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RESUME

La conductivité thermique 5 du supraconducteur & haute température YBa,Cu3zO-_;
(YBCO) a été objet de nombreuses recherches ces derniéres années. Ces récentes

études ont montré que x:
e révele un pic important dans I’état supraconducteur.
e est anisotrope dans le plan de base de la structure cristalline orthorhombique.

Les deux principaux thémes de cette thése sont: 1) l'origine du pic et 2) une étude
détaillée de ’anisotropie.

Dans le but de faire la lumiére sur la contribution relative des électrons et des
phonons a la conduction de chaleur dans YBCO, nous avons mesuré les conductivités
thermique et électrique de cristaux maclés et démaclés de grande qualité, et ce pour
différents niveaux de dopage par le Zn (0.0%, 0.6%, 1%, 2% et 3%). Nous avons trouvé
que le pic est rapidement supprimé par les impuretés. Deux mécanismes possibles sont
invoqués pour expliquer ces résultats, soient le scénario des phonons et le scénario
des électrons.

En ce qui a trait 4 I‘anisotropie entre ’axe-a et b des cristaux démaclés, seulement
deux études précédentes se sont penchées sur le sujet. Nous avons obtenu quelques

résultats frappants:

® un pic apparait Sur Kcpgines = Xp — Kqa, pProbablement parce que nos cristaux sont
de meilleure qualité.

e Ce pic est trés similaire a celui de Kpians = k,. Ceci est une évidence pour

lapparition de supraconductivité dans les chaines en-dessous de 55 K.

Nous discuterons de ces comportements en relation avec le modéle de proximité (effect
tunnel d’électrons entre les plans et les chaines) qui, qualitativement, explique nos
données de maniére satisfaisante.
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ABSTRACT

S —

The thermal conductivity s of the high-temperature superconductor YBa,Cu3zO7_;
has been the subject of numerous investigations in recent years. Previous measure-

ments show that :
e exhibits a large peak in the superconducting state;
¢ is anisotropic in the basal plane of the orthorhombic crystal structure.

The main two subjects of this thesis are: 1) the origin of the peak and 2) a detailed
investigation of the anisotropy.

In order to investigate the relative contribution of electrons and phonons to the
heat conduction in YBCO, we have measured the thermal and electrical conductivities
of high-quality twinned and detwinned crystals, with different levels of Zn-doping
(from 0% to 3%). We found that the peak was rapidly suppressed by the impurities.
Two scenarios are used to explain our results, attributing the effect to decrease in the
carrier mean free path of either the electrons or the phonons.

As for the anisotropy between the a-axis and the b-axis, only two previous studies
had previously been done. We find some new striking features:

e a peak appears in Kpgin below 50 K, revealed as a result of our using of higher

purity samples.

e this peak is similar to that of x, below T. (i.e. Kpiane), Which we take as the
evidence for the growth of superfluid density in the chains below 60 K.

We discuss these results in terms of a model of single-electron tunneling between

chains and planes.
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1

OUTLINE AND MOTIVATION

In this thesis, we present a study of the thermal conductivity « of a high-T, supercon-
ductor. The compound YBa;Cu3zO7_; is chosen, because it is the best characterized
and perhaps the most unconventional of the high-7, superconductors. In particular,
its electronic properties have received a great deal of experimental and theoretical
attention in recent years.

Thermal conductivity has already been extensively studied in this kind of super-
conductors because of its ability to probe the electrons in both normal and supercon-
ducting states. It can provide invaluable information on the superconducting energy
gap, the quasiparticle lifetime, the electron-phonon coupling, etc.

Two salient features of the thermal conductivity of YBa2,Cu3O7_s have been re-

ported:

o A sharp rise with decreasing temperature below T, giving rise to a peak in &

with a maximum at approximately T./2;

e An anisotropy in the basal plane transport throughout the the normal and

superconducting states, with &, > x,.

The peak is due to the fact that for T < T, Cooper pairs form and the number of
electrons available to scatter heat carriers falls rapidly, resulting in an increase in the
mean free path of those carriers and an enhancement in x(7'). For many years, the
debate has been on the nature of these heat carriers: phonons or electrons?

QOur approach to this controversial issue has been to investigate the effect of added
impurities on the peak in x(T').

If the peak is caused by an increase in the quasiparticle lifetime 7(T') in clean
crystals, as a result of the reduced electron-electron scattering, then the deliberate

1



2 1 QUTLINE AND MOTIVATION

addition of impurities should place a limit on this increase, resulting in a decrease in
the amplitude of the peak in x(T') for doped samples.

Zn is expected to be an effective probe for this purpose. It substitutes preferentially
for the Cu(2) atoms in the YBCO crystal structure, thereby specifically disturbing the
CuO; planes which are the key element in the superconductivity. Existing microwave
data show that the electronic mean free path is limited by impurity scattering from
as little as 0.15% Zn, and the observed peak in the charge conduction ¢4(T) almost
disappears when the concentration of Zn reaches 0.3%, such low levels of Zn are
not expected to affect phonons appreciably. Therefore, by measuring the thermal
conductivity of Zn-doped samples, we hope to uncover the origin of the peak in &
(i.e. determine whether it is mainly electronic or mainly phononic).

The second issue is one on which there is much less information. We know that
the CuQO; planes are inter-spaced with Cu-O chains which lie along the b-axis of the
orthorhombic crystal structure, parallel to the planes, therefore, the transport prop-
erties in the b (chain + plane) direction can be different from that in the & (plane)
direction. Therefore, a study of the anisotropy of % in the ab-plane of YBa,Cuz0O7_;
may prove very fruitful, as it will shed light on the role of CuO chains in the super-
conductivity of this compound.

Two groups have measured the ab-plane anisotropy of x, but their results are in
contradiction. Our detailed study resolves this contradiction and reveals new features
not seen in those earlier studies, the significance of which will become clear later on.

This thesis is organized as follows:

We start off in chapter 2 by introducing some fundamental aspects of thermal con-
ductivity in solids, the separate contribution of electrons and phonons are discussed.
In the second section, heat transport in conventional superconductors is discussed
along with the standard BRT theory, which gives a good description of % in conven-
tional superconductors.

Chapter 3 is devoted to the properties of YBCO: the structure is introduced first
and then the transport properties are reviewed briefly, with an emphasis on heat
conduction.

Chapter 4 covers the sample preparation and experimental setup, and some con-




siderations pertaining to the accuracy of our measurement of.

. The results and discussions are presented in Chapter 5, which is divided into two

sections:

o The first section deals with the origin of the peak in x(T), by studying the
effect of Zn impurities. The related properties of microwave conductivity and
thermal Hall effect are discussed. Two different scenarios are introduced to try
to explain the data, namely, the phononic scenatio (a theory by Tewordt and
Wolkhausen), and the electronic scenario (a theory presented by Hirschfeld and
Putikka). We conclude that the latter gives a better description of our data.

e The basal-plane anisotropy is discussed in the second section of this chapter. We
present our data on x; and K4, which reveals a new feature on Kcpqin (obtained
by ks — K4), there exist a peak below 60 K. We believe that this is a evidence of
the growth of superfluid density in chain electron, and then, we discuss a model
of single-electron tunneling to explain our data qualitatively.
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THERMAL CONDUCTIVITY: A REVIEW

2.1 Thermal conductivity of solids

There are several mechanisms by which heat can be transmitted through a solid
and several processes which can limit the effectiveness of each mechanism [1}. In
a non-magnetic insulator, heat is conducted by means of the thermal vibrations of
the lattice. In good metals, the thermal conductivity is almost entirely due to the
electrons. For some solids, such as alloys and superconductors, however, both trans-
port mechanisms can make comparable contributions to the observed conductivity,
and the relative proportions vary with temperature and composition. In particular,
for superconductors, the proportions are different in the normal and superconducting
states.

Let us discuss the definition of thermal conductivity « first. For an isotropic solid,
heat flow obeys the following simple relation [2]:

H = —xVT (2.1)

where H is a vector measuring the rate of flow of heat through a unit cross-section
perpendicular to H, VT is the temperature gradient and s the thermal conductivity.
The negative sign indicates that heat flows down a temperature gradient from the
hotter to the colder region.

In crystals without cubic symmetry, this should be modified to:

AT

H;

where the coefficients x;; form a second-rank tensor.

4




2.1 Thermal conductivity of solids 5

2.1.1 Scattering mechanisms

At temperature T=0, Bloch’s theorem states that electrons in a perfect periodic po-
tential, move forever without any degradation of their mean velocity in spite of the
interaction with the fixed lattice of ions. [2] In real crystals, however, the heat carried
by electrons would be limited by imperfections of the lattice (such as impurities, inho-
mogeneities and structural defects, etc.) which act as scattering centers to degrade the
conduction of electrons. These scattering centers are called static impurities which
in most cases conserve energy in the collision. Similarly, heat carried by phonons
would also be limited by these imperfections, as well as by grain or sample bound-
aries. The anharmonic terms in the Hamiltonian would also eventually degrade the
perfect conductivity of phonons. Finally, electrons and phonons scatter each other,
and also themselves, these are inelastic processes. In general, this is very important

in the intermediate temperature range.

2.1.2 Mean free path and Mattiessen’s rule

On average, every particle (electron and phonon) travels a mean distance between
collisions, called the mean free path I, and the time between collisions is called the
relaxation time 7. In the general case, when there are more than one scattering
mechanisms which are independent of the others, the total scattering rate, 1/7, is the

sum of the several scattering rates from different mechanisms:

1 1
;= L= (2.3)
so that, for electrons:
Tiluctron = Telectron—imper fection T Telectron—phonon + Telectron—ciectron (2.4)
Similarly, for phonons, we have:
T;htmm = p-;;mn—imperfecﬁm + T;hinon-electran + Tp;:;nm—phmon (2.5)

This is called Mattiessen’s Rule. Within the relaxation-time approximation, it is a

valuable tool when we consider the thermal conductivity of solids.



6 2 THERMAL CONDUCTIVITY: A REVIEW

2.1.3 Electrons and the Wiedemann-Franz law

For metals, x can be obtained by a brief consideration of the situation of heat conduc-
tion in a gas of free electrons, derived by Drude [2|. It is assumed that free electrons
are accelerated by the electric field over an average distance or mean free path [,
before they lose the extra velocity acquired and resume their typical purely thermal
motion. The electrical conductivity can then be expressed as:

n.er

(2.6)

o=
T,

where n. is the number of free electrons per unit volume, e and m,. are their electric
charge and effective mass and 7 is the relaxation time of electrons, related to mean
free path via [ = vpr, where vp is the fermi velocity. Then the heat conductivity can

be derived as follows.

> <«

High T Low T

Figure 2.1: Schematic view of the relation between temperature gradient and the thermal current.
after {2]. Electrons arriving at the center x from the left had their last collision in the high tempera-
ture region. Those arriving at the center from the right had their last collision in the low temperature
region.

The thermal current in a metal is carried by the conduction electrons, we have:

Jg = —n,%g- (2.7
where j, is the thermal current density, defined to be a vector parallel to the direction
of the heat flow. To extract a quantitative estimate of x, consider first a 1-dimensional
model, in which the electrons can only move along the z-axis, so that at a point
z, half the electrons come from a high temperature region and half from the low
temperature region, as shown in figure 2.1. If ¢(7") is the thermal energy per electron
in the metal in equilibrium at temperature T, and v the velocity of the electron,

then the electrons arriving at = from the high temperature side will, on average, have



2.1 Thermal conductivity of solids 7

&(T'[z — vr]) (because their last collision happened at £ — vr). Their contribution to
thermal current density will be:

Soe(T(lz - vr])),

with n the number of electrons per unit volume and v their velocity. Similarly, the

electrons arriving at = from the low temperature side will contribute
n
-2—'06(T([z + vr])).
Adding these together gives:
] 1
I = znv[e(T([z — v7]) — T([2 + v7]))]

Provided that the variation in temperature over the mean free path (I = vr) is very
small, we expand this as
Jq =nvPr—(—==) (2.8)

To go from this to the 3-dimensional case, we need only replace v by the x-component

v, of the electronic velocity ¥, and average over all directions. Since < v2 >=<

v2 >=< v? >= 1v? and since % = (§ &) = @‘;El = ¢y, the electronic specific
heat, we have:
- 1 -a7T)
.7‘1 = §v2rc‘l az (2-9)
or
1 1
Ke = gvz‘rc., = gl'uc,, (2.10)

Since the relaxation time is a difficult quantity to compute and to measure, we assume
the same scattering rate for both thermal and electrical processes, then, dividing .
by o, we got:

K. _ 2m.v’c.

—_—= 2.
o 3 e (2.11)

According to Sommerfeld theory of conduction in metals, the specific heat ¢, =

’;—i(fg—,z)nkg and v? = v} = 2ep/m. Inserting these values in eqn. 2.11, we find,

2
Lo = £e/aT = 1'3-(kB Je)? = 2.44 x 10~°*WQ/K? (2.12)
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Conductivily o or a*

Figure 2.2: Electrical conductivity o and electronic thermal conductivity x° of a metal as function
of temperature. the upper curves in each case are for more perfect specimens than the lower curves.
after [1]

This is called the Wiedemann-Franz Law (WFL) and L, is known as the Sommerfeld
value. Figure 2.2 shows the electrical conductivity o and electronic thermal conduc-

tivity . of a typical metal over a wide temperature range.

In general, at high temperatures, the electronic thermal conductivity is constant
and at low temperatures it is proportional to the temperature, as would be deduced
by using WFL and the temperature dependence of the electrical conductivity. At
intermediate temperatures, however, the thermal conductivity varies less rapidly with
temperature than would be expected from WFL. This can be explained by the fact
that charge transport can only be affected by the carrier’s momentum, so, the only
way to degrade electrical current is by changing the electron velocity. Heat transport,
on the other hand, relies on both energy and momentum of the carrier, that is, there
exist an extra possibility for degrading this kind of current, for example, in inelastic
collision, the consuming of the energy ((¢ — x)/T in this case), would further degrade
the thermal current. This causes Lorenz number (L = x./oT) to be smaller than the

Sommerfeld value (Lg) in certain temperature range, as shown in figure 2.3
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Figure 2.3: The Lorens ratio x./oT for an ideally perfect metal and for specimens with imperfections
plotted as a fanction of the ratio of temperature to the Debye characteristic temperature. In the
perfect metal, inelastic scattering dominates at low temperatures, causing a large suppression of the
Lorenz ratio.

2.1.4 Phonons

In an insulator, heat is carried by lattice vibrations, with the appropriate mean free
path [, defined as the distance such a mode travels before its intensity is attenuated
by scattering to 1 of its initial value. In quantum theory [1], this is considered as
heat being transmitted by phonons, which are the quanta of energy in each mode
of vibration, and the mean free path [,; is a measure of the rate at which energy
is exchanged between different phonon modes. We can again use the expression
Kph = %c‘,vlph to represent the heat conductivity by phonons, where v is now the
mean phonon velocity (equal to a suitable average velocity of sound in the crystal)
and c, is the heat capacity contributed by the lattice.

Figure 2.4 shows a typical phononic thermal conductivity as a function of tem-
perature. At high temperatures, l,; is limited by direct interactions between the
phonons themselves, and is inversely proportional to T, as is £pn. As the temperature
decreases, interactions among the phonons become rapidly less effective in restrict-
ing lgs, thus increases more rapidly than 1/T. For sufficiently perfect crystals, this
increase could be best represented by an exponential form l,;, x exp %, where T*

is a characteristic temperature for a particular crystal. At low temperatures ( ~1
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K), I, may reach several millimeters and thus becomes comparable with the smallest
dimensions of a typical specimen, it then tends to a constant value. Because the mean
velocity v is essentially independent of temperature, consequently, x is proportional

to T? at low temperature (when ¢, ~ T3).

L]

X,

Thermal conductivity

Boundaries Defects Umkiapp processes
Temperature

Figure 2.4: Thermal conductivity of a non-metallic czystal. The upper curve is for a crystal of larger
diameter than the lower curve. The dominant phonon-scattering mechanism are indicated along the
abscissa. after [1]

2.1.5 Electrons and phonons: a comparison

To conclude this sector, we compare the different behavior of electrons and phonons

here.

e For electrons and phonons at high temperature, the mean free paths are both
proportional to 1/T, but the electronic heat capacity is proportional to temper-
ature while for the phonons, it is constant. Thus the temperature dependences
of the two thermal conductivities differ by one power of T, specifically, . ~

: 1
constant, while xp, ~ .

e As we approach the peak, the mean free path increases much more rapidly than
1/T in both cases, this rapid change more than makes up for the decreasing heat
capacity. As results, for metals, the constant thermal conductivity changes to

1/T?, while for phonons the 1/T variation changes to an exponential increase.
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e At the lowest temperature, both mean free paths reach constant values and

. thermal conductivity is proportional to the heat capacity contributed by the
appropriate heat carriers (T for electron, T for phonon). Hence, &, is pro-

portional to T, while x,, proportional to T®. It should be emphasized, how-

ever, that for electrons, the mean free path is determined by the imperfections

present, while for phonons, it is determined by the external boundaries of the

crystal (or the grain boundaries in a polycrystal).

There are other possibilities of heat carriers, for example, photons or magnons. How-
ever, heat conduction by lattice vibrations and by electrons constitute the most im-
portant mechanisms in nearly all substances at nearly all temperatures. Therefore,

we only consider these two contributions in this thesis.

2.2 Thermal conductivity of conventional superconductors

Let us talk about the thermal conductivity of traditional superconductors. There are
two fundamental aspects of the superconducting condensate which have effects on the

. thermal conductivity of the superconductor:
e Cooper pairs carry no entropy. !
e Cooper pairs do not scatter phonons.

The first condition means that the electronic thermal conductivity decreases with
decreasing temperature more rapidly in the superconducting state than in the normal
state. Since k.  nvl., the number of quasiparticles decrease with temperature and
goes to zero at T = 0, this causes x. ~ exp(—A/kT) at low temperature. The second
condition has a more subtle effect: provided that the mean-free path of phonons I,
at T > T. is limited by electron scattering, the phonon thermal conductivity will
rise on passing into the superconducting state, because the number of quasi-particle
excitations rapidly decreases—leading to an enhancement in the mean-free-path of
phonons [;. A competition between the rapidly diminishing x. on the one hand

and the increasing xps on the other hand will determine the overall dependence of

1 For example, experiments by Daunt and Mendelssohn [3] showed that the specific heat of the super-
. conducting electrons is sero.
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the total thermal conductivity of a given superconductor. In the vast majority of
cases « falls rapidly as the material goes superconducting. However, in some alloys,
sufficiently disordered so that x. is small and x,; accounts for a large fraction of the
normal-state thermal conductivity, one may observe a rise in the total conductivity
as the sample enters into its superconducting domain. A classic example of this
is lead-10% bismuth alloy [4] (shown in figure 2.5). A peak below T. is obvious,
which is qualitatively similar to the behavior observed in high-7. superconductors,
to be discussed later. Eventually, of course, the thermal conductivity must turn over
and start decreasing with temperature. This follows because the phonon population
decreases, and phonon-defects and phonon-boundary scattering start to dominate the

transport at low temperature.
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I 8 | \ B
E { \
N
6 - -
; b
S— ]
2 1 vd
4 o y
S
2 1 1 L
(o) S5 10 15 20

T(K)

Figure 2.5: Thermal conductivity of Pb-10% Bi alloy, where a peak below Tc is obvious. Open
symbols indicate normal-state data below the transition temperature, after Mendelssohn [4].

In the following, I will introduce the theory of Bardeen, Rickayzen and Tewordt
(BRT) [5] which accounts well for the behavior of « in conventional superconductors.
This is based on the famous theory of Bardeen, Cooper and Schriffer (BCS) [6], which

we will not review here. Let us only say that in the presence of an attractive potential
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between electrons, BCS showed that a state with energy lower than that of the normal
state can be formed by taking a linear combination of normal-state configurations in
which pair states of electrons of equal but opposite momentum and spin (kT,—k})
are both either occupied or unoccupied. These pairs are known as Cooper pairs,
identified with the superconducting ground state. In conventional superconductors,
the attractive pairing interaction is mediated by the lattice. Excited states are formed
when only one state of a pair is occupied in all configurations or when pair excitations
are formed so as to be orthogonal to the ground state.

The important concept is that there exists an energy gap A of order kg7, in the
quasi-particle excitation spectrum of the system, E(k) = [e(k)?+A(K)?]?, which plays
the role of a minimum excitation energy ( where €(k) is the energy of the electron
with wave-vector k in the normal metal).

Now let us derive the heat transport equation of a superconductor. At low tem-
perature, at which the phenomenon of superconductivity is found, the system is not
highly excited so the excitations can be treated as independent. Then one can set
up a Boltzmann equation for the transport problem, which has the physical meaning
that the dnving force is equal to the dissipative effects of collisions:

8f eE -

S = = Vaf +9V,f = e 5 AW (2.13)

where 7 is the velocity and E the electrical field. f is the non-equilibrium distribution

function.

2.2.1 Electronic thermal conductivity

First, we consider that electrons are scattered elastically only by impurities. we will
only quote the basic results of this theory in here: applying the Boltzmann equation
above to the heat transport (eqn. 2.8), we can get the heat current due to electrons

to be
Z 2Ek afo 'kak (2-14)

where E, the quasiparticle energy, vx the group velocity of the quasiparticles in the

superconducting state, and 7. the relaxation time.
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The quasiparticle velocity is found to be

N(0)

Vg = |;—ZI”F =N (E)vF (2.15)

with N(0) the density of states in the normal state and N,(E) the quasiparticle
density of states.

Then, Bardeen et al. proceeded to compute the scattering time 7, in the super-
conducting state by solving the Boltzmann equation. Assuming an isotropic gap, and

applying the relaxation-time approximation, they get

E
T, = |:|1-N (2.16)
where 7y is the relaxation time in normal state.

Combining this with eqn. 2.15 they get an important result for the mean free path:
I, =y (2.17)

that is, this kind of scattering (impurity) is best described by a relatively constant
mean free path. Putting everything into eqn. 2.14 and changing the sum into an
integral, they obtain:

_ 2, oo 2y Of  1d2
Kes = TvFTNN(O) /z;r dEE*( ﬁ)/ T &S 0 (2.18)

By letting A — 0, we can find a similar expression for the normal state thermal

conductivity k.,. Dividing ., by x.,. we get
+oo 8f  +e . .Of
e,s en — dEEz'— d 2-2 2.1
Kea(T)/ ke, /;(T) BE//o e Je (2.19)

A plot of the theoretical (k. ,/%cn) versus (T'/T.), together with a plot of experimental
data of aluminum, for three samples of varying impurity concentration, is provided
in figure 2.6. As one can see, there is excellent agreement between this theory and
experiment.

For completeness, let us consider the other case, the interaction between electrons
and phonons, part of which has already been used in forming the superconducting
ground state [8, 9]. In this case, the scattering is inelastic, and condition of eqn. 2.16
is no longer satisfied, making things a little bit complicated. Still, we can obtain a
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Figure 2.6: Ratio of superconducting to normal thermal conductivity for aluminam as a function
of T/T. (after Satterthwaite [7]). The solid lines represent the BRT calculation in the presence of
impurity scattering for three values of the gap parameter, namely 2 A(0)= 3.00, 3.25, and 3.52 times
kgT..

Boltzmann equation in the usual way, by equating the total rate of change of the
distribution function to zero. Then we can employ the variational principle, whose
physical content may be expressed by saying that matter arranges itself so that the
rate of entropy generation is a minimum, as pointed by Ziman [10]. In this manner,
Bardeen et al. obtained a lower bound to &, ,, which indicated a value smaller than
-0.5 for d(:—:f)/d(%), shown in figure 2.7 (cross).

This is in disagreement with the experimental data for the purest specimens of
tin, lead and mercury. The experimentally determined «.,/&. . drops very sharply
as temperature is lowered below T, , where d( :—:Ji)/d(%) = 5.

In a later work, Kadanoff and Martin [11}, by using time-dependent correlation
functions, calculated thermal conductivity of the superconductor. They yielded re-
sults in good agreement with observed thermal conductivity. They set up a model
which treats the lifetime of single-particle excitations due to lattice interactions as

constant. The difference between their theory and that of BRT is that they assume
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Figure 2.7: Comparison of theory presented by Kadanoff et al. along with data for extremely pure
metals, where inelastic scattering of electrons is dominant. The data for very pure tin (circles) agrees
very well with the theory; the BRT result in this case is also included (crosses)

that the collision time is not strongly altered by the occurrence of the gap, that is,
the mean free time, instead of the mean free path, is relatively independent of the
excitation.

Then, their object is to determine thermal conductivities from width of excita-
tion (which is the inverse quasiparticle lifetime). They first set up a heat-current
correlation function and then solve it by introducing the Green’s function, when the

conductivity is limited by phonon scattering, they get
T2 n _
Ke = ?—n—zsz[I‘ + 'Up/l] 1 (2.20)

There exist two contributions to the thermal resistance: 1) I', which results from
phonon absorption and emission and is proportional to T, and 2) vg/l, which results
from impurity scattering and is independent of T, this contribute additively to the
thermal resistance.

In this model, The interaction between electron and phonon was included by in-
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serting a parameter I into the single-particle correlation function. If these correlation
functions were expressed as functions of space and time and substituted into the cur-
rent correlation function, their essential effect would be to reduce that correlation
function by the factor exp(—TI'|t —¢'|). This modification agrees with the expectation
that phonon emission and absorption is normally described by a relatively constant
life time. The ratio of the electronic thermal conductivities in the superconducting
and normal states, when the conductivity is limited by phonon scattering, can be

calculated as:
3

272

Figure 2.7 shows the comparison of this theory with experimental data, together

ne,:/ne,n =

/ow dee? sec? %[ez + (BA)Y)R (2.21)

with BRT’s result, and indicates that the above theory could give a better description
than BRT theory in this case.

2.2.2 Lattice thermal conductivity
In BRT theory, for the sake of simplicity, the authors only considered &, limited by

electron scattering. Then the thermal current density is
Won = > _hqu36N, (2.22)
q

where N, is the number of phonons with wave vector ¢ and v is the velocity of sound

in a metal.
To calculate the thermal conductivity, we proceed by setting up a Boltzmann equation
and reducing it to:
q. ON, 0T aN,
e (==L 2.23
W BT 52 = gt ) (2:23)
Following the procedure for normal metals, they get a solution of this equation. The
thermal conductivity is then derived as:
uddu

T, =
%0 = D(g)" (& — D= e)9() (2.24)

where D is a constant independent of temperature and u the reduced energy hv/ksT,

where:

o) = 1= [ a8 |E2 - ZEosmn-e) (225)
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the energies are measured in units of kg7 and the physical meaning of g(u) is the
ratio of relaxation time of electrons in normal state 7., to that of quasiparticles in
superconducting state 7.,, therefore, it goes to 1 above 7., In the superconducting
state, it gives us the information about: 1) the number of electrons that scatter
phonons, which decrease as temperature goes down. 2) the scattering matrix element
including the coherence factor.

However, it is not easy to obtain thermal conductivity data which can be un-
equivocally interpreted as lattice conductivity limited only by electron scattering. At
lower temperatures, where the electronic contribution is negligible, it appears that
the lattice waves are scattered mainly by the boundaries of the crystals. At higher
temperatures where the lattice waves are scattered mainly by the electrons, the main
contribution to the thermal conductivity comes from electrons.

This can be shown, however, qualitatively in figure 2.5, in which a peak appears
as the temperature drops below 7, indicating that the phonon contribution is large.
A similar peak also appears below T, in YBCO, which is the major concern of this
thesis. To explain that peak, we will revisit the above theory again through theory
of Tewordt and Wélkhausen in section 3.4.1.
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TRANSPORT PROPERTIES IN YBA;CU307_5: A BRIEF REVIEW

3.1 Crystal structure

The high-T. compound YBa,Cu3zO7_s (also labeled YBCO or 1-2-3) was discovered
in 1987, and has been intensely studied ever since. Although it does not have the
highest T, (93 K), high sample quality can be achieved relatively easily, which enables
us to make good single crystals with narrow superconducting transitions.

As with other high-T, cuprates, YBazCI-1307_5 is also based on CuO; planes in the
a-b plane of a tetragonal structure. At high temperature, the tetragonal YBCO has
six oxygen atoms. After annealing, an additional O is introduced in the chains along
the b-axis, between two Cu atoms, which results in a transition to an orthorhombic
structure. The length of the b-axis is larger than the a-axis by 2 ~ 3%. Figure 3.1
shows the structure of YBCO in the 2 phases. As a result, the introduced oxygen
atoms in the chain site are relatively easily removed from (or added in), and the
physical properties of a YBa;CuzO7_5 crystal can be strongly affected by the oxygen
content §. For example, it undergoes a transition from superconductor to insulator
with decreasing oxygen content from § = 0.0 to § = 1.0 [12]. In this thesis, all crystals
investigated here, § = 0.1 and the structure is therefore made of the CuQO; planes and
CuO chains along b-axis.

Because atomic substitution is an important approach, which will be used by us to
obtain an insight into the transport properties of YBCO, we want also to mention the
following: Neutron diffraction and Moss-Bauer spectroscopy have shown that different
metal ions prefer different Cu site, for example, Au, Fe and Al occupy selectively the
Cu(l) (chain) sites while Zn and Ni ions occupy only the Cu(2) (plane) site. This

gives us some clues on choosing the doping ions.

19
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Figure 3.1: Structure of YBCO. It undergoes a transition from tetragonal to orthorhombic at 530
K. Comparison of the tetragonal (left) and orthorthombic (right) are shown above. The ¢ axis is
vertical and the a axis horizontal.

3.2 Electrical resistivity

From early on, a linear temperature dependence of the electrical resistivity in the
normal state has been observed, which is now considered as a key characteristic
property of the planes. Later on, R. Gagnon et al. [13] showed that the electrical
conduction in the Cu-O chains is quite different to that of the CuQO; planes: the chain
resistivity, defined as pcpain = p» — Pa, €xtrapolates to a high residual value at low
temperatures and obeys a rough 7'? dependence up to room temperature. Figure 3.2
shows the electrical resistivity of a pure detwinned YBCO sample measured by us.

Note that the chains conduct just as well as the planes above T..

3.3 Heat conduction

The thermal conductivity of YBa,Cu307_5 as measured by Yu et al. [14], is shown
in figure 3.3. The following features are observed:

1. The overall thermal conductivity is of order 10 W/mK in the normal state. We
can estimate the maximum electronic conductivity using WFL: 5. < LoT/p =
3.0W/mK. Therefore, one can the conclude that phonons carry at least 70% of
the heat.
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Figure 3.2: Resistivity as a function of temperatuze, for a current along the a axis (p,) and the b
axis (pp)-

. A sudden rise and pronounced maximum of « is observed below T, . The thermal
conductivity increases by a factor of 2 from T. to the peak position at about 40

K. The origin of this peak is one of the main concerns of this thesis.

. Just below 7. , we note that the thermal conductivity rises fairly abruptly.
However, the rise is not as sharp as predicted by certain theories [17].

. The results in figure 3.3 are measured in the ab-plane. The across-the-plane
conductivity, k., was measured by Hagen et al. [15] and is shown in figure 3.4.
We note a distinctly different behavior from what is observed for heat flow along
the planes. The overall thermal conductivity is some 4-5 times smaller than that
in the plane, increasing slowly with decreasing temperature, with a broad peak
in the range of 50-80 K beyond which it falls to zero. There is no hint of any

anomalous behavior at the transition temperature 7. .

. The ab-plane results of figure 3.3 are obtained from detwinned specimens of
YBCO. The thermal conductivity is different along the two directions, @ and
g, with x5 > x,. The additional conduction along b is attributed (at least in
part) to chain electrons. We note that the difference between x; and x, is not
far beyond the experimental uncertainty on the absolute value of £ (+ 15%).
In this respect, we point out that Cohn et al. [16] obtained similar results for
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Figure 3.3: Temperature dependence of thermal conductivity in the a(o) and b(0) direction. dashed
line, the derived phonon thermal conductivity x,; Dot-dashed line and dot-dot-dashed line, the
derived electronic thermal conductivity. Inset: xp — x; vs T. after [14]

kb and K4, but with different absolute values (see figure 3.5) such that x, > x,.

One of the main aims of our work was to have a closer look at this anisotropy.

. As mentioned earlier, oxygen is the crucial parameter determining whether a

YBa;Cu307_s compound behaves as a superconductor or as an insulator. This
greatly influences the thermal transport properties. Zavaritskii et al. [18] stud-
ied k of YBCO as a function of oxygen deficiency § by successively annealing
their sintered powder samples in vacuum or in an oxygen atmosphere. They
found as the oxygen concentration is reduced from § = 0 to § = 0.3, the
maximum in the thermal conductivity shifts to lower temperatures and the
magnitude of the thermal conductivity decreases. Further vacuum annealing to
& > 0.5 results in non-superconducting material with still lower thermal con-
ductivity (see figure 3.6). Z. Gold [19] measured a deoxygenated single crystal
(6 = 0.7) and got a nearly temperature independent x, with a value around 6.35
Wm 1K~ in the range 40 K ~ 140 K, this is believed entirely due to phonons.
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Figure 3.4: Temperature dependence of the out-of-plane thermal conductivity x. single crystalline
YBa;Cu307_s with Tc ~ 90 K. No obvious anomaly is shown near T, . (after [15]).

3.4 Origin of the peak in «(T)

The total thermal conductivity of YBa,;Cu3zO7_s, like other solids, can be viewed as
the sum of lattice (x,4) and electronic (k.) components. Therefore, it has long been
debated whether the peak in x of YBCO below T. is due to electrons or phonons [14,

16]. The arguments in favor and against each interpretation are presented bellow.

3.4.1 Phonons
Cohn et al. [16] attributed the enhancement below T, of x in YBCO to phonons, from

a more conventional point of view. They pointed out if there is a modest electron-
phonon interaction, and if the primary thermal carriers are phonons, then the peak
can be explained within the BRT theory due to an increase in the phonon mean free
path driven by a decrease in electron scattering, as the pairs condense into the su-
perconducting ground state. As T continues to decrease, x(T') eventually decreases
due to the decrease in phonon density along with the dominance of other scattering
mechanisms. They made the following observations:

By estimating x.n using the measured electrical resistivities p and the Wiedemann-
Franz law, which states that ., < LoT/p (Lo = 2.45 x 1073WQ/K?), they get an
upper-limit estimate of the electronic component of . /%, ~0.3-0.4 for their speci-
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Figure 3.5: Low temperature thermal conductivity vs temperature for the untwinned YBCO crystal
before and after oxygen annealing measured by Cohn [16].

men at T=100 K. Inelastic scattering of carriers (e.g. by phonons) tends to reduce the
Lorenz number from its ideal value Lo, and hence «., could be substantially smaller
than this estimate. Therefore, the phonon part in these crystals dominate at least for
the temperature range above T..

Tewordt and Wolkhausen [17] presented a theory that attempts to describe this
scenario in the context of BCS theory. They used BRT theory to calculate the lattice
contribution, with the addition of other phonon scattering processes that might be
appropriate when describing phonon transport (such as point defects, sheet-like faults
etc). The phonon thermal conductivity is then expressed as:

4 =

son(t) = At? /0 dz(—e% x [1+ at®z* + Bt2z? + Stz + vtzg(z,y)]*  (3.1)

where t = % is the reduced temperature, z = hw/kpT is the reduced phonon energy,
y= %1%.2 is the parameter containing the energy gap. The coeflicients correspond to

the different scattering mechanisms:

1. The coeflicient A refers to boundary scattering and is proportional to L, = nuv,,
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Figure 3.6: Thermal conductivity of YBa;CusO7_s5 with different oxygen content, (+) original
material with § = 0; (circ) § = 0.3, T. = 70 K; (x) § = 0.47, T. = 56; (®) § = 0.69, non-
superconducting; (¢) § = 1, non-superconducting.

where L; corresponds to the outer dimensions of the sample, 1, is the relaxation
time for scattering off the boundaries and v, is the sound velocity. The full

expression for A is: [20]
4
A= (F)V3(2m) 7 (k50 /ha’)(T./0)° L (3:2)
with © the Debye temperature and a the average lattice constant.

2. at*z* = /7, where 7, is the relaxation time for scattering by point defects [21],

and:

o = (F)(6x*/H(AM/NMY (Ly/a)(T./0)'n (3:3)

where n is the concentration of point defects, and AM is the mass difference

between the solute and solvent atoms.

3. Bt?z? = n/T.» where T,; is the relaxation time for scattering of phonons by the

strain field of sheet-like faults [22], and:

B = 0.7(672)*/*+42(T./©)*N, L. (3.4)
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here ~¢ is the strength of the anharmonic coupling term and N, is the number
of sheet-like faults.

4. 6tz = 1,/74 where 74 is the relaxation time due to scattering by the strain field

of dislocations.

5. ytzg(z,y) = n/T.,s, azising from the phonon-electron scattering with relaxation
time 7. ,. The function g(z,y) is equal to the ratio 7., /e, of the relaxation times
in the the normal and superconducting states, which was derived in BRT theory

(for a s-wave gap):

9(37 y) = 1:'" = (1 - ez)z—l[2J1(3$ y) + Jz(:c, y)] (3'5)

J1 and J; has been given in Appendix B of ref [5]. We can express the coefficient
v in terms of the electron-phonon coupling constant A:

kgT.
t

7~ Gy (3.6)

where fis the effective hopping matrix element for a 2-dimensional tight-binding

band of electrons.

Tewordt and Woélkhausen approximate the temperature dependence of the electronic
thermal conductivity to be a constant above the superconducting transition tempera-
ture. Below T., the charge carriers condense into Cooper pairs, which do not transfer
heat. The temperature dependence of x. for T < T, is very different depending on
whether the electrons are scattered predominantly by defects or by phonons (here
electron-electron scattering is ignored). They employed the results of Geilikman et
al. [23] who tabulated x.,/x.., the ratio of the electronic thermal conductivity
in the superconducting state and in the normal state, as a function of the reduced

temperature. Then:

K if T>Tc
Ke = (3.7

K :—:'i, if T<Tc
where K is an adjustable constant. The sum of eqn. 3.1 and eqn. 3.2 is the model
used to fit the measured «(T') of YBCO. For a set of parameters, it certainly confirms

the existence of a characteristic peak in x., below T., as shown in figure 3.7.
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Figure 3.7: Experimental data of ref [24] and theoretical curves calculated by the TW theory [17],
showing the thermal conductivity of three different YBCO single crystals.

In a later publication, Tewordt and Wolkhausen extended their model to include
the possibilities of strong coupling and d-wave pairing, which could give an even
better fit to the data.

While this scenario is able to reproduce the thermal conductivity enhancement

below T., there are several weak points:

1. A similar phonon peak is also predicted for the out-of-plane thermal conduc-
tivity k. in this model. Experimentally, as we showed in the last section, none
of the existing investigations of k. show any such behavior at or below 7. [15].
This point, however, is somewhat weak since the elastic phonon mean free path

may be much smaller along ¢.

2. The behavior of the electronic thermal conductivity in the superconducting state
has been either neglected or assumed to decrease with temperature as in the

BRT treatment discussed before, in which the quasiparticle scattering rate was
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assumed to be unaffected by superconductivity. However, these assumptions
are not well justified in light of observations of a strongly suppressed quasi-
particle scattering rate in microwave conductivity [25] and thermal Hall effect
measurements [26], where both showed an enhancement of the mean free path

for quasiparticles, as shown in figure 3.8.
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3.8: Quasiparticle scattering rate in YBa;CugO7..5 as estimated from microwave measure-

ment data (left) by ne? /mo,(T) and from thermal Hall conductivity (right) by o¢,/a The scattering
rate falls off rapidly below T..

3.

4.

In order to account for the large enhancement, the phonon thermal conduc-
tivity in the absence of electron-phonon scattering has to be at least as large
as the peak value. However, as we mentioned in the last section, the thermal
conductivity of an oxygen-deficient, non-superconducting YBCO single crystal
is smaller than 10 W/mK.

And finally, < calculated under this assumption exhibits a very steep rise at
T. , which is in disagreement with the experimental data that suggest a more
gradual upturn.

3.4.2 FElectrons

Yu et al. [14] proposed an alternative way to explain the observed temperature de-

pendence of the thermal conductivity. Their explanation is based on the observation,

in microwave measurements [25], of a similar peak in the temperature dependence
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Figure 3.9: microwave conductivity of the detwinned crystal of YBa;Cu3sO7_s. The broad peaks
below T, are similar to that in thermal conductivity. This is attributed to the competition between
the decrease in the normal-fluid density and a quasiparticle lifetime that increases rapidly below 7.

of the charge conductivity o, (see figure 3.9), attributing to a strongly suppressed
quasiparticle scattering rate. Accordingly, Yu et al. associated the peak in « with the
electron contribution, and propose that the strong suppression of the quasiparticle
scattering rate with decreasing temperature is responsible for the large enhancement
of in k(T) below T..

They considered, in normal state, that the total thermal conductivity is expressed
as the sum of phonon and electron contributions, assuming the electrical conduc-
tivity of YBCO follows o oc 1/T. ! k., should then be temperature independent
according to the Wiedemann-Franz law: x., = LooT (taking the Lorenz number
to be the Sommerfeld value) and the phonon thermal conductivity can be expressed
by sk, = ic,v?r, with ¢, the specific heat of phonon, v the sound velocity, and
7! the total scattering rate for phonon, which can be expressed as in eqmn. 2.5.
They assumed the most prominent scattering mechanism for phonon thermal con-
ductivity at high temperature is Umklapp scattering, for which r;hf,,m_},w x T.

Other scattering contributions, such as phonon-electron, phonon-defect and phonon-

1This is not true for the b-axis conductivity.
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boundary scatterings, are weakly temperature dependent, which are approximated
by a temperature-independent thermal resistivity Wy. Thus, the total thermal con-
ductivity is k. = &7, + 1/(Ws + aT), with Wy and a constants.

As mentioned before, in the 2-fluid model, the superfluid (superconducting car-
riers) does not carry any heat. The temperature dependence of the electronic ther-
mal conductivity is dictated by the number density and the relaxation time of the
normal-fluid carriers. Since experiments on microwave conductivity of the high-T,
superconductor showed that the quasiparticle scattering rate is much suppressed be-
low T., which indicates that the excitations that strongly damp the current-carrying
quasiparticles freeze out rapidly below T , giving rise to a much enhanced electrical
conductivity and hence electronic thermal conductivity. Therefore, the similarity be-
tween the microwave conductivity peak and that of the thermal conductivity <(T') in
YBCO single crystals suggest that at least part of the peak in £(T') is due to x.. They
derived the electronic thermal conductivity x. from the total thermal conductivity

data using:
1

"~ Wo+aT
the latter term is the phonon thermal conductivity xp,. Figure 3.10 shows their

Ken = Kn

result compared with theoretical curves obtained using the formalism of Kadanoff
and Martin [11], for different pair-states and gap ratios g = 5(2',:':—;:’1.

In reality, the electron-phonon coupling is finite, and there will be a change in
phonon thermal conductivity due to the decrease in electrons available to scatter
phonons. However, they assumed that electron-phonon scattering may not be signif-
icant in comparison with phonon-phonon or phonon-defect scattering.

As can be seen from figure 3.10, this scenario also gives an good explanation for

the appearance of the peak in x. Some possible problems are:

o They estimate . by simply subtracting & measured in insulating YBCO from
that of the superconductor, which is not justified given that the presence of
electrons not only introduces additional scattering of phonons, but also alters

the phonon spectrum.

o Their assumption that p o< T and therefore . is constant in the normal state
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Figure 3.10: Temperature dependence of the x, derived from x — xpn (o) and calculated fits using
different pair states and different gap-to T. ratios.

seems inconsistent with the our measurement of p, which shows, in the b-axis,

that there exists a T? term due to the electrons in chains [13].

We can see that both explanations have strengths and weaknesses. And it should
be stressed that in both cases the excellent fits are qualitative: no assessment of the
actual values of the fitting parameters are given. These two scenarios will both be
used to explain our measurement of x in different Zn-doped samples in chapter 5,

where some new information will be added to help us distinguish them.
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EXPERIMENTAL ASPECTS

High-quality single crystals of YBa;Cu30O7_s have been grown by self-decanting flux
method [27], then annealed in pure oxygen, and finally, detwinned in a pressure cell.
After growth, they were characterized by means of a-b plane resistivity, AC mag-
netic susceptibility, polarized optical microscopy and scanning electron microscopy
(SEM). The above procedures and techniques will be described in this chapter. Also
included is a description of the apparatus and experimental procedure used for the

measurement of the thermal conductivity.

4.1 Sample preparation

4.1.1 Crystal growth

The fact that YBCO melts incongruently (at ~ 1020°C) limits the techniques for
growing single crystals. Only the flux-growth technique, which uses a CuO rich melt
has succeeded in producing bulk single crystals so far, and this is the method we
adopted. To grow a crystal from the flux, we used the self-decantation technique [27]
in which a temperature gradient is applied horizontally along the crucible during
the whole process. Thermodynamically, it is favorable for the flux to move to the
colder side of the crucible when solidifying, leaving the crystals behind. We applied
a temperature gradient of about 4 — 5°C/cm.

We used a mixture of Y:Ba:Cu with molar ratios of 1:18:45, introduced by Wolf
et al. [28], in yttria-stabilized zirconia (YSZ) crucible. We chose the YSZ crucible
because the flux is corrosive and most other kinds of crucibles, like Al;O3, MgO and
Au, would introduce impurities in the crystals at the percent level, causing a broad-

ened superconducting transition and a reduced T.. YSZ is the one that contaminated

32
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the least. (It is reported recently that the use of BaZrO; crucible has been shown to
contaminate even less [29].)

To make the mixture, we used Y,03; of 99.9999% (6N) purity; BaCOs, 99.999%
(5N); CuO, 99.9999% (6N). The purity of the material is a crucial aspect of the crystal
growth: by using the same heating procedure and crucible material but with BaCO3
and CuO of 99.9% purity, it is difficult to even melt the mixture properly [19].

After placing the powder in the YSZ crucible, the crucble itself was placed in
an alumina crucible, which in turn was inserted into a programmable horizontally
mounted furnace. The heating program is a combination of that used by Liang et al.
[30] and that used by Vanderah et al. [31]:

1. Heat to 870°C in 4 hours. (we chose a slow heating to avoid a large temperature

overshoot).

2. Remain at 870°C for 8 hours. In this stage, BaCO; decomposes into BaO for
the next stage.

3. Over a period of 2 hours, heat to a temperature between 990 and 1020°C.
This is the temperature where melting occurs. (The idea is to reach the lowest
temperature for chemical reaction and melting of the starting materials, thereby

reducing the amount of impurities from crucible corrosion.)

4. Stay for 4 to 8 hours at this temperature. This stage is to ensure homogeneity

of the melt.
5. Cool to 990°C over one hour.
6. Stay at 990°C for 5 hours. The crystals start to grow.

7. Cool to 950 —970°C over one hour. In this temperature range, crystals and flux

coexist.

8. Cool to 930°C at a rate of 0.5 — 2°C/hour. This is the self-decantation stage in
which the flux moves to the cold side and the crystals are left behind.
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9. Cool to ambient temperature. The natural cooling rate of the furnace is low
hence this stage takes about 12 hours. Such cooling results in surface annealing
and twinning of the crystals.

4.1.2 Oxygenation

When the samples are taken out of the crucible, they usually have an inhomogeneous
and deficient oxygen content. Therefore, at this stage we anneal the samples in a
flow of pure oxygen to fill the CuQ chains. We heat the sample up to 850°C for
one day and then anneal for six days at 500°C. Both Lagraff [32] and Schleger {12]
reported that at 500°C and a pressure of one atmosphere, the oxygen deficiency in
YBa;CuzO7_51s § = 0.08 ~ 0.1.

4.1.3 Detwinning

Usually, there exist lots of twins on these as-grown samples. The twins are domains
with alternating @ and b-direction which result from the structural transition from
tetragonal to orthorhombic after growth, when the crystals are cooled and the surface
is annealed. The domain structure is shown schematically in figure 4.1. In order to
eliminate the twinning we used a stress cell with weight of about 0.5 kg applied along
one of the edges of the sample, and kept it at a temperature of 550°C (a temperature
found to be a compromise between increased oxygen mobility as the temperature
rises, and a proper function of our stress cell), for about 15 minutes. This was done

in air and then the crystal is re-annealed for one day at 500°C in flowing oxygen.

4.1.4 Zn-doped crystals

The same procedure is used for growing YBa,(Cu;_.Zn.)307—5, except that a certain
amount of ZnO is added into the initial mixture, depending on the desired level of
doping. The Zn concentration of our crystals is determined from a measurement of
T. (via susceptibility or resistivity) using the known relationship between Zn concen-
tration and 7. for polycrystalline samples [33]. The concentration is roughly 60% of
that put into the melt, which is close to 2/3, a fraction one would expect for an ideal

solution model where the Zn only occupies the Cu sites in the CuQ, plane.
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Cc

Figure 4.1: Schematic representation of a twinned crystal, showing the lamellar domains; the domain
width d; is of order one micron.

4.2 Sample characterization

4.2.1 Polarized optical microscopy

After annealing the sample, but before detwinning, we employed a polarizing micro-
scope to observe twins in the a-b plane. Figure 4.2 shows optical effects on the a-b
face of a YBCO crystal. The crystal is placed under an optical microscope, with
its ¢ axis vertical. White light from an external tungsten lamp is directed toward
the sample at a large angle from the c axis, the reflected beam is not in the field of
view and the crystal remains dark except if the incident beam is perpendicular to the
[110] or [110] direction. Under these conditions, the white light dispersion reveals one
family of domains.

This way, one can estimate roughly what fraction of the sample is twinned, how
many twin domains exist and how large the twin domains are. Before detwinning, the
number of twins in one orientation, in general, is about the same as in the other. As a
result, transport properties on twinned crystal tend to be an average over both @ and

b. After detwinning, some samples can be fully detwinned while others be 10% or less.
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Figure 4.2: Picture of a small area of a twinned sample as seen in the polarized optical microscope
when the polarizer and the analyzer are parallel to each other. The black and white areas are a-axis
and b-axis domains, respectively.

Generally, the remaining twinned part is in one of the corners, due to unequal stress
applied on the sample. As for the domain size, the spacing of twin boundaries in a
typical twinned crystal is around 100004 for pure crystals and is observed to decrease
with increasing Zn doping. Actually, the twin boundaries are so closely spaced in the
z=3% sample that they are no longer visible under visible light, indicating a spacing

less than 4000A.

4.2.2 Electrical resistivity

We measured the electrical resistivity of each crystal used in this work, to determine
the transition temperature (7.) and the traasition width (AT), both are indications
of the quality of a crystal. One of the advantages of our set-up is the ability to
measure the electrical resistivity using the same contacts as employed for the thermal
conductivity. as shown in figure 4.4. The motivation for such a design was to allow a
measurement of the Lorenz number, free from geometric factor uncertainties. We use
silver wires (100 zm) to make the contact which is glued by silver epoxy on the sample.
the electrical and thermal resistance of these contacts are smaller, because of the

good conductance of silver, the electrical resistance was typically ~ 100m(3.5mQ)
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at room temperature (helium temperature). We should note that in this set-up, one
can measure either p, or ps, but not both. For a relation between the two quantities on
the same sample, one employs the Montgomery method (see for example, R.Gagnon
et al. [13]).

The temperature dependence of the resistivity is measured using a LR-700 re-
sistance bridge (with a multiplexer) for both the thermometer and the sample. A
typical result is shown in figure 4.3. The transition temperature is narrow (0.2 K) for
pure crystals and broadens (1.5-2 K) when doped by Zn, as will be shown later. No

obvious difference was observed between twinned and detwinned crystals.

4.2.3 Scanning electron microscopy

We employed SEM to examine the morphology of a sample and to measure its dimen-
sions, which gives us a good estimate of the geometric factor used in the calculation
of the absolute value of conductivity (thermal or electrical). A typical SEM photo-
graph is shown in figure 4.4. This way, the uncertainty on the geometric factor can
be restricted 10% or less, with the main source of the uncertainty being the width of

the contacts and irregularities in the sample shape.
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Figure 4.3: The transition temperature measured by resistivity (o) and susceptibility (O)
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Figure 4.4: The SEM image of one of our crystals. The width of the contact is a main source of
geometric factor uncertainty.

4.2.4 Magnetic susceptibility

We also employed AC magnetic susceptibility for the determination of 7,. This is the
preferred method because it does not require any special preparation (e.g. contacts),
and it is more sensitive than resistivity to possible inhomogeneities. The susceptibility
apparatus is shown in figure 4.5.

While the sample is in the normal state, its susceptibility is negligible, and as
the temperature drops below the transition point, magnetic flux is screened out of
the sample and the effective volume of that secondary coil drops, which results in a
change in the total e.m.f. picked up. Figure 4.3 shows a comparison of the magnetic
susceptibility (x) and electrical resistivity (p) of a pure YBCO crystal, in the vicinity
of the superconducting transition. One can see the very narrow tramsition (AT =
0.1 K in x and 0.2 K in p), which is evidence for high quality and homogeneity of

the sample.

4.3 *He cryostat

We used an insertable ‘He cryostat to achieve low temperatures, such as that de-

scribed in detail by Swartz [34]. It has the advantages of low helium consumption,
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Figure 4.5: Susceptibility apparatus: one resistance bridge is used for reading the thermometer and
another bridge to measure the susceptibility in mutual inductance mode.

fast cool-down and warm-up times and good temperature stability from 1.2 K to room
temperature. This kind of cryostat is immersed into liquid *He in a storage Dewar.
The liguid *He provides cooling down to 4.2 K, while cooling to 1.2 K is achieved by
pumping on an internal ”"pot” of *He. The portion that is inserted into the Dewar is

shown in figure 4.6, and described in the following.

1. Wiring: 38 wires are used in our set-up, connected to two 19-pin hermetically
sealed electrical feedthroughs, on the upper portion of the cryostat. Half of
the wires we used are copper, gauge 36 (for good electrical connection), half
are manganin, gauge 36 (for limiting thermal conductance). The wires are
contained in the tube used for evacunating the can. In order to restrict the heat
flow down into the can, these wires are anchored at 2 stages: on top of the
vacuum can (4.2 K) and on the sample stage. The sample stage is connected to
the internal pot by a brass threaded rod, which provides an appropriate thermal

link for the smooth control of the sample temperature.
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Figure 4.6: Low-temperature portion of the *He insertable cryostat, the tube marked C; and C; are
capillary feed-through tubes for use with a continuous fill capillary. the 2 positions on sample stage
marked T,H are to place thermometer and heater respectively.

2. Heater and thermometer: the temperature is controlled by using one of two cal-
ibrated thermometers: Pt (30-150 K) or Ge (1.0-75 K) (position T in figure 4.6).

The heater is fixed on the upper surface of the sample stage (position H in

figure 4.6). Although, there is a distance between the regulating thermometers

and the sample, the sample holder has been designed for good thermal conduc-

tion, so no significant temperature gradient was found. We used an extra cernox

thermometer on the sample mount to check this before starting measurements.

Vacuum can: as shown on top of figure 4.6, a tapered grease seal is used for the

vacuum can. This makes it easy to attach and takes up only a small fraction

of the available cross-sectional area. We employ a diffusion pump to achieve
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the high vacuum, by which we can get vacuum as good as 10~7torr. This is

necessary for the accuracy of x measurement, which will be discussed later.

4. Cooling procedure: First, the vacuum can is evacuated. In order to speed the

cooldown, a few cubic centimeters of helium gas are added to the vacuum can,
then the cryostat is inserted into a container of liquid nitrogen (LN;) until the
temperature of the pot is reduced to below 100 K. With helium gas in the
vacuum can, this will take only about 15 minutes. (otherwise, it would take
about 5 hours or more.) This gas will be evacuated after the low temperature
has been achieved. Once the cryostat has cooled to LN, temperature, the second
step is to insert it into a helium dewar to reach 4.2 K. After the thermometers
are stable at 4.2 K, there should be some liquid helium inside the pot which
is critical in the next step. We can obtain this by pressurizing the pot with a
“He gas cylinder, and afterwards, by pumping on the pot one can then reach
lower temperatures (down to 1.2 K). However, in practice, we didn’t go to any
temperatures lower than about 3.5 K. The temperature range used for most of

our measurements was 4 to 150 K.

4.4 Thermal conductivity set-up

The technique we used to measure thermal conductivity is the so-called longitudinal
steady-state method — analogous to a potentiometric measurement of the electrical
resistivity. For every recorded point, the temperature of the sample is stabilized at
some temperature Ty, and then a constant heating power is applied to one end of the
sample. At equilibrium, the temperature gradient across the sample is measured and

thermal conductivity is then given by:

power .
= . X i ct 4.1
* temperature gradient geometric factor (4.1)

The set-up is illustrated schematically in figure 4.7. We call this the 4-probe method
(requiring a cold bath at one end, a heater at the other and two thermometers in
between).

To the sample we attached with silver epoxy four 100 um silver wires (now being

replaced by 50 um ones to reduce geometric uncertainty) which are connected to
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coll

Figure 4.7: A detailed drawing of the thermal conductivity apparatus is shown on the left. Ag
wires are epoxied along the sample, perpendicular to the direction of current, the manganin coils
are connected to the electrical leads of the probe.

the heater, thermometers, and heat sink. We used manganin coils (~ 409 of 25 um
wire) for measuring the electrical resistance of heater and thermometers. These wires
give negligible heat loss to the Cu base because of their high thermal resistance (see
figure 4.7).

A constraint is the size of the thermometers and heater. The following points are
considered: 1) the radiative heat loss from the heater is proportional to its surface
area, as described later, so, the smaller the size, the smaller the loss, 2) the equi-
libration time of the thermometers can be reduced if we use smaller thermometers,
3) the longest dimension of the sample is approximately 2 mm, which serves as a
reference size for the other parts. As a result, we chose to use 20 0 cernox ther-
mometers from Lakeshore, with a size of 1 X 1.5 mm?. The temperature dependence
of these sensors is very good, as shown in figure 4.8. As for the heater, we bought
some semiconductor-film resistors of 1.5 k2, for their weak temperature dependence
(except at temperatures below 10 K, when its resistance increases fast), and their
small size (1.5 x 1.5 mm?). The heater resistance is much higher than that of the
manganin coils (i.e. 1.5 kQ > 40Q in this case), so the power is dissipated almost
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entirely in the heater, which is in good thermal contact with the sample.
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Figure 4.8: Resistivity vs temperature of three cernox thermometers. We used #1 and #2 to measure
the sample temperature gradient.

As we said at the beginning, the electrical power Q dissipated in the heater provides
a heat flow, and the pair of thermometers (separated by a distance L through a cross
section S) measure the temperature difference AT along the specimen. Provided
AT is not too large, the value of the thermal conductivity obtained from eqn. 4.1
will be that corresponding to the mean temperature between the two thermometers,
even if the thermal conductivity varies with temperature. Uher [35] showed that the
difference between the true thermal conductivity and that derived from eqn. 4.1 is
less than 0.25% (for AT /T =0.1 and & o< 7). In our experiment we keep AT/T=4%
in the whole temperature range.

To use the longitudinal steady-state method effectively, we must make sure that
all the heat generated by the heater flows through the specimen to the cold side.
As the thermal conductivity of the high-T. materials is, in general, rather low, we
should be very careful about the following factors: First, the choice and size of the
wires connecting the heater and thermometers to the sample, so that heat loss is
kept to a minimum. This is why we use manganin coils (40 gauge) to measure
the thermometers and heater. Let us estimate the heat leak through these coils.
The thermal conductivity of manganin at 150 K is 13 Wm™1K~! [36], and we can



44 4 EXPERIMENTAL ASPECTS

calculate its conductance to be 4.2 x 107 WK~!. For our YBCO sample, a typical
value of the thermal conductance is 2 x 10~7 WK ! at 150 K. With such a ratio, the
heat loss through these coils is negligible compared with the heat flow through the
sample. This is still true, if we also include the thermal resistance of the contacts
between heater and sample, sample and heat sink, which are around 10* W-'K. In
the latter case, we got a total conductance of % x 10~* WK™, still much higher
than that of manganin coils. Secondly, good vacuum must be maintained in the
can to eliminate heat exchange with the surrounding medium by conduction through
residual gas. In our experiments the pressure in the sample chamber is around 10~7
mbar, so the mean free path of the gas molecules is larger than the distance between
the thermal conductivity apparatus and the chamber cover, the convection could be

safely neglected. According to ref [36]
Q.conductian = 0-016a0pmm(T2 - T].) (4.2)

where pp,m is the pressure in mm of Hg, and ATheater = T2 — 11 = 5 K, aq is related
to the individual accommodation coefficients and the areas of surface (always smaller
than 1), we get Qconduction = 0.25 pW. A typical  through the sample is kAT around
3 mW, so this is again a negligible effect. Thirdly, there are heat losses by radiation.
This is more significant at high temperatures and effectively limits the temperature
up to which this method is applicable. Experimentally, we found that by supplying
the heater with a power of 0.25 mW, its temperature increases by 5—5.5°C at T=150
K. Assuming an emissivity factor ¢ =1 for the heater surface (the worst case), the

heat lost by the heater can then be estimated from:
Qrad—lou = UA[(T + 5)4 - T4] (4.3)

where o = 5.67 x 10712 W/cm?K* and A the surface of the heater. Using the heater
surface area (225 mm?), we got Qrad—ioss = 0.12mW at 150 K. This represents about
5% of the heat through a typical YBCO crystal at this temperature, therefore we
kept our measurements below 150 K. This heat loss is down to ~ 1% at T..

The electrical circuit of the thermal conductivity apparatus is very simple, as
shown in figure 4.9. The limiting resistors Ry are thin film resistors of 10 kS, and

the resistance of the thermometers (R; and R;) and the manganin coils (Rp and
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Ramz) are less than 1% of Ry throughout the temperature range of this experiment.
This ensures that the current applied is always the same. Furthermore, because we
calibrate the thermometers for every data point (at every temperature Ty), effects of

hysteresis do not affect the results.
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Lock-in Amplier
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Figure 4.9: The electrical circuit of the experiment. Ry, , are limiting resistors of 10 k2 + 1%, R;,;
are the thermometers (20 — 60 ) and Ray, , are the manganin coils (20 2).

4.5 Experimental procedure

We systematically measured twinned Zn-doped crystals YBap(Cu;_.Zn.)307_5 (with
x = 0%, 0.15%, 0.6%, 1.0% and 3.0%) and detwinned samples with Zn(0%, 0.6%, 2%
and 3%). In all cases, we started the measurements after cooling the cryostat down
to liquid helium temperature, The temperatures T.oig and Th,t, are measured by using
two SR 850 lock-in amplifiers from Stanford Research System. The two lock-in sends
a low frequency ac voltage, which is converted into a current by means of the 10 kQ2
limiting resistor, the voltage drop across each thermometer is detected and converted
into resistance. because the limiting resistances (R ) are very high, consequently, the
current applied on the thermometer is almost always the same. This procedure is done
both before and after applying the heat on for each set point. One therefore obtains
an in-situ calibrations of the thermometers and use these calibration to obtain the
two temperatures T.o;¢ and Th,. This method can be schematically demonstrated

in figure 4.10. the gradient of temperature is simply Thot — Tcord, and & is finally
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calculated using eqn. 4.1.

10.5

10
R_cold(0)}——>»
R_hot(0)——9-5

9k
F%_cold(Q)'—?8 F——-——— - - =
R_hot(Q)—>f — — :— _________ b
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- | >
75 sl ! T N
32 36 38 40 42 44

set point

Figure 4.10: Demonstration of analysis performed in order to extract the thermal conductivity. The
circles (open for T..iq4 and closed for Thoe ) represent the data points used to obtain the calibration
(solid and dashed lines). In this example, temperature is set by temperature controller to 34 K, and
the temperature gradient (AT) is simply the difference between the two temperatures read from the
in-site fit curve afier the heat is applied. The sample temperature is the average of the two.

The following are several details on the measurement:

1) To measure thermal conductivity in the steady state, the temperature has to be
extremely stable. We achieved this by continuously measuring the temperature with
a temperature controlling program (say, at a rate of 6 times/min), and analyzing the
data. We set two criteria: 1) the difference between the actual temperature and set
point temperature should be smaller than a certain value (say, 0.01 K) and 2) the
rate of change of T (obtained by calculating the slope of the a few past data) should
be smaller than some set value. Both of these criteria have to be satisfied before the
next step is taken.

2) Once the temperature of the probe is stable, we apply heat, and wait until the
apparatus reaches equilibrium. The waiting time depends on temperature (via heat
capacity and thermal conductivity), so we have to set a longer waiting time as the
temperature increases. We achieve this by applying the same technique as in step (1),
except that we read the data with two lock-in amplifiers, one for each thermometer.

We analyze sequentially the readouts and impose criteria for temperature stability.
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3) For each data point, the system records a) the potential across the two ther-
mometers, before and after heat is applied: Veora(Q = 0), Vi (Q = 0), Vota(Q > 0)
and Vix(Q@ > 0); b) the heater voltage while being heated with current (I); c) the
sink temperature (Tp) as obtained from a calibrated Ge or Pt thermometer. By the
way introduced in the beginning of the section, using the measured curve of V_4(T)
and Vj,e(T) for the thermometers without heat, in isothermal conditions we obtain the
temperature difference between the thermometers with heat, AT = Tt — Teotg- The
thermal conductivity is then given by & = (I X Vieater)/AT x (geometric factor) =
I’R/AT x (geometric factor). In practice, we should keep AT/T constant. To
achieve this, we take the data collected so far, use the formula above to obtain x, and
feed it back into the programme to determine the value of I to be used for the next
point, where I = (&5 ~TX(AT/T) _)-%. In this way, we kept AT/T to roughly 4% for

geometric factor

the whole temperature range.

Besides measuring & of different Zn-doped twinned crystals, we also measured
detwinned crystals to study the anisotropy of x in @ and b directions. To get a true
comparison, we measured a-axis and b-axis crystals from the same batch. Again, we

measured samples with different level of Zn-doping.

4.6 Test on a gold sample

In order to test the accuracy of our set-up, we measured a well-known material —

gold. There are two purposes for this:

e check that our experimental set-up is suitable at low temperature by confirming
Wiedemann-Franz law (below 20 K).

e estimate the extent of heat losses at high temperature (above 150 K)

As discussed earlier in section 2.1.5, the ratio of the electronic thermal conductivity
over electrical conductivity is proportional to temperature, therefore, verification of
the WFL on a metallic sample would certainly demonstrate the validity of our thermal
conductivity set-up.

In order to achieve this, measurements of both the thermal and electrical conduc-

tivity were carried on gold wire. They are measured using the same contacts, as a
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result, we can obtain the Lorenz number without geometric uncertainty, this is a main
advantage of our set-up. The geometry of the sample was chosen such that its heat
conductance would be comparable to the least conducting of the YBCO samples. We
used an impure iron-doped gold wire (which is actually a Gold-Iron thermocouple wire
with .07% Fe) with dimensions 50um in diameter, 10 mm in length (7mm between
the thermometers). This gives a thermal conductance of around 6.5 x 107 °W/K, 4
times smaller than the lowest conductance of our YBCO crystals, which is around
3.0x 10*W/K at T = 4 K.

Figure 4.11 shows the thermal conductivity of the Au sample measured from 10
K to 60 K. The residual electrical resistance at low temperatures (4.2 K) is 0.042 x
10~8Qm. Our main concern is to use the linear part of x where the electrons are

mainly being scattered by impurities at low temperatures to calculate the Lorenz

number.
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Figure 4.11: Thermal conductivity of Au sample (Gold-Iron with 0.7% Fe) at low temperature, one
can observe a linear part below 20 K, with a slope of 2.7 x 10-8W/K3,

Below 20 K, we got a slope of 2.7 x 10~8W/K? for x404, from which we estimate
the Lorenz number at this temperature to be 2.7 x 10~QW/K?, a value greater than
Lo. This is strange at first glance, however, the gold sample we used is pretty dirty, so
the electronic contribution is suppressed largely by impurities; therefore, it appears
that we should not neglect the phonon part completely. From the theory of phonons,

we know in this temperature range, phonons are scattered by electrons mainly [37].
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The thermal resistance of phonons scattered by electrons can be expressed as:
-1 T,
W' = 3.67(6) Kel,co (4.4)

where © is the Debye temperature. This way, we estimated the phononic thermal
conductivity to be 5 W/mK - about 7% of K¢otat, at T=20 K. After subtraction of this
contribution, we got the pure electronic part, and re-estimated the Lorenz number to
be 2.5 x 107® W/Km. this is within 2% of the Sommerfeld value.

0.0003 Tt

< 0.0002 a4 LS measured E
E E -""-._ ..--""'E
% 0.0001 [ ——7_5
- expected ]
0:1x:lL1|J1111'L11|x|lLLl.14||||'
0 20 40 60 80 100 120 140 160
T (K)

Figure 4.12: x vs temperature of a pure Au sample, dash line is from the publish data of pure gold
sample [36]. The heat loss is significant (15%) in the temperature above 160 K.

As to the second purpose, we measure another gold wire in higher temperature,
in order to compare with the published data of pure gold. The sample is 99.99% in
purity, 50 gm in diameter and 4 mm in length. The & is measured up to 160 K in
order to learn the importance of the heat loss in this temperature. The results are
shown in figure 4.12. We found that the heat loss to significant near 150 K, mainly
due to radiation. According to the published data, x is nearly flat between 100 K
to 200 K, so we found that Kmeqmurea is about 15% higher than expected at T = 150
K, corresponding to a heat loss of 0.8 mW, which is a little bit smaller than the
estimation of radiation heat loss we made in section 4.4, 0.12mW (because there we
took the emissivity factor e = 1 ). Considering the thermal conductance of this sample
is 1.3 x10~*W/K at 150 K, about 5 times smaller than the lowest conductance of
our YBCO crystal, the results confirm that below 150 K, the heat loss is less than
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5% for measurement of YBCO sample and thus, our experimental set-up is reliable .

during this temperature range.



o

RESuULTS AND DISCUSSION

5.1 Introduction

As mentioned in chapter 1, the two aspects of our work are:
e The effect of Zn-doping on the & of twinned and untwinned YBCO samples.
e The anisotropy of x in the ab-plane of YBCO.

We present our results and offer a discussion in terms of related experimental studies
and theoretical models in this chapter. But before that, let us summarize here what
previous work has been done on these two issues.

On the anisotropy, only 2 previous measurements, as mentioned in chapter 3, but
their results disagree with each other [14, 16]. On the Zn-doping studies, we want to

mention the following:

e Ting et al. measured « for Zn-doped YBCO sintered powder [38], they observed
a small peak below T, for the pure sample (figure 5.1), and also noticed that
doping with Zn depresses the maximum in (7). Particularly, only a smaller
enhancement of x(T') below T. for 1% Zn dopant, and no clear maximum can
be observed for 2% (or higher) Zn content which is still superconducting with
aT.of 72 K.

e P.F. Henning et al. have recently reported measurements of x(T') for a Zn-
doped YBCO single crystal [39], their results are reported in figure 5.2. They
showed that impurities suppress the amplitude of the peak in x(7') and shift
it to somewhat higher temperatures. Their measurement is done on twinned

crystal, and a very puzzling feature is that, the ratio of x(peak)/x(100K) = 1.6,

51
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Figure 5.1: x(T")/x(180) vs T for YBa3(Cu1_-Zn.)307_s with x=0.0, 0.01, 0.02, and 0.06.measured
by Ting et al. on sintered powders [38].

for pure crystal, while the ratio for 3% Zn-doped is higher (& 2.2), although
the absolute value of the peak is suppressed in the latter case. .
5.2 Peak in x(T): effect of Zn impurities

5.2.1 Results

Charge conduction (normal state)

We begin by presenting our results for the normal state charge conduction. We
have measured the resistivity of both twinned and detwinned crystals with different
Zn concentrations from 0.0% to 3.0%. The results are shown in figures 5.3 and 5.4.
The sample characteristic are listed in tables 5.2.1 and 5.2.1.

Here po means the extrapolated value at T=0 from a linear fit in the range 130 -
250 K, while pg is the extrapolated value after adjusting the slope (dp/dT) for each
curve to be 1 uQdem /K for the detwinned crystals and 0.611 uQcm/K for the twinned
crystals. Note that the linear fit is perfect for the detwinned (a-axis) samples but
not so for the twinned. This adjustment of the slope is based on the assumption that

Zn impurities only introduce a simple elastic scattering of electrons, as suggested by .
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Table 5.1: The geometric factor, T. and resistivity of our twinned YBa3(Cuy_-Zn.)sO7_s crystals,
with x=0.0%, 0.15%, 0.6%, 1.0% and 3.0%. (The geometric factor of pure crystal is not available). g
is the residual resistivity (T=0 K) obtained by linear extrapolate on (130-250 K) and pj is obtained
in the same way after adjusting the curves to have the same slope.

Sample X(%) | Geometric | T¢(K) Po % o5 e
Factor
(Date of growth) (m~1) (uf2em) (pSQem)
31-08-95A 0.0 - 93.7 - - -3.52 0.611
29-09-94A 0.15 | 15385(10%) | 91.7 | -4.2(4) | 0.57(6) | -4.43 | 0.611
04-08-94A 0.6 | 15015(6%) | 89.1 | 10.7(6) | 0.61(3) | 10.7 |o0.611
18-10-94A 1.0 11050(8%) 86.5 7.1(6) | 0.67(5) 6.46 0.611
28-03-96A 3.0 | 46083(9%) | 71.6 | 43(a) |o0.s8s(8)| 207 |o.611

Table 5.2: The geometric factor, T. and resistivity of our detwinned YBa;(Cuy_-Zn;)3O7_s crystals,
with x=0.0%, 0.6%, 1.0%, 2.0% and 3.0%. (The geometric factor of the 1.0% crystal is not available).
po is the residual resistivity (T=0 K) obtained by linear extrapolate on (130-250 K) and pj is obtained
in the same way after adjusting the curves to have the same slope.

Sample X(%) | Geometric | T¢(K) Po 2 P> &
Factor
(Date of growth) (m™1) (pf2em) (£Qem)

31-08-95A 0.0 | 20585(6%) | 96.3 |-14.5(9) | 0.94(6) | -15.4 | 1.00
04-08-94A 0.6 | 20415(7%) | 89.2 | -7.5(5) | 1.01(7) | -7.45 | 1.00
18-10-95A 1.0 - 86.2 - - 0.636 1.00
11-05-95A 2.0 | 13575(13%) | 79.0 | 35(5) | 1.001) | 338 |[1.00
28-03-96A 3.0 | 23096(3%) | 74.6 | 19.2(6) | Lo9(3) | 17.5 |1.00
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Figure 5.2: x(T) of YBaz(Cu1—;Zn;)307-5s measured by Henning et al. |39] on twinned crystals.

Semba [40]. In this way, we can avoid the uncertainties that come from the geometric

factor.
In this respect, note that in figure 5.3 ( 5.4), we did not have a geometric factor

for the 0.0% twinned (1.0% detwinned) samples, so the data are normalized to have

the average slope of the others. .
In figure 5.5, the extrapolated residual resistivity is plotted as a function of Zn-

doping. It obeys a linear relation, with dpo/dz = 1180 puQem/%Zn for twinned

crystals and dpg/dz = 1200 pQem/%Zn, for detwinned crystals. These are different

from the values of 670 puQcm/%Zn in Ref [33] and 2100 uQcm/%Zn in Ref [41].

Also shown is the decrease of T, with Zn-doping, where T, is taken at the middle

of the resistive transition. Again it is linear with z, with d7./dz = 650 K/%Zn for

both the twinned and the detwinned crystals. Again, this differs from the value of

1240 K derived from ref [33]. These discrepancies may well be due to the method of

determining the concentration of Zn. One could therefore take care when comparing

different data to use 7. as the measure of Zn content. For example, if we compare

the ratio of residual resistivity to 7., we get very close result to these two groups,

g—%.‘:— = 12 ~ 1.8 for our detwinned crystals and around 1.7 for both (33] and [41].

Heat conduction
We show in figure 5.6 our results for the thermal conductivity of YBa;(Cu;_.Zn;)307_5

of twinned crystals, with ¢ =0.0%, 0.15%, 0.6%, 1.0% and 3.0%. Here, each curve is .
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Figure 5.3: Electrical resistivity vs temperature for detwinned YBa3(Cu;_;Zn;)307-5 crystals (a-
axis), with £=0.0%, 0.6%, 1.0%, 2.0% and 3.0%.

normalized to the same value at 100 K in the normal state, so as to show most clearly
the relative drop in the peak. The results for detwinned Zn-doped crystals, with z =
0.0%, 0.6%, 2.0% and 3.0% are shown in figure 5.7.

Below T, a peak is observed in x(T') for all of our Zn-doped samples. One central
fact is evident, namely the peak height falls, and it does so quickly at the beginning
(with small Zn-doping), followed by a slower decrease for larger doping.

At this stage, let us mention that application of the WFL in the normal state gives
that the total x includes at most a 30% electronic contribution using the resistivity
data of the sample. While the electrons are strongly scattered by impurities, the
phonons are not likely to be, because of their relatively long wavelengths. This is not
quite supported by the detwinned crystal data, since the distinct decrease of x in the
normal state with Zn concentration (see figure 5.7) goes beyond that attributable to
the resistivity. This is a somewhat puzzling result. However, it does not affect our

discussion, since we are only concerned with the relative peak heights.

5.2.2 Discussion

Microwave conductivity vs Zn

Since microwave conductivity is a direct measurement on the quasiparticle behav-

ior, some results of it are discussed in here for comparison. Zhang et al. [42] have
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Figure 5.4: Electrical resistivity vs temperature, twinned YBaz(Cu;_.Zn.)307_s crystals with dif-
ferent Zn-content, where x=0.15%, 0.6%, 1.0% and 3.0%.

measured the microwave conductivity o7 of YBCO on doped crystals for several zinc
concentrations, where it is found that the peak of oy below T is largely suppressed by
as little as 0.15% Zn impurities (see figure 5.8). Their results confirmed that electron
scattering rate does undergo a decrease below T., and addition of Zn impurities limits
the drop in the scattering rate and reduces the conductivity. This is very similar to
the thermal conductivity behavior observed in our data. Details about microwave
conductivity measurement are given in Appendix A.

Thermal Hall effect

During the course of this work, Krishana et al. (26] from Princeton University
measured the thermal Hall effect in YBCO, a method with the ability to observe the
quasiparticle current without the phonon background. Also, k., provides a measure
of the thermal conductivity ., which only associated with the quasiparticles in
CuQ; planes, without the chain contribution. Details about the thermal Hall effect
can be found in Appendix B. Their result for x., is shown in figure 5.9 along with
our derived results of x.,. This is a direct evidence that the electronic thermal
conductivity undergoes a peak below T..

Two scenarios

First, we tried to explain the data of figure 5.6, 5.7 in terms of the phonon scenario.

As mentioned in section 3.4.1, if the total thermal conductivity in the normal state




5.2 Peak in x(T): effect of Zn impurities 57

95 ITIIIIIIITIIII IIIIITI‘II!II-[ﬁll_ 40
x 3
go =) =] 30
// 3
P =
X - ] £
o 4 10 0
=80 = 3
4 ° =
75 _i 10
o 3
70 Fllllllillllllll[llllJJl'Jlllllll _20
0 05 1 1.5 2 25 3 3.5

X (%)

Figure 5.5: T. and pg as a function of Zn content (see tables 5.2.1 and table 5.2.1), twinned (o) and
detwinned (x), both of which show linear dependence on z.

is dominated by phonon conduction and the phonons are significantly limited by
electron-phonon scattering, then, for T' < T,, Cooper pairs form and the number of
electrons available to scatter phonons falls rapidly, resulting in an increase in the mean
free path of the phonons and thus an enhancement in x(T) as seen in conventional
superconductors. As the temperature is lowered, however, the population of phonons
is further reduced, while the mean free path is limited by some other conditions (e.g.
sample boundary). causing a decrease in &(T').

Assuming this is the case, we tried to fit our experimental x(T') data using TW
theory as described in section 3.4.1. The last term in eqn. 5.1 is from Umklapp
(phonon-phonon) scattering, included to give a good description of our data at high

temperature (above T;):

4

©p ztex
Kon(t) = At3/0 d"’(_ec__'sz'

z[1 + at®z? + Bt?z? 4 btz +ytzg(z,y) + Ut*z?]™ (5.1)
Assuming that the electron conduction is a featureless, smooth function of T and
only affects our analysis slightly, like Tewordt et al. we used the estimation from
Geilikmann where a tabulated x.,/K.n is given. We also employed a scaled en-
ergy gap: A(t) = xA(t)pcs- For the pure case (0.0%Zn), a good fit was obtained
(figure 5.10), with A = 650, = 30,8 = 20,y = 100,6 = 0,U = 50,x = 1.1, and
xen=1.0. Notice that ., is about 1/8 of the K;ota1, in agreement with Krishana et al.
estimate, 1/7. Using eqn. 3.2 and eqn. 3.6, we estimated the value of L; (dimension
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Figure 5.6: Thermal conductivity of twinned YBa3Cu3zO7_s with the following Zn-impurity. 0%
(solid circle), 0.15% (square), 0.3% (rhombus), 1.0% (triangle), 3.0% (circle). The curves are all
normalized in normal state.

of our crystals) to be 20 gm, and ) to be 0.25. The former represents the mean free
path for boundary scattering of phonons and the latter the coupling strength between
electrons and longitudinal acoustic phonons, respectively. ©p = 360K,a = 4A, and
t = 5000 K were used in this estimation [24, 38]. L, is quite reasonable (from SEM
we got 80um for the thickness) and A was found to fall into the weak coupling range.

The decrease in &,4(T) with Zn doping could be associated with a change of
the energy gap or the electron-phonon coupling strength instead of simply a change
in the impurity scattering of phonons, because Zn has almost the same radius as
Cu (0.75Aand 0.73A, respectively) and the same ionic valence (+2). Following the
standard work of Slack and Klemens, we may write the thermal resistivity due to

point defects as
TV

1/Kdefect = W
where V4 is the unit cell volume and I" measures the mass defect due to the impurity,
I' = 2(1 — Muaoped/ Mpure)?, For the z=1.0% sample, I' = 6 x 1078, giving 1/K4etex =
10-°mK/W < 1/x = 10-'mK/W.
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Figure 5.7: Thermal conductivity vs T for detwinned YBa;CusO7_s crystals (a-axis) with different
Zn content (2=0.0%, 0.6%, 2.0% and 3.0%).

Let us then consider the case if the electron-phonon interaction is significantly
reduced (i.e. decreased v) by a small addition of impurities. TW theory can still
provide fits to the data, as shown in figure 5.11 (we reduce v from 100 to 5). However,
this appears to be an unsatisfactory explanation, because small levels of Zn would
requires substantial changes in the electron-phonon coupling, which is already small

in the pure case (0.25 in our case).

An alternate explanation for the rapid suppression of the x,,(7") peak could be
a suppression of the quasiparticle gap commensurate with the reduction in T, (Na-
gao [43]),i.e. areduction in x = A(0)/A(0)5scs, as shown in figure 5.12. The decrease
of x can indeed reduce the enhancement of x(T') below T, implying a more rapid de-
pression of the energy gap than reflected by the reduced T.(z). Roth et al [44] found
that the specific heat jump AC, at T, decreases very quickly with increasing Zn con-
tent (with 5% Zn substitution, AC, was completely suppressed). This suggests that
in Zn-doped samples, it is possible to exhibit a tendency to gapless superconductivity.

So from the phonon point of view, it would seem that the rapid decrease of x(T')
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Figure 5.8: Microwave conductivity o, at 3.88GHz (open squares) and 34.8 GHz (solid squares) for
a pure, twinned crystal, and with 0.15% (star) and 0.31% (solid circle) Zn-impurity. The peak has
almost disappeated in the 0.31% sample (after Zhang et al. ).

below T, for Zn-doped compounds originates from the suppression of the supercon-
ducting energy gap. However, there exist the following weak points for this as an

explanation of our data:

e it cannot explain the change of the peak position in our case, specifically, at the
beginning, the shift to higher temperature. For z=0.0%, 0.3%, and 0.6% the
ratio of peak position to 7, are 0.39, 0.46, and 0.44 respectively.

e the upturn at T, is much sharper in the calculated curves than seen in the data.
That is, it predicts a pronounced change in the slope of x(T') at T., while we

observe a more gradual one, as shown in figure 5.10.

Consequently, we turn to the electronic scenario, that is, the collapse of the elec-
tronic scattering rate as a mechanism for the peak in x(T") of YBCO. From thermal
Hall conductivity [26] and microwave measurements [25], we know that a collapse
of the quasiparticle relaxation rate is observed below 7. (figure 3.8), and could be
most naturally interpreted in terms of a gaping of the spectral density of electronic
excitations responsible for inelastic scattering just above T .

Hirschfeld and Puttikka [45] adopt a theoretical model of electronic transport in a
d-wave superconductor limited by impurity and spin fluctuation scattering and apply

it to calculate the electronic thermal conductivity. Let us say a word about this
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Figure 5.9: Comparison of K. measured by us with that from thermal Hall effect by Krishana [26].
K. pt of ours is obtained by subtracting the estimated xpp from Keoeqi-

theory before discuss our data.

The model is focused on a combination of phonon and electron conduction. They
suggested that quasiparticles excited above the ground state are scattered with a total

rate

1/7 = 1/Timp + 1/7¢ (5.2)

where 1/7;m, is the relaxation rate due to potential scatterers (e.g. impurities) and
1/74 describes the rate of scattering by inelastic processes (e.g. spin fluctuations).
The electronic thermal conductivity . for an unconventional superconductor is then
evaluated using a Kubo formula. They use a self-energy X, due to the elastic im-
purity scattering which is treated in a self-consistent t-matrix approximation and is
given by Xg = I'Go/(C? — G%), where I' = n;n/(7wNp) is the unitary limit scattering
rate depending on the concentration of the defects n;, the electron density n, and the
density of state at the Fermi level Np. C is the scattering strength of an individual im-
purity and Gy is the integrated propagator. Then they adopted a model of scattering
by anti-ferromagnetic spin fluctuations based on an RPA treatment of the Hubbard
model with parameters chosen to reproduce normal state NMR and resistivity data
in YBCO [46}, Thus make the replacement 3o — Yo —%/27in.

The bare heat response is then given by a convolution of the Green’s function G
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Figure 5.10: Total thermal conductivity < vs temperature for the pure twinned crystal: experimental
data (circles) and fitted curve (solid line) using TW theory for phonons and Geilikmann’s estimation
for electrons, with A=650, « = 30,8 =20,6 =0,y =100,0 =50,x = 1.1 and k= 1.

for the diagonal thermal conductivity tensor and one obtains

&:,(T)/T 6

© (L) = f:, dw(%)’ —gw—f)K.-(w,T) (5.3)

Ptat(Tc)

wlw”

w? 4 fwf? — AW
\/‘w2 — |Ae]?
where w’ and w" are the real and imaginary parts of frequency w, f is the Fermi

Ki(wg T) = X Re < R?

function, and Iy, = T + 1/27;, is the total quasiparticle scattering rate. They
have numerically evaluated eqn. 5.3, and their results are reproduced in figure 5.13,
where different impurity scattering rates I'/T are calculated. In the clean hmit,
the combination of the collapsing relaxation rate with decreasing temperature due to
gaping of the spin fluctuation spectral density and the rapidly decreasing number of
quasiparticles at low T leads to a peak in the thermal condiictivity. As impurities are
added, the collapse of the inelastic scattering rate is cut off at progressively higher
and higher energy scales, such that the peak moves to higher and higher temperatures

and simultaneously weakens.

We can see that this model could give us a good description of our data if we

consider the following:
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Figure 5.11: & vs T(K), with different Zn concentrations, Solid lines are fitted by TW theory with
different 4 which is related to the coupling constant between phonons and electrons.

1) For phonons, consider that as the temperature is decreased, two trends are
expected, a) the phonons density decrease, which results an decreased phonon specific
heat. b) Umklapp (phonon-phonon) scattering decrease, resulting an increasing mean
free path [ ;. Because the former falls off faster than the latter, this would result in
a rise in &(T). The increase in mean free path of phonon is then cut off when
temperature further down, due to the decrease of phonon density along with the
dominance of other scattering mechanisms, thus, result in a small peak at 25-30 K.
This could be account for our 3% data. From thermal Hall conductivity [26], Krishana
et al. estimated that about 6/7 of x in the normal state is due to phonons. This is
higher than our 3% data, which is only 70% of that of pure crystal. Considering that
phonons actually would also be effected by impurities to some extent, it is possible
that the data of 3% is too low to be taken as the phonon part of the pure crystal. As
a result, we adjusted it to be 6/7 of x for the pure sample at 100 K, and took this to
be our x,;. This procedure is shown in figure 5.14.

2) For the electron part, we obtained it by subtracting x,s from K., as shown in
figure 5.14, which yields a huge peak below T, in x. This is very similar to the results
obtained by Hirschfeld and Putikka. We further adopted their calculations of the
electronic thermal conductivity with the increasing impurity scattering (figure 5.13),

and when combined with our own phonon estimation, which is also, very close to
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Figure 5.12: x vs T(K) with different Zn concentrations. Solid lines are fitted by TW theory with
different gap scaling ratio x.

theirs, gives a very good fit of our Zn-doping results (see figure 5.15).

It is clear that the effect of increasing the impurity concentration within this

scenario is to cut off the collapse of the inelastic scattering rate, which leads to a shift

in the peak to higher reduced temperatures T/T.. However, 5,4(T'), which dominates
K. in the normal state for all the samples, will also show a peak at lower temperature.
Therefore, the position of the peak in the total x now may be explained as follows:
while the electronic peak initially dominates and moves upward in T with disorder, the
phonon peak at 25-30 K eventually becomes more important. This, indeed, provides

a good account of our twinned data.

Our data on detwinned crystals (a-axis) also support the latter explanation (figure 5.7).
To make things clear, we plot the ratio of peak height to the value at 7. of the con-
ductivity in figure 5.16 and the ratio of peak temperature to transition temperature
in figure 5.17. We can see that in both types of crystals, the relative peak height de-
creases very fast with small amount of Zn, because of the suppression of the electronic

part due to impurities, as observed in the microwave conductivity (see figure 5.8).

As to the peak temperature, it shows that at low levels of Zn, the peak shifts

higher and then shifts lower when the Zn content continues increasing. We attribute

the latter trend to the appearance of the phonon peak. This conclusion is not quite
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Figure 5.13: Normalized electronic thermal conductivity x. ,/x. . calculated by Hirschfeld et al. ,

using different impurity scattering rates I'/Tco.

true for the present detwinned crystal data (figure 5.17). Unfortunately, the low
concentration Zn-doping of this case are not available at this time, to clarify, further

measurements need to be done.

5.2.3 Summary

In light of the microwave data and thermal Hall data, We favor the electronic scenario
as the most likely model to account for the peak in x(T'), that is, electronic thermal
conductivity is in large part responsible for the peak and is strongly suppressed by
impurity scattering. The following conclusions about our Zn-doped YBCO data could

then be drawn:
1. electronic conduction does account for most of the peak in clean crystals;
2. a small peak in xpx does occur at about 20-25 K;
3. phonons in fact dominate heat conduction in YBCO above T;

4. the phonon contribution also decreases slightly with Zn doping;
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Figure 5.14: Demonstration of thermal conductivity consisting of phononic part and electronic part,
where the phononic part is obtained from the high Zn-impurity concentration data (z = 3%), after
being adjusted to 6/7 of the total value in the normal state. The electronic part is obtained by

subtracting xps from xeoear-

5. the temperature at which the peak in s (T) occurs may vary non-monotonically
with disorder.

The assumption, however, that the effect of impurities on the phonon «,, can be
neglected is not really true. In our data for detwinned crystal (shown in figure 5.7),
we observe an obvious decrease in « in the normal state with Zn-doping, which is
beyond the uncertainty in the geometric factor. Assuming the electronic part only
contributes 1/7 above T, for pure crystals, we cannot associate this decrease with
electrons only. This suggests that the decrease has its main origin in an increased
scattering of phonons with Zn doping. To clarify this point, the following mechanisms
could be studied further:

e the phonon conduction could be affected by impurities even though the impu-
rities themselves may be ineffective scatterers. There might be an increasing
number of dislocations with Zn-doping or a large strain field associated with
the impurity Zn atom. This issue can be checked by measuring x(7') to lower

temperature T < T'n,2, where x(T') is dominated by these scattering.

e another potential scattering mechanism can be twin boundaries (which could

be viewed as sheet-like faults), the density of which is observed to increase with
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Figure 5.15: Total thermal conductivity x vs T fitted by using . , calculated by Hirschfeld, for Zn
concentration 0.0%, 0.15%, 0.3%, 1.0% and 3.0%.

increasing Zn-doping. We have used the result for detwinned crystals (x, and
Ks) to calculate the average value for a pure sample: Ky = m, which
turns out to be larger than the £,pinnes that we measured (see figure 5.18). This
suggests that heat carriers are indeed scattered by twin boundaries, which is in
contrast to electrical conductivity, we found that electrons are not scattered by

twin boundaries, something which is discussed in the next section.

As a result, the mechanism behind the peak in x changing at higher concentrations
of Zn is still controversial. It could be explained by continuing electronic x suppression
as described by Hirshfeld and Putikka or by phonon x changing with disorder (the
electron part has been suppressed completely for as little as 0.6% in our case). Further
study on this subject is needed.

The last point ] want to mention on this issue is that we cannot, however, rule out
the possibility that phononic thermal conductivity could be affected by Zn doping in a
subtle way: via the modification of electronic degree of freedom, which, in turn, affects
the phonon’s lifetime. This is omitted in here because it is somewhat complicated
and has been addressed by Ting et al. [38].
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Figure 5.17: The ratio of Trmer (the temperature at which the peak in x(T') occurs) to T as a
function of Zn content, which shows non-monotonic change with increasing of Zn impurities. (solid
for twinned and empty for detwinned crystal).

5.3 Anisotropy in k(T)
5.3.1 Results

Charge conduction

The electrical resistivity of a detwinned YBCO crystal for a current along the b-axis
is shown in figure 5.19. It is known that along the b-axds, the resistance consists of
two parallel contributions: one from the CuQ, planes, and one from the CuO chains,

along the b-axis. From these one can obtain:

Pb = Pplane X Pchain/(Pplane + Pehain) (5.4)

or equivalently:
Pchain = Pb X Pplane/(Pb — Polane) (5.5)
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Figure 5.19: Electrical resistivity vs T of b-axis YBa;(Cuy—-2Zn;)3sO7—s crystals with 2=0.0% and
0.6%. The curvatures are obvious in higher temperature for both.

where p, = pplane- We found perain can be expressed roughly as pehain = Pehain,o +aT2,
where pepain,o is the residual resistivity in the chains. We fitted our data for the pure
sample between 130 K and 270 K (to avoid the fluctuation regime), and found a and
Pehain,o to be 0.0016 pQcm K2 and 66uQ respectively, The quadratic dependence on
temperature of p.hain Was explained by scattering of the 1-D electrons by phonons, as
discussed in ref [13].

Next we turn to the resistivity of the twinned YBCO to study the effect of twin
boundaries on charge conduction. In figure 5.20, the measured resistivity of a pure

twinned sample is plotted. Assuming an equal number of a- and b- oriented domains
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as we discussed in section 4.2.1, then, the expected value of a twinned crystal can
be calculated from p, and py by 2232, if the boundaries have little effect on charge
transport. From figure 5.20, we see that the measured curve and calculated curve
coincide very well, indicating that the effect of twin boundaries is negligible, that is,
the twin boundaries are not a significant scattering mechanism for charge transport
(at least above T.).

Heat conduction
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Fignre 5.20: The resistivity of twinned crystals; comparison of measured and calculated using piyin =
- >
gazpr

Let us now turn to the anisotropy of thermal conductivity in the ab-plane of
YBCO. The temperature dependence of x, and &; from 150 K to 4.2 K is shown for
the pure and 0.6% YBCO crystals in figure 5.21 and 5.22, respectively. One can see
that, above T, (= 93 K and 89 K respectively), the temperature dependences of x, and
ks are nearly identical, except for a constant offset. Both increase monotonically with
decreasing temperature. Below T, both of them increase rapidly, a familiar feature
for k of YBCO. However, an obvious feature is that the temperature dependence of »,
and xp below T, are not the same, with peaks at around 40 K and 25 K respectively.
The difference between them (for pure crystals) is plotted in figure 5.23. Two aspects
are striking: there is not a trace of an anomaly at T. = 93.8 K, in contrast to the
plane behavior (x,), and a sizeable increase sets in rather suddenly at a much lower

temperature, about 55 K, giving rise to a peak centered around 15 K.
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Figure 5.21: Thermal conductivity of pure YBa;CuzO7_; along two directions (a-axis and b-axis).
It is obvious that the maximum appear at different temperatures (40 K for a-axis and 25 K for
b-axis).

5.3.2 Discussion

First, we hope to find if this anisotropy is due to phonons or not, which could arise
either from an anisotropy in the electron-phonon interaction or in the phonon spec-
trum (i.e. sound velocity). From results of ultrasound measurements [47], however,
we know the sound velocity along the a-axis and the b-axis are close to each other,
because the YBa;Cu3O7_s structure is only slightly away from tetragonal symmetry,
with the b-axis only 2% ~ 3% longer than the a-axis. Therefore, it is not likely to
be the source of the anisotropy. As for a possible difference in the mean free path
for phonons in the two directions, it is not inconceivable to assume that the scatter-
ing rate for phonons along the b-axis is less than that along the a-axis. However,
it would be difficult to explain the appearance of an anomalous feature of x5 well
below T, (and not just at T.). As a result, we anticipate that the difference in the
temperature dependences of s, and s, may be associated, at least in large part, with
the anisotropy of the electronic thermal conduction.

Considering the structure of YBCO, we applied a simple model of parallel conduc-



72 5 RESULTS AND DISCUSSION

30 AL B ALAN AN (L AGLEN N SELENLENL N I S NS ANLE BN AL R

B ]

25 F .
— . b-axis ]
X 20 | J
£ - )
\ N -
= [ ]
< 15 [ ]
! : oun“u,”,u“’“"”"““ - :
[ "Il'

10 [ ]

: M:

5 : RS S S S S U S S M S S N ,LT] N AT BT ST B

0} 20 40 60 80T 100 120 140

Temperature %(K)

Figure 5.22: Thermal conductivity of detwinned (a-axis and b-axis) crystals for Zn-doped sample
(x=0.6%).

tion channels to the b-axis conductivity, viewing it as a sum of separate conductivities
in the CuQO, planes and along the CuO chain: Ky = K; + Kchain- LThen Kchain is the
difference, xy — &,, shown in figure 5.23. The anisotropy in the normal state is roughly
constant and the difference x;, — x, hovers between 3.0 and 3.5 Wm™'K ™!, with an
absolute uncertainty of £10%. If we apply WFL to the chain conductivity above T,
we get ;f:f'; = 3.5 Wm™'K~!, where Ly = 2.44 x 1078 QW K2 is the Sommerfeld
value. Noting also that the anisotropy ratio %5/, in the normal state is 1.2 to 1.4,
assuming the electronic part is 1/7 of x, we find x3./Kqs. = 2.6 ~ 3.4 in the normal

state, very close to the measured electron resistivity ratio p./pp = 2.1. All of these

features indicate that electrons are responsible for x.pgin-

An interesting feature is that the peak in Kchain is very similar to that in Kpign-
We can actually see the similarity more clearly if we scale the temperature by the
onset point in both peaks (55 K and 93 K respectively), as in figure 5.24. (for ease
of comparison, the data is normalized in such a way that the two peaks have roughly
the same height once a constant background has been subtracted). This shows that
heat conduction can be used as a measure of the onset of superconductivity, just

as easily as the electrical resistivity or the magnetic susceptibility. For example,
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Figure 5.23: X pqin for a pure YBa;CuzO7_;s crystal.

the arrow in figure 5.21 shows the resistivity determined transition temperature, in
perfect coincidence with the change in x. This will work as long as electrons are a
major source of scattering for the carriers of heat. This is not only true at T, but
also below T..

These features cannot be described by a single gap structure below T. , because
any model using a single gap or order parameter (s- or d-wave) will only lead to a
single conductivity peak. Therefore, it is necessary to consider a 2-component system
to understand the data. The essential features of the data can be well described
by a model of two superconducting components, one associated to plane, with T.
=93 K, the other to the chain, with 7. =55 K. Here, let us introduce a theory of
single-electrons tunneling, which gives a description of the 2-component model:

It is commonly believed that the pairing interactions in YBCO are localized to the
CuO; planes. However, the CuO chains could become superconducting via a coupling
with the planes, by single-electron tunneling, :.e. the proximity effect. And since the
chains are intrinsically normal and their superconducting state is only induced, a
smaller gap than that of the planes is expected [48]. In this model, the Hamiltonian

is written as :
H=H,+ H

Hy = 313 enicliy ko + €k(ch iy cair + H.c.)]
k n
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Figure 5.24: Comparison of Kchqin and Kpigne vs reduced temperature (T'/T.). The similarity between
them suggests the 2-component gap structure in YBCO crystal. We normalized the two curves to
the same normal state valze and same peak height to emphasize the similarity between them.

Hy =) Aﬂ’yﬂk(cvtzktcrtz—kl + H.c.)
nk

A general feature of the proximity effect models appears to be pronounced upward
curvature in the superfluid density along bata temperature well below T,, as an
example, Xiang and Wheatley [49] has calculated the superfluid density and their
result is shown in figure 5.25. As one can see, the temperature dependence of super-
fluid density p of the @ and b directions are different. The linear dependence for the
Oplane (a-axis) is expected because d-wave pairing is used, the presence of a positive
curvature in gy(t) (¢ = T/T.) is evident. This can be attributed to the chain elec-
trons, which have their own 7. and energy gap at lower temperatures. To clarify,
let’s considered the case where the chain and plane bands are completely decoupled
(with transition temperature T,_gd“‘"") < Tc("‘"“). The superfluid densities ppain and
Oplane are shown in figure 5.25. In this special case, g5 = Pptane + Ochain Would have a
sudden change at T{°%*) Switching on a weak coupling leads to a single transition
temperature x TP!%"¢) but leaves a smooth upturn in g;(t).

This can be used to give an explanation of our data qualitatively, that is, there
exists a second superconducting gap for the electrons in the CuQ chains, because
of the coupling with the planes, therefore they have a smaller energy gap and lower
T.. When the temperature goes through T{*#i"), the electrons in the chains begin
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of the chain and planes when the intetlayer coupling is sero. Then ggl’c), = gf’;lm + eg& ... When
chains and planes are weakly coupled by single electron tunneling, the chain-direction superfluid
response develops a positive curvature near 744"

to condense, resulting in an enhancement of K.ngin via the same mechanism as that
in Kplgne. In Ky, there are two peaks which overlap with each other in a certain
temperature range. We point out that the existence of two gaps has been suggested
by other experiments: the temperature dependence of the Knight shift [50] and the
NMR relaxation time [51].

Our results on K.p4n may well explain the recently reported data by H. Srikanth
et al. [29], who observed two peaks in o;(T) below T., and a two-stage growth in the
superfluid density (or A), as shown in figure 5.26. They also described this in terms
of two superconducting components, with T.4 = 60 K and T.p = 93 K. However,
these authors used twinned crystals, so they were unable to say what role the chains
play in this two-component superconductivity.

Interestingly, this two-stage behavior is not seen in the microwave results of Zhang
et al. [42], (shown in figure 5.28). There, oy and o, shows similar temperature
dependences, with only a factor of 2 difference between them in the whole temperature
range. The penetration depth measured by the same group shows a similar featureless
anisotropy (see figure 5.27), where A, and A, have a nearly identical temperature
dependence, as does the superfluid fraction n,(T)/n,(0) = A%(0)/A*(T), in contrast
to the calculations by the 2-gap model.
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Figure 5.26: New microwave data measured by Srikanth et al. , which shows two peaks in ;.

One should note that because electro-magnetic fields penetrate only a distance of
the order of the London length into the superconductor, surface effects can complicate
the determination of the bulk conductivity in the microwave technique. On the other
hand, thermal conductivity is definitely a bulk probe not subject to extrinsic surface
effects. As a result, the former is very sensitive to sample quality. In this respect,
Srikanth et al. [29] showed that the microwave feature in the vicinity of 60 K is only
present in samples grown in BaZrO; crucible and entirely absent in those prepared
in ZrO; crucible. Therefore, it appears that our measurement are able to detect the

chain anomaly in crystals where previous microwave data show no unusual behavior.

Before closing, we would like to come back to the issue we discussed at the be-
ginning of this section, where we thought that phonons are not responsible for the
anisotropy in the ab plane. What was really meant was that the anomalous feature
(i.e. the peak of Kcpain) is not due to phonons, we could not rule out the possibility of
an anisotropy due to phonons completely, as a matter of fact, phonon thermal con-
ductivity may provide the constant background for the curve of x.pqin. Notice that for
the data of our crystals, the anisotropy in the normal state is larger than expected if
only electrons are taken into account. There exists a difference of 3.5W/Km between
the a-axis and the b-axis, while the electronic contribution to x at T is estimated
to be about only 1/7 for a pure sample (1.2 W/mK), therefore, electrons cannot be

responsible for the whole difference between x, and x;. The rest could be due to
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Figure 5.27: The change of penetration depth of YBCO, AA(T) and A?(T') measured by the mi-
crowave technique by Zhang et al. for a-axis (solid) and b-axis(empty). A similar temperature
dependence is observed in these two directions.

phonons, and is featureless.

5.3.3 Summary

To conclude, we have observed a pronounced peak in the difference between the
thermal conductivities of YBa,CusOr_; along b (planes + chains) and @ (planes),
which is qualitatively similar to the peak in x,. We interpret this feature as a sudden
increase in superfluid density at about 55 K. Qur result suggest that the additional
superfluid growth observed below 55 K is associated with the CuO chains, which
can be qualitatively explained by single-particle tunneling models. To clarify, further
experiments on this issue need to be done. For example, 1) Using different oxygen
content samples to observe the change of the peak due to the chain would be a very
useful test of the 2-gap model. If this model were true, a decrease in the oxygen
content would greatly affect the value of the smaller energy gap [52]. The reason is
that the oxygen is removed preferentially from the chains, as a result, some of the
chain Cu atoms develop magnetic moments which act as strong pair-breakers in the
chain band, causing the gap A pqin to be suppressed very rapidly, thus, the chain
develops a gapless state. 2) Tune the ratio of inelastic to elastic scattering in the

chain just as was done for Kpiqne by introducing controlled amounts of impurities that
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Figure 5.28: o, vs temperature, along band @ axis, measured from the microwave resistant real
part (after K. Zhang et al) A factor of 2 is observed between o1 and o1, for the whole temperature
range.

go specifically in the chain, such as Au. This kind of investigation is currently under

way. Just as it was for the planes, a high sensitivity to impurities would be evidence

for an electronic origin to the peak in Kcpqin. This would then directly imply that the
peak in Kepain is due to pair condensation of chain electrons, given that electrons in
the chains are more likely to be scattered by other electrons in the chains than by

electrons in the plane.




APPENDIX

A.1 Microwave conductivity

Microwave measurements can yield important information on high 7. superconduc-
tors. such as, the nature of the pairing, the quasiparticle density of states and the
scattering mechanism. The principle for microwave conductivity measurements is as
follows:

The surface impedance Z, = R,+iX,, where R, is the surface resistance and X, is the
surface reactance, is a measurable complex quantity that characterizes the electro-
magnetic properties of a superconductor. The surface reactance is a measure of the
screening of the fields by the superconducting condensate and provides a direct probe
of the London penetration depth A\(T') via X,(T') = powA(T'), which provides a mea-
sure of the superfluid density n,, since A(T') = (E":+")"§. The real part of surface
impedance, R,, provides information about the real part of the conductivity 1. In
the clean, local limit(wr < 2A), a 2-fluid model of the microwave surface resistance
gives:

R,(w,T) = SCL:w2,\3(T)a-1(w, T) (A.1)

where o(w,T) is the real part of the conductivity associated with the response of
the normal fluid. At low frequencies(wr < 1) the temperature dependence of o,
is determined by the product of the normal fluid density, n(T'), and the electronic
scattering time of the normal fluid, 7(T'). Thus, it involves the density of states and

the scattering rate of the quasiparticle.

A.2 Thermal Hall effect

Thermal Hall conductivity may provide information to help distinguish between var-

ious models of electron scattering. When a quasiparticle in a type-2 superconductor
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is in a magnetic field incident on a pinned vortex line, the "handedness” of the su-
perfluid velocity around the vortex core leads to asymmetric scattering, that is, the
amplitude for scattering to the right is different from that to the left. This asymmetry
produces a transverse quasiparticle current that changes sign with the field B. The
transverse current is equivalent to a thermal Hall conductivity x.,. Since phonons are
scattered symmetrically by the vortices, this means the asymmetric scattering pro-
vides a selective "filter” that allows us to observe the quasiparticle current without
the phonon background. Furthermore, k., provides a measure of the mean free path
of in-plane quasiparticles, and of the thermal conductivity x.p associated with these
excitations.

By noting that the fraction of the incident beam scattered into the transverse
direction equals < 'y ; > /[< Lin + Lyer >], where Iy q, i and Ty are the asym-
metric scattering rate, the inelastic scattering rate and the vortices scattering rate

respectively. The Hall conductivity can then be expressed by
Kzy(B) = N(T)lg(a, [vrgo)B/[1 + looi,| Bl/¢o]* = pB/[1 + | Bl/de]*  (A.2)

with [, the mean free path, ;. the transport cross section, ¢o the flux quantum, o; the
transverse cross section and vr the average Fermi velocity. p and « are two fitting pa-
rameters (p is related to the mean free path, and a measures the average quasiparticle
lifetime (@ = lyo,,)), taking o, to be T-independent, one could determine ;. using
p and lo, one then could obtain N(T) by N(T)/vr = &.(0)/lo = (¢a/o ) )p(T)l5>.
Here N(T') measures the entropy current, equivalent to ratio «,/x, discussed by
Kadanoff [11]. Finally, this would give the profile of the x associated with the in-

plane quasiparticles, because chain electron will not contributes to N(T') in here:

&= = N(T)o/vr (A.3)
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