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Introduction

We consider n events A;, ...,A and let p (Ai ese K, ) denote the
1

probability of the joint occurrence of Ai tseeghA. o Then if p (Ai ook, )

1 ik 1

is either equal to zero or to a function®k of k alone, we call the n
events Al, ceey An "quasi-symmetric events. Kaplansky Pﬂ shows how
algebraic symbolism can be applied to find the probabilities of these
types of events, by making use of "the symbolic method". In order to
explain this method, let A, B, C be events, p(A) the probability of A,
p(AB) the joint probability of A and B, etc. Then the probability that

none of A , B , C happen is:
(1-p(A) ) (2-p(B) ) (1-p(C) )

provided we agree to write p(AB) for p(A)p(B), p(AC) for p(A)p(C), p(BC)
for p(B)p(C) and p(ABC) for p(A)p(B)p(C). We call this "multiplication
in the symbolic sense'.

By making use of the usual indicator and expectation functions we
will obtain a method which, although similar to the symbolic method,
has more applications and is more convenient. We shall call this method
"the indicator method". (For details on the indicator and expectation
functions we refer to Loeve ([6]) For example, using this method, the
usual formula for finding the probability that "exactly k out of n
events occur', will be obtained. The method will mainly be used to
enumerate certain types of restricted permutations, which can be con-
sidered as quasi~symmetric events,

In this connection we shall establish in Chapter 3 a formula

(perhaps of independent interest) which gives an expression for the



ii

number of ways in which k objects can be chosen from n distinct objects
arrayed in a row, so that no j consecutive objects are contained in
each choice. (The case j = 3 has been submitted as a problem to the
elementary problem section of The American Mathematical Monthly for

one of the issues to appear this summer.) Also it is believed that for
the first time, in Chapter 4, a readily applicable formula is given for
the solution of a permutation problem set by Mendelsohn [9, p.238,

example 5].



CHAPTER 1

Use of the Indicator and Expectation Functions.

Consider a finite number of sets A ceey An representing n events.

l’

Let A; denote the complement of Ai’ that is, the event '"not Ai". We

introduce the indicator function IA (x) in the usual way:
i

I, (x) ={ 11 X5 c
Ay 0 if x¥ Ay (i.e. if xecA,),

If we write IA instead of IA(x), then for all x,

if AcB (1) I, =1,

if A=B (2) I, = IB

(3) IAc =1 = IA

(%) IAﬂ.'B = IA . IB

(5) I¢ = 0 where § is the empty set.

lep(A) + 0+p(A®) = p(A) where E is the expectation

(6) B(1,)
function and p(A) denotes the probability of the occurrence of an event A.

Let ANAN ... NA be denoted by AlAa An. Then p(A1A2 An)

denotes the probability of the joint occurrence of Al, Aa, csey An.

Suppose now, events Al, AZ’ A3 are considered and the probability
that none of these occur is required. We proceed as follows:

;Ac AC AS = IA

c I
17273 1

A I

A by (4)

[+ [+]

2 73

= (1-I, ) (1-I, ) (1-1I, ) by (3)
Ay A, A3



= 1-I, =I, =I, +I, , +I, , +I, by(4)

-1
Ry Thy A AR, AL TTAAL TAA R,

Taking the expectation on both sides of the equation we obtain:

E (I,c,c,c) =B (1-I, -I, -I, + eoe =I ).
A1A2A3 Al A2 AB- A1A2A3

Then, P(ASACSAC

) = l-P(Al)-P(Aa)-P(A )+P(A1A2)+P(A1A3)+P(A2A3)-P(AlAZAB)

17273 3
' by (6).
c,c,C
But AlAZAB is the event that none of the events Al’ Aa, A3 occurs.,
Hence we have the required probability.
Lf the probability that Al occurs while A2 and A3 ... do not occur

is required, we would proceed as follows:
I c,c =1 I.c,c
AACA Al A2A3

I,

L]

(-1, J)(2-I, )
1 Ay Ag
-1 -1 + I

1 AlAZ AlA3 A1A2A3

n
Laa!

A

By taking the expectation on both sides of the equation, it follows that

c,C c,.C
P(A1A2A3) = P(Al) - P(AIAZ) - P(AlAB) + P(AlAZAB) where A1A2A3 is the

event considered.

The above example suggests the following rule:

Rule of Replacement

. c c
The probability that event AlAZ'f' AkAk+1 see An occurs can be

obtained as follows.

) L) (l-IA )

a) Write down I, I, ... (1-I )(1-I
Al A2 Ak Ak.-l-l Ak+2 n

b) Carry out the required multiplication putting all products of



the form I I eee I equal to I e .
Al .A2 Ai AIAz Ai

¢) Replace IAlAa cohy by p(A1A2 ces Ai)

We then have the required probability.
We wish now to find the probability tﬁat exactly k events among the
" n events Al, A2, coey An occur simultaneously, regardless of which k
events occur. Consider two cases a) and b):
a) k>0
Let il’ 12, ceny ik be k distinct integers chosen from 1,2, ..., 1,

and ik+l’ sosy in be the remaining integers.

Let X = AEE_IAi Ai ee. A, A eeo AY  (summation over all possible
1l

2 % ke *n  selections iys eeey &)
= z IA. Ay e A (l-IA. )(1-1A‘ ) eee (1-1Ai )
11 2 ik 1k+1 lk+2 n
n-k
= >y A .. A " E(IAi oo a2 Iy )
11 % X 1 % a=zl  “kea
n-k
+ 2 a > I s )
1 x a,b=l “k+a “k+b
axb
n=k
- Z‘&i ees A, Z IA. Ai Ay )
1 x a,b,c=1 k+a Tk+d Tkte

axb bxc axc




- J - (k+1) 3 (k+2)

+ /0
k k k+l+ k +o-o-()J

J k+3 k n

k+3
k+2~ ( k ) g

where Jo = > I, . a *
N i 1
1 2 v

‘Taking the expectation on both sides we obtain:

s ¥*2y g

k+l k+3
k) Bpr t O ) S = OF7) 8y

E (X) = sk- ( +3

+ 1
+ eve -(k) sn'

where S = E (J.) = > p(Ay A, ool Ay ). But E (X) gives us the
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probability that at least one of the events of the type Ai Ai ceoh, 2% .,
1 %2 e ke
ses A; occury, That is, the probability that exactly k events among
n
the n events Al’ A2, eeey An occur. Denote this probability by PLK]‘
Hence, k+l k+2 + ,n
b) k=0
Here we comsider simply, (1-I, )(1-I, ) ... (1-I, ).
A A A
1 2 n
By the rule of replacement we obtain,
+
P[°]=Po—l-sl+sa-sa+ooo-sn (B)

where I’Ea or Po denoteg the probability that none of the events

A

10 A

21 et An occurs.

Note that by putting S. = 1 and k = O in (A), the relation (B)

0

follows. More simply we can write (&) as3

o r-k ,r
P[k:‘: =§ (-1) (k) sro

which can be rewritten as:




e}
Po= 2> D) DT s (c)

r=0

since (;) = O whenever r ¢ k.

From this point onwards we will consider only events which have a
special property, which Kaplansky [3] refers to as the "quasi-symmetric"

property.
Definition

Given a set Al,Aa, ...,An of events. Then if for any subset

A, 5 eeoy A, , p(A, &, ... A_ ) is either equal to zero or to a
i i."i i

1 172 14

function.Qk of k alone, we say Al’ A2, ooy An are "quasi-symmetric"
events.,

The displacement operator E (no ambiguity will arise in its use

with regard to the expectation function E) is defined by Ek @ 0 = @k,

E° @ 0 = l. For example, in the case of complete symmetry, that is, where

. ' n
each p(Ail, ey Aix) is equal to Qk, we can write Po = (1-E) Qo

giving us the probability that none of the events Al’ AZ' ooy An

ocours as P_ = l-n ¢1 + (2) (PZ - aee (using (B) )

We now give a rule in order to obtain probabilities in the case of

quasi-symmetric events.

Rule of Replacement for Quasi-Symmetric Events

cns c c
The probability that the event AlAZ N AkAk+l .o An occurs can
be obtained as follows:

(1)  Write down I, I, ... I, (1-I ) .. (2-I, )
Al A2 Ak +1 An



(2) Carry out the required multiplication putting all products

of the form IA I cee IA equal to IA and dropping

A, A, ... A,
il i, i, i, i, i,
any which are identically equal to zero.
(3) Replace each remaining term I, A A by E' thus
T

obtaining a polynomial f£(E),
The required probability is then f(E) Qo. To obtain this rule we
have ogly used the rule of replacement as given for the general case

and observed that p(A, A, ... A, ) =0, when A, A, ... A, is not the
iz kK iz x

empty set.

The advantage of the above method is that we may resort to all
devices of formal algebra in computing f(E),.

Our main application of the abovg rule of replacement will be to
find the probability that none of the events Al, csey An occurs. For,
once we have found the required polynomial f(E), such that P = £(E) ¢°,

then, as pointed out by Fréchet [2], we can easily find.Pﬂﬂ;
Multiplying each term S_ of (B) vy (-1)k (;) we obtain formula (C).

Then,
P[k] = £(E) wo (D)

where EX Wo=W, Y= (--1)k (;) ¢r
and Po = f(E) ¢o is the same as formula (B).

Further, the probability that at most v of the n events Al’AZ"'° An

.occur can easily bg obtained.




Denote this probability by Pv'

A 3 k r‘ r
> S GLE (D s,

P = EP' =
v k=0 ] k=0 r=0
n v
- S G0 DT s
T
r=0 k=0
Y k v v ,r=1
Now :g' (-1) (k) = (=1)" (" 7). To verify, we first see it is true
k=0 v

when v = 0 and v = 1. To apply induction with respect to v assume that

the formula is true for v = u.

Then,
u+l
k r u ,r-l u+l r
D e R R C i PR

u+l  (r-1)!
(-1) (wr1)1 (r-u=2)!

u+l ,r-=l
0% G

Thus the formula is proved.
(Note, when r = o, (-1)° (z) = (-1)° (rgl) = 1l as (g) is taken as 1
for all values of m. Also (—i) = (-1)¥ where r is a positive integer

n . . I .
and (r) =oif r > nor r < o, where n is a positive integer.)

n
Therefore P :E (-1)7 (r-l) (-1)¥ S which can be written as
v L& v r

P
v

£(E) A o (E)

v r=1
(G DA Gl B/ 28

whereErA§=Ar’Ar

n

£(E) (bo.

and remembering that P°

Our main problem henceforth will be that of finding f(E) such that




P = £(E) Qo' Once this is done, P[k;] and P are readily obtained as

shown. We will use the word "evaluate' to mean the process of finding

such a polynomial f(E) from the form (1-I, )(1-I, ) ... (1~-I, ) by
Al A2 An

using the rule of replacement for quasi-symmetric events. f£(E) will also
be referred to as '"the required polynomial for the given events 'the
corresponding polynomial', or as "the associated polynomial'. However,

it should be pointed out that f(E) will always be meant to be the
polynomial such that P° = £(E) q;o unless stated otherwise, since we

may obtain in the same mannef, from the rule of replacement, a pélynomial
g(E) such that g(E) ¢ o gives the probability that a certain number of

given events occur while certain others do not.

As a simple example consider 8 horses entered in a race where any
horse is just as likely to finish in any assigned position. Number the

horses 1,2, ++., 3. The probability required is that:

1l does not finish first

and 2 " " " second
"oz o " " first
" L on " " second
n 5 n " " first
" e n " " second
noopon " n first
w8 n " " second

Let (ij) denote the event that the ith horse finishes in jth position.

(8-k)!
1 i - " =
The events have the.'qu351 symmetry" property and (Dk T




Write Iij instead of I"(i‘j)‘" Then we have to evalua‘te

(1-111)(1-122)(1-131)(1-142) ces (1-182) , that is, we have to find the

associated polynomial f(E). By applying the rule of replacement, it is
easily seen that f(E) = (1 - 8E + 16E2) as (1ij)(mn) is equal to the
enpty set when j = n.

_ 2 _ 81 - 8(8-1)1 + 16(8-2)! 2
ThenPo..(l-8E+16E)¢o_ 81 =

31

20y - 8(-nih Lol | 1g.1)33) B2

Using formula (D) P[l]

BN] By

=0+ 1= %

o ' 2 2, (8=2)r 2
P[2] =5 WO - 0 + 16(=1) (2) T = -,7

Checking,

P =1 -(Pﬁj; + P%ﬁ) as Ppg =0 for k72

2.1 . (2.2
5 1 (7+7)

Using formula (E) P

5 = F(E)A

02 DO, - 802 Db, + 2802 D,

l1+0+0=1

and we have P2 = P[o] + P[l] + P[z-]

The above example is one of a general type of problem dealing with
permutations. We are usually given that n distinguishable objects are

arrayed in a straight line. The objects are numbered 1,2, cseey I
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according to their respective positions starting, say on the left. A
permutation is then made of the n objects, and the probability is re-

quired that object number 1 is now in the ith respective position

1

starting from the left, object number 2 is now in the 12th

position, and éo on., Such restrictions need not apply to all of the n

respective

numbers. Our assumption here is that each object is equally likely to
occupy any respective position as a result of the permutation. As in
the previous example, (ij) denotes the event that the ith object is
placed into the jth position or briefly, that "i is j". We have then

X = (iljl)(laja) - (1kjk) is equal to the empty set if i =i u Ev

v
- ]
or j, = Jj, w# v. Otherwise p(X) = ¢k where (Dk = .S_I.l.l.l_lxﬁ.)_- . Hence we

are dealing here with quasi-symmetric events. Problems of this type are
usually referred to in the literature as "restricted permutation" or

"card-matching" problems. Note that I y £ 0 implies that (mn)(uv)

(mn) I(uv

is equal to the empty set and hence the event (mn) and the event (uv)

cannot occur simultaneously. Thus p [(mn)(uvﬂ = O
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CHAPTER 2

Generalization of the "Probléme des Rencontres'.

Perhaps the best known example dealing with restricted permutations
is the game of 'rencontre’. The game is usually played as follows. Two
equivalent decks of n different cards are put into random order and
matched against each othef. If a card occupies the same place in both
decks, we say we have a ""coincidence!' or "rencontre'. The probability
that no '"rencontre'" occurs is simply the probability that none of the
events (11), (22), ..., (nn) occur. Our problem is then to evaluate

Since the intersection of any k of the considered events is not equal to

the empty set we see that, £(E) = (1 - E)®, Then,

P
o

n n + (0
1-MEeE+ M- 2B,

1 - ( ) (n-l) (n) Sn-Z) - eee % ( ) (n-n)!

_ 1 P S+ 1
= 1-F1*3 " e "

We note that the above formula gives the first n+l terms of the
expansion of e-l and hence for n greater than, say, 5 Po is "almost"
independent of n. In fact Po$¥.36788.

Using formula D. of Chapter 1 we find

1 /.1 .12 nek 1
P[k]=k!<-ll+2!-...+(1) m)

-1

e
and hence P[k] = T

if fn(E) is the associated polynomial, in the general case,it

follows that,
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£ (E) = (1-E) fn_l(E) as (1-E)® = (1-E)(1-E)*"L,
Extending the game of rencontre to 3 decks of n cards each, we let

th th

(i,j,k) denote the event that the j card of the second deck and the k

card of the third deck occupy the ith position. The probability of no co=-
incidence, that is, for any m = 1,2, ...,n, the mth card does not appear
in the same position in all three decks, is found by first evaluating

(1 - Illl)(l- 1222) cee (1 - Innn)’ where Iiii = I(i,i,i)

2
; n n . {n-k)!
We obtain f(E) = (1-E)" and Po = (1-E) ®o° However, here.Qk = [ il ] .

In general, if s+1 decks of n cards each, are considered the proba-

s
bility that no rencontre occurs is (1-E)" ¢° where () k = [-(—n-izl] .

n!
n (01)°

where
n! r

Instead of writing (l-E)n¢° we can write (E-1)

a® (01)8

E' (01)® = (k1)° and by putting E-1 =4, P_ = ot

Let an denote the number of possible permutations of the s+l decks
with no coincidences. Then we note that,
B =P (a1)= & (01),
in agreement with Riordan [12]. In particular for s = 1, lHn = An o,
the solution for the usual game with 2 decks.
The probability that none of a particular choice of s decks has

n s
any coincidence with the remaining deck is [An? !] s &lthough any two

decks excluding the remaining deck may have coincidences.
Also noted by Riordan, are some interesting arithmetical properties
of the numbers an. For their verificafion the operator E proves to be

useful.

Property a) an+p z - H (mod p) for any prime p.
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proof: an+p = (E-1)"*P (01)® where p is any prime

(B-1)% (8-1)P (01)®

(2-1)% [E° + (-1)F] (01)® (mod p)

[EP (2-1)%+(-1)P (2-1)%] (01)® (mod p)

B (E-1)® (01)° # (-1)® (E-1)® (01)° (mod p)

0+ (-1)® H (mod p)

Note that EP (E-1) (0!)® = 0 (mod p) since every term of EP (E-1)? is
of the form KEP+m, where K,m are integers; hence every term of

EP (E-1)" (01)® is of the form K [(p+m)t] ®, therefore every term con-
tains the factor p.

Thus for every prime p, p # 2, an*P z - an (mod p). But for p = 2,

-1 & 1 (mod 2) and therefore property &) is true for all primes p.
For example, let n = 2, p = 3, s = 1. Then 1H2+3 = Lk, 1H2 =1

and 44 = <1 (mod 3).

Property b) H

s+p-17n = gi, (mod p) for any prime p.

. - n s+p=-1 .
proofs s+p-lHn (E-1)" (o!) where p is any prime.
Every term on the right side, of the equation is of the form
G D @F e0FP L= -D  en Sen)
= k.(o ¢ k < n)c
Now if p divides k!, then t, = O (mod p). If p does not divide

k!, then (x1)P"! = 1 (moa p) which follows from Fermat's

theorem of congruences. Thus t, = (;) (-1)%7% (x1)®
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(mod p) when p does not divide k!

Let tl be the general term in (E-1)" (O!)s, that is,

k
tIJ; = () (-1)®"E (k1)5. It is seen that t, = ti (mod p).
Therefore s+p-1Hn = B (mod p) for any prime p.

We now consider generalizations of the problem of rencontre as
noted by Kaplansky [4, p.908].

The n integers 1,2, ...,n are divided into % subsets of a integers
each., What, then, is the probability that in a random permutation of
the n integers, no integer appears in any of the a places originally
occupied by the members of its subset? As an example, let a = 2 and
assume n is even. Obviously we may "re-divide' the integers into the
subsets, {1,2}, (3,4}, ...,{n~1,1} as the required probability is the
same. Hence we wish to evaluate,

T1(1-1 ) N (1-1 ) eo1(1-I )
*19a *2Y2 *2n
2
where x; = 1,2, ¥ = 1,25 X, = 3yl ¥, = 3,45 eee3 X = n=l,n, y_ = n-l,n.
Now M(1-I_ _ )(2-I. _ ) i #3 i,j =1,2, «eey= domsnot have any
X.¥ X.Y. 2
ivi 373
products of the form I I = 0. Further, the polynomial correspon-
- X.¥: X.Y.
ivi 33
ding to rl(l-Ix v ) is equal to the polynomial corresponding to
ivi

rl(l-Ix ). Therefore let f(E) be the polynomial corresponding to
3%

ﬂ(l-Ix v ) for any i. Then our required probability is
ivi

n
P, = [f(E)]'é (po where (vk = (—r:%-)-!-
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n
That is, the corresponding polynomial for the solution is Fn(E)=|?(Eﬂ 2 .

We find f£(E).
[ ]

g (1-1x )

Iy (1-111) (1-112) (1-121) (1-122)

1-Ia1) = I(a2) = Ten) ~Te22)*T(a1)(22)*L(12)(21)

Hence £(E) = 1-4E + 2E° and finally,

2.2
F (E) = (1 - 4 + 2E7)2

1 -4E + 2E2

i

Thus for example Fz(E)

F,(E) =1 -8B+ 20E2 - 168> + 4ET

1 - 12E + 54E° - 112E> + 108E" + 88°

F6(E)

Suppose the n integers 1,2, ¢esy n are divided into subsets, not

necessarily of the same size each, denoted by ay, 8oy esey &y containing

-

819 859 eeey-B integers respectively. We introduce subsets bl; ba,;..,bm

m

containing bl, b2, ceny bm integers respectively, all chosen from among

1,2y essyn, with the condition that no integer occurs in two distinct bi'
What, then, is the probability that, given a random permutation of the

n integers, none of the a; members belonging to the subset ay occupy

any of the bi places specified by the members belonging to the subset

b, s (i = 1,2, +¢eym)? Obviously, we obtain the same answer if we con-

sider the subsets Byy Boy esey By to be equél to the subsets

{1,2, ooy aj), (al + 1, a, + 2y eeey a, + aél, cee

respectively. The problem then is to evaluate the polynomial
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n (1-ley1) ﬂ(l-IxayZ) ﬂ(l—Ixmym) .

where = 132y eeeg@ay Yo =192y ceeyboy x, =a, + 1, a, + 2, .;.,'a + A
1 Y1 1’ 72 1 1 1 2

+ 24 coey b + b2 and so on. Now no product of the form

1

Yp =Pk + 1, b 1

Ix.y. I y. = O for i # j. Hence letting f(aibi) be the polynomial
ivd 373 . _
corresponding to the evaluation: of l"'l(l-Ix ) i=1,2, eauym it
. ivi

follows that:

P = [nf(aibi)] QO 1= 1,2, eee,l
where Po is our required probability. That is, our associated polynomial
f(E) required to solve the initial problem is f(E) = f(albl).
of(aaba) voe f(ambm). An explicit expression for f(aibi) is therefore
desired. We note that f(aibi) depends only on the number of elements
in the subset aiand the numbef in the subset bi' Hence a general form
n (l-Iij) 1= 1,2, eeeg& j = 1,2y ee.,b is considered. Denote its
associated polynomial by f(a,b). Consider the event

(1,3001,3,) vee (130 = A2
where il’i2’ ""iv are any v distinct integers chosen from among the

integers 1,2, +..5a. There are (3) such choices. Also jl’j2’ ...,jv

are any... Vv distinct integers chosen from among 1,2, ...,b. There are (:)
sugh choices. We wish to obtain all events of the type\V, the occurrence

of which is possible. For each particular selection of il’iZ’ ...,iv

and a particular selection j\,jl, eeeyd, there are obviously v! possible
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events of typeV, the occurrence of which is possible. Hence there are

(3)(:)v! such possible events. It follows that,
2 ayb v
f(a,b) = ::E (v)(v)v! (-E)
v=0
Note that it is not necessary to distinguish whether a € b or b £ a

since (:) =0 if v > a and (3) =0 if v > b,

As an example, in the usual deck of 52 cards, consider each subset

a, to be precisely those 4 cards having the same denomination (for

i
example aces, deuces, etc.) and bi = 85 Then the required polynomial

£(E) = [£(4,4)] 2 = (1 - 168 + 7287 - 9687 + 245")?3,

Extending the above problem to the case of 3 random permutations of

the n integers 1,2, ...,n, We have three sets of subsets, ai,bi,ci,

i=1,2, ¢esym. Here none of the members of bi can at the same time be
together with any member of cy in any position designated by any member

of a4 Let f(ai,bi,ci) be the polynomial corresponding to the evaluation

of n(l-Ixiyizi) where xi = 1,2, o.oai, yi = 1’2, ooobi, Zi = 1,2, ooo’cio

Then as before, the required probability is:

P, =[nf(aibici)] @o where i = 1,2, <o,

2
(n-k)! . . .
Note that here @k = [T « Consider [] (l-Iijk) where i = 1,2, .ee48}

J = 1,2, eeeyb; k= 1,2, eosyce Let its corresponding polynomial be
f(a,b,c). As before, we wish to find all events of the type
(iljlkl)(iajzka) (:Lvavkv) =V

whose occurrence is possible., Note thatV ig the empty set if is = it
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for some s # t or ig = 3, for some s #t or k =k, for some s £ t.
There are then (:) possible favourable choices of.il,iz, seeyi,y (:)
possible favourable choices of jl’j2’ ...,jv and (:) favourable choices
of kl’kz’ ""kv' Now for a particular choice of il’iz’ ""iv’ a
particular choice of 31'32’ ...,jv and a particular choice of

kl’k2’ ...,kv there are (v!)? possible events of type V whose occurrence

is possible. Hence there are, in total (:)(3)(:)(v!)2 events of type V

whose occurrence is possible. Finally we have,

ta,b,0) = 3 IOEvHE (B
v

or f(a,b,c,) = ;? (a)v (b)v (c)v (—E)p@! as in [4), where (a)v = a(a=1)

s e 0 (a-v+l)o
The procedure considered above can be thought of as matching 3

decks of n cards each, haylng al,bl,cl aces respectively, a2,b2,c2

deuces respectively, and so on, with the cards being numbered so that
1,2, seey2, are aces, a, + 1, a, + 2y coey a, + a, are deuces, and so
on, Similarly for the other decks.

In the case of s = k + 1, permutations of the n integers 1,2, ...,n,

the subsets being ai’bi’ ...,Si, i=1,2, eee,m we have

(n-r)

k
P = [ﬂf(ai,bi, ...,si)] (po, (1 = 1,2, +e0sm)y Q_ = Y ’]

and

£Haby ees8) = S (U wen E)eF (BT (a)
v

As an example, suppose that each of four decks has two suits of
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two cards each. Then we wish to find [f(2,2,2,2)] 2 which is the re-
quired polynomial f(E).

2
£(2,2,2,2) = :EE (‘Zr)4 (v!)3 (-E)Y =1 -~ 16E + 8ES
v=0

£(E) = (1 - 16E + 8E°)% = 1 - 32E + 272E° - 256E° + G4E"

P = £(E) Qo where ¢k = F—"ﬁ:—)—!-] ’ .

(41)° P = (41)° = 32(31)% + 272(21)° - 256(11)° + 64(01)7
= 13,824 - 6,912 + 2,176 - 256 + 64 = 8,896
P =, 644
(o]
Further, P[m] = £(BE) \VO where wk = (=1)% (i) Qk. Hence we have:
m (41)° P[p] f_@] approx.
0 13,824 - 6,912 + 2176 -~ 256 + 64 = 8896 L6l
1 6,912 ~ 2(2176) + 3(256) -~ 4(64) = 3072 e222
2 2176 =~ 3(256) + 6(64) = 1792 <130
3. 256 = 4(64) = 0 0
4 64 = 64 .005
L

z P[m] = 1.001,error due to approximations. The above also indicates
m=0

a systematic way of obtaining P once having obtained .Po;

{m]
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The preceding example is one of an interesting class of examples.

Suppose we have n balls of which a, are of one colour, aa of another

1
colour, and so on. Suppose now that there are n holes arrayed inla
straight line so that a ball fits into any hole. Then n balls are then
placed into the n holes in such a manner that any ball is equally likely
to be placed into any hole. This procedure is repeated S-1 times. What
is the probability that no hole will have contained a ball of the same

colour each of the S times? Using (A), our required polynomial f(E) is

equal to
[S cosenstea] [ Eafens .. [SEnfoniee]
v v ° L 4 v

where 8, + 8, + «os + 8 =0, More simply we write:

£(E) = I'El [2 (ii)s(vz)s'l(-z)v]

i=1

and when 8y =85 = ee0 =8, =8,

n
2m =[S et enY] s .

A more interesting and somewhat more intricate example of restricted
permutations given by Kaplansky [4, p.909] will now be considered.

The integers 1,2, +..,0 are divided into subsets of a integers
each. What is the probability"that, given a random permutation of the
integers, no integer occupies any place designated by all the other

‘members of its subset? That is, assuming the subset to be {1,2, ...,é},
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{a + 1, 2 + 2, eoey 258, esey any integer may occupy its own original
posiﬁion but not any position occupied originally by any other member
of its subset. For‘a = 1, the required probability is obviously 1.

As an illustrative example, let n = 4 and a = 2. Then the two

subsets are{l,a}and {3,4} and the following permutations satisfy the

conditions,
1234 3412
1324 3421
1432 b 312
521k k321
b 231

There are nine such permutations. Hence Po = %T .

1t is easily seen that in general, it is quite an involved process
to calculate the required probability using ordinary comb;natéadal
arguments. We wish then to find a polynomial A(E), such that our required

probability is equal to A(E) ¢ o where as before o ¢ o =.®]£ and

¢k:= Lgi%ll . Observe that A(E) can not be obtained in a similar manner

as in the previous examples. In order to find A(E) we require two lemmas.

Lemma 1 Given a finite number of events {Bi} satisfying the condition
of quasi-symmetry and the following events are considered,

1 1
A 2

[} s e ey Aa

H =

1

L) QOQ’A

o

2

sse IV

9 ooy A

-4
w°H
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where each AE is the intersection of N; events taken from {Bi}such that
A; is not the empty set, that is, p(A:) = a function of Nz alone. Further
for any two events Ai, Ag, i # j, none of the Ni events of which Ai is
the intersection is also one of the Ng events of which Ag is the inter-

section and Ai Aé is not the empty set. Then,
a a a
> S S 2ox
e e g p(A AS eoe AS ) = g(E) ¢°
r

where Ek Q 0 = @k, Qk being some given function of k alone, for some

polynomial g(E) which can be found,

proof:

Let A = (IAI» + IAI + o0 + IA‘ )(Iﬁz + Iﬁz + see + IA’Z ) e e
1 2 a, 1 2 a,

eI, + I,0 + voo + I.T )
Al A2 ,Aar

It is easily seen that, by taking the expectation of A, precisely the

required sum of probebilities is obtained. It follows then, that if we

substitute ENt for IAi 'in A we obtain the required polynomial g(E).
u

Lemma 2 Given the same events and conditions as in Lemma 1 except

that here each event Az is the intersection of N; events, each such

. . c c
event being taken from either {BJ} or iBi} . (Note that the set {Bi}
is the set of events obtained by taking for each Bi’ its complement Bg.)

Then we obtain a polynomial h(E) such that the sum of the probabilities
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as in Lemma 1 is equal to h(E) Q o

groof:

I,i = IBl B . Bl (1 - I i (1 - Igi ) e (1 - IBi.)

A, 172 Bl s+l Nt

Then we substitute for I,i , E° £y (E) where £ (B) is the polynomial
u u u

corresponding to the evaluation of (1 =~ IBi ) veo (1 - IB;i) and carry

s+l
u

out the multiplication obtaining h(E).
(Note that if events Ai 9 i = 1,2, ro’al; Ai Y i = 1,2, ooo,aa and 80

on are mutually exclusive, then h(E) ¢ o is precisely the probability

that at least one of the events of the type Ai Ag e AZ » By = l,2,..d&

1 2 r

occur,)
We now find A(E). Consider the subset 1,2, ...,8 and any selection

il’iz’ ...,ir of r distinct integers chosen from among 1,2, sesgae Then

the event that these r integers occupy their own original positions
while each of the remaining a - r integers do not occupy any place

originally occupied by any of a = r integers is (1111)(1212) ceo (irlr)'

1 . Denote this event by R. Using Lemma 2,

[+ .
W =
T (uv)® where u,v i1, ...tk

let‘{A§} be the set of all possible events of the type R. There are in

a
fact :EE ( ) such events. Considering any other subset, the same number

r—
of events of type R are obtained. Then using Lemma 2 and denoting by

{A?} the set of all events of type R we consider all the subsets of

1,2, «ooyn, that is, i = 1,2, ...,§ , and obtain,
n

Z 2 BEP(A; Aiz A‘;‘,") = [i (j) Ef(a - rya - ::)] a(po
1 2 r

Ir'=0
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where f(a - r, a - r) is the polynomial f(E) corresponding to the evalua-
tion of [1(1 - I, .), iy = 142, eveqa = r and m =l;- . We recall that
f(a,b) = z(v)( ) vt (-E)Y. Further, we note that the event

Al Ag e As is the event that, in the first subset of a integers, 84

%1 B2 m
of the integers are fixed, while each of the others do not occupy any of
the a = 84 places designated by themselves and similarly for the second

subset, s, of the integers are fixed and so on for the rest of the sub-

2

sets. Hence, using the note at the end of Lemma 2 we have:

a
A(E) = [E (:) Ef(a - v, a - r)] a
=0

in agreement with Kaplansky (4, p.909] where the above is stated without

proof, and the required probability is equal to A(E) (b o Where

a=r
EQ, = 0 0 =5 fa-r, - = > G v ).
V=0

r=0

Denote A(E) d) by P_, then P, [2 (%) E£(Ll-r, 1-r)] (Do’

£(1,1) = 1 - E, £(0,0) = 1 and therefore P, = (1 - E + E)" ¢, =
E 2 2
Letting n = &, a = 2, then P, = [;20 (r) Erf(a-r,Z-r)] ¢ o

2
[1- 48+ 2E® + 2E(1-E) + EZ] 0.

£(2,2) = 1 - 4E + 2B°. Therefore P,

u-am+ﬁﬁwo

(1-’+E+6EZ-’+E3+EI+)®O
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b1 - be3l 4 6.2+ = 41 + 0O}
= Y]

- &

the nine favourable permutations being given at the outset of this
particular topic.

Using similar restrictions in the case of s permutations of n
objects a similar polynomial A(E) is obtained. For example, if the n
integers were to be permuted twice then any element may occupy, in both
permutations, its original position but may not occupy any position
designated by any other members of its subset in both permutations. In

this casé,

a n
A(E) =[§ (?) Erf(a-r,a-r,a-rj;
r=o
2
and P, = A(E) @ _ where ¢, = [(n;’f)’
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CHAPTER 3

Some Combinatorial Lemmas

In this chapter certain combinatorial lemmas will be given. These
lemmas are quite helpful in obtaining the associated polynomials in
order to solve certain types of restricted permutation problems;
moreover they are in themselves of some interest. Lemmas 1 and 2 are
given by Kaplansky [3). However the proof to be given here for Lemma 1
is different. Lemmas 3, 4 and 5 do not seem to appear in the literature.
Also to be noted is that, although no actual examples employing Lemmas
3 and 4 are to be given, thé use of Lemmas 2 and 5 in Chapter 4 will
give an idea_of the type of example which may be encountered and require
the use of Lemma 3 or 4.

The following lemmas deal with the number of ways of choosing k
elements, independent of order, from among n distinct objects arrayed
in a row subject to certain conditions. The number (;) is the case where
no restrictions are imposed. The proofs of the lemmas will all be based
on the following observations. Suppose we are given n - k symbols "d"
and k symbols "Z". Then for every selection "k from n'", there exists a
corresponding arrayment of the symbols "OY and "g", in a straight line,
in an obvious order. For example if n = 5, k = 2, and the n objects are
numbered 1,2,3,4%,5 then, corresponding to the selection "1,4" is the
arrangement "g O O @ O", Obviously there is a '"one-one correspondence"
between all possible selections of k and all possible arrangements of
the symbols. Further, for given resjrictions on the selection of k, there

are corresponding restrictions on the arrangements of the symbols.
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Lemma 1 The number of ways of choosing k elements, from among n

distinct elements xl,xa, ...,Xn 580 that no two consecutive elements,

that is, X, ,X, ., 1 = 1,2, «e.,n-1 appear in each selection, is (P~5*1),
1774+l k
Proof: Suppose the n ~ k symbols *O' are arrayed in a row. There are

then n - k + 1 "spaces'" between these symbols including the "space"

before the first symbol and the “space" after the last symbol. The k

n-k+1)
k

that is with one "space!" being occupied at most with one symbol "¢";

symbols "@" may then be inserted in ( ways into the "“spaces',

This in fact gives the total number of ways of arranging the total

number of symbols along a straight line so that no two of the symbols

n=k+l
k

For example, the three possible selections X1X3, XZX ’ x1x4 from

"g" appear consecutively. Hence ( ) is the required total.

X0 X, X3, X, for k = 2 correspond to gogo,ogo0g,goog -

respectively and (4-§+1) = 3., Note,for k = 1 we obtain simply (;).
Lemma 2 The number of ways of choosing k elements, from among n

distinct elements Xi,xa, ...,Xh arrayed in a circle so that no two
consecutive elements, that is xi,xi+l i=1,2y ecegn Xn+1 = x1 ,

n-k) n

appear in each selection is ( k ’ (oK) °
Proof: Let R(n,k) denote the number of selections with the restrictions

as in Lemma 1, that is when the given objects are arrayed in a row. Let
C(n,k) be our required number. In order to obtain C(n,k) we must there-
fore exclude those numberd#selections from R(n,k) which include Xl and Xn

together. There are in fact R(n-l4,k-2) such selections each containing
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both Xl and xn . (If Xl and Xn are both in a selection, then certainly

x2 and xn-l cannot also be therein.) Our required number is then,

¢(n,k) = R(n,k) - R(a=4,k-2)

n=-k+l1 n=k-1
= ("0 - (5D

_ (n-k+1)! (n=k=1)!
= (n=2k+1) k! ~ (n-2k+1)!(k-2)!

_ (n-k=1)1 (n-k) (n-k+1) ]
= (n-2k+1)1(k=2)! k(k=-1 -
_ (n-k-1)1! n(n-2k+1)

= a2+ 1(k-2)7 © ~ k(k-1)

_ (n-ﬁplZ!n(n-k)
~ (n=2k)!k!(n-k -

= (n-k)!n
(n-2k) 1k!(n-k)
n=k, n
= ( k ) n-k
Lemma 3 As Lemma 1 except here the restriction is that no three

consecutive elements appear. Denote the required number by RB(n,k).

Then,
n=k+l k=1, n-k+l k-2, ,n=k+l
Proof: Obviously R3(n,k) = R(n,k) + X,where X is the number of

selections wherein at least two elements appear consecutively, but not

three. Again we consider the insertion of the k symbols "g" among the
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n-k+l "spaces" of the n-k symbols "O" arrayed in a straight line. The
L]

number of ways of placing these symbols such that each arrangement has

i pairs of consecutive symbols, each pair consisting of the two con-

secutive symbols & & is (k-i)(n-k+l)’ i=1,2 "°'[§} whereEﬂiﬁ

equal to the maximum integer = % « To see this, we find all. possible

distinct insertions of the k=i "eiements"
1 2 i i+l k=i
BBy (B By eeey (F By By cony &

among the n-k+l spaces, each being filled with at most one "element",
There are (nile) different selections of "spaces" into which the
"elements' may be placed. Further, the "elements" may themselves be

arrayed in (k;l) distinct ways. Hence the total number of possible

k-i)(n-k+1) Hence X = :EE (k-i)(n-k+l).

distinct insertions is equal to ( i
i=]

In fact we could have let i = O and obtain also R(n,k). Letting k = 1
. n
we obtain RB(n,l) = (l).

As an example, let n = 5, k = 3, then R3(5,3) = 7. Numbering the

5 distinct elements, the favourable selections are,

1, 3, 5 1, 4, 5
1, 2, &4 2y 3, 5
1, 2, 5 2, 4, 5
1, 3, &4

In order to simplify the writing of the following lemmas, we

introduce the notations:
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a
n (fa a a
) e @ @) )
. "1 52 *n-1
a2
1
a
g !
and hence | = a1 -;ﬁ?! (o —a_ )1
8, 1° V8pmBy Y e A8 R02
2

&)

’ nek+l
k-i
Thus by Lemma 3 we have R3(n,k) = i

i=o

Lemma 4 As Lemma 1, except here the restriction is that no four

consecutive elements appear. Denote the required number by R#(n,k). Then,

n-k+l n-k+l nek+l
Kel-i ke2-1 k-3-1 .
Rh(n,k) = R3(n,k) + i + i + i S

i=1 1 i=2 2 i=3 3

Proof: R, (n,k) = R3(n,k) + X where X is the total number of distinct
insertions of all possible elements, eaéh of the form
1 2 3 j+1 i i+l Kaj-i
BBB) BEB)y eeey (FEB) BBy eeey BBy £y eeey 8

into the n-k+l "spaces'", with j > 1l. For each fixed j and i there are

n-k+l
k-j-i
i possible distinct insertions, hence,
3
n-k+l
kej-i
Rh(n,k) = R3(n,k) + i

j=1 i=1
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The reader will no doubt suspect a general formula to include
Lemmas 1,3, and 4. In fact by using the same ideas therein, the following
vgeneral formula is obtained and stated without proof,

Let.Rj(n,k) denote the number of ways of selecting k objects from

n, arrayed in a straight line so that no j are consecutive. Then,

f n-ic+1)
Y
Rj(n’k) = XX}
o R t5-1

i
2
i
gl}
where ij = k—ll -i, - soe -lj-l° For i, = 0 fixed, Rj-l is obtained.
Lemma 5 The number of ways of choosing k elements from among the n

distinctive elements Xl,Xa, ...,Xh so that no two e;ements Xi,Xi+2,

i=11,2, «eeyn=2 are contained in each choice is,

n=2k+2+i

i=0

Proofs The required number is precisely the nuymber of possible ways
of placing the n-k symbols "O" and the k symbols "@" along a straight
line so that three consecutive symbols of the form @ @ @ or § O & are
never encountered. Again here we insert the k symbols "g' into the
n-k+l "spaces" accordingly, as in the previous Lemmas., Here k-i elements
each of the form

1 2 i i+l k=i

(¢ ¢)’ (¢ ¢) cee (¢ ¢)’ ¢ LA | ¢ is= 0’1’ ...{IZE]
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are considered. Bach such set of k-i elements is to be inserted among
the "spaces", First we find all possible selections of k-i "spaces".
Because of our restrictions, two consecutive Yspaces'" can not be in-
cluded in our selection, for if so there would appear "@ O g", some-
where in the final arrangement. Hence, using Lemma 1, there are

Kedi ) possible selections of "spaces" for each selection of the

k-i "elements'". Further, the "elements" themselves may be arrayed in (kzl)

k- i)(n-2k+2+i

distinct ways in a row. Therefore, ( ) gives the total

number of favourable arrangements for the total number of symbols, using

the set of k-i Yelements". Finally,

n=2k+2+i ‘
R (n,k) = k-1 . Fork=1, B (n,1) = n.
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CHAPTER &4

The YProbléme des Menages" and Others.

E.Lucas in his "Théorie des Nombres" published in Paris in 1891,
states the following question.

"Des femmes, en nombre n, sont rangées autour d'une table, dans un
ordre dé%erminé} on demande quel est le nombre des maniéres de placer
leurs maris respectifs, de telle sorte qu'un homme soit place” entre
deux femmes, sans se trouver a cbte de la sienne?"

The above is the so-called "reduced problem des menages". The well
known "problémedes menages" itself asks for the number of ways of
seating at a circular table n married couples, husbands and wives
alternating, so that no husband is next to his own wife. Obviously,
once theMreduced" problem is solved, then so is the "general''one., We
now proceed to solve the problem in terms of probability.

Suppose the n women are seated such that there is an empty seat
between each two women. Then we number the women 1,2, ...,00 following a
clockwise path. We number the seat immediately to the left of wife
nurber i by the same integer i. The husbands are also numbered 1,2, .;.,n
each having the same ‘number as his wife. Then the problem is to find
the probability that, given a random permutation of the n integers,
1,24 eeeqyn

l is not 1
1l is not 2
2 is not 2

2 is not 3

n is not n
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n is not 1
It is required then to find the polynomial fn(E) corresponding to the
evaluation of
X =(2-1I,,) (1-1,,) (1-I )

) (1-I..) ... (1-1nn) (3_.-1n

22 23 1

again writing I(ij) = Ii'

3 where (ij) is the event that "i is j". Observe

that two events cannot possibly occur simultaneously if and only if they
appear in consecutive factors of X. Also any k events can occur simul-
taneously if and only if they do not contain any two events appearing

in consecutive factors of X. Hence, using Lemma 2 of the previous chapter,
it follows that,

a2n-k 2n k
£,(E) = g () 3220 (-B)

| n-k)! -
and P =f (E) Q)o , Where ¢k = Lﬁ— y[For n = 1 set £,(E) = 1-E)

gives the probability of the "“reduced" problem,

2 kX, 2n , ,2n=k, (n-k)!
F, = kg (-1)% (=) (L) =

Using formula (D) of Chapter 1, the probability that exactly r conditions

will be violated is

k , 2n \,2n-ky ky (n-k)!
P.. = (-1)T*F (=) (TN AR
n (¥} k; 2n-k k “'r nl
This simple method is due to Kaplansky (3];
Following Kaplansky and Riordan (5, pp.117-19] a recurrence formuia
for fn(E) will now be obtained by an algebraic method.
Let Y = (1-I,,)(2-I,,) oo (1-I . .)(2-L . )(2-I )

m = 1’2’ soegn




1 .
Let Y° =Y (1-Im m+1) m= 1,42, seey =l

Tet Xm = Ym (l-Iml)

1

Denote the corresponding polynomial of Ym by -Y-m’ that of Y n

l -
by Y n and that of Xm by Xm

1
T, =7 . (-I )
1 1
"Ym-l-Ym-lIm.m
=Y . -Y QI L)1
n-1 -1 m-lm® “mm
1
=X m-1 Imm m=1
- vi - R Y
Hence Y =Y . -EY . (a)
. T ¥ 7T
Similarly Y’ . =Y ., -EBY® , (v)
Xm = Ym (l-Iml)
11

=Y -I. (1-111)(1-Imm) Y

11
where YO = (1-112)(1-122) ces (1-_Im_lm_l)(1-1m_1m )
11
Xy =Yy =-In T
Hence X = -Y- - E Yu
n m

35
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Therefore X =Y - E 1 (c)
in = iT;-l - 2E iﬁ-l using (a) and (c)
= - = - E YL 3
= (1=-2E) ¥ 1 -EX 22 using (b)
= - 2 = 2 .1
=(1-28)X 4 -BY ) -2BY ,+E YT .
by subtracting and adding (1-2E) E fﬁ_a and using (b).
2 = = 2 = =
- 1 = - -
Now - 28°T7 _ +E° T a3 =B (T, -ET by (a)
Hence X_ = (1-2E) X -E2 X
n nel ne=2

Therefore we have the recurrence formula:

2
£ (E) = (1-28) £ ,(E) - B £ . (E)

fn(E) is usually referred to as the ménage polynomial,

Setting w = n! P we have the so-called "ménage number" giving

us the number of ways of seating the men, once the women are seated., It
is interesting to note that the above formula was first given, without
proof by Touchard [15] in 1934. MacMahon [8] observed the fact that u,

is the coefficient of X +X, *** X in (y-xl-xz)(y-xz-xB) oo (y-xn-xl)

where y = X; + X, + ee0 + X o Lucas [7, p.495} gives the recurrence

formula:

(n=2) u = (n2-2n) u 4 +nu 4+ l+(--l)n-1

and using this, tabulates the values of u up ton = 20, M.Wyman and

L.Moser Euﬂ give a table of values of u up to n = 65, computed by
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F.L.Muksa. Also included are some new explicit solutions for L via
an exponential generating fumction which leads to some new results
concerning the ménage numbers.

As noted in [5, p.118), it is perhaps somewhat more elegant to

have E operate directly on % in lieu of Qo; To achieve this we form

a new polynomial,

g, (E) = g (-1)F (3%F) (B B8

and consider gn(E) -::—:— where En"k_g_x_ = S.P.:IE.)_ . As EF ¢ n-k)! it

n!
follows that each term of £ (E) ¢ o is equal to its "cerresponding"

. o! _ ol '
term in gn(E) =1 and hence nPo = fn(E) @o = gn(E) a1 ° Further,

u, =nlP = gn(E')o! where E 0! = r!. Touchard in (14, p.111]) shows

that gn(E) may be written as a Tchebycheff polynomial,

%
8, (E) = 2 cos [Zn cos™t ('g-)]

+ 4
That is, gn(E) =201, ‘P—) with T a Tchebycheff polynomial. Following
2

Chrystal (1, p.278) we let x = cos © + i sin @, Then -3-:-' =cos @ - i sin 6

and cos me = i—(xm + -:-L-; ).

. X
Therefore 220 0s%R g = (xvi-‘)
a-l 2n 2n= l\r 2n 2n-r r
= > (CHxTTADIT + 2 (2% 22 (D)
~P=zo r=n+l

a2n n ,l\n
(n)x (;)
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n=1 n-l
2n 2n=-r ,l.\r 2n v ,l.2n=-v a2n
= (=) x =) + (7)) x° (=) +(57) y v = 2n-r
= r X % v x - 'n !
nel
- ‘c2n 2n-2r 1 an
= (r ) (x + -—-—2n_2r) + (n )
r=0 x
n-1
= 2 (fn) cos (2n-2r) ¢ + (in)

- #
As gn_r(E) = 2 cos [(Zn-ar) cos™t (g—) it follows that,

+ n-l
22" (E? - (%) g, (B) + (2%
=0
2. S @3
- Z T Ener *'a
r=0
n
We can write ET = = (in) gn_r(E) with gb(E)z 1. (In the explicit |

expression given above for gn(E), go(E) is undefined.) Hence, by letting

both sides of the equation operate on o! we obtain the inverse relation
2 . 2n
e S Chey
=0

as developed by Riordan [13}) and used for the investigation of the

n (o

For further literature on the game of ménages we refer to Kaplansky

residues of the numbers u, me— n! P )to a prime modulus.,
*

and Riordan (8] which together with an already mentioned article by

Moser and Wyman {10] contain an extensive bibliography.
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Omitting the restriction that '"n is 1" in the game of menageswe
obtain the "Probl2medes ménages non-circulaires". That is, here the
married couples are seated at a straight table and hence the omission
of "n is 1." Using Lemma 1 of the previous chapter, the requisite

formulae are:

2 (2n-k k

£ (E) = g ) (=E)
Zn-k n~k)!
P = g (-1)F (2K Lokl

Using the same notation as was used to derive the recurrence formula for

the ménage polynomial,

= (1-I..) (1-1

T 11 ) oo (- o 0 (AL )

12

) , I not defined

LR (1-1 n n+l

m m+l

im’ me are the corresponding polynomials of Ym' Y'm respective=

ly and using the derived relations,

Tm = -Y—'m-l - E -Y-m-l (a)
vy - v - T
Y'm-ZL - Ym-l EX m=2 (b)

we obtain, Yn = (1-E) YT 4 -BY

= (1-2E) Y'n;Z - (1-E) E Yn_2




p— - 2 —
= - t - -
(1-28) (Y' ,-EY ) ~-E°Y ,
Hence we obtain the recurrence formula
_ 2
£ (8) = (1-28) £ , (B) - B £ _, (E)

That is, the recurrence formula for the ménage polynomial involving
a round table in the game is the same for the ménage polynomial obtained

using a straight table,

A general type of restricted permutation is now discussed. This is
the question of "discordant permutations'". Two permutations are said to
be discordant with each other when no element is in the same position
in both. The case when dealing with permutations discordant with a given
one is in fact the usual "probléme des rencontres", which has been
considered in Chapter 2. irn The case‘of permutations discordant with
tﬁo permutations, one permutation being (1,2, ...,n), the other
(ny1,2, +..,n=1) is the "problime des ménages". We consider now Lucas'
problem [7, p.491) of permutations discordant with any two given ones.

First, it is easily seen that for any two given permutations we
can in fact solve the problem by considering two other permutations
chosen accordingly such that one is of the type (1,2, ...,m). For
example suppose the given permutations are At = (5,3,244,1) and
BT = (3,4,2,1,5). Then we write instead of Al, A=(1,2,3,4,5) and
instead of Bl, B=(2,4,3,5,1). The problem of discordant permutations
will now be solved using the five integers 1,2, ...,5 and A and B as the

given permutations. The general solution for n integers can then be




easily seen. Consider B to be a permutation of A. That is, write down

1,2,3,4,5, _
5’1: :2:[*) = (2’4’3'5’1)

where (1’2’3’4’2) is a permutation of (1,2,3,4,5) placing 1 in Bth
5’1,3’2’

place, 2 in 15t place, 3 in Brd place, 4 in ond place, and 5 in yth

place, obtaining a new permutation. Hence we can write B as B =
(115’4,2’3) . 4
5.h.2.1,3) or more simply as B = (1,5,4,2)(3), Now the problem is to

find that in .a random permutation of 1,2,3,4,5,

1l is not 1 or

2 11 ” 2 or

5
1
3 " " 3or3
b on oW L4or2
L

5 n n 5 op

But these are precisely the "méhages conditions" imposed on the 4
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integers 1,5,4,2 only and on the integer 3 alone, It follows that our

required polynomial D5(E) = f4§E) fl(E), fn(E) being the ménage

polynomial and the required probability P, = Dg(E) @(,where

¢ = ££=£2i and note that fl(E) was said to be equal to 1 - E. Then;

k n!
4 k ,8=k 8 Ek
8(E) £y(8) = | S (DF OO (g =) -8

1 - OE + 28E? - 36E> + 18" - 2E°

16

and P = f,_I_(E) fl(E) Q o = T + The following are the 16 permutations

5 !




L2

discordant with (1,2,3,4,5) and (2,4,3,5,1)¢

31524 bisas3 b513%2 51432
35124 L1532 L5213 53124
35214 L3512 S1234 53214k
35412 L5123 514253 53412

No doubt the general solution is now "almost" apparent. However
before writing such a solution, another example is considered. Here
n=6,A=(,2,34,5,6) and B = (4,5,1,3,2,6). Then B = (3,4,1)(2,5)(6).

Hence Dg(E) = f5(E) £,(E) £,(E), and (P = Dy(E) 0.

In general, suppose two permutations of the integers 1,2, «.es 0
are given. Then the problem is that of finding the probability that a
random permutation is discordant with the permutations A = (1,2, ...,n)

a.nd B = (il’iZ’ ...’irl)(jl,jz’ ooo’jra) X} (kl,kE, ooo,krm)o

Then the required probability is,

=frf eee I mo

npo T T
l°7°2 m

where £ = f_ (E), and £ (B) is the ménage polynomial.
i i i

An interesting application of the question of discordant permutations
is now discussed. The problem here is to find the probability that
a term chosen at random from those of an n by n determingnt contains
no "element!" from either of the main diagonals. By an "element"

of the term a; 2, e a is simply




b3

meant any factor a . This question was first treated by Netto (11, p.80
et seq.} in a rather complicated manner.

We examine now an n by n determinant having the following form.

a1 2 : ' n-=1 an
1 al ° ° ° al 1
al a2 : an-l an
2 2 £ e 2 2
a1 a2 o n-1 n
n-1 n-1 ¢ e o | 8hal
a1 2 : : an-l an
n an . . ° o n

We recall that the value of the determinant shown above is found by

summing all possible terms, each of the form : ai ag o ag )

1 *2 n
il’ia’ ...-,in being any permutation of 1,2, ...,n. The question as to
which sign, + or - is affixed to each term, is irrelevant to our main
problem. As can easily be seen from the above determinant, the question
is then to find the probability that given any term of the determinant

at random,

1l is not il

" ”"n 3
1 i,
" "
2 12
|} 1] ]
2 ! 1n-1

n is not i
n



and n is not il

More simply, we wish to find the probability that, given a random per=
mutation of 1,2, ...,n none of the events "1 is 1", "1 is n", “2 is 2",
"2 is n=1", .eey "n is n","n is 1" occur. This is the same aé finding
the probability for a permutation of 1,2, ...4yn to be discordant with

the given permutations A = (1,2, ...4n) and B = (n,n-1, ...,1). Further,

B = (1,n) (2,n-1) (3,n=2) ... (% ,-g + 1) , n even

o=l n+d . 5y (Bl

> v 5 5/ » 1 odd

B = (1,n) (2,n-1) (3,n-2) ... (

Therefore our required probability is,

wl
N

oPo [fa(E)‘]% (Do’ n even/

n-1
[fa(E)]T £(8) §,, =nodd

where fi(E) is the ménage polynomial. In fact, fl(E) = 1-E and

fa(E) =1 = L4E + 2E2. A list of the probabilities for n = 1,2, ...,8 is

now given.

n required polynomial f(E) nPo
1l 1 ~-E 0
2 1 -4E + 2E° 0

3 1 -5E +6E® - 2B

b 1-8E + 20E2 - 168> + 4E}

5 1-9E + 28E2 - 368> + 20E* - 487

2 6

6 1 - 12E + SLE® - 112E°+ 108E'- 48E° + 8E

{;ru ol {;pu o

6

13E + 66E2 - 166E°+ 220E'- 15687+ 56E° - 8E

]

~]

)

]

lgl\ w - O
R g R EH-
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8 1 - 16E + 104E2- 352E°+ 664E'~ 70LE’+ 416EC- 12887+ 1688 5%%2 = 356

The above values are in agreement with Touchard (14, pp.117-8}
who, by means of generating functions, produces relations which make for

easier computation of values for large n.

We now consider a problem treated for the first time in the

~ literature in 1956 by Mendelsohn [9, p.238)}. Here the restrictions im~
posed on a random permutation of n integers 1,2, ...,n is: "1 is 2nd",
" is (n=1)th" and for i = 2,3,4, .e.yn-1y, "i is (i=-1)th" and "i is

(i+1)th". Using our method it is required then to evaluate

X,= (1-112)(1-121)(1-132)(1-123)(1-134)(1-143) eoe (1-I )

n’n-l
Note the last factor of X is (1-I ) which is so for n even. For n
n’n-l .

odd the last factor is (l-In n)° However the evaluation of Xnis ob=
el g

1
tained for general n and X, is used only for illustration. First it is
observed that there are 2(n-l1) factors of XpoDenote the factors by x,,

(i = 1,2, ¢«+.y2(n=-1)), as they appear in their natural ordering from

1

left to right. Then it is seen that I, . I =¥ O if and only if I,. is
ij"mn ij

contained in a factor x, and Imn in a factor X5 02 Ci = 1,2, eceyln = 4&

i

Hence, using Lemma 5 of the previous chapter, the associated polynomial

. )4
ad n Eﬂ 2n-2k+i
= ;EE; %éz kel k

1=0

where Eﬂ is the maximum integer. £ %. Then, for example, fZ(E) = 1-2E+E2,
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f3(E) = 1 - 4B + 4E® ana f4(E) =1 - 6E + 11E® - 6E° + Eh.
We now proceed to obtain a recurrence formula, Write down,

X = (1-112)(1-121) X _q+ X, being given above.

Then X =X 3= (I + I X 3 +15 T X4
Now Iy, Ing X g = Iy, Iy (1-1550Q-T5) X o
=1, I %o

By the rule of replacement the associated polynomial of 112 121 Xn_z =

2

E fn-a(E)’ where fn(E) was given above.

= (Ip,% L, )(A-I,,) (1T, X,

Further, I.. X + 121 X 3

12 "n=1 Ne=l
= Lo Xpio mTap Iap Xy o - 195 Iz X5

I

* 1o Igp Iog Xy o+ Ing X o= Ip9155%0 5

(1-15,)(2-I)5) X, _

Now, I, I;; I3 %, 5 =1, I3 Iy 3

= T2 I3z To3 %43
We now evaluate I12 Xn~1. Suppose E is written instead of 112 before
actual multiplication. Then the associated polynomial is
Bf, 1(E) - B2, (8) + E g(B)

where g(E) corresponds to the evaluation of 132 X, _o+ Moreover, the

associated polynomial of I21 xn-l is

Bf _(E) - E g(BE).



Hgnce the associated polynomial of I12 xn-l + 121 Xn-l is simply,

5
Ef,1(B)+Ef (E)-E £ ,(E)

and finally we obtain the recurrence relation
£,(E) = (1-E) £, ;(E) + (-B+5°) £, () + B £_,(E)
It is interesting to note, that although Mendelsohn [9, p.238)

gives the recurrence formula, he does not give an exact formula for

the required probabilities.,

b7
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CHAPTER 5

A Second Type of Restricted Permutation.

In all of the preceding examples, (ij) represented the event "i is j";
We introduce now a second type of restricted permutation. Here (ij) de-
notes the event "i immediately precedes j". Here also the fundamental
requirement of quasi-symmetry is fulfilled and in fact, as before, the
probability of k events occurring simultaneously is either equal to O;

(n-=k)! s s V(s < - .
or to == . The occurrence of an event (1131)(1232) coe (lka)’ is
impossible if i =i , m #n, or Jp = dpo m # n. Further, any event of
. ‘
the form (1131)(3132)(3233) cee (Jk_lil) cannot occur, that is, has

probability zero. For example, in a random permutation of 1,2, ...yn ,
the probability that i never immediately precedes i+1,(i = 1,2, ...;n-l)

is required. The required polynomial is found by evaluating (1-112)

(1-123) P v N ,n) , Where I(ij) = I,.. As no products in the

n-1 ij

multiplication vanish, the required polynomial is £(E) = (l-E)n-l. The
required probability is then (l-E)n":L Q o Where BX Q 0= ¢k and

¢ _ {n-k)!
k

nl

Kaplansky [&, pp.9ll-13] treats two interesting problems dealing
with permutations of this second type.

The first is the so called "n - kings problem". We consider the n
by n chess-board. What is the probability that if n kings be placed on
the board one on each row and one on each column, no two attack each
other? Kaplansky refers to this problem as "a first cousin, albeit a

shabby relative of the famous 'n-queens problem'", In order to realigze



ko

the conditions imposed in the general case, consider the case when n = 5

and the following diagram.

The numbers at the top of the columns represent the five kings. King
"number 1" is placed in row 4, Yking number 2" in row 2 and so on,
giving us a "4 2 5 1 3" permissible arrangement. Note that once the
digit 4 is the first digit of this arrangement "4 2 5 1 3", the second
digit cannot be 3 or 5. Once the second digit is 2, the third cannot be
1l or 3. Once the third is 5, the fourth cannot be 4 and once the fourth
is 1, the fifth cannot be 2, In general then, if king "number i" is in

B ow, then king number i+l cannot be placed in the (j-1)th or

the 3%
(j+1)th row. If j = 1, then the restriction of the (j-1)th row is
ignored and similarly for the (j+l)th row for j = n.

Hence given a permutation of the n integers 1,2, ..., the restric-
tions are, "1 immediately precedes 2", "n immediately precedes n-1" and
for i = 2,3,4, ...yn-1, "i immediately precedes (i-1)" and "i immediately

precedes (i+l)". Therefore our problem is to evaluate the product,

B, = (-13)(2-1,) )A-T 5 )(2-1,,) ... (-, ;02T )

n'n-l



However no method has been found in order to give explicitly, as in the
previous examples, the associated polynomial. Following Kaplansky [4;
Pp.912-13} we proceed as follows:

Let B be defined by the equation A = Bn(l-I e

nyn=1
Let Kn’ En be the associated polynomials of An’ Bn respectively.
Then the following statements are true.

A =B -EB (a)

B =(1-B)B,_, -EB (b)

Proof of (a). An = Bn(l -In,n-l)

By - BnIn,n-l

=By - Bn-l(l-In-l,n-z)(l-In-l,n) In,n-l

B, - B,_,(1-I ) I

n-1l,n=-2° "n,n-1

(1-1 ) I =C_ ,(1-I M-I, 3 ne2? Tnpn-l

Now Bn— n=1l,n-2° "n,n-=1

1 n=-1 n-2,n=1

Cn-l(l-In-l,n-Z) In,n-l

) I = (1-I ) I

Consider Bn_l(l-I n-1,n Cn_1

n-1,n=2 n-2,n-1’ “n-1,n

Also, it can be easily seen that the associated polynomial of

Cn_l(l-In_ _2) is the same as that of cn-l(l-In-2,n-l)°

1l,n

(1-I ) I

Further, B n-1,n-2’ “n-1,n "~ Bn-l In-l,n

n-1

It follows that A = B - E B
n n n-1
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Proof of (b). B = An-l(l'In-l,n)
=A1- Bn-l(l-In-l,n;Z) In-l,n
= An-l - Bn-l In-l,n
Hence En = In—l - E En-l
Using (a) and (b) we obtain
B =(1-E)B _, -EB_, (c)

solving (c) now as in the usual case of difference equations, with

initial values. B, = 1 and B, = 1-E we consider, u" = (1-E) Wl o B B2,

Solving W2 y2 o Bl [(l-E) u-E] we obtain two solutions,

2%
5.t = (1-E) % él-6E+E ) ()

The general solution is then of the form En =Y s + 2 t". As

B, = 1, B, = 1-E we can define Eo = O, Therefore solving Y + Z = 0 and

2

Ys+2t=1forY and 2 it follows that,

=y g - t°
By = 5t o)

Thus using (a) and (e) Kn is found.

For example for n = &,

.
B, = ss =t s + 85t + 5t° + t° using (e)

=
[}
1
ot
H]



_ (1-E) [(2-5)2 + 1 - 68 + B2]
2

using (d)

1 - SE + 5B° - BV

> 3
= _Bl -1 2 2
_B3 = —;—:f¥— =8 +8t+t

]

: pa-m2 e 1-6m+

1-3E + E°

andzl'_=-B-4-E?B.3=l-6E+8E2-2E3

The required probability is,

B, @, = (41 - 631 + 8e21 - 2:11) / bt

2
=Ty

The two corresponding favourable permutations are 3 1 & 2 and 2 4 1 3.

Y4
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