
SYMBOLIC METHODS IN COMBINATORIAL ANALYSIS 

by 

Morton Abramson 

A thesis eubmitted to the Faculty of Graduate 
Studies and Research in partial fulfilment of the 
requiremente for the degree of Maeter of Science. 

Department of Mathematice, 
McGill University, 
Montreal. April 1961 



I wish to thank Professor H.W.E.Schwertfeger for his 

suggestions and criticism. 

I should like to extend my thanks as well to Professora 

I.Guttman and W.A.O'N.Waugh for their assistance. 



Introduction: 

Chapter 1 : 

Chapter 2 : 

Chapter 3 

Chapter 4 : 

Chapter 5 : 

Bibl.iography: 

Contents 

Use of th.e Indicator and Expectation 

Functions. 

Generalization of the "Problème des 

Rencontree". 

Some Combinatorial Lemmas. 

The "Problème dee Ménages" and 

Others. 

A Second Type of Restricted 

Permutation. 

.E!E.! 

i 

1 

ll 

26 

33 

48 

53 



i 

Introduction 

We cons id er n events A1 , ••• ,An and l.et p (A. • •• A. ) denote the 
l.l ~ 

probability of the joint occurrence of Ai, ••• ,AL. Then if p (Ai ••• A. ) 
1 ~ l ~ 

is either equal to zero or to a function~k of k alone, we call the n 

events A1 , ••• , An "quasi-symmetric evente. Kaplansky [4) shows how 

algebraic symboliem can be applied to find the probabilities of these 

types of evente, by making use of "the symbolic method". In order to 

explain this method, let A, B, C be evente, p(A) the probability of A, 

p(AB) the joint probability of A and B, etc. Then the probability that 

none of A , B , C happen ie: 

(1-p(A) ) (1-p(B) ) (1-p(C) ) 

provided we agree to write p(AB) for p(A)p(B), p(AC) for p(A)p(C), p(BC) 

for p(B)p(C) and p(ABC) for p(A)p(B)p(C). We call this "multiplication 

in the symbolic sense". 

By making use of the usual indicator and expectation functione we 

will obtain a method which, although similar to the eymbolic method, 

has more applications and ia more convenient. We shall call this method 

"the indicator method 11 • (For details on the indicator and expectation 

functiona we refer to Loève ~])For example, using this method, the 

usual formula for finding the probability that 11exactly k out of n 

events occur11 , will be obtained. The method will mainly be used to 

enumerate certain types of restricted permutations, which can be con-

sidered as quasi-symmetric events. 

In this connection we shall eetablish in Chapter 3 a formula 

(perhaps of independent interest) which gives an expression for the 
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number of ways in which k objecte can be chosen from n distinct objecta 

arrayed in a row, so that no j consecut~ve objecta are contained ~n 

each choice. (The case j = 3 has been submitted as a problem to the 

elementary problem section of The American Mathematical Monthly for 

one of the issues to appear this summer.) Also it ~s believed that for 

the first time, in Chapter 4, a readily applicable formula is given for 

the solution of a permutation problem set by Mendelsohn (9, p.238, 

example 5]. 



CHAPTER 1 

Use of the Indicator and Expectation Functione. 

Considera finite number of sets A
1

, ... ,An representing n events. 

Let A~ denote the complement of Ai' that is, the event "not Ai"• We 

introduce the indicator function IA.(x) in the usual way: 
l. 

(i.e. if x GA~), 

If we write IA instead of IA(x), then for all x, 

if AcB 

if A=B 

( 1) 

(2) 

(3) !Ac = 1 - IA 

( 4 ) 1AnB = IA • 1B 

(5) IJ6 = 0 where ~ is the empty set. 

(6) E(IA) = l•p(A) + O•p(Ac) = p(A) where E ie the expectation 

1 

function and p(A) denotes the probability of the occurrence of an event A. 

denotes the probability of the joint occurrence of A1 , A2 , ••• , An. 

Suppose now, events A1 , A2 , A
3 

are considered and the probability 

that none of these occur is required. We proceed as follows: 

by (4) 

by (3) 



by(4) 

Taking the expectation on both aides of the equation we obtain: 

-IA A A ). 
1 2 3 

2 

Then, P(A~A~A~) = l-P(A1 )-P(A2 )-P(A
3

)+P(A1A2 )+P(A1A
3

)+P(A2A
3

)-P(A1AzA
3

) 
by (6). 

c c c But A1A2A3 is the event that none of the events A1 , A2 , A
3 

occurs. 

Renee we have the required probability. 

' .Lf the probability that A1 occurs while A2 and A
3 

,,_ . do not occur 

is required, we would proceed as follows: 

IA A~Ac a: IA IA~.A..c 
l z-3 1 z-3 

= IA (l-IA )(l-IA ) 
1 2 3 

By taking the expectation on both aides of the equation, it follows that 

event considered. 

The above example suggests the following rule: 

Rule of Replacement 

The probability that event A1A2 ••• ~~+l ••• A: occurs can be 

obtained as follows. 

a) Write down IA IA ••• I~ (1-I~ )(1-I~ ) ••• (l-IA) 
l 2 -~ -~+1 -~+2 n 

b) Carry out the required multiplication putting all products of 
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the form IA IA ••• IA. equal to IA A ••• A.• 
1 2 ~ 1 2 ~ 

We then have the required probability. 

We wish now to find the probability that exactly k events among the 

n events A1 , A2 , ••• , An occur simultaneously, regardless of which k 

events occur. Consider two cases a) and b): 

a) k :> 0 

Let i 1 , i 2 , ••• , ~be k distinct integers chosen from 1,2, ••• , n, 

and ~+l' ••• , in be the remaining integers. 

= ~IA.Ai ••• A. 
~1 2 ~ 

+ "Ç" (IA. A L • •• i 
~1 K 

. . . A . 
~ 

+ ••• t 

n-k 

L 
a,b=l 
a *' b 

(summation over all possible 
selections i 1 , ••• , ~) 

) ... 

I A. A. 
~+a ~+b 

) 

(l-I A. 
l. 

n 

) 

) 

) 

) 



= 

where J = v ... A. • 
l. 

v 

Taking the expectation on both aides we obtain: 

~ p(Ai A. • •• A. ). But E (X) gives us the 
1 l.2 · l.v 

••• A~ occurs. That is, the probability that exactly k events among 
J.n 

the n events A1 , A2 , ••• , An occur. Denote this probability by P[k]. 

Renee, 

b) k = 0 

Bere we consider simply, (l-IA )(l-IA ) 
1 2 

By the rule of replacement we obtain, 

••• (l-IA ) • 
n 

where P (O) or P 0 denotes the probabili ty tha t none of the events 

(A) 

(B) 

Note that by putting s0 = 1 and k = 0 in (A), the relation (B) 

follows. More simply we can write (A) as1 

p[k) = 

which can be rewritten as: 

4 
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(C) 

since (~) = 0 whenever r ~ k. 

From this point onwards we will consider only events which have a 

special property, which Kaplansky (3] refere to as the 11quasi-symmetric 11 

property. 

Definition 

Given a set A1 ,A2 , ••• ,An of events. Then if for any subset 

A. , ••• , A. , p(A. A. • •• A. ) is either equal to zero or to a 
11 ~ 11~ 1k 

function ~k of k alone, we say A1 , A2 , ••• ,An are "quasi-symmetric" 

events. 

The displacement operator E (no ambiguity will arise in its use 

with regard to the expectation function E) is defined by Ek ~ 
0 

= .k' 

E0 ~ 
0 

= 1. For example, in the case of complete symmetry, that is, where 

each p(Ai
1

, ••• , A~) is equal to ~k' we can write P 
0 

= 

giving us the probability that none of the events A1 , A2 , ••• ,An 

occurs as P 
0 

= l-n ~ 1 + (~) (\> 2 - • • • ( us:ing ( B) ) 

We now give a rule in order to obtain probabilities in the case of 

quasi-symmetric events. 

Rule of Replacement for Quasi-Symmetric Events 

c 
The probability that the event A1A2 ••• ~Ak+l 

be obtained as follows: 

... Ac occurs can 
n 



(2) Carry out the required multiplication putting all products 

... equal to I 
A. Ai 

l.l 2 

any wh:i.ch are identically equal to zero. 

(3) 

... 

Replace each rema:i.n:i.ng term IA. A. 
l.l l.2 

... 
obta:i.ning a polynomial f(E). 

and dropp:i.ng 

v by E thus 

The required probability is then f(E) ~ 0• To obta:i.n this rule we 

have only used the rule of replacement as given for the general case 

and observed that p(A. A1 ••• A. ) = ~k when A. A. • •• A. is not the 
l.l 2 ~ l.l l.2 ~ 

empty set.o 

The advantage of the above method is that we may resort to all 

deviees of formal algebra in computing f(E). 

Our main application of the above rule of replacement will be to 

6 

find the probability that none of the events A1 , ••• ,An occ~ For, 

once we have found the required polynomial f(E), auch that P
0 

= f(E) ~ 0 , 

then, as poi.nted out by Fréchet (2], we can easily find P(k). 

Multiplying each term S of (B) by (-l)k (v) we obtain formula (C). 
v k 

Then, 

p[k] = f(E) lVo (D) 

...:r k r 
where .l!i llJ o = l\1 r' lVr = (-l) (k) $ r 

and P = f(E) ~ is the same as formula (B). 
0 0 

Further, the probability that at most v of the n events A1 ,A2 , ••• An 

.occur can easily be obtained. 



Denote this probabi1ity by p • v 

v v n 
(-l)k (r) p = 2 Poo-· = 2 2 (-l)r s v k r k=o k=o r=o 

n v 
(-l)k (r) = 2 2 (-l)r S 

k r r=o k=o 

v 
(-l)k (~) = (-l)v (r-1). Now 2 To verify, we first see it is true 

k=o 
v 

when v = o and v = 1. To apply induction with respect to v assume that 

the formula is true for v = u. 

Then, 
U+l 
2 
k=o 

= (-l)u+l (r-1)1 
{u+l) 1 (r-u-2)! 

= 

Thus the formula is proved. 

(Note, when r = o, (-1) 0 (r) = (-1) 0 (r-l) = 1 as (m) is taken as 1 
0 0 0 

for all values of m. Also (-l) = (-l)r where r is a positive integer r 

and (n) = o if r >nor r < o, where n is a positive integer.) r 

Therefore which can be written as 

P = f(E) Â (E) v 0 

where If Â = 1\ 1\ = (-1) v (r-1) A\ o r, r v ~ r 

and remembering that P 
0 

= f(E) ~ 
0

• 

7 

Our main problem henceforth will be that of finding f(E) such that 
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P 
0 

= f(E) ~ 
0

• Once this is done, P [k] and Pk are readily o~tained as 

.. -
shown. We will use the word 11evaluate" to mean the process of finding 

such a polynomial f(E) from the form (l-IA )(l-IA ) ••• (l-IA ) by 
1 2 n 

using the rule of replacement for quasi-symmetric events. f(E) will also 

be referr~d to as "the required polynomial" for the given events "the 

corresponding polynomial", or as "the associated polynomial". However, 

it should be pointed out that f(E) will always be meant to be the 

polynomial such that P
0 

= f(E) ~ 0 unless stated otherwise, since we 

may obtain in the same manner, from the rule of replacement, a polynomial 

g(E) such that g(E) cp 
0 

gives the probability that a certain number of 

given events occur while certain others do not. 

As a simple example· consider 8 horsès entered in a race where any 

horse is just as likely to finisn in any assigned position. Number the 

horses 1,2, ••• , 8. The probability required is that: 

1 does not finish first 

and 2 " 

Il 

" 
Il 

" 
" 
Il 

3 

4 

5 

6 

7 

8 

" 
" 
" 
" 

" 
Il 

" 

" 
Il 

" 
" 
" 
Il 

" second 

" first 

Il second 

" first 

Il second 

n first 

Il second 

Let (.ij) denote the event that the ith horse finishes in jth position. 

(8-k) 1 
The events have the 11quasi-symmetry 11 property and ~k = 8! 



Write Iij instead of Id-j)'. Then we have to evalua te 

associated polynomial f(E). By applying the rule of replacement, it is 

easily seen that f(E) = (l - 8E + l6E2) as (ij)(mn) is equal to the 

empty set when j = n. 

Then p = (1 _ 8E + l6E2) -" 8! - 8(8-l)l + 16(8-2)1 
0 ~0 = 8t 

2 =-7 

Using formula (D) P[ll = E0 
111 - 8(-1)1 ( 1 ) <8-l)l + 16(-1)1(2

1
) (8-2)1 

·J "'o 1 8-- t 81 

Checking, 

as P[K)' = 0 for k ? 2 

~ = 1 - (.2 + ~) 7 7 7 

Using formula (E) P2 = f(E) /\
0 

=1+0+0=1 

9 

The above example is one of a general type of problem dea1ing with 

permutations. We are usua1ly given that n distinguishab1e objecte are 

arrayed in a straight line. The objects are numbered 1,2, ••• , n 



according to their respective positions starting, say on the left. A 

permutation is then made of the n objecta, and the probability is re

quired that object number 1 is now in the iih respective position 

starting from the left, object number 2 is now in the i 2th respective 

position, and so on. Such restrictions need not apply to all of the n 

numbers. Our assumption here is that each object is equally likely to 

occupy any respective position as a result of the permutation. As in 

th the previous example, (ij) denotes the event that the i object is 

placed into the jth position or briefly, that "i is j". We have then 

10 

are dealing here with quasi-symmetric events. Problems of this type are 

usually referred to in the literature as "restricted permutation" or 

"card-matching" problems. Note that I(mn) I( uv) = o implies that (mn)( uv) 

is equal to the empty set and hence the event (mn) and the event (uv) 

cannot occur simultaneously. Thus p [{mn)(uv~ = o. 
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CHAP'l'ER 2 

Generalization of the "Problème des Rencontres". 

Perhaps the beat known example dealing with restricted permutations 

is the game of "rencontre". The game is usually played as follows. Two 

equivalent decka of n different cards are put into random order and 

matched against each other. If a card occupies the same place in both 

decks, we say we have a 11coincidence 11 or "rencontre". The probability 

that no "rencontre" occurs is simply the probability that none of the 

events (11), (22), ••• , (nn) occur. Our problem is then to evaluate 

(1 - I ). nn 

Since the intersection of any k of the considered events is not equal to 

the empty set we see that, f(E) = (1 - E)n. Then, 

= 

= 

l _ (n) (n-l)! 
l nl + 

l l 
l - Ïl + 2! 

+ l 
- • •• - il• 

- ... 

We note that the above formula gives the first n+l terms of the 

-l expansion of e and bence for n greater than, say, 5 P
0 

is 11almost 11 

independant of n. In fact P ~ .,36788. 
0 

Using formula D> of Chapter l we find 

l ( 1 l ( )n-k 1 ) P[k] = kl 1 - Ïl + 2! - .. · + -l {n•kH 

-l e -kl and hence P(k] z 

If fn(E) is the associated polynomial, in the general case>it 

follows that, 
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f (E) = (l-E) f 
1

(E) as (1-E)n = (1-E)(l-E)n-l. 
n n-

Extending the game of rencontre to 3 decks of n cards each, we let 

(i,j,k) denote the event that the jth card of the second deck and the kth 

card of the third deck occupy the ith position. The probability of no co

th incidence, that is, for any m = 1,2, ••• ,n, them card does not appear 

in the same position in all three decks, is found by first evaluating 

(l- Illl)(l- I222) ••• (l- Innn)' where Iiii = I(i,i,i) 

n nit\ lb = [(nn-k
1
H1 2

• We obtain f(E) = (l-E) and P
0 

= (l-E) \f 
0

• However, here ·. \f k [ "j 

In general, if s+l decks of n cards each, are considered the proba

bility that no rencontre occurs is (l-E)n d> 
0 

where $ k = [<n~~) 115 

• 

Instead of writing (1-E)n~ 
0 

we can write (E-l)n ~~!~: where 

~ An (O!)s 
~- (O!)s: (K1)

5 and by putting E-l =A, P
0 

= (nl)B 

Let H denote the number of possible permutations of the s+l decks sn · 

with no coincidences. Then we note that, 

H = P { n l )• = A.n ( 0 1 t , s n o 

in agreement with Riordan [12). In particular for s = l, 
the solution for the usual game with 2 decks. 

n 
lHn =A 01, 

The probability that none of a particular choice of s decks has 

any coïncidence with the remaining deck ist~~t]', although any two 

decks excluding the remaining deck may have coincidences. 

Also noted by Riordan, are some interesting arithmetical properties 

of the numbers H • For their verification the operator E proves to be s n 

useful. 

Property a) H a n+p = -- H (mod p) for any prime p. sn 



proof: H = (E-l)n+p (01)6 where pis any prime s n+p 

= 0 + (-l)P H (mod p) s n 

Note that ~ (E-l)n (01)8 E 0 (mod p) since every term of~ (E-l)n is 

of the form ~+m, where K,m are integers; hence every term of 

"# (E-l)n (0 l ) 8 is of the form K ((p+m) !] 8
, therefore every term con-

tains the factor p. 
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Thus for every prime p, p # 2, H : - H (mod p). But for p = 2, 
5 n+p 5 n 

-1 = 1 (mod 2) and therefore property a) i8 true for all primes p. 

For example, let n = 2, p = 3, s = l. Then 1H2+3 = 44, 1H2 = l 
and 44 = -1 (mod 3). 

Property 

proof: 

b) H : 8Hn (mod p) for any prime p. s+p-l n 

l
H = (E-l)n (OJ) 8 +p-l where pis any prime. 

s+p- n 

Every term on the right side.of the equation is of the form 

' . : 

= tk.(o ~ k ~ n). 

Now if p divides kl, then tk: 0 (mod p). If p does not divide 

kl, then (k!)P-1 = l (mod p) which follows from Fermat's 

th ~ Th tk = (nk) (-l)n- k (k1)8 eorem on congruences. us ~ 
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(mod p) when p doea not divide ki 

Let t! be the general term in (E-l)n (01)
8

, that is, 

tkl = (kn) (-l)n-k (ki )s. I . 1 ( ) t ~s seen that tk s tk mod p • 

Therefore 1H ~ H (mod p) for any prime p. s+p- n. s n 

We now consider generalizations of the problem of rencontre as 

noted by Kaplansky (4, p.908]. 

The n integers 1,2, •. • ,n are divided into ~ subsets of a integers a 

each. What, then, is the probability that in a random permutation of 

the n integers, no integer appears in any of the a places originally 

occupied by the members of its subset? As an example, let a = 2 and 

assume n is even. Obviously we may "re-divide" the integers into the 

subsets, { 1,2}, ~3,4) , ••• , {n-l,n} as the required probability is the 

same. Hence we wish to evaluate, 

n <1-r > n <1-r > ••• n <1-r > 
xlyl x2y2 x~y~ 

2 2 
where x1 = 1,2, y1 = 1,2; x2 = 3,4, y2 = 3,4; ••• ; xn = n-l,n, Yn = n-l,n. 

i # j 

products of the form I 
xiyi 

2 2 
i, j 

n = 1,2, ••• ,2 dosnot have any 

= O. Further, the polynomial correspon-

ding to n{l-I ) is equal to the polynomial corresponding to 
xi yi 

n (1-I ). Therefore let f(E) be the polynomial corresponding to 
. xjyj 

fl(l-I ) for any i. Then our required probability is 
xiyi 

where ~ k = (n-k) l 
nt 
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D 
That is, the corresponding polynomial for the solution is Fn(E)=~(E~2 

We find f(E) • 

• 

Renee f(E) = l-4E + 2E2 and finally, 

n 
F (E) = (l - 4E + 2E2

)2 
n 

Thus for example F
2

(E) 2 = l -4E + 2E 

F4(E) = l - 8E + 20E
2 

- l6E3 + 4E4 

Suppose the n integers 1,2, ••• , n are divided into subsets, not 

necessarily of the same size. each, denoted by a1 , a
2

, ••• , am containing -
a1 , a2 , ••• , -am integers respectively. We introduce subsets b1 , b2 , ••• ,bm 

containing b1 , b
2

, ••• , bm integers respectively, all chosen from among 

1,2, ••• ,n, with the condition that no integer occurs in two distinct b1 • 

What, then, is the probability that, given a random permutation of the 

n integers, none of the a. members belonging to the subset a. occupy 
~ ~ 

any of the b. places specified by the members belonging to the subset 
~ 

b., (i = 1,2, ••• ,m)? Obviously, we obtain the same answer if we con
~ 

eider the subsets a1 , a 2 , ••• , am to be equal to the subsets 

{1,2, ••• , aJ), {a1 + 1, a1 + 2, ••• , a1 +a~, ••• 

respectively. The problem then is to evaluate the polynomial 

• 
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... 

y2 = b1 + 1, b1 + 2, ••• , b1 + b2 and so on. Now no product of the form 

I I = 0 for i F j. Hence letting f(a1b1 ) be the polynomial 
xiyi xjyj . 

corresponding to the evaluation; of n (l-I ) i = 1,2, ••• ,m it 
xi yi 

follows that: 

i = 1,2, ••• ,m 

where P is our required probability. That is, our associated polynomial 
0 

f(E) required to solve the ~itial problem is f(E) = f(a1b1 ). 

desired. We note that f(a.b.) depends only on the number of elements 
l. l. 

in the subset a.and the number in the subset b .• Hence a general form 
~ ~ 

n (1-Iij) i = 1,2, ••• ,a j = 1,2, ••• ,bis considered. Denote its 

associated polynomial by f(a,b). Consider the event 

where i 1 ,12 , ••• ,iv are any v distinct integers chosen from among the 

integers 1,2, ••• ,a. There are (~) such choices. Also j 1 ,j2 , ••• ,jv 

. b 
are an.y.<. v distinct integers chosen from among 1,2, ••• ,b. There are (v) 

suoh choices. We wish to obtain all events of the type", the occurrence 

of which is possible. For each particular selection of i 1 ,i2 , ••• ,iv 

and a particular selection j
1 
,j

1
, •••th there are obv1.ously vi poss ible 



events of type\r, the occurrence of which is possible. Hence there are 

(a)(b)vl such possible events. It follows that, 
v v 

a 
f(a,b) = 2 

v=o 

Note that it is not necessary to distinguish whether a ~ b or b ~ a 

since (a) = 0 if v> a and (b) = 0 if v, b. v v 

17 

As an example, in the usual deck of 52 cards, consider each subset 

ai to be precisely those 4 cards having the same denomination (for 

example aces, deuces, etc.) and b. =a .• Then the required polynomial 
l. l. 

Extending the above problem to the case of 3 random permutations of 

the n integers 1,2, ••• ,n, we have three sets of subsets, ai,bi,ci, 

i = 1,2, ••• ,m. Here none of the members of b. can at the same time be 
l. 

together with any member of ci in any position designated by any member 

of ai~ Let f(ai,bi,ci) be the polynomial corresponding to the evaluation 

Then as before, the required probability is: 

p = rn:r(a. bic. )1 $ o L l. ~J o where i = 1,2, ••• ,m. 

j = 1,2, ••• ,b; k = 1,2, ••• ,c. Let its corresponding polynomial be 

f(a,b,c). As before, we wish to find all events of the type 

whose occurrence is possible. Note that'f is the empty set if is = it 



for some s F t or j
8 

= jt for some s F t or ks = kt for some s F t. 

There are then (:)possible favourable choices of i 1 ,i2 , ••• ,iv' (:) 

18 

possible favourable choices of j1 ,j2 , ••• ,jv and (~) favourable choices 

particular choice of j 1 ,j2 , ••• ,jv and a particular choice of 

2 k
1

,k
2

, ••• ,kv there are (v!) possible events of typelrwhose occurrence 

is possible. Hence there are, in total (a)(b)(c)(v!) 2 events of type V v v v 

whose occurrence ie possible. Finally we have, 

f(a,b,c) = 

or f(a,b,c,) = ~ (a) (b) (c) 
' v v v 

<-E>Yv! ae in [4), where (a) = a(a-1) 
v v 

• • • (a-v+l) • 

The procedure coneidered above can be thought of ae matching 3 

deuces re5pectively, and 50 on, with the cards being numbered 50 that 

1,2, ••• ,a
1 

are aces, a1 + 1, a2 + 2, ••• , a1 + a 2 are deuces, and so 

on. Similarly for the other decks. 

In the case of s = k + 1, permutations of the n integer5 1,2, ••• ,n, 

the 5Ub5et5 being ai 1b . , ••• ,s., i = 1,2, ••• ,m we have 
l. l. 

Po= [nf(ai,bi' ••• ,si~ ~o' (i = 1,2, ... ,m), ~r = ~n;J)tjk 
and 

f (a,b, ••• ,s) = ••• (A) 

As an example, soppose that each of four deck5 has two suite of 



two cards each. Then we wish to find (!(2,2,2,2~ 2 which is the re-

quired polynomial f(E). 

m 

0 

1 

2 

3 

4 

4 

2 
!(2,2,2,2) = 2 <!>4 (v!)3 (-E)v = 1- 16E + 8~ 

v=o 

f(E) = (1 - 16E + 8E2)2 = 1 - 32E + 272E2 - 25~E3 + 64E4 

po = f(E) ~ o where ~ k = ~44~) !] 3 • 

= 13,824 - 6,912 + 2,176 - 256 + 64 = 8,896 

p ';;: • 644 
0 

Further, P [m] = f(E) ~ 
0 

where 4J k = (-l)m <!>~k. Hence we have: 

P Onl approx. 

13,824 - 6,912 + 2176 - 256 + 64 = 8896 .644 

6,912 - 2(2176) + 3(256) - 4(64) = 3072 .222 

2176 - 3(256) + 6(64) = 1792 .130 

256 - 4(64) = 0 0 

64 = 64 .005 

2 P "m] = 1.001, error due to approximations. The above a1so indieates 
m=o ~: 

a systematic way of obtaining P(m] once having obtained P
0

• 



The preceding examp~e is one of an interesting c~ass of examples. 

Suppose we have n ba~ls of which a1 are of one colour, az of another 

colour, and so on. Suppose now that there are n holes arrayed in a 

straight line so that a ball fits into any hole. Then n bal~s are then 
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p~aced into the n holes in auch a manner that any bal~ is equally likely 

to be p~aced into any hole. This procedure is repeated S-l times. What 

is the probability that no hole will have contained a ba~~ of the same 

colour each of the S times? Using (A), our required po~ynomial f(E) is 

equal to 

where a~+ a2 + ••• + an= n. More simp~y we write: 

and when a1 = a 2 = ••• =a =a, n 

n 

f(E) = [2 <:>s (v!)S-l (-E)v] a • 

A more interesting and somewhat more intricate example of restricted 

permutations given by Kaplansky (4, p.909] wi~l now be considered. 

The integers 1,2, ••• ,n are divided into subsets of a integers 

each. What is the probability that, given a random permutation of the 

integers, no integer occupies any place designated by all the other 

members of its subset? That is, assuming the subset to be {1,2, ••• ,a}, 



{a+ 1, a+ 2, ••• , 2a), ••• , any integer may occupy its own origina~ 

position but not any position occupied origina~ly by any other member 

of its subset. For a = 1, the required probability is obviously 1. 

As an illustrative examp1e, let n = 4 and a = 2. Then the two 

subsets are{l,2}and {3,4} and the following permutations satisfy the 

conditions, 

l 2 3 4 3 4 1 2 

1 3 2 4 3 4 2 1 

1 J.t. 3 2 4 3 1 2 

3 2 1 4 4 3 2 l 

4 2 3 1 

There are nine such permutations. Hence p _2.,_ 
• 0 - 41 
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It is easily seen that in general, it is quite an involved process 

to calculate the required probability using ordinary combinato~l 

arguments. We wish then to find a polynomial A(E), such that our required 

probability is equal to A(E) cp where as before If ~ = ~ k and 
0 0 

~k = (n-~) 1 • Observe that A(E) can not be obtained in a similar manner 
n. 

as in the previous examples. In order to find A(E) we require two lemmas. 

Lemma 1 Given a fini te number of events { B
1
} satisfying the condition 

of quasi-symmetry and the following events are considered, 

Al l Al 
l ' A2 ' ... ' al 

A2 2 A2 
l ' A2 t ... ' a2 
• • • 
• • • 

Ar r Ar 
l ' A2 ' ... ' a r 
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where each An is the intersection of ~ 
m m events taken from {Bi} such that 

A: is not the empty set, that is, p(A:) = a function of ~ alone. Further 
m 

for any two events Ai, Aj, iF j, none of the Ni events of which Ai is u v u u 

the intersection is also one of the Nj events of which Aj is the inter-
v v 

section and Ai Aj is not the empty set. Then, u v 

a 

~ 
s =1 r 

••• g(E) 4> o 

where ~ ~ 
0 

= (J) k, ~ k being some given function of k alone, for some 

polynomial g(E) which can be found. 

proof: ... 

It is easily seen that, by taking the expectation of A, precisely the 

required sum of prob&bi~itiee is obtained. It fol1ows then, that if we 

substitute ~ for IAi in A we obtain the required po1ynomial g(E). 
u 

Lemma 2 Given the same events and conditions as in Lemma 1 except 

that here each event An is the intersection of ~ events, each such m m 

event being taken from either {Bi} or \B~1 • (Note that the set (B~} 

is the set of events obtained by taking for each Bi' its complement B~.) 

Then we obtain a polynomial h(E) such that the sum of the probabilities 

• 
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as in Lemma l is equal to h(E) t 
0

• 

proof: 

••• B
i 
s 

Then we substitute for lAi ,, ~ f~ (E) where fNi (E) is the polynomial 
u u u 

corresponding to the evaluation of (l- IBi ) ••• (l- IR~i) and carry 
s+l -N 

u 

out the multiplication obtaining h(E). 

(Note that if events A~ , i = 1,2, ••• ,a1 ; A~ , i = 1,2, ••• ,a2 and so 

on are mutually exclusive, then h(E) ~ 
0 

is precisely the probability 

that at least one of the events of the type A1 A2 ••• Ar , s. = 1,2, ••• a 
sl s2 sr l. l. 

occur.) 

We now find A(E). Consider the subset 1,2, ••• ,a and any selection 

i 1 ,i2 , ••• ,ir of r distinct integers chosen from among 1,2, ••• ,a. Then 

the event that these r integers occupy their own original positions 

while each of the remaining a - r integers do not occupy any place 

fl(uv)c where u,v = i i. Denote this event by R. Using Lemma 2, r+l, ••• , a 

let {A~} be the set of all possible events of the typeR. There are in 

a 
fact L: 

r=o 
(a) auch events. Considering any other subset, the same number 

r 

of events of type R are obtained. Then using Lemma 2 and denoting by 

{A~) the set of all events of type R we consider all the subsets of 

1,2, ••• ,n, that is, i = 1,2, , and obtain, 

• • • ••• = [~ - r,a 
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where f(a - r, a - r) is the polynomial f(E) corresponding to the evalua

tion of n (l- Iij)' i,j = 1,2, ••• ,a-r and m = i. We recal1 that 

f(a,b) = ~ (a)(b) v! (-E)v. Further, we note that the event 
v v v 

••• Am is the event that, in the first subset of a integers, s1 ISm 

of the integers are fixed, while each of the others do not occupy any of 

the a - s
1 

places designated by themselves and simi1arly for the second 

subset, s 2 of the integers are fixed and so on for the rest of the sub

sets. Renee, using the note at the end of Lemma 2 we have: 

a n 
= [~ (~) Erf(a - r, a - r~ 8: A(E) 

in agreement with Kaplansky [4, p.909] where the above is stated without 

proof, and the required probability is equal to A(E) $
0 

where 

Denote A(E) <1> 
0 

by Pa, then P1 = [ i <!> If f(l-r,l-r ~ n cj) 0 , 

f(l,l) = l - E, f(O,O) = l and therefore P1 = (1 - E + E)n $ 
0 

= 1. 

Letting n = 4, a= 2, then P2 = [~ (;) lfr(2-r,2-r~
2 

$ 0 , 

2 
f(2,2) = 1 - 4E + 2E2• Therefore P2 = [1 - 4E + 2E2 

+ 2E(1-E) + E~ ~ 
0 

= (1 - 2E + ~)2 $ 
0 
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4! - 4·3! + 6·2+ - 4! + 0! = - 4t 

the nine favourable permutations being given at the outset of this 

particular topic. 

Using similar restrictions in the case of s permutations of n 

objecte a similar polynomial A(E) is obtained. For example, if the n 

integers were to be permuted twice then any element may occupy, in both 

permutations, its original position but may not occupy any position 

designated by any other members of its subset in both permutations. In 

this case, 

n 
E"t(a-r,a-r,a-r~ 

) th ~ [Cn-k) t) 
and PA = A(E ~ 0 where ~ k = [ nl 

~ 
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CHAPTER 3 

Some Combinatorial Lemmas 

In this chapter certain combinatorial lemmas will be given. These 

lemmas are quite helpful in obtaining the associated polynomiale in 

order to solve certain types of restricted permutation problems; 

moreover they are in themselves of some interest. Lemmas 1 and 2 are 

given by Kaplansky [3]. However the proof to be given here for Lemma 1 

is different. Lemmas 3, 4 and 5 do not seem to appear in the literature. 

Also to be noted is that, although no actual examples employing Lemmas 

3 and 4 are to be given, the use of Lemmas 2 and 5 in Chapter 4 will 

give an idea of the type of example which may be encountered and require 

the use of Lemma 3 or 4. 

The following lemmas deal with the number of ways of choosing k 

elements, independant of order, from among n distinct objecta arrayed 

in a row subject to certain conditions. The number (~) is the case where 

no restrictions are imposed. The proofs of the lemmas will all be based 

on the following observations. Suppose we are given n - k symbole "O" 

and k symbole "~"· Then for every selection ''k from n", there exi.ets a 

corresponding arrayment of the symbole "O" and "$6", in a straight line, 

in an obvious order. For example if n = 5, k = 2, and the n objecta are 

numbered 1,2,3,4,5 then, corresponding to the selection 111,411 i s the 

arrangement "~ 0 0 16 0 11 • Obviously there is a "one-one correspondence" 

between all possible selections of k and all possible arrangements of 

the symbole. Further, for given res)rictions on the selection of k, there 

are corresponding restrictions on the arrangements of the symbole. 
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Lemma 1 The number of ways of choosing k elements, from among n 

distinct elements Xi,X2 , ••• ,Xn so that no two consecutive elements, 

. (n-k+l) that is, X.,X. 1 , i = 1,2, ••• ,n-1 appear in each selection, 1s k • 1 1+ 

Proof: Suppose the n - k symbols "O" are arrayed in a row. There are 

then n - k + 1 "spaces" between these symbole including the 11space" 

before the first symbol and the 11space 11 after the J.ast symbol. The k 

symbole '~" may then be inserted in (n-~+l) ways into the "spaces 11 , 

that is with one "space" being occupied at most with one symbol "fi"• 

This in fact gives the total number of ways of arranging the total 

number of symbole along a straight line so that no two of the symbole 

(n-k+l 
"~" appear consecuti.vely. Hence k ) is the required total. 

For example, the three possible selections ~x3 , x2x4 , ~x4 from 

~· X2 , ~· x4 for k = 2 correspond to ~ 0 fi o, 0 ~ 0 ~. ~ 0 0 fi 

respectively and c 4-~+l) = 3. Note,for k = l we obtain simply (~). 

Lemma 2 The number of ways of choosing k elements, from among n 

distinct elements ~,x2 , ••• ,Xn arrayed in a circle so that no two 

consecutive elements, that is Xi,Xi+l i = 1,2, ••• ,n t xn+l = ~ t 

Proof: Let R(n 1k) denote the number of selections with the restrictions 

as in Lemma 1, that is when the given objecta are arrayed in a row. Let 

C(n,k) be our required number. In order to obtain C(n,k) we must there

fore exclude those numberlselections from R(n,k) which include x_ and X 
J. n 

together. There are in fact R(n-4,k-2) auch selections each containing 
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both ~ and Xn • (If ~ and Xn are both in a selection, then certainly 

X2 and Xn-l cannot also be therein.) Our required number is then, 

Lemma 3 

C(n,k) = R(n,k) - R(n-4,k-2) 

(n-k+l) _ (n-k-1) 
= k k-2 

~n-k-1) l 
-n-2k+l)l(k-2)l 

(n-k-1) l 
= (n-2k+l)l(k-2)l 

(n-k-1) l 
= (n-2k+l)l(k-2)l • 

= (n-k) ln 
(n-2k) lkl(n-k) 

[(n-k)(n~k+l) _ ~ 
k(k-1) LJ 

n(n-2k+l) 
k(k-1) 

As Lemma 1 except here the restriction is that no three 

consecutive elements appear. Denote the required number by R
3
(n,k). 

Then, 

Proof: Obviously R
3

(n,k) = R(n,k) + X,where X is the number of 

selections wherein at least two elements appear consecutively, but not 

three. Again we consider the insertion of the k symbole n~u among the 



n-k+l "spaces" of the n-k eymbols ''0" arrayed in a straight line. The 

number of ways of placing these symbols such that each arrangement has 

i pairs of consecutive symbole, each pair 

d d . (k-i)(n-k+l) secutive symbole ~ ~ 1s . 1 k-i , i = 

consisting of the two con-

1, 2, ••• , [~} where ~) is 

equal to the maximum integer ~ ~. To see this, we find all. possible 

distinct insertions of the k-i "elements" 

1 2 i i+l k-i 

••• t (~ (4) t ••• t 

among the n-k+l epaces, each being filled with at most oae "element". 

There are <n;~~1 ) different selections of "spaces" into which the 

11eleaents" may be placed. Further, the "elements" may themselves be 

k-i) arrayed in ( 1 distinct ways. Bence the total number of possible 
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00 
distinct insertions is equal to (k~i)(nk-k~i). Renee X= ~ (k~i)(n-k+l). 

1 -1 i=l 1 k-i 

In fact we could have let i = 0 and obtain also R(n,k). Letting k = 1 

we obtain ~(n,l) = (~). 

As an example, let n = 5, k = 3, then ~(5,3) = 7• Numbering the 

5 distinct elements,the favourable selections are, 

l, 3, 5 

1, 2, 4 

1, 2, 5 

1, 3, 4 

1, 4, 5 

2, 3, 5 

2, 4, 5 

In order to simplify the writing of the follo~g lemmas, we 

introduce the notations: 



and hence 
• • • = 

Thus by Lemma 3 we have ~{n,k) 

Lemma 4 As Lemma l, except here the restriction is that no four 

consecutive elements appear. Denote the required number by R4(n,k). Then, 

~ (~=~:iJ ~ ~~:~:i) '(~=~:iJ .. . R4(n,k) = R
3

(n,k) + ~ i + ~ i + ~ i + ••• 
i=l l i=2 2 i=3 3 

Proof: R4(n,k) = R
3
(n,k) + X where X is the total number of distinct 

insertions of all possible elements, each of the form 

~ 2 j j+~ i. i+~ k-j-i 

... ' ... ' {~ ~), ... ' 
into the n-k+l 11spaces11 , with j "> l. For each fixed j and i. there are 

(

n-k+l) k-j-i 
i 
j 

possible distinct insertions, hence, 

2ln-k+l) k-j-i 
i 

j=l i=l j 
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The reader will no doubt suspect a general formula to include 

Lemmas 1,3, and 4. In fact by using the same ideas therein, the following 

general formula is obtained and stated without proof. 

Let R.(n,k) denote the number of ways of selecting k objecta from 
J 

n, arrayed in a str~ight line so that no j are consecutive. Then, 

R.(n,k) = 
J 

n-k+l . 
ij 
• • • 

where ij = k-i -i 1 2 - ... -ij_1 • For i 1 = 0 fixed, Rj-l is obtained. 

LelDJll8. 5 The number of ways of choosing k elements from among the n 

distinctive elements Xl,x2 , ••• ,Xn so that no two elements Xi,Xi+2 , 

i = 1,2, ••• ,n-2 are contained in each choice is, 

R (n,k) = 2 
i=o 

Proof: The required number is precisely the nu•ber of· possible ways 

of placing the n-k symbole "O" and the k symbols "~11 along a straight 

line so that three consecutive symbole of the form ~ ~ ~ or ~ 0 ~ are 

never encountered. Again here we insert the k symbole "~" into the 

n-k+l "spaces" accordingly, as in tl;l.e. previous Lemmas. Here k-i elements 

each of the form 

1 2 i i+l k-i 

(~ ~)' (}t ~) ••• (~ ~)' ... ' i = 0,1, ... ~1 
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are considered. Each such set of k-i elements is to be inserted among 

the 11spaces". First we find all possible selections of k-i 11spacee". 

Because of our restrictions, two consecutive "spaces" can not be in-

cluded in our selection, for if so there would appear "f6 0 f6", some-

where in the final arrangement. Hence, using Lemma 1, there are 

(n-2kk+~+i) possible selections of "spaces" for each selection of the 
-l. 

k-i "elements". Further, the "elements" themselves may be arrayed in (k~i) 

. (k-i) n-2k+2+i) distJ.nct ways in a row. Therefore, i ( k-i gives the total 

number of favourable arrangements for the total number of symbole, using 

the set of k-i "elements". Finally, 

R (n,k) = 2 
i=o 

(
n-2k+2+l.J 

k-i 
i • -For k = 1, R (n,l) = n • 



33 

CHAPTER 4 

The 1'Problème des Ménages" and Othera. 

E.Lucaa ll1 his "Théorie des Nombres" published in Paris in 1891, 

states the following question. 

"Des femmes, en nombre n, sont rangéesautour d'une table, dans un 

ordre déterminé; on demande quel est le nombre des manières de placer 

leurs maris respectifs, de telle sorte qu'un homme soit place'entre 

deux femmes, sans se trouver à eSté de la sienne?" 

The above is the so-called "reduced problem dea ménages 11• The well 

known 11problèmedea ménages" itself aaka for the number of ways of 

seating at a circular table n married couples, husbands and wivee 

alternating, so that no husband is next to his own wife. Obviously, 

once the"reduced" problem ia solved, then so is the 11general11one. We 

now proceed to solve the problem in terms of probability. 

Suppose the n women are seated auch that there is an empty seat 

between each two women. Then we number the women 1,2, ••• ,n following a 

clockwise path. We number the seat immediately to the left of wife 

number i by the same integer i. The husbands are also numbered 1,2, ••• ,n 

each having the same 'number as his wife. Then the problem is to find 

the probability that, given a random permutation of the n integers, 

1,2, ••• ,n , 

l is not l 

l is not 2 

2 is not 2 

2 is not 3 
• • • 

n is not n 



n is not 1 

It is required then to find the polynomial fn(E) corresponding to the 

evaluation of 

agai:n writing I(ij) = Iij where (ij) is the event that 11i is j 11 • Observe 

that two events cannot possibly occur simultaneously if and only if they 

appear in consecutive factors of X. Also any k events can occur simul-

taneously if and only if they do not contain any two events appearing 

in consecutive factors of x. Hence, using Lemma 2 of the previous chapter, 

it follows that, 

f (E) = 
n 

gives the probability of the 11reduced11 problem. 

p = n o 

Using formula (D) of Chapter 1, the probability that exactly r conditions 

will be violated is 

This simple method is due to Kaplansky [3); 

Following Kaplansky and Riordan [5, pp.ll7-19) a recurrence formula 

for f (E) will now be obtained by an algebraic method. 
n 

m = 1,2, ••• ,n 



Let Y1 
a Y (l-I 1 ) m m mm+ m = 1,2, ••• ,n-1 

Denote the corresponding polynomial of Ym by Ym' that of Y1m 

-
by Y

1
m and that of xm by xm 

l Y = Y l (l-I ) m m- mm 

l yl 
=Y 1- li m- m- mm 

l 
=Y l-I y l m- mm m-

Hence Y = yr - E Y (a) m m-l m-l 

He nee 

But 

=Y (l-I 1 ) m m 

= Y - I , (l-I11)(l~I ) Y11 
m ~ · mm m 

Xm = y - I yll 
m ml m 

x m =Y m 

ytr =y 
m m-l 

Eytr 
m 
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Therefore X = Y - E Y 1 m m m-
(c) 

using (a) and (c) 

-= (l-2E) yn-1- E ytn-2 using (b) 

= (l-2E)(Y l - E y ) - 2E2 y + E2 yl 
n- n-2 n-2 n-3 

by subtracting and adding ( l-2E) E Y 2 and using ( b). 
n-

Now - 2E
2 Ï + if- Yi = - E2 (Y - E Ï ) n-2 n-3 n-2 n-3 by (a) 

Hence X = (l-2E) X - E2 X n n-1 n-2 

Therefore we have the recurrence formula: 

f (E) = (l-2E) f 1(E) - E2 f 2(E) n n- n-

fn(E) is usually referred to as the ménage polynomial. 

Setting u = nl P we have the so- called "ménage number" giving 
n n o 

us the number of ways of seating the men, once the women are seated. It 

is interesting to note that the above formula was first given, without 

proof by Touchard (15] in 1934." MacMahon [8] observed the fact that un 

is the coefficient of ~·X2 ••• Xn in (y-~-x2)(y-x2-~) ••• (y-xn-~) 

where y= x1 + x2 + ••• + xn • Lucas [7, p.495) gives the recurrence 

formula: 

(n-2) u = (n2-2n) u 
1 

+ nu 
2 

+ 4(-l)n-l 
n n- n-

and uaing this, tabulates the values of u up to n = 20. M.Wyman and 
n 

L.Moser [;LoJ give a table of values of un up to n = 65, computed by 



F.L.Muksa. A1so included _are some new explicit solutions for u , via 
n 

an exponential generating fu:ction which leads to some new resulte 

concerning the ménage numbers. 

As noted in [5, p.l18), it is perhaps somewhat more elegant to 

have E opera te directly on : ~ in lieu of '
0

• To achieve this we form 

a new polynomial, 

g (E) = ~ (-l.)k (2n-k) (...l.!L) Jf-k 
n k 2n-k 

0 
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i g (E) o! 
and cons der n n! 

_n-k (n-k)! where ~ o! • 1 
A 

_k_ q> (n-k)! • s ::er- = ! it 
nT n o n 

follows that each term of f (E) ~ is equal to its 11cG>rresponding" n 'fo 

ol ~ ol · · term in g (E) --
1 

and hence P = f (E) = g (E) --1 • Further, n n n o n o n n 

un= n!P = g (E)ol where Efot = r!. Touchard in [l.4, p.lll] shows o n 

that g (E) may be written as a Tchebycheff polynomial, 
n 

g
11 

(E) E 2 cos [ 2n cos -l <f>] 
That is, g

11
(E) = 2 T

211 
l:~ with Tm a Tchebycheff polynomial, Following 

. 1 
Chrystal [l., p.278] we let x = cos 9 + 1 sin 9. Then i = cos Q - i sia Q 

and cos mQ = f(xm + ;m ). 
Thorefore 22n cos2n 9 = (x..l)2n 

x 

n-1 
(2n) = ~ r=o r 

x 2n-r (~)r + 
x 

+ 

2n 
(2D) 2n-r c1>r L: x 

r=n+l r x 

(2n) n (.!)n x n x 



= 

n-1 . 
= ~ (r2n) (x2n-2r + ---=---1-=-) + ( 2n) 

4IIC- 2n-2r n r=o x 

n-l 
(2n) (2n-2r) Q + (2n) = 2 2 cos r n r=o 

As g (E) = n-r 2 cos [ ( 2n-2r) cos -l é] (2) it follows that, 

22n i n-l 
{2n) gn-r{E) + <!n) (!....)2n = ~ 2 r r=o 

n-l 
rf!= 2 

r=o 

We can write ~ = (2n) g (E) with ~~)= l. (In the explicit r n-r ~ 

expression given above for g (E), g {E) is undefined.) Hence, by letting n o 

both sides of the equation operate on o! we obtain the inverse relation 

nl = 

as developed by Riordan [13) and used for the investigation of the 

residues of the numbers un,m ~ nlnP (m]) to a prime modulus. 

For further literature on the game of ménages we refer to Kaplansky 

and Riordan (8] which together with an already mentioned article by 

Moser and Wyman (10) contain an extensive bibliography. 
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Omitting the restriction that "n is 1 11 in the game of ménageswe 

obtain the "Problèmedes ménages non-circulaires". That is, here the 

married couples are seated at a straight table and bence the omission 

of "n is 1." Using Lemma l of the previous chapter, the requisite 

formulae are: 

n 
(2n-k) (-E)k f (E) = 2 n k=o k 

n 
(-l)k (2n-k) ~n-k) 1 p = L n o k=o 

k n1 

n 
(-l)r+k (2n-k) (k) (n-k) 1 

np[lj = L: nf k=r k r 

Using the same notation as was used to derive the recurrence formula for 

the ménage polynomial, 

(l-I lm) (l-I ) m- mm 

Y' - y (l I ) I not def~~ed m- m - m m+l ' n n+l ~ 

lm' l'm are the corresponding polynomiale of Ym' Y'm respective-

ly and using the derived relations, 

-Ym =Y' - E Y m-l m-l 

Y' m-l = Ym-1- E Y'm-2 

we ob tain, Y = (l-E) Y 1 - E F 2 n n- n-

(a) 

(b) 

= (l-2E) Y'n-2 - (l-E) E Yn_2 



= (l-2E) (yt E yn-2) n-2 

Hence we obtain the recurrence formula 

4o 

That is, the recurrence formula for the ménage polynomial involving 

a round table in the game is the same for the ménage polynomial obtained 

using a straight table. 

A general type of restricted permutation is now discussed. This is 

the question of "discordant permutations". Two permutations are said to 

be discordant with each other w~en no element is in the aame position 

in both. The case when dealing with permutations discordant with a given 

one :La in fact the uaual "problème dea rencontres 11 , which bas been 

considered in Chapter 2. :Ul ~he case of permutations discordant with 

two permutations, one permutation being (1,2, ••• ,n), the other 

(n,l,2, ••• ,n-l) ia the. "problème dea ménages". We consider now Lucas' 

problem [7, p.49l] of permutations discordant with any two given ones. 

First, it is easily seen that for any two given permutations we 

can in fact solve the problem by considering two other permutations 

chosen accordingly auch that one is of the type (1,2, ••• ,m). For 

l example suppose the given permutations are A = (5,3,2,4,1) and 

B1 = (3,4,2,1,5). Then we write instead of A1 , A = (1,2,3,4,5) and 

l instead of B , B = (2,4,3,5,1). The problem of discordant permutations 

will now be solved uaing the five integera 1,2, ••• ,5 and A and Bas the 

given permutations. The general solution for n integers can then be 



easily seen. Consider B to be a permutation of A. That is, write down 

B = ,1,2,3,4,5) = (2 '· 3 5 l) 
5 1 3 2 '· ,~, ' ' ' t t ,~ 

where <~:~:~:~:'> is a permutation of (1,2,3,4,5) placing 1 in 5th 

place, 2 in 15 t place, 3 in 3rd place, 4 in 2nd place, and 5 in 4th 

place, obtaining a new permutation. Renee we can write B as B = 
1 5 4 2 3 ( ' ' ' ' ) or more simply as B = (1,5,4,2)(3). Now the prob1em is to 5,4,2,1,3 

find that in .a random permutation of 1,2,3,4,5, 

1 is not 1 or 5 

2 11 " 2 or 1 

3 If " 3 or 3 

4 11 "4or2 

5 11 
" 5 or 4 

;f 

But these are precisely the "menages conditions" imposed on the 4 

integers 1,5,4,2 only and on the integer 3 alone. It follows that our 

required polynomial D
5

(E) = f 4(E) f 1(E), fn(E) being the ménage 

polynomial and the required probability 
5

P
0 

= D5(E) ~ 0 where 

41 

lh (n-k) 1 
't' k = nl and note that f 1(E) was said to be equal to 1 - E. Then, 

= 

4' 16 and 
5
P

0 
= f (E) f (E) - -- • The fo11owing are the 16 permutations 4 1 0 - 51 



discordant with (1,2,3,4,5) and (2,4,3 1 5 1 1): 

3 1 5 2 4 

3 5 1 2 4 

3 5 2 1 4 

3 5 4 l 2 

4 1 5 2 3 

4 1 5 3 2 

4 3 5 1 2 

4 5 1 2 3 

4 5 1 3 2 

4 5 2 1 3 

5 1 2 3 4 

5 1 4 2 3 

5 l 4 3 2 

5 3 1 2 4 

5 3 2 1 4 

5 3 4 1 2 

No doubt the general solution is now 11almost11 apparent. However 

before writing such a solution, another example is considered. Here 

42 

n = 6, A = (1,2 1 3 1 4,5,6) and B = (4,5,1,3,2,6). Then B = (3,4,1)(2 1 5)(6). 

Hence D6(E) = f
3

(E) f 2(E) f 1(E), and 6P
0 

= D6(E) ~ 0 • 

In general, suppose two permutations of the integers 1,2, ••• ,n 

are given. Then the problem is that of finding the probability that a 

random permutation is discordant with the permutations A= (1 1 2 1 ••• ,n) 

Then the required probability is, 

where f 
r. 

J. 

p = n o ••• 

= f (E), and f (E) is the ménage polynomial. 
ri ri 

An interesting application of the question of discordant permutations 

is now discussed. The problem here is to find the probability that 

a term chosen at random from those of an n by n determinant contains 

no "element" from either of the main diagonals. By an "element" 

of the term a1 a 2 ••• a is simply n 



meant any factor a .• 
l. 

This question wae first treated by Netto (1~, p.8o 

et seq.] in a rather complicated manner. 

We examine now an n by n determinant having the following form. 

1 2 n-1 n 
a~ al • • • al ·~ 

1 2 n-1 D. 
a2 a2 • • • a2 a2 

• • • • • 

• • • • • 

• • • • • 

1 2 n-1 n 
an-1 a 

n-~ • • • a n-1 a n-1 

1 2 n-1 n a an • • • a a n n n 

We reca~l that the va~ue of the determinant shown above is found by 

+ 1 2 n summing all possible terme, each of the form ai ai ••• ai , 
~ 2 n 

i~,i2 , ••• ,i
11 

being any permutation of 1,2, ••• ,n. The question as to 

which sign, + or - is affixed to each term, is irrelevant to our main 

problem. As can easily be seen from the above determinant, the question 

is then to find the probability that given any term of the determinant 

at random, 

1 is not il 

1 tl " i n 

2 " tl i2 

2 " tl i n-1 
• • • • • • • • 
• • • • 

n is not i n 
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and n is not i 1 

More simply, we wish to find the probability that, given a random per-

mutation of 1,2, ••• ,n none of the events "1 is l", "1 is n", 112 is 2 11 , 

112 is n-1", ... ' "n is n","n is 1 11 occur. This is the same as finding 

the probabi1ity for a permutation of 1,2, ••• ,n to be discordant with 

the given permutations A= (1,2, ••• ,n) and B = (n,n-1, ••• ,1). Further, 

B = (l,n) (2,n-l) (3,n-2) ... , n even 

B = (l,n) (2,n-1) (3,n-2) ••• (n~l ,n~l + 1) (n~l) , n odd 

Therefore our required probability is, 

n even 

n odd 

where fi(E) is the ménage polynomial. In fact, f 1(E) = 1-E and 

f
2

(E) = 1- 4E + 2E2 • A list of the probabilities for n = 1,2, ••• ,8 is 

now given. 

n required polynomial f(E) -
1 1 - E 

2 1 - 4E .~ 

3 1- 5E + 6E2 - 2E3 

4 1 - 8E 
2 

+ 20E - 16E3 + 4E4 

5 1 - 9E + 28E2 - 36E3 + 20E4 - 4E5 

6 1 - 12E + 54E2 - ll~+ l08E
4

- 48E5 + 8E
6 

7 1 - l3E + 66E2 
- 166~+ 220E4- l56E5+ 56E

6 
- 8E7 

p 
n o 

0 

0 

0 

4 1 
4i = b 

16 2 
5T=ï5 
Bo 1 
bi= 9 

672 _ L 
7! - 15 



The above values are in agreement with Touchard (14, pp.ll7-8] 

who, by means of generating functions, produces relations which make for 

easier computation of values for large n. 

We now consider a problem treated for the first time in the 

literature in 1956 by Mendelsohn (9, p.238). Here the restrictions im-

posed on a random permutation of n integers 1,2, ••• ,n is: "1 is 2nd", 

"n is (n-l)th" and for i = 2,3,4, ••• ,n-1, "i is (i-l)th 11 and "i is 

(i+lhh". Using our method it is required then to evaluate 

Note the last factor of X.is (l-I 1) which is so .for neven. For n 
n,n-

odd the last factor is (1-I 1 ). However the evaluation of Y is ob-n- ,n -n 

tained for general n and ~is used only for illustration. First it is 

observed that there are 2(n-1) factors of Xn,Denote the factors by xi' 

(i = 1,2, ••• ,2(n-l)), as they appear in their natural ordering from 

left to right. Then it is seen that Iijimn: 0 if and only if Iij is 

contained in a factor xi and Imn in a factor xi+2 (i = 1,2, ••• ,2n- ~ 

Renee, using Lemma 5 of the previous chapter, the associated polynomial 

is, 

where [~] is the maximum integer. ~ k 2• Then, for example, f 2(E) 
2 = l-2E+E , 



2 2 -~ 4 f 3(E) = l - 4E + 4E and f 4(E) = l - 6E + llE - 6~ + E • 

We now proceed to obtain a recurrence formula. Write down, 

By the rule of replacement the associated polynomial of 112 121 Xn_2 • 

E2 fn_2(E), where fn(E) was given above. 

Further, 

We now evaluate 112 Xn-l• Suppose E ie written inetead of I 12 before 

actual multiplication. Then the aseociated polynomial is 

where g(E) corresponds to the evaluation of 132 Xn_2• Moreover, the 

aseociated polynomial of 121 Xn-l ie 

Efn_2(E) - E g(E). 

46 
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Renee the associated polynomial of I 12 Xn_1 + r 21 Xn_1 is simply, 

and fina1ly we obtain the recurrence relation 

f (E) = (1-E) f ,(E) + (-E+~) f 2(E) + EY f 3(E) n n-. n- n-

It is interesting to note, that a1though Mende1sohn (9, p.238) 

gives the recurrence formula, he does not give an exact formula for 

the required probabi1ities. 
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CHAPTER 5 

A Second Type of Restricted Permutation. 

In all of the preceding exa.mples, (ij) represented the event "i is j". 

We introduce now a second type of restricted permutation. Here (ij) de-

notes the event "i immediately precedes j". Here also the fundamental 

requirement of quasi-symmetry is fulfilled and in fact, as before, the 

probability of k events occurring simultaneously is either equal to o, 

t 
(n-k)! or o 

1 
• 

n 

impossible if im = in' m F n, or jm = jn' mF n. Further, any event of 

• the form (i1 j 1 )(j1 j 2)(j 2 j
3

) ••• (jk_1i 1 ) cannot occur, that is, hae 

probability zero. For example, in a random permutation of 1,2, ••• ,n , 

the probability that i never immediately precedes i+l,(i = 1,2, ••• ~n-1) 

is required. The required polynomial is found by evaluating (l-I12) 

(l-I23> ••• (1-In-l,n) , where I(ij) = Iij• As no products in the 

multiplication vanish, the required polynomial is f(E) = (1-E)n-l. The 

required probability is then (1-E)n-l • 
0

, where ik f 
0 

= • k and 

th (n-k) l 
\f' k = ni 

Kaplansky [4, pp.911-13) treats two interesting problems dealing 

with permutations of this second type. 

The first is the so called "n - kinga problem". We consider the n 

by n chess-board. What is the probability that if n kinga be placed on 

the board one on each row and one on each column, no two attack each 

other? Kaplansky refere to this problem as "a first cousin, albeit a 

shabby relative of the famous 'n-queens problem". In order to realize 
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the conditions imposed in the general case, consider the case when n = 5 

and the following diagram. 

l 2 3 4 5 

l x 

2 x 

3 x 

4 x 

5 x 

The numbers at the top of the columns represent the five kinga. King 

"number l" is p1aced in row 4, ''king number 2" in row 2 and so on, 

giving us a "4 2 5 l 3" permissible arrangement. Note that once the 

digit 4 is the first digit of this arrangement 114 2 5 1 3 11 , the second 

digit cannot be 3 or 5. Once the second digit is 2, the third cannot be 

1 or 3· Once the third is 5, the fourth cannot be 4 and once the fourth 

is 1, the fifth cannot be 2. In general then, if king "number i" is in 

the jth row, then king number i+1 eannot be placed in the (j-l)th or 

(j+l)th row. If j = l, then the restriction of the (j-1)th row is 

ignored and similarly for the (j+l)th row for j = n. 

Hence given a permutation of the n integers 1,2, ••• ,n the restric

tions are, "1 immediate1y precedfJS 2", "n immediate1y precedes n-1" and 

for i = 2,3,4, ••• ,n-1, "i immediately precedes (i-1)" and "i immediately 

precedes (i+1)". Therefore our prob1em is to eva1uate the product, 

An c (1-Il2)(1-I21)(l-I23)(1-I32) ••• (1-In-1,n)(1-In,n-l) 
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However no method has been found in order to give explicitly, ae in the 

previous examples, the aaeociated polynomial. Following Kaplansky [4~ 

pp.912-13] we proceed as followa: 

Let B be defined by the equation A = B (1-I 
1

). 
n n n n,n-

-Let A , B be the associated polynomiale of A , B respectively. n n n n 

Then the following atatements are true. 

-A =B -EB l n n n-
(a) 

Proof of (a). A K B (1 -I l) n n n,n-

= B - B I n n n,n-1 

= B - B (l-I ) I n n-1 n-l,n-2 n,n-1 

Now B (1 I ) I = C (1-I )(l-I ) I 
n-1 - n-l,n-2 n,n-1 n-1 n-2,n-1 n-l,n-2 n,n-1 

= C (1-I ) I n-1 n-l,n-2 n,n-1 

Consl..der B (l-I · ) I = C (1-I ) I 
n-1 n-l,n-2 n-1,n n-1 n-2,n-1 n-l,n 

Also, it can be easily seen that the associated polynomial of 

C (1-I ) is the same as that of C (1-I 2 1 ). 
n-1 n-l,n-2 n-1 n- ,n-

Further, B 1 (1-I 1 2 > I = n- n- ,n- n-l,n 
B I n-1 n-l,n 

-It follows that A = B - E B l n n n-
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Proof of (b). B = A (1-I ) n n-1 n-l,n 

= A - B (1-I · ) I n-1 n-1 n-l,n-2 n-l,n 

=A 
1

-B I n- n-1 n-l,n 

-Hence B = A l - E B l n n• n-

Using (a) and (b) we obtain 

(c) 

Solving (c) now as in the usual case of difference equations, with 

n ( ) n-1 n-2 · initial values. B1 = 1 and B2 = 1-E we consider1 u = 1-E u -Eu • 

Solving un-2 u2 = un-2 [Cl-E) u-E] we obtain two solutions, 

(d) 

- n n The general solution is then of the form B = Y s + Z t • As n 

- -B1 = 1, B2 = 1-E we can define B
0 

= o. Therefore s olving Y + Z = 0 and 

Y s + Z t = 1 for Y and Z it follows that, 

Thue using (a) and (e) A is found. 
n 

For example for n = 4, 

(e) 

using (e) 



= (1-E) ((1-E) 2 + 1 - 6E + ~] 
2 

= l - 5E + 5E2 
- FY 

63 - t3 2 2 B
3 

= .-___....;;_ = s + st + t 
s - t 

= i [3(l-E)2 
+ 1 - 6E + E~ 

The required probabi1ity is, 

i 4 $ 0 
= (4! - 6·31 + 8•21 - 2•1!) 1 4! 

2 
=41 

ueing (d) 

The two corresponding favourab1e permutations are 3 l 4 2 and 2 4 l 3· 

52 
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