffer followed by denaturation at 65°C for 15 min. Protein immunoprecipitation and 

co-IP were then assessed by western blot as previously described (23). Resulting western blot 

images were quantified using ImageJ 1.48v.  

 

4.3.7. Rat Fibrosis qPCR arrays  

Fibrosis qPCR arrays were performed as per the manufacturer’s instructions (Qiagen, 

Toronto, ON, Canada). Briefly, 0.5 μg of isolated total RNA from siRNA transfected and vehicle 

or Ang II treated cardiac fibroblasts was subject to genomic DNA elimination using mixes supplied 
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with the array kit for 5 mins at 42°C. DNA eliminated RNA was then subject to reverse 

transcription reactions using Qiagen RT2 First Strand Kits with protocols according to the 

manufacturer’s instructions. Qiagen RT2 SYBR Green MasterMix was added to the cDNA and 

subsequently dispensed in wells of a 96-well plate containing pre-loaded lyophilized primers 

provided by the manufacturer. Quantitative PCR reactions were then run on an Applied 

Biosystems ViiA 7 thermocycler according to the manufacturers cycle recommendations. Each 

sample was run on separate individual 96 well plates and Ct values for each gene assessed were 

collected and analyzed; Ct values greater than 35 were eliminated from the overall analysis. 

Expression data was normalized to levels of two housekeeping genes contained on each plate – 

Ldha1 and Hprt.  

 

4.3.8. AAV Production and transduction of cardiac fibroblasts  

FLAG-Gβ1 and FLAG-Gβ2 were PCR amplified from a pcDNA3.1+ plasmid and BamHI 

and EcoRI restrictions sites added to the 5’ and 3’ end, respectively. These restrictions sites were 

used to insert each FLAG-Gβ into the pAAV-CAG plasmid. Adeno-associated viruses were 

produced as previously described (58). Cells were transduced with AAV1-FLAG-Gβ1 (MOI of 103 

or 5x104) in DMEM low glucose for 6h. Additional media was added to obtain a final 7% FBS 

concentration and incubated for another 24 h. At this point, the cells were detached with 

trypsin/EDTA and plated as described for respective experiments.  

 

4.3.9. ChIP-qPCR  

Immunoprecipitation in cardiac fibroblasts was performed as previously described, with 

minor modifications (59). Isolated nuclei were sonicated with a Diagenode BioRuptorTM UCD-

200 (18 cycles, 30 s on/off, high power) to shear chromatin. FLAG-Gβ1 immunoprecipitation was 

performed with 10 g sheared rat chromatin alongside 5 g of Schizosaccharomyces pombe yeast 

chromatin, obtained as previously described (60). Chromatin was immunoprecipitated with an 

anti-FLAG M2 antibody (2 μg) or equivalent amount of rabbit IgG alongside an anti-

Schizosaccharomyces pombe H2B antibody. RNAPII immunoprecipitation was performed with 

20 μg of sheared rat chromatin alongside 0.2 μg of Schizosaccharomyces pombe yeast chromatin. 

Chromatin was immunoprecipitated with an anti-Rpb1 (8WG16) antibody. Localization was 
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assessed by qPCR with primers for specific genomic loci (Supplemental Table 4.1). All qPCR 

reactions were performed using a Bio-Rad 1000 Series Thermal Cycling CFX96 Optical Reaction 

module and iQ SYBR Green Supermix. Data analysis included subtracting the % Input of IgG 

control for each treatment from the respective IP, followed by normalization to the % Input yeast 

cdc2+ of each FLAG IP or act1+ for each RNAPII IP to account for differences in IP efficiencies.  

 

4.3.10. ChIP-seq immunoprecipitation and data analysis  

Immunoprecipitation in Cardiac fibroblasts was performed as previously described, with 

minor modifications (59). Isolated nuclei were sonicated with a Diagenode BioRuptorTM UCD-

200 (18 cycles, 30 s on/off, high power) to shear chromatin. FLAG-Gβ1 immunoprecipitation was 

performed with 40 g of sheared rat chromatin alongside 0.4 g of chromatin from a S. pombe 

strain expressing FLAG-Bdf2. RNAPII immunoprecipitation was performed using 20 μg sheared 

rat chromatin alongside 0.2 μg wild-type S. pombe chromatin. Chromatin was immunoprecipitated 

with an anti-FLAG M2 antibody (2 μg) or anti-Rpb1 (8WG16) antibody (2 μg). Two biological 

replicates of FLAG-Gβ1 immunoprecipitation and three biological replicates of Rpb1 

immunoprecipitation were included. Following immunoprecipitation and DNA cleanup, libraries 

were prepared with the NEBNext® UltraTM II DNA Library Prep kit for Illumina and 50 bp single 

end reads obtained with an Illumina HiSeq 4000 at the McGill University and Génome Québec 

Innovation Centre, Montréal, Canada. 

Reads were trimmed with TrimGalore (0.6.0) (61, 62) using the following settings: --phred33 

--length 36 -q 5 --stringency 1 -e 0.1. A Bowtie2 genome comprised of the Ensembl rat reference 

genome (Rattus.norvegicus.Rnor.6.0.94) (63) and S. pombe reference genome 

(Schizosaccharomyces_pombe.ASM294v2) was built with the bowtie2-build function. Processed 

reads were aligned to the custom combined rat and S. pombe genome with Bowtie2 (v2.3.5), 

followed by removal of low-quality mapped reads (MAPQ < 10) and reads mapped to non-

standard chromosomes with SAMtools (v1.9) (64). Duplicate reads were removed with Picard 

tools (v2.20.6, Broad Institute). Aligned reads were separated into individual files for the rat or S. 

pombe genome respectively. For RNAPII ChIP, peaks were called using macs2 (v2.1.1) with 

settings --broad and --broad-cutoff 0.1 (41), reads extended by the fragment length determined by 

phantompeakqualtools (v1.14) (65, 66), a scaling factor estimated using the NCIS R package (67) 

and potential misassembled regions of the rat genome blacklisted (68). RNAPII peaks were 



161 

annotated with HOMER (v4.11) (40) and those protein-coding genes with RNAPII peaks in two 

of three replicates in any treatment were used for subsequent analysis. BAM files of treatment 

replicates were combined, input reads subtracted with the deepTools (69) function bamCompare 

(--scaleFactorsMethod SES) and negative values set to 0. Lastly, values were converted to counts 

per million mapped reads with library size adjusted by the total number of reads aligned to the S. 

pombe genome. K-means clustering for genes with identified RNAPII peaks and data visualization 

was performed with the deepTool’s computeMatrix and plotProfile functions. Gene ontology 

enrichment was performed using the R package topGO (v2.36.0). The data is available at the NCBI 

Gene Expression Omnibus (GEO) with the accession GSE147416. All code used to analyze the 

ChIP-seq is available upon request. 

 

4.3.11. Statistical Analysis  

Statistical tests were performed using GraphPad Prism 8.0 software. For quantifications of 

immunoprecipitation experiments, two-way analysis of variance (ANOVA) followed by post-hoc 

Dunnett’s test was used on quantifications of western blot bands, with all multiple comparisons 

being made to vehicle-vehicle conditions. To analyse Ca2+ release experiments, the dependent 

measure was the area under the curve (AUC), computed from release-time data sets. AUC data 

were subjected to ANOVA and Dunnett’s tests, using as a point of comparison the siRNA control 

condition. For the FLAG-Gβ and RNAPII interaction in HEK 293F cells, one-sample t-tests were 

performed with a Bonferroni correction. Summary gene expression of the fibrosis array qPCR was 

compared with a two-way ANOVA followed by post-hoc t-tests with a Bonferroni correction. 

Individual gene expression from the fibrosis qPCR array and Ctgf gene expression with in-house 

primers was assessed with a two-way ANOVA followed by Bonferroni corrected post-hoc t-tests 

at individual time points. For validation of Gβ1 and Gβ2 knockdown in cardiac fibroblasts, fold 

changes over siRNA control were compared to siRNA control using paired Student’s t-tests. For 

FLAG-Gβ1 ChIP-qPCR, independent paired Student t-tests with a Bonferroni post-hoc correction 

were performed. A Fisher’s exact test was used to compare the proportion of cluster 1 genes in the 

list of genes with RNAPII peaks following Ang II treatment in control or Gβ1 knockdown 

conditions and to assess GO Term enrichment in cluster 1 genes. Alpha was set at p<0.05 (2-

tailed). All results are expressed as mean ± S.E.M, and data are represented as pooled experiments 

whose sample sizes are indicated in figure legends.  
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4.4. Results 

4.4.1. Gβγ interaction with RNAPII following activation of Gαq-coupled GPCRs 

As Gβγ interacts with transcription factors and occupies gene promoter regions, we 

hypothesized that Gβγ subunits interact with a protein complex ubiquitously involved in 

transcription, and we initially focused on RNAPII. We assessed the potential Gβγ-RNAPII 

interaction following endogenous M3-muscarinic acetylcholine receptors (M3-mAChRs) 

activation with carbachol in HEK 293F cells. An initial co-immunoprecipitation time course 

experiment revealed a carbachol-induced interaction between endogenous Gβγ subunits (Gβ1-4 

detected with a pan-Gβ antibody) and Rpb1, the largest subunit of RNAPII, peaking between 45 

and 120 mins (Supplemental Figure 4.1A, B). Immunoprecipitation of Rpb1 with two different 

antibodies also co-immunoprecipitated Gβ1-4 in an agonist-dependent manner (Supplemental 

Figure 4.1C). Further, we observed no basal or carbachol-dependent interaction of Rpb1 with 

Gαq/11 or ERK1/2 (Supplemental Figure 4.1D, E) suggesting that Gβγ was not in complex with 

these proteins when it was associated with RNAPII in the nucleus.  Under similar conditions, we 

observed no basal or carbachol-dependent interaction of Gβγ subunits with the A194 subunit of 

RNA polymerase I (Supplemental Figure 4.1F), suggesting Gβγ is not recruited to all RNA 

polymerases.  

We next assessed the whether the Gβγ-RNAPII interaction also occurred in primary rat 

neonatal cardiac fibroblasts following treatment with Ang II. A time-course co-

immunoprecipitation experiment revealed an agonist induced Gβγ-RNAPII interaction with a 

major peak interaction observed 75 minutes post stimulation (Figure 4.1A, B). As cardiac 

fibroblasts express both AT1R and AT2R, we next examined which receptor subtype regulated the 

response, by pre-treatment with the AT1R-specific antagonist losartan. Pre-treatment of cells with 

losartan prior to Ang II treatment abolished the agonist-induced interaction, but preserved the basal 

interaction, suggesting that AT1R, and not AT2R, is primarily responsible for mediating the 

interaction (Figure 4.1C, D). 
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Figure 4.1. Characterization of Gβγ-RNAPII in rat neonatal cardiac fibroblasts. 

(A) Time course of the Ang II-stimulated interaction between Gβγ and Rpb1. The ratio of Rpb1 

co-immunoprecipitated with Gβ1-4 upon treatment of 1 μM Ang II treatment at the indicated 

timepoints in cardiac fibroblasts was assessed. (B) Densitometry-based quantification of panel A 

was used to determine the ratio of Rpb1 to Gβ1-4 immunoprecipitated at each time point. The fold 

change over the 0 min time point was then calculated. Data is representative of four independent 

experiments. One-way analysis of variance (ANOVA) followed by post-hoc Dunnett’s test was 

performed. (C) Effect of AT1R antagonist losartan pre-treatment on the Ang II-mediated 

interaction, demonstrating angiotensin receptor subtype selectivity. (D) Densitometry-based 
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quantification of AT1R antagonist effect on Ang II-induced interaction. The ratio of Rpb1 

immunoprecipitated with Gβ1-4 was determined for each condition and fold change over 

DMSO/DMEM was calculated. Data is representative of three independent experiments. Two-way 

analysis of variance (ANOVA) followed by post-hoc Dunnett’s test was performed. (E) 

Assessment of the necessity of Gβγ import into the nucleus for interaction to occur upon AT1R 

stimulation with Ang II. Cardiac fibroblasts were pretreated for 1 h with importazole prior to Ang 

II stimulation. Data are representative of four independent experiments. (F) Densitometry-based 

quantification of the Ang II induced interaction and the effect of nuclear import inhibition. The 

ratio of Rpb1 to Gβ1-4 immunoprecipitated was determined and normalized to fold change over 

DMSO/DMEM treatment. Two-way analysis of variance (ANOVA) followed by post-hoc 

Dunnett’s test was performed. In all panels, data represents mean ± S.E.M, * indicates p<0.05, ** 

indicates p<0.01.  

 

Although several Gβγ isoforms have been detected in the nucleus (22, 26, 27), the 

mechanisms leading to entry of Gβγ into the nucleus remain unknown. Using subcellular 

fractionation following M3-mAChR activation in HEK 293F cells, we observed importin-β 

dependent translocation of Gβγ into the nucleus (data not shown). In addition, the agonist-

dependent interaction of Gβ1-4 and RNAPII was blocked by importazole pre-treatment, suggesting 

that nuclear import of Gβ1-4 is required for the interaction with RNAPII in these cells 

(Supplemental Figure 4.2A, B). Next, we determined the effect of importazole pre-treatment on 

the Ang II-mediated Gβγ-RNAPII interaction in cardiac fibroblasts. The Gβγ-RNAPII interaction 

was also ablated when nuclear import via importin-β was inhibited, suggesting again that Gβγ 

subunits must translocate to the nucleus for the interaction with RNAPII to occur (Figure 4.1E, F).  

 

4.4.2. Signalling pathways regulating Gβγ-RNAPII interaction are cell-specific 

We next examined signalling events downstream of receptor activation that could mediate 

the interaction between Gβγ subunits and RNAPII. To this end, we pursued a pharmacological and 

genetic approach using both cardiac fibroblasts (Figure 4.2A-H) and HEK 293F cells (Figure 4.3A-

G). Our data indicated that the pathways responsible for promoting the Gβγ-RNAPII interaction 

are cell type specific. Since AT1R couples to both Gq/11 and Gi/o G proteins (28), we used 

FR900359 to inhibit Gαq/11 (29) and pertussis toxin (PTX) to inhibit Gαi/o. The agonist-induced 
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response was markedly (~80%) decreased by the Gαq/11 inhibitor, and also decreased (~30%) by 

the Gαi/o inhibitor, demonstrating that AT1R signalling through Gαq is the primary pathway 

leading to increased Gβγ-RNAPII interaction (Figure 4.2A-B, Supplemental Figure 4.3A-B). We 

next used U71322 to inhibit the activity of phospholipase Cβ (PLCβ), downstream of both Gq/11 

and Gi/o (the latter via Gβγ signalling). In cardiac fibroblasts, pre-treatment of U71322 blocked 

the agonist-induced Gβγ-RNAPII interaction with no effect on the basal interaction, suggesting a 

pivotal role for PLCβ (Figure 4.2C, Supplemental Figure 4.3C). Chelation of Ca2+ using BAPTA-

AM in cardiac fibroblasts also abrogated the Ang II-induced Gβγ-RNAPII interaction (Figure 

4.2D, Supplemental Figure 4.3D), as did treatment with the PKC inhibitor Gö6983 and the 

CaMKII inhibitor KN-93 (Figure 4.2E, F, Supplemental Figure 4.3E, F). Conversely, the MEK1 

inhibitor U0126 led to an increased basal Gβγ-RNAPII interaction but abrogated the Ang II-

induced interaction (Figure 4.2G, Supplemental Figure 4.3G). Lastly, the calcineurin inhibitor 

cyclosporin A lead to an increased basal interaction did not prevent further Ang II-dependent 

increase in interaction (Figure 4.2H, Supplemental Figure 4.3H).  
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Figure 4.2. Mechanistic analysis of Gβγ interactions with Rpb1 in rat neonatal cardiac 

fibroblasts. 

(A-H) Assessment of the effect of inhibition of signalling molecules and effectors implicated in 

AT1R signalling on the induction of the Gβγ-RNAPII interaction in cardiac fibroblasts. 

Concentrations of inhibitors and lengths of pre-treatment are indicated in each panel. In all 

experiments, Ang II treatment was applied at a concentration of 1 μM for 75 min in order to induce 

the interaction. Data shown is representative of (A) 3, (B) 6, (C) 3, (D) 4, (E) 5, (F) 5, (G) 4 or (H) 

3 co-immunoprecipitation and western blot experiments. Corresponding quantification analyses of 

inhibitor co-IP experiments are depicted in Supplemental Figure 4.3.  
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Extending these studies to HEK 293F cells, we observed a similar reliance on Gαq signalling 

for the agonist-induced Gβγ-RNAPII interaction. The carbachol-induced Gβγ-RNAPII interaction 

was prevented by pre-treatment with the Gαq inhibitor FR900359 (Figure 4.3A and Supplemental 

Figure 4.4A) and also by CRISPR/Cas9-mediated knockout of Gαq/11/12/13 (Figure 4.3B and 

Supplemental Figure 4.4B). However, except for this common event, the signalling pathways in 

cardiac fibroblasts and HEK 293F cells diverged substantially. In HEK 293F cells, U71322 also 

blocked the carbachol-induced Gβγ-RNAPII interaction but there was a pronounced increase in 

the basal interaction (Figure 4.3C, Supplemental Figure 4.4C). Further differences were observed 

following chelation of calcium with BAPTA-AM which increased basal levels of the Gβγ-RNAPII 

interaction but did not block further carbachol-induced stimulation of the interaction (Figure 4.3D, 

Supplemental Figure 4.4D), suggesting a modulatory role for calcium in HEK 293F cells rather 

than the direct role seen in cardiac fibroblasts. HEK 293F cells employed different regulatory 

mechanisms involving protein kinases activated downstream of Gαq/11-coupled GPCRs 

compared to cardiac fibroblasts. For example, the PKC inhibitor Gö6983 and the CaMKII inhibitor 

KN-93 both increased basal levels of interaction but did not block carbachol-induced interactions 

between Gβγ and Rpb1 (Figure 4.3E, F, Supplemental Figure 4.4E, F). Indeed, inhibition of 

calcineurin with cyclosporin A blocked the carbachol-mediated increase in interaction between 

Gβγ and Rpb1, suggesting a role for this phosphatase in mediating the interaction in response to 

M3-mAChR activation (Figure 4.3G and Supplemental Figure 4.4G). While the requirement for 

activation of Gαq is common for the Gβγ-RNAPII interaction in both cell types, the regulation by 

downstream signalling pathways diverges. 
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Figure 4.3. Mechanistic analysis of carbachol-induced Gβγ interaction occurs in HEK 293 

cells. 

(A-G) HEK 293 cells were starved for 10-12 hours in DMEM without FBS and were then pre-

treated with the indicated inhibitors for the indicated times. Cells were subsequently treated with 

1 mM carbachol for 45 min, and the amount of Rpb1 co-immunoprecipitated with Gβ1-4 was 

assessed by western blot. Data shown is representative of (A) 3, (B) 4, (C) 5, (D) 3, (E) 3, (F) 6 or 

(G) 4 independent co-immunoprecipitation and western blot experiments. The associated 

quantifications of the co-IPs are represented in Supplemental Figure 4.4. 
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4.4.3. Roles of individual Gβ subunits in regulating the angiotensin II-activated fibrotic 

response in rat neonatal cardiac fibroblasts 

The Gβ family is comprised of five members which, with the exception of Gβ5, exhibit high 

levels of sequence and structural similarity (15). Despite these similarities, Gβ isoforms differ 

considerably with respect to their associated receptors and signalling pathways (23, 30, 31). As 

our above-reported characterization used a pan-Gβ1-4 antibody, we next sought to examine the 

specificity of Gβ isoforms interacting with Rpb1 in cardiac fibroblasts. We initially focused on 

Gβ1 and Gβ2 as they exhibit the highest expression in cardiac fibroblasts determined by RNA-seq 

(32) and RT-qPCR (Supplemental Figure 4.5A). Immunoprecipitation with a Gβ1 specific antibody 

revealed an increase in the amount of Rpb1 co-immunoprecipitated in response to Ang II 

treatment, whereas immunoprecipitation of Gβ2 indicated a basal interaction with Rpb1 that was 

lost in response to Ang II treatment (Supplemental Figure 4.5B). We also assessed Gβ isoform 

specificity in HEK 293F cells through heterologous expression of FLAG-tagged versions of each 

Gβ subunit. In response to M3-mAChR activation, FLAG-Gβ1 was the only isoform that showed 

an increased interaction with Rpb1 (Supplemental Figure 4.5C, D). Hence, an increased interaction 

between Gβ1 and Rpb1 was seen in both cell types, suggesting that our earlier observations using 

the pan-Gβ1-4 antibody likely reflected increased interactions with Gβ1. 

As we observed isoform-specific roles in RNAPII interactions, we next assessed how 

knockdown of either Gβ isoform affected the interaction. We first validated knockdown conditions 

for each Gβ subunit by siRNA at the mRNA and protein levels (Supplemental Figure 4.6A, B). 

We observed a reduction in the Ang II-induced Gβγ-RNAPII interaction upon knockdown of Gβ1, 

supporting Gβ1 as the isoform involved in the increased interaction with Rpb1. Surprisingly, 

knockdown of Gβ2 also prevented the Ang II-mediated increase in the Gβγ-RNAPII interaction 

(Figure 4.4A, B). The loss of Gβγ-RNAPII interaction after Gβ2 knockdown, despite it not being 

involved in the Ang II-dependent increase, suggested that AT1R signalling could be altered by 

loss of Gβ2 subunits.  
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Figure 4.4. Gβ subunit-specific effects on Ang II signalling and induction of Rpb1 interaction. 

(A) Assessment of the effect of Gβ subunit knockdown by siRNA on the Gβγ-RNAPII interaction 

upon AT1R stimulation. Cardiac fibroblasts were transfected with siRNA control or siRNA to 

knockdown Gβ1 or Gβ2 and were then serum-deprived overnight before treatment with Ang II for 

75 min. Cells were assessed for Gβγ-RNAPII interaction by co-immunoprecipitation and western 

blots. Data represents mean ± S.E.M. of 6-7 independent experiments. (B) Densitometry-based 

quantification of knockdown experiments in (C) were normalized as fold change over the 

respective siRNA-DMEM condition; data represents mean ± S.E.M. of six independent 

experiments. Two-way analysis of variance (ANOVA) followed by post-hoc Dunnett’s test was 

performed. (C) Traces of calcium release upon AT1R stimulation with Ang II at the 10 s time 

point, with or without knockdown of either Gβ1 or Gβ2. Data represents mean ± S.E.M. of 

fluorescence ratios of 340/516 emission readings to 360/516 emissions readings normalized to 

basal ratios of three independent experiments. (D) Area under the curve analysis of the data 

obtained in panel A. One-way analysis of variance (ANOVA) followed by post-hoc Dunnett’s test 

was performed. * indicates p<0.05. 
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We thus determined whether specific Gβ isoforms were required to initiate signalling 

cascades proximal to AT1R activation. Following receptor activation, Gβγ subunits regulate 

intracellular Ca2+ mobilization through activation of PLCβ (33). As we have previously 

demonstrated Gβ isoform specificity for PLCβ signalling in HEK 293F cells (23), we assessed the 

relative roles of Gβ1 and Gβ2 in AT1R-dependent Ca2+ mobilization. To assess AT1R-dependent 

intracellular Ca2+ mobilization, we used the cell-permeable Ca2+ dye Fura 2-AM. Following AT1R 

activation, we observed a rapid increase in intracellular Ca2+ mobilization (Figure 4.4A, black, 

empty triangles) and the quantified area under the curve (Figure 4.4B, black bar). Knockdown of 

Gβ1 did not alter Ca2+ mobilization following stimulation with Ang II (8.1 ± 7.0% decrease, red 

bar). However, knockdown of Gβ2 resulted in a significant 31.6 ± 9% decrease in Ca2+ release 

(Figure 4.4A, B, green bar), suggesting a role for Gβ2-containing Gβγ dimers in mediating 

receptor-proximal signalling downstream of AT1R activation. This suggests Gβ2 knockdown 

prevented the Ang II-dependent increase in Gβγ-RNAPII interaction through disruption to AT1R 

Ca2+ signalling, aligning with the observed effect of Ca2+ chelation with BAPTA-AM. These 

results highlight the complex interplay between cell surface receptors and multiple Gβγ subunits, 

in modulating both basal and ligand stimulated RNAPII/Gβγ interactions.   

 

4.4.4. Gβγ interacts with transcribing RNAPII 

As we demonstrated that Gβγ is recruited to RNAPII following AT1R activation, which also 

activates a transcriptional program in fibroblasts, we assessed the relationship between the 

transcriptional response and Gβγ recruitment (32, 34). To assess this potential relationship, we 

disrupted the transcription cycle at two different regulatory points through inhibition of Cdk7, a 

component of the general transcription factor TFIIH, and Cdk9, the protein kinase subunit of P-

TEFb (35). Following RNAPII recruitment, Cdk7 activity stimulates promoter clearance of 

RNAPII to begin transcription. Soon after RNAPII pauses at a promoter-proximal region and 

requires the activity of Cdk9 in order to be released into productive elongation (36). We assessed 

involvement of both Cdk7 and Cdk9 on the Ang II-induced Gβγ-RNAPII interaction using the 

selective inhibitors THZ1 and iCdk9, respectively (37, 38). THZ1 abrogated the Ang II-stimulated 

Gβγ-RNAPII interaction (Figure 4.5A, Supplemental Figure 4.7A) while iCdk9 resulted in a loss 

of both the basal and Ang II-stimulated Gβγ-RNAPII interaction (Figure 4.5B, Supplemental 

Figure 4.7B). This suggests that the Gβγ-RNAPII interaction requires the transcriptional response 
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to Ang II in cardiac fibroblasts. As with cardiac fibroblasts, in HEK 293F cells disruption of the 

transcriptional cycle through inhibition of Cdk7 and Cdk9 with DRB also blocked the increased 

interaction between RNAPII and Gβγ (data not shown), showing that the Gβγ/RNAPII interaction 

is dependent on an active transcriptional response in both cell types. 

 

Figure 4.5. Requirement of RNAPII transcription for Gβγ-RNAPII interaction in rat 

neonatal cardiac fibroblasts. 

Effect of Cdk7 inhibition with THZ1 (A) or Cdk9 inhibition with iCdk9 (B) on Ang II-induced 

Gβγ-RNAPII interaction. Length of inhibitor pre-treatment is indicated in each respective panel, 

and the extent of Gβγ-RNAPII interaction was assessed by co-immunoprecipitation coupled to 

western blot analysis. Data is representative of three independent experiments. Corresponding 

quantification analyses of inhibitor co-immunoprecipitation experiments are depicted in 

Supplemental Figure 7. Cumulative log2(Fold Change) of all genes detected by qPCR-based 

fibrosis array following treatment with 1 μM Ang II lasting either 75 min (C) or 24 h (D and E). 

Cardiac fibroblasts were transfected with 50 nM of the indicated siRNA, and were serum-deprived 

for 12 h before Ang II treatment for the indicated times. Cardiac fibroblasts were pre-treated for 
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30 min with 10 μM gallein prior to Ang II. Ct values were normalized to the housekeeping genes 

Hprt1 and Ldha and the log2(fold change) over control was determined. For each gene, the average 

log2(fold change) across three independent experiments was plotted. Two-way analysis of variance 

(ANOVA) followed by post-hoc Dunnett’s test was performed. *** indicates p<0.001, **** 

indicates p<0.0001. 

  

4.4.5. The role of Gβγ subunits in fibrotic gene expression 

In order to understand the role of Gβγ in Ang II-regulated gene expression, we examined 

changes in the levels of 84 genes involved in the fibrotic response using the Qiagen RT2 ProfilerTM 

PCR array platform. Gene expression changes were assessed following 75 min or 24 h Ang II 

treatment alongside Gβ1 or Gβ2 knockdown. These two time points were selected to investigate 

the effect of disrupting the Gβγ-RNAPII interaction or, in the longer term, upstream signalling, 

respectively. We assessed gene expression changes across all 67 genes remaining after excluding 

genes below our chosen threshold of detection (i.e. Ct > 35). After 75 min of Ang II treatment, we 

observed a similar upregulation of fibrotic genes in both control and Gβ1 knockdown conditions 

(Figure 4.5C, Table 1). However, Gβ1 knockdown increased both basal expression and the total 

number of genes altered by AT1R stimulation (Figure 4.5C, Table 1). Following 24 h Ang II 

treatment, this effect became more pronounced. Gβ1 knockdown led to increases in basal gene 

expression, expression regulated by Ang II treatment and the overall number of genes upregulated 

(Figure 4.5D, Table 1). The increased expression following Gβ1 knockdown suggests the Gβγ-

RNAPII interaction negatively modulates the Ang II transcriptional response.  

 

Table 4.1. Summary of fibrosis RT-qPCR array results.  

This table summarizes gene expression changes measured using the Qiagen RT2 ProfilerTM PCR 

Array at 75 min and 24 h Ang II stimulation. Genes were considered to have altered expression 

with fold changes ≥ 1.5 or ≤ 0.5 compared to DMEM/siRNA control conditions at the respective 

time point. In parenthesis are the number of genes with a significant (p<0.05) change in expression 

compared to DMEM/siRNA control at the respective time point. Two-way ANOVA followed by 

post-hoc t-test comparisons with Bonferroni correction was performed for each gene individually. 

Data is representative of three independent biological replicates. 
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Time siRNA Treatment Upregulated Downregulated 

75 min 

Control 
DMEM 0 0 

1 μM Ang II 7 (5) 0 

Gnb1 
DMEM 4 (1) 1 

1 μM Ang II 10 (6) 2 

24 h 

Control 
DMEM 0 0 

1 μM Ang II 37 (7) 0 

Gnb1 
DMEM 26 (2) 1 

1 μM Ang II 53 (13) 0 

Gnb2 
DMEM 7 1 

1 μM Ang II 44 (11) 0 

 

Whereas Gβ1 knockdown altered the transcriptional response to Ang II treatment, disruption 

of AT1R signalling by Gβ2 knockdown did not significantly alter basal fibrotic gene expression or 

the overall response to 24 h Ang II treatment (Figure 4.5D, Table 1). The lack of effect of Gβ2 

knockdown suggests that Gβγ signalling through Ca2+ is not required for AT1R-mediated 

transcriptional changes. To further address the role of Gβγ signalling, we utilized the small-

molecule pan-Gβγ inhibitor gallein (39). As with Gβ2 knockdown, pre-treatment with gallein did 

not significantly alter the transcriptional response following 24 h Ang II treatment (Figure 4.5E). 

This suggests that Gβγ-dependent signalling downstream of the AT1R is not a key driver of 

transcriptional changes. Instead, Gβγ is required to modulate processes driven by other signalling 

pathways and dampen the fibrotic response until such signals rise above a threshold.  

 

4.4.6. Genome-wide recruitment of Gβ1 and the effect on RNAPII occupancy following Ang 

II treatment  

To assess the possibility of genome-wide Gβ1 recruitment and changes in RNAPII 

occupancy following 75 min Ang II treatment in cardiac fibroblasts, we performed chromatin 

immunoprecipitation followed by next generation sequencing (ChIP-seq) for heterologously 

expressed FLAG-Gβ1 and endogenous Rpb1. We confirmed that, like endogenous Gβ1, the 

interaction of Rbp1 with heterologously expressed FLAG-Gβ1 increased following AT1R 

activation (Supplemental Figure 4.8A, B). We focused on genes with RNAPII peaks identified by 
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the peak calling software macs2 and annotated with HOMER (40, 41). The same Gβ1 knockdown 

conditions that increased the number of genes upregulated in response to Ang II (above) also 

increased the number of genes occupied by RNAPII following Ang II treatment (Figure 4.6A). To 

identify groups of genes with similar FLAG-Gβ1 and RNAPII occupancy patterns, we performed 

K-means clustering with genes that RNAPII peaks were identified in any treatment condition. Two 

K-means clusters were identified (98 genes in cluster 1 and 806 in cluster 2) with distinct 

occupancy patterns (Figure 4.6B, C). In cluster 1, FLAG-Gβ1 occupancy increased within the gene 

body in response to Ang II. A similar but weaker tendency was also observed in cluster 2 (Figure 

4.6B). The increased FLAG-Gβ1 occupancy in cluster 1 corresponded to Gβ1-dependent changes 

to the Ang II-induced RNAPII occupancy alterations. First, Ang II treatment led to increased 

RNAPII occupancy throughout the gene body under siRNA control conditions (Figure 4.6C). In 

the absence of Ang II, Gβ1 knockdown increased RNAPII occupancy near transcription start sites 

(TSSs) which corresponds with increased gene expression under these conditions (Figure 4.6C). 

Lastly, there was greater RNAPII occupancy when Ang II treatment was combined with Gβ1 

knockdown than in the absence of knockdown (Figure 4.6C). Similar RNAPII occupancy patterns 

were observed in cluster 2, suggesting that Gβ1 also plays a regulatory role along these genes and 

our FLAG-Gβ1 ChIP-seq was not sensitive enough to reliably detect Gβ1. We also assessed the 

functional pathways enriched in cluster 1, through gene ontology (GO) term enrichment. The top 

four significant GO terms identified (corresponding to cellular processes such as inflammation, 

fibroblast activation and apoptosis) indicate that Gβ1 is recruited to genes involved in processes 

essential to fibrosis (Figure 4.6D).   
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Figure 4.6. ChIP-seq for FLAG-Gβ1 and Rpb1 following 75 min Ang II treatment in cardiac 

fibroblasts. 

Cardiac fibroblasts were transduced with AAV1-FLAG-Gβ1 or transfected with the indicated 

siRNA followed by Ang II treatment (1 μM for 75 min). (A) Comparison of genes with annotated 

RNAPII peaks following Ang II treatment and siRNA control or Gβ1.  FLAG-Gβ1 (B) or the Rpb1 

subunit of RNAPII (C) were immunoprecipitated from crosslinked and sonicated chromatin, 

followed by DNA purification and next-generation sequencing. Reads were normalized to an 

exogenous S. pombe chromatin spike-in. Genes with a RNAPII peak annotated by HOMER in two 

of the three replicates were used to identify two K-means clusters. (D) Top four significant GO 
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terms enriched in cluster 1. Individual FLAG-Gβ1 or RNAPII tracks for two genes from cluster 1, 

(E) Thbs1 or (F) Ctgf.  

 

The increased number of genes with RNAPII occupancy in the Ang II and Gβ1 knockdown 

condition suggested that Gβ1 occupancy impairs RNAPII recruitment. As such, we would expect 

cluster 1 genes to be more enriched in genes with RNAPII occupancy under Ang II and Gβ1 

knockdown condition than Ang II and siRNA control conditions. Therefore, we performed a 

Fisher’s exact test to compare the proportion of cluster 1 genes in these treatment conditions, which 

demonstrated a significant (p-value < 0.01) enrichment in the Ang II and Gβ1 knockdown condition 

gene list compared to Ang II and siRNA control condition. This again suggests Gβ1 functions to 

suppress RNAPII transcription following AT1R activation.  

In order to assess the relationship between Gβ1 occupancy and transcription, we focused on 

genes from our fibrosis qPCR array that were also found in cluster 1. Eight genes from the fibrosis 

array were identified in cluster 1, which included five of the seven genes upregulated after 75 min 

of Ang II treatment such as thrombospondin 1 (Thbs1) and connective tissue growth factor (Ctgf) 

(Figure 4.6E, F). We confirmed the Ang II-dependent increase in Gβ1 occupancy along Ctgf by 

ChIP-qPCR (Supplemental Figure 4.8C). We also assessed the effect of Gβ1 knockdown on AT1R-

dependent changes of RNAPII occupancy along Ctgf by ChIP-qPCR. Similar to our ChIP-seq 

analysis, we observed a greater increase in RNAPII along the gene in response to Ang II under 

siRNA GNB1 knockdown compared to siRNA control, where we observed a slight decrease 

(Supplemental Figure 4.8D). We also validated the change in expression of Ctgf by RT-qPCR 

using primers designed in-house (Supplemental Table 4.1). Under control conditions Ang II had a 

minor effect on Ctgf expression, however in the absence of Gβ1 Ang II treatment resulted in a 

significant upregulation of Ctgf mRNA. (Supplemental Figure 4.8E). Taken together, our results 

demonstrate Gβ1 recruitment negatively regulates expression of genes involved in the fibrotic 

response to Ang II by inhibiting early stages of the RNAPII transcription cycle.  

 

4.5. Discussion 

The functional specificity of Gβ and Gγ subunits has been mostly investigated in the context 

of signalling proximal to GPCR activation (i.e., the regulation of effector activity downstream of 

receptor stimulation) (15). In contrast, our findings provide new insights regarding non-canonical 
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roles of specific Gβγ dimers in more distal events in the nucleus, particularly in the regulation of 

gene expression. Here, we demonstrate for the first time an interaction between Gβγ and RNAPII 

and investigate the regulatory signalling mechanisms in transformed cell lines (HEK 293 cells) 

and in primary cells (neonatal rat cardiac fibroblasts). The interaction of Gβγ and RNAPII 

represents a significant addition to the expanding list of Gβγ interactors, and our findings suggest 

that regulatory mechanisms impacting the interaction are dependent on cellular context. We also 

show that Gβγ signalling is a critical regulator of the fibrotic response in cardiac fibroblasts.  

Our findings suggest that following acute treatment with Ang II, Gβ1 is transiently recruited 

to pro-fibrotic genes to negatively regulate RNAPII recruitment, thereby limiting the fibrotic 

response following transient fluctuations in local Ang II concentrations likely seen in vivo. This 

negative RNAPII regulation may potentially occur through direct interactions with RNAPII, 

preventing its recruitment or other aspects of initiation, or else via an indirect mechanism in which 

Gβγ would form part of a larger RNAPII-containing complex altering the local chromatin 

landscape. We cannot currently distinguish between these two possibilities, given that our co-

immunoprecipitation assay was performed using whole-cell lysates. On the other hand, chronic 

stress or damage to the heart leads to a sustained increase of Ang II concentrations in cardiac tissue 

(42, 43). We propose that such sustained AT1R signalling overcomes the transient Gβ1 “brake” to 

elicit a robust fibrotic response. Alternatively, pro-fibrotic factors that are upregulated and secreted 

following AT1R activation may elicit autocrine signalling pathways that overcome the Gβ1 

transcriptional repression (11, 44). Our gene expression data at 75 min, and more especially at 24 

h, begins to identify the increased number and greater gene expression in the absence of the 

proposed negative regulatory mechanism when Gβ1 is knocked down. Further analysis of the 

kinetics of the interaction and how this changes the dynamics of chromatin occupation or gene 

expression are required as well. Future experiments assessing nascent RNA production are 

required to accurately determine gene expression changes at early time points.  

We demonstrated that Gβ2, and not Gβ1, was important for proximal signalling downstream 

of AT1R activation similar to the requirement of specific Gβ isoforms for activation of PLCβ in 

HEK 293 cells (23). Our data suggest that Gβ2 plays a minimal role in regulating AT1R-dependent 

gene expression per se. Rather, our findings using the broad-spectrum Gβγ inhibitor gallein 

suggest that receptor-proximal Gβγ signalling in general is not required for the transcriptional 

response and instead it is dependent on Gαq signalling and more distal Gβ1-dependent events. 
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Knockdown of Gβ2 also compromised Ang II-mediated interactions between Gβγ and RNAPII 

even though Gβ2 had a limited role in the fibrotic transcriptional response. This suggests Gβ2 

knockdown does not prevent the response but rather alters the kinetics of Gβγ-RNAPII 

interactions, which then translates into different fibrotic responses over time. Further, the roles of 

specific Gγ subunits in mediating proximal signal transduction must also be considered as for other 

Gβγ effectors (23), and should be the subject of future studies. Taken together, our findings suggest 

that in fibrosis and potentially in other diseases, the indiscriminate targeting of Gβγ signalling (e.g. 

with compounds such as gallein) will result in outcomes that differ considerably from those 

obtained by targeting particular Gβγ combinations (45-47).  

Analysis of the signalling networks regulating the Gβγ/RNAPII interaction yielded four 

main conclusions: (1) different GPCR signalling systems in distinct cell types lead to different 

kinetics of the Gβγ-RNAPII interaction, (2) different signalling pathways downstream of GPCR 

activation act to both induce or modulate the interaction, (3) Gαq-coupled GPCRs regulate the 

interaction in both cell types examined, and (4) signalling ultimately converged on activation of 

transcription. Indeed, our results suggest that the cell context plays a critical role in determining 

the mechanism by which the Gβγ-RNAPII interaction is regulated. First, in cardiac fibroblasts, the 

Gβγ/RNAPII interaction depended on a Gq-PLCβ-Ca2+-CaMKII/PKC/MEK-dependent pathway 

downstream of AT1R activation, whereas calcineurin acted as a basal negative regulator 

(summarized in Figure 4.7). On the other hand, in HEK 293 cells, we observed that the interaction 

was reliant on a Gq-PLCβ-Ca2+-calcineurin pathway downstream of M3-mAChR activation, 

whereby PKC and CaMKII both negatively regulate this interaction under basal conditions 

(summarized in Figure 4.7). The involvement of Ca2+, PKC and ERK1/2 in the induction of the 

Gβγ/RNAPII interaction in fibroblasts is supported by previous reports that demonstrate their 

involvement in Ang II-induced fibrosis (48, 49).  
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Figure 4.7. Schema summarizing signalling events regulating the agonist induced Gβγ 

interaction with RNAPII. 

Signalling cascade downstream of AT1R in cardiac fibroblasts or M3 muscarinic receptors in HEK 

293F cells regulating the interaction. Signalling pathways were determined by assessing Gβγ-

RNAPII interactions by co-immunoprecipitation and western blot as shown in Figure 4.2 and 

Supplemental Figure 4.3 for cardiac fibroblasts and Figure 4.3 and Supplemental Figure 4.4 for 

HEK 293F cells. 

 

The different signalling pathways promoting the Gβγ-RNAPII interaction appear to 

converge at the point of Cdk7 and Cdk9 activation. In particular, we found that the Cdk7 and Cdk9 

inhibitors (DRB, THZ1 and iCdk9, respectively) inhibited both carbachol-induced Gβγ-RNAPII 

interaction in HEK 293 cells and the analogous Ang II-induced interaction in cardiac fibroblasts. 

This suggests the differential regulatory signalling pathways identified are due to cell type- and 

receptor-specific activation pathways of both Cdk7 and Cdk9. The recruitment of Gβγ serves as a 

common negative regulatory mechanism regardless of the pathway leading to transcriptional 

activation. Furthermore, a strong connection has been established between the control of 

transcriptional pausing and pathological cardiac remodelling, although primarily in the 

cardiomyocyte (50-55). Our results indicate that regulation of the early stages of the RNAPII 

transcription cycle is also an important checkpoint in the fibrotic response mediated by cardiac 

fibroblasts.  
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Taken together, the Gβγ-RNAPII interaction identifies a new mechanism by which Gβγ 

modulates gene expression. Our study highlights the complex interplay of different Gβγ subunit 

combinations at the cell surface and in the nucleus initiated upon stimulation of Gαq-coupled 

receptors. Since Gβ1γ dimers play an important role in regulating the expression of fibrotic genes 

in cardiac fibroblasts, the development of selective Gβ1γ inhibitors hold some promise for 

preventing the pathological consequences of myocardial damage. 
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4.10. Supplemental Figures and Tables 

 

Supplemental Figure 4.1. Induction of the Gβγ-RNAPII interaction in HEK 293 cells. 

(A) Time-course analysis of the induction of the Gβγ-RNAPII interaction. The amount of Rpb1 

co-immunoprecipitated with Gβ1-4 from HEK 293 cells treated for the indicated times with 1 mM 

carbachol was assessed by western blot for each time point. Data is representative of three 

independent experiments. (B) Quantification of Gβγ-RNAPII time-course co-

immunoprecipitation. Densitometry-based analysis of bands corresponding to Rpb1 at each 

timepoint was normalized to the band intensity of the amount of Gβ1-4 immunoprecipitated to yield 

ratios of Rpb1 pulled down with Gβ1-4. Two-way analysis of variance (ANOVA) followed by post-

hoc Dunnett’s test was performed. (C) Assessing the Gβγ and Rpb1 interaction by 

immunoprecipitation of Rpb1 with two different antibodies. Western blots are representative of at 
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least two independent experiments. Immunoprecipitation experiments demonstrating that 

carbachol treatment does not induce interaction of Rpb1 with (D) Gαq/11 nor (E) ERK1/2 in HEK 

293 cells, and also does not alter the amount of Gαq/11 or ERK1/2 interacting with Gβγ under such 

conditions. (F) Assessment of interaction between Gβ1-4 and Rpa194, the largest subunit of RNA 

polymerase I. Data represents analysis of a time course experiment western blot performed as in 

Supplemental Figure 4.1A. Data represents mean ± S.E.M; * indicates p<0.05, ** indicates 

p<0.01. 

 

Supplemental Figure 4.2. Requirement for Gβγ nuclear transport for RNAPII interaction in 

HEK 293 cells. 

(A) Representative experiment assessing the requirement of importin-β inhibition on the Gβγ-

RNAPII interaction by sub-cellular fractionation and co-immunoprecipitation. (B) Densitometry-

based quantification of the carbachol induced interaction and the effect of nuclear import inhibition 

on interaction induction. Data represents mean ± S.E.M. of three independent experiments for 

black bars, and two independent experiments for white bars (nuclear import inhibition conditions). 

Two-way analysis of variance (ANOVA) followed by post-hoc Dunnett’s test was performed. * 

indicates p<0.05. 
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Supplemental Figure 4.3. Quantitative analysis of the effects of inhibition of signalling 

molecules downstream of AT1R activation. 

(A-H) The relative quantities of Rpb1 co-immunoprecipitated with Gβ1-4 under different 

conditions depicted in Figure 4.2 were quantified using ImageJ and normalized to DMSO/DMEM 

control conditions. Data shown is representative of (A) 3, (B) 6, (C) 3, (D) 4, (E) 5, (F) 5, (G) 4 or 

(H) 3 independent co-immunoprecipitation and western blot experiments. Data is represented as 

fold change over respective controls and error bars represent S.E.M. Two-way analysis of variance 

(ANOVA) followed by post-hoc Dunnett’s test was performed. * indicates p<0.05, ** indicates 

p<0.01.  

Supplemental Figure 3

D
M

SO
 / 

D
M

E
M

D
M

S
O
 / 

A
ngII

U
71

32
2 

/ D
M

EM

U
71

32
2 

/ A
ngII

0.0

0.5

1.0

1.5

2.0

2.5

R
a

ti
o

 o
f 
R

N
A

 P
o

l I
I 

im
m

u
n

o
p

re
c
e
ip

it
a
te

d
 w

it
h

 G
b

1
-4

(f
o

ld
 c

h
a

n
g

e
 o

v
e

r 
c
o

n
tr
o

l)

R
a

ti
o

 o
f 
R

N
A

 P
o

l 
II 

im
m

u
n

o
p

re
c
e
ip

it
a
te

d
 w

it
h

 G
b

1
-4

(f
o

ld
 c

h
a

n
g

e
 o

v
e

r 
c
o

n
tr
o

l)

D
M

SO
 / 

D
M

E
M

D
M

S
O

 / 
A
ngII

PTX
 / 

D
M

EM

P
TX

 / 
A
ngII

0.0

0.5

1.0

1.5

2.0

2.5

3.0 **

D
M

S
O
 / 

D
M

E
M

D
M

S
O

 / 
A
ngII

G
ö6

98
3 

/ D
M

E
M

G
ö6

98
3 

/ A
ngII

0.0

0.5

1.0

1.5

2.0

2.5

R
a

ti
o

 o
f 
R

N
A

 P
o

l 
II 

im
m

u
n

o
p

re
c
e
ip

it
a
te

d
 w

it
h

 G
b

1
-4

(f
o

ld
 c

h
a

n
g

e
 o

v
e

r 
c
o

n
tr
o

l)

D
M

SO
 / 

D
M

EM

D
M

S
O

 / 
A
ngII

B
A
P
TA

-A
M

 / 
D
M

EM

B
A
P
TA

-A
M

 / 
A
ngII

0.0

0.5

1.0

1.5

2.0

R
a

ti
o

 o
f 
R

N
A

 P
o

l I
I 

(f
o

ld
 c

h
a

n
g

e
 o

v
e

r 
c
o

n
tr
o

l)

D
M

SO
 / 

D
M

EM

D
M

S
O

 / 
A
ngII

K
N
-9

3 
/ D

M
E
M

K
N
-9

3 
/ A

ngII
0.0

0.5

1.0

1.5

2.0

R
a

ti
o

 o
f 
R

N
A

 P
o

l I
I 

im
m

u
n

o
p

re
c
e
ip

it
a
te

d
 w

it
h

 G
b

1
-4

(f
o

ld
 c

h
a

n
g

e
 o

v
e

r 
c
o

n
tr
o

l)

D
M

S
O
 / 

D
M

EM

D
M

S
O
 / 

A
ngII

U
01

26
 / 

D
M

EM

U
01

26
 / 

A
ngII

0.0

0.5

1.0

1.5

2.0

2.5

R
a

ti
o

 o
f 
R

N
A

 P
o

l I
I 

im
m

u
n

o
p

re
c
e
ip

it
a
te

d
 w

it
h

 G
b

1
-4

(f
o

ld
 c

h
a

n
g

e
 o

v
e

r 
c
o

n
tr

o
l)

A B C

D E F

G H

D
M

S
O

 / 
D
M

E
M

D
M

S
O
 / 

A
ng II

FR
09

93
59

 / 
 D

M
E
M

FR
09

93
59

 / 
A
ng II

0

1

2

3

4

5

R
a
ti

o
 o

f 
R

N
A

 P
o

l 
II
 

im
m

u
n

o
p

re
c
e
ip

it
a
te

d
 w

it
h

 G
b

1
-4

(n
o
rm

a
liz

e
d
 t
o
 c

o
n
tr

o
l) *

D
M

S
O
 / 

D
M

E
M

D
M

S
O

 / 
A
ngII

C
yc

lo
sp

ori
n A

 / 
D
M

E
M

C
yc

lo
sp

ori
n A

 / 
A
ngII

0

1

2

3

4

R
a
ti

o
 o

f 
R

N
A

 P
o

l 
II
 

im
m

u
n

o
p

re
c
e
ip

it
a
te

d
 w

it
h

 G
b

1
-4

(f
o
ld

 c
h
a
n
g
e
 o

v
e
r 

c
o
n
tr

o
l) *

im
m

u
n

o
p

re
c
e
ip

it
a
te

d
 w

it
h

 G
b

1
-4



191 

 

 

Supplemental Figure 4.4. Quantitative analysis of the effects of inhibition of signalling 

molecules downstream of M3-mAChR activation in HEK 293 cells.  

Supplemental Figure 4
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(A-G) The relative quantities of Rpb1 co-immunoprecipitated with Gβ1-4 under different 

conditions depicted in Figure 4.3 were quantified using ImageJ and were normalized to amounts 

pulled down in DMSO/DMEM control conditions. Data shown is representative of (A) 3, (B) 4, 

(C) 5, (D) 3, (E) 3, (F) 6 or (G) 4 independent co-immunoprecipitation and western blot 

experiments. Data is represented as fold change over respective controls and error bars represent 

S.E.M. Two-way analysis of variance (ANOVA) followed by post-hoc Dunnett’s test was 

performed. * indicates p<0.05.  

 

Supplemental Figure 4.5. Assessment of specific Gβ subunits interacting with RNAPII upon 

agonist stimulation in rat cardiac fibroblasts or in HEK 293 cells. 

(A) Transcript levels for GNB1, GNB2, GNB3, and GNB4 were assessed in cardiac fibroblasts by 

RT-qPCR. The Ct values for each gene transcript were normalized to the house keeping U6 snRNA 

gene transcript for comparison. Data represents mean ± S.E.M for 3-4 independent experiments. 

(B) Gβ1 and Gβ2 were immunoprecipitated with isoform specific antibodies from cardiac 

fibroblasts lysates treated with 1 μM Ang II for 75 min. The amount of Rpb1 pulled down with 

either Gβ isoform was assessed by western blot. (C) Assessment of specific FLAG-tagged Gβ 

isoforms interaction with Rpb1 under conditions of M3-mAChR stimulation with carbachol in 
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HEK 293 cells. The amount of Rpb1 interacting with each Gβ isoform was assessed by western 

blot following FLAG immunoprecipitation. (D) Densitometry-based quantification of the ratio of 

Rpb1 co-immunoprecipitated with the indicated FLAG-tagged Gβ subunit. The ratio of Rpb1 to 

FLAG-Gβx immunoprecipitated was determined and normalized to fold change over DMEM 

treatment. Data represents mean ± S.E.M for four independent replicates. One-sample t-tests were 

performed with a Bonferroni correction. * indicates p<0.01. 

 

Supplemental Figure 4.6. Validation of RNAi knockdown of Gβ1 and Gβ2.  

Validation of Gβ1 and Gβ2 mRNA (A) and protein (B) knockdown with siRNA in rat neonatal 

cardiac fibroblasts. Rat neonatal cardiac fibroblasts were transfected with 50 nM siRNA control, 

Gβ1 or Gβ2 for 72 hours, serum-deprived for 12 h and RNA or protein collected as described in 

Methods. Data in (A) represents mean ± S.E.M for four independent experiments; * Ct values were 

normalized to the housekeeping U6 snRNA transcript and fold change over siRNA control 

determined using the 2-ΔΔCt. Paired Student’s t-tests were performed. ** indicates p<0.001 and 

**** indicates p<0.0001. 
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Supplemental Figure 4.7. Quantitative analysis of the effect of transcriptional regulator 

inhibition on the Gβγ-RNAPII interaction in cardiac fibroblasts. 

(A-B) The relative quantities of Rpb1 co-immunoprecipitated with Gβ1-4 under conditions depicted 

in Figure 5A (THZ1) and B (iCdk9) were quantified and normalized to DMSO/DMEM control 

conditions. Data shown is representative of between three to six independent co-

immunoprecipitation and western blot experiments. Data represents mean ± S.E.M. Two-way 

analysis of variance (ANOVA) followed by post-hoc Dunnett’s test was performed. * indicates 

p<0.05. 

 

Supplemental Figure 4.8. Validation of heterologously expressed FLAG-tagged Gβ1 in rat 

neonatal cardiac fibroblasts. 
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(A) Assessment of Rpb1 co-immunoprecipitated with FLAG-Gβ1 following 75 min treatment of 

1 μM Ang II in rat neonatal cardiac fibroblasts. Cardiac fibroblasts were transduced with AAV1-

FLAG-Gβ1 prior to treatment with 1 μM Ang II. (B) Densitometry-based quantification of the ratio 

of Rpb1 co-immunoprecipitated with FLAG-Gβ1. The ratio of Rpb1 to FLAG-Gβ1 was calculated 

and normalized as fold change over DMEM condition. Data is represented as mean ± S.E.M for 

four independent experiments. One-sample t-tests were performed with a Bonferroni correction. 

Assessing changes in FLAG-Gβ1 (C) or (D) Rpb1 occupancy along Ctgf following 75 min 

treatment with 1 μM Ang II. FLAG-Gβ1 or Rpb1 was immunoprecipitated from crosslinked and 

sonicated chromatin, DNA purified and quantified by qPCR. Data is represented as mean ± S.E.M 

for 4-6 independent experiments, * indicates p<0.05. For (C), paired Student t-tests with a 

Bonferroni post-hoc correction were performed. For (D), two-way analysis of variance (ANOVA) 

followed by post-hoc Dunnett’s test were performed for each genonic loci independently.  (E) 

Validation of Ctgf gene expression with primers distinct from those used in the Qiagen RT2 

ProfilerTM PCR array. Data represents mean ± S.E.M for four independent experiments. Two-way 

analysis of variance (ANOVA) followed by post-hoc Dunnett’s test was performed. * indicates 

p<0.05.  

 

Supplemental Table 4.1. List of primers used to assess gene expression by RT-qPCR and 

ChIP-qPCR in cardiac fibroblasts. 

Forward and reverse primers were used at a concentration of 300 nM for each qPCR reaction. 

Primer sequences were designed using NCBI’s Primer-BLAST tool and validated by analysis of 

standard curve qPCR assays performed in-house. 

Target Forward (5’ -> 3’) Reverse (5’ -> 3’) 

U6 snRNA TGGAACGATACAGAGAAGATTAG GAATTTGCGTGTCATCCTTG 

Gβ1 CTCATGACCTACTCCCATGA TCAGCTTTGAGTGCATCC 

Gβ2 CAGCTACACCACTAACAAGG CTCTCGGGTCTTGAGACTAT 

Gβ3 CTCCTTAGGGTCAGTCTTCTAT AAAGGCACACTCCCATAATC 

Gβ4 GGTGGTCAAAGAAACAATCAAG GTCTGTCGGGATAGGGATAA 

Ctgf TGCATCCTCCTACCGCGTCC GAGGCTGATGGGACCTGCGA 

Ctgf TSS CAGACCCACTCCAGCTCCGA GTGGCTCCTGGGGTTGTCCA 
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Ctgf Exon TCAAGCTGCCCGGGAAATGC GCGGTCCTTGGGCTCATCAC 

Ctgf 3' End AATGGCTTGCTCAGGGTAACTGG AACTGCCTCCCAAACCAGTCATAG 

cdc2+ ATCATTCTCGCATCTCTATTA ATTCTCCATTGCAAACCACTA 

act1+ GGTTGCTCAATGTTATCCGTTTC TGATAAAGCCACACACAGCGTTA 
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CHAPTER 5: General Discussion 
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5.1. Contributions to scientific understanding 

This thesis describes how GPCR signalling effectors regulate RNAPII transcription to elicit 

pathological gene expression programs. In order to develop therapeutic strategies targeting 

transcriptional regulators, a deeper understanding of how signalling pathways converge on these 

regulators is required. A nuanced view of how different GPCRs or effector isoforms regulate 

transcription will enable personalized therapies with specific inhibitor classes and perhaps spur the 

development of isoform-specific inhibitors. This body of work expands our understanding of 

regulatory links between GPCRs and the transcriptional machinery in cardiomyocytes and cardiac 

fibroblasts.  First, comparison of transcriptome changes in cardiomyocytes following activation of 

two canonical Gαq-coupled GPCRs identified a non-canonical signalling pathway that 

differentially activates the P-TEFb/Brd4 complex. This indicates that a patient’s neurohormonal 

profile may be an important criterion in determining the efficacy of BET inhibitors in 

cardiovascular disease. Second, assessment of the role of Gβ1γ dimers following AT1R activation 

in cardiac fibroblasts elucidated a negative regulatory role for the non-canonical Gβγ-RNAPII 

interaction in transcription. These findings highlight the potential utility of developing Gβ isoform- 

or effector-specific inhibitors to preserve the negative transcriptional regulation by Gβ1γ. 

In Chapter 2 (Martin et al., 2018), we described the subtype and compartment specific non-

canonical signalling pathway downstream of α1-AR activation. We aimed to identify signalling 

differences between the ETR and α1-AR, two receptors whose pro-hypertrophic effects in 

cardiomyocytes are typically associated with Gαq activation. To uncover signalling differences in 

an unbiased manner, we assessed transcriptome changes following 1.5 h or 24 h receptor activation 

in neonatal rat cardiomyocytes. Pathway enrichment identified CREM target genes enriched in the 

differentially expressed genes following 24 h α1-AR activation, and not ETR activation (Figure 

2.1A). This corresponded to an increase in CREM expression at the 1.5 h time point (Figure 2.1B). 

As some CREM isoforms’ expression and activity are regulated by cAMP, we hypothesized that 

the α1-AR activated cAMP signalling in cardiomyocytes. To further characterize the non-canonical 

α1-AR signalling pathway, we used a heterologous expression system with the α1-AR and ETR 

isoforms pertinent to cardiomyocyte hypertrophy alongside genetically encoded FRET- and 

BRET-based biosensors in HEK 293SL cells. In this system, the α1A-AR and α1B-AR increased 

cAMP production in the cytoplasm and nucleus, whereas the ETAR did not (Figure 2.5B). We also 

identified subtype and compartment specific activation of the cAMP-sensitive kinase PKA. The 
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α1B-AR increased PKA activity in the cytoplasm and nucleus, whereas the α1A-AR only activated 

PKA in the nucleus (Figure 2.4). Finally, cAMP production and PKA activation by α1-AR subtypes 

was ablated in a Gαs knockout HEK 293 cell line (Figure 2.3, Figure 2.4), with cAMP 

subsequently rescued by heterologous Gαs expression (Figure 2.3). The identification of 

compartment specific, Gαs-dependent α1-AR signalling expanded our understanding of 

cardiomyocyte signalling pathways and raised questions about the potential implications for 

regulating pathological gene expression in cardiomyocytes. 

In Chapter 3 (Martin et al., 2020), we described the roles of two active P-TEFb complexes 

in the cardiomyocyte hypertrophic response following GPCR activation. As in Chapter 2, we 

focused on the canonically Gαq-coupled α1-AR and ETR as Gαq signalling is implicated in P-

TEFb activation in cardiomyocytes. With the identification of additional Gαs coupling by the α1-

AR, we hypothesized the additional signalling pathway would elicit a different requirement for 

specific P-TEFb complexes compared to the ETR. To assess the functional role of each complex, 

we used the small-molecules KL-2 and JQ1 to disrupt the AFF4-P-TEFb interaction or BET 

protein acetyl-lysine interaction, respectively. We also confirmed on-target effects of both 

inhibitors through siRNA knockdown of AFF4 or the individual BET family proteins. We 

demonstrated that the cardiomyocyte hypertrophic response following ETR activation required P-

TEFb recruitment by the SEC (Figure 3.2). On the other hand, α1-AR-mediated cardiomyocyte 

hypertrophic response required both SEC- and Brd4-mediated P-TEFb recruitment (Figure 3.2, 

Figure 3.3). Transcriptome analysis indicated that JQ1 attenuated processes implicated in 

pathological cardiomyocyte hypertrophy following α1-AR, and not ETR, activation (Figure 3.7G). 

The differential effect of JQ1 corresponded with the PKA-dependent Brd4 recruitment to cis 

regulatory genomic regions of pathological genes in response to α1-AR activation only (Figure 

3.9A/B). To further assess the requirement for Brd4 activity when PKA signalling is activated, we 

also examined the effect of JQ1 following activation of the Gαs-coupled β-AR. JQ1 also prevented 

the increased cardiomyocyte surface area following β-AR activation (Figure 3.9D/E), suggesting 

signalling through Brd4 was a common feature of Gαs-coupled GPCRs.  

In Chapter 4 (Khan and Martin et al., 2020), we described the Gβ1γ-dependent regulation of 

AT1R-induced RNAPII transcription in cardiac fibroblasts. Here, we aimed to identify a 

regulatory role of a novel interaction identified between Gβγ and RNAPII. This was assessed 

through two methods: a RT-qPCR based fibrotic gene expression array and ChIP-seq. We 
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observed an overall increase in fibrotic gene expression following 75 min (the time point with peak 

Gβγ-RNAPII interaction) and 24 h AT1R activation. At both 75 min and 24 h, Gβ1 knockdown 

with siRNA increased basal gene expression, potentiated AT1R-mediated gene expression, and 

increased the number of genes upregulated in response to AT1R activation. This trend was more 

strongly observed following 24 h AT1R activation (Figure 4.5C/D, Table 4.1). To determine the 

genome-wide recruitment of Gβ1 and changes in RNAPII, we performed ChIP-seq of RNAPII and 

heterologously expressed FLAG- Gβ1 following 75 min AT1R activation. We identified two gene 

clusters with different Gβ1 and RNAPII occupancy patterns (Figure 4.6B/C). In cluster 1, Gβ1 was 

recruited predominantly to TSSs following AT1R activation. With regards to RNAPII, we 

observed occupancy patterns that correlated with the fibrotic gene expression changes we 

previously characterized. First, cluster 1 genes had increased basal RNAPII occupancy at TSSs 

following Gβ1 knockdown, similar to the increased gene expression observed under these 

conditions. Second, cluster 1 genes displayed increased RNAPII occupancy following AT1R 

activation that was potentiated by Gβ1 knockdown conditions, similar to the potentiated gene 

expression observed under these conditions. Third, we identified a greater number of genes with 

RNAPII peaks following AT1R activation under Gβ1 knockdown conditions, similar to the greater 

number of genes upregulated. Furthermore, the majority of upregulated genes we identified 

following 75 min AT1R activation resided within cluster 1. Altogether, these results indicated that 

Gβ1 is recruited to the chromatin in response to AT1R to negatively regulate RNAPII transcription. 

 

5.2. Compartmentalized PKA signalling by α1-AR subtypes 

Diverse extracellular signals alter cellular function through common second messenger 

molecules, such as via modulating the production of cAMP. The ability for a single small molecule 

to regulate a range of cellular processes is in part due to the formation of localized microdomains. 

For cAMP, these domains are formed by the scaffolding AKAPs, which bring together the proteins 

required to transmit a signal linking cAMP production to effector protein regulation. In Chapter 2, 

we described distinct compartmentalized Gαs-cAMP-PKA signalling by specific α1-AR subtypes. 

The α1B-AR increased cAMP and PKA in the nucleus and cytoplasm, whereas the α1A-AR 

increased PKA only in the nucleus despite cAMP production in both compartments (Figure 2.3, 

Figure 2.4). While the mechanism for the selective PKA activation was not determined, insights 

from other GPCRs offer suggestions. For example, similar disconnect between cAMP and PKA 
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signalling in the cytoplasm and nucleus was observed for the β1-AR and β2-AR subtypes in 

cardiomyocytes. Both receptors increased cAMP levels in the cytoplasm and nucleus and increased 

PKA activity in the cytoplasm. However, nuclear PKA activity was only increased by the β1-AR 

through uptake of the protein kinase from the cytoplasm. For the β2-AR, phosphodiesterase 4 

(PDE4) prevented activation of muscle AKAP β (mAKAPβ)-tethered PKA and its subsequent 

diffusion to the nucleus [519]. The compartment-specific PKA activation by the α1A-AR and α1B-

AR suggests the subtypes signal through different AKAP complexes, enabling distinct trafficking 

of cAMP and PKA from the cytoplasm to the nucleus. Alternatively, the α1-AR subtypes may 

directly activate the nuclear pool of PKA through localization to the nuclear envelope. Many 

GPCRs, including the α1-AR subtypes, have been identified at the nuclear envelope [520]. A 

previous study identified a small percentage of intracellular α1A-AR and α1B-AR in a heterologous 

HEK 293 expression system, indicating overexpressed receptors may localize to the nucleus in 

these cells [521]. In this scenario, the α1A-AR could signal through nuclear AKAPs that interact 

with PKA and cytoplasmic AKAPs that do not. Further work is required to assess differences in 

the receptor interactomes in specific compartments in order to identify potential mechanisms for 

the subtype specific signalling.  

 

5.3. Compartmentalized GPCR signalling in pathological cardiac remodelling 

In cardiomyocytes, compartmentalized GPCR signalling enables two receptors to elicit 

different functional outcomes even with activation of the same G protein. For example, a previous 

study sought to identify mechanisms underlying the different alterations in cardiomyocyte function 

following activation of the Gαq-coupled AT1R or α1-AR. Comparison of AT1R and α1-AR gene 

expression programs in adult mouse ventricular cardiomyocytes indicated that AT1R activation 

elicited a subset of the α1-AR gene expression program. Here, it was proposed that transcriptional 

differences were due to distinct subcellular localization of the AT1R and α1-AR. The AT1R was 

identified predominantly at the plasma membrane with a small population on the inner nuclear 

membrane, whereas the α1-AR localized solely to the inner nuclear membrane. The authors 

proposed the unique transcriptional profiles were due to the nuclear α1-AR signalling through 

PLCβ1 that led to the export of HDAC5 from the nucleus, relieving its inhibitory effect and 

promoting transcription. The authors suggested the unique receptor localization accounts for the 

cardioprotective role of the α1-AR and the pathological role of the AT1R [522].  
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Of interest is how different α1-AR subtypes are localized in cardiomyocytes and whether 

they differentially activate signalling pathways as described in Chapter 2. Similar to the opposing 

effects of the β1-AR and the β2-AR, differential compartmentalized signalling may explain 

opposing effects of the α1A-AR or α1B-AR. Cardiac specific overexpression of the α1A-AR in mice 

improved contractility, whereas the α1B-AR led to impaired left ventricle function and dilated 

cardiomyopathy [191, 192]. The opposing functions of the β-AR subtypes is thought to be due to 

differentially localized signalling patterns of the receptors. The β1-AR, which promotes 

pathological cardiac remodelling and cardiomyocyte apoptosis, is localized along the entire plasma 

membrane and activation leads to a diffuse increase in cAMP levels throughout the cardiomyocyte. 

On the other hand, the β2-AR, activation of which is initially cardioprotective, is localized to 

transverse tubules and increases cAMP levels in a highly localized manner [523, 524]. In failing 

cardiomyocytes, β2-AR localization shifts to the plasma membrane and produces a diffuse cAMP 

signal, potentially promoting pathological cardiac remodelling [523]. The results from Chapter 2 

indicate that α1-AR subtypes also exhibit compartment-specific signalling, although whether the 

distinct Gαs-cAMP-PKA signalling transfers to cardiomyocytes remains to be determined. Further 

work is required to assess if the different cardiac outcomes from overexpressing specific α1-AR 

subtypes is regulated by activation of signalling pathways in a localized manner.  

 

5.4. Activation of P-TEFb complexes by distinct signalling cascades  

As mentioned in the introduction, hypertrophic cardiomyocytes exhibit increased P-TEFb 

activity in cell culture and in vivo models [505]. The central role of P-TEFb in cardiomyocyte 

hypertrophy was further corroborated in Chapter 3, where we demonstrated P-TEFb inhibition 

with the small molecule iCdk9 prevented both ETR and α1-AR mediated hypertrophy. In 

cardiomyocytes, it is thought that P-TEFb’s release from the 7SK snRNP is dependent on the Ca2+ 

activated phosphatase calcineurin (also referred to as PP2B), a signalling effector activated by both 

the ETR and α1-AR [352]. On the other hand, P-TEFb recruitment mechanisms employed depend 

on other aspects of receptor signalling profiles. Gαq-coupled receptors have a common 

requirement for the AFF4-SEC to increase pathological gene expression and cardiomyocyte 

surface area. For receptors that also couple to Gαs, P-TEFb recruitment involves a balance between 

the AFF4-SEC and Brd4. We also showed that the β-AR, which elicits a Gαs-dependent 

hypertrophic response, requires Brd4. The correlation between signalling profiles and P-TEFb 
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recruitment mechanisms suggests that SEC recruitment requires Gαq signalling, although 

assessing the effect of SEC inhibition on cardiomyocyte hypertrophy following activation of the 

Gαs-coupled β-AR is required to confirm this. Further work is required to determine how Gαq 

signalling converges on the SEC and leads to gene specific recruitment of the complex. 

Furthermore, various possibilities are raised to explain the differential requirement for P-TEFb 

complexes following activation of distinct GPCRs: different requirement for phosphorylation of 

specific P-TEFb substrates, different TF activation profiles, or receptors elicit different types of 

hypertrophy dependent on different gene expression programs. 

 

5.4.1. P-TEFb complexes regulate phosphorylation of different P-TEFb substrates 

The hypertrophic gene expression changes require release of RNAPII from a promoter-

proximal paused state into productive elongation through increased activity of P-TEFb [505, 525]. 

As mentioned in the introduction, P-TEFb phosphorylates the Rpb1 CTD, the Spt5 subunit of 

DSIF, and the NELF-A and NELF-E subunits of NELF to promote pause-release [284, 288, 294]. 

It has been proposed that each substrate could be targeted by a distinct P-TEFb complex. In this 

model, Brd4 regulates Spt5 phosphorylation, AFF1-SEC regulates NELF-A phosphorylation, 

AFF1/4-SEC regulates NELF-E phosphorylation, and AFF4-SEC regulates Rpb1 CTD 

phosphorylation [289]. The differential P-TEFb complex activation by each GPCR would then 

predict that the gene expression changes require phosphorylation of different P-TEFb substrates. 

According to this model, the α1-AR critical genes require Brd4-P-TEFb phosphorylation of DSIF 

for pause-release or downstream RNA processing.  

The requirement for DSIF phosphorylation is further suggested by the prevalence of 

inflammatory pathways and TFs identified in the α1-AR transcriptome data. Previous studies have 

identified an important regulatory role of a potential Brd4-DSIF pathway on inflammatory gene 

expression. First, NF-κB transcriptional activation requires Brd4-mediated recruitment of P-TEFb 

[414], aligning with the strong attenuation of NF-κB gene expression by JQ1 following α1-AR 

activation (Figure 3.7H). Furthermore, previous studies have identified a role for DSIF in NF-κB 

regulated inflammatory gene expression. Spt5 knockdown or treatment with small molecules that 

inhibit the Spt5-RNAPII interaction reduced NF-κB target gene expression following TNFα 

treatment [526, 527]. Combined, these studies are consistent with the notion that NF-κB-dependent 

recruitment of Brd4 to target genes increases gene expression through Spt5 phosphorylation.  
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Further work is required to address whether a Brd4-Spt5 phosphorylation cascade is 

triggered by the α1-AR, and a different P-TEFb substrate is phosphorylated downstream of the 

ETR. First, Spt5 knockdown or Spt5 inhibitor treatment will assess the Spt5 requirement for the 

ETR and α1-AR-mediated hypertrophic response. From the proposed model, it is hypothesized that 

these experiments would selectively attenuate α1-AR-mediated cardiomyocyte hypertrophy and 

gene expression. The potential toxicity of long term Spt5 knockdown and off-target effects of the 

Spt5 inhibitors may limit the ability to associate the observed effects solely on Spt5 function. 

Instead, ChIP of the relevant components (i.e. Brd4, SEC, total and phosphorylated Spt5 and 

NELF) along JQ1 attenuated genes would provide a direct assessment of how these factors are 

altered in response to ETR or α1-AR activation.  

 

5.4.2. Distinct hypertrophic signalling leads to differential recruitment of Brd4 by TFs 

In silico prediction of TF activity revealed similar TFs activated in response to either 

receptor, with JQ1 predominantly attenuating activity following α1-AR activation (Figure 3.7H). 

This suggests the selective effect of JQ1 is due to divergent ETR and α1-AR signalling pathways 

that activate TFs through different mechanisms. To illustrate this, I will focus on NF-κB and 

GATA4, two TFs activated by both receptors and selectively attenuated by JQ1 following α1-AR 

activation (Figure 3.7H). Links between PKA signalling, these transcription factors and Brd4 

recruitment have previously been identified. First, a well characterized signalling cascade links 

PKA, NF-κB and Brd4 activity. PKA phosphorylation of the NF-κB subunit RelA promotes its 

interaction and acetylation by CBP/p300 acetyltransferase [528, 529]. The acetylated RelA recruits 

Brd4 in a BD-dependent manner to enhance transcriptional activation of NF-κB target genes [414]. 

The unique activation of PKA by the α1-AR, and not the ETR, may function through this pathway 

to promote NF-κB activity in a Brd4-dependent manner. On the other hand, ETR signalling 

through PKCβ may activate NF-κB by disrupting the interaction of NF-κB with the inhibitory Iκβα 

subunit. PKCβ phosphorylates and activates Iκβ kinase α (IKKα), which subsequently promotes 

Iκβα degradation and NF-κB activation [530]. This aligns with a study demonstrating 

overexpression of a mutant Iκβα resistant to degradation prevented increased NF-κB reporter gene 

and Nppa expression following activation of Gαq coupled GPCRs in cardiomyocytes [531]. These 

examples highlight how PKA signalling may activate a NF-κB-Brd4-P-TEFb complex, whereas 

PKC signalling downstream of Gαq increases free, active NF-κB. 
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Similarly, a potential mechanism linking PKA signalling to Brd4-dependent activation of 

GATA4 target genes has been demonstrated. Phosphorylation of GATA4 serine 261, initially 

identified as an ERK1/2 substrate, was required for GATA4-dependent increase in gene 

expression. Overexpression of a GATA4-S261A mutant prevented the erythropoietin-dependent 

increase in cell size of the rat cardiac H9c2 cell line, indicating the importance of this 

phosphorylation event for GATA4 transcriptional activation. Furthermore, GATA4 S261 

phosphorylation was also required for GATA4 acetylation [532]. Mutation of the acetylated 

GATA4 residues prevented the α1-AR-mediated hypertrophy and increased pro-hypertrophic gene 

expression in cardiomyocytes [533]. Lastly, GATA4 acetylation was critical for its interaction with 

CDK9 in cardiomyocytes, although whether this occurred through Brd4, similar to other members 

of the GATA transcription factor family, remains to be determined. [385, 534, 535]. Although the 

identified pathway required ERK1/2 activity, PKA has also been demonstrated to phosphorylate 

S261 and enhance GATA4 activity gonadal cells [536]. Altogether, the proposed mechanism 

involves PKA phosphorylation of GATA4 S261 promoting GATA4 acetylation to recruit the 

Brd4-P-TEFb complex to GATA4 target genes. On the other hand, PKC signalling enhances 

GATA4 activity through phosphorylation of S419/S420. For example, AT1R activation of PKC 

enhanced GATA4 DNA binding activity and reporter gene expression [537]. These examples 

illustrate how PKA signalling regulates a TF-Brd4 complex able to promote transcription, which 

is absent in PKC signalling pathways. While these TFs may explain part of the differential effect 

of Brd4 inhibition, in silico analysis predicted a majority of TFs were attenuated by JQ1. The 

ubiquitous effect of JQ1 suggests α1-AR signalling alters TF activity through a common 

mechanism and not unique post translational modifications for each TF. 

 

5.4.3. Receptor activation leads to different types of hypertrophy with unique requirements 

for P-TEFb complexes 

Cardiomyocytes respond to various stressors through increased transcription of a gene 

regulatory network enabling the adaptive hypertrophic phenotype. In Chapter 3, we proposed the 

hypertrophic response to α1-AR and ETR activation was the same and that Brd4 had a unique role 

in α1-AR-mediated hypertrophy. An alternative hypothesis is that these receptors lead to different 

types of cardiomyocyte hypertrophy with unique gene expression programs, which impart a 

differential requirement for Brd4 activity. Transcriptome analysis indicated that the ETR 
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transcriptional program represented a subset of the α1-AR program, as ~87% of ETR-mediated 

differentially expressed genes (up and down regulated) were also modulated by α1-AR activation. 

Conversely, ~36% of α1-AR differentially expressed genes were uniquely modulated by this 

receptor (Figure 3.7A/B). This suggests that the ETR mediates a type of hypertrophy which 

requires a minimal gene expression program. The attenuation of ETR-mediated hypertrophy by 

inhibition of the SEC, and not Brd4, suggests these genes are solely regulated by the SEC. In 

contrast, the α1-AR activates a type of hypertrophy requiring a broader gene expression program, 

with the uniquely modulated genes leading to a requirement for Brd4 activity. Two aspects of our 

transcriptome analysis support this hypothesis. First, there is a population of genes upregulated by 

both receptors whose expression is attenuated by JQ1 independent of receptor activation (Figure 

3.7F). As ETR activation still leads to cardiomyocyte hypertrophy in the presence of JQ1, these 

commonly upregulated genes must not impart sensitivity to BET inhibition. In Chapter 3, we 

proposed these genes were regulated by Brd2 or Brd3, although further work is required to confirm 

this hypothesis. Importantly, genes were placed in these categories by a binary requirement, 

leaving the possibility that subsets of these genes have differential sensitivity that is not evident. 

Second, ~30% of genes attenuated by JQ1 when upregulated by the α1-AR were not upregulated 

by the ETR (Figure 3.7F). This suggests that these additional genes alter the type of cardiomyocyte 

hypertrophy mediated by the α1-AR to one dependent on Brd4 activity. We would expect that 

similar transcriptome analysis following β-AR activation would identify similarities with the α1-

AR transcriptome, as β-AR-mediated hypertrophy also required Brd4 activity. 

Further experiments are required to assess the hypothesis that P-TEFb complexes regulate 

distinct gene expression programs. First, comparing the effect of KL-2 and JQ1 treatment on gene 

expression changes will identify clusters of genes sensitive to one or both inhibitors. In Chapter 3, 

we determined Serpine1 was insensitive to KL-2 and attenuated by JQ1, providing preliminary 

evidence that P-TEFb complexes regulate separate groups of genes. Second, assessing Brd4 and 

AFF4 occupancy patterns across genes attenuated by either inhibitor will provide potential 

mechanistic details on how the two complexes regulate gene expression. Overall, these 

experiments will enable categorization of SEC and Brd4-dependent gene expression changes and 

help characterize the differential requirement of the two complexes by distinct GPCRs. 
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5.5. Regulation of P-TEFb complex components directly by PKA 

In Chapter 3, we proposed PKA signalling leads to the selective attenuation of α1-AR-

mediated hypertrophy by BET inhibition. We proposed PKA activates Brd4 through direct 

phosphorylation of the Brd4 PDID, comprising BD2 and NPS. As mentioned in the introduction, 

NPS phosphorylation leads to a conformational change that relieves the intramolecular inhibition 

of BD2 by the NPS. PKA phosphorylated the PDID in an in vitro kinase assay, although the 

functional implications were not identified [409]. Furthermore, in silico prediction of 

phosphorylated PDID residues identified S324 and S325 as potential PKA substrates (unpublished 

data). Alternatively, PKA signalling also regulates other aspects of P-TEFb activity which may 

have functionally significance in cardiomyocytes. For example, PKA phosphorylation of CDK9 

S347 led to increased affinity of the HIV Tat-P-TEFb complex for the TAR element and HEXIM1 

S158 phosphorylation led to disruption of the 7SK snRNP complex. Further work is required to 

assess whether PKA phosphorylation of CDK9 S347 is increased following α1-AR activation and 

whether this modification alters the interaction with Brd4. On the other hand, HEXIM1 S158 

phosphorylation is less likely to promote a specific complex as it simply increases levels of free, 

active P-TEFb without directly modifying the heterodimer. 

Further work is required to identify the PKA phosphorylated residues of Brd4 and the 

functional role of the phosphorylated residues. To identify the phosphorylated residues, neonatal 

rat cardiomyocytes will be transduced with an adenovirus containing a FLAG-tagged Brd4 

construct. Following treatment with an α1-AR agonist, ETR agonist, or forskolin and IBMX, 

affinity purification LC-MS/MS will be performed to identify phosphorylated residues. Following 

identification of phosphorylated residues, α1-AR-mediated recruitment of Brd4 constructs with the 

identified residues mutated to alanine or a phosphomimetic residue will assess the functional role 

of the phosphorylated residues. The hypothesis is that mutation to alanine will block Brd4 

recruitment and a phosphomimetic mutation would increase basal Brd4 occupancy.  

 

5.6. Gβγ regulation of RNAPII transcription 

In Chapter 4, we described the negative regulation of AT1R-mediated gene expression by 

Gβ1γ in cardiac fibroblasts. The FLAG-Gβ1 and RNAPII ChIP-seq profiles suggests Gβ1γ 

negatively regulates RNAPII initiation (Figure 4.6B/C). First, FLAG-Gβ1 occupancy increased at 
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the TSS in response to AT1R activation, indicating it is recruited to the early RNAPII complex. 

Second, Gβ1 knockdown under basal conditions led to increased RNAPII occupancy at the TSS, 

suggesting increased recruitment to these genes. While we did not assess the mechanism 

underlying the negative regulation in this chapter, a previous study assessing the interactome of a 

TAP-tagged Gβ1γ7 by LC-MS/MS provide hints of a potential mechanism [99]. The study 

identified an interaction between Gβ1γ7 and the Brg1/Brm1-associated factor (BAF) complex 

subunits Brg1 and BAF57 in response to M3 muscarinic acetylcholine receptor (M3-MAChR) 

activation in HEK 293 cells. Preliminary cell fractionation and co-immunoprecipitation 

experiments confirmed that the M3-MAChR stimulated interaction between heterologously 

expressed FLAG-Gβ1 and GFP-Brg1 in HEK 293 cells occurred in the nucleus (Celia Bouazza, 

unpublished data). Furthermore, prediction of transcriptional regulatory activity (as performed in 

Figure 3.7H) from an RNA-seq experiment with two HEK 293 Gβ1 knockout cell lines predicted 

increased Brg1 activity in the knockout cells compared to control (unpublished data). 

In vertebrates, BAF complexes are comprised of a central Brahma (Brm) or Brahma-related 

gene 1 (Brg1) ATPase subunit and up to 15 subunits. The large complex exists in diverse 

assemblies of the many subunits and their paralogues, leading to numerous distinct assemblies of 

the complex [538]. One function of the complex is to increase or decrease chromatin accessibility 

through nucleosome remodelling by the ATPase subunit at cis regulatory genomic regions. The 

increased chromatin accessibility promotes assembly of the RNAPII PIC and subsequent gene 

expression [539]. Furthermore, the diverse assembly of subunits enables the BAF complex to 

regulate cell-type specific processes, with several studies characterizing its role in cardiac cell 

types. For example, Brg1-containing BAF complexes are critical for proper cardiac differentiation 

during development. In cardiac precursor cells, Brg1 is recruited to TSSs and active enhancer 

regions through interactions with TFs to maintain an open chromatin state and expression of genes 

involved in cardiovascular developmental and cardiac tissue morphogenesis [540]. Throughout 

development, Brg1 expression decreases in cardiomyocytes, but is reactivated following cardiac 

stress to promote transition to the fetal gene expression program. Brg1 regulates the switch in 

expression from the adult α-MHC isoform to the fetal β-MHC isoform in cardiomyocyte 

hypertrophy. At the α-MHC promoter, a Brg1-HDAC-poly [ADP-ribose] polymerase (PARP) 

complex inhibits expression, whereas at the β-MHC promoter, a Brg1-PARP complex promotes 

gene expression [541].  
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While several studies have expanded our understanding of the roles of the BAF complex in 

cardiac development and cardiomyocyte hypertrophy, less is understood about its role in cardiac 

fibroblasts and in the fibrotic response. Brg1 was identified at the promoter and as a positive 

regulator of the profibrotic osteopontin gene in mouse cardiac tissue following TAC, suggesting a 

role potential role in regulating fibrosis [542]. Studies in other cell systems provide further 

evidence for the role of Brg1 in fibrosis. First, Brg1 positively regulated expression of the genes 

encoding two fibrotic proteins, α-SMA and collagen type I alpha 1 chain (Col1a1), in the liver 

[543]. Second, Brg1 was required for TGFβ-induced expression of the profibrotic Ctgf gene in 

HaCaT keratinocytes. Knockdown of Brg1 prevented RNAPII initiation at the Ctgf promoter and 

reduced Ctgf gene expression induced by TGFβ [544]. While these studies suggest a role for Brg1 

in fibrotic gene expression, a potential function in cardiac fibroblasts still needs to be verified 

experimentally. 

My proposed model for AT1R-mediated transcription in cardiac fibroblasts is that Gβ1γ 

recruitment to promoter bound RNAPII complexes negatively regulates Brg1-dependent 

chromatin remodelling. Following sustained signalling, Gβ1γ dissociates from the complex, 

relieving the negative regulation and allowing robust transcriptional activation. First, this model 

explains the increased RNAPII TSS occupancy in Gβ1 knockdown conditions. Gβ1 knockdown 

relieves the negative regulation of Brg1 to promote accessible chromatin and subsequent RNAPII 

initiation. Furthermore, this model is supported by preliminary data that indicates the interaction 

between Gβ1γ and Brg1 is conserved in cardiac fibroblasts (Celia Bouazza, unpublished data). 

Further work is required to determine if Gβ1γ regulation of Brg1 activity is responsible for negative 

regulation of AT1R-mediated gene expression by Gβ1γ in cardiac fibroblasts. First, in vitro 

interaction experiments with purified Gβ1γ and cardiac fibroblast BAF complexes or RNAPII are 

essential to determine if Gβ1γ directly interacts with either component of the transcriptional 

machinery. If Gβ1γ is found to interact with the Brg1-containing BAF complex, in vitro 

nucleosome remodelling assays to assess regulation of remodelling activity should be performed. 

Following in vitro validation, regulation of the BAF complex activity in cardiac fibroblasts should 

be assessed. Changes in BAF complex activity can be determined indirectly by assessing 

chromatin accessibility changes by ATAC-seq following AT1R activation under control or Gβ1 

knockdown conditions. While this model explains the mechanism for negative regulation of 

RNAPII transcription by Gβ1γ, it does not explain if Gβ1γ is recruited to specific genomic loci as 
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a component of the BAF complex or through interactions with TFs. Further work assessing the 

Gβ1γ interactome in cardiac fibroblasts is required to address this question. 

 

5.7. Implications for targeting Gβγ signalling in pathological cardiac remodelling 

As mentioned in the introduction, Gβγ signalling is a driver of pathological cardiac 

hypertrophy in various models of heart failure [203, 204]. Systemic treatment with the small 

molecule Gβγ inhibitors M119 or gallein disrupted the Gβγ-GRK2 interaction, preventing β-AR 

desensitization and normalizing β-AR surface expression [204]. While inhibiting the Gβγ-GRK2 

interaction is cardioprotective, therapeutic approaches should aim to preserve the Gβ1γ-RNAPII 

interaction to maintain the negative regulation of fibrotic transcription. Therefore, small molecules 

which differentially inhibit these Gβγ functions could be clinically useful. To enable the targeted 

drug discovery, a more detailed understand of how Gβ1γ interacts with the RNAPII complex is 

required. The first approach involves obtaining structural information of Gβ1γ in complex with the 

transcriptional components it directly interacts with, as determined by the previously described in 

vitro immunoprecipitation experiments with purified complexes. Comparison of these structures 

with the Gβ1γ effector structures will enable identification of different Gβγ ‘hot spot’ residues 

required for each interaction and where small molecules should target. Alternatively, alanine 

mutagenesis of Gβγ ‘hot spot’ residues followed by co-immunoprecipitation experiments from 

whole cell lysates would identify differentially required residues for GRK2 and RNAPII. 

Interestingly, the small molecule gallein did not alter the transcriptional response to AT1R 

(Chapter 4), suggesting it does not affect the Gβ1γ-RNAPII interaction although assessing the 

interaction by co-immunoprecipitation is required to confirm this. Therefore, ‘hot spot’ regions 

required for the Gβ1γ-RNAPII interaction may be assumed to be different than those targeted by 

gallein; the latter could be inferred by docking gallein to the Gβ1γ2 structure. Altogether, these 

various approaches may enable a strategy for generation of a selective Gβγ inhibitor for the 

signalling pathways which promote pathological cardiac remodelling, while sparing those that 

inhibit it.  
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5.8. Gβγ signalling in cancer and neurodevelopmental diseases 

While we focused on Gβγ signalling in pathological cardiac remodelling, the heterodimer is 

also dysregulated in other diseases. For example, several mutations have been identified in GNB1, 

the gene encoding Gβ1. GNB1 mutations were initially identified in various types of leukemia that 

clustered along the Gβ protein surface interacting with the Gα subunit [489]. Subsequently, 

heterozygous GNB1 mutations were identified in patients with GNB1 encephalopathy, a 

neurological disease characterized by developmental and intellectual delay, hypotonia and seizures 

[545]. Surprisingly, there is overlap between mutations leading to cancer or neurodevelopmental 

disorders, suggesting the development of a specific pathology is not driven by specific mutations 

but rather the timing or location of such mutations. In fact, the development of a specific pathology 

appears to depend on whether it is a somatic or germline mutation, leading to cancer or GNB1 

encephalopathy, respectively. To date, the focus has been on how these mutations alter G protein 

heterotrimer formation and interactions with canonical signalling pathways, such as PI3K, MAPK 

and PLCβ [546]. For example, mass spectrometry of TAP-tagged Gβ1 with mutations identified in 

various leukemias identified reduced association with all Gα isoforms. The decreased association 

with Gα led to a Gβγ-dependent increase in PI3K, MAPK and PLCβ activity independent of 

receptor activation [546]. Of particular interest going forward is how these mutations affect the 

Gβγ-RNAPII interaction and the implications for pathological gene expression changes. Within 

leukemias, this interaction may serve to suppress dysregulated transcription, a hallmark of cancer 

[547], and reduce oncogenic transformation. Preliminary data indicates many somatic GNB1 

mutations disrupt the Gβγ-RNAPII interaction (Iulia Pirvulescu, unpublished data) although 

further work to assess transcriptome changes is required. 

 

5.9. Conclusion 

This work expands our understanding of how GPCR signalling pathways converge on 

transcription to alter the state of cardiac cell types and regulate pathological cardiac remodelling. 

In cardiomyocytes, we identified the novel regulation of Brd4 by the cAMP/PKA pathway to 

promote gene expression and hypertrophy. In cardiac fibroblasts, we have identified a novel role 

for Gβ1γ in the negative regulation of RNAPII to suppress fibrotic gene expression in response to 

AT1R. Furthermore, we highlight potential considerations in developing and administering 
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therapeutics for pathological cardiac remodelling. As clinical development of BET inhibitors 

advances, the findings in this thesis indicate it is essential to characterize specific neurohormonal 

profiles in patients to assess the potential efficacy of this class of small molecules. Our work in 

cardiac fibrosis highlights the importance of targeting specific Gβγ-effector interactions as some 

have negative regulatory functions (i.e. Gβγ-RNAPII) which should be preserved. The chapters 

contained in this thesis add another piece to our understanding of pathological cardiac remodelling 

in the hopes of developing better therapeutic approaches and improving disease prognosis for 

patients. 
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Sarah MacKinnon, Phan Trieu, Paul B.S. Clarke, Jason C. Tanny, and Terence E. Hébert
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permission from all authors.
 
If you do not object to this request, please reply confirming permission for use of the manuscript at
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Ryan Martin
Ph.D. Candidate
Department of Pharmacology and Therapeutics
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Subject: Request for permission to use manuscript in PhD thesis
 
Hello Paul,
 
I hope this email finds you well. I am writing to you regarding the following manuscript:
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Sarah MacKinnon, Phan Trieu, Paul B.S. Clarke, Jason C. Tanny, and Terence E. Hébert
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permission from all authors.
 
If you do not object to this request, please reply confirming permission for use of the manuscript at
your soonest convenience. 
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Ryan Martin
Ph.D. Candidate
Department of Pharmacology and Therapeutics
3655 Promenade Sir William Osler 
McIntyre Medical Sciences Building Rm 1303
McGill University
Montreal, Quebec
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