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INTRODUCTION

The Nuecleon-Nucleon Interaction

One of the central problems in nuclear physicsx is
the determination of the forces which bind nuclei together.
A few facts were obtained in the beginning from the vast
collection of data on the binding energies of nuclei. In
order to account for saturation, Heisenberg (1) and
Majorana (2) introduced the idea of exchange forces, some-
what akin to the exchange forces which occur in molecular
binding. These forces give rise to spin and parity depend-
ence in the interaction. From the large ratio of the
binding energy of the alpha particle to that of the deutsron,
Wigner (3) deduced that the forces were short ranged and very
strong within that range. In 1935 Yukawa (4) developed a
meson theory of the force, along the same lines as quantum
electromagnetic field theory. The torcqﬁ/between charged
particles is assumed to be due to an exchange of massless
photons. In order to account for the short range of the
nuclear force, Yukawa postulated the existence of a particle
of mass around 300 electron masses. The discovery of the
pion twelve years 1ateyy:was a triumph of this idea. In the
years following the proposal of the pi meson, field theoret-
ical work on the nature of the interaction continued. During
this period, progress in understanding the interaction also
was being made from a completely different approach. The so

called phenomenological approach.
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In order to explain the discrepancy between the ob-
served low energy total cross section, and that predicted
from the binding energy of the deuteron and effective range
theory, Wigner (5) suggested that the forces might be spin
dependent, so that the deuteron data, which is associated
with a triplet spin state, is not adequate to calculate the
total low energy cross section which is made up of an in-
coherent mixture of triplet and singlet parts. Schwinger
and Teller (6) showed that the coherent scattering of very
slow neutrons from ortho-and para-hydrogen}fwould furnish
additional information, with which it would be possible to
calculate the singlet and triplet scattering lengths. The
concept of spin dependence was further developed by Wisnegx'
(7)$who derived the most genereal form of potential consistent
with certain invariance properties which we hope are satis-
fied by the physical world, at least for the strong inter-
actions. Experiméntal determination of the magnetic moment
of the deuteron indicated that it was not simply the sum of
the intrinsic moments of the neutron and proton, thus

suggesting that the deuteron ground state was not a pure S-

state, and thus indicating the existence of a noncentral

force within the two nucleon potential. This led authors to
postulate the existence of a tensor force within the potential.
The discovery of the quadrupole moment of the deuteronygfirmly
established this idea. Treatment of the data up to 1940 was
given by Rarita and Schwinger (8) in terms of phenomenolog-

ical potentials including tensor forces. Between 1945 and
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1957, a few attempts at fitting the existing datay with

phenomenological models were made. None of these attempts

WJ
—% wWere completely successful, but they were nevertheless im-

portant, in that they contained many interesting ideas and
served as a taking off point for the later work of Gammel
and Thaler and also Signell and Marshak. Jastrow (9)
attempted to fit the data by using central and tensor
potentials with hard cores. Feshbach and Lomon (10) tried
to fit the data by representing the many—meson exchange
region of the interaction by an energy independent boundary
condition on the logarithmic derivative of the wave function
at the boundéry of this region. Also Case and Pais (11)
suggested that the inclusion of a spin orbit force might
allow a fit of the p-p polarization data. What was estab-
lished during this periodx is the following. The intro-
duction of an effective range expansion for the low energy
phase shiftsy made it clear that the n-p data at low
energies was determined by four quantities viz. the singlet
and triplet effective ranges and scattering lengths. The
singlet values were in agreement with the values obtained
from p-p scattering, after the removal of coulomb effects,
except for a small difference in the scattering lengths which
Schwinger (12) showed could be explained by the inclusion of
non-coulombic electro-magnetic effects. These facts lend
support to the idea of charge independence of the forces

which had previously been suggested by Breit.(l13). Charge

symmetry, i.e.,n-n equals p-p, had even previously been in-
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ferred from the ground state binding energy data of mirror
nuclei. The lack of quantitative success in fitting the
data7(was a direct result of the complicated nature of the
interaction on the one hand, and the availability of mainly
angular distribution data on the other. Wolfenstein (14)
had already pointed out that angular distribution data
alonqxfgzg‘not adequate to predict the scattering matrix.
In 1957 the situation changed, there were two reasons for
this. 1) Double and triple scattering experiments were be-
ing performed, and 2) high speed electronic computing became
available. Stapp et al. (15) performed a complete set of
experiments at 310 Mev. and made phase shift analyses of
these results, yielding 5 acceptable solutions. It is easy
to see how a few more experiments at this energy could make
the solution unique. Since then a number of experimental
groups have been active, performing polarization experiments
at several energies. At Harvard and Harwell work is in
progress at 150 Mev. At the University of Rochester, a group
is working at 240 Mev., and at Liverpool between 320 - 380
Mev., while at Berkley work continues at 310 Mev. Meanwhile
the fleld theoretlic approach to the problem continues. A
number of interesting attempts to calculate the force have
been made, one of the most interesting of these by S. Garten-
haus, (16),the so called Gartenhaus potential, which is
based on the non-relativistic Chew cut-off theory. Gartenhaus
has shown that the low energy ( ¢ 30 Mev.) datay is adequately
explained by this form of potential. Work by J. L. Gammel and
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R. Thaler (17) has shown that this potential however, does
not fit the data at high (300 Mev.) or even moderate
energies. They conclude that this potential only adequately
describes the force at distances ) 0.5 fermis. For smaller
distances, this meson theoretic approach is of dubiocus valid-
ity. Geammel and Thaler (18) again attempted to fit the data
up to 310 Mev. This time they used Yukawa type potentials
with hard cores, including both central and tensor forces.
They obtained good fits to most of the data, but could not
reproduce the p-p polarization at 170 and 310 Mev. They (19)
repeated their work, adding a short ranged spin orbit force
with a hard core. This type of force is consistent with the
form of potential as predicted by Wigner, and its existence
was shown to be implied by meson theory by Marshak as early
as 1947. With this type of potential, they were able to
obtain good agreement with the data up to 310 Mev. About
the same time, Signell and Marshak (20) also obtained good
agreement with the data up to 150 Mev. by using the Garten-
haus potential with the addition of a one paramater spin orbit
force.

The early work of Feshbach and Lomon (IO)X yielded
phase shifts which are different in nature from those of
Gammel and Thaler, (19), and also Signell and Marshak (20).
They are characterized by a iarge negative\}fo phase shift.
Solutions of this type exist both in the work of Stapp (15)
(solution #6), and also in the analyses by Stabler (21) of

date from Harverd and Harwell. In section II-5, we use this
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type of phase shift solutien to caloculate certain pelariz-
ation parameters, which when compared with experiment should
shed some light on the validity of this type of solution. It
is to be hoped that with the work progressing as it is at
present, we will have & unique picture of the scattering matrix

within the next few years.
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Pion Nucleon Scattering

The early work on the scattering of pions on protons
was carried out by Fermi and Anderson (22) at Chicago in
1953. Por energies less than 300 Mev. they assumed that the
scattering was entirely due to S and P waves. The contribut-
ing angular momentum states were therefore S /2,P1/2 and
P;/z. If we consider the meson Compton wave length as giving
the aprroximate range of the interaction, then the usual
centrifugal barrier arguments justify this approximation for
energies less than 200 Mev., however at about 300 Mev. it
looks as though D waves might be contributing. As it turns
out, the approximetion is satisfactory even at 300 Mev. With
this assumption and that of charge independence, they found
that they were able to fit the existing data. From the ex-
pression for the TL* on p cross section, they were able to
deduce several qualitative facts about the wvarious phase
shifts. The large increase in the cross section at about
140 Mev.)(led them to believe that there was a resonance
with one angular momentum state mainly contributing. The
large coé‘e term in the angular distribution implied that
this was due to the P;/z state. They therefore expected a
large Pz/p phase shift % 33. Such a resonance in the Pzj am-
plitudgx;is predicted by the static nucleon theory of Chew
and Low (23). There is also a large Cos © term which is neg-
ative. This they deduced could only be due to an S and P wave
interference. They therefore expected a negative S-wave phase

shift.
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Analysis of the data completely justified these qualitative
inferences. Fermi obtained one large and five small phase
shifts. The phase shift %33 was large and the phase shifts
S}l ,%3,311513 and 31 were found to be smell. Here we have
used the notation of Fermi, the first index refers to the
isospin, the second to the angular momentum. The phase
shifts with only one index are S wave phase shifts. The
phase shiftS” is found to have an '\\_3 dependence on the
meson momentum at low energies, but increases more rapidly
near resonance. Certain general ambiguities were soon re-
cognized in the phase shift solutions.

These ambiguities are a direct result of the
symmetry in the phase shift dependence of the scattering
amplitudes. To begin with it was soon recognized that a
complete reversal in sign of all of the phase shifts would
also give the same fit to any data whieh involved only pion-
nucleon forces. This is because in the angular distributions,
the sines of the phase shifts appear bilinearly. Coulomb
interference experiments performed by Orearx (25),( indicated
however that% 33 was positive.

When Fermi obtained his set of phase shifts, Yang (24)
obgserved that a different type of solution would also fit the
data. This solution was characterized by the following
(Ss\ —353) P (%;-5;\3 3 %\ ’-‘\'a(‘: and ¢ 3334931)

X (%;; v ;%\) . The Yang phase shift solution was found
however to be inconsistent with the dispersion relations.

/
Farther, this type of solution implies a largess\ . This 1is
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less reasonable from the theoretical point of view, since
there is no known mechanism which would give this. There
is a second type of ambiguity which occurs, which is not as
directly related to the structure of the scattering ampli-
tudes, but is rather a result of the non linear nature of
the quantity which is being fitted. The result of this is
that several phase shift solutions of the Fermi type differ-
'ing mainly in the small phase shifts are possible which fit
the same data. There are a number of ways of eliminating
these incorrect solutions, or at least of making them seem
unlikely. They should be consistent with the dispersion re-
lations, they should be continuous with respect to the energy,
and most-importanx of all, they should be capable of fitting
the data from new experiments which help determine the
scattering matrix. Very important in this respect are the
experiments designed to measure P, and P. , the recoil proton
polarization in the scattering of ﬂ? on p, and ﬂf on p
respectively. In section III 2 we consider three solutions
of the Fermi type obtained by Chiu and Lomogx\(26), we calcul-
ate the values of P, and P_ for these three solutions, in
order to determine which are invalid. The other two tests
have already been carried out by Chiu and Lomon (26). The
importance of obtaining a unique set of phase shifts derives
from the fact that such a set is essential, if one wishes to

construct a model of the interaction.
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SUMMARY

In recent years, polarization experiments and the
calculations associated with theqx’have become important in
helping physicists to pin down the scattering matrix for the
nucleon-nucleon and pion-nucleon interactions. Thus a large
part of this thesisy is devoted to a review of the formalism
of scattering matrix calculations, followed by a few
applications to curfent problems. It also includes a re-
Quired extension of varlational techniques. Section I is con-
cerned with the theory of polarization experiments. The
theory is developed from first principles, using a density
matrix formalism for a description of states. Expressions
are derived for the cross Section I, for the scattering of an
unpolarized beam, and for the polarization P which then
describes the azimuthal assymmetry observed in a double
scattering. Expressions are also obtained for the triple
scattering parameters R,A,R: and A: and for the correlation
parameters Cnn,CKP,C““a 0:9, C\Sw and C:P . These results
are obtained quite generally for the scattering of a particle
of spin S from a target of spin T. Triple scattering exper-
iments are described, and the depolarization and rotation
paramaters D and R are interpreted. Correlation experiments
are discussed with respect to the measurement of Cpn and Cyxp,
and these parameters are also interpreted physically. Section
Il specializes the preceding to the scattering of a particle
of spin 1/2 from a target of spin 1/2. The most general M-
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matrix which satisfies the conditions of invariance under
rotations, space reflection, time reversal and which is also
charge independent is derived. ZExpressions are obtained for
the elements of the M-matrix in terms of spherical harmonics,
and the elements of the S-matrix, which are directly
expressible in terms of phase shifts.

The M-matrix is modified to aecount for the identity
of the two particles and for coulomb effects, in the case of
the scattering of protons on protons. Two phase shift
representations of the S-matrix are given, and the suitability
of the "barred® representation for the treatment of coulomb
effects 1s discussed. A physical interpretation of each
representation is also given.

Calculations are made of C,,,Cgp and R at 140 Mev.
using phase shift fits of Harvard and Harwell data. These
solutions, designated of type #6 are consistent with the
boundary condition model of Feshbach and Lomon (10), and are
characterized by a large negative\éPo phase shift.
Calculations are also made of Cpn and Ckxp at 310 Mev. using
Stapp's (15) solution #6. Several arguments indicating the
incorrectness of solution #6 are discussed, partly on the
basis of our caloculation of Cxp, and are shown to be invalid.
Comparison of R with recent (27) experimental results how-
ever indicate that solution # does not fit the data well,
particularly at small angles. This result is in agreement
with that of Stabler and Lomon (28) at Cornell.

In Section III,the formalism for scattering matrix
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calculations in pion nucleon scattering, considering only
S and P waves, is developed from first principles. ZIZExpress-
ions are obtained for the differential oross section for
elastic scattering of positive and negative pions on protons,
and also for the charge exchange cross section. The express-
ion for the recoil proton polarization is derived for both
of these experiments. These expressions are then used to
calculate P, and P. for solutions A,B,and C of Chiu and
Lomon (26) at 307 Mev. Our results indicate that the P,
experiment does not distinguish between these three solutions,
and the P_ experiment favours solution C. These conclusions
are shown to be in agreement with those of Korenchenko,
Polumordvinova and Zinovy (29).

In Section IV,variational principles for phase shifts
are obtained, for the nucleon-nucleon interaction as described
by Feshbach and Lomon (10), with the addition of an external

potential of the form.
s
Y.VQ (M) + S\q_ \JT \M"-.)

‘where VCQMO and QTQA) are central and tensor potentials

respectively, S and -1t are the spin and parity labels,
and S\2 1is the usual tensor operator. Methods for utilising
these results are suggested. These variational techniques can
be used in fitting the above interaction model to the data.
The author would like to take this opportunity to ex-
press his thanks to Professor Earle Lomon for his friendly
help and encouragement during all phases of the work, and to
the National Research Council whose help in the form of Re-

search Grants, made the work possible.




SECTION I

THE THEORY OF POLARIZATION EXPERIMENTS

1. The Density Matrix (30)

We wish to describe the scattering of a particle of
spin S by a target of spin T. The interaction will in
general be spin dependent, and for a definite energy and
momentum of the incident particle, there will be in general
(28 + 1) (27 + 1) = N independent states % with i running
from l.....N. Any state *“ which i1s a linear combination

of these states 1s termed a pure state.
% °‘ .
S-S N PY 1.1
~

Where the C:‘ are arbitrary complex constants.

For such a state we can always define a complete experiment
suoh that the result is predictable with absolute certainty
for that statg. Egsentially this means that we can find a
set of hermiﬁéan operators for which that state is an eigen-
state. A complete experiment is then really a set of
experiments determining the pertinent eigenvalues. Perhaps
the most femiliar example of a pure state would be 100% lin-
early polarized monochromatic light. Such light will always
be completely transmitted by & suitably oriented Niégfl Prism.
For partially polarized light, there 1s no orientation for
which we can predict with certainty that every photon will be
transmitted. Such a state is called a mixed state, and is a

state of less than maximum information, as opposed to a pure
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state, which is a state of maximum information. A mixed
state cannot be written in the form l.1. The difficulty of
representing a mixed state can be easily resolved, when we
realize that a mixed state is merely an incoherent mixture
of pure states. More precisely this means that every impure
state can be written as an incoherent superposition of pure
states qf where *‘ is some pure state. Thus the sum over
¥ is actually a sum over all possible pure states, it is

often referred to as an ensemble sunm.
N VIR
} = = ¢y 1.4
The phase factors ¢* are real quantities which vary
randomly with time.
Let us now evaluate the expectation value of an operator 0
in spin space.
<O>§ = <§\0\§>

<I\T> 1.5

: &U‘(—*.U) <\ O\N>
e -
g <viog= .+ Z Yo

Aldq~du) sy iye>
THNED + gﬂlg 4~ %4 Sal

But since ¢ varies randomly with time, the quantities
Q_"w&'ik') average to zero in time. We thus get for the

expectation value,

5__«\“\0\ \x >

< O >$ - 106
| I R P
Writing this out explicitly, we get
*
O, . ~
=, = C <y 1.7
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If we define a matrix operator

. cXex ¥
?Aa - 2.( 5 CA 1.8
This gives
Tm (Of3)
< 0= = 1.9

E TM((?_)
The matrix Q is known as the density matrix for the state.
Evidently it completely describes the state, since 1.9 gives
us a prescription for writing down the expectation value of
any operator for a state whose denslty matrix is known.

The diagonal elements of the density matrix
X | &
(’;\"\ ? \ CA- \ 1.10

evidently gives the welghting of the state i in the ensemble.

‘T@,Q = ‘EE ekd mey be taken to be proportional to
the intensity. It 1s essentially the normalization factor
for the density matrix.
Let us now consider the space of all N X N matrices, call
this M-space. This space is technically a vector space,
that is 1t has all the properties of a vector space.
If A& B are elements of M, then

C = A+ Bis also an element of M (closure)
If A is an element of M and 9 1is a scalar then

B = 2 A is also an element of M (scalar multi-
plication)

There is also a scalar product, which is invariant under

unitary transformations.

‘t
A.B = Tr(A B).
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M-~-space is N2 dimensional, it therefore can be represented by
N2 orthonormal base matrices ,§3 which should also be

hermitean, such that

*
T </S*\ $) = N ;N’ 1.11

/“: locc.oNao
Any NXN matrix operator, can then be expanded in terms of

these base matrices.

- =\ 0s') ¢
0= N = T (05 S 1.12

In particulir Q cig.be expanded to give
e = N Mz;\ v cc/g*)}”

which usin% 1.9 N —c — 113
= N~ (-Vaﬁ) /E;i ;i o *

We see therefore that to completely specify an impure state,

we need to specify the value of N2 operators. Then N2 exper-

iments are needed to determine the state. From equations

1.9 and 1.12, we find for the expectation value of an

operator RS . |

_ N = ‘VMC%) =57

< Q7>
{ N <) l1.14

2. Change of State in Scattering Problems, the M-matrix
When two particles originally in a state eg scatter

from each other, the final state 1s described by a trans-

formed density matrix £ . Each spin state ¢ . will be

* o)
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transformed by the interaction into a new state *-\A/
> 47 2 Cg
\\/\ \'\A = % MQ/\ \\,g 2.1
A N R
= < Cc( o . “’ .
Ay . P\Q'\ ‘\3 < ? C’a *a
with Ca.(/ = 2 Q: V\GA 2,2
Now <’ ¥
o= C
(fj_)a,\ = 2y K LA .
: g i "\aL Cg M,;Q Cl
*
= i Mao, e ™M ale
that is T 2.3
?3 < M QA' ‘V\
Using 2.3 and 1.9 we get
et I ‘ - 2.4
Tan QET
using 1.13 *
- N <S> g
'\"Mﬁ_j <./§,“>& = N TMQ/;%TM\\'\E%S‘, .;A'_\"\/“'k
.\.
- N7 <S,> V.
Ty v-:/s'“-;_»&_ N = =N (Mg,,“\;“) 2.5
YR fi (o)
where pe { T . ‘ 2.6

is the differential cross section. This is evident from the
interpretation of TMQ , see discussion following 1.10, and

‘also from the fact that M = M (8¢) has no radial dependence.
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3. Scattering of a Particle of Spin S from a Target of Spin T

The wave function which describes the scattering may

1

be written, neglecting™ for the moment any antisimmetry in

the case of identical particles.

* : .9-22 a =\ A bm it
Yy T “\”'”\7—_;\— G %—.};— SN Ca 3
with \\3 the a\t spin component of the state ‘-\“ and Q;
the aﬂ: spin component of the incident plane wave state.
Mji is the Jithelement of the M-matrix and —; and E)) are the
relative coordinate and momentum in the centre of mass. We
use the following hermitean operators as our basis.
11t)1¢t) 1\-,—62 ?—&i . The'&)‘_‘ g\: are essentially the
spin operators for the incident and target particles respect-
ively. For example, if both particles are spin 1/2 these
will be the Pauli spin operators. From equation 2.5 we then
obtain for the scattering of a polarised beam from an un-

polarised target _\_
P> Ty = NVLSER TMO'\SG' T) +
5 T cv«y«j<‘?>} 3.2

T = '-\_:05 PN <F2 - Tm (V\._\} v\p 3.3

2>
Where we have written <T Z for the initial polarization, I,

for the final cross section, and I, for the unpolarized final

1 This effect is not pertinent to our discussion, it will be
shown in a specific example that the incident and target
particles may be treated as distinguishable if the M-matrix
is suitably antisymmetrized. See Section II.
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cross section.

We also have from 1.13 the relation

e = N'\'\'Mﬁ\{?‘- <?“>+ﬂ_3‘ 3.4

For the density matrix for the scattering of a polarized beam

from an unpolarized target.

4. Single and Double Scattering Experiments (14)

We have an initially unpolarized beam inecident on an

unpolarized target. The single scattering then gives

for the cross section

1°\ = N—‘ TM QV\\M\.\> 4.1

and for the polarization after scattering

- - §2
IO\ <0‘>| = N Y Tan CM\M\ <\_> 4.2

A second scattering is then used to analyze the effect of the

first, we obtain for the c¢ross section using 3.3

T T - -G;‘M-\-
2 = o+ N7 €T3 TM M, 2 4.3

> > ¢
The quantities <Q'>\ and\,, (W T ™ ) are evidently measures
of the polarizing and analyzing powers of the target respect-
ively. We will show that both of these quantities can be

described in terms of a single variable PC®). To do this we

observe that

- > >
T = YT M@ IR, 4
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where/AA\ is the direction of polarization, defined by the
> -
equation < G"'>‘ = \ <G‘>‘ \/M\

we will now show that

>
T (M?V\T> :Tm(\"\"'\“?) =NIOP(B)M 4.5

where-g is the normal to the scattering plane. The proof of
this statemenp;(involves certain general 1nvarianée pro-
perties of the M-matrix. (14) (31).

We begin by expanding M in terms of a complete set of oper-
ators in the spin space of the incident particle.

M = 81* R.? 4.6
where g and h are operators in the spin space of the target
particle.

Since M is a function of Q,* angles which describe the
relative orientation of '3 and 3,’ the initial and final
relative momentum of the two particles, it must.therefore be
independent of the euclidiean system used to describe the
scattering process. It must therefore be invariant under ro-
tations and space inversion. It must also be invariant under
time reversal, i.e., the operation which’changes t > -t
and simultaneouslyg —> _{)/, since such an operation does
not alter the process being described for a conservative
system, i.e., a system for which direction in time is not
significant. Thus g must be a scalar in coordinate space,
and invariant under time reversal and _h) must be an axial

vector, and change sign under time reversal. Evaluating the
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traces in equation 4.5, we obtain

T (V\g- V\\-> ('ZS-\-\) TM L 8+é!’\—'\' ,\A)
At ?
Tan (M “\,‘ ?) _ (agr)) T (Q'\%T'\'éz\“—/\-&/\ x 3 )

where the primes indicate traces in target space. The two
expressions are identical except for the final term in each
trace. Now because of the properties of ‘E, these last terms
must transform as axial vectors and be invariant under time
reversal, however when the indicated traces are evaluated we
are left with a function ofg and 5)./ The only function of ?
and-;/whioh transforms like an axial vector is ;)) X ?./ This
function however changes sign under time reversal. We there-

fore conclude that

T'\n/ (.Q?X?,:\.> = TM/(Z'\-‘YK>
S0 that VA C‘“’\"\.‘.Q-z) = TM(“'\? "'\TD

which is what we wished to prove. Further the remaining trace

when evaluated must be proportional to —12 X ?/.—_- % g“ gm'\e 80
2 > >
T (MHTE) = TalM@ M) = aPFSmen 4y

Where « is an arbitrary function of the scattering angle.
So from 4.2 and 4.7 we obtain

T MM = Tw TN T2 NT PR,

e
Where P(®) WV 1is the polarization veoctor. Thus we note that
in the scattering of an unpolarized beam from an unpolarized
target, the final polarization is a function of @ , and

further is normal to the sc¢attering plane.
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The cross section after the second scattering equation 4.3

may now be written

Tra= To2a 1+ PP Comg ) 4.9
> 2
where Vi, c WV = Cwe *‘L

The measured quantity is the asymmetry factor e defined by

e T,.C8,¢,=0) — T,09,4,,™

T 4,200 + T, (8, 5,4 =) 4.10

= Ll — LR = B we) R (8,
UK S 3
here (LL) signifies a first scattering to the left and a

second to the left. Similarly for (LR). The quantity e
evidently gives the left right asymmetry in the scattering.
If 9\ is chosen equal to ©, and if both targets are ident-
ical, then neglecting the energy loss in the first

scattering )
ew) = P o)

1@ = P
which determines ©<®) since @(®) is measurable. The
geometry of this experiment is given in Fig. 2.
Further information about the M-matrix may be obtained from
triple scattering experiments. Such experiments are designed
to determine how the second scattering changes the magnitude
or direction or both of the polarization of the scattered
particles. Thus the first scatterer is a polarizer, the

third is an analyzer.
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5. Triple Scattering Experiments (14) (32)
After double scattering the polarization of the beam is given
by

- -\ Y -> -
T,<T2 = V'L TaMM E)+ <F2 T (M ML )}

The first term we immediately recognize from equation 4.8 as
being
1o @ A 5

N
The last we seek to evaluate. We write the first < in the

trace in the 3uga >2 representation, the second in the
1,\4/)?{ representation. (See Fig. 1.) This is more con-

venlent since the first ?T is roughly speaking linked with

the first scattering, and the second is linked with the

second si)attering. We therefore get for the last term.

N~ { <<r> Ay TMCM 26, M. (G‘V\’;\) -\-G"‘\e _Q,{/_\_Q/g/])

A >
+ <c~>‘ L TMCM G‘u"\ Lo Dt Ty S)u- :S{J) 5.2

+ >
+ <0"> '3 T CM, G2 L M2 L0 ?Li-q‘\gzkz-&.ﬁ';zsz]}

The various traces which appear in the above are observables
and functions of 9,9, ‘t’z , they must thereforse be inde-
pendent of the euclidiean system which we use for the

description of the scattering process. We therefore conclude
that all pseudoscalar traces are zero. ILet us look at the
transformation properties of the quantities involved. Mz, Mf
and G\ v, both transform as scalars in coordinate space, while

¢‘L>¢Q£)¢SL and c‘sl/ transform like pseudoscalars.
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Equation 5.1 therefore reads

- > > P
N \SL<°'> ;)\ Tan (M, \V\*«‘h)m -\-<G‘7\Q/z UM B,
! >

TM(M,_G"SLM.\‘G\QI) QZ’+ Tan cnzcs ™M «*s/)s{ Jj'

Or rewriting it in a more useful form

3 - 2. 3
11 <0->Z = loa {((314-.3 <T>‘-'V\L> e

- 2> - > 2
CA <65 .4, + R <3¢, )¢, + 5.4
/ rd /7 2 - >/
CN > R v v <& 8, D ¢
Where

D 2 T (MAMTRYD [ Tar (UMY

R = T, QHG‘S‘\‘\.Q’) /TN\ (V\ V\-\-) 5.48

Az T Mo, M\'«;/) [ T (MWT)

R
~N
i

T (MM ) [/ T (aMY)

o (MM ) | Tan (M)

b\/

For simplicity we have dropped the subseript 2. throughout.
Thus the triple scattering experiments will involve five new
quantities. As will be shown later in Section II, all of

these quantities are not independent. In fact for particles




~13=

of equal mass we have (nonrelativisticly).
A+ R7
Al - R

As is evident from equatiom 3.3 and 4.5, polarization along

)

the direction of motion cannot be detected in a single
scattering, since the analyzing term which gives rise to the
asymmetry in the analyzing portion of the scattering exper-
iment is given by

->

Triple scattering experiments are therefore designed to

measure either

| >_ 2 >
I?_<c->1.'v\z 2 Toa (R + D <o >

SV

2

or

_ <_)2 3, 5.7
4 < 2 Sz.

N7

S5 >
Toy CACE> o 4R <656 D

The corresponding asymmet:y&s in the scattering are denoted
by €3\ and st'respeetively. The geometry of these exper-
iments is given in Figs. 3, 4 and 5.
.%
Thus in the €3, experiment ™M, = X™M_ i.e., the second
3 PR
and third scatterings are in the same plane. We obtain for

the cross section and left right asymmetry.

_— S >
Ty = Loz Cx B ST RN 5.8
—_— 2 2 —_—
S, = L3 (""3‘-‘-"’\1)— Ay (V\5=—'\Al) 5.9
- 2 > >
IS (ﬂns:‘v\z_) + Ty U\?;‘"Mz)
- LL - LR
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Using 5.7 this gives

e, - pw_., sz'\"Dp\Q‘Dc\'&>

y\
S 5 (\‘\-p‘pzcmé\z)
Crod =W ",
Thus if we choose 3(\?:.-0 or Wi.e., all three planes

5.10

parallel, we can determine D from 5.10 where we of course
assume that the quantities ©, P ,©, ¢  © 0 ,

have all been determined from double scattering experiments.
Alternatively we can utilise both values of 4\1 (see Pig.
4), assuming that the first scattering is to the left, one
then has four scattering intensities LL,LR,RL and RR where
RL for example is the intensity with the second and third
scatterings to right and left respectively. Using 5.10 we

obtain

\_L.-\-QL—\-Q—Q‘Z)
D = ( 5.11

QAL 4RL 4+ LR 4R Q)IAP

We notice that here only one double scattering paramater

need be determined, i.e., P]_P;.

The paramater D is called the depolarization of the scatter-
ing. It is a measure of the extent to which the second
scattering depolarizes the beam. To illustrate this let us
take P) = 1 the beam completely polarized after the first

scattering, and choose C o =\, + | then from 5.4 and 4.9

9
<¢%-—Mz(%t$)/(\:ﬁ) | 5.12
> > .1
<E> = m,fx 2L l. 2e33
Q%)
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We see that D is a measure of the amount to which the second
socattering depolarizes the beam. If D = 1 there is no
depolarization. If D= P:' the final polarization is the
same as if the initlal beam were completely unpolarized, how-
ever D may be less than this so that it may not represent a
depolarization but an actual reversal of spin. From 5.12

9
using the fact that \(6")2\ < \ we obtain the limits onm D.

-\ +2\0 ¢ D <) 5.14

In the second triple scattering experiment we seek to measure
the SL’ component of the polarization after the second
scattering. We therefore choose '\—23 = t’g’; i.e., the
second and third scattering planes are normal to each other.

We obtain for the cross section and left right asymmetry

Ty = To3 <\+P<?> My

:& (’V\S:Q ) — I Cv\ :.-g’ 5.15

Cy¢’=
Ta (W ?/> +T$C'\=? -—?’
Now using 5. 7 and 4 9

500 S5
cg-%.'?{ : Io‘z.t.A<“‘>\“Q¢&-\~Q<<S‘>‘-€13 5.16
But To2l 1t + 6 <F> . R )
- S \ ¢
<°->-’Q -0
So U
> 9
<?.>2'2: . RO\, S,
> >
Rp\ SMA *‘\1

\ v+ R P, Qn*—‘z
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Then
. . RPBSmidy,
3/ = 5.19
4+ 9,0, Co§,y

We now choose é‘\zz + T i.e., the first and second

p -
scattering planes are normal to each other. So that in the
entire experiment, each of the three successive scattering

planes are perpendlcular. We then get
QSS/ = KP\ PS 5.20

Since P1P3 may be determined from double scattering exper-
iments, R is obtained. 1In order to get some physical pleture
of what R is, again consider the case of P; = 1 then from 5.4
with ¢ = T
\2 3
- - _9/ /-)/

<, = P, ¥ RS+ R &qz 5.21
Therefore we see that the polarization has been rotated out
of the second scattering plane, giving it a component P in

Y
the direction W\Z, R gives a measure of this rotation, it is

therefore called the rotation paramater. ZFrom 5.21 we get

|R\ < (\—9:3'\5- 5.22

We see therefore that triple scattering experiments cean deter-
mine D or R, the first experiment performed with Ck\z=.o or Y
and all three scattering planes parallel to each other. The
second experiment is performed with <\¢\1= x> "’{ and the

successive planes are normal to each other. If we wish to

/
measure either A R or A{'we must utilise the fact that the
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particle which we are observing has a magnetic moment, so
that it 1s possible to rotate the spin direction of the
particle with the ald of a magnetic field. If we wish to
measure A, it is necessary to rotate the spin after the first
scattering in such a way that the polarization gets a com-
ponent along the direction of motion -Qi: . In order to do
this, a magnetic field normal to the ::\ jZ(’ plane, is
placed between the first and second scatterers. In a similar
manner a magnetic field placed between the second and third

-

scatterers will rotate the &«:

..9
ation, i.e., give it a component perpendicular to 12{’ .

component of the polariz-

In this way, R/may be obtained. In order to measure A:'we
need magnetic fields both between the first and second
scatterers and between the second and third scatterers.
These experiments are very difficult to perform, and to date
only the A experiment has been performed, see for example
reference 15. For further details of these experiments, see

reference 14, and the references contained therein.

6. The Theory of Correlation Experiments (14)

In these experiments, we look at the spin of the
scattered particle in correlation with the spin of the recoil-
-2 D
ing target. The pertinent operator ¢ cjc , has an expect-

ation value given by

S5 =D —
"‘.:j_ <g—g'-t> = N-‘ &TM<V\\'\*G—G¥> “ <G_>A.:.
2.2
T MM T )

Where the target particle 1s assumed to be initially unpolar-

6.1
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ized. The subscript t refers to the target particle.
Now we can detect polarization of any particle in any direct-
ion normal to its direction of motion by a single scattering,
i.e., in the directions ;) and ?/ for the scattered particle,
and in the directions-g and'g;/for the recoiling target.
Non-relativistic kinematics readily yields
AZ’: 2{:3 ,2;:-—?’=—2 See Fig. 1.

We therefore can measure the following eomponents of the

> 2 23 95 =
dyadic G‘G‘t . 'V\'V\)a v\)\? % 5 73\';% . Considering

only these components, and restricting ourselves to compon-

-5
ents of <<r>& normal to the incident direction, we obtain

> > S
Ty <3>4cr:<> = N T (M M'\'G‘V\G‘tv\)«'?\:f)w—'\w (MM*G‘\‘_G‘{“)k"V\

>
2 39
YR LT MG R I M + Tan C MO, MY BTG K
x 39 r >, 02
r T (MTRAMIGO) kP 4+ T CMEMIG G o)W BT
2.9 >
¥ <28 LT AMT M )%+ T vy MT o g, )3
- > =
* Tm (MG';M\-V\c G\?)?cp A+ Tan (MG M*ﬂ&\p)v\ © 3_}'

A number of these traces are zero, by virtue of the space
inversion arguments of Seetion I, 5. When these are eliminated
we are left with

25 - N

33 >
MW R T T \V\*crwcrtp) T A0 T (MG, M*d‘\fﬂp)‘)\??
t 3

39
Tw
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Or in a more familiar form

S 2 P
Ty SOy =T L+ cqi, Cannd 2 A
>
w

+ C Q\(? <D, cﬁ,P] ?(?-\. TE O, Q?W\ W 6.4
+ <G, Cie A 33’

Where

Conrn = Tan (MM)‘W\,\@W) / Nan (M T)

Cwp = Tm (MM’VG'kc‘t?)/TM Cmowmb)

Q&V\ = T (MVv\"\-\“““\«(Yat-.\,\3 / o (A MY 6.4a

*

C\‘:P = TM(\V\G‘MM‘\G-R@&@) / RPN L\V\M*:

Q.P\ev\ = ™ G\ M*G.\\’ Cew) [ T (M M*

P o (MG M Gafrp) | Tan (W)
Q'y\P =

We thus have six kinds of correlation experiments, four with
a polarized inecident beam, and two with an unpolarized beam.
The target of course is initially unpolarized. We will only

be concerned with the latter two experiments. For these we have
= 3 >
< G‘G']() = ChunaV C\\—? <P 6.5

It will be convenient to refer to the scattered particle as s,
and the target particle as t. The density matrix for these
two outgoing particles incident on two spin zero analyzers, is

given using 1.13 by

- - S -
ﬁ&(st) = N ‘TMQA{_‘A.-\-G“&.PS Ty

29 - =

0
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-
Where we have used for our complete set of operators 151‘&)15@:

p -
¢51t )G‘S g—zt all multiplied by 1 1,  where 1 and 2
rf)fer to the two spin zero analyzers, with
*
B = T CAMTE D /7 i (D)
- -
O = T (MY /T (AN
the polarizations of the scattered particle and the recoil-
ing terget. In obtaining this we have used equation 3.4.
The M-matrix for the scattering from two spin zero targets,
is then given by
o - G B+ 4 BI® R ) -
™\ CQS*SJ e-\*’t) = %‘\ § é\ $ S-'_)S
(R0 + 3,00T N
This result will be derived in the next part of this section.

> 3
N¢ and Ny are the normals to the two scattering planes.

6.7

The coincidence cross section is given by

Tan €y Cogd oy 00 40D

1& (Bs%s3e,€<’et)= 6.8

T ?,\,'
Where I'j. (Gs{:s 56*'\:t) Ag‘sAQ'-\: is the probability that s

scatters intod(2, about & <§S while t scatters into d<:«
about 8, é“c . Using 2.3 we obtain
Ty g%dsﬁg\t) = TS W) I?teg{ 1-\-_)
e .

3 3 2
(RA) &+ Cwp (B 3@)- (?cp)_}-
with
oo (8 = \%\(es\ \1 ~+ \'é\ ) \*
To () = |k o>+ 15, e

S _BQ * ¥ Y 6.10
Ty () Poee) = U (o)) 9 O) +k (83 (4]

& -g o \ A
T, A0 (0 = Th, (8 § 1) +§ (1) g, 00
Nloedy)
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The quantities T and XL , are merely the cross

sections for the scattering of unpolarized beams from spin

_)

zero targets, while (3, and ?5;‘ are the polarizations

after scattering. These results will be derived in the next

part. We had

> 2
I§(66*s>°t4f)-r° Ty {1+p°p N, *pop-t

e
* 950 P.: Canmn 363‘ N*-\—?\ -\-O L C\c? ‘45 -\P?
2 =2 2 >
C(D*S:NS-’V\ 5 C@%t: Nk""‘
Write
o oy
'I‘j.(.eé-“-)e-k°> = R\u
“ R

o] -
T 085, 8,T) = @@
"We will now define the correlation experiments with which we

will be concerned.

- -
Hoting that N(s*co) = - N Ce*ﬂv)
- -2
We get with N - Q and N =%’ M
RR-R.-\LR \
C"V\y\(&) - LLx . '—0_0 6.11
5 LL YRR ARLALR AR
and with stt@ )'3*1:/3 we get
~Rw=\R \
C“\,(G) - LL ¥R R . .63_93 6.12
LLPRR ARLILR s 'k

This then defines the two experiments. They are shown in
Figures 6 and 7.

The quantities Cpy and Ckgp evidently have a simple physical
interpretation.

cnn gives a measure of the correlation of the spins of a
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scattered particle and the corresponding recoiling target in

the direction 2J Thus a small value of Cp, would mean that
if the spins of the scattered particle and the corresponding
recoiling target were measured in coincidence, there would be
very small chance of both having a large component of spin in
the direction'g.

If however we have a large value of Cp,, this would indicate
that there is a large probability for both particles to have
large components of spin in the direotion'a.

In a similar manner Cgp may be interpreted, where the direct-
ion'% would refer to the scattered particle, and ; to the re-

coiling target particle.

7. Seattefing from a Spin O Target (14) (33)
From equation 4.6, the M-matrix is given by

5« 2.2

where g is a scalar in coordinate space, and invariant under
-)

time reversal, and h is an axial vector and changes sign

under time reversal. Evidently if we choose'B and'%"and

S5 /
P x'3 as our coordinate axes, the M-matrix can be written

>
é(e) + ) oW 7.1

Here g and h are arbitrary functions of the scattering angle
> S >

and energy. The terms §. ¢ and o“-ep’ are ruled out since

they change sign under space inversion.

From equation 3.4, and equation 2.3, we get for the cross
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section for scattering of an unpolarized beam.

IO = Tan CV\N\.‘) = \9(3)\1—\- \'QaLG)\z

7.2
Also the polarization after the scattering is given by
equation 2.5.
We obtain
- _ ]
T, = N T CRAD
7.3

- Cu %* W) + Q,\*cm 3(9)) R

t
This proves the statements in the last section that IQS,TO
Yfre cross sections for scattering of unpolarized beams, and
P;Sg ot were polarizations after scattering of unpolar-

ized beams.
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»i

Fig. 1. Geometry used in the various types of double and
triple scattering, and correlation experiments.

Here the various quantities are defined as follows,

- -/ -t Y4 - - - ¢ - - - P -
P+ P,y Ka P~Pp A= kxk , sanxk , sznx k,
IP+ B 15’ BpI IEx &1

- -
Where p ?nd p are the final and initial relative momenta, and
R and kfare unit vectors in the direction of the initial and

final lab momenta,

P,
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Fig. 2. Typical double scattering experiment for detecting
the polarization produced in an unpolarized beam by
a single scattering. The polarization is in the
direction n;, and is detected by the assymetry in
the second scattering, which is proportional to
P(81) P(62).
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A4

Fig. 3.

The first type of experiment for the measurement of
the depolarization D(®). The beam incident on the
first scatterer is unpolarized. The first scatter-
ing produces a componenent of polarization P(6)
normal to k] and kp. The effect of the second
scattering shown, is to alter this component by an
amount proportional to D(62). The third scattering
possesses an azimuthal assymmetry, which enables us
to obtain a value for D(6p).



~-26b~

, — -
k; wlth n;: ny

k3 with n3= 1

Fig. 4. A second type of experiment for the measurement of
D(6), which utilises both a left and a right scatter-
ing at the second scatterer. This type of experiment
has the advantage that only one double scattering
paramater is necessary, in order to compute D{(©)
from the results of the triple scattering experiment.
In the other experiment Fig. 3., three double scatter-
ing paramaters are needed.
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Fig. 5. An experiment for the measurement of the rotation
paramater R(6). The first scattering produces a
polarization of the incoming unpolarized beam, in
the direction n;. For simplicity, the incoming
beam is not shown. The second scattering produces
a component of polarization in the direction s»,
which is proportional to R(82). The third scatter-
ing, which is carried out in a plane norral to this
direction, exhibits an azimuthal assymmetry from
which R(€,) may be obtained.
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g v
n is normal out of

peper.,

L 4
4

Fig, 6. An experiment for the measurement of the correlation
paramater Cp,(®). The lncoming beam is completely

unpolarized, as 13 the target, The scattering
produces polarization both of the scattered particle
and of the recoiling target, This experiment measures
the T component of polarization of the scattered
particle in correlation with the T component of
polarizatlon of the recoiling target,
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N

Flg. 7. An experiment for measuring the correlation paramater
Ckp(€). The beam incident on the first scatterer is
unpolarized, as is the target, the scattering polar-
izes both and this experiment looks at the X component
of polarization of the scattered particle in correl-
ation with the P component of polarization of the re-
coiling target. This is done by scattering both

particles off spin zero analyzers, with the scatter-
ing planes normal to X and P respectively.
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SECTION IT

THE FORMALISM FOR NUCLEON~NUCLEON M-MATRIX CALCULATIONS

1. The Nucleon-Nucleon M-Matrix (15) (34)

The base matrices which describe the spin space of

two spin 1/2 particles are

Sy, = 1\1“1\21 R -g'\ ‘.\.,_)-(i)‘\-ﬁ)",_ . Where 1 refers
to the inclident particle and 2 to the target.

As mentioned before, the M-matrix must be a scalar under ro-
tations, space inversion and time reversal. It must be
formed from contractions of the above operators with the
vectors which describe the experiment, namely ™M, 3, -\: .
Let us list the properties of these operators and vectors
under the three operations mentioned. Here a plus will de-
note no change.under the operation, while a minus will de-

note change in sign under the operation.

Space Time
Operator | Inversion| Reversal | Rotations
+ + A
3b\:},z , _
- +
3\ G‘)_ + .
g, 4 + -
9\ _,1
N 6")_ + +
2 . -
e ) _ .
>
K - +* -+
The possible scalars are therefore.
e T A 9 A 2 > S22
4.\1,_) L D U G, -P),WxG x),
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We can then write the M-matrix in the form.
M= &) +c () LA+ L) +\rd) (Tim=FTun]

WA LB) A Tavn + g () L pQhp + 1 QL) 1.1
Y o) LhipTp — i Gaed .
where G (D) - - -.Q,\(a) are arbitrary functions of @ and the

energy. We will now show that for charge independent forces

\r®) = o . Consider

(i ~Cam) (d.ﬁz+“4%)

i.e., acting on a triplet state. Choose the'z direction to

be the direction of the z-axis, we then obtain.

(Cim =An) (i, 130 = (A p-p,)

thus a triplet state is transformed into a singlet state by
this interaction. Thus since J the total angular momentunm,
and the parity are good quantum numbers, this means for ex-
ample that a 3Py state would be transformed into a 1Py

state. Since for nucleons the total (including isospin)

wave function must be antysymmetric, this means that we must
change the isospin function from singlet to triplet. But
charge independence is a statement of conservation of isospin,
this interaction is therefore not charge independent. We
therefore deduce that \r«8)=o for charge independence. We

therefore have as the final form of the M-matrix
N\(eﬁp S 0(8) + W) LA N ¥Tund 4 WG WO 1.2

FOM®LNe Cip + Qe Cued ¥ M T pRe-0, Fuc)
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It therefore appears that to determine the M matrix at a
given value of the energy and of angle, we need to determine
10 real quantities. Actually, unitarity of the S-matrix im-
poses 5 additional conditions on the guantities e €9). - o),
This means that we have to perform 5 experiments at all
angles to completely determine the M-matrix at that energy.
To show this, we follow the work of Smorodinskl and Ryndin
(35). We write the wave function for the scattering process.
§ 12 (md00) 3 ‘QA\;;(A{\; ‘?;‘t': et 4 V\CQA’Q/ S QT::M
Here the particle is incident in the direction Q? , and
is scattered into the direction E;/ . In view of the
unitarity of the S-matrix, the ¥)\? satisfy the same re-
quirements of orthognality and normalization as the initial
functions of the incident wave, and form when M =) O a

complete set of functions with respect to angular variables.
<SRN > = <IRVESD 1.4

utilizing expression 1.3, the asymptotic form of the plane

wave.
L MG

B \Q\?

and the completeness of the spin functions.

We obtain

I$]
|
M
=
n
AL
v
A4
|
S
s
£
AV
s
1]
b
A
LGN
il ¢
n—f
Ko
W/
[
o~
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Writing the M-matrix in the form 2., §‘) where the SV
are a complete set of spin operators, we then obtain the

following integral conditions.

>, 24

AT Tw, &y N -QQSTMLQQV\QC )V\ S Q)&D 3 1.7

writing these out explicitly we obtain
AT Tuwa &CR) = Sme,, TMV_N\J‘cxe ") Ml L{’)')
ST T ) = 5o\m. rwmﬂqhv\ clex;’mcﬁxa)
AT T () = e SM‘Z”T’V‘[& A0 WM kz )]

AT Tw L) - hmj e (402, T LTS ML, &

% M, €40
“T Twa U ace)-&we\') x—f—_\ 50\\3\@”-"‘“ \.Qpﬁ.p 1.8

MY (G V)Mt&\e"n

These are the five integral relations which we referred to
previously as limiting the arbitrariness of the functions
“(®) ... "-QALO)

We may obtain expressions for the funetions aL8): .« QA(G)
by multiplying both sides of equation 1.2 by 9\) and taking
the trace of both sides. In this way we obtain

® = - TwM

4
=L TaMGw = ST

C= vy MG \*V\ 2\

W = - w € 17
z ';\ am NG LV

§ % T e Tt

hoe L T M (Gplip- Coe Gure D

In order to compute the traces, a specific representation of

the matrices must be introduced. The simplest representation
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to work with is the single particle representation. Here the

basis vectors are

4, <y, =\ W 4 '
«, (37_ = L= &\ -
Ao %y = |-\ d-10

B (2= \-v =\ = Aia

1.10

where «., ,(;ﬂ« are the usual spin up and down functions
of the n'® particle. Our basis veetors are therefore de-
noted by a couple, while operators will have matrix
elements denoted by a pair of couples, thus Q= O, Q.
will have matrix elements

<avrlo,0,ledd = <aloled<wlo,\a)
Then, taking the usual representation of the Pauli matrices,

1.11

letting the 3-axis point along the direction of the incident
beam, we get for the various operators which appear in

equations 1.2 and 1.9
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1 0 0 0 0 0 167
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00 10 V1 1t o 0 0
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The M-matrix elements most easily expressible in terms of
phase shifts are those in the singlet triplet represent-

ation. In this representation, the M-matrlx may be written

My Mio LA RRY o
Mon Moo Mo -\ °
Mo M-io M- ° 1.13
) o ) Mo
the subseripts \,0,-\, S refer to the basis
X, = vt\'(t
- = (3, 1.14

Xo = A‘ﬁ L"‘\(%,_"'G\“z)
Ys = ,\r—\—z Qq\(s’_—(;‘-(‘)

To obtain the traces needed in equation 1.9 we transform to

the single particle representation by means of

<catr\Mlecd> = <allu> cm\MIv>

1.15
<o \ed>

using equation 1.14 to evaluate the Clebsh Gordon co-

efficients. We obtain
My riz.p\ ;? Mo M-\

M94) = V\o\ L (MoFMss) L (Mg MSS)A&M\,_\ "
L Moy + (Mg < Mss) L U“oo'”"fs) : V\“ \ )
=

V\-\\A%- Mo N:_‘-(V\-\p \‘“\-\-\

Comparing this with the matrices equation 1.12 out of which
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it must be built, we obtain the following symmetrys.
V\\\(é')-{)-_-_ Moy o (0,*‘) ) Mg\(%*) == MO~ (%"A)
M -t (9)‘6\) = Mo (e’f\( )y M @,‘\) = V\—\o ’

These four together with™oo and M¢( give six M-matrix
elements. Using equation 1.9 we may obtain the five
funetions &« - - . . . % 1in terms of the singlet triplet M-
matrix elements. Inverting these equations and eliminating
the functions ¢ .. . . . we obtain the following relation-
ship between the M/vn)

@ Mg + ™Mo ) =t =M~ Moo) with <‘ =0 1.18

Sm B Coe
The functions G.- - - - % in terms of the “}V,o are given by
G o= L (2M, +Mpe+™ Vo VO
\,\( ‘l+ Do SS) ) Q\: -:k C-TpGB (P\\\ M- Hoo)
- L A (M\Q-MQ\ \ I\r—\ \
<= A4 ) - 5 (R G
-\

w = -\:\ (—L\\'\\-\'\'MOO S‘»)

withc\.-.o 1.18a
5 = l\_-\ CMy M = M)
From Section I equations 5.3, 5.4, 6.3, 6.4, noticing that
>
& = \¢ we obtain for the quantities of physical
interest.

Toz TmMM™M

.IDP - -"
T D= LT (MTMaL,)

| T,R = l\._\'TM (MT\SV\*T\\(>

*
Tolxp* \—qTM (MM*G\?K(’_’-P)
T (MM L)
To A = L TN
/. L TaMOMOpe)
:0 Q = N ¥
To A" = L Tm (MM Te)

L
“\
L

1.19

TD Qy\-v\ - L“\’
L
\*
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B =z-8u2 ksl P
and 5
2= SM;%P+C¢>§‘<

whence we obtain the following. With C\ z o0
2
> < Ml e T M 5 M M\ 2+ L (\HW\*\Mss\L)

To =

P~ q ) R A (Mg -Mgy) ("\\\‘M\\-\-Moﬂ

T, - Lz- Qe {_(M“-M\-\) Moo 4+ CMy +M- \)Mss-z\\«o\“*\ol’

ToR = l}_ @e Re {EMoo Y CCoa-1 ) A My M- \-\Mss“?
+ ;—E‘- CM\o + Moy Mssj" S

‘rock(,: ZSWQ) (\“\o\\ _\M\°\> 1.20

TO Cv\-v\ - _;.- ( \MSS\1+ \M\\"-M\_‘\Z)

also
X, - \0&\1-\ \\""\1"\ Z\C\q-\ L\%\".\\_\‘QA\L

TP = 2 Re * Catwm)
T, =)= 1€ Ly \ 2R\

Ty R g_\“\ ‘\M\Z—WQLQAé g‘ Cmg-l-’LQLALKR-WQ sz

To (\-Q\MQ = \a- W\\l.\, w\ é\l 101
2 {-— gw- \a\2o\wm\2o “‘\QL% 'N ) ¥ Qﬂe LA C(R-W) f

:{ng 2 Reaclamw)’ + Cod Qa2 4y e 3

Ry A/
2 £-Sw « PRI TR SN 3%\) A Cn? 2QAclaw)'¢

/
toQ
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It is easily seen that R A R’and A ’are not independent, but
are related to each other through
taM Q - Q /+ A/
L R- A’
Let us now obtain the singlet triplet M-matrix elements in

1.22

terms of_phase shifts.

2. The M-matrix Blements for the Singlet Triplet Represent-

ation in Terms of Phase Shifts

We will first treat the nucleons as distinguishable,
and omit coulomb effects. lLater we will show how to modify
our results to account for these two effects. The M-matrix

is defined through the relation.

4 2

L P e""" S'.AMM

QL+

N

2 Miy any 2.1
>

3 >
where we have used %% rather than P for the centre of

mass momentum.

S50 we have

§004) = 2 Mg %y

Where evidently C\,a' are the amplitudes of the spin state in
the plane wave,see equation 3.1 in Section I. The 5‘,\ <)

are the amplitudes in the scattered wave. We wish to express
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the M-matrix elements in terms of the phase shifts. Now
the phase shifts are related direotly to the S-matrix. We
therefore seek the relationship between the M-matrix and
the S-matrix. The S-matrix is equal to the unit matrix
plus the R-matrix. Where the R-matrix is defined through
the equation

-%/(QS mewe) = 3 R (LS WL WA ) L s wag’ wm)

g (Vs me’ w’) 2.3
where the amplitudes %(Qs e W) and %’(lc W wa.)  are
related to the converging part of the incident plane wave
and the scattered wave respectively, and are given by
\\AV\C- v-m"' 3 esdy —alem-AT Rswag wa

wny. ¥ %o ) wma w24

\(LMK'\CSWS
x\sc' n-n' T endo Allem=LI) €7 (Lgmtmg) ‘Q““"v

where v denotes equality asymptoticaly.

s

$

by looking at the expansion of a plane wave in the R s w¢ wig

representation, we see that

L L 0
g (Lswmiwme) = - T ra)s Nad G;M‘ 3w~4_ 2.5

, .
Evidently the %(-‘Ls\w\(ws) are related to the _'S',&‘ﬁ): 5}&\6 ‘k)
$

by
- ' WA
Yo & M erlem 2 ‘5‘5\59'\) L PN 2.6
Swa¢ S
so that
- C
Som, = T €T A UWsmewm Y7 2.1

S
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80 Z Msw\s.)slw\s/ °*s’w~$’ ;
S e~ LT Rswmawmg) oL
=T e Riemmg L ‘wawn ) g (M) \/ewl
c 2 EMT Rl Ul ]) CLul, GG

4
,3-/"‘\ cr;;‘ Sweod -
So we get, noting that

CAQ'I-T'; AL/
: 'Q. / / / .\_ ;\L/“-
ale)' 3 AT RUAgwmlm s Usow ) Tnatdn)1e€ s 2.8
= Momo'w
W ) S 2.9
with 2 N\CQ'MMM"’SIW‘()\Q
- y Y4
M smbung 55l o (e €M T RAs ML Lo wS)

e*"’-‘{ Uruk’»«\):)}a'— 2.10

The most convenient phase shifts are thoge related to the
R-matrix in the Lsjy Wy representation. These matrix
elements are related to those in the L swQl w\$ representation
by means of the equation
SLswmim \R WSsmL/m{> = = <ls WML AR S5, >
< Ls pWs 1R W w\é><l.’s’3’w\a' st WS 2.11
The quantities < s wlhw\LSymy> are the Clebsh Gordon
coefficients given in ref: 36 and there denoted by

Cls (WL LSy wy)
So
RQCks w\l\ms Y Q,’s’w\i_'w\S’> = Z/ < QS\MX\MS \ 9.83 WMy >

‘s ‘! N '4 AN
Sl mUm LT w0 RO Capwmylepwmla’s’)y 212

Where the prime indicates that there is no summation over
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QsQ,'S/- . The convenience of this representation deriyes
from the fact that j W, are constants of the motion by
virtue of the complete spherical symmetry of the Hamiltonian.
S is a constant of the motion because of isospin conserv-
ation, parity conservation and the antysymmetry of the wave
fanction (for nucleons).
Further the complete spherical symmetry of the problem, that
is the fact that a complete rotation of the system (including
spins) changes nothing in the problem, implies that the
phase shifts are independent of w\,a' . The non-zero matrix
elements may then be written
RCQLo Lw, 39~°°~W‘6) = R
Q Clvny W) L\é'wva) S RQQ"

-\
with L= 2, 2.13

Q(gt\\awé-)ra;\\awa):‘zg= R )

2 ?
The equality of Q.;. and Q_. is a result of the symmetry of
the S-matrix, which fact 1s implied by time reversal invar-
iance.

We then can write

R CAswmiL WS’)L/S,V\AL/\N\{> - Z/<XSW~LW~S\Q!3W\3‘>
/.7 / 7

UM L6 5 m [Rﬁso%u’%!é + 2,14

Re V80U 4+ 2596 SRyt Suyg 3

For the singlet case this gives

Q(Qow\*lo;t’o\mfo)=Y<kow\ﬁ.o\kolwk>3l 2.15
LY ml wmi” = RASW St mi”
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And for the triplet case
2wl w1l wm/) = S climLwm | Qip WMy >

S LMY 8 g m > TRUS DAL 4 R F Dghi Sy 12016

In the triplet state &= a 9%l , the second has parity odd
with respect to the first.

So W=R=4 , %) gives the diagonal elements, and

V= :.:S-Q-_- Le2= 2%\ gives the off diagonal elements.
There can be no elements between the states &'= L\

since these states have opposite parity, and parity is
assumed a good quantum number. We are further only interest-
ed in elements for which Wil = o see equation 2.10.

For these elements wiQ = w\s’.—w . We therefore get

L1

For the Singlet Case

R CRo0o 32%00d RL DL’ 2.17

and for the Triplet case

Rl miem liowmdy - S < e wag \ig WYy 5y
Clitowm 1015w RAy

RV M w3 80 me) = <N W= g g \ L pnd'>

S LN oM7L o we > R Aot I a3
We can now write down the non zero elements of the matrix

Singlet

\\'\L\°°°5° °) =( l<>-\-ﬂ-\b—/\&_“‘ = R(Rooo;L%0)
B

Lo *-L’% Cral+\)J3 . 2.1%

()™ @g Coa)) 35_
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Triplet

\"\(,Q\ws W \MS)\W‘ ) = (A‘e) "Uv ZQUL\\M =Wy Q.\o\M)
C"Q-W CT(:L’M)]L
Lt

= () (TG 2 <R MW R Uy w S 2.20
=

< Q'\°W\$ \2 &W‘S> le —ZCW(1Q+\)‘J;<Q\\M =W W \Q\aw’
<L‘°\M,l"'/\9w‘s>Q‘a

with o/ = fx2 c2p-L=721
The above refers specifically to the case of distinguishable

particles. If they are identical, as in the case of p-p
scattering, we must antisymmetrize the wave function. The
scattered wave for the case of distinguishable particles is
g€iven by equation 2.1.
eA\eM _S e an M el \M‘IYW/‘;
S swg = & S Mewmg 58w/ &g X

We write the antisymmetrized scattered wave as follows.

Id

= Sr::\QM S =1 S)MSMA‘ 'Jg’w\s’ 0\::‘ x:\:'s 2.21
Here T and S are the spin and space exchange operators
respectively. The above form takes into account both the
antisymmetry of the wave function, and the fact that the
particles are indistinguishable, i.e., the fact that we ob-
serve both the recoiling and scattered particles. It is
evident from the above, that we may consider the particles
as distinguishable, provided we suitably antisymmetrize the
M-matrix. The antisymmetrized M-matrix is given by

M = GQ=Tts)M | 2,22

From now on we will omit the superscript "a" for simplicity,



v
it being understood.

An explicit form for the spin and space exchange operators is

2 2 > >
- =\
S = o Q&) Qa1
S S
T = .;._ AL +61-6)
-
Here 72\ and <, are the 1sospin operators for the two par-

2.23

ticles. The S and T operators then have matrix elements

given by "
<7 TISA > = =) ° Sssfﬁu’

2.24
<§’&/\8\SL> = &\){ SSS’SLL/

So only those parts of the M-matrix will be non-zero for

which Q¢ 1is even, i.e., triplet odd and singlet even.

3. The S-matrix for Nucleon-Nucleon Scattering

Following Blatt and Biedenharn (37) we write down
the most general solution of the equations of motion for the
scattering of two distinguishable nucleons, for a given

QV“BQ-S . Here coulomb effects are omitted.

Asymptoticaly

Y Gwglsy e L 1amLs> LA LaMLs) ™ tem =30
3.1

-
The amplitudes of the diverging wave are related to those

of the converging wave through.

WL - YV WA .’M’.Q.lsl)
BOWMLS) = S ALY ML) S (gu, s ¥ mie’s")
The operator whose elements are Q(')MO\S_‘)Q’M{)L,«) is called
the scattering matrix, and it desceribes the effect of the

interaction on the waves converging on the scattering centre.
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There are many properties of the scattering matrix which are
immediately evident.
(1) It cannot connect states of different @w, § or parity,
since these are good quantum numbers, and the existence of
such S-matrix elements would imply scattering between states
with different good quantum numbers. Hence the matrix
elements take the form.

S (gwxals R) g’w\a’ﬁ.’s’)

= Sae’sw‘aw\?’%ss’ SwL” 3.3

where &7 =Rt2
(2) The complete spherical symmetry of the S-matrix, i.e.,
with respect to the rotation operator efq% e implies that
the S-matrix does not depend on WAy .
(3) The S-matrix is unitary, this is so because all particles
are scattered elastically, that ls there are no particles lost
from this channel due to inelastic collisions of any kind.
(4) The S-matrix is symmetrie. This is so because of time
reversal invariance of the interaction. The direction of
time does not enter into the problem.
With these restrictions, the S-matrix for a given g' and any

. may be written

0

S'é N o) o o
o Spry g0 0 3.4
0 $?  Sumny o
o o 0 S
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15%»
Here SQZ) =

real. We are therefore left with the sub matrix.

Syt

. and SO"" ez&%é s where %3 R S‘q,,' are

Sa‘
3.5
33’ Son
This is some general unitary symmetric matrix. The most
general 2 X 2 unitary symmetric matrix is described by three

real paramaters.

One way of writing it is as follows

§ = u! Gdo (24 B) WL 5.6
Where
g?"‘ 0 Co efs Snn €3
b » S 3.7
o 36(3 Smed Ch €

The S-matrix is then given by
e}‘\%a,b o ° °

0 Ca}gs e"-/.\sad.‘_gwied 1&33(; lgmle- (e.f\%a.( 1';‘%3{3) o

0 Sm\')_e (L"So* 1«%3(;) Sand 2 0».33-( Cvaq 1-500(; o 3-8

l;&a
o o > :

Let us write out the most general wave function for the
coupled part of the S-matrix, 1l.e., the triplet, parity
=1)%~\  part of the S-matrix. This is a 2-column vector,
with elements \(3+1) and 4 ly-\) . Suppressing the j mj

and s = 1 labels, we have the elements given by

N WD LAG) € satlem=amD) ¢ “UQM'M)P *?

v’ ka*«\) PR P ) S_A (y+1) &r ;M-) &) € allem -~ aa—\ﬂ‘)j.
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with ‘
Riyg-\) = A=V ga-\ + Aghn) §°

- ) .10
B (p3) = Ay Spn ¥ A=) 82 ’
In general, because of these equations
R (x\) 2 e“% Acyi\) 3.11

This means that particles will be scattered between the
channels X =34\ and Q=p-\ . In general there will be a
net loss in one channel and a corresponding gain in the

other. If however we choose

AG+) 8 (3+\)

AQR-\) R (3~\)

there will be no net loss to either channel. In such a case

3.12

the wave is an eigenwave of the scattering matrix. The effect
of the scattering is merely to produce a change in phase of
the outgoing wave with respect to the incoming wave. There

are two such solutions denoted by % and (1 . The ratios are

given by
A* (4D _Komn 6 ) AP (ax0) ) —c..:tea.
SR AB (3-1) 3.13
with
Q°( Cy=1) = e."":gé)‘k A«( 5-1) |

' 3.14
BB (-0) = e14%p AP (3=1)
The two eigenwaves are
§:°L= NLNETY + 4 a-)

\ -AQQ -3-\W

~ A \3%\) Sma ea. eﬂ\d@M-t)-\\%) RTINS M )

- m @'53* CLgh) S €y &
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and

Je = 4 & o) +48e-v e )
) -/;\\QM-Q*\L‘.) _ g,\».\, EA( M -3~ cN J
= mw)l Up¥d Ceey & L\ O &y
3.15
. : -an ¥ . A ~n
_ éf&a(’n“(\gu) Cwey & e w_l')\g-\)&mea' cU‘M N 2!

There are a few additional remarks that we should make con-
cerning the S-matrix.

(1) We can add any multiple of -« to any or all of

? 9")%9(5 R e.a,‘ without altering the value of the S-matrix.

(2) No physical meaning has so far been attached to the
labels « and @ . We will now attempt to do so. We let
the bombarding energy of the incoming particle go to 0 .
Near zero energy, the difference between the centrirfugal
potential barriers for &= o=\ and L= a+\ becomes so
significant as to uncouple the two states. This means that
they become separately eigenstates. From equatiorm 3.13 this
means that €y=0 or ‘_‘;_ . We define ¢ and (3 so that
as€30,&y> 0 i.e.d3p3-\ andp > o+l . In future we there-
fore usesd=~\ andpA=3*¥ as the labels for the 33& and $a(§

phase shifts. We then can rewrite the S-matrix elements.,
Syy = eﬂsafa‘
QQ‘ = e**%g'

So-\ﬁ’ . Co‘ea‘ e:.&ga-\a'*‘ Sm&ea.éﬁa“a' 3.11

1&% -\ N A& - '
Qa-\\é = Q\N\JGSQ 9 * Q‘DLQQ' et tdntd

: Saas WP
g9 %Sm'lea’Qé %% ‘e )

”"
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There is another way of writing the S-matrix which makes it
easier to interpret the three parameters. We define it in
exactly the same way for the singlet case and also for the
triplet parity 04)7. case, however for the triplet, parity

Qﬂ)g*\ case, we define it through

g = efao\f,,\;'d ead(,q./{'c:a %,;E 3.12

with O = = \ J '-‘(- 3.13
o cba+\a' 4 € ©

This glives for the elements of the S-matrix

83 = eusdy

S5y = e'“?_a‘a'

Syt 3 = ezf\_sae—\ sz:‘a 3.16
Symy @ e24%5p%1 Conty _

s = A~ SmGy e (3521 4%350)

This representation of the S-matrix, is called the barred
representation. As will be indicated in the section on
coulomb effects, it is particularly useful where we have a
mixture of nuclear and coulomb forces, as in p-p scatter-
ing. The equations conneoting the two representation, are

given below.
%39*\ + 030 = —ia ar\-\'\'-%ag-\
o Gy By e = ety net
Swi (Bypri Spqn) = Swi®y [ Swirey 3.17
éaé RTINS

Z;g = ii?
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Let us write out the wave function equation 3.9 in the B.B.

and barred representations for comparison. They are

B.B. Representation

A lem-3-' 1)
Y192 mle ~aUem-9- ‘*)A\g DD+ Gem=2"13" (3= -
L e 3?3" _ 31*3’30'\-\ 3} 3.18
with a similar expression for \ \{+\)
Barred Representation L\eM =g Y gt -

*£3_\)= m\e ~A R~ -\"')A(g-\)\'a \D) =~

. L% - '\-S a)
&.c}"%éa“\ C\ple%A&a-\\-\- Ag‘\ﬂ\lea_ -\ A\a(‘;*\3§ 3.19

with a similar expression for « (p+\)

The B.B. phase shifts and mixing parameter may be interpreted
in terms of the eigenwaves of the S-matrix. The mixing par- '
amater in the quantity which determines the relative amounts
of 3-\ and 3+\ wave necessary in order to have no particles
scattered out of that channel. The B.B. phase shift, is then
the shift in phase which occurs during such a scattering.

The barred phase shifts on the other hand give the shift in
phase of that part of the outgoingjt\ wave amplitudes which
derive from the incoming 3%\ channels, with respect to the
incoming ai\ wave amplitudes. Also the mixing paramater Q—-a
gives a measure of the extent to which L is not conserved.
A value of G = would mean that L is conserved, and

the further we get from ¢=0 the larger the degree of noncon-

J

servation of £ .
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4. Coulomb Effects (38)

In the scattering of protons on protons, we must in-
elude in addition to nuclear effects, the contribution to
the scattering of the coulomb repulsion between the protons.
Consider the coulomb scattering of two particles of the same
mess and unit charge each. The Sehrodinger equation for the

scattering is given by

2 2 "
L% 4id G-2y3 4 = o 4.1
with = S=w I
e w2 WY
We try a solution of the form
S
we= erRE E(R) 4.2
and get
(vz-\-'lee?.—m_i\le = o .3
cxy M y
This has a solution F () with Tz m-1}

The equation

ES%\\ZZ-\ ‘;—.\\S —b(*s%g*%)]cit)':O 4.4

There are two independent solutions of this equation, which

we denote by

\,g‘\(-m, 1,a%E)
4.5

W, (mam, 4 ikg)
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For large values of s~ these are given by
~ A ~
W o Giks) éQ_,;M)_;,M)-,;lQ-S>
Dy an) 4.6

\’Sz o7 rle S)'A“ - '\1@5 4 CHAM 1eA™ ,&zg)
with O AW

(4@32) o \+ Y0 ol 4.
CRNG L + Oy 7
thus

— ﬁM‘B (AW Qll
Wi = -5-(\:&\«) < A%S)Mo % $) 8
Wy g —send €% e Cimtn )
\_\(-«“3 ‘&&‘S

We wish the solution which is regular at the origin, this is
given by F-= \S\-\-‘:z_ , where F is the hyper-

geometric function. The wave function is then given by

§med) = c et E avyisake) 4.9
Writing this out in the limit mA w0 we get
WS
4 x Ce’'T (4 SQ,W)} 4.10
N C+AN)

with

A = erRTEMmUnle (m-1)2 - 3
"*cw'%) 4.11

N e'\LbZM-—’V\QN\l\QM>

S = a
(FAMD I LA v 24M )
- e
‘%\°> = %LG)Q \0 = 2’-{8 o/ +

2
We wish a wave of unit amplitude, so we choose C

c = e—“ﬁi‘ D Cream)
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In 4.11 we have written é“\O for X >
D (=4m)
Partial Wave Treatment.
Write \
- ° 21
\ = S ReYe 22 4.12

V!
R 7YY
Put R = MQ' e }L(\(M> to obtain the differential equation

{Mf’_;;z-\- z(kléM-LQ.'\'DéM-\-’LL}“QQu‘)- M%'J&':S'é“) 20 4.13

with solution 5'L(M>=QLF(°~*\*;W\)“-°~*1) “-;‘QQM> which is

regular at the origin. Asymptoticly this gives
QWU&M-QW_MQAA\(AAMLL) 4.14

i SUERN D
(z\Q)L DR+ 4A V\)QQ M
So we have

i < eLey et €M e

\\: e m Q)b D (Lrriin) Q.U\)\E_ 4.15
Q—_}__W —V\“ANQ,\QM'*'\'LL) YLO .

where :u EHCLbika™m )

. I ——————
ML - PeG-4n)
with no coulomb forces, the asymptotic form of J( is

\
Y ox o RIS Gudiel (oot LT

AN

We therefore choose

L
&M NCLridan) L W)

CL = Y] 4.16
S0 we obtain
y \ .

*g I\\QM
Suwn Clem -—\{ ~mUnatem ry)
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\
~ N2 3 - A C AT
"\ ~ !:M Z (ZQ*\)L {_Q "Q‘V\ _i——'\f\QMZQ«QM)

_ cz‘n'\\L EA Clem— 9-_}{\' _MQM‘&QN\)}. Y-Q? 4.18

Hence the equations derived in Section II, 2, where we
neglected coulomb effects, remain valid provided we replace
e an Y  dem— n Lnzlem . The S-matrix
defined in this way will contain both nuclear and coulomb
effects, and in the absence of nuclear'forces, it reduces to
the coulomb S-matrix S, = R _+| . Because of the
long range nature of the coulomb forces, it becomes conven-

ient to write the R-matrix in the form

R = (S—Sg)-\- CSe~\) = OC*QQ 4.19

Ry 1s treated exactly, while since S differs from S, only in
nuclear effects which vanish for large &, X can be con-
veniently analyzed into partial waves.

Consider R, . It must glve rise to M-matrix elements

given by
M=l oo A (lem - ’V\QML’%’M) % o) E.QA\L" XS‘MS
c

= e ™
= M %%A(MM-V\QMLLQM)YS s S Mswm -s’w\’sss’s‘w w 7
therefore

Cour. 2%

ol on the other hand will evidently give rise to R-matrix
elements given (using the B.B. representation by
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;
°‘5 S 2"%3 _ ez,l'vbb.
XY/ ,
Uy e“%p‘()' - @MU ey
%ytig = Ca;"ea- “%9:\8._,’ g '2@ 2"%&“9 _ é""'\a:\ "
°<Ib. = _'\'i SMlilea' (cz‘iga"\a - c'zg%/a_\a')

It proves convenient to multiply the M-matrix by a phase
e‘z""’\_o . This is of no physical significance. We

then get
() z ¢ ®) = endp = £l k. (1= C20)

% %c Lk Q-Cpo) e
°(§ = QZA%B' e"z_id,a

~oly \ 4,22
*y = Ry erade S g

AT A 2A

“at\a': Cnie, e %a"‘\a + Swre @Iy - < N\
o) =-—‘-1 Sw:'z_e,a- chk%;-u; _Qza%a-w)
where
¢ = ML~ Mo .
oM L - Dk 4Am) i} QA+ AM) .

D (R+=an) - A . 4.23

MM, = Qiam) - - Citim) > McM & ,?_MC\MM

CAn) - - (\=AW) %
The complete M-matrix is now easily obtained. Using

equations4.19, 4.20, 2.9, 2.24.
We obtain for the complete M-matrix, antisymmetrized and

with coulomb effects included.

M= C=Ts) M
V\O;W\‘;)s’w\' = [%W) "%(T—B) Q‘S\*SJ’}(S’SW\ V‘\‘/ b2t

S Q Y
S M C o‘M W o oo)-\-?.FMQ.

, /
MCU\MS'“S Mgy Ly )

/ /
- W
W~ W S
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The expressions for the M (Rs ‘MQW\S) S’W\:) may be obtained
from equations 2.19 and 2.20 with R replaced by
4 . We may now substitute in the expressions for
from equation 4.22 in the B.B. representation, or alternately
use the more convenient barred representation, equation 3.17.
The coulomb corrections are put in as in the B.B. represent-

ation, only diagonal elements being affected. We obtain

A. = cz)\%a - e-?.aia

°”‘3 = e_?-"*%tg‘ - e-_"’gcu L= 4,25
°(9th' = Co 2-'53_ ef""sai‘_@ PR 7%

LD = A Qw')_"éa e’ 66*\9- *%-\a—)

and

Mg = 300 +5 w-0) %i?wot (=)«

My = F ) = F (T=0) 7.(/\%:)—\‘;“99, {
G’fc:‘>e<tu\ -\-C‘%\)"(Q& -\kl"_\_:\ o 1L -\

Lol 4 Q-
\ _ L@~ \
-_\_\LQL-\\)(Q.-\L)_’) 2 o \_‘L @D « §<

4.26
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Moo = 3®) = ™0 bz (T 2 e %‘Li‘-nu

+ Ko‘) XA~ + < Uuo (W) ) 2. DALANTNY CL@:\) 5-@‘}

Moy = 7.(*-\4) e‘\' ?p,;{ R &9::7;

\
G (2R ) @ (e LR (L2 YT A
m (&) 2ee + ﬂd“"“ v2(42)

— A Km\y_“m—g,
= 2 L’“‘Q-\Q——A* Ma\.,\ 5\1\\1 XL -

\/\
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Wi\7 xR ’:.‘}7-01 gv
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It was mentioned in Section 11,3 that the barred phase
representation was particularly useful when coulomb effects
were present. The barred phase shifts § contain both
coulomb and nuclear effects. If there were no nuclear
effects, they would become merely the plain coulomb phase
shifts * « When both coulomb and nuclear effects are in-
cluded, it is useful to remove the coulomb effects and ob-
tain only the nuclear part. If, for example, the coulomb
forces act only outside a given region and if the WKB
approximation is valid in this outside region, then the
barred phase shifts which would be obtained if coulomb forces

were absent leaving only the nuclear forces are given by

Sy = e"’;* S Q'A‘*

®

- - - _
G5 Te-du, Bty - Sy, @

5. Scattering-Matrix Calculatlons in Proton-Proton Scattering

Polarization experiments of wvarious kinds, have been
performed at Berkley (15) at 310 Mev., and at Harvard and
Harwell (39) at 140 Mev. These experimental results may be
made to yield phase shift solutions of the scattering problem,
by the following method. We write

W = =C S = 9 )"
W e\
here}h 1s the observed wvalue of the nthobservable, ‘3\6)

is an expression for it in terms of phase shifts, obtained
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from equations 4.26 and 1.20, €., 1is the error associated
with the measurement of that observable. Minimizing
gives us a least squares fit to the data. A discussion of
the methods used is contained in Ref. 13. With this pro-
cedure, one generally obtains a number of reasonable
solutions. In order to obtain a unique solution, other ex-
periments are necessary which distinguish between these
solutions. It is the purpose of this section to obtain the
values of some of these observables for particular phase
shift solutions at 310 and 140 Mev., in order to compare them
with more recently acquired experimental data. In this cal-
culation, we are in fact interested in phase shift solutions
which are consistent with the unmodified boundary condition
model of Lomon and Feshbach (10). Since we will later have
recourse to mentioning this model,see Section IV, a few
words describing it may perhaps be in order. We represent
the interaction in the following way, an external regiomn in
which the interaction is adequately described by a local
potential of the form V (?'*g‘ ‘2) . Here m 3 ?‘ , and %
are respectively the relative co-ordinate, spin and isospin
of the two-nucleon system, and a core region of radius o ,
at the boundary of which the wave function satisfies an

energy independent boundary condition of the form.
we (GE), = F O,

F is here an energy independent quantity. In the case of

tensor coupled states of course, F is a o x 2 matrix and
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J a 2-column vector. The idea motivating this model is
the following. Developments in the meson theory of nuclear
forces, indicate that the description of the interaction by
a local potential of the form \Ib?\,?‘a'?,) is only valid for
distances larger than ~ 07\ fermis. For smaller
distances, we enter a region in which several virtual mesons
are exchanged, and a non local interaction is needed to
describe the force. The fact that many meson exchanges
occur means that the interaction is very strong. In this
region the wave function is therefore quite insensitive to
changes in the kinetic energy of the bombarding particle.
The interaction within this region may then be approximately
taken account of, by imposing an energy independent boundary
condition on the logarithmic derivative of the wave function
on the surface of the core region. With this model of the
interaction, it is found that when the potential in the out-
side region is ignored, only one type of phase shift sol-
ution, that with a large negative 3Po phase shift, fits the
data approximately. '

The experiments at Berkley (15) were designed to measure
I,,P,R,D and A. We therefore use the solution #6 to obtain

the values of the correlation paramaters Cp, and Cgp at
)

90°. The experiments at Harvard and Harwell (39) were
first designed to measure 1Ig,P and D « We there-
fore calculate Cpp,Cxp and the rotation paramater R. <for the

solution of type #6.



The three phase shift solutions 1in which we are interested

are given below in the barred representation, in degrees.

Type  Fit to Harvard Fit to Harwell Stapp #° at
S Data at 140 Mev. Data at 140 Mev. 310 Mev.
180 12.8 % 2.2 9.5 4.5 -0.25% 2.3
1Do 5.3 % 0.9 7.7 £ 1.8 13.8 * 0.6

1G4 00.0 00.0 .27
3P -54.4 * 0.8 -34.5 % 2,2 -64.2 % 1.9
3P) 4.2 £2.2 14.1 £ 1.8 -12.77 % 0.9
3¥3 1.0 X 0.9 -0.7 * 1.5 4.22 % 1.1
3Hg 00.0 00.0 -0.5
3Hg 00.0 00.0 1.75
3Py 7.4 % 0.3 12.0 2 0.7 8.78 *0.5
3% 2.6 * 0.3 4.9 * 0.7 -0.93 * 0.7
€, -0.1 ¥ 1.0 -0.6 *2.2 -0.2 ¥ 0.6
3% 2.2 0.2 2.8 0.4 4.42 X 0,25
38, 00.0 00.0 3.65
€, 00.0 1.3

Table l. The three phase shift solutions. The first two i.e.,
the fits to the Harwell and Harvard data, were obtained from
Stabler (21). The last is Stapp's solution #6 to the Berkley
data. Using equations 4.25 and 4.26, we have used the above
to obtain the M-matrix elements for Harvard and Harwell, and
have calculated their value at 90° c.m. for Stapp's solution

#6. The results are given below.
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The M-Matrix for Harwell at 140 Mev.

M = -.011380 exp(-i.014812 1n.5(1-x)) - .011380
S5 1-x (T% x)

exp(-1.014812 1n.5(1+ x)) + § x°(1.2756 + 1.20122)+
(-.17505 - 1.025216)}

Mqiq = -.011380 exp(=-1.014812 In.5(1-x)) 4 .011380
11 (1-x) (I¥ x)

oxp(-1.014812 1n.5(14 x)) +§ x3(-.041550 + 1.0611L0) +
(.9861L i.20992)x§~

Moo = -.011380 exp(-1.014812 In,5(1-x)) <+ .011380
1-x . (1+ x)

exp(-1.,014812 1n.5(1+ x))4 { x3(.92130 + 1.047552) 4 x(=. 74634 ¢
.57468) ¢

My = c”" (1—x2)1/2 {_xe(-.o30162 * 1.055404) 4 (.048158+%
1.0072866)S\

Mo = é”b (1-x2)1/2{x2(-.23790 -1.002154) + (.76413 -
1.30883)3

woa e otd { $(-.58376 -1.061714) + x(.58376 % 1,061714)}
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The M-Matrix for Harvard at 140 Mev,

M = -.011380 exp(-1,014812 1n.5(1-x)) - .011380

exp(-1.014612 1n,5(1¢ x)) 4 § x*(.80528 + 1.092660) 4 (.063552+
1.044540) ¢

M = -.011380 exp(-i,014812 1n.5(1- x) 4 .011380
11 D
(1-x) (1% x)

‘exp(-1.014812 1n.5(14 x)) + {x3(.057692 + 1.009377h) +
x(.3628L + i.ousloO)g°

M = -.011380 exp(-1,014812 In,5(1-x)) 4 .011380
00 (1-x) (14x)

exp(-1.014812 1n.5(14x)) + S_x3(.36912 4 1,0212180) 4
x(-.63082 & 1.0509)%

Mop = QAQ (1-x2)1/2§_x2(-.050706-\— 1.,0016144L) * (-,081170
-1.01%20)}

Mip = Ehé‘ (1-1:2)1/2 {Xz(-.'-OLLS'?éLp - .00083708) 4 (-.66004
-1.70094) ¢

-2 ;\*

Mi.1 = € {x3(-.175001 - 1,012940) & x(.175004 1,01294.00) g‘
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M-matrix for Stapp's Solution #6 at 310 Mev. and 6 = 90°

Mss = ~-.63500 -1 .14807
Mgy = --37609 + 1  .02800
Mo = -12751 -1  .65561

With the aid of equation 1.20 we use the three calculated M-
matrices to obtain the correlation paramaters Cy,, and Cgp at

e = 90° ¢.m., and further to calculate the rotation paramater

for values of 0 in the range © = 0° to 8 = 909,

The latter
calculation is done only for the data at 140 Mev. The re-
sults are given in Table 2 and Fig. 8.

Quantity Harvard Harwell Stapp's #6
Cnn . 9961 . 9433 .4692
CKP -09832 ‘09649 -03794

Table 2.

The correlation paramaters C,, and Cgp at 6 = 90°,
for the three solutions.



Rotation Paramater R(9)

0.6 }

0.4 |

0.2 } Harvard

0O F .
-002 - o
L -

-004 o 4

_— ' A A A A A

0 20 40 60 80

6 in degrees

Fig. 8. Plots of the rotation paramater R (6), for phase
shift solutions of type #6 to Harvard and Harwell
data. The experimental points are taken from
reference 27.
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6. Conelusions and Discussion.

In our work we have considered solution #6 of Stapp
et al (15) at 310 Mev., and also two solutions obtained by
Stabler (21) at Cornell in fitting data from Harvard and
Harwell at 140 Mev. These solutions are also of the same
type as #6. They are consistent with the boundary condition
model of Lomon and Feshbach. At 310 Mev., a number of argu-
ments are given by various authors suggesting that solution
#6 is invalid. We will here reiterate these arguments and
discuss thenm.

It is argued (see for example Gammel and Thaler ref. 40 ch.
9-4) that Cgp measured at 380 Mev. is positive, 0.6% 0.1,
while in solution #6 Cgp at 310 Mev. is negative & -0.38.
This it is felt invalidates solution #6. However our calcul-
ations at 140 Mev. show that Cgp has a value & =-.98. It is
therefore certainly not constant with energy and could con-
ceivably change sign between 310 and 380 Mev.

The second argument is based on the work of Moravscik, Mac-
Gregor and Stapp (41). They use a modified method of
analysing the data at 310 Mev. They assume that G H and all
waves of higher angular momentum only see the one plon ex-
change part of the interaction at 310 Mev., due to the

strong centrifugal barrier. They therefore elect to calculate
these as functions of the pseudoscalar coupling constant ga.
In this way they decrease the number of degrees of freedom in
the problem to 9 from the original 14, eliminating the four
phase shifts 1G4, BHS’ 3H6’ 3H4 and the mixing paramater Gq .
They then attempt to fit the data with the remaining 9 phase
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shifts, for several values of the coupling constant ga. Do-
ing this they observe that W& plotted as a function of 32
yield minima for solutions 1 and 2 at g2 & 12.0 and 13.3
respectively, with the minima occurring at a value “\\Q’ 25.
Since the most probable value of“& A 27, and the accepted
value of g2 2 14.0, these seem to be good solutions. For
solution 6, they obtain a very shallow minimum, corresponding
to a value of g2 ~ 20. andw\’z 57, with a negligible prob-
ability of“V& being this value. On these grounds they
therefore rule out solution 6.
This argument is actually not physically complete, since it
can be shown that the one pion exchange part of the inter-
action is not adequdte to account for the G phase shifts,
further the 3H4 phase shift is coupled to the 3¥4 phase shift,
and so is affected by the several pion exchange reglion of the
interaction. If however waves of angular momentum larger
than H only are treated in this manner, the most probable
value is ¥ 22 and for solution 6, W\' 2 35 which is not
teo bad.
Stabler and Lomon (28) at Cornell have calculated P and D in
the coulomb interference region for a solution of the same
type as we used. They have found no agreement with the
experimental results from Harvard. This is in agreement with
what we found for R, since it seems to disagree with the new
Harwell results for angles less than 30°, but is not too bad

between 30° and 90°.



SECTION III

SCATTERING OF POSITIVE AND NEGATIVE MESONS

BY NUCLEONS (42, 43)

l. The Recoil Proton Polarization and Elastic and Charge
Exchange Cross Sections

It is convenient to use the isospin formalism. The
pion has isospin 1 the nucleon has isospin 1/2. Hence the
combined system has isospin 3/2 or 1/2. The eigenfunctions

for these two cases are given below.

T/?_ = %- T/'Z. - \;-
N g K- AT
X, = ,F\ ¥ ,\\T AR 1.1
i\ 3 Eq - - - o > %;
Xy = ,&EE\~§>*[«% ¥> 3ﬂ :-V\%rV\ *,\2
-3

x = M=

Ir wi assume that the meson nucleon interaction is charge in-
dependent then the only dependence on isospin can be through
NV /o . We thus have two amplitudes that give the isospin
dependence of the scattering.

Q}‘k% % = 8, %,

1.2

ek‘(% AXHS - 3$~z3

Here the right hand side represents the scattered wave. For
the case of 1{* on protons, the scattering is completely

described by gs according to

c;ka\;\- N gs\;\' 1.3
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For the case of on protons, things are not quite so
simple.

. - X =\ °«‘QQ-

n o AT A AP I TN

— /\\‘\_5 gsxs-\'/\g g\x\ -‘\\-s <'\\-3’V\‘¥l«3b >g3 1.4

v \ N | - -\

T (= =42 - - ) (g+2S
*'\\‘s ¢ B J"\E\P )8, = ""°'¥j;,(93 $O+F 3 & Y
The first term describes the charge exchange scattering, i.e.,

. The second term describes elastic scattering.

Hence we obtain a table of amplitudes for the various scattering

processes.
Process Amplitudes
B B 83
B> b T (85280 H?
g me | - 8

It must also be of course recognlized that the interaction is
in general spin dependent. Hence each isospin amplitude, is
really made up of four sub-amplitudes, given by

= - - -
describing what happens when the incoming wave is an « or (s

wave. Thus

t}\ﬁ(% XX S <%Tl-k o & g:ﬁ(s)ﬁc-y
calu

1.6
.) T

')‘1‘(5 KN (SG.( « % g(g(; (&)'X.T

In carrying through a phase shift analysis, we will assume

that only S and P waves are scattered. This assumption



is somewhat arbitrary, for energies ) 150 mev., but seems

to work well up to 300 mev.

For an incident planelwave e,“‘e%e( s the diverging part may

be written

rle LW \
2\', S. " T‘-l Z (1&'\'\)1 \Q.o%) 1.7
'\MM L:o

Ve
While for an incident plane wave e,'\ (a the diverging part
may be written

\ w -\1-__ l \
T 2 Gl \ 0-3

’\*QM L-_o

~ eAlQM
~

l.8

Where we have written this in the X $ W& WA¢  representation,
but have omitted the quantum number S = 1/2. Now these

waves are not elgenwaves of the S-matrix, sincé“"l and “‘s
are not good quantum numbers. We therefore transform to the
& ™ ¢ representation. These four are good quantum numbers.

We therefore obtain using the expansion formula

\LM{WS) = \faw\a_Q> <'3‘M’0-Q" \Q.\ML\MS)

1.9
the following

\00%_) = \‘;_-‘;_o)

We 1y :,\%3(&?.\%12_0 AN "
\oo-‘_L) = 13-30

'8

)
o=ty = & NR1E-50 =11 -1 )
P

1l We have here used for the centre of mass momentunm.
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Here the Clebsch Gordon coefficients are easily worked out

or may be found in ref. 36. We then obtain from 1.7 and 1.8

from 1.7
e \
n erm Ll (\l)_llo).\.,\“\'%“.z Y4130 ) 1
Al
from 1.8
e \
y e’ MW‘,_Q\&L-‘;_O)-M’D 12-L 0 - 18- ) 1
AR AN

The phase shifts may be written% (Yo L) . This follows
from charge independence, the complete spherical symmetry of
the interaction and parity conservation. We therefore make a

summary of the pertinent phase shifts.

S 1/2 P1l/2 P 3/2
I=3/2 %3 S31 ®33
2
1.13
T=1/2 S
z / <61 311 13
We will call c’-’.‘g -] = € . 1.14

Then the effect of the interaction is to alter the diverging
part of the incident plane wave by Q‘”§§ . The scattered

wave 1s therefore given by

from 1.11
AleM
~ €+ -‘--o |2 L A
and from 1.12
1.16
'\’(M ({-\

S = '\TL&\‘C-\'\'“ o) * @Vgli--w €1 "“)K

'\,\&M
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Writing these vectors in terms of the spherical harmonics and

spin functions according to

wl o
\'a'W\b-Q) = 2 YQ_ 'xs K9 <Qw\9.'v:(|9w~a{_> 1.19
Q"JW‘“\MS-'Wa'
We obtain for the above

QAQQM \ o \ o
Ao TafxlerY, +@(2€13-\e“)‘(\ J 4+
(3,\\‘1; (G‘\‘3-GT\>\(\‘K°

and

1.18
A-\Q \

£ w1 g @ceT\(:J.A%—s (exz+exd X% )

n AQ AN |

£ o [«%‘_ Cera— &x0) Y\-‘j“

The spherical harmonics are given by

1.19

3._"@"" {d(_ €1+ Crmo (Rexateq,) ) — 1.20

rrem T AU S0 erd Carg-eq )R

g\em Q(BC@\' yCpo (Rératrer D)+«

24 ke Smb et (&ra- GT\BBK"

by comparing with 1.6 we then obtain calling
<
Qi = S, = FWw)Ueqr Crno@earen))

A

§W)Y.€=n-('-\33 Sma @ Q”\ 1.22

§]

gﬁ(s

VA

_.5. (an) Cexy = €1 Can ® e’
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Iet us now look at polarizations and differential cross
+ -
sections for the scattering of i{ on \>and1\ on (: The per-

tinent formulae are given in Section I. They are

\ A
T - ;_'WCMM)

KN ' 1.16
-IP = %-TM(\V\V\G->
The M-matrix will be given by 1(.
a AEM a4
e XQQK \)% C‘AXQQ(«‘\ + S— (c\;_)

We now choose the ® direction as the incident direction,
and theX-% plane as the scattered plane, i.e., *: 0

We then have

R

S«p = =%« = SA'QM““\N(%

M

1.18

So equation 1.17 can be written in the form
Gy

ALQ% S CA\QQ'K kM<M** M Kc\,_
7\7\ "\4(., Mu< / 1.19

It is convenient to use a different representation for the

S

spinors. We write \V\ with respeet to the basiec

L (ada = A (-
spinorshh\ A(i) ¥ and I\(‘z_k A(&)=% . These are the
spin functions for the positive . and negative ‘3.

direction. In this representation equation 1.19 becomes
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Q"‘LQ%-\— QQ\-—}\ 6\1) 5 CAL‘Q-\' Kc\\“/\oszj_\_
2

e“x’m (M‘*‘}‘M*F ° )\ KC‘\‘”’-) 1.20

0 M4 *A “'\O\P /\-2 c\\-&)\c\,)_

4

Noticing that for an incident wave, &, = o and for
enincident (> wave G, =0 . We see that \ Mg —a H,(P\Q'
and \‘“\.(.(hl “.g(;\zare porportional to the probabilities

for scattering with the spin in the positive 9 or negative
Y directions. We further notice that the polarizationm in
the X ©plane is zero, which is what we expect.

For a gilven value of the isospin, the M-matrix is given by
equation 1.20

- ' )
e (MU )
o) 1.21

< .
Mg + A M:(ﬁ

+
The scattering of TC on p, only involves T = 3. equation
1.3. The amplitude from 1.5 is %3 . The M-matrix may

therefore be written

3 3
3 _ Mg -a My °
V\ ‘< ¢ 1.22

3 C w3
o) Mo '\'AM*(&

The polarization and differential cross sections are given by

1.16. They are
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3 3 3 . 3
U L L YO ""-l(s |2 4 | M 44 “-(p\of‘

. 3 1.23
T,0 =4 g‘\"\,{«-/‘v\j(s\?-_ \\.\2&*;\ sz\1?

From 1.18 and 1.22 we have

I+=

3
Mk, = A Map = \’n,zt € r (2 €y €,) C00 4 (&g €,4) 80
A 1.24
3 -
i A Ay\-{(s ;‘f-xq[es-\- (L&t €4)) C00 44 L6~ 63)8m0 )]
We now introduce the notation ,
. /7 7/ / 0‘ Q'/ Q L
4 (QT;L;) \& 1,28 )y VA 3T’188~\;\%T:13’ Cw (%1,15 =% VJ’Q.}A
1.25
LR e L ’
Qw%-t’)x%/ gw L%Tbi'é' __Sz{/”_,é/>

‘ Q
£ Q7,25 \l"\'ﬁ.a.’) = *Qw%fﬂ,é
Putting 1.24 into 1.23 we obtain

(X’z:*_ = AJ« + G+Q\he +Q+ ing

1.26
where
A-\' = QAN?’%\;"\- QM}SQ\'\-QMIS&%“-\;- é U%\\\?%)
8"‘ = 9(03\\\33) + ‘\2‘_6 (b%\\\’%\) 1.27
Ce = 3 grmq%es-\- 2 5 (31\133)
and
7-')"11‘.\,9_‘_ = Smi® [;}\03\\\33)_§\03\\\3\)3

1.28

-3 Swi29 }(\33\\3\)
2.

In the case of W— on protons, elastic scattering, the

situation is not quite so simple. The amplitude is given

equation 1.5 by 1/3 LSS-\- PR S\D . The M-matrix may there-
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fore be written ‘3 M3y ™Y
| \ ('..(M6 TS, )-\-2(““-:.(-/1‘\"\ D] °
=3< A *(53 s ’Y‘*\‘\ >1.29
° CMdaaMeg ) 42lMy 42 “,{(5)3
Using equation 1.16, the elastic scattering cross section,

and the polarization of the recoiling proton, are given by

oo Phrax |\ \‘33’\'7‘\9\\2 1.30
T O = \bks-\-uc\\ % \‘33-\?-‘0\\7'
respectively, with

- . <
- G 1.31
=
Putting in the expressions for “/\,k* and *-‘\:I(5 from

equation 1.24 we obtain

AT _ = AL+ 8. Cpo+C_Cua s 132
where

A = 50-\ §(833 5 + 803348205 )4 4 (854803
34 SadB) + 5 Catlnd 4 glony L ond -\rgum\\\a‘)—‘lg(\n\\%\)
-8 Gaz ) =g\ _é(m\\\a)g-

B_ = '\5\ {b&oz\\\n) v L ca&oz\\\s\)-xz gkoz\\\\s) 1.33

+ ékn\\\\\) A 8(0\\\\33) *éLo\\\\%\)-\-\\é&b\\\\\%)

ey Lo\\\\\\)r
C.= l,:\ { 3 SWC‘% 33 ¥ \2 9»"%\3\-% B(ws\\%\)

'35 (a3 I n3) +3 9% o \33)-\35(\3\\\\3) A
64, \\\\3)3
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and
X TR T = 23 QT ¢ Sme T IO - Flslon)]
+ 68w FAnIn3) 2 Qe THCwloa) - Flnzion)
3 5 Gaivlow) = ¢ \ou) s 3§~v\zeC-}C\3\\n’5) 1.34

- £ G233\ vw) )

For the charge exchange scattering, the amplitude is given
equation 1.15 by Q_z\ (gs_g\) . The M-matrix may therefore
£

be written

\ :
& Cmf&-mfp—w«wm‘ﬁm 0 >
3 0 (.(nf“,mf(z)-ml*-m;ﬂ)) 1.35

Whence using equations 1.16 and 1.31 the cross section is

given by

Yo = "5\( \°‘5"°‘-\\1 X \‘Os— ‘0‘\2'.3 | ) 1.36
Using equation 1.24 we then obtain

To = Ao +B, Ceod +C, 0% 1.37
where

Ao = 2 L (Guddyr 0§ 48,00, 820, 4810,
+9-A‘§\Q-—l}_ﬁg&o“\oa\>+é(\33\m)+é(\33\\\3>
Yy lmiing) + 5 niw) v 2g (\\3\\\\)3§~

By = l‘\{[ glozi\ay) -4 Lu3\\\\\)_éﬁt>\\\\3\)
Fglonlm) + 204 (enli3a) - 5 (e 1) - g (onliad)

oy M3\ow) ) g-
-5W33\n3) )
Co = AL 3gLiainag) — s Galm) - §
D W) =24 L\%\\\\x))-\sQ\M"S;»s Hﬁwﬁs Z‘

1.38

4\
& Cagualn) -5 033
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2. Scattering-Matrix Calculations in Pion~Nucleon Scatter-
ing at 307 Mev.

An analysis of the T =-p scattering data at 307 Mev.
was carried out by Chiu and Lomon, (26). A least squares
fit of the type described in connection with the nucleon-
nucleon calculation, was made utilising both W*- ° and
L) IR - elastic and charge exchange cross-sections.

They obtained three phase shift solutions, designated A,B,
and C. The solution A is characterized by small P-wave
phase shifts, consistent with a x> extrapolation of the low
energy data at 150 and 170 Mev. For this solution 313 and
‘531 differ in sign. A second solution B of similar nature
appears for which% 13 has a k’ or stronger dependence on the
meson momentum. The third solution C corresponds to%]_} =
% 31 above resonance, this requires that both S 13 and% 11
change sign near resonance.

The purpose of this calculation is to evaluate the polariz-
ation of the recoiling proton in both W+— b and 0~V
experiments, and to compare the results with recently ob-
tained experimental values, which will enable us toc eliminate
incorrect solutions. Expressions for the polarizations P,
and P_ have been derived by Chiu, (44), these however omit

all terms which do not contain Sin§53, as these are quite
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small around resonance. These expressions are however not
quite good enough at 307 Mev. We have therefore used the
complete expressions equations 1.28 and 1.34.

The three solutions in which we are interested, are given in

the paper by Chiu and Lomon, (44). They are reproduced

below.

Phase Shift Soln. A ._Soln. B Soln. C
91 9.6 * 8 20.22 10 17.6 2 10
23 -24.1 % 2 -24.7 % 2.0 S24.7 % 2.3
Q33 122.8 X 1.7  132.3 X 1.5  132.4 £ 2.0
%31 -10.3 * 3.0 -9.2 * 3,0 -10.5 £ 3.0
Q13 10.0 % 4.0 3.4% 3.5  -5.9 % 3,5
M1 ~ -10.0 * 5.9 0.9 * 5.5 13.3 X 5.7

Table 3. The phase shift solutions of Chiu and Lomon, (44),
at 307 Mev.

Using equations 1.28 and 1.34 we then obtain the expressions
for the recoil proton polarization at 307 Mev. for 1r+ on p,
and for W~ on p, as yielded by the above three solutions.

They are given below

.53985 Sin @ + .47262 Sin 20
4,52 Cos2 ® * 2.48 Cos O + 1.06

Ii(A) =



P(B)
-

and

I:_(A)

P(B)

P(C)
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.55447 Sin 0 + .44168 sSin 26

4.4 Cos® ® +2.52 Cos O + 1.12

.55502 Sin @ + .487.7 Sin 20

4.56 Cos2 @ + 2.56 Cos © + 1.08

.41034 Sin @ + 1.7738 Sin 26
4.212 Cos2 © + 1476 Cos 0 + 2.34

-98505 Sin 6 + .36093 Sin 26
4.212 Cos2 @ +1.476 Cos 0 + 2.34

-=17261 Sin & — 1.5031 Sin 26
4.212 Cos® @ ¥+ 1.476 Cos © + 2.34

These results are plotted in Figures 9 and 10.
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Fig. 9. A plot of the recoil proton polarization P,(6), in
the scattering of protons on positive pions. The
curve is obtained using the phase shift solution des-
ignated C of Chiu and Lomon ?26). Solutions A and B,
give essentially the same curve. The experimental
points are taken from reference 45.
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Fig. 10. A plot of the recoil proton polarization E(©), in the
scattering of protons on negative pions. The curves
are obtained using the three solutions A, B, and C of
Chiu and Lomon (26). The experimental points are ob-
tained from reference 45.



-83-

3. Conclusions and Discussion

Before discussing the pertinence of our results, it
would perhaps be in order to correct some unfortunate mis-
statemeﬁts in the paper by Chiu and Lomon, (26), resulting
from mislabelling of a graph. Their conclusions should be
the following. At 220 and 307 Mev. three solutions desig-
nated A,B and C are found which fit the data. Of these
solution A corresponds to a'continuation of the low energy
solutions,‘and fits the preliminary P, recoil proton polar-
ization data at 220 Mev. Solution C is discontinuous in
energy, with the solution below resonance, but also fits
the preliminary polarization data. Solution B finally, does
not flt the polarization data, and is further inconsistent
with a form of dispersion relations sensitive to the small
phase shifts with which A and C are consistent, in the
reglon of resonance. These results therefore favour solut-
ions A and C, solution B being definitely ruled out. From
our calculations of P, and P_ at 307 Mev., we conclude that
the P experiment does not really distinguish between the
three phase shift sets. This is not surprising since I, P,
only depends on the phase shifts through% 3g33 and d 31
which three are approximately the same for these three
solutions, as are A* B* and c+. The P_ experiment however
does distinguish quite clearly between the three solutions,
and from the preliminary results of Vasilevski and
Vishniakov (45) at 300 Mev., we see that solution C is

favoured over the other two.
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Quite recently Korenchenko, Polumordvinova and Zinov (29)
have performed an analysis of Wte W* y T S W_ and
\\"9 t\‘° data at several energles between 220 and 333 Mev.
They obtained only two solution types designated a and b.
At some energies they obtained other solutions but these
they label as unphysical and related rather to the mathe-
matical side of the problem, i.e., they are accidental. Of
solutions a and b, a has an W\' value of & 18, while b
has an Vv\' value of 2 30, and in some cases &8s high as
71. Since the expected value of M is ¥ 19 (25 exper-
imental points - 6 phase shifts), they conclude that
solution a is a very likely one, while the probability of
obtaining an average WA\ value of ¥ 30 is & 5%. They
therefore conclude that solution a is the correct one.
Further they attempt to fit the data starting with the Chiu
and Lomon (26) solution A, at all energies (except 240 Mev.)
they find that this solution led to their solution b. We
reproduce their solution a below along with the Chiu and
Lomon solution C at 307 Mev. We observe that they are

'essentially the same.
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Solution a Solution C
2 3 -23.9 % 1.2 -24,7% 2.3
235 -10.023 2.0 -10.5 & 3
2 33 132.4 % 0.9 132.4 * 2
1 17.1 % 5,2 17.6 * 10
2 11 11.4 X 3.3 13.3 2 5.7
313 -5.0 ¥ 1.2 -5.9 % 3.5

Table 4. Solution a of Korenchenko et al and
Solution C of Chiu and Lomon.
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SECTION IV

VARIATIONAL PRINCIPLES FOR PHASE SHIFTS

IN THE FESHBACH LOMON (10) BOUNDARY CONDITION MODEL

Perhaps the most convenient way of deseribing a
short ranged interaction between two particles, is by means
of a complete set of energy dependent phase shifts. It there-
fore follows that mathematical methods for obtaining the
phase shifts, given the interaction, are quite important.
One of the more fruitful approaches to this problem, is the
variational approach. In brief, this method consists of
obtaining for some function of the phase shifts, an integrai
expression over the interaction and the wave function, such
that the stationary value of this expression with respect to
arbitrary variations of the wave function, implies the
correct equations of motion. Usually the equations of motion
are written in integral form, and may be used in conjunction
with the previous expression, to yield an iteration proced-
ure for obtaining the phase shift. This method was used by
F. Rohrlich and J. Eisenstein (46) for testing various ex-
change field theories of the nucleon-nucleon interaction,
with respect to medium energy n-p cross sections, represent-
ing the interaction by rectangular and Yukawa well shapes,
including tensor forces. In their work, variational prin-
ciples were derived for both the case of uncoupled angular

momentum states, and for the case of coupled states. The
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coupling of the angular momentum states, is of course due to
the tensor term in the interaction. As pointed out by Lomon
and Feshbach, the static potential method of representing
the interaction is of limited validity, in particular it does
not give a good description of the interaction at high or
even moderate energies. In the region 100 to 380 Mev., that
part of the interaction which can be represented by a local
potential, is of less importance than the many pion exchange
region. Lomon and Feshbach (see Section II) propose to re-
present the interaction by imposing an energy independent
boundary condition on the logarithmic derivative of the wave
function at the surface of a core region, and external to

this core region, by a potential tail of the form.

LN ) A \/T(M) S\ ) 5T

where \]C\N\) and \IT\M) are central and tensor potentials, of
arbitrary shape, and Qu, is the usual tensor operator. § and
W* are the spin ana parity labels for the states being
considered.
It is the purpose of this section, to obtain variational
principles for the phase shifts for this model of the inter-
action. It is assumed that the phase shift solution of the
pure boundary condition problem is known.
In Section IV, 2, we treat the case of uncoupled states, i.e.,
singlet, and triplet with parity (\)®@ . A Greens function
is obtained which is reminiscent of that obtained by Rohrlich
and Eisenstein, differing from theirs only in that the part
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containing the‘AA< dependence contains a term thA”\é; Leoc
”\é (L) )'V\% being the pertinent phase shift for
the pure boundary condition problem. A variational principle
for qivL is obtained, in which the R.H.S. is completely in-
dependent of VL , except possibly through the variational
wave functions.
In Section IV, 3, the case of coupled angular momentum
states is treated, i.e., triplet, parity (:\)%+\ . A 2x2

matrix Greens function is obtained, which satisfies the

difrerential equation
a2 Ma'\)-ﬂez‘

et PYEY o) = -% o~y A
A: _ (o) Q¥) ) ‘
At A

and the boundary condition

R 5‘ /
d GO \ = o < \ ¢ > Gbm)\
e ) o = Fe Fx o

The 2-column wave vector satisfies the same boundary con-
dition on the core surface g . In addition to this, reciprocity

imposes the further symmetry condition

o) = &V x)

on the Greens function. The Greens function is also chosen
80 as to utilise the previously determined eigenphase
shifts and mixing paramaters of the pure boundary condition
problem. A variational principle is then obtained for the
quantity.
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Unlike the previous variational principles, this one contains
&

quantities proportional to@mv\'-'\-“m\) and\kw\\:"tm*v\ﬂ), in the
[} 0

variational expression on the R.H.3. of the equation. A

number of ways of utilising it are suggested.

1. The Case of Uncoupled States

We are concerned in this section with scattering in
the states %.\Ma 0 L-\)'). and 5 W\a\ \-\)9‘ , Where the first
two quantum numbers refer to the total and z-component of
angular momentum, and the last two refer to the spin and
parity of the state respectively. 1In the first of these
cases, the potential in the region external to the core may

be written.
+

CJC. l.1

and in the second case
-

*
+ 3 =2
No 4 3Ng 3\2.‘\'3\’\.5 -5 1.2
where + refers to the even parity case, and — refers to
the odd parity ocase.

We have formally written in a spin orbit term in the external

potential for the triplet case, but this actually will be a
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very short tail, since most of the spin orbit force depend-
ence of the interaction will come from the core region.
Further since the analysis for the first case is essentially
a special case of the second case, (it is the second with

8 T 1 replaced by s = 0, and the tensor and spin orbit
potentials put equal to zero), we will consider only the
second case. The results for the first case may then read-
ily be obtained from this.

The Schroedinger equation for this state is given by

U 2 Ceav) DY (o “)?) =o
™

)
writing W} = % \a\Ma-\ \"§ ) with the labelling in the radial

function suppressed, we obtain

2

. Lt Y (R-V) - 9_9_'*03 w =0 1.3
o ~ > M

where is the reduced nucleon mass. Writing (= f%o

°
soale factor, say 1013 cm., we obtain

* 2 0 it ™
t'.oi('z‘\'le _ek'—a'_‘—\'\)j\&:('s\kg— 3\A.LS_.7_3\&T-JW 1.4

I

ﬁ.e = /ﬁé—"" _and W :2'/?_ f_ \Y where Mm_ 1s some constant
PN

Where we have used the following relations

Siz {wa ) (-\)’57 -2 \gw.b' \ (.\)'&>

>
9 \
TR lpwmy 1 by

U

1.5

1

~ Ay k-\)°>

Equation 1.3 then becomes, writing the right hand side of
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1.4 as QOO WL .

(&‘l-\-'QQZ 9(&*\)3-\)\. = S

The Greens function for the problem satisfies
C o\?‘ 2 e?* _ F (%) J L) = _S ) 1.7

oL
Multiplying 1.6 by G-UUL/) and 1.7 by \w(>\) subtracting and
integrating over x. from the core >y to «© , we obtain in-
tegrating by parts.
) = S T & G doe + T G L) w0
1.8
- G— bu\.) W l) 3
Where the derivatives are with respect to oC .
The Feshbach-lLomon boundary condition on the wave function

at 3 1is given by
)
Wik = e (Fyydi) W) 1.9

where FB > is the‘energy independent paramater for the
state /}w\a' \ L—\)(a. From here on we will suppress the
labels for simplicity. We choose our Greens functions to
satisfy the same boundary condition on the core, with res- -
pect to the X variable. Interchanging oLand Nl , 1.8 then
takes the form @
wlin) = - ’wG u(.u.) Q.\)\-’) w ) A
/ 1.10
+ 1O (o) W) - & lwn) Wiw) )

For &,))\./ we choose the solution

(_ wd) = C s ""9 LL"’") 1.11
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FPor ¢ ¢ :x,/ we choose the solution

G (aw’) = TAQ Ces) + 8my Ues) Ddest 112

We have to satisfy the following conditions with these con-~

stants
o<TGw) =2 Fad o 6 ke XD 1.13
< /7 7
G-> ku—/ W) = G LUX) 1.14
G‘> () — (‘,—< GUX) =~ 1.15

Using these conditions to determine the unknown constants,

we obtain

G ) = -QQ_‘JQJL> ’\f\)wut) .*rzx<[g(l¢>g) -
1.16
to\MVLoM(M.»)3< = G /2

where we have for simplicity of notation omitted the sub-
script /a' on the Bessel functions which gives their order,
and where the notation } and ¢ means respectively the

larger and the smaller of X and 9(./ .

Tomw = 2 %o 37w ) - F 3 (M)

A2 do V\/LlﬁJw)—F M O’Q.J\o)
which 1s the phase shift for the pure boundary condition

Here 1.17

problem. See Ref. 10.

Writing

Gl 2 1g Aex (3= bemnpm) Co ot 3D
1.1

wiw) % _/_5_\_ S MA LMO\.-?_):W -\-'\»L)

C\p'\\.
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We obtain for 1.10

W
W) = AlexTg-tamyomy - fRuGeenoa ) o0
- Xo

Looking at the asymptotic form of this we obtain
uwlw) v A Sk (lex- a_\n@ = A Sk (o= ) +
Quy\l

C“(h&-a_T>£-kM~L A — g (y~fauy MY dac 3~

whence

A = _(’cmwlﬂ'kmxkojﬂ' j Lw (g -famnm ™M)

. ° 1.20
2’ dal’ “

1.19 therefore becomes

Win) = S LG Gend) o’ — § Ckamm =Koy )~

1.21

©
S‘Cok w "-t"\m\’\‘o“") w” dhal” ksz@g(g —"towv\to'v\>
which is the equation of motion.

Multiply both sides byQU&-)\Aw and integrate over J( from
lo to (o , we obtain

‘S Rwd o\ac-\'.g.(&\*)ub\-)(:;m;)o%ru W)
-k &M'\L-ko\mw\'o)"\ = Ao Ao

1.22

Y.SMSLWK% -‘WM»LOM)] +

This constitutes a variational principal, since when it 1s

stationary with respect to arbitrary variations of \_, %u\, R

it implies the equation of motion. We will now show this.

When it is stationary.

1.23
% Numerator

$ Denominator

= -2 ('kwv\'v\:"tmmo)'\




Since the variation%w is arbitrary, we can then write,

choosing%w to be proportional to a S- function

N

w
25w {-\lvu, L S G ey u)Hww) M’f
J
1.24

73 %Q. (D -*vuw\x\.'w) xg Lwly- ":M\L"\)xaoc&'

9D

1.24 then gives
W = __S G-(x&)l.w:\.o\.nu -\/2>LL9-"“M“'\'LM)

K&£~w’vL_.*4~m.w\-) .§ -QAA.\Q}-JkCNM\\_“\))L Al

whioch is the correct equation of motion, see 1l.21. There-

fore N/D stationary leads to the correct phase shift

2. The Case of Coupled States and Coupled Boundary Conditions

We are now interested in obtaining a variational
principle for the eigenphase shifts for the coupled states
¥ Wig\ (-\)9'\ i.e., L= 3-\ and Q<+ . These states
are coupled both by the tensor interaction in the tail and
that implied by the coupling in the boundary condition.

We have the following relations

-2?°) \gw \p=1) A 6[9%-\\)31- \g\M P

Sialawmgln-1)

25+ ¥4\
Sia lpw,l gn) = —2 242 \pw, ) o+ + 6L2 (3] L \ywy! 21D
23 %\ 1+ 2.1

9
S \pwyipny = (B-) lampl 5-1s
S
S

« —\42) IR Wy %)
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The first two relations may be obtained from Rohrlich and

Eigsenstein,(46), the last two by using the relation

> 9D
N R G LR s

We will denote the radial dependence of the g-\ state by
Y, , andmXx the radial dependence of the 34+ state by

\\, . The Schroedinger equation then reads

(éd\.—., Al - 203~ \)> “w, = (3\[“.\. Ky-1) %\}W i3 “) V-“-) w,
A
4+ oC 9\3-\\)3)_ %\j "

n.‘a’f\

CaN3- b W2 Ty,

c
RN VAL AL S IVI

. 2.3-\-\
+ o0 or))L \JW W
— 3¥x Y 2.2
1.}\'\
We write these
o AR YU 2 w4 g
(d»n- te . > ' %— \ é | 2.3
(&ﬂ- le Q«)-\)k&ﬂ_))u\ 16\.\\+-Q«v\1_
N+
with
w ™ - T
,k: (3\Ic'\' \'é‘\> g\l\.g"llz——'\ 3\)¢ ) -
23\
LY L
N = Q'S\Ic—(%‘n') 3\!\_5 - P 3\’-‘ ) -
\ 2.3-\-\ y
b C )2
3 - _LL— b\l‘
LQ)+\

The boundary condition at the surface of the core region
now reads

, g+l 5 W, L)
My W) X -\ 2.5
( W, o) g A Wy Ulo) |

C
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Writing the equations of motion in matrix form, we obtain

N L “
A
Oac® 2 ° ‘ - {- Q? \ 2.6
ar ke v\ My
o S LA\y 2 o

The equation for the required Greens function is

G“\b\-’:) G'c_\(‘x",) % /) 1
= =9 LA

2
2
i&-\\.\ °
2.7
2
o & -\-\._L G ) G, )
At P
we now write 2.5, 2.6 and 2.7 in operator form
’ -\
p! = o WL
\&1 L\:) Co @ W) 2.5/
G o
\ = Fw
< o 3 \U\' 2.6
2.4
|
b L°1_ GLw) = =Y -w) L 2.7
0 D%\,
oo X
and 2.7 by W' OL)  where the

Vd
Multiply 2.6 by G (o)

-\- interchanges rows and columns, i.e., G-\. is the trans-

pose of G-. We then obtain ‘\
G-Jc &Ju\-) Q*L ° w = G W) Fw 5.8
0 Q*\_ :
'V D% 5 G.L.\uk.) ==\ %\3\.—)&.)1-
0 ng_\\_ 2.9

Take the transpose of the second equation subtract it from

the first and integrate from X, to ¢O , we get
\J&.) ot =

W
S C G-tbu&./) St w = LG L) )
2.10

Yot
SQV_Q. God) FUwG) Jdee A w)
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Integrating by parts, we then obtain
¥o)
ww) = _ S G+ ) Fu de &
UV
/ w 2.11
L G—-\-U‘s J(/) W) - G-* L) win) ) o

At the lower limit

\\/L)\.Q) = >LE\ 4% w Ot )

We choose
GT Gw) =, AT %
2.12
Then sf t
en since c\, = c\ , Wwe have that.
/
G ) < x5! éf ¢ L) 2.13

We then obtain for 2.11

QR
wl) = - S ol ¢ Lx) v dal’
r "Q “'/ 2014
+ T Gox) Wiw) = & Cwoax) W) I

From the boundary condition equation 2.13 satisfied by the

Greens function, we obtain

) -1
o (X)) = o' CR 1) G LW 4 g :S.CG-&\)WL()&U

y - -\
G-lew.kf) = g Cex 1) G'ﬁ:. LI ) )\ S»LG-\ W\, 2V)

2.16
/ / =\ / ~\ ¢
G, (X)) = A3 (F40) & W) 3 5(_(,.“9\‘,)\,) 2.17
/ -\ .- / -
G o)) = W5 CRH) G},\U\O*> i a(CG-\ Loy 2,18
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In addition to these, the Greens function must satisfy the

conditions
G Uy = &° WD)
2.19
S ) <. . 7.7
Wif) = G Le) = -4l
G () ) 2,20

Where the » and ( notation, is as before in the un-
coupled ocase.

Writing these out in detail

G"> W) = c,-<\ )

2.21
&Y oy c,f/u’)w il
S ¢ 2.22
Cr)_ W) = G-L S S)
: 2.23
GL) L‘&f)\f) - G~L< OV W) = -\ 2 24

We also demand that it satisfy the reciprocity condition.
G Loy < Gt /)

2.25
This gives
G-c_\ L) = G'L,_L’d ) 2.26
G‘;,}*”‘/) = G-C\UJ’\) 2.27
We use the Greens function
-lZ\cheo 3?}97( - 1{‘0?(&) Oi b 2.28

Gudh= NU L <
- e 905 W) ke °’h‘o?{:’3,_>
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Where 3:(5. Q’;\-—"tm\f'o%\)%x = S‘xaa 3:%* ete.
The constants N‘)W'*\f: ,’tm‘v\_f ,*meoare to be determined by

the boundary conditions *-\S to %2 20 and 2.25. Ilet us now
check equations 2.15 t0 2.27. As one can see by linspection,
equations 2.19, 2.25 are obviously satisfied by the proposed
Greens function.

From equation 2.22 we obtain

N Ko e g = w2 (5473, 3 ’3‘(3) 2.29

Working this out, we get

N Ean €52 7% Chann o ®) (3 T=™90)
so that N = Rom €, C‘W“’\.a: - Lom V\(: y~! 2,30

The equivalent equation for CFL equation 2.24 is evidently
consistent with this, since it may be obtained from this by
interchanging &« and (3 , and © oun G, by —Xam €y
noting that the Wronskian is independent of the order of the
Bessel functions.

From equations 2.15 and 2.16, we obtain

7 - - L o X
C37y, - B3 = 51“‘”“03;_ 2.31

and

7 %
(W3 =F.3 )= 5@”‘;{ €, 3\°< 2,32
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Multiplying 2.31 by 2.32 we obtain writing S\d) ") &
L
explicitly
4 % N _ _% X
% L'a\-’tcmv\ov\\ )= (-famn M) x

2
{F‘ + ;g_‘:- ’ / o &
2y (O Ramb ) g ¢ = - talin )

2.33
9, - tw\n"\z L

Which is just equation 18 of Lomon and Feshbach. This
equation 2.33 yieldskfm\? and *‘MAV\(: . Bvidently it is
gsymmetric in 1 and 2, as can be easily seen by looking at
the product 2.31 X 2.32. If we had looked at the equations
connecting G':_ and GQ‘ , we would therefore have ob-
tained the same result.

The mixing paramaterto\m (S :*.Ow\ G.( is given by

5 X s«/ (:“F )(9 =t ]
X = 2 _F
W & 30(5.( > ’3 '&“"\« 2.34

which is identical with equation 24 of Lomon and Feshbach.
To obtain this we have used equation 2.33.
So we see that our constants ‘QM‘\% )Ju\m"\c’ and Xam € , are

o 0 0
respectively the elgenphase shifts and mixing paramater for
the pure boundary condition problem.

We now evaluate the integrated term of equation 2.14, it is
Crkwxw ()+ O Lo:»\.)v\ (D) = G0 (W)

- G Cox) u uo)
G, (ox’) \AX( W) + G—c\Lwau') =) G:(vox’)*«,_ho)

- G{\(‘ox’) w, (W) 2.35
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We are interested in the eigen solutions to the scattering

problem, so we choose

(wl ) A L9 -Ramym)) ) ("3\-’%\%\)
= = A 2.36
at &L~ Romy m,) ’Qrme(gl-'\omwml\
We have
“ L) xc\i:- S ma (‘3—3-\5-\-'»L)

WolR) 2 Akame St Cy- 3*"“"'"’\.)

<n
/ ~ |
C.n'V\'ﬂ 2.37
G L0 7 NATeRCo 5/ TP S g ot T AMT)
Covx
G \Qx’)«. “_"’__‘5\ 3 3(5 San L‘O"""‘“*”\o)
G, (ashyy T 1/ ST Sun (9= o TG
\ Qn"'\.o
Rewriting this more simply
~ A
W ®) y ARImE o (b v
Com,
/
¢, (ox)y Nxe o &, ’éaswtkﬂ\'”\_ 2.38
C.n»\"(
G, (W) - '~_{_"_< c“JCco 'a:‘ S ma C\’ﬁ”\(’;)
Cnv\_o
G &Q)\.)IV_NM /é Sm(k’*\’\. )
Com @

N-—"‘)\Q\ OQWC\?*V\->
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The integrated term 1s therefore

lSt element
{_c«xeo 9, X Swa C\n\/s)cnc\u\)w o € Lo Clpay )
VL Cw'“l.(s o va\* "
Sani (R AMY) - Q—;—i; e C—n(\7-\-\”)9»«09-\\)—2:“\%(\’*‘\,)
(-]

Tom & S (‘P‘_-\'\)f =
A(’(M'\\‘:—'QM \\’:)“‘{ g:‘(’tmx\-'\m\xe)-\rg\ﬂim e R & -

2.39
(o= Conng)

2nd element

fLC-teo 28 SmC\-‘H\-\\'o)‘cmeC\an-ﬂL)— % S (v ®)
Can g
Con c\—mk)- eX o /a Co LW, ) T € S LAy ) xS Gn&bn\“)

< [
Smn (b"\'\r\-)f K -»\
A ("CO\M\‘L tw\\.6> & aatc\mé Qk“w\\'\"‘&“‘“\\o) * ’é V\MEO 2.40

Ctamn, —tan ) &
So rewrlting the integrated term, it is

®

| A et n ) & 50 kom & K €, Craun- k«m{i )
= A Gl AG) (| (i Raan®) + 20 B € (R Kol
L
2.41

We wish to obtain'\hm(- and A in terms of kwv\'and integ-
rals over the potentials. To do this, we look at the
asymptotic form of equation 2.14.

15V element

X
A gl Chan) = - SEGR@ RN 4 G o R ) da

R Spnrt (\u\f‘) (st%\\'_t%\,\(&‘)*g“ (\N\ ) Rom e |
o Q-C \o (‘Mv\_o

CRony - Loy Lome \Ramn-Rann ) ¥
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with o\ = (k\a\-\—é\,\x') ) PL; (8\6\*'&&\&}_)
(]
80 CA- Smn (‘P\-&\_‘) = "Q-\ g__~_a_a (‘p\*»\(;§ S(_ X ¢, g"( P‘
® M Con 3 % ‘
* o0 00 doc+ A (Rany ¥ oy f Scf‘ codny) -
o
Comm-komyB) 4 Sur COMME) ko chaan €y (R oy —konn) h
Con's
Writing w0
T, = § Lukeod P any P de
We obtain o

-\
Sma b\ S\. A Q"{m‘»\_-\.ml\fo) ( \'\"(M Eokow\, (—)*(ﬁ ‘k(m\eox‘?
+ Colo \w\o\_@ iAk’tmx\:\mw\’t) (RSP TR Y Pl T eﬂ\( -0
\ 0

So we choose

2.42

-\
A-= —\Q-\'kww €o ({MV\‘—{M"{(O) L\*tme°kweut\ 2.43

214 o) ement
Akam € Q0 Lbi\. w) = - g):( G, X)) Py +G-¢\Uuo)p,k*\)] e
Com,
* A oS- X)L {SE_:‘ “:"f"\:) Lo o (Romy = tay®)
"o
- ?:" (b,;\r"\.?) Lon & L&m\\‘_‘\m»\:‘o\g. .
cvs\\(;
Arom ¢ Q. Op\,*\\.) = L,_‘\ San k\)]_-\hfo YRomeg (F \l:_km\‘(:)q
Can,
o €k VY 9«-\(‘0-\1\"\,
(ke P e

X own “\:(0 (‘QM\’\'—-&(’W\\’\,&Q> pui—
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W
Write T S% (- X, gf B+ 0P ] )de

T

Then S ¢b) §- A (J:M\_-k«m\_(:) (Ao e=Xom Go) +
&-\ko\meorlg + Con L\:L)tmw\"g {'—A ““‘M”L-J“*M"\f)'

CRowme -'\aMeo)-Ne”“tm‘-oIzz' = o

Hence we choose

2.44

- -\
A= Q'\’(M € (kmv\:kw\tg) \kaG-'&MGO) Il 2.45

Rewriting equations 2.43 and 2.45,
A = - L'k &, T,
- X +om e lom e
CRamw. ’tww\b) (Lrtameotome)

P\: - Li'\’x-p
Chamm-tann?) (1= @ €otane)

From equations 2.46 and 2.47 we have

\,P = ‘t(m,»\'-*.m\f‘
From equations 2.46 to 2.48
A= — Sw2go [,‘!:\\.F *T Ranbo ]
2ML,‘\_(5
Akmeo: - Q_MA_}—-G" (—T\tweg\'/s'_tl.\"ﬁj
?.\4.\-.(\.(;

Whence we have for the equations of motion 2.14 using

2.46

2.47

2.48

2.49

2.50

2.51
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equations 2.50, 2.51 and 2.41

(\C‘\x) = - St &g (‘tcka':-iam\\(:}-\,
:.ke\.,,\\_

. )
< () \ CI\L@‘H» weo A>*Q(5'E°\Meo (I*‘M‘e \-@—T L&)\- )

<$ (P G-(Ju\.)-\- P 6 L)\)L.))o\,,L )

Sh(gc&(m’ y + 0 ¢ ‘(M)) Ase -

/
In the last term, we use the notation SP‘ G )L ror in-
tegration over . , and SG\U\)J)P\&»\{ for integration
over

Also recall
S Coteg 00, + 37 ©,) dhat

(2]
IL: S (,-ut%o’é-ﬂpl_-* Q}ap > Ao
L SR
26
In order to obtain a variational principle, multiply both
sides of equation 2.52 by

(W) W)
(W) w W) <k =00 j = (Pu) 6O

5\3\!) Lo

and integrate over aL/ +« We obtain

@
S CRuw + PL\Al) da’ = gwd-eo Qk_m\,\_ ’cow\\,\'/‘)
o 2‘4\-.(
&L(S (: P*TL{AM Gg\-*) SQ(Q*P\N- ')O(*MQOO ) f‘*d\./
Ao
e L (T Rum 6 \_(5 - T, ) S (’;“kwe 0 — 2.53
A % )&m. 2’ {‘z (B &P +0 G-LP‘_‘\ OLGQ\_Pl*P\ G'L\P,_)o\audw/



‘ ~106=-
This may be reduced to give
) -\
Ssg,(p\“\“'pz,"‘z) oz - Swnd Cobeom S (kmx\:_. k“’“»\-?) {..
N 2l L «\L ©
2
I\ \-(5 -.I:- Lz— +‘LI‘ILL*L("&MG-°3‘-€SM g‘kocp\ﬁ'\e-\-
P]_Cr,_PL* O, G‘cz_P\ * P 0~(_‘ PL) S oy ia

So that

- Swi&, tune, (’:am\ anfw \= I35] =

rletalp o
[V}
SM( Pt B uydad 4§ S« f’wcp‘ P + PG, B4

2.54
CLbeu Pt B 6P, ) dnc dho! &

{_ :\7' \-(51 - -:LL \—2’ —\-lt\t)_\..(\.(;*-m‘-‘of
We must show that when%(,s:} =0 for arbitrary variations of
., and W, , we get the correct equations of motion,
equation 2.52. We will do this in detail for arbitrary
variations of W, - Evidently from the symmetry of equation
2.54, if when U3} 1is stationary with respect to arbitrary
variations of W, , we get the correct equations of motion,
then the same will be true with respect to arbitrary varia-
tions of W, .

We have, since the variations are arbitrary.

G R 4 5
9 S,: S::(P\ CP AP R AR 6B 4060) =
’V&.SQ &0 x O G+ & Pa,>°\*§°
é{g (el Qo + 206, d ¥
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But
c"c,_( W) 2 G-c\(:ug’)

8]

S
W p N
% SJ\» g:ucp" G-‘-»P\ + P\ G"-\pz.“‘ P¢\R ¥ DLG-LPA,) o da
w

= Zk S):: ( O\ CP\ *PLG-CL)AOL '\-7-% g,uC-QLGl‘\'p\ G"_\) OL)L

%T\q‘ :.Q_T\ (%U‘teog:‘-\-% oa‘:)

SILL = 2T, (-éutgbgf ,\_Q_/}‘(-‘*)

%

7—%:\-:)_ = zr\ (."' é Cdt Lo /)2(3*-% ;\A) s 1‘:)-(%(1{ G'O ’é\ 4=
%9, )

Whence we have that

2 U3d=o implies
« @O
% SL\A\ + SM C &P+ OLG'QL)&AL§ ¥y Qwﬁ: S,bg_OLG-L +
P\ G-C\)O\/*.g‘
- {
gvv\l@o Q’:M\‘(o_{m»\(;> \&'&_LL(’;‘Q&G,’)\ T,

LQ\.O{\_@
LT
- Lo'\L Q?r."-\-tm €o :\\.&\-(5 Q\(b +tm&ou"k@°\-d 1 L)\.)

Y L{:‘:\g‘: rLr WX gf T, -tame, T ohep ,;f

Laly +EamGo ) T 0 4bad Y
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i.e.,

7y
% S+ S)\.)(G\P‘ P G DAk S 26 (ot tm\@)"\
| 2\;_\.‘\.(5 v 0

o
C 2, L (Lpt‘-ﬁcmc-o LT,) « 3P Lakunty (‘g une, T
-\

RIS w g fuis 0700 6l 6 ) du &

Sm 1 SR
7—\¢\—*\_@

k“-@o\~&31L) —\v&'953(:-\-«15,+kuu~ @o\.ﬁ]:‘):)§'=-o

LRunnT- famn? )™M T LaSuneg Y (L T+

This vanishing then implies the equations of motion equation
2.52. BSince each bracket is separately zero when “, and\A,
are the exact wave functions. We see then that the values
of W, and w, which make C3) stationary, are those which

satisfy the correct equations of motion.

3. Discussion

The variational principles which we have derived,
may be used in fitting the above interaction model to the
data. It enables us to obtain the phase shifts produced by
en interaction with a known boundary condition, for an arbit-
rary external potential tail.

The variational principle equation 1.23% may be
utilised directly to yleld the singlet and triplet parity
(-1)J phase shifts. The variational principle equation 2.54
cannot be utilised quite so simply, since it contains the

desired phase shift explicitly on both sides of the equation.
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However if we are concerned with fairly high energies, where
it is expected that the core region gives the more important
contribution to the phase shift, then one can approximate
the phase shift on the right hand side of the equation, by
V\:- or V\ﬁ? , and utilise an iteration procedure, to ob-
tain the true phase shift. As stated, this method will be
most useful at high or moderate energies, where the first
approximation to the phase shift is close to the correct
value. At lower energies it may still work, but perhaps a
better first guess may be necessary, or more iterations re-

quired.
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