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Abstract

In this thesis. we have developed practical methods for the identification of linear,
nonlinear and hybrid (multimode)} systems which are applicable under relatively gen-
eral conditions, i.e., when assumptions and conditions of the estimation technique are
not violated. Since these algorithms were not designed specifically with any system(s)
in mind, they should be applicable to experiments on a variety of systems in many
different disciplines.

Results demonstrate that the (polynomial) NARMAX (Nonlinear Autoregressive,
Moving Average eXogenous) model class is useful for modeling the input-output be-
havior of a block-structured representation of two biological models. Extensive simu-
lations demonstrated that our bootstrap model order selection (BMOS) and bootstrap
structure detection (BSD) algorithms have a high probability of success for selecting
the order and structure of NARMANX models and are robust in the presence of mea-
surement noise. [n addition. we illustrate that the NARMAX model structure is well
suited for modeling dynamics of nonlinear hybrid systems and develop a modified
extended least squares (MELS) algorithm to estimate coefficients of these systems.
Application of this algorithm to a model of the vestibulo-ocular reflex (VOR) showed

that it is a robust method for estimating the coefficients of multimode systems.



Résumé

Dans cette thése, nous avons développé des méthodes pratiques pour l'identification
des systémes linéaires. non linéaires et hvbrides (a4 plusieurs modes de fonction-
nement). Ces méthodes sont applicables dans des conditions relativement générales,
c’est-a-dire lorsque les hypothéses et les conditions de la technique d’évaluation sont
vérifiées. Puisque ces algorithmes n’ont pas été congus pour un systéme spécifique,
ils devraient étre applicables aux expériences sur une variété de systemes, dans un
grand nombre de disciplines.

Les résultats démontrent que la classe de modéeles NARMAX (Nonlinear Autore-
gressive, Moving Average eXogenous) est utile pour modéliser le comportement en
entrée-sortie d 'une représentation par blocs pour deux modeles biologiques. Des sim-
ulations poussées ont démontré que nos algorithmes de sélection d’ordre de modele
(bootstrap model selection, BMOS) et de détection de structure (bootstrap structure
detection. BSD) ont une forte probabilité de succés et sont robustes en présence de
bruit de mesure. En outre, nous illustrons que la structure NARMAX est appropriée
pour modéliser la dynamique des systemes hybrides non linéaires et nous développons
un algorithme de moindres carrés étendus modifiés (modified extended least squares,
MELS ) pour estimer les coefficients de ces systémes. L’application de cet algorithme
a un modele du réflexe vestibulo-oculaire a prouvé qu'il s’agit d’une méthode robuste

pour estimer les coefficients des systémes a plusieurs modes de fonctionnement.
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Chapter 1

Introduction

Svstem identification is the process of developing or improving a mathematical rep-
resentation of a physical system based on observed data. The study and analysis of
syvstems is related to the development of new identification algorithms, or tools, for
scientists. When these tools are developed with specific applications in mind, they
may be difficult or impossible to apply to problems in other disciplines, and will,
therefore, render the tools relevant to only an explicit problem or set of problems.
Consequently, one of the fundamental goals of this thesis was to develop tools that
are generalizable to a large set of problems that bridge many branches of research.

Over the past several decades, significant achievements have been made in several
areas of nonparametric nonlinear system identification [167]. Robust techniques have
been developed within different disciplines. However, many of these methods restrict
the types of inputs that can be applied and the system structures that can be studied.
In addition. nonparametric methods may represent nonlinear systems at the expense
of introducing an excessive number of coefficients which are not readily linked to the
underlying system.

Parametric representations of nonlinear systems typically contain a small number
of coefficients which can be varied to alter the behavior of the equation and may be
linked to the underlying system. In this thesis, we only consider a family of para-
metric models described by linear-in-the-parameters, linear and nonlinear, difference

equations. This family of parametric models is popularly known as the NARMAX



(Nonlinear Autoregressive, Moving Average eXogenous) model structure. Only the
discrete-time case is considered since most systems for identification purposes are
represented in discrete-time.

Parametric identification, while theoretically attractive, has been difficult to ap-
ply since basic questions in this field have been left open. Specifically, these open
questions have been: (1) how to estimate the order of the input-output and error lag
and nonlinearity, model order selection, (2) how to select which parameters to include
in the model, structure detection and (3) how to model and estimate parameters of
“hyvbrid” or “multimode” systems. systems that can switch between various modes
of operation. Hence, applications have only been possible in cases where a signifi-
cant amount of a priori information has been available. In this thesis, we attempt
to further the discipline of parametric nonlinear system identification by developing
tools which address these questions and, therefore, allow our tools to be applied under
liberal conditions.

We have designed our tools with little or no restrictions so that they may be
applied to a wide range of problems and in various fields of study. They have been
designed to allow the study of biological systems, where the systems being exam-
ined can be highly nonlinear and may switch between various modes of operation.
Moreover, since the nature of experimental apparatus typically constrains the type
of stimulus that can be applied to a system under study, these tools have been de-
signed to ensure that the svstem is identifiable with the minimum requirement that
the input be “persistently exciting”. i.e., that the system dynamics be persistently
excited over the measurement time. Finallv, measurements of system input-outputs
are often corrupted by noise. Therefore, these algorithms have been designed with
this restraint taken into consideration.

Although we have developed these tools with biological applications in mind, the
overall goal of this work was not only applicability to biomedical engineering but to
provide an expanded and improved set of tools for the identification of both linear
and nonlinear systems that fall under the linear regression “umbrella”. We believe

they will render parametric nonlinear identification a feasible tool for modeling un-



known (black-box) systems in many areas outside the biomedical realm. Some po-
tential applications for these methods outside the biomedical field are, for example,
efficient controller design, aircraft/spacecraft/robotic control and design, communi-
cations, analysis of economic trends, analysis of geophysical or ecological phenomena,

etc.

1.1 Thesis Overview

Chapter 2 presents a general introduction to the topic of system identification. This is
followed by a detailed review of recent system identification literature, with special fo-
cus on methods that may be applicable to linear regression models. Linear regression
techniques are given special consideration since they are applicable to discrete-time
linear and nonlinear systems that are linear-in-the-parameters, i.e., NARMAX mod-
els.

In chapter 3 we commence our study of the NARMAX model class by demonstrat-
ing the usefulness of NARMAX models for biological modeling. A parallel pathway
model of ankle dynamics is theoretically analyzed and its NARMAX representation
is derived.

Structure detection is a crucial procedure for estimating a parsimonious system
description. Chapter 4 presents an algorithm for determining model structure, based
on least-squares and bootstrap theory.

Chapter 5 continues the application of bootstrap to nonlinear identification and
presents an algorithm for estimation of model order for linear and nonlinear systems.

Chapter 6 presents a new algorithm for the identification of linear and nonlinear
hybrid {multimode) systems. Systems of this type may be quite common in physiology
since. in many cases, the biology is known to abruptly switch control strategies based
on the input stimulus.

Finally, in Chapter 7 we summarize the contributions made in this thesis, and
offer suggestions for further developments and improvements. We finish the chapter

by discussing further potential applications for these techniques.



Chapter 2

Literature Review

2.1 Introduction

In this review, our primary objective will be to describe techniques that are suit-
able for building models described by linear-in-the-parameters, nonlinear, difference
equations. Our description of this model structure will reveal several deficiencies in
existing methodology for the identification of these types of systems. The complex-
ities associated with such model descriptions limit the widespread applicability of
existing methods unless considerable a prior: knowledge of the underlying system is
available.

The full identification problem (as posed by Verhaegen and Dewilde, 1992) is
examined in detail. Two broad classes of identification are introduced: (i) nonpara-
metric and (ii) parametric. The shortcomings and strengths of each approach is
reviewed. The model structure(s) used for nonparametric identification is/are re-
viewed in the context of the benefits and difficulties associated with nonparametric
identification. The rationale for using parametric identification is stated and vari-
ous types of model structures that fall within the parametric family are reviewed.
Then the NARMAX (Nonlinear Autoregressive, Moving Average eXogenous) model
structure is introduced and discussed. The steps involved in parametric (NARMAX)
identification are outlined and a review of the current literature is presented, focusing

on the strengths and weaknesses of each approach.



2.2 Modeling Techniques

A review of the techniques used to model complex systems exposes two broad classes:
a priori or morphological modeling (also known as physical models, “first princi-
ples” models or white-box models) and a posteriori or black-box modeling (commonly
known as system identification) [101]. The complexities associated with a system may
limit the type of experiments that can be performed and will determine the choice of
modeling techniques that can be considered. However, a minimum level of complexity
is required by the nature of any system. Experimental limitations on the type of data
that can be obtained also impose an upper limit on the complexity of the model that
can be justified {101, 167]. With these objectives and limitations in mind we will
present a detailed discussion of the advantages and disadvantages of morphological

and black-box modeling techniques.

2.2.1 Morphological Modeling

The objective of morphological, or a priori, modeling procedures is to derive a system
description from basic physical laws only. In this approach, the system is decomposed
into subsystems whose properties are well established from previous experience (i.e.,
knowledge of both the system structure and the function of the subsystems) that
have their roots in earlier empirical work [101]. The subsystems are then joined
mathematically to produce a model of the whole system. Models of this type are often
known as “morphological” since the individual elements and interconnections are
often related directly to the structure of the system being modeled. These models have
the advantage that they possess a clear physical interpretation. However, systems
that are modeled using morphological techniques often embody many parameters

that must be determined experimentally.

2.2.2 Black-Box Modeling

If nothing at all is known or assumed about the physical structure of a system, the

modeling procedure is known as a posteriori or black-box modeling [101]. In black-box



modeling, the system inputs and outputs are recorded and then analyzed to obtain
a model description. This approach is often referred to as black-box modeling since
the resulting mathematical description (model) of the system is simply a “black-
box” that mimics the behavior of the system. This type of modeling provides a
relationship between the system inputs and outputs. However, it generally provides
little structural or functional information about the system or its components.

In practice, neither of these two extreme approaches are particularly fruitful in
isolation. In order to model complex processes, such as thos- found in biolegy, the
two approaches have to be combined. Therefore, in practice, morphological modeling
is combined with system identification methods. The theoretical framework for doing
this systematically is known as “greyv-box” modeling.

Black-box models provide “simpler” models. Analysis of input-output data can
provide useful process insights that can be used in subsequent development or re-
finement of physical models. In particular, all morphological models are based on
assumptions {e.g., these effects are important and those are negligible) which may be
incorrect [116, 119]. Black-box models may help uncover such surprises. However,
depending on the character of the system, one of the two modeling activities, i.e.,
morphological modeling or parameter estimation (black-box modeling), may domi-
nate the overall modeling effort.

Generally, there are two uses for models obtained using system identification ap-
proaches. In the design of control systems, models are required to predict the plant’s
response to its input in order to design an effective controller. In this case, it is usu-
ally desirable to have the simplest possible model that describes the dynamics of the
plant to be controlled. However, if the objective of the identification is to gain insight
into the function of the underlying system, it is necessary to extract the maximum
amount of information from the input-output data. In general, models identified for

insight are often more complex than those used for control.



2.3 The Identification Problem

Consider the general identification problem posed by Verhaegen and Dewilde [158],

shown in Figure 2.1. The “system” is defined as everything within the dashed box
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Figure 2.1: Generalized identification problem. Redrawn from [158].

and consists of two parts: (i) stochastic and (ii) deterministic. The stochastic part is
driven by a white noise process, w, (t), which is not available to the experimenter. The
deterministic part, the system to be characterized, is driven by the sum of a controlled
input, u(¢), and a filtered, inaccessible white noise process, w,(t). It is assumed that
the experimenter has control over u(t¢) and is able to access a noise-corrupted version
of the input signal, 4(¢). The noise-free output, y(t), is the “true” system output
which is the sum of the stochastic and deterministic parts of the system. However,
the experimenter only has access to a noise-corrupted version of the output signal,
z(t).

This leads to several identification problems.



1. Identification of the stochastic or noise model, F,. Here, the focus is placed on
the relationship between w,(t) and z(t), given observations of only the system
output, z(t). The input signal, u(t), is assumed to be zero or constant. This type
of identification is commonly known as time series analysis and has applications
for the study of economics systems, analysis of geophysical or astronomical
phenomena, analysis of biological data (e.g., heart rate, EEG), etc., where the
inputs are not available to the experimenter, or where it is unclear which signals

are inputs and which are outputs.

2. Identification of the deterministic model, P. This problem consists of finding
a relationship between u(t) and y(t), assuming that the process noise, w, (), is
zero. Both the input and output may still be corrupted by observation noise,
eu(t) and e.(t) respectively. However, it is commonly assumed that 4(t) is
recorded with negligible error, i.e., e,(t) = 0. The identification of deterministic
systems is generally pursued when the objective is to gain insight into the

functioning of a system. This is the problem that will be pursued in this thesis.

3. Identification of the stochastic and deterministic (complete) models. When both
the input and output signals are available for identification, the goal may be
to estimate both P and F,,, the deterministic and noise models. This problem
formulation is used when accurate predictions are desired, such as in the design

of model-based control systems for aircraft, spacecraft or robotics.

This thesis concerns itself with identifving the deterministic model, P, and we assume
that the input is recorded with negligible error (e,(t) = 0). For notational simplicity,
we will henceforth use ‘e’ to denote output additive noise (e.(t)) unless explicitly

stated otherwise.

2.4 Classes of System Identification

There are two broad classes of techniques that can be pursued to accomplish the task

of system identification: (i) nonparametric and (ii) parametric methods.



2.4.1 Nonparametric System Identification

Causal, time-invariant linear and nonlinear systems form some of the most important
classes of dynamical systems used in practice. Although they represent idealizations of
the processes encountered in practice, the approximations involved are often justified
and lead to good results in many cases [101].

A system is considered to be causal if the output at any time depends on the
input up to that time only [101, 138]. A system is said to be time-invariant if its
response to a certain input signal does not depend on absolute time. Moreover, a
system is linear if its output response to a linear combination of inputs is the same
linear combination of the output responses of the individual inputs.

The response to a linear, time-invariant, causal system is well known to be de-
scribed by its impulse response as [13, 101, 138]:

y(t) = [00 h(T)u(t — T)dT. (2.1)

=0

If {h(7)}2, and u(v) are known for v < ¢, the corresponding output, y(v), v <
t, can be computed for any input. Therefore, the impulse response is a complete
characterization of a causal, linear, time-invariant system.

In any practical experimental situation, the data available to the experimenter
will be finite; therefore, Equation 2.1 cannot be applied directly. The finite impulse
response function (FIR) has been widely used for modeling linear time-invariant sys-

tems. The continuous-time output of this model is represented as the convolution

integral:

M
y(t) =/0 h(T)u(t — 7)dt (2.2)

where h(7) is the impulse response, M is the memory length, and the lower bound of
the integration is zero to represent a causal system. The FIR can be represented in
discrete-time as

A1

y(n) =T _ h(r)u(n - ) (2.3)

=0



where n =1,2,..., N, the sampled data point index; 7, the lag, are integers; and the
sampling rate, T, is often assumed to be 1 for notational simplicity. The input, u, is
often assumed to be white and the lower limit of the summation is zero to represent
a causal system. This system description is known as nonparametric because it is a
numeric representation of the system’s impulse response or kernel. However, since
many systems are inherently nonlinear the rich behavior of their dynamics cannot be
fully described using linear techniques.

Classically, the model structure used in nonlinear system identification has been
the functional series expansions of Volterra or related techniques [103]. The discrete

Volterra series expansion is commonly shown as [166]:

I (M-l M-1
y(n) = Z {Z Z ki(t1,....m)u(n—1)...u(n~ T,»)} i (2.4)

=0 1 =0 =0

In this series [/ represents the model order and M the memory length. These types
of descriptions represent a wide class of nonlinear, fading memory systems {29, 167].
One such representation of this class of syvstems is the Wiener-Bose model which
consists of a bank of linear filters whose outputs are combined and transformed by a
multiple input polynomial. As such, they have been used successfully for physiological
modeling for a number of vears. Many of these techniques are robust in the presence
of noise and require few a prior: assumptions. Recently some of these methods also
allow the use of non-white inputs {130, 167].

Although nonparametric methods can be used to represent many classes of non-
linear systems, they do so at the expense of introducing an excessive number of
unknown coefficients which must be estimated. Most expansions map the past inputs
into the present output and so require a very large number of coefficients to charac-
terize the process. For example, even a simple quadratic nonlinearity in cascade with
a first-order linear dynamic system could easily require 400-500 coefficients to spec-
ifv the first and second-order Volterra kernels [22]. Therefore, the resulting system
description is not represented concisely and may be redundant. Alternative system

descriptions, such as block-structured models [17, 83, 167], alleviate some of these

10



difficulties provided the system under study belongs to the relevant class of models.
. Moreover, the parameters are not readily linked to the underlying system, except in
special cases where much a priori knowledge of the system has been assumed (e.g.,

parallel cascade structure of ankle dynamics [75, 77, 78, 79, 167]).

2.4.2 Parametric System Identification

In recent years parametric identification methods have been developed for use in the
design of better control systems. Parametric models have some advantages in appli-
cations. First, they are easier to understand and interpret. Second, they can simplify
forecasts (e.g., obtaining forecast intervals). Third, model comparison in a parametric
context (i.e., parameter estimates, model order and model structure) has been well
studied; so the difficulty of model comparison encountered using nonparametric tools
can be avoided [36].
A parametric model consists of a set of differential or difference equations de-
scribing the system dynamics. Such equations usually contain a “small” number of
. parameters which can be varied to alter the behavior of the equation. Here we will
only discuss the discrete-time case since most systems for identification purposes are

represented in discrete-time.

2.4.2.1 Parametric Representations

For linear systems, the relationship between input-output and noise can be written

as a linear difference equation [61, 68, 101}:

y(n)= - awy(n—-1)—-- —azy(n —ny) (2.5)
+ biu(n — 1) +bu(n —2) + - - - + by u(n — ny)

+ e(n)+ce(n—1)+- - +cye(n—ne).

This is known as the AutoRegressive, Moving Average eXogenous (ARMAX) model.
In this model structure the current output y(n) depends on an exogenous input, u{n),

. an innovation process, e(n) (e:(t) in Figure 2.1), and past values of the output. This

11



structure can be represented more compactly as

A(g)y(n) = B(q)u(n) + C(g)e(n) or (2.6)
y(n) = G(q)u(n) + H(g)e(n) where
_ Bl@ - Cl)
=3 9= 1)

where A(q) = 1+ a;¢g™' +--- + an,¢”™, ¢! is the backward shift operator and
the a’s are the parameters of the output. The ARMAX model structure is a widely
recognized tool in control and econometrics for both system description and control

design [101]. This system representation has several special cases [61, 68, 101].

2.4.2.1.1 The Autoregressive (AR) Model
Alg)y(n) = e(n) (2.7)

In this model representation the output depends on the unknown current disturbance

as well as the n, previous values of the output.

2.4.2.1.2 The Moving Average (MA) Model
y(n) = C(g)e(n) (2.8)
Here, the output depends on the previous n, values of the disturbance e(n).

2.4.2.1.3 The Autoregressive Moving Average (ARMA) Model A com-
bination of the previous two vields the AutoRegressive Moving Average (ARMA)

model:

Algly(n) = C(g)e(n). (2.9)

2.4.2.1.4 The Autoregressive Exogenous Input (ARX) Model If an acces-

sible input, u(n), is added to the AR model the result is an AutoRegressive eXogenous

12



input (ARX) model:
A(g)y(n) = B(g)u(n) + e(n). (2.10)

In this structure, the output depends on the current disturbance as well as n,, previous

values of the input and n, previous values of the output.

2.4.2.1.5 The Finite Impulse Response (FIR) Model A special case of the
ARX model structure is when there is no disturbance input. This is known as the

finite impulse response model:
y(n) = B(g)u(n). (2.11)

For this model type the output depends only on the previous values of the exoge-
nous input. This model structure forms the basis of many so-called nonparametric
identification schemes.

Once a model structure has been determined, the unknown parameters can be
estimated by using techniques that optimize the vector of parameters to some cost

function.

2.4.2.1.6 State Space Model The state space model is another class of para-
metric model. The generalized state space equations for a causal linear time-invariant

system are [156):

r(n+1) Az(n) + Bu(n) (2.12)

Cz(n) + Du(n).

y(n)

In this equation z(n) represents the finite dimensional state vector with the states
going forward in time, y(n) is the output vector and u(n) is the input vector. The
matrices A, B, C and D are the system quadruple, where 4 contains the system
modes. Traditional methods for identifying systems of this type were developed by

Kalman et al. [68].

13



More recently, these tvpes of systems have been identified using subspace methods
(156, 157, 158, 159]. The input-output data is arranged into Hankel matrices. It is
possible to relate these Hankel matrices to the state equation in terms of the extended
observability matrix and Markov parameters. Using RQ factorization and singular
value decomposition (SVD), the system quadruple can be solved for. and, as a by-
product model order selection is performed. However, selecting the model order
using this method requires interpretation of singular value plots which often requires
expertise bevond that of the average user from a non-mathematical discipline. It
is often quite difficult even for the experienced user, when the signal-to-noise ratio

(SNR) is low.

2.4.2.2 Summary

Many of these system descriptions have the disadvantage that they require a prior:
assumptions regarding the system order. However, parametric methods have the ad-
vantage of giving a concise description to the underlying system, since they estimate
the unknown parameters of the analytic expression describing the system, and may
vield results that can be related directly to the system structure. Since these mod-
els are linear-in-the-parameters they can be estimated using parameter estimation
algorithms which are not dependent upon specialized input signals.

While most svstems encountered in practice are nonlinear, for control purposes
linear techniques are adequate because the systems are often approximately linear
over the range under consideration or can be approximated linearly by fixing them
about an operating point. Therefore, controller design can be accomplished using
less complicated methods. However, to gain insight into the underlying structure of
the svstem and to obtain an efficient global system description, parametric nonlinear
identification is necessarv. Some important classes of models which fall into this
category include the Hammerstein model, Wiener model, polynomic state models
[64], and classes of nonlinear difference equations [22, 98, 99]. Since the Hammerstein
model can only represent a small class of systems, and expansions based on system

states imply that all the states can be measured, only nonlinear difference equation
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models are considered here.

2.5 The NARMAX Model

The Kolmogorov-Gabor polvnomials have been well-known in control engineering for
many vears [51, 155]. However, these equations have recently been popularized by
Billings and co-workers [98, 99] for use in identification, modeling, and control. This
general parametric structure is commonly known as NARMAX (Nonlinear Autore-
gressive, Moving Average eXogenous). This so-called NARMAX structure can be
used for the identification of both the stochastic and deterministic components of a
svstem. The input-output relationship of many nonlinear dynamic systems can be

written in the NARMAX form as the nonlinear difference equation

y(n) = Fly(n=1),---.y(n = ny) uln), - uln — ), (2.13)

e(n—1),---,e(n —n.)] +e(n)

where F is a nonlinear mapping, u is the “controlled” (i.e., exogenous) input, y is the
output, and e is a zero-mean additive noise sequence (i.e., innovation; e,(t) in Figure
2.1). Note that in Equation 2.13 to model the stochastic component of a system e is
replaced with w; (i.e., uncontrolled input). This nonlinear difference equation model
or NARMANX model, may include a variety of nonlinear terms, such as terms raised
to an integer power (e.g.. u?(n — 3)), products of past inputs (e.g., u(n)u(n — 1)),
past outputs (e.g.. y(n — 1)y(n — 2)), or cross-terms (e.g., u?(n — 1)y(n — 2)). This
syvstem description encompasses most forms of nonlinear difference equations that are
linear-in-the-parameters [92]. Since the NARMAX model is linear in its parameters,

linear regression can be used for parameter estimation [10, 22, 61, 133].

2.5.1 NARMAX Representations of Nonlinear Systems

An important question in linear and nonlinear modeling and identification is how

to describe the input-output relationship of a dynamic system. The input-output



relationship should be straightforward, should provide an adequate approximation
to a large class of systems, and have minimal computational cost. It is well known
that, for linear discrete-time systems, linear difference equation models exist that
involve a fixed and finite number of calculations at each stage, if the Hankel matrix
of the system has finite rank. This often provides system descriptions that are more
concise than the impulse response function [37, 61, 101]. A similar situation exists
for discrete-time nonlinear systems [98, 99].

The NARMAX model structure (Equation 2.13) is a general and natural repre-
sentation for many discrete-time, time-invariant, nonlinear systems and provides a
unified representation for a wide class of nonlinear systems as special cases [37]. This
has obvious advantages over functional series representations such as the Wiener or
Volterra series which suffer from excessive parameterization [37, 131]. Leontaritis &
Billings [98, 99] have proved that a nonlinear, discrete-time, time-invariant system
can always be represented by model 2.13 in a region around an equilibrium point

subject to two sufficient conditions [37, 98, 99]:
1. The response function f of the system is finitely realizable and
2. A linearized model exists if the system is operated close to the equilibrium point.

Condition (1) simply excludes distributed parameter systems since the power any
input-output term is raised to is not always some constant integer independent of n
[99]. Condition (2) implies that if the system is perturbed with a small amplitude
input in the linear region around the equilibrium point, a linearized model of the
system exists. For notational simplicity, the discussions presented here are in context
of the single-input single-output case. However, most of the discussions are valid for

multiple input-output systems [20, 98].

2.5.1.1 Nonlinear Polynomial Models

In many situations it is reasonable to believe that higher-order polynomial functions

will, in general, yield better approximations to the system under study than a linear
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model (i.e., a polynomial model of degree 1 in {y(n—1),---,y(n—ny),u(n),-- -, u(n-
7ty) }). Practical identification of several biomedical systems has shown that many can
be adequately modeled by polynomial NARMAX models [90, 91, 92, 93, 112, 137].

A general polynomial input-output model takes the form

y(n) = ao+ Z a;y(n — i) + Z biu(n — 1) (2.14)
i=1 t=0
ny n, n,, n
+ Z Zaijy(n —iy(n—-j)+)_ Zcijy(n — d)u(n — j)
i=1 j=I1 =1 j=0
+ Z Zb,-,—u(n —t)u(n — j) + - - - + higher-order terms up to degree [
1=0 ;=0

where the a’s, b’s and c's are unknown system coefficients. The polynomial form
in Equation 2.14 can be concisely expressed as Equation 2.13. Therefore, difference
equation models that are linear-in-the-parameters are naturally represented by the

general NARMAX formulation (model 2.13) and are a special case of it.

2.5.1.2 Bilinear Models

Bilinear system theory has been widely studied in the context of continuous-time
svstems, e.g., distillation columns, nuclear and thermal control processes [37, 64].
Bilinear systems are quite common continuous-time systems since any continuous,
causal functional can be approximated arbitrarily well by a bilinear system within
any bounded time interval [37, 52].

A general bilinear input-output model has the form

y(n) = ap+ Zva,-y(n —1) + z“: biu(n — 1) (2.15)
=1

+ 3% cyuln—duln - )

i=1 j=1

which is a special case of the NARMAX model 2.13.
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2.5.1.3 Rational and Output-affine Models

The response function, f, of a system is said to be a polynomial response function if
for each n, f, is a polynomial of finite degree in all variables, although this degree may
tend to oc asn — oc. A polvnomial response function f is said to be bounded if for all
n the maximum power any individual variable is raised to in f, is less than a certain
bound [37]. The realization of polvnomial response functions has been investigated
in detail by Sontag [146].

It is known that a polynomial response function is finitely realizable if, and only

if. it satisfies the rational difference equation [146]

alyin-1),....y(n~r),u(n—1),...,u{n—r)y(n) = (2.16)

or

where 7 is the order of the system, a[-] and 4[] are polynomials of finite degree.
In addition, Sontag {146] showed that f is a finitely realizable and bounded poly-

nomial response function if, and only if, it satisfies an affine difference equation

aglu(n —1),...,u(n —r)jy(n) = (2.18)

or
_ "~ aifu(n—1),...,u(n—r)] .
y(n) = ;ao[u(n— 1)y,....u(n — 7)) y(n —1) (2.19)
. arirfu(n = 1),...,u(n —7)]
aolu(n —1),...,u(n — )]
where a;{-], 7=0,1.....7 + 1 are polynomials of finite degree.

The rational model (Equation 2.17) and the output-affine model (Equation 2.19)
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are globally valid [37]. The response function of the system is, however, restricted
to a polyvnomial response {37]. By choosing the particular forms in Equations 2.17
and 2.19 for the nonlinear mapping, F'(-), it is easily seen that the the rational and
output-affine models are a special case of the general NARMAX model 2.13. However,
identification and modeling issues concerning the rational and output-affine models

is not addressed in this thesis.

2.5.1.4 Nonzero-initial-state Models

Although, the derivation of the NARMAX model (Equation 2.13) is based on zero-
initial-state response [98, 99], the results can be extended to the nonzero-initial-
state case by including lagged impulse values to account for nonzero-initial-states or

discontinuities as [37]

[\
3]
o
N—

Ym(n) = Fl[ym(n —1),---, ym(n' - ny]sum(n)v s Um(n — M), ( -
dn(n), . 0m(n — ng),em(n — 1), .en(n — ne)] + em(n)

for m=1.2....,.M

where M represents the modes of operation, u,,, ¥m, €m are as defined previously, and
ém are Kronecker impulse functions. i.e., initial conditions. This makes the NARMAX

model structure well suited for modeling nonlinear hybrid or multimode systems [91].

2.6 Current Methodology

[dentifyving a NARMAX model has four stages: (1) model order selection, estimating
the maximum order of the input-output and error lags and nonlinearity order, (2)
structure detection, selecting which parameters to include in the model, (3) param-
eter estimation. determining values for these parameters and (4) model validation,
detecting terms in the residuals which if ignored will cause bias in the parameter
estimates. These four topics encompass a wide range of literature; therefore, only

methods relevant to polynomial NARMAX model identification are discussed here.
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2.6.1 Model Order Selection

Many parametric methods require a prior: assumptions about the system order. An
ideal parametric method for system identification would estimate both the system
order and the parameters.

The current literature offers no commonly accepted way to define NARMAX order.

Therefore, we define the system order for NARMAX models as an ordered tuple
a
O = [Ny, Ny, ne, 1] (2.21)

where n, is the maximum lag on the input, n, the maximum lag on the output, =,
the maximum lag on the error and [ is the maximum nonlinearity order.

The maximum number of NARMAX parameters, p, is related to the model order,
0O, as

l
p = Zpi; where [ is nonlinearity order (2.22)
=1
pi-i(ny +ny +ne +1—1)

P = - . p0=1.
1

We define the maximum number of terms, p, as the number of “candidate” terms to
be initially considered for identification, i.e., the number of terms in the “full” model.
Note that the number of candidate terms can be very large for NARMAX models,

possibly resulting in an over-parameterized full model description.

2.6.1.1 Correlation Method

Correlation functions have been widely used for estimating model order of linear FIR

systems [101, 140]. The cross-correlation function is defined by
Ryy(7) = Efu(n — 7)y(n)]. (2.23)
The cross-correlation function is rarely used since its value depends on the mean and

variance of u(n) and y(n).
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In practice the cross-covariance function is used and is defined by
Cuy(7) = El(u(n — 7) = ra) (u(n) — 15)] (2.24)

where p, and p, are the mean of u(n) and y(n), respectively. Note, if p, = 0 or
ty = 0 then the cross-covariance and the cross-correlation functions will be the same.
Often the cross-covariance function is referred to (incorrectly) as the cross-correlation
function.

The cross-correlation coefficient function is defined by

Cuy(7)

@uy(T) = Cw(O)ny(O) ;

where the auto-covariance function at lag zero (e.g., Cy,(0)) is equal to the variance

“1<6,(r) <1, ¥r (2.25)

of the signal, i.e., Cyy (0) = 62, Cyy (0) = 03. The cross-correlation coefficient function
may be thought of as the “normalized” cross-correlation function because its value
is unaffected by either the mean or standard deviation. Hence, signals of different
amplitudes can be compared easily.

The expressions shown in Equations 2.23 - 2.25 are generally known as “first-order”
correlations. Traditional methods for model order selection, based on first-order cor-
relations, generally fail for nonlinear systems due to a common problem [12, 153].
For Gaussian input data, the cross-correlation of any squared input-output terms
will be zero [12. 13]. Therefore, the lag associated with even-order nonlinear terms
cannot be determined using first-order correlations; hence “higher-order statistics”,
e.g.. second-order correlations, must be used [12, 154].

The second-order cross-correlation function is defined by
Ruuwy(T1,72) = E[u(n — 1)u(n — m)y(n)]. (2.26)
The second-order cross-covariance function is defined by

Cuy(11:72) = E[(uln — 1) — pa)(u(n = 72) = ) (y(n) = py)]- (2.27)

21



The second-order cross-correlation coefficient function is defined by

_ Cuuy(Tl ’ 7-2) )
VCuu(0)Couu(0)Cyy (0)

¢uuy(T17 TQ) -1 S ¢uuy(Tlf T?) S 11 VThT’Z' (2'28)

In general, estimating model order for infinite impulse response (IIR) systems,
such as the NARMAX model, even using higher-order correlations, also fails because
the system “theoretically” could have infinite memory. For example, consider a system

described by order O = [1,1,1, 2]:

y(n) = Oy(n—1)+ bhu(n) + u’(n — 1) (2.29)
y(n—1) = by(n—-2)+bu(n — 1) + 3u*(n — 2) (2.30)
y(n—=2) = Biy(n - 3) +6u(n —2) + Gu?(n - 3) (2.31)

where we have omitted the lagged noise terms for notational simplicity. Substituting

Equation 2.30 into 2.29 yields

y(n) = 8[0y(n —2)+ bu(n — 1) + 3u*(n — 2)] (2.32)

+ bhu(n) + G3u*(n — 1)
and substituting Equation 2.31 into 2.32 yields

y(n) = 6i[Biy(n — 3) + byu(n — 2) + Gyu’(n — 3)] (2.33)

+ 0162u(n - 1) + 6163'&2(71 - 2) + OQU(TL) + 02112(‘” - 1)

Note that it is possible to re-express the current output in terms of subsequent lagged
input-output values by expanding Equation 2.31 further, then substituting the result-
ing expression for y(n — 3) into Equation 2.33. Theoretically, this expansion can go
on to infinity or practically to the data length, V.

By substituting the right side of Equation 2.33 into Equation 2.28, it is readily
seen that the input lag order (n,) is over-estimated. This is because the recursive

expression for y(n) seen in Equation 2.33 contains lag orders that exceed the maximum
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present in the true system description, given by Equation 2.29. In addition, the system
will have non-zero input lags for multiples of the system lags, making it impossible
to estimate maximum lag order using correlations. Furthermore, it is impossible to
estimate the output and error lag (n, and n.). Therefore, correlation based techniques
are limited to syvstem structures that are described by FIR models. Although it is
possible to equivalently describe many systems as either FIR or [IR, an IIR description
is generally more efficient.

Recently, Tungnait [153, 154] proposed a method for order selection based on
model validation and “higher-order statistics”. This method is closely related to
correlation techniques and thus suffers from similar problems mentioned above. To

date, applications have only been shown for linear AR or ARMA models.

2.6.1.2 Error in Cross-Validation

There are many methods for estimating model order in linear system identification,

a common method is cross-validation [45, 101]

2 :E”Z— lI’Oé()”2

T~ (0) ~ (2.34)

where Z is a NV x 1 vector of measured outputs, ¥ is a N x p matrix of regressors
and o is the p x 1 vector of estimated parameters for a given order O. In the limit,
the cross-validation error in fit will be minimized when the model is of the correct
order, i.e., when the regressor matrix contains all the appropriate terms. With finite
data lengths. however. statistical errors will often lead to inconsistent or inaccurate

estimates of model order for particular realizations {56].

2.6.1.3 Reduction in Residual Sums of Squares

Another commonly used technique in time-series analysis (Equation 2.9) is to examine
the reduction in the residual sums of squares (RSS) to determine model order. This
technique tests two models, to assess which one can be justified on the basis of the

reduction in RSS.
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Specifically, this relies on calculating an F-ratio of the RSS between the current
and past model, which are of different orders [34]. This is a test of the hypothesis
that some of the parameters in a model are restricted to zero. If the linear regression
model has p parameters and the experimenter wants to test whether r of these are

zero based on N observations, the criterion is

Aj—dg

F= _{Q_ ~ F(r.N —p) (2.35)

N- P

where g is the, smaller, sum of squares of the unrestricted model, A, is the, larger,
sum of squares of the restricted model, and F(r, N — p) denotes the F-distribution
with r and NV — p degrees of freedom [115].

In the conditional or statistical aspect. the ARMA(n,, n.) is exactly a linear re-
gression model; hence the above criterion can be used to test the hypothesis that r
out of its (n, + n.) = p parameters are zero. Then, 4y becomes the residual sum of
squares of the ARMA(n,, n.) model and 4, that of the same model with r parameters
dropped out. The justification of the criterion for the unconditional or dynamic as-
pect of the ARMA model, together with its interpretation as a convergence criterion,
may be found in {34, 81, 113. 115. 120].

Model order selection based on the incremental change in RSS is known to give
inaccurate estimates of model order [34. 63, 113]. The problem is that when spurious
parameters are introduced into the model they may model the noise, giving biased
estimates of RSS. Although the F-test is designed to account for over-fitting due
to noise, in many practical applications this technique gives unreliable estimates of

model order [30, 63].

2.6.1.4 Final Prediction Error

For simplicity, this discussion is restricted to AR models (Equation 2.7), where n,

is the model order. Consider a sequence {y(n)}, n = 1,2,..., N, which is to be
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predicted using some linear predictor. Its final prediction error is defined as:

ny 2
E {y(n) - dy(n - j)} (2.36)

=1

which asymptotically approaches (N + ny)o? as N — oo for a given n, and unknown
noise variance o2 [39]. With this definition, an estimate of ¢* and the coefficients can
be obtained by modeling a “training” sequence. Let the training sequence be {z(n)},
n=12,...,N, which is fitted with a linear predictor of order n,. The expectation
of the residual variance is then asymptotically given as &3y = (N + n,)o?. Using this

as an estimate of o2 the FPE of y(n) can be computed as

FPE(n,) = :r * My 52 (2.37)

- ny ny*

This is the definition of final prediction error (FPE) for an AR model of order n,
where NV is the number of samples to which the model was fitted and c‘rﬁy is the
estimated residual noise variance for a model of order n,.

The final prediction error estimate of model order gives a minimal FPE value over
a finite range of n, =1.2,....n,,_... The FPE technique assumes that the optimum
model order is achieved when the estimated residual noise variance is minimized. This
value will always decrease as the model order is increased and, as a result, it is not a

reltable estimator for model order.

2.6.1.5 Akaike’s Information Criterion

Akaike developed a more general criterion based on information theoretic concepts
and called it AIC (Akaike’s information criterion) [3].

The Kullback-Liebler distance is defined as

I(g: f(:16)) = S(g: g) — S(g; f(-16)) (2.38)

where S(-) is the residual noise variance, S(g; f(:|6)) = [ g(z)log f(z|0)dz is the
expected log-likelihood for a p.d.f. of z, g(z) and the conditional p.d.f. of = given
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a vector parameter §. It was shown in [95] that under certain conditions I(g; f{-|6))

can be approximated by

(3) lot@) - s (2.39)

where J is the Fisher information matrix [45, 101] and ||Agll;» = Aq JAg, for Aq =
g(z) — f(-|8). This approximation can be shown to have a distribution function which
is asymptotically (non-central) chi-squared for N — oo and n, degrees of freedom.

Its expectation can be shown to be
N8 = 6oll 2 + ny, (2.40)

for a maximum likelihood (ML) estimate of the parameter vector, 6, and the unknown
true parameter vector, fy. The optimal model minimizes this expectation. If the

estimate N||é — 6] s2 is computed by
. f(zil6o)
2 (Z log 22 (2.41)
i=1 f(.’L’,IG)

it needs correction by 2n, to give the expected log-likelihood for a (general) model of

order n,. This leads to the definition of AIC,
AIC(ny) = (-2) log[maximized likelihood] + 2n,. (2.42)
For AR models (also MA and ARMA), the log-likelihood function for N observa-

tions is given by

N |
L= ) logo® — 752 (a) + const, (2.43)

where Q(a) = S0, [y(n) + St aiz(n — j)]z, and a denotes the set of coefficients

for the model. For the ML solution, 2 is obtained as

6 = %Q(a) (2.44)

26



and for the maximum of L
L=—-"logs®-=. (2.45)

The last term in Equation 2.45 is constant for a given sample size and can be ignored,

so that AIC becomes
AIC(n,) = Nlogd?® + 2n,,. (2.46)

The best model is determined as the one for which AIC(n,) attains its minimum

value.

2.6.1.6 Minimum Description Length

One problem with AIC is that it is inconsistent, i.e., its variance does not tend to
zero for larger sample sizes. This was shown to be due to the penalty term which
does not decrease fast enough with N to balance the first term [72]. A model estima-
tor proposed by Rissanen [128], called the minimum description length (MDL), was
designed to overcome this problem.

The number of parameters necessary to reproduce an observed sequence {yi,...,yn}
of a time series depends on the model and parameters assumed to have generated the
data [128]. The MDL technique finds the model which minimizes the description
length and thereby computes an estimate of model order [128].

Binary prefix codes are used to encode data strings. These data strings can be
made up of symbols, parameters, numbers, etc. It is known that the average length
of a code word is bounded by Shannon’s theorem [128]. Therefore, it is possible to

write [128]
Y p(@)L(z) > - p(z)logp(z) (2.47)

where L(z) is the length of the code word (i.e., length of parameter vector 8} and
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p(z) is the probability of z. It is also possible to write
L{y}z,0) = —logp(y|z,0) (2.48)

where L(y|z.6) is known as the log-likelihood function (to be maximized). Let 6
denote the value of the parameter which maximizes the likelihood and thus minimizes
the parameter vector length (i.e., code word length) L(y|z,8). Since 8 can only be
encoded up to a certain precision, the code word length, L(y|z,#), becomes longer
than the desired minimum L(y|z.#), given noise considerations. Let the precision
be 6 = 277 where ¢ is the number of bits used for encoding the parameter. It is
possible to save on the code word length if ¢ is small. However, the result is a loss
in precision. The optimal precision depends on the size of the observed data via
—logé = 0.5log NV, and hence the total code word length for k£ parameters is given

by the MDL,

MDL(k) = — log[maximized likelihood] + —;—klogN (2.49)
which, for an AR(n,) model gives

MDL(n,) = log[maximized likelihood] + %y log NV. (2.50)

2.6.1.7 Relationships Between FPE, AIC and MDL

FPE was developed specifically for AR model order determination. AIC is a general
measure and can be applied to other models. For large sample sizes NV, FPE and AIC
can be shown to be asymptotically equivalent methods [120]:

1+ ny/N[72

/N (2.51)

log[FPE] = log[

2
= logé? + % for large N,

therefore AIC(n,) = Nlog[FPE(n,)].
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FPE and AIC are called asymptotic measures, as their derivation involves taking the

. number of samples N to infinity. MDL does not make this assumption. The penalty
term is the highest for MDL and lowest for FPE, i.e., the penalty term in the MDL
definition is larger than that of AIC by a factor of approximately log V. This causes
a much steeper minimum. In practice, this normally results in a lower and a less
variable estimate for the optimal model order.

All these techniques are theoretically a function of the residual noise variance
only. The residuals, however, are a function of the method used to obtain the model
parameters. Consequently, residual variance estimates can be shown to be a function
of the input variance and parameter variance [31]. Therefore, in practice, the training

sample size and methods used for model order selection and parameter estimation are

cructal.

In context of order selection for nonlinear systems, we believe that these methods

fail for the following reasons:

1. Number of possible terms for a given order can be very large (see Equation

. 2.22). Due to over-parameterization residual estimate will be under-dispersed,

i.e.. biased.

2. All three approaches rely on accurate estimates of 62, i.e., accurate estimates

of residuals.

3. All three approaches rely on optimal parameter estimates which depend on
the data size N. For finite data lengths these methods may give inconsistent

estimates.
4. Inadequacy of the penalty term in each method is known to give inconsistent

estimates of order for linear systems.

2.6.1.8 False Nearest Neighbors Method

Recently, Kennel et al. [2, 82] proposed the false nearest neighbors (FNN) algorithm

. for determining the smallest dimension regression vector needed to recreate the dy-
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namics of autoregressive (autonomous) chaotic systems [126]. The FNN method has
also been applied to non-autoregressive (non-autonomous) systems for model order
estimation {27, 82, 127]. The focus of this method is to determine the functional
relationship between a regression vector and an output vector. Given a set of ob-
served regressors ¥(n) for n =1,2,..., N and observed outputs, y(n), related to the

regression vector, this method attempts to find a functional relationship
y(n) = Clé(n)] = Gly(n — 1),---,y(n — n,),u(n), - u(n —n,)]  (2.52)
that minimizes some error function €. This error function is often of the form

¢ = lly(n) - Gy (n)lll2 (2.53)

where G is some unknown function of the underlying system. If the system is linear
the function G can be determined exactly using the z-transformation. When the
function is nonlinear computing the function G is impossible except in trivial cases
[33].

The FNN method starts by determining the closest point to a given point in the
regression space. In other words, for a given regressor ¥, n, (i) find another regressor

Un, n,(J) in the data set which minimizes distance d:

d= ”wng.nu(i) = Unyn, (3)l2- (2.54)

The indices ¢ and j are not necessarily close to one another. If ; and j are always
close to one another the sampling time may be too small and there may be problems
in accurately estimating the dimension of the regression vector [54]. To determine
whether neighbors are “true” or “false”, a test is defined to assess whether these
neighbors have future outputs that are “far apart”. A ratio test

ly(7) = y(7)|
T () =t G0 = © (2.55)

is used to determine whether the distance between future outputs is significantly larger
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than the distance between time-delay regression vectors that are close in the regressor
space. If the distance between future outputs is “large”(i.e., > R) when divided by
the distance between two points that are “nearest neighbors” in the regressor space,
then the neighbors are considered to be false. The percentage of points in the data
set that have false nearest neighbors are calculated for all times 7. This is continued
for increasing n, and n, until the percentage of false nearest neighbors drops to zero
or some acceptably small number.

Two search methods may be used with the FNN method: (i) global and (ii) local
search. In the global search the FNN indices become surfaces in two dimensions. It is
possible to find a “global” solution (or solutions) for the model orders by computing
the desired index over all values of input and output lag in a certain range and
determine which point (or points) satisfy the order determination conditions [27, 125].
For a “local” soluticn, initial guesses for the minimum input and output lags are used
and the optimum model order is computed competitively; at each iteration either
the input or output lag is increased by one, depending on which reduces the FNN
index by the greatest amount [27]. The competitive search method provides a “local”
solution to the optimum model order which may not agree with the “global” solution.

The FNN technique requires the selection of a tolerance level, R, to determine true
and false neighbors. Selection of this tolerance requires e priori knowledge about the
true errors and system output, which are seldom available [54]. In the presence
of noise, implementing either search technique may not provide a unique solution
since noise can be considered as another dynamical system with a very high order
[1]. In addition, this technique does not provide the “full” system order (Equation
2.21) for NARMAX models since the nonlinear mapping G cannot be computed

(54, 125, 126, 127]. Hence, only n, and n, can be estimated.

2.6.1.9 Summary

Currently, no optimal method for model order estimation of nonlinear systems exists.
In the sequel (Chapter 5) we will present a method for model order selection of

NARMAX models based on minimization of the error in cross-validation.
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2.6.2 Structure Detection

Many NARMAX models are described by only a few terms. However, if the order of
the system is high the number of candidate terms will be very large. Equation 2.22
gives the maximum number of possible terms in a NARMAX model. For example, a
svstem described by tenth-order lag on the input-output and third-order nonlinearity
(i.e., n, = n, = 10, [ = 3) has p = 1771 candidate terms.

The structure detection problem is that of selecting the subset of candidate terms
that best predicts the output while maintaining an efficient system description.

Existing methods for determining model structure include hypothesis testing of
differences between parameters (means) via the t-test, stepwise regression and Ko-
renberg’s orthogonal structure detection routine. The t-test (in conjunction with re-
gression analysis) detects structure by determining those parameters whose values are
significantly different from zero. Conversely, stepwise regression computes how much
each parameter contributes to the overall reduction in mean squared error resulting
from adding or removing a parameter. Korenberg's orthogonal method is similar to
stepwise regression since it determines how much each parameter contributes to the
overall reduction in mean squared error by using orthogonal relationships. The t-
test and stepwise regression are widely used in regression analysis [45, 49, 133, 142].
However, all of these have difficulty in nonlinear system identification, but for the

different reasons discussed below.

2.6.2.1 t-test

The t-test in combination with regression analysis is sometimes referred to as a form
of hypothesis testing by computing the differences between means [45].

In regression the significance of the coefficients, 6, are checked using statistical
tests. If the model that was postulated is more general than needed, tests of hypoth-
esis are necessary to give a minimal model description. Suppose the following model

was fit
E(Z) =00+ 010 + 01ty + ...+ 61,y (2.56)
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The 6's are then tested against the hypothesis, Hy (null hypotheses [33, 56]) or 6; =0,
t=1,2,....p. This allows the experimenter to assess which parameters are significant
and which are not, consequently which ones to retain.

The t-distribution is defined as the ratio of a normal random variable divided by

the square root of a Chi-squared random variable

In standard regression analysis it is assumed that the errors are normally distributed,
therefore, Z must be normally distributed which also implies that 8 — 8 is normally
distributed (see e.g., [45, 56, 133]). In addition, it is assumed that estimates of the
variance have a x? distribution [45, 133]. A x? distribution is defined as the sum of
squared normal random variables, i.e., the sum of squared errors [45, 56, 133]. These
statistics fit the definition of the t-test and are easily calculated as a by-product
to the regression procedure, e.g., ELS or MLE. These estimates are typically used
to compute the t-distribution of the estimated parameters (with n — p degrees of
freedom).

The t-test is:

< t. (2.38)

The range —t, to t, is determined from standard t-tables for some « level of signifi-
cance. If the computed t-statistic is in the range —t; to ¢, the parameter is accepted
otherwise it is rejected, i.e., removed from the regression.

This procedure assumes that an accurate estimate of parameter variances, i.e.,
residuals, is available [133]. Our results indicate that this assumption is violated for
over-parameterized models and, therefore, may lead to inaccurate estimates of system

structure [90, 93].
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2.6.2.2 Stepwise Regression

The stepwise regression algorithm that is widely used is due to the original work of
Efroymson [49]. Stepwise regression relies on the incremental change in the residual
sums of squares (RSS) resulting from adding or removing a parameter. Specifically,
two F-levels, Foy: and F},, are formed to determine whether a parameter should be
removed from the model (Fyy) or included in the model (Fi,) [49, 133, 142, 141].
These F-levels are based on an F-distribution with 1, N — p degrees of freedom.

This algorithm is summarized as [106}:

1. Enter into the regression model any variables (parameters) that are to be

“forced” in.

Find the variable from those not in the model but, available for inclusion, with

o

the largest Fi, value. If it is at least as great as a pre-specified value of Fi,,

then add the variable to the model. Stop if no variables can be added.

3. Find the variable among those in the model, other than those forced in, that
has the smallest F,,, value. If it is less than a pre-specified value of Fi,, then
remove the variable from the model. Repeat this step until no further variables

can be removed. Go to step 2.

Efrovmson states that F,,, must not be greater than Fj, for “good” model param-
eterizations [49, 106, 142, 141]. In the procedure above, if RSS, is the residual sums

of squares for a model with p parameters, then the F}, statistic is given as [106]:

RSS, — RSS,..1 (259)

Fiyp =
RSS,+1/(N —p—1)

where NV is the data length. Similarly the Fi,, statistic is given as [106]:

_ RSS,_, — RSS, (2:60)

Fou = Rss, /N —p) -

This method is sensitive to the order in which the regressors are introduced and often

gives models with incorrect structure [41, 71, 102, 141].
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2.6.2.3 Orthogonal Structure Detection

Korenberg [3, 4, 84, 85, 87] developed an orthogonal structure detection routine specif-
ically for nonlinear systems. This method relies on orthogonalizing the regressor ma-
trix and using the orthogonal relationships to compute how much each term would
reduce the total mean-squared error. The regressor matrix ¥ is decomposed into W
and A where W is an N x p matrix of orthogonal columns and 4 is a N x N unit

upper triangular matrix. This yields an auxiliary orthogonal system description

Z = Wg+¢& where g= A6 and (2.61)
£ = Z-W9= (VA A0)=Z - Wg.

An error reduction ratio Err

< w;, w; >
Erri=¢g—2 "=, i=1,2,..., 2.62
% s : P (2.62)

is defined: the square of the auxiliary system parameters, g, times the inner product
of the orthogonal columns, W, over the inner product of Z.

A column of W is selected which gives the best reduction in error as the first
column to include in a new orthogonal matrix W and upper triangular matrix A. This
is continued until no more columns contribute to the reduction in error as compared
with some preselected tolerance, p.

This algorithm suffers from having to select a desired tolerance level to determine

which terms to accept or reject. Ideally, p should be set as

(2.63)

the ratio of the expected value of the squared noise process over the expected value
of the true system output [38]. This requires a priori knowledge about the true errors
and system output, which are seldom available. Therefore, the tolerance level is set

by trial and error [38].

35



2.6.2.4 Summary

Our results suggest that these structure detection techniques are difficult to apply to
highly over-parameterized models possibly because the underlying assumptions are
often violated [90. 93]. Consequently, in Chapter 4 we develop an alternative approach

for structure computation of NARMAX models.

2.6.3 Parameter Estimation

Many parameter estimation techniques are based on least-squares theory. Therefore,
some of the basic assumptions made in least-squares estimation are stated.

2.6.3.1 Least-Squares

Consider the svstem shown in Figure 2.2. This system can be described parametrically

Input z(n) Output y(n)

] System P IR

Figure 2.2: Least-squares system description.

Y=X0+e (2.64)

where Y is a NV x 1 vector of outputs. X is a NV X p matrix of inputs (regressors), 8 is
a p x 1 vector of unknown parameters and e is the NV x 1 vector of errors. The vector
e represents the error in measuring the output X so that X8 is the true response
and Y is the observed response. This is known as the least-squares problem.

A method for obtaining an estimate of the system parameters, 8, is the method
of least-squares {133]. This method consists of minimizing 22[:1 e(n)? with respect

to 6. It can be shown that the least-squares solution to this minimization is
fors = (XTX)1xTy. (2.65)
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This is known as the ordinary least-squares (OLS) estimate of 4.

. Some basic properties of least-square are mentioned briefly.

Assumptions:

1. Ele] = 0 assumes zero-mean noise. As a result E[Y] = X§.

o

X is a deterministic signal, E[X] = X.

3. Y is stochastic.

1. cov[e;, e;] = &;;0? assumes white noise.

5. e;’s are uncorrelated.

If the “errors” are unbiased, that is, E{e] = 0 then

Elf] = (XTX)'XTE[Y] (2.66)

= (XTX)'XTXx0
= 0.

Hence. 6 is an unbiased estimate of 4.

If it is assumed that the e; are uncorrelated and have the same variance (ho-
moskedastic). that is, covle;, e;] = d;;02, then Dle] = ¢, (where “D” denotes the

“dispersion” or “variance-covariance” matrix)
D{Y] = D[Y - X6] = Dle]. (2.67)

It then follows that

f_ Y n T _ D
s2_ (V= XET(Y - X§) (2.65)
.‘N - P

is ap unbiased estimate of o2. Therefore,
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D[f] = D|(XTX)"'Xx7Y] (2.69)
= (XTX)'XTD[Y]X(XTX)™!
= AXTX) I XTX(XTX)™!
= (XTX)!

is the variance of the estimated parameters 8.

To summarize, the OLS estimate assumes that X is deterministic and the equation
errors are zero-mean and uncorrelated. This yields an unbiased minimum variance
estimate of the unknown parameters, which is commonly known as the best linear

unbiased estimate. or BLUE, of X4.

2.6.3.2 Parameter Estimation for NARMAX Models

Although nonlinear structures based on expansions of lagged inputs and outputs may
provide a very concise system representation, any measurement noise will enter the
model as product terms with the system input and output. Consider the system

shown in Figure 2.3. The system P is assumed to be a function of both current and

e(n)

y(n) z(n)

2 .

y

System P

Figure 2.3: Noisy system configuration.

past inputs and past outputs. The noise term e(n) is assumed to be a stationary,
zero-mean random process with auto-correlation function R..(7) = 0, V7 > 0. Since
the noise term is stochastic it is difficult to obtain a “good” estimate of the noise
process. As a result estimates of the error terms are correlated because (1) estimates
of the noise process are usually poor and (2) the system is a function of past outputs.
However, it is assumed that the errors are not correlated with either the true system

output (y(n)) or the system input.
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Let system P be represented by the following NARMAX model

y(n) = Bu(n—dy) + bu(n — dp)y(n — ds) + b33°(n — dy) (2.70)

+ Oiy(n —ds)

where d. represents the delay and 6. the coefficient. The measured output is related

to the measurement noise or errors and true system output as
z(n) =y(n) +e(n) = y(n)=z(n)—e(n). (2.71)
Substituting Equation 2.71 into Equation 2.70 gives

z(n) —e(n) = 6iu(n —d,) + Gu(n — dy)[2(n — d3) — e(n — d3)] (2.72)
+ B3[z(n — dy) — e(n — dy)]® + O4[z(n — d5) — e(n — ds)].

Note that although the model is linear-in-the-parameters and the noise is output,
additive, the noise can enter the system as multiplicative terms with the input and
output. Consequently, most parameter estimation algorithms for linear systems can-
not be applied directly because the assumption that the noise terms in the model are
independent of the input is violated and X is no longer deterministic [68].

The least-squares formulation for this system (Equation 2.72) is

Z = V.,0+¢ where (2.73)
£ = Byu(n —dy)e(n — d3) — 2632(n — dy)e(n — dy) + z€*(n ~ dy)

+ Bie(n —ds) + e(n)

where Z is a N x 1 vector of measured outputs, V., is a nonsingular N x p matrix
of regressors, based on input-output only, and ¢ is a N x 1 vector of modeling errors
and noise. The regressor matrix, ¥,,, is related to Equation 2.13 since the columns
of ¥, represent an expansion of NARMAX model terms, for a given model order.
This model formulation assumed that n, = 0, i.e., that ¥, is deterministic. However,

since ¥, is a function of the system inputs (u(n)) and measured outputs (z(n)), V.,
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is not deterministic. The ordinary least-squares estimate, éo Ls. based on this is
fors = (VT 0.,) "W Z. (2.74)

which will give a biased estimate of the parameters. This is shown by taking the

expectation of éo LS:

(3]
~1
ut
~—

E[éOLS] = E[(¥50,,)"9T7] (2.
= E[(\IJZu‘Ilzu)_l\I'zu[‘I’:uo’*'e]]

6+ FE [(‘Pgu‘p:u)—lquuE]

where E[(¥T 0.,)7'¥7 2] # 0 or equivalently E[¥T ¢] # 0. This induces a biased
parameter estimate when OLS is applied directly. To obtain an unbiased estimate of

6. other parameter estimation techniques based on least-squares are needed.

2.6.3.3 Extended Least-Squares

ELS is a technique that addresses the bias problem by modeling the lagged errors
to obtain an unbiased parameter estimate. Extended least-squares (ELS) for linear
svstems has been widely studied and is also referred to as Panuska’s method, the
extended matrix method. or approximate maximum likelihood {61].

Let the least-squares problem be defined as in Equation 2.73. In general, since the
noise sequence is a stochastic process. it is not possible to solve for the noise source
e, and it will not be equal to the prediction errors [22]. The prediction errors are

defined as

i=2-2 (2.76)
where Z is the predicted output

Z=",00.s. (2.77)

In ELS, the NARMAX formulation of Equation 2.13 is redefined into a prediction
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error model with € replacing e; making it a deterministic least-squares problem.

The ELS formulation is an extension of ordinary least-squares and is defined as
Oers = (UTU)"'0TZ:  where W = [U.,0.,:¥,]. (2.78)

U is a partitioned regressor matrix where ¥., is a function of =z and u only, ¥_,;
represents all the cross products involving é, and V. is a polynomial function of the
prediction errors only.

The ELS approach is straightforward and is summarized as:

1. Calculate the ordinary least-squares estimate, éo LS-

(8]

. Calculate an estimate of the prediction errors. €.

3. Form the extended regressor matrix, ¥, with the estimated prediction errors

and calculate the ELS estimate, 85, s.
4. Go to step 2 until convergence, i.e., until prediction errors are white.

[t is well documented that this algorithm does converge when applied to linear systems
[22]. Simulation results for nonlinear systems confirm that the method is well suited
for nonlinear polynomial identification also [22, 61).

The major disadvantage encountered when this method is applied to nonlinear
systems is that noise or prediction errors must be included in the estimation vector.
This results in introducing many additional candidate terms to the model. The
maximum number of entries in the parameter vector is given by Equation 2.22 and
can be large even for moderately complex models. If the nonlinearity within the
svstem is high-order (i.e., large {) the dimension of the parameter vector increases
rapidly.

In an attempt to limit the dimension of the coefficient vector, other least-squares

algorithms are considered.
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2.6.3.4 Instrumental Variable Method

The principle of instrumental variables (IV) has been applied to linear system identi-
fication in several ways [22, 61]. Consider again the least-squares problem defined in
Equation 2.73. The IV method is based on selecting an instrument matrix V" which

satisfies the conditions

lim iVT\IJm = R; where R is nonsingular (2.79)
N-ooo ./\'r
lim —1—,1~'T(Z —U..6) = 0

Nooc N

where 6, denotes the true parameter vector, Z is the output, ¥., denotes the regressor
matrix and “lim” refers to limit in probability. The conditions of Equation 2.79
require (1) the instrumental matrix to be linearly independent and invertible, i.e.,
V79, have full rank, and (2) the errors have mean zero and be uncorrelated with

V. This ensures that the estimate
§=0T0,,) Wz (2.80)

is unbiased since the instrument matrix is not correlated with the errors [68].

The most popular way to satisfy Equation 2.79 is to define V"7 to have the same
structure as U7 but with the measured outputs replaced by predicted outputs [61, 68].
The columns of 17 associated with input are unchanged since it is assumed that the
input is measured with negligible error. This algorithm is often referred to as the
auxiliary model algorithm. Unfortunately, instrumental variables can only be applied
to nonlinear systems if certain properties of the system noise are satisfied.

Consider the NARMAX model with error sequence redefined as
E=W.yib.ue + Veb: + € (281)
to yield the description

Z="V.,+¢ (2.82)
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This model formulation leads to biased parameter estimates whenever the system
under test is nonlinear because [22]

1
lim %VT(Z ~U.0.) = lim VT (0,000 + Ueb: + €) # 0. (2.83)

=
Nooc | N—oo N

A typical term in Equation 2.83 takes the form {22]

1 A ..
\Lim <VT[z'u?é*] for some i.j, k (2.84)
V=00 )

and will not in general be zero even when é(n) is a zero-mean white noise sequence
(see example in [22] on pp. 608-9). Therefore, in general, the instrumental variable
algorithm will vield biased estimates for nonlinear systems. However, the IV method
gives unbiased results for one special case of the NARMAX model. When the noise
terms are represented within the NARMAX model as a linear expansion (i.e., the
model is represented by linear output terms), it always satisfies the conditions of
Equation 2.79. Only for this special case, is it possible to use IV for NARMAX
model identification.

Often, however, in many applications, there is insufficient a priori information
about the system structure which does not allow for an intelligent choice about when
the I\ algorithm can be used. This ambiguity arises when the system structure is
completely known and. therefore, it may be represented by a nonlinear expansion of
output terms. The IV parameter estimation technique is limited to cases in which the
process is nonlinear and the prediction errors are linear, i.e., output terms are linear.
The class of models that give linear output and error terms are blocked structured
N-L models (static nonlinearity followed by a causal, linear, time-invariant, dynamic
system), i.e., Hammerstein models. Consequently, the class of models that can be

identified using this method is limited.

2.6.3.5 Suboptimal Least-Squares

The number of parameters in the NARMAX model increases significantly if the noise

model is included in the estimation vector. Therefore, it would be advantageous
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if unbiased parameter estimates could be obtained without specifically estimating
a noise model. This can be achieved for the NARMAX model, whenever the noise
enters as an additive signal at the output, by using a suboptimal least-squares (SOLS)
algorithm [22].

The suboptimal algorithm is a variant of the ordinary least-squares method that

achieves an unbiased estimate of the parameters by re-expressing Equation 2.13 as:
:(n) = Fl[y(n - 1)' T y(n - ny)v U(Tl). Tt U(n - nu)] + e(n) (2'85)

eliminating all cross-product terms involving noise. Parameter estimation based on
this new expansion would, therefore, require significantly less computational effort
compared with ELS. The noise-free output, y(n), cannot be measured but may be

estimated recursively as
Y = Wb, (2.86)

The noise-free output y(n) in Equation 2.85 is effectively replaced by the estimate
y(n). This algorithm was derived by Billings and Voon [22] specifically for nonlinear
svstems.

The SOLS algorithm significantly reduces the size of the parameter vector. How-
ever. the convergence properties of this algorithm crucially depend on the ability to
compute a “good” estimate of “noise-free” output, Y. Computation of a good esti-
mate of ¥ depends on the underlying system and noise characteristics. Even when
it is possible to compute a good estimate of noise-free output, the additive sequence,
e(n), may be highly correlated with itself. Therefore, using e(n) to estimate param-
eter variance will result in a highly biased estimate. This makes structure detection,
which is necessary to obtain a parsimonious description of the system, inaccurate or

impossible.
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2.6.3.6 Maximum Likelihood Estimate

While least-squares based methods are the most popular techniques for parameter
estimation, they are not the only methods. Maximum likelihood estimators (MLE)
are also widely used, especially when least-squares methods converge slowly or not at
all [24, 61].

The MLE has been shown to be equivalent to the weighted least-squares estimator

for Gaussian innovations [61]. The MLE of § is:

by = (PTEIE)OTENZ (2.87)
where

. 1 A 9
$ = —(Z - Whse)(Z ~ Vo).

The procedure for the maximum likelihood algorithm is similar to the ELS method

and is summarized below [61].

1. Pick any value of £ (say 1)

V]

. Solve for éOLS using 2
3. Solve for © using éow as an initial estimate of éuu:

1. Solve for 8.5 using >

(&1}

. Solve for T using e

(o)}

. Stop if converged, otherwise go to 4

The MLE of the parameters are consistent, asymptotically normally distributed and
asymptotically efficient [61]. Results show that the maximum likelihood algorithm
derived for Gaussian innovations can be applied to general distributions without any
of the essential properties being lost. Asymptotic normality results for the prediction-
error method implies that statistical tests can be applied to determine significant
parameters in the estimated model [24]. It should be noted that using MLE also

requires modeling the noise; therefore, it is computationally more expensive than
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the ELS method. Moreover, computing y-! may be unstable since ¥ may be ill-
conditioned [42]. In this situation, 9_.1, Le will be biased or impossible to compute. The
choice of method depends on the application, the type of system being investigated

and if there are problems with convergence.

2.6.3.7 Summary

The IV algorithm can be applied only to Hammerstein structure systems, severely
restricting the class of nonlinear systems that can be identified with this approach.
SOLS has problems with convergence and gives an error vector that is highly corre-
lated. Since both the IV and SOLS methods have limitations, they cannot be used
in most cases. However, ELS and MLE can be used for parameter estimation. In
most cases ELS is preferred because it is computationally less expensive and does not

involve inverting a possibly ill-conditioned matrix.

2.6.4 Model Validation

Model validity tests should be a fundamental part of any system identification pro-
cedure. This is an important step in identification since it is often the final check on
the goodness of fit of any identified model.

Model validation is really concerned with “model falsification”. That is, the user
tries to establish convincing evidence that a certain model could not have produced
the observed data. A model that “so far” has not been falsified can be considered —
for the moment — to be “validated” [100]. The essence of model validation, while
trying to falsify the model, is to find evidence that the bias error is significantly larger
than the random error [160]. The bias error is defined as the systematic contribution
of the model error that stems from incorrect model structure, while random error is
the contribution that has roots in the various disturbances that affect the data [160].

Many model validity tests have been designed to indicate the inadequacy of the
fitted model. However, most assume that the system under investigation is linear (see,

e.g., [62, 89, 96, 100, 111, 118, 145, 160]). Few authors have addressed the problem
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of model validation for nonlinear systems.

West [165] considered model validation for nonlinear systems by studying nonlin-
ear signal distortion correlation. This study was limited to characteristics of static
nonlinearities [21]. West split the output from the nonlinear element into two por-
tions: one proportional to the input signal and the other a distortion noise. He then
showed that there is no correlation between the input and distortion signals when-
ever the input belongs to a separable class of random process. Douce [44] investigated
this further and proved that the same property occurs for a specific class of nonlin-
ear dynamic systems. Douce developed a system identification technique based on
cross-correlating the residuals with a test signal obtained by passing the system input
through a pre-specified nonlinearity [21]. These techniques are used to assess if model
residuals contain any unmodeled dynamics, a test of model “goodness”.

Model validity involves detecting terms in residuals, which, if ignored will cause
bias in the parameter estimates. Traditional linear techniques for model validation,
based on covariance tests, can easily be shown to be inadequate for nonlinear systems,
i.e., residuals are not Gaussian, white, zero-mean. This was illustrated by Billings
and Voon [21] with the following example.

Assume in the identification of a system the following terms were inadvertently

omitted and hence appear in the residuals, £(n), as
&(n) = fu(n — )e(n — 1) + e(n) (2.88)

where e(n) is Gaussian, white noise and e(n) and u(n) are independent zero-mean.
Computing the normalized auto-correlation function of the residuals and the normal-

ized cross-correlation function between the system input and residuals gives [21]

bee(7) () (2.89)
Gue(r) = 0 V 7.

Using standard linear identification criterion, these residuals are considered to contain

no further information and appear white. However, Equation 2.88 clearly shows that
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unmodeled dynamics exist in the residuals and will undoubtedly introduce bias into
the parameter estimates [19, 21, 28]. This clearly demonstrates that linear covariance
techniques do not, in general, detect predictable nonlinear effects {12, 13, 17, 21].

An alternate approach would be to use multidimensional correlation functions such
as Qgee(T1, T2), Guue(T1, T2) @a0d Puee(71, 72) to check for nonlinear terms in the residuals
(12, 25]. However, this approach involves two-dimensional correlations and greatly
increases computation. The approach could be extended to higher dimensional cases
but is clearly unrealistic in practice.

Alternatively an r dimensional correlation function can be projected into a single
index higher-order correlation function with r points [25].

Billings and Voon (1983) [21] developed a model validation technique for nonlinear
systems based on this principle. They argued that residuals will be unpredictable from

all past inputs and outputs if, and only if {21],

3(7) (2.90)

©
~
~
2
i

Puf(r) = 0 V7

O (7) = 0 VT

where the overbar ’~’ is used to indicate a zero-mean process.
These criteria are based on correlation coefficient functions of sampled input-

output systems computed according to the formula [21]

- EYN (=) -yt -
,@ry(T) = £ ¢zx(0)¢w(0) 1< ¢xy(7) <1l (2.91)

In practice, confidence intervals are used to determine whether the correlation between
variables is significant. If IV is large the standard deviation of the correlation estimate
is 1/V/N and the 95% confidence limits are, therefore, approximately +1.96/v/N [21].

The tests in Equation 2.90 can only be applied if a noise model is fitted as part
of the estimation procedure so that £(n) is an unpredictable sequence. When IV
or SOLS routines are used only an estimate of the process model is obtained and,

therefore, alternative model validation tests are needed. Billings and Voon (1986)
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[23] derived validation tests for IV and SOLS methods. The details of these tests are
not provided here.

Korenberg and Hunter [86, 88] showed several counter-examples to the work of
Billing and Voon (21, 23], illustrating that the Billings and Voon results are incorrect.

Suppose the true test system has the following output [86, 88]
y(n) = u(n) + v*(n - 1) = 3u(n — 1) (2.92)

where u is zero-mean, white, Gaussian input with unity variance. The terms u(n — j)
forj =1,2,...,N and u3(n—1) —3u(n—1) will then be mutually orthogonal for all j
(86, 88]. If the system is fit by a linear model; estimating coefficient #; by minimizing

the mean-square error
E [{y(n) - biu(m)}’] (2.93)

it is seen that §; = 1 and the residuals will be £(n) = u3(n — 1) — 3u(n — 1) [86, 88].
This residual sequence is an unpredictable sequence since u(n) is white, Gaussian
(86, 88]. In addition, the residual has zero-mean and its normalized auto-correlation
is a d-function [86, 88]. Korenberg and Hunter [88] showed that the three cross-
correlation tests in Equation 2.90 are satisfied for this simple example [{86]. However,
the linear model is clearly not valid and the residual is completely predictable from
the input.

Since the correlation based methods discussed above are necessary but not suffi-
cient conditions to determine model “goodness”, a complementary measure is typi-
cally computed to validate identified models. This measure is commonly known as
cross-validation. Cross-validation evaluates the predictive capability of a model using
fresh data. The ideal situation is when the predicted outputs are capable of explaining

a major part of the actual (measured) output. The ratio

N 2
R? =1 _ 2n=1 &N () 2.94
LT ) (294

measures the proportion of the total variation of z that is explained by the regression.
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This measure is also known as the squared multiple correlation coefficient and is often

expressed in percent.

2.6.4.1 Summary

Although Korenberg and Hunter [86, 88] have shown that the techniques for model val-
idation of nonlinear systems provided by Billings and Voon [21, 23] are only necessary
but not sufficient conditions for nonlinear systems, they should still be implemented
to check for any obvious modeling errors. In addition, a model validation test such
as the one given in Equation 2.94 should also be part of any validation procedure.

However, a high R? should be viewed with skepticism until extensive tests of the

system are performed.
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Chapter 3

NARMAX Representation of
Ankle Dynamics

3.1 Introduction

Traditional approaches to nonlinear system identification of human ankle dynamics
have relied on quasi-linear methods, e.g., IRF method [78]. These methods provide a
convenient, robust means of characterizing the dynamics of nonlinear systems without
requiring a priori assumptions regarding the system structure. However, nonparamet-
ric techniques may require many parameters to describe even simple systems and can
be difficult to relate to the structure and parameters of the underlying physiological
system.

Although the NARMAX structure is capable of modeling a wide class of nonlinear
systems, to date it has been used mostly for control where the main objective is to
achieve a parsimonious system description. In biological modeling the objective is
more often to gain insight into the function of the underlying system. Therefore, in
this chapter, we (1) theoretically analyze a parallel pathway model of ankle dynamics
to derive its NARMAX representation, (2) assess the applicability of this nonlinear
model for the identification of biological systems and (3) determine the suitability of

NARMAX identification methods applied to ankle dynamics.
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3.2 Parallel Pathway Model of Ankle Dynamics

Our laboratory, the Neuromuscular Control Laboratory, has developed a parallel path-

way model (Figure 3.1) to describe ankle dynamics {79]. The upper, linear pathway

Intrinsic Stiffness Pathway

Ankle Angle
> I[s>+Bs+ K
Intrinsic Component
ye(t)
+y
Net
: 2
T Torque
d/de ()
Static Nonlinearity ynL(t)
delay —_ / > Cindl
A 8% + 2€ws + w?

(Half~Wave Rectifier) Muscle Activation
Reflex Stiffness Pathway

Figure 3.1: Model structure assumed for identification of intrinsic and reflex contri-
butions to overall ankle torque. Redrawn from [79].

models intrinsic stiffness as a second-order system with parameters corresponding to
inertia (), viscosity (B) and elasticity (K). The lower, nonlinear pathway models
reflex stiffness as a cascade of a derivative, a time delay, a static nonlinearity (i.e.,
half-wave rectifier), and a low-pass system. The latter is simplified to second-order,
though in many cases it has been shown to be better represented by a third-order
filter [108, 109]. A second-order model is justified for the reflex path since we as-
sume that the “system” is a normal subject under passive conditions [108, 109]. The
parameters associated with the low-pass system are damping parameter ({), natural

frequency (w) and gain (g).
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3.2.1 Discrete-Domain Approximation to a Derivative vs.

Bilinear Transform

The discrete-domain approximation to a derivative (Newton’s backwards formula)
maps points from the left-half s-plane into a circle of radius 1/2, centered at z = 1/2
in the z-plane [66, 121]. Since this mapping confines the discrete-time poles to low
frequencies, its use is restricted to systems with low resonant frequencies [121]. This
is a good approximation to a derivative given the bandlimit of interest is confined
to low frequencies. For our work the bandlimit of interest is 0.15 of the sampling
rate (see § 3.3 & 3.3.2); therefore, it is appropriate for approximating the intrinsic
component of ankle dvnamics. Conversely, the bilinear transform maps the left-half
s-plane into the entire unit circle and, hence, does not have the same restrictions as
above. The bilinear transform gives a better fit to the transient portion of a step
response than does the discrete-domain approximation [66, 121]. For this reason it is
used to transform muscle activation dynamics, modeled as an IIR system, in Figure
3.1.

However, in the FIR case (intrinsic stiffness pathway Figure 3.1) the bilinear
transform cannot be used because, in general, it cannot transform an all-zero system
into a stable discrete equivalent. (The bilinear transform is valid up to half the
sampling rate. i.e., the Nyquist frequency.) Using the bilinear transform, a derivative
operator in continuous-time transforms into a pole-zero system in discrete-time with
a pole at z = —1. This discrete pole maps back to an unstable pole on the jw-axis in
the s-plane. For this reason, the derivative operator is transformed to discrete-time

using Newton's backwards formula [8].

3.2.2 Theoretical Analysis

The two pathways can be decoupled and analyzed separately since they are summed
to yield the net torque.

The discrete-domain approximation to a derivative (Newton’s backwards formula
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_ du(t) u(n)—u(n-1)

i T where T = sampling rate (3.1)

S

was used to approximate the intrinsic pathway dynamics. In the nonlinear path the
first derivative in the cascade was approximated using the same derivative approxima-
tion as in the linear path. The continuous-time delay was converted to discrete-time
as 7 = 2, where A is the continuous-time delay and T the sampling rate. The static
nonlinearity was approximated as ¢y + ¢,z + c2z®. The activation dynamics were

converted to discrete-time via the bilinear transform

where T is the sampling rate.

After collecting terms and combining, the overall nonlinear model was represented

as a nonlinear difference equation with 19 terms as

y(n) = bo+by(n—1)+by(n — 2) + bsu(n) + byu(n — 1) (3.3)
+ bsu(n — 2) + bgu(n — 3) + bru(n — 4) + bgu{n — 7)
+ bou(n—7-1)+bou(n—7—-2)+byu(n—-7-3)
+ bput(n = 7) + bsu(n — 7 — 1) + by*(n — 7 — 2)
+ bsul(n —7—3) + bgu(n — Tlu(n —7-1)
+ byu(n—7—-1u(n—7—2) +bgu(n -7 - 2)u(n — 7 — 3).

This is a NARMAX model since (1) it includes input-output terms that are combi-

nations of linear, nonlinear and cross-products and (2) is linear-in-the-parameters.
Table 3.1 shows the relationship of discrete-time NARMAX parameters in Equa-

tion 3.3 to the underlying continuous-time coefficients. Note that in this case many

of the coefficients are related to each other. This will be addressed later (see § 3.3.3).



NARMAX Linear
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b w?T2c;

9 A+ T +4CwT)T

b - u2T2c1
10 (4+w2T24+4¢wT)T

b ~quw3T3cy
1t A+ T2 +4CWwT)T

b gw3T2c,

12 A+ TIH4CWTHT?
_ 39 T3%c,

b3 biz = 3b1a AT R T+ AT T?
_ 3gw3T2co

by by = 3b1a A+ T2 +ACwT)T?
i _ _gw?T3ca

bis bis = b2 AT TEA T T?
— —2guw?T2cy

bie big = —2by2 A2 T2 +4CuT)T2
_ ~4gw?T2co

by7 biy = —4byo (@+w?T2+4CwT)T?
; —2gw2T2c

big big = —2b12 (44+w=T +4§w;’)T

Table 3.1: Theoretical relationship of NARMAX parameters to continuous-time sys-
tem coefficients for parallel pathway model of ankle dynamics.
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3.3 Simulations

Accuracy of this system representation was validated by simulating the paralle] path-

way model in continuous-time using Simulink (see Figure 3.2). The parameters used

ﬂ& Simulation Step Size = 0.005 s

POS [@— Elasticity
Bandlimited Input
<
——F |
Viscasity Sum1
num1
POS] P duldt}——bl duld!}——b{ S>— TQ
- : dent :' ivative 1| Derivative 3 I
rival :
Raw Input Antilasing Filter ! Inertia Som Net TQ
30Hz 8th Order Bessel

’ > ] ] g*(wn"2)
@ > s2+2'zata*wns+wn2

Reflex Halfwave Rectifier

Delay - Muscle Activation
NLinput NLoutput
Outputt Outpu2

Figure 3.2: Simulink model of parallel pathway ankle model in continuous-time.

in the simulation were tvpical values found in experiments (Tables 3.2 & 3.3) [79].
The system was perturbed using a 30 Hz bandlimited. uniformly distributed, white,

zero-mean. random input.

3.3.1 Output Accuracy of NARMAX Ankle Model

To determine the validity of this NARMAX description model (Equation 3.3) we simu-
lated its response for a parameter set corresponding to those used for the continuous-

time model. The input sequence was a bandlimited, uniformly distributed, white,
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CT Coefficient Value
0.015 Nm/s®/rad
0.800 Nm/rad/s
150 Nm/rad
40.0
1.00
10.00 Nm/rad/s
0.045 s

Table 3.2: Continuous-time coefficient values. I: inertia, B: viscosity, K: elasticity, w:
natural frequency, (: damping parameter, g: reflex stiffness gain and A: reflex delay.

NL Coeff. Value

Co 2.46

C 0.500
2 0.016
T 0.005 s

Table 3.3: Coefficient values of static nonlinearity. cg: DC term, ¢;: linear term, c;:
squared term and T: sampling interval.

97



zero-mean, random input, low-pass filtered with an eighth-order 30 Hz Bessel filter.
The bandlimited input had an operating range between £0.40 rad (see left panel of
Figure 3.4).

To compute a “theoretical” parameter set for this NARMAX model the half-
wave rectifier was approximated, using a least-squares fit, as a second-order static
polvnomial. This second-order fit accounted for over 98% of the output variance of the
static nonlinearity (*“NLoutput” in Figure 3.2). The operating range of velocity input
(*NLinput”) was between £30 rad/s and the position input (“POS™) was between
+0.40 rad. A plot of this second-order approximation to the true half-wave rectifier

is shown in Figure 3.3. Assuming a second-order nonlinearity, the frequency content

Second Order Fit to Half-Wave Rectifier

35

— 2" Order LS Estimate of HWR
== True HWR

30

~-30 =20 -10 0 10 20 30
Input

Figure 3.3: Second-order least-squares approximation to the half-wave rectifier used
in simulations.

of the signal at the output of the half-wave rectifier (“NLoutput”) will be at least 60
Hz (plus higher-order harmonics). To avoid internal aliasing, we selected a sampling
rate of T = 0.005 s (200 Hz); 3.3 times greater than the internal 60 Hz signal.

The estimated output (7) of the NARMAX description model was compared with

the output of the continuous-time simulation (y) by computing the variance accounted



for by the NARMAX model as the percent normalized mean-squared-error (%NMSE):

ZNMSE=[1- "’Z"~l(y" Yn ) x 100, (3.4)
V Zn—l(yn

where .V is the record length.

Figure 3.4 shows the simulation input (left panel) and predicted output of the
NARMAX description model superimposed on top of the simulated output of the
parallel pathway model (right panel). With over 99 % NMSE the NARMAX output

Parallel Pathway and NARMAX Model Input

Parallel Pathway and NARMAX Model Ouputs, NMSE=99.53%

0.4 40 T—
~— Parallel Pathway Output |
0.3} 20 == NAAMAX Qutput 1
|
0.2 1 0
g o1 z -20
= z
§ o ; =40/
g g -60
< -0.1 S
-80 H
-0.2 100
-0.3 -120
-0.4 -
1 12 14 1.6 1.8 2 14G1 1.2 14 1.6 1.8 2
Time (s) Time (s)

Figure 3.4: Left: Input to simulated parallel pathway model in continuous-time and
NARMAN description model. Right: Output of simulated parallel pathway model in
continuous-time and NARMAX description model.

matched that of the continuous-time simulation with negligible error [92].

3.3.2 Parameter Estimation of NARMAX Ankle Model

We then assessed the utility of methods developed for identifving NARMAX models
using sampled data from this continuous-time simulation. An ELS algorithm [22] was
used to identify model parameters.

The NARMAX description of the parallel pathway ankle model (Equation 3.3)
is described by past outputs which result in lagged values of disturbance terms in
the presence of output additive noise. If these lagged errors are not modeled they
The ELS algorithm was

induce a bias in the parameter estimates (see §2.6.3.2).
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implemented because it is designed to mode! lagged error terms thereby providing
unbiased parameter estimates.

For this study, the system order and structure were assumed to be known with the
full coefficient set in Equation 3.3 and Table 3.1. The regressor matrix used by this
algorithm was formed to only contain those columns (parameters) that corresponded
to our theoretical analysis (Equation 3.3). The estimation set consisted of N = 4, 000
data points sampled at T = 0.005 s. The estimated parameters were cross-validated
to compute the %#NMSE of the net predicted torque. The validation set consisted of

N, = 2,000 data points.

3.3.2.1 Monte-Carlo Analysis of NARMAX Parameters: Noise-Free In-
put — Output Additive Noise

A Monte-Carlo study of NARMAX parameters describing ankle dynamics was per-
formed to assess their estimation accuracy and variability. Ten Monte-Carlo simula-
tions were used in which each input-output realization was unique and had a unique
noise sequence added to the output. Ten Monte-Carlo trails were chosen due to com-
putational considerations (i.e., time) and because it is convenient for subsequent sta-
tistical computations. Each input sequence was bandlimited (uniformly distributed,
white, zero-mean, random input, low-pass filtered with an eighth-order 30 Hz Bessel
filter) while a unique Gaussian, white, zero-mean noise sequence was added to the
output. The output additive noise amplitude was increased in increments of 5 dB,
from 30 dB to 0 dB SNR and the input sequence was assumed to be measured with
negligible error and, therefore, was noise-free.

Figure 3.5 shows a typical input-output sequence used for this analysis (a noise
sequence of 20 dB SNR was added to the torque).

Figure 3.6 shows the results of this study. Each figure shows the standard deviation
(STD) about the mean, for the NARMAX parameters given in Table 3.1. These values
are plotted against SNR, and the theoretical parameter values are given as a dashed
line in each plot. Note that some parameters do not appear to be scaled versions

of each other since the NARMAX model is over-parameterized. This suggests that
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Figure 3.5: Typical input-output sequence for parallel pathway ankle model. Upper:
Position input. Lower: Measured torque output (sum of true system output and
Gaussian, white, zero-mean noise sequence with 20 dB SNR).

the regressor matrix may be almost singular. These figures show that the identified
parameter values did not correspond closely to those derived theoretically. As the
SNR was decreased the identified parameter’s bias and random error increased.

The results illustrated in Figure 3.6 at first glance could cause some concern for
the applicability of NARMAX identification methods to ankle dynamics or other
biological systems in which the SNR may be poor. However, this may not necessarily
be the case. Below, we investigate whether NARMAX identification can lead to
accurate results, in the presence of significant noise, by looking at the effects of data

length and the effects of model over-parameterization.

3.3.2.2 Monte-Carlo Analysis of NARMAX Model: Increased Record
Length

For parameter estimation, we implement a least-squares algorithm (i.e., ELS). Least-
squares algorithms are well known to have good asymptotic properties, i.e., when
N is large [26, 35, 45, 61, 68, 113, 133, 147]. Therefore, we investigated whether

the full (over-parameterized) model (Equation 3.3) could provide unbiased parameter
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Figure 3.6: Full NARMAX model: Bandlimited, zero-mean, random input, Gaussian,

white, zero-mean noise and N=4,000. Ordinate: STD about mean. Abscissa: Qutput
SNR= 30, 23, 20. 15. 10, 5 and 0 dB. Theoretically expected parameter relationships:
bg = by = —byg = —by1; b1z = 3bi2; b1y = 3big; bys = big; big = —2by2; b7 = —4byy;
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= —2b;5. (Note that the abscissa is shown in decreasing SNR which corresponds
to increasing noise intensity.)
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estimates when the data length was increased.

In this study, the same input-output realizations were used as in the previous
study but the data length was increased three-fold to N = 12,000 points. Figure
3.7 shows the results of this study. The results show that when N was increased
by a factor of three the identified parameters were still biased in their mean but did
have less variability. The reason is the correlation between some current NARMAX

coefficients in this description of ankle dynamics.

3.3.3 Reduction of Dimensionality

The previous analysis shows NARMAX parameters deviated significantly from their
true mean for almost all levels of SNR. Therefore, we investigated the effect of reducing
the number of terms required to describe this NARMAX model. This is not a general
reduction of terms to describe the data but rather a minimization of the number
of regressors or d.o.f.’s (degree of freedom) used to form the regressor matrix. This
reduction should provide a regressor matrix that is more stable in terms of invertibility
since the coefficients will no longer be interrelated [60].

The coefficients of the full NARMAX model (Equation 3.3 & Table 3.1) are par-
tially redundant and, therefore, its input-output description can be redefined. Re-
combining all terms in Equation 3.3 according to coefficients of the static nonlinearity

(ca. ¢; and ¢g) vields an overall nonlinear model represented by 10 terms as

bo + biy(n = 1) + bay(n — 2) + byu(n) + byu(n — 1) (3.5)

y(n)
bsu(n — 2) + bgu(n — 3) + bru(n — 4) + my[u(n — 7)
un—7-1)—u(n—7-2) - uln -7 - 3)]

maful(n-7) +3u*(n-7-1) +3ul(n—1 - 2)

+ o+ o+ 4+

W(n-7-3)—2un-r)u(n—7-1)

- du(n-17-Nu(n—-7-2)~2u(n-7—-2u(n-1 - 3)]

bg + b1y(n — 1) + by(n - 2) + byu(n) + byu(n — 1)

+ bsu(n —2) + beu(n — 3) + byu(n — 4) + myv(n) + max(n)
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Figure 3.7: Full NARMAX model: Bandlimited, zero-mean, random input, Gaus-
sian, white, zero-mean noise and N=12,000. Ordinate: STD about mean. Abscissa:
Output SNR= 30, 25, 20, 15, 10, 5 and 0 dB. Theoretically expected parameter re-
lationships: by = by = —byg = —b11; biz = 3b1a; by = 3big; bis = bra; big = —2by2;
b7 = —4by3; bjg = —2by5. (Note that the abscissa is shown in decreasing SNR which
corresponds to increasing noise intensity.)
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where

v(n)=un-7)+u(n—-7-1)-un-7-2)—un-17-3) (3.6)
and
x(n) = ¥?(n-71)+3ui(n-17-1)+3u*(n -2)+u*(n—-7-3) (3.7)
- 2uln—-1u(n-7-1)—4du(n—7-Nu(n—-71-2)

- 2un-7-2u(n-1-23).

Table 3.4 gives the relationships of these discrete-time NARMAX parameters
(Equation 3.5) to the underlying continuous-time coefficients. This reduced set of
coefficients now has the same number of degrees of freedom as its initial continuous-

time description (the “extra” coefficient T denotes the sampling rate).

NARMAX Relationship to
Coeflicient Continuous-time Coefficient
b 4coguw-T?
o 44w T?+4C(wT
b _ —8-+2,2T2
1 45 T2+ 4CuT
Bo _ —4CwT+4+w?T?
2 44w T2 +4¢wT
b3 Lq +£+K
=2 B —8+2.2T? I B -
by (F= - T - ((= 4+w2T'-’+4(wT)(ﬁ +7+A )
i Iy (f_ __—8+2u7T? 2l _ B _ —4CuT+4+w?T2y I | B -
bs (T'—’) ({ m) T )) (( -l+w-T_t+4Cu.'T )(T- +F+ R))
—8+2,2T?2 I ~4(wT+4+w*T3\ (-2 B
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m AT T 14T
m _qszzcz
2 A+ T2+ 4CwT)T2

Table 3.4: Theoretical relationship of compressed NARMAX model parameter set to
continuous-time system coefficients.



3.3.3.1 Monte-Carlo Analysis of Compressed NARMAX Model Parame-

ters

A Monte-Carlo study of these reduced NARMAX parameters (Equation 3.5 & Table
3.4) was performed to assess their accuracy and variability. The simulation protocol
and input-output data sets used for this analysis was the same as described in §3.3.2.

Figure 3.8 shows the results of this study. The NARMAX parameters in this figure

correspond to ones given in Table 3.4. Parameters m; and m; in Figure 3.8 correspond
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Figure 3.8: Compressed NARMAX model: Bandlimited, zero-mean, random input,
Gaussian, white, zero-mean noise and N=4,000. Ordinate: STD about mean. Ab-
scissa: Qutput SNR= 30, 25, 20, 15, 10, 5 and 0 dB. (Note that the abscissa is shown
in decreasing SNR which corresponds to increasing noise intensity.)
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to parameters bg — by; and bys — byg in Figures 3.6 and 3.7, respectively. This figure
shows that, when the number of terms describing this NARMAX model was reduced
to the appropriate complexity, the identified parameter values corresponded closely
to those derived theoretically for SNRs > 20 dB. Note that we expect the mean
value of parameters g and bsg to be biased since they correspond to lagged error
terms. Lagged error terms are difficult to identify accurately even with high SNR
since they model the output additive noise which is a stochastic process and cannot
be measured. This stochastic process is modeled (approximated) by a deterministic
signal of prediction errors which is only an (poor) estimate of the noise (see §2.6.3.3).

Figure 3.9 shows a cross-validated (predicted) output superimposed on top of the

measured output for a typical parameter set. The predicted output matched the

Measured and Cross-validated Ouputs, NMSE=98.54%

100 - — r
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Figure 3.9: Cross-validation: Measured and predicted output for identified NARMAX
ankle model with NV, = 2,000 and Gaussian. white, zero-mean output additive noise
(20 dB SNR).

measured output with over 98% NMSE.
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3.3.4 Estimation of Continuous-Time Parameters of Ankle

Model

The previous section demonstrates that existing parameter estimation methods yield
good results for NARMAX models at low noise levels (i.e., high SNR values). In
biological modeling, discrete-time NARMAX parameters may not be relevant or may
be difficult to interpret since the biology is often evaluated in terms of physical vari-
ables. Therefore, we evaluated (1) whether it is possible to compute the underly-
ing continuous-time parameters when the model structure is predetermined and (2)
whether these continuous-time parameters are closer to the true mean and have less
variability than ones estimated using traditional nonparametric techniques [79].
Currently, in our laboratory a nonparametric identification technique is used to es-
timate parameters describing ankle dynamics [70, 75, 77, 78, 78, 79, 80]. In this study,
estimates of continuous-time parameters computed using our NARMAX approach
were compared to results obtained using the nonparametric method used in our lab-
oratory. This nonparametric method implements a Levenberg-Marquardt nonlinear
least-squares algorithm to compute continuous-time parameters [79]. This approach
requires an initial “guess” of the unknown continuous-time parameters to compute
them. The true parameter values were used as an initial seed to emphasize the prob-
lem this technique has in computing a global minimum even in a best-case-scenario
where the true values are known. In contrast, our nonlinear parametric approach does
not require any initial values to compute continuous-time parameters. Employing
our approach, continuous-time parameters are computed directly from discrete-time

NARMAX estimates using the theoretical relationships given in Table 3.5.

3.3.4.1 Noise-Free Bandlimited Input -~ Output Additive White Noise

Ten Monte-Carlo simulations were used to assess the reliability of our approach to
estimate these continuous-time parameters. The system was simulated as described in
83.3.2, except that a data record of N = 7,000 points was used for identification. The

discrete-time parameters were identified using the reduced NARMAX model given in
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CT Coefficient DT Relationship

I= by x Lo
be+b1 iy o | By, 2 B
B= SE =P+ H= g X T
B
K= bs — (i + &)
_ —d+dbopdby 2 1
W= oy = (WPT?) x
¢ = —2=2b  _ GuT
- —t+ba—br — WwT 2p2
_ 4272 — 2
g= my X (4 +wT° +4(wT) x T = Tl

Table 3.5: Discrete to continuous-time relationships for parameters I, B, K, w, ¢ and
g of the parallel pathway ankle model.

Equation 3.5.

The results of this study are presented below. Figure 3.10 presents plots of stan-
dard deviation about the mean for estimated continuous-time parameters of the linear
and nonlinear path (I, B, K, g, w and () using NARMAX identification techniques.
Figure 3.11 shows the results of identifying continuous-time ankle parameters using
nonparametric identification methods [79]. For the linear path, continuous-time pa-
rameters estimated using our NARMAX approach were closer to the true mean and
had less variability for high SNR (< 10 dB SNR) than those obtained using non-
parametric techniques. Estimates using a nonparametric approach were consistently
biased away from the true mean. Variance of the inertial parameter (/), computed
using parametric methods, was approximately 5 times smaller for SNR between 30
to 10 dB and approximately equal for SNR between 5 to 0 dB compared to non-
parametric estimates. For viscous and elastic parameters (B, K), the variance was
approximately 2 - 4 times smaller for 30 dB SNR, equal for SNR between 25 to 15 dB
and 10 - 15 times larger for SNR between 10 to 0 dB than nonparametric estimates.

Results show that, for the nonlinear path, continuous-time parameters computed
using a NARMAX approach were closer to the true mean for SNR £ 20 dB but were
biased at lower SNRs. However, the nonparametric estimates were biased at all levels
of SNR. All parameters computed using NARMAX identification had variability equal

to those obtained using nonparametric techniques for SNR 2 10 dB. Between 5 and 0
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dB SNR parameters computed using our identification technique had approximately

10 - 20 times more variability.

3.3.4.2 Noise-Free Colored Input — Bandlimited Output Additive Noise

Assumptions made by least-squares theory do not allow for non-white disturbances.
However, in many practical situations assumptions regarding whiteness may be vio-
lated or incorrect due to effects of anti-aliasing filters, quantization, etc. [161, 101}.
In order to evaluate the effects of bandlimited output additive noise on our estima-
tion technique, we performed ten Monte-Carlo simulations in which the system was
simulated using a position input (pseudo-random binary sequence (PRBS)) from ex-
periments conducted in our laboratory. We used a PRBS input for this study because
it is the typical input used in our laboratory. The PRBS input was bandlimited with
an eighth-order 30 Hz low-pass Bessel filter and the input-output sequence was sam-
pled at 7' = 0.005 s. The output additive disturbance was a zero-mean bandlimited
sequence (Gaussian, white, zero-mean sequence, low-pass filtered with an eighth-order
60 Hz Butterworth filter). Each input-output trial and noise sequence was unique.
The noise levels were the same as in the bandlimited input, white output additive
noise case (see §3.3.4.1), however, N = 5,000 points were used for identification. Note
that this PRBS input is very non-Gaussian and non-white [78].

Figure 3.12 shows a typical input-output trial used for this analysis. The data
represents a PRBS sequence of 0.03 rad (peak-to-peak) and 150 ms switching rate.
The characteristics of this trial are consistent with those used for analysis in this
section. The torque sequence shown in this figure is the sum of a noise-free torque
and a noise sequence with 20 dB SNR.

Plots in Figure 3.13 show results of estimating continuous-time ankle parameters
using NARMAX identification techniques.

Figure 3.14 provides plots of ankle parameters computed using nonparametric
identification methods. Continuous-time parameters computed for the linear path,
using a NARMAX approach, were closer to the true mean for all levels of SNR

and had less variability for high SNR (Z 10 dB SNR) than those obtained using
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Figure 3.12: Typical position input and torque output recorded from simulation.

nonparametric techniques. Estimates provided by the nonparametric approach were
consistently biased away from the true mean. Variance of the inertial parameter (),
computed using this parametric technique, was approximately 200 times smaller for
SNR between 30 to 20 dB and 10 - 2 times less for SNR between 15 to 0 dB than
its nonparametric counterpart. Using a NARMAX approach, the viscous and elastic
parameters (B, K') variance was approximately 10 — 3 times less for SNR between 30
to 15 dB, approximately 10 times larger for SNR between 10 to 5 dB and 50 times
larger at 0 dB SNR than nonparametric estimates.

The results show that, using a NARMAX approach, the nonlinear path parameters
were all significantly biased except at high SNR (£ 20 dB SNR). However, the bias
was not as severe as for nonparametric estimates where all parameters were biased
consistently. Nonlinear path parameters computed using our NARMAX method had
approximately 7 times less variability for SNR between 30 to 15 dB and equal variance
for SNR between 10 to 0 dB as obtained using nonparametric methods.

Figures 3.10 & 3.13 shows the performance of our NARMAX technique in the
presence of output additive white and bandlimited noise respectively. With bandlim-

ited noise, coefficients of the linear path were less biased but had greater variability
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than those with white noise. However, the nonlinear path coefficients were less biased
and had greater variability in the presence of white noise than those with bandlimited
noise.

Figures 3.11 & 3.14 shows the performance of the nonparametric technique in the
presence of output additive white and bandlimited noise respectively. For the linear
path coefficients there was no significant bias between the white and bandlimited noise
study but there was more variability in the presence of white noise. Coeflicients of the
nonlinear path had a greater bias and higher variance in the presence of bandlimited

noise than those with white noise.

3.3.5 Input Noise Sensitivity

In the preceding sections we only examined the effects of output noise on our pa-
rameter estimation technique. It is well known that standard least-squares was not
developed to tolerate input noise [45, 105, 113, 133]. When studying ankle dynamics,
under experimental conditions, it is known that the input may not be measured with
negligible error. In our laboratory, experimental (PRBS) inputs are typically in the
range of 0.005 - 0.2 rad. The convention used in the laboratory is 0.1 rad = 1 Volt.
The input-output is recorded with a 16-bit A/D (IOTech ADC488) and has a 20 Volt
dvnamic range. This yields an input SNR (assuming no other input noise source)
approximately in the range of 82 dB ~ 50 dB (see [121] p. 756). Although this cor-
responds to small amplitude noise, we examined the effects of input noise with our
standard least-squares parameter estimation algorithm.

For this study, simulation and estimation protocols remained the same as described
in §3.3.2 except that a PRBS input was used to excite the system dynamics. We used
a PRBS input for this study because it is the type of input used under experimental
conditions in our laboratory.

Figure 3.12 shows a typical input-output trial used for this analysis. The data
represents a PRBS sequence of 0.0375 rad (peak-to-peak) and 125 ms switching rate.
The characteristics of this trial are consistent with those used for analysis in this

section. A unique Gaussian, white, zero-mean noise sequence was added to the input,
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Figure 3.15: Typical position input and torque output recorded from simulation used
to assess input noise sensitivity.

noise amplitude was increased in increments of 5 dB, from 70 dB to 50 dB SNR, the

output was noise-free, and N = 7,000 data points were used for estimation.

3.3.5.1 Monte-Carlo Analysis of NARMAX Parameters: Additive Input
Noise — Noise-Free Output

The results of this study are summarized in Figure 3.16 and correspond to the reduced
NARMAX model (Equation 3.3 & Table 3.1). These plots show that even when an
insignificant amount of input noise was added (with noise-free output) NARMAX
parameters deviated significantly from their true values. Note that parameters by, by —
b; and m; —m,, associated with input only, flipped signs for SNR levels < 55 dB SNR
which correspond to continuous-time parameters with incorrect sign, i.e., their STD
encompass zero and, therefore, cannot be distinguished from zero. This bias may be
the combination of two factors: (1) violation of least-squares theory and (2) model

representation, i.e., high-pass nature of the linear path.
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3.3.6 Input and Output Noise Sensitivity

Although the previous study showed that even with an insignificant amount of noise
on the input vields highly parameters, we investigated sensitivity of this identification
approach to both input and output noise. This study was conducted to assess the
likely performance of our algorithm under experimental conditions.

Simulation and estimation protocols remained the same as described in §3.3.2 &
§3.3.5. The input and output noise sequences were unique Gaussian, white, zero-mean
processes which were uncorrelated with the input and each other. The input noise
sequence was fixed to have a SNR of 60 dB while the output additive noise amplitude

was increased in increments of 5 dB, from 30 dB to 0 dB.

3.3.6.1 Monte-Carlo Analysis of NARMAX Parameters: Additive Input
and Output Noise

Results of this study are summarized in Figure 3.17. These parameters correspond
to NARMAX parameters given in Table 3.4. The plots in this figure show that, for
input SNR of 60 dB, some NARMAX parameters deviated significantly from their
true values for output SNR < 10 dB (see parameters bj, by, by, 5; and by). These
parameters, associated with input and output, had incorrect sign. which corresponds

to continuous-time parameters with incorrect sign and large variance.

3.3.6.2 Monte-Carlo Analysis of Continuous-time Parameters: Additive

Input and Output Noise

Next, we show results of estimating continuous-time parameters from NARMAX es-
timates given in §3.3.6.1. Figure 3.18 includes parameter estimates of both the linear
and nonlinear paths. These parameters were computed using our NARMAX identi-
fication approach. In these plots, we did not show the mean and STD for 0 dB SNR
to give better resolution at higher SNRs. The STD of continuous-time parameters
included zero for 0 dB SNR. The results show that, even with an insignificant amount

of noise added to the input, variance of continuous-time parameters increased by more
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than 10 times for all SNRs compared to the noise-free input, output additive noise
case (see Figure 3.10). Here, STDs of all linear path parameters, except I, included
zero for output SNR < 20 dB. The nonlinear path parameters were significantly biased
for SNR < 25 dB. Therefore, parameter estimation using our NARMAX approach
may give biased results in situations where the input is not recorded with very high

precision or a noise-free record of the input is not available.

3.3.7 Closed-Loop Simulation

We investigated the effects of removing continuous-time derivatives from the simu-
lation (see Figure 3.2) as a possible source of bias for the nonparametric identifica-
tion technique. The derivative operator in Simulink is implemented using Newton'’s
backwards formula [104]. This may give our NARMAX approach an unfair advan-
tage since the derivative operator in the NARMAX formulation of ankle dynamics is
also approximated using Newton's backwards formula (see §3.2.2). We removed the
derivative operators by simulating the ankle model in closed-loop. i.e., from torque
to position.

It is hypothesized that ankle dynamics are physically generated in closed-loop [78].
However. for analysis and identification purposes, system parameters are estimated
using an inverse parallel pathway model (Figure 3.1). The nonparametric technique
has been designed assuming that the input-output data is generated by such a closed-
loop structure. A closed-loop formulation of ankle dynamics is shown in Figure 3.19
[78].

Specifically, we removed the effect of the derivative in the feedback path by sim-
ulating the linear path as a bank of integrators in closed-loop (see Figure 3.20). The
output of the first integrator is velocity, therefore, it was used as input to the nonlinear
path; thereby removing the effects of the derivative.

We simulated this model using two unique torque inputs; uniformly distributed,
white, zero-mean, random input, low-pass filtered with an eighth-order 30 Hz Bessel
filter. The parameters used in the simulation were the same values given in Table 3.2.

The system was identified from position to torque assuming a parallel pathway model,
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Figure 3.19: Closed-loop system of ankle dynamics. U(s): System input. Y'(s):
System output. F(s): Output of feedback loop. V'(s): Error signal.

as described in §3.3.2. The continuous-time coefficients were estimated as described
in §3.3.4. The system was identified under noise-free conditions.

Figure 3.21 shows a typical input-output trial used for this study. The top panel
shows a position record (labeled “POS” in Figure 3.20), the middle panel shows a

. velocity signal (labeled “VEL” in Figure 3.20) and the bottom panel shows a torque
record (the sum of “u” and “TQr” in Figure 3.20).

The results of this identification are presented in Table 3.6. Results show that the
nonparametric method was able to estimate the continuous-time parameters while
estimates computed by our NARMAX approach were highly biased. Note that the
NARMAX estimate of B, viscosity, has incorrect sign. Therefore, applying NARMAX
identification to experimental data will likely vield biased results. Although the non-
parametric technique gave better results than NARMAX, the estimates are still biased
even under noise free conditions and consistent with our results in §3.3.4. However,
unlike the NARMAX estimates these nonparametric estimates are within reasonable

physiological ranges.
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Figure 3.21: Typical position, velocity and torque record from closed-loop simulation

of ankle dynamics.

Trial 1 Trial 2
Coefficients Nonparametric | NARMAX (| Nonparametric | NARMAX
I=1.50x10"2 1.28 x 10~2 2.53 x 10~2 1.21 x 10~ 2.59 x 102
B =8.00x 10! 8.51 x 107! —4.29 x 10° 8.60 x 107! ~4.30 x 10°
K =1.50x 10? 1.23 x 102 5.75 x 102 1.17 x 102 5.75 x 102
w = 4.00 x 10! 3.84 x 10! 6.44 x 10! 3.87 x 10} 6.44 x 10!
¢ =1.00 x 10° 1.04 x 10° 1.14 x 10° 1.06 x 10° 1.14 x 10°
g = 1.00 x 10! 9.56 x 10° 4.64 x 10° 9.39 x 10° 4.03 x 10°

Table 3.6: Continuous-time coefficients of ankle model simulated in closed-loop but
identified assuming a parallel pathway model. Coefficients: Continuous-time param-

eters values used in simulations.

Trail 1: Estimated continuous-time parameters

using the nonparametric and NARMAX approach, respectively. Trail 2: Estimated
continuous-time parameters using the nonparametric and NARMAX approach, re-

spectively.
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3.4 Experimental Data

Lastly, we assessed our identification technique on experimental human ankle data
collected in our laboratory. The data analyzed for this study is from a single subject

with no history of neuromuscular disease.

3.4.1 Apparatus

The subject lay supine with his/her foot attached to the pedal of an actuator by
a custom fitted fiberglass boot [107, 110]. The fiberglass boot was firm enough to
restrict heel movement during experiments without excessively restricting range of
ankle rotation. Sandbags and a kneestrap held the knee fully extended.

An electro-hydraulic actuator operated as a position-servo driving the ankle po-
sition to follow a command input with a bandwidth of 0 - 80 Hz. Ankle position
was measured with a precision potentiometer (Beckman 6273-R5K) while torque was
recorded using a torque transducer (Lebow 2110-5K) mounted in series with the sub-
ject’s ankle [107].

An angle of 90° between the shank and foot was considered as the neutral position
and defined as zero. Displacements in the dorsiflexing direction were considered as
positive and those in the plantarflexing direction as negative. Torque was assigned a

polarity consistent with the direction of movement {107].

3.4.2 Perturbations

PRBS inputs [79] were used to excite the dynamics of this system. Data records
in which input sequences had a peak-to-peak amplitude of 0.01 - 0.05 rad and a

switching rate of 45 — 260 ms were used for this study.

3.4.3 Procedures

The subject was instructed to maintain a constant level of activation and not to resist

the perturbations. Torque generated by the subject was measured, low-pass filtered,
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and fed back to an oscilloscope mounted above the subject’s head. The subject was
asked to match the torque feedback to a command signal displayed on the oscilloscope.
Each PRBS sequence was started once the subject matched the desired torque level
and recording was initiated after the subject re-established a stable contraction at the
desired level [107]. The measured data was anti-alias filtered with an eighth-order 200
Hz Bessel filter (Frequency Devices, 64PF) and sampled at 1000 Hz by a 16-bit A/D
converter (I0Tech ADC488). Each input-output set was recorded for 30 seconds.
After recording, the experimental data was decimated by a factor of 10, resulting
in a final sampling rate of 100 Hz. The system (ankle dynamics) was identified
using our NARMANX approach, as outlined in §3.3.4, except that N = 2,000 points
was used for estimation and NV, = 1.000 points was used for validation. Our least-
squares algorithm fitted parameters for the model with a fixed delay and repeated
the estimation with delays ranging from 50 to 100 ms. The parameter set and delay

which vielded the highest cross-validation %NMSE was deemed the best-fit model.

3.4.4 Results

The results of identifying 8 trials of human ankle experiments are presented. Figure
3.22 shows a typical input-output trial used for this analysis. The data represents a
PRBS sequence of 0.05 rad and 260 ms switching rate while the subject maintained
a mean contraction of -5 Nm. The characteristics of this trial are consistent with
those reported in previous work done in our laboratory [107]. Figure 3.23 displays
the cross-validation (predicted) output, for this trial. The predicted output matched
the measured output with over 98% NMSE.

Table 3.7 shows the “expected” (i.e., “ball-park™ estimates) continuous-time pa-
rameter ranges for this model of ankle dynamics. These parameter ranges were de-
termined in previous work done in our laboratory using nonparametric techniques
[70. 75. 76, 77. 78, 79, 107, 162, 163, 164].

Figure 3.24 presents the results of NARMAX identification of continuous-time
parameters for ankle dynamics. Parameter estimates computed using our NARMAX

approach were compared with known physiological ranges (Table 3.7) to determine
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Figure 3.22: Typical recorded position input and torque output.
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Figure 3.23: Cross-validation: Measured and predicted output for identified
NARMAX ankle model for experimental data set with N, = 1,000.
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CT Parameter Minimum Maximum
I (Nm/rad) 0.0075 0.015

B (Nm/rad/s) 0.35 2.5
K (Nm/rad) 50 1000
w (rad/s) 20 60

C 0.5 15
g (Nm s/rad) 1 22.5

Table 3.7: Continuous-time parameter ranges for parallel pathway model of ankle
dynamics.

how well NARMAX estimates agree with these values. The dashed lines in each
figure represent the maximum and minimum range for each parameter. The results
in Figure 3.24 show that estimates obtained using our NARMAX approach failed
to identifv all but two continuous-time parameters (K. elastic stiffness and g, gain)
within given physiological ranges.

Figure 3.25 shows the cross-validation %NMSE for each trial. The results show
that the predicted output, for these parameter estimates, account for a large portion
of the variance. The range of %NMSE is from a minimum of 94.43% to a maximum
of 99.64%. From the 8 trials examined for this study, 62.50% of predicted outputs ac-
counted for more than 99% NMSE of the measured output. Although cross-validation
shows a high %NMSE in fit, the parameter values for I and B have incorrect sign.
This implies that these subjects have negative inertia and viscosity, which is physi-
cally impossible. The incorrect sign may be a result of several factors, (1) too much

input noise, (2) a deficiency in the model order and/or (3) incorrect structure.

3.5 Discussion

3.5.1 Discrete-Time Parameter Estimation

Simulation studies of discrete-time ankle parameters (§3.3.2 & §3.3.3) demonstrate
that when a model has terms that are closely related, i.e., not described efficiently

or the regressors are “almost” linearly dependent, it is difficult to estimate system
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Figure 3.25: Cross-validation. %NMSE vs. experimental trial.

coefficients (see Equation 3.3 & 3.1). This suggests that discrete-time modeling of
continuous-time systems could provide more stable parameter estimation when the
number of regressors used to describe the system are reduced as much as possible.
In §3.3.3 we showed that, for a compressed NARMAX model representation, the
mean of Monte-Carlo estimates for NARMAX parameters matched the theoretical
values well for high SNR. However, estimates of some nonlinear parameters, e.g.,
myu(n), did not correspond well to theoretically computed values. This bias may
be a result of using a low order approximation to the half-wave rectifier. A stiff
nonlinearity of this form is of high order and, therefore, a second-order fit is only
an approximation. Possibly for this reason, the theoretical values for the nonlinear
parameters are not accurate. The mean value of the NARMAX identified parameters

may therefore give a better estimate of the true system coefficients.

3.5.2 Continuous-Time Parameter Estimation

Estimation of continuous-time parameters of ankle dynamics demonstrates that, with

noise-free input and low levels of output additive white and bandlimited noise distur-
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bance, NARMAX identification methods provide a better estimate than traditional
nonparametric techniques (compare Figure 3.10 with Figure 3.13 and Figure 3.11
with Figure 3.14). The clear advantage lies in the fact that, parametric (NARMAX)
techniques do not require an initial guess of system parameters, which are seldom
well known a priori. Using a nonparametric approach requires an initial guess and,
therefore, estimated parameter(s) may be highly biased due to an initial seed far from
the true value and/or being attracted to a local minimum [32, 78].

As the SNR was decreased, estimates computed using our parametric method
had greater variability and moved further away from the true mean than estimates
computed using the nonparametric technique; however, it may be possible to com-
pensate for this by increasing the record length. This may not be the case using a
nonparametric approach since the problem of local minima will still persist.

The validity of these “better” estimates, obtained using the NARMAX versus
nonparametric approach, depends on the accuracy of our model simulation to repre-
sent continuous-time dynamics well, i.e., experimental data. For the parallel pathway
model, our NARMAX technique may have an advantage over the nonparametric ap-
proach. This is because the derivative operator in the NARMAX formulation of ankle
dyvnamics is implemented using Newton’s backwards formula, which is the same as
in Simulink (see §3.2.2). As a result, our NARMAX model formulation matches the
Simulink model “almost” perfectly. The nonparametric technique does not make the
same model assumptions. Consequently, this may be a source of discrepancy between

the estimates computed by these two techniques.

3.5.3 Input Noise Sensitivity

Any noise on the input violates assumptions and conditions for least-squares to vield
unbiased parameter estimates. Nevertheless, we studied this effect to provide an
understanding of the types of results (or biased results) that can be expected with
experimental data. For this model structure, a study of input noise sensitivity (§3.3.5)
showed that NARMAX identification was not robust to input noise. A study of the

effects of input and output additive noise (§3.3.6) showed that with little noise added
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to the input (60 dB SNR), the STD of linear path parameters included zero for
output SNR < 20 dB. This result suggests that the least-squares algorithm may be
very sensitive to input noise.

To determine whether input noise sensitivity is a result of the model structure or
the least-squares algorithm we analyzed the behavior of this algorithm with a linear
and nonlinear system which had low-pass characteristics. A low-pass system was used
since it filters the effects of any amplified input noise due to derivatives. A preliminary
study showed that least-squares was well behaved in the presence of large amplitude
input and output noise, e.g., 10 dB input SNR and 5 dB output SNR. The parameter
estimates were biased; however, none of the parameters had incorrect sign as in §3.3.5
& § 3.3.6.1. Clearly, more investigation is needed. Nevertheless, this showed that our
algorithm may not as sensitive to input noise as simulation results indicate. This
also suggests that for this ankle model sensitivity to input noise is not only due to a
violation of least-squares theory but may also be a result of the model structure. This
model is described by derivatives (i.e., unrealizable system) in both the linear and
nonlinear paths which amplify input noise. A discrete-time representation of these
derivatives is present in the regressor matrix when least-squares is implemented and,

therefore, it may also contribute to parameter bias.

3.5.4 Closed-Loop Simulation

A study of simulating ankle dynamics in closed-loop, removing the effects of deriva-
tives, but identifving the model as parallel pathway (§3.3.7) showed that our NARMAX
approach gave severely biased estimates. Although estimates computed using the
nonparametric technique only had a “slight” bias, giving reasonable estimates (in the
same “ball-park”), the bias is consistent with our findings in §3.3.4.

The results of this NARMAX identification indicate that our approach is sensitive
to performing inverse identification, i.e., from position to torque when the data is
actually generated from torque to position. This suggests that the closed-loop ankle
model may not be invertible, in a parametric form, and has a different structure than

the one posed for identification, i.e., parallel pathway.
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When ankle dynamics are simulated via a parallel pathway model in Simulink, a
first-order derivative approximation is implemented which may not be good enough
to accurately represent the “true” (experimental) analog data. This may give biased
parameter estimates using the nonparametric technique. As noted earlier, this is
not a problem for our parametric approach since we derived the NARMAX ankle
model assuming the same first-order derivative approximation as in Simulink. Further
investigation is needed to determine if our parallel pathway simulation represents the
continuous-time process well.

[t may be possible to generate more accurate simulations of experimental data if
a higher-order derivative approximation is implemented, but one that is still linear-
in-the-parameters so it falls within the NARMAX class. This approach may give
better estimates via both techniques. An alternate approach may be to theoretically
derive a closed-loop NARMAX model of ankle dynamics and identify the system in

its natural state, in nonlinear feedback.

3.5.5 Experimental Data

Analysis of experimental data showed that our NARMAX approach gave results that
are not consistent with known physiological ranges. There are several factors that
may be attributed to this.

Sensitivity to input noise of the least-squares algorithm, used to identify param-
eters of this model structure, may exhibit significant bias, i.e., parameters with in-
correct sign, as demonstrated by our simulation studies in §3.3.5 - 3.3.6 (see Figures
3.16 - 3.18). A similar bias (incorrect sign) was observed when ankle dynamics were
simulated in feedback but identified as a parallel pathway model (see Table 3.6).

Physiological ranges used to compare NARMAX estimates of continuous-time
parameters are based on results obtained from nonparametric techniques. Using this
nonparametric method as a “gold” standard may not be a good approach since there
is no certainty that these parameter ranges are correct. Nevertheless, it is unlikely
that these parameter ranges are “way” off since they are consistent with a variety of

physiological measures (see e.g., [78, 74, 80, 107, 162, 163, 164] ).
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High %NMSE cross-validation fits obtained for parameter estimates using our
NARMANX method (see Figure 3.25) are misleading at first glance. Parameter values
computed for [ and B have incorrect sign which implies that these subjects have
negative inertia and viscosity. Clearly, this is not physically reasonable. Therefore,
using %NMSE alone as an indicator of model goodness may lead to incorrect inter-
pretations.

Lastly, the results may reflect bias in NARMAX estimates of continuous-time
parameters due to using an incorrect model structure. A structural deficiency may
not be obvious using nonparametric techniques since the resulting system description
is not represented concisely and may be redundant (see §2.4.1).

It is impossible to make more explicit conclusions regarding interpretation of these
results without doing a full study of the data, which would require model order
selection and structure detection. In the present study, we only have two indicators
of model adequacy: (1) %NMSE and (2) whether estimated parameters fall within
physiological ranges. Both can be misleading and may be poor indicators of model

adequacy. They are, however, the only ones available.

3.5.6 Discrete to Continuous-Time Parameter Mapping

Another possibility for the source of error in the continuous-time parameters com-
puted using our NARMAX approach may be related to the nonlinear relationships
between discrete-time NARMAX parameters and continuous-time parameters of the
physical system (see Table 3.5). A small deviation from the true parameter value in
discrete-time. due to noise or numerical error, may appear as a significant error in the
estimated continuous-time coefficients. As a result it may be advantageous to study

these model parameters only in discrete-time.

3.5.7 Continuous to Discrete-Time Transformations

In §3.2.2 we used the bilinear transform and Newton’s backwards formula to con-

vert the continuous-time linear dynamics to discrete-time. We used these transforms



since both require only a simple substitution to convert a continuous-time system to
discrete-time. Two other techniques that give better approximation for LTI systems
are linear extrapolation and linear interpolation methods [66, 94, 139]. However,
these techniques are seldom used due to added complexity for little gain.

Linear extrapolation gives an improper transfer function (i.e., more zeros than
poles) and linear interpolation gives a transfer function that is strictly proper (i.e.,
equal zeros and poles) [66, 94, 139]. These methods produce a discrete-time transfer
function that gives a better output response than the bilinear transform or Newton'’s
backwards formula. However, the pitfall of these methods is that it is difficult to
derive the coefficients of the discrete-time linear system. This is the main reason that
almost all engineering text books and literature only discussed the bilinear transform
and Newton’s backwards formula.

Using linear interpolation or linear extrapolation to derive a NARMAX repre-
sentation of ankle dynamics it may be possible to derive a better approximation to
the derivative than the one used in §3.2.2, i.e., Newton’s backwards formula. This
may give a better approximation to the derivative and provide simulation data that
matches the continuous-time process better. However, one drawback is that it may
give a discrete-time approximation to the derivative that is higher than first order
thereby increasing the complexity of the NARMAX representation [66, 94, 139]. An-
other drawback is that the continuous to discrete mapping of the continuous-time
parameters will be more complicated since it involves exponential functions. This
may result in more sensitivity to continuous-time parameter estimation since small
deviations from the “theoretical” or “true” in discrete-time will result in large errors

in continuous-time.

3.5.8 Simulation Techniques

Smith [144] states, as that better discrete-time models can be achieved if the product
of a zero-order hold and system dynamics are modeled as a discrete-time representa-
tion of the model instead of only representing the continuous-time system in discrete-

time. In addition, as pointed out by Smith using higher-order integrators such as
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Runge-Kutta to simulate continuous-time systems introduces additional poles into
the dynamic process {144]. He suggests that integrators such as the zero, first, or
second-order be used to achieve more accurate simulations since they do not increase
the dynamic order of the system being simulated [144]. However, these integrators
require tuning two parameters to give accurate results.

We may be able to achieve better simulations of our nonlinear ankle model if the
integration methods suggested by Smith [144] are implemented and if the system is

modeled as the product of a zero-order hold and system dynamics in discrete-time.

3.5.9 Total Least-Squares

In the standard linear model (Y = X@+e) it is often assumed that the exact structure
of the regressor matrix is known, e is a vector of random errors which are uncorre-
lated and have zero means and the same variance, i.e., E(e) = 0, D(e) = o?I.
As demonstrated by analysis of experimental ankle data, these assumptions are fre-
quently unrealistic since sampling or modeling errors often affect the regressor matrix
.X. Therefore, it is necessary to consider methods that also allow for random input
errors.

One technique that allows for this is total least-squares [26, 69]. Application
of total least-squares may give insight to determine if parameter estimates for this
biological data resemble the currently believed ranges and if the ranges are accurate.

Few applications of total least-squares have been published in the literature [43].
Van Huffel and Vandewalle claim that in typical applications (linear systems), gains of
10-15% in accuracy can be obtained by using total least-squares instead of standard
least-squares methods [69]. To date there are no known applications of this technique
to nonlinear systems. Therefore, a careful development of existence theory for general

NARMAX models, which allow for input additive noise, needs to be studied first.



3.5.10 Relevance of NARMAX Parameters to Physiology

In general, it is unclear if NARMAX parameters will have a better physiological
relevance for model interpretation since, currently, there are no generally accepted
methods to obtain a nonlinear differential equation (continuous-time model) from
a nonlinear difference equation (NARMAX model). However, as we have demon-
strated here, if the exact system structure is known it may be possible to compute
the continuous-time coefficients from the identified discrete-time parameters, thus
allowing greater insight into the underlying physiological process. In addition, sta-
tistical studies of NARMAX coefficients could lead to direct clinical relevance for
diagnosis.

When studying biological systems, as suggested by our results from experimental
data. it may not be practical to assume that the exact model order and structure
are well known a priori. In physiological systems analysis one of the main objectives
is not only to estimate system parameters but to gain insight into the structure of
the underlyving svstem. Therefore, to address this issue of structure computation, in
Chapter 4, we will present a practical method for determining structure for NARMAX

models.

3.5.11 Summary of Findings

Simulation studies and analysis of experimental data showed the following.

1. Discrete-time modeling of continuous-time systems could enable more stable
parameter estimation when the number of regressors used to describe the system

are minimized as much as possible.

2. Estimation of continuous-time parameters of ankle dynamics demonstrated that,
with noise-free input and low levels of output additive white and bandlimited
noise disturbance, NARMAX identification methods may provide a better esti-
mate than traditional nonparametric techniques (assuming that our simulation

represents the analog data well).
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3. A study of the effects of input and output additive noise showed, with little

noise added to the input, the STD of linear path parameters included zero.

4. A study simulating ankle dynamics in closed-loop, removing the effects of deriva-
tives, but identifying the model as parallel pathway showed that our NARMAX

approach gave severely biased estimates.

Analysis of experimental data showed that our NARMAX approach gave results

w

that were inconsistent with known physiological ranges.

Clearly, much work remains to be done to resolve the possible source(s) of error for
NARMAX identification of this ankle model. The accuracy of our results for simulated
data depends on validating the accuracy of our model simulation to represent the
analog data well. If our simulation does not accurately represent the experimental
data, it implies that the model used for identification may not be appropriate, thereby

partly explaining our biased results for experimental data.

3.6 Conclusions

Theoretical results demonstrate that the nonlinear difference equation description for
the parallel pathway model is a NARMAX model. Simulation results show that the
NARMAX model matches the continuous-time response well [92].

Our analysis of continuous-time parameter estimates and their variance for this
ankle model, using a NARMAX approach, demonstrates that this parametric method
provides a better estimate of system parameters than nonparametric techniques when
the underlying assumptions for standard least-squares are not violated.

We have demonstrated the importance of considering input noise sensitivity when
implementing standard least-squares methods for analyzing experimental data. There-
fore, unless the input is recorded with high precision or a noise-free record is available,
it may be advantageous to consider alternative estimation methods such as total least-

squares.
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The overall significance of these results has been to demonstrate the importance
and relevance of the NARMAX structure for physiological modeling and analysis.
We have demonstrated this by modeling the dynamic behavior of a parallel pathway
model of ankle dvnamics as a NARMAX model. In addition, we have illustrated that

appropriate methods exist to identify the dynamics of such systems.
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Chapter 4

Bootstrap Structure Detection

4.1 Overview

Many systems may be described by NARMAX models using only a few terms. How-
ever, depending on the order of the system the number of candidate terms can be-
come very large. Selection of a subset of these candidate terms is necessary for an
efficient syvstem description. This is an unresolved issue in system identification for
over-parameterized models. Therefore, in this chapter, we develop a bootstrap struc-
ture detection (BSD) algorithm as a means of determining the structure of highly
over-parameterized models.

The performance of this BSD technique was evaluated by using it to estimate the
structure of (1) a simple NARMAX model. (2) a highly over-parameterized NARMAX
model and (3) a NARMAX model describing slow-phase dynamics of the vestibulo-
ocular reflex. The results demonstrate that the BSD algorithm is a robust method for
detecting the structure of linear regression models. This method provides accurate
estimates of parameter statistics without relving on assumptions made by traditional

procedures and vields a parsimonious description of the system.
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4.2 Introduction

Recently, bootstrap techniques have received considerable attention due to the avail-
ability of affordable and powerful computers [46]. The bootstrap is a numerical pro-
cedure for estimating parameter statistics that requires few assumptions. The condi-
tions needed to apply bootstrap to regression analysis are quite mild; namely, that
the errors be independent, identically distributed, and have zero-mean. This con-
trasts with regression analysis that requires an accurate estimate of the noise process
which is difficult to obtain unless the model structure is correct. Consequently, we
hypothesize that bootstrap might be a useful tool for structure detection of nonlinear

models.

4.3 Structure Detection

NARMAX representations of many nonlinear systems require only a few terms. How-
ever, as the order of the system increases, the number of candidate terms becomes very
large (Equation 2.22). The structure detection problem is that of selecting the subset
of candidate terms that best describes the output. Several methods for NARMAX
structure detection have been proposed including hypothesis testing of differences be-
tween means via the t-test, stepwise regression, and Korenberg’s orthogonal structure
detection routine. However, these all encounter problems with nonlinear systems.
The t-test and stepwise regression are widely used in regression analysis [45, 49,
133, 142]. The t-test relies on accurate estimates of parameter variances to determine
significance while stepwise regression relies on the incremental change in residual sum
of squares (RSS) resulting from adding or removing a parameter. Both methods need
accurate estimates of system noise (computed from an estimate of model residuals)
to determine structure. However, accurate or unbiased estimates of residuals are
difficult to obtain even when the structure is correct. This is because the noise process
is assumed to be generated by a stochastic process. In addition, since the number

of candidate terms, p, becomes very large for even moderately complex nonlinear
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models, the estimated noise may be highly biased, making structure detection difficult
or impossible. We expect both the t-test and stepwise regression to have difficulty
with highly over-parameterized models.

Korenberg (3, 4, 84, 85, 87} developed an orthogonal structure detection routine
specifically for nonlinear systems. This method relies on orthogonalizing the regressor
matrix and using the orthogonal relationships to compute the reduction in the total
mean-squared error due to each column. However, it requires selecting a tolerance
level to determine which terms to reject or accept. The selection of this tolerance
level requires e priori knowledge about the true errors and system output, which is
seldom available. Therefore, this tolerance level is set by trial and error and may not
vield a parsimonious system description unless some a prior: information is available

about the system [38].

4.4 Mathematical Preliminaries

Bickel and Freedman [15, 16, 53] analyzed the linear regression model where the
number of data points V and parameters p were both large. For the full p-dimensional
distribution of the least-squares estimates, as p®/N — 0 the bootstrap distribution
will converge to the true unknown distribution [16]. Since, initially, p cannot change,
the accuracy of the bootstrap estimate is determined by the data length, /V, available
for estimation.

Consider the linear model
Z=Uf+e ' (4.1)

with assumptions stated in §2.6.3.1 in force. Z is a N x 1 vector of measured outputs.
¥isa N x p (p < N) matrix of regressors with full rank (i.e., nonsingular) and
can be non-deterministic. € is a p x 1 vector of parameters. e is a N x 1 vector
of an i.i.d. (independent and identically distributed) noise sequence with zero-mean,
homoskedastic (have the same variance), common distribution F and variance o? > 0.

Both F and o? are unknown.
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The number of parameters, p, is given via Equation 2.22 as

{
p = ZP:‘ (4.2)
=1

pi-i(ny +ny +ne+1—1)

pi = . v Po=1
1

where n, is the maximum lag on the input, n, the maximum lag on the output, n.
the maximum lag on the error and [ is the maximum nonlinearity order. We define
the maximum number of terms, p. as the number of “candidate” terms to be initially
considered for identification.

The least-squares estimate of 8 is given by Equation 2.78 as
g =(379)"'w7zZ, (4.3)
the fitted values are
Z =U6=PZ. where P=(¥T¥)1gT (4.4)
and residuals or prediction errors are given by
é=7Z—27=Te, where ' =Iyyun— P. (4.3)

In Equations 4.4and 4.5 P and I are projection matrices. ¥ is defined as a partitioned

regressor matrix
U= [‘I’:u\p:ug‘pg] (46)

where V., is a function of = and u only, ¥.,; represents all the cross products involving
€. and ¥; is a polynomial function of the residuals only.
Let Q* = ¥T¥ be the cross-product matrix and let 02Q~2? be the variance-

covariance matrix (the so-called Fisher information matrix) [16].

Remark 1 YTV is positive definite, therefore, it has a unique positive definite square

root, Q. Positive definite is taken in the strict sense. 02Q~2 is interpreted as 02Q 2% =
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Let Tnp(F') be the exact distribution of Q(é—B), with NV data points, p parameters
and law F’ governing the disturbance terms.
The “Mallows metrics™ are defined in Bickel and Freedman {15]. In summary, let

| - || be the Euclidean norm on RP and let a > 1. Then

do(p. v) = inf E{||U - V||°}*/e, (4.7)

where U has law g, 1" has law v and the “inf” is over the joint distribution. Conver-
gence in d, is equivalent to weak convergence plus convergence of moments of order
a or less [15].

The bootstrap estimates the distribution Ty, (F) by Tx,(G). where G is an es-
timate of F. Bounds will be given on da[Ynp(F), Tnp(G)] in terms of dy(F. G). for
any F and G [16].

Theorem 1 Bickel and Freedman [16]: Let F and G be two possible laws for the
noise process e, in the model (Equation 4.1); it is assumed that both have mean 0 and

finite variance. Then

&l Txp(F). Txp(G)P < p- do(F, G)?
Proof 1 Proof in Bickel and Freedman 1982 [16].

Remark 2 The bound in Theorem 1 has an ectra factor p on the right due to the

fact that it compares p-dimensional distributions.

G is the empirical distribution Fy of the centered residuals. Define iy = x Z:’:l €n

which may be nonzero since constants (D.C. terms) need not be in the column space
of ¥. Let Fy be the empirical distribution of the centered residuals, assigning mass
1/N to each é, — an. Let Fxn be the empirical distribution of the noise process, e,

n=12,....N.



Review of the bootstrap operation: Given z;,...,zy, let €,...,€%y be condi-
1 N

tionally independent, with common distribution F~ Let
7T =Wh+é. (4.8)

Informally, €* is obtained by resampling the residuals, ¢, and Z* is generated from
the data, using the regression model with # as the vector of parameters and Fy as

the distribution of the residuals.
Next. consider giving the “starred” data (¥*,Z*) to another experimenter and

asking him or her to estimate §. The least-squares estimate is simply
9* = (U7 0*)"lgtZn. (4.9)

The bootstrap principle is that the distribution of (9“ - é), which can be computed
directly from the data, i.e., by Monte-Carlo, approximates the distribution of (é —8).
Similarly, for the full p-dimensional distributions.

Let €* be the bootstrap residuals

€ =2 -U9=T¢ where [ = I,y — ¥ (I70*) g7 (4.10)
= INXN - P

Let

0° = —— ) €, and (4.11)

Theorem 2 Bickel and Freedman [16]: Assume model 4.1 and conditions in §2.6.5.1.
Suppose p is fired and let N — co. Then the d,-distance between the distribution of
Q(6 - 0) and the conditional distribution of Q(8" — 6) given z1, ..., zx tends to zero

in probability.
Proof 2 Proof in Bickel and Freedman 1982 [16].
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If p — oo but p?/N — 0 and E[ds2(Fn, F)?| = o(1/p), the distance between the
distribution of Q(é — @) and the corresponding bootstrap distribution tends to zero
(16]. This has an interesting consequence for the Scheffeé method of simultaneous
inference. Consider bootstrapping S = [( — 8)TQ%(6 — 6)]'/2 or S/5. Let §* =
[(6~ — 6)T Q9" - )],

Theorem 3 Bickel and Freedman [16]: Assume model 4.1 and conditions in §2.6.5.1.
If N = oo, p?/N — 0 and E[dy(Fn,F)?] = o(1/p), the d,-distance between the
1/2

distribution of S—p'/2G and the conditional distribution of S*—p'/26* given z,,.. .. zn

tends to zero in probability; similarly for the distributions of S—p'/?6 and S* —p'/?%6".
Proof 3 Proof in Bickel and Freedman 1982 [16].

Remark 3 In structure computation the objective is often (directly or indirectly)
stmultaneous inference testing. For structure detection, to obtain consistent results

the relevant criterion for bootstrap convergence s
T =p*/N = 0. (4.12)

Computing a good estimate of parameter statistics is the central issue for all struc-
ture detection algorithms and, hence, a poor estimate of these statistics may lead
to models with incorrect structure. The analysis by Bickel and Freedman provides
a guideline for data requirements needed for bootstrap estimates of an “unknown”
noise distribution to converge to the true unknown distribution. This analysis was
done in the context of large p (number of regressors) which is the situation experi-
menters encounter when computing structure of nonlinear systems; given the system
order is known. This work is relevant for nonlinear system identification because, as
Bickel and Freedman showed, the bootstrap provides a good estimate of the unknown
distribution of the noise or error process. This implies that bootstrap may lead to
good parameter statistics, if sufficient data is available. When the condition in Equa-
tion 4.12 is applied to the t-test it may give a good estimate of parameter statistics

for a particular input-output realization but, in general, will not be consistent, p 1.
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Although Equation 4.12 provides a guideline for computing a “better” estimate of
parameter statistics, it only implies that they will on average equal the statistic they
are supposed to estimate; it does not imply that any of these values must necessarily
be close [536]. Therefore, the bootstrap is justified to obtain a consistent estimate
of these “unknown” parameter statistics, thereby providing a consistent estimate of

model structure.

4.5 Application to Structure Detection

Application of bootstrap to structure detection involves two steps: (1} computing a
series of parameter replications, in which “bootstrap data” is generated to compute
new “bootstrap parameter estimates”, and (2) forming percentile intervals for hy-
pothesis testing, where the significance of the parameters is determined. Bootstrap
data is formed by first estimating the residuals of the identified model; these residuals
are then resampled with replacement, centered (mean is removed), and then added
to the predicted output to generate bootstrap replications of the output [46, 48]. A
number “B” of bootstrap data sets are generated to estimate B bootstrap parameter
replications. Figure 4.1 outlines the procedure.

Significance of the parameters is determined by forming percentile intervals (Fig-
ure 4.2). The estimates from B parameter replications are ranked in increasing order
and the B-ath and B-(1 —a)th values in the ordered list of the B replications are used
as an upper and lower bound for the parameter deviation with an ath and (1 — a)th
level of significance. respectively [48]. Significance of each parameter is determined
by checking if 0 lies in its interval: if so, the parameter is rejected. This leads to the

following algorithm to detect structure of linear regression models.

108



4

Estimate

0

Using Least Squares

Compute Predicted

Estimate Residuals

é=[éI!€27"'7éN]

T 71 T T

——*Sampl% Wlith {Zepla%:ement

Yy v Y Y

Bootstrap Estimate

é- =[€476N7é41-~-s€12]

Bootstrap Estimate
of Output

=Z+e€y

y

Estimate §°

Using 27, én

]

of Residuals

Center Residuals
e and Restart

n=1 €n

e __ 2o 1 N
€y =€ — W

Store Bth §°

B Times

Figure 4.1: Procedure for forming bootstrap parameter replications.

Bootstrap 6*

N

[min(6°) . .. max(6")]

|

Select a

|

]
)
!
L

Check for “0”

B.-a

B-(1-0q)

Figure 4.2: Idealized bootstrap-t interval as B — oo.

109



4.5.1 BSD Algorithm

L.

=1

Compute an initial estimate of the unknown parameter vector and estimate the

residuals.

Generate B bootstrap data sets and compute the bootstrap parameter replica-

tions.

Form percentile intervals for each parameter by ranking estimates from the B

parameter replications in increasing order.

Estimate the upper and lower bounds of each parameter’s confidence interval

for a desired level of significance.
Determine if zero lies in the interval of each parameter in the vector.

If zero lies in the interval for any parameter(s) remove it/them from the regres-

sion.
Compute a new estimate of the parameter vector and residuals.

Go to 2 until convergence.

4.6 Implementation of BSD Algorithm

During each bootstrap replication new bootstrap data is formed which requires the

regressor matrix, ¥, to be reformed and re-orthogonalized. To decrease computations,

the bootstrap method was implemented to update only that part of the regressor

matrix that depends on the new bootstrap data. Similarly, for orthogonalization,

only these parts of the matrices need be updated. This is accomplished using well-

known updating schemes for adaptive matrix orthogonalization [60)].

This involved restructuring the regressor matrix so that instead of ordering the

extended matrix as ¥ = [¥,,¥,,:¥,| it is reordered as

U = (WU, U0 W] = [U] 5] (4.13)
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where ¥, is a function of u, ¥. a function of z only, ¥_,,; represents all the cross prod-
ucts involving ¢, and ¥; is a polynomial function of the prediction errors only. Thus
all the terms that are updated during the bootstrap procedure are lumped together in
the second partition of the matrix making reformation and re-orthogonalization of the
regressor matrix efficient. Re-orthogonalization is accomplished using the modified
Gram-Schmidt (MGS) algorithm. These changes optimize the computational aspects
of the BSD algorithm but do not affect the order in which the steps of the algorithm,
presented in §4.5.1, are implemented.

When implementing the MGS algorithm, if QFZ is explicitly formed, it may
introduce error in the estimated parameters. However, it has been shown that if

MGS is applied to the augmented matrix (see e.g., [60])

R, ~
0 »p

¥, = [ v z ] = [QI an+1 ] (4.14)
then v = QT Z. Computing QT Z in this fashion and solving R,0grs = v produces a

least-squares solution fgs that is “just as good” as the Householder QR method.

4.7 Simulations

The efficacy of the BSD algorithm was assessed using Monte-Carlo simulations of two
nonlinear systems. For both systems, we assumed a sampling rate of 8,000 Hz (T =
0.000125 s) and bandlimited inputs were used (uniformly distributed, white, zero-
mean, random sequence, low-pass filtered with an eighth-order 600 Hz Butterworth
filter). Fifty Monte-Carlo simulations were generated in which each input-output
realization was unique, and had a unique Gaussian white, zero-mean, noise sequence
added to the output, with 0 dB SNR. For identification, a data length of N = 3,000
points was used. An initial estimate of the system parameters was computed, and B =
300 bootstrap replications were generated to assess the distribution of each parameter.
Each parameter was then tested for significance at the 95% confidence level. The BSD

routine’s performance was compared with two other structure detection methods: the
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t-test and stepwise regression routine.

4.7.1 Bandlimited Input and White Noise
4.7.1.1 Simple NARMAX Model

We first studied the simple system:
y(n) = 04[u(n — 1) + u*(n — 1)] + 0.8y(n — 1) (4.15)

which is of order O = [1,1,1,2] and has only 15 candidate terms (Equation 4.2).
However, only 4 “true” parameters are needed to describe this system: two lagged
inputs, one lagged output and one lagged error term. We studied this system since
it has a small number of candidate terms.

Figure 4.3 shows the results for this model. The left panel shows the frequency of
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1 . j
B t-test ‘F
-©- Bootstrap |
- Stepwise Regression !
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|
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o ]
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Figure 4.3: Predicted structure of a simple NARMAX model using the t-test, BSD and
stepwise regression in the presence of Gaussian, white, zero-mean output disturbance
with 0 dB SNR. Abscissa: True/spurious parameter number. Ordinate: Percent
true/spurious parameter selection.

false negatives, the rate at which parameters actually in the model were rejected. The
right panel shows the frequency of false positives, that is, the rate at which parameters

not part of the model were selected. All three methods, the t-test, stepwise regression
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and BSD methods. selected the true parameters with high accuracy. The false positive
rate was similar for stepwise regression and BSD, but was higher for the t-test. Thus,
for a simple model with few free parameters these three methods yielded comparable
results for selecting “true parameters” while the t-test was less accurate for rejecting

“false parameters”.

4.7.1.2 Highly Over-Parameterized System

Next, we examined the performance of the BSD technique for the following system:
y(n) = 0.4[u(n — 1) + u*(n — 1) + «*(n — 1)] + 0.8y(n — 1). (4.16)

This system is described by 3 lagged inputs, 1 lagged output, 1 lagged error and
third-order nonlinearity (O = [1,1,1,3]). A system of this order has 35 candidate
terms, but the “true” model has only 5 terms. With 30 spurious parameters this
NARMAX model is highly over-parameterized. The identification paradigm was the
same as described in §4.7 except N = 5,000 data points were used for parameter
estimation and B = 50 bootstrap replications were generated to assess the distribution
of each parameter. In this case, only 50 bootstrap replications were used to reduce
computation time required for our BSD algorithm.

Figure 4.4 shows that the BSD method consistently selected the correct structure
of this third-order nonlinear system while the t-test and stepwise regression both
failed. The t-test had a false negative rate of 30% for the term associated with cubed
input, lagged and had false positive frequency of over 20%. Stepwise regression had
the same rate of rejecting a true parameter (cubed input term), 30%, and had a higher
rate, 30%, of accepting spurious terms. The BSD method selected the true parameters
consistently but did have a 10% false positive rate for two terms associated with input
cross-terms. For this highly over-parameterized, third-order nonlinear model the BSD

method clearly outperformed the t-test and stepwise regression.
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Figure 4.4: Error rate for highly over-parameterized system using the t-test, BSD and
stepwise regression in the presence of Gaussian, white, zero-mean output disturbance
with 0 dB SNR. Abscissa: True/spurious parameter number. Ordinate: Percent
true/spurious parameter selection.

4.7.2 Assessment of Parameter Statistics

To assess the accuracy of our BSD technique for estimating parameter statistics the
distribution of each parameter was computed for the simple NARMAX model (Model
4.13). The “theoretical” distributions were estimated using Monte-Carlo simulations
consisting of 10,000 runs. For the BSD method, estimates were calculated from
B =10, 000 bootstrap realizations; those for the regression methods (t-test and step-
wise regression) were computed using a single realization via standard least-squares
methods [133]. Parameter distributions were first calculated for the full model and
second for the model including only true parameters, to estimate the “optimal” values
for these terms. The simulation paradigm was the same as described in §4.7.

Model 4.15 is fully described as

y(n) = 6+ u(n) +bu(n — 1) + Gzu®(n) + fyu(n)u(n — 1) (4.17)
+ @su*(n — 1) +6gy(n — 1) + Gru(n)y(n — 1) + fsu(n — Dy(n - 1)
+ 69y%(n — 1) + Bpu(n)e(n — 1) + Oy u(n - 1)e(n — 1)

+ Opy(n—1)e(n—1) +613e(n — 1) + 01462(11, -1)
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where the “true” parameters and regressors are shown in bold. Figure 4.5 shows
the Monte-Carlo, bootstrap and regression distribution estimates for each parameter

given in Equation 4.17. In each panel, the solid line (“—") represents the Monte-

.O.oB)
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— Monte-Carlo
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Figure 4.5: Parameter distribution of spurious and true terms for a simple NARMAX
model (Model 4.13) when the full model is postulated. Abscissa: Parameter mean.
Ordinate: Probability of ith parameter. Vertical Line: Estimated mean for each
approach.

Carlo distribution, the dash-dot line (“~.”) represents bootstrap distribution and the
dash-dash line (“- -") represents the regression distribution. The vertical line in each
panel is the estimated mean for each parameter distribution. Distribution curves for
the Monte-Carlo and bootstrap techniques were plotted using the “hist” function in

Matlab, specifying a bin size of 20. For the regression approach the distributions were
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plotted by computing parameter statistics [45, 105, 133], substituting these values into
the standard formula for a normal distribution [56] and plotting the distribution over
a range of parameter values, using a step size of 0.001.

The distributions shown in the plots are initial estimates for the full model, be-
fore spurious parameters were removed from the regression to obtain an “improved”
estimate. The distributions calculated via the BSD method were closer to the Monte-
Carlo distribution, while those associated with the regression method were far from
the Monte-Carlo distribution. This result was not surprising since prior to the removal
of any parameters the model was over-parameterized; giving an inaccurate estimate
of the residuals and. therefore, vielding biased estimates of the distribution. Note
that the BSD estimate of each parameter’s standard deviation (distribution spread)
and mean was closer to the Monte-Carlo distribution than those obtained from the
regression method.

Distribution estimates were recomputed after removing spurious parameters. Pa-
rameter distributions calculated for the exact or true model are plotted in Figure
4.6. The results show that the distributions computed using the BSD approach were
closer to the Monte-Carlo distribution than those based on regression analysis. It is
surprising to see that the regression estimates were significantly different from the
Monte-Carlo even when the exact structure was used. This deviation may be because
the regression estimates were based on a single realization. For a different realization
it may be possible to compute “better” distribution estimates based on regression
techniques. Note that this result gives some insight as to why regression methods
(e.g.. t-test) perform poorly when applied to structure detection; since they may pro-
vide poor estimates of parameter statistics. Hence, for this simple NARMAX model

the BSD method yielded better parameter statistics than the regression method.
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Figure 4.6: Parameter distribution of true terms for a simple NARMAX model (Model
4.15) when the exact model is postulated. Abscissa: Parameter mean. Ordinate:
Probability of ith parameter. Vertical Line: Parameter mean for each approach.

4.7.3 Convergence Analysis of Bootstrap
4.7.3.1 Analysis of Decreasing = for Fixed B

To assess the relevance of the theoretical results presented in Bickel and Freedman
[16] we empirically determined “how close to zero” m = p?/N must be to achieve
consistent results. In this study, the structure of the systems presented in §4.7.1.1-
4.7.1.2 were computed using our BSD algorithm. The identification protocol was
the same as described in §4.7 except 20 Monte-Carlo simulations were used, B = 100
bootstrap replications were generated to assess the distribution of each parameter and
7 = 1,0.6.0.4,0.1 were used to determine the data length to be used for parameter

estimation.

4.7.3.1.1 Simple NARMAX Model Figure 4.7 shows the empirical probabil-
ity (in percentage) of selecting the correct model structure for the simple NARMAX

model (Model 4.15), when B was fixed and = varied, i.e., N varied. This figure illus-
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Figure 4.7: Simple NARMAX model (Model 4.15): Rate of model selection as a
function of data length N and bootstrap replications B = 100. Gaussian, white, zero-
mean noise added to output. Abscissa: 7 = p?/N = 1,0.6,0.4,0.1 (i.e., increasing
N). Ordinate: Percent selection.

trates: (1) rate of selecting the “exact model”, frequency at which our BSD algorithm
computed a model which contained only true system terms, (2) rate of selecting an
“over-modeled” system. frequency at which a model with all its true system terms
plus spurious parameters was selected and (3) rate of selecting an “under-modeled”™
system, frequency at which a model without all its true system terms was selected.
An under-modeled system may contain spurious terms as well.

The results in Figure 4.7 show that when 7 > 0.1 the likelihood of computing
the exact model structure was low, 10-40%. However, when = = p?/N — 0.1 our
BSD algorithm computed the correct model structure with high accuracy, > 95%,
and had a 0% selection frequency for under-modeling. For the BSD procedure, the
rate of selecting the exact model and under-modeled system dominated the structure
computation procedure while an over-modeled system was computed at a maximum

rate of 5%.
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4.7.3.1.2 Highly Over-Parameterized NARMAX Model Figure 4.8 shows
the empirical probability of selecting the correct model structure for the over-parameterized

NARMANX model (Model 4.16), when B was fixed and 7 varied. The results in Fig-
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Figure 4.8: Complex NARMAX model (Model 4.16): Rate of model selection as a
function of data length N and bootstrap replications B = 100. Gaussian, white, zero-
mean noise added to output. Abscissa: 7 = p?/N = 1,0.6,0.4,0.1 (i.e., increasing
N). Ordinate: Percent selection.

ure 4.8 show that the bootstrap failed to estimate the true underlying structure
for this third-order nonlinear model when = > 0.1, with an “exact model” selec-
tion rate of 0-10%. However. our bootstrap algorithm gave consistent results when
7# = p?/N — 0.1 = 0. For this highly over-parameterized model, the results, again,
show that the rate of selecting the exact model and under-modeled system dominated
the structure computation procedure while an over-modeled system was computed at

a rate of 0%.

4.7.3.2 Analysis of Increasing B for Fixed =

Next. we appraised how many bootstrap replications, B, are necessary to give accurate
estimates of structure and whether increasing B when p?/N - 0 could compensate

for small N. Here, = = 0.5,0.3,0.2,0.098 and B = 40, 80,120, 160, 200 for each =.
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For computational reasons only Model 4.15 was studied.

4.7.3.3 Simple NARMAX Model

Figure 4.9 shows the empirical probability of selecting the correct model structure
for the simple NARMAX system when m was kept constant and B varied. These
results illustrate that, in general, increasing the number of bootstrap replications
had little effect on the overall probability of selecting the true system structure, i.e.,
when 7 = p?/N - 0. However, when 7 = p?/N — 0.5 and 0.2 = 0 increasing B did
improve the probability of selecting the optimal structure. Hence. if the condition = =
p?/N —= 0 is satisfied. increasing B may be successful in improving the probability

of true selection.

4.7.4 Bandlimited Input and Bandlimited Noise

Lastly. we evaluated the performance of our BSD algorithm in the presence of ban-
dlimited noise (Gaussian, white, zero-mean sequence, low-pass filtered with an eighth-
order 500 Hz Butterworth filter). We bandlimited the noise process to assess the
behavior of our algorithm with low frequency noise. The identification paradigm was
the same as described in §4.7 except 20 Monte-Carlo simulations were used, B = 100
bootstrap replications were generated to assess the distribution of each parameter,
7 = 0.1 was used to determine the data length for parameter estimation and the

disturbance had a SNR of 0 dB.

4.7.4.1 Simple NARMAX Model

Figure 4.10 shows the results for this simple NARMAX model (Model 4.15). The
t-test had a false negative rate of 100% for the parameter associated with the squared
input term while stepwise regression had a 100% false negative rate for “all” true
parameters except the squared input term. In contrast, our BSD procedure selected
true parameters with high accuracy. Stepwise regression had a false positive rate of

0%. The BSD technique had a false positive rate of 5% for an input cross-term and
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Figure 4.9: Simple NARMAX model (Model 4.15): Rate of model selection as a func-
tion of # = p?/N and bootstrap replications. Gaussian, white, zero-mean noise added
to output. Abscissa: Bootstrap replications B = 40, 80, 120, 160, 200. Ordinate: Per-

cent selection.
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Figure 4.10: Error rate of a simple NARMAX model (Model 4.15) using the t-
test, BSD and stepwise regression in the presence of bandlimited output disturbance
with 0 dB SNR. Abscissa: True/spurious parameter number. Ordinate: Percent
true/spurious parameter selection.

35% for the D.C. term, however, the t-test selected more spurious terms and at a
greater rate. In the presence of bandlimited noise, the t-test and stepwise regression
both failed to select the correct structure for this simple NARMAX model while our

BSD method selected the correct structure with high accuracy.

4.7.4.2 Highly Over-Parameterized Model

Figure 4.11 shows the results of our study for the third-order nonlinear system (Model
4.16). Both the t-test and stepwise regression had a high rate of rejecting true terms
(10-75%) while the BSD method had a maximum rate of 10% for rejecting true
terms. The t-test had an average false negative rate of 25%. Stepwise regression
had a rate of 0% for accepting spurious terms while the BSD method had an average
10% false positive rate for several terms. For this highly over-parameterized third-
order nonlinear model, in the presence of bandlimited output additive noise, all three
methods, the t-test, stepwise regression and BSD method failed to select the correct

structure.
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Figure 4.11: Error rate for highly over-parameterized model (Model 4.16) using the
t-test, BSD and stepwise regression with 0 dB SNR of a bandlimited noise sequence.
Abscissa: True/spurious parameter number. Ordinate: Percent true/spurious param-
eter selection.

4.8 Simulated Biological Example

We assessed our structure computation technique on a simulated model of the vestibulo-
ocular reflex (VOR). This system was studied for two reasons: (1) as an example of
application of the BSD algorithm to a biological system and (2} the low system order
restricts data requirements for structure computation.

Figure 4.12 shows a Hammerstein structure model of the VOR. This model is

believed to represent VOR dynamics for normal human subjects [134, 143). The first
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Figure 4.12: A Hammerstein structure model of VOR.
block represents the sensor, horizontal semi-circular canal as a static nonlinearity.
This nonlinearity has been shown to be well represented as a third-order static non-

linearity [143]. The second block represents a combination of the central nervous

system and eye plant. These dynamics have been shown to be well represented as a
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first-order dvnamic system with parameters, 7 corresponding to time-constant, and

. g to gain [129, 143].
The first-order dynamics of the central nervous system and eye plant were con-
verted to the discrete domain via the bilinear transform to give the following NARMAX

representation of this model:

y(n) = Boy(n—1)+ Bifu(n) —u(n-1)]+ ﬁg[ug(n) —u?(n - 1)] (4.18)

+ Balu’(n) - u(n - 1)].

The coefficients 3;, 1 = 0.1, 2. 3 account for parameters of the continucus-time linear
system. nonlinearity and sampling rate.

This model is a theoretical representation of “slow-phase” dynamics of VOR. A
realistic representation of VOR dynamics includes two modes of operation: (1) slow-
phase and (2) fast-phase dvnamics. Issues concerning identification of multiple modes

of this system are discussed in Chapter 6.

4.8.1 Simulation Protocol

Input-output data for this model of slow-phase VOR was simulated in continuous-
time using Simulink and sampled at a rate of 8 Hz (7" = 0.125 s). Parameter values

used in the simulation were tvpical values found in experiments (see Table 4.1).

Parameter Value
Co 6.45
c1 3.94 x 107!
C2 1.51 x 104
c3 -2.84 x 1077
T 10 s
g -0.7
T 0.125 s

Table 4.1: VOR slow-phase parameter values. Coeflicient values of static nonlinearity:
co - DC term, ¢, - linear term, c¢; - squared term c¢3 - cubic term. Dynamic system
parameters: T - time constant, g - dynamic gain and T - sampling interval.
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A Monte-Carlo study of the NARMAX structure describing slow-phase VOR dy-
namics was performed to assess the applicability of the BSD algorithm for biological
syvstems. Ten Monte-Carlo simulations were used in which each input-output realiza-
tion was unique and had a unique Gaussian, white, zero-mean, noise sequence added
to the output, with 0 dB SNR. The system was excited using bandlimited inputs
(uniformly distributed, white, zero-mean, random process, low-pass filtered with an
eighth-order 0.5 Hz Butterworth filter). For this study, the system order was assumed
to be known. The estimation set consisted of N = 12,250 data points (7 = 0.1). The
system structure (VOR slow-phase dynamics) was computed using the t-test, stepwise

regression and our BSD algorithm, as outlined in §4.7.

4.8.2 Results

The result of structure computation for this model of slow-phase VOR is presented

in Figure 4.13. The t-test and BSD technique selected the true parameters with high

False Positives

Faise Negatives
[ [ B t-test
100t -©~ Bootstrap |
-5~ Stepwise Regression ||
80t
60
ES
401
20t
or I BE80S s <:
. 1
1 8 1 27
Parameter Number Parameter Number

Figure 4.13: Bandlimited Input. Error rate for theoretical model of VOR slow-phase
using the t-test, BSD and stepwise regression in the presence of Gaussian, white,
zero-mean output additive noise sequence with 0 dB SNR. Abscissa: True/spurious
parameter number. Ordinate: Percent true/spurious parameter selection.

accuracy while stepwise regression failed; stepwise regression had a false negative

rate of 100% for all but one term. However, stepwise regression had a rate of 0% for
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accepting spurious terms while the t-test had a 10-30% false positive rate for several
terms. The BSD method had a false positive rate of 10% for only one term. Hence.
for this siow-phase model of VOR our BSD algorithm outperformed the t-test and

stepwise regression.

4.9 Discussion

4.9.1 Gaussian White Noise

For the Gaussian, white noise case, the t-test, stepwise regression and BSD methods
vielded similar results when the number of free parameters was small. However, the
BSD technique performed better when there were many candidate terms in the full
model. The t-test and stepwise regression techniques both fail in this case but for
different reasons. For the t-test, extraneous parameters may model the noise. This
often results in a biased estimate of the variance which may give models with incorrect
structure. Stepwise regression failed probably because it is sensitive to the order in
which terms (regressors) are entered into or removed from the regression [133}. Miller
[106] recently stated that Efroymson’s [49] stepwise regression is well documented to
stop at a local minimum hence not converge to a global minima.

For the highly over-parameterized model, the BSD method gave better estimates
of parameter statistics than the regression technique. The regression method, using
the t-test to determine structure, did not give a correct model description likely
because initial estimates of the standard deviation were biased and, therefore, its
final estimate remained biased. Since the BSD method gave better initial estimates
of the standard deviation it was able to obtain a parsimonious model description and
accurate parameter statistics. However, the bootstrap method accepted two spurious
terms into the model (at a rate of 10%) since the number of bootstrap replications
was low. i.e.. 50 replications. If the number of replication are increased, estimates of

the parameter statistics should improve, thereby, yielding even better results.
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4.9.2 Convergence Analysis

Convergence analysis empirically demonstrates that a necessarv condition for the
BSD to vield a model with correct structure is 7 = p?/N — 0 = 0.1. The results
indicate that when 7 f._ 0.1, increasing B may have little or no effect in increasing the
probability of computing a model with correct structure. However, we demonstrated
that when 7 is in the neighborhood of 7 = 0.5 — 0.2 it may be possible to “slightly”
improve the correct selection rate by increasing B. This study also suggests that when
the estimated structure gives a poor fit to a validation set, i.e., indicating incorrect
structure, the system is likely to be under-modeled. In this event the user has no
choice but to increase the data length and start anew. If there is some evidence
to demonstrate that the computed structure is over-modeled it may be possible to
increase .V and continue to compute a new structure from the current model.

In addition this study shows, for sufficiently small = (= = 0.1), our BSD algo-
rithm, at worst, provides a model that is slightly over-parameterized. We consider
an over-parameterized model “better” than an under-modeled model since it is not
possible (with our approach) to re-enter a parameter into the regression (model) once
it has been removed. An over-parameterized model which still contains its “true”
parameters is clearly more useful than one which has dropped a true parameter.

Our results are given for poor SNR conditions (i.e., 0 dB SNR) therefore they
should be widely applicable under most experimental conditions. However, it is im-
portant to emphasize that a suitable # and B may vary for different model structures
and signal-to-noise ratios. In addition, our results reflect a minimum suitable 7 value;
it is not a conservative value and, therefore, it may be advantageous to decrease 7
by a factor of ~10 for a more conservative value (if there is sufficient recorded data
and/or the computing power is available). These results may not apply to all systems

as a “golden rule” and should only be used as a “rule-of-thumb”.



4.9.3 Bandlimited Noise

Analysis of the t-test, stepwise regression and BSD technique in the presence of ban-
dlimited noise showed that all three methods failed to compute an accurate structure
for the highly over-parameterized model. The t-test and stepwise regression failed
for similar reasons. Both rely on white assumptions for the noise process which are
violated in this case, giving models with incorrect structure. In general, the BSD
does not rely on white assumptions. Therefore, it may be possible to use robust
estimation techniques in combination with our BSD method to yield better results
under non-white assumptions [35, 122, 147]. Even without using robust estimation
techniques, our BSD method gave results superior to those of the t-test and stepwise

regression; it had a false negative and false positive rate that was significantly lower.

4.9.4 Biological Example

With respect to the slow-phase VOR model our BSD method had a higher probability
of converging to the true structure than the t-test or stepwise regression. However,
clinical tests of VOR are often performed with non-ideal harmonic inputs. Certainly
performance will degrade for less-than optimal inputs. But in this case, the nature of
the response provides another dimension which can be used to still allow identification

(see Chapter 6).

4.9.5 Computational Expense

The computational expense of structure detection using the BSD method without
implementing our updating scheme is significantly greater than for the “modified”
version with updating. For the model with second-order nonlinearity, we observed a
four-fold reduction in computation using our updating scheme. Computational sav-
ings are realized because rebuilding the entire regressor matrix is not necessary and
hence re-orthogonolization of all of ¥ (Q and R) is wasteful. The Householder algo-
rithm is computationally cheaper to solve least-squares problems. This is only true

if the formation of @ is not required. However, when updating is used @ is needed.
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Therefore, implementing the Householder algorithm to solve this least-squares prob-

lem is not suitable and the MGS algorithm is preferable.

4.9.6 Global Search Versus BSD

Since our BSD method is computationally intensive, it may seem that a global search,
where ever possible subset of the full model is fit, is more efficient. However, this is
not true.

Consider Model 4.15 which contains 15 candidate terms (see Model 4.17). Since
only output additive noise was considered in this chapter there are only 10 possible
terms (those not involving e) for which we need consider all possible combinations [86)].
The noise model terms that will be added to a chosen combination are determined by
the output y terms present in the combination [86]. For a model with p = 10 possible

terms there are

p p!
. = m for T'=0,1,2,...,p (419)
= 1024

possible combinations to try [86].

In §4.7.3 we demonstrated that for # = p?/N —= 0.1 the number of bootstrap
replications needed for convergence of our BSD algorithm is B = 40. In addition.
the number of iterations needed for BSD to yield a parsimonious model description
is typically one (if 7 = p?/N == 0.1).

For our BSD algorithm, say, we allow for 10-20 iterations for convergence of the
“full” noise model. For the global search method, let us not consider the number
of iterations needed for convergence of the noise model. In addition, assume that
both techniques, global search and BSD, implement the same estimation technique.
Even with this optimistic and biased setting, the computational burden of our BSD
algorithm requires 2.56-1.28 times less computations than would a global search ap-
proach. Under these conditions, our BSD algorithm is computationally more efficient

than doing a global search. However, if our BSD algorithm requires, say, two iter-
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ations to converge and we allow for 20 iterations for the noise model our method
requires 1.56 times more computations than the global search. Hence, depending on
the number of iterations required for BSD to converge it may not be as efficient as a

brute force global search.

4.9.7 Applicability of BSD to More Complicated Structures

In this chapter, we demonstrated the performance of our BSD algorithm on only three
nonlinear systems. These systems were selected for study for the following reasons:
(1) all three models are described by only a few terms but the ratio of spurious terms
to true terms was large and (2) most systems studied in practice contain at most a
second or third-order nonlinearity (or may be reformulated as such). For a comparable
number of terms in the full model (5 350), the systems studied in this chapter are
general enough to provide insight into the behavior of our algorithm when applied to
more complex systems.

Since the BSD algorithm performed well when the model being tested contained
both a second and third-order nonlinearity, it suggests that our algorithm provides
good estimates of parameter statistics leading to accurate estimates of model struc-
ture. Moreover, as noted above, our algorithm “at worst” tends to provide a model
that is slightly over-parameterized, if the data record is sufficiently long.

However. BSD may not perform well even when the nonlinearity order is low but
the lag order is large [86]. For example. a second order NARMAX model with a
maximum input-output lag of 40 and assuming noise free measurements (i.e., n, =
ny, = 40,n, = 0,/ = 2) will have in excess of 3,400 candidate terms [86]. Even with
noise free data, parameter estimates for the full model could be entirely inaccurate
and numerically difficult. Consequently, the BSD algorithm may fail when the system
to be identified requires large input or output lags [86]. These difficulties are partly
due to over-parameterization of the full model. Over-parameterization results in
the residuals being “under-dispersed” and, hence, they will no longer contain useful
information about the underlying system.

In many practical identification problems there is often some a priori informa-
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tion available about the system such as the presence of large input or output lags.
If this knowledge is available to the user it may be possible to eliminate many of
the candidate terms before starting the structure detection procedure, thereby re-
ducing the problem to one that is of practical dimension and can be solved using
our BSD algorithm. For these reasons we expect the results presented in this chap-
ter to be a good representation for comparable structures and, therefore, we expect
good behavior of BSD when applied to various linear or nonlinear systems, that are

linear-in-the-parameters.

4.9.8 Combined Fast Orthogonal Search and BSD

One difficulty with Korenberg’s fast orthogonal search (FOS) [3, 4, 84, 85, 87] is
the selection of a threshold value p (see §2.6.2.3 and Equation 2.63) for determining
significance of a candidate term in the full model. Nevertheless, it may be possible to
utilize Korenberg’s FOS in combination with our BSD algorithm to provide accurate
reduction of NARMAX models.

If an aggressive value for p (i.e., small p) is selected, it may result in a parsimonious
model but one that does not contain all its true terms. However, if a conservative
value for p (i.e., large p) is selected, it will likely give a reduced model that is still
over-parameterized but retains its true terms. Therefore, selecting by a conservative
value for p it may be possible to use a combined FOS-BSD approach to compute
structure. With this approach FOS can be used to initially reduce the full model
then apply our BSD algorithm to “fine tune” the model to give a parsimonious model

with good predictive capability.

4.9.9 Summary of Findings

Simulation studies and convergence analysis showed the following.

1. In the presence of Gaussian, white noise, when the number of free parameters

was small, the t-test, stepwise regression and BSD methods yielded similar
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results. However, our BSD technique performed better when there were many

candidate terms in the full model.

In the presence of bandlimited noise, results showed that all three methods failed
to compute an accurate structure for a highly over-parameterized NARMAX

model.

Empirical results demonstrated that a necessary condition for the BSD to yield

correct model structure is # = p?/N = 0= 0.1.

Simulations demonstrated that when = is in the neighborhood of 7 = 0.5—-0.2 it
may be possible to improve the correct selection rate by increasing the number

of bootstrap replications, B.

Results showed that for # & 0.1, our BSD algorithm, at worst, provides a model

that is slightly over-parameterized.
Application of BSD to a theoretical model of slow-phase VOR was successful.

Our updating scheme for the BSD algorithm reduces computational require-

ments significantly.

Using bootstrap, it is possible to compute better estimates of parameter statistics

because it requires few assumptions about the error distribution, resulting in more
accurate estimates of the model structure. Therefore, the BSD algorithm appears

advantageous as a tool for structure detection.

4.10 Conclusions

The results demonstrate that the BSD algorithm is a robust method for detecting
the structure of linear regression models and is resistant to noise. This method
provides accurate estimates of parameter statistics without relying on assumptions
made by traditional procedures and yields a parsimonious description of the system.

Convergence results provide an empirical measure for data requirements necessary to
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achieve a true model structure. Hence, the BSD method can be used to detect the
structure of complex nonlinear dynamic models.

The overall significance of these results has been to demonstrate our BSD al-
gorithm provides consistent and accurate results, requires no a priori information
regarding the true system output or noise to select a rejection ratio, and works when
other methods fail. The importance and relevance of this technique was demonstrated
for physiological systems analysis by applying this technique to a theoretical model

of slow-phase VOR.
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Chapter 5

Bootstrap Model Order Selection

5.1 Overview

I[dentification of NARMAX models requires determining both the model order and
parameter values. Good parameter estimation methods exist if the model order is
known, however, model order selection remains a problem.

In this chapter, we develop a bootstrap model order selection (BMQOS) algorithm.
The bootstrap method is a numerical procedure for estimating parameter statistics
that requires few assumptions: the errors must be independent and identically dis-
tributed (i.i.d.) with zero mean. The expected error in cross-validation is an appro-
priate cost function to estimate the “optimal” model order since it does not depend
on the estimation set. However, statistical errors may lead to inconsistent or inaccu-
rate estimates of model order for particular realizations. As a means to resolve these
inconsistencies, in this study, we examine the hypothesis that the bootstrap method
vields an accurate estimate of the “true” prediction error in cross-validation.

Performance of our BMOS algorithm was evaluated by estimating the order of a
NARMAX model with a few spurious terms and highest lag order on an even-order
nonlinear term. In addition, we show applicability of this technique to biological
systems by estimating the order of a theoretical model of slow-phase VOR. Results
demonstrate that the BMOS algorithm is a robust method for selecting the order of

NARMAX models with a high probability of success.
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5.2 Introduction

5.2.1 Model Order

The system order for NARMAX models is defined in Equation 2.21 as
O = [ny. Ny, ne, {] (5.1)

where n, is the maximum lag on the input, n, the maximum lag on the output, n,
the maximum lag on the error and [ is the maximum nonlinearity order. If the system
is assumed to have output additive noise, Equation 2.21 can be reduced to a 3-tuple

as
ng=mn, = O =[nyn,l (5.2)

Through out this chapter, we assume that the system only contains output additive
noise corrupting its output.

Parameter estimation for NARMAX models [18, 22, 24, 37, 61] is straight-forward
once the model order is known. The central problem in NARMAX identification is
that of selecting the correct model order. Formally the problem is: given the measured
output z(n), and the input u(n), where n = 1,---, N; estimate the parameters O =

e, ny [} fromn, =0, ny . iny =1, -, ny and [ =1, oy

5.2.2 Existing Methods

Several methods for model order selection have been proposed including AIC (Akaike’s
Information Criterion) [5], Minimum Description Length (MDL) [128] and the False
Nearest Neighbors (FNN) algorithm [82]. However, all of these can fail in nonlinear
system identification, for various reasons (see §2.6.1).

Both AIC and MDL are widely used in systems analysis to estimate model order.
A well known problem with AIC is that it is inconsistent since its variance does
not tend to zero for larger sample sizes. This inconsistency is a result of AIC not

penalizing the addition of extra parameters heavily enough, i.e., the penalty term does
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not decrease fast enough with IV to balance the first term in Akaike’s criterion [72]

. (see Equation 2.46). The MDL model order estimator proposed by Rissanen [128] was
designed to overcome this problem. AIC is an asymptotic measure since it involves
taking the number of samples N to infinity; MDL does not make this assumption.
The difference between MDL and AIC is the penalty term (compare Equations 2.46 &
2.50). The penalty term in the MDL definition is larger than that of AIC by a factor
of approximately log N, which causes a much steeper minimum. In practice, the order
estimated by MDL is normally lower and provides a more consistent estimate for the
optimal model order.

Theoretically these model order estimators are a function of residual noise vari-
ance. The noise estimate, however, is related to the method that was used to obtain
model parameters. The estimated noise variance is a function of output noise variance
and parameter variance [31]. Therefore, in practice, the methods used for model order
selection and parameter estimation as well as the training sample size are crucial.

As noted in Chapter 2, we conclude that these methods fail for order estimation

. of nonlinear systems for the following reasons.

1. The number of possible terms for a given order can be very large (see Equation
2.22). Due to over-parameterization residual estimate may be under-dispersed,

l.e. biased.

2. Both approaches rely on accurate estimates of 62, i.e., accurate estimates of

residuals, which may not the case for incorrect model orders.

3. Both approaches rely on optimal parameter estimates which depend on the data

size N. For finite data lengths these methods may give inconsistent estimates.

4. Inadequacy of the penalty term in each method is known to give inconsistent

estimates of order for linear systems.

Recently, Kennel et al. [82] developed the false nearest neighbors (FNN) algorithm
specifically to determine model order for nonlinear systems. This method uses a ratio

. test to determine whether neighbors, in the regressor space, are “true” or “false”,
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i.e., whether the neighbors have future outputs that are “far apart”. If the ratio
of the distance between two future outputs points, that are “nearest neighbors”, is
“large” then the neighbors are considered to be false. The FNN technique is limited
to estimating the dynamic order of NARX models, is sensitive to noise and requires
selecting a threshold. The selection of this threshold level requires e priori knowledge

about the true errors and system output, which are seldom available.

5.2.3 Proposed Approach

A model having the correct order will minimize the expected value of the predic-
tion errors [135]. However, statistical errors may lead to inconsistent or inaccurate
estimates of model order for particular realizations [56]. One approach to obtain a
consistent estimate of model order would be to acquire extensive data sets to min-
imize expected error. An alternative would be to improve the estimate of expected
error in prediction with limited data because in many practical applications it is not
possible to collect extensive data sets.

The bootstrap was shown to be a good estimator of parameter statistics, simple to
use, and to require few assumptions (see Chapter 4). Consequently, we hypothesize
that the bootstrap might also be useful for obtaining a consistent estimate of model

order.

5.3 Model Order Selection

5.3.1 The Linear Model

Consider the linear regression model based on model order O
Z=VYobp+e (5.3)

where Z is a N x 1 vector of measured outputs, ¥p is a N x p (p € N) matrix of
regressors with full rank (i.e., nonsingular), 8o is a p x 1 vector of parameters and e

isa N x 1 vector of an i.i.d. noise sequence with zero-mean and homoskedastic. Note
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that the number of parameters, p, is related to O via Equation 2.22 as

{
p = Z p;; where [ is nonlinearity order (5.4)
=1

Pi—i(ny +ny +ne +1—1)
l

pi = , Po=1.

Let the model be fitted using the least-squares estimator in Equation 2.78 as
fo = (¥50,) 19T Z. (5.5)
The predicted outputs are defined as
Z = ¥obo (5.6)
and the prediction errors (error in fit) are defined in Equation 2.76 as
E=Z-2. (5.7)
¥ is defined as a partitioned regressor matrix for a given order O

\I,O = [‘Il:u\pzuékp('] (58)

where V., is a function of z and u only, V., represents all the cross products involving
€. and ¥, is a polynomial function of the prediction errors only.

Let the measured data be represented as
Z = [zlv T ZN] = [zl.I? <o+ s TN, N, IZN¢+|.,I1 sy ZN.N@] = [ZeIZv] (5'9)

where Z, is the estimation set of length N, and Z, validation or future set of length

N,
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5.3.2 Average Loss

The efficiency of a model with order O can be measured by the mean squared error

or average loss [135],

NY ~
l « 7 ”Ze—ZeO”2
LrO::—E Zen — U, pf0)? = ——220 5.
A:( ) Jv‘e n=l( v UE,n.O O) Ne (a 10)
where || - || is the Euclidean norm. After measuring the data, the objective is to select

a model O € D so that Ly, (O) will be as small as possible. D is a collection of some
subset of n, = {0,---.ny_}; ny = {1.---.ny } and { = {1,---, 5}, i.e.. subset of
Ox.- The largest possible D is the one that minimizes Ly, (O).

Let Z, be a N, x 1 vector of future responses at ¥, o and assume that Z, is

independent of Z,. The average conditional expected loss in prediction is [135]

Ny
Y (zon = ¥in000) | Ze, ¥ | = 0 + Ly, (O) (5.11)

n=1

. 1
[N (O)=FE N,

where o2 is the noise variance. Therefore, selecting a model with the smallest Ly, (O)

over all O € D is equivalent to selecting a model with the best prediction ability over

all O € D.

Let
Po = Uo(¥5 W) 0] (5.12)
and

N,

Completing the square in Equation 5.11, taking the expected value and substituting

the definitions in Equations 5.7, 5.12 & 5.13 gives

20Z,— PoZ,)7¢ + | Poéll?

N, N (5.14)

Ly, (0)=ApN,(0) -
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When model O is correct E[Z | ¥o] = Yoo = PoZ, An,(0) =0 and

L. (0) = 1oL, (5.15)

Let Oq correspond to the model order with the smallest size, i.e., 8p, contains all
“components related to the measured output, Z. Therefore [139],

lim inf Ay, (O) >0 for any incorrect model order O, (5.16)

Ny—oc

(where “inf” is the infimum functional). Model order Oy is optimal in the sense that
it minimizes Ly, (O) over O € D for sufficiently large N, i.e.,

lim _P{Lx.(Oo) = min Ly, (0)} = 1. (5.17)

Ny—ro00
The optimal Oy must be estimated since Ly, (O) involves the unknown parameters 6.
Let O be the estimate of Oy based on some model order selection scheme. Therefore,
a model order selection procedure is said to be consistent if

lim P{O =04} =1. (5.18)

Ny—=o0

5.3.3 Effects of Cross-Validation without Bootstrap

One advantage of cross-validation is that, in the limit, the correct model order mini-
mizes the error in prediction. However, in practical situations finite data lengths may
lead to statistical errors giving inconsistent results. To evaluate the effect of finite
data lengths and various levels of noise in cross-validation we simulated the simple

NARMAX model:
y(n) = 0.4[u(n — 1) + v*(n — 1)] + 0.8y(n — 1). (5.19)

This system has order O =[n, =1, n, =1, [ =2].
For this study, a 200 Hz bandlimited input was used (uniformly distributed, white,

zero-mean, random sequence, low-pass filtered with an eighth-order 200 Hz But-
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terworth filter). With a 200 Hz bandlimited input the nonlinear input term (i.e..
u?(n — 1)) generates an internal signal that is at least 400 Hz (plus higher-order har-
monics). To avoid aliasing, we assumed a sampling rate of T = 0.0005 s (2000 Hz);
5 times greater than the internal 400 Hz signal. The search space considered for the
optimal model order was from a minimum order of Opmin = [n, =0, n, =1, I = 1] to
a maximum of Opax = [y, =2, ny, =2. [ =3].

This model was selected because it is difficult to determine the maximum lag-order
for a nonlinear svstem which contains its maximum lag on an even-order nonlinear-
ity, i.e.. u’(n — 1), and because we studied this system in Chapter 4 (see Equation
4.15). Bussgang's theorem states, for Gaussian input data, the cross-correlation of
any squared input-output terms will be zero {12, 13]. Therefore. the lag associated
with even-order nonlinear terms cannot be determined using first-order correlations;
hence “higher-order statistics” must be used [12, 154]. In general, estimating model
order for infinite impulse response (IIR) systems, such as the NARMAX model, even
using higher-order correlations, also fails because the system “theoretically” could

have infinite memory (see Chapter 2 for an example).

5.3.3.1 Effects of Data Length

We assessed the effects of data length using Monte-Carlo simulations. Twenty realiza-
tions were generated in which each input-output trial was unique, and had a unique,
Gaussian, white. zero-mean, noise sequence added to the output, with 20 dB SNR.
The data length was increased from N, = N, = 1,000 to 6,000 data points. The
model that gave the minimum error in prediction in the entire search space (global
minimum) was selected as the “optimal” or “true” order.

The results of this study are shown in Figure 5.1. The plot shows our findings in
percentage: the rate of correct model selection versus data length. The results show
that as the data length was increased the rate of correct selection improved. These

results are as expected from theory.
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Figure 5.1: Cross-validation selection rate versus data length for a simple NARMAX
model. Abscissa: Data length, NV, = N,. Ordinate: % correct selection.

5.3.3.2 Effects of Noise

Next we assessed the effect of noise intensity on estimating the expected error in
prediction. Here, the simulation and model order selection protocol was the same as
described in the previous study except the data length was kept constant at N, =
2N, = 5.000 points while the SNR was decreased from 15 to 0 dB.

The results of this study are presented in Figure 5.2 as a percentage of correct se-
lection versus SNR. The results of this study illustrate that as the SNR was decreased
the rate of true selection also decreased. Again, these results are as expected from
theory. Consequently, when cross-validation alone is used to estimate model order

the probability of true selection may be low, i.e., P{O = 0Op} # 1.

5.3.4 Error in Prediction

Efron [47, 48] derived a bootstrap estimator for the mean of the prediction error
Cn,(O). Shao [135, 136] showed that this estimator is biased and, therefore, gives

inconsistent estimates. Shao [135] proposed a simple, bias-corrected and consistent
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Figure 5.2: Cross-validation selection rate versus SNR for a simple NARMAX model.
Abscissa: SNR. Ordinate: % correct selection. (Note that the abscissa is shown in
decreasing SNR which corresponds to increasing noise intensity.)

bootstrap estimator for the prediction error based on Efron’s [47] original work:

- 1Z, = ¥, 505 |
[yom(0) = E,——20 Om

¥ (5.20)

where E, denotes expectation operation with respect to bootstrap sampling and é('j o
is the p x 1 bootstrap analog of estimated parameters, 90, based on m i.i.d. pairs
(v n- =i n) generated from the empirical distribution putting mass N, ! on (¥, Zen)s

n=1..... N, le.,

m -l
i — 0 T e e -
Hé-m - ZLe,O,nwe,O',n Zwe,o,n‘eyn' (‘3‘21)
n=1 n=1l

'~ m(O) will be minimized when the optimal model order is achieved, giving a unique
minimum [133].

Shao [135] states that, to achieve consistency,

lim P{Lmy,(Oo) = min Ly, O)} =1, (5.22)

Ny—oc
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using this bootstrap estimator values of NV, and m need to be selected such that

lim m=oc and lim m/N, =0. (5.23)

Np—oc Ny—x

This criterion increases variability among bootstrap observations and achieves con-
sistency [135]. A proof of this result can be found in {135]. Our results presented in
Chapter 4 provide a guideline for determining N,, i.e., 7 = p?/N, = 0 = 0.1. There-
fore, depending on the number of data points available for validation m must be
selected to satisfy limy, o m/N, = 0. Based on our results in Chapter 4 we selected
m/N, = 0.2. Specifically, a value of 0.2 was selected to ensure that (1) conditions in
Equation 5.23 are satisfied and (2) to keep data requirements “reasonable” (both 7

and m/N, effect data requirements).

5.3.5 Model Order Selection Using Bootstrap

Application of the bootstrap method to model order selection involves two steps: (1)
computing a series of mean-squared error (MSE) replications of prediction, in which
“bootstrap data” is used to compute new “bootstrap MSE estimates”, and (2) com-
puting the asymptotic expectation of MSE estimates to determine a global minimum.
Bootstrap data is formed by first assuming a model order and then estimating pa-
rameter values for the full model. Residuals for this model are calculated, resampled
with replacement, and then added to the predicted output to generate bootstrap
replications of the output [46, 48]. A number “B” of bootstrap data sets are gener-
ated to estimate B bootstrap: (1) parameter replications based on m i.i.d. pairs of
the estimation set and (2) MSE replications based on N, pairs of the validation set.
The mean value of B bootstrap MSE replications is the bootstrap estimate of the
asymptotic effect of MSE.

The global minimum is determined by storing the bootstrap estimate of the asymp-
totic expected MSE for each order in an n, x n, x | multi-dimensional array. The

model order is estimated as the index value of the global minimum of this array.
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5.3.5.1 BMOS Algorithm

To estimate model order, the BMOS procedure requires the selection of a maximum

order, O = [n, = ny,.,,., Ny =Ny,... | = lmaz), and appropriate values of V,, N, and

m;: the length of estimation. validation and bootstrap data sets, respectively. This

leads to the following algorithm to detect model order in NARMAX models.

\I

10.

11.

. Select O = [ny = Ny Ny = Nypass | = lmax)s Ney Ny, and m.

Compute an initial estimate of the unknown parameter vector and estimate the

residuals for the full model based on N, pairs of the estimation set.

Generate B bootstrap data sets and compute the bootstrap parameter replica-

tions (for the full model) based on m pairs of the estimation set.

Compute B bootstrap estimates of MSE;, b = 1,..., B based on N, pairs of the

validation and the B parameter replications from step 3.
Compute the mean value of MSE; replications as E[MSE;] = & f=11\/ISE;.

Store E[MSE;] in a multi-dimensional array, I'(0), at the (nth, n,,th, lkth)

position.

Ifi<n,, t=1+1. else reset : = 0. where 7 is the current input lag.

If j <ny,., J=7+1 elsereset j =1, where j is the current output lag.

If £ < lnax kK = k+1, else reset k£ = 1, where k is the current nonlinearity order.
Ifi=rny..J =Ny and & = [y, stop, else go to step 2.

[MSE;,,.. O]= min [f (O)] where O is the index of the minimum value, MSEZ,,,.

min*



5.4 Simulations

The effectiveness of the BMOS algorithm was assessed using Monte-Carlo simulations

of the nonlinear model studied in §5.3.3 and Chapter 4:
y(n) = 0.4[u(n — 1) + v*(n — 1)] + 0.8y(n — 1).

Again, this system has order O =[n, = 1. n, =1, [ = 2].

Fifty Monte-Carlo simulations were generated in which each input-output real-
ization was unique. and had a unique Gaussian, white, zero-mean noise sequence
added to each output realization, with 5 dB SNR. We assumed a sampling rate of
T = 0.0005 s and each input had the same characteristics as discussed in §5.3.3. For
identification, an estimation data length of N, = 2, 300 points was used. After an ini-
tial estimate of the system parameters was computed, B = 200 bootstrap replications
were generated, with m = 400 points from the estimation data set and N, = 2,000
points from the validation data set (see Equation 5.23), to assess the distribution
of the expected value of the cross-validation cost function. To estimate the optimal
model order. we searched from a minimum order of Opip = [, =0, ny =1, [ =1] to
a maximum of Omax = [y = 2, n, = 2, [ = 3]. The model that gave the minimum
error in prediction in the entire search space (global minimum) was selected as the
“optimal” or “true” order. We also compared the results of this bootstrap estimator
with a cross-validation estimator without bootstrap. For the cross-validation estima-
tor without bootstrap the search space and order selection criteria was the same as

for the bootstrap estimator.

5.4.1 Simple NARMAX Model

We studied the simple system shown in §5.3.3 since it has a small number of candidate
terms and the maximum lag is associated with an even-order term.

The results of a typical trial for this model is shown in Table 5.1. The result
shows that the minimum of ['(0) corresponds to O = [n, = 1, n, = 1, [ = 2]. Note

particularly that the estimated mean-square error increases for model orders above
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Ty
l | ng, 1 2 3
0 || 0.0749 0.139 0.0704
111 0.451 0.329 0.241
2 0.236 0.229 0.184
3 0.213 0.171 0.179
0 || 0.6806 1.1642 2.2766
21 1 [ 0.0249 0.0344 0.0431
2 il 0.0278 0.0384 0.0431
3 || 0.0308 0.0425 0.0450
0 5.824  8.682 13.146
3|1 0.135 0.189 0.254
2 0.122 0.191 0.256
3 0.182 0.201 0.262

Table 5.1: MSE result of a typical trial for a simple NARMAX model with bootstrap-
ping. First column: nonlinearity order, [. Second column: input lag, n,. First row:
output lag, n,. Optimal order (minimum MSE) in bold. Result divided by 1000.

ny=1n,=1[=2.

To assess the accuracy of this technique for estimating model order, the empirical
probability of selecting a particular model order was computed for this example with
and without bootstrap. The results for 50 independent runs (in percentage), are
given in Table 5.2. The results show that when cross-validation was used without
bootstrap the empirical probability of selecting the true model order was low, with
a true selection rate of only 52%. However, when bootstrap was used in conjunction
with cross-validation (our BMOS algorithm) the rate of selecting the model order was

high. with a success rate of 96%.

5.5 Simulated Biological Example

5.5.1 VOR Model

Next. we examined the performance of the BMOS technique with a NARMAX model

of VOR slow-phase. Ocular responses consist of interlaced segments classified as
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Without With
Bootstrap | Bootstrap

1, ny

lln, || 1 2 31 2 3
0y0 0 o0Jo0 0 O
111 0 0 0oj0 0 O
240 0 o0J0 0 O
340 0 0jJ0 0 O
Of0 0010 0 O
211152 4 26 2 O
2116 8 012 0 O
312 0 2j0 0 O
0y 0 0 0J0 0 O
3|1 0 0 Ooj0 0 O
26 0 o0J0 0 O
3 8 0 0J0 0 O

Table 5.2: Monte-Carlo simulation results for simple NARMAX model. Left: Em-
pirical probability (percentage) without bootstrapping. Right: Empirical probability
(percentage) with bootstrapping, i.e., BMOS algorithm. Optimal order (maximum
probability) in bold.
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“slow™ or “fast”. according to their average speed characteristics, so a time record
has a sawtooth-like pattern called ocular nystagmus [57]. This sawtooth-like pattern
is a consequence of the VOR switching between two different modes of operation. As
stated in Chapter 4, issues concerning identification of multiple modes of this system
are discussed in Chapter 6. Here, we focus on a theoretical model of slow-phase VOR

shown in Figure 5.3.

. AKLE(S)
U(s) X(s) gTs Y (s) Z Z(.i

| aud(n) + hu(n) + cu(n) +d —— "<&/

Static Nonlinearity -
Linear System

Figure 5.3: Global model structure of slow-phase component for the VOR system.
The slow-phase component is described as (see §4.8) [91]

y(n) = Boy(n — 1) + Bifu(n) — u(n = 1)] + Bo[u®(n) — u?(n —1)] (5.24)

+ Blud(n) = v¥(n —1)]

This physiological system was studied since it exhibits rich dvnamic behavior and has
a low system order (O = [n, = 1, ny, = 1, [ = 3]), hence few candidate terms. Note

that this is the same VOR model studied in §4.8.

5.5.2 Simulation Protocol and Results

This VOR model was simulated in continuous-time using Simulink and sampled at a
rate of 200 Hz (T = 0.005 s). The parameters used in the simulation were the same
as those given in Table 4.1 (except the sampling rate, T).

The performance of the BMOS algorithm, as applied to the VOR model, was as-
sessed using Monte-Carlo simulations with bandlimited inputs (uniformly distributed,
white, zero-mean. random sequence, low-pass filtered with an eighth-order 10 Hz
Bessel filter). Fifty Monte-Carlo simulations were generated in which each input-

output realization was unique, and had a unique Gaussian, white, zero-mean, noise
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sequence added to the output, with 5 dB SNR. For identification, an estimation data
length of N, = 12,300 points was used. An initial estimate of the system parameters
was computed. and B = 200 bootstrap replications were generated, with m = 2, 400
points from the estimation data set and NV, = 12,000 points from the validation data
set (see Equation 5.23), to assess the distribution of r N.,.m(O)- The optimal order was
computed from a minimum order of Op;, = [ny =0, n, = 1, { = 1] to a maximum of
Omax = [Mu =2, ny =2, 1 = 4].

The result of a representative experiment using bootstrap techniques, is presented

in Table 5.3. The result shows that optimal model order is at the global minimum

Ny
| ng 1 2
0 1.76  1.68
111 1.25 1.25
2 1.23 1.23
0 1.56 1.54
2|1 1.00 0.999
2 1.01 1.02
0 1.45 1.46
3] 1 | 0.801 0.839
2 || 0.834 0.838
0 147 1.43
41 | 0834 0.840
2 i 0.839 (.843

Table 5.3: MSE result of a typical trial for the slow-phase component of the VOR
system with bootstrapping. First column: nonlinearity order, {. Second column:
input lag, n,. First row: output lag, n,. Optimal order (minimum MSE) in bold.
Result divided by 1000.

(shown in bold): O =[n, =1, n, =1, [ =3].

To assess the accuracy of this technique for estimating model order the empirical
probability of selecting a particular model order (in percentage), with and without
bootstrapping, was computed (Table 5.4). The result shows that the BMOS tech-
nique selected the correct model order with a 90% success rate. However, without

bootstrapping the rate of success was 42%.
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Without With
Bootstrap | Bootstrap

ny Ty

Ling | 1 2 1 2
0 0 0 10 0
1|1 0 0 }o 0
2 0 0 |o 0
0 0 0 {o 0
211 0 0 |o 0
2 0 0 ]o 0
0 0 0 |o 0
3|1 || 42 4 PO 2
2 124 12 2 0
0 2 0 Jo 0
41 || 14 0 ]2 0
2 0 2 10 4

Table 5.4: Monte-Carlo simulation results for the slow-phase component of the VOR
system. Left: Empirical probability (percentage) without bootstrapping. Right: Em-
pirical probability (percentage) with bootstrapping, i.e., BMOS algorithm. Optimal
order (maximum probability) in bold.
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5.6 Discussion

5.6.1 Simulation Studies

For the simple nonlinear model, a cross-validation approach without bootstrap failed
to give consistent results for true order selection since it requires asymptotic proper-
ties to be invoked, and it is, therefore, limited by finite record lengths. However, our
BMOS technique consistently selected the correct model order. With respect to the
slow-phase VOR model, the BMOS method again had a higher probability of con-
vergence to the true model order than cross-validation without bootstrap. Clearly,
our combined cross-validation/bootstrap algorithm (BMQOS) was superior to order

selection via cross-validation alone.

5.6.2 Optimal m

In this study, we did not perform a convergence analysis to determine an “optimal”
choice of bootstrap resampling size, m. An optimal m may depend on model pa-
rameters, noise level/properties and model complexity. Therefore, it is difficult or
impossible to determine an optimal m. Instead we heuristically found that as long as
the criterion 7 = p?/N — 0 = 0.1 (see Chapter 4) is not violated a choice of m in the
neighborhood of m =~ 0.2 may be sufficient to achieve consistency for the bootstrap
estimator E[[y,(0)]. In this chapter, we again emphasize that a suitable 7, m and B
may vary for different model structures, perturbations and signal-to-noise ratios. It
may be prudent to decrease m and m by a factor of ~10 for more conservative values,
if sufficient data records and/or computing power is available. These recommenda-
tions may not apply to all systems as a “golden rule” and, therefore, should only be

used as a “rule-of-thumb”.

5.6.3 Computational Requirements

Our BMOS algorithm requires long data records and considerable computational

effort. The computational expense is a result of the data requirement and because B
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bootstrap estimates of MSE (MSE;, b = 1,..., B) are required for each point in the
search space to compute an asymptotic bootstrap MSE (E[MSE;]). Consequently,
our BMOS algorithm may not be a practical method for order selection for many
applications where the data length is limited and a powerful computer is not available
or where the user cannot (will not) wait for this algorithm to provide an estimate.
However, in the future we expect that computational expense will not be “much” of

a limiting factor due to the availability of cheaper and more powerful computers.

5.6.4 Applicability of BMOS to More Complicated Struc-
tures

In this chapter, we demonstrated the performance of our BMOS algorithm on only
two nonlinear systems. These models were selected for study since they are difficult
to identify, for the following reasons: (1) the simple nonlinear model has a maximum
lag associated with an even-order nonlinear term and (2) both models are described
by only a few terms but, for many system orders, the ratio of spurious terms to true
terms may be large.

Since the BMOS algorithm does not rely on correlation techniques it provides
an unambiguous estimate of model order and it does not suffer from the effects de-
scribed by Bussgang’s Theorem (see §2.6.1.1 & §5.3.3). Results from order selection
of the second-order nonlinear system (! = 2} demonstrated that our BMOS algorithm
estimated the lag associated with an even-order nonlinear term with high accuracy.
In addition, the BMOS algorithm performed well when the model being tested was
highly over-parameterized. This suggests that the BMOS algorithm is not sensitive
to having “very accurate” parameter statistics to provide good estimates of model
order, as required by AIC and MDL (see §2.6.1.5-2.6.1.7 & §5.2.2). For these rea-
sons we expect the results presented in this chapter to be a good representation for
more complicated structures and, therefore, we expect good behavior of BMOS when

applied to different linear or nonlinear systems, that are linear-in-the-parameters.
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5.6.5 Future Work

Since we only studied the properties of this algorithm in the presence of Gaussian,
white, zero-mean output additive noise, further work is necessary to assess how this
method performs in the presence of bandlimited output additive noise and when ap-
plied to experimental data from biomedical engineering applications. In addition,
we did not compare the performance of our BMOS algorithm against any popular
techniques such as AIC or MDL. Future work should include a study of this algo-
rithm’s ability to select correct model order, i.e., consistency, compared with classic

approaches.

5.6.6 Summary of Findings

Simulation studies showed the following.

1. For the simple nonlinear model, a cross-validation approach without bootstrap

failed to give consistent results for true order selection.

(8]

For the simple nonlinear model, our BMOS technique consistently selected the

correct model order.

3. The BMOS algorithm requires long data records and considerable computa-

tional effort.

4. Our BMOS algorithm may not be a practical method for order selection for
many applications where the data length is limited and a powerful computer is

not available.

Using our BMOS algorithm, we have demonstrated that it is possible to compute
the order of a NARMAX model. The bootstrap computes an asymptotic estimate of

the error in cross-validation, resulting in accurate estimates of model order.
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5.7 Conclusions

The results demonstrate that the BMOS algorithm provided a robust method for
selecting the order of a (1) simple NARMAX model and (2) an example VOR model
based on slow-phase dynamics. Repeated trials illustrated that the BMOS algorithm
had a high probability of success. This method provides accurate estimates of model
statistics without relying on assumptions made by traditional procedures and vields
an unambiguous estimate of system order. Hence, the BMOS algorithm may be used
to estimate the order of complex nonlinear dynamic models.

The overall significance of these results has been to demonstrate that our BMOS
algorithm provides consistent and accurate results. Moreover, the importance and
relevance of this technique was demonstrated for biological systems analysis through

application of BMOS for order selection of a theoretical model of VOR slow-phase

dynamics.
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Chapter 6

Parameter Estimation of Hybrid

Systems

6.1 Overview

A “hybrid” or “multimode”system is one that can switch between various modes of
operation. When a switch occurs from one mode to another, an impulse or discontinu-
ity may result followed by a smooth evolution under the new regime. Characterizing
the switching behavior of these systems is not well understood. A consequence of
the hybrid nature of these systems is that data available for parameter estimation of
any sub-system may be inadequate. As such, identification or parameter estimation
of multimode systems remains an unresolved issue. In this chapter, we (1) show how
the NARMANX model structure can be used to characterize the impulsive-smooth be-
havior of these systems and (2) propose a modified extended least squares (MELS)
algorithm to estimate the coefficients of such systems.

Although the derivation of the NARMAX model is based on zero-initial-state
response, with some extensions (see Chapter 2), the results can be carried over to
the nonzero-initial-state case. This makes the NARMAX model structure suitable
for modeling nonlinear multimode systems.

The responses of hybrid systems have a discontinuity at each switch time; these

will bias parameter estimates if they are not modeled. Therefore, we developed a mod-
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ified extended least squares (MELS) algorithm for parameter estimation of multimode
systems to address this bias problem. Existing parameter estimation algorithms can-
not use data from all measured data segments because smooth continuous behavior
is assumed. However, our algorithm allows all the recorded data to be used, and, as
such, enjoys the same asymptotic properties as standard least-squares estimators.
We applied this algorithm to a model of the vestibulo-ocular reflex (VOR) and
demonstrated that (1) the NARMAX model structure is suited to modeling the dy-
namics of this nonlinear hybrid system, and (2) the MELS algorithm is a robust

method for estimating the coefficients of multimode systems.

6.2 Introduction

A multimode or hybrid system (Figure 6.1) is one that may switch, either by ex-
ternal or internal causes, between a finite number of different modes of operation.

Consequently its response may have discontinuities at each mode switch {59].

Linear Sub-System 1

Xi(s) Yi(s)

Li(s)

A

Shared IStates
| Sa

S2 2
AL _/ ’ .
Uls) | Xt X Y Y{s)
‘j‘[u(n)]' a(s) La(s) 2(8) Z(s)

51

Static Nonlinearity X
- Linear Sub-System 2

I !
| [
| . I
I Sm Sam |
I I
[ |
| I

Xm) | p o LY

Linear Sub-System M

Figure 6.1: General Hammerstein model structure for a M mode hybrid system with
output additive noise where U(s) is the input, Y'(s) the true (Y(s) is the selected
Yn(s) driven by Xn(s), m = 1,2,..., M) system output, E(s) a Gaussian, white,
zero-mean, noise sequence and Z(s) the measured output.
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We consider multimode systems in which the modes of operation are characterized
as finite-dimensional, nonlinear, time-invariant, difference equations since they may
include nonzero initial conditions. The assumptions we made for this system descrip-
tion are (1) the switch times are known for each sub-system, (2) the output additive
noise sequence, e is Gaussian, white, zero-mean and (3) the system is non-zeno, i.e.,
cannot switch an infinite number of times in a finite time span [6, 7, 14, 67, 152).

The vestibulo-ocular reflex (VOR) is well known to exhibit nonlinear “hybrid”
behavior [40, 57. 132]. Presently, descriptions of the VOR rely on linear a priori
modeling methods [57, 124]. These methods provide convenient means of charac-
terizing slow and fast phase dynamics. However, many models do not account for
the rich dynamic behavior due to nonlinearities, tﬁerefore limiting their usefulness in
diseased cases because of mode interactions through initial conditions [124].

Parameter estimation involves determining values for unknown system coefficients.
Many parameter estimation techniques for nonlinear systems depend critically on
the choice of model structure, the source of noise within the system and the input
excitation {22]. Most parameter estimation algorithms for linear systems cannot be
applied directly to NARMANX systems because they assume that the noise terms in
the model are independent.

In many situations parameter estimation or identification may be difficult or im-
possible if the recorded data is not sufficiently long. This is a common problem in
many multimode systems since it may not be possible to obtain “long” record lengths
due to the switching behavior of the system. Hence, no single data segment may be
long enough for parameter estimation, given noise considerations.

The extended least-squares (ELS) algorithm (22, 61] yields unbiased estimates for
NARMAX models (see Chapter 2). However, ELS cannot estimate the impulsive
behavior of multimode systems or use more than a single measured data segment.
Consequently, we will develop a modified ELS (MELS) algorithm to determine pa-
rameter values of nonlinear multimode systems, which can take advantage of multiple
short data segments. The development in this chapter is specific to the NARMAX

polynomial class.
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6.3 Multimode Model Formulation

Consider a dual mode system structure shown in Figure 6.2. This is a simple case of

Linear Sub-system 1

.\’1(3)_ Ll(s) ’1(5)

[ Y
e - ®5, | 50
U(s . X(s Shared!States
T P | JP\ R
i 1
: Static Nonlinearity 4 :
X2 Y5
(5)7 La(s) 2(s)
| I
! Linear Sub-system 2 |
L e e e e e e e e - = - 4

Figure 6.2: Hammerstein model structure for a dual mode hybrid system.

the general form described in Figure 6.1. Let f!(-), Y1(s) and Y3(s) be defined as:

f’(-) = a+ bu(n) +cu2(n) +du3(n), (6.1)
. Kis Yi(o) .
¥ = X +— 1=1,--,q,
® (8) = SN+ R s L
. I\’g - }’21(0)
15 = . =1,
2(s) s+ng2(S)+s+pg‘ oo, T

where }7,.(o) represents the initial condition in continuous-time and q,r are the
number of switches, i.e., data segments, of sub-system one and two, respectively. The
two pathways are decoupled, analyzed separately, and then recombined to vield the
overall input-output relationship, provided initial conditions are modeled.

The linear system dynamics can be converted to the discrete domain via the

bilinear transform to give

yi(n) = myi(n—1) +1fzi(n) — z1(n - 1)] (6.2)
+ Iiléll(n—j)+"‘+K‘i6“(ﬂ—j,‘); 'i=1,"',q
y2(n) = ay + agye(n — 1) + az[za(n) + zo(n — 1)]

+ Ada(n—k)+- -+ Ado(n—ke); €=1,---,7
. where the coefficients v,, v = 1,2 and a, w = 1,2, 3, account for the parameters of
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the continuous-time linear system and sampling rate. The input-output data (z, y)
are organized according to mode of operation and denoted by a subscript 1 for sub-
system one and 2 for sub-system two. (Note, in general, the number of sub-systems
can be any finite number, m = 1,2,---, M.) The Kronecker impulse function, 4,
is used to represent the onset of an initial condition in discrete-time. x; and A, are
discrete-time initial conditions (coefficients), used as impulse weights to scale the
Kronecker impulse, accounting for the discontinuity at each switch time. The indices
J, k represent the lag value of the é;;th and do,th impulse.

Substituting f!(-) for z(-) into Equation 6.2, collecting terms and combining the

overall nonlinear model is

y1(n) Switch Position Sy
y(n) = 1 (6.3)
Y2(n) Switch Position S,

n(n) = myln—1)+ Gifui(n) —uwi(n —1)]
+ Balui(n) ~ ui(n - 1)] + Bs[ui(n) - ui(n — 1)]
+ Kidy(n—j)+- -+ rb(n—7) i=1,---,¢
yAn) = ay+agye(n— 1) + 0 [uz(n) + uz(n - 1)]
+ Pofui(n) + ui(n — 1)] + da[us(n) + uj(n — 1)]

+ ’\ldll(n—k)+"'+/\[61£(n—k¢); £=17---’r

which is a NARMANX model since it (1) includes both linear and nonlinear input-
output terms and (2) is linear-in-the-parameters. Notice that although the response
function of a system varies for different initial states, the input-output model for the
syvstemn will always be the same regardless of initial states provided the system is
maintained within a region around an equilibrium point [37]. This simple model can

easily be extended to the general M mode NARMAX model given in Equation 2.20.
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6.4 Modified Extended Least-Squares

Since the input-output model for a system is the same regardless of the initial state,
the ELS algorithm can be used to estimate both the input-output and noise models.
However, implementing ELS as presented in §2.6.3.3 will result in a biased estimate
of the coefficients. Since multimodal systems may produce an impulse at each switch
time, these impulses cause a bias of the estimated parameters if they are not modeled.
This bias is shown using arguments similar to those in Equation 2.75. For a given

mode of operation, the extended least squares formulation is defined as

IZm = VYl +em, m=12,...,. M, where (6.4)

\Pm [\p:mum ‘I’:mumém ‘I’em] and

i

gm(n) = dmn—J1) +0m(n—H)+ - +oén(n—-7J) +en(n), i=1,...,1.

For a given mode of operation m, ¥,, is defined to be a partitioned regressor matrix

where ¥, is a function of z,, and u,, only, ¥ represents all the cross products

ImUm ZmUmém

involving é,,, and W, _ is a polynomial function of the prediction errors only. Note
that z,, is the measured or noise corrupted output for a given mode, m.

Taking the expectation of b, ELS gives

-~

Elfmers] = (VL ¥n) 'VLE(Z,] (6.5)

(U7 0,,) T (W0, g5 + Em)

Il

= 9m ELs + (‘I'E‘I’m)_lq’ﬁt‘m

therefore, E[(Y7 ¥,.)7'¥Te] # 0.

This bias is a result of the model error, £, containing unmodeled dynamics due to
initial conditions, i.e., scaled impulses. To compute an unbiased estimate of 8,,, we
develop an alternative estimation technique based on ELS.

Consider the system shown in Figure 6.1. The data segment(s) for each sub-
system are defined as shown in Table 6.1 (See Figure 6.3 for an example of data

segmentation.): where Ny is the length of the kth segment, Z:=1 Ny, is the total
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U Z

Uy,1,1,1,0 Z1,1,1,1.0
[Ju Zu
uNhA'lvlv]-vo lelevIvlqo
UN;+1,1,2,1,1 SN+1,12,1,1
A - .

U., Z;
UN,+ Ny Na2,1,1 ZN2+N1,N2,2,1,1
UNy+N+1,1,1,2,2 ZNa+Ny+1,1,1,2,2

U.z Z,,

UN3+NasNy,N3,1,2,2 ZN3+Np+Ny,N3,1,2,2
UN3+Na+N1+1,1,3,1,3 IN3+Na+N1+1,1,3,1,3
U31 Zst

UN+N3+N2+N1,N3,3,1,.3 SN4+N3+Na+Ny,Ng 3,13

.. 2 - ..
u’(Z:;f Ng)+1,1,m,ij (Z,';:: Ng)+1,1mi 5
Ui : : L

u(zk=1 Nq )1Nk|miiaj Z(Z:=l Nq)rNk ,m,i,j

Table 6.1: Data segmentation.

data length, £ = 1,2,...,(j + 1) is the segment number, j = 0,1,2,...,h is the
switch number, m = 1,2,..., M is the sub-system number and : = 1,2,...7 is the
segment number of the mth sub-system. z.;mi. = 6.1 mi. + U 1mi. + .- + uf‘hm’i‘,,
is the first output of segment 7 of sub-system m. U,,;, Z,; are the input-output data
of the corresponding sub-system and segment. We define the concatenation of all

input-output segments of the mth sub-system to be

u = [UmlaUmzv"'yUmi]; m=1,27"'aM (6'6)
Z = Zmn,Zmay 2 Lmi); 1=1,2,---1.

Let U and Z be N, x 1 vectors of measured input and output, respectively.
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Figure 6.3: Example of VOR input-output data segmentation for a dual mode system.

A least-squares formulation for this system is
Z=Uz,0+¢ (6.7)
where Z is a V,, x 1 vector of measured outputs, ¥ z, is a non-singular N, x p matrix

of regressors, based on input-output only, 8 is a p x 1 vector of unknown parameters,

and € is a V,, x 1 vector of prediction errors.
To estimate an initial paramecter set of the mth sub-system the regressor matrix,

¥ zy,. is formed similar to ¥, (see §2.6.3.2), except each data segment is considered
as a new input-output segment. Therefore, the regressor matrix is a concatenated

matrix of sub-regressor matrices formed from individual data segments as

¥z U,

-

v
Zm.aUrru (6.8)

Vzy =

L \IIZmIUmI ]
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A modified extended regressor matrix, ®, used to estimate the noise model and

impulses is defined as
& = [ U] (6.9)

where W is defined as in Equation 6.4. The extension, ¥y, represents the effects of
initial conditions when a switch occurs. The number of columns in ¥; is equal to the
number of data segments, i.e., number of switches. Note that since multiple switches
can occur the columns of ¥ contain impulses lagged in time. In addition, the number
of impulses or initial conditions in each segment is equal to the dynamic order of the
linear system. For the simple case presented in §6.3 there is one initial condition
per segment since the dynamics are of order one. To model impulses due to output
and noise the effect of the forcing function needs to be removed, i.e., current inputs.
The first input point is subtracted (up to the order of nonlinearity, /) from the first

output, of each segment. The columns of ¥; are formed as

N 0 <ol
U5 = [(Z1mi — O W 1myi- — - — 000 o

. . R
= {zmie = O iy — - = O P mli, )O ()]
If the impulses due to output and noise are modeled separately as

\I’g = [ ( Z.\mi, — élu.,[,m'i'. - ... élu{,l,m,i,-)d(')

( z-,l,m,i,- - élu.'l'm’i,. —_— ... = 0[[1{’1'"‘#,_)E.‘l‘m,i'.d(‘)]

¢ will be singular or ill-conditioned.

The extended parameter set
Oriers = (BT0) 1072 (6.10)

can be shown to be an unbiased estimate of @xrgrs since the residuals are zero-mean,
in the limit, when all impulses and errors are estimated. This modified extended

least-squares algorithm has the same asymptotic properties as OLS and ELS since
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it models all dynamics due to initial conditions or discontinuities as well as system

dynamics. This leads to the following algorithm to estimate parameters of nonlinear

hybrid systems.

6.4.1 MELS Algorithm

1. Segment the input-output data record according to mode of operation.

o

Form ¥z, for the mth sub-system, for m = 1,2,---, M, compute an initial

estimate of the unknown parameter vector and estimate the residuals.

3. Form ® for the mth sub-system, compute an estimate of the extended parameter

vector and compute the residuals.
4. Go to 3 until convergence.

3. Estimate parameters of the next sub-system, m = m+1. Go to 2 until m > M.

6.5 VOR Model

Ocular responses during head perturbations consist of intermingled segments classified
as “slow” or “fast”, according to their average speed characteristics. This describes
the vestibulo-ocular reflex (VOR) and a time record of the response has a sawtooth-
like pattern called ocular nystagmus (Figure 6.4). This sawtooth-like pattern is a
consequence of the VOR switching between two different modes of operation: the
slow-phase which stabilizes the eye in space (E ~ —H) and the fast-phase which
re-orients the eye in the direction of head rotation (E x H). Note that the VOR is a
dual mode hybrid system (see Figure 6.2), a simple case of the general form in Figure

6.1.
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Figure 6.4: Typical plot of VOR output.
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In Figure 6.2 let f/(-), Y1(s) and Y3(s) be redefined as:

i) = a+bu(n) + cu®(n) + dud(n), (6.11)
. Ky/n . Y1i(o) K, Yiu(o)/n .

} - _‘X - A ——-—; = 17-..’ R
1(s) s+ 1 1(s) + ns+1 s+p i(s) + s+ pm ' \

. 2/Ta .. Yo (o) K, Yo (0)/ 72

Y = 2/ X 2 = ] e s =1,

2(s) s+ 1 2(s)-*-rzs%-l s+p2’\2(s)+ S+ Do ’ i T

where Y7(s) and Y5(s) are first order approximations for the modes (phases) of the
VOR.

Clinically, vestibular patient evaluation relies on the characteristics of only VOR
slow-phases. However. our method can provide both the slow and fast phase dy-
namics in discrete-time. A NARMAX description of VOR. slow-phases. y;(n), and

fast-phases. y»(n) of the model in Equation 6.11 is:

(6.12)

y1(n) Switch Position S,
y(n) =

y2(n) Switch Position S,
n(n) = B+ Boyi(n — 1) + Fafu{n) + u(n - 1)]

+ B[ (n) + ¥ (n — 1)] + Bs[ud(n) + u®(n — 1)]

+ Kou(n—J)+---+rdu(n—j) i=1,---.q
ya(n) = U + Gagoln — 1) + d3u(n) + u(n — 1)]

+ U4(r) + vl (n = 1)] + 5[ (n) + ud(n - 1)]

+ ’\1511('”_k)+"‘+/\[(51[<n—k); E:lr

Table 6.2 shows the relationship of the discrete-time parameters to the underlying
continuous-time parameters. This physiological system was studied since it exhibits

rich multimode behavior.

6.6 Simulation

The accuracy of our MELS parameter estimation algorithm was validated by simulat-

ing the VOR model (Figure 6.2) in continuous-time using Simulink. The parameters
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DT Coefficient Relationship to CT

(2K1.24aT)

Bl'ﬂl 2+P1,2T
=(—=2+4p1.2T)

B, 02 24p1.2T
Ba, D (2K1,20T)
33 2+p1.2T
(2K1.2cT)

647194 24p1.2T
Bs. 9 (2K,2dT)
5: Y5 2+4p1 2T
. ("1.2(0)p1.2)
K1 A 2+p1.2T

Table 6.2: Discrete-time relationship of NARMAX model parameters to underlying
continuous-time parameters.

used in the simulation were typical values found in experiments and are shown in

Tables 6.3 & 6.4 [57]. The system was perturbed using a sinusoid input (1/6 Hz

CT Coeflicient Value

T1 15s
Ty 50 ms
K, -9.42
K, 4.44

Table 6.3: Continuous-time coeflicient values. 7;: slow-phase time-constant, 7»: fast-
phase time-constant, K’;: slow-phase gain (velocity gain = K/, = —0.628) and K>:
fast-phase gain (velocity gain = K3/m = 0.222).

frequency and 180 deg/s amplitude) while a Gaussian, zero-mean, noise sequence
with 5 dB SNR was added to the output (Figure 6.5). The system input-output was
sampled at 600 Hz. Thirty one slow and thirty fast-phase segments were used for
identification. Extended least-squares and our modified extended least-squares algo-
rithm were used to estimate system parameters from simulated data. ELS ignores
the effect of switching and associated initial conditions. Therefore, it is equivalent
to the traditional analysis of slow-phases, in the clinic, as belonging to a continuous-
smooth envelope, where the gaps due to fast-phases are interpolated to produce a
continuous slow-phase response. The MELS treats each slow-phase segment as a

transient response including both the forced input and the switching effects. Tables
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NL Coefficient Value

a 3.00 x107!
b 1.20

c -3.00x10°*
d -1.50x106
T 1.67 x1073 s

Table 6.4: Coefficient values of static nonlinearity. a: DC term, b: linear term, c:
squared term, d cubic term and T: sampling interval.

Head Velocity
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Figure 6.5: Simulation input-output data used for identification.

6.5 and 6.6 compare the results of the ELS and MELS algorithms, after estimating
the coefficients of both slow and fast modes in this simulated VOR. In both tables
the first column contains the theoretically computed parameter values, the second
column contains the estimated parameter values using the ELS algorithm and the
third column contains the estimates given by our MELS algorithm. As expected, the
ELS estimates are highly biased in both slow and fast-phases. However, our MELS
algorithm yields accurate estimates of system parameters in both modes, even in the
presence of output additive noise (53dB SNR = noise 75% of signal amplitude).
Next, we estimated the continuous-time parameters using the identified discrete-

time parameters in Tables 6.5 & 6.6. The continuous-time parameters were estimated
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DT Coeflicients of Sub-system 1

Term 6 feLs OMmELS
81 (DC) -3.14x107% [ -1.31x107% | -3.62x 10~
Bay(n — 1) 9.99x107! | 9.97x107! | 9.99x107!
Bs[u(n) +u(n - 1)] |-6.28x107* | -1.27x1073 | -6.26x10~*
Bilu(n)® + u(n - 1) | 1.57x1077 2.91x1078 | 1.54x1077
Bs[u(n)® +u(n —1)%) | 7.85x10710 | -8.04x107° | 5.87x10~1°
Bse(n — 1) -9.99x10°! | -9.45x107! | -9.57x 107!
§(n){k4] 1.00 - 9.96x10°!
Kad{n — ka)[K2] 1.00 - 9.93x10°!
(5(71 - k31)[h731] 1.00 - 1.00)(10—1

Table 6.5: Theoretical and estimated discrete-time coefficients of VOR sub-system
1 (slow-phase). 8 Column: Theoretical parameter values. 8g;s Column: Estimated
parameters using ELS. 6yg.s Column: Estimated parameters using MELS. Values
correspond to continuous-time slow-phase parameter value in Tables 6.3 & 6.4.

using the theoretical relationships in Table 6.7. Since it is impossible to measure the
signal at the output of the static nonlinearity, we consider the static nonlinearity to
have unity gain and translate the overall gain onto the linear system. For this reason,
the estimated gain (K 2b) is a product of the linear system and static nonlinearity
gain. Note that it is possible to compute the continuous-time parameters for this
nonlinear hybrid system only because we assume the system structure is fully known.

Table 6.8 shows the continuous-time parameter estimates for the slow and fast-
phase sub-systems. In this table the first column contains the true parameter values,
the second column contains the continuous-time estimates based on the ELS algo-
rithm and the third column contains the estimates based on our MELS algorithm.
Although some discrete-time parameters (e.g., fB2,72) computed via the ELS algo-
rithm “appear” close to their theoretical values (see Table 6.5 & 6.6), when they were
used to estimate the continuous-time parameters the bias due to ELS became notice-
able large. However, the continuous-time parameters computed based on our MELS
algorithm are close to their true values. Hence, for this model of VOR our MELS

algorithm performance was superior to the ELS algorithm and gave good estimates
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DT Coefficients of Sub-system 2
Term 6 OeLs OrELS
J, (DC) 2.18x1073 | 1.59%x107° | 1.81x1072
day(n — 1) 9.67x107! | 9.21x107% | 9.66x107!
Uafu(n) + u(n —1)] | 4.37x1073 | -2.90x10~! | 4.26x1073
O4[u(n)? +u(n —1)?] | -1.09x107¢ | -7.08x1073 | -1.36x1076
Os[u(n)® +u(n —1)%) | -5.46x107° | 1.36x1073 | -1.70x107'°
Jee(n — 1) -9.67x107! | -9.28x107! | -9.44x 107!
s(n)[A] 1.00 - 8.18x107!
§(n = ka)[M2) 1.00 - 9.94x10™!
5(11 - k30)[)\30] 1.00 - 9.94x107!

Table 6.6: Theoretical and estimated discrete-time coefficients of VOR sub-system
2 (fast-phase). 8 Column: Theoretical parameter values. fg s Column: Estimated
parameters using ELS. 6rers Column: Estimated parameters using MELS. Values
correspond to continuous-time slow-phase parameter value in Tables 6.3 & 6.4.

CT Coefficient DT Relationship
—IT+2T (B2, 02)

D2 = (B2 02)T2 -T2
-y —4T(B3,9
K2 = —(ﬁz,oz)ﬁi'ﬁ

Table 6.7: Discrete to continuous-time relationships for parameters p; ; and K b of
the VOR model.

of the underlying continuous-time parameters.

6.7 Experimental Data

Lastly, we assessed our MELS algorithm on experimental human VOR data collected
in our laboratory, the Oculomotor Control Laboratory. The data analyzed for this
study is from a single subject with history of vestibulo-ocular disease. The patient is
known to have no function in one inner ear. This is associated with large nonlinearities
in the VOR and a defective time constant (small). We expect our MELS to be

particularly relevant under these conditions.
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CT Coefficients of Sub-system 1 (Slow-Phase)

Term { True | Estimate Based on ELS | Estimate Based on MELS
o) 0.6667 1.800 0.0600

Kb | -0.7540 -1.526 -0.7504

CT Coeflicients of Sub-system 2 (Fast-Phase)

Term | True | Estimate Based on ELS | Estimate Based on MELS
D2 20.00 49.34 20.08
(o 5.331 -362.3 5.200

Table 6.8: Continuous-time parameter estimates of p; » and K 56 of the VOR model.

6.7.1 Procedures

Silver-silver chloride electrodes were used to record conjugate eye position in the
horizontal plane, in the dark. The subject remained in dim red light for 20 minutes
to adapt to the dark condition and minimize electrode drift during recordings. The
subject was then seated on a servo-controlled rotating chair, restrained by seat belts
and a head holder. The head and body were fixed en-bloc to the chair during rotations,
while the subject was instructed to perform mental arithmetic during rotations in the

dark.

6.7.2 Perturbation

The experimental protocol used a sinusoidal rotation at 1/6 Hz, with a peak head
velocity ~200 deg/s. The test lasted 52s, of which the last 32s were recorded to
measure VOR properties with sensory steady state. Full electro-oculogram (EOG)

caiibrations were performed before and after the rotation, to correct for any drift.

6.7.3 Apparatus

The chair was controlled by a Pentium computer, using software developed in house
with Modula-2 (Jensen Partners International, Mountain View, California). Eye posi-
tion and head (chair) position channels underwent analogue low-pass filtering (8-pole

Bessel) to 40 Hz to avoid aliasing when sampled. Data were recorded on separate
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channels of a 16-bit National Instruments A/D board, and stored at 500 Hz for later
analysis. Signal processing was carried out off-line on a Pentium using software de-

veloped locally with Matlab (Mathworks, Natwick, MA).

6.7.4 Data Processing

The sampled signals were digitally low-pass filtered down to 15 Hz and then decimated
to 250 Hz sampling rate, to improve the signal-to-noise ratio and to save storage

space. Figure 6.6 shows a typical input-output trial used for this analysis. The

; M/\/\
-200
40 Eye Position
201 1
g o
-20 .

Eye Velocity

deg/s
o

0 ] 10 1S 20 25 30
Time (s)

Figure 6.6: Experimental VOR data. Top: Head velocity input. Middle: Eve position
output. Bottom: Eye velocity output.

data represents a sinusoidal head velocity of 200 deg/s. The characteristics of this
trial are consistent with those reported in previous work done in our laboratory [58].
This 15 Hz bandwidth was sufficient to examine the slow-phase characteristics, in
spite of mild distortions on the fast-phase trajectories. The position traces were
digitally differentiated to obtain eye and head velocity trajectories, and scanned by

our classification algorithm to demark slow phase segments automatically [123].
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6.7.5 Data Analysis

The extracted slow-phase data was fitted with a linear and cubic description of VOR
characteristics, as described in detail elsewhere [73]. This method required first re-
moving any phase shift (dynamics) between the stimulus and response curves. Then
VOR characteristics were modeled by the expressions in Equation 6.13, where “y”
represents the slow-phase eye velocity, and “u” represents the phase-shifted head
velocity in a particular sinusoidal protocol. Parameter estimates were obtained by

regression with experimental data.

linear it: y(n) = a+ bu(n) (6.13)
cubic fit: y(n) = a+bu(n)+cu’(n) + dud(n)
model selection criteria: BIC = log(MSE) + log(N) 2’;\,

1y — )2
quality of fit: %ANMSE = (1— N ?“‘,5"’" n) ) x 100
Nzn=1(yn)2

In Equation 6.13 the linear gain term (b) defines the VOR sensitivity for low-velocity
rotations, the DC offset (or bias) is the zero-order coefficient (a), p is the number
of model parameters, NV is the number of data points in the pooled slow-phases and
MSE is the mean square error of fit, gﬁ%ﬂ Note that these monomial fits are
not orthogonal and may be subject to error. In patient cases, a linear fit is often
deficient in describing the data. Therefore, it is often necessary to fit the data with
a cubic model [9, 58, 73, 114]. Justification for this selection is done on the basis of
the associated normalized mean-squared-error and the Bayesian information criterion
(BIC), to avoid over-modeling [58].

Our hybrid identification approach consisted of assuming a dual mode Hammer-
stein model structure: a third order static nonlinearity followed by a dynamic first
order high-pass system (see Equation 6.3), was sufficient to describe the data. Next,
our MELS algorithm was implemented to estimate model parameters. The quality of

fit was was assessed by computing the %NMSE as given in Equation 6.13.
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6.7.6 Results

The results presented in this section are a comparison of data fit of the classical
methods, described above, to the quality of data fit using our MELS algorithm.
Figure 6.7 show the results of this comparison. Plot (a) shows the linear fit, plot
(b) shows the cubic fit, and plot (c) shows the fit obtained using our MELS algorithm
to VOR data. The %NMSE obtained using the classic linear method is 91.35%, with
the classic cubic fit it is 96.47% and using our method it is 96.62%. Table 6.9 shows
the slow-phase time constant, 7, and the nonlinearity coefficients (a, b, ¢, d) obtained

using both the classical and the MELS approaches. Although the improvement in

a b c d s %NMSE
Classical 37.73 -0.342 - - 4.99 91.93
Cubic  22.05 -0.594 1.20x107% 6.66 x 10~7 5.48 96.47
MELS 20.59 -0.342 6.57x107* 2.97x10~7 0.631 96.88

Table 6.9: Identified continuous-time parameters from experimental VOR data. a:
DC term, b: linear term, c: squared term, d cubic term, 7;: slow-phase time constant
and %NMSE percent normalized mean-squared-error.

fit between the extended classical nonlinear method (Figure 6.7b) and our MELS
algorithm (Figure 6.7¢) is apparently small (see Table 6.9), it is misleading at first
glance. In the extended classical approach (Figure 6.7b) the average fit is reasonable
but the dvnamics are clearly poorly described during negative eye speeds. Our MELS
method describes the dvnamics of individual slow-phases during leftward (negative)
eve velocities but at the expense of poorer fits in the opposite direction (positive).
This may indicate that the parameter estimates computed by MELS provide a better
description of system dynamics at least during part of the cycle, implying input-

dependent nonlinearities.
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Eye Velocity & Predicted Velocity (Classical) Eye Velocity & Predicted Velocity (Cubic)
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Figure 6.7: Predicted eye velocity of experimental VOR data. (a): Measured eye
velocity superimposed on top of predicted output due to classical approach (i.e.,
linear fit). (b): Measured eye velocity superimposed on top of predicted output due
to cubic approach (i.e., cubic fit). (c): Measured eye velocity superimposed on top of
predicted output due to our hybrid identification (i.e., MELS technique).
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6.8 Discussion

6.8.1 MELS Algorithm

The success of parameter estimation methods for nonlinear systems depends upon
the choice of model structure and the development of estimation algorithms to yield
unbiased estimates of system parameters. The limitation of our proposed algorithm
for estimating parameters depends largely on the number of data segments and length
of segments available for estimation. If the number of measurements per sub-system,
say .V, approaches infinity the statistics of the parameters will approach their asymp-
totic values. The limiting factors will depend not only the system dynamics but also

on the feasibility of measuring the system for long periods of time.

6.8.2 Simulation Study

With respect to simulated data, an examination of Table 6.6 (VOR fast-phase) shows
that the estimated parameters (é‘\sts) are not as “accurate” as those in Table 6.5
(VOR slow-phase) because the segment lengths were shorter. Hence, fewer data
points were available to estimate the coefficients of sub-system 2 (VOR fast-phase).
We computed the standard deviation (STD) for the estimated parameters of sub-
systems 1 and 2 (VOR slow and fast). The STD of the coefficients for sub-system 1
were approximately v/3 times smaller than those of sub-system 2 since there was three
times more data available for estimation. However, the STD of system parameters
for sub-system 2 were within the 95% confidence bound of the theoretical coefficients.
The percent accuracy should be sensitive to the magnitude of ¢ (i.e., coefficient of the
squared nonlinear term). The parameter estimates should be less accurate for large
c compared to segment length.

In the simulation (and experimental data) the input was a sinusoid. In general,
a single sinusoid is a “terrible” input for identification. Therefore, it is tempting to
conclude that the ELS results may simply be due to poor input design. The poor

results are not due to poor input alone, though it certainly plays a role, but are due



to unmodeled dynamics in the residuals. As the time constant of a mode decreases,
switching effects themselves can bias ELS, which MELS takes advantage of despite a
poor forcing function. MELS gives good results because by explicitly correcting for
impulses it effectively uses a high frequency input. The continuous-time parameters
in Table 6.8 (ELS estimates) clearly demonstrate that even when some discrete-time
parameters “appear” close to the theoretical values the continuous-time estimates
may be far from the true values. This study demonstrates two important cases: (1) it
shows when the time constant is large the percent improvement will be small and (2)
in the opposite case when the time constant is small, where the bias from ELS can
be quite severe (over-estimating the time constant), the percent improvement will be
large. These cases illustrate MELS is the preferred tool. Although slow-phase time
constants are expected to be large in the normal population, MELS is still a necessary

tool in disease subjects since the time constants are often significantly reduced.

6.8.3 Experimental Data

Analysis of a typical experimental VOR data set using MELS showed a better fit
for negative eve velocities but at the expense of poorer fits for the positive direc-
tion (see Figure 6.7c). This may be because more data was available for negative
velocities or it may show that there are unique dynamics in each of the positive and
negative directions for slow-phase. This suggests the system may contain a different
static nonlinearities for each path and is not described well by a general cascaded
svstem as we have forced here (i.e., Hammerstein strucvure). This clearly needs to
be investigated with more patient data. Overall, experimental analysis of VOR data
indicates that hybrid identification may be appropriate for this type of system since
it provides an improved data fit, compared to classical linear technique and it gives

a better estimate for negative velocity eye dynamics.
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6.8.4 Future Work

Although this algorithm yielded good results for estimating the parameters of a mul-
timode system, it is unclear how to determine the model order and structure for these
tvpes of systems (i.e., “black-box” identification). Furthermore, the current formula-
tion is only valid for the identification of switched systems with first order dynamics
since we have only discussed modeling initial conditions for such systems. The ma-
trix extension (see Equation 6.9) of the MELS algorithm needs additional columns to

model initial conditions of a general order dynamic system.

6.8.5 Summary of Findings

Modeling, simulation studies, and analysis of experimental data showed the following.

1. We have demonstrated that the NARMAX polvnomial class can be used to

model the dynamic behavior of nonlinear hybrid systems.

N

Simmulation results showed that our MELS algorithm provides better results for
parameter estimation of hybrid systems than applying existing methods which

assume continuous smooth behavior.

3. Analysis of experimental data showed that MELS only provides an incremental
improvement in data fit over traditional techniques. We hypothesize that this
is due to an incorrect model structure used to fit the data (i.e., Hammerstein

structure).

Implementation of our MELS algorithm to a simulated model of VOR demon-
strated that it is possible to estimate the parameters of switched nonlinear systems.
The MELS algorithm takes advantage of the switching effects despite a poor forc-
ing function and gives good results because by explicitly correcting for impulses it

effectively uses a high frequency input.
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6.9 Conclusions

We have demonstrated that the NARMAX model structure is suited to modeling
the dynamics of nonlinear multimode systems. Furthermore, the MELS algorithm
is a robust method for estimating the coeflicients of such multimode systems. This
method provides accurate estimates of parameters since it takes advantage of the
entire data record. We also provided an example of application of our hybrid modeling
and identification approach on experimental VOR data. The results showed that our
technique produced more accurate estimates of data prediction and system parameters
than traditional approaches.

These results may have a clinical significance in the analysis of ocular nystagmus.
The technique here allows greater insight into the functionality of various reflexes, by
providing quantitative measures of both saccadic and slow ocular dynamics from a

single experimental record.
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Chapter 7

Conclusions

7.1 Introduction

In this thesis, we have developed practical methods for the identification of linear,
nonlinear and hybrid (multimode) systems which are applicable under relatively gen-
eral conditions, i.e when assumptions and conditions of the estimation technique are
not violated. Since these algorithms were not designed specifically with any system
in mind. they should be applicable to experiments on a variety of systems in many
different disciplines.

In this chapter, we state the original contributions made during this thesis work,

describe their significance, and give suggestions for further work.

7.2 Statement of Original Contributions

The overall goal of this work was not only for biomedical engineering but to provide an
expanded and improved set of tools for the identification of both linear and nonlinear
systems that fall under the linear regression “umbrella”. Results demonstrate that
parametric nonlinear identification is a feasible tool for modeling unknown (black-box)
systems. Some potential applications for these methods outside the biomedical realm
are. for example, efficient control and design for aircraft/spacecraft, communications,

analysis of economic trends, analysis of geophysical phenomena, etc. Below is a list
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of the original contributions contained in this thesis.

1. Application of NARMAX Structure to Biological Modeling. We il-

lustrated that the (polynomial) NARMAX model class is useful for modeling
the input-output behavior of block-structured models encountered in biologi-
cal control. These results suggest that other biological systems may be easily

represented as a NARMAX class.

2. Structure Detection. We developed a robust algorithm based on bootstrap

to compute the structure of linear and nonlinear systems (linear regression mod-
els). This method provides accurate estimates of parameter statistics without
relying on assumptions made by traditional procedures and yields a parsimo-
nious system description. Convergence results provide an empirical measure
for data requirements necessary to achieve a true model structure. The signifi-
cance of this finding is that it enhances existing methods for structure detection
by providing a method for determining structure of highly over-parameterized

models.

3. Model Order Selection. We provide a robust technique to compute the order

of NARMANX models. This algorithm computes a unique minima over a selected
dimension in O = [ny, ny, [] which provides an unambiguous estimate of model
order using the cross-validation cost function. This work contributes to existing
methods for model order estimation by providing an algorithm for determining

the order of nonlinear svstems that are linear-in-the-parameters.

. Parameter Estimation of Hybrid Systems. We demonstrated that the

NARMAX model structure is well suited for modeling the dynamics of non-
linear hybrid systems. In addition, we developed a robust MELS algorithm to
estimate coefficients of multimode systems. This work contributes to (1) ba-
sic understanding of hybrid systems modeling-and (2) fundamental algorithmic
development for linear and nonlinear hybrid systems by providing a parameter

estimation technique for these types of systems.
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7.3 Suggestions for Further Research

Much work needs to be done in terms of theoretical analysis, algorithmic development
and applications of these techniques to real-life applications. Since the emphasis
of this thesis was on algorithmic development, our suggestions for future work are

focused on this topic.

7.3.1 Identification of Ankle Dynamics

In Chapter 3 we illustrated the effect(s) of input and output additive noise on a
NARMAX representation of ankle dynamics. With the current experimental setup
and protocol used in our laboratory, we expect the input to have a SNR approximately
in the range of 82 dB - 50 dB (see §3.3.5). With little noise added to the input and
noise-free output, the standard deviation of linear path parameters included zero for
SNR levels < 55 dB SNR (see §3.3.5). In addition, with a fixed input SNR of 60
dB and noise added to the output, the standard deviation of linear path parameters
included zero for output SNR < 20 dB (see §3.3.6). These results showed that. for
the given model structure, even if an input is recorded with insignificant noise the
least-squares algorithm will not vield an unbiased estimate of model parameters, as
it violates the basic assumptions.

Identification of NARMAX models using “standard” least-squares is particularly
sensitive to input noise for high-pass systems. However, it is more robust in the low-
pass functional form. To address the problem(s) with input noise sensitivity in the
high-pass case (i.e.. linear path of ankle dvnamics) two approaches may be considered.
(1) If NARMAX is to be used in the current state for ankle dynamics, then redesign
the experimental paradigm. (2) Otherwise, the optimal solution may be to generalize

the approach with implementation of total least-squares.

7.3.1.1 Redesign of Experimental Paradigm

Currently, the intended input (noise free input) is not saved for further analysis.

Instead, the input used for identification is recorded after being influenced by actuator
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dynamics and measurement noise. We recommend that the intended input be saved
for identification and an effort be made to model actuator dynamics. This should
alleviate the need to record input after being passed through actuator dvnamics:
hence, reduce the introduction of input noise.

For this paradigm an instrumental variable approach may seem appropriate. How-
ever, the I\" algorithm only addresses bias, i.e., lagged errors, due to output additive
noise (see §2.6.3.4). Extended least-squares solves this bias problem by explicitly
modeling lagged error terms. ELS was implemented for the study in Chapter 3 and
shown not to provide “good” estimates in the presence of input and output additive
noise. This implies that IV is unlikely to provide “better” results since it only ad-
dresses bias due to output additive noise and does not account for bias due to input
noise.

Nonlinear feedback is a feature of many biomedical systems. The parallel pathway
model describing ankle dvnamics (see Figure 3.1) can be formulated in closed-loop
as shown in Figure 3.19 [78]. For the parallel pathway description, intrinsic compo-
nents are modeled using derivative operators in the linear path. These derivatives
result in an unrealizable model description which also serve as a source of input noise
amplification. Formulating this model in nonlinear closed-loop reduces the number
of derivative operators (see Figure 3.19) needed to describe the same model and
decreases the potential danger of input noise amplification (sensitivity). Note that
when this model is posed in feedback, the linear dynamics are modeled as a low-pass
svstem,. i.e.. compliance dynamics. This model formulation serves to filter high fre-
quency content associated with input, possibly providing a more robust identification
in the presence of input noise, without resorting to advanced techniques such as to-
tal least-squares. However. this feature comes at the cost of a more complex model

description.

7.3.1.2 Total least-squares

In the standard linear model (Z = W6 + e) it is usually assumed that the exact

structure of the regressor matrix is known, e is a vector of random errors which are
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uncorrelated and have zero means and the same variance, i.e., E(e) = 0, D(e) =
0?I. As demonstrated by analysis of experimental ankle data, these assumptions are
frequently unrealistic since sampling and/or modeling errors often affect the input.
and hence, the regressor matrix ¥. Therefore, it is necessary to consider methods
that also allow for random input errors, such as total least-squares [26, 69]. The
premise of total least-squares is that allowing for input as well as output error in the
standard linear model above (i.e.. modeling input as well as output noise), provides
better (hopefully unbiased) parameter estimates.

Application of total least-squares may give insight to determine if parameter esti-
mates for this biological data resemble the currently believed ranges and if the ranges
are accurate. Few applications of total least-squares have been published in the lit-
erature [43]. Van Huffel and Vandewalle claim that in typical applications (linear
systems), gains of 10-15% in accuracy can be obtained by using total least-squares
instead of standard least-squares methods [69]. To date there are no known applica-
tions of this technique to nonlinear systems likely due to the number of terms needed
in the regressor matrix, requiring considerable computational expense. Future work
should include a careful development of existence theory for the general NARMAX

model. allowing for input additive noise.

7.3.2 Structure Detection

We showed in Chapter 4 that when white assumptions were violated, our BSD tech-
nique failed to compute the correct structure. The limiting factor is with the param-
eter estimation algorithm implemented in our structure detection routine, i.e., ELS,
since it requires white, zero-mean conditions. In general. bootstrap does not rely
on white assumptions [48, 136]. Therefore, it may be possible to use robust estima-
tion techniques in combination with our BSD method to yield better results under

non-white assumptions [35. 122, 147].
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7.3.3 Model Order Selection

For the BMOS algorithm we did not study the effect(s) of bandlimited {colored)
output additive noise. The properties of this algorithm need to be studied under these
conditions to provide a better understanding of its behavior. In addition, we did not
compare the performance of our BMOS algorithm against any popular techniques
such as AIC or MDL. Future work should include a study of this algorithm’s ability

to select the correct model order as compared to these classic approaches.

7.3.4 Combined Structure Detection — Model Order Selec-
tion

For model order selection the BMOS estimate may not yield the “true” order for
all structures since the full model is posed at each step of the search. Consider the

model:
y(n) = g1u’(n - 2) + by(n — 7). (7.1)

A model of this order, i.e., high nonlinear and dynamic order, has many candidate
terms. However, the “true” system is described by only two parameters. Systems
described by such a high system order may lead to inaccurate estimates of model
order. This is because the number of candidate terms grows rapidly as the nonlinear
or dynamic order is increased; possibly resulting in highly biased estimates of model
errors during the model order search. To overcome the effects of this problem it may
be better to compute order and structure simultaneously, i.e., estimate structure at
each step of the model order search.

Model parameters and residuals are computed for both the model order selec-
tion and structure detection procedures. Instead of discarding information about
the parameters and residuals at each step of the model order selection process, this
knowledge can be utilized to (1) determine structure and (2) compute the error in pre-
diction. This approach will significantly reduce the time and computational expense

required for parametric identification of nonlinear systems.
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7.3.5 Hybrid Systems

In Chapter 6 we presented a parameter estimation algorithm for hybrid systems
(MELS). The current formulation is only valid for the identification of switched sys-
tems with /th order nonlinearity and first order dynamics. Future extensions should
include general dynamics for svstems of greater complexity. Moreover, these results
may be generalized to multiple-input multiple-output (MIMQO) nonlinear hybrid sys-
tems.

Although our MELS algorithm is a good start for the identification of nonlinear
multimode syvstems much basic work still needs to be done. To perform “black-box™
identification of nonlinear hybrid systems it is necessary to develop algorithms to
compute model order and structure. This can be done in a similar manner as that
emploved for single mode systems (see Chapters 4 & 5) but with the extended least-

squares algorithm replaced bv our modified extended least-squares algorithm.

7.3.6 Application to Real Data

Much can be learned from simulations alone. However, many problems encountered
in real situations cannot be duplicated. Some examples are those associated with
the finite resolution of A /D converters, and with the finite roll-off of anti-aliasing and
reconstruction filters, both of which limit input and output signal bandwidth. In order
to demonstrate that these techniques are applicable in real engineering situations,
theyv need to be verified using real data. As a first step, feasibility of these methods
to other engineering applications can be established by building several nonlinear

circuits, this includes:

1. Analog second order low-pass IIR system preceded by squared nonlinearity

V]

. Analog second order high-pass IIR system preceded by squared nonlinearity
3. Analog second order bandpass [IR system preceded by squared nonlinearity

The low-pass circuit will establish how these techniques behave with high frequency

output noise, the high-pass system will provide insight into the robustness of these
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methods in the presence of low frequency output noise and the bandpass model will
vield information with the combination of the two.
To justifv the selection of these structures, consider the nonlinear-linear (NL)

model, a low-pass system preceded by a static nonlinearity, shown in Figure 7.1. This

Static
Nonlinearity

Input U(s) | Pu(n)] X(s) 2 —guw? : Output l;(s)
5+ 20ws + w

(Squarer) Second Order
Low-Pass System

Figure 7.1: Low-pass IIR system preceded by a static nonlinearity (squarer).
model arrangement is described as:
y(n) = a1y(n — 1) + asy(n — 2) + bou(n) + biu®(n — 1) + byu?(n — 2). (7.2)

The NL description of Figure 7.1 yields a NARMAX model (Equation 7.2) with non-
linear, current and delayed inputs and linear, delayed outputs. This NL configuration
does not result in a NARMAX description with a large number of terms. Therefore.
it should be difficult to identify because model errors will be highly biased due to
over-parameterization. Moreover, the nonlinearity and system orders should initially
be selected as two in an attempt to keep the number of candidate terms manageable,

L.e.. regressor matrix dimension.

7.4 Discussion

Although our bootstrap approach to the structure detection and model order selection
problems are computationally expensive, it may be the only means to solve such
complex problems. Many techniques available to researchers in the areas of nonlinear
identification and signal processing are purely heuristic. These techniques demand
practically full knowledge of the system before identifying it. This naturally poses

the question: “Why identify the system at all if we need such eztensive knowledge
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of the system before commencing the identification process?’. Our BSD and BMOS
techniques do not require many assumptions and/or extensive a priori knowledge of
the system. We only make the standard assumptions needed to satisfy conditions in
least-squares analysis. We believe that as the power and usefulness of bootstrap is
realized by developers and practitioners and as computers become cheaper and more
powerful, the bootstrap will quickly become a standard tool in many disciplines. In
fact. bootstrap is already an emerging tool in both system identification and signal
processing [117, 148, 149, 150, 151, 168].

Theoretical analysis of hybrid modeling and identification of nonlinear MIMO sys-
tems may lead to some useful applications. However, to date there are few known
“naturally” occurring switched mode systems and hence the practical application
or usefulness of such analysis remains speculative. Nevertheless, hybrid control and
identification are rapidly developing fields and have recently been gaining a wider ap-
preciation from the controls community [11, 50, 97]. Clearly, this is an emerging field
in which much fundamental work remains to be done in terms of analysis, algorithmic
development and applications.

As a final remark, we note that only a few simple nonlinear systems were studied
to validate our methods. Nevertheless, the systems studied in this thesis are general
enough to provide insight into the behavior of our algorithms when applied to more
complex systems (see §4.9 & §5.6). In addition, the simplicity of the systems studied
was due to certain limitations regarding computing power and accessibility to a wider
variety of data from various disciplines. Our algorithms and modeling techniques
should be applicable to many systems that fall in the relevant class of models. i.e..
linear and nonlinear systems that are linear-in-the-parameters. Furthermore, despite
the lack of natural systems known to exist in a hybrid state, we believe that many
biological processes may exhibit hybrid behavior or may be postulated as a class of
hybrid systems. Study of such biological systems could (1) inspire alternate control
strategies in engineering and robotics and (2) lead to the development of better tools

for understanding biological control and automating diagnosis.
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Appendix A

A Matlab Toolbox for Nonlinear

System Identification

A.1 Introduction

This appendix contains a list of the tools developed for the analysis of parametric
nonlinear systems (NARMAX models) and gives a brief description of each tool.
All routines contained in this appendix were written for the Matlab simulation and

development platform.

We first give examples detailing the syntax for using some of our major routines.

A.2 NARMAX Model Simulation

Consider the NARMAX model:
y(n) = 0.4u(n — 1) + 0.4u*(n — 1) +0.8y(n — 1) — 0.8¢(n — 1) + e(n). (A.1)

Model A.1 is used through out this appendix to illustrate the usage of our Matlab
routines.

To simulate this model the procedure is the following.
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1. Create a uniform stimulus with a rectangular distribution, for example, as:
TMAX=10000;
STEP SIZE=1;
t=(0:STEP SIZE:TMAX)’;
rand(’seed’,sum(100*clock));
u=rand(size(t));

u=u-mean(u);.

2. Next, form a noise sequence with Gaussian distribution for the error terms (e.g.,
e(n—1)) as
randn('seed’ ,sum(100*clock));
noise=randn(size(u));

noise=noise-mean{noise);.

3. To simulate NARMAX model A.1 each term of the model is placed into a cell
array as a character string. The syntax is the following:
model{1}=['0.4u(n-1)"];
model{2.:}=['0.4un2(n-1)’];
model{3.:}=['0.8y(n-1)’];
model{4,:}=["-0.8e(n-1)’];
model{5.:}=["e(n)’];.

4. The function used to simulate a NARMAX model is called simnarmaz.m and
it is utilized with the following function call
[y]=simnarmax(model,u,noise);.

The function inputs are:
“model” - model to be simulated (cell array with appropriate structure),
“u” - input, and

“noise” - noise process.
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The function output is:

“y” — simulated output of Model A.1.

In Matlab, to obtain additional help for function simnermaz.m type “help simnar-

max” or type “simnarmaxdemo” for an on-line demo of this function.

A.3 NARMAX Model Order Selection

Assume that only input-output data is given for Model A.1. Note that for some
systems an input or output set alone may sufficient for order selection.

An estimate of model order can be computed using our bootstrap model order
selection routine (see Chapter 5). This routine name is bmos.m and its function call
is
[RSS,order|=bmos(u,y,N,n,nu,ny,B);.

The function inputs are:

“u”, “¥” - as defined above,

“N" — number of data points to be used for estimation, e.g., N=9000,

“n” - maximum nonlinearity order, e.g., n=3,

“nu” - maximum input lag order, e.g., nu=2,

“ny”’ - maximum output lag order, e.g., ny=2

“B" - number to bootstrap replications, e.g., B=100.

The function outputs are:

“RSS” - multidimensional array of bootstrap estimates of the error in prediction.
The first index references array dimension 1, the row. The second index references

dimension 2, the column. The third index references dimension 3, the page.

(4 N

“order” - order=[nu ny l]: estimated order of a NARMAX model, where “nu”, “ny
and “1” are defined above. Note that since we assume output additive noise, ne=ny,
i.e.. the error lag must equal the output lag order (see Chapter 5).

The order selection procedure starts at a minimum dimension of order=[0 1 1].
This function requires a user to provide integer values for nu, ny and I, defining

a maximum search dimension for model order selection. If the maximum search
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dimension is large the number of points in the search space will also be very large
and require a large number of computations to estimate model order. Moreover, if B
is also large the time required to compute an estimate of model order will increase
B-fold.

We recommend that this routine only be utilized when the system is known or
likely to be nonlinear and basic information about the system under test is not suf-
ficient to build a regressor matrix with the proper dimension, i.e., the system order
is unknown. Hence, if the system is linear it may be computationally cheaper to use

existing methods within Matlab such as AIC or MDL.

A.4 NARMAX Structure Detection

Assume that input-output data is provided for Model A.1 and the model order is
known or given. To compute structure for this model we use our bootstrap structure
detection routine (see Chapter 4). The syntax for this function is:
[thetaf,vlabel]=bsd(u,y,N,n,nx,ny,iter,B,alphal,alpha2);.

The function inputs are:

“u”, “y7, “N7, “n”, “nx”, “ny”, “iter”and “B” - same as defined previously,
“alphal” - upper confidence bound, e.g., alphal=0.95, and

“alpha2” - lower confidence bound, e.g., alpha2=0.05.

The function outputs are:

“thetaf” - reduced parameter vector (containing only significant terms) and

“vlabel” - parameter labels correspond to the regressor associated with each param-

eter in thetaf.

The upper and lower confidence bounds, shown above, are typical values used in
practice. However, they can be varied depending on the intended application. This
function is typically used after the bmos routine has provided an estimate of model
order or if the system order is known a priori. For an on-line demo of this function

type “bsddemo”.
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A.5 NARMAX Parameter Estimation

Assume that input-output data is given for Model A.1 and the model order and
structure are known. In some special cases, input or output alone may be sufficient
for parameter estimation. Let the input-output set be given by the simulated model
above.

Since this model is described by lagged outputs and lagged error terms we select
the extended least-squares algorithm to compute an unbiased estimate of model pa-
rameters (see Chapter 2). The function call for our extended least-squares parameter
estimation algorithm is:
[theta,vlabel,lenu,err,z_hat,PHI]=els(u,y,N,n,nx,ny,iter);.

The function inputs are:

“u”, “y” - as defined previously,

“N” — number of data points used for estimation, e.g., N=5000,

“n” - nonlinearity order, e.g., n=3,

“nx” - input lag order, e.g., nx=1,

“ny” - output lag order, e.g., ny=1, and “iter” - number of iterations for improving
the noise model, e.g., iter=10.

The function outputs are:

“theta™ - estimated parameters,

“vlabel” - parameter labels,

“lenu” - number of columns that are dependent only on input,

“err” - residuals or prediction errors,

“z_hat” - predicted output, and

“PHI” - regressor matrix.

Note that “vlabel” contains the corresponding row labels for “theta”, i.e., the regres-
sor associated with each parameter.

If the system is described only by lagged input terms it is more efficient to use
ordinary least-squares (ols.m). The syntax for “ols.m” is similar to that of “els.m”.

Type “help ols” for more information. For help regarding how to form a regressor

194



matrix or regressors associated with each column of the matrix type “help rmt2” or

“help name2”, respectively. For an on-line demo of this function type “parmdemo”.

A.6 M-files

The first lines of each function describe the purpose of the m-file, as well as the
inputs it requires and the outputs it generates. These comments can be accessed

within Matlab by typing help and the m-file name.
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ank2mat

function [Vector]=ank2mat(N,x,y,delay);

% Vector=ank2mat(N,x,y,delay);

%

% This function computes the regressor matrix for

% a 2nd order model of ankle dynamics.

h

% This assumes the general structure of Rob’s model
% but uses a 2nd order approximation for the static
% nonlinearity.

%

% N= number of data points to be used
hox= measured input

hy= measured output

% delay= reflex delay in discrete-time,

% i.e., DT_delay=CT_delay/sampling_rate

%

% Vector= regressor matrix that contain the correct

A terms for Rob’s model

%

A Sunil L. Kukreja 8 June 2000

% Copyright Sunil L. Kukreja
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ank2mate

function [Vector]=ank2mate(N,err);

% Vector=ank2mate(N,err);

%

% This function computes the error regressor matrix
% for a 2nd order model of ankle dynamics.

h

% This assumes the general structure of Rob’s model
% but uses a 4th order approximation for the ststic
% nonlinearity.

h

% N= number of data points to be used

% err= residuals

%

%4 Vector= regressor matrix that contain the correct
h terms for Rob’s model

yA

A Sunil L. Kukreja 8 Jume 2000

% Copyright Sunil L. Kukreja
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bmos

function (RSS,order]=bmos(u,y,N,n,nx,ny,B);
% Bootstrap Model Order Selection

h

% [RSS,order]=bmos(u,y,N,n,nx,ny,B);

h

% u - input

% y - output

% N - number of data points to be used

% n - maximum nonlinerity order

% nx - maximum input lag order

% ny - maximum ouput lag order

% B - number to bootstrap replications

%

% RSS - multidimensional array of bootstrap

% estimates of the error in prediction.

% First references array dimension 1, the row

% Second references dimension 2, the column

A Third references dimension 3, the page

%

% order - order=[nu ny 1]: estimated order of NARMAX
% model vhere nu: lag order of input, ny: lag
% order of output, 1: nonlinearity order

%

% NOTE: We assume output additive noise.

h Therefore, ne=ny.

h ne: lag order of error

%

% Details can be found in:

% A BOOTSTRAP METHOD FOR NARMAX MODEL ORDER SELECTION
% S.L. Kukreja, R.E. Kearney and H.L. Galiana,

% IFAC-MCBS 2000

A

A Copyright Sunil L. Kukreja 29 February 2000
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bsd

function [thetaf,vlabel]=bsd(u,y,N,n,nx,ny,iter,B,alphal,alpha2);
% Bootstrap Percential Method for Structure Detection

h

% [thetaf,vlabel]l=bsd(u,y,N,n,nx,ny,iter,B,alphal,alpha?);
A

% INPUTS:

% u - input

% y - output

% N - number of data points to be used

% n - nonlinerity order

% nx - input lag order

% ny - ouput lag order

% iter- number of iterations for improving noise model

4 B - number to bootstrap replications

% alphal - upper confidence bound

% alpha2 - lower confidence bound

%

% thetaf - reduced theta

% vlabel - parameter labels

h

A

% Details can be found in:

% Structure Detection of Nonlinear Dynamic Systems Using

% Bootstrap Methods

% S.L. Kukreja, R.E. Kearney and H.L. Galiana, IEEE-EMBS98,
% October 1998

A

% Structure Detection of NARMAX Models Using Bootstrap Methods
% S.L. Kukreja, H.L. Galiana and R.E. Kearmey IEEE-CDC99,

% December 1999

pA
h Copyright Sunil L. Kukreja 7 April 1998
% (updated 15 Jan 99)
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els

function [theta,vlabel,lenu,err,z_hat,PHI]=els(u,y,N,n,nx,ny,iter);
% Extended least squares

%

% [theta,vlabel,lenu,err,z_hat,PHI]=els(u,y,N,n,nx,ny,iter);
%

% INPUTS:

% u - input

%“ y - output

% N - number of data points to be used

% n - nonlinerity order

% nx - input lag order

% ny - ouput lag order

4 iter- number of iterations for improving noise model

% OUTPUTS:

% theta - estimated parameters

% vlabel - parameter labels

% lenu- number of columns that are purely due to input
% err - residuals

% =z_hat - predicted output

% PHI - regressor matrix

% Method based on ELS algorithm in: Dynamic System
% Identification: Experiment Design and Data Analysis
% G.C. Goodwin and R.L. Payne, 1977

A Copyright Sunil L. Kukreja 16 November 1999
VYA YA AN YA ANy AN Y ANy YA YA AA NS YA A YA YA AN A
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lankid

function [theta,z_hat]=lankid(x,z)

% Computes parameters of linear path of parallel pathway
% ankle model

%

% [theta,z_hat]=lankid(x,z)

%

% This function is meant to be used for itterative

% identification of ankle dynamics.

%

% Inputs:
% x- input
yA z- output

%

%

% Outputs:

h theta- estimated parameters

% z_hat- predicted out

YA

% Copyright Sunil L. Kukreja 9 October 2000
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Is_std

function [std_thetal =1s_std(theta,z,z_hat,RZ);
% Standard deviation of parameters using least-squares
% methods.

4

% [std_theta] =ls_std(theta,z,z_hat,R);

%

%

% Inputs:

%

% theta - estimated parameter vector

% z - measured output

% z_hat - predicted output

% R - the R matrix in qr factorization of the
% regressor matrix

%

% Output:

%

% std_theta - standard deviation of parameters

%

%

% Method based on STD computation in: Linear Regression
% Analysis, George A.F. Seber 1977

%

%

% Sunil L. Kukreja 12 May 1998

% Copyright Sunil L. Kukreja
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mgs

function [Q,R]=mgs(X);

%
h
%
h
%
%
%
h
h
%
h
%
%
[/
A
%
%
%
h
%
%
A
h
h
%
h
h

QR factorization using the Modified Gram-Schmidt (MGS)
Algorithm

Given X E R™mxn with rank(X)=n --> X=Q*R where §Q E R mxn
has orthogonal columns and R E R"mxm is upper triangular.

Orthogonal-triangular decomposition.

[Q,R] = mgs(X) produces an upper triangular matrix R of
the same dimension as X and a unitary matrix Q so that
X = Q*R.

Method based on MGS algorithm in: Matrix Computations
Gene H. Golub and Charles F. Van Loan

3rd Ed., pp. 232

The Jonns Hopkins University Press, 1996.

also see

Linear Algebra with Applications
Steven J. Leon, 3rd Ed.,

pp. 240,

Macmillan Pubilishing Co., 1990.

Also see rmmgs.m

Sunil L. Kukreja 08 December 1998
Copyright Sunil L. Kukreja
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mod _val

function [R_ee,R_ue,R_eeu]=mod_val(x,err,lag);

% [R_ee,R_ue,R_eeu]l=mod_val(x,err,lag);

%

% 1input= the input to the system provided by the user
% residuals= residuals computed from identification
% lag= number of lags correlation is computed to

%

A

% R_ee =auto-correlation of errors

% R_ue =cross-correlation of input & errors

% R_eeu =cross-cross-correlation of errors & error

A

% Function implements method in: Structure detection
% and model validity tests in the identification of
% nonlinear systems

%“ S.A. Billings and W.F.S. Voon

% IEE Porceedings

% Vol. 130, Pt. D, No. 4, July 1983

%

% SLK 16 November 1997

Il Rl Rt Tt Tt Al AR Rl AT I DT AUAA DTSR D DDA DAL DDA

204



name2

function [vlabel,lenul=name2(n,nx,ny,ne);

% Forms the row names for the prameter vector in

% linear regression.

%

% ([vlabel,lenul=name2(n,nx,ny,ne);

%

%

% This function computes the names of all the parameters
% in the parameter vector.

%

% n= degree of polynimial

% nx= number of lagged inputs

% ny= number of lagged outputs

% ne= number of lagged errors

A

% vlabel - contains the names of all the columns of the

A regressor matrix

% lenu - the number of columns depending on only the

% input and DC term

%

A Sunil L. Kukreja 12 May 1998 (revised 2 December 1998)
yA Copyright Sunil L. Kukreja
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nlankid

function [theta,z_hat]=nlankid(x,z,delay)

% Computes parameters of nonlinear path of parallel pathway

% ankle model

%

% (theta,z_hat]=nlankid(x,z,delay)

%

% This function is meant to be used for itterative identification
% of ankle dynamics.

A

% Inputs:

% x~ input

% z- output

% delay- disctete-time delay of reflex path

%

% Outputs:

% theta- estimated parameters

% z_hat- predicted out

%

% Copyright Sunil L. Kukreja 12 October2000
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nmse

function v = nmse(err,y)

% Computes the Nomarlized Mean Square Error between
% two signals

%

% v = nmse(err,y)

%

% err=y-y_hat

%

% err are the residuals

% y is the measured signal

%

%

% Sunil L. Kukreja 25 April 1997

% Copyright Sunil L. Kukreja

Il Rl ol Tl L I Il L T K Rl I T KA Rl AR AR Ll A e

207



ols

function [theta,vlabel,PHI,Q,R,err]=ols(u,y,N,n,nx,ny);
% Ordinary least squares

h

% [theta,vlabel,PHI,Q,R,err]=ols(u,y,N,n,nx,ny);

%

% INPUTS:

% u - input

%“ y - output

% N - number of data points to be used

%“ n - nonlinerity order

% nx - input lag order

% ny - ouput lag order

%

% OUTPUTS:

% theta - estimated parameters

% vlabel - parameter labels

% PHI - regressor matrix

% Q - orthogonal decomposition of PHI

% R - triangular decomposition of PHI

% err - residuals

A

% Method based on OLS method in: Linear Regression Analysis
% George A.F. Seber 1977

%

% also see

%

% Dynamic System % Identification: Experiment Design and
% Data Analysis

4 G.C. Goodwin and R.L. Payne, 1977

h

%

% Copyright Sunil L. Kukreja 16 November 1999
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rank2mat

function [Vector]=rank2mat(N,x,y,delay);

%
%
%
%
%
%
%
h
%
%
h
%
h
A
%
h
h
h
A
h
%
%

Vector=rank2mat (N, x,y,delay);

This function computes the regressor matrix
for a 2nd order model of ankle dynamics.

This assumes the general structure of Rob’s
model but uses a 2nd order approximation for
the static nonlinearity.

N= number of data points to be used
x= measured input
y= measured output

delay= reflex delay in discrete-time,
i.e., DT_delay=CT_delay/sampling_rate

Vector= regressor matrix that contain a
compressed version of the correct
terms for Rob’s model

Sunil L. Kukreja 8 June 2000
Copyright Sunil L. Kukreja
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rank2mati

function [Vector]=rank2mati(N,x);

h
%
h
%
h
h
h
%
%
h
h
h
%
h
h
A
h
%
A

Vector=rank2mati(N,x);

This function computes the intrinsic regressor matrix
for a 2nd order model of ankle dynamics.

This assumes the general structure of Rob’s model
for the intrinsic path

Inputs:

N= number of data points to be used
x= measured input

Qutput:

Vector= regressor matrix that contain a compressed version
of the correct terms for Rob’s model

Sunil L. Kukreja 11 September 2000
Copyright Sunil L. Kukreja
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rank2matr

function [Vector]=rank2matr(N,x,y,delay);

% Vector=rank2matr(N,x,y,delay);

%

% This function computes the reflex regressor matrix

% for a 2nd order model of ankle dynamics.

%

% This assumes the general structure of Rob’s model

% for the reflex path but uses a 2nd order approximation
% for the static nonlinearity.

%

4 N= number of data points to be used

% ox= measured input

% oy= measured output

% delay= reflex delay in discrete-time,

% i.e., DT_delay=CT_delay/sampling_rate

%

% Vector= regressor matrix that contain a compressed

% version of the correct terms for Rob’s model
A

%

h Sunil L. Kukreja 11 September 2000

A Copyright Sunil L. Kukreja
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rmmegs

function [Q,R]=rmmgs(Q,R,A,c);

% QR factorization using the remodified Modified

% Gram-Schmidt (MGS) Algorithm

%

% Given the QR factorization of A_old, and the new

% updated matrix A_new

h

% [Q,Rl=modreg(Q,R,A_new,c) computes the fast

% orthogonal-triangular decomposition of A_new

h

% This can be used when the entire matrix, A_new,

% does not need to be re-orthogonalized. The

% "updated or new" columns of A_new are orthogonalized
% relative to the previously orthogonalized and unchanged
% columns of A_old.

h

% The matrix A is assumed to be in two partitions. The
% first, A’, does not change while the second partition,
% A’’, is updated or new. A=[A’ A’’]

h

% Q,R - Orthogonal-triangular decomposition of A_old

“A - A_nev mxn matrix m >= n

% ¢ - number of columns of A_old that do not change
%

“#Q - an m x n unitary matrix Q so that A_new = Q*R
“R - an n x n upper triangular matrix

%

% Method based on MGS algorithm in: Matrix Computations
% Gene H. Golub and Charles F. Van Loan

% 3rd Ed., pp. 231-2

4 The Johns Hopkins University Press, 1996.

% ALSO SEE

% Linear Algebra with Applications

% Steven J. Leon, 3rd Ed., pp. 240,

% Macmillan Pubilishing Co., 1990.

h

% Also see mgs.m

%

% Sunil L. Kukreja 09 December 1998

% Copyright Sunil L. Kukreja
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rmt?2

function Vector=rmt2(N,n,nx,ny,ne,x,y,e);
% Forms a regressor matrix with specified dimensions.

% Vector=rmt(N,n,nx,ny,ne,x,y,e);

% This function computes the regressor matrix (PHI) in
% a linear regression problem; i.e. Y=PHI*THETA

4 Y= the output from the system provided by the user
% PHI= the regressor matrix

% N= how many rows wanted in the regressor matrix
% nx= number of lagged inputs

% ny= number of lagged outputs

% ne= number of lagged errors

% n= degree of polynimial

% The regressor matrix is setup in the following format:
% Vector=[Gu Gzu Gzue Ge] where

% G_zu contains the order in which terms containing
% 2z and u terms appear in the first partition of the
% regressor matrix.

% G_zue contains the order in which terms containing
%“ z, u and e appear in the second partition of the
% regressor matrix.

% G_e contains the order in which terms containing
% e only appear in the third partition of the regressor
% matrix.

% Also see name.m
A Sunil L. Kukreja 12 May 1998 (revised 2 December 1998)

%  Copyright Sunil L. Kukreja
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simnarmax

function [output]=simnarmax(model,input,noise);

% Simulate a polynomial NARMAX model

h

% Function: [output]=simnarmax(model,input,noise);

h

% model - polynomial NARMAX model

% The NARMAX model equation must have all coeffs in
% front of the variables without multiplication sign;
% e.g. 0.5u(n-1).

%

% Crossterms are written with a multiplication sign
% between the varaibles and the coefficeint in front;
h e.g., 0.5u(n-1)*y(t-3)

% Do not put a plus in front of leading terms;

% DO NOT DO THIS: e.g. model{2,:}=["+3u"2 (n-3)’]

h

% 'u’ specifies the input

% 'y’ specifies the output

% ’e’ specifies the noise

% 'n’ specifies the discrete time step

A

% Function Inputs:

% input-system input

% output-system output

% noise-system noise

% model- polynomial NARMAX equation

/A

% To simulate without an input declare input=[];

% To simulate without output additive noise declare noise=[];
% e.g., y(n)=5.1u(n-1)+3u"2(n-3)-0.4y(n-4)+0.4y(n-4) *e(n-1)
% -.2e(n-1)+e(n) would be specified as follows:

%

% model{1}=[’5.1u"2(n-7)’];

% model{2,:}=[’3u"2(n-3)’];

% model{3,:}=[’-0.4y(n-4)’];

% model{4,:}=[’0.4y(n-4)*e(n-1)’];

% model{5,:}=[’-.2e(n-1)’];

% model{6,:}=[’e(n)’];

4

% Copyright Sunil L. Kukreja 24 July 1998
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SwWr

function [thetan,vlabel]=swr(PHI,y,vlabel);

% Stepwise Regression Algorithm

%

% [theta,vlabel]=swr(PHI,y,vlabel)

A

h PHI - Regressor matrix

% y - output

% vlabel - name vector

%

% theta - reduced theta

%

% Method based on SWR in: A prediction-error and
% stepwise-regression estimation algorithm for

% nonlinear systems

% S.A. Billings and W.S.F. Voon

% Int. J. Control, vol. 44 No. 3 pp. 803-822 1986
%

% also see

%

% Applied Regression Analysis

% N.R. Draper and H. Smith

% 2nd edition, John Wiley and Sons, 1981

%

% Copyright Sunil L. Kukreja 11 May 1998
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t_test

function {thetan,vlabel,err,std_theta] =t_test(vlabel,lenu,
theta,PHI,std_theta,conf_level,n,nx,ny,ne,x,z,err);

% t-test Standard deviation of parameters using least-squares

% methods.

%

% Function:[thetan,vlabel,err,std_theta]l] =t_test(vlabel,lenu,

% theta,PHI,std_theta,conf_level,n,nx,ny,ne,x,z,err);
A

% Inputs:

%

% vlabel - vector containing the variables associated

% with each row of theta (see name.m)

A theta - estimated parameter vector

% std_theta - standard deviation of parameters (see ls_std.m)
% conf_level - standard deviation of parameters

A z - output

% x - input

% err - residuals
yA ny - output lags
% nx - input lags
% ne - error lags

%

% conf_level - 80, 90, 95, 97.5, 99 or 99.5 percent

%

% Outputs:

% thetan - parameter vector with significant terms

%

% Method based on t-test in: Linear Regression Amalysis
% George A.F. Seber 1977

%

%
% Sunil L. Kukreja 12 May 1998
yA Copyright Sunil L. Kukreja
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vor _high

function [std_theta,sys_theta,init_theta,vlabel]l=vor_high(u,y,index);
% Identifies the slow phase parameters of the VOR

% system with initial conditions

%

% [std_theta,sys_theta,init_theta,vlabel]

% =vor_high(u,y,index) ;

% This function computes the parameters for a

% high-pass VOR system.

%

% The structure in this function is assumed to

% be known, e.g. n=3, nx=1 and ny=1 which corresponds

% to 3rd order nonlineraity and first order

% dynamics on the input-output terms.

%

% Assumed Model Structure (HIGH-PASS):

%(3rd Order)

% NL Input + | KS |

h - ->| I > Qutput
% | tauS+1 |

% [_- |

% Linear System

A

% FUNCTION INPUTS:

% u= the input

% y= the output

% 1index= the start and stop indices of each segment,
% e.g. 12 345]

A (678 982}

% where 2 and 678 are the start points and 345 and
% 982 are the stop points of the segments

% FUNCTION OUTPUTS:

% std_theta= std of estimated parameters

% sys_theta= the identified system parameters

% init_theta= the identified initial conditions

% vlabel= the row labels of the theoretical and

A identified parameters

A

A Sunil L. Kukreja 20 January 2000
% Copyright Sunil L. Kukreja
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vor _low

function [std_theta,sys_theta,init_theta,vlabell=vor_low(u,y,index);
% Identifies the slow phase parameters of the VOR

% system with initial conditioms

%

% [std_theta,sys_theta,init_theta,vlabel]

% =vor_low(u,y,index);

% This function computes the parameters for a

% low-pass VOR system.

% The structure in this function is assumed to

% be known, e.g. n=3, nx=1 and ny=1 which corresponds
% to 3rd order nonlineraity and first order

% dynamics on the input-output terms.

% Assumed Model Structure (LOW-PASS):
% (3rd Order) _—

% NL Input + | K !

A > === == > Output
% | tau S+ 1 |

h e l

h Linear System

% FUNCTION INPUTS:

% u= the input

% y= the output

% index= the start and stop indices of each segment,
h oe.g. 12 345]

yA 1678 982

% where 2 and 678 are the start points and 345 and
A 982 are the stop points of the segments

% FUNCTION OUTPUTS:

% std_theta= std of estimated parameters

% sys_theta= the identified system parameters

% init_theta= the identified initial conditionms

% vlabel= the row labels of the theoretical and

A identified parameters

%

% Sunil L. Kukreja 10 September 1999
% Copyright Sunil L. Kukreja

A AN AN AN N AN AN Y Y AN AN AN S SN AN YA Y YA YA AN A AN YA Yy Y YA

218



Bibliography

(1] Henery D. I. Abarbanel. Analysis of Observed Chaotic Data. Springer-Verlag,

[4]

New York, first edition, 1996.

Henery D. I. Abarbanel and Matthew B. Kennel. Local false nearest neigh-
bors and dynamical dimensions from observed chaotic data. Phys. Rev. E.

47(5):3057-3068, 1993.

K.M. Adeney and M.J. Korenberg. Fast orthogonal search for array processing
and spectrum estimation. In IEE Proc. Vision Image Signal Process., volume

141, pages 13-18, 1994.

K.M. Adeney and M.J. Korenberg. Itterative fast orthogonal search algorithm
for MDL-based training of generalized single-layer networks. Neural Networks,

13:787-799, 2000.

H. Akaike. A new look at the statistical model identification. IEEE Transactions
on Automatic Control, AC-19:716-723, 1974.

R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proc.
ICALP. Lecture Notes in Computer Science 443, pages 322-335. Springer-
Verlag, 1990.

R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In
A. Mazurkiewicz and J. Winkowski. editors, CONCUR ’97: Concurrency The-
ory, Lecture Notes in Computer Science 1243, pages 74-88. Springer-Verlag,
1997.

219



8]

[9]

(10]

[11]

[12]

[13]

[14]

13]

[16]

K.J. Astrom. Computer-Controlled Systems: Theory and Design. Prentice Hall,
Upper Saddle River, N.J., 3rd edition, 1997.

R.W. Baloh, K.M. Jacobson, K. Beukirch, and V. Honrubia. Horizontal
Vestibulo-ocular Reflex after acute peripheral lesions. Acta Otolaryngology

(Suppl.), 468:323-327, 1989.

J.V. Beck and K.J. Arnold. Parameter Estimation in Engineering and Science.
Wiley series in probability and mathematical statistics. John Wiley & Sons,
New York, 1977.

L. Behera and N. Kirubanandan. A hybrid neural control scheme for visual-

motor coordination. /EEE Control Systems Magazine, 19(4):34—41, 1999.

Julius S. Bendat. Nonlinear Systems Techniques and Applications. Johns Wiley

and Sons, New York, first edition, 1998.

Julius S. Bendat and Allan G. Piersol. Random Data, analysis and measurement

procedures. Johns Wiley and Sons, New York, second edition, 1986.

B. Bérard. P. Gastin, and A. Petit. On the power of non-observable actions in
timed automata. In Actes du STACS 96, Lecture Notes in Computer Science

1046, pages 257-268. Springer-Verlag, 1996.

Peter J. Bickei and David A. Freedman. Some asymptotic theory for the boot-

strap. The Annals of Statistics, 9(6):1196-1217, 1981.

Peter J. Bickel and David A. Freedman. Bootstrapping regression models with
many parameters. Technical Report 7, Department of Statistics, University of

California (Berkeley), Berkeley, California, June 1982.

S.A. Billings and S.Y. Fakhouri. Identification of systems containing linear

dynamic and static nonlinear elements. Automatica, 18:15-26, 1982.

220



18]

[19]

[20]

S.A. Billings and G.N. Jones. Orthogonal least-squares parameter estimation
algorithms for non-linear stochastic systems. International Journal of Systems

Science, 23(7):1019-1032, 1992.

S.A. Billings and 1.J. Leontaritis. Parameter estimation techniques for nonlin-
ear systems. In 6th IFAC Symposium on Identification & System Parameter

Estimation, volume 6, pages 427-432. IFAC/SYSID, 1982.

S.A. Billings, Chen. S., and M.J. Korenberg. Identification of MIMO non-linear
systems using a forward-regression orthogonal estimator. International Journal

of Control. 49(6):2157-2189, 1989.

S.A. Billings and W.S.F. Voon. Structure detection and model validation tests
in the identification of nonlinear svstems. IEE Proceedings, Pt. D., 130:193-199,
1983.

S.A. Billings and W.S.F. Voon. Least squares parameter estimation algorithms
for non-linear systems. International Journal of System Science, 15(6):601-615,

1984.

S.A. Billings and W.S.F. Voon. Correlation based model validity tests for non-

linear models. International Journal of Control, 44(1):235-244, 1986.

S.A. Billings and W.S.F. Voon. A prediction-error and stepwise-regression es-
timation algorithm for non-linear systems. International Journal of Control.

14:803-822, 1986.

S.A. Billings and Q.M. Zhu. Nonlinear model validation using correlation tests.

International Journal of Control, 60(6):1107-1120, 1994.

Ake Bjorck. Numerical Methods for Least Squares Problems. Siam, Philadelphia,
first edition, 1996.

John D. Bomberger and Dale E. Seborg. Determination of model order for
NARX models directly from input-output data. J. Proc. Cont., 8(56):459-468,
1998.

221



28]

[29]

[30]

31]

(32]

[33]

[34]

[36]

37]

G.E.P. Box and G.M. Jenkins. Time Series Analysis: Forecasting and Contro.

Holden-Day, San Francisco, first edition, 1970.

S. Boyd and L.O. Chua. Fading memory and the problem of approximating
nonlinear operators with Volterra series. [EEFE transactions on Circuits and

Systems, CAS-32(11):1150-1161, 1985.

P.J. Brockwell. Time Series: Theory and Methods. Springer-Verla, New York,

second edition, 1995.

P.M.T. Broersen and H.E. Wensink. On finite sample theory for autoregressive

model order selection. IEEE Trans. Signal Processing, 42(1), 1993.

D.E. Budil, S. Lee, S. Saxena, and J.H. Freed. Nonlinear-least-squares anal-
vsis of slow-motion ERP spectra in one and two dimensions using a modified
Levenberg-Marquardt algorithm. J. Magnetic Resonance, Series A, 120:155-
189, 1996.

Kenneth P. Burnham and David R. Anderson. Model Selection and Inference:
A Practical Information- Theoretic Approach. Springer-Verlag, New York, first
edition, 1998.

Christopher Chatfield. The analysis of time series : an introduction. Chapman

& Hall, first edition, 1996.

S. Chatterjee and M. Machler. Robust regression: A weighted least squares
approach. Communications in Statistics - Theory and Methods, 26(6):1381-
1394, 1997.

R. Chen and R.S. Tsay. Nonlinear additive ARX models. J. Am. Stat. Assoc.,
88(423):955-967, 1993.

S. Chen and S.A. Billings. Representations of non-linear systems: the

NARMAX model. International Journal of Control, 49(3):1013-1032, 1989.

222



(38]

[39]

[40]

[41]

[43]

[44]

[46]

[47]

S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and
their applications to nonlinear system identification. International Journal of

Control, 50:1873-1896, 1989.

A. Choen. Biomedical Signal Processing, volume 1, chapter Time and Frequency

Domains Analysis. CRC Press, Boca Raton, 1986.

K.S. Chun and D.A Robinson. A model of quick phase generation in the
vestibulo-ocular reflex. Biol. Cybern., 28:209-221, 1978.

J.B. Copas. Regression, prediction and shrinkage. Journal of the Royal Statis-
tical Society B, 45(2):311-354, 1983.

B. David and G. Bastin. A maximum likelihood parameter estimation method
for nonlinear dynamical systems. In Proceedings of the 38th IEEE Conference on
Decision and Control, volume 38, pages 612-617, Phoenix, Arizona, December

1999.

B. de Moor. Total least squares for affinely structured matrices and the noisy
realization problem. IEEE Transactions on Signal Processing, 42(11):3104-
3113. 1994.

J.L. Douce. Identification of a class of nonlinear systems. In Jth IFAC Sympo-
sium on Identification & System Parameter Estimation, volume 4, pages 1-14.

[FAC/SYSID, 1976.

N.R. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons,

New York. second edition, 1981.

B. Efron. Computer and the theory of statistics: Thinking the unthinkable.
SIAM Review, 21(4):460-480, 1979.

B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-

validation. Journal of the American Statistical Association, 78:316-331, 1983.

223



[48] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman &
Hall, New York, first edition, 1993.

[49] M.A. Efroymson. Multiple Regression and Correlation. in Mathematical Meth-
ods for Digital Computers. John Wiley & Sons, New York, first edition, 1960.

(50] J. Eker and J. Malmborg. Design and implementation of a hybrid control
strategy. IEEE Control Systems Magazine, 19(4):12-21, 1999.

[51] P. Eykhoff. System Identification. John Wiley & Sons, New York, first edition,
1974.

[52] M. Fliess and D. Normand-Cyrtot. On the approximation of nonlinear systems
by some simple state-space models. In Identification and System Parameter
FEstimation, volume 6, pages 511-514, Washington, DC, 1982. 6th IFAC/SYSID

Svmposium.

[53] G.F.Franklin, J.D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic
Systems. Addison-Wesley, New York, third edition, 1994.

[54] Donald R. Fredkin and John A. Rice. Method of false nearest neighbors: A
cautionarv note. Phys. Rev. E, 51(4):2950-2954, 1995.

[55] David A. Freedman. Bootstraping regression models. The Annals of Statistics,

9(6):1218-1228. 1981.

[56] J.E. Freund. Mathematical Statistics. Prentice Hall, Inc., Englewood Cliffs,

New Jerseyv, first edition, 1962.

[57] H.L. Galiana. A nystagmus strategy to linearize the vestibulo-ocular reflex.

IEEFE Transactions on Biomedical Engineering, 38(6):532-543, 1991.

[58] H.L. Galiana, H.L. Smith, and A. Katsarkas. Comparing linear and non-linear
methods for the analysis of the Vestibulo-ocular Reflex. Acta Otolaryngology,
115:385-596, 1995.

224



[59]

[60]

[61]

/62)

[63]

[64]

[65]

[66]

[68]

[69]

A.HW. (Ton) Geerts and J.M. Schumacher. Impulsive-smooth behavior in
multimode svstems Part [: State-space and polynomial representations. Auto-

matica, 32(5):747-758, 1996.

Gene H. Golub. Matriz computation. The Johns Hopkins University Press,

Baltimore, second edition, 1993.

G.C. Goodwin and R.L. Payne. Dynamic System Identification: Ezperiment
Design and Data Analysis, volume 136 of Mathematics in Science and Engi-

neering. Academic Press, New York, 1977.

G.C. Goodwin and M. Salgado. A stochastic embedding approach for quan-
tifving uncertainty in estimation of restricted complexity models. Int. J. of

Adaptive Control and Signal Processing, 3:333-356, 1989.

J.D. Hamilton. Time Series Analysis. Princeton University Press, Princeton,

N.J, first edition, 1994.

Michael A. Hanson and Dale E. Seborg, editors. Nonlinear Process Control.

Prentice-Hall, New Jersey, 1997. ISBN 0-13-625179-X.

A. C. Harvey. Time Series Models. John Wiley & Sons, New York, first edition,
1981.

S.S. Havkin. A unified treatment of recursive digital filtering. IEEE Trans.
Auto. Control, 17:113-116. 1972.

T.A. Henzinger. The theory of hybrid automata. In Proc. 11th Symp. on Logic
in Computer Science, pages 278-292. [EEE Computer Society Press, 1996.

Tien C. Hsia. System Identification: Least-Squares Methods. Lexington Books,
D.C. Heath and Company, Lexington, Massachusetts, 1977.

Sabine Van Huffel and Joos Vandewalle. The Total Least Squares Problem:
Computational Aspects and Analysis. Siam, Philadelphia, first edition, 1991.

225



[70]

71

[72]

[73]

[80]

I.W. Hunter and R.E. Kearney. Dynamics of human ankle stifness: variation

with mean ankle torque. Journal of Biomechantcs, 15(3):753-756, 1982.

C.M. Hurvich and C. L. Tsai. The impact of model selection on inference in

linear regression. The American Statistician, 44:214-217, 1990.

R.L. Kashyap. Inconsistency of the ACI rule for estimating the order of autore-
gressive models. IEEE Trans. on Automatic Control, 25(5):996-998, October
1980.

A. Katsarkas, H.L. Galiana, and H.L. Smith. Vestibulo-ocular Reflex (VOR)
biases in normal subjects and patients with compensated Vestibular loss. Acta

Otolaryngology, 115:476-483, 1995.

R.E. Kearney and I.W. Hunter. Dynamics of human ankle stiffness: variation

with displacement amplitude. Journal of Biomechanics, 15:753-756, 1982.

R.E. Kearney and I.W. Hunter. System identification of human triceps surae

stretch reflex dvnamics. Ezperimental Brain Research, 51:117-127, 1983.

R.E. Kearnev and [.W. Hunter. System identification of human stretch reflex

dvnamics: tibialis anterior. Ezperimental Brain Research, 56:40-49, 1984.

R.E. Kearney and [.W. Hunter. Nonlinear identification of stretch reflex dy-

namics. Annals of Biomedical Engineering, 16:79-94, 1988.

R.E. Kearney and I.W. Hunter. System identification of human joint dynamics.

Critical Reviews in Biomedical Engineering. 18(1):55-87, 1990.

R.E. Kearney, R.B. Stein, and L. Parameswaran. Identification of intrinsic and
reflex contributions to human ankle stiffness dynamics. /EEE Trans. Biomed.

Eng.. 44(6):493-504, 1997.

R.E. Kearney, P.L. Weiss, and R. Morier. System identification of human ankle
dynamics: intersubject variability and intrasubject reliability. Clinical Biome-

chanics, 3(4):205-217, 1990.

226



[81]

[82]

(83]

[86]

(88]

[89)]

[90]

M. Kendall and J.K. Ord. Time Series. Edward Arnold, Great Britain, third
edition, 1990.

M.B Kennel, R. Brown, and H.D.I. Abarbanel. Determining embedding di-
mension for phase-space reconstruction using a geometrical construction. Phys.

Rev. A, 45(6):3403-3411, 1992.

M.J. Korenberg. Identification of biological cascades of linear and static non-
linear elements. Proceedings of the Midwest Symposium on Circuit Theory,

18.2:1-9, 1973.

M.J. Korenberg. Orthogonal identification of nonlinear difference equation mod-

els. Proceedings of the Midwest Symposium on Circuit Theory, 1:90-95, 1985.

M.J. Korenberg. A robust orthogonal algorithm for system identification and

time series analysis. Biological Cybernetics, 60:267-276, 1989.
M.J. Korenberg, April 2001. Personal Communications.

AM.J. Korenberg, S.A. Billings, Y.P. Liu, and P.J. Mcllrov. Orthogonal pa-
rameter estimation algorithm for non-linear stochastic systems. International

Journal of Control, 48(1):193-210, 1988.

M.J. Korenberg and [.W. Hunter. The identification of nonlinear biological
systems: Wiener kernel approaches. Annals of Biomedical Engineering, 18:629-

654, 1990.

R.L. Kosut, M.K. Lau. and S.P. Boyd. Set-membership identification of sys-
tems with parameteric and nonparametric uncertainty. JEEE Trans. Automatic

Control, 37(7):929-942, 1992.

S.L. Kukreja, H.L. Galiana. and R.E. Kearney. Structure detection of
NARMAX models using bootstrap methods. In Proceedings of the 38th IEEE
Conference on Decision and Control, volume 38, pages 1071-1076, Phoenix,

Arizona, December 1999.

227



[91]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

S.L. Kukreja, H.L. Galiana, H.L.H. Smith, and R.E. Kearney. Parametric iden-
tification of nonlinear hybrid systems. In Proc. BMES/IEEE-EMBS, volume 21,
page 991, Atlanta, Georgia, October 1999.

S.L. Kukreja, R.E. Kearney, and H.L. Galiana. NARMAX representation of a
parallel pathway model of ankle dynamics. In Proc. CMBEC, volume 24, pages
30-31, Edmonton, Canada, June 1998.

S.L. Kukreja. R.E. Kearney, and H.L. Galiana. Structure detection of nonlinear
dynamic systems using bootstrap methods. In Proc. IEEE EMBS, volume 20,

pages 3020-3023, Hong Kong, China, October 1998.

Sunil L. Kukreja. Method for estimation of continuous-time models of linear
time-invariant systems via the bilinear transform. Master’s thesis, McGill Uni-

versity, Department of Biomedical Engineering, 1996.

S. Kullback. Information Theory end Statistics. John Wiley & Sons, New York,
1959.

L.H Lee and K. Poolla. On statistical model validation. Trans. ASME, 118:226-
236, 1996.

M.D. Lemmon. K.X.He, and I. Markovsky. Supervisory hybrid syvstems. [EEE
Control Systems Magazine. 19(4):42-55, 1999.

I.J. Leontaritis and S.A. Billings. Input-output parametric models for non-
linear systems part I: deterministic non-linear systems. International Journal

of Control. 411(2):303-328, 1985.

[.J. Leontaritis and S.A. Billings. Input-output parametric models for non-
linear systems part II: stochastic non-linear systems. International Journal of

Control, 41(2):329-344, 1985.

L. Ljung and L. Guo. Classical model validation for control design purposes.
Mathematical Modelling of Systems, 3(1):27-42, 1997.

228



[101]

[102]

[103)

[104]

[105]

[106]

107]

(108]

[109}

[110]

Lennart Ljung. System Identification. Prentice Hall, Inc., Englewood Cliffs,

New Jersey, first edition, 1987.

M. Mantel. Why stepdown procedures in variable selection. Technometrics,

12:621-625, 1970.

P.Z. Marmarelis and V.Z. Marmarelis. Analysis of Physiological Systems - the
White Noise Approach. Computers in Biology and Medicine. Plenum Press,

New York, 1978.

The MathWorks Inc., Natwick, MA. Simulink: Dynamic System Simulation for
Matlab, 2 edition, January 1997.

Jerry M. Mendel. Lessons in estimation theory for signal processing, commu-

nications and control. Prentice Hall, Inc., Englewood Cliffs, New Jersey, first

edition, 1995.

A.J. Miller. The convergence of Efroymson’s stepwise regression algorithm. The

American Statistician, 50(2):180-181, 1996.

M.M. Mirbagheri, H. Barbeau, and R.E. Kearney. Intrinsic and reflex contri-
butions to human ankle stiffness: Variation with activation level and position.

Ezrperimental Brain Research, 2000. In Press.

M.M. Mirbagheri and R.E. Kearney. Mechanisms underlying a third-order para-
metric model of dynamic reflex stiffness. In Proc. IEEE EMBS, volume 22, pages

1241-1242, Chicago, USA, July 2000.

M.M. Mirbagheri, R.E. Kearney, H. Barbeau, and M. Ladouceur. Parametric
modeling of the reflex contribution to dynamic ankle stiffness in normal and
spinal cord injured spastic subjects. In Proc. IEEE EMBS, volume 17, pages
1241-1242, Montreal, Canada, September 1995.

R.L. Morier, P.L. Weiss, and R.E. Kearney. Low inertia, rigid limb fixation using
glass fibre casting bandage. Medical and Biological Engineering and Computing,
28:96-99, 1990.

229



[111]

[112]

[113]

[114]

113]

[116]

[117]

[118]

[119]

[120]

[121)

B. Ninnes and G.C. Goodwin. Estimation of model quality. Automatica,

31(12):1771-1797, 1995.

M. Noshiro, H. Shindou, Y. Fukuoka, M. Ishikawa, H. Minanitani, K. Sakamoto,
A. Tanakadate, and S. Nebuya. NARMAX model of the pCO, control system
in man estimated by neural computation. In Proc. IEEE EMBS, volume 18,
pages 999-1000, Amsterdam, The Netherlands, October 1996.

C.W. Ostrom. Time Series Analysis: Regression Techniques. Sage Publications,

Newberry Park, Calif., second edition, 1990.

G.D. Paige. Nonlinearity and asymmetry in human Vestibulo-ocular Reflex.

Acta Otolaryngology, 108:1-8, 1989.

S.M. Pandit and S.M. Wu. Time Series and System Analysis with Application.
John Wiley & Sons, New York, first edition, 1983.

R.K. Pearson. Nonlinear input/output modelling. J. Proc. Cont., 5(4):197-211.
1995.

D.N. Politis. Computer-intensive methods in statistical analysis. IEEE Signal

Processing Magazine, 15(1):39-55, 1998.

K. Poolla, P.P. Khargonekar, A. Tikku, J. Krause, and K. Nagpal. A
time-domain approach to model validation. IEEE Trans. Automatic Control,

39(5):951-959, 1994.

M. Pottmann and R.K. Pearson. Block-oriented NARMAX models with output
multiplicities. AIChE Journal, 44(1):131-140, 1998.

M.B. Priestley. Spectral Analysis and Time Series. Academic Press, San Diego,

first edition, 1981.

J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algo-
rithms, and Applications. Prentice Hall, New Jersey, third edition, 1996.

230



[12]

[123]

[124]

(125]

[126]

[127]

[128]

[129]

[130]

131]

[132]

133]

G. Qian. Computations and analysis in robust regression model selection using

stochastic complexity. Computational Statistics, 14(3):293-315, 1999.

Claudio G. Rey and Henrietta L. Galiana. Parametric classification of segments

in ocular nystagmus. IEFE Trans. Biomed. Eng., 38(2):142-148, 1991.

Claudio G. Rey and Henrietta L. Galiana. Transient analysis of vestibular

nystagmus. Biol. Cybern., 69:395-405, 1993.

Carl Rhodes and Manfred Morari. The false nearest neighbors algorithm: An
overview. Computers Chem. Engng., 21:51149-51154, 1997.

Carl Rhodes and Manfred Morari. False-nearest-neighbors algorithm and noise-

corrupted time series. Phys. Rev. E, 55(5):6162-6170, 1997.

Carl Rhodes and Manfred Morari. Determining the model order of nonlinear

input/output systems. AIChE Journal, 44(1):151-163, 1998.

J. Rissanen. Modelling by shortest data description. Automatica, 14:465-471,
1978.

D.A. Robinson. The use of control systems analysis in the neurophysiology of

eve movements. Ann. Rev. Neurosci., 4:463-503, 1981.

Wilson J. Rugh. Nonlinear system theory, the Volterra/Wiener approach. The

Johns Hopkins University Press, Baltimore, 1981.

Wilson J. Rugh. Linear System Theory. Printice Hall, Inc., Englewood Cliffs,
New Jersey, first edition, 1993.

R. Schmidt and F. Lardini. On the predominance of anti-compensatory eye

movements in vestibular nystagmus. Biol. Cybern., 23:135-148, 1976.

George A.F. Seber. Linear Regression Analysis. John Wiley & Sons, New York,
first edition, 1977.

231



[134] B.N. Segal and J.S. Outerbridge. A nonlinear model of semicircular canal pri-

mary afferents in bullfrog. J. Neurophysiol., 47:563-578, 1982.

[135] J. Shao. Bootstrap model selection. Journal of the American Statistical Asso-

ciation, 91(434):655-665, 1996.

[136] Jun Shao and Dongsheng Tu. The jackknife and bootstrap. Springer Verlag,
New York, NY, first edition, 1995.

[137] H. Shindou, M. Noshiro, Y. Fukuoka, M. Ishikawa, and H. Minanitani. A new
method for parameter estimation in the NARMAX model using neural compu-
tation. In Proc. IEEE EMBS, volume 17, pages 329-330, Montreal, Canada,
September 1995.

[138] William M. Siebert. Circuits, Signals, and Systems. The MIT Press, Cambridge,

Massachusetts, first edition, 1986.

[139] Naresh K. Sinha. Estimation of transfer function of continuous system from

sampled data. Proc. [EE, 119(5):612-614, 1972.

[140] N.K. Sinha and B. Kuszta. Modeling and Identification of Dynamic Systems.
Van Nostrand Reinhold Company Inc., New York, first edition, 1983.

[141] J. Sjoberg, Q. Zhang, L. Ljung, B. Delyon A. Benveniste, P.Y. Glorennec,
H. Hjalmarsson, and A. Juditsky. Nonlinear black-box modeling in system

identification: a unified overview. Automatica, 31(12):1691-1724, 1995.

[142] K.W. Smillie. An Introduction to Regression and Correlation. Academic Press

Inc., London, first edition, 19686.

[143] H.L.H. Smith and H.L. Galiana. The role of structural symmetry in linearizing
ocular reflexes. Biol. Cybern., 65:11-22, 1991.

[144] Jon M. Smith. Mathematical Modeling and Digital Simulation for Engineers
and Scientists. John Wiley & Sons, Inc., New York, second edition, 1987.

232



[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

R.S. Smith and J.C. Doyle. Model invalidation: A connection between ro-
bust control and identification. JEEE Trans. Automatic Control, 37(7):942-952,
1992.

E.D. Sontag. Polynomzial Response Maps, volume 13 of Lecture Notes in Control

and Information Sciences. Springer-Verlag, Berlin, 1979.

B.A. Starnes and J.B. Birch. Asymptotic results for model robust regression.

Journal of Statistical Computation and Simulation, 66(1):19-34, 2000.

Fredrik Tjarnstrom. The use of bootstrap in system identification. Techni-
cal Report LiTH-ISY-R-2113, Department of Electrical Engineering, Linkdping
University, S-581 83 Linkoping, Sweden, Mar 1999.

Fredrik Tjarnstrom. Computing uncertainty regions with simultaneous confi-
dence degree using bootstrap. In Preprints of the 12th IFAC Symposium on
System Identification, Santa Barbara, USA, number FrPM1-6, Jun. 2000.

Fredrik Tjarnstrom. Quality estimation of approximate models. Technical Re-
port Licentiate Thesis No. 810, Department of Electrical Engineering, Linkoping
University, SE-581 83 Linkoping, Sweden, Feb. 2000.

Fredrik Tjirnstrom and Lennart Ljung. Estimating the variance in case of
undermodeling using bootstrap. In Proceedings of the 38th IEEE Conference
on Decision and Control, pages 2394-2399, Pheonix, Arizona, USA, Dec. 1999.

C. Tomlin, G.J. Pappas, and S. Sastry. Conflict resolution for air traffic manage-
ment: a case study in multi-agent hybrid systems. Technical Report UCB/ERL/
M96/38, Department of Electrical and Computer Science, UC Berkeley, Berke-
ley, CA, July 1996.

J.K. Tugnait. Linear model validation and order selection using higher order

statistics. IEEE Trans. Signal Processing, 42(7):1728-1736, 1994.

233



(154] J.K. Tugnait. Model validation and order selection for linear model fitting using
third- and fourth-order cumulants. JEEE Trans. Signal Processing, 47(9):2433-
2443, 1999.

[(155] H. Unbehauen. Some new trends in identification and modeling of nonlinear

dynamical systems. Applied Mathematics and Computation, 78:279-297, 1996.

(156] M. Verhaegen. Identification of the deterministic part of MIMO state space
models given in innovations form from input-output data. Automatica,

30(1):61-74, 1994.

(157] Michel Verhaegen. Subspace model identification, part 3. analysis of the ordi-
nary output-error state-space model identification algorithm. Int. J. Control,

58:555-586, 1993.

[158] Michel Verhaegen and Patrick Dewilde. Subspace model identification part 1.
the output-error state-space model identification class of algorithms. Int. J.

Control. 56(5):1187-1210, 1992.

[159] Michel Verhaegen and Patrick Dewilde. Subspace model identification part 2.
analysis of the elementary output-error state-space model identification algo-

rithm. Int. J. Control, 56(5):1211-1241, 1992.

[160] B. Wahlberg and L. Ljung. Hard frequency-domain model error bounds from
least-squares like identification techniques. IEEE Trans. Automatic Control,

37(7):900-912, 1992.

[161] Bo Wahlberg. The effects of rapid sampling in system identification. Automat-
ica, 26(1):167-170, 1990.

[162] P.L. Weiss, .LW. Hunter, and R.E. Kearney. Human ankle joint stiffness over

the full range of muscle activation levels. J. Biomechanics, 21(7):539-544, 1988.

[163] P.L. Weiss, R.E. Kearney, and [.W. Hunter. Position dependence of ankle joint
dynamics - I passive mechanics. J. Biomechanics, 19(9):727-735, 1986.

234



(164] P.L. Weiss, R.E. Kearney, and . W. Hunter. Position dependence of ankle joint

dynamics - II active mechanics. J. Biomechanics, 19(9):737-751, 1986.

[165] J.C. West. Nonlinear signal distortion correlation. International Journal of

Control, 2:529-538, 1965.

[166] David T. Westwick, Béla Suki, and Kenneth R. Lutchen. Sensitivity analysis of
kernel estimates: Implications in nonlinear physiological system identification.

Annal of Biomedical Engineering, 26:488-501, 1998.

(167] D.T. Westwick and R.E. Kearney. Nonparametric identification of nonlinear
biomedical systems. part I: Theory. Critical Reviews in Biomedical Engineering,

26(3):153-226, 1998.

[168] A.M. Zoubir and B. Boashash. The bootstrap and its applications in signal
processing. IEEFE Signal Processing Magazine, 15(1):56-76, 1998.

235



EPILOGUE

To read a poem (so the King of Hearts told the White Rabbit), “begin at
the beginning and go on till you come to the end: then stop.” Theses,
like poems, are sequentially ordered structures, and thus inevitably have a
beginning and an end (although very painfully reached); this is the final
paragraph of this thesis. But the theory of parametric system identifica-
tion, as we have seen, is not simply a cascaded arrangement of topics.
There are multiple loops and branches, many parallel and crossing paths.
Most ideas are linked directly and indirectly to many others. There is no
simple step-by-step route by which this multidimensional web can be sys-
tematically explored and comprehended. There is really no beginning, and
no end. We cannot ezxpect to appreciate one topic fully until we have con-
stdered others. And so we must continually circle back to ezamine earlier

concepts from a new vantage point.

- Adapted from Circuits, Signals, and Systems
by William M. Siebert [138]



