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ABSTRACT

From the whole amount of visual information impinging on the eye, only a frac-

tion ascends to the higher levels of visual awareness and consciousness in the brain.

Attention is the process of selecting a subset of the available sensory information

for further processing in short-term memory, and has equipped the primates with a

remarkable ability to interpret complex scenes in real-time, despite the limited com-

putational capacity. In other words, attention implements an information-processing

bottleneck that instead of attempting to fully process the massive sensory input in

parallel, realizes a serial strategy to achieve near real-time performance. This serial

strategy builds up an internal representation of a scene by successively directing a

spatially circumscribed region of the visual field corresponding to the highest reso-

lution region of the retina, the so-called fovea, to conspicuous locations and creating

eye trajectories by sequentially fixating on attention demanding targets in the scene.

Directing the fovea to visual targets in a scene is done through rapid eye move-

ments called saccades that typically occur between two and five times per second.

Pattern information is only acquired during periods of relative gaze stability in be-

tween the saccades, called fixations, owing to the brain’s suppression of information

during the saccades. Gaze planning, thus, is the process of directing the fovea through

a scene in real-time in the service of ongoing perceptual, cognitive and behavioral

activity. The question of exactly what is happening during fixations is still some-

thing of a puzzle, but the effect of visual-task on the pattern and specifications of

eye movements has been long studied in the literature.

v



Although the effect of visual-tasks on eye movement pattern has been investi-

gated for various tasks, there is not much done in the area of visual-task inference

from the eye movements. In this work, we develop a probabilistic method to infer the

visual-task of a viewer by analyzing the eye movements. To do so, a task-dependent

attention model is developed to infer the attention location from the gaze position.

Given the attentional spot and the stimuli we can locate the targets visited during

an eye trajectory and infer the ongoing task based on the attended targets.

Two different scenarios are studied in the thesis. First a method is developed to

infer the tasks in synthetic stimuli, where the location of all objects in the image is

given to the model. In the second group of models, the tasks are executed on a set of

natural images, where no prior information about the location of targets is provided

to the model.

A probabilistic approach for task inference is presented, that is based on the

theory of Hidden Markov Models (HHM). A HMM is a statistical model based on

Markov processes. The proposed model is used in the context of Bayesian learning

to realize a fully statistical inference that can incorporate different sources of infor-

mation about the ongoing task. An alternative approach for the Bayesian inference

is also proposed that incorporates the a-priori sources of information about the tasks

into the inference model and builds a full-scale visual-task recognition framework.

In order to evaluate the performance of the model, the results of task inference

are presented in form of confusion matrices and are compared to the inference results

of other models. The results support the idea of attention modeling using the HMMs

and suggest a solid probabilistic framework for task inference using the HMMs.
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ABRÉGÉ

Sur la quantité d’informations visuelles empiéter sur l’œil, seule une fraction

monte à des niveaux supérieurs de la conscience visuelle et de la conscience dans le

cerveau. L’attention est le processus de sélection d’un sous-ensemble de l’information

sensorielle disponible pour un traitement ultérieur dans la mémoire à court terme, et a

équipé les primates avec une remarquable capacité à interpréter des scènes complexes

en temps réel, en dépit de la capacité de calcul limitée. En d’autres termes, à

l’attention implémente un goulot d’étranglement traitement de l’information, au lieu

de tenter de traiter la totalité des entrées sensorielles massif en parallèle, réalise une

stratégie de série pour atteindre une performance quasi-temps réel. Cette stratégie

de série construit une représentation interne d’une scène en dirigeant successivement

une région spatialement circonscrits du champ visuel correspondant à la région de

la plus haute résolution de la rétine, la soi-disant fovéa, à des endroits bien visibles

et en créant des trajectoires oculaires par fixateur séquentiellement sur l’attention

objectifs exigeants de la scène.

Dans les activités visuelles, les yeux font des mouvements rapides, appelées sac-

cades, généralement entre deux et cinq fois par seconde, afin d’apporter de l’information

environnementale dans la fovéa. Informations relatives aux signatures est acquise

uniquement pendant les périodes de stabilité relative, du regard appelés fixations, en

raison de la suppression par le cerveau de l’information pendant les saccades. Ad-

mirez la planification, donc, est le processus de réalisation de la fovéa à travers une

scène en temps réel au service de l’activité perceptive, cognitive et comportementale
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en cours. La question d’exactement ce qui se passe au cours de fixations est tou-

jours quelque chose d’un puzzle, mais l’effet de la tâche visuelle sur le modèle et les

spécifications des mouvements oculaires a été longuement étudié dans la littérature.

Bien que l’effet des tâches visuelles comme la lecture, le comptage et la recherche,

sur le modèle des mouvements oculaires a été étudiée pour différentes tâches, il n’ya

pas beaucoup fait dans le domaine de l’optique-tâche inférence à partir des mou-

vements oculaires. Dans ce travail, nous développons une méthode probabiliste de

déduire le visual-tâche d’un spectateur par l’analyze des mouvements oculaires. Deux

scénarios différents sont étudiés dans la thèse. D’abord une méthode est développée

pour déduire les tâches de stimuli synthétiques, où l’emplacement de tous les objets

dans l’image sont donnés au modèle. Dans le second groupe de modèles, les tâches

sont exécutées sur un ensemble d’images naturelles, où aucune information préalable

sur l’emplacement des cibles sont fournis pour le modèle.

Une approche probabiliste pour tâche inférence est présenté, qui est basé sur la

théorie des modèles de Markov cachés (HHM). Un HMM est un modèle statistique

basé sur les processus de Markov. Le modèle proposé est utilisé dans le contexte de

l’apprentissage bayésien pour réaliser une inférence statistique pleinement pouvant

intégrer différentes sources d’information sur la tâche en cours.

Afin d’évaluer la performance du modèle, les résultats de la tâche inférence sont

présentés sous forme de matrices de confusion et sont comparés aux résultats de

l’inférence des modèles d’attention classiques. Les résultats soutiennent l’idée de la

modélisation de l’attention en utilisant les HMM et proposent un cadre probabiliste

solide pour tâche inférence utilisant les HMM.

viii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
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CHAPTER 1
Introduction

1.1 Problem Statement

Human vision is an active, dynamic process in which the viewer seeks out specific

visual inputs according to the ongoing cognitive and behavioral activity. A critical

aspect of active vision is directing a spatially circumscribed region of the visual field

(about 3o) corresponding to the highest resolution region of the retina, the so-called

fovea, to the task-relevant stimuli in the environment. In this way our brain gets a

clear view of the conspicuous locations in an image and will be able to build up an

internal, task-specific, representation of the scene.

While low-level visual features are shown to influence eye movements [35, 130],

visual-task can also influence the pattern of eye movements. This effect was shown

in the celebrated study of Yarbus [128] who recorded the eye movements of people

while viewing a painting. As shown in figure 1.1, different trajectories emerged

depending on the task that the viewers were given. By his experiment he showed

that visual-task has a great influence on specific parameters of eye movement control

and that eye fixations are not randomly distributed in a scene, but instead tend

to cluster on some regions at the expense of others. In this figure we can see how

visual-task modulates the conspicuity of different regions and as a result change the

pattern of eye movements.
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Figure 1–1: Eye trajectories of viewers carrying out different tasks measured by
Yarbus. a) No specific task was given to the viewer and the subject carried out free
viewing. b) “Estimate the wealth of the family”. c) “Give the ages of the people
in the painting”. d) “Summarize what the family had been doing before the arrival
of the unexpected visitor”. e) “Remember the clothes worn by the people”. f)
“Remember the position of the people and objects in the room”. g) “Estimate how
long the unexpected visitor had been away from the family”. Image adapted from
[128] with permission from Springer Publishing Company. The photo of the painting
is courtesy of www.ilyarepin.org.
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Yarbus effect has been re-investigated in the literature related to the eye move-

ment analysis, the common question of which being whether or not visual-task influ-

ences the pattern of eye movements. The studies of eye movements during natural

behavior unanimously indicate a bond between the gaze location and informative

locations to the immediate task goals [32, 52, 75, 74, 92, 94]. In the visual attention

model of Schneider [106], the target selection is partially governed by action. This

selection for action is particularly highlighted by the fact that the gaze targets are

concentrated in the task-relevant areas in an image in the presence of a visual-task

[52, 74], whereas before beginning the task, eye fixations are scattered over the image

[52, 101].

To better demonstrate the gaze deployment under the influence of task, Rothkopf

et al. [101] devised a series of experiments conducted in a purely virtual environ-

ment, where subjects executed two tasks of “approaching” and “avoiding” objects

while navigating along a walkway. In the experiments they showed that the fixation

distribution on an object changes according to the task and suggested that human

gaze is directed toward the regions in a scene that are determined primarily by the

task requirements. Several other studies have also reproduced the original finding of

Yarbus by using new equipment and stimuli in their experiments. For instance, in

[114] the results obtained by Yarbus is confirmed in an experiment that studied the

effect of instructions in viewing a portrait of Yarbus. All of these experiments repro-

duce the results of Yarbus using new instruments and broader number of subjects

(20 subjects in [114]) and emphasize the fact that visual task in fact does affect the

pattern of eye movement.
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Besides affecting the distribution of the gaze location, visual-task influences

other metrics of eye movements as well. Tatler et al. [111] show that visual task af-

fect the temporal statistics of eye movements in viewing natural images. Castelhano

et al. [16] studied the effect of task on eye movement in tasks of memorization and

search and showed that visual-task influence a number of eye movement measures,

such as number of fixations and gaze duration on specific objects, while leaving other

parameters, such as average saccade amplitude and individual fixation durations, un-

changed. They also showed that viewing task biases the selection of scene regions and

temporal measures on those regions. In [64] a temporal coupling between vision and

action is demonstrated. In their experiment they measured the gaze onset towards

the next target relative to the hand movements as the subject maneuvered an object

past an obstacle. The recorded departure time of the eye was shown to be linked

with the execution of the task as the gaze moved onto the next target as soon as the

object cleared the obstacle. Similar temporal coupling between action and vision is

also demonstrated for the tasks of driving [78, 76], tea making [52], sandwich making

[74], music sight reading [39], walking [93] and reading aloud [11]. In [77] the eye

movements of cricket players are studied and it is shown that different skill levels

of the players in performing the task entail different latency in directing the gaze

towards predicted locations of the incoming ball. This temporal coupling between

action and vision highlights the importance of considering task influence on temporal

characteristics of eye movement, beside its spatial characteristics, in task-dependent

models of visual motor systems.
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The effect of task on the pattern of eye movements or attentional deployment has

been studied for different tasks, such as copying arrangements of blocks [2], making

tea [74], making sandwich [52] and driving [76]. In [77] it is shown that while watching

a cricket game the gaze is directed through the video according to the ongoing events

in the game. In another experiment eye movements of subjects were recorded while

watching a person who stacked a set of blocks. In this block-sorting task, gaze was

shown to be anticipating the expected points of interaction and directed to it [37]. In

another block-copying experiment conducted by Ballard et al. [2], the eye movements

showed similar patterns through the progression of the task that could be interpreted

in terms of momentary information processing needs. Clark and O’Regan [17] studied

the spatial characteristics of eye movements for the task of reading and showed that

when reading a text, the centre of gaze (COG) lands on the locations that minimize

the ambiguity of the word arising from the incomplete recognition of the letters. In

a seminal study, Treisman and Gelade [117] developed the feature integration theory

that studies the parameters that influence the attentional deployment in the task of

visual search. In [126] this model is improved by Wolfe et al., who developed a model

called “the Guided Search” that also study how our brain directs attention through a

scene during a search task. Hayhoe and Ballard [50] did a review on the goal-directed

behavior of the visual-motor system, where a comprehensive set of references to the

relevant studies in task influence on eye movements is presented.

Although the effect of visual-task on eye movement pattern has been investigated

for various tasks, there has not been much done in the inverse process, that is to

infer the visual-task from the eye movements. If we consider the classical Yarbus
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process, which we refer to as the forward Yarbus process, as a function, the task is

given as the input and task-dependent eye trajectories are the output of the process.

In this thesis, on the other hand, the goal is to develop a method to realize an inverse

Yarbus process, whereby the ongoing task can be inferred given the eye movements

of a viewer. In other words, in an inverse Yarbus process an eye trajectory is given

as input and the output is the visual-task that has led to such trajectory.

In a study by Greene et al. [46, 45] an unsuccessful attempt was made to solve

the inverse Yarbus problem. They used supervised learning techniques to train three

different classifiers based on linear discriminant analysis [84], correlational methods

[49] and support vector machines [54]. The classifiers were trained on the so-called

summary statistics of eye movements used in scanpath analysis [15, 85]. Seven

features of eye trajectories including the number of fixations, mean fixation duration,

mean saccade amplitude and percent of image covered by fixations were used as the

observation vector of each trajectory. The results showed that the classifiers can only

infer the task at the chance level and fail to consistently reveal the underlying task

of test trajectories. Thus, based on the results they concluded that: “The famous

Yarbus figure may be compelling but, sadly, its message appears to be misleading.

Neither humans nor machines can use scanpaths to identify the task of the viewer.”.

1.2 Approach

While the results of inferring the task from summary statistics is shown to be dis-

appointing, concluding that the scanpaths cannot be used to identify the visual-task

is overstated. In Greene’s study only specific features that are based on aggregate

characteristics of eye movements are used to train the classifiers and failing to infer
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the visual-task does not mean that task inference in general is infeasible. In fact

in another work, Castelhano et al. [16] studied the influence of task on a group of

summary statistics (including the ones used in Greene’s experiment) for two tasks of

memorization and visual search. After considering various features of eye trajecto-

ries, they came to the conclusion that the visual-task does not influence the features

obtained from individual fixations. A similar result is obtained in [85], where they

also showed that the effect of visual search task on the same features as in [46] is

insignificant.

Predicting the states of observers from eye movements have been studied in

several works. Bulling et al. [9, 10] successfully used eye movement analysis for

recognizing the physical activity of subjects while copying a text, reading a printed

paper, taking hand-written notes, watching a video, browsing the web or being idle.

Detection of tiredness or distraction of the driver from eye movements is another

example of using eye movements for predicting the mental state of the observer

[22]. In another work by Di Stasi et al. [23], the maximum velocity of the eyes

during saccadic movements was shown to have an inverse relationship with the mental

workload of subjects in a simulated driving task. In a psychophysiological study by

Benson et al. [5] eye movement analysis is used to detect schizophrenic patients. In

[105] the blink duration, delay of lid reopening, blink interval and standardized lid

closure speed were identied as indicators of mental fatigue.

In all of the above studies there exists a common conclusion, which indicates the

possibility of predicting the observer’s cognitive state by analyzing the eye movement

behavior. Although in these works recognizing the human activity, mental workload,
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mental health and fatigue were addressed as examples of the cognitive state, we

believe the same rational could be applied to describe other mental states of the

observer. Particularly, we consider visual-tasks as another indication of the cognitive

state and devise a method to infer the task by analyzing the eye movements of

observers.

Although certain statistical features of eye movements seem to remain un-

changed across the tasks, the COG tends to fixate on targets that are relevant to

the task at hand. This effect can be seen in the eye trajectories of Yarbus, in which

the viewers seem to be fixating on the targets that are more informative according

to the task. For instance, for the task of age estimation, faces are more likely to get

fixated, while for the task of wealth estimation the objects become of more interest

to the viewer. Thus, in this thesis the spatial information of the eye trajectories are

taken as an indication of the visual-task and are used to infer the ongoing task.

The process that is responsible for directing the COG to different parts of a visual

scene is called the visual attention. Thus, a task-specific attention model is proposed

to be used for revealing the attentional spots given the eye trajectories. Then the foci

of attention (FOA) are used to extract information about the task-relevant objects

in a scene, which in turn is used to recognize the executed visual-task.

The proposed attention model is based on the generative model of Hidden

Markov Models (HMM). For each task, we train a task-specific HMM to model

the cognitive process in the human brain that generates eye movements given the

task. The output of each HMM would be task-dependent eye trajectories along with

their respective likelihoods. In order to infer the ongoing task, we use this likelihood
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term in a Bayesian inference framework that incorporates the likelihood with a-priori

knowledge about the task and gives the posterior probability of various tasks given

the eye trajectory.

1.3 Overview of the Thesis and Its Contributions

In this thesis, the overarching goal is to explore the notion of visual-task inference

from the eye movement trajectories. To this end, an effort is made to realize a model

for visual attention to be used in a Bayesian inference framework that gives rise to

the task that best matches the attended objects in a scene. Different models are

proposed for synthetic and natural images, followed by a chapter on how to fuse

different sources of information in the inference.

In Chapter 2 an overview of the classical models of visual attention is given. In

the theories of visual attention there are two major viewpoints that either emphasize

bottom-up, image-based, and task-independent effects of the visual stimuli on the at-

tention allocation, or top-down, volition-controlled, and task-dependent modulation

of attention [19]. Both of these classical attention models are studied along with

their theoretical details and will be used in the evaluation of the proposed attention

model in later chapters.

At the end of Chapter 2 a review is given on the theory of the HMMs as the

foundation of the proposed attention model that is elaborated in the following chap-

ters. In particular, some light is shed on three fundamental problems in the model

description of the HMMs that concern the likelihood evaluation, decoding and train-

ing of the HMMs given a set of observation sequence. The solution to these problems
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will come in handy in training and using the proposed HMM-based attention models

in evaluating the likelihood term of the Bayesian inference.

Although image salience models have been extensively researched and are quite

well-developed, empirical evaluation of such models shows that they are disappoint-

ingly poor at accounting for actual attention allocations. In Chapter 3 we highlight

the shortage of the classical models in modeling the phenomenon called the covert

attention. In this chapter it is shown that one of the main deficits of the classical

models is that they assume that tracking the FOA is equivalent to tracking the COG.

However, the COG does not necessarily follow the FOA and in fact they can be well

away from each other. The attentional spot that is diverted away from the COG

is called the covert attention and requires a different technique, rather than simply

tracking the COG, to be located.

In the chapter it is explained how the “hiddenness” of the HMMs and the

“covertness” of the attentional spot can be mapped to each other, on which the

theoretical specification of an HMM-based attention model is established. In the pro-

posed model, covert attention is represented by the hidden states of a task-dependent

HMM. Fixation locations, thus, will correspond to the observations of an HMM and

can be used in training task-dependent models. By this interpretation of variables

we can use a sequence of eye positions to represent the hidden sequence of covert

attention locations, which is useful in spotting the task-specific targets based on the

eye movement trajectories.

In Chapter 4 the proposed HMM-based attention model is used in inferring

the visual-task. To this end, we show how the task-dependent HMMs can be used
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to evaluate the likelihood term in the Bayesian inference formulation. Different

attention models are proposed for task inference in synthetic and natural images. In

synthetic images the location of targets are pre-defined in the image, while in the

natural images we usually do not have the knowledge about the target. The HMMs

are trained on a database of task-dependent eye movements created for synthetic and

natural images. Having trained the task-dependent attention models for different

tasks, they are used to evaluate the likelihood of a given test eye trajectory, which

is in turn used in the Bayesian inference framework to recognize the visual-task.

In Chapter 5 a-priori information is used in order to better refine the results

of the posterior probability. It is shown that using Bayesian formulation allows us to

better fuse different sources of information to improve the task recognition results.

As an example, in this chapter an application is developed to recognize the word

that a user is typing by directing the FOA to different sequence of characters shown

on a soft keyboard. In this case a dictionary of lexicons is used as the a-priori

source and the test eye movement trajectories are fed into the HMMs trained for the

typing application to evaluate the likelihood of the trajectories given the parameters

of the HMMs. The results are compared to those of other techniques that use the

classical models of attention, which show that HMMs can be successfully applied to

the problem of task inference and produce better results compared to the classical

models.

Finally, Chapter 6 concludes the thesis with a review of its main findings and

introduces some remaining related questions to be explored.
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CHAPTER 2
Background

2.1 Visual-Task Inference Using Bayesian Inference

Bayesian Inference is a class of parametric learning technique that classifies data

in a probabilistic manner [81]. By applying a probabilistic inference, a mathematical

framework can be developed for merging all sources of information and presenting

the result in the form of a probability density function. In the case of developing

an inverse projection from eye movement space to visual-task space, this structure

will be useful in the sense that it can incorporate prior knowledge about the tasks.

Moreover, the inference gives us a probability distribution over different possible

tasks rather than providing us with a single task as the output. In this way a higher

level process can be designed to make decisions about the task and provide us with

the degree of confidence in the decision.

Suppose we have data of the form < O, θ >, where θ ∈ Θ is the class label,

which is selected from a set of all class labels Θ, and O is the observation vector

containing the observations ~Ot at time 1 ≤ t ≤ T i.e.:

O =< ~O1, ~O2, ..., ~OT > . (2.1)

In general, Bayesian inference models two entities:

• P (θ): The prior probability of each class θ ∈ Θ.
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• P (O|θ): The class conditional distribution, which is also referred to as the

likelihood function.

The probability of class θ given an observation sequence O can be written by

applying the Bayes’s rule:

P (θ|O) =
P (O|θ)P (θ)

P (O)
=

P (O|θ)P (θ)∑
θ′∈Θ P (O|θ′)P (θ′)

. (2.2)

Thus, in order to make an inference, the likelihood term should be modulated

by the prior knowledge about the class.

In visual activities, every 100 to 800 msec, the eyes make rapid movements,

called saccades in order to foveate different objects in a scene. Pattern information,

though, is only acquired during periods of relative gaze stability, called fixations,

owing to the brain’s suppression of information during the saccades [83]. Therefore,

in the context of visual-task inference from the eye trajectories, the problem can be

defined in terms of the Bayesian inference formulation by defining the observation

vector (O) as the consecutive fixations the eyes make on different locations in an

image in order to perform a task. Also the visual-task can be mapped to the class

labels (θ) that are selected from a pool of class labels (Θ). Therefore, the posterior

probability P (θ|O) is expressed as the probability of a visual-task, given the fixation

locations in an image.

By this new interpretation of variables, each ~Ot in equation (2.1) is a vector

containing the coordinates of the fixations that are sampled from a stochastic process

{ ~Ot} at discrete times t = {1, 2, ..., T} over random image locations. Each ~Ot, then,

is a vector defined by (xt, yt), where xt and yt are the x and y coordinates of the
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tth fixation, respectively. P (θ) is the prior probability of each task θ ∈ Θ, which

assigns a probability distribution to the tasks based on our prior knowledge about

them. This is where we can apply other sources of information about the tasks and

improve the inference.

P (O|θ) is the task conditional distribution, which is also referred to as the likeli-

hood function. The likelihood term defines the probability of observing the sequence

O while executing the task θ and can be considered as an objective evaluation of

the forward Yarbus process in the sense that it evaluates the probability of seeing an

observation given a task. The likelihood term can be broken down to the conditional

probabilities:

P (O|θ) =P ( ~O1, ~O2, . . . , ~OT |θ)

=P ( ~O1|θ)P ( ~O2| ~O1, θ) . . . P ( ~OT | ~O1 . . . ~OT−1, θ). (2.3)

The standard approach for quantifying the likelihood is to use a saliency map

as an indication of how attractive a given part of the field-of-view is to the atten-

tion [62]. In classical attention models, the likelihood is quantified as proportional to

the amplitude of the saliency map on different targets in an image. In the following

section we will review the classical models of attention and explain how they are

used to evaluate the likelihood of an eye trajectory.

2.2 Related works on Attention modeling

In the theories of visual attention, there are two major viewpoints that either

emphasize bottom-up, image-based, and task-independent effects of the visual stimuli

on the saliency map or top-down, volition-controlled, and task-dependent modulation
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of such maps. In the following sections we show how these models posit different

assumptions to evaluate the likelihood term.

2.2.1 Bottom-Up Saliency Maps

In the bottom-up models, the allocation of attention is based on the charac-

teristics of the visual stimuli and does not employ any top-down guidance or task

information to shift attention (i.e., P (O|θ) is assumed to be equal to P (O)). More-

over, in this model, it’s assumed that observations ~Ot are conditionally independent,

which reduces the likelihood term of equation (2.3) to:

P (O|θ) = P (O) = P ( ~O1, ~O2, . . . , ~OT )

= P ( ~O1)P ( ~O2) . . . P ( ~OT ). (2.4)

This assumption is called the näıve Bayes assumption and only needs the prob-

ability of directing the FOA to the fixation locations appearing in each trajectory to

obtain the likelihood term.

In this model, attention tracking is typically based on a model of image salience.

One can take the location with the highest salience as the estimate of the current

FOA. Current salience models are based on relatively low-level features, such as color,

orientation and intensity contrasts.

One of the most advanced saliency models is the one proposed by Itti and

Koch [60]. In this model the FOA is guided by a map that conveys the saliency of

each location in the field-of-view. The saliency map is built by linearly combining

the feature maps, that are the outputs from different filters tuned to simple visual

attributes, such as color, intensity and orientation (see figure 2–1).
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Figure 2–1: General architecture of the bottom-up attention model by Itti and Koch
[60]. The saliency map is built by linearly combining the feature maps, that are
the outputs from different filters tuned to simple visual attributes, such as color,
intensity and orientation (the figure is a reproduction of figure 1 in [60]).
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Figure 2–2 shows an example of a bottom-up saliency map obtained using the

Saliency Toolbox [120]. Figure 2–2a shows a synthetic image that comprises a com-

bination of character “A” and horizontal and vertical bars in three different colors.

The objects are aligned on a 5 × 6 grid on a plain black background. Figure 2–2b

shows the bottom-up saliency map according to the attention model of [60] shown in

the block diagram of figure 2–1. The feature maps are obtained by color, intensity

and orientation filters and combined into the saliency map by a linear combination.

(a) (b)

Figure 2–2: a) Original Image. b) Saliency map of the bottom-up attention model
presented in [60].

2.2.2 Top-Down Saliency Maps

Although image-based salience models have been extensively researched and are

quite well-developed, empirical evaluation of such models have shown that they are

disappointingly poor at accounting for actual attention allocations when a visual-

task is involved [27]. In our view the bulk of this shortfall is due to the lack of

task-dependence in the models.
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Attention is not just a passive enhancement of the visual stimuli, rather, it

actively selects certain parts of a scene based on the ongoing task. In modeling

the task-dependant visual attention, two contrasting views exist that emphasize the

visual salience or the cognitive relevance hypotheses. In the cognitive relevance

models, an object-based representation of the scene is used to select the fixation

locations based on the needs of the cognitive system in relation to the current task

and saccade targets are ranked based on the cognitive relevance of the objects to the

task [89]. In saliency-based models, attention maps are image-based and are derived

from the spatial attributes of an image. In some hybrid models, these two models

are combined to include both low-level, image-based and medium-level, proto-object-

based representations of the attentional map into a coherent architecture based on

real cognitive behaviour of the visual system in the presence of visual task [122, 123].

Although visual salience and cognitive relevance models hypothesize different

spatial representations for directing the attentional spot, empirical evidence supports

their connection, due to a correlation between objects and salience [28, 56]. In

other words, cognitive relevance models are based on object-based representations

and objects generally differ from the scene background in their image properties,

highlighting their locations in the saliency maps used in the saliency-based models.

The second major group of saliency-based, visual attention models is the top-

down, task-dependent one that modulates the bottom-up saliency maps according to

the viewer’s visual-task. Figure 2–3 shows an illustration of the interaction between

the top-down and the bottom-up models proposed in [61, 102]. In this model different

tasks enforce different weight vectors (W) in the linear combination phase.
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Figure 2–3: Influence of top-down, task-dependent priors on bottom-up attention
models. The influence can be modeled as a weight vector modulating the linear
combination of the feature maps (the figure is a reproduction of figure 1 in [61]).

Therefore, each task can be denoted by a specific weight vector that emphasizes

a certain combination of feature maps in order to make the relevant targets in the

saliency map become more conspicuous. For instance, in the task of searching for

red objects, the weight vector would put more emphasis on the color feature maps

rather than intensity or orientation maps.

In order to obtain the task-dependent weights, Itti and Koch [61] used a su-

pervised learning scheme that trains on a manually labeled binary target map that

indicates which locations are conspicuous according to the task. Thus, in the task of

searching for red objects, the binary target map highlights the red areas (or objects)
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to mark them as relevant locations to the task. To train a task-dependent model,

the weights are iteratively updated to minimize an error function, E, according to

the following optimization problem:

W = arg min
W

E, where E =
1

1 + min(Min(W))
Mout(W)

. (2.5)

In this equation Min is the saliency map’s maxima inside the manually outlined

target regions (one maximum per region) and Mout is the maximum saliency outside

those regions.1 In order to avoid divergence of the weights, a constraint is applied to

the weights that sets their sum to a fixed number [61].

The optimization process of equation (2.5) will result in a W that increases

the ratio of min(Min(W))
Mout(W)

, which in turn gives more weight to the feature maps that

highlight the target areas in the resulting saliency map. In other words, as soon as

the error function, E, goes below %50, all targets become more conspicuous and the

weight vectors can be used to generate the top-down, task-dependent saliency map.

Figure 2–4 shows an example of the top-down saliency map obtained using the

Saliency Toolbox [120] for the task of “counting the number of characters”. While

the bottom-up models combine the maps with constant weighs, the top-down models

(shown in the block diagram of figure 2–3) modulate the weights according to the

task. Figure 2–4a shows the same synthetic image used in figure 2–2, and figure 2–4b

1 Note that Min(W) is a vector containing the saliencies of the maxima at all
target regions, whereas Mout(W) is the saliency at the non-target maximum. The
values of both Min and Mout are dependent on the weight vector W, since the weight
vector modulates the saliency of the objects in an image.
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shows its saliency map tuned to the task of “counting the number of characters”.

As we can see, the locations of the characters are more conspicuous (lighter) in the

top-down saliency map.

(a) (b)

Figure 2–4: a) Original Image. b) Saliency map of the same image using a top-down
attention model [61].

Other combinations of the sources of guidance maps into a unified, task-dependent

attentional maps are also studied in the literature. Ehinger et al. [26] achieved a

94% accordance with human eye movements in a visual search task by combining

the saliency maps with the scene context and target features. Also Torralba et al.

[116] use contextual information for facilitating object search in natural scenes. The

contextual guidance model of attention use the bottom-up saliency map, scene con-

text, and top-down mechanisms at an early stage of visual processing and combine

them into a unified attention map. Kanan et al. [66] use the knowledge about how

and where objects tend to appear in a scene in order to derive an appearance-based

saliency model. In a recent study by Borji and Itti [7] 65 state-of-the-art salience

models of attention are studied and categorized into either bottom-up or top-down
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classes. In each category the models are qualitatively compared over 13 experimental

criteria. One of these criteria, based on which the saliency models are evaluated, is

the accountability for real-world eye movement datasets in terms of spatial correla-

tion coefficient. In order to evaluate the statistical relationship of the saliency models

with the eye movement datasets, the eye trajectories can be modeled into a so-called

ground-truth saliency map by combining recorded eye fixations from all subjects into

a map similar to that of the saliency-based attention models. This feature, along

with other features that are studied in [7], are typical criteria that are used in the

studies on attention modeling to objectively evaluate the models.

Overall, the task-dependent attention models improve the bottom-up models by

incorporating the task-dependency and can be used to generate the likelihood term

of equation (2.3) by the following equation:

P (O|θ) = P ( ~O1, ~O2, . . . , ~OT |θ)

= P ( ~O1|θ)P ( ~O2|θ) . . . P ( ~OT |θ), (2.6)

where P ( ~Ot|θ) is the normalized saliency of the location in the image visited at time

t given a task θ. Similar to the bottom-up models, each ~Ot, itself, is consisted of the

x and y coordinates of the COG at time t.

As we can see, in top-down models it is still assumed that the näıve Bayes

assumption holds and that the observations are conditionally independent. Thus,

artificial eye trajectories can be created by successively selecting a target with a

chance that is proportional to its conspicuity in the saliency map, regardless of its
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proceeding fixation location. In the next section we will show that this assumption

is in conflict with some of the known phenomena in the theories of eye movement.

2.3 Hidden Markov Models

Although salience-based top-down models have somewhat addressed the problem

of task independence of the bottom-up models, they are based on some assumptions

that degrade their performance. Tatler et al. [112] show that gaze allocation models

that are based on the salience models are limited at accounting for many aspects of

free viewing and can fail dramatically in the context of natural task performance. In

their study they show that there are a set of reasons that limit the salience models,

which suggest moving away from the picture-viewing paradigms to the models that

can generalize to a broader range of experimental contexts. They argue that some

of these limitations lie in the basic assumptions at the heart of such studies that are

problematic if we wish to try to generalize these models to how gaze is allocated in

natural behavior.

One of these arguments about the applicability of salience maps in modeling

natural visual behavior is their intrinsic interpretation of cognitive relevance with

spatial deviations of low-level features from local surround. While the contrast of

low-level feature in fixated locations are shown to be statistically higher than control

locations in an image, this correlation between the features and fixation is relatively

weak [82, 91, 99]. This lack of explanatory power of image salience in the context of

active tasks becomes particularly evident in the studies of the tasks of hitting a ball

[1, 77], tea making [74] and sandwich making [52], where saccades are directed to the

expected point of contact with no particular contrast in low-level visual features. Due
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to this lack of explanatory power of image salience models, another group of models of

task-dependant visual attention is emerging that emphasizes the cognitive relevance

hypotheses in predicting fixation locations. In the cognitive relevance models, an

object-based representation of the scene is used to select the fixation locations based

on the needs of the cognitive system in relation to the current task and saccade targets

are ranked based on the cognitive relevance of the objects to the task [89]. In some

hybrid models, the cognitive relevance and image salience are combined to include

both low-level, image-based and medium-level, proto-object-based representations of

the attentional map into a coherent architecture based on real cognitive behavior of

the visual system in the presence of visual task [122, 123].

Another deficiency of salience models highlighted in [112] is that the decision

about where to fixate is made by a winner-takes-all process that selects the most

conspicuous location on a salience map. In this selection criterion, though, what has

not been accounted for is the retinal position of image information, which leads to

neglecting the fact that the retinal acuity decays in peripheral vision. Moreover, in

order to allow attention to move on from the most salient location in the map, these

models assume a process known as inhibition of return (IOR) to inhibit the focus

of attention from returning to the recently attended locations. Although IOR is

supported by many classical psychophysical studies [69, 70, 71, 97], recent empirical

evidence in viewing photographic images rejects such an effect in the eye trajectories

[109, 113]. As another limitation of salience models, Tatler et al. [112] highlight the

importance of temporal information about the eye movements besides their spatial

characteristics, which is usually neglected in these models. In other word, the primary
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goal of salience models is to spatially model the fixations and they usually disregard

the temporal aspects of viewing behavior. This is while evidence from natural tasks

emphasizes the need to consider fixation duration as well as fixation location in

understanding the mechanism of the visual system [25, 51, 74].

One of the other limitations of salience models highlighted in [112] that is partic-

ularly of interest to this work is postulating that the saccades are precisely directed

to the target locations for processing. While this seems to be a plausible assump-

tion from the perspective of eye movement behavior in simple viewing tasks, in the

context of natural tasks this assumption might not be true. For instance, Johansson

et al. [64] showed that for a task of moving an object past an obstacle foveating the

target within 3 degrees of visual angle was sufficient. Similarly in a tea making task

[64] corrective saccades of amplitude less that 2.5 degrees were infrequent suggesting

that in natural behavior the fixations land only close to the attention demanding

targets and they are not always precisely following the focus of attention.

In our proposed model we use HMMs to relax the inherent assumptions in the

salience models and use real-world eye movements to train task-dependent models

that can infer the visual-task on natural images. Particularly we will show how

HMMs relax the assumption of precise target fixations that is assumed in salience

models by modeling the fixations by a Gaussian distribution function that allows

for fixations well away from the target. Moreover, by analyzing the eye trajectories

as time-series we give temporal features of eye movements the same weight as their

spatial features. The notion of cognitive relevance to the low-level features is also
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loosened in the HMM models as the Gaussian distributions are allowed to move away

from salient objects to more cognitive relevant targets in an image.

The theory of HMMs have been used in different fields, such as speech recogni-

tion [98], anomaly detection in video surveillance [86] and hand writing recognition

[58]. HMMs have also been used in analysis of eye movements. In [104] HMMs are

used to automatically label the recorded eye movements as fixations and saccades.

In another study, Salvucci and Anderson [103] developed a HMM-based model for

analysis of eye movements during the task of equation solving. Simola et al. [108]

modeled three cognitive states of visual process during a reading task by the hidden

states of HMMs. Van Der Lans et al. [118] split a visual search task into two stages

of localization and identification and mapped each of these cognitive states into one

of the states of a two-state HMM.

The successful application of the HMMs in time series analysis, such as the

speech signal, makes it a good candidate for our goal of analyzing the FOA sequences.

In order to develop the HMM-based attention model an introduction is given here

on the theory of the HMMs. The solutions for training the HMMs is used in the

later chapters to train a task-dependent attention model, which is later used in a

Bayesian inference to reveal the ongoing visual-task.

2.3.1 Model Definition

In the previous section we showed that classical models of attention are limited

in terms of accounting for real-world eye movements of observers while viewing nat-

ural images. This could be concluded from the benchmark presented in [65] that

compares the performances of salience models in predicting eye fixations made on
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natural images. One of the most striking experiments done in this study was to

compare the performance of the best salience model and a model based on real eye

trajectories. It is shown that even the best model performs worse than the fixation

map of just one human observer in terms of prediction rate of the eye trajectories.

Thus, in this section we present a model that is based on real, task-dependent eye

trajectories recorded while viewing natural images. To do so, we use Hidden Markov

models (HMMs) as a tool for time-series analysis of the eye trajectories to encode the

dynamics of natural eye movements into task-dependent models. Therefore, one of

the benefits of our HMM model is their trainability on natural eye movements to cap-

ture their spatial and temporal patterns rather than purely depending on analyzing

the patterns of image features in fixated regions, as done in the salience models.

Hidden Markov models (HMMs) are a group of generative models that are used

in supervised and semi-supervised learning [98]. Similar to the first-order, finite-

state, discrete-time Markov chain (DTMC), HMMs govern the transitions between

the states by a first-order Markov process.

A typical DTMC can be defined by a set of parameters, γ = {A,Π}, where:

• A = {aij} is the state transition probability distribution, where

aij = P (qt+1 = sj|qt = si), 1 ≤ i, j ≤ N. (2.7)

• qt ∈ S and 1 ≤ t ≤ T is the state at time t.

• S = {s1, s2, . . . , sN} is the state space.

• N is the number of states in the model.

• Π = {πi} is the initial state distribution.
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• πi is the probability of starting a sequence at state i, i.e.,

πi = P (q1 = si), 1 ≤ i ≤ N. (2.8)

In a more general view, both HMMs and DTMCs are classes of finite state

machines (FSMs) [4] that at each time step generate an observation sample vector

~Ot (t ∈ [1, T ]) according to the state currently being visited. Therefore, in each

traverse of these FSMs we will obtain an observation sequence O, where:

• O is a sequence of T observations ( ~O1, ~O2, . . . , ~OT )

• ~Ot (t ∈ [1, T ]) is an observation sample vector consisted of M feature values

(ot,1, ot,2, . . . , ot,M)

• M is the number of feature values in each observation.

In the DTMCs, each observation vector ~Ot can only be generated by a specific

state, meaning that there is no overlap between the observation vectors of different

states. Figure 2–5a shows a DTMC with two states (i.e., N = 2). At the time step

t = 0, the process starts with entering one of the states s1 or s2 with the probability

of π1 or π2, respectively. In the following time steps, the process chooses the next

state sequentially according to the transition probabilities aij and at each time step

an observation is generated, which is specific to the state being visited (i.e., there is

no overlap between the observation generating functions’ outcomes).

Figure 2–5b shows a sample state sequence of the process, {qt : 1 ≤ t ≤ 3},

where qt ∈ {s1, s2} is the state that the sequence is visiting at time t. The obser-

vation sequence is in the form { ~Ot : 1 ≤ t ≤ 3}, which ,due to the non-overlapping
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characteristic of the observation space between the states, can also be used to rep-

resent the unique state sequence.

(a)

(b)

Figure 2–5: a) A first-order, finite-state, discrete-time Markov chain (DTMC) with
two states (i.e., N = 2). The DTMC is defined by a state space S = {si : 1 ≤ i ≤ N},
a state transition matrix AN×N = {aij : 1 ≤ i, j ≤ N} and a set of initial state
distribution Π = {πi : 1 ≤ i ≤ N}. b) A sample trajectory that is generated by the
DTMC. In the trajectory the states are overt and the observer can see which state
is visited at each time step.

The Markov process of a HMM is also defined by the parameters of the under-

lying DTMC. The only difference between the DTMCs and the HMMs is that in the

HMMs the observations are generated according to a state-specific density function,
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called the observation pdf (B). In contrast to the observations of a DTMC, in a

HMM the observation pdf of different states can overlap and might generate the

same observation as the output. Therefore, in HMMs we cannot directly map an

observation to a unique state, which makes the states hidden to the observer.

A typical discrete-time, continuous HMM, λ, can be defined by a set of pa-

rameters, λ = {A,B,Π}, where B = {bj( ~Ot)} is the observation probability density

function in the state j and

bj( ~Ot) = P ( ~Ot|qt = sj), 1 ≤ j ≤ N, 1 ≤ t ≤ T (2.9)

Figure 2–6a shows a HMM with two states, similar to the DTMC shown in

Figure 2–5a. In this example, similar to what we will see in the HMM-based attention

model, each observation (i.e., ~Ot) is a 2D vector generated according to the state-

specific, 2D Gaussian distribution functions.

Figure 2–6b shows a sample outcome of the HMM of figure 2–6a. The outcome of

the process is an observation sequence { ~Ot : 1 ≤ t ≤ 3}, where ~Ot is the observation

at time t. As it is shown in this figure, the states are hidden to the observers and

only the observations are overt.
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(a)

(b)

Figure 2–6: a) A HMM with two states (i.e., N = 2) is shown in this figure. In
addition to the parameters of the underlying DTMC (i.e., A and Π), a HMM has
an extra parameter called the observation pdf (B), which gives the probability dis-
tribution over different observations in each state. b) In the trajectories generated
by HMMs, the state sequence is hidden to the observer and at each time step, an
observation is generated according to the density function, B.
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HMMs can be used as a generative model to reproduce sequences of observations

that are consistent with the implicit Markov structure of their model. To generate

a sample trajectory of length T , we have to choose an initial state according to the

initial state distribution Π, choose an observation ( ~Ot) according to the observation

parameters (B) of the current state, choose the next state according to the state

transition probability (A) and repeat the process for T times (see figure 2–7).

Figure 2–7: HMMs as generating models. We can generate a sample observation
sequence ( ~O1, ~O2, . . . , ~OT ) by using the probabilistic parameters of HMMs {A,B,Π}.
In this example we chose M = 2 and ~Ot = (ot,1, ot,2).

In the literature related to the HMMs we can always find three fundamental

problems that are of main interest: evaluation, decoding and training. Assume we

are given an HMM, λ, and a sequence of observation, O. Evaluation or scoring

is the computation of the probability of the observation sequence given the HMM,

i.e., P (O|λ). Decoding finds the best state sequence that maximizes the probability

of the observation sequence given the model parameters. Finally, training adjusts
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model parameters to maximize the probability of generating a given observation se-

quence (training data). The algorithms that cope with evaluation, decoding and

training problems are called forward (or backward), Viterbi and Baum-Welch algo-

rithm, respectively. In the rest of this chapter we review the methods for evaluation

and training, as these two problems will be used in the proposed attention model

introduced in the following chapters.

2.3.2 Evaluation

In the evaluation we want to calculate the probability of P (O|λ) for a given

sequence of observation, O. One method to do that would be to evaluate it exhaus-

tively over all possible state sequences:

P (O|λ) =ΣQP (O, Q|λ)

P (O, Q|λ) =P (O|Q, λ)P (Q|λ)

(2.10)

For a given state sequence Q = q1q2...qT we would have:

P (O|Q, λ) =bq1( ~O1)bq2( ~O2)...bqT ( ~OT )

P (Q|λ) =πq1aq1q2aq2q3 ...aqT−1qT .

(2.11)

Therefore:

P (O|λ) = Σq1q2...qTπq1aq1q2bq1(
~O1)aq2q3bq2( ~O2)aq2q3 ...aqT−1qT bqT ( ~OT ) (2.12)

However with T observations and N states in the model we have NT possible

states and approximately 2TNT operations. A more efficient way to calculate the

term P (O|λ) is to use iterative algorithms of forward algorithm or backward algo-

rithm.
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Forward Algorithm

In this method we define αt(i) as the probability of observing the first t obser-

vations ( ~O1 to ~Ot) with the state sequence terminating in state qt = si, given the

parameters of the HMM, λ, i.e.:

αt(i) = P ( ~O1
~O2... ~Ot, qt = si|λ) (2.13)

Given this definition we can calculate the probability of a given observation

sequence (i.e., P (O|λ)) by iteratively calculating the next value of αt(i) given its

t − 1 previous values. Eventually we can terminate the process when reaching the

end of the observation sequence, where we can calculate the observation probability

by summing over different final states:

• Initialization: α1(i) = πibi( ~O1), 1 ≤ i ≤ N

• Induction: αt+1(i) = [ΣN
j=1αt(j)aji]bi( ~Ot+1), 1 ≤ t ≤ T − 1 and 1 ≤ i ≤ N

• Termination: P (O|λ) = ΣN
i=1αT (i)

This way with T observations and N states, we require approximately N2T opera-

tions.

Backward Algorithm

Another way to calculate the term P (O|λ) efficiently is to do it in the reverse

direction of the forward algorithm. In this method we define:

βt(i) = P ( ~Ot+1
~Ot+2... ~OT , qt = si|λ) (2.14)

as the probability of observing the last T−t observations ( ~Ot+1 to ~OT ) with the state

sequence being in the ith state at the time step t (i.e., qt = si), given the parameters
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of the HMM, λ. Given this definition we can calculate the observation probability of

a given observation sequence (i.e., P (O|λ)) following the same procedure as in the

forward method, but in the reverse direction:

• Initialization: βT (i) = 1, 1 ≤ i ≤ N

• Induction: βt(i) = ΣN
j=1aijbj( ~Ot+1)βt+1(j), t = T −1, T −2, ..., 2 and 1 ≤ i ≤ N

• Termination: P (O|λ) = ΣN
i=1πibi( ~O1)β1(i)

Similar to the forward method the complexity of this method for T observations

and N states is approximately N2T .

2.3.3 Training

In order to train the parameters of an HMM we need to have sequences of

training observations O. The goal is to train the model parameters of an HMM,

λ = {A,B,Π}, so that the observation probability P (O|λ) becomes maximum for

the training database. In the theory of HMMs, a method based on dynamic pro-

gramming, called Baum-Welch (also known as the Forward-Backward algorithm), is

suggested to iteratively find a solution to this problem.

Baum-Welch Algorithm

In the Baum-Welch algorithm, given an initial HMM model, λ, we estimate a

new set of model parameters, λ̂, so that P (O|λ̂) ≥ P (O|λ). In order to do this, we

need to extensively use forward and backward methods and based on their evaluation

iteratively improve the parameters.

We define ξt(i, j) as the probability of being in state si at time t and state sj at

time t+ 1, given the model λ and the observation sequence O, i.e.,

ξt(i, j) = P (qt = si, qt+1 = sj|O, λ) (2.15)
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Given this definition we will have:

ξt(i, j) =
αt(i)aijbj( ~Ot+1)βt+1(j)

P (O|λ)
=

αt(i)aijbj( ~Ot+1)βt+1(j)

ΣN
i=1ΣN

j=1αt(i)aijbj(
~Ot+1)βt+1(j)

(2.16)

Based on the above definition, we define two more posterior probabilities that will

be used in the iterative method for finding the model parameters:

• ΣT−1
t=1 ΣN

j=1ξt(i, j): Expected number of transitions from si

• ΣT−1
t=1 ξt(i, j): Expected number of transitions from si to sj

Given these parameters we can re-estimate the model parameters as follows:

• Initial State Probabilities:

Expected number of time instances in state si at time t = 1

π̂ = ΣN
j=1ξ1(i, j)

• Transition Probabilities:

Expected number of transitions from si to sj over expected number of transi-

tions from si

âij = [ΣT−1
t=1 ξt(i, j)]/[Σ

T−1
t=1 ΣN

j=1ξt(i, j)]

• Observation Probabilities:

Expected number of times in state sj and observing ~Ot over expected number

of times in state sj

b̂j( ~Ot) = [ΣT−1

t′=t
ΣN
i=1ξt′ (j, i)]/[Σ

T−1
t=1 ΣN

j=1ξt(j, i)]

Therefore the Baum-Welch algorithm tunes the parameters to the training set

using the following iterations:

• Initialization:

Obtain initial estimation for λ = {A,B,Π}
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• Likelihood Computation:

Compute likelihoods αt(i) and βt(i) and posterior probabilities ξt(i, j) for i, j =

1, ..., N and t = 1, ..., T

• Parameter Update:

Given the likelihoods and the posterior probabilities, compute π̂, âij and b̂j( ~Ot)

• Termination:

Repeat Steps Likelihood Computation and Parameter Update steps until con-

vergence, i.e.,

(logP (O|λ̂i+1)− logP (O|λ̂i)) < ε

The algorithms for training the HMMs and using them to evaluate the prob-

ability of an observation sequence give us the necessary tools for developping our

HMM-based attention models that will be introduced in the next chapter.
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CHAPTER 3
Using HMMs as Attention Models

As shown in chapter 2, classical attention models are based on a spatial map

that defines the conspicuous locations that are potential targets of the fixations.

However, there are several factors that make the saliency-based models inaccurate

when it comes to modeling the real eye movements while viewing an image.

Higher-order processes are shown to influence the selection of targets in an eye

trajectory. These processes affect the selection of the next target based on the

recently fixated ones, which is in conflict with the independence assumption in the

likelihood estimation of the saliency-based models used to derive equations (2.4)

and (2.6). For instance, Proximity preference is a cognitive process that facilitates

fixations near the currently fixated target and similarity preference is a cognitive

process that favors the similar objects to the one that is currently being fixated [72].

Inhibition of return (IOR) [70] is another high-level process that discourages fixation

on the target that has just been visited.

Another issue with the classical attention models is the implicit assumption of

overtness of visual attention. While most of the times the FOA follows the COG,

this is not always the case. When a visual-task is given to an observer, although

correctly executing the task needs directing the FOA to certain targets in an image,
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the observed COG trajectory can vary from subject to subject.1 In other words, eye

position does not tell the whole story when it comes to tracking attention [14].

In this chapter a new attention model based on the theory of HMMs is proposed

that addresses these issues by relaxing the independence and overtness assumptions

that are implicit in the classical attention models. Before describing the proposed

model, we elaborate on the dificiencies of the classical models and show sample eye

trajectories that do not fully comply with these assumptions.

3.1 Eye Movements are Sequential

In both bottom-up and top-down viewpoints in modeling the visual attention,

the probability of successive observations are assumed to be mutually independent

and an application of näıve Bayes assumption is implicated in equations (2.4) and

(2.6). In other words, in classical models the probability of fixating on a certain

location in the image only depends on the saliency of that point in the saliency

map and it is assumed to be independent of the previously fixated targets in the

scene. However, this assumption is inconsistent with what has been demonstrated

in the human visual psychophysical experiments [97]. For instance, early studies by

Engel [30, 31] indicated that in a visual search task, the probability of detecting a

target depends on its proximity to the location currently being fixated (proximity

1 So far we used COG and FOA interchangeably, but from now on, after explaining
the difference between these two phenomena, we will distinguish between these two
terms.
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preference). Although Dorr et al. [24] suggest that in a free viewing of a scene, low-

level features at fixation contribute little to the choice of the next saccade, Koch et

al. [72] and Geiger et al. [40] suggest that in a task-involved viewing, the processing

focus will preferentially shift to a location with the same or similar low-level features

as the presently selected location (similarity preference).

Perhaps the discrepancy between artificial and natural eye trajectories can best

be demonstrated by comparing a trajectory produced by a saliency-based model

against a recording of the eye movements. Figure 3–1a shows an artificial eye tra-

jectory produced by a top-down saliency map and figure 3–1b shows a recording of

the eye movements of a subject. In both cases the task was to count the number of

characters and an identical stimulus was used for both scenarios. For the top-down

model the saliency map of Itti and Koch [61] is used (for the diagram see figure 2–3

and for the saliency map based on which the eye trajectory is generated see figure 2–

4b). As we can see the COGs in figure 3–1a (artificial) are sparse, while those of

figure 3–1b (natural) are more correlated to their predecessors’.

The successive COGs of the real eye trajectory show dependence to each other

in the sense that the local transitions between them are encouraged while the remote

transitions to a distant location in the image are discouraged. In the eye trajectory

generated by the saliency model, however, the COGs are mutually independent,

resulting in a random exploration of the “A”s in the trajectory. This effect is the

direct result of the näıve Bayes assumption that is embedded in the likelihood terms

of the classical models of attention.
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(a) (b)

Figure 3–1: Comparison of an eye trajectory produced by the classical models of at-
tention vs. natural task-dependent eye movements. The task is to count the number
of characters in the image. a) The trajectory produced by the top-down model. b)
The trajectory obtained by recording a subject’s eye position while performing the
task.

An alternative approach to obtain the density function of the likelihood term is

to allow for dependence between the attributes ~O1 . . . ~OT . Bayesian belief networks

are means to take into account the dependence between attributes in a graphical way.

Since the observations ( ~Oi : i ∈ [1, T ]) are sequentially sampled in time, we propose

to use the dynamic Bayesian networks to represent sequences of observations [41].

The simplest form of dynamic Bayesian networks is the Markov process. In a

study Hacisalihzade et al. [47] used Markov processes to model the visual fixations of

observers during the task of recognizing an object. They showed that the eyes visit

the features of an object cyclically, following somewhat regular scanpaths rather than
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crisscrossing it at random.2 In another study, Elhelw et al. [29] also successfully used

a first-order, discrete-time, discrete-state-space Markov chain to model eye movement

dynamics. Stark et al. [110] also came up with a Markov process as a general

model of fixation placement during the task of reading. Pieters et al. [95] also

observed a similar pattern in the scanpaths of the observers while looking at printed

advertisements.

Based on the successful application of Markov process to model the eye-position

trajectories, which is correlated to the attention location trajectories [100], we pro-

pose a first-order, discrete-time, discrete-state-space Markov chain to model the at-

tention cognitive process of the human brain. Such a process is called a first order

Markov chain, if for any t > 0:

P (qt+1|qt, qt−1, . . . , q1) = P (qt+1|qt). (3.1)

In this equation each eye fixation is assigned to one of the pre-defined states in an

image and the Markov process defines the probability of transitions from a state to

another in an eye trajectory. This interpretation forms a finite-state, discrete-time

Markov chain (DTMC) that gives us the likelihood of an eye trajectory based on the

loci of fixations (details in section 3.3). Moreover, if we posit a first-order Markov

process as the underlying process that governs the transitions between the states

(which is shown to be a valid assumption for eye movements [47]), we can train a

2 Repetitive and idiosyncratic eye trajectories during a recognition task is called
scanpath [88].
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first-order DTMC for each task. This model is used by Elhelw et al. [29], where they

successfully used a first-order DTMC to model eye movement dynamics.

3.2 Overt vs. Covert Visual Attention

While it is well known that there is a strong link between eye movements and

attention, the attentional focus is nevertheless frequently well away from the current

eye position [36]. The classical attention models that are based on eye tracking

may be appropriate when the subject is carrying out a task that requires foveation.

However, these methods are of little use (and even counter-productive) when the

subject is engaged in tasks requiring peripheral vigilance. Moreover, due to the

noisy nature of the eye-tracking equipment, the actual eye position itself is usually

different from what the eye-tracker shows, which will bring in systematic error to the

estimations.

Figure 3–2 shows two different eye trajectories recorded while viewers were

counting the number of characters in a synthetic image. As can be seen, these

two images illustrate different levels of linkage between the COG and FOA. In fig-

ure 3–2a, fixation points mainly land on the targets of interest (overt attention),

whereas in the other instance (figure 3–2b), the COG does not necessarily follow

the FOA and sometimes our awareness of a target does not imply foveation on that

target (covert attention).

The first scientist to provide an experimental demonstration of covert attention

is known to be Hermann Von Helmholtz [55]. In his experiment, Helmholtz briefly

illuminated inside a box by lighting a spark and looked at it through two pinholes.

Before the flash he attended to a particular region of his visual field without moving
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(a) (b)

Figure 3–2: Eye trajectories recorded while executing a task on the same stimulus.
In the trajectories straight lines depict saccades between two consecutive fixations
(shown by dots). In this figure two snapshots of the eye movements during the task
of “counting the number of characters” is shown. The results from counting the
characters were correct for both cases. Thus, the target that seems to be skipped
over (the middle right “A” in b) has been attended at some point.

his eyes in that direction. He showed that only the objects in the attended area

could be recognized implying attention can be away from the eye movements.

In real life, human attention often deviates from the locus of fixation to give us

knowledge about the parafoveal and peripheral environment. This knowledge can

help the brain decide about the location of the next fixation that is most informative

for building the internal representation of the scene. This discrepancy between the

FOA and the COG helps us efficiently investigate a scene, and at the same time

makes the FOA covert and consequently hard to track.
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The disparity between the FOA and the COG can be attributed to several other

factors other than covert attention. Accidental, attention-independent movement of

eye, equipment bias, undershooting or overshooting of the target [3], or the phe-

nomenon of center-of-gravity fixations [130, 53, 87] are some of the most common

sources of recurrent divergence between the COG and the FOA, which also cause the

occurrence of dissimilar eye trajectories for a given task.

3.3 Fundamentals of a HMM-Based Attention Model

One solution to the problem of detecting the covert attention is to force the

binding of attention to eye movement by decreasing the signal-to-noise of the image,

i.e., lowering the ratio between signal strength (target salience) and noise strength

(distractor salience). In this way, the targets become more resolution demanding and

will entail foveation in order to be distinguished from their surrounding distractors.

The resulting COG, then, will be the same as the FOA trajectory.

The manipulation of SNR has been studied before by Koch et al. [72] as a way to

attract attention to a certain target in an image. In another study, Wolfe et al. [125]

proposed maximizing the SNR to decrease the search time. In their experiments,

they noticed an increase in the search time by lowering the SNR in synthetic stimuli.

Although by decreasing the SNR we could obtain attention trajectories rather

than eye trajectories, manipulation of the image SNR is not always feasible. For

instance, in natural images, or more generally in non-synthetic stimuli, we have

limited control over the image to adjust the saliency of targets. Figure 3–3 shows

an eye trajectory recorded while a viewer was performing the task of “counting the

number of people” in a natural image, which shows that the covert attention could
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happen in natural images as well, where the application of the SNR manipulation

technique to bind the COG and the FOA is not straightforward.

(a) (b)

Figure 3–3: a) The original image, on which the task is performed. b) An eye
trajectory recorded while executing the task of “counting the number of people in the
image”. In the trajectory the straight lines depict saccades between two consecutive
fixations (shown by dots). While the viewer gave the correct answer in the trial, one
of the targets (the leftmost person in the image) seems to be overlooked. The target
that did not get any fixations is either attended covertly or has been fixated by the
parafoveal vision.

In order to relax the overtness and independence assumptions in the classical

models of attention, in this thesis we propose to use the HMMs as a better alternative

to the classical models of attention in tracking the overt and covert shifts of attention.

As opposed to the classical methods of attention tracking, the proposed model relaxes

the overtness constraint postulated in both bottom-up and top-down methods by

using the state-specific Gaussian observation probability density functions to model

the task-dependent attention process. Moreover, the underlying Markov process of
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the HMMs implicates the sequentiality of the attention and allows for dependence

between consequetive fixations.

HMMs allow for covert attention by postulating the fixations to be the outcome

of the observation distributions, which can be a point away from the FOA, whereas

in the top-down and bottom-up attention models the fixation location is assumed to

be on attention demanding spots in an image. When entering a state of a HMM, a

Gaussian distribution function generates a fixation as an observation that is overt

to the viewer (recall figure 2–6b) while the attentional state is covert to the viewer.

Thus, in our proposed model the states represent the FOAs, and the COGs form the

observation sequences.

In the model each state is designated to one or several potential attentional

targets and each observation density function is defined by a 2D Gaussian function

centered on each target (for now we assume all of the objects in an image are potential

attentional targets for a given task). In other words directing attention (covert or

overt) to a target is equivalent to going to the state designated to that target and

recording an eye position is equivalent to generating a random outcome from the 2D

Gaussian observation pdf of that state that is centered on the target. The location

of the COGs, thus, can be away from the target that is being attended.

To train the HMMs, the task-dependent eye movement trajectories are used.

In the training phase the transition probabilities (A), initial state distributions (Π)

and the observation pdfs (B) are trained to form task-dependent models λθ, which

in turn can be used to evaluate the probability P (O|λθ) for the test trajectories.
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In order to better understand how the concepts of hidden state and observation

in a HMM relate to the covert FOA and overt COG, respectively, here we sketch a

prototype that employs HMMs as a cognitive process model of attention for both a

synthetic and a natural image.

Figures 3–4a shows a sample synthetic stimulus comprising characters among

horizontal and vertical bars. All items are in blue, red or green colors and they are

placed on a 5×7 grid with a plain black background. Figure 3–4b shows eye fixation

locations of a subject while performing a task (counting the number of characters)

superimposed on the original stimulus. The fixation locations sometimes undershoot

or overshoot the targets due to the oculomotor properties of the human eyes or noisi-

ness of the eye tracker. In our model we posit that these fixation locations constitute

the observations in the HMM context. We postulate that these observations are ran-

dom outcomes of a 2D Gaussian probability density function (with features x and y

in Cartesian coordinates), which is maximum on the target location and fades off as

we become more distant (Euclidean) from the targets.

To build a database of task-dependent eye trajectories, we ran 1080 trials and

recorded the eye movements of six subjects while performing a set of pre-defined

simple visual-tasks. Five different visual stimuli were generated by a computer,

each of which containing 30 objects randomly selected from a set of nine objects

(horizontal bar, vertical bar and character “A” in red, green and blue colors) that

were placed at the nodes of an imaginary 5×6 grid (6.75o × 8.1o) superimposed on

a black background. The visual-tasks were counting red bars, green bars, blue bars,

horizontal bars, vertical bars or characters (six tasks in total). Each of the tasks
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(a) (b)

Figure 3–4: a) The original synthetic image, on which the task is performed. b) Eye
trajectories recorded while executing the task of “counting the number of characters”,
superimposed on the image.

was defined so that their corresponding targets can be distinguished from distractors

by a single feature. We used an eye tracker (ISCAN RK-726PCI) to record the

participant’s left eye positions and classified the eye movement data into saccades

and fixations using the velocity-threshold identification (I-VT) method [34] with a

50 deg/sec threshold.

For training the task-dependent HMM for the task of “counting characters” the

Baum-Welch algorithm is applied on a training set selected from the database of task-

dependent eye trajectories. For the initial values used in the Baum-Welch training,

we used an ergodic HMM comprising N states, each of which is dedicated to one of

the targets in the image (in this example characters, thus N = 12). Random values

(with a normal distribution) were used as the initial values of the transition matrix

(A) and the initial state probabilities (Π). As for the observation pdfs (B), we used

2D Gaussian distributions and centered them on each of the targets in the image.
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During the training we optimized the covariance and mean of the observation pdfs,

as well as the transition and initial state distributions to maximize the likelihood of

the training set.

This layout is used as a simple structure for a task-dependent HMM to demon-

strate the idea of training HMMs as attention models and use them to account for

the off-target fixations in a natural eye trajectory. That said, the model selection

and initialization of the parameters have a significant effect on the resulting atten-

tion models and their accuracy to model the attentional deployment on an image

and need to be more specific to the characteristics of the tasks and the stimuli. In

later chapters, we will see that defining the task-specific targets in advance and using

that information to train the HMMs is not always feasible. Thus, in chapters 4 we

will elaborate on different structures of the HMMs given different types of tasks and

stimuli.

Figure 3–5 shows a depiction of the observation density associated with the

HMM that is trained on the eye-trajectories recorded while executing the task of

counting the number of characters in the synthetic image using the above training

scheme. Each 2D Gaussian pdf is demonstrated by a top-view heat map, where the

heat shows higher probabilities. Each Gaussian pdf represents an attentional state

and at each time step a COG coordinate pair is generated by drawing a random out-

come from a pdf that is randomly selected according to the transition probabilities.

For instance, directing the FOA to the bottom left character can result in a fixation

that is further away from the physical boundaries of the character. The capability

of Gaussian HMMs in representing off-target fixations is illustrated in this image by
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overlaying the trajectory of figure 3–4b on the image. While the classical models

seemed to fail to account for off-target fixations, here we show that the Gaussian

observation function can properly justify them.

Figure 3–5: Overlaying the 2D observation Gaussian distributions on a synthetic
image. The combination of the Gaussian pdfs form the HMM that is trained for
the task of counting the number of characters in the image. The overall model
can generate synthetic eye-trajectories based on the parameters of the HMM. The
transitions between the states are governed by the transition probabilities, and at
each time step, the state’s observation pdf generates the 2D coordinates of the next
fixation. The trajectory shown in the image is the real eye movements of a viewer
while performing the task. As we can see, all fixations are covered by the observation
pdfs, which makes the whole trajectory a plausible outcome of the HMM.

Figure 3–6 shows a HMM that is trained on the eye-trajectories recorded while

executing the task of counting the number of people in a natural image. Similar
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to the HMM of figure 3–5, the task-specific attention model allows for off-target

fixations by using the Gaussian observation pdfs as the generative models of the

fixation locations. In this attention model, a similar training scheme was used and

each Gaussian represents an attentional state. The resulting HMM is also a fully

ergodic HMM that allows for transitions from each state to one another.
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Figure 3–6: Overlaying the 2D observation Gaussian distributions on an image. The
combination of the Gaussian pdfs form the HMM that is trained for the task of
counting the number of people in a natural image. The overall model can generate
synthetic eye trajectories based on the parameters of the HMM. The transitions
between the states are governed by the transition probabilities, and at each time
step, the state’s observation pdf generates the 2D coordinates of the next fixation.
The trajectory shown in the image is the real eye movements of a viewer while
performing the task. As we can see, all fixations are covered by the observation pdfs,
which makes the whole trajectory a plausible outcome of the HMM.
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3.4 Discussion

The classical models of eye movement analysis are limited in terms of accounting

for real-world eye movements of natural vision due to their pure dependence on low-

level image features. Low-level features, however, are not always conspicuous in the

fixation locations of a task-dependant eye movement as shown in the eye recordings of

observers in natural task execution [1, 77, 74, 52]. As an alternative to the classical,

salience-based, attention models, it is shown in the eye movement studies that the

fixation map of human observers outperforms even the best salience-based models in

terms of prediction rate of the eye trajectories [65]. Thus, in this chapter we studied

HMMs as a model that is based on real, task-dependent eye trajectories recorded

while viewing natural images. To do so, we used Hidden Markov models (HMMs)

as a tool for time-series analysis of the eye trajectories to encode the dynamics of

natural eye movements into task-dependent models.

Using the HMM-based method not only allows us to track overt foci of atten-

tion, but also allows for covert attention and other sources of discrepancy between

the center of gaze (COG) and the focus of attention (FOA). The HMMs allow for

decoupling the COG and the FOA by means of the state-specific Gaussian distribu-

tion functions. The Gaussian distribution functions used in model definition of the

HMMs span an area around the attentional spots, the random outcome of which can

be well away from its center. By this interpretation of variables the HMMs allow for

decoupling between the COG and the FOA.

A benefit of using time-series analysis to model eye movements is incorporating

the temporal information as well as the spatial features of fixations into the model.
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In analyzing the eye movement behavior, spatial information is usually taken into

account and temporal information of fixations is simply omitted from many models

of eye movement analysis. However, it is becoming increasingly more clear that

temporal analysis of eye movement is as important as its spatial aspect in describing

the underlying mechanism of the visual behavior. This is while evidence from natural

tasks emphasizes the need to consider fixation duration as well as fixation location

in understanding the mechanism of the visual system [25, 51, 74].

In both natural and synthetic images we showed that contrary to the classical

methods of attention tracking, the proposed model relaxes the overtness constraint

postulated in both bottom-up and top-down methods by using HMMs to model the

task-dependent attention process. HMMs allow for covert attention by postulating

the fixations to be the outcome of observation distributions, which can be a point

away from the FOA, whereas in the top-down and bottom-up attention models the

fixation location is assumed to be on attention demanding spots in an image. There-

fore, by using the parameters of the task-specific HMMs (λθ) in the forward algorithm

we could calculate the likelihood term of P (O|λθ).

Although in both examples presented for natural and synthetic images the task-

specific objects were easy to spot (characters in figure 3–5 and faces in figure 3–6),

this is not always the case. For abstract tasks, such as the ones used in the original

experiment by Yarbus [128], defining the targets is not straightforward. In synthetic

images, we probably know the number of objects in the image when generating the

image, which leaves us the option to assign a state to each of them for training the

HMM. However, in case of natural images we usually do not have a clear notion of
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the objects and targets are not separated in the space, which complicates the design

and initialization of the HMM (if not making it impossible).

In the next chapter we study how we can apply the idea of the HMM-based

attention models to infer the task in synthetic and natural images. For the natural

images a solution is proposed to design and initiate the HMMs for abstract tasks,

where defining task-specific targets is not straightforward.

One important point to be noted is that an “off-target” fixation does not nec-

essarily mean that the FOA is away from the fixation (i.e. covert). For instance, in

a phenomenon known as the center-of-gravity (also known as the global effect), the

stimulus is actually the collection of features, and the location of the stimulus is the

center-of-mass of this collection [130, 53, 87]. Thus, the FOA is in this case overt,

although the COG lands somewhere in between several objects rather than fixating

on an object. However, in the proposed model we do not distinguish between the

covert and overt attention and the goal is to track the attention in its general notion.

That said, in the next chapter we will see that the hidden states of the HMMs are

correlated to the attention demanding targets in executing a task and the states can

be postulated as a good estimation of the attention location, even if the fixations are

away from the state centers.
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CHAPTER 4
Visual-Task Inference Using the HMM Attention Models

Inferring the visual-task from fixation positions is a hard problem in the sense

that executing a task twice does not necessarily result in two similar trajectories and

in fact the outcomes are usually quite different from each other. Also two similar

trajectories may have been generated by two different tasks, which means that the

mapping from the feature space to the task space is not a one-to-one mapping.

Several efforts have been made to infer the task by classifying the patterns of the

task-dependent eye trajectories and recognizing it in a test eye trajectory. However,

in most of the cases no significantly different pattern could be found in the features

of the eye trajectories of a specific task, which makes a direct mapping from the

feature space into the task space an ill-posed problem.

One of the most recent failed attempts to implement a direct mapping from

the feature space into the task space is the study by Greene et al. in [45] and [46].

In these works, Greene et al. attempted to find a discriminative function to map

eye trajectories to their visual-tasks. They used supervised learning techniques to

train three different classifiers based on linear discriminant analysis [84], correlational

methods [49] and support vector machines [54]. The classifiers were trained on the so-

called summary statistics of eye movements used in scanpath analysis [15, 85]. Seven

features of eye trajectories including the number of fixations, mean fixation duration,

mean saccade amplitude and percent of image covered by fixations were used as the
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observation vector of each trajectory. The results showed that the classifiers can only

infer the task at the chance level and fail to consistently reveal the underlying task

of test trajectories. Thus, based on the results they concluded that: “The famous

Yarbus figure may be compelling but, sadly, its message appears to be misleading.

Neither humans nor machines can use scanpaths to identify the task of the viewer.”.

While the results of inferring the task from summary statistics is shown to be

disappointing, in our view concluding that the scanpaths cannot be used to identify

the visual-task is overstated. In Greene’s study only specific features derived from the

aggregate characteristics of eye movements are used to train the classifiers and failing

to infer the visual-task does not mean that task inference in general is infeasible.

In fact, in another study Castelhano et al. [16] studied the influence of task on a

group of summary statistics (including the ones used in Greene’s experiment) for two

tasks of memorization and visual search. After considering various features of eye

trajectories, they came to the conclusion that the visual-task does not influence the

features obtained from individual fixations, such as the summary statistics features.

A similar result is obtained in [85], where they also used the same features as in

Greene’s study. Thus, almost all the studies dedicated to the realization of an inverse

Yarbus process unanimously agree on the infeasibility of an inverse Yarbus mapping

from the feature space to the task space by using the summary statistics of the eye

movements.

Although executing a task may generate dissimilar eye trajectories and eye move-

ment features, it usually requires directing attention to specific targets in an image
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that are relevant to the task. By directing the focus of attention (FOA) to the task-

relevant targets in an image, our eyes direct the processing power of the brain to the

informative areas in the scene. Therefore, in our model we propose to first infer the

attentional spots from an eye trajectory and then infer the task given the attended

target. For instance, if an attention model shows that red objects in an image are

attended, “Counting the red objects” can be a possible inference about the task.

As explained in the previous chapter, the task-dependent attention models give

us possible attentional spots in a stochastic manner. Thus, in our proposed model

we suggest a Bayesian inference that uses attention models to evaluate the likelihood

term and as a result give the posterior probability of different tasks given an eye

trajectory.

In section 2.2.1 and 2.2.2 we showed how attention models can serve to evalu-

ate the likelihood term of equation (2.2). However, classical attention models have

several insufficiencies that fail them to accurately predict the attentional spot and

evaluate the likelihood term.

In the previous chapter we showed how HMMs can be used as a model for the

visual attention. The application of HMMs in attention tracking addressed many

deficiencies of the classical models. HMMs do not require the FOAs to be overt and

allow for covert shifts of attention. Moreover, HMMs impose higher level processes to

the transitions from a target to another, which is modeled by the underlying Markov

process of the HMMs. In this chapter we will use the HMM-based attention model to

evaluate the likelihood of a given eye trajectory and use it in the Bayesian inference

framework to infer the visual-task.
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In section 2.3 we showed how we can train HMMs by using the Baum-Welch

algorithm. Thus, if we train the HMMs with task-dependent eye trajectories we

end up with task-dependent HMMs, which can be denoted by λθ. In this notion,

θ indicates the task associated with the trajectories of the training data. Given

the task-dependent HMMs, the forward algorithm can evaluate the likelihood of an

observation sequence, which can be shown by the term P (O|λθ). By substituting

the likelihood term into the Bayesian equation, equation (2.2) becomes:

P (λθ|O) =
P (O|λθ)P (λθ)

P (O)
. (4.1)

The training of the model parameters includes finding the parameters of a HMM

(i.e., A, B and Π) that maximize the likelihood of the observation sequences of the eye

trajectories (i.e., P (O|λθ)). In order to iteratively improve the observation likelihood

(using the Baum-Welch algorithm), we need to start off from a generic structure for

the HMM. This generic structure has to define the number of states, number of

Gaussian observation pdfs in each state, transition pattern and initial values for the

parameters of the HMMs. However, based on the task set and the characteristics of

the stimuli we could require different structures in the generic HMM.

One of the key factors in model definition of the generic HMMs is the definition

of the observation pdfs of the states. As explained in section 2.3.1, the observation

pdfs (B), are composed of 2D Gaussian distribution functions that are located around

the attentional targets in an image.

One of the main characteristics of synthetic images is that the number, location

and specifications of the targets are usually known in advance or can be extracted
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from the stimuli. Thus, in synthetic images we are able to spot the targets and

initially deploy the Gaussians on them. In natural images, however, we do not

usually know the location or number of the targets in an image. Therefore, before

training the task-dependent attention models for natural images we need an approach

to define the initial, generic HMM to be trained by the training database.

Despite the type of the stimulus, easy or complex visual-tasks also require dif-

ferent generic HMM structures. In easy tasks, attention is mostly directed to the

task-relevant objects in the scene, whereas in the more complex tasks the difficulty of

the tasks increases the response time and causes several attentional deployments on

non-target objects (off-target FOAs) in order to examine their task-relevant features

and dismiss them from potential target locations. These off-target FOAs on objects

that are not directly relevant to the ongoing task will require a more complex HMM

structure to be able to distinguish them from the FOAs made on targets and make

the inference based on the on-target FOAs.

In the following sections we will progressively improve the result of task inference

by amending the generic structure of the HMMs based on the level of complexity of

the tasks and the type of stimuli. To this end, we study the natural and synthetic

images and address the challenges related to each type of image, separately. First

we start with implementing a model that infers the task among a group of simple

tasks. Then we improve the model to deal with complex situations, as well. In the

end we apply the model to the natural images and evaluate the recognition rate in

images similar to those of Yarbus’.
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4.1 Inferring Simple Tasks in Synthetic Images

In this section we use the proposed HMM-based model to infer the ongoing

task in a simple visual search. The inference is made by applying the Bayes rule

(equation (4.1)) to the observation sequences of a database of task-dependent eye

movements. In order to obtain the HMMs for each visual-task, we need to train the

parameters by using the eye movement database of the corresponding task. To do

so, first we need to define the structure of our desired HMMs by creating the generic

HMM.

Since in a simple search task the targets are usually distinguished from the dis-

tractors by a single feature, attention is mostly directed to the task-relevant objects

in the scene. This gives us a good basis to compare the results of the HMMs and the

TD models, because TD models are ineffective in dealing with off-target attention

deployment and assume the FOA to be mostly on targets. To be able to compare

the models, in our HMM-based model for the easy search we also assume the FOAs

to be mostly on targets and degenerate the conventional structure of the HMMs

to a single-state, self-returning one, which results in a model that allows for covert

attention and is similar to TD models, otherwise.

In the generic structure of the proposed single-state HMM (SSHMM) the state

represents the target locations for different tasks. For the target locations we postu-

late that the observations are random outcomes of a mixture of 2-D Gaussians with

features x and y in Cartesian coordinates that are maximum on the centroids of the

targets and fade away as we become more distant, as measured by a Euclidean met-

ric, from them (see figure 4–1a). In figure 4–1b we put the observation pdfs of all the
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objects together and superimposed them on the original image and its corresponding

bottom-up saliency map. It is from this grid of Gaussians that we select the ones

related to the task and combine them into a Gaussian mixture model (GMM) with

equal weights to represent the single state’s observation pdf. Figure 4–1c shows an

example of the GMM distribution for the task of counting the characters. To build

the HMM, from the pool of the pdfs in figure 4–1b we only select the ones centered

on the characters and remove the others from the generic model.

Although here we assume that the targets can be selected according to their

task relevance, this assumption does not always hold. For some abstract tasks, no

specific target might be directly relevant to the task. As mentioned in section 3.3, if

for a given task it cannot be decided whether a target is directly relevant to a task

or not, we should select all the targets to train the HMMs. In the training process

less weight will be given to the transitions to the Gaussian pdfs around the targets

that are less relevant to the task in exchange for a greater favor to the transitions to

the Gaussians on the targets that are more relevant to the task.

However, postponing the target selection to the training phase causes a longer

training time and less accurate results for a small training database. Moreover, this

option is only valid for the stimuli with discrete objects. In section 4.3 we will propose

a method to address this issue in natural images, where targets are spread around

in an image and overlap with each other.
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(a)

(b) (c)

Figure 4–1: The structure of the single-state HMM (SSHMM). a) The generic
SSHMM for simple task inference. The transition matrix (A) is composed of a de-
terministic loop from the state to itself (aTT = 1) and the observation pdf comprises
mixture of Gaussians centered on target-relevant objects in the image. b) Observa-
tion pdfs give us the probability of seeing an observation given a hidden state. In this
figure we put the fixation location pdfs of all the targets together and superimposed
them on the original image and its corresponding bottom-up saliency map. c) In
this figure we show the GMM that constitutes the SSHMM of the task of character
counting. From the pool of pdfs in the middle figure, only the Gaussians centered
on the characters are selected and the rest are removed from the final model.
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As we can see, in this model only the hidden-ness of the HMMs is emphasized

and the Markov-ness of the sequences is marginalized to make a maximum likelihood

estimator with a mixture distribution.

In other words, the main difference between the classical TD model and the

proposed SSHMM is that in the TD model we associate each fixation to the nearest

neighbor target, whereas in the SSHMMs a fixation on an object might be a noisy

observation of an attentional focus on an adjacent target. In this way, by comparing

the results of the TD model and the SSHMM we can examine the importance of

using the observation distribution in the HMMs and highlight the significance of

considering the covert attention in task inference.

Having defined the generic structure of the SSHMM, we can obtain task-dependent

HMMs by training the generic HMM with task-specific eye trajectories by using the

expectation maximization-based (EM-based) algorithm of Baum-Welch. In the train-

ing, we fix the means of the Gaussians to align with the center of the task-relevant

objects and use a uniform distribution for the mixture of Gaussians’ prior class prob-

abilities to remove any spatial bias towards any target in stimuli. Moreover, since

we have a deterministic state transition (A) and initial state distributions (Π), the

only parameters to be trained are the covariances of the observation pdfs (C).

After training the task-dependent SSHMM for each task (λθ), we can calculate

the likelihood term (P (O|λθ)) by applying the parameters of λθ to the forward algo-

rithm. In this way, we will be able to make inferences about the tasks given an eye

trajectory by substituting the likelihood term into equation (4.1).
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4.1.1 Evaluation

In order to perform the evaluation, we compare the results of our model with

those of the top-down (TD) model. To build a database of task-dependent eye

trajectories, we ran 1080 trials and recorded the eye movements of six subjects while

performing a set of pre-defined simple visual-tasks. Six McGill graduate students

(three females and three males), aged between 18 and 30, with normal or corrected-

to-normal vision volunteered to participate in this experiment and all were naive

about the purpose of the experiment.

Five different visual stimuli were generated by a computer and displayed on a

1280×800 pixel screen at a viewing distance of 45 centimetres (1o of visual angle

corresponds to 30 pixels, approximately). Each stimulus was composed of 30 objects

each randomly selected from a set of nine objects (horizontal bar, vertical bar and

character “A” in red, green and blue colors) that were placed at the nodes of an

imaginary 5×6 grid (6.75o × 8.1o) superimposed on a black background (see the

lower layer of figure 4–1b).

The visual-tasks were counting red bars, green bars, blue bars, horizontal bars,

vertical bars or characters (six tasks in total). Each of the tasks was defined so that

their corresponding targets can be distinguished from distractors by a single feature.

For instance, characters are the only objects responding to slanted orientation filters

(see figure2–3) and red objects can be detected by red feature maps alone [60].

At the beginning of each trial, a textual message defining the targets to be

sought (e.g., red, green or characters) followed by a fixation mark of size 0.26o ×

0.26o appeared at the center of the screen. After foveating the fixation mark, the
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participant initiated the trial with a key-press. Once the trials were triggered, one

of the five stimuli was shown on the display and the eye movements of the subject

were recorded while performing the specified visual-task.

An eye tracker (ISCAN RK-726PCI) was used to record the participant’s left eye

positions at 60 Hz and a chin rest was used to minimize head movements. According

to the manufacturer’s device description [59], the eye tracker’s resolution is approx-

imately 0.3o over ±20 degree horizontal and vertical range using the pupil/corneal

reflection difference (the actual accuracy is likely to be poorer). An LCD monitor

was used for displaying the images and the subjects used both eyes to conduct the

experiments.

Each subject did six segments of experiments, each of which consisted of per-

forming the six tasks on five stimuli resulting in 180 trials for each subject (1080

trials in total).1

At the beginning of each session, we calibrated the eye tracker by having the

participant look at a 20-point calibration grid (4×5) that extended to 8o × 10o of

the visual angle. The area covered by the calibration grid is stretched beyond the

stimuli, which spans 6.75o × 8.1o of the visual angle.

1 In order to reduce the memory effect, we set up the experiments so that each
stimulus is displayed once in every 5 trials. Moreover, in each segment, each combina-
tion of stimulus-task is executed only once, which results in a repetition in executing
a task on an image only in every other 30 trials. Given the nature of the synthetic
stimuli that comprise similar objects at random locations, we believe the effect of
memory is not significant.
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After recording the eye movements, data analysis was carried out on each trial,

wherein we removed the blinks, outliers and trials with wrong answers in the verifi-

cation phase from the data and classified the eye movement data into saccades and

fixations using the velocity-threshold identification (I-VT) method [34] with a 50

deg/sec threshold. It is generally agreed upon that visual and cognitive processing

occur during fixations and little or no visual processing can be achieved during a

saccade [38], therefore, in our analysis we only considered the fixation points.

To define the covariance of the Gaussian distributions, we use a technique called

parameter tieing [98] to force a unique covariance matrix across all the Gaussian

distributions. We also fix the off-diagonal elements of the covariance matrix to zero,

which leads to fully circular Gaussian observation distributions:

COV (B) = σ2I(N), (4.2)

where I(N) is the identity matrix of size N × N . These two provisions allow us to

obtain convergence in training the HMMs with the very limited number of observa-

tions in the training database, since the number of parameters to train the covariance

matrices reduces from 3K to 1. Moreover, a fully diagonal covariance matrix results

in a round Gaussian distribution, which is similar to the quasi-circular COG of visual

system [33].

For the training phase we use nearest neighbor to find the closest state to each

fixation point in the training database and use the sample covariance as the initial

estimate of the covariance matrix in the generic HMM. During the training, we use

this generic structure to fine tune the covariance value so that the final model results
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in a higher observation likelihood. Eventually, it is the outcome of the training phase

that is used as the task-specific model of a given task and that is used in the test

phase to infer the task of a test trajectory.

In the TD attention model, the viewer’s task emphasizes the conspicuity of the

relevant targets and provides us with a task-modulated saliency map. Since top-down

methods only model overt attention, we used a nearest neighbor approach to find

the closest target to each fixation location to represent its attentional allocation. To

train the TD model, we set the target maps by manually selecting the to-be-counted

objects in each stimulus (e.g., red objects in the task of counting the number of red

objects).

For the optimization of equation (2.5) we used MATLAB optimization toolbox

function fminsearch. The training was done in batch mode and a fixed sum equal

to one was used for the weight vector (see figure 2–3) to avoid divergence. The

resulting weight vectors were used to acquire the task-dependent saliency maps using

a saliency toolbox [120] based on Itti and Koch’s model [60]. By normalizing the

resulting saliencies to one, we could use them as probabilities (P ( ~Oi|θ)) and calculate

the likelihood term of equation (2.6). The viewer’s task, then, was obtained by finding

the task which maximizes the posterior probability of equations (2.2).

Since we used equal a-priori probabilities for all tasks, the inference was reduced

to a maximum likelihood (ML) estimator. In chapter 5 we will show that with

unequal prior probabilities we could use our prior knowledge about the tasks and

turn the inference to a maximum a-posteriori (MAP) estimator to obtain better

accuracy in the inferences.
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4.1.2 Results

Figure 4–2 shows the accuracy of the SSHMM and the TD model in inferring

the viewer’s task in terms of the number of correctly classified instances of a task.

Each bar summarizes the accuracy of its corresponding model by representing the

mean (%) along with its standard error of the mean (SEM) in correctly inferring the

visual-task. For each bar we ran a 10-fold cross-validation [6] on a dataset of 1080

task specific eye trajectories to train/test the model and compared the performance

of the models by drawing their corresponding bars for each visual-task. As can be

seen, the SSHMM significantly outperforms the TD method in all six cases, and that

is mostly due to relaxing the overtness of attention constraint imposed in the TD

models.
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Figure 4–2: Comparison of the accuracy of visual-task inference using the single-
state HMM (SSHMM) and the Top-Down (TD) models. Each bar demonstrates the
recognition rate (%) of inferring simple visual-tasks of counting red (R), green (G),
blue (B), horizontal (H) and vertical (V) bars as well as counting the characters (C).
The mean value and the standard error of the mean (SEM) are represented by bars
and the numerical values are given in the lower table.

4.2 Inferring Complex Tasks in Synthetic Images

In the previous section we successfully applied the idea of using HMMs to infer

the ongoing task in simple visual-tasks, where the targets differed from the surround-

ing distractors by a unique visual feature, such as color, orientation, size or shape,

and could be located in a stimulus within a short period of time. Nevertheless, in

real-life we usually encounter situations where the target is surrounded by distrac-

tors with similar features and can be distinguished from them only by comparing a

combination of visual features. In this section we extend our method to a more com-

plicated group of tasks and investigate the applicability of our HMM-based method

in task inference in a complex visual-task.
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One way of making the tasks more difficult is to make the targets distinguishable

by a combination of features rather than a single feature. The difficulty of the task

increases the response time and causes several attentional deployments on non-target

objects (off-target FOAs) in order to examine their task-relevant features and dismiss

them as potential target locations. These off-target FOAs on objects are not fully

in accordance with the structure of the SSHMM model and will presumably cause

attenuation in the accuracy of task inference. In this section we tailor the generic

structure of the SSHMM to allow for off-target FOAs in a difficult search paradigm.

To investigate the task inference in a complex set of tasks, we develop an eye-

typing application, where users can type a character string by directing their gaze to

an on-screen keyboard. In this scenario inferring the task is equivalent to determining

what word has been eye-typed by observing the eye movements of the subject while

performing the task, hence there are a wide range of potential tasks. In order to

force visual search, we randomized the location of characters in the keyboard layout

in each trial. After each trial we also ran a verification phase where a question is

asked about the location of one of the characters in the word the subject has already

typed to monitor the correctness of the process (see figure 4–3).

In the experimental results in section 4.2.4 we will show that the SSHMMs are

not as effective for inferring task in a complex search task. The bulk of this shortfall is

due to the off-target FOAs that take place as a result of the increase in task difficulty.

In the new models proposed here we add an extra state to the model that represents

the off-target FOAs in the trajectories. This adds to the training burden due to

the introduction of extra parameters to the model for the new states’ observation
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(a) (b)

(c)

Figure 4–3: Eye-typing application setup. a) The schematic of the on-screen key-
board used to enforce complex visual search tasks. We removed a letter (“Z”) in
order to have a square layout to reduce directional bias. Also the location of each
character is randomized in each trial so that the user has to search for the characters.
b) Eye movements of a subject are overlaid on the keyboard layout, on which the
trial was executed. The subject searches among the characters to eye-type the word
“TWO”. The dots indicate the fixations and the connecting lines between the dots
show the saccades that brings the new fixation location into the COG. c) After each
trial a question is asked of the user about the location of a character that appeared
in the word to validate the result.
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matrices and state transition probabilities, but the advantage is two-fold: first, we

allow for the off-target FOAs both in training and testing, second, the transition

matrix becomes stochastic as opposed to the deterministic, self-returning transitions

we had in the SSHMM.

A stochastic transition matrix introduces another source of information to the

model by capturing the pattern of transitions between the states. This information

can be matched against the test data to see how well the model accords with it.

In this way we can consider the dynamics of attention and use pattern matching to

locate the targets and predict the ongoing task.

4.2.1 Double-state word HMM (DSWHMM)

In the first attempt to develop a generative model of eye movement trajectories

in complex tasks, we add another state to the structure of the SSHMM. Figure 4–4a

shows the amendment we made to the model in order to make it capable of dealing

with the off-target FOAs. Here in each state we suggest that a mixture of Gaussian

distributions demonstrates the possibility of observing different fixation locations.

For the on-target state, we postulate that fixation locations are random outcomes of

a 2D GMM with equal weights that peaks on target character locations.
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(a)

(b)

Figure 4–4: Structure of the double-state word HMM (DSWHMM). a) For each
state (on-target and off-target) a GMM with equal weights defines the pdf of fixation
locations. The transition probabilities (aij|i, j ∈ {O, T}) give us the probability of
directing the attention from a target/non-target object to a target/non-target object
in the image. For instance, if aTT >> aTO it means that the targets are easy to spot
and chances of off-target fixations are low and if aTT << aTO, it means targets are
hard to spot and finding them involves fixations on distractors. The initial state
probabilities (Πi|i ∈ {O, T}) give us the probability of starting a search from each of
the states. For instance, in the case that targets are hard to spot, the probability of
starting the quest from the O state (off-target) is higher. b) In this figure we put the
Gaussian pdfs of all the characters together and superimposed them on the original
keyboard. It is from this pool of pdfs that we select the task-relevant ones for the
target state to define its GMM observation distribution.
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Having defined the 2D GMM of the on-target state, we can simply define the

pdf of the off-target state by complementing the distribution function of the target

state and normalizing it. The rationale behind this is that the probability of fixating

a point in the close vicinity of a character is usually higher than other locations when

we find it as the target. On the other hand, the farther from the character we fixate,

the more likely it is that we are attending a non-target location. In figure 4–4b we

superimpose the observation pdfs on the keyboard layout.

Beyond the spatial provisions for the off-target FOAs in the design of the

DSWHMM, the new design encapsulates another aspect of the visual attention that

scrutinizes attention dynamics from a temporal point of view. The relation between

working memory and visual attention is established in neurophysiological and psy-

chophysiological studies [20, 79]. It has been known that attention interacts with

working memory and the intensity of this interaction depends on the memory re-

quirement of the ongoing task. In the eye-typing application, after finding each

character, the cognitive process that is responsible for driving the visual attention

retrieves the next character in the word string from short-term memory to direct

attention towards relevant features in the image.

Different variations of this interaction between the attentional system and the

short-term memory can be seen in most of the real-world visual search tasks as

well. In another example, when a viewer counts the number of objects in a scene,

the interaction is invoked after finding each target to increase the count by one in

the working memory. In the eye-typing application, as shown in figure 4–3, after

each trial a question is asked of the user to verify if the characters are attended
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correctly or not. Therefore, when the target character is found, the short-term

memory keeps track of the coordinates of the characters in order to correctly respond

to the verification question.

Due to different neural circuitry of visual attention and working memory in the

brain [43], more interaction between these two functionalities will cause a longer

stay on memory demanding targets. A longer stay on the targets, however, does

not necessarily mean increasing the time of fixations. In a study Mills et al. [85]

investigated the influence of task on temporal characteristics of eye movements during

scene perception. They showed that in a visual search, the task affects the spatial

parameters of eye movement (e.g., saccade amplitude), rather than the temporal

parameters (e.g., latency). This effect is also demonstrated in a study by Castelhano

et al. [16], where they examined the influence of task on fixation duration and did

not find a significant difference in average fixation duration when memory is involved

more heavily in performing the task. However, they showed that for objects that

require more thorough processing to be encoded into memory, a strategy is adopted

to increase the number, rather than duration, of fixations on them. This conclusion

is also supported by an earlier study by Loftus [80] who showed that an increase

in the interaction between attention and memory does not affect the duration of

fixation, but rather increases the number of fixations made in the region.

The design of the double-state word HMM (DSWHMM) allows us to exploit this

phenomenon to spot a pattern in memory interaction and locate the targets that have

potentially invoked a more intense interaction between the attention and the working

memory. In a difficult search task, where the level of memory involvement changes
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significantly during the search, once a target is found, the level of interaction with

the memory rises, which in turn causes multiple fixations on the same object. While

training a task-dependent model, this pattern is reflected in the transition matrix,

which will show a bias in the transitions from the on-target state to itself. This

information, along with spatial information embedded in the observation pdf, can be

used for locating the task-relevant objects in a scene and inferring the task based on

them.

4.2.2 Double-state character HMM (DSCHMM)

In the previous section we showed how introducing a second state to the SSHMM

can capture the temporal dynamics of the visual attention and at the same time allow

for off-target FOAs. Although in section 4.2.5 we show that DSWHMM is a practical

method for task inference in a small-size dictionary, it is not clear what portion of the

obtained accuracy is due to the a-priori constraints set by the dictionary and what

portion is due to the likelihood provided by the HMM structure. The dictionary of

the possible words in the eye typing application, forces a-priori constraints on the

tasks by giving zero probabilities for non-existing words and equal probabilities for

the existing ones as the a-priori term in the Bayesian inference of equation (4.1).

The dictionary size plays an important role in the classification accuracy of the

DSWHMMs. On one hand, the word model proposed in the DSWHMM is insensitive

to the order of characters and cannot tell anagrams apart2 . On the other hand, the

model performs best when the dictionary contains short words. For longer words,

2 anagrams are words with the same characters but in different order
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since the target GMMs include more Gaussians, the area covered by the GMMs

expands to a larger area on the keyboard, which leads to classifying most of the

fixations as on-targets. Thus, by increasing the size of the dictionary, the chances

of having long words or anagrams increase, which may cause attenuation in the

classification accuracy.

The main reason behind this dependency on the dictionary size is the fact that

in the DSWHMMs all of the characters are treated the same and all of them are

included in the model by a unique GMM. This fact makes the model insensitive

to the order of comprising characters. Moreover, in long words, since the GMM of

the on-target state spans a larger area of the keyboard surface, off-target fixations

become harder to spot.

The solution we suggest is to assign the double-state HMMs to the characters

rather than the whole word. Namely, we suggest to train 25 character models (the

letter “Z” is omitted from the keyboard layout) and concatenate the HMMs of the

characters that constitute a word to build the word’s model. In this way we not

only make the model robust to the length of the words by treating each character

independent of the proceeding or the following characters, but also we respect the

order of the comprising characters while building up the word models. Thus, we

expect the model to be more robust to the dictionary size by modeling the sub-word

units of characters rather than the whole word itself.
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(a)

(b)

Figure 4–5: Structure of the double-state character HMM (DSCHMM). a) shows
the general structure of the DSCHMM for character “C”. The parameters aij and
Πi are defined exactly the same as in the DSWHMM the difference being that here
we train a model for searching each character, separately. Thus, in the target state
we will only have one Gaussian observation pdf around the location of the character
in the image. Therefore, in order to build a word model we have to concatenate
the constituting characters of the word. b) shows how to concatenate the character
models to build up a word model (here for a hypothetical word “CA”). In this model
(xC , yC) and (xA, yA) are the coordinates of characters “C” and “A”, respectively. For
the transitions between the sub HMMs (for each character), we use the initial state
probabilities Πi, since looking for the next character after finding the proceeding one
can be postulated to be roughly similar to start a new search for the new character.
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In figure 4–5a we show the general structure of a double-state character HMM

(DSCHMM) for the character “C”. While the structure is the same as the DSWH-

MMs, the observation distributions are centered on the characters rather than the

whole word. Similar to the DSWHMM, the transition matrix governs the transitions

between the off-target and the on-target states and the initial state distribution de-

fines the odds of starting off from each state.

Figure 4–5b shows how to concatenate the character models to build up a word

model. If we posit that the character models are independent of their proceeding

characters, we can set the transition probability between two arbitrary characters to

the corresponding initial state probabilities of the target character. By this assump-

tion, a character’s model becomes independent of its place in a word, its proceeding

characters and its following characters. In this way all of the words in the training

database that include that character can contribute to training the model for that

character, which can significantly reduce the minimum size of the training data for

obtaining convergence in the training of the model parameters.

Although here we assume that the character models are independent of the

following and the proceeding characters in a word, in chapter 5 we will show how

we can impose higher order constraints on the models during concatenation of the

sub-word models and improve the inference accuracy by relaxing this assumption.

In section 4.2.5 we will show that the proposed character model improves the

results of the word model HMMs even with a few number of training trajectories.
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4.2.3 Tri-state HMM (TSHMM)

Modeling sub-word units (i.e., characters), rather than words, allows us to in-

vestigate the fixations in more detail. In the DSCHMM structure we classified the

attention deployment into the ones on target or the ones on non-target characters.

However, we believe that even attended non-target characters carry information

about the sought character. Figure 4–6b shows the top nine bins of the histogram of

fixations on characters (fixation distribution histogram) when looking for character

“W”. It can be seen that even off-target fixations show a pattern in the sense that

seemingly similar characters tend to draw attention towards themselves more often

than the dissimilar ones.

This phenomenon is studied in the psychological literature related to perceptual

measurement of image similarity [68]. Particularly, our finding is in accordance

with a psychophysical experiment in [42, Figure 1] that classifies uppercase English

letters according to their similarity in appearance. In figure 4–6a the result of this

classification is shown in form of a hierarchical cluster that classifies the characters

into clusters. The lower the connecting line between the clusters, the higher the

similarity between them.

In our database of eye movements we saw a similar pattern when analyzing

other characters as well. Figure 4–6c shows the average of top nine fixation location

histogram bins when looking for different characters. This trend suggests that off-

target fixations can also be used as another source of information. Namely, when
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looking for a target, similar characters are more likely to be found among the off-

target fixations, which can help us narrow down our choices in the inference process.
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(a)

(b) (c)

Figure 4–6: Spatial distribution of fixations (fixation distribution histogram) while
searching for a character. a) Shows the result of the experiment in perceptual mea-
surement of image similarity (based on (Gilmore, Hersh, Caramazza, & Griffin,
1979)). The figure is reproduced with permission from Springer Publishing Com-
pany. b) shows the top nine bins of the fixation distribution histogram when looking
for character “W”. Similar characters tend to draw attention towards themselves,
which is in accordance with the psychological experiments. c) shows the average of
top 9 fixation location histogram bins, along with their respective standard error of
the mean (SEM), when looking for different characters in the keyboard.
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Figure 4–7a shows the new structure we propose to be used for task inference in

the character recognition application. In this new setup, we split the off-target state

to dissimilar state (D-state) and similar state (S-state) according to the similarity

of the attended object to the target character. The tri-state HMM (TSHMM) for

character recognition allows us to investigate the fixations in more detail and gives us

more information about the sought character. In this model not only the dynamics

of on-target FOAs are taken into account, but also the off-target FOAs play an

important role in revealing the target character.

Figure 4–7b shows how we build a word model by concatenating the HMMs of

the comprising characters. As can be seen, the transitions between the characters

are made from the target state and the structure is similar to that of the DSCHMM,

otherwise. We heuristically select the top two characters of the fixation distribution

histogram of each target to model the GMM of its S-state. The distribution function

of the D-state is obtained by complementing the mixture of target Gaussian pdf and

GMM of the S-state (all with the same weight). For instance for modeling the

character “W”, we put the top two similar letters (i.e., “H” and “M”) into the S-

state and the rest of the letters (i.e., all the letters excluding “W”, “H”, “M” and

“Z”) constitute the D-state.

Similar to the DSCHMM, we posit that the character models are independent of

their proceeding characters and set the transition probability between two arbitrary

characters to the initial state probabilities of the target character. By this assump-

tion, a character’s model becomes independent of its place in a word, its proceeding

characters and its following characters. In this way all of the words in the training
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database that include that character can contribute to training the model for that

character, which can significantly reduce the minimum size of the training data for

obtaining convergence in the training of the model parameters.

Although here we assume that the character models are independent of the

following and the proceeding characters in a word, in chapter 5 we will show how

we can impose higher order constraints on the models during concatenation of the

sub-word models and improve the inference accuracy by relaxing this assumption.
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(a)

(b)

Figure 4–7: The structure of the tri-state HMM (TSHMM) for character recognition.
a) The TSHMM for a single character. The mean vector of the S-state’s GMM is
centered on the top two characters in the fixation distribution histogram of the fix-
ations made during the search for the target character in the training data. Similar
to the other models, the transition probabilities aij governs the transitions between
the states and the initial state distributions Πi gives us the odds of starting a search
from each state. Also similar to the DSCHMM, the HMMs are trained for each char-
acter separately and concatenated in order to make a word model. b) Concatenating
the character models to build up the word model. Similar to the DSCHMM, the
transitions between the states are governed by the initial state probabilities.
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4.2.4 Evaluation

In this section we will evaluate the task inference made by the suggested at-

tention models as well as the classical, top-down attention model. For the sake of

comparison, we first build a database of task-dependent eye trajectories and then ap-

ply each of the techniques and compare their accuracies in inferring the visual-task.

To build a database of task-dependent eye trajectories, we ran a set of trials

and recorded the eye movements of six McGill graduate students (three females

and three males), aged between 18 and 30, while eye-typing 26 different 3-character

words. The subjects had normal or corrected-to-normal vision and all were naive

about the purpose of the experiment. The trials started with a fixation mark of

size 0.26o × 0.26o appearing at the center of the screen. After foveating the fixation

mark, the participant initiated the trial with a key-press. Once a trial was triggered,

a textual message at the center of the screen showed the word to be eye-typed.

Once the subject indicated his readiness by pressing a key, another fixation mark

appeared at the center of the screen followed by an on-screen keyboard similar to the

one shown in figure 4–3a. At this phase, subjects eye-typed the word by searching

for the characters appearing in it as quickly as possible and signaled when they were

done by pressing a key (subjects were only told to eye-type the words as quickly as

possible and press a key when done).

Each trial was followed by a verification, wherein a question about the location

of a randomly selected character in the word, in form of a forced choice paradigm was

asked. The selected character appeared as the label of two keys in the keyboard, of

which only one corresponded to the original location of the character in the keyboard
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layout (see figure 4–3c). The viewer selected one of the keys as the correct location

of the character by fixating it and pressing a button. In the data processing phase,

we took the result of the question as an indication of whether the subjects had

performed the task attentively or not. Once the question was answered, the next

word was shown and the trial carried on.

Each keyboard was composed of 25 uppercase English characters randomly lo-

cated on a 5×5 grid superimposed on a gray background (we removed the letter “Z”

in order to have a square layout to reduce directional bias). For the experiment, 26

three-letter words that did not have any repeated characters in them were selected.

At the beginning of every experimental session, we calibrated the eye tracker by

having the participant look at a 16-point calibration display (4×4) that extended

to 10o × 10o of visual angle. The area covered by the calibration grid was stretched

beyond the stimuli, which spans 6.7o × 6.7o of visual angle.

An eye tracker (ISCAN RK-726PCI) was used to record the participant’s left eye

positions at 60 Hz and a chin rest was used to minimize head movements. According

to the manufacturer’s device description [59], the eye tracker’s resolution is approx-

imately 0.3o over ±20 degree horizontal and vertical range using the pupil/corneal

reflection difference (the actual accuracy is likely to be poorer). An LCD monitor

was used for displaying the images and the subjects used both eyes to conduct the

experiments.

After recording the eye movements, data analysis was carried out on each trial,

wherein the blinks, outliers, fixations made after finishing the task and trials with

wrong answers in the verification phase were removed from the data and the eye
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movement data was classified into saccades and fixations using the velocity-threshold

identification (I-VT) method [34] with a 50 deg/sec threshold. For the same reason

as in the previous experiment, in our analysis we only considered the fixation points

and removed the eye positions in between the fixations.

After the preprocessing, we obtained a database of 145 trajectories {O1, O2,

..., O145}, each of them of the form ( ~O1, ~O2, ..., ~OT ), where ~Oi contains coordinates

of the fixation at time step i, in the form of a tuple (xi, yi). Each tuple gives

us the information regarding the x-coordinate and y-coordinate of the ith fixation,

respectively.

In order to train the models in the DSWHMM, DSCHMM and TSHMM, we

have to adjust the mean vector of the 2D Gaussians according to the training word

so that they align with the center of the respective target character locations. Ac-

cording to [98] a uniform (or random) initial estimation of Π and A is adequate for

giving useful re-estimation of these parameters (subject to the stochastic and non-

zero value constraints). Thus, in the generic HMM, we set random initial values for

the transition and the initial state probabilities and run the Baum-Welch algorithm

on the training set to obtain the final model. As in the HMM-based model for simple

task inference in section 4.1.2, we use the parameter tieing technique [98] to force

a unique, covariance matrix across all the Gaussian distributions in the mixtures in

order to reduce the training burden and obtain a uniqie, circular pdf around the

targets (similar to the foveal area of the visual system).

The resulting HMM is used to evaluate the likelihood term of equation (2.3) for

all the words in the dictionary by using the forward method on the trained model.
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By estimating the likelihood term we can calculate the posterior probability of each

word by substituting the likelihood term into equation (4.1). For now we assume a

uniform distribution as the a-priori term and postpone using prior knowledge about

the tasks to chapter 5.

4.2.5 Results

In the first attempt to infer the task in a difficult search, we compare the results

of using the TD, SSHMM and DSWHMM models for task inference and show the

results together in figure 4–8. We can see that although the SSHMM performs slightly

better than the TD technique, the accuracy decreases significantly compared to the

results of task inference in the easy search. The rightmost bar shows the result of

task inference when using the DSWHMM. Each bar summarizes the accuracy of its

corresponding model by representing the mean (%) along with its standard error of

the mean (SEM) in correctly inferring the visual-task. For each bar we ran a 10-fold

cross validation on our database of 145 trajectories in order to define the training

and test sets and used the same epochs across all the methods. We also used equal

probabilities as the word priors, which converts equation (4.1) to a ML estimator.

As can be seen, the DSWHMM significantly outperforms the SSHMM and the

TD methods. The parameter estimates after training are shown in Table 4–1.

A very interesting phenomenon seen in the training results is the standard de-

viation of the Gaussian distributions around the characters (σ2D), which expands to

an area of about 3.6o of the visual angle. This angle appears consistent with previous

estimates of the size of the operational fovea as the central 3o of vision [64]. In [13]

it is also shown that targets within 4o of central vision are still perceived at 50%
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Figure 4–8: Comparison of task classification accuracy using different models in a
difficult visual search. Each bar demonstrates the mean classification rate (%) of
correctly recognizing the intended word in the eye-typing application. The mean
value and the standard error of the mean (SEM) are represented by bars and the
numerical values are given in the table.

of maximal acuity. Although, based on the current evidence we cannot tell whether

this finding is a real effect or merely a coincidence, another experiment where the

distance between the observer and the screen is altered can help us determine that.

In this experiment we also study the effect of dictionary size on the accuracy of

task inference in the difficult task. We test the accuracy of task inference using the

DSWHMM, DSCHMM and TSHMM for different dictionary sizes. We created four

sets of dictionaries of 26, 52, 104 and 312 English words using the Carnegie Mellon

pronouncing dictionary (CMPD) [121]. All dictionaries were built so that they all

have the 26 original, three-letter words that were used in the previous experiment.

Moreover, all dictionaries included all the words of the smaller ones and the new

words were selected randomly from the CMPD with the length varying between
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Table 4–1: Parameters of the DSWHMMs after training.

Parameter Value

aOO 71%
aOT 29%
aTT 67%
aTO 33%
πO 95%
πT 5%
σ2D 3.6o

three to five characters. In all of the HMMs, we bound the covariances to a unique

diagonal covariance matrix and obtained the variance, transition matrix, initial state

distribution and the mean vectors from the training set. We used 10-fold cross

validation to set the training set and the test set on the database of eye movements.

For the DSCHMM and TSHMM we built the word models according to the templates

shown in figures 4–5b and 4–7a, respectively.

In the TSHMM the characters selected in the S-state represented the top two

bins in the fixation distribution histogram of the target character obtained in the

training phase. Similar to figure 4–6, the fixation distribution histogram was created

by counting the number of fixations on each character (using the nearest neighbor

clustering method) when seeking a target. To do so, we manually labeled all 145

eye trajectories and split them into three parts, each of which representing the eye

movements of the subject while looking for a character. The distribution function

of the D-state is obtained by complementing the mixture of the target Gaussian pdf

and the GMM of the S-state (all with the same weight).

Figure 4–9 shows the accuracy of word inference using the DSWHMM, DSCHMM

and TSHMM methods ranging over four dictionary sizes. Although the accuracy of
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the DSCHMM is slightly less than that of the DSWHMM (74.2% vs. 76.4%), for the

26-word case, it shows less decline as the dictionary size increases. As expected, the

TSHMM starts off even better than DSWHMM and stays in the same range over

different dictionary sizes. The table below the figure shows the accuracy and the

standard error of the mean (SEM) of the corresponding bar.

Figure 4–9: Comparison of task classification accuracy using the TSHMM, DSCHMM
and DSWHMM methods in a difficult visual search task. Each bar demonstrates the
mean classification rate (%) of correctly recognizing the intended word in the eye-
typing application. The mean value and the standard error of the mean (SEM) are
represented by bars and their numerical values are given in the table.

4.3 Task Inference in Natural Images

So far we showed that HMMs can serve as a good model for the visual attention

process in simple and complex tasks executed on synthetic images. We progressively

implemented several HMM models for inferring the task during a visual search that

was conducted on synthetic images. However, in all of the models presented so far we
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assumed that the targets can be defined in advance and built the models based on the

locations of the targets. While this assumption holds for tasks with objective results

(such as the number of red objects, horizontal bars, etc.) executed on synthetic

images, for more abstract tasks executed on natural images, such as the ones used

in the Yarbus [128] and Greene’s experiment [46], defining the potential targets of

attention is not always straightforward.

Another specification of the previous models that stops us from using them on

natural images is that the number of states has to be defined before training. This

is only possible in images with a predefined number of targets (like synthetic images

used in the previous experiments). However, in natural scenes the targets can appear

anywhere in the image and usually no prior information about the location of the

targets is available to the model in advance.

Here we will develop a HMM-based attention model that can be applied on

natural images. To do so, we first use the K-means clustering technique [67] to

locate the potential targets in an image and then use the HMM-based method to

decode the eye trajectories. The overall method is then used to infer the visual-task

in the same dataset that was used in [46].

4.3.1 State positioning of HMMs Using the K-means Clustering

So far we explained how we can use the parameters of a task-dependent HMM

(i.e., λθ) to infer the underlying task of an eye trajectory (i.e., O), executed on a

synthetic image. We used the states to represent the FOA and used the coordinates

of the COG as the observations. In the model, each state was composed of a mixture

of 2D Gaussian observation pdfs that were centered on state-dependent targets. In
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synthetic images, such as the one shown in figure 4–3a, the targets were defined in

advance and their coordinates were given to the model as prior knowledge. When

executing a task with objective targets on a natural image, we might also define the

position of the targets in advance and use that information in training the HMMs.

For instance, in figure 3–6 we showed an example of a HMM trained for the task of

“counting the number of people in the image”. As we saw, the targets learned for

this task roughly corresponded to the faces in the image.

However, positioning of the states is not always trivial. When executing tasks,

such as the ones used in [46] (e.g., “Memorizing the picture” or “determining the

wealth of the people in the picture”), on natural images, pre-defining the attentional

targets in the generic HMM needs to be done manually and requires knowledge about

the relevance of the objects in the image to the task.

In order to automatically position the observation pdfs of the generic HMM on

task-relevant objects, we propose to use a clustering technique to locate the “hot

spots” that are informative for execution of the task. To do so, we propose to use

K-means clustering [67] on the ensemble of the fixations of the training set. Since

the training set comprises all the fixations of the subjects performing a specific task,

the ensemble reveals the potential attention demanding spots in the image for that

task.

Figure 4–10b and 4–10c show the gaze opacity maps of two training sets of eye

movements recorded while performing the task of “determining how well the people

in the picture know each other (people)” and “determining the wealth of the people

in the picture (wealth)”, respectively. The tasks were executed on the image shown
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in figure 4–10a. In these two maps, the areas with higher number of fixations are

shown clearly, whereas the areas with no or small number of fixations are masked out

by a dark filter and the level of darkness in each segment is inversely proportional

to the number of fixations on that segment. As we can see, the areas near the faces

get more fixations in the people task and the areas around the objects, such as the

telephone, tie, pipe and the objects on the desk, are more likely to get fixated in the

wealth task.

(a) (b) (c)

Figure 4–10: Compilation of the fixation spots during two visual-tasks in the form
of opacity maps. a) The original image on which the tasks were executed. b) The
gaze opacity for the task of “determining how well the people in the picture know
each other (people)”. c) The opacity map for the task of “determining the wealth of
the people in the picture (wealth)”.

By using this simple technique we can get a sense of “conspicuous” locations for

different tasks with a linear complexity [127]. The K-means clustering will provide

us with K points that indicate the centroid coordinates of the top K fixated areas in

the training set. In the generic HMM, we will use these centroids as the initial means

of the observation pdfs of the K states, each consisting of one Gaussian observation

pdf. The initial placement of the 2D Gaussians of the generic HMM on the image,
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however, is only an estimate of the eventual positions and might alter during the

Baum-Welch training.

4.3.2 Ergodic HMM

Similar to what we did in the synthetic images, we use the proposed HMM-based

model to infer the visual-task. The inference is made by calculating the likelihood

of an observation, calculated by the forward algorithm, and substituting it into the

Bayes rule (equation (4.1)).

In order to obtain the likelihood term (P (O|λθ)), we train the parameters of a

HMM for each task (λθ) by using the training eye movements of the corresponding

task. To do so, first we define the structure of the generic HMM and then customize

it by training it with the eye movements of the task.

In the generic model definition for the synthetic images, we always had the

position information of the targets related to the given tasks. Therefore, in the

models proposed in sections 4.2.2 and 4.2.3, we were able to separate the target

from non-target objects and assign different states to them. However, in the model

definition of the abstract tasks, such as the one used here, we cannot tell in advance

whether a fixated object was relevant to the task or it was one of the informative,

but non-target objects (such as the ones defined in the Dissimilar state in figure 4–

7a). Thus, for the generic HMM we assign an ergodic or fully connected structure,

wherein we can go to any state of the model in a single step, regardless of the current
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state of the model 3 . The same solution can be applied to the natural images, where

the task does not necessarily specify certain objects in a scene as the targets. For

instance, for more abstract tasks, such as the one used in the Yarbus experiment, it

is not always straightforward to define some of the objects as the task-relevant ones

and put the others in a non-target state.

By defining an ergodic HMM, what we do is to put off the target allocation

to the training phase. In the training, the transition matrix will reward transitions

to the informative areas and will give lower weight to transitions to non-informative

objects in an image. The drawback of defining an ergodic HMM as the generic model,

though, is adding to the training burden and increasing the chances of divergence

for a small-size training set.

As explained in section 4.3.1, we use K-means clustering to define the initial

locations (means) of the observation pdfs and in the generic HMM we assign a state

to each of the Gaussian observation pdfs. For each task-image pair, we examine

different values for the number of clusters ranging from K = 2 to 10 and use this

value as the number of clusters in the generic HMM. Then after the training the

model that gives the maximum observation likelihood to the training data is selected

as the task-dependent model, i.e.:

K = arg max
K=2:10

P (Otraining|λθ,K), (4.3)

3 strictly speaking, an ergodic model has the property that every state can be
reached from every other state in a finite number of steps. [98]
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where λθ,K is the model that is trained based on a K-state generic HMM. If we

use a very small number of clusters, the HMM will not be able to spot all of the

task-relevant targets in an image and the resulting HMM will be less task-dependent.

On the other hand, if we use a large number of clusters, the training algorithm will

diverge due to the increase in the parameter set in the training. Moreover, a large

number of states will cause the states to overlap with each other, which voids the

effect of having more states to cover more targets in the HMM. We expect that the

value of K is highly dependent on the number of task-relevant targets in an image.

For instance, for the people task (θ = people) on the image in figure 4–11, where we

have six faces, K = 6 gives us the best result, suggesting that a 6-state HMM would

be the best choice for λpeople on the image.

To define the covariance of the Gaussian distributions, we use the parameter

tieing technique [98] to force a unique covariance matrix across all the Gaussian

distributions. We also fix the off-diagonal elements of the covariance matrix to zero,

which leads to fully circular Gaussian observation distributions:

COV (B) = σ2I(N), (4.4)

where I(N) is the identity matrix of size N × N . These two provisions allow us to

obtain convergence in training the HMMs with the very limited number of observa-

tions in the training database, since the number of parameters to train the covariance

matrices reduces from 3K to 1. Moreover, a fully diagonal covariance matrix results

in a round Gaussian distribution, which is similar to the quasi-circular COG of visual

system [33].
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For defining the standard deviation (σ) of the covariance matrix we verified

several values ranging from 14 pixels (0.5o) to 210 pixels (15o) in 14 pixels steps

(0.5o) and obtained the best result for 126 pixels (4.5o).

As stated in [98], a uniform distribution assumption suffices as the initial pdf of

the initial state distribution (Π) and the state transition probability distribution (A).

Having defined the structure of the generic HMM, we can obtain task-dependent

HMMs by training it with task-specific eye trajectories by using the expectation

maximization-based (EM-based) algorithm of Baum-Welch (see section 2.3 for de-

tails).

Figure 4–11a shows the generic HMM for the task of people, superimposed on

the original image. The STD is set to 126 pixels and K = 6 centroids are used for

clustering. The result of training the generic HMM to the task-specific trajectories

is shown in figure 4–11b. As we can see, the states (pdf means) move around to give

rise to the observations in the training set.

4.3.3 Evaluation

In this experiment we concern ourselves with the implementation of a HMM-

based inverse Yarbus process, whereby we can infer the visual-task given an eye

trajectory of a viewer performing a task on natural images. In order to be able

to benchmark our results against those of Greene et al. [46], we used the same

database of natural images they used in their experiment. The image set comprises

64 gray-scale photographs taken from the Life photo archive hosted by Google [44],

an example of which is shown in figure 4–10a. The date of the images span the years
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(a) (b)

Figure 4–11: a) The generic HMM that is used as the generic model for the task of
“determining how well the people in the picture know each other (people)”. b) The
task-dependent HMM after training the generic HMM on the training data.

between 1930 and 1979. In each image there are at least two people, and images do

not include photographs of familiar faces or locations.

To build a database of task-dependent eye trajectories, we followed the same

procedure as in [46] for the sake of comparison of the results. Overall we ran 1280

trials and recorded the eye movements of five subjects while performing a set of pre-

defined visual-tasks. Five McGill graduate students (one female and four males),

aged between 18 and 30, with normal or corrected-to-normal vision volunteered to

participate in this experiment. We used the same tasks as in Greene’s experiment

as follows:

• Memorize the picture (memory).

• Determine the decade in which the picture was taken (decade).
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• Determine how well the people in the picture know each other (people).

• Determine the wealth of the people in the picture (wealth).

The images were displayed on a 1920×1080 pixel LCD screen of size 53.3×30cm

at a viewing distance of 45 centimetres (1o of visual angle corresponds to 28 pixels,

approximately). Each image had a resolution of 800 × 800 and was shown in its

original size, which extended to 28 × 28 degrees of visual angle on a plain black

background.

Each subject did four segments of trials during his/her experiment. Each seg-

ment consisted of four blocks of 16 images, during which the subject was asked to

perform the task stated in an instruction image at the beginning of each block. Dur-

ing each segment, all 64 images were displayed once and subjects had 10 seconds to

look at each image. In order to better engage the subjects to the tasks, after each

image in the “decade”, “people” and “wealth” blocks, a question in form of a forced

choice paradigm was presented to the subject. The subjects were asked to select

the best answer by clicking one of the five choices. (We used the same routine and

questions as in Greene’s experiment.)

After each segment, a mandatory rest period was assigned to the subject followed

by the next segment of 64 images. In each segment we rotated the task order so that

each subject performs all the tasks in all the images. In the end, we obtained five

trajectories per task, per image, from which we selected the test and training set

using the leave-one-out cross-validation (CV).

104



An eye tracker (Tobii X120) was used to record the participant’s eye positions

at 120 Hz. The eye tracker’s spatial resolution is approximately 0.2o and its accu-

racy is about 0.5o. The subjects used both eyes to conduct the experiments. The

experimental setup is shown in figure 4–12.

At the beginning of each segment, we calibrated the eye tracker using the built-

in, five point, changing diameter, moving dot calibration routine in Tobii Studio

software (version 3.2.0, Tobii Technology, Stockholm, Sweden). The calibration grid

spanned the whole display.

After recording the eye movements, data analysis was carried out on each trial,

wherein we removed the blinks and outliers from the data and classified the eye

movement data into saccades and fixations using the built-in velocity-threshold iden-

tification (I-VT) method in the Tobii studio software. It is generally agreed upon

that visual and cognitive processing occur during fixations and little or no visual

processing can be achieved during a saccade [38], therefore, similar to all previous

experiments, we only considered the fixation points and removed the eye positions

in between the fixations.
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Figure 4–12: Experimental setup using the Tobii X120 eye tracker and the LCD
display.
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4.3.4 Results

In section 4.3.2 we remarked that the best value for the standard deviation is

σ = 4.5o. Figure 4–13a shows the accuracy of task classification versus different

values of the standard deviation (STD) of the Gaussian observations. As we can

see, the maximum accuracy occures when σ = 4.5o. The accuracy is obtained by

averaging the diagonal elements of the confusion matrix and the error bars show

the standard error of the mean (SEM). The table at the bottom of the figure shows

the values of the means and the SEMs. In the experiment we use a leave-one-out

cross-validation (CV) to define the training set and use the average accuracy across

all images to represent the overall accuracy. The SEMs are the sample estimate of

the population standard deviation of the accuracies across all images divided by the

square root of the number of images.
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(a)

(b)

Figure 4–13: a) Accuracy of task classification versus standard deviation (STD) of the
Gaussian observations. The accuracy is obtained by averaging the diagonal elements
of the confusion matrix of all 64 images and the error bars show the standard error
of the mean (SEM). The table at the bottom of the figure shows the values of the
means and the SEMs. b) Confusion matrix of task inference using the HMM-based
model.
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As mentioned in the introduction, in the study by Greene et al. [46], their

confusion matrix for task inference was at the chance level. Figure 4–13b shows the

confusion matrix we obtained using our HMM model. Also the numerical values of

the confusion matrix is shown in table 4–2. As we can see, the values are well above

the chance level (25 %) (that is obtained in [46]) and the model can infer the visual-

task with average accuracy of 59.64 %, as given by averaging the diagonal elements

of the confusion matrix.

In section 2.3 we showed that the only difference between the HMMs and the

discrete-time Markov chains (DTMC) is that the HMMs allow for covert shift of

attention by postulating the COGs to be the outcome of an observation pdf that

covers the area around the attentional spots. In order to show the advantage of

allowing for covert shift of attention, we use the same database and do the task

inference using the DTMCs. To do so, we use the exact same set up as in the

HMMs (using K-Means clustering), but rather than setting an observation pdf to

each state, we use Euclidean nearest neighbor to select the current state of a fixation.

The confusion matrix obtained by using DTMC has an average accuracy of 31.54 %

and is shown in table 4–3. Comparing the results of HMM and DTMC highlights

the importance of allowing for off-target fixations in our model for inferring the task

in real images.
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Table 4–2: Numerical values of the confusion matrix for task classification using the
HMM-based model. To obtain the results, we set σ = 4.5o and did leave-one-out
cross validation over all task-dependent eye trajectories.

MEMORY DECADE PEOPLE WEALTH

MEMORY 59.35 13.76 12.98 13.91
DECADE 11.86 55.91 18.84 13.39
PEOPLE 12.56 11.57 65.84 10.03
WEALTH 15.44 11.64 15.46 57.46

Table 4–3: Numerical values of the confusion matrix for task classification using
the DTMC-based model. To obtain the results we used the same setup (number
of clusters) as in the HMMs and did leave-one-out cross validation over all task-
dependent eye trajectories. In order to define the presumably overt state, we set the
state to the closest state using the Euclidean nearest neighbor.

MEMORY DECADE PEOPLE WEALTH

MEMORY 23.54 28.64 32.57 15.25
DECADE 13.43 27.68 21.64 37.25
PEOPLE 10.63 28.47 45.29 15.61
WEALTH 24.74 16.47 29.14 29.65

4.4 Discussion

In the beginning of this chapter we applied the proposed attention model based

on the theory of Hidden Markov Models (HMMs) to two tasks of simple and complex

search. For the simple search task, the application of a single-state HMM (SSHMM)

with mixture of Gaussian observation distribution functions gave good results in

the task inference. However, the experiment showed that the SSHMMs are not as

effective for task inference in more complex tasks, due to the frequent off-target

deployment of attention.
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Based on the literature related to the effect of task on eye movements, it is known

that complex tasks impose patterns on transitions rather than changing the aggregate

measures of the eye movements. In the new model, along with the spatial information

of 2D Gaussian mixture models (GMMs), the transition pattern information is used

to elicit information about the task. By introducing a second state, the double-

state word HMMs (DSWHMMs) were able to capture the transition dynamics of eye

movement data and use self-returning transitions as a sign of interaction intensity

with short-term memory, which in turn were used as an indication of whether the

FOA is on target or non-target object.

In another attempt an effort was made to reduce the a-priori constraint set by

using a small-size dictionary in the DSWHMM. To do so, we proposed to model the

attention cognitive process that drives eye movements for seeking characters as the

targets rather than the word in whole. In this way not only we were able to respect

the order of characters in a word, but also allowed for longer words in the dictionary.

The results showed that modeling character using a double-state character HMM

(DSCHMM) increases the consistency of word inference across different dictionary

sizes, whereas DSWHMM showed to be sensitive to the dictionary size.

In another model we proposed that even off-target FOAs show a specific pattern

given the target. Namely, we found out that in a visual search for a character, atten-

tion tends to land on characters similar to the target to narrow down the potential

locations of the target. Thus, we proposed to split the off-target state to two separate

states representing the FOAs on similar and dissimilar characters to the target. The

results showed not only that the tri-state HMM (TSHMM) is robust to the size of
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the dictionary, but also that the additional information elicited from the off-target

fixations helps us better infer the task.

In general, we used the SSHMMs to model the covert attention in the easy visual

search, where the fixations are mainly on the targets. In the DSHMMs we showed

how we can capture the temporal dynamics of human attention and at the same time

allow for off-target deployment of attention, while maintaining the support for the

covert attention, inherited from the SSHMMs, by introducing a second state to the

HMM structure. Two variations of the DSHMM were used to infer the task in whole

(DSWHMM) or in part (DSCHMM). In the TSHMMs we took advantage of the

information hidden in the off-target FOAs by introducing a third state to the model.

Overall, the results supported the idea of attention modeling using the HMMs and

suggested a solid probabilistic framework for task inference in synthetic images.

While the results presented in section 4.1 were very promising, further investiga-

tions was necessary to extend the idea to natural scenes and more realistic situations

like those of Yarbus. In the rest of the chapter we concerned ourselves with infer-

ring the tasks with no objective (or not straightforward) targets executed in natural

images. The main challenge in abstract task inference in natural images is that the

targets are not known in advance.

In section 4.3 we presented a probabilistic framework for task inference in nat-

ural images. This work was particularly motivated after previously encountered

difficulties in developing a reliable model for the inverse Yarbus process. As a ref-

erence we based our experiment on a setup used in a recent study by Greene et al.
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[46, 45], who concluded that the Yarbus finding is evocative and visual-task cannot

be inferred using the eye movements.

In order to benchmark our results against theirs, we used the same database of

natural images they used in their experiment. We also used the same experimental

protocol as in their experiment to limit the effect of other factors on the results.

The method we proposed was to first estimate the attention-demanding spots in

an image according to the task and then use the HMMs to model the task-dependent

eye movements for the given task and image. To find the attention demanding

locations in an image given a task, we used K-means clustering technique on the

ensemble of the training set and used the centroids as the potential targets. Due

to the lack of knowledge about task relevance of these potential targets, though, we

cannot split the targets in our models as was done in the other models. Thus, we

used an ergodic structure for the generic HMM that allows transitions from a state

to any other one. The generic HMM undergoes a training phase to build attention

models for each task-image combination, whereby we can calculate the likelihood

term of equation (4.1) and make inference about the task.

The results show a significant improvement over the results obtained by Greene

et al. [46].

In our view there are several reasons behind our improved results as compared

to those in [45]. In Green’s experiment only aggregate features of eye movements,

such as the number of fixations, duration of fixations, etc., were used to classify

the trajectories. These features, however, have been shown previously (e.g., [15])
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to be unreliable in task inference and therefore cannot be used to regularize the

ill-posedness of the problem.

Another reason behind the failure of the aggregate-based method in inferring

the task is that no information about the image is used in classifications. This is

while there is a well-studied relation between these two and the image context is

proven to have a major effect on eye movements [116].

In analyzing the eye movement behavior, the temporal order of fixations is

usually omitted from many models of eye movement analysis including the one by

Greene et al. [46], where the temporal order of fixations is not used in the summary

statistics of the eye movements. However, it is becoming increasingly more obvious

that temporal order of fixations is an important feature in describing the underlying

mechanism of the visual behavior. The question of whether and how the temporal

order of fixations matters in modeling eye movements has been raised since the early

studies by Yarbus [128] and Buswell [12]. In the salience-based models of attention

the temporal order of fixations is not usually considered in training the models [7,

Figure 7]. From the statistical point of view, these models postulate a näıve Bayes

assumption in evaluating the likelihood probability of equation (4.1), which assumes

independence between consecutive fixation locations. In contrast to these models,

consecutive fixations have shown to be highly dependent on each other. In a study

by Hacisalihzade et al. [47] they recorded the eye movements of observers during

the task of recognizing an object and showed that the fixations follow a somewhat

Markov process. They showed that the eyes visit the features of an object cyclically,

following a regular scanpaths rather than crisscrossing it at random. Elhelw et al.
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[29] used a first-order, discrete-time, discrete-state-space Markov chain to model eye

movement dynamics. Stark and Ellis [110] also came up with a Markov process as

a general model of fixation placement during the task of reading. Pieters et al. [95]

also observed a similar pattern in the scanpaths of the observers while looking at

printed advertisements.

The temporal order of the fixations plays an important role in decoding the pat-

tern of eye movements in the HMMs. In fact, the transition matrix of the HMMs (A)

adjusts its elements according to the order of fixations the subjects make on targets

during the training. This information is later used by the HMM to match the pat-

tern of state transitions against that of a test trajectory. The better the transition

pattern of the test trajectory accords with that of a task-dependent HMM, the more

likely the trajectory is an observation of that task. In [46], however, the temporal

order of fixations is not used in the summary statistics of the eye movements. Elim-

inating the temporal order information from the feature set prevents the classifiers

from improving the results based on that information and probably is one of the

reasons the classification based on the summary statistics leads to a poor result.

Both temporal and spatial information could be extracted in the original Yarbus

experiment [128, figures 107 to 124], as well as in the experiment by Greene et al.

[46, figure 3]. However, in order to replicate the Greene et al. experiment using their

feature set, we removed the temporal information of the fixations from the trained

HMMs by setting the transition matrix to equal values. In this way no knowledge of

the temporal order of fixations that may be in the training set is incorporated into

the HMM. Throwing away the temporal information in this manner resulted in a
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15.51% average degradation on the diagonal elements of the confusion matrix. The

performance was still above chance, however. Moreover, the HMMs completely fails

in inferring the task when spatial information from the eye trajectories is removed.

Thus, we can hypothesize that spatial and temporal information is crucial to solving

the inverse Yarbus problem, and the lack of such information may be the reason that

the Greene et al. approach did not work.

An important point to consider is that the purpose of this chapter was to infer

the visual-task based on the recordings of the fixations made on an image and not

to infer the FOA. This can specifically be noticed in the first experiment, where all

the fixations are assumed to be on target, while in a real word situation, off-target

fixations, even for simple tasks, are inevitable. However, in the results of this exper-

iment, the hidden states of the model intuitively become closer to our expectation

of the FOA. For instance, in the second experiment the states are dedicated to the

on-target and off-target fixations, which can be safely assumed to happen in the FOA

trajectories during a task execution. In the third experiment we further break down

the off-target fixations to the ones on similar and dissimilar targets, which is shown

to be in line with the experimental results of [42] that is shown in figure 4–6. Thus,

the MAP estimation of the hidden state sequence given an eye trajectory (that can

be obtained using the Viterbi method) can be used as an estimate of the possible

targets of the visual attention for a given task (figure 4–14).

116



(a)

(b)

Figure 4–14: a) The hidden states of a task-dependent HMM visited during an eye
trajectory of a subject executing the task of “counting the number or characters” on
a synthetic image. b) The hidden states of a task-dependent HMM visited during
an eye trajectory of a subject executing the task of “counting the number or people”
on a natural image.
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The increase in the accuracy of the HMMs compared to the DTMCs not only

shows the advantage of allowing for the decoupling in the model, but also implies

instances of covert shifts of attention in the eye movement data. The indication of

the COG deviation from the locus of attention is an important by-product of the

model, since it is not easy to demonstrate in scene viewing eye movement recordings.

The possibility of this dissociation between the COG and FOA has been raised

before in oculomotor studies by indirectly tracing attentional spot on non-fixated

targets. In a study by O’Regan et al. [90] this COG-FOA decoupling is implied

from observers’ unawareness of changes in an image in 40% of the time, even though

they were directly fixating the change location. Measuring the reaction time (RT) is

another indirect implication of covert attention that is used in psychophysical studies

[57, 73, 21, 107], where a decline in the reaction time to a non-fixated stimulus is

associated to the covert attention.

Although the comparison between the results of the HMMs and the DTMCs

implies the existence of off-stimulus attention, we have to note that off-stimulus

fixations do not necessarily mean that the FOA is away from the fixation (i.e. covert).

For instance, in a phenomenon known as the center-of-gravity (also known as the

global effect) [130, 53, 87], the stimulus is actually the collection of features, and the

location of the stimulus is the centre-of-mass of this collection. Hence the FOA is in

this case overt. If we were to accurately compare the hidden states of our models with

the focus of attention, we would have to use methods such as attentional-probing,

detecting microsaccades [48] or fMRI recording [124], in order to locate the FOA
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and measure the correlation between their estimation and the centroids of the HMM

states.
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CHAPTER 5
Information Fusion in Visual-Task Inference

In the previous chapters we developed a model based on the theory of the HMMs

to infer the visual-task for simple and complex tasks, executed on synthetic or natu-

ral stimuli. In the task inference, we used the HMMs to calculate the likelihood term

of P (O|λθ) and substituted it into equation (4.1) compute the posterior. We then

determined the task that maximized the posterior probability. In the Bayesian infer-

ence, however, we used equal probabilities for all tasks, which reduced the maximum

a-posteriori (MAP) inference to a maximum likelihood (ML) inference, i.e.:

arg max
θ∈Θ

P (λθ|O) = arg max
θ∈Θ

P (O|λθ). (5.1)

In real life, tasks do not happen according to a uniform distribution (as assumed

in the ML estimator) and have different a-priori probabilities (as assumed in the MAP

estimator). In the first section of this chapter we show how to fuse different sources

of information and improve the results by applying the higher order constraints to

the Bayesian inference in terms of the prior probability, P (λθ).

In this section we use the tri-state HMM (TSHMM) proposed in section 4.2.3

as the baseline and see the effect of prior knowledge about the tasks on its accuracy.

The same technique can be used in task inference in other HMM-based inference

models, since in the Bayesian inference the a-priori knowledge is marginalized from

the likelihood term and can use any model to evaluate the likelihood. Moreover, in
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this section we use the eye-typing application for the task inference. In the eye-typing

application the tasks correspond to the dictionary tokens (words or characters) and

inferring the tasks corresponds to classifying or recognizing the eye-typed token.

Although Bayesian inference provides a nice framework for fusing the prior

knowledge about the task and inferring the visual-task from the eye movements,

there is a limitation that stops us from using the classical Bayesian inference for

larger number of tasks in the task space. So far the inferences we made were in

fact a classification, where we selected the task from a pool of tasks that was most

consistent with the observation vector. For instance, in the eye-typing application,

we had a dictionary of possible words, from which we selected the best word (task)

that gave rise to the observation vector of the fixations. To this end, we had to

build the models for each of the words in the dictionary in advance and evaluate the

likelihood of a given observation for each of the models. Then by using the Bayesian

inference we picked the task that gave the maximum a-posterior probability as the

eye-typed word.

This method proved to be able to infer the task for a small-size dictionary

of possible words. However, if the dictionary of the possible words is very large,

building the model for each of the character combination takes a lot of processing

and memory. Moreover, for a free vocabulary dictionary that has unlimited number

of possible words, building the models in advance is not an option and we have to

recognize the words rather than classifying them.

In order to address this issue and recognizing the task rather than classifying it,

in the second section of the chapter we propose a variation of the classical Bayesian
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inference that uses the HMM models within a simple conceptual model of recognition

called the word lexicon that incorporates the sub-task HMMs in a transition network

structure. We will use this model to incorporate the prior information about the

tasks into the recognition and build a complete model of recognizing the ongoing

task for the eye-typing application. In the word lexicon framework, rather than

building the models in advance, we can incorporate the models on the fly. Besides

dynamically building the models, using the lexicon allows us to naturally incorporate

the a-prior information about the tasks into the recognition in terms of rewards and

penalties imposed on the transitions.

So far we used the forward algorithm to evaluate the likelihood of an observation

given different models. In the Bayesian inference we used the result of the forward

algorithm as the likelihood term and evaluated the a-posterior probability of different

tasks given the observation. A variation of the forward algorithm called token passing

will be introduced in section 5.2.1 to make inferences in the lexicon model. Using the

token passing technique we can infer the task by recognizing the best path throughout

the lexicon that better matches the observation.

5.1 Information Fusion in The Bayesian Inference

Although in section 4.2.3 we showed that the structure of the TSHMMs is more

compatible with the nature of the complex task of eye-typing on a soft keyboard re-

sulting in a better classification accuracy in the task inference, there are other sources

of information that could be applied to the inference to improve the performance of

the model. The prior probability distribution of tasks is a source of information that

we use on a daily basis to make inferences about our observations. For instance,
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in a reading task when we encounter the character “Q”, our brain gives rise to the

character “U” as the following character, since in common English words, most of the

time “Q” is followed by “U”. Therefore, in our eye-typing application, recognizing

“Q” as the current character could a-priori increase the chances of recognizing “U”

as the next eye-typed character.

A similar technique is used in the speech processing literature to improve the

result of a recognizer by applying high-level constraints to the sequences of speech

unit (i.e., words, characters, phoneme, etc.) [98]. The constraint is imposed to

the decision making engine in the form of a lexicon dictionary, called the language

model (LM), that provides us with prior probabilities of seeing different speech units

given the current one. For instance, if the recognition units are the words, the

LM governs the transitions between the words according to the sentences that exist

in the dictionary and gives different weights to the transitions depending on the

combination of the words. In short, the units of speech themselves are modeled by

the HMMs and then concatenated according to the LM to build up the general model

that is used for recognition of the speech units.

In this section we apply the same technique to our problem of task inference

and fuse the high-level constraints to the Bayesian inference framework that we used

for the task inference. To do so, we define the task as typing a single character and

define the inference as finding the character that is eye-typed given the observation

vector of the eye fixations made during the execution of the task. Thus, a word can

be modeled by a string of characters, each of which is represented by the HMM-based

model (e.g., TSHMM) that was generated for each character, and can be represented
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as follows:

Λθ = {λθ1 , λθ1 , . . . , λθn}, (5.2)

In this representation n is the number of characters in the word and λθi is the

character that appears in the ith place of the word. Each character (θi) is denoted

by its HMM model, λθi , to indicate the parameters of the attention model that are

trained for that character (training the parameters of λθi was explained in chapter

4).

In the Bayesian inference we defined the recognition of the ith character (λθi)

given the observation vector of the fixations (O) as the solution to the following

optimization problem:

λ̂θi = arg max
λθi

P (λθi |O,Λθ) = arg max
λθi

P (O|λθi)P (λθi |Λθ) (5.3)

So far we used a uniform distribution for the a-priori term of P (λθi |Λθ), which

reduced the inference to a maximum likelihood estimation of:

λ̂θi = arg max
λθi

P (O|λθi). (5.4)

However, prior knowledge about the task, such as the one imposed by the lan-

guage models, can improve the results by giving rise to the tasks with maximum

a-posterior probability, making the inference a maximum a-posteriori (MAP) esti-

mation of the task.

Since in our application we are dealing with common English words, we use a

similar technique used in speech recognition [98] to apply higher order constraints

on the recognizer. In our application, the recognition units are the TSHMMs that

124



are trained for each characters and the higher level process that concatenates them

to build up each word in the dictionary is modeled by the LM. The TSHMMs and

the LM are denoted in equation (5.3) by the terms λθi and P (λθi |Λθ), respectively.

Several models exist for defining the LM, the main feature of them being the

order of dependency between the models of task units (characters in our case). As a

common model, in the LMs we assume a Markov chain that governs the transitions

between the units of recognition and depending on the order of the Markov chain

used in the LM, the model is called an n-gram LM (n defines the order of the Markov

chain). Choosing Markov chains as the underlying model of the LM is particularly

in full accordance with the structure of the character units, which is based on the

HMMs.

Here we use a unigram LM to model the transitions between the characters

(n = 1), but the same principal applies for higher order LMs, as well. In a unigram

LM, each character only depends on the previous character, i.e.,:

P (λθi|Λθ) = P (λθi |λθi−1
). (5.5)

Thus, By using the unigram LM as the prior task probability, equation (5.3)

becomes:

λ̂θi = arg max
λθi

P (O|λθi)P (λθi |λθi−1
) (5.6)

In order to build the language model (LM), we need to train the LM by assuming

the first order Markov chain as the underlying process of the character sequences that

appear in the dictionary words. The training is done by counting the number of each

pair of transitions in the dictionary and therefore the probabilities are based on
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frequencies and counts of each pair, i.e.,:

P (λθi |λθi−1
) =

c(λθi−1
, λθi)

c(λθi−1
)

, (5.7)

where c() denotes the count function. Eventually the language model will give us

the probability of P (λθi |λθj) for each pair of characters (λθi , λθj).

In section 4.2.3 we showed how we can train the TSHMMs for each character.

Therefore, by training the LM we have a complete set of probability distribution

functions to evaluate the a-posterior probability of equation (5.6).

In the experiments we will show how prior task probabilities can improve the

result of task inference in character recognition. The significant improvement we

get by applying the LM shows the importance of the task priors and their effect

in disambiguating the likelihood of an observation given different models. In this

context, the LM works as a source of experience, whereby we can apply our knowledge

acquired through history into the inferences we make. This effect is comparable to

how our brain improves its inferences by applying the experience it gains through

previous practices.

5.1.1 Evaluation

In this experiment we show the effect of using a-priori information on the

Bayesian inference. The goal is to infer what character was being eye-typed given

an eye trajectory. In other words, the tasks are composed of the characters and the

observations are the eye trajectories of the subjects while performing the tasks. To

do so, we use the same database of eye movements that was used in chapter 4. The
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database of task-dependent eye trajectories is composed of the recordings of the eye

movements of six subjects while eye-typing 26 different 3-character words.

In order to extract the character trajectories, we manually split each trajectory

into three sub-trajectories, each dedicated to find one of the three comprising char-

acters of a word. In chapter 4 we showed that in the TSHMM models the fixations

denoting the final fixations of a character quest are usually located around the target

character and can be modeled by a Gaussian observation pdf (see figure 4–7). There-

fore, in order to split the word trajectory, we spotted consecutive fixations around

each of the three characters (target state) and manually split the trajectory at those

fixations. Figure 5–1 shows a sample eye trajectory of a subject while typing the

word “TWO”. After spotting the consecutive fixations on each of the characters “T”,

“W” and “O”, we split the word trajectory into three character trajectories. In this

figure, the fixations related to characters “T”, “W” and “O” are colored in red, green

and blue, respectively.

After the preprocessing, we obtained a database of 435 character trajectories

each of the form (O1, . . . , Om), containing the observation sequences of coordinates of

fixations while performing the eye-typing, where Oi = (xi, yi) represents x-coordinate

and y-coordinate of the ith fixation, respectively. For the character HMMs, we used

the TSHMM models introduced in section 4.2.3 on the training data to build a

character model for each of the characters on the keyboard. To separate between the

training and testing data, we used a 10-fold cross validation on the whole database

of eye trajectories.
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Figure 5–1: A Sample eye trajectory of a subject while typing the word “TWO”.
After spotting the target states for each of the comprising characters, we split the
trajectory into three sub-trajectories, each of which denoting the eye movements
while looking for the respective character. In this figure we colored the fixations
dedicated to the characters “T”, “W” and “O” in red, green and blue, respectively.

In order to train the language model, we created four sets of dictionaries of 26,

52, 104 and 312 English words using the Carnegie Mellon pronouncing dictionary

(CMPD) [121]. All dictionaries were built so that they all included all the words of

the smaller dictionaries (the same dictionaries used in chapter 4 were used here). The

words were selected randomly from the CMPD and the words length varied between

three to five characters. The language model was also created using equation (5.3)

on the words in each dictionary. To that end, we used the CMU-Cambridge toolkit
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[18] that uses the same technique as in equation (5.3) to train four LMs given each

of the dictionaries.

5.1.2 Results

Figure 5–2 shows the accuracy of the character inference using the Bayesian

inference with a-priori knowledge (+LM) and without a-priori knowledge (-LM).

The a-priori knowledge is applied to the Bayesian inference in form of a LM trained

over four dictionaries of 26, 52, 104 and 312 English words. In both +LM and -

LM models we used the same TSHMM models trained on the same training folds

of the eye movement trajectories to calculate the likelihood term of the Bayesian

formulation.

As expected, the +LM performs better than -LM due to the fusion of information

provided by the +LM. Particularly, for smaller size dictionaries, where the LM can

better predict the characters, the improvement is much higher than the -LM baseline.

As the size of the LM grows, the accuracy of the +LM drops, which is due to

the ambiguity brought to the LM by including out-of-dictionary words in the LM

training. That said, since all of the dictionaries include the core 26 words that are

used in the eye-typing experiment, the +LM consistently performs better than the

-LM in all dictionary sizes. For the small-size dictionaries, the entropy of the LM

decreases, which results in higher probabilities for the character combinations in the

dictionary and lower probabilities for the out-of-dictionary character combinations.

The lower entropy of the LM, highlights the a-priori effect in the Bayesian inference

with respect to the likelihood term. As a result we can see higher accuracies in
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smaller dictionaries, so much so that the 26-word dictionary correctly classifies the

characters in all cases.

Figure 5–2 shows the results of information fusion in the Bayesian inference

for the character classification task. Each column is dedicated to each of the four

dictionaries on which the corresponding LM is trained. The table below the figure

shows the average accuracy and the standard error of the mean (SEM) of the task

inference by each of the +LM and -LM methods. For each bar we ran a 10-fold

cross validation on our database of 435 trajectories in order to define the training

and test sets and used the same epochs across both methods. As we can see, the

+LM outperforms the -LM in all four dictionary sizes by bringing new source of

information into the inference.

5.2 Information Fusion Using the Lexicon

In the previous section we showed how the prior knowledge about the task can be

fused into the task inference in the Bayesian inference framework. We represented

the prior probabilities about the character being recognized in the form of a LM,

which is a transition network that gives different weights to the characters, given the

previous one. In the classical Bayesian inference, though, we needed to build the task

models for each of the tasks in the dictionary in advance and select the one that gives

the best a-posterior probability for a given observation. While this method works

fine for a small-sized dictionary of possible tasks, we need an alternative approach

for inferring the task in a large-sized or unlimited dictionary of tasks.

In this section we will see how the LM can be merged with the HMM units of

character and build a full-scale unit of recognition that incorporates the likelihood
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Figure 5–2: Results of information fusion in the Bayesian inference for the character
classification task. Each column shows the results of character classification with
an LM trained over a specific number of words in the LM training dictionary. The
dictionary size varies from 26 to 312 words and the average classification accuracy
of character classification of the Bayesian inference with a-priori knowledge (+LM)
and without a-priori knowledge (-LM) are shown next to their standard error of the
mean (SEM).

and prior terms into one unique model of attention that can be used for making

inferences about the visual-task. To do so, we merge the TSHMM character models

with the LM to build up a unique attention model for all of the tasks in the dictio-

nary, called the lexicon [63]. In the Bayesian approach we created a model for each

of the words in the dictionary and picked the one that better matched the pattern

of the observation vector. In the word lexicon, though, we create a unique model for

all of the words in the dictionary (and even the ones that are not in the dictionary),
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where the transitions between the characters are governed by the LM. In order to

infer the task, a new method called the token passing is introduced in this section

that can traverse the word lexicon and give us the task that best matches the obser-

vation vector. The new model has many advantages, one of the most important of

which being the elimination of pre-building the models for each of the words in the

dictionary.

The word lexicon is composed of the character TSHMMs put together in a

parallel state machine. The connections between the characters are governed through

a state specified to the LM. The complete structure of the word lexicon is shown in

figure 5–3. In order to generate a sample observation vector, first we select a character

according to the LM and start from a state according to the initial state probabilities

of that character’s HMM. By following the transition probabilities we can choose the

next states at each time step and generate observations according to the observation

probabilities. When getting to the final state of the character (target state), it is

the language model that suggests which character, by what probability, can follow

the current one. The LM weights to the combination of characters are applied via a

hypothetical state (that neither generates an observation nor represents a time-step)

that applies different probabilities for the next character according to the current

one (unigram LM).
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Figure 5–3: The word lexicon. The state at the bottom is where language model
parameters are applied to the transitions.

133



Given the structure of the word lexicon, the model can generate words with

arbitrary number of characters. Also in the new model the number of words in

the dictionary will not impose any computational overhead in the inference. This

feature is due to the unified representation of the word models in the word lexicon

as opposed to the multiple model creation for the words in the dictionary in the

classical Bayesian approach. Therefore, in the word lexicon model we can optionally

have a large or unlimited number of words in the dictionary resulting in recognizing

the task rather than classifying it.

Although the complexity of the evaluation phase is independent of the number

of words in the dictionary and the complexity of the LM training is linear to it, the

larger dictionary will result in more uncertainty in the LM when transitioning from

a character to another, which is the direct effect of the larger number of character

pairs that appear in the LM training set. In other words, training the LM on a large

dictionary will broaden the choices of transitions from a character to another and

will increase the number of pairs that are counted in the training word set leading

to a larger “c()” in equation (5.7).

5.2.1 The Token Passing Technique

Training the word lexicon is similar to what we had in the character TSHMMs.

To build up a word lexicon, we need to train the character TSHMMs as was done in

section 4.2.3 and concatenate them according to figure 5–3 using the LM.

For training the LM, we also use the same method as used in section 5.1 and

find the probabilities by counting the frequencies of seeing different character pairs

in the training set. That said, the unified structure of the lexicon for all of the words
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in the dictionary necessitates a different technique than the forward algorithm that

was used for evaluating the likelihood term in the Bayesian inference (section 2.3.2).

In this section we introduce a variation of the forward algorithm, called token

passing, whereby we directly infer the tasks in the lexicon models. We borrow this

technique from the literature related to speech processing [129], where they use token

passing to find the best sequence of recognition units (phonemes, characters, words,

etc.) that better matches the feature vector elicited from the observation audio

signal.

In the token passing technique, finding the best sequence of states that matches

the observation sequence is based on minimizing a cost function C (or maximizing

a reward function) that incorporates the transition and observation probabilities.

The tokens can be thought of as objects that can move in the lexicon network from

state to state and keep track of the traversed state sequence and the cost function

inside themselves. The cost is incurred by either transitions from a state to another

(transition cost Ct) or by generating an observation vector at each time step (local

cost Cl).

The transition cost is denoted by Ct(i, j), which can be calculated by the fol-

lowing equation:

Ct(i, j) = − logPij (5.8)

Here Pij is the probability of the transition from state i to state j. As we can see,

lower transition probabilities will result in higher costs and vice versa. When entering

an HMM, P is equal to the initial state probability (Π) as denoted in equation (2.8).

If the transition is within a HMM, P is equal to the transition probability of the
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HMM (aij) as denoted in equation (2.7). For transitions between the HMMs, in

addition to the initial state probabilities of the target state, the cost includes that of

imposed by the LM, i.e.:

Pij = P (λθj |λθi) ∗ πj. (5.9)

In this equation P (λθj |λθi) is the weight imposed by the LM as denoted in

equation (5.7) and πj is the initial state probability. Thus, the transition cost function

in transitions between HMMs becomes:

Ct(i, j) = − logP (λθj |λθi)− log πj (5.10)

The second type of cost is the local cost (Cl), which is defined by the level

of similarity between the observation vector at time t and the observation pdf of

the current state. In order to define the local cost, we quantify it in terms of the

observation probability density function (bj) as follows:

Cl(j, t) = − log bj( ~Ot) (5.11)

where bj( ~Ot) is the likelihood of generating the observation vector ~Ot at state j,

whose value can be calculated according to equation (2.9). Therefore, the overall

cost for a transition from state i to state j at time t is calculated as:

C(i, j, t) = Ct(i, j) + Cl(j, t). (5.12)

Algorithm 1 shows how we can use this cost function in order to decode a

sequence of eye movements by finding the path with the lowest cost in the lexicon

of figure 5–3. We start the algorithm by assigning a token to all of the states in the
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lexicon. At the time step t = 0 the cost value of each of the tokens is defined by

the initial state probability of their respective states. After initialization, we copy

each token to all connecting states and increment its cost by C(i, j, t) according to

equation (5.12). Once all tokens are copied to all connecting states, for each state

we discard the previous token and from the imported tokens keep the one with the

minimum cost function. This process is repeated until we reach the end of the

observation sequence. At that time we compare the cost of the tokens in the final

states of all of the HMMs (the target state) and pick the one with the minimum

cost value. The sequence of states which has yielded that token, then, is selected as

the loci of attention during the visual-task execution. Therefore, the state history of

the final token reveals the characters that were most likely visited during the task

execution and can be used as the inference about the visual-task. In the experiments

we compare the accuracy of inferences made by the Bayesian formulation and the

token passing technique and show that with a slight sacrifice in the accuracy we can

use the unified model of the lexicon to recognize the task being executed.

5.2.2 Evaluation

In order to compare the results of the task inference using the lexicon and the

Bayesian frameworks, we used the same database of eye movements that was used in

chapter 4. The database of task-dependent eye trajectories is composed of the record-

ings of the eye movements of six subjects while eye-typing 26 different 3-character

words. The words were selected so that there was no repetition of characters in them.

After the preprocessing, we obtained a database of 145 trajectories each of

the form (O1, . . . , Om), containing observation sequences of coordinates of fixations

137



Algorithm 1 Token Passing

Initialize:
Assign a zero valued token to the initial states of the word models.
Assign an infinity valued token to all other states.
Algorithm:
for t:=1 to T do

for each state i do
Copy the token in each state i to the connecting state j and increment its
value by C(i, j, t) = Ct(i, j) + Cl(j, t) (see equation (5.12))

end for
Discard the original tokens.
for each state i do

Keep the token with the minimum value and discard the rest.
end for

end for
Termination:
In the final states, the token with the smallest value corresponds to the best match.

while performing the eye-typing, where Oi = (xi, yi) represents x-coordinate and

y-coordinate of the ith fixation, respectively.

As for the a-priori information, we used the same LMs as in the previous exper-

iment (section 5.1.1). The LMs were trained on four sets of dictionaries of 26, 52,

104 and 312 English words all including the core 26 words of the smallest dictionary

(the same dictionaries used in chapter 4 were used here). The words were selected

randomly from the CMPD ([121]) and the words length varied between three to five

characters. Also in the FSM structure of the lexicon, for each character, we used

the TSHMM of the character, which corresponds to the model used in the previous

experiment.
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Figure 5–4: Comparison of task classification accuracy using the Bayesian classifier
(+LM) and the word lexicon (LEX) in a word classification task. The size of the
dictionary on which the LM is trained is written at the first row of the table and
their respective accuracies obtained using each of the models follow them. Each bar
shows the mean classification rate (%) of correctly recognizing the intended word
in the eye-typing application. The mean value and the standard error of the mean
(SEM) are represented by bars and the numerical values are given in the following
table.

5.2.3 Results

Figure 5–4 shows the accuracy of the word inference using the Bayesian inference

and the lexicon models with the LMs trained over dictionaries ranging over four sizes.

The result of the Bayesian inference is the same as the results shown in the TSHMMS

(see figure 4–9). As we can see with a little sacrifice in accuracy, we can obtain the

same results using the word lexicon model and token passing technique. The small
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decrease in the accuracy is due to the fact that in the token passing technique, at

each time step we only keep the best token of each state and eliminate the rest

of them. This reduces the accuracy of the recognition model for the trajectories

with noisy observations. Nevertheless, the lexicon obtains similar accuracy in word

recognition as compared to the Bayesian inference while eliminating the requirement

for pre-building the word models in advance.

One important point to be noted is that although in the Bayesian inference we

do not explicitly use the LM as the task priors, the a-priori information is implicitly

applied in the inference by limiting the classification results to one of the words in the

dictionary. Thus, as opposed to the previous experiment for character classification

where the -LM model was a Bayesian classifier with a flat task priors, here the

Bayesian classifier is implicitly using the LM and falls under the +LM models of the

previous section (hence using +LM to denote the Bayesian classifier).

The table in figure 5–4 shows the accuracy and the standard error of the mean

(SEM) of the corresponding bars. For each bar we ran a 10-fold cross validation on

our database of 145 trajectories in order to define the training and test sets and used

the same epochs across both methods.

5.3 Discussion

In this chapter we showed how different sources of information can be merged

into the Bayesian inference. We showed that the prior information about the tasks

can improve the accuracy of the inference by turning the maximum likelihood (ML)

inference into a maximum a-posteriori (MAP) inference. The a-priori information

can originate from different sources. For instance, in English words the current
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character can give prior information about the next character. In section 5.1 we

used the frequency of character pairs to capture the pattern of transitions from a

character to another. The information was encapsulated in a character network,

called the language model (LM), which gives us chances of seeing different character

given the current one.

The LM is a nth-order Markov chain that assigns probabilities to transitions from

one character to another based on the previous history of them. Depending on the

order of the Markov chain an n-gram LM is generated. The order of the LM varies

the accuracy of the LM in predicting the next character at the expense of training

complexity. If we increase the order of the LM, longer patterns can be captured in

the LM, which can result in a better prediction of the upcoming characters. However,

a higher order LM necessitates a larger training database or otherwise there is a risk

of divergence in the training phase. The number of character combinations grows

exponentially with the order of the LM, which also entails an exponential growth in

the training set in order to have all of the character sequence combinations in the

training database.

In section 5.1.1 we showed that incorporating the knowledge from the LM into

the inference leads to a MAP classifier, which significantly mitigates the accuracy

of the Bayesian inference with a flat a-priori pdf (ML classifier). In order to bench-

mark the MAP classifier against the ML classifier, we compared the results of both

classifiers in task inference on a unique database. The database was extracted from

the eye-typing trajectories of the virtual keyboard experiment of chapter 4. The

goal in our experiment was to infer the character that was being eye-typed given
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the eye movement trajectories. In order to extract the character trajectories from

the word trajectories, we approximated them by manually splitting the fixations into

three sections, each dedicated to one of the characters in the word. The splitting was

inspired after the TSHMM model of chapter 4, where we modeled the terminal fixa-

tions while searching a character by a Gaussian probability density function around

the target character. Thus, in order to split a trajectory, we looked for fixations

around the target characters and split the trajectories at those fixations.

Although in extracting the character database we implicitly postulate that

searching for the characters of a word are independent of each other, this assumption

has a similar effect on both the MAP and the ML classifiers. Therefore, even though

this assumption might occasionally be violated by the memory effect, we can safely

compare the results of the classifiers with each other and the improvement achieved

by the MAP classifier is independent of any potential effect of the assumption on

the results of the ML classifier. In other words, since in the Bayesian inference we

marginalize the a-priori term from the likelihood term, we can examine the effect of

the a-priori term regardless of the accuracy of the likelihood term.

One of the shortcomings of the classical Bayesian inference method is that for

each task in the task set, we need to build a separate HMM and find out which

model better gives rise to the observation vector to select it as the inferred task.

While building a model for a small-size dictionary of tasks is not complicated, the

complexity of the inference grows with the number of tasks in the dictionary. Another

shortcoming of the classical Bayesian approaches is that they can only be used for

classification. In classification we have a limited number of tasks in the dictionary
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and we need to find out which task was being executed during the recording of the

observation vector. However, in recognition, the number of possible tasks is not

limited to a specific number and the dictionary can be infinitely large.

In section 5.2 we introduced a variation of Bayesian inference that uses a unified

model for all of the tasks in the dictionary. By using the lexicons, not only we

were able to eliminate the need for building a new models for the new tasks in the

dictionary, but also we could generalize the inference to recognition of the tasks. To

do so, we used a technique called token passing to decode the underlying states of

an observation vector in a lexicon.

The lexicon and the token passing technique introduce a straightforward way of

combining the HMMs with the LM into a unified attention model that can recognize

the task with a linear complexity with respect to the number of words in the dictio-

nary. One of the benefits of using the explicit LM in the lexicon is that when new

vocabularies are added to the dictionary we only need to amend the LM. Moreover,

we can manually change the task priors in the unified lexicon model by changing the

transition probabilities of the LM. This is especially helpful when recognizing the

task rather than classifying it, where we should manually change the LM in order to

allow for out-of-dictionary tasks.

In the token passing method we moved hypothetical tokens throughout the

lexicon that updated an internal cost function assigned to each of them. The cost

function reflects the likelihood of the token being at the current state at the current

time given the current observation vector. In the end, the token with the lowest cost
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shows the most potential sequence of states that could have resulted in the given

observation trajectory.

Although the token passing algorithm is an efficient way of traversing the lexicon

with a linear complexity and linear memory space, it is suboptimal compared to the

Bayesian inference for a classification task. At each time step, the token passing

only keeps the token with the lowest cost and discards the rest of the tokens in each

state. Therefore, a noisy observation can degrade the performance of the algorithm.

That said, even though a noisy observation can cause the best token to be eliminated,

similar tokens with low costs still have a chance to survive and replace the eliminated,

optimal token and make a correct inference about the task.1

The experimental results compare the classification results of the Bayesian and

the lexicon models and show only a small degradation in the results of the lexicon

compared to the Bayesian.

1 other variations of the token passing algorithm exist that keep more than one to-
ken at a given time step at the expense of exponentially increasing the computational
complexity and the memory usage of the algorithm [129].
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CHAPTER 6
Conclusion

Predicting the cognitive state of an observer from eye movements has been stud-

ied before in several works. Recognition of the physical activity, detection of tiredness

or distraction, estimating the mental workload, detecting schizophrenic patients and

indicating the mental fatigue are some of the inferences about the cognitive state of

an observer that have been successfully accomplished in the oculomotor studies of

human. As another feature of the cognitive state of an observer, in this thesis we

studied visual-task detection by observing the pattern of eye trajectories. Our main

goal was to reveal the task by detecting the goal-driven behavior of the oculomotor

mechanism of an observer that directs the eyes in a scene to gather task-relevant

information. We showed that eye movement can be used to reveal the attention

demanding targets in a scene, which in turn can be used to infer the task. This work

was inspired after the experiment by Yarbus that showed the visual-task affects the

pattern of eye movement.

In a recent attempt Greene et al. [46] tried to realize an inverse Yarbus process,

whereby we could detect the visual-task from the patterns of the eye movement.

However, they could only achieve accuracies that were low or at the chance level.

In this work we proposed that this failure originates from the feature set used to

represent the eye movements. Particularly we showed the aggregate measures of eye
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movements, such as the so-called summary statistics, do not retain either the tem-

poral order, or the spatial information of the fixations, which leads to a insufficient

representation of the eye trajectories for the task inference purpose.

In our proposed model we keep both spatial and temporal information of the

fixations in a 3-tuple of the form (x, y, t), where x and y indicate the location of

the fixation in a Cartesian space and t denotes the order of the fixation in the time

space. Using this feature set, though, leads to a huge possible space of observations,

which causes divergence in training of classifiers.

In chapter 2 we showed that although eye-trajectories can vary from subject

to subject, they all serve to gather relevant information in service of the ongoing

visual-task in the sense that the visual process directs the fixation to the informative

locations in an image by means of a process known as visual attention.

In chapter 2 we showed that, even though the observation space spans a very

large 3D space of possible feature sets (composed of the x, y and t information of

the fixations), it can be mapped to a 2D space of attentional spots that indicates the

areas attended during a task and their corresponding time stamps. The mapping

from the eye movement space to the attentional space is done by models of visual

attention. Therefore, as a secondary target of the thesis we investigated the visual

attention models in order to track the foci of attention in an eye trajectory.

Several attention models were studied in the thesis, a common feature being the

use of an integrated map of conspicuous locations in the image called the saliency

map. Both bottom-up and top-down variations of the attention models were described

in the background section and the disadvantages of each model were highlighted.
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Based on the level of engagement between the fixation location and the focus

of attention we have covert or overt types of visual attention. In an overt shift of

attention, the center of gaze (COG) is directed to the focus of attention (FOA). In a

covert shift of attention, however, the COG can be well away from the FOA, making

the FOA harder to track.

Regardless of the overtness or covertness of attentional deployment, other factors

can also contribute to the divergence between the measured COG and the FOA.

These factors include noisy instruments, deliberate attentional focus in the para-

foveal vision and visual phenomena such as the center of gravity.

One of the main assumptions in classical attention models is the overtness of

attention. In other words, all of these models assume that the COG is the same as

the FOA and use eye trajectories to represent the foci of attention. In chapter 3 we

showed the difference between these two phenomena and showed how the COG can

diverge from the FOA in many instances in a trajectory.

The disparity between the COG and the FOA can introduce noise to the map-

ping from the eye movement space to the attention space, which in turn degrades

the accuracy of the task classifiers that are trained and tested on the noisy represen-

tation of the foci of attention. As a solution to this issue, we suggested a Gaussian

probability distribution function (pdf) to relate the COG and the FOA in an eye

trajectory. The Gaussian pdf represents the quasi-circular foveal region of the vi-

sual system that gives different probabilities to the fixations around an attentional

target. This probability is higher at locations close to the target and diminishes as

the COG moves away from the target. By this interpretation even fixations on the
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neighboring targets could indicate a covert attention on the target, albeit with a

lower probability.

In the literature related to eye movements, Markov chains are shown to be

a good model for representing the dependence between consecutive fixations in a

trajectory. Particularly, first order Markov chains have been successfully applied to

model the pattern of eye movements in a variety of visual-tasks and are adopted by

many studies as the visual cognitive model for directing the COGs. In this thesis

we assumed that the model that governs the transitions between the FOAs is also

a Markov chain and supported this assumption by reviewing some of the effects

reflected in psychophysical experiments of visual attention, such as inhibition of

return, similarity preference and proximity preference.

Assuming a first-order Markov chain as the generative model of the attentional

spots and a Gaussian observation function as the generative model of fixations we

can map the eye movements to the foci of attention by Hidden Markov models

(HMMs). The HMMs are a class of supervised and semi-supervised learning models

that generates different overt observations given the covert state. The observations

are generated by a Gaussian pdf and the transitions between the states are governed

by a first-order Markov chain. This description of the HMMs makes them a perfect

fit for the purpose of modeling attention.

In chapter 3 we showed how we can use HMMs as the underlying model of

visual attention. In the proposed models, the hidden states represent the FOA and

the Gaussian observation pdfs model the COGs in an eye trajectory.
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In chapter 4 we used the HMM attention models to infer the visual-task in

synthetic and natural images. Several attention models were progressively developed

to cope with the challenges in different conditions. The models differed from each

other in the number of states, number of Gaussian pdfs in the Gaussian mixture

models of each state and the definition of targets in the training phase. The evolution

of the models started from a single-state HMM designed for inferring a set of simple

tasks executed on synthetic images. Then we improved the model to the double-

state and tri-state HMMs to infer more complex tasks on the images. Eventually we

adopted a k-means clustering method in the training phase to come up with a model

that can infer complex tasks executed on natural images, where we do not know the

locations of the potential attentional targets in advance.

For the task inference we used the Bayesian inference formulation, whereby we

could find the task-dependent attention model that resulted in the maximum a-

posteriori probability. We used the HMMs trained for each task and used them in

turn to evaluate the likelihood term for a given observation trajectory. Eventually,

the HMM that better gave rise to the observation vector was selected as the ongoing

task.

In chapter 5 we showed how prior knowledge about the tasks can refine our

results by modulating the likelihood term of the Bayesian inference. To represent

the a-priori knowledge about the task in the eye typing application, we introduced

language models, whereby we trained a Markov chain on the pairs of characters

appearing in the training set and used them to evaluate the a-priori chances of

seeing a character given the current one. This probability was used in the Bayesian
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inference as the a-priori term and modulated the likelihood term to refine the results

of task inference.

Eventually we used an alternative variation of the Bayesian inference to eliminate

the need for building the model for each of the tasks in the task set. In this unified

model (called the lexicon) we combined the language model and the HMM attention

models into a state machine that represented the task inference model for all of the

tasks in the task set. We showed that the lexicon can reach accuracies close to

those of the Bayesian inference by building the models on the fly and discarding the

unlikely choices as the eye trajectory progresses.

6.1 Contributions

The contributions of the work described in this thesis are as follows:

1. Developing a Bayesian inference framework to infer the visual-task given the

eye movements.

2. Developing a novel task-dependent attention model that represents the covert

as well as the overt classes of attention shifts.

3. Incorporating the hidden Markov model attention models into the Bayesian

inference for task inference.

• Developing the single-state HMMs for simple task inference executed on

synthetic images.

• Developing the double-state and tri-state HMMs for complex task infer-

ence executed on synthetic images.

• Incorporating a k-means clustering technique into an ergodic HMM for

complex task inference executed on natural images.
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• Building a database of task-dependent eye movements for simple tasks

executed on synthetic images.

• Developing an eye typing application to build up a database of task-

dependent eye movements for complex tasks executed on synthetic im-

ages.

• Building a database of task-dependent eye movements executed on natural

images.

4. Developing a maximum a-posteriori Bayesian inference for visual-task infer-

ence.

• Developing language models to evaluate the a-priori knowledge about the

visual-task in the eye typing application.

• Incorporating the language model into the Bayesian inference to obtain a

maximum a-posteriori task inference.

5. Developing the lexicon model as a variation of the Bayesian inference to develop

a unified task inference model.

• Applying the token passing technique on the lexicon model to infer the

task on the fly for a large-size task sets.

6.2 Future Directions

Due to the use of the observation pdfs, the HMMs allow for the discrepancy

between the fixations and attention spots in a covert deployment of attention. Each

observation pdf specifies an attentional spot, while a random outcome from the pdf

specifies a fixation location while attending that spot. The observation pdf is a 2D

Gaussian pdf that spans an area around the attentional spot, the random outcomes
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of which can be well away from its center. By this interpretation of variables the

HMMs allow for both covert and overt types of attention.

That said, the purpose of this work was to infer the visual-task based on the

recordings of the fixations made on an image and not to infer the FOA. In order

to accurately compare the hidden states of our models with the focus of attention,

we should use methods such as attentional-probing, detecting microsaccades [48] or

fMRI recording [124] in order to locate the FOA and measure the correlation between

their estimation and the centroids of the HMM states.

An interesting phenomenon seen in the results is the accuracy of the task infer-

ence for different standard deviations of the observation pdf (figure 4–13a), which

indicates a falloff in the task classification accuracy as the standard deviation di-

verges from a value of roughly 4o of the visual angle. This effect is consistent with

previous estimates of the size of the operational fovea as the central 3o of vision [64].

In [13] it is shown that targets within 4o of central vision are still perceived at 50% of

maximal acuity. Although based on the current evidence we cannot tell whether this

finding is a real effect or merely a coincidence, another experiment with a different

distance between the observer and the screen can help us determine that.

Tracking covert attention can help us better predict the next target of eye fix-

ation based on the currently attended target. This is based on the classical study

of covert attention by Posner [96], which suggests that covert attention and eye

movements are both drawn to exogenous (peripheral) stimuli, with covert attention

moving more rapidly towards the stimulus. Thus, another interesting direction to

be taken is to apply the proposed task inference model in real-world applications
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to improve the user experience. For instance, knowing what the user is seeking on

a web page combined with a dynamic design can lead to a smart web page that

highlights the relevant information in a page according to the ongoing visual-task.

The same idea applies to an intelligent signage that changes its contents to show

relevant advertisements according to the foci of attention inferred from each viewer’s

eye movements.

On a related topic, Vidal et al. [119] implemented a pervasive healthcare appli-

cation by using the eye movements to infer the mental status of the patients. Bulling

et al. [8] used eye movement to obtain information about a person’s context sug-

gesting a context-aware, pervasive computing system based on the eye movements.

As mentioned earlier, a by-product of the HMM model is to locate the focus of at-

tention, whether it is overt or covert. This feature allows us to track the informative

attentional spot, rather than the noisy motion of the gaze. Thus, in applications that

are based on eye movements, performance gains might be obtained by using the at-

tentional locus, which is more task-oriented and robust, rather than the noise-prone

gaze information.

Indeed, by increasing the amount of training data and using prior task knowledge

in the Bayesian formulation we can improve the accuracy of the results. Thus, one

interesting direction would be to increase the accuracy of the results by using larger

databases of task-dependent eye movements and more accurate models of task priors.

Other variations of HMMs could also be explored to see how they perform in

the context of task inference. In particular a non-parametric variation of the HMMs,

called the hierarchical Dirichlet process HMM (HDP-HMM) [115], has recently been
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studied as a better replacement for the HMMs. The HDP-HMMs do not assume a

pre-defined number of states in the HMMs and learn that information during the

training process. This specification of the HDP-HMM is specifically helpful in task

inference in video stimuli, where the number of states (targets) can change during a

trial.
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