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INTRODUCTION 

The Nucleon-Nucleon Interaction 

One of the central problems in nuclear physicsx is 

the determination of the torees which bind nuclei together. 

A tew tacts were obtained in the beginning from the vast 

collection of data on the binding energies of nuclei. In 

order to acoount for saturation, Heisenberg (1) and 

Majorana (2) introduced the idea ot exchange torees, some­

what akin to the exchange torees which oocur in molecular 

binding. These torees give rise to spin and parity depend­

ance in the interaction. From the large ratio of the 

binding energy ot the alpha partie le to that ot the deut.eron, 

Wigner (}) deduced that the torees were short ranged and very 

strong within that range. In 19}5 Yukawa (4) developed a 

meson theorr of the torce, along the same lines as quantum 

- --> electromagnetic field theory. The torce/ between charged 

partiales is assumed to be due to an exchange ot massless 

photons. In order to account tor the short range ot the 

nuclear torce, Yukawa postulated the existence ot a partiale 

ot maas around 300 electron masses. The discovery or the 

--:;;. pion twelve years laterxwas a triumph or this idea. In the 

years tollowing the proposa! ot the pi meson, field theoret-

ical work on the nature ot the interaction continued. During 

this period, progress in understanding the interaction also 

was being made from a completel7 different approach. The so 

~-·-··> called phenomenological approach • 
. , ~r-"t . \ M-,.;t.t ,..-(..( 
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In order to explain the diserepanoy between the ob­

served low energy total cross section, and that predieted 

trom the binding energy of the deuteron and etteetive range 

theory, Wigner (5) suggested that the torees mignt be spin 

dependent, so that the deuteron data, whioh is assoeiated 

with a triplet spin state, is not adequate to caloulate the 

total low energy cross section whioh 1s made up of an in­

coherent mixture of triplet and singlet parts. Schwinger 

and Teller (6) showed that the coherent scattering of very 

___ 7 slow neutrons froa ortho-and para-hydrogenywould furnish 

additional information, with whieh it would be possible to 

ealculate the singlet and triplet seattering lengths. The 

~'7 concept of spin dependence was further developed by Wigner~ 

---~':· (7h who derived the most general form of potential consistent 

with certain invariance properties which we hope are satie-

fied by the physical world, at least tor the strong inter­

actions. Experimental determination of the magnetie moment 

ot the deuteron indieated that it was not simply the sum of 

the intrinsic moments of the neutron and proton, thus 

suggesting that the deuteron ground state was not a pure s­

state, and thus indicating the existence ot a nonoentral 

foree within the two nucleon potential. This led authors to 

postulate the existence ot a tensor force within the potential. 

~ The disoovery of the quadrupole moment ot the deuteronJ(firmly 

established this idea. Treatment of the data up to 1940 was 

given by Rarita and Schwinger (8) in terms of phenomenolog­

ical potentials including tensor forces. Between 1945 and 
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~~ 1957, a tew attempts at titting the existing datax with 

phenomenological models were made. None ot these attempts 
~J 

~ J1.8-rf1 .. completely successtul, but they were nevertheless im-

portant, in that they contained many interesting ideas and 

served as a taking ott point tor the later work ot Gammel 

and Thaler and also Signell and Marshak. Jastrow (9) 

attempted to tit the data by using central and tensor 

potentials with hard cores. Feshbach and Lomon (10} tried 

~ to tit the data by representing the many-meson exchange 

region ot the interaction by an energy independant boundary 

condition on the logarithmic derivative ot the wave tunction 

at the boundary ot this region. Also Case and Pais (11) 

suggested that the inclusion ot a spin orbit torce might 

allow a fit ot the p-p polarization data. What was estab-

--7· lished during this periodx is the following. The intro­

duction ot an effective range expansion tor the low ener&r 

~) phase shitts~made it olear that the n-p data at low 

energies was determined by four quantities viz. the singlet 

and triplet etfeotiTe ranges and scattering lengths. The 

singlet values were in agreement with the values obtained 

from p-p scattering, atter the removal ot coulomb etteots, 

except tor a small difference in the scattering lengths which 

Schwinger (12) showed could be explained by the inclusion of 

non-ooulombic eleotro-magnetic eftects. These faots lend 

support to the idea ot charge independance ot the torees 

whioh bad previously been suggested by Bre1t.(l3). Char!e 

symmetry, i.e.,n-n equals p-p, had even previously been in-
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terred from the ground state binding energy data ot mirror 

nuclei. The lack of quantitative sucoess in titting the 

--~;;. dataf was a direct result of the complicated nature ot the 

interaction on the one hand, and the availability of mainly 

angular distribution data on the other. Woltenstein (14) 

had already pointed out that angular distribution data 
~ 

~ alonexwas not adequate to predict the soattering matrix. 

In 1957 the situation ohanged, there were two reasons tor 

this. 1) Double and triple soattering experimenta were be­

ing pertormed, and 2) high speed eleotronio oomputing beoame 

--7 available. Stapp et ~ (15) pertormed a complete set of 

experimenta at 310 Mev. and made phase shift analyses ot 

these resulta, yielding 5 acceptable solutions. It is easy 

to see how a tew more experimenta at this energy could make 

the solution unique. Since then a number ot experimental 

!rOups have been active, performing polarization experimenta 

at several energies. At Harvard and Harwell work is in 

progress at 150 Mev. At the University of Rochester, a group 

is working at 240 MeT., and at Liverpool between 320- 380 

Mev., while at Berkley work continues at 310 MeT. Meanwhile 

the field theoretic approaoh to the problem continues. A 

number of interesting attempts to oalculate the force have 

been made, one ot the most interesting of these by s. Garten­

haus, (16),the so called Gartenhaus potential, which is 

based on the non-relativistio Chew out-ott theory. Gartenhaus 

~7 has shown that the low energy ( < 30 Mev.) datax is adequately 

explained by this torm ot JOtential. Work by J. L. Gammel and 
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R. Thaler (17) has shown that this potential however, does 

not fit the data at high (300 Mev.) or even moderate 

energies. They conc1ude that this potential only adequately 

describes the torce at distances ) 0.5 fermis. For smaller 

distances, this meson theoretic approach is of dubious valid­

ity. Gwnmel and Thaler (18) again attempted to fit the data 

up to 310 Mev. This time they used Yukawa type potentials 

with hard cores, inc1uding both central and tensor torees. 

They obtained good fits to most ot the data, but could not 

reproduce the p-p polarization at 170 and 310 Mev. They (19) 

repeated tbeir work~ adding a short ranged spin orbit toree 

with a hard core. This type ot force is consistent with the 

torm of potential as predioted by Wigner, and its existence 

was shawn to be implied by meson theory by Marshak as early 

as 1947. With this type of potential, they were able to 

obtain good agreement with the data up to 310 Mev. About 

the same time, Signell and Marshak (20) also obtained good 

agreement with the data up to 150 Mev. by using the Garten­

haus potential with the addition of a one paramater spin orbit 

toroe. 

The early work of Feshbach and Lomon (lO)x yielded 

phase shifts which are different in nature from those of 

Gammel and Thaler, (19), and also Signell and Marshak (20). 

They are characterized by a large negative~o phase shitt. 

Solutions of this type exist both in the work ot Stapp (15) 

(solution #6), and also in the analyses by Stabler (21) or 
data from Harvard and Harwell. In section II-5, we use this 
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type ot phase shift solution to caloulate certain pclariz­

ation parameters, which when compared with experiment should 

shed some light on the validity of this type or solution. It 

is to be hoped that with the work progressing as it is at 

present, we will have a unique picture or the scattering matrix 

within the next rew years. 
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Pion Nucleon Scattering, 

The early work on the scattering of pions on protons 

was carried out by Fermi and Anderson (22) at Chicago in 

1953· For energies less than 300 Mev. they assumed that the 

scattering was entirely due to S and P waves. The contribut­

ing angular momentum states were therefore Slj2,Pl/2 and 

P3; 2• If we consider the meson Compton wave length as giving 

the approximate range of the interaction, then the usual 

centrifuga! barrier arguments justify this approximation tor 

energies lesa than 200 Mev., however at about 300 Mev. it 

looks as though D waves might be contributing. As it turns 

out, the approximation is satisfaetory even at 300 Mev. With 

this assumption and that of charge independance, they round 

that they were able to fit the existing data. From the ex­

pression for the 1t+ on p cross section, they were able to 

deduce several qualitative tacts about the various phase 

shifts. The large increase in the cross section at about 

___ 7 140 Mev.X led them to believe that there was a resonance 

w1 th one angular momentum state mainly oontributing. The 
~ 

large Cos Q term in the angular distribution implied that 

this was due to the P3; 2 state. They therefore expected a 

large P3j2 phase shi ft ~ 33• Such a resonance in the P3,t2 am-

---7 plitude)\ is predicted by the static nucleon theory of Chew 

and Low (23). There is also a large Cos Q term which is neg­

ative. This they deduced could only be due to an S and P wave 

interference. They theretore expected a negative s -wave phase 

shi ft. 
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Analysis of the data completely justified these qualitative 

inferences. Fermi obtained one large and five small phase 

shif'ts. The phase shift ~ 33 was large and the phase shif'ts 

~31 )~3,)11$13 and )1 were round to be small. Here we have 

used the nota ti on of Fermi, the first index re fers to the 

isospin, the second to the angular momentum. The phase 

shifts with only one index are S wave phase shif'ts. The 

phase shif't ~ 33 is round to have an~ dependance on the 

meson momentum at low energies, but increases more rapidly 

near resonance. Certain general ambiguities were soon re-

cognized in the phase shift solutions. 

These ambiguities are a direct result of' the 

symmetry in the phase sbift dependence of the scattering 

amplitudes. To begin with it was soon recognized that a 

complete reversa! in sign of all or the phase shif'ts would 

also give the same fit to any data whioh involved only pion­

nucleon forces. This is because in the angular distributions, 

the sines of the phase shifts appear bilinearly. Coulomb 

------7 interference exper iments performed by Ore arx ( 2.5 )_x: indicated 

however that ~ 33 was positive. -

When Fermi obtained bis set of phase shifts, Yang (24) 

observed that a different type of solution would also fit the 

data. This solution was characterized by the following 
/ / c c; < c. 

()l\- )~~) ~ (~\-)~\),) 1l\ ~ e>\ and C. ~\1-+ O~\) 
~ (.) ~ +- ~~) • The Yang phase shift solution was round 

however to be inconsistant with the dispersion relations. 
/ 

Further, this type of' solution implies a large~~\. This is 
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lesa reasonable from the theoretical point of view, since 

there is no known mechanism which would give this. There 

is a second type of ambiguity which occurs, which is not as 

directly related to the structure of the scattering ampli­

tudes, but is rather a result of the non linear nature of 

the quantity which is being fitted. The result of this is 

that severa! phase shift solutions of the Fermi type difter­

ing mainlr in the small phase shifts are possible which fit 

the same data. There are a number or ways ot eliminating 

these incorrect solutions, or at least of making them seem 

unlikely. They should be consistent with the dispersion re­

lations, they should be continuous with respect to the energy, 

and most important of all, they should be capable of fitting 

the data from new experimenta which help determine the 

scattering matrix. Very important in this respect are the 

experimenta designed to measure P~ and P_ , the recoil proton 

~ -JOlarization in the scattering of 1t on p, and ~ on p 

respectively. In section III 2 we consider three solutions 

~ ot the Fermi type obtained by Chiu and Lomonx (26), we calcul­

ate the values ot P~ and P_ tor these three solutions, in 

order to determine which are invalid. The other two tests 

have already been carried out by Chiu and Lomon (26). The 

importance of obtaining a unique set ot phase shifts derives 

trom the tact that auch a set is essential, if one wishes to 

construct a model of the interaction. 
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SUMMARY 

In recent years, polar1zat1on experimenta and the 

calculations associated with them>(have become important in 

helping physicists to pin down the scattering matrix ror the 

nucleon-nucleon and pion-nucleon interactions. Thus a large 

--7 part ot this thesisxis devoted to a review or the tormalism 

ot scattering matrix calculations, followed by a rew 

applications to current problems. It also includes a re­

quired extension ot variational techniques. Section I is con­

cerned with the theory ot polarization experimenta. The 

theory is developed from first prineiples, using a density 

matrix tormalism tor a description or states. Expressions 

are derived tor the cross Section 10 tor the scattering ot an 

unpolarized beam, and tor the polarization P which then 

describes the azimuthal assymmetry observed in a double 

scattering. Expressions are also obtained tor the triple 
1 1 

scattering parameters R,A,R. and A, and tor the correlation 
~ ~ p p 

parameters Cnn,CKP,c'W\"'-) c'<'~J c'<'"" and C~p • These resulta 

are obtained quite generally tor the scattering or a particle 

or spin s from a target of spin T. Triple scattering exper­

imenta are described, and the depolarization and rotation 

paramaters D and R are interpreted. Correlation experimenta 

are discussed with respect to the measurement of Cnn and CKP, 

and these parameters are also interpreted physically. Section 

nspecializes the preceding to the scattering ota partiale 

ot spin 1/2 trom a target of spin 1/2. The most general M-
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matrix whioh satisfies the conditions of invariance under 

rotations, spaoe refleotion, time reversal and whioh is also 

charge independant is derived. Expressions are obtained for 

the elements of the M-matrix in terms ot spherioal harmonies, 

and the elements of the s-matrix, whioh are direotly 

expressible in terms of phase shifts. 

The K-matrix is modified to aocount tor the identity 

ot the two partiales and for coulomb etfects, in the case ot 

the soattering of protons on protons. Two phase shitt 

representations of the s-matrix are given, and the suitability 

ot the •barred• representation for the treatment ot coulomb 

etfects is discussed. A physioal interpretation ot eaoh 

representation is also given. 

Calculations are made or Cnn,CKP and R at 140 Mev. 

using phase shift tits of Harvard and Harwell data. These 

solutions, designated ot type #6 are consistent with the 

boundary condition model of Feshbach and Lomon (10), and are 

3Po(?)~ characterized by a large negative~0 phase shift. 

Calculations are also made ot Cnn and ~ at 310 Mev. using 

Stapp's (15) solution #6. Several arguments ind1cat1ng the 

ineorreotness ot solution #6 are discussed, partly on the 

basis ot our oaloulation of CKP, and are shown to be invalid. 

Comparison of R with recent (27) experimental resulta how­

eTer indicate that solution #6 does not fit the data well, 

particularly at small angles. This result is in agreement 

with that of Stabler and Lomon (28) at Cornell. 

In Section III~he tormalism tor scattering matrix 
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calculations in pion nucleon scattering, considering only 

S and P waves, is developed from first principles. Express­

ions are obtained for the difterential cross section tor 

elastic scattering ot positive and negative pions on protons, 

and also for the charge exchange cross section. The express­

ion tor the recoil proton polarization is derived for both 

ot these experimenta. These expressions are then used to 

~,; caloulate P+ and P_ tor solutions A,B,and C ot Chiu and 

Lomon (26) at 307 Mev. Our resulta indicate that the P+ 

experiment does not distinguish between these three solutions, 

and the P_ e:xperiment favours solution c. These conclusions 

are shown to be in agreement with those ot Korenchenko, 

-~-,. Polum.ordvinova and Zinov,K (29). 

In Section IV,variational principles tor phase shifts 

are obtained, tor the nucleon-nucleon interaction as desoribed 

by Feshbaoh and Lomon (10), with the addition otan external 

potential of the form. 
s~ 

\." c. <..M.) + s,,_ \J, \.M.) 1 
~here ~c.(~) and ~~\.~) are central and tensor potentials 

respectively, S and '"1\ are the spin and parity labels, 

and ~,~ is the usual tensor operator. Methode tor utilising 

these resulte are suggested. These variational techniques can 

be used in titting the above interaction modal to the data. 

The author would like to take this opportunity to ex­

press his tbanks to Professor Earle Lomon tor his triendl7 

help and encouragement during all phases of the work, and to 

the National Research Council whose help in the form ot Re­

search Grants, made the work possible. 



SECTION I 

THE THEORY OF POLARIZATION EXPERIMENTS 

1. The Densi ty Matrix (30) 

We wish to describe the scattering of a particle of 

spin S b7 a target ot spin T. The interaction will in 

general be spin dependent, and tor a definite energr and 

momentum ot the incident partiale, there will be in general 

(2S + 1) (2T + 1) = N independant states ~ with i running 
0( 

from l ••••• N. Any state ~ whioh is a linear oombination 

ot these states is termed a pure state. 

\1. o{ -= ~ c.~ '1 ~· ' ;\.' 

1.1 . 

o( 
Where the C,.. are arbi trary oomplex constants. 

For such a state we can always define a complete experiment 

suoh that the result is predictable with absolute certainty 

tor that state. Essentially this means that we oan find a 
c. 

--7 set of hermit~an operators tor whioh that state is an eigen-

state. A complete experiment is then really a set ot 

experimenta determining the pertinent eigenvalues. Perhaps 

the most familiar example of a pure state would be 100~ lin­

early polarized monoohromatio light. Such light will always 

..----7 be oompletely transmitted by a suitably oriented Nié~·ol Priam. 
1:.__; 

For partially polarized light, there is no orientation for 

whioh we can predict with certainty that every photQn will be 

transmitted. Such astate is called a mixed state, and is a 

state of lees than maximum information, as opposed to a pure 
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state, which is a state ot maximum information. A mixed 

state oannot be written in the torm 1.1. The ditticulty ot 

representing a mixed state can be easily resolved, when we 

realize that a mixed state is merely an incoherent mixture 

ot pure states. More precisely this means that avery impure 

state can be written as an incoherent superposition of pure 
1( t( 

states ~ where , is som.e pure state. Thus the sum. over 

~ is actually a sum over all possible pure states, it is 

otten reterred to as an ensemble sum. 

-.. 

The phase factors ~~ are real quantities which vary 

random.ly with time. 

1.4 

Let us now evaluate the expectation value of an operator 0 

in spin space. 

--
But since ~~ varies randomly with ttœe, the quantities 

~lq..t_~,) average to zero in time. we thus get for the 

expeotation value, 

--
<~-< \ ~-<;> 

Writing this out explicitly, we get 

z.. o"· . ~ c.. ~ 4 c; 
""''J. J ~ 

1.6 



-3-

It we de:f'ine a matrix opera tor 

\~~ 
c-<. c. o( 

~ 

= ~ 
"( ?1 "' 1.8 

This gives 
\,._ ( 0~~) 

-< 0 ':>~ - 1.9. TM ( \~) 

The matrix ~ is known as the density matrix tor the state. 

Evidently it completely describes the state, since 1.9 gives 

us a prescription for writing down the expectation value ot 

any operator for a state whose density matrix is know.n. 

The diagonal elements of the density matrix 

--
evidently gives the weighting ot the state i in the ensemble. 

"T"" \ = ~ f ~,;. may be taken to be proportional to 

the intensity. It is essentially the normalization factor 

tor the density matrix. 

Let us now consider the spaoe of all N X N matrices. call 

this M-space. This spaoe is technically a vector space, 

that is it has all the properties ot a vector spaoe. 

If A ~ B are elements ot M, then 

C = A+ B is also an element of M (closure) 

It A is an element of M and ~ is a ecalar then 

B = ~ A is also an element ot M (scalar multi­
plication) 

There is also a scalar product, which is invariant under 

unitary transformations. 
1 

A..B -- Tr (A B.). 
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K-spaoe is N2 dimensional, it theretore can be represented by 

Nf orthonormal base matrices ~ whioh should also be 

hermitean, suoh that 

'~ ct~J) = ~ ~" 1.11 

Any N XN matrix operator, oan then be expanded in terms of 

these base matrices. 

0 = ~ -1 2:. tl~ ï"" ( 0~ ) ).. 
~,:n 1.12 

In partioular \ oan be expanded to give 

' = ~ _, ,N\~,~"2. "'"" (e>i') ~ 
whioh using 1. 9 tJ 'l. 

= ~-\ (\,...,) ~~\ > ~ ~ 
We see theretore tbat ~-~ - Q()~~~~:t~!.f ... ~P~_çJ;f:r an impure state, 

we need to speoify the value ot N2 operators. Then N2 exper-

imenta are needed to determine the state. From equations 

1.9 and 1.12, we tind for the expeotation value of an 

opera tor 

c::: 0 -;:> 'i 

2. Change of State in Soattering Problems. the M-matrix 

When two partiales originally in a state ~~ soatter 

from eaoh other, the final state is desoribed by a trans-

formed densi ty ma tri x \ • 
t 

Eaoh spin state ~ . will be 
" 
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/ 

transtormed by the interaction into a new state ~ • 
1\ 

'\" ~ ~ / = ~ M-\ . ~ . 
1\ ~· t::J"' d 2.1 

'\ o( ~ ~.t. / : ~ c..,.~ ~: 
A 

= ;. cA"'"'\~" ""~ -= ~ c.( ""~ 
with 

Now (P ) .. 
'j- a,. 

that is 

\; = 
Using 2.3 and 1.9 we get 

<s ..,. = '""<"" e~ ""t~) ?"t -----
\""' \ J 

2.2 

2.4 

using 1.13 

'"" ~~ .:::;..-=;. = ~-~ '"" t ~ ï,. "'\ c ~ s" <<;~--:.·1~~ 
'3...~ ~ ~ = ~o~-' 2. c:: s,) ~· 1.,.. ("" s, ~t~ ') 

2
_
5 

_ '"" \) te~) 
where :r. 1_ -

J '\"~ ~~ 
2.6 

is the ditferentia1 cross section. This is evident from the 

interpretation of~~~ , see discussion tol1owing 1.10, and 

also trom the tact that .14 c M (& t) has no radial dependence. 
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~. Scattering ot a Partiale ot Spin S trom a Target ot Spin T 

The wave tunotion which desoribes the scattering ma7 

be written, negleoting1 tor the moment an7 antisimmetr7 in 

the case of identical partiales. 
o( ~ ~ • 

"\ ~ : ~ . ~ . M Ç o( + _:\ ~~ ~ ~ M . ç_ 0( 

0 ,- "'- ""\:\ d ,- "t\ ~ '~" J\ ~.1 
~ ~ ~ ~ 

w1 th '\a- the '() spin oomponent of the state ~ and Ca-

the ô~ spin component or the incident plane wave state. 

Mji is the ji thelement of the M-matrix and~ and 1 are the 

relative ooordinate and momentum in the centre of mass. We 

use the following hermitean operators as our basis. 
~ ? ~~ ~~ 

'l.l-t) 'l ~> 'lt Cj .) cr Q""' "c:: • The <r.J cr "c are essentiall7 the 

spin operators for the incident and target partiales respect­

ively. For exaaple, it both partiales are spin 1/2 these 

will be the Pauli spin operators. From equation 2.5 we then 

obtain for the scattering or a polarised beam from an un­

polarised target 
~ 

c::- cr ==;. :t. t ::. 

~ rJ- = Ioj- + N-\ <cr~ 
~ 

Where we have written c:(f" ~· tor 

;.2 

the initial polarization, Ir 

for the final cross section, and Iof for the unpolarized final 

1 This etfect is not pertinent to our discussion, it will be 
shown in a specifie example that the incident and target 
partiales may be treated as distinguishable if the M-matrix 
is suitably antisymmetrized. See Section II. 
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cross section. 

We also have trom 1.13 the relation 

:ror the densi ty matrix tor th.e scattering ot a polarized bee 

from an unpo1arized target. 

4. Single and Double Scattering Experimenta (14) 

We have an initia11y unpolarized beam incident on an 

unpo1arized target. The single scattering then gives 

tor the cross section 

:t.o \ .:: N -\ \M C. ~\ ~ ~) 

and tor the po1arization atter soattering 

~ \ t-) 
:Co\ <<r.:> :. N- \.v. ( "'\ M, <f") 

1 

4.1 

4.2 

A second scattering is then used to ana1yze the ettect ot the 

tirst, we obtain tor the cross section using 3·3 

~ ~ t 
"1:.1 = ro~ ~ N-\ c: cr~ · \"""' C. "1~~ "" 4 ) 4.3 

~ ..,.. ~j) 
The quantities <.r>\ and '"" ( "'\ tr .-, are evidently measures 

ot the po1arizing and ana1yzing powers ot the target respect­

ively. We will show that both ot these quantities oan be 

described in terms ot a single variable ~ <..&,) • To do this we 

observe that 

4.4 
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~ 

where ~\ is the direction ot polarization, defined by the 

equation <= 't 1 = \ < '}~ \ ~ \ 
we will now show that 

4.5 

~ where n is the normal to the soattering plane. The proot ot 

this statemen~A involves certain general invariance pro­

parties of the M-matrix. (14) (31). 

We begin by expanding K in terms or a complete set ot oper­

ators in the spin space or the incident partiale. 

t\::: ê)l-1- t .~ 4.6 

~ 
where g and h are operators in the spin space of the target 

partiale. 

Binee Mis a funotion of~' angles whioh describe the 
~ .., .... 

relative orientation of p and p, the initial and final 

relative momentum of the two partioles, it must therefore be 

independant of the euolidiean system used to desoribe the 

soattering prooess. It must therefore be invariant under ro­

tations and space inversion. It must also be invariant under 

time reversal, i.e., the operation which changes t ~ -t, 
~ ~/ and simultaneously p ~ p , since auch an operation does 

not alter the process being described for a oonservative 

system, i.e., a system for which direction intime is not 

significant. Thus g must be a scalar in coordinate space, 
~ 

and invariant under time reversal and ti must be an axial 

veotor, and change sign under time reversa!. Evaluating the 
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wbere the primes indicate traces in target space. The two 

expressions are identical except for the final term in each 

trace. Now because ot the properties of~, these last terms 

must transform as axial veotors and be invariant under time 

reversal, however when the indicated traces are evaluated we 
~ -+~' ..., 

are lett with a tunction ot p and p. The only funotion of p 
~/ ~ _.,,. 

and p which transforms like an axial vector is p x p. This 

function however changes sign under time reversal. We there-

so that 

which is what we wished to prove. 

when evaluated must be proportional 

FUrther the remaining trace 

to 1 x t / = ~ ~l. s~ e so 

= ~ ~ g""" e ~ 4. 7 

Where « is an arbitrary tunction of the scattering angle. 

So from 4.2 and 4.7 we obtain 

\"" c M '\ t ~) = '1\1\ \. "'\ t ~ t) -= \'4 r o Pt~) ~ 4. a 

~ 
Where 9l'&) V\ is the polarization vector. Thus we note that 

in the soattering of an unpolarized beam from an unpolarized 

target, the final polarization is a tunction of e 
turther is normal to the soattering plane. 

, and 
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The cross section after the second scattering equation 4.3 

may now be wri tten 

1: l. = I o 2.. ( \ 4- P, P~ c. a:> c\-,'l..) 

where ~ ~ .l 
'Y\\ . 'V\~ :. C..n ,.,~ 

The measured quantity is the asymmetry factor e defined by 

--
r l.. < e ~ J q '1. -:.o) "' :r, <. e ~.. ) q, ,l. .. rr) 4.10 

- L-'- - L \~ = ~ <.9,) pl. l9z,) -
\..,\... -\- l..R. 

he re (LL) signifies a first scattering to the le ft and a 

second to the left. Similarly for (LR). The quantity e 

evidently gives the left right asymmetry in the scattering. 

If $\ is chosen equal to e
4 

and if both targets are ident­

ioal, then neglecting the energy loss in the first 

soattering 

et') : 
p2. c.e) 

\ p (Q) ~te) --
which determines P<.e) since e..Le) is measurable. The 

geometry of this experiment is given in Fig. 2. 

Further information about the M-matrix may be obtained from 

triple scattering experimenta. Such experimenta are designed 

to determine how the second scattering changes the magnitude 

or direction or both of the polarization of the scattered 

partiales. Thus the first scatterer is a polarizer, the 

third is an analyzer. 
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5· Triple Scattering Experimenta (14) (32) 

Atter double scattering the polarization of the beam is given 

The first term we immediately recognize from equation 4.8 as 

being 

~ 
The last we seek to evaluate. We write the first <r in the 

~ ~ 7 
trace in the ""1..)~ ) s representation, the second in the 
~ ~ ~ ~ l.. 
'V\l..> \.t / > s: representation. (See Fig. 1.) This is more con-

2.. 7 
venient since the first ()"' is roughly spealcing linked wi th 

the first scattering, and the second is linked with the 

second scattering. We there:f'ore get for the last term. 
\ r' ~ ~ i' -7 ~ ~ 

N- '1.. c:::c:r::> · V\2. \N\("'2-G"'"'l-~l. (.<l"' ~'- +<r'~'~/_.~~~"'')) 
~ -+' 2. " 2.. s.~. l. 

4- < cr-:>, . ~ l. "'\ ~ ( Ml. <r ~ "'\~(."V\ ~ 1. ~ ~~ ' t" + C '11 J) c: 2 
2. 1. l 1 .st. 2. ., • . 

"'" < ~>, . ~. ,N\ c \"\'l.. a; \o-\~ c.~"' ~ + ~~_, e 1 ~q /tl J) 
.. a." '2.1. l.' L.l.. 

The various traces which appear in the above are observables 

and functions of ~\ ) e ~ > ~ l. , they must the re :tore be inde­

pendent ot the euclidiean system which we use tor the 

description of the scattering process. We there:tore conclude 

that all pseudoscalar traces are zero. Let us look at the . t 
transformation properties of the quantities involved. ~a.JMl. 

and~~~ both transformas scalars in coordinate space, wh1le 

G'"''C >G""~I <rs and G"s, transform like pseudosoalars. 
&.. .&. ) 2. 1 
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Equation 5.1 therefore reads 
_, ~ ~ ~ 1 ~ -? t ( ~ 

~ 1.. <:(J~ .'V\1. \~(~l,.()'Y\l. t-1\l.<f'"Y\) "v\1.-\- <<l~·~1.l\M f"\2. \(1 

M t(lj ')'?./ ' ~ 7 ~ 
• ' ' ~z. ~1. ~ \/\1\( ~l. ~'<1. "\ ~s~) S(] ~ <a-', · ~1. (. 5.3 

\ J\1\ ( 1--\ • ~S1. M~ ~'\~~) ~~ ~ \ ~ ( M 2. <rs~ t'\: usi Y~i JJ 
Or rewriting it in a more usetul form 

-?-re ~~ ~ 
:tl. <a->,-= ~0'2.. 1.. P,+J) <<r~ ·'V\L) '"v'\1. T 

~ ~ ~ -7 -71 
( À. <a-:>, . \; 

1 
~ R < cr /, · S, ) ~ ~ +- 5. 4 

( À./ <::1-), . !tl- + Q_/ <~ >\ • tL )K;: s 
Where 

? --
J) --
R. -... 

A --
RI --
~~ --

T "'" (V\ '\t <l"" ) / \"" CM. t'\ i") 

'"" ( ~q"""M"t~'-\) 1 \""" (~\-~\") 
'~ ( ~rs \\ +GS,) / '""' (~ ~t) 

\"" ( ~ IJ '( ~ t «"5,) / \IV\ ( M M-t) · 

'"" (~<rs~()~) 1 'N\ (\-\Mi:) 

'"" ( ~q-~ Mtû~') j '"" (~1-\t) 

For simplicity we have dropped the subscript 2. throughout. 

Thus the triple scattering experimenta will involve five new 

~antities. As will be shown later in Section II, all of 

these quantities are not independant. In tact tor particles 
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ot equal mass we have (nonrelativistioly). 

A-+ R." 
A;-~ 

As is evident from equatioœ;.; and 4.5, polarization along 

the direction of motion oannot be deteoted in a single 

soattering, since the analyzing term which gives rise to the 

asymmetry in the analyzing portion ot the scattering exper­

iment is given by 

pb 'J: 0 ~ <:. ~ ~, . ~ ~ 

Triple soattering experimenta are therefore designed to 

measure either 
~ ~ :r l.. < a- ., . """ 

l. ~ 

or 

~ -7 = "J: 0 '1. ( Ç>l. + ..J) <:::" (j' :>, . ""' 2. ) 

~ :"'? ~ ~ 
= :t 0 ').. cA <cr-~ . ~ ~ 4 ~ <cr- '\ . s L ) 

~ÙÀ The corresponding asymmet~s in the soattering are denoted 

by e ~\1\. and e.)S respect! vely. The geometry of these exper­

imenta is given in Fige. ;, 4 and 5. 
~ ~ 

Thus in the ~~~ experiment ""'~-:.. 'i "-'\
4 

i.e., the second 

and third soatterings are in the same plane. We obtain tor 

the cross section and lett right asymmetry • 
...:, -7 

T t\ ~ C. ' + p~ < cr- ~ . ""3 ) 

- (-7 -? ) -..L~ ""'3-= V\l. - .l.J (V\~: -'V\,) 

~ ~ 7 ~ 
r ~ ('Y\~=- ""L) ~ I~ <..""~=-'Y\ 4) 

L \... - LR 

\_ \.. ~ \...R 

5.8 
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Using ;.7 this gives 

'l. roJ 

e ~"""' -::. p~ ( 92. ~ .J) \-)\ c. cr.> ~tl.) 

-=) 7 ( \ -\- 9, p2.. c. a:> <\ \l,) 
c. \P ~ 't:::. "''."Y\ 1. 

Thus if we choose ~ : o or l\ i.e. , all three planes 
'2. 

,5.10 

parallel, we oan determine D from ;.10 where we of course 

assume that the quanti ties 9-l Ç>l.. > ? 3 ?, l 9, Pl.. ) 

have all been determined trom double soattering experimenta. 

Alternatively we oan utilise both values of <\- \'l {see Fig. 

4), assuming that the tirst soattering is to the lett, one 

then has four soattering intensities LL,LR,RL and RR where 

RL for exasple is the intensity with the second and third 

scatterings to right and left respeotively. Using ;.10 we 

obtain 

- (L l.. + Q.. L \... Q. - Q. R._) -
(L. '- -\ Q. L -t L R. -+ Q. Q.) Ç>~ P, 

,5.11 

We notice that here only one double scattering paramater 

need be determined, i.e., F1F3. 

The paramater D is oalled the depolarization of the scatter­

ing. It is a measure of the extent to whioh the seoond 

soattering depolarizes the beam. To illustrate this let us 

take P1 : 1 the beam completely polarized after the first 

scattering, and choose C (:) .l ::. ± \ th en from .5. 4 
""'2. 

~ :: ""'2. c. {)" ~ J)) 1 ( \ ± (.),) 

<"t, -
L -

and 4.9 

,5.12 
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We see that D is a measure of the amount to which the second 

scattering depolarizes the beam. If D : 1 there is no 

depolarization. It D = P,_'l.. the tinal polarization is the 

same as it the initial beam were completely unpolarized, how­

ever D may be less than this so that it may not represent a 

depolarization but an actual reversa! of spin. From 5.12 
-? 

using the tact that \(<:r)
2 

\ ~ \ we obtain the limi ts on D. 

In the second triple scattering experiment we seek to measure 
~ 

the s: oomponent ot the polarization atter the second 
~ ..., 

soattering. We theretore choose 'V\~ : ~ ~: i.e., the 

second and third scattering planes are normal to each other. 

- ~P, s~~~~ 
-

\ ~ Ç), ?2. C.u-;)~l:l., 
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Tb en 
~ ç:>, p~ s ~ ~ \'l 
, + 9, 0 4 C.d':>~,l. 

We now choose ..l - -+ '1\ i.e., the f'irst and second 
"t \2_- - 'i. 

soattering planes are normal to each other. so that in the 

entire experiment, each of' the three successive scattering 

planes are perpendicular. We then get 

Since P1P3 may be determined t'rom double soattering exper­

imenta, R is obtained. In order to get soma physieal picture 

of' what R is, again consider the case of' P1 = 1 then from 5.4 

w1 th ,4._ ":. 1\ 
,.. \1. -

2.. 
-7 n4 ~ .... 

<<:r/2. -= r 4 "Y\ 1 -\- R s}. + 5.21 

Theref'ore we see that the polarization has been rotated out 

of' the second scattering plane, giving it a component P2 in 
4 

the direction~,, R gives a measure of' this rotation, it is 

theref'ore oalled the rotation paramater. From 5.21 we get 

-- 5.22 \ R \ < 

We see theretore that triple scattering experimenta ean deter­

mine D or R, the f'irst experiment pertormed wi th ~ ,4:. o or 1\ 

and all three seattering planes parallel to each other. The 

second experiment is pertormed wi th ~ '1.-::. "! t and the 

successive planes are normal to eacb other. It we wish to 

measure either AR/or A~ we must utilise the tact that the 
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partiale which we are observing has a magnetic moment, so 

that it is possible to rotate the spin direction of the 

parti ole w1 th the aid of a magnetio field. If we wish to 

measure A, it is necessary to rotate the spin atter the first 

soattering in suoh a way that the polarization gets a oom-
..:,/ 

ponent along the direction ot .motion ~\ • In order to do 
~ ~l' 

this, a magnetio field normal to the ~, ~, plane, is 

placed between the first and second scatterers. In a similar 

manner a magnetic tield plaoed between the second and third 
~/ 

scatterers will rotate the ~2. component of the polariz-

ation, i.e., giTe it a component perpendicular to ~: • 
/ ~ 

In this way, R may be obtained. In order to measure A, we 

need magnetic fields both between the tirst and second 

scatterers and between the second and third scatterers. 

These experimenta are very difficult to perform, and to date 

only the A experiment has been performed, see for example 

reference 15. For turther details of these experimenta, see 

reference 14, and the references contained therain. 

6. The Tbeory ot Correlation Experimenta (14) 

In these experimenta, we look at the spin or the 

scattered partiale in correlation with the spin of the reooil­
~ ~ 

ing target. The pertinent operator ~ ~~ , has an expect-

ation value given by 
~~ (" t~4 ~ 

:I: .L <::7' a- ot, '/ : N -\ \.\IV' ( ~ ~ o- <)~) ~ <a-/~. 
J ~ :t~ ~ \. 6.1 

TM.(.~~~ <T' <r~)j 

Where the target partiale is assumed to be initially unpolar-
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ized. The subscript t reters to the target partiale. 

Now we can deteot po1arization ot any partiale in any direct­

ion normal to its direction ot motion by a single scattering, 
~ ~/ 

i.e., in the directions n and s tor the scattered partiale, 
~ ~ / 

and in the directions n and St tor the recoi1ing target. 

Non-re1ativistic kinematics readily yields 

See Fig. 1. 

We therefore can measure the tollowing eomponents ot the 
~~ ~~~~~""'~? 

dyadic <r <Jt • 'Y\ 'Y\..>\<~..>~ t> ) ~ ? . Considering 

on1y tbese components, and restricting ourselves to compon-
4 

ents of C::::G' >. normal to the incident direction, we obtain 
~~ "'- t ~~ -?~ r;. (<ra;) :: N-\ t_ \ ~ C. "'\ \V\ G'"""' <r"t"") 'Y\ 'Y\~"'\~ ( M Mi'cr\c' <r\"') \(''V\ 

~ ~~ t "~~) + '""'CM~ û'<"G"'"~?)\("? +\..-v. (""M cr'-"u-t~J ""'? + 

<.;. ?.._ . ~ (_ \"" ( \J\ li""' Mt li""' li"t ,.) ~ ~ + \..,. ( 1'-\ li""' 1--\ 'T Ir'< li"~;_.,) ~ ~ 
:t ~ ~ t ~ ~ 6.2 

-\- 'T ~ (. \"\ <:r V\ M (f' '«'<rt \)) \<' ~ -\- \-'\A ( ~ G""' M <r..,.. G"" ~ ~ ) 'V\ ~ J 
~ -) i' ~ ~ t ~~ 

+ < c::r ~ • ~ l \N' C lV\ <::rs '"'\ ()"""' <J''\: , .• , . .) '\1\ V\ 1- .,. M l t'\ G"' s ~ o-\<'"~ "") \<'"" 

t ~4 t ~ ~ ). 
T- \"" (~cr;'~ ~<'" <r~~) \(" f> + '"" ( '"'()s ~ r~ <r'tp) ~ ~) J 

A number ot tbese traces are zero, by virtue ot the space 

inversion arguments of Section I, s. When these are eliminated 

we are le tt wi th 

_, ~ i t lJ :Ct <a-()~') = ~ -\ t_ C. '"tM ( \'-\ 1'-\ <r \-\<>"<: "') + <cr-..,..)~ \N' ( t-o\t' '1\"" r"'<r~ 
~ ~ \- 6.3 
""" V\ -\- t \ J\Â (.tv'\ "'\ cr'<"" a-t~ ) + <.. G""" V\ 1 ~ T""" ( \\-\G"'"" Mi' 6",< (\ ~)) ~ ~ 

' (. t 4-7 -r ~ <<r"~.,~ \"" ~ ~ M G"""' crtf> ) 'V\ fi> + <û's ') \J\Â (\'\".sM ~',("G"'~""-) 
. ""' 

~~~ 



Where 

c.'t<E> 
~ 

c."'""' 
p 

C'<'p 
Ç> 

~~V\ 
Ç> 

c_ 'V\ p 
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= \IV\. ( t-A. ~ t If\., <r ~ V\ ) 1 \"" ()V\ ''-' t) 

:. \1\A, (\V\ Mt~~ a-t~)/ -r"""' (Y\ \\-\ i') 

:. \""' (~~Y\"" tG'"' ""<rt\1'\) 1 '.1\1\ (\V\ '"'') 

- '"" ( \'-\ G""" """a-~ Q'"'t. fl) 1 \.M. l~ ~ 1) 
- \""' ( ~ ~, ~t <r \'('" f'-'(.. "') 1 "'t""' ("" ~ 1) 

: \ "" ("' G"l> 1"\ t (""' 11\: f>) 1 '"" l ~ ~-·;'t) 

6.4 

6.4a 

We thus have six kinds or correlation experimenta, tour with 

a polarized incident beam, and two with an unpolarized beam. 

The target of course is initially unpolarized. We will only 

be ooneerned with the latter two experimenta. For these we have 

~ ~ -7-? -7~ 
<:" (J û'~ > ; c 'V\ V\ V\ V\ + c. \<' ~ \(' f 6. 5 

It will be convenient to reter to the scattered partiole as s, 

and the target particle as t. The density matrix tor these 

two outgoing particles incident on two spin zero analyzers, is 

6.6 
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~ 

Where we have used tor our complete set of opera tors j. s "l.~ l "1 s <r~ 
~ ~ -? 
<r~ it .> G""~ G"' t all mul tiplied by 'l. 1 :l.. 2- where 1 and 2 

refer to the two spin zero analyzers, with 
~ t~ 
p~ = T-v. (V\~ ~.5) /\"A ( M ~t) 

~ ~ =- \.v. ( IV\ ~ "'t ~t) 1 \"" ( "" """) 
the polarizations of the scattered partiole and the reco11-

1ng target. In obtaining this we have used equation 3.4. 

The M-matrix tor the scattering from two spin zero targets, 

is then given by ~ ~ 

'\C) <.'.sc\s'J ~~ct~)~<-~,(~~)+ ~,l~s)~.·~s) · 
(. \1. (~\-) + ~ 1. te~) "f.~e ·~Ac) 

This result will be derived in the next part ot this section. 
~ ~ 
Ns and N~ are the normals to the two scattering planes. 

The ooincidence cross section is given by 

':J: (. ~ ..\. . ..l. ) _ 'M. ej- l ~ ~ ~ s J & ~ c\ ~) 
)' s\5 J&'c""~ - 6.8 

'""t~ 
Where r jo ( ~~ ~' J ~Je~~) c!~~~Ç2.-t is the probability that 8 

soatters into ~Cls about ~s <\s while t scatters into ~~'\:' 

about ~-':. c\ ~ • Using 2. 3 we obtain 

:r~<~~~~.J~&c~~):. J:~l~s):r:t& •• ){ '1.+ ~ 
-i ~ ~ ~ . ~ ,.a 
~~.\-)s. at~, ~.5) + ?"c-. ç:>Jco te~ q..ac) + C.""""' l~~o P""' )· 6.9 
~~ ~ 7 ~~)1). 

(."-'\'V\) -\. c.. ~~ ( Ç>$;,0 ~~) • <. ~ ~ .j 

with 

r, s <.&~) = \ ~\ <. e$) \ L -+ \ ~' t-es> \7. 
I. ~ ltr~c) :. \ t l6,) \ 4

-\- \ ~ l. t ~;) \'l.. 
~ " 

"rosl~s)P~o<.e~): C.\,l~~) ~~<.~~) ~\~t&,)~,t&s)) 6.10 

~.s l&.s c\s) 

:r ~ t'\) t· ( ~~..) : c -\-2. til,_) ~: t ~~.) 4- ( \!~,) 'à~ tIl~,)) 
N ~ l9.~c c\_..) 
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The quanti ti es :r 0 S and are merely the cross 

sections tor the soattering of unpolarized beams from spin 

~os and -iot zero targets, while ,_ ~ are the polarizations 

atter scattering. Tbese resulta will be derived in the next 

part. We bad 
s ~ ~~ 0~ -7 

"J: -! ( ~ .s ~ S ; ~ Je. ~ "t) : r o 'I:' 0 t 1. -T- ?.s 0 Ç>~ · N ~ ~ Ç> t ? -'c. • Nt 

f"'\[) o ~ -7 ~ 7 r"'\o no C. j ~ ~ ~). ""' , .... ~ P .~e c"""Y\ N ~· "" l'Il -\."' + , .... ~ ,_ ~ \<' ~ N s . '<" ~. ,... ~ 
~ ~ -7 ~ 

C a> ~ ~ -: N 5 . """ :> C ($") '\ .ac. :. N ~ . """ 

Write 

--
--

We will now define the correlation experimenta witb whicb we 

will be concerned • 
...=, ~ 

ltot ing tha t N <. & '\ :. o ) :. - N ( & ' = 't\) 
4 ~ ~ ..,-7 

we get with NS ~ ~'V\ and N \::::. ± ""' 

and with 

--

\..LoT- R~-f<\.._\..Q \ 

\... \... + R «.-\ Q.\..-\\..-R 
~ -7 ~ 

:. "!.. \'(' J ~ ~ ~ ~ / (:> 

\..\...lr~<t-a.\...-\..'R 

\.\..;-~((. -\Q\..4\.Q 

\ 

6.11 

6.12 

This then detines the two experimenta. They are shown in 

Figures 6 and 7. 

The quantities Cnn and CKP evidently have a simple physical 

interpretation. 

Onn gives a measure of the correlation of the spins or a 
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scattered partiale and the corresponding recoiling target in 
~ the direction n. Thus a small value ot Cnn would mean that 

it the spins of the soattered particle and the corresponding 

recoiling target were measured in coincidence, there would be 

very small chance ot both having a large component ot spin in 

the direction ~. 
It however we have a large value of Cnn' this would indicate 

that there is a large probability for both partiales to have 
4 large components of spin in the direction n. 

In a similar manner CKP may be interpreted, where the direct-
~ ~ 

ion K would reter to the soattered particle, and P to the re-

coiling target particle. 

7. Scattering trom a Spin 0 Target (14) (33) 

Prom equation 4.6, the M-matrix is given by 
~ 7 d * ~. û 

where g is a soalar in coordinate space, and invariant under 
~ 

time reversal, and h is an axial vector and changes sign 

under time reversa!. Evidently if we choose "t and 1" and 
~ ~ ,1 
px p as our ooordinate axes, the M-matrix oan be written 

~ ~ â (e) + ~<.e) ~·"-' 7.1 

Here g and h are arbitrary funotions ot the scattering angle 
~~ ~7 

and energy. The ter.ms <j'. f> and cr. ? / are ruled out sinoe 

they change sign under space inversion. 

From equation ;.4, ~d equation 2.;, we get tor the cross 
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section tor scattering of an unpolarized beam. 

Also the polarization atter the scattering is given by 

equation 2.5. 

We obtain 

--
This proves the statements in the last section that :CoS,'!'; 

were cross sections for scattering of unpolarized beams, and 

~os~ ~~t were polarizations atter scattering of unpolar­

ized beams. 
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_, -
8 s 

- \ 
n 

~ 
\ 

\ _, 
-s = -if 

P'ig. 1. Geometry used in the various types of double and 
triple scattering, and correlation experimenta. 

Here the various quantities are defined as follows. 

~ - _, - _, - - -~ - - - _, - -/ 
r .. p + p , K : p - p , ~ :: k K k , s:. n JC k , s: mc k • 

.. ,, .... fll ,~~- ~~ lifi'ïr'l 

-~ -Where p and p are the final and initial relative momenta, and 
~ and K~are unit vectors in the direction of the initial and 

final lab momenta. 
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Fig. 2. Typical double soattering experiment for detecting 
the polarization produced in an unpolarized beam by 
a single soattering. The polarization is in the 
direction nl, and is detected by the assymetry in 
the second scattering, which is proportional to 
P(61) P(62). 



kl 

Fig. 3· 
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1. 

The first type of experiment for the measurement of 
the depolarization D(8). The beam incident on the 
first scatterer is unpolarized. The first scatter­
ing produc~s a comPonenent of polarization P(6) 
normal to kl and k2• The effect of the second 
soattering shown, is to alter this component by an 
amount proportional to D(62}• The third scattering 
possesses an azimuthal assymmetry, which enables us 
to obtain a value for D(62). 
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_/ 
~2 w:th 
n2:nl 

1 ... / 
/ 

Q)'- -' - -
--~hn3:-n2 

Fig. 4. A second type of experiment for the measurement of 
D(8}, which utilises botha left and a right scatter­
ing at the second scatterer. This type of experiment 
has the advantage that only one double scattering 
paramater is necessary, in order to compute D(O) 
from the results of the triple scattering experiment. 
In the other experiment Fig. 3., three double scatter­
ing paramaters are needed. 



Fig. 5. 

1 

'---
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An experiment for the measurement of the rotation 
paramater R(9}. The first scattering produces a 
polarization of the incoming unpolarized beam, in 
the direction n1. For simplicity~ the incoming 
beam is not shawn. The second soattering pro~uoes 
a component of polarization in the direction s2, 
which is proportional to R(92). The third scatter­
ing, which is carried out in a plane normal to this 
direction, exhibits an azimuthal assymmetry from 
which R(e2) may be obtained. 
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.. 
n 1 s normal out .or 
paper. 

Fig. 6. 

.. 
-n 

... -+ 
Nt ::. n 

An experiment for the measurement of the correlation 
paramater Cnn(S). The incoming bearn is completely 
unpolarized, as is the target. The scattering 
produces polarization both of the scattered particle 
and of the recoiling target. This experiment measures 
the n component of polarization of the scattered 
particle in correlation with the n component of 
polarization of the recoiling target. 



Fig. 7. 
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-n 

An exr.riment for measuring the correlation paramater 
CKP(e • The beam incident on the rirst scatterer ie 
unpolarized, as is the target. the scatteriag polar-
1zes both and this experiment looks at the K oom.ponent 
ot polarization or the scattered partiale in correl­
ation with the P aomponent of polarization or the re­
coiling target. This ie done by scattering both 
partiales orr spin zero analyzers, with the soatter­
ing planes normal to K and ' respect1Tely. 
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SECTION II 

THE FORMALISM FOR NUCLEON-NUCLEON M-MATRIX CALCULATIONS 

1. The Nucleon-Nucleon K-Matrix (15) (34) 

The base matrioes which deseribe the spin space of 

two spin 1/2 particles are 
~ ~ 4 ~ 

Sv ::. -:1., 1.. 1 , l., <:rl. > <li 1. ~ , cr, ~ l. . Where 1 refera 

to the incident particle and 2 to the target. 

As mentioned before, the M-matrix must be a scalar under ro­

tations, space inversion and time reversal. It must be 

formed trom contractions ot the above operators with the 
~ ~ ~ 

vectors which des cri be the experiment, namely 'V\.) P > \<' • 

Let us list the properties of these operators and vectors 

under the three operations mentioned. Here a plus will de­

note no change ,under the operation, while a minus will de­

note change in sign under the operation. 

Spa ce Time 
Opera tor Inversion ReTersa! Rotations 

j_,1.. + 1-
""" ~ l. 

~' Ç2. + - """" 
a-, 1.1. -r - -+ 
~ ~ 

~ O""l.. 
.... . -+ + 

~ .... + V\ -
~ 

""' " - -
~ 
\< - + ~ 
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We can then write the M-matrix in the rorm. 

t'\ -:. o.. te) ~ c 'e) t~·\..,._ ~ ()l.V\ 'J + \rl~) l<i'\""- <ï~""J 

-+'\IV'\ <..9)G'\V\<S'l.~ ""â Le) t~i'\~~~~ +G"\~~\.'f("'J 
~ ~ l6) t. G"\ f ~!").. f - (j, \("" G".z. \("' J · 

1.1 

where c:.. ce) .... O,..t&) are ar bi trary :runctions ot e and the 

energy. We will now show that tor charge independant torees 

• Consider 

i.e., acting on a triplet state. ~ 
Choose the n direction to 

be the direction ot the z-axis, we then obtain. 

thus a triplet state is transtormed into a singlet state by 

this interaction. Thus since J the total angular momentum, 

and the parity are good quantum numbers, this means tor ex­

ample that a 3Po state would be transrormed into a lPo 

state. Sinoe tor nucleons the total (including isospin) 

waTe tunction must be antysy.mm.etrio, this means that we must 

change the isospin tunotion trom singlet to triplet. But 

charge independance is a statement ot conserTation or isospin, 

this interaction is theretore not charge independant. We 

theretore deduce that \r c.e) = 0 tor charge independance. we 

theretore have as the final torm ot the M-matrix 

~te.)') = o.. t~) + c.~&) tG"",~+<r~V\)-+'Mle)G"":"'~.~.~ 1.2 

"'"" â ( \)) [ G"', f ~1. p -;. (1, ~ () L.~ J + ~ l ~) t<r, f 6"l.. p .... G"', w-(i'l."") 
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It therefore appears that to determine the M matrix at a 

given value of the energy and of angle, we need to determine 

10 real quantities. Actually, unitarity of the s-matrix im­

poses 5 additional conditions on the quantities c.. (.e). · · ~u). 

This means that we have to perform 5 experimenta at a11 

angles to oompletely determine the M-matrix at that energy. 

To show this, we follow the work ot Smorodinski and Ryndin 

(35). We write the waTe tunction for the scattering process • 
.M.. ~cl· "aC4 :_ . .a.c.~ M c.tl ~~ ) ')( ~·""MiM i •-t (.M.~oo) ~ ~~ -+ "?..t - e x+ , , 'M 

~ ' 1.3 

\~ Here the partiale is incident in the direction ~ , and 

is scattered into the direction ~/ • In view of the 

unitarity of the s-matrix, the ~~ satisfy the same re­

quirements of orthognality and normalization as the initial 

tunctions of the incident wave, and form when .M. ~ CIO a 

complete set of tunctions with respect to angular variables. 

:. 1.4 

utilizing expression 1.3, the asymptotic form of the plane 

-À~M 
e --"" 

and the completeness of the spin tunetions. 

We obtain 
~ ~ / :\ ~, ~ ( t ~ / ~ Il 

._~ c ~ c'< }~~) - ~ <)~~~ ~)] -:: ~~ J'\ c~l -\c) 1.6 

''\ <. ~ j tN) ~ ~ '' 



-32-

Wri ting the M-matrix in the form 2. o<.~ $ ,> where the S J 

are a complete set ot spin operators, we then obtain the 

tollowing integral conditions. 

( ~~Il i ~~~4' ,"'\~ 
~"' J:'M o(~. N : ~J'Mc..g.-t~(\(}e )t'\ c~>~) r»J~ 

c...<.e) · •. ···~le) • 

We may obtain expressions for the tunctions Cl.. li)· · · · ~te) 

by multiplying both sides of equation 1.2 bYÇv and taking 

the trace of both sides. In this way we obtain 

representation of 

the matrices must be introduoed. The simplest representation 
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to work with is the single particle representation. Here the 

basis vectors are 

c(\ o(l : \\ 1) :' ~ \\ 

o<, ~1.:. \\-\) = <:\-,_, 

~· o(l = \·\ 1) .: <:\-\\ 
~· ('1.:. \-\-\) ~ 9-\-\ 

1.10 

where o(""' ) ('\""' are the usual spin up and down tunctions 

of the nth particle. Our basis veetors are theretore de­

noted by a couple, while operators will have matrix 

elements denoted by a pair of couples, thus 0 = 0 , 0 1-

will have matrix elements 

< ~ \r \ 0\ 0 l. \ c. cA'> ::. < ~ \ 01 \ c.) < \t- \ 01\ c\) 
1.11 

Then, taking the usual representation of the Pauli matrices, 

letting the 3-axis point along the direction ot the incident 

beam, we get for the various operators whioh appear in 

equations 1.2 and 1.9 



"'l-:: 

~ l. "'t'\ --

-... 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

Cos Q 

Sin Q 

Sin Q 

-Cos Q 
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0 0 0 -ie -i~ 

0 0 0 0 (t',": 
iei~ 0 0 0 0 

1 0 iei~ 0 0 

0 -ie -i~ 0 0 

iei~ 0 0 0 

0 0 0 -ie 
-i~ 

0 0 iei~ 0 

0 0 0 -e -2i~ 

0 0 1 0 

0 1 0 0 

-e 
2i~ 

0 0 0 

1 0 0 -e 
-2i~ 

0 -1 1 0 

0 1 -1 0 

e 2i~ 0 0 1 

Sin Q e 
-i~ 

Sin Q -Cos Q e - 2if{1 

-cos Q -Cos Q -Sin ~ e 
-i~ 

ei~ -c,os Q -Cos Q -Sin Q e -i~ 

e 2i9$ -Sin 9 e 1~ -Sin 9 e1~ Cos 9 
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The M-matrix elements most easily expressible in terme of 

phase shifts are those in the singlet triplet represent-

a ti on. In this representation, the M-matrix may be written 

~\ 0 "" \ _, 0 

tv\ 0 \ Moo \'-\ 0 -\ 0 

""-\ \ M-\o ""'-'-' 0 1.13 

0 0 0 ""' $ç, 

the subscripts \ ) o l - \ ) S refer to the basie 

~ \ = ~,-<lo 
')( -\ ~ ~\ ~ 1 1.14 

")( 0 :: ~'1. C.o<,~1. ~ ~\4(1..) 

~ ~ :. ,f" <.Cl(\~ 1..- ('\ \ .( 1. ') 

To obtain the traces needed in equation 1.9 we transfera to 

the single partiole representation by means of 

<~\r\~\c.o\':>; <o..\r~? ?'""'"::> 
c::: v \ c.o\ :> 

using equation 1.14 to evaluate the Clebsh Gordon oo­

ettioients. We obtain 

M \\ .L u , 0 ' u "-' \ ~1. ,-, t{l. q\O ,-,,_ 

\ "' \ : t('l..'"'1>\ .l~(Mo~MssJ ~ (M00 Msç)t{1. Mo-\ 

.l tv'\o\ .L (~oo t'\s~) !. (t'\ot>; Ms~) ... ~ t-\1)-\ 
~ ~ ~ ~~~ 

""-' \ .l. "' .. \ 0 4: ("\ -\ t> '"-'- \ ~~ 1'\1.. 

1.1.5 

1.16 

Oomparing this with the matrices equation 1.12 out ot which 
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These four together with\\1\oo and '~ss give six M-matrix 

elements. Using equation 1.9 we may obtain the five 

tunctions t;.... • • • • . ~ in terms of the s inglet triplet M­

matrix elements. Inverting these equations and eliminating 

the tune ti ons c.. . . . . l,.. we ob tain the following relation­

ship between the ~v 

J{î' (t-\,~+Mo\):!,(l"\,,-t-\,_\-Moo) it ~ 8 
s~ & c~r:>e w h \ ; o 1.1 

The tune ti ons ~ · · · · ~ in ter.ms of the \~ v are gi ven by 

0.. : \ ( 'l. M''+'"" o o-\-- t\ ss) 

,. - l. ~(~,"-\'-\tH) 
- - 4 {l. ~ 

_ l. t _ 4. ~ , _, ~ M o o- '"" s t,) .. '-\ \;: 

a- ":. \ ( ~ ,, + tv\\ -\ - \\.1\ ss) 

Jrom Section I e,uations 5.3, 5.4, 

~ ( ..L. \ ("",,-t-'\\-\- t"\ 0 0) 
'"\: c. If) & ) 

-: ~ ( ~~ \ ( t-'q~ ~ '"' 0\) '-\ '- s~e l 

with ~: o 1.18a 

6.3, 6.4. notioing that 
~ ~ 
S"' = \'C" we obtain for the quantities ot physioal 

1.19 
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Now it is easily seen that 

~ ~ ~ 
~ = - ~~ e \< ~ C.<n ~ P 

and ~ ~ l. ~ 

t = s~ ~ P + cc1) t k 

whenoe we obtain the following. With <=\ = o 

To = 1, (\M\\\'1.-+ \M, 0 \\.\M 0 ,\'l.+\M\-\\l.)+\(\Moo\'\\Mss\,_) 

"'-:::ï . *' "l..o Ç>:. ..!. '4.. "\.. ( M \ o- Mo1) ( tw\ ,, - M ,_, -t \-1o o) 
4 

"r o .J) : -i '4_ { C M'' - \~ ''"'') ~ 0 4- ( \'-\ '' + \"\ ,_,) ""~.s -2. ~ o\ t1 ~o Jr 

:t'() 1<_ :. i C. 0:. i ~ t (. ~ o 0 + ( C. o & -\ ) ~V \.1\ '.5> ) ( M '' -\- M \- \ ~ H S S j 
+ ..('1:' * ">- s.w. e ~e CM 'o +Mo,) Mssj 

1.20 

al.so 

"Io = \o.. \'l~ \""'\4~ '2. \c\"l. ~ l.. \~ \ '2. ~ '\.. \~\1.. 

'I'o? :. 'l. «.. e.. ~· <."" + w-.) 

:to (\-J)) ~ "\ ( \~ \l-\~\'l.) 
~ 

'!oR~ \_\o..\~-\'M\2-~~~~~ c.~t4-'l.~À<.~~-'M)~"""~ 

-roc,~~ ~ l\ R.t.. A ~ ~~Jt-

Io (\-\..._ .. ,~)-::. \o...-'vv\\'l.-+ '-\ \ ~\'l 
1.21 

'I 1) À ~ t- ~"-"' t (\O.\ l._ \~ \:l.- ~ ~ ~ ~ ) -\- C.l/')t . '-~A C\"·\-A)"' t 
r t A 1 

: \. ~""" !. ' ~ " ( \fi..- w.. Y'" + c o ~ c \ ""\ l _ \w.\ l-\ 'i ~ ~·~ > 
~ ~ ~ 

-:t 0 '<.t ~ t- Ç..,. ~ (\~A\ 'l.- \ ""\2- 4 ~ â" j,..) -\ Co~ "l. Q..,;. (\tA-"' )*S 
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, ~ 

It is easily seen that R A R and Â are not independant, but 

are related to each other througb 

~~ t - Q. ,. -4- A./ 
- 1.22 ~ 

Q.-A"' 

Let us now obtain the singlet triplet M-matrix elements in 

terms of phase shifts. 

2. The 11-matrix Elements for the Singlet Triplet Represent­

ation in Terœs of Phase Shifts 

We will first treat the nucleons as distinguishable, 

and omit coulomb effeots. Later we will show how to modity 

our resulta to account for these two effects. The M-matrix 

is defined through the relation. 

"\- ;\ : e ,\ iJ. ;X "-..:. ~ ~A4M 
M 

~ \V\.\~· ~ ?i 2.1 
')' 

~ ? for the centre of 
~ 

where we have used.\z\1; rather than 

m.ass momentum. 

So we have 

2.2 

Where evidently 0.. 'à are the amplitudes of the spin state in 

the plane wave,see equation 3.1 in Section I. The j-.1\ (9 ~) 

are the amplitudes in the scattered wave. We wish to express 
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the M-matrix elements in terms or the phase shitts. Now 

the phase shifts are related direotly to the s-matrix. We 

theretore seek the relationship between the M-matrix and 

the S-matrix. The S-matrix is equal to the unit matrix 

plus the R-matrix. Where the R-matrix is defined through 

the e qua ti on 

~ R ( l s \Mt \Ms J t' s" "~Mt.'' w.{) 

d- ( l"' s , "Ml" '\No" ) 2.3 

Where the amplitudes a (l ~ IMl Y.,.,~) and \"tl ct w.Q. ""'s) are 

related to the oonverging part ot the incident plane wave 

aDd the scattered wave respectively, and are given by 

where ~ denotes equality asymptoticaly. 

by looking at the expansion of a plane wave in the Q. s ~ l W\S 

representation, we see that 

so that 
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so <Ms""' . ~~W\ 1 O..c"""' 1-(. ~) ' ~ s -
e.-À ~ ~"" ( Q..s w.Q.. \M~) '< L'\M L 

: ~ e.-~t{ Q.(ts'MQ..""'s )l
1S''Mt:""';) ~ tQ!~"~\"'\v.;) Y't-w.t 

~ e- ,\.Q. 'Î ct ( l.S Vw\t 'W\S .l ~~s' W\t." "N\ ~) (-!! ~M~o ~ 1. ( •l) l. 
1 ~~~ 

--
So we get, noting that 

Jo,.Q. "- \ "'} s 'tv\l 0 J . 
... Il , 

e.'"t_: r ~ A'-
~ \ \."fr' 

~ ~)- \ <:, ëÀQ.{ ~( l~ IMl.'M.s) l' s 'o '""";) C."tt <.1.~~ ') J "i. ~" ~ 2.8 
-""\ 1 1 

~.l- !.W\~:,~ W's 2.9 
~ ~ "'\ c ~ w...l) W's:, s'w.;) Yt 

with l 

"'\ (l s w..l ""'~.>s'y......;) ~ t-'~)-' ëj..l-f ( R(ls ~l wo..s ·}-~~'o w.;) 
1 1 1. 

e. llo l... { t.'l\ <...~ ~ + \) J .z.., 2. 1 Q 

The most oonvenient phase shitts are those related to the 

R-.matrix in the ls~ \M'(;. representation. These matrix 

elements are related to those in thel~ "M.t ....,.,~ representation 

by .means of the equation 

c: ls \MlW.s \ R \~S1\N\J...1~~) = a < Q.. s'Ml,~\ l ~ â \N\ a-~ 

< l ~ ~ \M à \ " \ J.! ~"?J' 'M~ "> < l' S 
1 ~/ 'M (J' \ Q.

1 
s 

1 
'\IV\ L

1 
\M { "> 2.11 

The quanti ties <q,S \M .l.w-~ \ l çâ \M& '? are the Clebsh Gordon 

ooetrioients given in ret: 36 and there denoted by 

So 

a_ ( l S \M lW\' ·) Q..
1 
S

1
1M .l.

1 
M /) : ~ / C:: l S lM l \M' \ i S d ~ 9-"> 

<::: l'~/ ~\Id,./ \M.t \ .l/ s/ ?JI 'M,; > ~ <. a- Vv\~ ~~){JI \M; l_' S/) 
2.12 

Where the prime indicates that there is no summation over 
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Il , / 
"'~ \. S . • The convenience of this representation derives 

from the tact that ~ ~~· are constants of the motion by 

virtue ot the complete spherical symmetry of the Bamiltonian. 

S is a constant of the motion because of isospin conserv­

ation, parity conservation and the antysymmetry ot the wave 

tunction (for nucleons). 

Further the complete spherical symmetry of the problem, that 

is the tact that a complete rotation or the system (including 

spins) changes nothing in the problem, implies that the 

phase shifts are inde pendent of lM a· • The non-zero matrix 

elements may then be written 

~ < ~ o l. ""'~ ) 1. o t W\a) = Rt 
({ ( t.' ~ \M~ .) l'~ w.à) ~ R ~J·. . 

R ( d ± \ \ ~ '-"" à ·) ~ ~ l ' a \M ô) : ~ 1 ~ (( ~ 
2.13 

') 
The equali ty ot Q.. + 'd 

and R _. is a re sul t of the symmetry ot 

the s-matrix, which faot is implied by time reversal invar­

iance. 

We then can write 

a.. <.~s'Ml~~)~.:' s"~t1 w..{)~ ~/<~S'Mi~\ tsa"""à > 
< l ... s" "v\ L" """"s" \ .tf s'~' 'M ~ '> C. R .t) s o ~ t tl) \ . + 

.0 o 8 2.14 

~ t~) ''~tl'' + ~ ~ ~ '\ )ct à 1: \ ~ .... d ~ \ J 

For the singlet case this gives 

R_ <. Q.. 0 ""'Q.. 0 '; l." o \Mt" o) = l < \.. 0 \Mt o \ tot wd ... ) J '1. 

Q.l )~l\f'I\L/ ~ Q.l <btt:~ W\.t..IM.L. 

2.15 
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And tor the triplet case 

Q ( Q. \'Ml W\~ ') l.'1 \\Ml1 ~~) ; ~ / C.R.. \\Ml \MS\ .Q. \ ~ \M~ / 

< Q.."'' W\ L \Ms/\ .l/' ~lM à> ( Ql~ ~tl"' 4- <2 ') ~ 0..~1 ')t'~':i-,12.16 

In the triplet state .l ~ ~ ) ~ t \ , the second has pari ty odd 

with respect to the tirst. 

So l 1
-: l: ~ > 'a''!.\ gives the diagonal elements, and 

t 1
-:. '~ -Q.-: t'%.2.: ~i:. \ gives the ott diagonal elements. 

There can be no elements between the states t.~' = .l~ \ 
since these states have opposite parity, and parity is 

assumed a good quantum number. We are turther only interest-

ed in elements tor which \IV\L1
::: o see equation 2.10. 

For the se elements W\ Q_ :: ""',/-w. s • We theretore get 

For the Singlet Case 

R ( l o o o :, JL"' o o o) .Zl ) t .L/ 
2.17 

and tor the Triplet case 

Q <.l' W\~- ""'s ll ' 0 \Mf) = <?!.. < .Q.' ""'(-'Ms ~s \.lt~ ~'> 2.18 

<~ \ ow.(ll\ ?I'W\(> ~.t..~· 

a. (.l.. \ M_(-IM~ ~, ·) l"''o \'\~\,): ~<.Il\ w.(- ""'s w.~ \.l'?J-w..s':> 
< .l,; \ 0 \M S " \ .t. 1 1 ~ VIA~"" '> ~ ~ ~ l ~ :i: 1 ~ t! ~ + \ 

We oan now write down the non zero elements of the matrix 

Singlet 

\"'\ ~ \. O 0 0 ~ 0 0 ) =: ~ ~)- \ ..Q.,t> - A 'tT' ~ Q ( t 0 0 0 J l" 0 o ) 

~.n L' tr (. ( li l' ) l. 2. 2 .19 
- -,- A.. Î. T{" l. '- + \ J 4 - ( ~ ~- \ Ql (. tr l '4 Q.. ·H ) J l 

' 
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Triplet 

"'\ c l ' 'lM[- ""'s \Ms .> 'w..~ > : ("le.)-' e.-.:·.Q·i ~ Q. c..t' ~tvo./- ""',; t.:'' c ""';) 

e "ct' ~ c. 1t" < 1. l'~ , ) J 1.. 
_, \ l+l 1 

:(Ale) ('t'f('l.t:~·\))-l. 2_ <:l\1.\.t\S-'M$\~\~'N\1'":::> 2.20 
a~ l-' .s 

~ / . \ 
C::: \ O'M$ \Q. \ d'lM:> \'tl~ - ~ ( ~('l.Q . .''+\)J-1. < -l\ ~:-\M~ WS \Q..'ô~•.;) 
< l ' 0 ""'f 1 .\....1, ~ vv.f > Q~ 

with Q..' :. -L% l.. c:. 2. Ô' -ct.='}±. \ 
The above reters specitically to the case ot dist1ngu1shable 

particles. It they are identical, as in the case ot p-p 

scattering, we must antisymmetrize the wave tunction. The 

scattered wave tor the case ot distinguishable partiales is 

given by equation 2.1. 

e." \eM .f - e 1\ ~"" 
~ J" sw..s - "M. 

We write the antisymmetrized scattered wave as tollows. 

Here T and S are the spin and spaoe exchange operators 

respeotively. The above torm takes into account both the 

antisymmetry ot the wave tunction, and the tact that the 

particles are indistinguishable, i.e., the tact that we ob­

serve both the recoiling and scattered partiales. It is 

evident trom the above, that we may oonsider the particles 

as distinguishable, provided we suitably antisymmetrize the 

M-matrix. The antisymmetrized M-matrix is given by 

2.22 

Prom now on we will omit the superscript "a" tor simplioity, 
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it being understood. 

An explic1t fora tor the spin and spaoe exchange operators is 

\ = 
S ? ~ ~ ~ 

.:. -l. (\+G"",.~) (\~\..,·"-) 
~ ~ ~ l 

l. C ' -+ ~ . cr, ) 
2.2; 

~ 

Here "'' 
l... ~ 
and "-l are the isospin operators for the two par-

ticles. The S and T operators then have matrix elements 

given by 

c:: s~"" .. ~ .. :'' \ T \ s .t :> :. 

<:~/R.:" \8\ Sl"> --
l-\)s~' ~ss"~ll" 

C:')l ) s s1 ~ tl:' 
2.24 

So only those parts of the M-matrix will be non-zero for 

which g_-\ 5 is even, i.e., triplet odd and singlet even. 

;. The S-aatr1x for Nucleon-NUcleon Scatter1ng 

Following Blatt and Biedenharn (37) we write down 

the most general solution ot the equations or motion tor the 

soatter1ng of two distinguishable nueleons, for a given 

~\M~t S • Here coulomb effects are omitted. 

Asymptoticaly 

'-\ t~ \Mdl s) :. ~\ô \Mals'> tA l ~'Mat~) 
- s c..a"""' a l.s) e." l~ M. -l-[) 

;.1 

The amplitudes of the diverging wave are related to those 

of the converging wave through. 

S ~~ 'M.~ l s ) :. Z.. A l'Q1 "M; J.." r/ ) S ( ~ W\ ô t s j ~~ ~; t. "'~: { 

The operator whose elements are S\')W\)\.s.) a'~~ l's') is called 

the scattering matr1x, and 1t describes the etfeot ot the 

interaction on the waves converg1ng on the soattering centre. 
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There are many properties of t~e soattering matrix which are 

immediately evident. 

(1) It cannot connect states of different~ ""'a- s or parity, 

since these are good quantum numbers, and the existence of 

auch S-matrix elements would imply scattering between states 

with different good quantum numbers. Hence the matrix 

elements take the form. 

s t ~ ""' a Q.. ~ ; 'd" 'M '(J" t:' ~ " ) 

:. ~~ ~/ ~ \M 3 Mc."~~ ç.l B l.L / 

where ~" = l1 'l. 

(2) The complete spherical symmetry ot the s-matrix, i.e., 
~ 

with respect to the rotation opera tor e "'.::5 9 implies that 

the s-matrix does not depend on \N\ . 
() 

(3) The s-matrix is unitary, this is so beoause all partieles 

are scattered elastically, that is there are no partieles lost 

from this channel due to inelastic collisions of any kind. 

(4) The S-matrix is symmetric. This is so beoause ot time 

reversa! invariance of the interaction. The direction of 

time does not enter into the problem. 

With these restrictions, the s-matrix tor a given ~ and any 

-vv..()· may be wri tten 

s .. 0 0 0 
~~ 

0 S~-\ -o· ~~ 0 3.4 

0 S') s~\o' ô. 0 

0 0 0 s ' 
() 
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·\·. 

HereS~~ : ê_" c)~ and 5 ~: e'l.-'~i , where ) ~ ) )~~ are 

real. We are theretore left with the sub matrix. 

This is some general unitary SJœmetric matrix. The most 

general 2 ~ 2 unitary symmetric matrix is described by three 

real paramaters. 

One way of writing it is as follows 

Where 

0 

--

The S-matrix is then given by 

e.'"~~~· 0 0 
0 

o cJ-~~ ~;. ~,)"'-+ ~~,~~ ~.;.)~~ i s~ 1. ~~ lt~)a~ t=-\~f') 0 

o l S.w..t.~ · (e4-'~~"' e.1..:.~cl!') s~, t~~~+~ Cr.,'l(:o è:.:.)J~ 
4 ~ - ~ 0 

0 

0 0 

Let us write out the most general wave runction tor the 

coupled part of the s-matrix, i.e., the triplet, parity 

(:-l )~-\ part ot the s-matrix. This is a 2-column vector, 

wi th elements "\tt)~') and '\ l~-\) • SUppressing the j mj 

and s: 1 labels, we have the elements given by 

'\ l~-~) ~ -'1 \~-1) t" ~-1) ë t.\c ... -)-•t)_ stcr' )é~c .... )-'~~M 
- ...\ l ~ M - )~ \ ~) ~\e +\ Ir) )_ 

"fla~')~ Ao\' \~t\) '-At~~')~ ~- ~l6+') ~ ""-?1 l J 
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with 
s <-a-\) :. A. ca-\) sd_, + A <a·H) s <r 

sd~' +A<')-\) Sd 
. 

;.10 
B <~"f\) ': A ca"'') 

In general, because or these equations 

This means that particles will be scattered between the 

channels l '=d + \ and Q..:. 0 -\ • In general there will be a 

net losa in one channel and a corresponding gain in the 

other. It however we choose 

--
there will be no net losa to either channel. In such a case 

the wave is an eigenwave or the scattering matrix. The ettect 

ot the scattering is merely to produce a change in phase ot 

the outgoing wave with respect to the incoming wave. There 

are two sueh solutions denoted by ~ and ~ • The ratios are 

given by 

A«. (~ -\-\) 
= "to..v. '~ ) 

A~<.:~+,) ... - ~ ~;) 
;.1; 

"""' (. ~-\) A~ ta-\) 

with 

~0( (d-\) - e. 'l./~~ ~ A-<lô-') -
e. 1. "'~ d r-- A~ t~-') 

;.14 
Bflo> (()-') --

The two eigenwaves are 

i ol::. "\o< t~.ac-') + 'to( ~a-') 
• A.,e ~ ) -~ l\eM-~-\! ) 

~ M_, t 'a~''> sN\1'. ~a' é"' t ""- ~"' ""~ -+ \~- ') e \.. 
<::: l~ - ~") -..\ ~~"" -)•\!! J 

~ _, t..~~ba-< c. t~\) ~~ ~~ ~ M ô L. ~ \'d·') t.. ~ 



-48-

There are a few additional remarks that we should make oon-

cerning the S-matrix. 

( 1) We oan add any multiple of ..,- to any or all of 

~a-<)S~(\.> E~· without altering the value ot the s-matrix. 

(2) No physical meaning has so tar been attaohed to the 

labels o( and ~ • We will now attempt to do so. We let 

the bombarding energy of the incoming partiale go to 0 • 

Near zero energy, the difference between the oentrifugal 

potential barri ers for l. : à- \ and l-: d-+ \ beeomes so 

significant as to uncouple the two states. This means that 

they become separatel7 eigenstates. From equation 3.13 this 

m.eans that E.:~:::. f> or ~ • We de fine ot and (i so that 

as e+o~G-f~ 0 i.e. ol~ a-\ and~ 4 ~t \ • In future we there­

tore useot~ ~-\ and~=-~+\ as the labels tor the ~a.c. and ~ca~ 
phase shitts. We then oan rewrite the s-matrix elements. 

s~c}· :. e ~ :.)~')· 

-.. 

e. ... "~~· 
., :l. ~ \d _, ..:. ~ .. , ;. ~ a .a. ' ~ • 

C.c4.~~· e 0 + \>1\M ... ~~·t. 

S 4 -a. "~ ~ _, ~ + ,.. 1.. . e.:~ ~}. c\ " 1 ~ • 
'M G ~· e '" IS) ~~ 

. :l~) ~ ... \ ~ \. "~;)t+\ ~ ) l SM/'\ l.G:a ·<...e: - ~ 
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There is another way of writing the s-matrix which makes it 

easier to interpret the three parameters. We detine it in 

exaotly the same way for the singlet case and also for the . 
triplet pari ty <.-') ') case, however for the triplet, pari ty 

(-,)~-\\ case, we define it through 

This gives for the elements of tbe s-matrix 

S· - e',.:)-o· a -
e "LÀ~~ d. s .. -~~ -

b~-\ ~ ':\ e 1 ..\~d~-\ C~nt~ -
Gd-\.\~ ~ 

e. '2 ..\ ~ ~ ()+ \ en 1-__ ~ :;) -
eJ\ \\~~-' +~~~+\) 

s~ -= /\. g ,w. '1.. ~) 

This representation of the s-matrix, is oalled the barred 

representation. As will be indioated in the section on 

coulomb effects, it is particularly useful where we have a 

mixture ot nuolear and coulomb forces, as in p-p soatter­

ing. The e~ations oonneoting the two representation, are 

given below. 

~a~~'-+ ~a a-' = ~a~+'-+ 1a~-' 
s~· \~~~-'-~a ~-t\)-= ~O\M'~4 1 -t"-"'1..~2· 
s~ l~~ ~-\- ~ â -o~') : st\M t.~d / s~ t~a. 
-
)~~ :: ~~~· 

'd~ - ) é). 
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Let us write out the wave tunction equation ;.9 in the B.B. 

and barred representations tor comparison. They are 

B.B. Representation 
. "' _, ~l-lt.v.-~-1~) ) 

~ta-\)~ M-\~-~U~.M-~-'ï.)A\~-l)\)-\)""M e 1. \')-\. 

t_A.l~-,)tC.J~~e1.~~~cl-'"" s~l.~~ el.À~a~;.'J +t. Àta~') S~1-•a· 
" . ~ l ;.18 t e2.1\ 0 ')~-'- e.," ~~+\ J .. .r 

with a similar expression tor 'tl~~') 

The B.B. phase shitts and mixing paramater may be interpreted 

in terme ot the eigenwaves of the s-matrix. The mixing par­

amater in the quantity which determines the relative amounts 

ot ~-\ and ~-\\ wave neoessary in order to haTe no partiales 

scattered out ot that channel. The B.~. phase shitt, is then 

the shift in phase whioh ocours during auch a scattering. 

The barred phase shifts on the other band give the shitt in 

phase ot that part ot the outgoinga~\ wave amplitudes whioh 

derive from the incoming 'd 't \ ohannels, wi th respect to the 
-inooming a-±' wave amplitudes. Also the mixing paramater ~a 

gi ves a m.easure of the extent to whioh l. is not oonserved. 

A value ot 'a-:: o would mean that l is conserved, and 
-the further we get from ~~o the larger the degree of nonoon-

serva t ion of Q.. • 
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4. Coulomb Effeots (38} 

In the soattering of protons on protons, we must in­

elude in addition to nuclear effects, the contribution to 

the soattering ot the coulomb repulsion between the protons. 

Oonsider the coulomb scattering ot two partiales ot the same 

mass and unit charge eaoh. The Schrodinger equation tor the 

scattering is given by 

l \j 
2 4 Jv(,4 

( \- ~ ) ) '1 - 0 -M 
4.1 

with V"\:. e~ - e'l. - - -
~ ~l.. "'"" 

We try a solution of the form 

v..<:..= e"'~ î: \= l~) 4.2 

and get 

t '\) '2.-+ 'l..\~ ~- ~ )ç: - 0 -
'd~ M 

This has a solution ~ l~) with 

The equation 

4.4 

There are two independent solutions ot this equation, whioh 

we denote by 

~ ( .. ~~J 1. .)~\q~) 
\ 

st (.-;."")'1-)À~s) 
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For large values of ~ these are given by 

v.r, ~- (-À.~ 5 )À'II'\ l' . • . ._ ) 
... ~ ,-"-'V\.>-"'V\)11,~-s 

(\(\*À-'11'\) 4.6 

~l ~ ("~'S)--'"'-' e-"1a..s â ('~"'"",'"'A-'\1'\,"'~S) 
wi th f' (--' "") 

th us 

vS\= -=..~f ( \- ~l ) ~ (~'\'\~~!) 
(\ <J+~"') A.~~ 

~t ~ -~-{ _{k.e~ ~ l--'."v-.~~5") 
(''(-"'-"') ~~ 

4.8 

We wish the solution whioh is regular at the origin, this is 

gi ven by ç ~ W \ 4- J' 1. , where l' is the hyper-

geometrie tunotion. The wave tunotion is tben given by 

Wri ting this out in the limi t M""' ~ we get 

"-"'(\ 

'-\ ~ ~ l. ( 1.. ~ <6 ~ L~)] 
\\ (. '""' "'"') 

with 

We wish a wave ot unit amplitude, so we choose C 

c.. = 

4.10 
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In 4.11 we have written l~\o tor 

Partial Wave Treatment. 

Write 
\ 

'"' ( \ -+..\.1\,1\) 
t" (\- """') 

4.12 ~ = Z- ~l ylo · ~ ï. 
(_2.-l.-\ \) \. 

Put ~l; MQ_ e~~M JL t\(M) to obtain the differentia! equation 

tM ~1. ~ '2. (~ ~ """" Q..4- \) c!. -\- 'l.l" ~ (t.~t \)- 'V\4.t J l' ~Ll "") ~ 0 4.13 
~l. cJw... 

with solution j..LtM):.C.L\=('l~\~À't'\)'l.l""~>-~,:..f.eM) whioh is 

regular at the origin. Asymptoticly this gives 

CL (~'t' ·~\l.) ('\ . L Il f<.t ~ e 2.. ':) ~ t-~M- ':.{' -'V\O..V.~\cM -+\l) 4.14 

(l. ~) \. f' (t~\ ~~ \1\) ~ M , 

So we have 

_ g\ 2. C..l... ;-{ ll\.~1)\_ e•\t s.w.c~ ..... -
~ - ~ M ut..)\." c.l~,-\ ~\'\) ll.l~ ')\. 4.1s 

Q...t -""' ~ 1.~M +- '\.L) '(LC . 

where :· :.> f\:CR:.-t,~+~ '\J\) 
~~'tl :: "(l"-\- .\. \'\) 

w1 th no coulomb forces , the asym.ptotic torm or t is 

C' ~ l-a.\ 
"t'LQ.~ \) 1 A.. s~ u~""- t_" ) YL 

l. 

We therefore ohoose 

t' C.l ~ \-\· " \A.) 
(1..Q..)\, 

So we obtain 
\ 

J. ,.., .:.!î. 2_ tl.l~,yi_ "'Q..""\ ~\l YL0 

\ ...., "~M 

4.16 

4.17 
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4.18 

Hence the e~ations derived in Section II, 2, where we 

neglected coulomb ettects, remain valid provided we replace 

by • The S-matrix 

detined in this way will contain both nuclear and coulomb 

ettects, and in the absence or nuclear forces, it reduces to 

the coulomb s-ma tri x Ç c. = ~" + \ • Because or the 

long range nature or the coulomb torees, it becomes conven­

ient to write the R-matrix in the form 

4.19 

R0 is treated exactly, while sinoe S differa from S0 only in 

nuclear etrects which vanish tor large ~) ~ can be con­

veniently analyzed into partial waves. 

Consider • It must give rise to M-matrix elements 

given by 

M_, ~ ..\ C.leAI\ - """~~~M.) ~c te) e..'l.~ \C) XsV;s 

:. M..- \ e_.,"-'P A (Àe M - 'Y\ ~ ~ ~ N\ ) "( ""'S c:::" M 1 <.. 1 ( 
.S C:::. . \ ç \M · ~ 'Y. 1 cl~~ ~ Mo\ W~ 1 

theretore 

~0\11.~. 

~5~. ~~lM ... = 
'.) s 

S"' lM..... 'J ' ' ' ' 
4.20 

ol on the other hand will evidently give rise to R-matrix 

elements given (using the B.B. representation by 



It proves convenient to multiply the M-matrix by a phase 

~-2."'\ 0 • This is of no physical significance. We 

then get 

\te) = ~(.li): ~ QA~- ~"" ~.L ('-Cne) 
~ (l ... C..IJ') ~) 2.. 

a{~ ~ e_2~)~ e.".À q. d. 

olt.. :. et~)\~ e.'l-~4-t. 4.22 

~ • <:. • ("' 'l. 1.~)~ -, . "~~')~' o(ai' ~ = c.\T')'e.-a elA. C)ôi\ a- + 1)\M ~a· e "' .. ô - ~ 

o< ~· =-~ s~ '1... '-~· c. ~2. ~) d..a, \ d. _ ~ 1 ;. ~~-\ ~) 
where 

~ l. : r"VLQ_- "'\. 0 

p (. Q...~ \ .Ir.\:~) -- (tl+ ..\.'V\) '. e.';.'\ L = 
t\ (l~\-A.:"') (.l_- ,,_.~)~ Q.. 4.23 

e.~',.l'\.l-'\n) = Ct"-"'""") ... (\-\o~\1\) ) \L-'\o:. ?CM.\c:.-\<"AM ~ 
(t.-A."') ... ( \- "-\~\) ~l~\ ~ 

The complete M-matrix is now easily obtained. Using 

equatioœ4.19, 4.20, 2.9, 2.24. 

We obtain for the complete M-matrix, antisymmetrized and 

with coulomb eftects ineluded. 
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The expressions tor the ~ <.Q.s Mlvv.~ ·) ~1 "'{) may be obtained 

from equations 2.19 and 2.20 with R replaced by 

o(, • We may now substi tu te 1n the expressions tor 

from equation 4.22 in the B.B. representation, or alternately 

use the more convenient barred representation, equation 3.17. 

The coulomb corrections are put in as in the · B.B. represent­

ation, only diagonal elements being affected. We obtain 

and 

e 'lÀ~ c1 - e. 2. ~ 4 a 
e'L~\t~ - ~ .. .-<\:~ L~~· 
C en 1.. ~ ~;\~di\~ - f!!.';.. ~~ t \ 

?;- - -
;.. ~ ~ 'l. "i e À \) ~ "'' 3- + ~ ~ _, ~ ) a-

M \\ :: t (. LQ) - ft(. 'lf-9) + ~ l .. tcf' ( Pt_ l 
l~ . 

(~~2. )atH+\ +(2.~\)•ü .. Q.. J,~~) ~ 1.. L-1 

- :_1.\- \_ lL+I) l~·H.)J 1_a(L+I_; (..tL~·I)J-l a(t-1~ 

4.25 

4.26 
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It was mentioned in Section II, 3, that the barred phase 

representation was particularly usetul when coulomb etfects 

were present. The barred phase shitts ~ contain both 

coulomb and nuclear effects. If there were no nuclear 

effects, they would become merely the plain coulomb phase 

shifts ' • When both coulomb and nuclear effects are in­

cluded, it is useful to remove the coulomb effects and ob­

tain only the nuclear part. It, for example, the coulomb 

forces act only outside a given region and if the WKB 

approximation is valid in this outside region, then the 

barred phase shifts which would be obtained if coulomb torees 

were absent leaving only the nuelear forces are given by 

Sw - e-À~ s e -A: 1 -
- -N 

-~ )o._~ - <\ .\. <ot - ~t.-+-l ~to· -::. ) ;.N: ~ - ) 

5. Soatterins-Matrix Calculations in Proton-Proton Scatterins 

Polarization experimente ot various kinds, have been 

perrormed at Berkley (15) at '10 Mev., and at Harvard and 

Harwell (39) at 140 Mev. These experimental results may be 

made to yield phase shitt solutions of the scattering problem, 

by the following method. We write 

--
here ~ is the observed value of the n thobservable, ~ l) J 
is an expression for it in terms of phase shifts, obtained 
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trom equations 4.26 and 1.20, '~ is the error assooiated 

with the measurement ot that observable. Minimizing 

gives us a least squares fit to the data. A discussion ot 

the methods used is contained in Ret. 13. With this pro-

oedure, one generally obtains a number of reasonable 

solutions. In order to obtain a unique solution, other ex­

perimenta are neoessary which distinguish between these 

solutions. It is the purpose ot this section to obtain the 

values of some ot these observables for partioular phase 

shift solutions at 310 and 140 Mev., in order to compare them 

with more recently acquired experimental data. In this cal­

oulation, we are in tact interested in phase shift solutions 

whioh are consistent with the unmoditied boundary condition 

model ot Lomon and Feshbach (10). Since we will later have 

recourse to mentioning this model,see Section IV, a tew 

words desoribing it may perhaps be in order. We represent 

the interaction in the tollowing way, an external region in 

which the interaction is adequately described by a local 
~ ~ .., . ~ ~ ? 

potential or the torm \) lM <r \:.) 0 Here Nt. ) r , and ""t. 

are respectively the relative oo-ordinate, spin and isospin 

of the two-nuoleon system, and a core region ot radius H~ , 

at the boundary ot whioh the wave function satisfies an 

energy independant boundary condition of the tora. 

F is here an energy independant quantity. In the oase ot 

tensor coupled states of course, F is a 'l.. x 2. matrix and 
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~ a 2-column vector. The idea motivating this model is 

the tollowing. Developments in the meson theory ot nuclear 

torees, indicate that the description or the interaction by 
~ ~ ~) a local potential of the torm \1 \MJ~J \. is only valid tor 

distances larger than rv 0•"\ fermis. For smaller 

distances, we enter a region in whioh severa! virtual mesons 

are exchanged, and a non local interaction is needed to 

describe the toree. The tact that many meson exchanges 

occur means that the interaction is very strong. In this 

region the wave tunction is theretore quite insensitive to 

changes in the kinetic energy or the bombarding particle. 

The interaction within this region may then be approximately 

taken aceount of, by imposing an energy independant boundary 

condition on the logarithmic derivative of the wave tunction 

on the surface of the core region. With this aodel ot the 

interaction, it is found that when the potential in the out­

aide region is ignored, only one type ot phase shift sol­

ution, that with a large negative 3Po phase shift, fits the 

data approximately. 

The experimenta at Berkley (15) were designed to measure 

I 0 ,P,R,D and A. We therefore use the solution #6 to obtain 

the values of the correlation paramaters Cnn and CKP at 

Q = 90°. The experimenta at Harvard and Harwell (39) were 

first designed to measure and D • We there-

fore calculate Cnn,CKP and the rotation paramater R. tor the 

solution ot type #6. 
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The three phase shift solutions in which we are interested 

are given below in the barred representation, in degrees. 

Type Fit t o Harvard 
~ Data at 140 Mev. 

1 s0 12 • 8 ± 2 • 2 

1D2 5.3 ± 0.9 

1G4 00.0 

3P0 -54.4 ~ 0.8 

3p1 4. 2 i: 2 • 2 

3'3 1.0 j: o. 9 

3H5 

3H6 

3p2 

3'2 
E:2 

3'4 

3H4 

oo.o 
oo.o 
7.4 ~ 0.3 

2.6 ± 0.3 

. -0.1 ± 1.0 

2.2 ~ 0.2 

oo.o 

Fit to Bârwell Stapp #6 at 
Data at 140 Mev. 310 Mev. 

9·5 :t 4.5 -0.25 '!: 2.3 

7-7 ~ 1.8 13.8 : 0.6 

oo.o .27 

-34. 5 ± 2. 2 -64.2 ± 1. 9 

14.1 ~ 1.8 -12.77 i 0.9 

-0.7 ~ 1.5 4.22 ~ 1.1 

oo.o 
oo.o 
12.0 ~ 0.7 

4.9 ±. 0.7 

-0.6 ±.2.2 

2.8 ±0.4 

oo.o 

-o.; 
1.75 

8.78 ±o.; 

-0.93 : 0.7 

-0.2 ~ 0.6 

4.42 ± 0.25 

3.6; 

~ 4 00.0 1.3 

Table 1. The three phase shift solutions. The first two i.e., 

the tits to the Harwell and Harvard data, were obtained froa 

Stab1er (21). The last is Stapp's solution #6 to the Berk1ey 

data. Using equations 4.2; and 4.26, we have used the above 

to obtain the M-matrix elements tor Harvard and Harwe11, and 

have oalculated their value at 90° o.m. tor Stapp's solution 

#6. The resulte are given be1ow. 
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The M-Matr1x for Harwell at 140 Mev. 

Mss : -. ?113~0 exp( -1.014812 ln. 5( l-x)) - • 011380 
l-x (l""x) 

exp(-i.Ol4812 ln.5(1+ x))-+ { x 2 (1.2756+ 1.20122)+ 

(-.17505 - i.025216)l 

M11 : -.011380 exp(-i.Ol4812 ln.5(1-x)) -+ .011380 
(l-x) (1+ x) 

exp(-1.014812 ln.5(lt x))-+\. x3(-.04155o-\- 1.061140) + 
(. 98614 -t- i. 20992 )x S 

Moo:: -.{113~0 exp(-1.014812 1n.5(1-x)) ~ .011380 
l-x · (1+ x) 

exp(-1.014812 ln.5(1t x)H t x3 (.92130 + 1.047552);. x(-~.74634+ 

.57468) t 

1'101 = e;.+ (l-x2 )
1

/
2

{.x2 (-.030162 + 1.055404)-t (.048158-+ 

i.0072866) f 

M1o-: ë~q, (l-x2 )
1

/
2

-\_x2 (-.23790 -1.002154) t (.76413 -

1.30883)] 
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The M-Matr1x for Harvard at 140 Mev. 

-- -.~113~0 exp(-1.014812 1n.5{1-x}) .011380 
l-x (1-+x) 

exp(-1.014812 

i.o4454o)s 

1n.5(1-t- x}) t \_ x 2 (.80528 + 1.092660) -t (.063552~ 

-- -.011380 exp(-1.014812 1n.5(1- x) .Y .011380 
(l-x) (l'\" x) 

exp { -1. 0 14812 ln. 5 ( 1 + x)) 

x( .36284 + 1. 045100 )t 
~ tx3 (.057692 t 1.0093 774) + 

-.011380 exp(-i.Ol4812 1n.5(1-x)) -+ .011380 
(l-x) (1+x) 

--
exp(-i.Ol4812 1n.5(l+x}) 1- t x3 (.36912 ~ 1.0212180)-\­

x(-.63082 -T l.0509)J 

Mol ::. ~~~ (1-x2 ) 1/2 ~x2(-.o5o7o6+ i.00161444) + (-.081170 

-1.019420) } 

M10 : ~·~~ (l-x2 )
1

/
2 -\_x2 (-;045764- . ooo83 708) ;- (-.66oo4 

-i. 70094) r 
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M-matrix tor Stapp's Solution #6 at 310 Mev. and 9 = 90° 

Mss :: -.63500 -i .14807 

Mo1 - --37609 + i .02800 -
M1o - -12751 -i .65561 -
1411 - 141-1= 14oo-::. o. -

With the aid ot equation 1.20 we use the three caloulated M­

matrioes to obtain the correlation paraœaters Cnn and ~ at 

t: 90° c.m., and further to oalculate the rotation paramater 

tor yalues of 0 in the range 9 : 0° to 9 = 90°. The latter 

calculation is done only tor the data at 140 Mev. The re­

sults are given in Table 2 and Fig. 8. 

Q,uantity Harvard 

·9961 

-.9832 

Harwell 

.9433 

-.9649 

stapp's #6 

.4692 

-.3794 

Table 2. The correlation paramaters Cnn and ~ at 9 ~ 90°, 

tor the three solutions. 
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0.6 

Harwell 

0.4 

0.2 Harvard 

0 

-0.2 I 
-0.4 

0 20 40 60 80 

e in degrees 

Fig. 8. Plots of the rotation paramater R (6), for phase 
shift solutions of type #6 to Harvard and Harwell 
data. The experimental points are taken from 
reference 27. 
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6. Conclusions and Discussion. 

In our work we have considered solution #6 of Stapp 

et al (15) at 310 Mev., and also two solutions obtained by 

Stabler (21) at Cornell in fitting data from Harvard and 

Harwell at 140 Mev. These solutions are also of the same 

type as #6. They are consistent with the boundary condition 

model of Lomon and Feshbaoh. At 310 Mev., a number of argu­

ments are given by various authors suggesting that solution 

#6 is invalid. We will here reiterate these arguments and 

diseuse them. 

It is argued (see tor example Gamme! and Thaler ref. 40 oh. 

9-4) that O:tœ measured at 380 Mev. is positive, 0.6 ± 0.1, 

while in solution #6 C:rœ at 310 Mev. is negative ~ -0.38. 

This it is felt invalidates solution #6. However our calcul­

ations at 140 Mev. show that CKP has a value ~ -.98. It is 

therefore certainly not constant with energy and coul~ eon­

oeivably change sign between 310 and 380 Mev. 

The second argument is based on the work of Moravsoik, Mao­

Gregor and Stapp (41}. They use a modified method of 

analysing the data at 310 Mev. They assume that G H and all 

waves of higher angular momentum only see the one pion ex­

change part of the interaction at 310 Mev., due to the 

strong centrifuga! barrier. They theretore eleot to oaloulate 

these as functions of the pseudoscalar coupling constant g2. 

In this way they deorease tbe number of degrees of freedom in 

the problem to 9 from the original 14, eliminating the four 

phase shifts 1G4, 3H5, 3H6, 3H4 and the mixing paramater -~ • 

They then attempt to fit the data with the remaining 9 phase 
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shitts, tor severa! values or the coupling constant g2. Do-

ing this they observe that ~ plotted as a runction or g2 

yield minima for solutions 1 and 2 at g2 ~ 12.0 and 13.3 

respectively, w1 th the minima ooourring at a value ~ g- 2.5. 

Since the ~ost probable value of"\ ~ 27, and the accepted 

value of' g2 ~ 14.0, these seem to be good solutions. For 

solution 6, they obtain a very shallow minimum, corresponding 

to a value of g2 ~ 20. and~ ~ .57, w1 th a negligible prob­

ability or ~ being this value. On these grounds they 

theref'ore rule out sQlution 6. 

This argument is actually not physioally complete, since it 

can be shawn that the one pion exchange part of the inter­

action is not adequate to aceount for the G phase shifts, 

turther the 3H4 phase shift is eoupled to the 3F4 phase shift, 

and so is af'feoted by the severa! pion exchange region of' the 

interaction. If however waves of angular momentum larger 

than H only are treated in this manner, the most probable 

value is ~ 22 and for solution 6, ~ ~ 3.5 whieh is not 

too bad. 

Stabler and Lomon (28) at Cornell have calculated P and D in 

the coulomb interference region for a solution or the same 

type as we used. They bave round no agreement w1 th the 

experimental resulta from Harvard. This is in agreement with 

what we round tor R, sinoe it seems to disagree with the new 

Barwell resulta tor angles less than 30°, but is not too bad 

between 30° and 90°. 
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SECTION III 

SCATTERING OF POSITIVE AND NEGATIVE MESONS 

BY NUCLEONS (42, 43) 

1. The Recoil Proton Polarization and Elastic and Charge 
Exchange Cross Sections 

It is convenient to use the isospin formalisa. The 

pion has isospin 1 the nucleon has isospin 1/2. Bence the 

coabined system has isospin 3/2 or 1/2. The eigentunctions 

for these two cases are given below. 

-r/,_ : i 
~ 

~~:~ ~0- ~\ ~+ 
1.1 

-l 
")( l ~ ""'-

If we assume that the meson nucleon interaction is charge in-

dependent then the only dependance on isospin oan be through 

~ /~ • We thus have two amplitudes that give the isospin 

dependenoe ot the soattering • 

.. ~4 ~ "' ~ s ')( 
'- \ \ ' 
e~l<.~ "3 ~ s~""3 
Here the right hand aide representa the scattered wave. 

the case of ~+ on protons, the soattering is completely 

desoribed by g acoording to 
-3 

e..;.k~~+ --:, ~, 'r"'" 

For 
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For the case of on protons, things are not quite so 

simple. 

À ~ 'T "- - .. \-:i:\ e ~ 1<. ~ -x + . \ ""!' ~;.. ~ ~ ?C 
e r - t'~ 3 ~ ~ ' 

4 ~1' ~ ~ l( 3 "" ~\' s, " , = ·f.~ c .. f\ ""o -~-~1 \' ) <.; 3 1. 4 

+ ~\ (.-•ir·'" +~\ ~-) ~~:: ,.,o ~ (S~-~~ )-+ 'f â (~j-1- .,_ s,) 
The first tera describes the charge exohange scattering, i.e., 

• The second term describes elastic scattering • 

Hence we obtain a table of amplitudes for the various scattering 

prooesses. 

Process Amplitudes 

p~ ~ p+ s~ 

p- ~ p- l' (Ç.~"'1-Q,) 
~~ "\1'\0 € c~3- s,) 

~ 

It must also be of course recognized that the interaction is 

in general spin dependent. Hence each isospin amplitude, is 

really made up of' four sub-amplitudes, given by 

describing what happens when the inooming wave is an 1( or ~ 

wave. Thus 

1.6 

In carrying through a pbase shi ft analysis, we will assume 

that only S and P waves are soattered. This assumption 
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is somewhat arbi trary, for energies ) 150 mev., but se ems 

to work well up to 300 mev. 

For an incident planelwave e. ~le~ o( , the diverging part may 

be written 

"'~Q. 
While for an incident plane wave e. (0 the diverging part 

may be written 

1.8 

Where we have wri tten this in the ~ ~ ~..l W\.S representation, 

but have omitted the quantum number S : 1/2. Now these 

' W\ ~ waves are not eigenwaves of the s-matrix, since 1 and 8 

are not good quantum numbers. We therefore transform to the 

Ô' ~ J t ~ representa ti on. The se tour are good quantum numbers. 

We therefore obtain using the expansion formula 

the following 

\ 0 0 l) - \ l. l o) -l. l..l. 

\\o.l) - l ( 41 \ 1 l \ ) "'"" \ l. l \ '> ) - '{"~ ~ l.. l. 1. ~ 1.10 

\oo-!.) - \.l-lo) 
1.. 1.. 1.. 

\\o-:) - .L ( ~~ \ 1 - !. \) - \ l - l. \) ) - ~ l. 4 1. .&.. l. 

1 We have here used k for the centre of mass momentum. 
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Here the C1ebsch Gordon coefficients are easily worked out 

or may be round in ret. 36. We then obtain from 1.7 and 1.8 

from 1. 7 

~ .~ ... ~. ~ N\ 't\ ~l. ( \ 1 ~ 0 ) + ~~ \ l i \) ~ \ ~ ~ \) ) 1.11 
1\l(~ 

from 1.8 

~ ~ ~ ~ M 1\ .l.l.. ( \ l - ~ 0 ) 4, ~1:' \ 1 - ~ \) -..... ~ ~ ~ ~ 

"'~1\A, 
\ l- ~ \) ) 1 12 

'\. ~ . 
The phase shifts may be wri tten "() l' a l) • This follows 

from charge independance, the complete spherical symmetry ot 

the interaction and par~ty conservation. We th~refore make a 

summary of the pertinent phase shifts. 

s 1/2 p 1/2 p 3/2 

~ = 3/2 ~3 ~31 ~33 
'l 

~ :. 1/2 )1 ~11 ~13 
~ 

1.13 

We will cal1 ~ '2.~~ - 1 - E. - • 1.14 

Then the effect of tbe interaction is to alter the diverging 

part of the incident plane wave by e 'l. 1\ ~ • The sca ttered 

wave is therefore given by 

1.15 

and from 1.12 
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Writing tbese veetors in terms of the spherieal harmonies and 

spin tunotions aeeording to 
~ .l \M. 

\ ?J 'W\ti ~) = < Yt. -xs ~ (.Q.Mt~ la- ~à t) 
SlJ """'l~ \N\ ~ '\M s a 

We obtain for the above 

The spherioa1 harmonies are given by 

() \ .-..\'"':"'\ Yo ::. - , Y 0 = "'!1.. C (j.) e 
1.~1.. ) \ .,_~ t 

Y-!' - - ' '-v (1 • ± ". ~ 
- _L_ - - \::)~ e ~ \ ~ \ ~ 

2..\f'- ~ so we get ., \. 

e ..;.IQ"" { o(. C. e:"l + c. ~ Q l1.'-~ ~+~"tl) J 
tl..-'.ltM ~\.S~\1 e"~ (~13-~,,)Jj-

~~"" ~ r c. ~ "t .. ~:: "" Q (..,_ ~~~ + ~~, ) J + "' t. 
2.À ~N\ s ~ ~ e.-;. ~ l ~ '3 - ', \)] t 

by oomparing with 1.6 we then obtain oa1ling 

<:; ('~ :. j- t ... ) C.. ~ "l -1- c.,.. 11 (.'1. 1<. n + ~"tl) J 

:ft"') C.E:~,- E:11J swe e."'~ --
: -5 lM) c. ""tl - Ç'U J ~'-v\ 'S é ~ ' 

1.17 

1.18 

1.19 

1.20 

1.21 

1.22 
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Let us now look at polarizations and differentia! cross 

~ -
sections for the soattering of i\ on ~and 't\ on \=»· The per-

tinent formulae are given in Section I. They are 

--
1.16 

The M-matrix will be given by 

e ~l.t t \~~) -7 e~ ~~ (~J t ~leM l ~~) 
1.17 

We now ohoose the ~ direction as the incident direction, 

and theX.-1:: plane as the scattered plane, i.e., '= o 
We then have 

-- ~ 1\~M "\ o( -( 

M 

-r ~"" '"'\ ol ~ 1.18 --
So equation 1.17 can be written in the form 

~ ~ ~ ( ~' ) • 1\ ~4 ( ~, \ ~ e"k""' (~"'.c. -~"f) \ ~~) 
e. \ ~l. ~ e. \ ~ 1..) "M ~"(\ Mo(-< 1.19 

It is convenient to use a different representation for the 

spinors. We write 'V\ with respect to the basic 
\ . ) \ ( 

spinors~ ld.4"~ : 'tS"' and t{l.l<-"(\}= <> • These are the 

spin tunotions for the positive ~ and negative ~ 

direction. In this representation equation 1.19 becomes 
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e;.lt, ~ l (a.'-~. ~l. \ -7 e" Lt ~ l. 
t{i ~\-\-A C.l. J {1 

e .... ~ N\ ( "" .(.-\- À "" ~r 0 . 

M 0 t-1\ -'.. .C.. ~ " 

Notioing that for an incident 

an incident ~ wave ~, = 0 

~ wave, 

• We see 

1.20 

~1. = 0 and for 

that '"'~-\ -~ \'1-<ra \ 'l 
and \ M ~.( ; ~ to\ .(~ \ l. are porportional to the probabilities 

for scattering with the spin in the positive ~ or negative 

CT directions. We further notice that the polarization in 

the 'l 'l plane is zero, which is what we expect. 

For a given value of the isospin, the M-matrix is given by 

equation 1.20 
.,. .,. 0 

~ 1' :. ( M ~-{-i-v \'-' ol. (\ ' . ' \ 
o t'-\ ol.-\ + " Mol.(.> ) 1.21 

-t 
The scattering of Tt on p, only involves T ~ 3· equation 

1.3. The amplitude from 1. 5 is ~ j . The li-ma trix may 

therefore be written 
3 3 

~~: (\"\-<--\-~ M-<.~ l o 3 ) 
o M '1( -{ ~ ...\ M ~(1 1.22 

The polarization and differentia! cross sections are given by 

1.16. They are 



1.23 

From 1.18 and 1.22 we have 
b 3 

'\ ~- ~ '""~~ 

1.26 

where 

Â-t = S,w..'~~+ s,.,:)H +~MI\4~3$-\ â-l\~d\'11) 

8+-=- âlo~'\'3~)-+ 'Î.â (c~,,,,.,) 1.27 

c..+ ': ~ s~ ) l ?> ~ -t a ( 'l \ \ \ l 3 ) 

and 

'l-'1-l.r~?+: s"""" a 8~\)a\\\~3)-~t~l'\'l')) 

- ! s .v,;. 4 e J ( \) ~ \\'l') 
l... -In the case ot '\' on protons, elastic scattering, the 

1.28 

situation is not quite so simple. The amplitude is given 

equation 1.5 by 1/3 lS~+ ~ s,). The M-matrix may there-
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fore be wri tten ~ ( \""\ 3-t tl.. \"'\') 

' ~ ~ \ \ 
_ \ ( t (.t'-\~~ \o'\.v.r.) ~ l (.Me(.(-~ M.v...) J c ) 
- ~ '... l" 1. 29 

~ . -a \ . \ 
o (. (. M ~-\ J\ ~'Y3) ..a, 'l. (. M "'el.."' " Mo~_(!)") 

Using equation 1.16, the elastio scattering cross section, 

and the polarization of the reooiling proton, are given by 

respectively, with 

~, ~ (~J~-ÀM;~) 

0, : ( M~ + À '-"~) 
\ 

Put ting in the expressions tor t-'\-{~ 

equation 1.24 we obtain 

where 

1.31 

from 

A- : ~ -\_cs ... ..l'~ 3 H~)>$ ~~'1. ~ ~~ )-~o 't ( s~). 1-~o s-'1.~,1 
J. ~"""'1..~,,)+ â (\1\\\\\)4- âltf~\\0\\) -t~l\31\\'l)-~ât\'H\'~\) 
- d (\1.~\\\\) -1...~(. \\)\\\\) -â(\1\\\\l).s-

~- :: ~ \_ ~ <.,o~\ \ m) -\- \:_ '3-lo11 \131) ~ 1. ~loH\"3) 1 ·33 

+ ~ \11 > 1\ 111) t 'l.. ~ (.11 11 \1 > ~) -\- ~ l o 11 \ m) -+ ~ ~ 1.. o l\ \" ~) 

-\-1- () \. t) \\ \ \\\) t 
c._ ~ \ \. 3 sAM.,<), n +- 12. s,.,:' ~ 1 ~ lr- ~ 'b l r~ • \ ,, 1) 

+~'à l1..,~ 1 11'3) -\-)~Lill\,,~) -~t ~ac,, 1\111) + 

b~ l,, \ , "~) r 
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and 

\ i ~ -l. p_ "! _ ::. 4. ~-l. ~ 'I +- ~ ~ ~ "M ê (. ll \\\ \ o \\ ') - t (\H \ o 1\) J 

-\- 's~~ t''"\'''3) +2 ~~ e t.s(."'\o~')- ~l\\1\ Ol\) 

-\ j (. \3 \ \ 0 \ ' ) - ~ l \ 0 \ \ ) J + 3 ~<W\ '2. & c. t c. \ l \ \ \ \ 1) 1. 34 

- ~(\1~\\\\)J 

For the charge exchange scattering, the amplitude is given 

equation 1.15 by ~ (~5-s,) . The .M-matrix may therefore 

be written ~ \ 
3 ~ . \ 

_ @ (C.(M.y_ _ "~"~·v~)- C. '"'.tot -..- t-~~)J o ) 

- 3 0 C.lt'\~.(. ~"t'\~)- ll'll.._-..;1'\~(1)) 1.35 

Whence using equations 1.16 and 1.31 the cross section is 

given by 

1.36 

Using equation 1.24 we then obtain 

1-37 

where 

A f) = ~ ~ (~-).~~ + ~, ... ;1.) 1 +S-.,_~ /J -\-~4~ 3\ + ~' )" 
~ ~1\N\ 1. ~ \ ~ ') - ~ c. (> l () \ \ \ c ~ \ ) -\ b ( \) ) \\) \ ) -\- ~ l \ ~ ) \ \\ 3 ) 

l.. 

+at v~,\,,~) ..\. ~ t '1' \ ,,,) ~ '2-s t ''l \"')) t 
\ 1.38 

~\:) ~ ~ {. (. â ~ ~ ~ \ \ \'~ \) - â l~ 3\ \ \\\) - ~ ~ Q \\ \ \1. \) 

+ ~~Q\''"') + '-C. â (.o~\\n'l)- ~L~~' \\\1)- b(.~''''sl) 

-\-~l''~ \o \\) 'J t 
_ 1 < ~C~l'~'\,1 ~) _ ~l'~'\"~)-~l\33\"~)J 

c. 0 - ~ ~ ~'l~ ~1.~ ). 
~ C.~\.111.\111) -~liH\IIl)-~~(1>\\ 111))-\1:. nH ~-~ 
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2. Scattering-Matrix Caleulations in Pion-Nucleon Scatter­
ing at 307 Mev. 

An analysis of the 'T\ -p scattering data at 307 Mev. 

was carried out by Chiu and Lomon, (26). A least squares 

tit of the type described in connection with the nucleon­

nucleon calculation, was made utilising both ~-\-- 'p and 

tt-- p elastio and charge exehange cross-sections. 

They obtained three phase shift solutions, designated A,B, 

and c. The solution A is characterized by small P-wave 

phase shifts, consistent with a k3 extrapolation of the low 

energy data at 150 and 170 Mev. For this solution à 13 and 

~31 differ in sign. A second solution B or similar nature 

appears for whieh ~ 13 has a k5 or stronger dependance on the 

.meson momentum. The third solution C corresponds to ~ 13 -:. 

) 31 above resonance, this requires that both ~ 13 and ~ 11 
change sign near resonance. 

The purpose of this oaloulation is to evaluate the polariz-
ft'-\-_ \,..,. ation of the reeoiling proton in both ., r and (l'-- \p 

experimenta, and to compare the resulta with recently ob­

tained experimental values, whioh will enable us to eliminate 

incorrect solutions. Expressions for the polarizations P+ 

and P_ have been derived by Chiu, (44), these however omit 

all terme whioh do not oontain Sin~ 33 , as these are quite 
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small around resonance. These expressions are however not 

quite good enough at 307 Mev. We have theretore used the 

complete expressions equations 1.28 and 1.34. 

The three solutions in whieh we are interested, are given in 

the paper by Chiu and Lomon, (44). They are reproduced 

be1ow. 

Phase Shi ft Soln. A Soln. B Soln. 0 

~1 9.6 i 8 20.2 ~ 10 17.6 ~ 10 

)3 -24.1 2 2 · -24.7 i 2.0 . "" -24.7 - 2.3 

~33 132.8 i 1. 7 132.3 i 1.5 132.4 ~ 2.0 

) 31 -10.3 '± 3.0 -9.2 i 3·0 -10.5 '±. 3.0 

~13 10.0 "t. 4.0 3.4 ± 3·5 -5.9 ±. 3· 5 

l>ll -10.0 ± 5·9 0.9 ± 5·5 13-3 ± 5·7 

Table 3· The phase shitt solutions of Chiu and Lomon, (44), 
at 307 :Mev. 

Using equations 1.28 and 1.34 we then obtain the expressions 

tor the reco11 proton polarization at 307 Mev. for ~+ on p, 

and tor ~- on p, as yielded by the above three solutions. 

They are given below 

P(A) 

"" 
-- • 53985 Sin 9 """ .47262 Sin 2Q 

4.52 Cos2 9 + 2.48 Cos 9 + 1.06 



and 

P(B) 
+ 

P(C) 
+ 

P(A) -

P(B) -

P(C) 

--

--

--

--

.:. 
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.55447 Sin Q ~ .44168 Sin 29 

4.4 Cos2 e _. 2.52 Cos 8 ~ 1.12 

.55502 Sin 9 ~ .487.7 Sin 29 

4.56 Oos2 Q ~ 2.56 Cos 9 + 1.98 

.41034 Sin Q ~ 1.7738 Sin 29 

4.212 Cos2 e ~1476 Cos 8+ 2.34 

-98505 Sin 6 ~ .36093 Sin 29 

4.212 Cos2 e + 1.476 Cos 9 -\- 2.34 

-12261 Sin e - 1. 5031 Sin 28 

4.212 Cos2 8 + 1.4?6 Cos e ~ 2.34 

These resulta are plotted in Figures 9 and 10. 
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This experiment oannot disting­
uish between Soln. A ~ C and 
probably not even B. 

0.6 0.4 0.2 

Polarization P+ (8) 

1-0--f 

0 -0.2 

0 
t­,.... 

0 ..... 
..... 

Fig. 9. A plot of the recoil proton polarization P+(e), in 
the scattering of protons on positive pions. The 
curve is obtained using the phase shift solution dea­
ignated C of Chiu and Lomon (26). Solutions A and B, 
give essentially the same curve. The experimental 
points are taken from reference 45. 
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0.4 

0.2 

0 

-Cl) -
1 

Soln. B 
Pt 

-0.2 s::: 
0 

orl 
~ 
111 
N 

orl 
J.4 
œl 

-0.4 ...... 
0 
Pt 

-0.6 

Soln. c 

-0.8 

-1.0 
0 20 40 60 

6 in degrees 
Fig. 10. A plot of the recoil proton polarization ~e), in the 

scattering or protons on negative pions. The curves 
are obtained using the three solutions A, B, and c or 
Chiu and Lomon (26). The experimental points are ob­
tained from reference 45. 
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3· Conclusions and Discussion 

Betore discussing the pertinence or our resulta, it 

would perhaps be in order to correct some unfortunate mis~ 

statements in the paper by Ohiu and Lomon, (26), resulting 

from mislabelling of a graph. Their conclusions should be 

the following. At 220 and 307 Mev. three solutions desig­

nated A,B and c are round which tit the data. Of these 

solution A corresponds to a continuation or the low energy 

solutions, and fits the preliminary P + recoil proton polar­

ization data at 220 Mev. Solution C is discontinuous in 

energy, with the solution below resonance, but also fits 

the preliminary polarization data. Solution B finally, does 

not fit the polarization data, and is turther inconsistant 

with a form of dispersion relations sensitive to the small 

phase shifts with which A and C are consistent, in the 

region ot resonance. These resulta tberefore tavour solut­

ions A and C, solution B being definitely ruled out. lrom 

our oalculations ot P+ and P_ at 307 Mev., we oonclude tbat 

the P experiment does not really distinguish between the 

three phase shitt sets. This is not surprising since I~ P+ 

only depends on the phase shifts through) 3~33 and~ 31 

whioh three are approximately the same for these three 

solutions, as are A~ B~ and c+. The P_ experiment hawever 

does distinguish quite clearly between the three solutions, 

and from the preliminary resulta ot Vasilevski and 

Vishniakov (45) at 300 Mev., we see that solution C is 

favoured over the other two. 
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Quite reoently Korenohenko, Polumordvinova and Zinov (29) 

have performed an analysis of t\+~ ~o\o , tf~ cr and 

~-7 tto data at several energies between 220 and 333 Mev. 

They obtained only two solution types designated a and b. 

At some energies they obtained other solutions but these 

they label as unphysioal and related rather to the mathe­

matioal side of the problem, i.e., they are aooidental. Of 

solutions a and b, a has an ~ value of ~ 18, while b 

has an "\_ value of~ - 30, and in some cases as high as 

71. Sinoe the expected value of ~ is ~ 19 (25 exper­

imental points- 6 phase shifts), they oonclude that 

solution a is a very likely one, while the probability ot 

obtaining an average~ value of '2! 30 is ~ 5~. They 

therefore conolude that solution a is the correct one. 

Further they attempt to fit the data starting with the Ohiu 

and Lomon (26) solution A, at all energies (exoept 240 Mev.) 

they find that this solution led to their solution b. We 

reproduoe their solution a below along with the Ohiu and 

Lomon solution 0 at 307 Mev. We observe that they are 

essentially the same. 
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Solution a Solution c 

~3 -23.9 ~ 1.2 -24.7 ± 2.3 

~ 31 -10.0 :i 2.0 -10.5 ± 3 

'o 33 132.4 ± 0.9 132.4 ± 2 

<al 17.1 ± 5.2 17.6 ± 10 

) 11 11.4 !. 3·3 13.3 ± 5·7 

~ 13 -5.0 ± 1.2 -5·9 ± 3.5 

Table 4. Solution a of Korenchenko et al and 
Solution C of Chiu and Lomon. 
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SECTION IV 

VARIATIONAL PRINCIPLES FOR PHASE SBIFTS 

IN THE FESHBACH LOMON (10) BOUNDARY CONDITION MODEL 

Perhaps the most convenient way of describing a 

short ranged interaction between two particles, is by means 

of a complete set of energy dependent phase shifts. It there­

fore tollows that mathematical methods tor obtaining the 

phase shifts, given the interaction, are quite important. 

One of the more truittul approaches to this problem, is the 

variational approach. In brier, this method oonsists ot 

obtaining tor some function ot the phase shifts, an integral 

expression over the interaction and the wave tunction, such 

that the stationary value ot this expression with respect to 

arbitrary variations ot the wave tunction, implies the 

correct equations of motion. Usually the equations ot motion 

are written in integral torm, and may be used in conjunotion 

with the previous expression, to yield an iteration proced­

ure for obtaining the phase shift. This method was used by 

F. Rohrlieh and J. Eisenstein (46) for testing various ex­

change field theories of the nucleon-nucleon interaction, 

with respect to medium energy n-p cross sections, represent­

ing the interaction by rectangular and Yukawa well shapes, 

including tensor forces. In their work, variational prin­

ciples were derived tor both the case of uncoupled angular 

momentum states, and for the case of ooupled states. The 
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coupling of the angular momentum states, is of course due to 

the tensor term in the interaction. As pointed out by Lomon 

and Feshbach, the static potential method of representing 

the interaction is of limited validity, in particular it does 

not give a good description of the interaction at high or 

even moderate energies. In the region 100 to 380 Mev., that 

part of the interaction which ean be represented by a local 

potential, is of less importance than the many pion exchange 

region. Lomon and Feshbach (see Section II) propose to re­

present the interaction by imposing an energy independant 

boundary condition on the logarithmic derivative of the wave 

function at the surface of a core region, and external to 

this core region, by a potential tail of the form. 

where \/<.lM.) and \} ,\."") are central and tensor potentials, ot 

arbitrary shape, and ~ '2- is the usual tensor operator. 5 and 

\\+ are the spin and pari ty labels for the states being 

considered. 

It is the purpose of this section, to obtain variational 

principles for the phase shifts for this model of the inter­

action. It is assumed that the phase shift solution of the 

pure boundary condition problem is known. 

In Section IV, 2, we treat the case of unooupled states, i.e., 

singl~t, and triplet w1 th pari ty l-\) ~ · . A Greens funotion 

is obtained whioh is reminiseent of that obtained by Rohrlioh 

and Eisenstein, differing from theirs only in that the part 



-88-

containing the . M < dependence con tains a term t 0w-. ""lt ~ 
'V\..b (Lw,) .> "\~ being the pertinent phase shift for 

the pure boundary condition problem. A variational principle 

for~~ is obtained, in which the R.H.s. is completely in­

dependent of ~ , except possibly through the variational 

wave functions. 

In Section IV, ~. the case of coupled angular momentum 

states is treated, i.e., triplet, pari ty (- \) ~-\- \ • A 2x2 

matrix Greens function is obtained, which satisfies the 

differentia! equation 

(
44 - ~ l~-\)""' lel. ) 
fJ..d..,'l- ~\.1.. Cr\~) = -)li-~) 1. 

rA 7.. l6-\o\) t~+t.) - -ol.... (..."1. ""''}. 

and the boundary condition 

~ (J.l;)l~) \ " ,~' ('Y' f. :(., ) ().l~) \ lt, 
~L ~ J~ L 

The 2-column wave vector satisfies the same boundary con-

dition on the core surface)~ • In addition to this, reciprocity 

imposes the further symmetry condition 

Cr (.)\. ~ ) ~ c,.:\' l ~ le.. } 

on the Greens function. The Greens function is also chosen 

so as to utilise the previously determined eigenphase 

shifts and mixing paramaters of the pure boundary condition 

problem. A variational principle is then obtained for the 

quantity. 



Unlike the previous variational principles, this one contains 

quantities proportional tol~'\--l~\l andl~CM\"'-'~~), in the 
0 ~ D 

variational expression on the R.H.s. or the equation. A 

number or ways of utilising it are suggested. 

1. The Case of Uncoupled States 

We are concerned in this section with scattering in 

the states ~w.~ o l-\)'). and ~~a\'--\)~, where the first 

two quantum numbers refer m the total and z-oomponent ot 

angular momentum, and the last two rerer to the spin and 

parity of the state respectively. In the tirst or these 

cases, the potential in the region external to the oore may 

be written. 

1.1 

am in the second case 

1.2 

where + reters to the even pari ty case, and - reters to 

the odd parity case. 

We have formally written in a spin orbit term in the external 

potential for the triplet oase, but this actually will be a 
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very short tail, sinoe most of the spin orbit foree depend­

ance of the interaction will come from the core region. 

Further sinoe the analysis for the first case is essentially 

a special case of the second case, (it is the second with 

s = 1 replaoed by s = O, and the tensor and spin orbit 

potentials put equal to zero), we will oonsider only the 

second oase. The resulta tor the first case may then read­

ily be obtained trom this. 

The Sohroedinger equation for this state is given by 

. 
writing ~ = 't \a-'Ma \ ~-?) with the labelling in the radial 

tunetion suppressed, we obtain 

\.. t!'L t').~ <...~-v)- ~~>t-,)J \A. :o 
~~ ~~ ~· 

where is the redueed nucleon mass. Writing 
Q~ ~ÂAM'L. 1' l.M M 'l. ,/ 
"'1( -:. r .:...:- ~ __ and V\... : __,..:... ~ v where M

0 t\~ . ~ 
soale factor, say lo-13 cm., we obtain 

is some constant 

t c:A ,_ ' ,.,. L ~"'"') J - r \ ,T 't't' "' ) -:;:_ ,+'\1( _9!:!... \k.-\.~~(.- ~\.A..\,.c-'2. \..\.. \...\. 1.4 
V".)(. ~~· ~ ~ \ 

Where we have used the following relations 
. . 

c;,'l.. \ ~~~ \ (-\)~ / - -l. \'d\M,;\ (.•\)"}> -
~ ? . 1 

1.5 
L·S \ 1) \M.à \ l-\)~) - - \~I.M~ \ (..·\)~ > -

Equation 1.3 then beoomes, writing the right hand side of 
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1. 4 as t ~>1.) \A.lJ\.) • 

\. ~1.. t ~2- ~ta-;_\)) 
~' :>\."l... 

-- 1.6 

The Greens function for the problem satisfies 

\.. ~ '"2. '~ ~ 2. - ~ ~+ \) J Cr l~\.)~) 'Co -) \_)\.-;,.!) 
c:k.ol. .)\.. 'l. 

/ 
Multiplying 1.6 by C.W:) and 1.7 by \..\.\.>\.) subtracting and 

integrating over ~ from the core =>\..a to cD , we obtain in­

tegra ting by parts. 

v..l~/) -:. - s '1 \A. C:-l)\.~) ~C.. + t Cr Ull\..") V...
1
lH.) 

)lo 00 8 
J 

1. e:: LH.) ..! ) \.\. \. )\.) ~ 

Where the derivatives are with respect to ~~ 

The Feshbach-Lomon boundary condition on the wave function 

at .>~ is given by 

- ' where ~~ ~ is the energy independant paramater for the 

state t'} ""'a \ l- \) ?J~ J'rom here on we will suppress the 

labels tor simplicity. We choose our Greens tunctions to 

satisfy the same boundary condition on the core, with res-· 

pect to the.(.. variable. Interchanging ~and :Jl/, 1.8 then 

takes the f orm 
t<) 

\A. l )\..) ":. - S "'-" c,. u( ~l. ) ~v~) u. l ~) ~,j 
/ 

+ l \r ( oo x) \A.1 Lvo) - G- l <.0 )\.) \A. lLO) ) 
1.10 

1 
For ~)l\.. we choose the so1ut ion 

1.11 
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For -:>C. (-x! we choose the solution 

We have to satisfy the fo11owing conditions with these con-

stants 

c,. < / l)~ J(./) c -\ c,.< 1 

f' "" \ ) ?C.O (~ Jl.) 
1.13 

Cr) l-;)(..1 JI! ) - Cr < t:>..! ~) 
1.14 

G-') '''-/ ~) - (y< (H .. I ~) = _, 
1.1.5 

Using these conditions to determine the unknown constants, 

we obtain 

Cr (,>L)~) :: -le-\ ~~) "V\) l~~L) . ~x.<; c. d ll.z.>t.) 

't c.vv.. "L 
0 

""' tlt..J'..) J < = G lx..
1 
x) 

1.16 

where we have for simp1icity of notation omitted the sub-
. 

script 'd on the Bessel funotions whioh gives their order, 

and where the notation ) and < means respectively the 

larger and the smaller of .X. and ~'-/ • 

He re 1.17 

~ .ÂJO ""'
1 l.lt.>t.o)-;: 'V\ l~~) 

which is the phase shift for the pure boundary condition 

prob1em. See Ref. 10. 

Writing 

~ ~ \ . ~ x. ld - -tON..~ '""" ) (, cr.> tl.t.)~- ~ ) 
1.18 
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We obtain for 1.10 
~ 

\.\. \ J\.) = A ~ ->(.. c. ~ - ~ c.w. ~ 'Y\ J - J .t ""' er <.. ~ ~ ) cl.,<. " 
~ 

Looking at the asymptotic torm of this we obtain 

1.19 

\..\.lc,o) ~ ~ s~ <.1~~- ~~' _. '\) = A. s~ L~-~) + 
C(J)\ 1. ...o 

C If) L.le.ll.- 4i_') {.-'t~~o ~ - 5 <..~- '-~"to"") ~«! rM<.-' S 
J\.o 

whence CIO 

" .: - (''""""' "'1.:" "'c c.v., '\. ) - ' j .Q... V\ ( 'd - ~0\M "'\."" ) 
0 ~~ 0 

1.20 
':)(_ / cl,.:,<.../ 

1.19 therefore becomes 

\..\.. ex .. ) :. - s V\) .Q... \A G-lJ\..~ ) CÀ?~ - t ( t ~ "\.- \c,..,- "'\.. 0) -\ 
)~ 

c.o 1.21 

S '4:, ~ \1\. l d -"t&w-"Lo""' ) .._t 0--.t...t S ~ \ ~ -\lAM "'to""') 

which is the equation of motion. 

Mul tip1y both aides by Q..\.~) \Al~ and integra te over .>(.. from 

to ~ , we 

This constitutes a variational principal, sinoe when it is 

stationary wi th respect to arbi trary variations of v._ , ) ""- , 

it implies the equation of motion. We will now show this. 

When it is stationary. 
1.23 

~ Numerator 

~ Denominator 
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Sinoe the variation) v... is ar bi trary, we can then wri te, 

choosing ~V\.. to be proportiona1 to a ) - function 

'ù w -:: ') \,\. \. .l \A.-\- .Q.. s G l)~~\!) Q. U\!) \,;\. uJ) O~··te/ t 
.)loo 

~ 1.24 

~ ~ "' ,_<b'"'" \ lL~ _"\""'\.;"')x.~. -liA. td --u... 'U" ).l~ 
~ 

1.24 then gives 
~ 

u.. =- - j G lJI! )L) .l '""" ,:' ~,_1 - "" )~ l ~ --\ Q..'Y\ '1_ 0~) • 
~\..o 

l-tCtw- "\.- \.c.w- '\.f 1 t11.1.. \ ~-.lç CM."\.""),..; rMc..' 

whioh is the correct equation of motion, see 1.21. There­

rore N/D stationary 1eads to the correct phase shitt 

2. The Case ot Coup1ed States and Coup1ed Boundary Conditions 

We are now interested in obtaining a variationa1 

princip1e for the eigenphase shifts for the coup1ed states 
1"'!>.-\ (\ '?1 \11.1\a- \ (.-\)v i.e., "':. d-\ and l" ~-+ \ • These states 

are coup1ed beth by the tensor interaction in the tai1 and 

tbat implied by the coup1ing in the boundary condition. 

We have the fol1owing relations 

' g,'l. \ d W\d \ ~ -\) : _ l. '!_:.\ \ ~w.b' q~-\)-\- G l g lê·H)] 1. \ ~ ~~ \ ()- -'r\) 

2. ~~\ .l..ê)-·H !.. 

~\'l. \~~2)\ ~~\J -: -'lill "~'M'à\ ~t-\)4- ~l'a-l~~\)) L \~~b\~-\) 
2..~+\ ~" ~\ 2.1 
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The first two relations may be obtained from Rohrlioh and 

Eisenstein,(46), the last two by using the relation 
'l. l. '2. ~ ~ 

~ :\..~S~ \...$ 

We will denote the radial dependance of the â•\ state by 

v.\ , andM x the radial dependance or the a.+ state by 

We write these 

( ~ 'l. "\. 4 ~- ')~ \) ) ~ \ =. ~ "' \ 4- â \A 2. 
V'"?\. JI..,_ 2.3 

( ~L. ~ 1q,'1. _ l~t') lo-·u.)) \Al. -:. ~"', -\- ~ ""'l-

~L,. -J \. l,. 

with 

(. \J" 1t 1. û-\ 1r ) \ - ~ c. + ~d·\) ~\j\..~ - -- ~ \) ~ - l.à'+\ 

~ - ( )\J~- \'ù~1..) 0\j~) - 1.. l:...l. ~'J{). - 2.4 
\ 

l..)~\ 

<oC.~l)+\)'J1. "'\\ 

d :. o\J ~ 
1-'d+\ 

The boundary condition at the surface of the core region 

now reads 

(~~) î C,-+, ~c ) ( ~, \>~) l _, 
2.5 .. .)~ t 

v..'). \. J\.o) - ç~, ~ l. \>\o) 
<... 1. 
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Writing the equations of motion in matrix form, we obtain 

(f:~~~:~~; )(~J =(~ ~)l:~) 2.6 

The equation for the required Greens funotion is 

we now write 2.5, 2.6 and 2.7 in operator form 

2.( 

and 2. 7 
1 

by v. t l><. ) where the 

\ interohanges rows and oolumns, i.e., G- is the trans-

2.8 

Take the transpose of the second equation subtract it from 

the first and integrate from .)(..c to GO , we get 

(tiO t '1.. l. 1 t ) ( G- l> \.:>\..") ~ \A. - t. ~ c,. \...>\.~ ) J \A.. ) c.v.,(. :: 

~ t 
5 t.O t. c,. \~~) ç: '-A.,~ ... ~) J clo\.. + \A.\.. ~) 

2.10 

J\N 
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Integrating by parts, we then obtain 

\.\ \.x.') :. - 5 t.o (,. t t'"' J\!) ç: ""- cl<. -\-
1\..o 

( ().1 (.)(. .)t/) v./~~\.) - Crt~JI..>c!) \A.t"-) J ~~ 

At the 1ower 1imit 

/ ) -\ ~ """ l>~ = ;)La \ ""- l )\,.o ) 

We choose 

Cr t \:>~)L') -= .~~-\ • G-t <.)lo >'-") ~ 

Then sinoe ~ t:: c\ , we have that. 

We then obtain for 2.11 

\A~)\.) = - 5 ~ G-"\" l J..~) ~ \;\. c.l.,\. 1 

ll-o 

+ ( (;.t (OO~) \.A.'\vO)- J/(~JL) \..\,.l\.0) J 

2.11 

2.12 

2.14 

From the boundary condition equation 2.13 satisfied by the 

1 1 -\ 
G-1 \..~)...) ~ ~ 

1 -\ 
Cr(., l~)~) :. J~ 

l ~ 1. "< \) G-L. l.llo ~) +~\ ( Cr lJl.ü .)"" J )c_ ,, . 

( ç:1~0 G-c..~>~.ox.') H~ \ !<.. <i-1 l'Lo .~) 

2.17 

2.18 
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In addition to these, the Greens function must satisfy the 

conditions 

(;.) ( )\./ >c!) :. G-< c..~/ .)\,./) 
2.19 

2.20 

Where the ) and < notation, is as before in the un­

coupled case. 

Writing these 

Go-\) l")~ JV) 

) 1 1 1 c,..' (.)\. )\. ) 

Cr~ l>~,.!) 

out in detail 

-:. Cr< <.. 'A..1 l'../) 
\ 

Cr<.. 1 (. )\,/ ).! ) 
\ 

2.21 

':. - \ 
2.22 

2 .. 23 

2.24 

We also demand that it satisfy the reciprocity condition. 

C,. l ~>L') : G-"Î' lJ'-
1 

.li .. ) 
2.25 

This gives 

G-c. \ l.)\. )\./ ) -;. (r c.. )..l Ji} )\.) 
2.26 

Cre..).. \A..)'-') : G-e., \.,.)J. J~) 
2.27 

We use the Greens function 

2.28 
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The constants \~~ ~"1.'; , .le~~~ ;\....,.~0are to be determined by 

the boundary conditions ~ · \ 5 to tl.· ~o and 'l· 2. S • Let us now 

check equations 2.15 to 2.27. As one can see by inspection, 

equations 2.19, 2.25 are obviously satisfied by the proposed 

Greens function. 

From equation 2.22 we obtain 

2.29 

Working this out, we get 
~ 1 

N-1 ~~t- 0 : t,"'2-l-to.M"t~-tow..\.~) l'l,"",-"",~,) 

so that N :. ~~ f: 0 l ~ t:.\.v\ "'t~ - -\.<.vv-. "\. ~ ) - \ 2. 30 

The equivalent equation for (r~ equation 2.24 is evidently 

consistent with this, since it may be obtained from this by 

interchanging Cl(. and ~ , and \: Go\M '- 0 by - ~ WJ\ '-o , 
noting that the Wronskian is independant of the order of the 

Bessel functions. 

From equations 2.15 and 2.16, we obtain 

( -:) ~ / 't>o - ~, J \fi() -= ~ <.. ~ ~ <=-o ~ 1-a( 

and 

<... ":l Q :J ~ 1- j:l.. 'J: ) "'" ~<.v):. ~, 3,o( 
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Mu1tip1ying 2.31 by 2.32 we obtain writing ~\~) ~~~ 

exp1icitly 

~ O (_ ~ ~- tCAM "\, ~ "V\\ 
1

) : ( d \- \.~ '\: 'h \ ) X 

1<..2 ctr, + - ~ 
~0 l d:- t. ~ '\.~ ~:) "" '::. t~- 'tlAM ~ol V\\ ) r:- #(' 
---=----0::...._--=.. - f' l,. l 0 2. 3 3 

~ l. - 'tw..,.. "'\. ~ ~ l. 
Which is just equation 18 or Lomon and Feshbach. This 

equation 2. 33 yields \:."""' '\~ and ~Ovv. '\_~ • Evident1y i t is 

symmetric in 1 and 2, as can be easi1y seen by 1ooking at 

the product 2.31 ~ 2.32. If we had 1ooked at the equations 

connec ting G-l.. and G ~ \ , we wou1d therefore have ob­

tained the same resu1t. 

The mixing paramatertc.w. ~ 0: -\.ew.. f:: is given by 

~Cl( ~o(/ <.~~f,)r'd,-"ttMA'\~""''] 
"\""" " ~ = _l. ( ~\ J._ - ~ 1 ) ::. .1_ 1.. 'd - '\:t... \ 01( "" 2 • 3 4 

~o( t_ so< :re.. ' o l. 
1.. J"c:.. \ 

which is identical with equation 24 of Lomon and Feshbach. 

To obtain this we have used equation 2.33. 

So we see that our constants ~t.>.M\; )~"~and ~t.w~. ~0 , are 

respectively the eigenphase shifts and mixing paramater tor 

the pure boundary condition prob1em. 

We now evaluate the integrated term of equation 2.14, it is 

1 , 1 1 
C,.\ l 00 ~ ) \A\ l LV) "- C,.. '- (. C.O )~) \A l lw) - C,..l ~ l\.: ) \A. \ l ~) 

1 ~ \ 

- ~(. lt\>~) lA~~\.D) 
~ 
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We are interested in the eigen solutions to the scattering 

problem, so we choose 
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We wish to obtain'"\c.w. (:. and A in terms of 't""-' '\.and integ-. 

rals over the potentials. To do this, we look at the 

asymptotic rorm of equation 2.14. 

1st element ~ 

~ 9~ (~ ~\) : _ ~-tG-\ t'-.~)~ \Je..) "" G-el.~(,::)) ?l. L.\.) J ~ 
~'\. \ -'"Q 

~('pl~'\.~) ( .~, ..... \- \o..--t.) ... ~ ('p,~"'.~h'-E-. 
•!! \.c'""-~ ~~ 
<. "'~ "'e(. ~ ~ )-\ )-\o- ~'"Lo \.w..~ \ t~ "'\..-'\~ "\.~ ) ~ 
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wi th Ç>\ = ( ~ """ \ + ~ "'Jo.) ) pl. : (. ~"' , + ~ v. 1. ) 

soc~ Q~ (?,~~) = Ae-' ~· c~,"'\~) )~ ~ ~o 'd-< ~ 
IS) 't ~,(1 ~~ ' \ 

-1- ~~ P1.J o...~.+ A. ~"<.c...,'\~ _-\..._~ ~ )-' t ~ (~14\.~) . 
1) ~"\.~ 

( J,;.ew. "\.- \.._ ~) .1, ~ ( \>,+\~) t,.,. E: \'_._ ~. (. ~ ""'"\.-....... "-:. lf 
Cn'{! 

Wri ting ~ -< 1( 2.42 

-r \ : 5.~\.o t ~ ~ 0 ~ \ ~\ "" ~Jo. Ç)l.. J cl-oc. 
We obtain \ 

co w.: F, ~ À l \ c.w.~- \ ~ ""--<0) ( \ -T \ tMI\ E; 0 \:.""""' ~) ~ li ~~ ~ 0 T'~ 

~ c,~\ "\r.w.~o tA~\"""'\ .. -\.Cw\'\~) (,>r'\..w.e:\\to .. d:9)4 ~'"'-~ ~o "I\~ ~ o 

So we ohoose 
l _, 

~ ;. - ~ ~CAM ~ 0 (..le. c.w. "'\..- teMA '\. ~ ) l \ ~ t ~ ~ 0 ~ (.\M ':: Yt \ 
2.43 

2nd element 
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~ 

Write :I:l. .: 5~<-o (- ~ ~0 'd~ \->l..-+ g
1
fl ~ ) cl..c. 2.44 

Then s~ <. ~) ~- A (~(M.\.-"" C.W."'\. ~ ) (. "c. (;w\ "- \..o.M '-o) -T' 

~-' Je ~ ~ o r ~ ' + c ~ t \>) \ C\M;, ~ {- A ~ -t """"\.-~ l.w\ '\~ ) • 

( ~~E: --\.c.w.,o)-+ le-\ ~(1\M._o-r,_l.f =- o 

Hence we choose 

Rewriting equatioœ 2.4; and 2.45, 

'\ ::. - ~-· t ~ "0 l: \ 
(_'<:(.\M'\_- ~C.W."'\_~) ( \ + t.~ ~ 0-\ ~ '") 

L-' r .. 
~ ~ - ~ -

( ~~"'\..- \.~~) ( \- tft.E.o\cw. <:) 
From equations 2.46 and 2.47 we have 

Where 

\...~ = \. ~ ~- ~CM~\"'\.~ 

\.. (3 ~ ~ ""' "V -'t. ......., "'\. f 

From equations 2.46 to 2.48 

s~ "~o c. 1:, \..(3 + !' l. -t-~ ~0 '-~ J 
2 ~ \....( l~ 

2.46 

2.47 

2.48 

2.49 

2.50 

~'-~~0 ; _ ~"""t.C:o ('t"\.lc:..Ca.M.G: 0 l~-'t'l..\..~J 2.51 

'~ '-.c. \..f.. 
Whence we have for the equations of motion 2.14 using 
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equations 2.50, 2.51 and 2.41 

In the 1ast term, we use the notation ) ~ Cr l)U\..")~L tor in-

tegration over 6ll , and ) G-1 \.J\.>~) P.~~ tor integration 

over x../ 

Also recall 

:r \ ~ s;: (. ~ E:-o ~lo( \)\ +- d.~ \->'"') ~c.. 
~ 

Il..:. ) (_- t.A~o~~p~ _, ~~~ ) ~L 
.)~ l l \ 

In order to obtain a variational principle, multiply botb 

aides of equation 2.52 by 

( v, lA! ) \A \.. J..!) ) \) 
(

L lA.') 

L ~~l\..') 

and integrate over ~L/ • We obtain 

~ ' ~ ( ~ "'\ ~ pl. v.l.) ~l./ :. - ~~ l. ~0 l '-~'l; t~~)-. 
JlQ 2.~ L~ \..~ 

fLA- (I,L~-+rl.~'-alo(.) jl..:lt~-.?\~'d~-'tt.w\ç,o()l.) <A.,~ 
\.. l"' ,- J~ ' 1. 

~ L -<. (. l:, \: """' "- o L ~ ,; "! ._ L.._) s: l11!!> '<-"""" ~. 1>, 2. 53 

'd ~ () 1.) cL:,L." ~- f 1 ( l~, Cr\\\ +Pl- (:.1-\)L. "\ 91.. G-e. Ç>l + \-\ Cr<.. P4 ) ~L~ ~ ,_ J\.v ~~ \.. \ 
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So that 

- ~ ..... ,_"·"""'~• (Jo:""""\~-\.,...'\~)-'=- t.sJ -=­

"~ \..." \..~ 
( - C() (.() s: ( ~ ""\ + PL.\.\~) rM..! + ~ SJ\.o 5 't..o ( P, Cr\ P, ~ p1.. (,.1. p~-\ 

rl. e-t.l. ?\ +- P, G-e., pL.) ~<- cJ.,c.f f 
{. r ,'2. Lt - :r l..t. ...._ -<-1.- ~ 1. -r \ r 4. L-<. \.. f'\ ~ ~ "o ~ 
We must show tbat wben 'o tSJ :.o for arbi trary variations of 

~, and \Al. , we get the correct equations of motion, 

equation 2.52. We will do this in detail for arbitrary 

variations of ~, • Evidently from the symmetry of equation 

2.54, if when tjJ is stationary with respect to arbitrary 

variations of ~\ , we get the correct equations of motion, 

then the same will be true with respect to arbitrary varia-

tions or \1\ 1.. • 

We bave, since the variations are arbitrary. 
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But 

So 

5 ~ (fN 

~ '1-1> j •<.. ( P 1. G-, • 1-'1 + P1 <re. 
1 
P ~,. + P, c,. 1 1'1 -1- P .. G-,.'P .. ) c)...a..d.-,é 

~ '2. ~ s.:: ( P, c.., + <'>.. G-'• ) <Mt. + '1. 2l Ç '~ ( <> ... G-a.. ~ P, G-'-_) d...t.. 

~T\'l. :. ~ "!\ (~ ~ '-o ~: ~ ~ d~) 

~r~t.:. 2.-rl.. (-a~'-'f)'dt + ~ '),r..) 

'1. <b1:,'!2..-::.. ,_r, (-ac$.'"<~!}:+~ d,r..) +l.Tl..lt~ '-o~( + 

Whence we have that 

'& ~:) 

implies 

\ ~ lA 1 -\- s,: ( G-, ?, + ()l.. Cr,) ~L ~ ~ ~ \_ \.\ l.-\- ),J (>>..Cr L + 

ç>\ Cre.,)~ r 

~ ~ C. L; r, 'd 0( + \.. _t w:t ~ o ~ ~ r: 1... - -t "-'A.~ o-r , c.Jt '-o ? ~ 
rv ~ ~ ~ 

L~ \..(!> +~<Ml\ '-o ~ ~ '!._ \... ~ \.. (\ j S 
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i.e., 

C.. ?J,J. \_(b (. ~(?> 'L, ~\~~o L.(."Il.) 4- 'd,~ L. ,l. ~~ ~'0 l \.. ~ ~ CoW\ (:-c) '! \ 

+ ~ ~\Al.~ sJ: <.rl.. G-1. ~ "\ a-c.,) ~ +-- L.,_ rl. ) J S 
c;_~_l.._C':-o \. -\ CVv\ ~-< - -'t. fMA i. ~ ) - \ t. L ~ ~ rAN\ C:-o 1'). o( ( l 'I' \ +-
t. le.'-~'-(?> 0 \... ~ 

~ G>..v. '=-o \.-<..'tl..) - '--< !)~ (.- L~ r~ + '=.M~~- <; 0 L ~:t' l) J r::. o 

This vanishing then imp1ies the equations of motion equation 

2 • .52. Since eaoh bracket is separately zero when ""', and \A 1 

are the exact wave functions. We see then that the values 

of '-", and \.\ l.. which make C.J) sta tionary, are th ose which 

satisfy the correct equations of motion. 

3· Discussion 

The variationa1 princip1es which we have derived, 

may be used in fitting the above interaction model to the 

data. It enables us to obtain the phase shifts produoed by 

an interaction with a known boundary condition, for an arbit­

rary externa1 potentia1 tai1. 

The variational princip1e equation 1.23 may be 

uti1ised direct1y to yie1d the singlet and triplet parity 

(-l)j phase shifts. The variational principle equation 2 • .54 

cannot be utilised quite so simply, since it contains the 

desired phase shift explicitly on both aides of the equation. 
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However if we are concerned with fairly high energies, where 

it is expected that the core region gives the more important 

contribution to the phase shift, then one oan approximate 

the phase shift on the right hand aide of the equation, by 

~ ~ or~~ , and utilise an iteration procedure, to ob-o ~0 

tain the true phase shift. As stated, this method will be 

most useful at high or moderate energies, where the first 

approximation to the phase shift is close to the correct 

value. At lower energies it may still work, but perhaps a 

better first guess may be necessary, or more iterations re-

quired. 
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