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ABSTRACT 

 

Soft-tissue sarcoma (STS) of the extremities forms a relatively uncommon yet aggressive 

group of neoplasms with high metastatic risk of the disease. The vast majority of STS 

metastases occur in the lungs. Due to the general poor prognosis of patients diagnosed 

with STS lung metastases, there is a clinical need to identify relevant prognostic factors 

as early as possible in the course of staging and treatment management. Recent evidence 

suggests that positron emission tomography (PET) using fluorodeoxyglucose (FDG) and 

magnetic resonance (MR) imaging texture features have the potential to predict the 

outcome of tumours through the assessment of their microenvironment heterogeneity 

characteristics. The goal of this work is therefore to investigate FDG-PET and MR texture 

features as potential early predictors of lung metastasis risk in STS cancer of the 

extremities. 

  

In this study, a dataset of 35 patients with histologically proven STS of the 

extremities was retrospectively analyzed. All patients received pre-treatment FDG-PET 

and MR scans. MR imaging data comprised of T1 - weighted,  T2  fat-saturation (T2FS) 

and short tau inversion recovery (STIR) sequences. The median follow-up period was 29 

months (range: 4 to 85 months). Thirteen patients from the dataset developed lung 

metastases. Six texture features from the gray-level co-occurrence matrix (GLCM) were 

extracted from the FDG-PET, MR and fused FDG-PET/MR scans. In addition, the 

maximum standard uptake value (SUVmax) of the tumours was included in the feature set. 

The fusion of FDG-PET and MR scans was carried out using the discrete wavelet 

transform (DWT) and a band-pass frequencies enhancement technique. Statistical 

analysis was performed using Spearman’s correlation (rho), and multivariable modeling 

using logistic regression. The prediction performance of the different multivariable 

models was assessed using bootstrap resampling by calculating the area under the 

receiver-operating characteristics curve (AUC) and Matthews’ correlation coefficient 

(MCC).  
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The highest univariate prediction of lung metastases was attributed to the SUVmax 

metric (rho = 0.6382,  p < 0.0001). Most texture features extracted from fused scans had 

higher Spearman’s correlation with lung metastases than those extracted from separate 

scans. On separate scans, FDG-PET texture features were generally dominant over MR 

texture features. The highest multivariable prediction of lung metastases was found using 

fused scans and the following 4-parameters model: 0.94*SUVmax − 0.401*PET-

T2FS/STIR--Variance − 6.7*PET-T1--Contrast − 165*PET-T1--Homogeneity + 140. This 

model reached rho = 0.8255, p < 0.0001 on the entire dataset and AUC = 0.956 ± 0.002,  

MCC = 0.829 ± 0.002  in bootstrap testing sets.  

  

Overall, this work indicates the strong potential of FDG-PET and MR texture 

features for the prediction of lung metastases in STS cancer of the extremities. Substantial 

prediction improvements were found using texture features from fused scans and 

multivariable modeling strategies compared to texture features extracted from separate 

scans and univariate analysis. Potentially, this could improve patient outcomes by 

allowing better personalization of treatments and the application of pre-emptive strategies 

to mitigate disease spread.  
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RÉSUMÉ 

 

Les sarcomes des tissus mous (STM) provenant des extrémités forment un groupe 

relativement rare de néoplasme avec un risque métastatique élevé. La grande majorité des 

métastases provenant des STM ont lieu dans les poumons, et le pronostique résultant est 

généralement faible. En ce sens, il est important d’identifier autant de facteurs 

pronostiques pertinents que possible au moment du diagnostique et de la gestion du 

traitement. Certains travaux récents ont permis de démontrer que les caractéristiques 

texturales d’images provenant de la tomographie par émission de positrons (TEP) 

utilisant le fluorodéoxyglucose (FDG) et l’imagerie par résonance magnétique (IRM)  ont 

le potentiel de prédire l’évolution tumorale grâce à l’évaluation des propriétés 

d’hétérogénéité biologique des tumeurs. Donc, le but de ce travail est d’évaluer le 

potentiel des caractéristiques texturales d’images FDG-TEP et IRM en tant que prédicteur 

du risque de métastases aux poumons pour le cancer des STM provenant des extrémités.  

  

Dans cette étude, une cohorte de 35 patients diagnostiqués avec des STM aux 

extrémités a été rétrospectivement analysée. Tous les patients ont reçu un scan FDG-TEP 

et un scan IRM avant leur traitement. Les séquences IRM qui ont été utilisés dans 

l’analyse sont: T1,  T2  par saturation des gras (T2FS) et STIR. Les patients ont été suivis 

sur une période médiane de 29 mois (intervalle: 4 à 85 mois). Treize patients de la 

cohorte ont développé des métastases aux poumons. Six caractéristiques texturales 

d’images provenant de la matrice de co-occurrence des niveaux de gris (GLCM) ont été 

extraites des scans FDG-PET, IRM et FDG-PET/IRM fusionnés. De plus, la valeur 

maximale de consommation standard des tumeurs (SUVmax) a été incluse dans l’analyse. 

La fusion des scans a été effectuée grâce à la transformée d’ondelettes discrètes et grâce à 

une technique de renforcement des fréquences passe-bandes. L’analyse statistique a été 

effectuée en utilisant la corrélation de Spearman (rho), et l’analyse multivariable en 

utilisant la régression logistique. Les performances de prédiction des différents modèles 

multivariables ont été évaluées en calculant 2 métriques à partir de la technique de ré-

échantillonnage  « bootstrap »: L’aire sous la courbe de fonctionnement (AUC) et le 

coefficient de corrélation de Matthews (MCC).   
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 La plus haute prédiction univariée est attribuée à SUVmax (rho = 0.6382,  

p < 0.0001).  La plupart des caractéristiques texturales extraites des scans fusionnés 

possèdent des coefficients de corrélation Spearman plus haut que celles extraites des 

scans séparés. Dans le cas des scans séparés, les caractéristiques texturales provenant de 

FDG-TEP sont généralement dominantes par rapport à celles provenant des scans IRM. 

La plus haute prédiction multivariable est provenue des scans fusionnés avec le model 

suivant: 0.94*SUVmax − 0.401*PET-T2FS/STIR--Variance − 6.7*PET-T1--Contrast − 

165*PET-T1--Homogeneity + 140. Ce model a atteint des résultats de rho = 0.8255,

p < 0.0001  sur l’ensemble des patients et AUC = 0.956 ± 0.002,  MCC = 0.829 ± 0.002  

sur les ensembles de tests « bootstrap ».  

  

De façon générale, cette étude indique le fort potentiel des caractéristiques 

texturales provenant des images FDG-TEP et IRM pour prédire les métastases aux 

poumons dans le cas des patients atteints des STM aux extrémités. Une amélioration 

substantielle des prédictions a pu être obtenue en utilisant les caractéristiques texturales 

des scans fusionnés et des stratégies d’analyse multivariable comparativement aux 

caractéristiques texturales des scans séparés et à l’analyse univariée. Potentiellement, cela 

pourrait mener à l'application de stratégies préventives pour atténuer la propagation du 

cancer des STM et à l’application de traitements mieux adaptés aux besoins des patients. 
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CHAPTER 1: INTRODUCTION 

 

1.1 FDG-PET Imaging 

The development of hybrid PET/CT imaging in the past decade has created a revolution 

in oncology, a branch of medicine concerned with the diagnosis and treatment of cancer 

[1] [2]. Indeed, PET/CT was selected as the invention of the year by TIMES magazine in 

2000. The combination of functional imaging in positron emission Tomography (PET) 

with the anatomical information in computed tomography (CT) scans provides an 

efficient tool to accurately localize metabolic abnormalities in the human body. Thanks to 

the significant improvements made in the performance of this imaging technology in the 

last decade, PET now plays an increasing role in the diagnosis, staging and monitoring of 

therapy response of cancer [3]. For example, PET provides great assistance in the 

detection of distant metastases that may not be apparent by routine staging procedures 

and thus has profound impact on clinical management and therapy decision-making; just 

to list a few, examples in different cancer types such as non-small cell lung cancer 

(NSCLC), lymphoma, colorectal cancer and malignant melanoma can be found in the 

literature [4] [5] [6] [7].  

Fundamentally, PET imaging starts with the injection of a radiopharmaceutical 

tracer in the body. The radiopharmaceutical is comprised of a radionuclide that is attached 

to a chemical compound, which acts like a physiological analog known as the tracer. The 

tracer is fabricated in order to target the metabolic function of interest of tumours 

undergoing a certain biological process such as, for instance, glucose uptake. On the other 

hand, the radionuclide is used in the imaging acquisition process and acts as a source of 

radiation emission captured by the imaging scanner. Fundamentally, radionuclides are 

unstable isotopes undergoing transient radioactive decay. Proton-rich isotopes with low 

atomic mass number are used in PET imaging as they undergo the following positron 

decay process: 

p→ n + e+ +ν                                                      (1.1) 
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In the decay process of Equation (1.1), one proton (p) of the unstable nucleus of the 

radionuclide gets converted into a neutron (n). The energy liberated in the conversion 

process is transferred to a positron (e+) and a neutrino (ν), which are ejected from the 

nucleus with a continuous kinetic energy spectrum. Figure 1.1 depicts the physical 

principles of PET starting from the emission of the positron. 

 

 

Figure 1.1. Physical principles of PET (taken from [8]). 

 

Once the positron is emitted at a specific location in the body, it travels a few 

millimeters in tissues depending on its energy and undergoes several scattering events. At 

the end of its track, the positron annihilates with an electron (e-) and the rest mass energy 

of the two particles is converted into two photons each of energy of 511 keV and nearly 

anti-parallel to each other. The detection of these two coincident photons along this line 

of response (LOR) allows inference about the location of the radiopharmaceutical in the 

body. The detection of annihilating photons is recorded in coincidence by several rings of 
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radiation detectors that are placed around the outside of the patient in the PET scanner 

(and therefore detects photons escaping from the inside of patients). A single detector on 

this ring is made of a scintillating crystal that converts the high-energy photons into brief 

pulses of visible light every time it is struck by an annihilation photon. The crystal is 

optically coupled to a photomultiplier tube (PMT) that converts and amplifies the 

scintillation light into an electrical signal. By capturing coincident annihilating photons 

along many LORs, it is possible to reconstruct a spatial map of the radioactivity 

concentration [MBq/kg] of the radiopharmaceutical in the body using basic principles of 

the Radon projection-slice theorem [9]. For a more detailed description of the underlying 

physics of PET imaging and image reconstruction, the reader is referred to some excellent 

reviews in references [8] [10] [11].  

Nowadays, the most widely used radiopharmaceutical in the clinic for cancer 

detection and staging is fluorodeoxyglucose (FDG). As shown in Figure 1.2, the FDG 

tracer is a glucose analog in which the positron-emitting radionuclide fluorine-18 (18F) 

with half-life of 110 minutes substitutes a normal hydroxyl group in the glucose 

molecule.  

 

 

Figure 1.2. Fluorodeoxyglucose (FDG) compound (taken from [12]). 

 

Glucose plays a central role in living cells as the fuel to cellular energy 

metabolism. Warburg [13] was among the first to demonstrate the altered glucose 

metabolism of malignant tumour cells. Essentially, one common property of cancer cells 
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is an enhanced rate of glucose uptake in the presence of oxygen. The observation of this 

effect in cancer cells has been repeatedly verified [14]. FDG-PET scans reveal regions of 

significantly increased glucose uptake in the human body, a dominant characteristic of 

tumour cells over normal tissues due to their high metabolic activity in support for rapid 

growth. FDG-PET imaging thus facilitates the quantification of glucose metabolic rates 

and subsequently the detection of most primary and metastatic cancers [15]. 

In most institutions, the injection of the radiopharmaceutical is done 

approximately 1 hour prior to the FDG-PET scan [1]. This uptake phase allows for the 

tracer to circulate through patient’s blood and reach tissue targets. Once the scan is 

performed, the radioactivity concentration map of the human body is converted into a 

semi-quantitative measure known as the standard uptake value (SUV) in order to account 

for injection and body weight variability as defined in Equation (1.2). This metric 

provides a standard in the medical community for reporting the uptake measurements of 

FDG-PET scans in the form of SUV maps.  

SUV (t)=
radioactivity concentration at time t [MBq / kg]

injected dose at time t0 [MBq]
*body weight [kg]   (1.2) 

An important metric in oncology studies is the value of the voxel that yields the 

maximal SUV within the tumour region. This metric is denoted as SUVmax. Nevertheless, 

there are several factors that can contribute to SUV variability and may impact its 

usefulness [16] [17].  

 

1.2 MR Imaging 

The importance of magnetic resonance (MR) in clinical imaging has exceeded most hopes 

of researchers from the 1980’s due to its ability to manipulate and adjust tissue contrast 

with increasingly complex pulse sequences [18]. Indeed, MR imaging is without a doubt 

one of the wonders of modern medicine as one can generate contrast images that report a 

very large number of physical (e.g., proton density, T1  or T2  based contrast, etc.) and 

physiologic phenomena (e.g., water diffusion, tissue perfusion, oxygen levels, 

susceptibility variations, etc.) based on the rich physics of nuclear magnetic resonance 

(NMR) [19]. From an anatomical point of view, MR imaging provides much superior 
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soft-tissue contrast than CT images without loss of spatial resolution. More importantly, 

MR scans are non-invasive, as they do not expose patients to the undesirable x-ray 

radiation as in the case of CT scanning. These advantages of MR over CT scans has led, 

in the last few years, to the developments of whole-body imaging systems which integrate 

PET and MR imaging into one device [20].  Many experts consider the recent 

development of the hybrid PET/MR imaging technology as a major breakthrough that 

could potentially revolutionize clinical imaging practice [21] [22].  

The NMR phenomenon occurs in atoms possessing a non-zero nuclear spin 

angular momentum. Due to its abundance in the human body, the hydrogen atom (1H) is 

most often used in MR imaging. In the presence of a large external and constant magnetic 

field B0,  a net ensemble of proton spins (1H) will align in the B0  direction such that a net 

magnetization vector M 0  will be created in tissues. This effect is depicted in Figure 1.3.  

 

 

Figure 1.3. Alignment of nuclear spins in the presence of an external field (taken from [23]). 

 

The coupling of the magnetic moment of nuclear spins with the angular 

momentum of nucleons causes the magnetization vector M 0  to precess around B0  with 

an angular frequency known as the Larmor frequency (ω 0 ) : 

ω 0 = γ B0                                                          (1.3) 

where γ  is defined as the gyromagnetic ratio and is nuclei-specific. In the case of 1H, γ  is 

roughly equal to 42.58 MHz/Tesla. Let B0  lie in the z-direction with M 0  precessing 
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around it in its equilibrium position. By using a radiofrequency coil, a radiofrequency 

pulse (RF) with time-varying (general case) magnetic field B1(t)  tuned to Larmor 

frequency ω 0  can be applied in the transverse plane (xy-plane). As a result, M 0  is excited 

into the transverse plane as depicted in Figure 1.4. Then, M 0  will precess towards the 

transverse plane for a duration τ by which B1(t)  is applied. The resulting angular 

displacement θ by which M 0  is rotated away from the longitudinal axis (z-axis) is given 

by: 

θ = γ B1(t)dt
0

τ

∫                                                     (1.4) 

After the RF pulse is completed, the transverse magnetization will decay with 

characteristic relaxation time T2  (spin-spin relaxation time constant), and the longitudinal 

magnetization will recover with characteristic time T1  (spin-lattice relaxation time 

constant) to its previous equilibrium state governed by B0.  The rotating magnetization in 

the transverse plane then induces an oscillating electrical signal that can be captured and 

demodulated by two amplified radiofrequency coils placed at right angles in the 

transverse plane.  

 

 

Figure 1.4. Principles of magnetization excitation and signal acquisition (adapted from [19] and 
[24]). 

 

A general formalism known as the Bloch equation describes both the precession 

of the magnetization vector in 3D space due to arbitrary applied magnetic fields as well as 

the transverse and longitudinal relaxations: 
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dM
dt

=M × γ B−
Mxi +My j

T2
−
(Mz −M 0 )k

T1
                             (1.5) 

Now, in order to generate an image, spatial localization is necessary. This is achieved by 

applying different gradients of magnetic fields in addition to the main field B0  such that 

the total field strength varies in space. In this manner, the frequency of precession of 

spins varies with location since it is proportional to the magnetic field strength as shown 

in Equation (1.3). Fundamentally, the signal acquired at a given time from the receiving 

coils contains the contributions of all excited spins spatially oscillating with different 

frequencies as governed by the gradient fields applied at that particular time. In other 

words, the intensity of the signal at a given time represents one point of the Fourier space 

of the MR image, known as the k-space. Taking the inverse Fourier transform of the time 

signal thus linearly maps the contribution of each frequency component to its 

corresponding spatial location. This is the central concept allowing the formation of MR 

images. The vast variety of contrasts offered in MR imaging depends on the timing and 

strength of the different gradients used in the MR sequences. For example, a spin-echo 

sequence can be used to form an image where the contrast is based on the differences in 

T1  or T2  relaxation times of the different tissues of the human body, which is due to their 

different molecular environments. Figure 1.5 illustrates the formation of a typical spin-

echo sequence. First, a 90° RF pulse is employed at the beginning of the sequence. 

Simultaneously, a slice selection gradient (Gss) is applied such that only spins within a 

slice of interest are excited. At time TE/2, spins have started to dephase by a certain 

amount and a 180° RF pulse is applied to invert the phase of spins. The spins then start to 

rephase such that at the echo time (TE), they are refocused and a high intensity spin-echo 

(SE) signal is created from the constructive interference of the spins. At time TE, the 

readout is performed by the frequency-encoding gradient (Gfe) in order to fill one line of 

the k-space. The process is reproduced at the repetition time (TR) for another line of the 

k-space by using a different phase-encoding gradient (Gpe) strength. The process goes on 

for many TRs until the whole k-space is sampled. TR governs the time by which the 

longitudinal magnetization can recover, whereas TE governs the time by which the 

transverse magnetization can decay. Hence, a T1 - weighted  image will be formed for 
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short TR ~ T1  and for short TE. A T2 - weighted  image will be formed for long TR and 

long TE ~ T2.  

 

 

Figure 1.5. Typical spin-echo sequence (taken from [25]). RF: Radiofrequency pulses, Gss: slice 
selecting gradient, Gpe: phase-encoding gradient, Gfe: frequency encoding gradient, SE: spin-
echo, TE: echo time, TR: repetition time. 

 

In order to form images with other types of contrast, many other kinds of MR 

sequences exist for different purposes. One class is defined as fat-suppression sequences 

and its main purpose is to enhance tumour visualization from its surrounding. T2  fat-

saturation (T2FS) and short tau inversion recovery (STIR) sequences are part of this class. 

T2FS ([26] [27]) and STIR ([28] [29]) sequences are both fat-suppression techniques that 

have been clinically employed since the 1980’s to emphasize the soft-tissue components 

in human body by supressing the signal coming from fat. To conclude this section, a brief 

description of these two sequences is presented. 

STIR 

Inversion-recovery methods exploit the fact that the characteristic time T1  of fat is shorter 

than that of water. The sequence first starts with a 180° RF pulse such that the spins 

become anti-parallel to the main magnetic field. Subsequently to the pulse, the 

longitudinal magnetization of fat will return to equilibrium faster than the longitudinal 
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magnetization of water. At one point in time, the longitudinal magnetization of fat will be 

null as it crosses the xy-plane. If a 90° pulse is applied at that time, only the magnetization 

of water will be transferred to the xy-plane to produce the signal of interest. Hence, for the 

rest of any subsequent standard MR sequence, the fat spins will not contribute to the 

signal. The sequence has to be repeated with a long enough TR such that all spins have 

time to recover.  

T2FS 

This form of fat suppression technique exploits the small difference in resonant frequency 

between fat and water protons, which is related to their different electronic environments 

(chemical-shift effect). The sequence starts with a spectrally selective 90° pulse that 

ideally tips only the fat spins into the transverse plane. Only fat spins would contribute to 

the signal at this point. However, a spoiling gradient is applied immediately after the 90° 

pulse in order to dephase the fat spins in the transverse plane. As a result, fat signal 

decays to zero without affecting the water spins in their equilibrium state. The fat signal is 

then said to be “saturated” such that its contribution is suppressed in the subsequent 

standard MR sequence. The fat saturation step must then be repeated for every repetition 

of the MR sequence.  

For the interested reader, several excellent reviews can be found in the literature 

and would give more detailed information about MR physics and pulse sequences variety, 

such as the ones from Nishimura [30] and Bernstein et al. [31].   

 

1.3 Soft-tissue Sarcomas 

Sarcomas are divided into two main groups of neoplasms: bone and soft-tissue sarcomas. 

Soft-tissue sarcomas (STS) constitute a heterogeneous group of malignant neoplasms of 

mesenchymal cell origin (connective tissue derived from mesoderm). More than 50 sub-

types are recognized by the World Health Organization (WHO) [32] [33]. STS form a 

relatively uncommon type of cancer representing approximately 0.7% of new adult 

malignancies in the United States [34], but the majority (approximately two-thirds) of 

new cases are either intermediate or high-grade tumours [35]. STS tumours may arise in 

virtually all sites (e.g., head and neck, chest wall, retro-abdominal, etc.), but the 
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extremities is the most common site of origin (> 50%)  with about twice as much primary 

sites being in the lower extremities as compared to the upper extremities [35] [36]. STS 

are relatively large compared to other types of tumours. In general, the different forms of 

therapy lead to excellent local control of STS of the extremities, but approximately 25% 

of these patients develop distant metastases [37]. In the case of high-grade tumours 

specifically, the metastatic rate goes up to approximately 50% [35]. The lungs are the site 

that accounts for approximately 80% of the metastatic cases in STS cancer of the 

extremities, more than in any other STS primary site [38]. In 1999, Billingsley et al. [39] 

retrospectively analyzed the outcomes of 3149 STS patients admitted at their institution 

from 1982 to 1997. A total of 719 patients either developed or presented with lung 

metastases. The study established that the 3-year actuarial rate of patients with lungs 

metastases is approximately 25%. Furthermore, Rehders et al. [40] claimed that STS 

patients with lung metastases do benefit from surgical treatments, but the authors also 

established that after the complete resection of the lung metastasis, the 5-year survival 

rate is still at the low rate of 25%. Due to this general poor prognosis, it is thought that 

better systemic therapies at earlier stages are needed for the management of lung 

metastases in STS of the extremities [35].  Standard treatments of primary STS of the 

extremities currently involve a combination of radiotherapy and surgery, but other 

adjuvant therapies could be considered for patients with high risk of lung metastases. For 

example, aggressive chemotherapy regimens or targeted cancer therapy adapted to the 

histopathology of the tumour could be considered once a patient is recognized to be more 

at risk of developing distant metastases [41]. In general, the development of highly 

personalized treatments and mechanisms for early metastasis detection should give a 

better chance to patients to overcome cancer.  

The prognosis of STS is strongly related to several factors [42]. In 2002, Kattan et 

al. [43] published the results on the development of a nomogram that combines clinical 

and pathological predictor variables for the endpoint of postoperative sarcoma-specific 

death. This nomogram is nowadays used in many clinics to assess the aggressiveness of 

STS at diagnosis. The authors used a database of 2136 STS tumours from prospectively 

followed adult patients at the Memorial Sloan-Kettering Cancer Center (MSKCC) and 
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used bootstrapping techniques to validate the nomogram. The nomogram accepts age at 

diagnosis, tumour size (< 5,  5 to 10 cm or >10  cm), histologic grade (high or low), 

histologic sub-type (fibrosarcoma, leiomyosarcoma, liposarcoma, malignant fibrous 

histiocytoma, malignant peripheral nerve tumour, synovial or other), depth (superficial or 

deep) and site (upper extremity, lower extremity, visceral, thoracic, trunk, 

retrointraabdominal or head and neck) as input variables to calculate the postoperative 

probability of 4, 8 or 12-year sarcoma-specific death. Recently, another model has been 

suggested as a complement to the one from the MSKCC. Carneiro et al. [44] proposed to 

use the combination of size, vascular invasion, necrosis and peripheral tumour growth 

patterns as a new prognostic model in STS of the extremities. The investigators used a 

dataset of 239 patients and achieved a prediction of high risk of metastasis with 74% 

sensitivity and 85% specificity.  

The diagnosis and staging of STS is performed primarily with the use of MR and 

CT scans as well as with targeted biopsies. Due to the resulting excellent soft-tissue 

contrast, MR imaging is the procedure of choice for diagnosing STS [45]. It has also been 

shown that dynamic contrast-enhanced MR imaging (DCE-MRI) can be used to assess 

treatment response of STS [46] [47] [48]. However, staging studies must also include a 

CT scan of the chest in order to investigate for possible metastatic disease [42] [49]. 

Moreover, several studies have demonstrated that PET imaging could be successfully 

used in STS cancer for predicting the prognosis, for staging the disease and for assessing 

the response to therapy [50]. For example, from a dataset of 50 STS patients, 

Schwarzbach et al. [51] identified a trend where different SUV metrics (mean, median, 

maximal, etc.) increase with tumour grade, although the authors did not report any 

specific correlation coefficients. Although this is still a controversial debate, SUVmax is 

perceived to be a more useful value than the average SUV of the tumour region in high-

grade STS since it is not diminished by large necrotic areas or haemorrhage [32]. In fact, 

Eary et al. [52] demonstrated the correlation of SUVmax with typical cancerogenesis 

processes such as tumour cellularity, mitosis Ki-67 level (proliferation marker) and p53 

level (cell growth regulation product). Also, Eary et al. [53] used a database of 238 

patients and showed that SUVmax is an independent predictor of survival and disease 
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progression using Kaplan-Meier curve analysis. All these findings demonstrate that 

SUVmax could be used as a marker of tumour biological aggressiveness in STS of the 

extremities. More importantly, this metric can be acquired with minimal invasiveness and 

without the sampling bias inherent to biopsies. Indeed, the biopsy from a small portion of 

the tumour may miss clinically significant high-grade areas [54]. However, we should 

keep in mind that a single voxel of FDG uptake (SUVmax) may be subject to variability and 

may not properly explain heterogeneous tumour behaviour. In order to obtain a more 

complete description of STS characteristics, O’Sullivan and co-workers [55] [56] 

analyzed the spatial heterogeneity of the FDG uptake of these tumours. From a dataset of 

179 STS patients, the investigators developed a metric based on the deviation of the FDG 

distribution within the tumour region from a unimodal elliptically spatial pattern 

incorporating tumour boundary information. They established that the degree of 

heterogeneity of STS is a major risk factor that is associated with patient death.  

To summarize this section, the management of STS represents a significant 

diagnostic and therapeutic challenge. Sarcomas are relatively uncommon but yet 

comprise a wide variety of entities. The prognostic evaluation of STS by an expert team is 

thus desirable [57]. A better distinction between low-grade and high-grade tumours is 

clinically needed in order to individualize treatment and consequently improve survival. 

This is especially true in the case of patients with lung metastases due to the resulting 

general poor prognosis. It is important to compile as many complementary prognostic 

factors as possible allowing for better prediction of lung metastases in STS patients, since 

their presence or absence can significantly influence the choice of treatment [58]. The 

development of new image analysis techniques that could provide better understanding 

and assessment of tumour aggressiveness than what is currently provided by traditional 

means is therefore desirable. Patients with STS of the extremities would certainly benefit 

from such techniques since the extremities is the most common site of origin of primary 

STS and the one from which lung metastases develop the most frequently. 
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1.4 Assessment of tumour biological heterogeneity 

1.4.1 Overview 

It is now recognized that tumours do not represent a homogeneous entity but rather can be 

composed of multiple clonal sub-populations of cancer cells. Differing properties can be 

attributed to the different sub-populations in terms of growth rate, expression of 

biomarkers, ability to metastasize, and immunological characteristics [59]. Such 

intratumoral differences are related to the concept of tumour heterogeneity, a 

characteristic that can be observed with significantly different extents even amongst 

tumours of the same histopathological type. As shown in the image of Figure 1.6, 

intratumoral variations in STS can be observed from diagnostic images such as MR T2FS 

scans. Different sub-regions representing different cell types can clearly be seen in that 

image. Just to name a few, differences in metabolic activity, cell proliferation, 

oxygenation levels, pH, drug delivery, blood vasculature and necrotic areas characterize 

the different cell sub-populations within a tumour. These variations greatly influence the 

sensitivity to therapeutic response [60], as observed in chemotherapy ([61] [62]) and 

radiation therapy ([63] [64]) for different cancer types.  

 

 

Figure 1.6. Example of a soft-tissue sarcoma of the leg from a MR T2FS scan. 
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Ideally, the study of tumour heterogeneity should provide molecular signatures 

specific to the patient to be treated such that tumour aggressiveness and sensitivity to 

therapeutic response can be assessed prior to treatments. Thereafter, this would allow the 

individualization of treatments and eventually, improved outcomes. Different techniques 

can be employed in order to identify prognostic factors from histopathological biopsies. A 

technique that has received much attention in the last decade performs digital analysis of 

nuclei images of cancer cells. This technique attempts to find nuclear signatures that are 

statistically significant prognostic factors of tumours through the spatial arrangement of 

gray levels in histopathological images. An excellent review of this method known as 

statistical nuclear texture analysis can be found in reference [65]. However, one major 

drawback of such approach is that the image analysis can only be performed in vitro and 

on small sections of the tumour. Studying tumour heterogeneity from histopathological 

biopsies is extremely difficult since the “answer” significantly varies depending on which 

part of the tumour was sampled [66]. An additional difficulty is that the knowledge of the 

characteristics of individual components of a tumour is not sufficient to predict the 

behaviour of the whole [59]. As a result, texture analysis of the whole tumour volume and 

from in vivo images can be further appreciated as a promising approach for analyzing 

tumour heterogeneity. This will be the subject of the next sub-section as well as the main 

subject of the work presented in this thesis. 

1.4.2 Texture analysis in FDG-PET and MR imaging 

The quantification of tumour heterogeneity using FDG-PET and MR imaging is an active 

area of research incorporating many different techniques such as selective regions of 

interest, cluster analysis, selective classification, histogram analysis, texture mapping and 

spatial geometric approaches [67]. In the case of FDG-PET, it has been demonstrated that 

FDG uptake is dependent on the tumour microenvironment such that different regions of 

low oxygenation levels (hypoxia), cellular proliferation, blood flow and necrosis 

correlates either positively or negatively with FDG uptake [68] [69]. In the case of MR 

imaging, the vast variety of contrasts allowed by the many different types of sequences 

can definitely play a role in the assessment of tumour physiology and the identification of 

cell sub-populations [70]. In addition to anatomical imaging, MR allows functional 

imaging of biological processes in the human body. For example, diffusion-weighted MR 
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imaging (DW-MRI) quantifies the degree of isotropic water diffusion in extracellular 

space as affected by the size and the distribution of cellular populations. It has been 

shown that DW-MRI can be used to assess regional cellularity and the aggressiveness of 

tumours [71] [72]. FDG-PET and MR scans can thus reflect intratumoral heterogeneity 

and can provide methods that would potentially lead to a better understanding of tumour 

biological complexity. However, the study of tumour heterogeneity should also be 

directed towards the identification of useful prognostic factors such that physicians can 

choose the best therapeutic approach for patients affected by cancer. It is accepted in the 

literature that tumours with highly heterogeneous metabolism are likely associated with 

high metastatic potential that thereafter can lead to poor outcomes [73] [74]. Hence, the 

development of new prognostic factors that can robustly identify aggressive tumours with 

high metastatic risk as early as possible in the course of diagnosis and treatment 

management is profoundly desirable. With this is in mind, the application of texture 

analysis for tumour outcome prediction has very recently gained more attention in the 

scientific community. 

Texture analysis is concerned with the spatial distribution of gray level variations 

within an image. Textures are useful to quantify the complexity of an image as it pertains 

to the extent, frequency and spatial arrangement of these variations [75]. As an example, 

Figure 1.7 shows an image with five different regions, each represented by different 

textural properties. It can clearly be seen that the five different regions of that image have 

different spatial arrangements of gray levels. 

 

 

Figure 1.7. Image texture example (taken from [76]). The image contains 5 regions with different 
textural properties. 
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The statistical distribution of gray levels defining the texture of an image can be 

quantified in many ways depending on what type of information is analyzed. Just to name 

a few, typical texture features can be extracted from co-occurrence matrices, run-length 

matrices, autocorrelation features, fractals or from the wavelet transform. Chapter 2 will 

describe in details one texture analysis method that have been used for more than 30 years 

in the pattern recognition community. The reader is referred to some excellent reviews in 

the literature ([76] [77] [78]) for more information about the variety of textures that can 

be extracted from an image. 

In medical imaging, textures are primarily used for the classification of benign 

versus malignant lesions as well as for the segmentation of tumours. This has been 

demonstrated in the literature for different cancer types for both FDG-PET ([79] [80] [81] 

[82]) and MR imaging ([83] [84] [85] [86] [87] [88]). Some groups have also studied the 

variability and the reproducibility of FGD-PET textural measurements in terms of 

differing acquisition protocols, reconstructions parameters and time elapsed between 

acquisitions [89] [90]. Likewise, the influence of MR acquisition protocols and parameter 

variations on textural measurements has been investigated [91] [92] [93]. Moreover, some 

studies have investigated the potential of textural features to assess cancer treatment 

response [94] [95] [96]. In this case, the change in texture features from before to after the 

treatments is reported. Yet, the application of interest in this study is texture analysis 

performed on FGD-PET and MR whole tumour volumes for improved outcome 

prediction such as local recurrence, distant metastases and survival. The proof of concept 

implies that textural measurements are to be done retrospectively on diagnostic images 

obtained prior to any treatment and analyzed after a certain period of patient follow-up. 

Thereafter, the association of features with the different outcomes is investigated. The 

goal of this general methodology is to retrospectively identify prognostic factors to be 

thereafter used prospectively in order to assess the potential risk of a given outcome at the 

diagnosis of cancer. To date, very few publications have reported this type of work. In 

2009, El Naqa et al. [97] were among the first to present a robust methodology dedicated 

to the prediction of tumour outcomes using texture features. The study retrospectively 

evaluated intensity-volume histogram metrics, shape features and texture features from 

the gray-level co-occurrence matrix (GLCM) of pre-chemoradiotherapy diagnostic FGD-
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PET scans of 14 cervix cancer patients and 9 head and neck cancer patients. Using 

logistic regression, the study respectively combined an intensity-volume histogram metric 

with Energy texture and an intensity-volume histogram metric with a shape metric in 

order to respectively separate disease persistence patient classes in cervix cancer and 

overall survival patient classes in head and neck cancer with good statistical power, as 

demonstrated by the respective Spearman’s correlation coefficient obtained on the entire 

patient cohorts (rho = 0.49,  p = 0.04  and rho = 0.87,  p = 0.0012).  In 2011, Maday et 

al. [98] retrospectively analyzed DCE-MRI images of 17 breast cancer patients in order to 

predict response to neoadjuvant chemotherapy. The authors extracted Gabor texture 

features from the baseline scans before treatment and were able to classify responders and 

non-responders with an accuracy of 69%. Also in 2011, Tixier et al. [99] evaluated 6 

texture features from the GLCM of pre-treatment FDG-PET images for the prediction of 

response to chemoradiotherapy of 41 patients with esophageal cancer. Response was 

assessed one month following therapy and patients were classified as non-responders 

(NRs), partial responders (PRs) and complete responders (CRs). The authors showed that 

Entropy and Homogeneity GLCM texture features could differentiate between the 3 

classes of response with a higher sensitivity (76% to 92%) than any SUV measurement, 

where the best discrimination was obtained between NRs and (PRs + CRs). Finally, in 

2012, Vaidya et al. [100] retrospectively analyzed pre-treatment FDG-PET and CT 

images of 27 patients with non-small cell lung cancer. Local failure and loco-regional 

failure to radiotherapy was assessed at least 6 months after the completion of treatment 

for all patients. It was shown that the combination of one intensity-volume histogram 

metric from FDG-PET and one from CT provided better separation of local failure 

(rho = 0.5908,  p = 0.0013)  and loco-regional failure (rho = 0.4853,  p = 0.0067)  patient 

classes than texture features.  

To summarize this section, it has been shown in the literature that tumour 

heterogeneity is associated to aggressive tumours with high metastatic potential. In order 

to improve patient outcomes, the importance of identifying relevant prognostic factors 

that can better assess the metastatic risk of tumours at the moment of diagnosis is crucial. 

Texture analysis of medical images has recently been shown to be a promising technique 
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for tumour outcome prediction. This progress could pave the way to better 

individualization of treatments, but much research efforts are still required in order to 

develop and validate new image processing techniques that enable to robustly assess and 

predict tumour aggressiveness.  

 

1.5 Thesis workflow, objectives and organization 

Considering the high risk of lung metastases in STS cancer of the extremities and the 

resulting poor survival rate, the general objective of this work is to develop new and 

robust prognostic factors for the prediction of lung metastasis risk at the time of diagnosis 

of the primary tumour. This information could eventually assist physicians in their choice 

of treatment and potentially improve survival. Figure 1.8 summarizes the major concepts 

and the general methodology used in this work. 

 

 

Figure 1.8. Thesis workflow.  
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Overall, several Haralick texture features extracted from the gray-level co-

occurrence matrix (GLCM) of FDG-PET, MR and fused FDG-PET/MR images are used 

to assess the tumour heterogeneity of STS of the extremities.  Our working hypothesis is 

that these features (via the differences in tumour heterogeneity and cell composition) 

should allow to discriminate between two categories of STS of the extremities: those that 

metastasize to the lungs (MetsLungs) and those that do not metastasize to the lungs (No 

MetsLungs). Thereafter, different statistical modeling techniques are employed in order to 

identify a general model formed from a subset of features and optimized for the 

prediction of lung metastases. More specifically, the major objectives of this study are 

thus to:  

1. Investigate the potential of texture features from pre-treatment FDG-PET, MR and 

fused FGD-PET/MR scans for the prediction of lung metastases in STS cancer of 

the extremities. 

2. Investigate linear combinations of texture features for the prediction of lung 

metastases in STS cancer of the extremities. 

3. Identify a model of linear combination of texture features that would offer best 

prediction performance on an independent patient dataset. 

To the best of our knowledge, this is the first study that explores the potential of 

texture features for the prediction of lung metastases in STS cancer. More importantly 

and still to the best of our knowledge, this is the first study exploring the potential of 

texture features from fused FDG-PET/MR scans for the assessment of biological 

properties of any type of cancer. Our hypothesis is that the combination of FDG-PET and 

MR spatial information does result in the creation of new composite textures that could 

help to better identify STS tumours with high metastatic risk.  

The organization of the thesis goes as follows: Chapter 2 briefly describes the 

theory behind some of the techniques employed in this work. The theory of texture 

analysis using the gray-level co-occurrence matrix (GLCM) is first elaborated. Then, the 

theory behind the discrete wavelet transform is detailed, as it provides the mathematical 

tool of choice in this work to perform the fusion of FDG-PET and MR scans. Finally, the 
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statistical methods used to assess the prediction of the clinical endpoint of interest are 

described. Chapter 3 thereafter describes in details the methodology of this work. Chapter 

4 is dedicated to the presentation of results. A discussion about the implication of the 

results is offered in Chapter 5. In this chapter, an uncertainty analysis of the best linear 

model found in this work as well as a discussion about the validity of the model evaluated 

from permutation tests is also provided. Finally, Chapter 6 concludes the thesis and 

presents future work to be done subsequently to this study. An appendix providing further 

justification of the methods employed in this work is also provided at the end of the 

thesis. 
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CHAPTER 2: BACKGROUND 

 

2.1  GLCM-based texture features 

In 1973, Haralick et al. [101] proposed the concept of texture analysis from the gray level 

co-occurrence matrix (GLCM). In their original pioneering work, the investigators took 

into account the statistical nature of textures, which is based on the assumption that 

texture information is contained in the overall spatial relationship that the gray levels 

have to one another. More specifically, the authors made the hypothesis that the texture 

information in an image could be adequately specified by the matrix of frequencies of 

occurrence Pd ,θ (i, j)  with which gray level i and gray level j are neighbours by a distance 

d and angle θ (i.e. the GLCM). This concept is shown in Figure 2.1 for d = 1  and 4 

different angles θ = 0°, 45°, 90°, 135°.   

 

 

Figure 2.1. GLCM concept (taken from [102]). The GLCM is computed by considering adjacent 
neighbours of every pixel of an image that are separated by a distance d and angle θ. 

 

The size of the GLCM is dependent on the number of gray levels (Ng) in a given 

image. The entries of row i and column j of the GLCM specify the number of times gray 

levels i and j are neighbours by a given distance and angle. Hence, the GLCM is of size 

(Ng × Ng). In order to compute the GLCM, the image is scanned such that the 

neighbouring properties of all pixels are verified. Figure 2.2 provides an example of the 

GLCM computation of a test image with d = 1  and θ = 0°, 45°, 90°, 135°.  
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Figure 2.2. GLCM computation example (adapted from [101]). a) Test image, b) GLCM with d =1 
and θ = 0°, c) GLCM with d =1 and θ = 90°, d) GLCM with d =1 and θ = 135°, e) GLCM with d =1 
and θ = 45°. Every GLCM is of size 4X4 since the test image contains 4 different gray levels.  

 

In applications for which the directional dependence of textures is not studied 

(such as the one presented in this work), a common practice is to average the 

corresponding entries of the 4-directional GLCMs such that only one matrix describes the 

isotropic textural properties of the image. The resulting entries of the GLCM then 

become: 

Pd (i, j) =
Pd ,0°(i, j)+ Pd ,90°(i, j)+ Pd ,135°(i, j)+ Pd , 45°(i, j)

4
, for i, j = 1,...,Ng     (2.1) 

Subsequently to this operation, a normalization factor representing the sum of all 

occurrences in the image is applied to the GLCM such that: 

pd (i, j) =
Pd (i, j)

Pd (i, j)
j=1

Ng

∑
i=1

Ng

∑
, for i, j = 1,...,Ng                             (2.2) 

Thereafter, features containing different textural characteristics can be extracted from the 

GLCM described by Pd ,θ (i, j). In their original work, Haralick and co-workers proposed a 

set of 14 features (now known as the Haralick features) to be extracted from the GLCM 

through different mathematical operations. In the current study, 6 Haralick features were 
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tested. The name commonly used in the literature, the mathematical description ([101]) 

and a qualitative description of each of these features are presented in Table 2.1. 

 

Table 2.1. Haralick Features used in this study 

Texture feature Formula Description 

Energy pd
2 (i, j)

j=1

Ng

∑
i=1

Ng

∑   Measure of repeatability of 
gray levels 

Entropy − pd (i, j)log(pd (i, j))
j=1

Ng

∑
i=1

Ng

∑   Measure of randomness in 
an image 

Contrast (i − j)2 pd (i, j)
j=1

Ng

∑
i=1

Ng

∑   Measure of the amount of 
local variations in an image 

Homogeneity 
pd (i, j)

1+ i − jj=1

Ng

∑
i=1

Ng

∑   Measure of image 
uniformity 

Sum-Mean 
1

2
(i ⋅ pd (i, j)+ j ⋅ pd (i, j))

j=1

Ng

∑
i=1

Ng

∑   Average of the distribution 
of occurrence of gray levels 

Variance 
1

2
((i − μ)2 ⋅ pd (i, j)+ ( j − μ)2 ⋅ pd (i, j))

j=1

Ng

∑
i=1

Ng

∑   

Deviation of the 
distribution of occurrence 

of gray levels from the 
mean 

 

Each texture feature extracted from the GLCM characterizes a different property 

of the image. The first four features of Table 2.1 are commonly used in the literature. The 

last two features of Table 2.1 were shown to be important discriminants of benign versus 

malignant lesions in T1  and T2  MR images of glioblastoma multiforme [88]. Hence, the 

choice was made to investigate their discriminant power in this work. Note that in the 

formula of Variance shown in Table 2.1, the symbol μ represents the average of the 

GLCM entries.   

An important concept related to texture extraction that needs to be described is the 

quantization of the image prior to the computation of the GLCM. In this procedure, the 

full range of gray levels is reduced to a smaller subset number Ng. Every pixel is assigned 
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a new value from a set of values  r = {rk ∈ : k = 1,2,...,Ng}.  
This procedure is referred to 

as intensity quantization. Smaller number of gray levels accelerates the computation of 

the GLCM and reduces the influence of noise on calculated texture features, but this is 

offset by a potential loss of information. With higher Ng, more information is provided 

and it would be expected, from a pattern recognition point of view, that classification 

accuracy would be improved assuming high signal-to-noise ratio. However, Clausi [103] 

showed that this is not always the case for Haralick features and that some of these 

features exhibit the opposite behaviour. At full dynamic range, very few gray level pairs 

are repeated and the GLCM is rather sparse. As a consequence, the classification power 

of most features is diminished. Therefore, quantization is a necessity and an optimal Ng 

specific to a given texture analysis application must be found such that the trade-off 

between the amount of stochastic noise and the amount of information in a set of images 

allows best classification results. Typical numbers of gray levels used in the literature are 

8, 16, 32 or 64. 

 

2.2  Discrete wavelet transform 

The wavelet transform has found applications in many areas since its introduction in the 

1980’s. Just to name a few, wavelets are nowadays used in image compression, image de-

noising, image fusion and pattern recognition. The goal of wavelet analysis is to 

decompose a given signal over a family of wavelet basis functions generated from a 

mother wavelet by dilatation and translation [104]. Unlike the Fourier transform which 

decomposes a given signal according to its frequency content only, the wavelet transform 

allows efficient localization of a signal in both space (or time) and frequency domains. In 

this section, a review of the discrete wavelet transform (DWT) theory is provided in the 

first sub-section. Then, the last sub-section will show how the wavelet transform can be 

used to fuse FDG-PET and MR volumes. Throughout the whole section, only a brief 

overview of the theory could be provided due to space constraints. The reader is referred 

to excellent comprehensive reviews by Strang [105] and Burrus [106] for further details 

about the wavelet theory.  
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2.2.1 General theory 

As previously mentioned, the goal of wavelet analysis is to decompose a signal over a 

family of wavelets generated from a mother wavelet. Let the signal of interest be in space 

x and the mother wavelet of interest be ψ (x) . The mother wavelet is a squared-integrable 

function over all space with zero average such that: 

ψ (x) 2 dx
−∞

+∞

∫
and

ψ (x)dx = 0
−∞

+∞

∫
                                                   (2.3) 

In wavelet theory, the class of expansion functions generated from the mother wavelet are 

written in their most general form as: 

 ψ k
j (x) = c− j /2ψ (c− j (x − kbc j ))                                       (2.4) 

For most wavelet families, c = 1/ 2  and b = 1  such that: 

ψ k
j (x) = 2 j /2ψ (2 j x − k)                                             (2.5) 

This implies that all wavelets ψ k
j (x) are dilated (or scaled) and translated versions of 

ψ (x)  as defined by the integers j and k respectively. The goal of wavelet expansion is to 

generate a set of functions ψ k
j (x)  such that any signal in the space of squared-integrable 

functions  L
2 ( )  can be represented by the series: 

f (x) = wk
j 2 j /2ψ (2 j x − k)

j
∑

k
∑                                       (2.6) 

In Equation (2.6), the set of expansion coefficients wk
j  is called the discrete wavelet 

transform (DWT) of f (x).  If the expansion is unique, the set of functions ψ k
j (x)  is called 

a basis for the class of functions that can be so described. The power of such a basis is 

that it can simultaneously express a signal at different scales and spatial locations. 

However, in wavelet theory, the formulation of such multiresolution analysis is made in 

terms of two closely related basis functions. In addition to the mother wavelet, we 

introduce the scaling function φ(x)  that can be expressed in terms of a weighted sum of 

translated versions of φ(2x)  such that: 
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φ(x) = 2 l(n)φ(2x − n)

n∈Z
∑                                        (2.7) 

The mother wavelet ψ (x)  is also expressed in the same manner: 

 
ψ (x) = 2 h(n)φ(2x − n)

n∈Z
∑                                        (2.8) 

Equation (2.7) is governed by “low-pass” coefficients l(n)  of the wavelet expansion and 

Equation (2.8) is governed by “high-pass” coefficients h(n).  The relation between these 

coefficients is: 

h(n) = (−1)n l(1− n)                                                (2.9) 

Figure 2.3 displays an example of the scaling and wavelet functions of a specific class of 

wavelets known as sym8. 

 

 

Figure 2.3. Scaling and Wavelet functions sym8. 

 

With such double-basis representation, the decomposition of a signal into a finite number 

of levels J becomes: 

 f (x) = ak
J 2J /2φ(2J x − k)+ dk

j2 j /2ψ (2 j x − k)
j=1

J

∑
k
∑

k
∑                   (2.10) 
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Equation (2.10) implies that the ak
J coefficients are used to represent the approximation of 

signal at the lowest level (or scale) J with the scaling function φ(x).  As such, φ(x)  is used 

to represent the coarse details of the signal, or its low-frequency components. The rest of 

the decomposition coefficients (dk
j )  are used to represent the fine details of the signal, or 

its high-frequency components. These coefficients are obtained at all scales using the 

family of functions ψ k
j (x) . Finally, all coefficients at scale j can be expressed in terms of 

the coefficients of the previous scale using the following recursive equations: 

 

ak
j = ak

j−1l(n − 2k)
n∈Z
∑

dk
j = ak

j−1h(n − 2k), for j = 1,2,..., J
n∈Z
∑

                     (2.11) 

To summarize, the discrete wavelet decomposition of a signal starts with an 

educated choice of the scaling function φ(x).  The mother wavelet ψ (x)  is then extracted 

from the scaling function and made orthogonal to the scaling function through Equations 

(2.7) to (2.9). A family of dilated and translated wavelets ψ k
j (x)  is then extracted from 

the mother wavelet through Equations (2.4) and (2.5). As shown in Figure 2.4, the 

discrete wavelet decomposition up to level (or scale) J is thereafter performed through a 

cascade-tree of low-pass and high-pass filters followed by downsampling by a factor of 2. 

The wavelet coefficients ak
j  and dk

j

 are obtained by the convolution over space of the 

proper scaling and wavelet functions defined at each level j. 

 

 

Figure 2.4. DWT tree (taken from [107]). A cascade of low-pass filter (L) and high pass filter (H) 
decomposes the signal (x). At every level j, new approximation coefficients (aj) and detail 
coefficients (dj) are obtained. ↓ 2 denotes the process of downsampling by a factor of 2.  
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Up to now, the discussion about wavelet theory has involved 1-dimensional (1D) 

signals. The 1D multiresolution wavelet decomposition can be extended to two 

dimensions by introducing 2D scaling and wavelet functions as the tensor product of their 

1D complements ([108]) such that: 

φLL (x, y) = φ(x)φ(y), ψ LH (x, y) = φ(x)ψ (y)
ψ HL (x, y) =ψ (x)φ(y), ψ HH (x, y) =ψ (x)ψ (y)

                     (2.12) 

In reality, performing one level of a 2D discrete wavelet decomposition consists of 

filtering and down-sampling an image I(x, y)  both horizontally and vertically with the 1-

D low-pass filter (L) φ and the 1D high-pass filter (H) ψ. As a result, the wavelet 

coefficients of four different sub-bands are produced: LL, LH, HL and HH (Figure 2.5a). 

Every sub-band has now half the initial size of I(x, y)  in both x and y directions. In order 

to obtain the 2D discrete wavelet decomposition at higher levels (level 2 shown in Figure 

2.5c), the same process is performed on the LL sub-band generated from the previous 

decomposition level (level 1 shown in Figure 2.5b) and is repeated up to the desired level 

of decomposition. 

 

 

Figure 2.5. 2D DWT process (adapted from [108]). a) One stage of a 2D DWT image 
decomposition, b) Representation of a one-level decomposition, c) Representation of a two-level 
decomposition. 

 

Finally, the procedure used to reconstruct the original signal from the wavelet 

coefficients is known as the inverse discrete wavelet transform (IDWT), which is simply 
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the reverse process of the DWT. In practice, each sub-band is first up-sampled by a factor 

of 2 by inserting zeros in-between the wavelet coefficients. Next, each sub-band is 

convolved with the appropriate reconstruction filters. For example, the HL sub-band is 

first upsampled and convolved horizontally with the 1D high-pass (wavelet) 

reconstruction filter. Then, it is upsampled and convolved vertically with the 1D low-pass 

(scaling) reconstruction filter. The reconstruction filters are the original scaling and 

wavelet filters flipped from left to right about their central position. Once this process has 

been applied to the four sub-bands, the results are added together to obtain the original 

image. The reader is referred to reference [108] for pedagogical examples of wavelet 

decomposition and reconstruction.  

2.2.2 Fusion of FDG-PET and MR volumes 

For the purpose of this study, image fusion can be described as the process of combining 

information from two different images into a single composite image that is more 

informative for texture analysis. During the past two decades, many different methods for 

performing image fusion were developed and tested on different types of images [109]. 

Some of these algorithms use spatial domain fusion features such as gradients, spatial 

frequencies or local standard deviations. Another category of fusion methods exploits 

transform domains, in which the source images are projected onto localized basis usually 

designed to detect meaningful salient features. The latter category includes the DWT 

fusion method, a concept proposed by Li et al. [110] in 1995. In their original work, the 

investigators successfully tested their methods on multi-focus images, synthetic-aperture 

radar (SAR) images as well as PET and MR images. The general framework of the DWT 

fusion method is described in this sub-section and depicted in Figure 2.6. 

First, let us assume that the two images to be fused are co-registered (if 

misregistration occurs, artefacts will be present in the fused image) and have the same 

resolution. For the fusion scheme presented in Figure 2.6, it means that resampling and 

registration strategies have to be applied prior to fusion. Then, the fusion process starts 

with the application of the DWT to both images with a given scaling function of choice. 

The decomposition can go up to an arbitrary number of levels (2 decomposition levels are 

shown in Figure 2.6). Afterwards, the respective wavelet coefficients of the two images 
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are merged together. In other words, LL coefficients of image 1 are merged with LL 

coefficients of image 2, HL coefficients of image 1 are merged with HL coefficients 

image 2, and this process is repeated for all sub-bands. Subsequently to the latter step, 

only one set of fused wavelet coefficients exist. Finally, the IDWT is applied to the fused 

wavelet coefficients in order to reconstruct the fused image. Fundamentally, the key step 

in DWT image fusion is based on how the wavelet coefficients of the two different 

images are combined. The goal is to merge the wavelet coefficients in an appropriate way 

in order to obtain the image characteristics sought. For example, a maximum selection 

rule could be employed in which the maximal wavelet coefficient of the two images is 

chosen at every position and the other is discarded. A more advanced technique would 

involve adaptive weighted averaging in which the weight given to each coefficient of the 

two images is chosen based on the activity level around each coefficient as defined by a 

window of a small area. In general, the choice of the fusion rule is specific to the 

application of interest and does not need to be the same for all sub-bands. Finally, it is 

worth mentioning that the DWT is also very well suited for the fusion of images with 

different resolutions due to its multiscale representation, as long as each step of the fusion 

is carried out with sub-bands at the same resolution level.  

 

 

Figure 2.6. DWT fusion scheme (adapted from [108]). 
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In this study, the DWT is used to perform 3D fusion of FDG-PET and MR 

volumes. For this purpose, a 3D DWT is applied to both volumes. The generalization of 

the wavelet theory to 3 dimensions is straightforward: 3D wavelet decomposition consists 

of filtering and downsampling a volume V(x,y) in the x, y and z directions with the 1D 

low-pass filter (L) φ and the 1D high-pass filter (H) ψ. As shown in Figure 2.7, the 

wavelet coefficients of eight different sub-bands are produced: LLL, LHL, LHH, HLL, 

HHL, HLH and HH.  

 

 

Figure 2.7. 3D wavelet decomposition sub-bands (adapted from [111]). 

 

Thereafter, wavelet coefficients of the eight respective FDG-PET and MR sub-bands are 

grouped together, and the 3D IDWT is applied in order to reconstruct the 3D fused FDG-

PET/MR volume.  

 

2.3  Statistical Modeling 

This section details the statistical methods employed in this work, from the investigation 

of the univariate association of textures features with the clinical endpoint of interest to 

the statistical validation of multivariable models. 

2.3.1 Spearman’s rank correlation 

In this study, the correlation of texture features (or a combination of them) with lung 

metastases in STS of the extremities is assessed using Spearman’s rank correlation. Let x 
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and y be two datasets of equal size N such that  x,y = {xi , yi ∈ : i = 1,2,...,N}.  First, the 

individual values xi  and yi  are converted to the ranks Xi  and Yi  that they take in their 

respective dataset such that Xi ,Yi ∈{1,2,...,N}  with the exception of ties which are 

assigned a rank equal to the average of their positions in the ascending order of the 

values. Then, Spearman’s rank correlation coefficient rho between x and y is defined as: 

rho =
(Xi − X)(Yi −Y )

i=1

N

∑

(Xi − X)
2 (Yi −Y )

2

i=1

N

∑
i=1

N

∑
                                     (2.13) 

In Equation (2.13), X  and Y  represent the average of the ranks Xi  and Yi .  

Spearman’s rank correlation describes how well two variables are monotonically related, 

independently of their linear association as it is the case with Pearson’s coefficient. A 

result of 1 implies perfect positive correlation, a result of -1 implies perfect negative 

correlation and a result of 0 implies no correlation between the variables. 

2.3.2 Logistic regression 

One objective of this study is to build a multivariable model of features allowing for 

maximal prediction of lung metastases in STS of the extremities. Suppose that we have a 

sample set of n independent observations (number of patients) of the pair (xi , yi ),  where 

yi denotes the value of a dichotomous outcome variable and xi  is the vector of input 

variables (e.g., imaging data) of the ith patient for i = 1,2,...,n.  The value of the 

dichotomous variable takes the form yi ∈{0 :No MetsLungs,1:MetsLungs},  and the 

vector of input variables takes the form  xi = {xij ∈ : j = 1,2,..., p},  where p is the 

number of variables in the model, or the model order. This notation will be used 

throughout the text. We are interested in finding a linear combination of the p variables 

such that the multivariable model of interest takes the form:  

g(xi ) = β0 + β j xij , for i = 1,...,n
j=1

p

∑                                (2.14) 
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The set  ββ = {β j ∈ : j = 1,2,..., p}  is the set of regression coefficients of the model to be 

determined such that the conditional probability of the set of outcome states {0,1} given 

the input data xi  is maximized for i = 1,2,...,n.  This operation is carried out using a 

logistic regression model (logit transformation) of the form: 

π (xi ) = P(yi = 1 xi ) =
eg(xi )

1+ eg(xi )
, for i = 1,...,n                       (2.15) 

Excellent reviews of the logistic regression method can be found in references [112] and 

[113]. The form of the logistic regression model shown in Equation (2.15) is commonly 

used as it models a sigmoidal relationship between the input variables and the response 

endpoint within the range [0,1], lending itself to a clinically meaningful interpretation of 

observed responses. To be more specific, π (xi )  express the conditional probability that 

outcome yi  equals 1 (MetsLungs) given the input xi .  Consequently, the conditional 

probability that outcome yi  equals 0 (No MetsLungs) given the input xi  is 

P(yi = 0 xi ) = 1−π (xi ).  If we assume the n observations to be independent, it follows that 

a convenient way to express the conditional probability of a set of dichotomous outcome 

states given the set of input data is: 

l(ββ) = P(yi xi )
i=1

n

∏ =
π (xi ) if yi = 1
1−π (xi ) if yi = 0
⎧
⎨
⎩i=1

n

∏

l(β) = π (xi )
yi [1−π (xi )]

1−yi

i=1

n

∏
                         (2.16) 

where l(ββ)  is known as the likelihood function. It is defined as in Equation 2.16 ([112]) 

for logistic regression. For greater mathematical simplicity, the logarithm of l(ββ)  is used: 

L(ββ) = ln[l(β)]= {yi ln[π (xi )]+ (1− yi )ln[1−π (xi )]}
i=1

n

∑               (2.17) 

The set of regression coefficients that maximize the likelihood function is found by 

differentiating L(ββ)  with respect to all β j  coefficients and then equating to zero. This 

yields a set of p+1 non-linear likelihood equations to be solved simultaneously:  
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[yi −π (xi )]
i=1

n

∑ = 0

and

xij[yi −π (xi )]
i=1

n

∑ = 0, for j = 1,2,..., p

                       (2.18) 

Several available logistic regression software such as SAS and SPSS have implemented 

methods to solve this set of non-linear equations for the set of β j  values. Numerically, 

the set of p+1 non-linear likelihood equations are solved using an iterative weighted 

least-square method. The presentation of this methodology goes beyond the scope of this 

text, but the interested reader is referred to reference [114] for a general description of the 

methods used by most programs. Once the solution to the set of β j  values is found, the 

multivariable model of Equation (2.14) can be constructed and the association between g 

and y can be tested using Spearman’s rank correlation in the same manner as in the 

univariate case, where g = {g(xi ) : i = 1,2,...,n}  and y = {yi : i = 1,2,...,n}. 

2.3.3 Feature selection 

Generally, the construction of a multivariable model of order p involves the selection of a 

subset of p variables from a larger set of m variables. The search for the most 

parsimonious model (or the simplest plausible model with fewest number of variables) is 

an important step in any multivariable approach. Such a model needs to be protected 

against overfitting such that it is not too dependent on the observed data and thus could 

subsequently be generalized to unseen data. However, enough variables need to be 

selected in order to reach maximum predictive power.  Once an optimal model order p is 

found, the process of selecting p variables can be done in several ways and the most 

common methodologies are known as forward selection and backward selection. 

Stepwise forward selection involves starting with no variables in the model and then 

testing the contribution of the stepwise addition of all variables to the model by taking 

into account the previously chosen variables until model order p is reached. Stepwise 

backward selection involves starting with all variables in the model and then testing the 

contribution of the stepwise deletion of all variables to the model until model order p is 

reached.  
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In this work, a forward selection scheme was chosen and the statistical 

significance of stepwise addition of regression coefficients β j  was determined using the 

Wald’s test (W). Let a subset of p variables to be selected from a larger set of m features 

such that a model of order p of the form of Equation (2.14) is constructed with 

coefficients  ββ = {β j ∈ : j = 1,2,..., p}.  The forward selection scheme go as follows: 

1. Begin with a fit of the offset β0  found using logistic regression in order to build 

the model M 0.  

2. Investigate the fit of all m variables with M 0.  Choose the variable with maximum 

W by performing logistic regression on the m variables separately with M 0.  Add 

the chosen variable to M 0  in order to build the model M1  using logistic 

regression. 

3. Investigate the fit of the m −1  variables left from the complete set with M1.  

Choose the variable with maximum W by performing logistic regression on the 

m −1  variables separately with M1.  Add the chosen variable to M1  in order to 

build the model M 2.  

4. Repeat step 3 until a model of order p has been constructed. 

The solution that we obtain from logistic regression is an estimate of the regression 

coefficients. Inherently, these estimated coefficients  β j  have also estimated standard 

errors  SE (β j ). The Wald test is then defined as ([112]): 

 
Wj =

β j

SE(β j )
                                                    (2.19) 

It has already been shown how to compute the solution to logistic regression in order to 

obtain the coefficient estimates  β j .  The estimated standard errors of regression 

coefficient estimates can be obtained from the covariance matrix of all regression 

coefficients. The methodology for estimating the variances and covariances of the 

regression coefficients follows the well-established theory of maximum likelihood 
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estimation that can be found, for example, in reference [115]. This theory states that the 

variance and covariance estimates are obtained from the second-order partial derivatives 

of the log-likelihood function L(ββ)  such that: 

∂2L(ββ)
∂β j

2 = − xij π (xi )(1−π (xi )), for j = 0,1,..., p
i=1

n

∑
and

∂2L(β)
∂β j ∂βl

= − xij xil
i=1

n

∑ π (xi )(1−π (xi )), for j,l = 0,1,..., p

                (2.20) 

Then, the observed information matrix I(ββ) , known as the Fisher information matrix, is 

obtained by taking the negative of the terms in Equation (2.20): 

 

I(ββ) = −

∂2L(β)
∂β1

2

∂2L(β)
∂β1 ∂β2

∂2L(β)
∂β1 ∂β p

∂2L(β)
∂β2 ∂β1

∂2L(β)
∂β2

2

∂2L(β)
∂β2 ∂β p

∂2L(β)
∂β p ∂β1

∂2L(β)
∂β p ∂β2

∂2L(β)
∂β p

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

                          (2.21) 

The variance and covariance estimates of the regression coefficients are thereafter 

obtained by taking the inverse of  I(ββ)  such that: 

 Var(ββ) = I(β)
−1                                                 (2.22) 

The diagonal terms then represent the variances and the off-diagonal terms the 

covariances. Finally, the standard error estimate of the individual regression coefficients 

 SE(β j )  is obtained by taking the square root of the diagonal terms of the inverse of  I(ββ)  

such that: 

 
SE(β j ) = Var(β j )                                             (2.23) 
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2.3.4 Bootstrapping 

Bootstrapping is a statistical resampling method introduced by Efron [116] in 1979. The 

motivation of his pioneering work was to develop a more general yet simple alternative to 

cross-validation techniques for the estimation of unknown probability distribution of 

some random variable based on the observed data. In the current study, bootstrapping is 

used as the resampling method of choice to assess the prediction performance of texture 

models. Two important reasons have motivated this choice. First, bootstrap techniques are 

known to reduce the variance of the error estimates compared to cross-validation 

techniques (leave-one-out or n-fold cross-validation), although it introduces a bias due to 

the resampling of data. More importantly, bootstrapping provides more realistic 

scenarios, as it is less prone to overestimation of statistical significance than cross-

validation techniques, one of the major pitfalls of data mining. Bootstrap tutorials ([117]), 

reviews ([118]) and considerable number of applications in medicine ([119] [120]) are 

readily found in the literature. A key issue in our analysis is to determine which models 

learned from the current patient cohort would best predict lung metastases on unseen data 

(prospective patient cohort). The general methodology used to simulate this situation is to 

divide the original dataset into training and testing sets. Then, the complete regression 

model is learned from the training set and its predictive power is assessed in the testing 

set using different classification performance metrics. In this work, the resampling 

method used to divide the patient population into training and testing sets is based on the 

bootstrap technique. An example of the application of this method is presented here: 

1. Let a set of 10 patients denoted as k = {n1,n2,...,n10}.   

2. Randomly sample a patient 10 times with replacement from k. For example, let the 

selected patients be {n3,n4 ,n1,n2,n2,n1,n5,n10,n3,n5}.  

3. Patients that were selected form the training set, no matter how many times they 

were selected. Patients that were not selected form the testing set. 

4. Following the example given in step 2, the training set is {n1,n2,n3,n4 ,n5,n10}.  

The testing set is {n6,n7,n8,n9}. 
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Afterwards, a multivariable model can be built from the training set and its 

prediction performance can be assessed in the testing set. This process is performed over 

many bootstrap samples in order to achieve convergence of the statistical quantity of 

interest. In the limit of an infinite number of bootstrap samples, the average size of the 

training sets is approximately 63% that of the original data set while approximately 37% 

is withheld for testing [118]. The inherent drawback of the method is increased 

computing time.  

2.3.5 Classification performance metrics 

In this sub-section, the performance metrics used to assess the predictive power of 

multivariable models in bootstrap testing sets are described. Let a multivariable model 

g(xi )  of the form of Equation (2.14) be found from a given training set. As usual, yi  

denotes the value of a dichotomous outcome variable of the form {0: No MetsLungs, 1: 

MetsLungs} and xi  is the vector of input variables for the ith patient. The testing set is 

first used to assess the classification of positive instances yi = 1  and negative instances 

yi = 0.  In binary classification theory, 4 quantities of interest need first to be calculated: 

1) TP: number of true positive instances; 2) FP: number of false positives instances; 3) 

TN: number of true negative instances; and 4) FN: number of false negative instances. 

Given the offset β0  of the multivariable model, a threshold of g(xi ) = 0  is used to 

determine if a patient is to be classified as a TP, FP, TN or FN instance. Table 2.2 

resumes this classification scheme. 

 

Table 2.2. Classification of TP, FP, TN and FN 

Model value Outcome value Classification 

g(xi ) > 0  yi = 1   TP 

g(xi ) > 0  yi = 0  FP 

g(xi ) < 0  yi = 0  TN 

g(xi ) < 0  yi = 1  FN 
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Given TP, FP, TN and FN, the sensitivity, specificity and accuracy of classification is 

calculated as:  

sensitivity = TP

TP + FN

specificity = TN

TN + FP

accuracy = TP + TN
TP + FP + TN + FN

                                   (2.24) 

Another measure of the quality of classification known as Matthews’ correlation 

coefficient (MCC) is also used in this work. MCC is regarded as a balance measure that 

can be used even if the number of positive and negative instances is very different. 

Essentially, MCC provides a measure of the correlation between the observed and 

predicted binary classification. A coefficient of +1 corresponds to a perfect prediction, a 

coefficient of 0 corresponds to a random prediction and a coefficient of -1 corresponds to 

a total disagreement between the observations and predictions. This metric is defined as: 

MCC = TP × TN − FP × FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

                     (2.25) 

Finally, another metric assessing model performance can be extracted from the 

receiver-operating characteristics (ROC) curve of a binary classifier. The ROC curve is a 

plot of sensitivity against (1-specificity) as new subsets of {TP, FP, TN, FN} are obtained 

for varying decision thresholds. The metric of interest enabling the assessment of the 

quality of the classifier is: 

AUC = Area under the ROC curve                                   (2.26) 

An AUC of 0.5 corresponds to a random classifier whereas an AUC of 1 corresponds to a 

perfect classifier. One way of interpreting this metric is that the greater is the AUC, the 

better is the separation between the positive and negative instances.  
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1  Dataset 

3.1.1 Patient cohort 

Subsequently to research ethics board (REB) approval, a database of 35 patients (18 

males, 17 females) with a histologically proven primary soft-tissue sarcoma of the 

extremities (upper or lower extremity STS; denoted as “STS” only for the rest of the text, 

unless otherwise specified) and having received a pre-treatment FDG-PET/CT and MR 

scans at the Montreal University Health Center (MUHC) was retrospectively queried. 

Patients with recurrent STS at presentation or with STS of the head and neck, chest wall, 

retro-abdominal or other non-extremity sites were excluded from the study. The age of 

the group of patients was 17-82 (mean: 54 ± 18, 1 standard deviation). Four patients from 

the dataset presented with metastases at the time of diagnosis of the primary tumour (2 

bone, 2 lungs) and 11 patients developed lung metastases during the follow-up period. 

Lung metastases were either proven by biopsy or diagnosed by an expert physician from 

the appearance of typical pulmonary lesions on CT and/or FDG-PET images. In this 

study, the dataset was hence divided into two lung metastases classes: 13 patients with 

lung metastases (MetsLungs) and 22 patients without lung metastases (No MetsLungs). 

Table 3.1 provides different characteristics of patients including age, sex, histological 

type of primary STS, location of primary STS, grade of primary STS, spread at diagnosis 

and recurrence information. Also, Table 3.2 presents the follow-up time (time elapsed 

between the date of diagnosis of the primary STS to the last date of follow-up) for all 

patients and for the two sets of patients with different lung metastasis status. 
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Table 3.1. Characteristics of patients 

Patient Age 
Sex 

(M/F) 
Histology 

Location 

(Upper/Lower 

extremity) 

Grade 
Spread 

@ diagnosis 
Recurrence 

1 59 M Liposarcoma Lower High Local 
Distant 

(foremarm) 
2 22 F MFH Lower Low Local None 

3 64 M 
Extraskeletal bone 

sarcoma 
Lower High Local Distant (lungs) 

4 28 F MFH Upper Low Local None 
5 82 M Liposarcoma Lower High Local None 
6 76 M Liposarcoma Lower Intermediate Local None 

7 54 M 
Extraskeletal bone 

sarcoma 
Lower High Local Distant (lungs) 

8 48 F MFH Upper High Local None 
9 76 M MFH Lower High Local None 

10 51 F Liposarcoma Lower High Local Distant (spine) 
11 62 F MFH Lower High Distant (lungs) Distant (lungs) 
12 69 M Liposarcoma Lower High Local Distant (lungs) 
13 65 F MFH Lower High Local None 
14 24 F Leiomyosarcoma Lower High Local None 
15 63 M Liposarcoma Lower High Local Distant (lungs) 
16 57 F Epithelioid sarcoma Lower Ungraded Local Distant (lungs) 
17 29 M Liposarcoma Lower Low Local None 
18 46 M Liposarcoma Lower Low Local None 

19 27 M 
Extraskeletal bone 

sarcoma 
Lower High Local None 

20 57 F MFH Lower High Distant (lungs) 
Distant (lungs) 

+ Local 
21 62 F Liposarcoma Lower Ungraded Local None 

22 34 M Liposarcoma Lower Intermediate Local 
Distant 

(abdominal) 

23 54 M Synovial sarcoma Lower Intermediate Local 
Local (lymph 

nodes) 
24 61 F MFH Lower Intermediate Distant (bone) Distant (bone) 
25 61 M MFH Lower High Local Distant (lungs) 
26 62 F MFH Lower High Local None 
27 57 M Leiomyosarcoma Lower Intermediate Local Distant (lungs) 
28 76 F Liposarcoma Lower Intermediate Local None 
29 69 M Leiomyosarcoma Lower Intermediate Local Distant (lungs) 
30 19 M Rhabdomyosarcoma Upper High Distant (bone) Distant (bone) 

31 71 F 
Extraskeletal bone 

sarcoma 
Lower High Local Distant (lungs) 

32 53 M Liposarcoma Lower Low Local None 
33 75 F Leiomyosarcoma Lower High Local Distant (lungs) 
34 17 F Synovial sarcoma Lower Intermediate Local None 
35 72 F Leiomyosarcoma Lower High Local Distant (lungs) 

Extraskeletal bone sarcoma: Includes Ewing and osteogenic sarcoma developing in soft-tissues 
MFH (Malignant Fibrous Histiocytoma): Includes myxofibrosarcoma and undifferentiated sarcoma 
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Table 3.2. Follow-up time of patients 

Patients Median follow-up 
(months) 

Range 
(months) 

All patients 29 4-85 
No MetsLungs 47 4-85 

MetsLungs 20 5-34 

 

Some patients of the dataset were lost to follow-up early after the time of 

diagnosis of the primary STS. In principle, short follow-up times lead to a significant 

uncertainty on the lung metastasis status only for the class of patients that did not develop 

lung metastases during the follow-up period. In fact, all patients from this class have a 

non-zero probability of having the wrong lung metastasis status since they could develop 

the distant disease after the follow-up period. This probability increases with shorter 

follow-up time. It is thus important at this point to establish the standard time duration 

between the diagnosis of a primary STS of the extremities and the spread to the lungs in 

order to estimate the significance of that probability in our patient cohort. Due to the 

specificity of the question, only one report that directly estimate this timeframe was found 

in the literature, whereas other reports included other variants of sarcomas and/or 

included metastatic events to sites other than the lungs. Gadd et al. [121] followed 716 

extremity STS patients admitted at their institution between 1983 and 1990.  A total of 77 

patients developed metachronous lung metastases after the diagnostic of a primary 

tumour. The median time between the treatment of the primary tumour and the 

development of metachronous lung metastases for these 77 patients was 14 months 

(range: 1 to 152 months), with 72% of the cases occurring within 2 years after treatment. 

On the other hand, it occurred that the median time between the diagnosis of the primary 

STS and the development of lung metastases for the 11 patients of our patient cohort 

(excluding patients 11 and 20) was found to be 5.5 months (range: 2.5 to 17 months). For 

the other class of patients of our cohort (22 patients; No MetsLungs), it occurred that 1 

patient had a follow-up time smaller than one year (patient 6: 4 months) and 2 patients 

had a follow-up time ranging between 1 and 2 years (patient 24: 22.5 months, patient 34: 

23 months). According to these numbers, we believe that only patient 6 suffers from a 

significant probability of having the wrong lung metastasis status.  
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Finally, Table 3.3 presents the occurrence of histologic sub-types in our patient 

cohort. It is compared to the database of 3073 patients with primary STS of the 

extremities admitted at the Memorial Sloan-Kettering Cancer Center (MSKCC), NY 

between July 1982 and December 2007. Appendix A also displays the data obtained from 

the MSKCC. 

 

Table 3.3. Histologic sub-types of STS of the extremities  

Histology 
Number of patients (%) 
This study MSKCC* 

Liposarcoma 12 (34) 718 (23) 
MFH 10 (29) 847 (28) 

Leiomyosarcoma 5 (14) 241 (8) 
Synovial sarcoma 2 (6) 319 (10) 

Fibrosarcoma 0 (0) 113 (4) 
Extraskeletal bone sarcoma 4 (11) 835 (27) 

Other 2 (6) 
Total 35 (100) 3073 (100) 

    * Reproduced with the permission of Murray F. Brennan from the MSKCC 

 

From Table 3.3, it is reasonable to think that the variety of histologic sub-types in our 

patient cohort adequately represents the variety of histologic sub-types present in the 

population of STS of the extremities. As a consequence, the methodology developed in 

this work should be generalizable to other patient cohorts of STS of the extemities. 

3.1.2 Imaging data 

FDG-PET and MR scans were retrieved from the PACS server at MUHC. Scans were 

performed at our institution between May 2004 and May 2010 on a hybrid PET/CT 

scanner (Discovery ST, General Electric Medical Systems, Waukesha) and a 1.5T MR 

scanner (SIGNA EXCITE, General Electric Medical Systems) respectively.  

In the case of FDG-PET/CT scans, CT and PET images were consecutively 

acquired from the base of the skull to the upper thighs and from the base of the feet to the 

upper thighs, with additional images of the extremities acquired according to the sarcoma 

location if necessary. The CT slice thickness resolution was 3.75 mm and CT in-plane 

resolution was 0.98 mm for all patients. For the PET portion of the scans, between 370 
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and 500MBq of FDG were injected intravenously. Approximately 60 minutes following 

the injection, a 2D acquisition was performed for 5 to 6 bed positions (height dependent) 

with 4-5 min per bed position (body weight dependent). PET attenuation corrected 

images were reconstructed in the axial plane using an ordered subset expectation 

maximization (OSEM) iterative algorithm. The FDG-PET slice thickness resolution was 

3.27 mm for all patients and the median in-plane resolution was 4.69X4.69 mm2 (range: 

3.91-5.47 mm). 

In the case of MR scans, several different sequence types acquired according to 

the sarcoma location were performed in the clinic for each patient. Three types of MR 

sequences were selected for this study, namely T1 - weighted,  T2FS and STIR sequences. 

The MR scans resulted from clinical acquisitions with heterogeneous protocols across 

patients. The median slice thickness resolution was 5 mm (range: 3-10 mm) and the 

median in-plane resolution was 0.78X0.78 mm2 (range: 0.20-1.72 mm). T1  sequences 

were common to all patients. On the other hand, T2FS and STIR were not common to all 

patients, but all patients were scanned with at least one of these two sequences. From a 

physics point of view, T2FS and STIR sequences are not the same, but macroscopically 

(fat signal suppression) and thus from a texture point of view, the images appear similar. 

In order to have the largest dataset possible, the choice was made to use both sequences in 

a similar manner for texture analysis. As an example, Figure 3.1 shows the four types of 

scans used in this study (FGD-PET, T1,  T2FS, STIR) taken from patient 3. Table 3.4 

shows the availability of the scans for all patients. T2FS scans were selected by default 

due to their overall better visual quality over STIR in our dataset and also due to their 

axial scan availability. When T2FS scans were not available, STIR scans were used. 

Appendix B further explores the consequences of that choice of priority of fat-

suppression scan type in our analysis. For the rest of the text, we will refer to the three 

separate scans that were used as PET, T1 and T2FS/STIR (i.e. T2FS or STIR). 
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Figure 3.1. Example of STS imaging from patient 3. Top-left: FDG-PET image, Top-right: T1 
image, Bottom-left: T2FS image, Bottom-right: STIR image. FDG-PET, T2FS and T1 images 
were acquired in the axial plane and STIR images were acquired in the coronal plane. The red line 
in the STIR image corresponds to the plane shown in the three other images. 

 

Table 3.4. Scan availability 

Patient number PET T1 T2FS STIR 

1 ✔ ✔ ✔ - 
2 ✔ ✔ - ✔ 
3 ✔ ✔ ✔ ✔ 
4 ✔ ✔ - ✔ 
5 ✔ ✔ - ✔ 
6 ✔ ✔ ✔ ✔ 
7 ✔ ✔ - ✔ 
8 ✔ ✔ ✔ ✔ 
9 ✔ ✔ - ✔ 

10 ✔ ✔ - ✔ 
11 ✔ ✔ ✔ ✔ 
12 ✔ ✔ ✔ - 
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13 ✔ ✔ ✔ ✔ 
14 ✔ ✔ ✔ ✔ 
15 ✔ ✔ ✔ ✔ 
16 ✔ ✔ - ✔ 
17 ✔ ✔ ✔ ✔ 
18 ✔ ✔ ✔ ✔ 
19 ✔ ✔ ✔ - 
20 ✔ ✔ ✔ ✔ 
21 ✔ ✔ ✔ - 
22 ✔ ✔ ✔ ✔ 
23 ✔ ✔ ✔ ✔ 
24 ✔ ✔ ✔ ✔ 
25 ✔ ✔ ✔ ✔ 
26 ✔ ✔ ✔ ✔ 
27 ✔ ✔ ✔ ✔ 
28 ✔ ✔ - ✔ 
29 ✔ ✔ ✔ ✔ 
30 ✔ ✔ - ✔ 
31 ✔ ✔ ✔ ✔ 
32 ✔ ✔ ✔ ✔ 
33 ✔ ✔ ✔ ✔ 
34 ✔ ✔ - ✔ 
35 ✔ ✔ - ✔ 

 

3.2 Tumour volume definition 

In order to perform texture analysis on PET, T1 and T2FS/STIR scans and allow a direct 

comparison amongst them, tumour volume definition must be the same on all patient’s 

respective scans. To achieve this procedure, contouring of tumours was first done 

manually slice by slice. Then, image registration was carried out such that the different 

volumes were spatially related in order for the same contours to be propagated on all 

scans. In this section, the manual contouring, contour propagation workflow and image 

registration steps are detailed.  

3.2.1 Tumour contouring 

Tumour contours were drawn on T2FS/STIR scans and were verified by an expert 

radiation oncologist. The T2FS/STIR scans were first imported into a clinical workstation 

at MUHC and contours were manually drawn on a slice-by-slice basis using the contour 

tools from the clinical software EclipseTM (Varian Medical Systems, Inc., Palo Alto, CA; 
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http://www.varian.com/us/oncology/radiation_oncology/eclipse/). Visible edema or 

inflammation could be clearly identified in the vicinity of the tumours for 16 patients of 

the cohort. For these patients, two types of contours were drawn; one incorporating the 

visible edema and one excluding it. For the rest of patients, only one contour was drawn 

and was considered as containing no edema. As an example, Figure 3.2 shows two 

contours drawn on the T2FS scan of patient 12. 

 

 

Figure 3.2. Contouring example on T2FS scan of patient 12. 

 

The results presented in this work were obtained from texture analysis performed 

only on the inner portion of the tumours, that is to say, using the contours containing no 

edema. The contours incorporating edema were used only for the uncertainty analysis 

presented in section 5.2.  

3.2.2 Contour propagation workflow 

Subsequently to tumour contouring, PET, T1, T2FS/STIR scans as well as the CT images 

from the PET/CT scans were transferred to another clinical workstation to propagate the 

contours from T2FS/STIR to PET and T1 scans using the commercial software 

MIMvistaTM (MIM software, Inc., Cleveland, OH; http://www.mimsoftware.com/). This 

operation involved rigid registration of scans which will be detailed in the next sub-

section. For now, the contour propagation steps are resumed in Figure 3.3. 
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Figure 3.3. Contour propagation workflow. 

 

1. Rigid registration of T2FS/STIR with original contours to T1. 

2. Propagation of T2FS/STIR contours to T1. 

3. Rigid registration of T1 with contours to CT  Aligned T1 to PET. 

4. Propagation of Aligned T1 contours to PET. 

5. Rigid registration of T2FS/STIR (resulting from step 1) to Aligned T1 using 

spatial transformations of step 3  Aligned T2FS/STIR to PET. 

6. Propagation of Aligned T1 contours to Aligned T2FS/STIR.  

  

All six steps were performed using MIMvistaTM. In this workflow, step 3 is the 

most important one, as it allows to spatially relate MR scans to PET scans. This step is 

also the one that brings most registration errors into the process. In order to minimize 

registration errors between PET and MR scans, it is important to attempt the registration 

of two high-resolution modalities, namely CT and MR in our case. This was made 

possible from the fact that PET and CT are already co-registered since both scans were 
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acquired with patients in the same scanning position. The choice was made to perform 

MR and CT rigid registration using the T1 scan since the latter provides better overall 

anatomical contrast than T2FS/STIR. It was verified that this method brought less 

registration errors than the registration of T2FS/STIR to CT. T2FS/STIR scans had first to 

be registered to T1, but this step required minor adjustments around the tumour region 

only, since the different MR scans were acquired with patients in the same scanning 

position. 

Subsequently to step 6, all scans (PET, T1 and T2FS/STIR) were spatially co-

registered and the initial T2FS/STIR contours were propagated to all scans. 

3.2.3 Image registration 

The registration of two volumes refers to the process in which an explicit coordinate 

transformation is applied to one volume to spatially map all points to its corresponding 

points in the other volume. Rigid registration is subject to rigid body constraints only and 

does not involve affine transformations of volumes. It models the transformation of space 

as a combination of translations and rotations. In general, the transformation is performed 

in an iterative manner in which a measure of similarity is calculated at every iteration 

such that the transformation can be recursively updated until convergence of similarity 

scoring. MIMvistaTM provides an assisted alignment tool that uses normalized mutual 

information (NMI) as the similarity measure. It implements an algorithm that attempts to 

maximize the NMI between the two volumes as defined by Pluim et al. [122].  

The MIMvistaTM software provides several tools to assist in the rigid alignment of 

two volumes. For example, one can draw a box around tumours or bony structures and 

maximize NMI between the two volumes only within that box. Figure 3.4 shows an 

example of how that tool can be used in 3D. In that figure, the patient was scanned head 

first in a supine position. The tumour is located in the left leg (right of the image). A box 

enclosing the tumour and most of the left femur was created, and NMI between the CT 

and T1 volumes was maximized only within that box. The registration of CT and T1 

scans was performed in a similar manner for all patients. Great care was taken throughout 

this procedure to minimize registration errors and hence maximize the similarity between 
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PET and MR scans later on. Once convergence was achieved, NMI was computed 

between CT and T1 volumes for the tumour region only. A threshold of NMI = 0.1  was 

arbitrarily set up as an inclusion criterion. Three patients did not satisfy this criterion and 

were rejected from the study. Figure 3.5 details the final NMI between CT and T1 

volumes for the 35 patients used in this study. 

 

 

Figure 3.4. Example of registration tool. 

 

 

Figure 3.5. Normalized Mutual Information between T1 and CT scans. 

 

3.3 Pre-processing of data 

Prior to texture analysis, FDG-PET and MR scans were transferred into MATLAB® 

(MathWorks, Inc., Natick, MA; http://www.mathworks.com) format using the DICOM 

protocol and the research software CERR ([123]). FDG-PET scans were converted to 
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SUV maps using CERR and MR scans were kept in raw data form. Then, pre-processing 

of all scans was performed. This section details the operations performed on FDG-PET 

and MR scans separately. 

3.3.1 FDG-PET pre-processing 

As described in section 1.1, PET measurements are based on counting the number of 

coincident annihilation photons that were created from the disintegration of a positron and 

an electron. In the case of FDG-PET, the positron is emitted from the unstable 18F 

nucleus. Likewise any radioactive decay, the disintegration rate of the 18F nucleus 

undergoes random variations over time. Hence, the number of counts in FDG-PET 

measurements is also subject to random variations. These random fluctuations in photon 

counts constitute the main source of noise in FDG-PET image intensities and can be 

modeled by a Poisson distribution ([9] [10]) such that: 

 x(r) ∼ Poisson[λ(r)]                                               (3.1) 

where x(r)  is the observed image, λ(r)  is the true image and r  is the index vector of 

voxel positions i, j,k.  It can be directly seen that the Poisson noise parameter λ(r)  

depends on the spatial location r.  Since texture analysis is concerned with the spatial 

distribution of gray levels across an image, noise removal algorithms should be 

implemented in order to remove the spatial dependence of noise across the volume and 

hence minimize its effect on textures.  In 1948, Anscombe [124] established that a 

Poisson variable r with mean m could be transformed to a variable y nearly normally 

distributed with variance ¼ for large m if and only if:  

y = r                                                           (3.2) 

Therefore, a square root transform was applied to FDG-PET intensities in order to 

stabilize the variance of Poisson noise to Gaussian noise such that the spatial dependence 

of PET noise was minimized prior to texture analysis. 

3.3.2 MR pre-processing 

It is well established that textures extracted from MR images are sensitive to acquisition 

conditions such as variations in MR protocols, scanners and adjustments [92] [125]. 
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These intra- and inter-acquisition variations alter the reproducibility of texture 

measurements on MR images [91]. In 2004, Collewet et al. [75] proposed that gray level 

normalization could be one way of making texture measurements on MR images more 

reliable. The study reports the influence of four different gray level normalization 

schemes on the discrimination power of texture analysis (including GLCM-based texture 

features) of two classes of food samples. The authors applied gray level normalization 

methods prior to computing texture features on proton density and T2 - weighted  MR 

images. They concluded that the differences between the two classes of food samples 

were best enhanced when using the limitation of dynamics to μ + 3σ, where μ is the mean 

value and σ the standard deviation of gray levels inside the region of interest.  In the 

current study, the latter gray level normalization scheme was applied to the tumour 

volume of all MR scans. Tumour voxels with intensities outside the range μ + 3σ were 

rejected and not considered in subsequent GLCM computations.  

 

3.4 FDG-PET/MR Fusion 

In this work, texture analysis was performed on 5 types of scans: PET, T1, T2FS/STIR, 

PET-T1 and PET-T2FS/STIR scans. PET-T1 and PET-T2FS/STIR scans come from the 

fusion of PET with T1 or T2FS/STIR. Textures were extracted from fused scans in the 

same manner as separate scans in order to investigate the capacity of these new textures 

to predict lung metastases in STS cancer. Two fusion methods were implemented: a 

simple weighted averaging technique and a wavelet-based technique. The general scheme 

for the fusion of PET and MR co-registered volumes is shown in Figure 3.6. 

The fusion of PET and MR volumes was performed at the respective resolution of 

patient’s PET scans (detailed in section 3.1.2). The MR volumes were downsampled to 

PET resolution using cubic interpolation and an antialiasing kernel from MATLAB® 

version R2011b. The rationale behind  the fusion at the resolution of PET scans is further 

emphasized in results section 4.2.2, as it is shown that texture features from FDG-PET 

scans offer better prediction of lung metastases than MR scans. In this respect, the choice 

was made to leave FDG-PET image characteristics unchanged prior to fusion. The next 

sub-sections describe the two fusion schemes tested in this work.  
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Figure 3.6. General fusion scheme.  

 

3.4.1 Weighted Averaging 

The simplest fusion scheme was implemented as follows: 

1. Respectively normalize PET and MR tumour volumes to 1. 

2. Combine the ith voxel of PET and MR volumes with intensity j such that: 

Fused Volume(i) = w*PETj (i)+ (1−w)*MRj (i), w = 0.1,0.2,...,0.9.       (3.3)  

As described in Equation (3.3), nine different weights w were tested. 

3.4.2 Wavelet-based fusion 

The fusion scheme using the DWT was implemented as follows: 

1. Respectively normalize PET and MR volumes to 1. 

2. Apply the 3D DWT to PET and MR volumes up to 1 decomposition level by 

using the wavelet basis function sym8. 

3. Multiply all PET and MR sub-bands of the first decomposition level by a 

weighting factor wBP  in the case of band-pass sub-bands (LLL, LHL, LHH, HLL, 

HHL, HLH), and a factor wHL  for the rest of the sub-bands (LLL, HHH). The ratio 

R is then defined as: 
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R = wBP

wHL

with 6wBP + 2wHL = 1

such that wBP =
R

2(3R +1)
, wHL =

1

2(3R +1)
.

                       (3.4) 

4. Average the wavelet coefficients PET and MR eight respective sub-bands to 

obtain combined wavelet coefficients at each sub-band. 

5. Apply 3D IDWT to combined coefficients using the reconstruction wavelet basis 

function sym8. 

6. Normalize the fused volume to 1. 

The wavelet basis function sym8 from the MATLAB® Wavelet ToolBoxTM was chosen 

based on its compact support, biorthogonality and near-symmetric properties. Appendix C 

further justifies that choice by quantitatively comparing the discriminative power of the 

resulting fused scans constructed using other wavelet basis functions. Figure 3.7 shows an 

example of the fusion of PET and T2FS scans of patient 6 implemented with the DWT 

technique (R = 1.5).    

 

 

Figure 3.7. Fusion example using the DWT on PET and T2FS scans of patient 6 (Scale 3.27 
mm). 
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R ratios ∈{1/3, 1/2, 2/3, 1, 3/2, 2, 3} were tested in this work. The rationale 

behind applying a different weight to band-pass sub-bands relies on the premise that the 

textures of an image are made up of spatially localized objects forming different patterns. 

Also, the spatial definition of an object can be enhanced by band-pass filtering the image 

with a proper filter bandwidth. The proposed scheme therefore attempts to enhance the 

spatial definition of fused FDG-PET/MR textures by modifying their corresponding 

frequency properties in the wavelet domain. Figure 3.8 shows the wavelet band-pass 

frequencies enhancement effect for PET and T1 fused volumes of patient 14 with R = 1  

and R = 1.5.  
 

 

Figure 3.8. Wavelet band-pass filtering effect on PET-T1 fused scan of patient 14 (Scale 3.27 
mm). 

 

3.5 Quantization of gray levels 

Prior to the computation of the GLCM of the 5 types of volumes, volumes intensities 

were normalized to 1 and the full range of gray levels ∈ [0,1] were quantized to a smaller 

number of gray levels Ng. The quantization process maps the voxel values of a volume to 

a finite set  r = {rk ∈ : k = 1,2,...,Ng}  of reconstruction levels by defining a set 
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 t = {tk ∈ : k = 1,2,...,Ng +1}  of decision levels, with t1 = 0  and tNg+1
= 1  after 

normalization. If a voxel value lies in the interval [tk ,tk+1),  it is mapped to rk .   

All quantization algorithms attempt to resolve, for a given number of gray levels, 

the reconstruction and decision levels of an input volume. The simplest quantization 

scheme is called the uniform quantizer. Let a given volume have voxel values in the 

interval [a,b].  If the volume is uniformly quantized to Ng levels, the transition and 

reconstruction levels become: 

tk = a +
(b − a)(k −1)

Ng

, for k = 1,2,...,Ng +1

rk =
tk + tk+1
2

, for k = 1,2,...,Ng

                          (3.5) 

Figure 3.9 shows the histogram of the tumour volume from the T2FS scan of patient 3 

built using uniform quantization with 256 gray levels. 

 

 

Figure 3.9. Uniform quantization of the tumour volume from the T2FS scan of patient 3 (Scale 
3.27 mm). 
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In the last figure, the number of gray levels was intentionally put to a high number 

(256) to reflect the real histogram of patient 3. The next two sub-sections detail two 

quantization schemes investigated in this work. 

3.5.1 Equal-probability quantization 

In their original work on GLCM-based textures features, Haralick et al. [101] proposed 

that the quantization of images prior to computation of the GLCM should be done using 

an equal-probability quantization scheme in order for the textures to be invariant under 

monotonic gray-tone transformations. This quantization scheme defines decision 

thresholds in an image such that the number of pixels with reconstruction level rk  is the 

same in the quantized image for all k (i.e. for all Ng, or bin). Similarly to the uniform 

quantizer, the reconstructions levels are taken as the average of two consecutive decision 

levels. In this work, an equal-probability quantization algorithm similar to the one 

described by Haralick et al. [101] was implemented. Figure 3.10 shows the histogram of 

the tumour volume from the T2FS scan of patient 3 built using equal-probability 

quantization with 64 gray levels. The equal-probability quantization algorithm 

implemented in this work attempts to provide the same number of counts in every bin, but 

some discretization errors are present and can be seen in Figure 3.10.  

 

 

Figure 3.10. Equal-probability quantization of the tumour volume from the T2FS scan of patient 
3 (Scale 3.27 mm). 
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3.5.2 Lloyd-Max quantization 

In 1982, Lloyd [126] formulated the concept of Max [127] (of quantizing an input signal 

to achieve minimal distortion) into a coherent quantization theory now known as the 

Lloyd-Max quantization algorithm. Lloyd enounced his optimization criterion as the 

minimization of “average quantization noise power”. Essentially, this scheme optimally 

minimizes the mean square quantization error of the output [128]. Let X be the input 

volume and Q(X) the output of quantization. For Ng gray levels, the mean-squared error ε 

is:  

ε = E (X −Q(X))2⎡⎣ ⎤⎦ = (X −Q(X))2 pX (X)dXt1

tNg+1∫                         (3.6)  

where pX (X)  is the amplitude probability density of the input volume X. The necessary 

conditions for minimization of ε are obtained by differentiating Equation (3.6) with 

respect to the decision levels tk  and the reconstruction levels rk .  By equating to 0 and 

from the fact that tk−1 ≤ tk ,  we obtain:  

tk =
rk + rk−1
2

                                                      (3.7) 

    rk = E X X ∈[tk ,tk+1)⎡⎣ ⎤⎦ =
X

tk

tk+1∫ ⋅ pX (X)dX

pX (X)dXtk

tk+1∫
                              (3.8) 

Practically speaking, Equations (3.7) and (3.8) have to be solved simultaneously (given 

boundary conditions t1  and tNg+1 ) using an iterative scheme. In this work, this procedure 

was performed using the function lloyd.m from MATLAB®. Figure 3.11 shows the 

histogram of the tumour volume from the T2FS scan of patient 3 built using the Lloyd-

Max quantization algorithm with 64 gray levels. 
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Figure 3.11. Lloyd-Max quantization of the tumour volume from the T2FS scan of patient 3 
(Scale 3.27 mm). 

 

3.6 3D texture analysis 

Subsequently to the quantization procedure, textures were extracted from the 5 types of 

volumes used in this study. This section details the GLCM computation and gives an 

overview of the texture extraction workflow. 

3.6.1 3D gray-level co-occurrence matrix computation 

The gray-level co-occurrence matrix (GLCM) describes the frequencies of occurrence of 

the different pairs of gray levels i and j separated by a distance d and an angle θ in an 

image.  In 3D discrete space, the voxel connectivity description can take one of the three 

forms shown in Figure 3.12.  

 

 

Figure 3.12. Voxel connectivity in 3D space (taken from[129]). Left: 6-voxel connectivity around 
the center voxel, Middle: 18-voxel connectivity around the center voxel, Right: 26-voxel 
connectivity around the center voxel. 
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In this work, the GLCMs were computed using 26-voxel connectivity by applying 

a 3D generalization of the theory presented in section 2.1. The directional dependence θ 

was not taken into account. Therefore, the GLCMs computed in this work represent the 

sum of occurrences of pairs of gray levels for the 26 directions around a center voxel such 

that the computation mapped all neighbours of all voxels in the tumour. Furthermore, the 

distance parameter d was set to 1, similarly to other related works ([97] [99] [100]). For 

this parameter to be meaningful in 3D space, isotropic voxel size is needed. Hence, prior 

to quantization and GLCM computation, the 5 volumes were resampled using cubic 

interpolation to an isotropic voxel size set to the desired scale. As a final step prior to 

texture features extraction, the GLCMs were normalized by the sum of the values at all 

positions (i, j).  Figure 3.13 shows a 3D representation of two GLCMs with 32 gray levels 

computed using Lloyd-Max quantization algorithm from the PET-T1 fused scans of 

patients 11 (MetsLungs) and 17 (no MetsLungs). 

 

 

Figure 3.13. 3D representation of the GLCM from PET-T1 fused scan (R = 1.5, Scale 3.27 mm) 
of patient 11 (MetsLungs) and patient 17 (no MetsLungs). Percentages of occurrence of the 
different pairs of gray levels are reported for illustrative purposes. 
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3.6.2 Texture extraction workflow 

From the normalized GLCMs with Ng gray levels computed after quantization of the 5 

types of volumes with isotropic voxel size resampled at a desired scale, 6 texture features 

were extracted according to the mathematical operations shown in Table 2.1. The 

workflow from the resampling of scans to texture feature extraction is resumed in Figure 

3.14. 

 

 

Figure 3.14. Workflow of texture feature extraction. 

 

In this work, the effect of 7 different scales on the prediction performance was 

investigated: 1.64 mm, 2.18 mm, 2.45 mm, 3.27 mm, 4.36 mm, 4.91 mm and 6.54 mm. 

 

3.7 Univariate analysis 

Up to this point, 18 scan-texture combinations were extracted from separate scans and 12 

scan-texture combinations from fused scans. In addition, SUVmax was extracted from 

FDG-PET tumour volumes and was added to the feature set. Then, the association 

between the different features and lung metastases was investigated. The association 
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between the vector  f j = {xij ∈ : i = 1,2,...,n} and the outcome vector 

y = {yi : i = 1,2,...,n},  where xij is the j th  input variable for the i th  patient with n = 35  

and yi ∈{0 :No MetsLungs,1:MetsLungs}, was calculated with Spearman’s rank 

correlation by using the function corr.m of MATLAB®. The choice was made to include 

all patients from Table 3.1 in the analysis even though the ultimate goal is to find relevant 

image characteristics for the prediction of lung metastases at diagnosis of STS of the 

extremities. In other words, patients 11, 20, 24 and 30 were included in the univariate and 

multivariable analysis. In addition to the primary sarcoma, patients 11 and 20 were 

diagnosed with lung metastases at presentation, and patients 24 and 30 were diagnosed 

with bone metastases at presentation. It was verified that the exclusion of patients with 

lung metastases at presentation generally lowered significantly the Spearman’s 

coefficients of textures extracted from separate scans. On the other hand, the exclusion of 

patients with bone metastases at presentation generally did not significantly affect the 

Spearman’s coefficients of textures extracted from separate scans. Appendix D presents 

the details of the latter analysis. These results tend to prove that patients diagnosed with 

lung metastases at presentation possess similar image characteristics as those that 

developed lung metastases during the follow-up period. As a consequence, all patients 

were included in the study.  

 

3.8 Multivariable analysis 

In addition to univariate analysis, linear combinations of features were investigated for 

the prediction of lung metastases. Multivariable models were built using forward 

selection and logistic regression with 19 variables in the case of separate scans (18 scan-

textures + SUVmax) and 13 variables in the case of fused scans (12 scan-textures + 

SUVmax). In this work, many parameters had to be optimized in order to identify a general 

model with best prediction performance. In this respect, this section first details the tests 

performed to identify the optimal image analysis parameters. Finally, the methodology 

used to identify a general multivariable model and to evaluate its prediction performance 

is described.  
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3.8.1 Optimization of parameters 

This sub-section describes the methodology used to identify the optimal quantization 

algorithm and optimal number of gray levels to be used in subsequent analysis. Two 

quantization algorithms were tested: equal-probability and Lloyd-Max quantization. In 

addition, four numbers of gray levels Ng ∈{8, 16, 32, 64} were tested. In order to identify 

the optimal quantization scheme, three metrics were used. 

 

METRIC 1: rho5Best 

rho5Best =
1

5
sup5 Spearman 's Coefficient(i)

i=1

5

∑                        (3.9) 

For a given model order, all possible feature combinations were tested. For every 

combination, logistic regression was applied on the entire dataset (35 patients) in order to 

find the regression coefficients of g(xi ).  Spearman’s coefficient was then computed 

between the vector of the linear combination values g = {g(xi ) : i = 1,2,...,n}  and the 

outcome vector y. The value rho5Best was then calculated as the average of the 5 highest 

absolute Spearman’s coefficients. This metric can be used only to evaluate the 

performance of models for different quantization schemes on training data (here, the 

entire dataset).  

 

METRIC 2: rhoBoot 

rhoBoot = Percentage Frequency(i)*Spearman 's Coefficient(i)
i=1

Number of Models

∑   (3.10) 

For every quantization scheme tested and a given model order, one rhoBoot was 

computed. First, the entire dataset was separated into a training set and a testing set using 

bootstrapping. The process was repeated for 1000 bootstrap samples. For every bootstrap 

sample, variables were selected from the training set by using the open-source software 

DREES [130]. For a given model order, the software implements an efficient forward 

selection scheme, in which the stepwise statistical significance of added regression 

coefficients is determined via the maximization of the Wald’s test. Subsequently to all 

bootstrap runs, the frequency by which each group of variables was selected was again 
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calculated using DREES. For this purpose, the software implements a model coalescing 

step, in which “models differing in terms of variables that are correlated by greater than a 

threshold Spearman’s coefficient are reduced to the same model” [130]. Then, for all 

coalesced models (or group of variables) and up to 5 models, logistic regression was 

applied on the entire dataset using DREES in order to find the regression coefficients and 

Spearman’s coefficient between g and y was computed. The metric rhoBoot was then 

calculated using Equation (3.10). For different quantization schemes, this metric allows to 

weight the goodness-of-fit on the entire dataset based on the dominance of group of 

variables found in bootstrap training sets.  

 

METRIC 3: Stability 

Stability = (Percentage Frequency(i))2

i=1

Number of Models

∑                 (3.11) 

For every quantization scheme tested and a given model order, one stability metric 

was computed. First, the dataset was separated into training and testing sets using 

bootstrapping for 1000 bootstrap samples. For every bootstrap sample, variables were 

selected in the training set using the forward selection scheme described earlier. 

Subsequently to all bootstrap runs, the frequency by which each group of variables was 

selected was again calculated using the same method described earlier. The metric 

stability was then calculated using Equation (3.11). A given quantization scheme is 

considered stable if the same group of variables are often picked up in bootstrap training 

sets. The premise is that for a given model order, a quantization scheme with higher 

stability will perform better on unseen data. 

3.8.2 Evaluation of prediction performance of multivariable models 

This sub-section presents the methodology used to evaluate the prediction performance of 

imaging feature models. Essentially, performance metrics were calculated in different 

testing sets from models built in different training sets for a high number of bootstrap 

samples. First, the methodology used to estimate the optimal order of a prediction model 

is described here: 
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Model Order Estimation 

1. For model orders 1 to 10, apply bootstrap technique to divide the dataset into 

training and testing sets for 1000 bootstrap samples. 

2. For every bootstrap sample of a given model order, select variables and their 

corresponding regression coefficients in the training set using forward selection 

and logistic regression algorithms from DREES. Calculate Spearman’s coefficient 

between the vector of the linear combination values gtrain = {g(xi ) : i ∈training set}  

obtained from the regression coefficients found in the training set and the outcome 

vector ytrain = {yi : i ∈training set}.  

3. For a given model order, average Spearman’s coefficients of the 350 bootstrap 

runs. 

Finally, the methodology used to evaluate the performance of prediction models for 

situations involving different fusion schemes, R ratios, scales and model orders is 

described here: 

 

Prediction Performance Evaluation 

1. Apply bootstrap technique to divide the dataset into training and testing sets for 

10000 bootstrap samples. For every bootstrap run and for a given model order, 

select variables and their corresponding regression coefficients in the training set 

using the forward selection and logistic regression algorithms from DREES 

2. Calculate the frequency of occurrence of group of variables. Pick up the most 

frequent group of variables. 

3. Apply bootstrap technique to divide the dataset into training and testing sets for 

another 10000 bootstrap samples. For every bootstrap run, use the most frequent 

group of variables found in step 2 and calculate its corresponding regression 

coefficients in the training set. Use the regression coefficients found in the training 

set to calculate a vector of linear combination values gtest = {g(xi ) : i ∈testing set}.  

Use gtest and the outcome vector ytest = {yi : i ∈testing set}  in order to calculate 
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performance metrics in the testing set, namely AUC and MCC. Average the 

performance metrics of the 10000 bootstrap runs and use their means in order to 

rank the different situations. 

The only constraint set for the choice of training and testing sets was that their size had to 

be greater than 1. Without other constraints (e.g., keeping the proportion of patients with 

lung metastases the same in the two sets), the bias inherent to resampling was minimized. 

MCC was calculated using Equation (2.25) and a threshold of 0 as defined by the offset in 

Equation (2.14). AUC was calculated using the function perfcurve.m of MATLAB®. 

Essentially, the whole prediction performance evaluation methodology allows to identify 

an optimal model for a given situation and to thereafter simulate its prediction 

performance on unseen data using bootstrap testing sets.  
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CHAPTER 4: RESULTS 

 

4.1 Optimization of quantization scheme 

The presentation of results starts with the optimization of the quantization algorithm and 

the number of gray levels. The experiments performed in this section had for goal to 

identify a quantization scheme of choice before proceeding to other experiments 

presented in sections 4.2 and 4.3. 

4.1.1 Quantization algorithm 

Table 4.1 presents correlation results obtained with equal-probability quantization, and 

Table 4.2 presents those obtained with Lloyd-Max quantization. The tests were performed 

using the 19 variables extracted from separate scans at scale 3.27 mm for both MR and 

PET volumes. All combinations of the number of gray levels Ng ∈{8, 16, 32, 64} were 

investigated for the MR and PET volumes. For every situation, the three metrics 

described in section 3.8.1 were calculated for a linear combination of 5 variables. 

 

Table 4.1. Performance of Equal-Probability quantization (model order 5) 

Ng Metric 

MR PET rho5Best rhoBoot Stability 

8 8 0.8267 0.7886 0.20 

8 16 0.8267 0.7967 0.21 

8 32 0.8267 0.8021 0.27 

8 64 0.8267 0.7916 0.21 

16 8 0.8173 0.7566 0.22 

16 16 0.8197 0.7668 0.20 

16 32 0.8197 0.7822 0.22 

16 64 0.8197 0.7716 0.23 

32 8 0.8091 0.7661 0.29 

32 16 0.8103 0.7692 0.30 

32 32 0.8091 0.7747 0.33 

32 64 0.8103 0.7506 0.30 

64 8 0.7822 0.7695 0.30 

64 16 0.7843 0.7711 0.28 
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64 32 0.7857 0.7774 0.27 

64 64 0.7857 0.7693 0.20 

 

Table 4.2. Performance of Lloyd-Max quantization (model order 5) 

Ng Metric 

MR PET rho5Best rhoBoot Stability 

8 8 0.7682 0.7651 0.70 

8 16 0.7658 0.7521 0.65 

8 32 0.767 0.7668 0.74 

8 64 0.7611 0.7560 0.56 

16 8 0.8009 0.7907 0.59 

16 16 0.7974 0.7856 0.54 

16 32 0.7986 0.7864 0.59 

16 64 0.7869 0.7725 0.59 

32 8 0.7693 0.7413 0.29 

32 16 0.7857 0.7670 1 

32 32 0.7857 0.7809 0.70 

32 64 0.7623 0.7247 0.32 

64 8 0.7682 0.7571 0.57 

64 16 0.7693 0.7611 0.43 

64 32 0.7728 0.7538 0.50 

64 64 0.7529 0.7329 0.35 

 

A direct comparison between Table 4.1 and Table 4.2 shows that metrics rho5Best 

and rhoBoot appear similar in both quantization algorithms, although rho5Best is slightly 

higher for equal-probability quantization. However, prediction models from Lloyd-Max 

quantization appear much more stable than those from equal-probability quantization. We 

believe that the stability of prediction models also plays a very important role in the 

prediction performance on unseen data. Therefore, the choice was made to use Lloyd-

Max quantization algorithm for all subsequent analysis.  

4.1.2 Number of gray levels 

Next, other tests were performed in order to identify the optimal number of gray levels to 

be used in the Lloyd-Max quantization algorithm. From Table 4.2, it can be seen that 16 
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gray levels in MR volumes allows for the optimization of rho5Best and rhoBoot. The 

number of gray levels for MR volumes was thus chosen to be 16. Table 4.3 presents the 

tests performed to thereafter optimize the number of gray levels in PET volumes. To 

perform such operation, the procedure described in section 4.1.1 was repeated for lower 

model orders. The tests were performed using the 19 variables extracted from separate 

scans at scale 3.27 mm for both MR and PET volumes. For every situation, the three 

metrics described in section 3.8.1 were calculated for linear combinations of 4 and 3 

variables. 

 

Table 4.3. Performance of Lloyd-Max quantization (model orders 4 and 3) 

Ng 
Metrics 

Order 4 Order 3 

MR PET rho5Best rhoBoot Stability rho5Best rhoBoot Stability 

16 8 0.7295 0.7205 0.3397 0.6909 0.6855 0.2274 

16 16 0.7389 0.7194 0.3939 0.6979 0.6845 0.3285 

16 32 0.7377 0.7288 0.3857 0.6991 0.6865 0.3359 

16 64 0.7330 0.7220 0.3678 0.6956 0.6844 0.2932 

 

From Table 4.3, it can be seen that 16 and 32 gray levels in PET appear slightly 

better than 8 and 64 gray levels. However, results are about the same between 16 and 32 

gray levels. At this point, the choice was made to consistently use 16 gray levels for MR, 

PET and fused PET/MR scans, such that a direct comparison could be established in 

subsequent analysis.  

To recapitulate the results obtained from section 4.1, the tests that were performed 

allowed to identify Lloyd-Max algorithm with 16 gray levels as the quantization method 

of choice for the application presented in this study. This quantization scheme was used 

for all experiments presented in the next sections.  
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4.2 Univariate results  

This section details the univariate results of all features extracted from separate and fused 

scans. First, the correlation of SUVmax with lung metastases is shown. Then, the 

correlation of univariate texture features with lung metastases is presented for both 

separate and fused scans. Two situations are shown for both separate and fused scans: 1) 

the situation yielding the best average univariate correlation results; and 2) the situation 

optimized for the best multivariable prediction performance. For the sake of clarity, all 

univariate results are presented together, although the justification for the optimization of 

prediction performance will be presented in section 4.3. 

4.2.1 SUVmax 

The correlation between the vector of SUVmax values and the outcome vector y yielded 

Spearman’s coefficient rho = 0.6382  with p < 0.0001.  Figure 4.1 presents a plot of the 

outcome vector y as a function of SUVmax. In that plot, each green square represents one 

patient of the cohort. 

 

 

Figure 4.1. SUVmax  correlation with lung metastases. 
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The results of Figure 4.1 confirm the usefulness of SUVmax as a predictor of lung 

metastases in STS of the extremities. Although not perfect, a clear separation can be seen 

between low (<15) and high (>15) SUVmax patients. One of the major goals of this work is 

to find complementary features to SUVmax in order to obtain a better separation of patients 

with and without lung metastases. This issue will be addressed in the multivariable 

analysis section 4.3. 

 

4.2.2 Separate scans 

Table 4.4 presents the univariate correlation of texture features extracted on separate 

scans with lung metastases. Two situations are shown: 1) scale 1.64 mm; and 2) scale 

3.27 mm. For the seven scales tested in this work (1.64 mm, 2.18 mm, 2.45 mm, 3.27 

mm, 4.36 mm, 4.91 mm, 6.54 mm), the first situation is the one yielding the best average 

of absolute Spearman’s correlation coefficients, whereas the second situation is the one 

optimized for the best prediction performance (see section 4.3). Appendix E.1 gives more 

information about the average univariate correlation results at all scales.  

 

Table 4.4. Univariate correlation of features from separate scans with lung metastases 

Feature 
Scale 

1.64 mm 3.27 mm 

SUVmax rho = 0.6382, p < 0.0001 rho = 0.6382, p < 0.0001 

PET--Contrast rho = -0.4567, p = 0.0058 rho = -0.3806, p = 0.0241 

PET--Entropy rho = -0.4567, p = 0.0058 rho = -0.3279, p = 0.0545 

PET--Homogeneity rho = 0.4450, p = 0.0074 rho = 0.4391, p = 0.0083 

PET--Energy rho = 0.3923, p = 0.0198 rho = 0.2986, p = 0.0814 

T1--Contrast rho = -0.3513, p = 0.0385 rho = -0.2283, p = 0.1871 

T1--Entropy rho = -0.3396, p = 0.0460 rho = 0.1874, p = 0.2812 

PET--SumMean rho = -0.3396, p = 0.0460 rho = -0.2869, p = 0.0947 

PET--Variance rho = -0.3103, p = 0.0696 rho = -0.2752, p = 0.1096 

T2FS/STIR--Contrast rho = -0.2693, p = 0.1177 rho = -0.1405, p = 0.4207 

T1--Homogeneity rho = 0.2693, p = 0.1177 rho = 0.0468, p = 0.7893 

T1--SumMean rho = 0.1991, p = 0.2516 rho = 0.1112, p = 0.5246 

T1--Variance rho = 0.1815, p = 0.2967 rho = 0.1405, p = 0.4207 

T2FS/STIR--SumMean rho = -0.1639, p = 0.3467 rho = -0.2283, p = 0.1871 

T2FS/STIR--Variance rho = -0.1639, p = 0.3467 rho = -0.1698, p = 0.3295 
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T2FS/STIR--Homogeneity rho = 0.1347, p = 0.4406 rho = 0.1054, p = 0.5468 

T2FS/STIR--Entropy rho = -0.0761, p = 0.6639 rho = 0.0761, p = 0.6639 

T2FS/STIR--Energy rho = 0.0585, p = 0.7383 rho = -0.0410, p = 0.8152 

T1--Energy rho = 0.0527, p = 0.7637 rho = -0.1991, p = 0.2516 

Average absolute rho 0.2789 0.2274 

 

It can be seen from Table 4.4 that the best average univariate correlation results of 

separate scans are not obtained at the same scale as the one optimized for the best 

multivariable prediction performance. Also, PET texture features generally appear 

superior to MR texture features. 

4.2.3 Fused scans 

Table 4.5 presents the univariate correlation of texture features extracted on fused scan 

with lung metastases. Two situations are presented: 1) scale 1.64 mm, R = 1.5  and 2) 

scale 4.91 mm, R = 1.5.  For the seven scales (1.64 mm, 2.18 mm, 2.45 mm, 3.27 mm, 

4.36 mm, 4.91 mm, 6.54 mm) and seven R ratios (1/3, 1/2, 2/3, 1, 3/2, 2, 3) tested in this 

work, the first situation is the one yielding the best average of absolute Spearman’s 

correlation coefficients, whereas the second situation is the one optimized for the best 

prediction performance (see section 4.3). Appendix E.2 gives more information about the 

average univariate correlation results for all scales and R ratio combinations. 

 

Table 4.5. Univariate correlation of features from fused scans with lung metastases 

Feature 
Scale 

1.64 mm 4.91 mm 

SUVmax rho = 0.6382, p < 0.0001 rho = 0.6382, p < 0.0001 

PET-T1--Contrast rho = -0.5504, p = 0.0006 rho = -0.4684, p = 0.0045 

PET-T1--Homogeneity rho = 0.5504, p = 0.0006 rho = 0.5035, p = 0.0020 
PET-T1--Energy rho = 0.4977, p = 0.0024 rho = 0.1874, p = 0.2812 

PET-T1--Entropy rho = -0.4684, p = 0.0045 rho = -0.1991, p = 0.2516 
PET-T2FS/STIR--Homogeneity rho = 0.4684, p = 0.0045 rho = 0.4508, p = 0.0066 

PET-T2FS/STIR--Entropy rho = -0.4508, p = 0.0066 rho = -0.2635, p = 0.1262 

PET-T2FS/STIR--Contrast rho = -0.4450, p = 0.0074 rho = -0.4333, p = 0.0093 
PET-T2FS/STIR--Energy rho = 0.4391, p = 0.0083 rho = 0.1639, p = 0.3467 

PET-T2FS/STIR--Variance rho = -0.4333, p = 0.0093 rho = -0.4040, p = 0.0161 
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PET-T2FS/STIR--SumMean rho = -0.4157, p = 0.0130 rho = -0.3864, p = 0.0219 

PET-T1--SumMean rho = -0.3454, p = 0.0421 rho = -0.2693, p = 0.1177 
PET-T1--Variance rho = -0.3045, p = 0.0754 rho = -0.2225, p = 0.1989 

Average absolute rho 0.4621 0.3535 

 

It can be seen from Table 4.5 that the best average univariate correlation results of 

fused scans are not obtained at the same scale as the one optimized for the best 

multivariable prediction performance. However, the best average univariate correlation 

results of fused scans are obtained at the same scale as those of separate scans. 

4.2.4 Summary 

This sub-section presents a summary of the last 3 sub-sections. A direct comparison 

between univariate correlation results of SUVmax, separate scans and fused scans is made. 

Figure 4.2 presents the results in the case of the best univariate conditions. Figure 4.3 

presents the results in the case of the best prediction performance conditions. 

 

 

Figure 4.2. Overview of univariate correlation results, best univariate conditions. 
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Figure 4.3. Overview of univariate correlation results, best prediction performance conditions. 

 

Figures 4.2 and 4.3 show that on a univariate basis, texture features extracted from 

fused scans appear superior to those from separate scans for predicting lung metastases in 

STS of the extremities. However, all texture features from separate or fused scans have 

lower predicting power than SUVmax. Consequently to these results, one of the major goals 

of this work has been to build a linear combination of features including SUVmax in order 

to significantly improve the prediction of the clinical endpoint of interest.  

 

4.3 Multivariable results 

This section presents the majority of the work performed in this study. By combining 

logistic regression, forward selection and bootstrapping statistical techniques, the 

multivariable analysis had for goal to identify a general model that linearly combines 

imaging features to be tested on future patient cohorts for the prediction of lung 

metastases in STS of the extremities. The prediction performance was evaluated using the 

methodology described in section 3.8.2. First, the work done using separate and fused 

scans is separately presented. Then, an overview of results is presented to finally 

terminate with the proposal of a general multivariable model.  Please note that the 
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confidence intervals on all tables and graphs of this section represent the standard error of 

the mean (SEM). This metric estimates the standard deviation of the sampling distribution 

of the mean. For a 95.5% confidence interval, SEM = 2σ / N ,  where σ is the standard 

deviation of measurements and N is the number of bootstrap samples. 

4.3.1 Separate scans 

The prediction performance of the features from separate scans as a function of scale for 

model orders 2 to 5 is first presented in Figure 4.4. 

 

 

Figure 4.4. Prediction performance of separate scans as a function of scale. 

 

The results of Figure 4.4 do not allow to clearly identify a scale at which separate 

scans have the best overall prediction performance. However, we believe that a higher 

weight should be given to the AUC metric over MCC. Higher AUC indicates a better 

separation between positive and negative instances of a classifier. On the other hand, 

MCC yields a balanced value between the sensitivity, specificity and accuracy properties 

of the classifier but does not indicates how well positive and negative instances are 

separated from each other. Hence, scale 3.27 mm was chosen as the optimal scale for 
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separate scans since it yields the highest AUC with acceptable MCC compared to other 

scales. 

Next, model order estimation was performed to find the model order providing the 

best parsimonious model that prevents underfitting and overfitting. Results of the 

simulation are shown in Figure 4.5. The procedure was executed using features extracted 

from separate scans at scale 3.27 mm by following the methodology described in the 

model order estimation part of section 3.8.2. 

 

 

Figure 4.5. Model order estimation for separate scans (scale 3.27 mm). 

 

The model order estimation method does not allow to find an optimal model order 

for separate scans. Ideally, a peak would have been found at the model order providing 

the optimal compromise between underfitting and overfitting. This abnormality is 

probably caused by the feature selection method, which does not seem to efficiently pick 

up the dominant features of separate scans. 
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Then, for the sake of completeness, a plot of the prediction performance of 

separate scans at scale 3.27 mm as a function of model order is presented in Figure 4.6. 

Table 4.6 then shows the most frequent group of variables used to perform the 

simulations of Figure 4.6 as defined in the prediction performance evaluation part of 

section 3.8.2.  

 

 

Figure 4.6. Prediction performance of separate scans (scale 3.27 mm) as a function of model 
order. 

 

Table 4.6. Most frequent group of variables of separate scans (scale 3.27 mm) 

Model Order Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 

1 SUVmax − − − − 

2 SUVmax T1--SumMean − − − 

3 SUVmax T1--SumMean PET--Homogeneity − − 

4 SUVmax T1--SumMean PET--Homogeneity T1--Homogeneity − 

5 SUVmax T1--SumMean PET--Homogeneity T1--Homogeneity T1--Contrast 
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According to Figure 4.6, a model order of 5 has the best prediction performance 

for features extracted from separate scans at scale 3.27 mm. In order to complete the best 

linear model for separate scans, the regression coefficients for each of the variables at 

order 5 that are presented in Table 4.6 were computed as follows: 

1. Apply bootstrap technique to divide the dataset into training sets and 

testing sets for 1000 bootstrap samples. 

2. For every bootstrap run, apply logistic regression in the training set in 

order to find regression coefficients. 

3. For each model variable, compute the mean of the corresponding 

regression coefficients over the 10000 bootstrap runs. 

The logistic regression computation in DREES does not involve any type of 

regularization of the magnitude of regression coefficients. As a consequence, some 

coefficients were found to be very large over the 10000 bootstrap runs. To overcome this 

problem, coefficients with absolute magnitude greater than a value of 1000 were rejected 

(approximately 0.1% of the total number were rejected) in the computation of the mean. 

The whole procedure was also repeated for feature values normalized in the range [0,1] 

prior to bootstrapping runs. The mean regression coefficients that were obtained are 

summarized in Table 4.7.  

 

Table 4.7. Regression coefficients of the best model from separate scans 

Features 

Regression Coefficients 
(mean ± SEM) 

Non-normalized 
features 

Normalized 
features 

SUVmax 1.91 ± 0.02 56.5 ±0.5 
T1--SumMean -15.2 ± 0.1 -135 ± 1 

PET--Homogeneity 232 ± 2 150 ± 1 
T1--Homogeneity -466 ± 3 -328 ± 2 

T1--Contrast -9.8 ± 0.1 -86 ± 1 
Offset (β0) 269 ± 2 269 ± 2 

 



CHAPTER 4. RESULTS  

 

79 

Finally, to summarize the results obtained with separate scans, we can calculate a 

new vector g = {g(xi ) : i = 1,2,...,n}  of combined features for all patients (n = 35  ) using 

the regression coefficients of the non-normalized features of Table 4.7. The plot of g with 

the outcome vector y is shown in Figure 4.7. The complete linear model is also shown on 

this figure. Spearman’s correlation between g and y is found to be rho = 0.8021 with 

p < 0.0001.  

 

 

Figure 4.7.  Plot of best multivariable model from separate scans. 

 

Figure 4.7 shows that a much better separation of the two patient classes can be 

obtained using a linear combination of features from separate scans than with SUVmax 

alone (see Figure 4.1). The model variables shown in Figure 4.7 reached average results 

of AUC = 0.906 ± 0.002  and MCC = 0.598 ± 0.002  in bootstrap testing sets. 

4.3.2 Fused scans 

Similarly to sub-section 4.3.1, multivariable analysis using features extracted from fused 

scans is presented here. The optimization of fusion scheme, R ratio, scale and model order 

is described.  
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Figure 4.8 shows the prediction performance of features extracted from fused 

scans (scale 3.27 mm) computed with the weighted averaging technique described in 

section 3.4.1. The figure elaborates the prediction performance as a function of the weight 

of MR intensities in the fusion process for model orders 2 to 5.  

 

 

Figure 4.8. Prediction performance of fused scans (scale 3.27 mm), weighted averaging 
technique. 

 

The results presented in Figure 4.8 suggest that PET and MR information may 

have equal importance on the prediction performance using multivariable modeling. As a 

matter of fact, the overall best prediction performance at all orders is obtained with a 

weight of about 0.5 MR in the fusion. This gives a basis for the implementation of the 

DWT fusion scheme presented next. Accordingly to these results, the choice was made to 

average the wavelet coefficients of both modalities as described in step 4 of the wavelet 

fusion scheme presented in section 3.4.2.  

Then, in order to identify the prevalent fusion scheme, the same situation that was 

presented in Figure 4.8 (scale 3.27 mm) is now simulated with fused scans constructed 
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using the DWT technique described in section 3.4.2. Figure 4.9 elaborates the prediction 

performance as a function of the R ratio for model orders 2 to 5. 

 

 

Figure 4.9. Prediction performance of fused scans (scale 3.27 mm), wavelet transform technique. 
 

From Figure 4.8 and Figure 4.9, it can be seen that the fusion scheme using the 

DWT with R = 1.5  exhibit better prediction performance than the weighted averaging 

fusion scheme (especially at model orders 4 and 5) in terms of both AUC and MCC. 

Consequently to these results, the DWT was selected as the fusion scheme of choice for 

subsequent multivariable analysis. 

Figure 4.9 shows that using R = 1.5  for fused scans allows for best prediction 

performance, but this result is valid for a scale of 3.27 mm. Figure 4.10 now presents the 

prediction performance of fused scans with R = 1.5  as a function of scale for model 

orders 2 to 5.  
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Figure 4.10. Prediction performance of fused scans (R = 1.5) as a function of scale. 

 

According to Figure 4.10, scale 4.91 mm offers the best prediction performance 

for fused scans with R = 1.5.  A significant increase in terms of MCC is observed from 

scale 3.27 mm to scale 4.91 mm at order 4, whereas AUC is not significantly affected. In 

order to validate model order 4 as the one providing the best parsimonious properties, 

model order estimation was performed using features extracted from fused scans with 

R = 1.5  at scale 4.91 mm by following the methodology described in the model order 

estimation part of section 3.8.2. Results of the simulation are shown in Figure 4.11.  
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Figure 4.11.  Model order estimation for fused scans (R = 1.5, scale 4.91 mm). 

 

As expected, a peak at model order 4 is found in Figure 4.11, although a clear 

distinction between model orders 4 and 5 cannot be made. However, Figure 4.10 showed 

that the best prediction performance is obtained at order 4. This model order was thus 

chosen for the next simulation presented in Figure 4.12. The simulation of Figure 4.12 

was performed in order to clearly identify the optimal combination of R ratio and scale. 

Figure 4.12 actually presents the prediction performance of fused scans computed with 

the whole range of R ratios as a function of scale for a specific model order of 4.   
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Figure 4.12. Prediction performance of fused scans (all R ratios, model order 4) as a function of 
scale. 

 

Figure 4.12 confirms that the best prediction performance for fused scans is 

obtained with R = 1.5,  scale 4.91 mm and model order 4. Then, for the sake of 

completeness, a plot of the prediction performance of fused scans with R = 1.5  and scale 

4.91 mm as a function of model order is presented in Figure 4.13. Table 4.8 shows the 

most frequent group of variables used to perform the simulations of Figure 4.13 as 

defined in the prediction performance evaluation part of section 3.8.2.  
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Figure 4.13. Prediction performance of fused scans (R = 1.5, scale 4.91 mm) as a function of model 
order. 

 

Table 4.8. Most frequent group of variables of fused scans (R = 1.5, scale 4.91 mm) 

Model 

Order 
Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 

1 
 

SUVmax 
 

− − − − 

2 SUVmax 
PET-T2FS/STIR--

Variance 
− − − 

3 SUVmax 
PET-T2FS/STIR--

Variance 
PET-T1--
Contrast 

− − 

4 SUVmax 
PET-T2FS/STIR--

Variance 
PET-T1--
Contrast 

PET-T1--
Homogeneity 

− 

5 SUVmax 
PET-T2FS/STIR--

Variance 
PET-T1--
Contrast 

PET-T1--
Homogeneity 

PET-T2FS/STIR--
SumMean 

 

In order to complete the best linear model for fused scans, the regression 

coefficients for each of the variables at order 4 that are presented in Table 4.8 were 

computed using the same methodology as employed for separate scans (mean coefficients 
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over 10000 bootstrap training samples; see section 4.3.1). The whole procedure was also 

performed for feature values normalized in the range [0,1] prior to the bootstrapping runs. 

The mean regression coefficients that were obtained are summarized in Table 4.9. 

 

Table 4.9. Regression coefficients of the best model from fused scans 

Features 

Regression Coefficients 
(mean ± SEM) 

Non-normalized 
features 

Normalized 
features 

SUVmax 0.94 ± 0.02 28.4 ± 0.5 
PET-T2FS/STIR--Variance -0.401 ± 0.004 -52.1 ± 0.5 

PET-T1--Contrast -6.7 ± 0.1 -94 ± 1 
PET-T1--Homogeneity -165 ± 4 -95 ± 2 

Offset (β0) 140 ± 3 137 ± 3 

 

Finally, to summarize the results obtained with fused scans, we can calculate a 

new vector g = {g(xi ) : i = 1,2,...,n}  of combined features for all patients (n = 35  ) using 

the regression coefficients of the non-normalized features of Table 4.9. The plot of g with 

the outcome vector y is shown in Figure 4.14. The complete linear model is also shown 

on that figure. Spearman’s correlation between g and y is found to be rho = 0.8255  with 

p < 0.0001.  

Figure 4.14 shows that a much better separation between patients with and 

without lung metastases can be obtained using a linear combination of features from 

fused scans than with SUVmax alone (see Figure 4.1). The separation is actually better with 

4 variables from fused scans than with 5 variables from separate scans. This result 

suggests that texture features extracted from fused scans have better prediction power for 

lung metastases in STS cancer of the extremities than those from separate scans. The 

model variables shown in Figure 4.14 reached average results of AUC = 0.956 ± 0.002  

and MCC = 0.829 ± 0.002  in bootstrap testing sets. 
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Figure 4.14. Plot of best multivariable model from fused scans. 

 

4.3.3 Summary 

This sub-section presents a summary of the last 2 sections. A direct comparison between 

multivariable results obtained with separate and fused scans is shown. In addition, the 

results are compared to the prediction performance of SUVmax alone. AUC and MCC were 

calculated for SUVmax by using the same method described in section 3.8.2. MCC was 

calculated with a threshold of SUVmax of 15. The performance metrics obtained for SUVmax 

alone are: AUC = 0.880 ± 0.002  and MCC = 0.685 ± 0.004.  

Figure 4.15 incorporates the prediction performance results of SUVmax and of the 

optimal prediction conditions of separate and fused scans as a function of model order. 
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Figure 4.15. Prediction performance of SUVmax and of separate and fused scans (optimized 
conditions). 

 

From the results of Figure 4.15, it is clear that the prediction performance of fused 

scans is superior to separate scans and SUVmax. However, the prediction performance of 

separate scans does not appear to be superior to SUVmax. 

Overall, the best prediction performance is obtained with a linear combination of 

SUVmax and 3 texture features extracted from fused scans (R = 1.5)  at scale 4.91 mm. The 

optimal multivariable model of interest in this work and its corresponding prediction 

results are summarized in Figure 4.16. The goal of this work was to identify the general 

model shown in that figure and which takes the form of a linear combination of features 

as defined in Equation 2.14. Note that all optimal parameters (model order, variables, 

regression coefficients, R ratio, scale) and associated performance metrics (AUC, MCC) 

were identified from experiments performed using bootstrap training and testing sets. In 

other words, the simulation of unseen data was used to identify the parameters optimized 

for prediction performance. This final model then needs to be tested on an independent 
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patient cohort in order to validate its potential in predicting lung metastases at diagnosis 

of STS of the extremities. 

 

 

Figure 4.16. Optimal multivariable model of interest in this work and corresponding results. 
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CHAPTER 5: DISCUSSION 

 

5.1 Overview 

In this work, a new methodology has been proposed for the identification of a general 

model of imaging features allowing for the prediction of lung metastases in STS cancer of 

the extremities. The best model identified in this work (Figures 4.14 and 4.16) is made up 

of the combination of three texture features extracted from fused FDG-PET and MR 

scans as well as the SUVmax metric extracted from FDG-PET scans. The use of texture 

features from fused FDG-PET/MR scans as prognostic factors of tumours constitutes a 

new technique, and this study revealed its promising role. We think that the methodology 

developed in this work could be generalized to other cancers and outcomes, but it is 

obvious that the results obtained in this work are specific to lung metastases from STS of 

the extremities and to the different methods that were used. For example, the type of MR 

sequences used in this study has an influence on the final results (Appendix B 

acknowledges the different influence of T2FS and STIR sequences on prediction results). 

The heterogeneity of the scan protocols from the retrospective STS sample is also 

undesirable for future prospective applications, as one needs to minimize texture feature 

variations emerging from inter-acquisition differences [89] [92]. More sophisticated 

image pre-processing procedures such as those employed in the MR literature ([131] 

[132]) could be implemented in order to minimize this effect and to provide a common 

normalization scheme for FDG-PET and MR imaging modalities. On the other hand, 

heterogeneous scan protocols have the advantage of providing results that can be more 

easily generalized to the clinical environment. Furthermore, other specific methods such 

as the quantization scheme, the choice of texture features or the feature selection 

algorithm, have an impact on the identification of the best model. Throughout this 

section, the implication of the different methods used in this work in order to obtain the 

optimal parameters and their corresponding univariate and multivariable results is 

discussed.  

 In section 4.1, the results obtained for the optimization of the quantization 

algorithm and the number of gray levels were presented. These preliminary experiments 
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were performed in order to identify a quantization scheme to be used for the rest of the 

work (sections 4.2 and 4.3). They were carried out by examining the behaviour of the 

different quantization schemes on the entire dataset and by understanding the inherent 

bias of some metrics (defined in section 3.8.1) that were computed. Based on the results 

shown in Tables 4.1 to 4.3, the choice was made to use Lloyd-Max quantization 

algorithm and a number of gray levels (Ng) of 16 for FDG-PET, MR and fused FDG-

PET/MR scans. Unfortunately, the high predictive power of the best model might be 

dependent on this initial choice. More importantly, with another choice of quantization 

scheme, another best model might have been found with better results. Ideally, the 

experiments performed in sections 4.2 and 4.3 should be repeated using different 

quantization parameters. In order to obtain the best predictions, an optimal algorithm and 

Ng could be found for every single texture feature prior to multivariable analysis. 

However, even if we can suspect the quantization scheme to have an effect on the 

predictive power of tumour outcomes, we believe that other parameters such as those 

discussed in the next paragraphs should be given more attention.  As a matter of fact, 

Tixier et al. [99] demonstrated that there were no statistically significant differences on 

the prediction of the response to chemoradiotherapy in esophageal cancer by performing 

GLCM-based texture analysis with 16, 32, 64 or 128 gray levels in FDG-PET images. 

In section 4.2, investigation of the univariate correlation of imaging features with 

lung metastases was performed. First, it was shown that the SUVmax metric represents a 

useful predictor of lung metastases in STS cancer of the extremities (rho = 0.6382,  

p < 0.0001). This result is in agreement with other studies ([51] [52] [53]) assessing the 

potential of this metric to depict the aggressiveness of STS tumours. Next, the univariate 

correlation of texture features with lung metastases was computed. Let us recall that 

textural analysis was performed with a distance parameter d = 1.  No other distance 

parameters were investigated and its influence has also not yet been explored in similar 

works ([97] [99] [100]) that study GLCM-based texture features as potential predictors of 

tumour outcomes. However, our study has the particularity that it simulated the effect of 

different distance parameters by examining textures extracted from FDG-PET, MR and 

fused FDG-PET/MR scans resampled at different scales. This procedure allowed to 
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identify a scale at which textures provide best discrimination between the two classes of 

patients. We suggest that this optimization step should be performed prior to 

classification/prediction tasks in all future similar studies. Also, this procedure should be 

divided into two independent FDG-PET and MR steps in the case of separate scans 

analysis. In reality, GLCM-based textural measurements represent a convolution of the 

response coming from the quantization algorithm, the parameter distance d, the number of 

gray levels Ng, the scale at which the extraction is performed and the parameter θ. Ideally, 

these 5 parameters should be optimized simultaneously in order to better capture the 

imaging patterns of tumours. The influence of the angle parameter was not taken into 

account in this work, nor was it in similar studies ([97] [99] [100]) as it is a common 

practice to average the co-occurrence contributions of all neighbours around a center 

voxel. In future studies, the parameter θ could be optimized using Gabor wavelets ([133] 

[134]) in order to find the orientation at which textural properties are most dominant. 

Nevertheless, the methodology used in this work still provides useful insights on the 

potential of texture features as predictors of lung metastases in STS cancer of the 

extremities. From Tables 4.4 and 4.5 as well as Figures 4.2 and 4.3, it can be seen that 

texture features extracted from fused scans have stronger correlation with lung metastases 

than those extracted from separate scans. This result suggests that the rearrangement of 

gray levels in fused scans provides advantageous new textural properties not present in 

separate scans, although FDG-PET texture features appear dominant over MR ones. In 

fact, the band-pass enhancement of wavelet coefficients allowed a better definition of 

objects forming textures in the spatial domain, which ultimately lead to better 

discrimination of the two classes of patients. As expected, an optimal R ratio greater than 

1 was found. At one point, the discriminative power of textures went down with 

increasing R due to excessive addition of noise into the images. We believe that the band-

pass enhancement technique should also be generalized to separate scans (apply DWT to 

FDG-PET and MR scans and reconstruct them separately with different R ratios). In this 

manner, we could verify if the enhanced textural properties of fused scans come from the 

fusion of FDG-PET and MR spatial characteristics of from the enhancement of wavelet 

band-pass coefficients. Furthermore, it was shown in our work that none of the univariate 

GLCM-based texture features offered better correlation with lung metastases than SUVmax. 
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This emphasizes the need to explore the potential of other texture features for tumour 

outcome prediction in future work. Finally, let us recall that the best average univariate 

correlation results (separate and fused scans: 1.64 mm) were not obtained at the same 

scale as the best multivariable prediction performance (separate scans: 3.27 mm, fused 

scans: 4.91 mm). As a matter of fact, it has been demonstrated in multivariable modeling 

theory that “a variable that is completely useless by itself can provide significant 

improvement when taken with others” [135]. The optimization of texture features in 

terms of prediction performance from the optimization of FDG-PET/MR imaging 

protocols would therefore be a difficult task. 

Then, section 4.3 presented the results form the multivariable analysis. The 

experiments converged to the identification of a general model of the form of Equation 

(2.14) for the prediction of lung metastases in STS cancer of the extremities, hence 

reaching the major objective of this work. All optimal parameters (model order, variables, 

regression coefficients, R ratio, scale) were identified from experiments performed using 

bootstrap training and testing sets. As shown in Figures 4.6 and 4.7, multivariable 

analysis performed on separate scans identified a model of order 5 with best prediction 

performance at scale 3.27 mm (rho = 0.8021  with p < 0.0001,  AUC = 0.906 ± 0.002,  

MCC = 0.598 ± 0.002).  As shown in Figures 4.13 and 4.14, multivariable analysis 

performed on fused scans identified a model of order 4 with best prediction performance 

at scale 4.91 mm with R = 1.5 (rho = 0.8255  with p < 0.0001,  AUC = 0.956 ± 0.002,  

MCC = 0.829 ± 0.002).  These results cannot be compared with the few similar works 

([97] [98] [99] [100]) in the literature since these studies were not performed on STS 

patients. Generally, small sample size was an issue to generate conclusive results in 

previous works and it is a limitation in our study as well. However, the refinement of our 

methodology compared to similar works (FDG-PET/MR fusion, evaluation of prediction 

performance on bootstrap testing sets, etc.) provides new tools for better identification 

and robust validation of prediction models. As a matter of fact, it was clearly 

demonstrated in our work that models built from fused scans provide superior prediction 

performance than those from separate scans. These results likely reflect the stronger 

univariate correlation obtained with fused scans as shown in section 4.2. In addition, the 
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reduction of the dimensionality of the feature set of fused scans surely provided more 

stable simulations. More importantly, the fusion of FGD-PET/MR scans allowed to group 

some features that were important in both modalities and as a consequence, perhaps more 

texture information that is relevant to lung metastases prediction was incorporated into 

the linear models for the same model order (thus without being subject to overfitting). To 

verify the latter assertion, let us recall that the best model of separate scans (Figure 4.7) is 

composed of the texture variables T1--SumMean, PET--Homogeneity, T1--Homogeneity 

and T1--Contrast, whereas the best model of fused scans is composed of the variables 

PET-T2FS/STIR--Variance, PET-T1--Contrast and PET-T1--Homogeneity. For example, 

it can be seen that the Homogeneity texture is an important feature for both FDG-PET and 

T1 modalities. Although some information might have been lost in the fusion process, the 

grouping of the Homogeneity features in fused scans diminished the redundancy of the 

linear model and at the same time allowed another texture variable to be incorporated into 

the modeling for the same model order. However, from another point of view, the 

unpredictable form of the AUC and MCC curves of separate scans in Figure 4.6 

highlights a major limitation of our methodology. Normally, bell-shape curves similar to 

Figure 4.13 for fused scans should have been found. The fact that the optimization of 

scale was not performed independently for FDG-PET and MR scans might be one of the 

causes of this abnormality. The feature selection algorithm based on the maximization of 

the Wald test in the logistic regression procedure might also be one of the causes of this 

abnormality. Indeed, the Wald test is known to produce unstable results on data with 

small sample size and relatively large feature set dimensionality [112]. As a consequence, 

the algorithm might not have picked up the dominant features of separate scans allowing 

for best prediction performance. Other feature selection algorithms such as the likelihood 

ratio test ([112] [113]) in the logistic regression procedure should be tested and results 

compared with the current method. Besides, it is obvious that the combination of the 

imaging features in a linear fashion using logistic regression might not be optimal. In 

future work, other non-linear learning algorithms such as neural networks or kernelized 

support vector machines (SVM) should be explored.  

Furthermore, it is interesting to investigate the significance of the features forming 

the best model from a biological perspective. More specifically, the signs of Spearman’s 
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coefficients from the univariate association of features with lung metastases should be 

more instructive on the biological meaning of tumour textures than the signs of regression 

coefficients of the best model. The regression coefficients computed from a logit 

transformation are hard to interpret and can lead to misinterpretation. We thus refer the 

reader to Table 4.5 for the following discussion. As expected, SUVmax has a positive 

correlation with lung metastases; high glucose uptake in tumours translates into high 

metabolic activity and is likely a sign of aggressiveness and metastatic potential. Next, 

PET-T2FS/STIR--Variance, PET-T1--Contrast and PET-T1--Homogeneity have 

respectively negative, negative and positive correlations with lung metastases. These 

three results are counter-intuitive with the hypothesis that tumour heterogeneity translates 

into tumour aggressiveness. Now referring to the interpretation of GLCM-based textures 

provided in Table 2.1, these results respectively implies that: 1) the lower the variations in 

the distribution of pairs of gray levels of PET-T2FS/STIR tumour volumes 2) the lower 

the local variations of intensities in PET-T1 tumour volumes 3) the more uniform (gray 

levels similarity) the PET-T1 tumour volumes are  the higher is the risk of lung 

metastases in STS of the extremities. By visually inspecting the co-registered separate 

scans of the two classes of tumours, it was noticed that tumours with lung metastases 

often contains regions with uniform intensities in T2FS/STIR and T1 scans that 

corresponds with uniform low-uptake regions in FDG-PET scans. These low-uptake 

regions were most of the time present in the inner portion of tumours and thus most likely 

represent necrotic and/or hypoxic areas. The presence of these inner low-uptake uniform 

regions suggests that the tumour is rapidly increasing in size and might be more at risk to 

metastasize. This could explain the counter-intuitive signs of Spearman’s coefficients of 

some texture features. In future work, texture analysis should be performed separately on 

sub-regions of STS in order to have a better comprehension of their importance in the 

assessment of tumour aggressiveness.  

Finally, it should be verified that the variables forming the best model are not 

highly inter-correlated. In fact, the inclusion of redundant features is not expected to 

improve the prediction accuracy on future patient cohorts, as it would unnecessarily 

model repetitious characteristics of the training data.  To verify if such conditions occur, 

Spearman’s correlation coefficients were computed between the variables forming the 
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best model, that is to say, the vector of SUVmax values for the n = 35  patients and the 

vectors of texture features  f j = {xij ∈ : i = 1,2,...,n}
 
that were extracted from the whole 

dataset of fused scans at scale 4.91 mm with R = 1.5,  where j = 1  refers to PET-

T2FS/STIR--Variance, j = 2  refers to PET-T1--Contrast and j = 3  refers to PET-T1--

Homogeneity. 

 

Table 5.1. Spearman’s correlation coefficients between variables of the best model 

Feature f1  f2  f3  

SUVmax rho = -0.0700, p = 0.6884 rho = -0.3787, p = 0.0255 rho = 0.5008, p = 0.0025 

f1  − rho = 0.0367, p = 0.8340 rho = -0.1081, p = 0.5350 

f2  − − rho = -0.9476, p <0.0001  

f
1
:  PET-T2FS/STIR--Variance, f

2
: PET-T1--Contrast, f

3
: PET-T1--Homogeneity 

 

It can be seen from Table 5.1 that the variables PET-T1--Contrast and PET-T1--

Homogeneity are highly inter-correlated. This is a serious limitation of the best model and 

further work is needed to find features useful for the prediction of lung metastases that are 

less inter-correlated. A dimensionality reduction procedure such as principal component 

analysis ([136]) should be carried out prior to the multivariable modeling process in order 

to build a feature set containing linearly uncorrelated variables. For example, Clausi [103]  

showed that the GLCM-based texture feature Correlation (defined in [101]) is almost 

uncorrelated with the rest of Haralick features. It was verified that the Correlation texture 

feature extracted on PET-T1 fused scans at scale 1.64 mm with R = 1.5  reached 

rho = 0.6031 with p = 0.0001. In future work, this texture feature will be included in the 

feature set. Other features incorporating the shape patterns of STS tumours should also be 

incorporated in our analysis. As a matter of fact, O’Sullivan et al. [137] recently provided 

an interesting update of their initial studies ([55] [56]) on the analysis of spatial 

heterogeneity of FDG-PET uptake in sarcoma tumours. The study showed that significant 

improvements in terms of prediction of patient survival and tumour progression could be 
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obtained by using a new method of statistical analysis of tumour profiles. In the future, 

we will investigate if the prognostic value of these shape patterns could be generalized to 

the prediction of lung metastases. 

 

5.2 Uncertainty analysis 

It would now be interesting to illustrate how the best model identified in this work could 

be used clinically for the prediction of lung metastases in STS cancer of the extremities. 

A patient diagnosed with STS of the extremities would present in a hospital and undergo 

FDG-PET and MR scans. A single value of the form of g(xi )  could then be obtained out 

of the scans by following the methodology presented in this work. Using Equation (2.15), 

this value can be transformed into the posterior probability of observing outcome yi = 1  

(MetsLungs) given the input xi .  This probability could provide useful insights to 

physicians in order to assess the risk of developing lung metastases. However, there is a 

need to identify a decision threshold with which the physician could consider with 

sufficient confidence that the patient is likely to develop lung metastases. Inherently, this 

decision threshold could dictate if the traditional treatment is to be adapted due to 

potential metastases. It has been shown that the form of the linear combination of features 

of Equation (2.14) includes an offset β0 such that g(xi ) = 0  represents the decision 

threshold of interest. However, we need to investigate the confidence interval of the 

measurement g(xi ) = 0  and consequently of the decision-making, a concept that was not 

examined in studies involving multivariable analysis for tumour outcome prediction 

similar to this one ([97] [100]).  

First, an estimation of the uncertainty of g(xi )  due to contouring variations is 

investigated. It was previously mentioned that 16 patients of the dataset had visible edema 

that could be clearly identified in the vicinity of their tumours. For these patients, two 

types of contours were drawn: one incorporating the visible edema (denoted as Edema) 

and one excluding it (denoted as Mass). The whole set of results presented in this work 

were acquired using the Mass contour. We now evaluate the uncertainty of g(xi )  due to 

contouring variations by investigating how the response of the best model shown in 

Figures 4.14 and 4.16 changes using the Edema contours. First, Table 5.2 reports the 
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tumour size (longest diameter) of all patients calculated in MATLAB®  from the Mass and 

Edema contours.  Table 5.2 also reports the value xij  of the 3 texture features of the 

model of interest extracted from the two different contours for all patients i = 1,2,...,n,  

where n = 35. Again, j = 1  refers to PET-T2FS/STIR--Variance, j = 2  refers to PET-T1-

-Contrast and j = 3  refers to PET-T1--Homogeneity. Then, the absolute difference 

between the texture features extracted from the Mass and Edema contours for the ith 

patient is defined as:  

Δ xij = xij[Edema]− xij[Mass] , for j = 1,2,3                          (5.1) 

 

Table 5.2. Contouring effect on texture features of best model 

Patient 

number  

(i) 

Size 

Mass 

(mm) 

Size 

Edema 

(mm) 

ΔΔSize 

(mm) 

xi1  

Mass 

xi1  

Edema 
Δ xi1  

xi2  

Mass 

xi2  

Edema 
Δ xi2  

xi3  

Mass 

xi3  

Edema 
Δ xi3  

1 113 176 62 78.7 80.2 1.4 7.86 7.21 0.64 0.445 0.457 0.012 

2 163 − 0 42.0 − 0 10.15 − 0 0.402 − 0 

3 153 − 0 80.6 − 0 4.71 − 0 0.510 − 0 

4 67 − 0 79.1 − 0 11.98 − 0 0.392 − 0 

5 280 − 0 72.6 − 0 8.11 − 0 0.448 − 0 

6 303 327 23 79.7 79.6 0.1 6.46 6.95 0.49 0.471 0.461 0.010 

7 153 − 0 83.3 − 0 7.26 − 0 0.452 − 0 

8 53 − 0 100.4 − 0 10.60 − 0 0.395 − 0 

9 54 − 0 109.4 − 0 5.51 − 0 0.476 − 0 

10 126 − 0 70.0 − 0 9.18 − 0 0.414 − 0 

11 189 241 51 89.5 93.1 3.6 5.05 4.77 0.28 0.511 0.517 0.005 

12 70 94 24 83.9 89.9 6.0 5.63 5.92 0.29 0.476 0.480 0.004 

13 101 − 0 97.9 − 0 10.27 − 0 0.423 − 0 

14 131 208 78 105.5 84.8 20.7 7.72 7.41 0.30 0.442 0.456 0.014 

15 144 159 15 75.9 72.2 3.7 5.85 4.34 1.51 0.484 0.519 0.034 

16 119 − 0 36.8 − 0 4.85 − 0 0.539 − 0 

17 123 − 0 129.5 − 0 14.30 − 0 0.364 − 0 

18 158 − 0 95.8 − 0 7.26 − 0 0.445 − 0 

19 193 − 0 72.8 − 0 7.53 − 0 0.438 − 0 

20 181 263 82 93.6 101.2 7.6 6.02 5.05 0.97 0.476 0.502 0.026 
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21 95 − 0 91.0 − 0 9.21 − 0 0.407 − 0 

22 212 − 0 75.0 − 0 4.86 − 0 0.528 − 0 

23 98 − 0 97.1 − 0 6.18 − 0 0.505 − 0 

24 186 − 0 96.8 − 0 4.83 − 0 0.523 − 0 

25 240 247 7 59.8 55.1 4.7 4.37 3.80 0.57 0.519 0.534 0.015 

26 96 192 96 102.7 99.3 3.4 5.21 5.36 0.16 0.484 0.501 0.017 

27 144 286 143 92.9 87.7 5.2 5.95 4.66 1.29 0.489 0.524 0.035 

28 155 238 83 103.7 96.9 6.8 4.40 3.83 0.57 0.506 0.523 0.016 

29 84 − 0 76.6 − 0 5.03 − 0 0.483 − 0 

30 49 55 6 85.2 105.5 20.3 8.32 8.07 0.24 0.437 0.439 0.002 

31 122 − 0 58.6 − 0 5.58 − 0 0.488 − 0 

32 161 297 136 70.8 52.2 18.6 9.44 6.24 3.20 0.418 0.468 0.050 

33 110 223 113 41.4 60.0 18.6 7.53 5.68 1.85 0.467 0.490 0.023 

34 68 70 2 115.5 107.8 7.7 4.10 3.71 0.40 0.514 0.530 0.015 

35 89 166 77 54.0 74.3 20.3 4.01 4.47 0.46 0.586 0.555 0.031 

Mean 137 165 29 82.8 83.0 4.2 7.01 6.71 0.38 0.467 0.474 0.009 

SD  
(1σ) 

61 76 44 20.9 19.9 6.9 2.45 2.51 0.68 0.049 0.049 0.013 

SEM  

(2σ / n )   
21 26 15 7.1 6.7 2.3 0.83 0.85 0.23 0.016 0.017 0.004 

x
i1

:  PET-T2FS/STIR--Variance, x
i 2

: PET-T1--Contrast, x
i 3

: PET-T1--Homogeneity 

SD: Standard deviation 
   SEM: Standard error of the mean 

 

Table 5.2 also reports the estimated mean Δ x j  of Δ xij  over all patients, the standard 

deviation (SD) of the Δ xij  distribution as well as the standard error of the mean (SEM) of 

the Δ xij  distribution on a 95.5% confidence interval. Hence, under 95.5% confidence, the 

true mean of Δ xij  lies in the range [Δ x j − SEM j ,Δ x j + SEM j ]. In order to account for 

the worst-case scenario as normally required before clinical implementation of a new 

protocol, the uncertainty δ j  on xij  measurements is defined as: 

δ j = Δ x j + SEM j , for j = 1,2,3                                     (5.2) 

The contribution of contour variations on the uncertainty of g(xi )  defined as εcontour  is 

obtained via the following error propagation scheme:  
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εcontour = (
∂g(xi )
∂xij=1

)2 (δ1)
2 + (∂g(xi )

∂xij=2
)2 (δ 2 )

2 + (∂g(xi )
∂xij=3

)2 (δ 3)
2

εcontour = (−0.401)2(4.2 + 2.3)2 + (−6.7)2 (0.38 + 0.23)2 + (−165)2(0.009 + 0.004)2

εcontour ≈ 5.3
 (5.3) 

The uncertainty value of 5.3 on g(xi )  is constant across all values of g(xi )  as it applies to 

every point of Figure 5.1. However, in this figure, εcontour  is inserted only in the context of 

the decision threshold g(xi ) = 0  for the best model identified in this work. It can be seen 

that contour variations have a significant impact on the precision of the model. However, 

we shall keep in mind that Mass and Edema are two extreme contours and that an 

observer is likely to draw a contour in-between. Figure 5.1 also illustrates that 6 patients 

without lung metastases and 3 patients with lung metastases are in the uncertainty zone 

around g(xi ) = 0.  This emphasizes the need to identify a model with better separation of 

the two classes of patients. In any case, no conclusion on the outcome of a given patient 

should be drawn if its corresponding model value g(xi )  is within the contouring 

uncertainty range. 

 

 

Figure 5.1. Plot of best model with contouring uncertainty around decision threshold. 
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Note that the uncertainty on SUVmax measurements was not considered in Equation 

(5.3). From a contouring point of view, this has no effect on the uncertainty of the model 

as it was verified that, for all patients, the voxel with maximal SUV was contained within 

the Mass contour. Recently, Burger et al. [138] evaluated the repeatability of SUVmax 

measurements using dynamic FDG-PET imaging on a dataset of 20 patients with different 

cancer types (including 1 sarcoma patient). The authors estimated the mean absolute 

change in SUVmax measurements to be close to 0.5 and the standard deviation of the 

absolute change to be close to 1. The contribution of δ SUVmax
on the uncertainty of g(xi )  

can thus be estimated on a 95.5% confidence interval using the latter results: 

εSUVmax =
∂g(xi )

∂xij=SUVmax
δ (SUVmax )

εSUVmax = (0.94) ⋅(0.5 +
2*1

20
)

εSUVmax ≈ 0.9

                                       (5.4) 

Again, this uncertainty is constant across all values of g(xi ).  The results from 

Equations (5.3) and (5.4) show that the uncertainty associated to contouring variations 

dominates over the uncertainty of SUVmax measurements. As a matter of fact, the 

quadrature addition of εSUVmax  and εcontour  yields an overall uncertainty εcontour+SUVmax = 5.4.  

In future work, the repeatability of SUVmax measurements should be assessed on extremity 

STS tumours only in order to provide a more reliable value of δ SUVmax
.  On the other hand, 

the prediction performance of another metric close to SUVmax but that has better 

repeatability could also be tested. In this respect, Burger et al. [138] proposed to use the 

average of the 10 hottest voxels of the tumour instead of SUVmax. This metric is in theory 

more reliable than SUVmax since a single voxel measurement can be more easily altered by 

noise and image artefacts.  

Next, registration errors of FDG-PET and MR volumes also bring an uncertainty 

on texture measurements. This type of uncertainty was not evaluated in this work due to 

the difficulty to identify ground-truth voxel correspondence. One approach for estimating 

the registration uncertainty would be to simulate precise shifts in all directions of the 



CHAPTER 5. DISCUSSION 

 

102 

FDG-PET scans with respect to the MR scans. For every shift, new resulting FDG-

PET/MR fused volumes would be obtained. Then, the repeatability of texture 

measurements could be assessed in a similar manner as in the case of the contouring 

uncertainty. Although this would require exhaustive work, this type of analysis is 

desirable for a better assessment of the precision of the model g(xi ).   

Lastly, the uncertainty of g(xi )  due to standard errors of the coefficient estimates 

that is inherent to logistic regression is investigated. In the case of p independent 

variables with values {xi0 = 1, xi1, xi2 ..., xip}  
and coefficient estimates  {β j : j = 0,1,..., p},  

the estimated variance of g(xi )  due to the estimated variances of the regression 

coefficients for the ith patient is defined as ([112]):  

 
Var[g(xi )]= xij

2 Var(β j )
j=0

p

∑ + 2xij xik Cov(β j ,β k )
k= j+1

p

∑
j=0

p

∑ , for i = 1,2,...,n     (5.5) 

The covariance matrix of the regression coefficients of the best model was obtained with 

the DREES software and is summarized in Table 5.3. However, instead of analyzing the 

covariance of regression coefficients found in bootstrap training sets, the logistic 

regression coefficients were computed one time on the entire dataset in order to get the 

best possible fit (result: rho = 0.8372,  p < 0.0001).   

 

Table 5.3. Covariance matrix of the regression coefficients of best model 

 Cov(β j ,β k )   SUVmax β1   β2  β3  β0  

SUVmax 0.0102 − − − − 
β1  -0.0008 0.0028 − − − 

β2  0.0096 -0.0241 0.5562 − − 

β3  -0.5975 -0.4888 27.34 1759 − 
β0  0.1490 0.1687 -14.82 -965.7 540.8 

                              β
1
: PET-T2FS/STIR--Variance, β

2
: PET-T1--Contrast, β

3
: PET-T1--Homogeneity 

 

From Equation (5.5), it can be seen that  Var[g(xi )]  depends on the values xi  of 

the variables in the model and is different for all data points g(xi ). A lower bound on the 

estimated standard error of  g(xi )  can be obtained if we consider the specific case where 



CHAPTER 5. DISCUSSION 

 

103 

xi = {xij = 0 : j = 1,2,..., p}  with xi0 = 1  such that Var[g(xi )]  reduces to only the 

estimated variance of the offset estimate  β 0 : 

 

 

SE [g(xi )]> Var[β 0 ]

SE [g(xi )]> 540.8 ≈ 23.3
                                         (5.6) 

A very large uncertainty inherent to logistic regression is associated to  SE [g(xi )].

This uncertainty is much more significant than the other ones presented in this sub-

section and constitutes the principal limiting factor to the precision of the best model. A 

better goodness-of-fit is needed to improve the precision of g(xi )  measurements. 

Although the relation is not explicit, a larger patient cohort is needed to achieve a better 

goodness-of-fit of the model. 

 

5.3 Permutation tests 

The theory behind permutation tests has emerged from two pioneering works by Fisher 

[139] and Pitman [140] in the 1930’s. Permutations tests are a form of significance tests 

that has for goal to assess the significance of the sampling distribution of any test statistic 

when the null hypothesis (H0) is true. This is commonly done by calculating the test 

statistic under all possible permutations of the labels of the observed data points. If the 

number of permutations is too extensive to be computed, a large number of random 

permutations are performed. The observed statistic with the true labels is then compared 

to the distribution of the test statistic when H0 is true (permutation of labels) to assess if 

the observed effect could be attributed to the randomness introduced in selecting the 

sample or if it reflects an effect present in the population. 

In our case, we need to verify if the statistical results (AUC = 0.956,  

MCC = 0.829)  of the best model can be attributed to the randomness introduced in the 

selection of the patient cohort used in this study. More importantly, we also need to verify 

if the dimensionality of the set of variables {SUVmax + 12 scan-textures} has the effect of 

an overdetermined system in the feature selection part of the experiments. If this is the 

case, a set of variables could most of the time be found and model the data such that 
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similar results to those from the best model would be obtained with randomly assigned 

outcomes. Hence, the null hypothesis can be defined as: 

H0 : The effect observed using the best model on the sample of 35 patients 

can be ascribed to chance and is not present in the population of STS of 

the extremities. Other combination of features can produce the same effect. 

The data must then be resampled many times such that it is consistent with the null 

hypothesis. This is carried out by randomly shuffling the real outcome vector (ROV) in 

which the ith position represents the outcome of the ith patient (0: No MetsLungs, 1: 

MetsLungs). This will create a shuffled outcome vector (SOV) in which the 0’s and 1’s 

are randomly assigned new positions without replacement. The exact methodology used 

to create a SOV is: 

1. For the first position of the SOV, randomly choose one position in the ROV. 

Assign to the first position of the SOV the value found at the chosen position of 

the ROV. 

2. Delete the previously chosen value in the ROV. 

3. Repeat step 1 and 2 for SOV positions 2 to 35. 

The proportion of the two classes of patients therefore does not change in the SOV. 

Considering that the ROV contains 13 1’s and 22 0’s, the maximal number of differing 

positions between the SOV and ROV is 26. Ideally, every possible permutation (35! ≈ 

1.033*1040) would be explored. However, this is not computationally possible. 

Then, in order to test the validity of H0, the following experiment was performed 

using the 13 features extracted from fused scans at scale 4.91 mm with R = 1.5 : 

1. Randomly shuffle the ROV for 1000 iterations.  

2. For every SOV (iteration), apply bootstrap technique to divide the dataset into 

training and testing sets for 1000 bootstrap samples. For every bootstrap run, 

select 4 variables in the training set using the forward selection algorithm from 
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DREES. Calculate the percentage frequency of occurrence of group of variables. 

Pick up the most frequent group of variables for that SOV. 

3. For every SOV (iteration), apply bootstrap technique to divide the dataset into 

training and testing sets for another 1000 bootstrap samples. For every bootstrap 

run, use the most frequent group of variables found in step 2 and calculate its 

corresponding regression coefficients in the training set. Use the regression 

coefficient found in the training set to calculate a vector of linear combination 

values gtest = {g(xi ) : i ∈ SOVtesting set}.  Use gtest and the outcome vector 

ytest = {yi : i ∈ SOVtesting set}  in order to calculate performance metrics in the 

testing set, namely AUC and MCC. Average the performance metrics of the 1000 

bootstrap runs. 

4. Analyze the overall performance of the 1000 SOVs using the mean performance 

metrics computed in step 3. 

For the rest of this section, the displayed AUCs and MCCs correspond to the 

average of the 1000 bootstrap samples applied to a particular SOV (step 3). The 

uncertainties correspond to the standard error of the mean on a 95.5% confidence interval. 

First, the maximum, mean and minimum AUC and MCC results obtained out of the 1000 

iterations are presented in Table 5.4: 

 

Table 5.4. Summary of permutation tests 

Metric AUC MCC 

Max 0.945 ± 0.006 0.67 ± 0.02 

Mean 0.646 ± 0.006 0.194 ± 0.009 

Min 0.362 ± 0.009 -0.17 ± 0.01 

Observed (true) 0.956 ± 0.002 0.829 ± 0.002 

 

The iteration yielding the maximal AUC was the same as the iteration yielding the 

maximal MCC. At that iteration, 10 positions were differing between the ROV and the 

SOV. Next, Figure 5.2 (top) presents the complete AUC and MCC distributions (1000 
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iterations) in terms of the number of positions differing between the ROV and every 

SOV. Figure 5.2 (bottom) also presents histograms of the AUC and MCC distributions 

built using 50 bins. 

 

 

Figure 5.2. Complete results from permutation tests. Top-left: Permutation distribution of AUC, 
Top-right: Permutation distribution of MCC, Bottom-left: Histogram of AUC permutation 
distribution, Bottom-right: Histogram of MCC permutation distribution.  

 

From a statistical point of view, Table 5.4 and Figure 5.2 show that the null 

hypothesis can be rejected. None of the iteration yielded an AUC or MCC higher that the 

observed values, so the probability that H0 is true is estimated to be 

p = (0 +1) / (1000 +1) < 0.001.  The results give strong evidence that the effect observed 

on the sample data did not occur by chance and that the effect is most likely present in the 

population of STS of the extremities. Furthermore, the design of the experiment let the 

algorithm find the variables that were the most important for every SOV. Even with this 
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degree of freedom, the observed values still perform better than all permutation tests 

(although the validity of the feature selection algorithm could again be discussed here).  

Ideally, every permutation test would have been optimized for model order, scale and R 

ratio prior to the calculation of AUC and MCC. This optimization step represents an 

exhaustive but necessary work that would probably have increased the results of the 

permutation tests. However, one simple test can provide insights on whether this 

optimization step would have brought significant improvements to the permutations tests. 

Let us recall Figure 4.12 which displays scale and R ratio optimization for fused scans for 

a model order of 4. That figure shows that the lowest results were obtained at scale 1.64 

mm and R = 3,  where AUC = 0.8488  and MCC = 0.4885.  If we consider these values as 

the observed statistics for comparison with the latter permutation tests, we can come up 

with new estimates of the significance of the null hypothesis. In terms of AUC, 15 

iterations yielded higher values than the new observed statistic such that the p-value can 

be estimated as p = (15 +1) / (1000 +1) = 0.016 < 0.05.  In terms of MCC, 20 iterations 

yielded higher values than the new observed statistic such that the p-value can be 

estimated as p = (20 +1) / (1000 +1) = 0.021< 0.05.  Let us point out that this is a one-tail 

test as we are trying to find values greater than the observed statistics. Hence, for both 

AUC and MCC, the null hypothesis could be rejected with a confidence level higher than 

the commonly used 95% threshold.   

The validity of the method presented in this study still needs to be questioned 

solely based on the maximal AUC obtained from permutation tests. This result 

(AUC = 0.945 ± 0.006)  is very close from the observed statistic (AUC = 0.956 ± 0.002)

and moreover, it was obtained with a different model than the best model identified in this 

work. As a matter of fact, for the specific case of the SOV that yielded the maximal AUC 

and MCC, the model variables chosen from the initial 1000 bootstrap samples prior to the 

1000 bootstrap samples used for prediction performance evaluation are: SUVmax, PET-T1-

-Homogeneity, PET-T1--SumMean and PET-T2FS/STIR--Homogeneity. This might 

reflect the use of an over-determined system in our analysis. It also emphasizes the need 

to increase the number of patients in future studies in order to clearly establish the best 

combination of variables found in this work as potential predictors of lung metastases in 
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STS of the extremities. However, the robustness of the best model cannot be totally 

rejected for two reasons. First, 2 out of 4 variables from the best permutation test are the 

same as the best model. Secondly, the AUC difference between the maximal result and 

the second maximal result of permutations tests is 0.0369. This is a huge difference in 

comparison to the mean difference between two consecutive values of the AUC sorted 

vector. The mean difference between two consecutive values of the AUC sorted vector is 

0.0006 with 2 standard deviations of 0.004. As such, the AUC result obtained with the 

best SOV is clearly an outlier of the overall results obtained with the other 999 SOVs. 

This result could therefore be attributed to chance, as it is consistent with the 

corresponding p-value of the experiment (p = 1/1001< 0.001).  It is also interesting to 

note in Figure 5.2 that for a given number of positions differing between the ROV and 

SOV, many different SOVs yielding different AUC values can arise. This suggests that 

some features are dominant on patients of a certain class of outcome (0 or 1) in the STS 

sample. If many patients with dominant features are assigned to different classes on a 

particular SOV, the prediction power will diminish, and the inverse is also true.  

To summarize, the permutations tests performed in this section give evidence that 

the strong predictive power of the best model observed on the sample patient cohort used 

in this study did not occur by chance and that the effect is most likely present in the 

population of STS of the extremities. This is a concept that was not previously examined 

in previous studies involving multivariable analysis for tumour outcome prediction ([97] 

[100]) similar to this one. However, a larger patient cohort is needed to fully assess the 

potential of the best model for the prediction of lung metastases in STS of the extremities. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

 

In this work, new imaging techniques were explored and developed to assess tumour 

aggressiveness at the diagnosis of STS cancer of the extremities. More specifically, we 

developed a novel approach based on image fusion to evaluate the potential of texture 

features extracted from fused FDG-PET/MR scans for the prediction of tumour outcomes. 

We have identified a 4th order linear model combining three texture features from fused 

FDG-PET/MR scans and the SUVmax metric to be used for the prediction of lung 

metastases in STS cancer of the extremities. This model was verified to possess the best 

parsimonious characteristics and was validated using bootstrapping and permutation tests. 

The results revealed that FDG-PET and MR imaging features can act as strong prognostic 

factors of STS tumours of the extremities and can provide insights about their underlying 

biology. Our study demonstrates that the fusion of FDG-PET/MR image texture features 

using the discrete wavelet transform holds promise in the assessment of STS tumour 

heterogeneity. Texture features extracted from fused scans revealed to be better predictors 

of lung metastases in STS cancer of the extremities than those extracted from separate 

scans. However, FDG-PET texture features were also shown to be generally superior to 

MR texture features. Despite the fact that none of the texture features explored in this 

work had better predictive power than SUVmax, multivariable modeling of imaging 

features demonstrated significant improvements in terms of prediction performance in 

bootstrap testing sets.  

 Although the results are promising, the methodology of this work needs some 

refinements in order to robustly validate the prediction properties of the imaging model. 

The optimization of the quantization scheme, of texture measurements and of the feature 

selection algorithm still needs to be addressed more extensively. The uncertainty analysis 

of the imaging model revealed that the errors inherent to logistic regression modeling 

represent the main limitations to its precision. Ultimately, a larger patient cohort is 

needed to validate the robustness of the imaging model prior to prospective studies. Other 

texture features also need to be explored in order to build an optimal feature set prior to 
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multivariable modeling. Other than Haralick features, fractals and features from run-

length matrices could be used as good alternative candidates.  

 In future work, the aforementioned robustness issues will be addressed. A more 

in-depth analysis of the wavelet transform possibilities for image fusion and texture 

measurements will also be performed, as the power of multiresolution wavelet 

decomposition has not been fully exploited in this work. Wavelets can also be used as a 

denoising technique, so the potential prediction improvements due to noise removal prior 

to texture analysis will also be examined. The optimization of FDG-PET and MR imaging 

protocols for the enhancement of the dominant texture features of tumours is another 

interesting avenue to explore. Ultimately, we hope that our current and future 

methodologies could be generalized to other types of cancer and that they could lead to 

improvements in the personalization of treatments since this should give a better chance 

to patients to overcome this deadly disease. 
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APPENDIX 

 

A Histopathology of primary STS of the extremities at the MSKCC 

 
Figure A.1. Histopathology of primary STS of the extremities at the MSKCC. This distribution is 
similar to the one at the MUHC used in our study. The image was obtained by email 
correspondence and reproduced with the permission of Murray F. Brennan from the Memorial 
Sloan-Kettering Cancer Center (MSKCC). 

 

B Comparison of T2FS and STIR texture features 

This section explores the difference of texture features extracted from T2FS and STIR 

scans and the impact on Spearman’s correlation with lung metastases. 

From Table 3.4, we report 20 patients for whom both types of fat suppression 

scans were available. Texture features from both scans were extracted on these 20 

patients and the average of the absolute percentage differences over the 20 patients for 

each feature was computed. The percentage difference of the absolute Spearman’s 
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correlation coefficients (rho) of each feature vector with the outcome vector over the 20 

patients was also computed. Results are reported in Table B.1. 

 

Table B.1. Difference between T2FS and STIR texture features 

Texture Feature rho % difference 
[(T2FS-STIR)/T2FS] 

Average absolute % differences 
[(T2FS-STIR)/T2FS] 

Energy -105 0.8 
Contrast -10 3.3 
Entropy -29 0.1 

Homogeneity -40 0.2 
SumMean -12 3.2 
Variance -17 5.3 

Average (μ ± σ) -35 ± 36 2.2 ± 2.1 

 

Tables B.1 shows that the difference between texture features of T2FS and STIR 

scans is minimal. However, their correlation with the endpoint of lung metastases is still 

significantly affected, as the average of absolute differences of Spearman’s coefficients is 

shown to be 35%. Furthermore, STIR scans provides better correlation with the endpoint 

of interest for all texture features. In order to see the relative effect of the difference 

between T2FS and STIR texture features, results similar to Table B.1 are reported for 

T2FS and T1 texture features in Table B.2. The same process is also repeated in Table 

B.3 for STIR and T1 texture features. 

 

Table B.2. Difference between T2FS and T1 texture features 

Texture Feature rho % difference 
[(T2FS-T1)/T2FS] 

Average absolute % differences 
[(T2FS-T1)/T2FS] 

Energy 57 42.7 
Contrast 29 16.0 
Entropy 34 5.6 

Homogeneity 67 8.1 
SumMean 61 11.1 
Variance 26 19.2 

Average (μ ± σ) 46 ± 18 17 ± 13 
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Table B.3. Difference between STIR and T1 texture features 

Texture Feature rho % difference 
[(STIR-T1)/STIR] 

Average absolute % differences 
[(STIR-T1)/STIR] 

Energy 79 43.9 
Contrast 35 18.7 
Entropy 49 5.6 

Homogeneity 76 7.9 
SumMean 65 13.8 
Variance 37 23.3 

Average (μ ± σ) 57 ± 19 19 ± 14 

 

Some important results can be seen from Tables B.1 to B.3. First, only a 2% 

difference between texture features from T2FS and STIR scans (on average) brings the 

difference to 35% between their associated average absolute Spearman’s correlation 

coefficients with respect to lung metastases. In contrast, a difference of about 18% 

between T1 and T2FS/STIR (T2FS or STIR) textures features brings a difference of about 

51% between their associated average absolute Spearman’s correlation coefficients with 

respect to the same endpoint. In other words, the difference between T2FS and STIR 

texture features is much lower than between T1 and T2FS/STIR. However, the difference 

between T2FS and STIR Spearman’s correlation coefficients is not negligible. Also, as 

previously mentioned from Table B.1, STIR textures features provide better correlation 

with lung metastases than T2FS texture features and this result is emphasized in Table 

B.2 and Table B.3.  

The multivariable models built in this study must contain variables (e.g., texture 

features) that are uncorrelated as much as possible such that they are independent of each 

other. From a pattern recognition point of view, it is preferred to minimize redundancy 

and the space dimensionality of the feature set in order to improve the prediction accuracy 

[103]. The final test performed in this section thus attempts to determine which of T2FS 

or STIR textures features have better independence properties with T1. For the 20 patients 

described at the beginning of this section, Spearman’s correlation coefficients were 

computed between all respective texture feature vectors of the 3 types of scans. Results 

are presented in Table B.4. 
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Table B.4. Spearman’s correlation between T1, T2FS and STIR texture features 

Texture Feature T2FS-STIR T2FS-T1 STIR-T1 

Energy 
rho = 0.7654 
(p = 0.0001) 

rho = 0.4090 
(p = 0.0745) 

rho = 0.3729 
(p = 0.1061) 

Contrast 
rho = 0.6902 
(p = 0.0010) 

rho = 0.5278 
(p = 0.0182) 

rho = 0.5684 
(p = 0.0101) 

Entropy 
rho = 0.7699 
(p = 0.0001) 

rho = 0.4737 
(p = 0.0364) 

rho = 0.4391 
(p = 0.0542) 

Homogeneity 
rho = 0.8481 
(p < 0.0001) 

rho = 0.6992 
(p = 0.0008) 

rho = 0.5398 
(p = 0.0154) 

SumMean 
rho = 0.5925 
(p = 0.0069) 

rho = -0.2541 
(p = 0.2783) 

rho = -0.1729 
(p = 0.4643) 

Variance 
rho = 0.5639 
(p = 0.0108) 

rho = -0.1940 
(p = 0.4108) 

rho = -0.1053 
(p = 0.6580) 

Average absolute rho 
(μ ± σ) 

0.7050 ± 0.1106 0.4263 ± 0.1849 0.3664 ± 0.1907 

 

Results from Table B.4 show, as expected, that the correlation between T2FS and 

STIR texture features is much higher than the correlation between T1 and T2FS/STIR 

texture features. This result in itself could justify the use in this work of the texture 

features from both T2FS and STIR scans in an equal manner. However, from the results 

presented in this section, STIR texture features appear to be better predictors of lung 

metastases than T2FS texture features. Also, Table B.4 shows that the correlation 

between STIR and T1 texture features is smaller than the correlation between T2FS and 

T1 texture features. In the future, the priority will be given to STIR texture features even 

at the expense of a lower sample size, although it does not guarantee that it will yield 

better prediction performance than the method used in this work (priority to T2FS). 

Further investigation with both types of fat-suppression scans on a larger patient cohort is 

needed. From another point of view, the method used in this work has the advantage of 

being generalized to both types of fat-suppression scans since a significant amount of 

both T2FS and STIR texture features were used to build prediction models. This can be 

important in clinical situations where only one or the other type of fat-suppression scan is 

available. 
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C Wavelet basis function analysis 

This section quantifies the prediction power of fused scans constructed with the entire set 

of different wavelet basis functions available in the Image Fusion module of the 

MATLAB® Wavelet ToolBoxTM. This procedure was performed as follows: 

1. Fuse FDG-PET and MR scans using the different wavelet basis functions with 

R = 1.5  by following the methodology described in section 3.4.2. 

2. Extract texture features from the two types of fused scans (PET-T1 and PET-

T2FS/STIR) at scale 3.27 mm using Lloyd-Max quantization algorithm and 16 

gray levels by following the methodology described in sections 3.5 and 3.6. 

3. Evaluate the correlation of all texture features and SUVmax (13 variables) with lung 

metastases by following the methodology described in section 3.7. 

4. Average the absolute Spearman’s coefficients (rho) of variables with p < 0.1  for 

every wavelet basis function. 

Results are presented in Table C.1. 

 

Table C.1. Spearman’s correlation of fused scans features (built from different wavelet basis 

functions) with lung metastases  

Wavelet basis 
Average of absolute rho 
(variables with p < 0.1) 

sym8 0.4326 
rbio2.4 0.4257 
coif1 0.4241 

rbio4.4 0.4214 
sym4 0.4212 
coif2 0.4209 

bior6.8 0.4208 
bior3.1 0.4204 
sym6 0.4201 

bior2.6 0.4148 
db8 0.4143 
haar 0.4133 
db1 0.4133 

bior1.1 0.4133 
rbior1.1 0.4133 
bior2.4 0.4132 
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bior2.2 0.4130 
bior4.4 0.4129 
bior1.3 0.4128 
rbio3.1 0.4124 

db7 0.4116 
coif4 0.4108 
coif3 0.4108 
db9 0.4096 

rbio2.2 0.4096 
rbio1.5 0.4094 
coif5 0.4089 

rbio2.8 0.4087 
rbio1.3 0.4081 
rbio5.5 0.4076 
rbio2.6 0.4073 
bior2.8 0.4072 
bior1.5 0.4068 
rbio6.8 0.4058 

db2 0.4047 
sym2 0.4047 
sym7 0.4042 
db6 0.4028 

dmey 0.4016 
bior3.5 0.4011 
sym5 0.4005 
db4 0.4002 

bior3.3 0.3993 
rbio3.9 0.3990 
bior5.5 0.3989 
bior3.9 0.3944 

db3 0.3917 
sym3 0.3917 

bior3.7 0.3916 
db10 0.3914 

rbio3.3 0.3888 
rbio3.5 0.3880 

db5 0.3876 
rbio3.7 0.3815 

 

Table C.1 shows that the best predictive power is obtained with the wavelet basis function 

sym8. 
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D Effect of the inclusion of patients with lung metastases at presentation 

This section presents results for the following situation: separate scans, Lloyd-Max 

quantization algorithm, 16 gray levels and scale 3.27 mm. The correlation of all features 

with lung metastases was investigated using 3 different patient subsets: 

Test1: All patients from Table 3.1. 

Test2: Exclusion of patients 11 and 20 (lung metastases at diagnosis of primary STS). 

Test 3: Exclusion of patients 11, 20, 24 and 30 (any metastasis at diagnosis of primary 

STS). 

Table D.1. Effect of the inclusion of patients with lung metastases at diagnosis of primary STS 

Feature Test 1 Test 2 Test 3 

SUVmax 
rho = 0.6382 
(p < 0.0001) 

rho = 0.6008  
(p = 0.0002) 

rho = 0.6030  
(p = 0.0003) 

PET--Homogeneity 
rho = 0.4391  
(p = 0.0083) 

rho = 0.3848  
(p = 0.0270) 

rho = 0.3920  
(p = 0.0292) 

PET--Contrast 
rho = -0.3806  
(p = 0.0241) 

rho = -0.3308  
(p = 0.0601) 

rho = -0.3392  
(p = 0.0619) 

PET--Entropy 
rho = -0.3279  
(p = 0.0545) 

rho = -0.2565  
(p = 0.1496) 

rho = -0.2714  
(p = 0.1398) 

PET--Energy 
rho = 0.2986  
(p = 0.0814) 

rho = 0.2498  
(p = 0.1619) 

rho = -0.2714  
(p = 0.1398) 

PET--SumMean 
rho = -0.2869  
(p = 0.0947) 

rho = -0.2565  
(p = 0.1496) 

rho = -0.2186  
(p = 0.2374) 

PET--Variance 
rho = -0.2752  
(p = 0.1096) 

rho = 0.2498  
(p = 0.1619) 

rho = 0.2111  
(p = 0.2544) 

T1--Contrast 
rho = -0.2283  
(p = 0.1871) 

rho = -0.2565  
(p = 0.1496) 

rho = -0.2412  
(p = 0.1911) 

T2FS/STIR--SumMean 
rho = -0.2283  
(p = 0.1871) 

rho = -0.2363  
(p = 0.1856) 

rho = -0.2186  
(p = 0.2374) 

T1--Energy 
rho = -0.1991  
(p = 0.2516) 

rho = -0.1283  
(p = 0.4768) 

rho = -0.0829  
(p = 0.6574) 

T1--Entropy 
rho = 0.1874  
(p = 0.2812) 

rho = 0.1215  
(p = 0.5005) 

rho = 0.0829  
(p = 0.6574) 

T2FS/STIR--Variance 
rho = -0.1698  
(p = 0.3295) 

rho = -0.1958  
(p = 0.2749) 

rho = -0.1809  
(p = 0.3301) 

T2FS/STIR--Contrast 
rho = -0.1405  
(p = 0.4207) 

rho = -0.1080  
(p = 0.5496) 

rho = -0.1357  
(p = 0.4668) 

T1--Variance 
rho = 0.1405  
(p = 0.4207) 

rho = 0.1013  
(p = 0.5750) 

rho = 0.0829  
(p = 0.6574) 

T1--SumMean 
rho = 0.1112  
(p = 0.5246) 

rho = 0.0675  
(p = 0.7089) 

rho = 0.0678  
(p = 0.7169) 
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T2FS/STIR--Homogeneity 
rho = 0.1054  
(p = 0.5468) 

rho = 0.0945  
(p = 0.6008) 

rho = 0.1206  
(p = 0.5181) 

T2FS/STIR--Entropy 
rho = 0.0761  
(p = 0.6639) 

rho = 0.0405  
(p = 0.8229) 

rho = 0.0226  
(p = 0.9039) 

T1--Homogeneity 
rho = 0.0468  
(p = 0.7893) 

rho = 0.0945  
(p = 0.6008) 

rho = 0.1206  
(p = 0.5181) 

T2FS/STIR--Energy 
rho = -0.0410  
(p = 0.8152) 

rho = -0.0135  
(p = 0.9406) 

rho = -0.0135  
(p = 0.9406) 

Average of absolute rho 0.2274 0.1993 0.1956 

 

E Supplement of univariate correlation results  

E.1 Separate scans 

Table E.1 presents the average correlation results in the case of separate scans at all 

scales. All situations were tested using 16 gray levels and Lloyd-Max quantization 

algorithm. The values in Table E.1 represent the average of absolute Spearman’s 

correlation coefficients with lung metastases for all texture features from separate scans 

(SUVmax not included in the calculation). 

 

Table E.1. Univariate correlation of separate scans with lung metastases in terms of scale 

Scale Average of absolute rho 

1.64 mm 0.2589 
2.45 mm 0.2231 
3.27 mm 0.2046 
2.18 mm 0.2039 
6.54 mm 0.1913 
4.91 mm 0.1890 
4.36 mm 0.1828 

 

E.2 Fused scans 

Table E.2 presents the average correlation results in the case of fused scans for all 

combinations of scales and R ratios. All situations were tested using 16 gray levels and 

Lloyd-Max quantization algorithm. The values in Table E.2 represent the average of 

absolute Spearman’s correlation coefficients with lung metastases for all texture features 

from fused scans (SUVmax not included in the calculation). 
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Table E.2. Univariate correlation of fused scans with lung metastases in terms of scale and R ratio 

Scale R Average of absolute rho 

1.64 mm 1.5 0.4474 
1.64 mm 1 0.4284 
1.64 mm 0.67 0.3952 
4.36 mm 1 0.3928 
3.27 mm 1.5 0.3913 
2.45 mm 1.5 0.3864 
2.18 mm 0.67 0.3835 
2.18 mm 1 0.3820 
4.36 mm 1.5 0.3762 
3.27 mm 0.5 0.3757 
3.27 mm 0.33 0.3737 
2.18 mm 1.5 0.3708 
2.18 mm 0.5 0.3703 
1.64 mm 0.5 0.3664 
3.27 mm 0.67 0.3659 
2.45 mm 1 0.3615 
1.64 mm 2 0.3557 
3.27 mm 1 0.3557 
6.54 mm 1.5 0.3459 
4.91 mm 0.33 0.3445 
2.45 mm 0.67 0.3435 
2.45 mm 2 0.3425 
1.64 mm 0.33 0.3420 
6.54 mm 1 0.3367 
2.18 mm 0.33 0.3337 
4.36 mm 2 0.3332 
2.18 mm 2 0.3328 
4.36 mm 0.5 0.3303 
4.91 mm 1.5 0.3293 
2.45 mm 0.5 0.3293 
4.36 mm 0.67 0.3181 
4.91 mm 0.67 0.3157 
2.45 mm 0.33 0.3098 
4.91 mm 0.5 0.3045 
6.54 mm 2 0.3025 
6.54 mm 0.67 0.3020 
2.45 mm 3 0.2971 
6.54 mm 0.5 0.2971 
4.91 mm 1 0.2971 
4.36 mm 3 0.2957 
2.18 mm 3 0.2937 
3.27 mm 2 0.2874 
4.36 mm 0.33 0.2830 



 

120 

1.64 mm 3 0.2727 
6.54 mm 3 0.2693 
4.91 mm 2 0.2552 
3.27 mm 3 0.2288 
4.91 mm 3 0.2249 
6.54 mm 0.33 0.2137 
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