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PREFACE 

It was intended to present the subject 

matter of this thesis in such a rnanner that a 

final year undergraduate student of mathernatical 

statistics rnight read the following pages without 

difficulty. With this consideration in mind, a 

rather long introduction to chapter three and an 

introduction to chapter four have been included. 

Further, sorne points that have received emphasis 

or considerable explanation may well be perfectly 

straightforward to the mature Statistician. 

J. C-B. 

August, 1963 

ii 



TABLE OF CONTENTS 

PREFACE PAGE ii 

HISTORICAL NOTE 1 

CHAPTER ONE: STRUCTURE AND PROPERTIES 
1.1 Poisson random variable 12 
1.2 Mode of the distribution P~À) 14 
1,3 A note on the median 15 
1.4 The cumulative distribution function (c.d.f.) 16 
1,5 Expected value and moments 19 
1.6 Moment generating function (m.g.f.) 21 
1.7 Probability, and factorial moment 

generating functions 24 
1.8 Cumulant generating function (c.g.f.) 25 
1,9 Moment ratios 28 
1,10 A limiting case of the binomial distribution 29 
1.11 Reproductivity of Poisson distribution 31 
1.12 Difference of two Poisson variables 32 
1.13 On a relation between the Poisson and 

multinomial distributions 34 
1.14 On a relation between the Poisson and 

negative binomial distributions 37 
1.15 Standardised Poisson variable 38 
1.16 Poisson distribution as a special case 

of a class of discrete distributions 41 

Ct~PTER TWO: THE TRUNCATED AND CENSORED POISSON 
2.1 Truncation versus censorship 
2,2 A special conditional probability 
2.3 Poisson distribution singly truncated 

2.4 
on the right at d 
Poisson distribution singly truncated 
on the left at c 

DISTRIBUTIONS 
44 
47 

2.5 
2.6 

The doubly truncated Poisson distribution 
Censored Poisson distributions 

49 

50 
53 
55 

CHAPTER THREE: POINT ESTIMATION 
3,1 Introduction 
3.2 The complete Poisson distribution 
3.3 Single truncation on the right 
3.4 Single truncation on the left 

111 

56 
62 
75 
84 



3.5 
3.6 
3.7 
3.8 

TABLE OF CONTENTS, continued 

Double truncation 
Single censorship on the right 
Single censorship on the left 
The doubly censored case 

CHAPTER FOUR: INTERVAL ESTIMATION 
4.1 Introduction 
4.2 Central confidence intervals 
4.3 Methods of approximation and large 

sample methods 
4.4 Non-central confidence intervals 
4.5 Randomised confidence intervals 

LIST OF REFERENCES 

iv 

PAGE 93 
98 

104 
105 

106 
109 

113 
120 
128 

134-147 



HISTORICAL NOTE 

The reader of modern statistical literature will, 

in many areas of science, frequently come across a random 

variable that is said to have a "Poisson distribution"; or 

the random variable may be described as one that obeys the 

"Poisson Law". 

Before commencing a study of the properties and 

structure of the Poisson distribution, it will be interest­

ing and instructive to examine sorne of the early literature 

on the subject. By the year 1914 many writers had indepen­

dent1y discovered the probability distribution. However, 

the name by which it is now known is, properly, that of the 

initial discoverer. 

The French mathematician Simeon D. Poisson pub­

lished a large treatise "Recherches sur la probabilité des 

jugements ••• " in 1837. The principal objective of this work 

was to establish a theorem, which he called the "Law of 

Great Numbers". This is an extension of the famous theorem 

of Jacques Bernouilli which appeared in "Ars Conjectandi" in 

1713. Consequently, another result obtained in "Recherches" 

was overlooked for more than half a century, for any interest 

the mathematicians of the day may have had in this work was 

focused on the "Law of Great Numbers". 



Poisson's derivation of a limiting approximation 

to the binomial under certain conditions is given below. 

While the main attempt bas been to preserve his argument, 

sorne modifications seemed desirable. For not only is the 

material widely scattered in "Recherches'', but the devel­

opment is too long to reproduce conveniently. 

Let p be the probability of a success, q the 

probability of a failure in a series of m + n Bernouilli 

trials; p + q = 1. 

Let P be the probability of occurrence of at 

!east rn failures. Then P will be the probability that 

there will not occur more than n successes, and is given 

by the sum of the first n + 1 terms in the expansion of 

(q + p)m + n 

i.e. (1) 

After a lengthy combinatorial argument, Poisson 

arrives at an equivalent expression for P. 

p :> ~-[ 1 t'"""'"f +- ~, ....... ,)f:l. t ---- +- -(t.M.-tt)-.( ..... +"'-~t ... ] (l.) 
Il :J..! ""-! 

2. 

The two expressions can be shown to be equivalent by factor­

ing out qm from (1), replacing q by 1 - p in the remainder 

and collecting coefficients of powers of p. 

Now suppose p to be a very small fraction. If n 
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be the number of successes and m the number of failures then 

in a very great number of trials ~ will also be a very small 
M+ll'\ 

fraction. 
). 

Setting p(m + n) = À , p = -.+V\ 

_\. M À \'""+"' ( ~ \-~ 
so that qm = (1 - - ) = ( 1 - ""'-+"' \ · 1- _+.._) ............ .._ 

The first factor in the value for qm can be replaced by the 
-~ 

exponential e and the second by unity. So that, the 

expression (2) can be written 

_À [ .....--.+>\-"".À (""'-i-11'\-11\Y. ....--.+n +t-"'\ 'A.._ 4- ·····+ (-t"l-A\ ... (-f-0'\ 1~ \"'] 
e t + -.<t-"" + 2 1 ( '\.'1.. · 1 ( '\."' A 

........ + ..... , ""· 11"\.+"'l 

and omitting the fraction 
"""'- .... V\ 

_).. 
À Àl. +>-"') P reduces to e [1 + .... + 

.1! ..... ! 

or one can write P in the form 
_>,. À">.-\-1 _l À~ ---- ~J p 1 e . , [ + 

-:: + +-
(">.+V)(""-t'l\ ( .... -t-l)' "'+1. 

Cons id er the case À = l and suppose n = 10. Then the 

difference 1 - P will be approximately one hundred millionth. 

Thus, where the probability of a single success is the very 
1 

small fraction~"" , the probability that there will not 

occur more than ten successes in the m + n trials becomes 

almost certainty. 

The occurrence of comparatively rare events was 

first studied by Quetelet and Bortkiewicz. Adolphe Quetelet, 



a professor of mathematics at the age of nineteen, wrote a 

number of papers on the application of probability to demo­

graphie statistics. In particular, he studied the rates of 

crime and suicide in different countries and social 

classes. In 1898, Ladislaus von Bortkiewicz published a 

small treatise on the occurrence of rare events. He took 

4. 

severa! examples of rare phenomena from the statistical 

records of Germany, and using the Poisson probability 

function to calculate the expected frequencies, he exhibited 

a close fit with the actual recorded data. His results led 

him to formulate the "Law of Small Numbers" by which the 

Poisson probability function provided the theoretical ex­

planation for the observed frequency of occurrence of rare 

events. 

One example Bortkiewicz gave deservet particular 

mention from the historical viewpoint. This is the data on 

the number of deaths from the kick of a horse in 14 Army 

Corps for 20 years, which can nowadays be found in most 

textbooks on elementary probability. It might be mentioned 

that the original data for 14 Corps involved 280 deaths, and 

that Bortkiewicz removed 4 Corps or 80 deaths from his data 

to achieve the best fit of theory with experience. The first 

tabulation of the function 
~À x 

e À can be found in this 1898 x! 
publication. The tables are given to 4 decimal places for 
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suitab1y chosen x, and À from 0.1 to 10.0. 

Another treatment of rare events, somewhat simi1ar 

to that of Bortkiewicz, was given by Mortara (1912). He used 

data on the marriages of uncle and niece in Italian provinces 

from 1900 - 1909, and other illustrations. 

It appears that Poisson's binomial limit escaped the 

attention of English speaking mathematicians until after the 

turn of the century. A textbook on Statistics by A.L. Bowley 

(1901) contains a numerical example of the binomial expansion 

with p very small; and in a footnote Bowley remarks that the 

work of Bortkiewicz has just come to his attention, since pre­

paration of the text for publication. 

In 1907 "Student" published a paper in which he 

arrived at the same limiting expression of the binomial as 

had Poisson. Student had been engaged in bacteriological 

research. Briefly, some of his experiments consisted of 

counting the number of yeast cells in a sample drop of 

liquid, that settled on each of the 400 squares of a 

haemacytometer. His theoretical consideration of these 

experiments was as follows. 

Assume the liquid to be thoroughly mixed and 

spread out in a thin layer over N units of area. Let 

there be on an average À cells per unit area, that is 

N ~ al together. A gi ven cell will have an equal chance 



of falling on any unit area, that is, the chance of its 

falling in a given unit area is 1 and of its not doing so 
N 

• 1 
l.S 1 - ~ 

6. 

Consequently, considering all the NA cells the 

chances of 0, 1, 2, 3 ••• cells falling on a given area are À 

given b y the terms of the binomial expansion [ { 1- ~ l + NJ N 

The ( r + 1) th te rm is 
NÀ (N>...- 1)( NÀ-z)· · ···· (NÀ-r+r) ( l- ~JNÀ-r { :,)~ 

1'-! 

( f )NÀ-f À(A-~,-)(>--- ~)- (À - 1'~ 1) 
= 1- - . 

N 1': 

[ 1 -
NA--1" /N'A-~)(NÀ~-;---r) { NÀ- r) (NÀ -Y"-S+~.J ::: + . -. + (-l 

N .4 ~ N' s ~ 

x 
But in the limit as N tends to infinity the terms ~ 

N 
2 

> N J 

v 1'~/ ~~S-t 
and "' , ~ , ••• '" are all negligibly small. Thus, 

the (r + l)th term reduces to 

[ ).:- ~x J '>..'("" 
1 -À+- f- . .... ~(-""- +-- ... 

2. 1. ') s~ r! 

and the binomial expansion to e-À[l + À + ~l.. 
.:l.' 

.,.., 
. ).v-

+ .... +- + 
'~"! 

Student refers to this result, simply, as the exponential 

expansion. 

Another original derivation of the Poisson 

distribution was presented by H. Bateman (1910) in a 

supplementary note to a paper by Rutherford and Geiger. 

..,.._ 1 

N 

-... J. 



The two physicists were conducting experiments on the 

emission of o( -particles from a film of polonium. Bateman 

deduced that the probability that x G( -particles strike the 
. -Àt ().t)x \ 

screen in a given time interval t 1s e . ---1 - ; where At 
x. 

7. 

is the true average number striking the screen in the interval 

t. The experiments showed a close agreement between theory 

and observation, and led the physicists to conclude that the 

o<-particles are emitted at random. 

The particular case of Bateman's result where x = 0 

had been obtained sorne twenty-five years earlier by Rev. W.A. 

Whitworth (1886). In his book we find Proposition 51: 

"If an event happens at random on an average once in time t, 
-'! 

the chance of its not happening in a given period t is e e ". 

Whitworth's Proposition met with rather rough treatment at 

the hands of a reviewer in the October issue of The Academy, 

1886. The above result and others dealing with random occur­

rences in time and space are investigated in detail by 

G. Morant (1921) and tested on the basis of experimental data. 

A.G. McKendrick, a Major in the Indian Medical 

Service, was concerned with the mathematical theory for the 

phenomenon of phagocytosis. This is the collision and subse­

quent inclusion of micro-organisms into the substance of the 

white blood ce1ls. His theor~tical consideration of this 

phenomenon led him direct1y to the Poisson series (1914). 



However, McKendrick was apparent1y quite unaware of the 

material that had been published previously on the Poisson 

distribution. 

ln 1914 H.E. Soper published tables of the func-
-À À x 

tion e , - for 
X! 

À = 0.1(0.1)15.0 and for x = 0, 1, 2, • • • 

8. 

up to such an integer that gave a figure in the sixth decimal 

place, the number of places tabulated. 

In the same year Lucy Whitaker (1914) published a 

critical appraisal of the material that had been presented 

thus far on the Poisson distribution. She examined each 

instance that had been put forward by Bortkiewicz and Mortara 

as indicating the operation of the "Law of Small Numbers", 

and also examined the experimental data in Student's paper. 

Whitaker showed that the application of Poisson's 

result to various data presented by Bortkiewicz and Mortara 

could not really be justified. For the conditions under 

which the result is obtained (namely p, the probability that 

an event will occur in a single trial is very small, positive, 

and the number of trials very large, positive) are se1dom, if 

at all, demonstrated by the various data. Further, the essen­

tial requirement that p remain constant throughout the series 

of trials is not satisfied. This is indicated after a 

moment's reflection on the case cited above, for example, of 

the number of Army Corps deaths over a period of twenty years. 
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Thus the whole theory of the "Law of Small Numbers" 

as presented by Bortkiewicz and Mortara appears somewhat 

obscure. Sight is lost of the fact that the ''Law" is nothing 

more than a limit under certain conditions for binomial pro­

babilities. However, the importance of these early works is 

that they served to draw attention to the widespread practical 

application of the Poisson distribution. A subsequent paper 

by Bortkiewicz (1918) provided a far more detailed mathemati­

cal basis for his theory; but to quote Professer Keynes (1921) 

" ••• the mathematical argument is right enough, and often 

brilliant. But what it is ail really about, what it ali really 

amounts to, and what the premises are, it becomes increasingly 

perplexing to decide." 

Upon examination of the data on the haemacytometer 

counts of yeast cells, Whitaker observed that, in sorne 

instances, Student obtained a closer fit using the terms of 

a negative binomial expansion. That is to say, the series of 

observed frequencies could be more closely fitted by a series 
-N of the form [q + (-p)] than by a series of Poisson probabi-

lities. The question that naturally arose was how to inter­

pret, for the experiment under consideration, a negative 

probability for the occurrence of an event in a single trial. 

Negative binomial expansions had previously been 

encountered, but very little was known about them. Karl 
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Pearson (1905) writes, 11A binomial series with negative 

power or with negative p, q is capable •••• of perfectly 

rational interpretation. But in the present state of our 

knowledge it would be idle to specify any particular inter-

pretation as the correct one." 

Under certain hypotheses a negative binomial may 

be expected, as in the theory presented by Yule (1910) for 

the proportion of a population dying after the mth exposure 

to a disease. 

It is easily seen how a negative binomial might 

arise;[l9]. In the usual notation, we have for the binomial 
, 

wi th mean f-L, = fi- = Np and variance /A-1. 

So that fl-1. > f4,
1 

implies that q > 1 and 

= Npq that q = /3:- .... , 
fA· 

p = 1 - q is negative. 

But since f._; is positive, this implies that N be negative. 

We have seen that from theoretical considerations 

the series of observed frequency of cells in the haemacytome­

ter might reasonably be expected to be given by a Poisson 

series. An explanation for the fact that this is not necess-

arily the case in practice was given by Student (1919). 

Student showed that series in which the variance 

is greater than the mean arise from the probabi1ity p of an 

event in a single trial not remaining constant from trial to 

trial, (the data would then be described as being heterogen­

eous). Also, he showed that if the presence of one cell in 



11. 

a square of the haemacytometer increased the probability that 

there would be another, then a negative binomial expansion 

will give closer agreement with the observed data than will 

a Poisson serie s. 

The description of heterogeneous material has been 

the subject of much interest and research. Considerations 

suggested by the experiments with the haemacytometer, and 

later by the observed distribution of larvae in experimental 

plots, has led to many important discoveries. In particular 

the formulation by J. Neyman (1939) of a new class of 

"contagious" distributions is mentioned. 



CHAPTER ONE: STRUCTURE AND PROPERTIES 

1.1 Poisson random variable 

Discussion of any random variable may begin by first 

postulating a Probability Space. Briefly, this implies the 

existence of a basic sample space Z consisting of sample 

points z, and having a probability measure m. A point z may 

be thought of as a possible outcome of a trial, experiment or 

operation performed under a given set of conditions;[l05]. 

m is a real, non-negative function whose domain of definition 

is Z; m(z) = 0 except on a countable set and ~ m(z) = 1 • 
. u:Z 

A subset S of the sample space Z is called an event, and the 

probability of the eventS is Prob(S) = ~ m(z). 
z.ES 

Let x(z) be a real, single valued function whose 

domain of definition is Z. Let T be the range of x(z). If 

T is the set of real numbers [x'J it is seen that the function 

x(z) induces a partition of Z into mutually exclusive events 

Sx' whose union is Z; [5] where Sx• = f z; x(z) = x' J 
If the set of real numbers T = fx•J is a countable 

set and such that any finite interval contains at most a 

finite number of the x' ; and if Prob(Sx•) > 0 for all x' E T, 

then x(z) is called a discrete random variable. We note that 

L Prob(Sx•) = L L m(z) = I m(z) = 1 (101) 

x'c T x'tT zE.S, 
)( 

ZE.L 



Now Prob(Sx•) is precisely the probability that 

the random variable x(z) will assume the value x' t Tt and 

we write Prob(Sx•) = Prob[ x(z) =x' ]. 

We shall call Prob[ x(z) = x' ] the probability 

function (p.f.) of the random variable x(z). The p.f. of 

a Poisson random variable x(z) is defined as follows. 
\ K' 
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À 
-Il À 

Prob[ x(z) =x']= p(x';) = e -
x' ! 

(102) 

where À is any positive, real number; and the range T of 

x(z) is the set of non-negative integers. 

The notation x(z) and x' is cumbersome, and for 

simplicity we set aside the symbol x to indicate that value 

assumed by the Poisson random variable under discussion. 

Thus we re-write (102) as 
\ _). \ x \ 

p(x;A) = e ~;x= 0, 1, 2 ••• ;1\> 0 (103) 
x! 

A random variable having this p.f. is said to have the 

Poisson distribution ~(À) ; for p(x;À) describes the distri­

bution of probability mass over the sample (event) space z. 
Since T is the set of non-negative integers (and is 

thus countable, with any finite interval containing at most 

a finite number of elements) and À>O --:') p(x;À)>O for all 

x tT, the Poisson random variable is discrete. We note that 

L p(x;À) = -À ~ 
e.e = 1 (104) 

X(T lC,..O 

using the fact that the Maclaurin's series expansion of the 

f 
. À . unctJ.on e 1s 1 + À + )..z.. + ••• and that this series con-

2..! 

verges to the function, actually for-~<~<~ ;[39]. 
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1.2 Mode of the distribution ~(À) 

Let À = [À] + f where [À] is the largest integer 

contained in 

(a) if [À] = 

monotonically 

i.e. the mode 

À and 0 ~ f <1. 

o, th en À< 1 and 

with increasing 

is zero. 

e_).. À x 

)( ! 
x. The 

evidently decreases 

maximum term is p(O;À) 

(b) if [À] > 0, form the recurrence relation 

,l.. - f(X.+t)À) ). 

'f(x) - f(x;Àl - .x+l 

and consider the two cases:-

(i) f = 0 (À integer). 

If x< ~ - 1 then cl>Cx) > 1 and p(x;À) 

increases monotonically with increasing x to the modal value. 

If x = À - 1, then ~(A-1) is unity, 

p~-l;À) = p(À;À) and the distribution P.(~) is evident1y bi­

modal with modes at x = À - 1, À for, 

if x > À- 1 then 4Cx) < 1 and p(x;À) 

decreases monotonically with x. 

(ii) f > O. We see that p(x;.À) increases mono­

tonically with increasing x to the modal value p ( [À.];)\), 

and then decreases monotonically. 

Thus, in all cases, the mode of the distribution 

~(À) is found as the largest integer less than or equal to 

\ (see chart four, page 126 ) • 



1.3 A note on the median 

A median of any discrete distribution requires 

special definition. The following observations are due to 

Lidstone (1942). 

Consider the equation 

15. 

p(O;À) + p(l;À) + •••• + p(x-l;A) + c.p(x;~) = Î 0 <... c.. <. 1 

which is 
l(- 1 x 

]~i e-À l 1 +- À + 
)..2.. 

..... À + c..l_ (105) - + ..... 
2.~ (x.-1)~ X! 

and define the median as the number x - 1 + c. Th us the sum 

of the first x terrns of the sequence , i = o, 1, 2 

will represent less than i of the total probability mass of 

P.(À), while the surn of the first x + 1 terms will represent 

more th an ~ of this mass. 

In a letter to Hardy dated !6th January, 1913, 

Ramanujan enunciated, without proof, the result that if y is 

integral 
'1 e 1 + ~ 

2. 

+ j_ + . 
;;~..'. 

where t = ' 4 and 8 u- / ~ 3 + 1 3 !) ( '1 + ~) u. ~- < ..... "2. 1 

'1 
+- L-. '1 

Watson (1929) showed this proposition to be true, 

subject to the truth of two unproved but reasonable hypo­

theses. While SzegH (1928) proved the proposition in the 

form 

~ '1-1 '1 e l. 

1 

• • • 

1 1 + '1 + '1 f- + ~ K. '1 :::: + <.. K < -J L 
2 2_, 

('1-~'. ~! 
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From (105) it follows at once that if ~ is integral, the 

median as defined ab ove is À - 1 + c; or À - 1 < median.:: ~ 

Lidstone feels that it is reasonable to assume that if À is 

not integral the median will still be approximately À - 1 + c. 

Then, with À = [À] + f as in section 1.2, we will have 

[À] + f - 1 < median < [À] + f. If f <: 1 - c then 

[À] - 1 < median <:: [À], while f > 1 - c then 

[À] < median < [À] + 1. From his conc1uding statements 

Lidstone has apparently confirmed these results by calcu­

lation from tables of the Poisson distribution. 

1.4 The cumulative distribution function (c.d.f.) 

Let the probability that the Poisson random 

variable assumes a value 1ess than or equal to x be 

denoted by F(x;À). 
x 

i • e • F (x ; À) = 2__ p ( i ; À) = 
Then we easily 

::cx;À) 

i:O 

ob tain 

= - e- >. >.x.= - p (x; À) 
x! 

Integrating bath sides of (107) from À= 0 to À = ~ 

(106) 

(107) 

, and 

noting that at the = 1, we have immediately 

F(x;>..) = (108) 

(109) 

Equation (109) was given by Szeg8 (1928) and previously on 
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page viii of the Introduction to the Tables of the Incomplete 

r -Function (1922) ; [46]. 

Equation (108) will be of particular significance in section 

4.2.2 where this result is discussed further. 

Now it is well known that if y is a continuous 

random variable with known probability density function (p.d.f.), 

f (y), th en the random variable u = S _...,t!Jo f (y) d..y has the 

uniform distribution on the unit interval. A natural 

question we might ask then, is whether or not we can make a 

similar statement about F(x;À). 

David and Johnson (1950) have discussed the general 

case of the distribution of a transformed variable, say 

v = ~ h(y), where h(y) is the p.f. of a discrete variable y. 
-00 

They have considered two cases. First, when the p.f. of y is 

known; and second, when parameters of the p.f. have to be 

estimated from observed data. The first case had previously 

been investigated arithmetically by Lancaster (1949). It will 

suffice to say here that in both cases the transformed variable 

v does not have the uniform distribution. David and Johnson 

investigate the departure from uniformity of the distribution 

of F(x;À), as measured by the moment ratios ~ , ~~ (see 

section 1. 9). 

We now define a function which is related directly 

to the c.d.f. Let the probability that the Poisson random 
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variable assumes a value greater than or equal to x be 

denoted by P(x;À), then 
~ 

P(x;À) = 1 - F(x-l;À) = 2 p(i;À) (llO) 
i :: x 

We will have frequent need of the derivative of P(x;À) 

w.r.t. À. However, as P(x;À) represents an infinite sum, a 

brief discussion on the 1egality of performing such a differ­

entiation will be appropriate. If a function of the form 

f(t) = (where t real, and the c~ are real coef-

ficients) converges for all t in ( - R, R ) for some R > 0 

( R may be + A? ) we say that f is expanded in a power series 

about the point t = o. For convenience we state here a 

theorem from mathematical analysis. 

Theorem: Suppose the series 

and define f(t) = 
e>O • ' 

converges for 1 t \ < R, 

\ t l < R. 

Then 2_ c .t ~ 
t.::o t.. 

converges uniformly on [ -R +t, R -! ] 

no matter which t > 0 is chosen. The function f 

is continuous and differentiable in ( - R, R ) and 
DO • 

Â.f(t) = 2.. ic.e , ftl < R ;[82]. ;(,(;- .,:~1 1. 

Recalling the statement at the end of section 1.1 we know that 

the series 1 + À -4- À" + • • • do es converge for _ e>o c:... À <- e>o 

2_ ~ _)\ )/ )H-l 

Thus, of course, the series e [-- + ~ + •••• ] converges, 
x.' (>vtt)~ 

which is the series in (110). We may now differentiate P(x;À) 

with clear conscience and obtain, easily, 

v( P(x;À) = p(x-l;À) (111) 
/CA 

which will be true for all x = 0, 1, 2 ••• if we define p(-l;À) 
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to be identica11y zero. 

The functions p(x;~), F(x;À) and P(x;À) are now 

extensive1y tabu1ated. Two major sets of tables are those 

of Molina (1942) and Kitagawa (1952). Sorne corrections to 

Kitàgawa's tables are given by the Sextons (1959). Perhaps 

the most extensive tables available are those prepared by 

the General Electric Company (1962); where a11 three of the 

above functions are tabulated to eight decimal places for 

values of À from .0000001 through 205 in varying increments. 

1.5 Expected value and moments 

The rth moment about the origin of the distribution 
PO 

= L x ..,..p(x;À) ; r = o, 1, 2 ••• (.Ll2) 
X:O 

and provided this series is absolutely convergent /4; is said 

to exist. Now, 

f; == e- À [ À f. ~ '>..: ,'"' + - - - J "-".(_ >. "> 0 

1. • 

so that applying the ratio test for convergence to the series 

of positive terms in the brackets we have 

v-~+ 1 
;\ i i-l ...,.. . 1 À ( ~ )7 (~+-,). "1.. ~ 1 + c::. :::. 

( t' fr) ( -- ~ +l U· ~~ . ..,-
" . """\... 

and the ratio does tend to a limit less than unity as -i.-4>oo 

which implies that the series is convergent, or has a value, 

for all finite values of À. Equivalently, since each V;: > 0, 

the series is absolutely convergent. Thus all the moments 
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about the origin of the distribution ~(À) are seen to exist. 

With r = 1 we obtain the mean ~; , or expected value of x. 

Only the mean will be found in the manner indicated above, 

for other methods of obtaining moments will be introduced 

shortly. Now, 
( ,.., = E. (x) = 

\ _). ~ \ 
/\ e e = A (113) 

indicating the significance of the parameter À of the 

Poisson distribution. 

Higher moments may be 
1 

renee relation. We have ;w~ = 

found from a simple recur-
Oo 
) .,.. _).. '\x 
L x e ~ , an absolutely 

x! ){::.0 

convergent series; and by the theorem of the preceding 

section we obtain 

d. 1 

- fr 
~À 

= l { x + +.' ë'>.. À )(-l 

x' X"'O . 

..,... _). x 1 x. e..~ 
x~ 

multiplying both sides by .À yie lds the recurrence relation 
1 

?7'+1 = À 
1 \ .,.( 1 

JA--r +-" t~.>.t'.,. ( 114) 

The rth central moment of the distribution P.(À) is defined as 

jAr = [. [ x - À ]r ; r = 1, 2, 3 •••• 

= E [ x .,. + ( T ) x.,._ • t-x) 1- • • + { r) x r- ~ l- .>. \ ~ + . . . i- t- >Sr J 
= r: -( ~) r; ~ , . À +- . . . .. t- 'i) ~ t r ) r '.,.- .. >-. ~ + . . +- r- il ... >...,. 

.,.. 

= Lc-l)~(r)t:-~ .>-" (115) 

Since all the fA: are known to exist, equation (115) implies 



the existence of the central moments. Then, by different-

iating w.r.t. 

= 

both sides of the equation 

(x. À. )r e-À.1_x. 
. x~ 

we easily derive the recurrence relation for the central 

moments of the distribution P.(À) 
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fA.,..+,= ~ [ r f.,-_ 1 + :Xf-r] ; r = 1, 2, 3 ••• (116) 

Now the variance of x is ~~ and will usually be written V(x). 

From (113) and (115) !'f2. = fi; - À
4 

and using (114) with r = 1 

= V(x) = [À,.~À]- À~ = À (117) 

1.6 Moment generating function (m.g.f.) 

Suppose a. , a, , a1. • • • • is a bounded sequence of 
2. 

real numbers, and that S(t) = ao + a,t • a~t + •••• treal, 

converges in some interval R < t < R. (A comparison 

with the geometrie series shows that S(t) converges at !east 

for - 1 < t <. 1 ; [24] ) • Then, in the sense that the 

coefficient of tr is ar , S(t) is called the generating 

fun ct ion of the sequence { ar ! . 
The expected value of the function u(y) = etY of 

a random variable y defines the m.g.f. of y (or of the dis­

tribution of y) denoted by My(t). For the Poisson random 

variable we have 

[ ( etx ) = -R<t<.R 

x::::o 
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_). ~ (À__:_ t" ) x 
e ~ x~ and recognizing the = 

x .. o 

summation as the Maclaurin's series for es with s = À et , 

we have 
= - R < t .t:... R (118) 

Moreover, since À > 0 the above Maclaurins series is abso-

lutely convergent, and the expected value represented by 

Mx(t) exists. 

To show that Mx(t) does indeed generate the moments 

of the distribution P.(À) we write 
11>0 1)0 

(t-x) ~ e-À: 
Mx(t) · L [ L 1 -r-' )( ~ 

'1("'0 r~o 

·:of absolute convergence 

Do 

=I 
.,... 

t 1 

t-! f-r 
t::> 0 

and each 
f 

f'-r is known to exist so that ( ,u; l is a bounded 

sequence of reals. 

seen that 

Thus when Mx(t) is expressed as a power series 1n t, 

It is easily 

(119) 

the first two derivatives are 

q( _)._ t- ~~t" 
- M (t-) =e. Àe- €.. 
A, t:- )( 
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and hence, as given by (113) and (117) 

E. (x) 
1 

À = JAl = 

1 À.(!+À} J-Al. = 

and V(x) = jAl. = À(lr~Î-Àl.= À 

The existence of the m.g.f. of a random variable y 

has important consequences. Firstly, the distribution of y 

is uniquely determined by its m.g.f. when it exists. Secondly, 

if the m.g.f. of y approaches the m.g.f. of another random 

variable z, then the distribution of y must approach the dis­

tribution of z ;[35]. 

A well known property of m.g.f.'s is that, with b 

an arbitrary constant 

M .. ,(~) .[(e. 1 "'")~) "e.'t"_J'1xLt) 
(120) 

With b = -À it is easily shown that Mx->.. (t) generates 

the central moments fA~· of the distribution P.(~). For the 

existence of the function Mx (t) , - R < t < R , implies 

the existence of e -À~ Mx (t) for - R < t <. R. We have, 

M,_\(r) -Àl- À(et-_,) À{(',r_ t:-1) 
fi,.A ~e. e.. :::e. 

and )Ar is obtained by differentiating Mx-À (t) 

w.r.t. t and evaluating at t = O. 

(121) 

r times 
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1.7 Probabi1ity, and factorial moment generating functions 

If we replace t by log t * in the m.g.f. of the 

distribution ~(À) we obtain the function TlrxCt) say, where 

~(t-): Mx(-lodt)-: [ ( ex{oJt-) :::l(t)()) -R~t-<R (122) 

= e -À ~ ( Ac\ .x 
L x! Now 

x~o x~o 

t9<J t A t-) x 
and the series 

f 
. Àt" unct.1on e • 

L -;zï converges absolutely, and 
)(; 0 . 

to the 
À(t--1) 

exists and is equal to e Thus TTx (t) 

From (122) we may write 
t!>Q 

lTxlt-)= L t ~ p(x ;~) 
l(=O 

= p(O;À) + t.p(l;À) + t
2

.p(2;À) + 

and { p ( i; À) 1 , .1 = 0, 11 2 ••• is a bounded sequence of 

reals. Thus by differentiating ~(t) i times w.r.t. t 

and evaluating at i = 0 we obtain i! p(i;~) i.e. Tfx (t) 

generates the probability function of x. 

The rth factorial moment is defined as 

1 

JAL r) ; r = 1, 2, 3 ••• (123) 

and if we replace t in 1Tx (t) by 1 + t we obtain the 

function Fx(t) say, which generates the factorial moments 

Àt-= e (124) 

and clearly exists for R <:: t < R. 

* We will always mean the natural logarithm. 

• • • 
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To shpw that Fx(t) does generate the factorial moments of the 

distribution P.( À ) we wri te 

Fx(t) = [ ( 1 + t:) x 

/PO 

,. L f(X.)À'> 

X-:.0 

#14 

~L 
)c:.o 

)\ 

I ( ~) 
f":O 

[1] 
)( 

f(X.) >.). { 1 +- t) 

.., 
t 

= l r-~ Ï xe<J fl~,>-) 
r::-o )1"'0 

and since x(.,..) is zero for r > x we write 

l( 

Fx(t) = i : ~ r:.] 
y-::.o 

function (f.m.g.f.). The 

; the factorial moment generating 

first two factorial moments, ob-

~ained from (124) are 

ji~•) :: [{x) =À e~t/ t~o =À 

giving the same moments as before. 
f 

Obviously fl.,] = 

1.8 Cumulant generating function (c.g.f.) 

.,.. 
À ;r=l,2, ••• 

Another infinite set of constants that are useful 

for characterising a probability distribution are the cumu­

lants (the name suggested by Fisher for the semi-invariants 

of Thiele). 



The cumulants, denoted by kr 

the identity in t 
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r = 1, 2, 3 ••• are defined by 

~ ..,.. 
[kc- +-K .t+--·+k t.t-- . .J 1 't-..,... 

1 1. 2.' ,. .,..~ J.J JA. -e · = 1 + 1 .,t:- + ··· + 1 .,._,.:+-·-(125) 
1 

from which any moment ~~ can be obtained as a polynomial 

in k 
1 ' 

k 
l ' 

••• ' k.,.. and conversely, any k.,. is a polynomial 

in ?: and lower order moments. Evidently k.,. exists if 

the moments of order r and lower exist• 

Now the right hand side of (125) is the series 

representation of the m.g.f. If the m.g.f. exists we may 

take logarithms of both sides of (125) and write 

"' .,.. 
1: 1:-k, t + k

1 
-;:::~ -r ·· + J<.,. -;~.,_ .. = log Mx(t) = Kx(t) say,< &>o 

Thus, if the logarithm of the m.g.f. can be expanded in a 

convergent series of powers of t, - R .::::: t <. R , Kx (t) 

can be considered as a generating function for the cumulants 

of the distribution, and 

k.,.. = (126) 

For the distribution P.(~) 
Do r 

Kx(t) = log Mx(t) = À ( e- e:- -•) -=- ~ L :, 
(" ... 1 

(127) 

i.e. a convergent power series expansion in t, convergent for 

• And from (126) it is c1ear that a11 the cumu-

1ants are equa1 to À. However, we may write (127) as 
.,... 

t 
k., -r-' 

..,... 

.t.. .,., (128) 
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which expresses the fact that we have two power series in t 

converging to the same function À ( e c:- - 1 ) in the interval 

-t>o < & <.co. This implies that the two power series be identi­

cal i.e. that they have the same coefficients ;[82] , and 

bence kr= À ; r = 1, 2, 3 ••• Thus Kx(t) and bence Mx(t) 

are uniquely determined, which implies that the distribution 

Po(À) is the only probability distribution with such cumulants. 

We may define the factorial cumulant generating 
Çlo .,. 

function (f.c.g.f.), say Jx(t) = 2_ :~ kr.,) as the logarithm 
-(':0 

of the f.m.g.f. and obtain the factorial cumulants k(Tl as 
1 

polynomials in terms of fA (:t) and lower order factorial 

moments, from the identity in t ; [20] 

foa ( 1 + l :,'" r 1U1) 
.,...:. 0 .,... ,_ 1 

t- 1 tl.. { f 1 :t 7 tl { 1 , 1 ,l 1 
= -;-; r [t] + 2 ~ r [>-] - fc.·J i i- 3! fu] - 3 f [1.] ft•] + l.ff•] ~ 

t 4
[ 

1 1 1 1 ,
2 

,"1 
14

) 

+ ;;~ frtt) - 'tfu.1 fr..c1 +-'7- f'[:~.] f"L•1 -(a /v.. f.t'l- 3 fr,.] S +·· .. 

From ( 12 4) we have that log Fx (t) = À t and hence, for the 

distribution }!(~) only the first factorial cumulant k,,
1 

is 

not zero, and is equal to À. 
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1.9 Moment ratios 

We list below the first few moments J"r obtained 

from (125) in terms of the cumulants; and since for the 

distribution ~(À) all the cumulants are equal to À , we have 

f,' = k, = À. 

JA~ 
J.. 

À +>:-= k + k = 
1 1 

' k3 + 3kLkl kl À + lÀ. 2. -r À l 
t~ = + = 1 

t< 1. 1. If ~ + 7 À 1. + (,.}.. ~ + ~ 't = k4 + 4k3 k, + 3k + 6k2. k, + k, = 
1. 

----------------------------------
From (121) we may obtain the central moments 

jAr = 0 

)Az. = ).. 

f3 = À 

fÎq. = Àc 1 + 3À) 

Karl Pearson has defined the moment ratios o(. of 
A. 

a probability distribution by the equations 

= 

o<. = 3 

de scribe 

b 
?-2..;; /z. i = 3 ' 4 ' ••• 

~3 ;; 
l is often referred to as • and is used to JA2.h 

the departure of the probability distribution from 

symmetry about the ordinate at the mean i.e. the "skewness". 

is often referred to as and is used to 

describe flatness (or alternatively peakedness). A low value 



of ;6
2 

is associated with flatness and a high value with 

peakedness;[ZO]. 

For the distribution ~()v we have 
À 

= = and fi: -'> o as À _.::p. I><:J 

29. 

suggesting that the distribution tends to symmetry about the 

111ean with increas ing À (see section 1.15) 

f>,_ 
À(~3À\ 

3 + and as À__..,. Ooo • f 1. --4:> ~ = À1. = À 
which is the value of (!>, possessed by the standard Normal 

distribution. 

1.10 A limiting case of the binomial distribution 

We have seen that the Poisson distribution was 

obtained as a limit to the binomial distribution under 

certain conditions, which are now stated more precisely. 

The probability that a binomial random variable with dis­

tribution B.;. (n;p) assumes the value r is ( ~) f..,- { 1 - t)f\---~" 

We require the limiting value of this expression as n _-7 ~ 

and p ~ 0 subject to the condition that np remains finite 

and equal to À say, > 0. Derivation of this limiting 

expression can be achieved in a variety of ways. Perhaps 

the most straightforward approach is to use Stirling's 

(1730) formula for large factorials;[lOl]. Now 

.,.. J 1 ..,. "'- .,. À À "' .!.:._· 
f ( 1 - f) '=' [ -, ( 1 - - \ x( \ 1 .,. { À J v 

t". Y\ ) n-n n 1- -
- • r'\ 
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and . '>...,.. ( ~)"' J -l1.m [ -
1 

1 - ~ -
n....:::.;.~ r-. - f"' 

Th en 

~ t'\~ 
n ~..o {V\-.,)~ nf"(l-~ )' 

::. 1 1 since r is finite. 

under the stated limiting con-

ditions and the terms of the binomial become the successive 

terms _}.. >. >...,.. 
P.( À). e [ 1 ' 1! ' • • • • f"! J •••• ] i.e. the distribution 

Suppose now that we consider, un der the same con-

di ti ons as above, the limit of the m.g.f. My(t) = ( 1 - p + pet )n 

Then lim ( 1 

random variable y with distribution B· (n ;p). 
'1. 

- p + pet )n = lim [ 1 + ~ ( ~ t-- 1) ~J 
f\ _,.,. t>o 

of the binomial 

= eÀ(et-_,) 

= Mx(t) where x ~ ~(À). 

If we now invoke the result stated in section 1.6, this shows 

that the binomial distribution approaches the Poisson distri­

bution under the given limiting conditions. 

As a practical matter it is generally considered 

justifiable to apply the Poisson approximation to the binomial 

distribution when À< 0.1 ; [32]. 



1.11 Reproductivity of Poisson distribution 

We may easily establish the following 

Result (i) If x
1
and xLare distributed independently with 

P.,(À1) and P .. (\) respectively; then x1 + xl. is distributed 

with P.,( À,+ \J. 
Proof: The probability that x, + x~ = r is equal to the 

joint probability that x
1 

assumes the value i and x
2

the 

value r-i, summed from i = 0 to r. . . 

i.e. Prob[ x
1 

+ xL = r ] = 
., À ..... \ .,-_,_ 

L 
t!- 1 À -.-\;t. \ 
-I.e_ A..._ ., .....--
-"'(.. (..,.- ... \ ~ 

..;: = 0 

= 

i. "'0 

31. 

(129) 

and the result follows. This property is expressed more 

simply by saying that the distribution ~(À) is reproductive 

w.r. t. ")._ ; [lOS). 

The converse of this result, that if the sum of 

two independent random variables has the Poisson distribution 

then each summand is Poisson distributed, has been proved by 

Raikov (1937). 

Reproductivity can also be shown by using the 

m.g.f. Thus with x
1 

and xl. as above we obtain immediately 

because of independence 

and the result follows. 
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The condition that MX (t;X,).Mx (t;A) = MX+"(t;A+X..) 
\ 2. 1 ,..,_ 1 ... 

can be regarded as characterising the property of reproduc­

tivity. 

We observe that either of the above two methods 

can be used to extend the result to the sum of N independent 

Poisson random variables. Specifically, we use the m.g.f. 

to establish the following 

Result (ii) 

with Pa( À1 ), 

variable z = 
Proof: 

If x1 , xL, ••• XN are distributed independently 

~(~~) •••• P.CÀN) respectively; then the random 
N 
L X· has the distribution J;(À 1 + ~z.+ ••• +À,.,). . ~ 

"'"'' N 

=lT 
.. · =-' 

and the result follows. 

1.12 Difference of two Poisson variables 

Now the distribution of the sum of two independent 

Poisson variables was easily obtained in the previous section 

and the question that natural1y arises is what can be said 

about the distribution of their difference. This question 

has been investigated by Irwin (1937) and Johnson (1959). 

Suppose two random variables are distributed inde­

pendently and both with the distribution ~(À). The probabi­

lity that the first variable assumes the value x
1 

and the 
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second x2. is 
e_.l.J . ..;' + x2 

x,! x ... ! 
= o, 1, 2, • • • ; XL = 0, 1, 2 ••• 

Let x.z.. = x\ + s. Then the joint p.f. of x
1 

and s is 

f( x,, s; À) = 
e.- .2. À ~x ' + s 

)'., ~ l x\ + s) ~ and the marginal p.f. for s is 
1>9 

g( s ; À) = L i(x,,s;~) 
x, .. 0 

= i".2.À ls (:LÀ) (130) 

where s can take all integral values from - tx1 to éX:} , and 

l 5 (-;.>..) is Besse l' s modified fun ct ion of the first ki nd of 

order s and argument 2 À • Irwin bas shown that g ( s ; À ) 

tends, as~~~, to the Normal distribution with mean zero 

and variance 2 À • 

From (130) we see that the m.g.f. of s is 

Ms(t) 
i+tt 

+- .1._ + 
.2.~(S+If)~ 

..,::o 

e->->-}_ 
. . 

À1. [ ~~ e.-l:"1A. = .;.! 
..,_ 

.: :.0 

-~~ À(~t:- +e - t-) 
= e. e_ 

Now the c.g.f. may be found as 

Ks(t) log Ms(t) À ).. ( t- - ~) = = - 2 ..... e +e 

= 2 A [ ..t.2 tif 
] ..2.! +- ..... • • • • t,.! 

Hence all the even cumulants of the distribution of s are 

equal to 2À, and all the odd cumulants are zero. 

Johnson has shown a connection between the distri-

bution of s and the non-central 
2. X distribution. 
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1.13 On a relation between the Poisson and multinomial distributions 

A close relation between the Poisson and the bino-

mial, and between the Poisson and multinomial distributions 

will be shown in the following sequence of results. In this 

section we will write, to simplify the notation, a p.f. such 

as p(x;À) in the form p(x). 

Result (i) If x is a random variable with distribution ~(~) 

and if the conditional random variable y\x has the binomial 

distribution B~(x;p), then the unconditional distribution of 

y is P(Àp) • • 
Proof: The joint p.f. for x and y, say f( x , y ), can be 

written as the product of the given conditional p.f. and the 

marginal p.f. of x. 

Le. f(x,rl = { ~) r" (,- ,f-'~ 
_). x 

e À 
y = o, 1, ••• x 

x = o, 1, 2 •••• 

Hence the marginal p.f. for y is 

g(y) = 

/>0 

L f(x,y) = e.- À ( _!_ \ ~ f 
, 1-p J L 

'1- )(:o X::o 

-À (À p) '1 ). ( 1 - fl e e. 
= '1~ 

_).f ( Àp) '1 
= e.. 

'-1! 
; y= o, 1, 2 •••• 

Result (ii) If x,and x
1 

are independently distributed random 

variables with P.,(~.) and~(\) respectively, then the condi-

tional distribution of x, given that the value of x, + x~ is 

r say, is the binomial distribution B-i (r; \ ~~ ) • 
'\ +"z. 



Proof: Using (129) we have immediately that 

p(x 
1 

+ x = r) 
2.. 

- >., .>.,x, - Àl. 

= e ~.! ~ 

"1" ' • 

. ( :.)( \ :·A.r· ( 
= ( ; '1 ( À~~t î x, li -

Moran (1952) has shown that this result characterises the 

Poisson distribution among a11 distributions with range 

the set of non-negative integers. 

Result (iii) follows from (ii). If x,and x~ are inde• 
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pendently distributed random variables with the same dis­

tribution ~(À), then the conditional random variable x \x+ x 
1 1 t.. 

has the binomial distribution B;(r; i), where r = x 
1 

+ x 
2.. 

Result (iv) If x,, x~, •••• XN are independently distri­

buted random variables, each with the distribution P(X), then 
0 

the conditional random variable x,, x~, ••• xN j x\ + x.z.. + •• + xN 

has the multinomial distribution M(r; 1. , .! , ••• 1 ) , where 
N N N 

Proof: 

., 

-À 
>.. )( 1 

-~ ~ )(;t 

e )( 1 
e x 1 

1 ;a.. 

-À .À XN 
e. --

XN~ -------------------------
-NÀ 

e 

~ x. 1 ·-· " 1 
t. "N. 

1 .,._ 

x 1 .. )( 1 
•. N. 

-r! 
le+·· +X À 1 N 

( N >.,)X,+ ·- + XN 

(~)x,_ . . ( t) XN 



where it is understood that xN = r - X1 - xL••• - xN-1• 

Thus the p.f. of the conditiona1 random variable 

the 
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x, ,xl.xN l x, +x2 + •• +xN is given by the general termx +inx 
1 + · · +XN . f . . l ...... .1. .L J 1 ;a. expans1on o the multJ.nomJ.al N +- N + · · · t N 

i.e. the conditional random variable has the distribution 
1 L 

M (r; N , ••• N ) • 

Result (v) If x 1 , xL, ••• xN are independent1y distributed 

random variables with distributions ~(À,), ~(ÀL), ••• ~(ÀN) 

respective1y, and r- = A, + Al. + ••• + ÀN , then the con­

di tional random variable x
1 

, x1 , •• xN l x
1 

+x
2 

+ ••• +xN has the 

d . . b . M( • À, À,.,) h -1str1. utJ.on 1 r, f"' , ••• p.- , w ere r - x +x + ••• +xN 

Proof: We replace N À in (iv) by fA to obtain 

~ ( ~~ •·. . eNJ ... 
p(X1 ,xl.., ••• xN j x, +x

4 
+ •• +xN) = x,l .. .. xN'. r-J t"-

where it is understood that xN = r-x, -x~- ••• -xN_ 1 

ÀN-1 ..... -
~ 

and 

Result (vi) t- / l(• }('4 l< N Any multinomial distribution pp ••• pN 
xl ... x'' z. '. N. 

can be written as the p.f. of the conditional random variable 

x 1 ,xl., ••• xN lx, +x,+ •• +xN, where x1 ,x2., ••• xN are independently 

distributed Poisson variables with means rpi , i = l,Z, •• N 

subject to the condition that the sum of the variables is 

equal tor ;[78]. 

Proof: We need only note that in (v) the mean l of the distri-

but ion of the sum x, +xl.+ •• +xN becomes rp
1 

+rpz.. + •• +rpN = r, and 
À~ À: hence = · = Pi 

r 
,i = 1, 2, ••• N 



1.14 On a relation between the Poisson and negative binomial 
d1str1but1ons 
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Result (i) Suppose u is a continuous random variable such 

that for some positive integer k, ku has the gamma distri­

bution G(k). Suppose ylu is a discrete conditional random 

variable which has the distribution Po(u). Then the uncondi-

tional distribution of y is a negative binomial distribution; 

[105]. 

Proof: The p.d.f. of the random variable t = ku is f(t) say, 
t k-1 

where f (t) = e- L ; 0 < t <. oo 

r( k\ 
Hence the p.d.f. of u is g(u) say, where , 

-KIA. 
g(u) = e 

1<-1 1<. 
LL k 

1-. ( k) 

Now the joint p.d.f. for y and u is p(ylu).g(u) and we 

obtain the marginal distribution of y, say h(y), by inte­

grating out u from this joint p.d.f. 

J 
Do _ ........ '1 1(-1 1< 

e.. u.... - k tA. {;\_ k J.. v._ 

l.e. h(y) = , .e. - \ 
1.\."-0 t..t. r(kl 

put s = ( 1 + k )u 
( t>o 

h(y) = J 
.s " 0 

= 

= 

( 
~ .,.. 1( - ,, ( _15_ \ k ( 

k-1 J 1+-K. 

; y= o, 1, 2 ••• 

1 \ ï 
1 t- K J 
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now put p = 1 +-l< and we have 

h(y) • ( ~: _k,- ') / ( ' - f î ~ ; y= o, 1, 2 ••• (131) 

Or, we may put z = y + k to obtain 

h(z) = ( ~~ :) / (,_ fr-K ; Z = k, k•l, .... 

and observe that h(z) is the [z - k + 1 ]th term in the 

expression p.k[ 1 - ( 1 - p )]-k when [ 1 - ( 1 - p )]-k is 

expanded in a power series in ( 1 - p ). 

Result (ii) If y has the negative binomial distribution 

given in (131), then the limiting distribution of y as k ~oo 

and (1-p) ~ 0 so that k(l-p)-'J> À say, finite and > 0, is P,.(À). 

Proof: From (131) we have 

• ( '1 ~ ~ ~ ') [ , ~ r ( ~ r , r ~!1 r , - ~) K J ('ltK-1)( 
--~ 

(K-t\~ k'1 h(y) 

and = e-À À'1 

The remaining terms in h(y) are 

(y+k-l)(y+k-2) •••• (y+k-y-l).k 1 kY 

= 

and the result follows immediately. 

1.15 Standardised Poisson variable 

If y is any random variable wi th mean fA and var i-
l. '1-p-

ance ü then the new variable u = -- is called the standard­
v 

ised random variable corresponding to y, and the distribution 
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of u is said to be in its standard form. Clearly 

and therefore V (u) = :~ · f. ( ~ - !"-) z. :. ~: 
E_ (u) = 0, 

We observe that the m.g.f. (if it exists) of any standardised 

variable u will be 

( 
'1~ ) Mu(t) = [ e.. (j'" .t = (132) 

The standardised variable u corresponding to the 

Poisson variable x with distribution Po(À) will be given by 
x->.. 

u = [>;, From (118) and (132) the m.g.f. of u is given by 

-À t-
= e 1>:: .M ( :;.. ) 

x v )., = 

t: 
- 1 ) - .r;. (: À ( e, [); 

e e... 

AL~~ - 1 - -t- ] 
e 

1):. (133) = 

Theorem: The distribution of the standardised sum of N 

independently distributed Poisson variables 

approaches the standard Normal distribution as N~oo 

provided that the sum of the means of the N 

variables tends to infinity with N ;[19]. 

Proof: Let x1 ,x~, ••• xN be independent random variables with 

distributions {!( À1), PJ Â1 ) •••• Po( AN) respect ively, and 

JA = \ t- À 2. t- . • t- À"' 

Now the random variable X =x +x + ••• +xN has the distribu-
• 2.. 

tion P.~), by Result (ii) section 1.11 It fo1lows that 

U = X~ is the standardised variable corresponding to the 
r;;:. 

Poisson variable X, and from (133) we have 
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t-

~ J [ {ÏA _, r ~ ~ 
Mu(t) = e (134) 

We now consider the following two cases. 

Case (i) : As N ~ txJ it may happen that fl tends to a limit b 

~<:.. 
.....r 

l DQ 
-& [ €- ~ -{"' _, 

~ Th en lim Mu(t) = e 
N ~ c!>O 

(135) 

and (135) is recognised as being the m.g.f. of the standard­

ised variable corresponding to a Poisson variable with mean b. 

Hence the theorem cannot be true in this case. 

Case (ii): As N ~ oo we have that r-~ d)o. Now from (134), 

A: 

log Mu(t) ~L~ IF = 

.1: 

= ~[ 1 + rr 

Th en 

4 

~ 
= r[ 2.r 

= 

= 

A-z. 

L 

.A-2. 

2 

lim log Mu(t) 
N-=>CXJ 

= 

+ 

-/ ~ l 
rr 

00 

L ( ~)~ 1 
+ -

-1. ! 
.... - :: 2.. 

[ k' 
-t-4 

+-r lh. 3 ~ r4 4'. 

and using the fact that the limit of a logarithm equals the 

logarithm of the limit, provided that these limits exist;[28] , 
'th 

we have lim M0 (t) = e 2.. which is the m.g.f. of the stand­
N~oo 

ard Normal distribution, and the theorem follows. 



1.16 Poisson distribution as a special case of a class of 
d1screte d1str1but1ons 

41. 

The generalized power series distribution (gpsd) 

has been defined as follows (Patil, 1959). 

Let T be a subset of the set of non-negative integers. 

Define f(Q) = [ a(y) QY , where a(y) > 0, 0 ~ Q < eoo (136) 

'1t:T 

such that f(l) is finite and differentiable. 

Then a random variable with p.f. p(y;Q) where 

p(y;Q) = a(y) QY 
f(Q) 

; y E T ( 13 7) 

is said to have the gpsd with range T and generating function f(Q). 

The Poisson distribution can be obtained as a 

special case of the gpsd by taking f(Q) = e9 (which is 

fini te and differentiable, 0 ~ Q < oo ) • Then 
OQ 

eQ = L~ 
'1~oY1 

= L_ a(y) eY 

...,eT 
and we have two power series converging to the same function; 

1 
so that a(y) = y! and T is the set of non-negative integers. 

Th us p (y ; Q) = e - 9 Q Y y = 0 , 1 , 2 , ••• 

y! 

i.e. the random variable y has the distribution ~(Q). Eviden-

tly the (complete) Poisson distribution is also a special case 

of the power series distribution (psd) as defined by 

Noack (1950). We shall not be concerned with a development 

of the structural properties of the gpsd. But we remark that 
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the structural properties of the Poisson distribution could 

be derived as special cases of the corresponding properties 

of the gpsd. However, knowledge of the mean and variance, 

and of a moment recurrence relation for the gpsd will be 

found most useful in later work. These quantities are there­

fore derived below. Let y have the gpsd given in (137). 

Then the mean ~ of the gpsd is 

é (y) = L y p(y;8) = L. y 

now ,(_ f(8) 
i.e 

= 

so that the mean ~ 

LY 
._, f. T 

Consider the quantity 

= 

'·p. T 

a(y)8y-l 

tJ.. 8ièf(8) 
f(8) 

a(y)8Y 1 f(8) 

(138) 

f(8) 
,(_ "'-2. 

] [ ~f(8) ]2 w- = [ Â9f(8) + 8~ 9~f(8) 8 
-~-----

[ f(8) ] 2 

,ll. ~ y(y-1) a(y)8Y- 2 and therefore now d9,_f(8) = 
'1tT 

til. z_ y(y-1) 82 ~e .. f(8) = p(y;8) = f [y(y-1)] 
ile) '1E.T 

Hence we have from (139) that 

~ l. 

8.1tef(8) + 82Azf(8) 
f(8) 

8 ~ = 

= [.(y) + [[y(y-1)] 

i.e. the variance of the gpsd is 8 

The rth moment about the 
1 

[_ yr tf-r= r (yr) = p(y;8) = 

'"H:T 

[
8 A f (8)l2-

f(8) J 
[t'(y)]2 = V(y) 

~ 
origin, JA:, is 

!_ yr a(y)8Y 

'1ET f(8) 

(139) 

(140) 



hence we have the equation 

1 

f (9). f-r = 2.T yr .a(y)9Y 
~~ 

and differentiating both sides of (141) w.r.t. 9 yields 

9 .. ~ f ( 9). ,M 
1 

+ 9 { r ~ = 2 yr + 1 • a (y) 9 y 
~-- 1 r ~e T --lr(e) '-le. /rt&) 

i.e. 

and hence the recurrence relation between moments 

1 

fA.,..+ 1 

43. 

(141) 

(142) 

The fact that (138), (140) and (142) include the 

results obtained in previous sections for the Poisson dis-

tribution is easily shown, and will serve to illustrate the 

remark made above. 

For the Poisson distribution we have f(9) = e 9 

Â 
and hence the mean 9 là f(9) = 9.e9 = 9 

-e fr( s) e. 

and the variance 9 ~ = 9 1 = 9 also. 
~& • 

While (114) is precisely (142), with À written for 9, 

since is the mean f- . 



CHAPTER TWO: THE TRUNCATED AND CENSORED POISSON DISTRIBUTIONS 

2.1 Truncation versus censorship 

It will be helpful to begin the discussion by con­

sidering two different circumstances that commonly present 

themselves when sampling a Poisson population. At the same 

time this will allow the statistical terminology to be intro­

duced. 

(i) In the first case to be discussed, the population from 

which the sample is drawn is not complete. For some reason 

we are only able to sample a part of the population. 

(ii) In the second case the sample is drawn from the complete 

population; but for some reason the individual values of 

observations above (or below) a given value are not specified. 

Cases (i) and (ii) give rise to the truncated and 

censored Poisson distributions respectively; as so called 

and discussed by Hald (1952). 

As an illustration of case (i) suppose the popu­

lation to consist of a lot of manufactured items, and 

suppose the number of defects per item is a Poisson random 

variable x. After quality inspection of the lot all those 

items having x > d defects are removed. If the consumer 

now takes a random sample of the remainder of the lot he is 

only able to sample the truncated Poisson population (dis­

tribution) consisting of those items for which x ~ d. Thus 

the values that the restricted variable can assume are say T*, 
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where T* = fo, 1, 2 ••• dj. A random observation of the 

restricted variable is said to have a singly truncated 

Poisson distribution, truncated on the right at d. Alter­

natively, the distribution is said to be truncated away from 

A= { d+l, d+2, o••• } 0 

We may similarly speak of truncation on the left. 

An example of this instance has been given by Finney and 

Varley (1955) based upon certain biological data collected 

by Varley for a study of population balance in the gall-fly. 

Other forms of truncation are easily visualised. 

Thus we may have the restricted variable taking values only 

in the set J = f c, c•l, o ••• d J , an instance that is 

commonly referred to as double truncationo Again, the res­

tricted variable may assume only the values { 0, 1, o. o c-1, 

d+l, d+2, oo•• } • i.e. the complementary set Je. 

To consider case (ii) let us recall the experiment 

that was concerned with counting cells in the haemacytometer. 

The notation that will be used is given in the table below. 

number of cells 
0 1 2 d >d per square, x . . . . r . . . . Total 

number of squares 
containing x cells no nl nz •••• nr•••• nd nt N 

It is easy to count the number of squares that con­

tain no cells. Counting those that contain only one, two or 

three is also a simple matter. However, it is not easy to 
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distinguish between squares with high counts; especially if 

the cells happen to be in Brownian motion1;[94]. As a prac­

tical matter then, it is convenient to pool al! those squares 

for which x > d, say. The number of squares thus grouped 

together will be known, though the number of individual cells 

present in this group will not be known. Thus it will not be 

possible to compute the mean of the distribution directly;[6]. 

Assume that x is a Poisson random variable. As a 

consequence of the experimental procedure observations of 

the variable have been restricted. For we may observe only 

that x takes the values 0, 1, 2 •••• d and that x is greater 

than d. A random observation of the variable x in this case 

is said to have a censored Poisson distribution, singly 

censored on the right at d. 

We may similarly speak of a distribution singly 

censored on the left and doubly censored, that is, on the 

left and right with the totals in each tail known separately. 

Again another type arises when we know the total number of 

counts in both tails together, but not the totals for each 

tail separately. 

The types of censoring discussed above are gener­

ally described as being classical. It is assumed that in 

repeated sampling the total sample size N is fixed, while 

the nt , counts in the censored section is an observed 
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variable, i.e. is known but not fixed from sample to sample;[34]. 

This becomes clear when we recall that the haemacytometer con­

tains N = 400 squares, w~ich of course remains fixed. 

More general types of censoring than the classical 

type arise when certain of the observed frequencies are pooled, 

so that only the pooled totals of these frequencies are known. 

Or, the number Dt of counts in the censored section may be a 

fixed quantity and the sample size N a variable. Time will 

not permit consideration of all the various types of trun­

cation and censorship. 

2.2 A special conditional probability 

Let the random variable y have the gpsd given by 

(137). Let T* be a non-null subset of the range T of the 

gpsd; and suppose that y be truncated to the set T*. 

What is of interest here is the probability of 

obtaining an observation y' say, where y' must necessarily 

be a value in T*. If the truncated random variable be 

denoted by y* we are seeking the p.f. of y*. 

Now Prob[ y*= y' ], y' eT*, is equal to the 

conditional probability that the random variable y takes 

the value y·• given that y cannot assume a value in the 

complementary set T-T*. 

i.e. Prob[ y* = y' ] = 
p(y';9) 

1 - I p(y;9) 
'1er-r• 

p (y' ; 9) 

= I p(y' ;9) 

1'e T* 

(201) 
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Equation (201) embodies the same notational difficulties 

encountered in section 1.1. We will drop primes and write 

the p.f. of a random variable having the truncated gpsd with 

range T* and parameter 9, as 

p*(y;9) = 
p(y;9) 

y c T* (202) z p(y;e) 
'1tT* 

where p(y;9) is the p.f. of the complete gpsd and is given 

by (137). Thus 

a(y)QY 1 f(9) a(r)eY 
p*(y;9) = = 2_ a(y)eY l a(y)QY 1 f(9) 

"'fc.T• '1&T~t 

a(y)eY L a(y)eY = , where f*(9) = 
f*(9) '11.:Ttc 

clearly p*(y;9) > 0 and we have 2.. p*(y;9) = 1. 

'1 ET 11 

We observe that the "truncated" gpsd with p.f. 

(203) 

(204) 

p*(y;9) given by (204) is in fact a gpsd by definition. Hence 

the properties that hold for a gpsd continue to hold for its 

truncated form;[62]. In particular the mean and variance of 

the truncated gpsd can be found from (138) and (140) respec­

tively; and the recurrence formula (142) is valid in the 

truncated distribution. 
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2.3 Poisson distribution singly truncated on the right at d 

The Poisson random variable x with distribution ~(\) 

is truncated to the set T* = f 0, 1, 2, ••• di • 

From(202) we obtain immediately the p.f. of the 

truncated variable as 
e- À '>..x. 

x! F(d;X) 
; >.. > 0 ; x = o, 1, 2 •••• d 

where F(x;X) is defined in (106). ~ 

(205) 

~)( 
From (204) we have that f*(~) = L x~ and hence the distribu-

)t.,.o 

= À 

= À. F(d-l;À) 

F (d ;À) 

from (138) A-l ~ 

I ~ 
À )pO X:! 

:: (206) 

(207) 

From (140) the variance, say V*(x) = ~:z. *(d;À) =À A f* 

and from (206) we have 
Â x: ..t-1 x 

I ~~{I :! 
V* (x) =À o o 

= À F ( d -1 ; À) [ l 

F(d;~) 

~IX ).X-11 ~~).X ~ )( ÀX-IJ 
+-~L x~ j- ÀL 1(, L )(( 

0 0 . 0 

(208) 
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= f- * ( d ;À ) [ 1 + r-* ( d- 1 ; À) - ft fe ( d ;À) ] (209) 

Thus evaluation of the mean and variance can be achieved by 

using tables of Poisson sums; or more simply by using tables 

presented by Patil (1959), who has tabulated the function 

f-*(d;À) for the arguments d = 4(1)10 and À = 0.0(0.1)4.9 

Second and higher moments about the origin can be 

found using the recurrence relation (142). For example, to 

find the second moment we have, with r = 1 
1 \ ,( f 2 *(d;À) = /\ ..{~ ;<-*Cd;À) + 

which from (209) is 

= jl*(d;À) [ 1 + f-*(d-l;À) - tA*(d;À)] + [fL*(d;À)]2 

= r *cd; À) [ 1 + fl*(d-l;À)] (210) 

The third and fourth moments about the origin become 

' 1 

?l* (d;~) = r*cd;À) [ 1 + 2 fl* (d-1 ;À) + t' 1 * ( d -1; ~) 1 
1 1 1 

ft.#* (d; À) = r*<d;À) [ 1 + 3 f-* ( d- 1 ; À) + 3f~*(d-l;À) + jf t ( d -1; À)] 

2.4 Poisson distribution singly truncated on the left at c 

The Poisson random variable x now assumes values 

on1y in the set { c, c+l, c+2, 

the truncated variable 
-À " 

... ·1 and (202) yields the 

p.f. of 

e À 
p (x; À) = 
* x! P(c;À) 

. 
' 

as, say p (x;À) where 
~ 

À '> 0 ; x = c, c+ 1, •••• 

where P(x;À) is defined in (110). 

(211) 
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1>0 x. 

From (204) we have f~(À) • ~~ ~! , and proceeding the same 

manner as in section 2. 3 we obtain the mean JA say 
00 1 "* 

1><1 À)( z. )..)( 
f .. • fi•Cc;À) = >--Â ?.<- -;;, • À X•<-1-;! 

and the 

ri!><? ).._X - )...'< 

L -;~ L Xl 
X,C. X"-C. • 

= À P(c-1 ;À) 

P(c;.À) 

(212) 

(213) 

=À P(c;À)[ P(c-1;~) +À P(c-2;À)] - À P(c-1;À).P(c-1;À) 

[P(c;À)] 2 

=À P(c-l;À) r 
P(c;)..) L 

l +À P(c·Z;À) _ ~ P~c-l;À) ] 

P(c·l;À) P(c;À) 

and from (213) we have that 

V*(x) = f'*(c;.À)[ 1 + ;U'*(c-l;À)- j(*(c;.À)] 

(214) 

(215) 

Thus the mean and variance may be computed from 

(213) and (214) with the aid of tables of the function P(x;À), 

for example the General Electric Company tables (1962). Or, 

one can find the mean directly, and the variance from (215) 

using the tables of Patil (1959), who has tabulated JA~Cc;À) 

for the arguments c = 1(1)10 and À = 0.0(0.1)9.9 
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Second and higher moments about the origin can be 

found from the recurrence relation (142). Thus we have 

1 

f* L ( c ; À) = À A ~ ~ ( c ; ~) + [ ;* ( c; À) 1 2 

: f--'1: ( C ; À) [ 1 + fM ( C -1 ; À) 1 

using (140) and (215). 

(216) 

2.4.1. An important special case of the Poisson distribution 

truncated on the left occurs with c = 1; which is often 

referred to as the case of "missing zero counts". 

From (211) we ob tain the p.f. 
_).. À. x. e 

p*(x;À) = _).. ).> 0 . x = 1, 2, 3 (217) 
' •••• 

x! [ 1 - e 1 

By putting c = 1 in (213), (215)' and (216) we have the 

corresponding constants for this special case. However, let 

us consider the m.g.f. (existence is obvious) of the distri-

bution (217). 

= ~ etx À xe-~ 
L _).. 

xl [ 1 - e 1 
x::.l 

= 1 I(Àet) x 
À- --

e - 1 x 1 
x."' 1 

= (218) 
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À 
= À (219) 

1-e. 

1 
2.. 1 À À À À 1 +>--\ 11~ 2. ( 1 ; ~) = ,l Mx ( t) = À-l · [ e + À e 1 = _ >.. 

r ~~Le- (;-" 0 e.. - 1 - e 
(220) 

Hence the variance J'~ 1 (1;À) obtained from (219) and (220) is 

LI (l·À) = 
r·~L ' 1 + ~ À L = ~ [ 1 - ( 1 +~) e -~] 

(' - e.- À) z. ( 1 - e- >.. ) 2 

(221) 

and the variance can be written in the alternative form, from 

(215) with c = 1 

f~2.Cl;À) = fl~Cl;À)[ 1 + À- fi~Cl;À)] 

which is seen to be equivalent to (221). 

z.s The doubly truncated Poisson distribution 

Moore (1954) has observed that the doubly trun-

cated Poisson distribution occurs sometimes in botanical 

work. If we consider truncation on the left at c and on the 

right at d, then (202) yields for the doubly truncated ran­

dom variable the p.f. p (x;~) say, where 
~ 

e-À ). >< 

p (x;~) = 
~ x! [ P(c;À) - P(d+l;À.)] 

. 
' À> 0 ; c :( x ~ d (222) 

and the function P(x;À) is defined in (110). 

To obtain the mean r':b say, of the distribution 

(222) we may proceed in the same manner as in the two pre-

vious sections. Then, 6( À)( 
tA L. À A).. ~! t'b = fb (c,d;À) = X"'<. 

,( 
~l( z_ 

)(1 
X=<. ' 
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= Z 
À)( (223) 
x' 

~::. c . 
-À 

and multiplying numerator and denominator of (223) by e 

\ P(c-l;À) - P(d;À) 
JA = I.A (c,d;À) = 1\· (224) 

1 "l) 1 ':t. p ( c ; À) - p ( d + 1 ; À) 

Now the variance, say V:J:> (x) = /\ J.~ f':b , and we may obtain 

the required derivative from (223); or from (224) using the 

result given by (111), with about the same amount of work in 

either case. Using (223) we obtain ~~t Â 
( .,._ 1 l( .,(-r x.-' ( ÀX À~-1 ] 

V (x) • À[ ? : ~ { ~~ :1 + À f. ~-·\1 ~ - ). b. -;:. ? (x-~1 
:!.> 

2.. 

~- 1 À'( ,(.l.. 
~x 

.:l- 1 ~x 

À '!:; -;~ [ L L 
1 

x.~ x ! 
+\ C-2.. -\ 

c -1 

= 1 
;;( À~ A-1 ),.x ;;{ À l( 
2 /x., z x. ~ 

z -;:,. 
c . c-, c 

=À P(c-l;A)-P(d;,\)[
1 

+A P(c-2;A)-P(d-l;A) _A· P(c-l;À)-P(d;À)J 

P(c;À)-P(d+1;~) P(c-1;~)-P(d;X) P(c;~)-P(d+1;À)J 
and from (224) we obtain finally 

~(x)= f:ll(c,d;À)[ 1 + ~(c-l,d-l;À)- ~(c,d;À)] (225) 
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2.6 Censored Poisson distributions 

We should recall from section 2.1 that in the 

censored situation the sample is drawn from a complete 

Poisson population. After the sample has been drawn, it is 

the values actually recorded by the statistician that are 

not specified completely (due to pooling or other reasons). 

Or, expressed more crudely, ail the information is present 

in the sample; but because of faulty apparatus, poor 

experimental technique, cost or other reasons, not ali of 

this information is extracted. 

For the singly censored case, on the right at d 

say, the probability that an observation of the censored 

Poisson random variable has the value x will be 
e_).À)( 

p( x;À) = -- for x = 0, 1, 2 •••• d 
x! 

and P(d+l;.À) for x > d. 

Similarly, for the singly censored case on the 

left at c say, the probability that an observation of the 

censored variable has the value x will be 
e_).).. x 

p(x;.À) = for x = c, c+l, •••• 
x! 

and F ( c -1 ;À) for x < c. 

The probabilities appropriate for the doubly 

censored case are now obvious. 



CHAPTER THREE: POINT ESTIMATION 

3.1 Introduction 

ln this chapter we are concerned with the problem 

of providing a value for the true value of the parameter of 

a population (Poisson) on the basis of the information 

obtained by sampling from this population. We begin with a 

brief outline of the principal methods that have been used 

for point estimation. References to sorne of the.·many import-

ant results in estimation theory are given. 

3.1.1 The method of moments;- is the oldest general method 

and was introduced by Karl Pearson. The method consists of 

equating the sample moments mr to the corresponding popula­

tion moments fA ; which are functions of the unknown para­

meters. One considers as many moments as necessary in order 

to solve the equations for the unknown parameters. 
N 

Now, for 

any sample moment mf we have [(mf) = ~ ·2 [Cx!) = 
...:; "'1 

By a theorem of Khintchine it follows that, as soon as the 
1 

population moment ~~ exists, the sample moment mf converges 
1 

in probabi lit y to /'(.,- as N __,. 1>0 • Thus, in large samples mr 

may be regarded as an "est imate" of ,lA; ; [ 15]. 

3.1.2 The method of maximum likelihood:- was used in parti­

cular cases by Gauss; but it was R.A. Fisher who introduced 

and developed it as a general method of point estimation. 



If f(x
1

, •••• xN;Q) is the joint p.d.f. of a random sample 

of size N drawn from the distribution with p.d.f. f(x;Q) 

and unknown parameter 9t~ , then the maximum likelihood 
A A. 
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estimate (m.l.e.) of 9 is the number 9(x
1

, ••• xN) = 9 which 

maximises f(x
1

, ••• xN;9). 

When the sample values are given the j9int p.d.f. 

of the random sample becomes a function of 9, called the 

likelihood fun ct ion L (9; x, , ••• xN) = L and 

L(9;x 1 , ••• xN) = f(x 1 ;9) •••• f(xN;9) 

The value of 9 which maximises L can often be 

found by calculus techniques. Since log L attains its 

maximum for the same value of 9 as does L, it is often 

convenient to solve the "likelihood equation" 

~log L 
~e 

= 0 
A 

for the m.l.e. 9 

" Asymptotic variance of 9: It was Fisher who first gave the 

result that under certain regularity conditions on f(x;9), 
1\ 

the distribution of Q approaches the Normal distribution with 

mean 9 and variance - 1 as N becomes large, where N ?:z. 

1:"l = ) V[ -logf(x;9}]. 
)9 

Fisher also proved that no other 

estimate, Normally distributed and unbiased for large N, can 

have smaller variance than the m.l.e.;[27]. 
'L 

We may obtain an alternative form for N 1:: as follows 

(assuming differentiation under the integral sign is permitted, 

and the range of x is independent of 9). 
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Since the integral over the range of x is unity we obtain 

J M k • f ( ~ !~ J th . f( l~ ~ t) 6 .!-?< • o 

so that [ ( ~~8 1og f J = 0 
1 à ) \z. 

Hence 7: = V ( \a log f) = [ ( iê log f) 

(301) 

(302) 

(303) 

Differentiating again w.r.t. 9 the last equation tn (~01) gives 

which implies that 

- [ ());log f) = 
N 

from (303) 
N 

Since log L = ~ log f(xi;9), th en 
Al. 
~8 .. log L =I ) ... 

- log f 
ile .. 

,_- " 1 

~.. \ 2.. ) 

and - [ ( ào~ log L ) = - N. [ ( 
0
:1. log f 

A 

The asymptotic variance of 9 is given by 

_ [ ( ::. log L) 

3 .1. 3 Sufficient stat istic: single parameter 9 e. JL 

In 3.2.5. we shall have need of the following well known 

theorem. A necessary and sufficient condition for the 
-

(304) 

statisti c t (x, , ••• xN) = t to be sufficient for 9 is given 

by the Fisher-Neyman Criterion: The statistic t is sufficient 

for 9 iff the joint p.d.f. of the random sample can be fac­

tored as 
..., 

f(x1 ;9) ••• f(xN;9)= g(t;9).H(x, , ••• xN) (305) 

where H(x
1

, ••• xN) does not depend on 9;[36]. 
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Sufficiency of the condition was given by Fisher, and 

necessity by Neyman. A general proof which considers the 

case where 9 is a vector quantity has been given by Halmos 

and Savage (1949). 

An important property possessed by a sufficient 
,... 

statistic t is expressed in the following 

Result: If u is a one-to-one function of 9, then u(t) is 

also a sufficient statistic for 9; and t is a sufficient 

statistic for u(9);[50]. 

3. 1. 4. Cramer-Rao Inequality. Suppose (x
1 

, • • • xN) is a 

random sample from a distribution having p.d.f. f(x;9), 

9 E. JL , and t (x
1 

, ••• xN) = tN is any function of the 

observations. It has been shown by Cramer (1946), and Rao 

(1945) that, under certain conditions, 

[ g'(9) ]2 

N. E L~~ 1 0 g f (x ; 9 ~ z. 
where g(9) = [(tN) 

Generally the estimator tN will have a certain bias b(9) 

depending on 9, and we may write g(9) = 9 + b(9). If tN 

is an unbiased estimator for 9, b(9) = 0 and the inequality 

reduces to 

N. [[~~log f(x;9)] 
1 (306) 

and equality holds iff there exists a constant K, which may 

depend on 9 and N, such that 
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N 

~\~log f(xi;B) = K[ tN - 9 ] with probability one;[55] (307) 

'= 1 
3.1.5. Distributions admitting sufficient statistics. 

Suppose (x
1

, ••• xN) is a random sample from the distribution 

with p.d.f. f(x;B), et s.L, such that a sufficient statistic 

t for 9 exists. It has been shown that, under certain regu­

larity conditions, the joint p.d.f. f(x,, ••• xN;9) must be 

of the form eP(B) .Q(t) + S(x1 , •• XN) + q(9) 

where p(B) and q(B) are functions of 9 only; and S(~ , •• xN), 
-Q(t) are functions of (x

1 
, •• xN) only; [lOS]. The class of 

probability distributions thus characterised is referred to 

as the Koopman-Pitman (K-P) class. If for sorne member of 

this class the range of x is independent of 9 then this 

member is referred to as a regular case of the K-P class. 

Now it is known that in a regular case of the K-P 

class with parameter e, the p.d.f. of a sufficient statistic 

for 9 is complete;(36]. By referring to Result (ii) section 

1.11 it is immediately seen that the Poisson distribution 

P.(A) is a regular case of the K-P class. In section 3.2.5. 

a sufficient statistic for ~ will be found, and it will be 

proved that the p.d.f. of the sufficient statistic is complete. 

3.1.6. Minimum variance unbiased estimation. 

A key result in the theory of estimation is the 
""' . Rao- Blackwe 11 Theorem: Suppose t (x

1 
, • • • xN) lS a sufficient 



61. 

statistic for Q and t'(x
1

, •• xN) =t' is any other unbiased 

estimator for Q. Let [Ct'Jt) = h(t). 
.., 

Then h(t) is an 

unbiased estimator for Q whose var~ance cannot exceed that 

of t';[lOS]. 

It follows from the theorem that when a sufficient 

statistic exists we need to look only at unbiased estimators 

that are functions of the sufficient statistic in order to 

locate that unbiased estimator whose variance is less than 

the variance of every other unbiased estimator. However, 

there may well exist many unbiased estimators based on the 

sufficient statistic. 

Another important result is the following. -Suppose a sufficient statistic p for Q exists. If the p.d.f. 
,., 

of t is complete, then there is only ONE unbiased estimator 

for Q which is based on the sufficient statistic;[SO]. This 

unique unbiased estimator for Q will be called the minimum 

variance unbiased (MVU) estimator i.e. the MVU estimator is 

that unbiased estimator which is based on a sufficient 

statistic having a complete p.d.f.;[27]. Sorne authors refer 

to the MVU estimator as the uniformly minimum variance 

unbiased (UMVU) estimator; but the former terminology will 

be used. 
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3.2 The complete Poisson distribution 

3.2.1. Notation. Let a random sample (x,, •• xN) of size N 

be drawn from the distribution ~(À), which has p.f. p(x;À). 
~ 

The rth sample moment is given by m' = ~ x~ 1 N 
r , 1 " ... 

Now each Xi , i = 1, 2 ••• N, is a non-negative integer, and 

it may be convenient to tabulate the observations as follows. 

possible value for x 
observed frequency 

0 
no 

2 • • • • h 
n2···· nh 

h+l 
0 

• • • 
• • • 

In this case mt = 

~ ~ 

") xrn which is also equal to L L -x 
x:o N :>~.=o 

: Total 
N 

Each of the N random observations may be considered 

as being the result of one of N independent trials which can 

have one of the outcomes x= 0, 1, 2 •••• , with probability 

p(x;)d. 

The components of the infinite dimensional random 

variable (n
0

, n
1 

, n2., ••• ) denote the number of trials which 

resulted in the outcomes o, 1, 2 ••• respectively. These 

components are linearly dependent since their sum is N. The 

randan variable (no , n, , ••• ) has the multinomial distribu­

tion with p.f. given by the general term in the multinomial 

expansion [p(O;À)+p(l;~)+ •••• +p(h;À)+p(h+l;À)+ •••• ]N 

The marginal distribution of the h+l dimensional 

random variable (n0 , n,, ••• nl) will also be multinomial, 

with p.f. given by the general term in the expansion 

[p(O;À)+p(l;À)+ •••• +p(h;À)+P(h+l;À)]N where P(h+I;XJ 
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is defined by (110). This general term is 

N! { )V'io f )l'lk [ ). j~H 
p(O;À)\ •••• (P(h;~)l • (P(h+l; J\ 

n 1n 1 n 1n ' o• \ • •• k• H• 

where nH is the number of trials resulting in outcomes x > h, 

and is zero. Thus we may write the p.f. as 

p (n., ' n, , • • (309) 

where p(h;À) = [ 1 - P(h+l;À)] - p(O;À) - ••• - p(h-l;À) 

and n~., = [ N nH ] - no - • • • • - n ..,_, 

We may obtain easily the joint factorial moment 

' L .,.0 + · · -t- .,..."'_ ,1 ..,.0 
fr_y-o1···· [-lj__,l= N ~p(O;>..){ 

-1 ( 1 k-1 
~p(h-l;À)~ • • • • 

and the expectations 

1 E. Cnx) ft (.o1· · [_1' .,.,1·- f_o]= = N.p(x ;À) 
)( 

1 
[Cnxny) N(N-l).p(x;À)p(y;~) ;x~y f' [o1· ··[""x"' •l·· cr.,~,1·· = = 

and also [ (n~) = N.p(x;À)+N(N-l)[p(x;À)] 2 

3. 2. 2. An estimate of À is obtained by using the observed 

frequencies of two different values of x, say nb and nb+r• 

(310) 

as estimates of their expected values N.p(b;~) and N.p(b+r;À) 

If this 15 done we ob tain the equation 

À.,.. (b +r) ! nb+r 
= (311) 

b! nb 

which can be solved for the estimate of À • 
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This result can be obtained as a special case of 

a general method of estimation called the ratio method by 

Patil (1961). The method is applicable to the problem of 

estimating the parameter g of a gpsd; and the truncated 

and censored forms provided that their range contains a 

subset of consecutive integers. 

Consider the gpsd (137) with range T finite and 

T={c,c+l, •••• dÎ 

Let gr(Y) = a(y-r) 
a(y) 

such that y-r ET. 

, y t. T and r being an integer 

Then, for arbitrary u and v with c+r .s u ~ v $ d 

we have 
1]" Il IT-..,-

Lgr(y).p(y;g) = L a(y-r)~Y = gr 2 a(y)!!Y 
1]" .., .... ~-Y'"' tl&) '1 .... vo.­ '1 ... v... j(a) 

and hence the identity ..,. 
g 

L gr (Y) • P (Y; g) 
= ~·~-~~--~~-------

2_p(y;g) 
'1= v...--.r 

If we now take ny as an estimate of its expected value N.p(y;g), 

the statistic tT 

~gr(y).ny (312) 
'1. -V.. IT--.r 

L "'1 ...... I.A..-..,. 
an estimate of gr for admissable values of may be taken as 

r = 1, 2 •••• These estimates are referred to as "ratio 

estimates";[62]. 
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Considering the distribution ~(~) we have 

r ~ u ~ v s ~ , and choose u = v = b+r. 

The statistic (312) becomes 

&r(b+r).nb+r = a(b+r- r).nb+r = (b+r)! nb+r 

a(b+r) b! 

as an estimate of À~, which is seen to be the result in (311). 

If in (312) we take r = 1 and choose u = c+l, 

v = d then we obtain the statistic 

J... 

l_ a(y-1) 
ny 

a(y) 
., -::. C..+l 

(313) 

which we will cal! THE ratio estimate, R, for the parameter 9. 

Patil (1961) has shawn that R is not in general an 

unbiased nor an efficient estimator for 9. However, for the 

case where d is infinite we have 

= i ·Z a(y-1) c n 
[ (R) N a(y) C. ( y) 

and [ (R) 

Now, 

= 2 a(y-1) a(y)9Y 

'1,. c + 1 
00 

a(y) f(9) 

= 9. L a (y) 9Y = 9 
/f(9) 

'-f-=C. 

= [ [ ~{a(y-1) .n }2J + E. [ii a(x-1) .nx 

L~ aCy) nJ x ~ y acxJ 
e +l " . . " 

(314) 

a(y-1) J 
.n 

a(y) Y 
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= 
~ {a(y-1) (

2 

N ~ ~ p(y;9) 
c.+l a(y) 

po z 
\~a(y-1)1 z. 

+ N(N-1) ~ .(,(y;9)] 
c...+l a(y) 

DO Co 

) \ a(x-1) a(y-1) 
+ N(N-1) L- L_ p(x;9).p(y;9) 

x ~ y a(x) a(y) 

N2 

= 

1><:1 

N(N-1)[ \a(y-
1

) 
L a(y) 
(.. + 1 

P (y; 9) ] z. N l\ a~ -1 ) ] 2 P (Y; 9) 
<:..1-1 L (y) f 

Therefore the variance of R, V(R) becomes 

V(R) = é ( R 2) - [ E (R)] 2 

~ frey-Ir = N(N-1)9 2 + N c+l a(y) p(y;9) - N~9j 

, [ i{a(y-lr - 9 z] = N a(y) p(y;Q) 
c. + 1 

Using (315) it is easi1y shown that the statistic 
00 2. 

s = L {a(y-1) l 
ï -=-c.-+-1 a (y) ~ n'l 

N(N-1) 

2. 
- N.R 

is an unbiased estimator for V(R). 

1 N2 

Thus, for the distribution ~(À) we have that the 

ratio estimate for the parameter ~ is 

R = = m' = x 
1 

)1;"0 

(315) 

(316) 

(317) 

(318) 

(for the summation is unaffected by the addition of the zero 
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coun ts)' and [ (R) =A • From (316) 

DO 

V(R) = 
N 

.[ L_x7 p(x; ) -
).). J 

x,., 

= [ 1 
- Àl. 1 À (319) f1. ::: 

N N 

and from (317) an unbiased estima tor for V(R) is 
I>Q 

L xz.nx 
_L 

- N. x 
s = )(:>0 (320) 

N (N-t) 

3.2.3. Since the distribution ~(~) has only one parameter 

the method of moments suggests that we equate 
l>d 

m' = 
1 

Lx n x 
x" o N = x to the first population moment (which 

is ~ ) to obtain as an estimate of À 

= x 

However, making use of the fact that the variance of the 

distribution P.(X) is À , we have that 

f 

~7. 

(321) 

À 
= ~, ' 1 and using m' r = 1, 2 as estima tes - ' 1"' 

, 
of the ir expected values we 

À 

ob tain 

= 
m' 

:1.. 

m' 
1 

the estimate 

- 1 (322) 

The estimates for the Poisson parameter, given by 

(321) and (322) can be obtained as special cases of a more 

general method of estimation. 



Suppose the range T of the gpsd (137) is 

f c, c+l, •••• dJ where d may be finite or infinite. 

mean }'t is given by 
~ A 

the 

y.p(y;9) r = I y.p(y;9) = c p(c;9) + I 
., = C.+l 

,.(- \ 

= c p(c;9) + 2_ (y+l).p(y+l;9) 
'-f:.C.. 
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Th en 

.,._, a(y+l) 
= c p(c;9) + 9 2_ (y+l) a(y) p(y;9) (323) 

And the second moment about the origin is given by 
.,t A 

tl.'= 2_ y~p(y;s) = 2 l y(y-1) + r].p(y;9) 
~~c.. '1=c.. A 

= c(c-1) p(c;9) + ~ y(y-l).p(y;9) +f­
(324) 

ol-t '1=C.+I 

= c(c-1) p(c;9) + 9 ~ (y+l)y.a(y+l).p(y;9) + JA 
'1~c a(y) 

Eliminating c p(c;9) from (323) and (324) we obtain, c ~ 0 
Â-1 

f"L
1

- )A - 9 I_ y(y+l) 
'1"-C. 

a(y+l) 

a(y) 
p(y;9) 

= c - 1 

JA--
A.-1 

9 l__ (y+l) 
a(y+l) 

p(y; 9) 
a(y) 

which when solved for 9 yields the identity; c \ 0 

1 

1'1 cr 
9 = #f-1 -1 (325) 

L y(y+l] 
a(y+l) 

(c-1) I (y+l) 
a(y+l) 

p(y;9) p(y;9) 
a(y) a(y) c c 
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While if c is zero we have from (323) the identity 

fA' 
Q = .l- 1 (326) 

2 (y+l) 
a(y+l) 
a(y) p(y;Q) 

..,.,c. 
Then, if the four quantities 

,(_ ,(. 

N m' = ~c. y ny 
. N.m' = L y~ny • 1 , 

2. .., .. (.... 

,(- f ,(.- 1 

gl = 2 (y+l) a(y+l) ny and g = ~ y(y+l)a(y.+l)ny (327) 
2.. 

'1:>-C. a (y) ., .. c. a(y) 
are computed from the sample and used as estima tes of their 

expected values, we obtain the following estimator W for Q; 

where from (325) 
j!(-f 

2_ L 

., "'c.. Y ny w = 

w = 
g, 

and (326) 
.-t-1 

- L y n 
't"'C. y ; when c \ o, and (328) 

(c·l) g 
1 

; when c = 0 (329) 

This general method of estimation has been called 

the "two-moments method" by Patil (1962,a) and the estimator 

W the two-moments estimator for 9. 

Now suppose the random variable x has the distri-

but ion f!.(À). Then c = 0 1 d = ~ and the quantities g and g 
1 2.. 

of (327) reduce to 
... 

g, = f_ nx = N 
x .. o -

gz = L_ x nx = N.m
1
' 

)(::0 



The two-moments method will provide an estimator W for the 

parameter À, where from (329) 

70. 

w = = 
-x (330) 

N 

But this is the same estimator for À that was provided in 

(321) by the method of moments. Now observe that for the 

distribution f!(À) equation (324) becomes, since c = 0 
(>4 1 

f1. = ~ L_x p(x;~) +r- and À = 
fA.,_ 

- 1 r-X-= o 

so that an estimator for À is provided by 

m! 
À = - 1 , which is the same as (322) and is 

m' 
1 

based upon the first two moments. 

We therefore suggest that the name "two-moments 

estimator" be reserved for the estimator given-....(322), rather 

than the estimator W in (330). 

3.2.4. Let x,, xl.., ••• xN be a random sample of size N from 

the distribution P.(~). Then the likelihood function becomes 
1\1 

L ( À ; x
1 

, • • • XN) = 

and log L = constant 
1\ 

and the solution À of 

= 

-N~ ? x~ 
e À Pl 

N 

lf X·' ..:- "- 1 ~. 
1'1 

+ 2._ x .. log~ 
1: :. 1 ~ 

the likelihood 
N 

L X· 
4 "' 1 ... -= x 

N 

- N ~ 

equation is 

(331) 
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Now it has been shown by Patil (1962,c) that the 

method of maximum likelihood and the method of moments give 

the same estimate in the case of a gpsd involving a single 

parameter. For, if y
1 

, Yz. , ••• YN be a random sample from 

the gpsd (137), then the logarithm of the likelihood func-

tion becomes 

log L 

l1og L 
'be 

= constant + 

N 

= I y .. J.. 
.: ... 1 1. 9 

= !;![y-r] 
e 

N 

l y. log 9 - N.log f(9) 
~· '"~ " 

il 
N ;te 

f(9) 

, using (138) 

Thus equating 
) 
~9 1og L to zero to obtain the m.l.e. of 9, 

"' say 9, is equivalent to equating the sample mean to the 

population mean. 

" The asymptotic variance of 9 is given by equation 

(304) and 1 = 

- [ [ :;}og Ll 

= 

Then from (140) we obtain 
1\ 

V(9) = 9 2 . 1 

N fz.(9) --

1 

-[ [!f~ )e 9 

- 1 

[ [_N9 ~ _ N 1 N J 
- - ~ +- ·r 9 .I.e 9 ,.. 

- 1 
= 

1 

N_~ 
9 ,{e 

(332) 



Thus, for the distribution ~(À) we may obtain 

V()...) = 
1 

À = 

72. 

(333) 

3.2.5. Minimum variance unbiased estimation has been dis-

cussed by Roy and Mitra (1957) and by Guttman (1958) for the 

psd; and by Patil (1962,b) for the gpsd. Roy and Mitra 

obtained the MVU estimator for the parameter 9 of the psd. 

Patil has derived a necessary and sufficient condition for 

the parameter of the gpsd to be MVU estimable. This condi-

tion is expressed in terms of the number theoretic structure 

of the range of the gpsd. 

Suppose T is the range of the gpsd (137), and [al 

denotes the set consisting of only one number a. Patil has 

shown that an unbiased estimator for 9 exists iff T + {l~ST. 

It is an immediate consequence of this result that an ùnbiased 

estimator does not exist for the parameter of the Poisson 

distribution,truncated on the right, which will be proved in 

section 3.3.2. 

For the distribution ~(À) with p.f. p(x;À), we have 

T 

log p (x ;À) = - A + x log ~ log x! 

2. 

= 
~ ]2. 

[_ ( ~ ~ 1 0 g p (x ; À )j = 

= 
X=O 

= l . V(x) 
><l. 

so that 

2 

1 ].p(x;>-.) 

(334) 
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Thus if tN(x
1 

, ••• xN) = tN be any unbiased estimator for À 

based on a random sample of size N, we have from the Cramer­

Rao inequality that the minimum possible variance for tN is 

To see that this lower bound is attainable by sorne unbiased 

estimator tN, we have that 
N 

L 6 -.log p(x;>-.) 
')À 

N 

~· [~·Lx~- À] (335) = 
.. ·, 1 

which according ta (307) shows that the minimum is attain­
"' 

ab le and that the statistic tN = l ·L x~ = x is an efficient 
N , .... , À 

estimator for À , for any given samp1e size. Then V(tN) =- · 
N J 

which is the same resu1t as given by (333). 

If x1 , x~, ••• xN be a random sample of size N 

from the distribution P.(À) then the joint p.f. of the sample is 

-NÀ X+ .. ·+)(N 

p (x,; À) •••• p(xN; '>-.) = e ~· Xi= o, 1, 2 ••• (336) 

x 1 ! ••• xN! 1 = 1, 2, . .. N 

We have from section 1.11 that the statistic z = x
1

+ xL+ •• + xN 

has the distribution (!(N)..). Now (336) may be factored as 

l-N}._ l = e ( N À ) z . (x, + x1 + 
' Nxl + .. +XN 

z • 

= p ( z ; N À) • H (x 
1 

, • • x N) 

sa that z is a sufficient statistic for~ (section 3.1.3). 
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[This is immediate.ly seen to be so by recognizing the joint 

p.f. in (336) as a regular case of the K-P class (section 3.1.5) 

and bence, by inspection, the statistic z = x
1
t xL+ •• + xN 

is s ufficient for À • ] 

If u 1(z) and u~(z) are unbiased estimators for À 

then the expected value of u(z) = u 1 (z) - u 1 (z) will be zero 

for all ÀE.SL = (O,&~o). Thus 
1>0 -N). 

'\ u(z) e (N~) z 
L z! 

[[u(z)] = = 0 

i.e. e·N>- [ u(O) + u(l) NÀ + u(Z) (NÀ) 2 + •••• ] = 0 
.2.! 

and e -NÀ > 0 since ..À > 0. We then have a power series in 

N À converging to 0 so that the coefficients 

u(O) = u(l) = •••• = 0, and hence u 1(z) = u2 (z) with 

probability one. Thus the distribution of z is seen to be 

complete and there is only one unbiased estimator for ~ 

based on z (section 3.1.6). 

Since E (z) = NÀ the MVU estimator for À is 

easily obtained as z = 
N 

x (337) 
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3.3 Single truncation on the right 

3.3.1. Ratio estimate. Consider a random sample of size N 

drawn from the distribution with p.f. given by (205) i.e. we 

have truncation on the right at d. We will use the same 

notation as in 3.2.1. 
tA. 

The ratio estimate (313) becomes R* say 
1... 

where R* = 
b, x nx 

J. -1 

L. Y\)( 
X:.O 

= 
Lx nx 
)p 0 (338) A.-t 

I n)( 

Now it was Moore (1952) who first considered ratio estima-

tion.* In his paper he noted that for any d, the Poisson 

distribution has the following pro pert y 
<14.- f 

l
J. _). l( 

x e. >.. 
l( 1 

and therefore À may be 

Subsequently, 

\ -À x 
~ L ""' >.. 

written as 
À 

Xl 

L x p(x;À) 
= x.= 0 (339) .t-1 L p(x; À) 

.~~. ... o 
Murakami and Co. (March, 1954) were 

considering estimation for the case of truncation on the 

right. It is obvious that by dividing both numerator and 

* The statistical term "censored" was introduced by Hald 
to distinguish the two cases discussed in 2.1. Until this 
terminology became generally accepted the distinction was not 
made clear in the literature, and both cases are described by 
"truncation". Moore (1952) was actually considering ratio 
estimation for the same problem that had been approached by 
Tippett (1932) from the point of view of maximum likelihood 
i.e. the distribution singly censored on the right. (3.6.3) 



denominator of (339) by F(d;~) we may write 
A 

L x p* (x; À) 
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= ~:. 0::--:----­tÂ. _, (340) 
L p* (x ;À) 
~~.~o 

where p*(x;X) is defined in (205). When the observed fre-

quencies are used as estimates of their expected values 

(340) immediately leads to the estimator R*. 

R* is the estimator for~ given by Murakami and 

Co. for the case of truncation on the right and in their 

paper they refer to this estimator as "Moore's estimator" 

for obvious reasons. However, in the same year Moore pub-

lished another paper (September, 1954) in which he noted 

that the type of estimator he had previously proposed for 

the censored case is applicable to any of the left, right 

or doubly truncated cases. 

In order to find ~ (R*) we may write (338) in the form 

R* = 
E( t'~.) - ~~. -1 

-1 

E(LY\l() 
0 

= l + 

Il-l .t-1 

t_(~V\K)-~r)K 
( ( ~~ Î1x) 

+ 

neglecting the squared and higher order terms 
tl... "H cl-1 

[x nx [ L V\K E(I~x) 

J 
R* 0 0 

= ;cL.\ ' t ( ~1 V\~~.) 
0 



and 

ECR*) =: 

tl... 

now Lx 
0 

o( 

[ (~X V\x) 

E(I'"~) 
0 

tl..- 1 

nx• ~ nx = ( 1.n1+ 2nz+ 

= + 
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• • • + dnd) ( 
A J-1 

}_ Lx nx ny 

and using the expected values given by (31~) as they apply to 

the truncated distribution, we have immediately 
,;._ ..t-1 4.-1 

E (R*) = 
Lx p*(x;À) 

0 .,(_, \ 

L p*(x;") 

N 2 x p*(x;À) + N(N-1) 2_ x[p*(x;À)] 2 
0 0 

0 

rJ.. .C.-1 J.. ;l- 1 

N(N-1) 2._ L xp*(x;À.)p*(y;~) 
x.~ 

+ N2 l xp*(x;~)~*(x;À) 
0 0 r Il-l 12. 

N 2 { ~ p* (x ; À) 

and fran (340) we may write 
tA-I J... .,l-1 

\ \ xp*(x;.X)- ')x p*(x;À). \ p*(x;À) 
t(R*) ~ 1\ - ~ ~ ----::-L_o ___ _ 

N i Z1

p* (x;>.-)~ 2 

0 

(341) 

which is the expression given by Murakami and Co. 

Using (340) again we have 

~-· 
') x p* (x ;À) 

E (R *) À ( 1 + ~ ) - ~ 
-N__,..{ -.-Î-,-,p-* (-x-;~) lz 

0 

Thus R* is not an unbiased estimator for ~ 

(342) 

but owing to 
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the presence of N in the denominator we see that the amount 

of bias is very small. 

3.3.2. It will be fruitless to make sorne adjustment to R* 

in order to obtain an unbiased estimator for À • For it can 

be proved that there does not exist an unbiased estimator for 

the case of truncation on the right. This fact is established 

in the following 

Result: For the distribution with p.f. given by (205) where 

d is fini te, there does not exist an unbiased estima tor for À • 

Proof: Let x1 , xz., ••• xN be a random sample of size N from 

the distribution (205). Let tN(x
1

, •• XN) = tN be any 

function of the observations al one, such th at [. ( tN) : À • 

The joint p.f. of the sample is h(x
1

, •• xN;À) say, where 
N 

e_NÀ ~~.x~ 
h (x 

1 
, • • xN; À) = N .rr x.: 1 [F(d;}.)]N 

.. = 1 

and the expected value of tN will be ~ tN.h(x
1

, •• xN;À), 

where the summation extends over the range 0 to d of each of 

the Xi ' 
i = 1, 2, • • N. Th us 

-NÀ 
e 

by hypothesis. Th at 
e(_ ti.. 

t ·I N 

.TI x~ ~ 

~: r· 
J . r (343) 

1. :: 1 



which is 

À. Now 

(343) is 

is zero. 
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an identity between two polynomials in the argument 
N.t+ 1 

the coefficient of À in the right hand side of 

[ f! ] N, wh ile in the le ft hand si de this coefficient 
\ N However, for finite d and N, [~!] is not zero--

a contradiction that establishes the result. 

The non-existence of an unbiased estimator for À 

in the case of truncation on the right has been observed by 

Tate and Goen (1958), who indicated the above argument based 

on the identity (343). 

3.3.3. We have seen in (342) that the ratio estimate R* is 

biased, though the amount of bias is small. In arder to 

investigate the efficiency of R* we require V(R*). 

An approximate expression for V(R*) has been given 

by Murakami and Co. (1954). Noting that R* is defined as 

the ratio of two random variables, they apply the approximation 

formula 

V[ 2.] ·= { f( \) r [ v ( \\ t-
, . E('1)f {E(S)1'-

The quantities not yet derived and required for (344) may be 

obtained in a similar manner to that demonstrated in the 

derivation of (342). These quantities are obtained by Mura­

kami and may be written 
,(- 1 

V[ L nx] = N [ 1 - p*(d;>..) - { 1 - p*(d;À) (1.] 
;,(o 0 

tl( 

V[ ~ x nx] = N.V*(x) ; where V*(x) is given by (209). 
)t-:.0 
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( 

,l Â-1 \ 

Cov L xnx, L nx) 
0 0 

= N[jA-*(d;À) - dp*(d;À) - f<'*(d;À)fl - p*(d;À)~] 
The approximate expression for V(R*) reduces to 

V(R*) 
p*(d;À)[ 2d- fA-*(d;À)] ~ 

~*(d;À)[ 1 - p*(d;À)] ) 

Murakami and Co. have graphed the relative effic­

iency of the ratio estimate R* to the maximum likelihood 
" estimate À for the values of d = 1(1)10 for À going from 

0 to 10. The m.l.e. is shown to have smaller variance than 

the ratio estimate. However, the authors:remark that the 

ease with which R* is calculated may be thought to outweigh 

the advantages of the m.l.e. 

An approximate expression for V(R*) has also been 

given by Patil (1959) who obtains 
A. 1...- 1 

V(R*) 
~-x_z_P_*_(_x_;_À_) ___ -_À_

2

~x~~~0~p~*,(_x_;_À_) ___ +~2_À_L_P_*_(_d_-_l_;~ ___ ) 

N Lf~p*(x;À) ~2. 
which may be written, using (210) 

f"-*Cd;À)[ 1 + )A-*(d•l;.À)] ·À
2

[ 1- p*(d;À)- 2p*(d-!;>-.)] 
V(R*) = 

N [ 1 - p*(d;~)] 2 

Patil has considered the efficiency of R* for values of d = 5 

with À= .25, 0.5(0.5)2.5 and also for d = 10 with 

À= o.5(0.5)4.5. R* is shown to be highly efficient, with 

efficiency never less than 82% for the arguments considered. 

Patil also shows that R* has almost negligible bias. 
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3,3,4, Let x
1

, xz:., ••• xN be a random sample of size N from 

the distribution (205). The likelihood function is 
N 

2x· 
~ i "-/ .. e 

r-.~-=------rr x~! [F(d;>..)]N 
N ~-::.. 1 

\\frite Ni in place of 2_ X· i.e. 
( "" 1 ... 

x is the sample mean; 

take logarithms to obtain 
t'\1 

1 o g L = ~ N À + N x. 1 o g À - 1 o g lT x~ ! - N 1 o g F ( d ; À.) 

-= x 
T 

1 

~- "- 1 

+ p (d ;À) 

F(d;À) 

using equation (107). The m.l.e. of À is given by the 

solution of the equation 

- À [ 1 - p(d;l..) J À F (d-l;,\,) x = = 
F(d;À.) F (d ;>-.) 

which from (207). x = ?--* (d ;.À,) 

and 

(345) 

(346) 

Thus the solution Â can be obtained using tables 

of Poisson sums and (345), However, Cohen (1961) has pro­

F (d-l ;À) 
vided a table of À F (d ;À) for the arguments d = 1 ( 1) 16 

and À = 0.1(0.1)4.0 Thus in practice, with d specified 
A 

and i known from the sample the m.l.e. À is readily calcu-

lated, Ag~in, Patil (1959) has presented a table of values 

of ~*(d;À) for the arguments d = 4(1)10 and ~ = 0.0(0.1)4.9 
;-.. 

so that (346) may be employed to obtain À • 



Now equation (345) was given by Cohen (1954) and 

in the same year by Murakami and Co. These latter authors 

presented nomograms which enable one to read off the value 
" 

of À direct ly, corresponding to the sample value x, for a 

known value of d. Now, 
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N F (d-l; À) 
--A---

N.F(d;À)[ p(d-1;~) - p(d;~)] 

[F(d;>.)] 2 

[p(d;.À)]2 

À.2 F (d p,) 
- N 

[ F (d; À)] 2 

= _!:!. prF(d;).)[F(d·l;À) ·Àp(d·l;À)] +ÀF(d;À)p(d;À) - [p(d;À)]zl 
ÀtFCl;>-)!L j 

= f ~ . ~JF(d;À) [F(d-l;À) -À p(d-l;À)] +À F(d-l;À)p(d;À) 1 
À tF(~;>.)s l 

" and hence the asymptotic variance of À 

" ~ [F (d ;À)] 2 
V( À) = 

N F(d;À)[ F(d-l;À) -À p ( d -1; À)] + ~ F(d-l;À)p(d;X) 

).. 
cP,lÀ) = say, which agrees with the expression N 

given by Cohen (1961), who tabulates +~(~) ford= 2(1)14 

and se1ected values of À from .001 to 15.0. 

For d = 1, fCÀ) becomes [ À+ 1 ] 2• 
1 
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A neat expression for the asymptotic variance can be 

derived as fo11ows. Now, 

= 

so that 

= 
cf>} À) 

= 

= 

= 

F(d;À) [ F(d;ÀJ 

F(d-1;À) F(d;À) + ~ p(d;À) - ,\ F(d;~) p(d-1 ;À) 1 
F (d-l; À) 

F(d-1;À) [ 
1 

F(d;À) 

F(d-1;À) [ 
1 

F(d;À) 

F(d-1; À) 

F(d;À) 

V*(x) 

+ À p ( d ;.\) À p ( d -1; À) J 
F(d;À) F(d-1;)0 

+ À [ F ( d ; À.) - F ( d- 1 ; À) ] _ À [ F ( d- 1 ; À) - F ( d- 2 ;,\)] l 
F(d;\) F(d-1;À) l 

+ 
A F(d-2 ;À) 

F(d-1;À) 

À F (d-1; ~) ) 

F(d;À) 

À 
from (208) 

Thus the asymptotic variance can be expressed as 
N . V*(x) 

and if we now use (209) then Patil •s (1959) table of f"-*(d;À) 

is available for the calculation of V(À). 

"' We observe that this expression for V(~) is in 

agreement with that given by (332) for the gpsd, wi th À in 

place of 9. 
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3.4 Single truncation on the left 

3.4.1. Ratio estimate. A random sample is drawn from the 

distribution with p.f. p~(x;À) given by (211) i.e. the 

truncation point is on the 1eft at c. Then the ratio esti-

mate given by (313) becomes R* say, where 
00 0.0 

I x nx 2 x nx 
R~ = )l "C.-1-1 :: X ::C+I -L. If\ N 

)( 

X.:::C... 

which is the e stimator proposed by Moore (1954). 

Now from (314) we know that R~ is an unbiased 

estimator for À • Whi1e from (316) and (317) we have 

V(R*) = 1. [ 2 xz..p (x;À) -
N )(~C.+ 1 * 

z.. 

~] 

and an unb~sed estimator for V(R~) is given by 

L xz..nx N.R; 
= c + 1 -------------------s~ 

N(N·1) 

Moore (1954) gave the approximate formula 

V(R ) = 

~ ~ L 

L xz..p(x;À) - lL x p(x;.\) { 
c + 1 '=--+-=.'----:::-·---5-

N l ~ p (x ;À) 12. 
c.. 

which we may write, using (110) and (211), as 
00 l L ~ -1 ~ ?. x p * (x; À) r J V(R*) 

. 1 • c...-+ 1 x p* (x;}._) 
= -

N P(c;~) 

(347) 

(348) 

(349) 

bo 

. [ {;., x 
2

p,..(x ;À) t rJ 1 ~P(c-l·)J 
= - ' - c p (c;~) 

N · P(c; ~) P(c. ) ~ \ *' 
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using (213); and by comparing this expression with the true 

value of V(R~) given in (345) we see the error terms involved 

in the approximate formula (349). Moore provided a table of 

values of N.V(R*) calcu1ated from (349), for the arguments 

c = 1, 2, 3 and À = 1.0(0.5)4.0(1.0)6.0 

For the important special case where c = 1, the 

case of "missing zero-counts", we obtain 

R = 
~ 

00 

L x nx 
;w.=Z. __ _ 

N 
(350) 

which is the unbiased estimator for À first proposed by 

Plackett (1953). He derived this estimator by commencing 

with an estimator of the form 
.:lo 

8 = 
* 

L Sx nx 

N 
and evaluating the unknowns sx by the 

requirement that 8* is to be unbiased. Thus we obtain 

-À '( 
\ e À 

L sll [ _).. 
x! 1 - e ] 

)\,::. 1 

= 

lXl 
00 

À~ 
th at is z )..x 

À [ 
À I Sx; = e - 1 ] = 

By 

s 
1 

the 

9 
* 

X! X=-2. 
(x-,)! 

x-1 
À li. comparing coefficients of we have 

= o, sz. = 2, 53 = 3 • • • • sx. = x for x~ 2 and 

desired estimate l.S 

= }(:2. --

N 
as given in (350) by R , which incidentally 

* 



-may be written in the alternative form x 
N 

c = 1 we obtain from (348) 

(note x 
IX) 

= 1 is not included in the summation). 
-À x. 
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Again, when 

(351) 

Now L 
X-:1 

z.e À 
x is the second moment about the origin 

x! p ( 1; À) 

of the distribution (217) which we have obtained in (220) as 

f À ( 1 +À) 
l'If .z. ( 1 ; À) = It follows that (351) becomes 

1 - e 

= J. . [À( V ( R*) ---""7"" 
N 1 

= ~ . [ _À_C ____ -:----

+À) Àe 
-À x] 1 

-À ---À -
- e 1 - e 

->- À2 e -~ 

J 
1 - e ) + 

1 -À - e 

~~ 

] + 
~>.- 1 

which agrees with the expression given by Plackett. By using 

the same technique as demonstrated above he derived an unbi-

ased estimate for V(R~), when c = 1, as 
C>o 

L x nx + 2 n 2 
Plackett also examined the )1.::2. -------

efficiency of the estimator given in (350) and showed that 

this tends to 100% as À ~ 0 or À ....,.. eo , and never falls below 

95%. Minimum efficiency is attained for À= 1. 355. 
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Rider (1953) has considered a slightly different 

problem. A sample is drawn from a complete Poisson distri­

bution; but the observations for sorne of the lowest fre­

quency classes are missing (it is the sample that is then 

said to be truncated on the left). From sample moment 

considerations Rider easily obtains the estimator M for À , 
00 

2_ xl. nx 
)\. .. f< 

110 M -----------------------where = 
(k-1) 2_ nx 

x•l<. 

and k is the number of missing lowest frequency classes. 

3.4.2. Let x,, ••• xN be a random sample of size N from the 

distribution with p.f. Pw(x;À) given by (211). Th en the 

likelihood function is 
N 

-NÀ À t:,~< e 
L(À;x 1 , • • • XN) = rr x-, [ P(c;À)]N 

..: ~ 1 .... 
N 

Taking logarithms, and writing N x in place of /_X.;_ we 

ob tain .- :. ' 
N 

log L = - NÀ. + N x.logÀ log lT x~! - N.log P(c;À) 
·~ 1 

1 } log L -
p (c-l ;À) x 

-·- = 1 (352) N ~À ).. P(c;À) 

using (111). The m.l.e. of À is given by the solution of 

the equation 

x = À [ 1 + 
p (c-l ;À) 

P(c;~) 
] = 

À ~ ( c -1 ; ,\) 

P(c;À) 
(353) 
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or from (213), (354) 

" Thus the solution À , can be found from (353) with the aid of 
A 

tables of the function P(x;À). However, from (354) À may be 

obtained more simply by using Pat il' s (1959) table of t'* (c;~), 
c = 1(1)10 and \ = 0.0(0.1)9.9 

For the special case c = 1, the m.l.e. of À is the 

solution of the equation 

x = [ 1 
-À -1 (355) - e ] 

This result was obtained by David and Johnson (1952) who 
" provided a small table of values of À corresponding to 

-x= 1.1(0.1)3.5 to assist in the solution of (355). For 

-x > 3.5 a good approximation with an error less than 0.1% 
-

is given by = x [ 1 - e-x ] 

Equation (355) was also given by Rider (1953), who provided 

a table to facilitate obtaining the solution. Again, 
" Cohen (1960) has provided an extensive table of values of ~ 

corresponding to sample values of x. 
Putting c = 1 in (352) and taking the second 

derivative gives 
1 

_• .!log L 
N )~z. = -[ ~. -

so that from (219) we have 

-À 1 _e __ ).. 2 

[ 1 - e ] 

C ( ): ~ ~ g L) = [ 1 
N À [ 1 - e-.\] 
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" and the asymptotic variance of .>.. becomes 

" À( 1 • e_).)2 
V( À) = 

N [ 1 - ( À + 1 ) e -À ] 
= ~ . ~(À\, say. (356) 

N 

We may observe that ~(A) is continuous and monotone decreasing, 

that 1im tP (À) = 2 and 1im cp CÀ) = 1 (which is easily seen 
À ...:;. 0 À~ (!X) 

from the graph of ~(~) plotted against À .) Therefore, 

regardless of the value of À , the asymptotic variance 
" 

satisfies the inequality ~ ~ V(À) ~ z.~ 
N N 

This result is given by Cohen (1960) who provides the graph 

of 'f (À) against À and a br ief table of o/ CÀ) in order to 
1\ 

calculate V(À). 

Now observe that from equation (221) we may write 

(356) as follows 

1\ )./"" 
V(À) = = 

N f*2.(1 ;>.) N V*(x) 

where V*(x) is given, with c = 1, by (215) and thus Patil's 
1\ 

(1959) tables are available for the calculation of V(À). 

"' This expression for V(~) is seen to be in the same form as 

(332) for the gpsd. 

An explicit solution of equation (355) has been 

given by Irwin (1959) in the form of a Lagrange series ex-
DO 

( Xe -X ) r 1 pans ion " I { r:~l ~ ::: x -

However, for small values of i convergence is slow and as a 
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practica1 matter the numerous tables that are now availab1e 

provide a more convenient method of solution. 

3.4.3. For the distribution Po(À) singly truncated on the 

1eft at c the MYU estimator for À was obtained by Tate and 

Goen (1958). Roy and Mitra (1957) have discussed the case 

c = 1, and Cacou11os (1960) has also contributed ta this case, 

which we now consider. 

Let x, , x.t., ••• xN be a random samp1e of size N 

from the distribution with p.f. p*(x;À) given by (217). 

The joint p.f. of the sample is 
-NÀ 

e 

[ 1 - e -À] N x ! 
1 ••• 

N 

Lx. have 
, .. !$ 1 .... 

p.f. denoted by h(z;À). 

(357) 

Let the samp1e sum z = 
Tate and Goen obtained h(z;À) by using the characteristic 

function of z; while Cacoullos derived h(z;À) more simp1y 

by combinatorial methods. We have 

h(z;À) = Prob ( x1 + Xz. + • • • + XN = Z ) 

where the summation is over ali ordered N-part partitions of 

z; the parts being N -tup1es ( x
1 

, xl., •• xN ) of integers 
N 

such that Xi ~ 1 ; i = 1, 2, ••• N and 2_ xi = z. 
i,. 1 

Hence we obtain, from (357) 

h (z; ~) L e·N >- Àz. 
= 

e-À)N TI-xi! [ 1 -
~-.,, .. XN .. - = 1 
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Àz 

~ z! 
= --- - (358) À ]N 

N 
[ e - 1 z! TI Xi 1 

IC., · ·)CN ,· :: 1 

Suppose now we imagine that z distinguishable balls have be en 

tossed random1y into N cells, and the number of ba1ls in the 

ith cel1 is denoted by xi, i = 1, 2, ••• N. The prob1em of 

interest here is to find the number of ways in which this can 

be done subject to the condition that ail cells be occupied. 

appears in (358). 

summation L ~! 
lT X· 1 

y y • \.. 

"•,. . "N ' " 1 

which Evidently this will be the 

This c1assica1 "occupancy" problem has been con­

sidered by many writers, and in particular Feller (1957). 

Now, in the event that the ith cell is empty, i = 1, ••• N, 

all z bal1s are placed in the (N-1) remaining cells. This 

can be done in (N-l)z different ways. Similarly, in the 

event that two preassigned cells are empty there are (N-2)z 

possible arrangements, etc. 
1\J 

The required number is obtained 

as f o (-l)Î ( ~) (N·i)z (359) 

by a direct application of the theorem of probability relating 

to the realisation of at least one among N events. 

Substituting k for N-i in (359) will lead to the result that 
N 

L z ! L ( ·l)N·k ( ~) kz r-1 = (360) 
1<, ..• ,.. 1T x.! 

) 1\1 ~· "1 A l<.~o 

and now introduce the so called Stirling numbers of the 



second kind (Jorda:, 1950) denoted by G;;; where 

G: = ~ 1 • 'j_ (·l)N·k(~)kz ; z = N, N+l, 

Then from 

h (z ;.À) = 

= 0 

(358) and 

~z 

(360) we have 

N! ("}~o~ 

1 )N z! ~z 

; z <. N 

; z = N, N+l, 

92. 

• • • 

••• (361) 

Now in section 3.2.5 the sample sum was shown to 

be a sufficient statistic for the parameter of the complete 

Poisson distribution. It fo11ows immediately from a theorem 

of Tukey (1949) that the sample sum is a sufficient statistic 

for the parameter of the truncated distribution also. Or, it 

is easily seen that the joint p.f. in (357) factorises into 

the p.f. h(z;À) given in (361) and a function of the obser-

vations alone. Thus sufficiency of the sample sum z is 

quickly established by the Fisher-Neyman Criterion (3.1.3). 

Again, proceeding in the same manner as in 3.2.5 it is easily 

shown that the distribution of z is complete. 

Thus, if an unbiased estimator for À based on z 

exists, it will be the unique MVU estimator, denoted by À say • 
.... 

The condition for unbiasedness of À is 
t:>O 

L 
..... >...z. N! À ~N ~ 

À = (362) 
( e - 1 )N z! z 

z,N 
and in view of the fact that ;[93] 

t:>O 

).. 
1 )N L Àz N! 

~N ( e = 
z! z 

z = N 
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the identity (362) becomes 
À z+l 

= 
z J z J z .. N 

and a comparison of the coefficients of powers of À yields 

À = z = 1 

-

c N-1 

Ô z-r 
---

§;~ 
À may be evaluated by reference to a table of Stirling 

numbers of the second kind prepared by Miksa [48], who has 

tabu1ated CS: for N = 1(l)z , z = 1(1)50. 

1 

(1957). 

However Tate and Goen (1958) provide a table of 

c N-t 

~ Z-t 
for N = Z(l)z-1 , z = 3(1)50 

~ (5; 
À is the same estimator obtained by Roy and Mitra 

These authors did not introduce Stirling numbers; 

but ex pre ssed 

A"' oz i.e. L.J. 

).. in terms of "differences of zero", 

= C'ZN • -N 1 \S They ca1culated À for sample 

size N = 2(1)10 and sample sum z = 2(1)96. 

3.5 Double truncation 

3.5.1. Ratio estimate. A random sample is drawn from the 

distribution with p.f. p (x;À) given by (222) i.e. the 
'l:l 

points of truncation are on the left at c and on the right 

at d. Then the 

R:x. 

ratio estimate 
~ 

= I 
(313) becomes R say, where 

':b 

(363) 
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which is the estimator given by Moore (1954). It is clear 

that R~ is biased and, in fact, that there does not exist an 

unbiased estimator for À in the case of double truncation. 

3.5.2. If x , x , ••• xN be a random sample of size N from 
1 2. 

the distribution (222), then the likelihood function is 
N 

e·N À À l-;~x~ 
= N 

Tf x . ! [ P (c; .>.) - P (d + 1; ~) ] N . ::. \ ...... 

from which one obtains 

d log L 

N·~}.. = 

and the m.1.e. of 

x = 

= 

= 

- p(c-l;À) - p ( d; ,\) x . 1 
~ P(c;À) - P(d+l;)...) 

À is the solution of the equation 

À \
1 

+ p(c-1;À) - p(d;À) l 
L P(c;À) - P(d+1;À) J 
~ [ p ( c- 1 ; À) - p ( d ; À) 1 

P(c;À) - P(d+l;À) 

JA:~>(c,d;À) from (224) 

(364) 

(365) 

Thus with c and d known the solution À may be found using 

tables of the function P(x;~) and (364). However, we present 

two charts be1ow from which the m.l.e. À may be obtained dir­

ectly from the observed value of the sample mean in virtue of 

(365). The cases considered arec = 1, 2 and d = 2(1)9. 

Entering the appropriate chart with the observed value of the 
~ 

sample mean as ordinate we read off the m.l.e. À as abscissa, 

corresponding to the known value of d. A table of values of 

the fun ct ions f'l> ( 1, d; >.) and j'S. ( 2, d; À) are provided if 

interpolatory methods are preferred. 







TABLE ONE : JA-.. (1,d;À) 

À 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 
d 
2 1.048 1.200 1.333 1.429 1.500 1.556 1.600 1.636 1.667 1.692 1.714 1.733 1.750 1.765 1.779 1.788 1.802 1.809 1.818 

3 1.051 1.258 1.500 1.706 1.875 2.013 2.125 2.217 2.294 2.358: 2~413 2.460 2.500 2.535 2.566 2.593 2.617 2.639 2.658 

4 1.051 1.269 1.561 1.848 2.111 2.341 2.537 2.702 2.840 2.957 3.055 3.139 3.210 3.272 3.326 3.373 3.414 3.451 3.484 

5 1.051 1.271 1.578 1.906 2.234 2.544 2.823 3.069 3.280 3.461 3.615 3.747 3.860 3.956 4.039 4.111 4.175 4.231 4.280 

6 1.051 1.271 1.581 1.925 2.287 2.650 2.998 3.319 3.606 3.858 4.077 4.266 4.429 4.569 4.690 4.796 4.887 4.968 5.038 

7 1.051 1.271 1.582 1.929 2.306 2.697 3.090 3.469 3.823 4.145 4.432 4.685 4.906 5.098 5.266 5.412 5.539 5.650 5.748 

8 1.051 1.271 1.582 1.931 2.311 2.715 3.132 3.549 3.952 4.333 4.684 5.001 5.284 5.535 5.755 5.943 6.119 6.268 6.399 

9 1.051 1.271 1.582 1.931 2.312 2.721 3.149 3.586 4.021 4.444 4.846 5.221 5.564 5.874 6.152 6.399 6.618 6.812 6.983 

TABLE 'IWO : ~(2,d;À) 

x 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 
d 
3 

4 

5 

6 

7 

8 

9 

2.032 2.143 2.250 2.333 2.400 2.455 2.500 2.538 2.572 2.600 2.625 2.647 2.667 2.685 2.700 2.715 2.726 2.739 2.750 

2.033 2.175 2.353 2.519 2.667 2.796 2.909 3.007 3.091 3.164 3.228 3.284 3.333 3.377 3.416 3.450 3.481 3.510 3.535 

2.034 2.180 2.384 2.599 2.812 3.016 3.203 3.372 3.521 3.653 3.768 3.869 3.958 4.037 4.105 4.166 4.220 4.269 4.312 

2.034 2.180 2.391 2.626 2.878 3.135 3.387 3.625 3.845 4.043 4.220 4.377 4.515 4.637 4.744 4.838 4.921 4.995 5.060 

2.034 2.180 2.392 2.633 2.901 3.189 3.486 3.781 4.064 4.329 4.572 4.791 4.986 5.159 5.312 5.447 5.566 5.671 5.764 

2.034 2.180 2.392 2.635 2.909 3.210 3.532 3.864 4.196 4.518 4.823 5.105 5.361 5.592 5.798 5.980 6.142 6.286 6.413 ~ 
• 

2.034 2.180 2.392 2.635 2.911 3.217 3.550 3.903 4.267 4.631 4.986 5.324 5.640 5.929 6.192 6.428 6.639 6.827 6.994 
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3.6 Single censorship on the right 

3.6.1 The notation that will be used is given below. 

possible 
observed 

and N = 

value for x 
frequency 
tÂ 

L nx + nt 
X"'O 

= say. 

Total 
N 

We assume that a sample of size N has been drawn from 

the distribution ~(À) and that individual values have been 

obtained for the K observations for which x ~ d. However, the 

only information we have about the remaining N - K = nt obser­

vations in the right tail is that these observations exceed d. 

3.6.2. Ratio 

is 

estimate, 
J.. 

The estimator proposed by Moore (1952) 

L x nx 
x=o __ 

<A.~ 1 = (366) 

L nx 
x"o 

which is seen to be the same estimator as R* given in (338) 

for the case of truncation on the right at d. Thus the number 

of observations nt in the right tail is not employed in the 

estimation of À by Re, 

Moore (1952) obtained an expression for [(Re), which 

is the same as expression (341) for [CR*) ; but with the 

quantity p*(x;~) replaced by its complete counterpart p(x;À). 
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Now RC is the ratio of two random variables and let 

us take the first term only of the formula (344) to obtain an 

approximate expression for V(Rc). 
fJ(. 

V[ ~ x nx ] 

fE ( t nx ) 12. 
C> 

Then, 

using the expectations of (310) we have 
~-1 .-{-1 

(367) 

E ( L n x ) = N L p (x ; À) ( 3 6 8) 
0 0 

[ ( ix nx) = N 1 x p(x;À) 
0 0 j._ Q{... 

.(_ 2.. .,( J 
C [( L x nx)} = [ [ I (x nx) 2 

+ L L x nx • Y ny 
0 0 )1..\'1 

A 

= L xl.. [ N p(x;À.) + N(N-1) [p(x;>-.)] 2 ~ 
0 ol. ..{_ 

+~~x r[N(N-1) p(x;À) p(y;A)~ 
Il( X~'1 tl.._ 

= N(N-1) lL x p(x;>vfz + N }_ xz.p(x;À) 
0 0 

0 

(369) 

Substituting (368) and (369) in (367) we obtain 

4 x 2. p (x ;À) { ? x p (x ; À) ~ 2. 

N. l .i_' p(x;À) {z. 
D 

(370) 

and (370) is the approximate expression given by Moore (1952). 

However, Murakami and Co. (1954) have employed the complete 
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formula (344), and proceeding in exactly the same manner as 

in the case of truncation on the right they derive a more 

precise expression for V(Rc). These authors have made a 

comparison of the standard errors of the m.l.e. (see next 

section) and Re for the censored case. They have also 
1\ 

graphed the relative efficiency of Re to the m.l.e. À , that 
" 

is the ratio V(À) for values of d = 1(1)10 and À going 
V(R.')' 

from zero to 10. 

The ir resul ts show that for sm ali values of~ , Re 

is reasonably efficient; but is considerably inefficient 

for larger À and they recommend the use of the m.l.e. 

rather than Re. Recalling that Re does not make use of the 

censored observations at ali, while, as seen in the next 

section, the m.l.e. does employ this additional information, 

it is not surprising that Re is the inferior estimator. 

3.6.3. For the distribution P.(À) singly censored on the 

right at d we see, from section 3.6.1, that the likelihood 

function of the random sample x
1 

, xz., •• xK, ••• XK+nt is 
K 

>.. LX· 
(
K +nt) e- K À. •" 1 • 

L(À;x1 , •• xK, •• xK+nt) = K [P(d+l;~)]nt 
K TT x. ! 

K ..: .. 1 "' 

and log L =constant+ Zx.:..log~ -KA+ nt.log P(d+l;À) 
< = 1 

K 
If we write K x = ~x., which incidentally is also 

è. .. 1 t. 

we obtain after differentiation, 
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} log L 
·-

K ~À 
= ---1 +- (3 71) 

À K P(d+l;À) 

and the m.l.e. for À is the solution of the equation 

x = 
K 

p(d;À) J 
P(d+l ;À) 

(372) 

which is seen to be identical with the equation first given 

by Tippett (1932). 

For the situations where there are not more than 

four individual frequency classes available, Tippett pro­

vided nomograms to aid the solution of equation (372). 

Bliss (1948) developed an approximation to the 

maximum likelihood estimate. He also provided tables 

necessary for the application of his procedure of approxi-

mat ion. 

Equation (372) was also presented by Cohen (1954), 

and by Murakami and Co. (1954). These latter authors con-
" structed nomograms from which À may be read off directly, 

corresponding to d = 1(1)10. 

However, let us write equation (372) in another 

form. We have 

K x = K À 

= N À 

and K x = N ~ 

\ p(d;X) 
Ut . 1\ 

P(d+1;À) 

[ 
p(d;À) 1 

nt . .À. 1 + 
P(d+l; À) 

llt. f*(d+1;À) 



102. 

where jA*(d+l;À) is the mean lof the distribution truncated 

on the LEFT at d+1, from (21~). Thus Patil's (1959) table 

referred to in section 2.4, ~s avai1ab1e for the ca1culation 

"" of À. From (371), and using (Ill) we have 

~ 

1 d log L 
-·-
K )Àl. 

= - x + ~t . \ p ( d + 1 ; À) [ p ( d - 1 ; À) - p ( d ; ) . .) 1 
~.._ Ki [P(d+l;}-.)] 2 

= _ x + nt . ( P ( d + 1 ; À) p ( ~ - 1 ; À) - P ( d ; ...\) 

- [ p ( d ; À)) 21 

p (d ;À) l 
f (373) 

)t K [ P Cd+ 1 ; À) l 2 

The quantity in the cur1y brackets is recognised as being 

~ [P(d;À) 1 
~À P(d+l;À) ' 

l. [~A* ( d + 1 ; À) ] 
)~ ~ 

which from (213) is 

f'it(d+1 ;À) 

= [v* (x) 

where V*(x) is the variance of the distribution which is 

truncated on the LEFT at d+l,[and (giveni in (215il· 

Thus equation (373) becomes 
K 

d 1.1og L Z Xi 
= - ,-::1 + 

~ ~1. 
f*(d+l ;.1.)] 

K 

nt [ V*(x) 
x~-

(374) 

Now [(nt) = 
K 

N.P(d+1;~) and we 
Cl( 

may obtain E ( 2_ Xi) as follows. 

x.,o I
~ e-À À. x 

N x, 
x! 

i:"' 1 

E_ ( L xi)= 
i ::: 1 

[_ ( Lx nx) = 

= N)... F(d-l;À) 

It follows that 
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ç(~ '"log L) 
- (; ~ >-.• 

N À • F ( d- 1 ; À.) N • P ( d + 1 ; À) f 
= À.2. À~ L V*(x) 

and the 

"' V(A) 

= ;.[À[ 1- P(d;,\)] - P(d+l;À~ V*(x) + ÀP(d;À1 

asymptotic variance of the m.l.e. À is then 
À2. 1 

= 
N P(d+l;À) V*(x)] 

which may be computed using (215) and Patil's (1959) table. 

3.6.4. 

y 

One estilllate that 
K 

2 Xi 
= i. = 1 

has been proposed for À is ;[61] 

+ (d+l) nt 

------------------
N 

which is very simple to compute and might prove useful when 

the magnitude of the bias is small. Y could be a first 

approximation for an iterative procedure when solving (372) 

"' for À • Now, 

G (Y) = l . [ 
N 

NÀ_.F(d-l;À) + (d+l) N.P(d+l;~)] 

The quantity b = [(Y) - À is called the relative bias of 
À 

the estimate Y and is equal to 

- [À P(d;À) + (d+l) P(d+l ;~~ / À 

- p ( d + 1 ; À) [ f * ( d + 1 ; ~) - ( d + 1 ) ] 

À 
= 

A table of values and charts of the relative bias of Y have 

been prepared by Patil (1959), for suitably chosen À and d. 

The methods of the previous sections are now clear 

and only a brief discussion will be given of the remaining 

cases of censorship. 
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3.7 Single censorship on the left 

A random sample of size N is drawn from the dis­

tribution ~(À). Let n° be the number of observations x< c 

that are pooled in the censored portion of the sample. 

Let K be the number of measured observations x,, ••• xK for 

which each Xi ~ c ; i = 1, ••• K. Then N = n° + K. 

The likelihood function L is 

L = 
0 

[ F ( c -1 ; À) ] n K 

Tf x~! 
and 

= 

where x = 

The m.l.e. for 

x = 

-x 
1 

K 

LXi 1 K 

i ::. 1 

n° p(c-1;)\) 

K F (c -1; À.) 

i "' 1 
~ is the solution of the 

À [1 + n•. p(c-l;À)] 

K F(c-l;À) 

equation 

which, from (207) can be written in the form 

K x = NÀ. n° ·r*(c-1;'>..) 

" The asymptotic variance of À reduces to 
"' )._l. 

V(À) = 
N [ À- F(c-l;À) V*(x) ] 

(375) 

(376) 

where V*(x) is the variance of the distribution singly 

truncated on the RIGHT at c - 1. We use equation (209) for 
..... 

the calculation of V(A). 

Note that when c = 1 the number n° of "pooled" 



observations is really the number of zero counts, and the 

samp1e is complete. Then, since ~*(O;À) is zero (375) 

becomes Zxi = N À , where ~Xi includes the zero 
... ,... ... 

counts J i.e. À is the sample mean as given by (331) for 

the complete case. Also, when c = 1, (376) reduces to 
A À 

V().) = N which agrees with (333). 

3.8 The doubly censored case 

This case has been investigated by Cohen (1954) 

from the point of view of maximum likelihood. 

Let n°, nt be the number of left censored and 

right censored observations respectively. Let K be the 

number of measured observations for which c ~ x ~ d. 

Then the total sample size N = n° + K + nt 

The likelihood function L takes the form 
K 

o e-K À À f~.: 
L = C.[F(c-l;À)]n. TI x,:! [P(d+l;À)]nt 

.\: "' 1 
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where C is a constant. The m.l.e. for À is the solution of 

the equation 

À [! no p (c-l ;À) nt p (d ;}.) ] 
x = + 

K F(c-l;À) K P(d+l ;À) 

which we will write in the form 

Ki = N À 

where all symbols take the same meaning as in previous sections. 



CHAPTER FOUR: INTERVAL ESTIMATION 

4.1 Introduction 

4.1.1. In this chapter we are concerned with the prob1em of 

providing a confidence interval for the single parameter of 

the Poisson distribution. Some fundamentals of the theory 

of confidence intervals due to Neyman are mentioned be1ow; 

but for the single parameter case. Reference has been made 

to Cramér (1946), Kendall (1951) and Mood (1963). 

Suppose (y, , ••• YN) is a random samp1e from the 

distribution with p.d.f. f(y;9). We assume that the single 

parameter 9 takes some constant value in the parameter 

space 1t , though the actual value taken is unknown. 

Let t (y
1 

, ••• YN) = t be an estimate of 9, and 

denote the p.d.f. of t by g(t;9). Now for fixed 9 the unit 

of probability mass associated with the distribution of t 

may be thought of as lying along the line t = 9 in the plane 

of t and 9 (here we take the axes of t and 9 as the horizontal 

and vertical rectangular coordinate axes respectively). 

If the real number o< be given, 0 <. a(. "-. 1, we 

can find two reals (f and o such that 
'(( 

Prob[ (> < t <. ~ ;9] = f g(t;9) dt = 1 • o( (401) 
f! 

In fact, many such fi and ~ can be found for they need only 

satisfy the equations 
/3 f g(t;9) dt = -< 1 and 

-t>o 

oa f g(t;9) dt = o(1 

" 
(402) 
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where o( + o( = o< i.e. the total probability mass in the 
1 .t. 

two "tai ls" is co< • 

However, when the probability mass on the line t = 9 

is si tuated in discrete mass points, ~ and '( cannot al ways 

be found so that (401) is satisfied. But certainly we can 

find f3 and (( satisfying 

Prob [ ~ < t < o ; 9] ~ 1 - """ (403) 

Now f3 and o depend on 9 and co<.. With o< given and 9 taking 

different values in~ we see that the points (~,Q) and 

( ~,9) map out two curves (assumed to be monotonie in 9) 

which determine the boundary of a region R(o<) in the (t,9) 

plane. 

But the boundary of the region R(o<) is determined 

equivalently in another way. The estimate t will take dif­

ferent values from sample to sample. For a given value of t, 

say t' (and the same value of o< as before) the boundary points 

of the region R(o<) will be ~ and 9 say, which depend only on 

~ and t. From (402) 

9 ( t; ...() is the value of 9 for which f ~t;9) dt = c.< ( 404) 
l. 

~1 

- A:' 

9(t;co<) is the value of 9 for which J g(t;Q) dt = e.( (405} 
1 

- 0<> 

The events (1(9; a<) < t < (((9;o<.) and 
-

~(t; o<.) < Q c:::: 9(t; o<.) are equivalent and have the same 

associated probability. From (403) we have for the discrete 

case 
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-
Prob [ ~(t;o<) < 9 < 9(t;o() ;9] ~ 1 - o< (406) 

as given by Neyman (1935). Equation (406) is demonstrated 

for the Poisson distribution by Pearson and Hartley (1954). 
-

Now 9 and 9 are random variables although 9 is not; 

and we interpret (406) in the following way. For any sample 

values observed we say the probability that the variable 

interval (~,9) covers the fixed point 9 is at !east equal to 

1 - o( • Or, we can say that the probability of being correct 

in stating that 9 belongs to (~,8) is at !east equal to 1 - o< 

The region R(o<) is called the confidence region 

corresponding to a confidence coefficient 1 - ~ ; and the 
-

interval (~ ,9) is a 1 - o( confidence interval for the para-
-

meter 9. The quantities ~ and 9 are the lower and upper 

confidence limits respectively • 

4.1.2. For large samples we can make use of the limiting 

distribution of a particular function of the observations to 

obtain approximate confidence limits. Suppose (~, ••• YN) 

is a random sample from the distribution with p.d.f. f(y;Q), 

9 ~ Jl . Then the logarithm of the likelihood function is 
N 

log L = L log f(yi;9). The random variable .! log L has 
~8 ~ :. 1 

expected value zero, for 

{_ ( ) ~log L) 

Also 
) 

V[ }S log L ] 

= N.t(~~ log f) 

= V [ 2 {
8 

log f ] = 

= 0 from (302) 
d '1"'2. N.V[ -log f ] = N.~ 
~e 
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) 

Let Q = 
ië log L 

/N<:z. • Then Q may be regarded as a member of 

a general class C of functions defined as follows;[42]. 

Let h(y;9) be a function having expected value 

zero and such that the sum of a number of similar functions 

obeys the Central Limit Theorem. The class C consists of 
N 

all those members w, with w = .. ?,h(y..,;9) 

/N.V[h(y;9)] 

Wilks (1938) has shown that under certain regular­

ity conditions the distribution of Q approaches the standard 

Normal distribution as N __,.. oo • For large samples we may 

obtain approximate confidence limits for 9 using the limit-
~ 

ing distribution of Q. Choose c<, = -<:a.. = 2. in (402) with 

Q taking the place of t, th en in the limit j3 and ~ are the 

standard Normal fractiles t-<t
1 

and t,_.~"• i.e. ~(t~.) = "'-la.. 

If Q is a monotonie function of 9 then an inequality in terms 

of Q can be rearranged into an inequality in terms of 9, and 

hence we obtain the 1 - o< confidence interval (~,9) for 9. 

Wilks (1938) also proved that the confidence inter­

val (~,9) derived from Q in this manner has a certain optimum 

property. The optimum property is that whatever value Q may 

take in ~ , the limits ~ and 9 are (for large samples) 

closer together on the average than those computed from any 

other function belonging to class C, that is to say 

E. ( 9 - ~ ) is a minimum. 
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4.2 Central confidence intervals 

4.2.1. Central confidence intervals are obtained by first 
c:.( 

choosing o(
1 

= ..(z. = 2 to determine the points j3 and t 

from (402). For the discrete case we likewise consider the 

tail probabilities 
cl. 

Prob [ t ~ f5 ; 9] ~ 
2 

and Prob [ t ~ '( ( 407) 

Then, if the range of the discrete distribution is the set of 

non-negative integers, we find f3 as the largest integer 

satisfying the first inequality in (407), and o as the 

smallest integer satisfying the second inequality. Cf1,9) 
and ( t , e) plot as two boundary points of the region R( o<), 

as described above. For a given value of t the central 

confidence interval is then found as the vertical intercept 

of R(...(.). 

For the Poisson parameter À upper central confi­

dence limits were first given by Przyborowski and Wilenski 

(1935) for the single observation x = 0(1)50 and ~ = .001, 

.oos, .01, .oz, .OS, .10. Lower and upper central limits 

have been tabulated by Garwood (1936), Ricker (1937) and 

Pearson and Hartley (1954). 

Ricker derived the region R(o<) by using a single 

observation of the Poisson random variable for the estimate t. 

For a given value of À he found the boundary point tJ of R( !X..) 

as the integer satisfying the inequality 

FC(J ;À) ~ o( < 
2. 

FCfl +1 ;À) 



and the boundary point o as the integer satisfying 

Pc o ; À) ~ -< < Pc r -1 ; À) 
.2.. 
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The actual determination of (J and o was done with the aid 

of Soper's and Whitaker's tables of the Poisson distribution. 

The points Cf ;À) and ( ~,.À) were then plotted for continuous­

ly increasing values of À ; starting at À = 0 and proceeding 

by intervals of 0.1. This procedure gave a semi-infinite 

region R(~) in the upper right hand quadrant of the (x,~) 

plane, with boundaries a pair of stepped lines; the steps 

occurring because f3 and l5' are integers. 

Having determined the region R ( o< ) the confidence 

limi ts for À were easily obtained as the end points of the 

vertical intercepts between the two stepped lines. Ricker's 

tables give the lower and upper central confidence limits for 

À corresponding to o( = .01 and .os for x = 0(1)50. 

4.2.2. The procedure adopted by the other authors mentioned 

above was somewhat different, and in order to understand their 

approach we need to consider the following relationship be­

tween the Poisson, gamma and chi-square distributions. 

In section 1.4 we obtained the relations 
).. 00 

F (k ;À) = 1 - s ect,tkdt = J e-t,tkdt 
k! 

À r ( K + .) 0 

(408) 

Now Pearson's (1922) tables give values of the function 

J 
1.{ ;p-;1 

I(u,p) = e-t.tP dt 

0 r (., +- ,) 
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for the arguments u and p. So that entering these tables 

with u = À and writing k for p we have from (408) that 
vt:....-r 
F(k;À) = 1 ,k) (409) 

and hence the Poisson c.d.f. may be evaluated with the a id 

of these tables. Again from (408) 
00 

F(k;À) = f e-t.t(k+l)-1 dt = Prob [ t ~À] (410) 
À r ( 1< ... ,) 

where t has the gamma distribution G(k+l). As mentioned by 

Satterthwaite (1957) equation (410) may be obtained from 
CIO 

repeated integration by parts of 
1 ·J e-t.tk dt 

r Ck+l) >-
Making the transformation /(

2 = 2t in (410) we 

2. 

F (k; À) = Prob[X ~ zÀ 1 (411) 
2. (K +t) 

and hence tables of the cumulative chi-square distribution 

may be used to evaluate the Poisson c.d.f. 

It is now clear that the Poisson c.d.f., the 

incomplete gamma function and the X.z integral are all 

different forms of the same mathematical function; which 

remark has been made by Pearson and Hartley (1950). 

Suppose a single observation of the Poisson 

variable yielded the value x = k. We may write the variables 
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Q(t,-<) and Q(t,o<) appearing in (404) and (405) as À (k,o<) 

and >.. (k,-< ), or more simply ~ and .À respectively. 

Corresponding to the desired confidence coefficient 1 - ~ , 

( co<.< Yz.) and the observed value k we seek the boundary 
-

points ~ and À of the confidence region R (co( ) • 

From (404) and (405) we have that À is found by 

solving for À the equation 

P(k;À) 
-< = 1.. 

and À is found by solving 

F (k ;À) 
<>( 

= 2.. 

It follows from (411) that 

, If>O 
2 À = x z. ' where 1 f ( xl. ) d y J. = x z. ..z.(K t-•\ /\. 

Now P(k;À) = 1 - F(k-1;~) and thus 

2À =X~ , where f ~ fC,X\K ) rlX• 
- x ... 

= 1 -
o( 

2. 

( 412) 

(413) 

(414) 

(415) 

If ~ and À are found for observed values of x = o, 1, 2 •• 

and their values plotted as ordinates against x as abscissa 

the boundaries of the region R(-<) are obtained. 

However, the procedure for determination of the 

confidence limits ~ and À using the tables of the incom-

piete gamma function is not so elegant. From (409) we see 

that À is the solution of the equation 

À ..( re-fi:;i 'k) = 1 - 2. 

and is found by inverse interpolation in the tables. 
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Similarly, À is obtained as the solution of 

À 
I( IK+2. ,k+l) = 

by inverse interpolation. 

Garwood's tables give the lower and upper central 

confidence limits for À corresponding to o< = • 01 and • OS 

for the single observation x = 0(1)20(5)50, calculated to 

two decimal places. For values of x up to 15 he used 

Fisher's (1934) /(z table and for the remaining values of x 

the incomplete gamma function tables were used. The values 

of À agree with those obtained previously by Przyborowski 

and Wilenski. The agreement with the limits given by Ricker 

is not exact; but only minor differences exist. Pearson 

and Hartley give ~ and À corresponding to o<. = .002, .01, 

.02, .os and .10 for x = 0(1)30(5)50. 

4.3 Methods of approximation and large sample methods 

4.3.1. The tables of confidence limits referred to above 

extend only as far as x = 50. The incomplete gamma function 

tables also stop at p = 50. But for an observation x > 50 

confidence limits for À may be found by approximate methods. 

Two well known approximation formulae involving 

the chi-square distribution are mentioned here. Fisher (1934} 

suggests that when v, the number of degrees of freedom, is 

grea ter than 30 then j 2 Xz - / 2v - 1 is approxima te ly a 
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standard Normal variate. 

fr act i 1 e i • e • ~ ( t p ) = 

If t p denotes the standard Normal 
2 

~ ' and x~ has a similar meaning; 

then the approximation becomes 
~ 

Ap ~ l [ t (3 + / 2v - 1 ] 2 ; v > 30 (416) 

However, (416) is not a very accurate approximation for small 

or large values of~ , even when vis large;[32]. 

Wilson and Hilferty (1931) have suggested that the 

( x
2

) '13 . 
variable -- 1s approximately Normally distributed with 

v 
L . l d h mean 1 -

1
-y and var1ance 1v ; an ence 

"'X.z.~ ·=. v ( t ~ • ![; + 1 - ttz.v ) 3 ( 417) 

To test the error in the approximations (416) and 

(417) for the purpose of providing confidence limits for the 

Poisson parameter, Garwood (1936) calculated these limits for 

the single observation x = 20(10)50. He compared these 

resu1ts with the true values ca1culated from the incomplete 

gamma function tables and showed that (417) is the more 

accurate approximation. 

4.3.2. Tables of the Normal c.d.f. ~ (t) are readily 

available, and can be used to approximate the Poisson c.d.f. 

and hence to provide approximate confidence limits for À • 

There are two common1y employed Normal approximation formulae. 

From the theorem of section 1.15 it follows 

immediate1y that when À is large 

F(k;À) (418) 
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applying the correction for continuity. As a practica1 matter 

the approximation is good for À> 9;[32]. A large observed 

value k of x, say k >50, certainly suggests the approximation 

is va1id if this observation be considered as an estimate of 

its expected value ~ • Corresponding to the confidence 
-

coefficient 1 - ~ we have from ( 413) and ( 418) that À is 

approximated by the solution of the equation 

k = 

or the equation 

and hence 

À - i + t-<.lz. • ;>:: 
+ t -<f2.. .1>:, 

- te( lz.. + 4 (k+ i ) ] 1 2 

(419) 

(420) 

the negative sign for the square root is not allowed since 

)')\>O. Squaring (420) we obtain the solution 

À = (k + i.) + t~lz to<h • / (k + i ) + t~12 (421) 
4 ~ 

Since P(k;)J = 1 - F(k-1;~) we have from (412) and (418) that 

À is approximated by the solution of the equation -
À 

J.. 
.~ k = + 2. + t which is 1-"'Y;r.. 

À (k - J. ) + t2 ti-"Y2.. / ( k 
1 

) + t2 (422) = ii -2.. _.!.--v" 2. _!-"'fa. 
2- 4 

Ta king 1 - o( = • 95 for ex ample, we have ~ = • 025, 

t~~ = - 1.960 and t 1 _.,(~ = + 1.960. The approximate 95% 

confidence interval for À when the observed value of x is k 

becomes 

c~, >-.) = c k ± i J • 1.921 t. L96o /c k ±. i J + .96o (423) 

where the upper sign corresponds to À and the lower sign to À • 
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The interval (423) was first suggested by E.S. 

Pearson and appeared in the paper by Ricker (1937), (though 

without the continuity correction). 

The second commonly employed Normal approximation 

to the Poisson c.d.f. is arrived at from consideration of 

the "square root transformation". The following result is 

due to Curtiss (1943). 

Let x have the distribution ~(~). If b is an 

arbitrary constant and if 

T = /x + & 

= 0 

t x ~ - & (424) 

then the distribution of T tends to the Normal distribution 

wi th mean /À + S and variance 4 as ~ ~ tx> ; and 

lim V[ j x +ô ] = ~ • Bartlett (1936) and (1947) has made 
~_,.t>o 

an investigation of the degree of approximation involved in 

the equation lim V[/ x + b ] = ~ for values of À from 0.5 
À.....,. 00 

1 
to 15.0 in the cases b = 0 and z. • He found that the 

limiting value of ~ is much more closely approximated by 

V[ /x + .l ] than by V[ h ] . Taking ~ = 0 in (424), the 
2... 

random variable ~ -1>: has a distribution that approaches 
.L. 
2... 

the standard Normal distribution as À ~ oo • Thus, 

~ [ 2 ( 1 k + 1. ./)_ ) ] 
2.. (425) 

applying the correction for continuity. Corresponding to the 

confidence coefficient 1 - o< we have from (413) and (425) 



117. 

that À is approximated by the solution of the equation 

2 [ jk 1 -~] t-<tz. (426) + = z 

which is - 2 to( ./k + 
1 

>-- k 
1 (427) = + - + t -<lz.. 2 lz. z.. 

Similarly, we obtain Lt 

)., = k 
1 t2 tl_ ... /./ k 1 (428) - + -.z. _l-olt2. z. 2.. 

1+ 

With 1 - o< = .95, the approximate 95% confidence interval 

for ~ , derived from (425) becomes, when the observed value 

of x is k 

(~,.X) = k ± .!. z.. + • 960 + 1.960 + J.. - z.. (429) 

where the upper sign corresponds to À and the lower sign 

to À. 

Hald (1952) has indicated that a better approximation 

to F(k;À) than either of (418) or (425) alone is obtained by 

taking their mean. Now the mean of (419) and (426) becomes 

k = À - i + t.,./z.. /À + t;h 1 8 

which when solved for the upper limit À yields 

À = k + l + 3 t 2 
to<!.t • 1 ( k + l ) + 2 (430) 2. - ""h z. t~,l 

8 g 

Similarly, we may ob tain 

À k 1 3 t2 t,_c(,;J. ./ ( k - J... ) + tz (431) = - - + 
2. ,_-v2 2. _t-oltL 

g g 

Equations (430) and (431) are given by Crow and Gardner ( 195 9) 

who acknowledge the remarkable accuracy of these equations 

as approximations to the central confidence limits. 
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The confidence limits derived thus far have been 

based on a single observation of the Poisson random variable 

x, say x = k. However, we know that if N random observations 

on x be made, then the distribution of their sum is also 

Poisson with parameter N À. Thus the same limits provide 

confidence intervals for N À , and hence for À , by put ting 
N 

Lx..; = k. 
i.., 1 

4. 3. 3. Suppose now that ( x
1 

, • • • xN ) is a random sample 

of size N from the distribution P.(À). Then the random 

variable Q = 
) 

\ë lo& L of section 4.1.2 becomes, in view of 

/ N ~:~-
(334) and (335)' Q = 14 [ x -À] where i is the sample 

mean; and Q has a limiting Normal distribution. Thus for 

large samples we have, corresponding to a confidence coeffi-

cient 1 - <=>< , that approximately 

Prob [ t~,. <: fl ( X -À) < t,_.,, ] = 1 - o<: (432) 

where tco{/a.. , t l-"'a. are the standard Normal fr act iles. 

Taking 1 - =< = .95, for example, and rearranging 

the inequality in (432) we see that À , the lower confidence 

limit for À , is the solution of 

1.960 À + fi:- -x = 0 

IN 
which is a quadratic equation in /~ , g1v1ng 

1\ - [- 1;60 + 1 (1.:60)2 +4 x J 12 
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the negative sign for the square root is not allowed since 

/A > o. Squaring we ob tain 

A 1.921 1,960.;.960 
= x + + x 

N IN N 
similarly, 

À 
1. 921 1.960 .; ,960 (433) - -

= x + + + x 
N IN N 

-
À and À in (433) are equa1 to the 95% confidence limits for 

À given by Wilks (1938) and the interval ( ~ , À) possesses 

the optimum property referred to at the end of 4.1.2. 
1 

To the order IN the interval ( ~ , À ) given in 

(433) becomes 

= x ± 1.960/~ (434) 

Now note that if we replace the observed value k of x in 
N 

(423) by Lx. (and 
• = 1 "\. 

ignore the continuity correction) we 

interval 

1. 960 . ). 960 
N 

+ 1.921 + + Lxi 

obtain the 

;.: 1 

or ( 6 , À) = -x + 1.921 + 1.960 .;.960 -+ x 

N JN N 

which is the interval (433). 

Again, recall from section 3.1.2 the theorem of 
1\ 

Fisher which states that the m.l.e. 9( xt, ••• xN) is 

approximately Norma1ly distributed in large samples with mean 
1 

9 and variance N 1' 1 • Hence the random variable / N T'z( Q - 9 ) 

has approximately the standard Normal distribution for large N. 
1\ 

Using this fact, we have from (331) that 9 = x, and so we 
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immediately obtain the same approximate confidence interval 

(433). 

Thus, we have arrived, in the limit, at the same 

confidence interval for À by using three different approaches 

to the problem. The position may be stated as follows. 

In determining which of the many possible limits 

~ and t of equation (402) to use, we shall usually wish to 

make the confidence interval as small as possible. If we 

consider only unbiased estimates which are asymptotically 

Normally distributed, the confidence interval can be made 

as small as possible by choosing the estima te t with the 

smallest variance and selecting the limits ~ and ~ su ch 
~ 

that ~~ = ~ = ..... ;[1]. 1 L 

Now the sample mean x is unbiased and asymptotically 

Normally distributed, and for the Poisson distribution it is 

the m.l.e. and the MVU estimate. Hence we may expect to 

arrive at the same shortest interval, in the limit, by any 

one of the above three methods. 

4.4 Non-central confidence intervals 

4.4.1. We have seen that for an observed value of the 

Poisson variable x, say x = k, central 1 - c< confidence 

intervals for ~ may be obtained by considering the proba 8 

bility of obtaining an observation which is ~ k and an 

observation ~ k. Neither of these tai! probabilities are 
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o( 
allowed to exceed ~ • Suppose now that we do not require 

-< the tail probabilities to be separately ~ z. ; but only 

that their sum be ~ ~ • With this modification as starting 

point we may derive a non-central confidence interval for 

the Poisson parameter along the lines first considered by 

Sterne (1954) for the binomial distribution. 

Suppose a single observation of the Poisson 

variable is taken as the estimate t of section 4.1.1. 

Sterne's proposai is to consider the probability of obtaining 

an observation as probable as or more probable than that 

observed in order to determine the boundary points of the 

confidence region R(c:<). For a given value of À and confi­

dence coefficient 1 - o( , we seek two integers b and d, 

0 ~ b ~ d, such that 

Prob [ b ~ x ~ d ] = 

,(_ 

L p(x;À) 
x. .. b 

(435) 

where the magnitude of each term p(x~) included in this sum 

is not smaller than each p(x;À) excluded. We determine b and 

d by starting with the modal term and forming the partial sum 

by adding the terms on either side of the mode in order of 

decreasing magnitude until (435) is satisfied. If two diffe-

rent values of x have equal probabilities, i.e. if 

p(x' ;À) = P (x" ;À), x' \ x" , and if both terms cannot be 

excluded from this sum, then both terms are included. The 

points (b, À) and (d, À) are th en plotted in the (x , .\ ) p 1 an e • 
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The who le region R ( o<) is determined by proceeding continu­

ously in this manner from small to larger values of À , 

start ing at À = 0, and al tering b and d as required. 

It is seen that tables of Poisson terms and sums 

must be used, and that no help is forthcoming from tables 

of /L' or the incomplete gamma function, as was possible in 

the central case. The method clearly does not specify any 

division of probability mass between the two tails, as men­

tioned above. Also, by including the largest terms of the 

Poisson series a given probability 1 - o< is attained with 

as few terms as possible. Since the distribution P.(À) is 

generally skew, and markedly so for small À , an immediate 

consequence of the method is to produce a region R(~) that 

is as narrow as possible. That is, of all confidence regions 

with a given confidence coefficient that are determined from 

a single observation of the Poisson variable, the region 

determined as above is as narrow as possible if width is 

measured by the length of the horizontal intercept in the 

x direction; [17]. 

The confidence limits for À are determined as the 

end points of the vertical intercept of the region R( o<.) 

corresponding to the observation x = k; as was done by 

Ricker for the central confidence limits. 

4.4.2. Crow and Gardner (1959) have calculated the confi­

dence limits for À by Sterne' s method corresponding to a 
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confidence coefficient of .90 and .99 and the single obser-

vation x = 0(1)10(2)20(5)30(10)50. These limits were calcu-

Iated in order to compare them with another set of confidence 

limits obtained by a slight modification of Sterne's tech­

nique. The modified limits follow from a certain property 

of partial sums of the Poisson series. This property is 

developed by Crow and Gardner and is discussed below. 

Suppose x, and xz are two possible values of the 

Poisson variable, x 
\ 

M\a. 

the partial sum ~ 

~ x
2

• If x, and x1 are fixed, then 

p (x ;À) is an analytic function of À , 

i.e. it is single valued and differentiable in ( -R,R ),(see 

the theorem of section 1.4). 

To obtain the value of )\ that maximises this sum, 

we have that 

= 

= 

) 
- [ 1 - F (x -1· À) 
\~ 1 ' 

p (x, -1 ;À) p(x2.; À) 

p (x .z. + 1 ; À) . ] 

(436) 

from (107) and (111), and the value of À we seek is the 

solution of the equation 
-À .l(,-1 

e .\ 

(x
1 
-1)! 

which is 

It is clear that 

= 
-À x 

e À 2. 

= [ ( ) ] x -x + 1 x1 x, +1 ••• xL .z. ' 

< 
p (x 1 -1; À) ::: according as À x., • x'Z.. < 

(437) 

(438) 
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If we add the partial sum p(x
1 

;À) + ••• + p(xl.. -l;À) to both 

sides of the first inequality in (438) we have 
":a.- 1 x "I-

L p(x;À) 
> L p(x;À) -
< 

according as À ;: .À x x 
..,. 1 ) ~ 

(439) 
X-=><.

1
-1 }(.-:)(1 

In the accompanying chart three \x x has been plotted 
1 ) l. 

against x1 for selected values of xl. to demonstrate the fact 

that if x. is kept fixed then \x. 1. increases with x 1 ; .... 1 ) 2. 

while if x 1 is fixed À x x increases with x .. also. 
1) <t.. ,_ 

By altering the ranges of summation in (439) by 

unity we obtain 
1\2. 

according as À -; Ax 
1 '> .lt- )JC.._+I 

l p(x;À) 
> 
= 
<. 

(440) 

)( "' .x,+ 1 

of the above remark A x x. <.. À x H x. + 1 
1 } 1. 1 } .. 

x"" x, 
and in view 

By repeatedly altering the ranges of summation in (439) and 

combining with (440) we may 
x:a. -1 x .... 

l p(x;A) ~ I p(x ;À) 

x- 1 
1 

·x 
1 

ob tain 
,l\ .. +1 

~ I p(x;À) 

"• + 1 for 

;;::.. ..... . 
(441) 

We now deduce a sequence of inequalities in the 

other direction by proceeding as follows. Reducing the argu­

ment by unity in (438) we have 

p(x:z. -1 ;À) ; p(x1 -2 ;À) according as À ~ ~x ,-1) x:a. _ 1 ( 442) 

By adding to each side of the first inequality in (442) the 

partial sum p(x1 -l;À) + p(x 1 ;À) + ••• + p(x.z.·2;À) we obtain 
)(:a.- 1 

~p(x;À) 
x.,-1 

> 

< 

x .... -2. 

I p(x;À) according as \ ~ À x ( 443) < _, x -1 
1 ' l. 
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and in an exactly similar manner to that described above, we 

may obtain the sequence of inequalities 
X1 -1 X:a.- Z X;r.- ~ 

L p(x;À) + L p(x;À) :;.. }_ p(x;À] ~ .... 
X-z ~t,-~ \ \ (444) 
• for A. ~"'X-1 x-t 

1 J l. 

x,-1 

Comparing (441) with (444) and noting that ..\ x,-I)X.a.-1 <. Ax.,x'l. 
we see that both sequences of inequalities hold simultaneously 

for À in the interva1 [ À À x x ] • x 1- 1 ) x .. - 1 , 1 l l-

Thus, if the number of consecutive terms to be 

included in a partial sum of the Poisson series is fixed, at 

say r + 1 

Max 

terms, then 
x.. +i' 

I p(x;À) = 

x = f<q 

\ where 
/\ x + 1 , x +r + 1 

\ 1 

, wh en 

x,= 0,1,2 •• and 
r = 0,1,2 •• 

and these maximum sums form a non-increasin& function of~ • 

This last statement can be made quite straightfor­

ward by referring to chart four, which is simply the ordin­

ates of the distribution f!(À.) plotted for a few values of À. 

If, for each À , the r + 1 greatest ordinates are added 

together then the magnitude of this sum c1ear1y cannat 

increase with increasing À • 

Now suppose that for a given À = ~. say, and 

confidence coefficient 1 - o.( the boundary points of R (a<) 

are determined as the band d of equation (435), where d = b+r. 
J.. 

Now ~ p(x;~) contains the 1argest terms of the Poisson 

b 
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series so that no partial sum of fewer than r + 1 terms is 

as large as 1 - c.< for the given value Ào • Also, (because 

of the underlined result above) no partial sum of fewer than 

r + 1 terms is as large as 1 - c:>( for any À >À, • This 

implies that the horizontal width of the region R(~) cannot 

decrease as À. increases. 

Referring to (440) and writing b for x 1 and d for 

X.z we have 
,( 

Z p(x;À) = wh en (445) 
x,-, b À'= b+l 

Thus when À has increased to the value À b1-1 .~+l we are 

able to maintain the same width of R(~) by substituting d+l 
tA. 

for b in 2_ p(x;À). Substitution at this moment will 

b 
distinguish Sterne's confidence region from Crow's. 

the sum 

Since Sterne includes only the largest terms in 
(){ 

~ p(x;~) substitution as above must wait until À 
b 

has increased to À = À b+l #(.+l , when the two terms p(b;.À) 
' 

and p(d+l;ÀJ are equal;[l6]. 

soon as 

~~ever, we may perform 

~ p(x;ÀJ first attains 

b+l 

this same substitution as 

1 - -=-<. , and this must occur 

at À <À, J 
t> +-1 ' V\,. + 1 

(recall the underlined result above). 

The effect of this earlier substitution is to minimise the 

upper confidence limit. 
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The confidence region obtained by Crow has the 

same width as Sterne's and thus has the optimum property 

discussed in 4.4.1. But Crow's region has the additional 

optimum property that of all equally narrow confidence 

regions of the Sterne type, it is the region with the 

smallest possible upper confidence limits;[l7]. The confi­

dence limits for À, ~ and ~ say, are given by the end 

points of the vertical intercept of R(c<). Crow has tabu­

lated À and À for 1 - o< = .80, .90, .95, .99, .999 and 

x = 0 ( 1) 300. 

4.5 Randomised confidence intervals 

4.5.1. A few fundamentals of the Neyman theory of confidence 

intervals were discussed in section 4.1.1. For discret~ 

distributions the theory provides confidence intervals that 

contain a certain margin of safety. Equation (406) implies 

that it is possible to specify only the lower bound 1 - o< . 

to our probability of being correct in making statements of 

the form "the interval (~,9) covers the unknown parameter 

value." While for the continuous case, these statements can 

be made with the probability of being correct precisely 

specified. 
-

It occurred to Stevens (1950) that the confidence 
.. 

limits provided by equation (406) were unnecessarily wide; 

and that if the discrete variable could in seme way be 
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"converted" into a continuous variable, then the limits could 

be narrowed until a previously specified probability is 

reached. Moreover, if this conversion could be achieved then 

further advantages would follow. 

The method of interval estimation discussed in 4.4 

yields confidence intervals that are indeed shorter than the 

central intervals. We have seen that the method does not 

specify any division of probability between the two tails. 

Consequently, the probability that the true parameter value 

lies below the lower limit and the probability that it lies 

above the upper limit are not known separately; although the 

sum of the two probabilities is known to be at most ~. 

Now if the discrete Poisson variable is converted 

into a continuous variable then we will be able to make one­

sided statements about the true parameter value; and these 

statements can be made with precisely specified probability 

of being correct. The required conversion can be achieved 

by adding to the Poisson variable x an independently distri­

buted variable u having the uniform distribution over the 

unit interval. 

4.5.2. To show that y = x + u is a continuous random varia­

ble we require the c.d.f. of y, H(y) say. 

If we let y', x', u' denote particular observed 

values of the variables, then y' = x' + u' and 



H (y ' ) = Pro b [ y ~ y ' ] = u ' • p (x 1 
; À) + Pro b [ x < x 1 

] 

= u 1 .p(x' ;À) + F(x' -l;À) 

Now x' = [y'] the largest integer contained in y'. 

For convenience we will drop primes, and write 

H(y) = {y- [y] J p( [y] ;A) + F( [y] -l;À) 

Now H(y) is c1early differentiab1e; but since p( [y] ;~) 

and F( [y] -1;~) take constant values for y non-integral, 
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,(_ . 
~~H(y) w1ll be discontinuous at all integral values of y. 

#( 
Thus ~1 H(y) has a countable number of points of disconti-

nuity, and any finite interval contains at most a finite 

number of discontinuity points. 

The continuity of H(y) itse1f remains to be exam­

ined. This is obvious for y non-integral, so consider H(y) 

in the neighborhood of ~ where Yo is integer. 

For .6. > 0 we have 

H(>: +A) = [ (yo +4) - Y, ] p(y., ;À.) + F(y
0 

-1 ;À) 

and lim H(y., +~) = F(yo ·l;À) 
.6.. ....-:::,. 0 

while to approach y from below consider 
0 

H(y - 4) = [ (y -A) - (y., -1) ] P(Y., -1 ;À_) + F (Y., -2 ;À) 
0 0 

and lim H(Y. - 4) = p (y
0 

•1 ;À) + F(y., -2;,.\J 
,6.........,.0 

F (Y .. -1; À) a1so. = 

Thus H(y) is seen to be everywhere continuous; and y is a 

continuous random variable. 
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4.5.3. The deviee of aQding a random observation of the 

variable u to the observed value of x is called "randomisation". 

The actual method of randomising adopted in practice will be 

an approximation to an ideal process;[Z]. Thus we might 

choose a number of four digits from a table of random numbers 

and by placing a decimal point in front of them we are assum­

ing that the decimal so obtained is a random observation of 

the uniform variable u. That any advantage whatsoever is to 

be gained by this deviee cornes as something of a surprise. 

For as Pearson (1950) remarks, "we feel instinctively that 

having completed the experiment proper, the relevant infor­

mation on which to réach a rational conclusion must be avail­

able without an appeal to any list of random numbers." 

However, Stevens (1950) has shown that the deviee 

may be used to obtain confidence intervals for the parameter 

of a discrete distribution that are shorter than the central 

intervals. And, as mentioned above, statements that the true 

parameter value lies below, between or above certain limits 

can be made with a precisely specified probability of being 

correct. Stevens (1957) has also proposed an interpolatory 

procedure that may be used to obtain the shorter confidence 

intervals from tables of the central confidence intervals. 
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4.5.4. Other approaches to the problem of interval estima­

tion for the Poisson parameter are on record. Walsh (1954) 

has considered functions of the confidence leve! c< , which 

he then determined so as to render probability errors small 

over a wide range;[l7]. 

Neyman's (1937) definition of the shortest system 

and the short unbiased system of confidence intervals; and 

Scheffe's (1942) further definition of the shortest unbiased 

system will not be discussed in any depth here. The subject 

is linked in an essential manner with the Neyman theory of 

hypothesis testing. Any worthwhile discussion would, in 

itself, be the basis of a thesis topic of considerable com­

plexity, requiring an advanced mathematical as well as 

statistical background. 

The Neyman-shortest intervals are shortest in the 

sense of being !east likely to cover a false value of the 

parameter. Pratt (1961) has shown that this approach to 

interval estimation i.e. considering the probability of 

covering false values, is related to the approach that 

considers expected length of the confidence interval. He 

has proved that if there is an optimum procedure as regards 

including false values, it is also optimum as regards 

expected length, and vice versa. However, a knowledge of 

atomic measure theory is required by the reader in order to 
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follow these results. 

For a discrete distribution randomisation is 

required for the construction of the Neyman-shortest unbiased 

confidence set. This point has been discussed by Eudey (1949), 

who obtained the set for the binomial parameter, and Tocher 

(1950). 

Blyth and Hutchinson (1961) have provided a table 

of the Neyman-shortest unbiased confidence intervals for the 

Poisson parameter. These authors have observed that the 

confidence limits obtained for x > 250 by using the Normal 

approximation (equations (421) and (422) without continuity 

correction) and the Neyman-shortest unbiased limits differ 

by less than 1% of the length of the interval • 

• • 
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