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Abstract

In this thesis. we have developed practical methods for the identification of linear,

nonlinear and hybrid (multimode) systems which are applicable under relatively gen­

erai conditions, i.e., when assumptions and conditions of the estimation technique are

not violated. Since these algorithms were not designed specifically with any system(s)

in mind, they should be applicable to experiments on a variety of systems in many

different disciplines.

Results demonstrate that the (polynomial) NARMAX (Nonlinear Autoregressive,

~Ioving Axerage eXogenous) model class is useful for modeling the input-output be­

havior of a block-structured representation of two biological models. Extensive simu­

lations demonstrated that our bootstrap model arder selection (B!vIOS) and bootstrap

structure detection (BSD) algorithms have a high probability of success for selecting

the order and structure of :\AR:\IAX models and are robust in the presence of mea­

surement noise. In addition, we illustrate that the NAR:NIAX model structure is weIl

suited for modeling dynamics of nonlinear hybrid systems and develop a modified

extended least squares (I\1ELS) algorithm to estimate coefficients of these systems.

Application of this algorithm to a model of the vestibuio-ocular reflex (VOR) showed

that it is a robust method for estimating the coefficients of multimode systems.
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Résumé

Dans cette thèse~ nous avons développé des méthodes pratiques pour l'identification

des systèmes linéaires. non linéaires et hybrides (à plusieurs modes de fonction­

nement). Ces méthodes sont applicables dans des conditions relativement générales~

c'est-à-dire lorsque les hypothèses et les conditions de la technique d'évaluation sont

vérifiées. Puisque ces algorithmes n'ont pas été conçus pour un système spécifique~

ils devraient être applicables aux expériences sur une variété de systèmes~ dans un

grand nombre de disciplines.

Les résultats démontrent que la classe de modèles NARMAX (Nonlinear Autore­

gressive~ ~1oving Average eXogenous) est utile pour modéliser le comportement en

entrée-sortie d 'une représentation par blocs pour deux modèles biologiques. Des sim­

ulations poussées ont démontré que nos algorithmes de sélection d'ordre de modèle

(bootstrap model selection, B~10S) et de détection de structure (bootstrap structure

detection~ BSD) ont une forte probabilité de succès et sont robustes en présence de

bruit de mesure. En outre, nous illustrons que la structure NARNIAX est appropriée

pour modéliser la dynamique des systèmes hybrides non linéaires et nous développons

un algorithme de moindres carrés étendus modifiés (modified extended least squares~

),lELS ) pour estimer les coefficients de ces systèmes. L'application de cet algorithme

à un modèle du réflexe vestibulo-oculaire a prouvé qu'il s'agit d'une méthode robuste

pour estimer les coefficients des systèmes à plusieurs modes de fonctionnement.
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Chapter 1

Introduction

System identification is the process of developing or improving a mathematical rep­

resentation of a physical system hased on observed data. The study and analysis of

systems is related to the development of new identification algorithms, or tools, for

scientists. \Vhen these tools are developed with specific applications in mind, they

may he difficult or impossible to apply to prohlems in other disciplines, and will,

therefore~ render the tools relevant to only an explicit problem or set of problems.

Consequently~ one of the fundameotal goals of this thesis was to develop tools that

are generalizable to a large set of problems that bridge many branches of research.

O\'er the past several decades, significant achievements have been made in several

areas of nonparametric nonlinear system identification [167]. Robust techniques have

been developed within different disciplines. However, many of these methods restrict

the types of inputs that can he applied and the system structures that cao be studied.

In addition. nonparametric methods may represent nonlinear systems at the expense

of introducing an excessive number of coefficients which are not readily linked to the

underlying system.

Parametric representations of nonlinear systems typically contain a small number

of coefficients which cao be varied to alter the behavior of the equatioo and may he

linked to the underlying system. In this thesis, we only consider a family of para­

metric models described by linear-in-the-parameters, linear and nonlinear, difference

equations. This family of parametric models is popularly known as the NARMAX
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(Nonlinear Autoregressive, ~lo\ing Average eXogenous) model structure. Gnly the

discrete-time case is considered since most systems for identification purposes are

represented in discrete-time.

Parametric identification, while theoretically attractive, has been difficult to ap­

ply since basic questions in this field have been left open. Specifical1y, these open

questions have been: (1) how ta estimate the order of the input-output and error lag

and nonlinearity. madel arder selection, (2) how to select which parameters to include

in the modeL structure detectian and (3) how to model and estimate parameters of

':hybrid" or "tnultimode" systems. systems that can switch between various modes

of operation. Hence, applications have only been possible in cases where a signifi­

cant amount of a priori information has been available. In this thesis, \ve attempt

to further the discipline of parametric nonlinear system identification by developing

tools which address these questions and, therefore, allow our tools to be applied under

liberal conditions.

\Ve have designed our toois with little or no restrictions so that they may be

applied ta a ",ide range of problems and in various fields of study. They have been

designed ta allow the study of biological systems, where the systems being exam­

ined can be highly nonlinear and may switch betwecn various modes of operation.

:\Ioreover, since the nature of experimental apparatus typically constrains the type

of stimulus that can be applied to a system under study, these taols have been de­

signed to ensure that the system is identifiable with the minimum requirement that

the input be '·persistently exciting", i.e., that the system dynamics be persistently

excited over the measurement time. Finally, measurements of system input-outputs

are often corrupted by noise. Therefore, these aIgorithms have been designed with

this restraint t.aken into consideration.

Although we have developed these tools with biological applications in mind, the

o\'eraU goal of this work \Vas not ooly applicability to biornedical engineering but to

provide an expanded and improved set of tools for the identification of bath linear

and nonlinear systems that faH under the linear regression "umbrella". We believe

they "in render parametric nonlinear identification a feasible tool for modeling UIl-
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known (black-box) systems in many areas outside the biomedical realm. Sorne po..

tential applications for these methods outside the biomedical field are, for example,

efficient controller design, aircraft/spacecraft/robotic control and design, communi­

cations, analysis of economic trends, analysis of geophysical or ecological phenomena,

etc.

1.1 Thesis Overview

Chapter 2 presents a general introduction to the topic of system identification. This is

followed by a detailed review of recent system identification literature, with special fo..

eus on methods that may be applicable to linear regression models. Linear regression

techniques are given special consideration since they are applicable to discrete-time

linear and nonlinear systems that are linear-in-the-parameters, i.e., NAR~fAX mod­

els.

In chapter 3 we commence our study of the NARMAX model class by demonstrat­

ing the usefulness of NAR~1AX models for biological modeling. A parallel pathway

model of ankle dynamics is theoretically analyzed and its NAR~IAX representation

is derived.

Structure detection is a crucial procedure for estimating a parsimonious system

description. Chapter 4 presents an algorithm for determining model structure, based

on least-squares and bootstrap theory.

Chapter 5 continues the application of bootstrap to nonlinear identification and

presents an algorithm for estimation of model order for linear and nonlinear systems.

Chapter 6 presents a new algorithm for the identification of linear and nonlinear

hybrid (multimode) systems. Systems ofthis type may be quite cornmon in physiology

since, in many cases, the biology is known to abruptly switch control strategies based

on the input stimulus.

Finally, in Chapter i we summarize the contributions made in this thesis, and

offer suggestions for further developments and improvements. vVe finish the chapter

by discussing further potential applications for these techniques.

3
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Chapter 2

Literature Review

2.1 Introduction

In this review~ our primary objective will he to describe techniques that are suit­

able for building models described by linear-in-the-parameters, nonlinear, difference

equations. Our description uf this model structure will reveal several deficiencies in

existing methodology for the identification of these types of systems. The complex­

ities associated with such model descriptions limit the widespread applicability of

existing methods unless considerable a priori knowledge of the underlying system is

available.

The full identification problem (as posed by Verhaegen and Dewilde, 1992) is

examined in detail. Two broad classes of identification are introduced: (i) nonpara­

metrie and (ii) parametric. The shortcomings and strengths of each approach is

reviewed. The model structure(s) used for nonparametric identification isjare re­

viewed in the context of the benefits and difficulties associated with nonparametric

identification. The rationale for using parametric identification is stated and vari­

ous types of model structures that faH within the parametric family are reviewed.

Then the NAR1vlAX (Nonlinear Autoregressive, 1vloving Average eXogenous) model

structure is introduced and discussed. The steps involved in parametric (NAR1vlAX)

identification are outlined and a review of the current literature is presented, focusing

on the strengths and weaknesses of each approach.

4



A review of the techniques used to model complex systems exposes two broad classes:

a priori or morphological modeling (also known as physical models, "first princi­

pIes" models or white-box models) and a posteriori or black-box modeling (commonly

known as system identification) [101]. The complexities associated with a system may

limit the type of experiments that can be performed and will determine the choice of

modeling techniques that can be considered. However, a minimum level of complexity

is required by the nature of any system. Experimental limitations on the type of data

that can be obtained also impose an upper limit on the complexity of the model that

can be justified [101, 167]. \Vith these objectives and limitations in mind we will

present a detailed discussion of the advantages and disadvantages of morphological

and black-box modeling techniques.

• 2.2 Modeling Techniques

•

•

2.2.1 Morphological Modeling

The objective of morphological, or a priori, modeling procedures is to derive a system

description from basic physicallaws only. In this approach, the system is decomposed

into subsystems whose properties are well established from previous experience (Le..

knowledge of both the system structure and the function of the subsystems) that

have their roots in earlier empirical work [101]. The subsystems are then joined

mathematically to produce a model of the whole system. Nlodels of this type are often

known as "morphological" since the individual elements and interconnections are

often related directly to the structure of the system being modeled. These models have

the advantage that they possess a clear physical interpretation. However, systems

that are modeled using morphological techniques often embody many parameters

that must be determined experimentally.

2.2.2 Black-Box Modeling

If nothing at aIl is known or assumed about the physical structure of a system, the

modeling procedure is known as a posteriori or black-box modeling [101]. In black-box

5



•

•

•

modeling, the system inputs and outputs are recorded and then analyzed to obtain

a model description. This approach is often referred to as black-box modeling since

the resulting mathematical description (model) of the system is simply a "black­

box" that mimics the behavior of the system. This type of modeling provides a

relationship between the system inputs and outputs. However, it generaIly provides

little structural or functional information about the system or its components.

In practice, neither of these two extreme approaches are particularly fruit fuI in

isolation. In order to model complex processes, such as thos"" found in biology, the

two approaches have to be combined. Therefore, in practice, morphological modeling

is combined with system identification methods. The theoretical framework for doing

this systematically is known as ··grey-box" modeling.

Black-box models provide "simpler" models. Analysis of input-output data can

provide useful process insights that can be used in subsequent development or re­

finement of physical models. In particular, aIl morphological models are based on

assumptions (e.g., these effects are important and those are negligible) which may be

incorrect [116, 119]. Black-box models may help uncover such surprises. However,

depending on the character of the system, one of the two modeling activities, i.e.,

morphological modeling or parameter estimation (black-box modeling), may domi­

nate the overall modeling effort.

Generally, there are two uses for models obtained using system identification ap­

proaches. In the design of control systems, models are required to predict the plant 's

response to its input in order to design an effective controller. In this case, it is usu­

ally desirable to have the simplest possible model that describes the dynamics of the

plant to be controlled. However, if the objective of the identification is to gain insight

into the function of the underlying system, it is necessary to extract the maximum

amount of information from the input-output data. In general, models identified for

insight are often more complex than those used for control.

6



• 2.3 The Identification Problem

Consider the general identification problem posed by Verhaegen and Dewilde [158},

shawn in Figure 2.1. The ~~system" is defined as everything within the dashed box

W2(t)

Shaping
Filter

Input u(t)
---.t L~_-----4--+t

Unknown
Deterministic

System P

Shaping
Filter

Fn

v(t)
Output y(t)

•
~--------------------------~

eu(t)

Measured Input û(t) Measured Output z( t)

•

Figure 2.1: Generalized identification problem. Redrawn from [158J.

and consists of two parts: (i) stochastic and (ii) deterministic. The stochastic part is

driven by a white noise process, Wl (i), which is not available ta the experimenter. The

deterministic part, the system to be characterized, is driven by the SUffi of a controlled

input, u(t), and a filtered, inaccessible white noise process, W2(t). It is assumed that

the experimenter has control over u(t) and is able ta access a noise-corrupted version

of the input signal, û(t). The noise-free output, y(t), is the "true" system output

which is the sum of the stochastic and deterministic parts of the system. However,

the experimenter only has access to a noise-corrupted version of the output signal,

z(t) .

This leads to several identification problems.
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1. Identification of the stochastic or noise model~ Fn . Here, the focus is placed on

the relationship between Wt (t) and z(t), given observations of only the system

output, z(t). The input signal, u(t), is assumed to be zero or constant. This type

of identification is commonly known as time series analysis and has applications

for the study of economics systems, analysis of geophysical or astronomicai

phenomena, analysis of biological data (e.g., heart rate, EEG), etc., where the

inputs are not available to the experimenter, or where it is unclear which signaIs

are inputs and which are outputs.

2. Identification of the deterministic model, P. This problem consists of finding

a relationship between 'U(t) and y(t), assuming that the process noise, Wt(t), is

zero. Both the input and output may still be corrupted by observation noise,

eu(t) and e;:(t) respectively. However, it is commonly assumed that û(t) is

recorded with negligible error, i.e., eu(t) =O. The identification of deterministic

systems is generally pursued when the objective is to gain insight ioto the

functioning of a systenl. This is the problem that will be pursued in this thesis.

3. Identification of the stochastic and deterministic (complete) models. \tVhen both

the input and output signaIs are available for identification, the goal may be

to estimate both P and Fn , the deterministic and noise models. This problem

formulation is used when accurate predictions are desired, such as in the design

of model-based control systems for aircraft, spacecraft or robotics.

This thesis concerns itself with identifying the deterministic model, P, and we assume

that the input is recorded with negligible error (eu(t) = 0). For notational simplicity,

we will henceforth use 'e' to denote output additive noise (e;:(t)) unless explicitly

stated otherwise.

2.4 Classes of System Identification

There are two broad classes of techniques that can be pursued to accomplish the task

of system identification: (i) nonparametric and (ii) parametric rnethods.

8



• 2.4.1 Nonparametric System Identification

Causal, time-invariant linear and nonlinear systems form sorne of the most important

classes of dynamical systems used in practice. Although they represent idealizations of

the processes encountered in practice, the approximations involved are often justified

and lead to good results in many cases [101J.
A system is considered to be causal if the output at any time depends on the

input up to that time only [101, 138J. A system is said to he time-invariant if its

response to a certain input signal does not depend on absolute time. 1'loreover, a

system is linear if its output response to a linear combination of inputs is the same

linear combination of the output responses of the individual inputs.

The response to a linear, time-invariant, causal system is weIl known to be de­

scribed by its impulse response as [13, 101, 138]:

If {h(T)}~=O and u(v) are known for v ::; t, the corresponding output, y(v), v ::;

t , can he computed for any input. Therefore, the impulse response is a complete

characterization of a causal, linear, time-invariant system.

In any practical experimental situation, the data available to the experimenter

will be fini te; therefore, Equation 2.1 cannot be applied directly. The finite impulse

response function (FIR) has been widely used for modeling linear time-invariant sys­

tems. The continuous-time output of this model is represented as the convolution

integral:

where h(T) is the impulse response, Al is the memory length, and the lower bound of

the integration is zero to represent a causal system. The FIR can he represented in

discrete-time as

•

•

y(t) =1:0 h(T)U(t - T)dT.

(M
y(t) = Jo h(T)U(t - r)dr

M-l

y(n) =TL h(T)u(n - r)
T=O

9
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• where n = 1,2, ... ,1V, the sampIed data point index; T, the lag, are integers; and the

sarnpling rate, T, is often assurned to be 1 for notational simplicity. The input, u, is

often assumed ta be white and the lower limit of the summation is zero to represent

a causal system. This system description is known as nonparametric because it is a

numeric representation of the system's impulse response or kernel. However, since

many systems are inherently nonlinear the rich behavior of their dynamics cannot be

fully described using linear techniques.

Classically, the model structure used in nonlinear system identification has beell

the functional series expansions of Volterra or related techniques [103]. The discrete

Volterra series expansion is commonly shown as [166]:

l {M-l Af-l }
y(n) = t; ~ ...~ ki(Tl,'''' Ti)u(n - Td··· u(n - Ti) . (2.4)

•

•

In this series l represents the model order and AI the memory length. These types

of descriptions represent a wide class of nonlinear, fading memory systems [29, 167].

One such representation of this class of systems is the Wiener-Bose model which

consists of a bank of linear filters whose outputs are combined and transformed by a

multiple input polynomial. As such, they have been used successfully for physiological

modeling for a number of years. Nlany of these techniques are robust in the presence

of noise and require few a priori assumptions. Recently sorne of these methods also

allow the use of non-white inputs [130, 167].

Although nonparametric methods can be used to represent many classes of non­

linear systems, they do 50 at the expense of introducing an excessive number of

unkno\vn coefficients which must be estimated. Most expansions rnap the past inputs

into the present output and so require a very large number of coefficients to charac­

terize the process. For example, even a simple quadratic nonlinearity in cascade with

a first-order linear dynamic system could easily require 400-500 coefficients to spec­

ify the first and second-order Volterra kernels [22]. Therefore, the resulting system

description is not represented concisely and may be redundant. Alternative system

descriptions, such as block-structured models [17, 83, 167], alleviate sorne of these

10
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difficulties provided the system under study belongs to the relevant class of models.

:\:Ioreover, the parameters are not readily linked to the underlying system, except in

special cases where much a priori knowledge of the system has been assumed (e.g.,

parallel cascade structure of ankle dynamics [75, 7i, 78, 79, 167]).

2.4.2 Parametric System Identification

In recent years parametric identification methods have been developed for use in the

design of better control systems. Parametric models have sorne advantages in appli­

cations. First, they are easier to understand and interpret. Second, they can simplify

forecasts (e.g., obtaining forecast intervals). Third, model comparison in a parametric

context (i.e., parameter estimates, model order and model structure) has been weIl

studied; sa the difficulty of model comparisoll encountered using nonparametric tools

can be avoided [36}.

A parametric model consists of a set of differential or difference equations de­

scribing the system dynamics. Such equations usually contain a "'small" number of

parameters which can be varied to alter the behavior of the equation. Here we will

only discuss the discrete-time case since most systems for identification purposes are

represented in discrete-time.

2.4.2.1 Parametric Representations

For linear systems, the relationship between input-output and noise can be written

as a linear difference equation [61, 68, 101]:

y(n) = aly(n - 1) - ... - anlly(n - n y )

+ b1u(n - 1) + b2u(n - 2) + ... + bnuu(n - nu)

+ e(n) + cle(n - 1) + ... + Cnee(n - ne).

(2.5)

•
This is known as the AutoRegressive, Moving Average eXogenous (ARMAX) model.

In this model structure the current output y(n) depends on an exogenous input, u(n),

an innovation process, e(n) (e;(t) in Figure 2.1), and past values of the output. This

Il



• structure can be represented more compactly as

A(q)y(n) = B(q)u(n) + C(q)e(n) or

y(n) = G(q)u(n) + H(q)e(n) where

B(q) C(q)
G(q) = A(qr H(q) = A(q)

(2.6)

where A(q) = 1 + alq-l + ... + anllq-nll , q-l is the backward shift operator and

the a's are the parameters of the output. The ARM.I\.X model structure is a widely

recognized tool in control and econometrics for both system description and control

design [101]. This system representation has several special cases [61, 68, lOI}.

2.4.2.1.1 The Autoregressive (AR) Model

A(q)y(n) = e(n) (2.7)

• In this model representation the output depends on the unknown current disturbance

as weIl as the ny previous values of the output.

2.4.2.1.2 The Maving Average (MA) Model

y(n) = C(q)e(n)

Here, the output depends on the previous ne values of the disturbance e(n).

(2.8)

2.4.2.1.3 The Autoregressive Moving Average (ARMA) Madel A com­

bination of the previous two yields the AutoRegressive NIoving Average (AR~IA)

model:

A(q)y(n) = C(q)e(n). (2.9)

•
2.4.2.1.4 The Autoregressive Exogenous Input (ARX) Madel If an acces­

sible input, u(n), is added ta the AR model the result is an AutoRegressive eXogenous

12



• input (AR.X) model:

A(q)y(n) = B(q)u(n) + e(n). (2.10)

In this structure~ the output depends on the eurrent disturbance as weIl as nu previous

values of the input and ny previous values of the output.

2.4.2.1.5 The Finite Impulse Response (Fm) Model A special case of the

A~X model structure is when there is no disturbance input. This is known as the

finite impulse response model:

y(n) = B(q)u(n). (2.11)

•
For this model type the output depends only on the previous values of the exoge­

nous input. This model structure forms the basis of rnany so-called nonparametric

identification schernes.

Once a model structure has been determined, the unknown parameters can be

estimated by using techniques that optimize the vector of parameters to sorne cost

funetion.

2.4.2.1.6 State Space Model The state space model is another class of para­

metric mode!. The generalized state space equations for a causallinear time-invariant

system are [156]:

x(n + 1) - Ax(n) + Bu(n)

y(n) - Cx(n) + Du(n).

(2.12)

•

In this equation x(n) represents the finite dimensional state vector with the states

going forward in time, y(n) is the output vector and u(n) is the input vector. The

matrices A, B, C and D are the system quadruple, where A contains the system

modes. Traditional methods for identifying systems of this type were developed by

Kalman et al. [68] .
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•

~Iore recently~ these types of systems have been identified using subspace methods

[156~ 157~ 158~ 159]. The input-output data is arranged into Hankel matrices. It is

possible to relate these Hankel matrices to the state equation in terms of the extended

observabiIity matrLx and !\larkov parameters. Using RQ factorization and singular

value decomposition (SVD), the system quadruple can be solved for. and, as a by­

product model arder selection is performed. However, selecting the model order

using this method requires interpretation of singular value plots which often requires

expertise beyond that of the average user from a non-mathematical discipline. It

is often qui te difficult even for the experienced user~ when the signal-to-noise ratio

(SNR) is low.

2.4.2.2 Summary

).lany of these system descriptions have the disadvantage that they require a priori

assumptions regarding the system order. However, parametric methods have the ad­

vantage of giving a concise description to the underlying system~ since they estimate

the unknown parameters of the analytic expression describing the system~ and may

yield results that can be related directly to the system structure. Since these mod­

eis are linear-in-the-parameters they can be estimated using parameter estinlation

algorithms which are not dependent upon specialized input signaIs.

'Vhile most systems encountered in practice are nonlinear~ for control purposes

linear techniques are adequate because the systems are often approximately linear

over the range under consideration or can be approximated linearly by fixing them

about an operating point. Therefore, controller design can be accomplished using

less complicated methods. However, ta gain insight into the underlying structure of

the system and ta obtain an efficient global system description, parametric nonlinear

identification is necessary. Sorne important classes of models which faH into this

category include the Hammerstein model, \Viener model, polynomic state models

[64], and classes of nonlinear difference equations [22, 98, 99]. Since the Hammerstein

model can only represent a small class of systems, and expansions based on system

states imply that aIl the states can be measured, ooly nonlinear difference equation
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• models are considered here.

2.5 The NARMAX Model

The Kolmogorov-Gabor polynomials have been well-known in control engineering for

many years [51! 155]. However, these equations have recently been popularized by

Billings and co-workers [98, 99] for use in identification, modeling~ and control. This

general parametric structure is commonly known as NAR11A.X (Nonlinear Autore­

gressive~ ~Ioving Average eXogenous). This so-called NAR:NIA.X structure can he

used for the identification of both the stochastic and deterministic components of a

system. The input-output relationship of many nonlinear dynamic systems can he

written in the NAR:MAX form as the nonlinear difference equation

where F is a nonlinear mapping! u is the ~'controlled" (i.e., exogenous) input! y is the

output, and e is a zero-mean additive noise sequence (Le., innovation; ez(t) in Figure

2.1). Xote that in Equation 2.13 to model the stochastic component of a system e is

replaced with WI (i.e., uncontrolled input). This nonlinear difference equation model

or NAR~1AX modeL may include a variety of nonlinear terms, such as terms raised

to an integer po\ver (e.g.! u2(n - 3)), products of past inputs (e.g., u(n)u(n - 1)),

past outputs (e.g.~ y(n - l)y(n - 2)), or cross-terms (e.g., u2 (n - l)y(n - 2)). This

system description encompasses most forms of nonlinear difference equations that are

linear-in-the-parameters [92]. Since the NARMAX model is linear in its parameters~

linear regression can he used for parameter estimation [10, 22, 61, 133].

•
y(n) = Fl[y(n - 1),·· .! y(n - ny), u(n),···, u(n - nuL

e(n - 1),·'·, e(n - ne)] + e(n)

(2.13)

•
2.5.1 NARMAX Representations of Nonlinear Systems

An important question in linear and nonlinear modeling and identification is how

to describe the input-output relationship of a dynamic system. The input-output
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•

relationship should be straightforward, should provide an adequate approximation

to a large class of systems, and have minimal computational cost. It is weIl known

that, for linear discrete-time systems, linear difference equation models exist that

involve a fixed and finite number of calculations at each stage, if the Hankel matrix

of the system has finite rank. This often provides system descriptions that are more

concise than the impulse response function [37, 61, 101]. A similar situation exists

for discrete-time nonlinear systems [98, 99].

The NAR:\1AX model structure (Equation 2.13) is a general and natural repre­

sentation for many discrete-tÎlne, time-invariant, nonlinear systems and provides a

unified representation for a wide class of nonlinear systems as special cases [37]. This

has obvious advantages over functional series representations such as the Wiener or

Volterra series which suifer from excessive parameterization [37, 131]. Leontaritis &

Billings [98, 99] have proved that a nonlinear, discrete-time, time-invariant system

can always be represented by model 2.13 in a region around an equilibrium point

subject to two sufficient conditions [37, 98, 99J:

1. The response function f of the system is finitely realizable and

2. A linearized model exists if the system is operated close to the equilibrillm point.

Condition (1) siroply excludes distributed parameter systems since the power any

input-output terro is raised to is not always sorne constant integer independent of n

[99]. Condition (2) implies that if the system is perturbed \Vith a small amplitude

input in the linear region around the equilibrium point, a linearized model of the

system exists. For notational simplicity, the discussions presented here are in context

of the single-input single-output case. However, most of the discussions are valid for

multiple input-output systems [20, 98].

2.5.1.1 Nonlinear Polynomial Models

In many situations it is reasonable to believe that higher-order polynomial functions

will, in general, yield better approximations to the system under study than a linear
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• model (i.e., a polynomial model of degree 1 in {y(n -1), ... , y(n - ny), u(n), ... , u(n­

nu) }). Practical identification of several hiomedical systems has shawn that many can

he adequately modeled hy polynomial NAR~IAX models [90, 91, 92, 93, 112, 137].

A general polynomial input-output model takes the form

y(n)
n~ nu

ao + Eaiy(n - i) + Ebiu(n - i)
i=l i=O

ny ny ny nu

+ E E aijy(n - i)y(n - j) + E E C;jy(n - i)u(n - j)
i=l j=l i=l j=O

(2.14)

•

+ E E biju(n - i)u(n - j) + ... + higher-order terms up to degree l
i=O j=O

where the a's, b's and c's are unknown system coefficients. The polynomial form

in Equation 2.14 can he concisely expressed as Equation 2.13. Therefore, difference

equation models that are linear-in-the-parameters are naturally represented by the

general NARNIAX formulation (model 2.13) and are a special case of it .

2.5.1.2 Bilinear Models

Bilinear system theory has been widely studied in the context of continuous-time

systems. e.g., distillation calumns, nuclear and thermal control processes [37, 64].

Bilinear systems are quite cornmon continuaus-time systems since any continuous,

causal functional can be approximated arbitrarily well by a bilinear system within

any bounded time interval [37, 52J.

A general bilinear input-output model has the form

y(n)
ny nu

ao + E aiY(n - i) + E biu(n - i)
i=l i=l

n~ nu

+ E E C;jy(n - i)u(n - j)
i=l j=l

(2.15)

•
which is a special case of the NARM.-\X model 2.13.
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• 2.5.1.3 Rational and Output-affine Models

The response function~ 1~ of a system is said to be a polynomial response function if

for each n~ In is a polynomial of finite degree in aIl variables~ although this degree may

tend to oc as n -+ oc. A polynomial response function f is said ta be bounded if for all

n the maximum power any individual variable is raised to in ln is less than a certain

bound [37]. The realization of polynomial response functions has been investigated

in detail by Sontag [146].

1t is known that a polynomial response function is finitely realizable i[ and only

iL it satisfies the rational difference equation [146]

•
or

aryen - IL ... ~ yen - rL u(n - 1), ... , u(n - r)]y(n) =

b[y(n - 1), ... ~ yen - r), u(n - IL .... u(n - r)]

()
b[y(n-lL···,y(n-r),u(n-1L···,u(n-r)]

yn=~...:-..._.-:..----------_......:....-_~

a[y (n - 1), ... , y (n - r), u(n - 1) ~ ... , u(n - r)]

(2.16)

(2.17)

where r is the order of the system, a[·] and b[·] are polynomials of finite degree.

In addition, Sontag [146] showed that f is a finitely realizable and bounded poly­

nomial response function if, and only if, it satisfies an affine difference equation

ao [u(n - 1), ... , u (n - r)] y (n ) = (2.18)
r

L az[u(n - IL···, u(n - r)]y(n - i) + ar+du(n - 1), ... , u(n - r)]
i=l

or

where ai[·L i = 0, 1. ... ~ r + 1 are polynomials of finite degree.

The rational model (Equation 2.17) and the output-affine model (Equation 2.19)•

yen)
t a;[u(n - 1), ... , u(n - T)]
i=l ao[u(n - 1)~ ,. ", u(n - r)]

Ur+du(n - 1), ... ~ u(n - r)]
+ ao[u(n - 1),. ", u(n - r)]

yen - i) (2.19)

18



•

•

•

are globally valid [37J. The response function of the system is, however, restricted

to a polynomial response [37]. By choosing the particular forms in Equations 2.17

and 2.19 for the nonlinear mapping, F(·L it is easily seen that the the rational and

output-affine models are a special case of the general NARMAX model 2.13. However,

identification and modeling issues concerning the rational and output-affine models

is not addressed in this thesis.

2.5.1.4 Nonzero-initia..··state Models

Although~ the derivation of the NARl\1A...'X model (Equation 2.13) is based on zero­

initial-state response [98~ 99J~ the results can be extended to the nonzero-initial­

state case by including lagged impulse values ta account for nonzero-initial-states or

discontinuities as [37]

Ym(n) = FI[Ym(n - l)l ... ~ Ym(n - nyL um(n),' .. ~ um(n - nuL (2.20)

8m (nL .. '. 6m (n - no), em(n - 1),··· ~ em(n - ne)] + em(n)

for m = 1. 2, ... , M

where ./\-1 represents the modes of operation~ Um~ Ym, em are as defined previously, and

6m are Kronecker impulse functions. i.e.~ initial conditions. This makes the NARrvlAX

model structure ,vell suited for modeling nonlinear hybrid or multimode systems [91].

2.6 Current Methodology

Identifying a ~AR!vIAX model has four stages: (1) madel arder selection, estimating

the ma.ximum arder of the input-output and error lags and nonlinearity order~ (2)

structure detection, selecting which parameters to include in the model, (3) param­

eter estimation. determining values for these parameters and (4) model validation,

detecting terms in the residuals which if ignored will cause bias in the parameter

estimates. These four topies encompass a wide range of literature; therefore, only

methods relevant ta polynomial NARMAX model identification are discussed here.
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• 2.6.1 Model Order Selection

:\'!any parametric methods require a priori assumptions about the system order. An

ideal parametric method for system identification would estimate bath the system

order and the parameters.

The current literature offers no commonly accepted way to define NARrvlAX order.

Therefore, we define the system arder for NARMA.X models as an ordered tuple

(2.21 )

where nu is the ma.ximum lag on the input, ny the ma.~mum lag on the output, ne

the maximum lag on the error and l is the maximum nonlinearity arder.

The maximum number of NARNL\X parameters, p, is related to the model arder,

D,as

l

P - LPi; where l is nonlinearity arder

• Pi =

i=l

Pi-l (ny + nu + ne + i - 1)
l

Po = 1.

(2.22)

\Ve define the maximum number of terms, p, as the number of "candidate" terms ta

be initially considered for identification, i.e., the number of terms in the "full" model.

~ote that the number of candidate terrns can be very large for ~AR~1AX models,

possibly resulting in an over-parameterized full model description.

2.6.1.1 Correlation Method

Correlation functions have been widely used for estimating model arder of linear FIR

systems [101, 140]. The cross-correlation function is defined by

Ruy(r) = E[u(n - r)y(n)]. (2.23)

•
The cross-correlation function is rarely used since its value depends on the mean and

variance of u(n) and y(n) .
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• In practice the cross-covariance function is used and is defined by

Cuy(T) = E[(u(n - r) - Jlu)(y(n) - Jly)] (2.24)

where Mu and Jly are the mean of u(n) and y(n)~ respectively. Note~ if Jlu = 0 or

My = 0 then the cross-covariance and the cross-correlation functions will be the same.

Often the cross-covariance function is referred to (incorrectly) as the cross-correlation

function.

The cross-correlation coefficient function is defined by

, ( ) Cuy (T) ( )(fJuy T = : -1 ~ 4Juy T ~ L, 'riT
, JCuu(O)Gyy(O) ,

(2.25)

•

where the auto-covariance function at lag zero (e.g., Cuu(O)) is equal to the variance

of the signal, i.e.: Cuu(O) = (T~, Gyy(O) = (T~. The cross-correlation coefficient function

may be thought of as the '"normalized" cross-correlation function because its value

is unaffected by either the mean or standard deviation. Hence, signaIs of different

amplitudes can be compared easily.

The expressions shown in Equations 2.23 - 2.25 are generally known as ··first-order"

correlations. Traditional methods for model order selection, based on first-order cor­

relations, generally fail for nonlinear systems due to a common problem [12, 153].

For Gaussian input data, the cross-correlation of any squared input-output terms

will be zero [12, 13]. Therefore, the lag associated with even-order nonlinear terms

cannot be determined using first-order correlations; hence ··higher-order statistics" ,

e.g.. second-order correlations, must be used [12, 154}.

The second-order cross-correlation function is defined by

(2.26)

The second-order cross-covariance function is defined by

•
(2.27)
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• The second-order cross-correlation coefficient function is defined by

In general! estimating model order for infinite impulse response (!IR) systems,

such as the NAR~IAX model, even using higher-order correlations, also fails because

the system "theoretically" could have infinite memory. For example, consider a system

described by arder 0 = [1, 1! 1,2]:

y(n)

y(n - 1)

y(n - 2)

()ly(n - 1) + 02u(n) + 03u2(n - 1)

Oly(n - 2) + 02u(n - 1) + 03u2(n - 2)

Oly(n - 3) + ()2u(n - 2) + 03u2(n - 3)

(2.29)

(2.30)

(2.31)

where we have omitted the lagged noise terms for notatianal simplicity. Substituting

Equation 2.30 into 2.29 yields• y(n) ()dOly(n - 2) + 02u(n - 1) + 03u2(n - 2)]

+ 82u(n) + 03u2(n - 1)

and substituting Equation 2.31 inta 2.32 yields

y(n) Oî[Oly(n - 3) + ()2u(n - 2) + 03u2(n - 3)]

2 2+ ()182u(n - 1) + Ol(}3U (n - 2) + 02u(n) + (}2U (n - 1).

(2.32)

(2.33)

•

Note that it is possible ta re-express the current output in terms of subsequent lagged

input-output values by expanding Equation 2.31 further, then substituting the result­

ing expression for y(n - 3) into Equation 2.33. Theorctically, this expansion can go

on ta infinity or practically to the data length, N.

By substituting the right side of Equation 2.33 into Equation 2.28, it is readily

seen that the input lag arder (nu) is over-estimated. This is because the recursive

expression for y(n) seen in Equation 2.33 contains lag orders that exceed the maximum
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present in the true system description, given by Equation 2.29. In addition, the system

will have non-zero input lags for multiples of the system lags, making it impossible

to estimate maximum lag order using correlations. Furthermore, it is impossible to

estimate the output and error lag (ny and ne)' Therefore, correlation based techniques

are limited to system structures that are described by FIR models. Although it is

possible to equivalently describe many systems as either FIR or IIR, an IIR description

is generally more efficient.

Recently, Tungnait [153, 154] proposed a method for arder selection based on

model validation and "'higher-order statistics". This method is closely related to

correlation techniques and thus suffers from similar problems mentioned above. Ta

date, applications have only been shawn for linear AR or AR11A models.

2.6.1.2 Error in Cross-Validation

There are many methods for estimating model arder in linear system identification,

a common method is cross-validation [45, 101J

(2.34)

where Z is a lV x 1 vector of measured outputs, \lia is a lV x p matrix of regressors

and Ba is the p x 1 vector of estimated parameters for a given arder O. In the limit,

the cross-validation error in fit will be minimized when the model is of the correct

ordeL i.e., when the regressor matrix contains aIl the appropriate terms. \Vith finite

data lengths. however. statistical errors will aften lead to inconsistent or inaccurate

estimates of model arder for particular realizations [56].

2.6.1.3 Reduction in Residual Suros of Squares

Another commonly used technique in time-series analysis (Equation 2.9) is to examine

the reduction in the residual sums of squares (RSS) ta determine model arder. This

technique tests two models, ta assess which one can be justified on the basis of the

reduction in RSS.
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• Specifically~ this relies on cakulating an F-ratio of the RSS between the current

and past model~ which are of different orders [34]. This is a test of the hypothesis

that sorne of the parameters in a model are restricted to zero. If the linear regression

model has p parameters and the experimenter wants to test whether r of these are

zero based on 1V observations~ the criterion is

.4]-.4Q

F =-~- '"V F(r.1V - p)
....=:!.Q....
N-p

(2.35)

•

•

where AD is the~ smaller~ SUffi of squares of the unrestricted model, Al is the, larger,

sum of squares of the restricted model~ and F(r~ lV - p) denotes the F-distribution

with rand J.V - P degrees of freedom [1151.

In the conditional or statistical aspecL the A.R1vIA(ny~ne) is exactly a linear re­

gression model: hence the above criterion can be used to test the hypothesis that r

out of its (ny + ne) = p parameters are zero. Then, AD becomes the residual SUffi of

squares of the AR~L\(ny,ne) model and Al that of the same model with r parameters

dropped out. The justification of the criterion for the unconditional or dynamic as­

pect of the AR~IA model~ together with its interpretation as a convergence criterion,

may be found in [34~ 81, 113. 115, 120].

:\Iodel order selection based on the incremental change in RSS is known to give

inaccurate estimates of model order [34, 63, 113]. The problem is that when spurious

parameters are introduced ioto the model they may model the noise, giving biased

estimates of RSS. Although the F-test is designed to account for over-fitting due

to noise, in many practical applications this technique gives unreliable estimates of

model arder [30, 65].

2.6.1.4 Final Prediction Error

For simplicity, this discussion is restricted ta AR models (Equation 2.7), where ny

is the model arder. Consider a sequence {y(n)}, n = 1,2, ... , N~ which is to be
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• predicted using sorne linear predictor. Its final prediction error is defined as:

{

nw }2
E y(n) - ~ âjy(n - j) (2.36)

which asymptotically approaches (iV + ny}a2 as Iv -+ 00 for a given n y and unknown

noise variance a2 [39]. With this definition~ an estimate of a2 and the coefficients can

be obtained by modeling a ·trainin~' sequence. Let the training sequence be {x(n}}~

n = l~ 2, ... ,1V~ which is fitted with a linear predictor of order ny. The expectation

of the residual variance is then asymptotically given as â~Sf = (lV + ny}a2
. Using this

as an estimate of a2 the FPE of y(n) can be cornputed as

(2.37)

•
This is the definition of final prediction error (FPE) for an .AR model of order ny

where iV is the number of samples to which the model \Vas fitted and â~ is the
w

estimated residual noise variance for a model of order ny.

The final prediction error estimate of model order gives a minimal FPE value over

a finite range of ny = l~ 2~ ... , nymar • The FPE technique assumes that the optimum

model arder is achieved when the estimated residual noise variance is minimized. This

value will always decrease as the model order is increased and~ as a result~ it is not a

reliable estimator for model arder.

2.6.1.5 Akaike's Information Criterion

Akaike developed a more general criterion based on information theoretic concepts

and called it AIC (Akaike~s information criterion) [5].

The Kullback-Liebler distance is defined as

l(g; f(·18)) = S(g; g) - S(g; f(·IO)) (2.38)

•
where S(·) is the residual noise variance, S(g; 1(·18)) = f g(x) 10gf(xI0)dx is the

expected log-likelihood for a p.dJ. of x, g(x) and the conditional p.d.f. of x given
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• a vector parameter (J. It \Vas shown in [95} that under certain conditions /(g; f(·I(J))

can he approximated hy

G) IIg(x) - f(xlB)IIJ' (2.39)

where J is the Fisher information matrLx [45, lOI} and lI~qllJ2 = ~q' J~q, for ~q =
g(x) - J(·18). This approximation can he shown to have a distribution function which

is asymptotically (non-central) chi-squared for N ~ 00 and ny degrees of freedom.

Its expectation can be shown to he

(2.40)

•

for a maximum likelihood (NIL) estimate of the parameter vector, 8, and the unknown

true parameter vector, 80 • The optimal model minimizes this expectation. If the

estimate JVIIÔ - 80 /l J 2 is computed by

(2.41)

it needs correction by 2ny ta give the expected log-likelihood for a (general) model of

order ny. This leads to the definition of Ale,

AIC(ny ) = (-2) log[ma....dmized likelihood} + 2ny. (2.42)

For AR models (also MA and AR~IA), the log-likelihood function for N observa­

tions is given by

lV 2 1
L = --2 logO" - ?2"Q(a) + const,

_0"
(2.43)

where Q(a) = 2::=1 [y(n) + 2:;~1 ajx(n - j)]2, and a denotes the set of coefficients

for the model. For the rvlL solution, â2 is obtained as

•
(2.44)
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• and for the ma~mum of L

• lV -2 J.V
L = --loga --.

2 2
(2.45)

The last term in Equation 2.45 is constant for a given sampIe size and can be ignored,

so that Ale becomes

(2.46)

•

The best model is determined as the one for which AIC(ny) attains its minimum

value.

2.6.1.6 Minimum Description Length

One prablem with Ale is that it is inconsistent, i.e., its variance does not tend to

zero for larger sample sizes. This was shawn to be due to the penalty term which

does not decrease fast enaugh \Vith lV to balance the first term [72]. A model estima­

tor proposed by Rissanen [128L called the minimum description length (MDL), was

designed to overcome this problem.

The number of pararneters necessary to reproduce an observed sequence {YI, ... , YN}

of a time series depends on the model and parameters assumed to have generated the

data [128]. The !vIDL technique finds the model which minimizes the description

length and thereby computes an estimate of model order [128].

Binary prefix codes are used ta encode data strings. These data strings cao be

nlade up of symbols, parameters. numbers, etc. It is known that the average length

of a code ward is bounded by Shannon's theorem [128]. Therefore, it is possible to

write [128]

Ep(x)L(x) 2:: - Ep(x) logp(x) (2.47)
x x

•
where L(x) is the length of the code ward (Le., length of parameter vector 0) and
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where L(y[x,B) is known as the log-likelihood function (to be ma.ximized). Let Ô

denote the value of the parameter which ma.ximizes the likelihood and thus minimizes

the parameter vector length (Le., code word length) L(ylx, B). Since Ôcan only he

encoded up to a certain precision, the code word length, L(ylx, (J), becomes longer

than the desired minimum L(ylx.8), given noise considerations. Let the precision

be cS = 2-q where q is the number of bits used for encoding the parameter. It is

possible ta save on the code word length if q is small. However, the result is a 10ss

in precision. The optimal precision depends on the size of the observed data via

-log cS = 0.51ag JV, and hence the total code ward length for k parameters is given

by the ~IDL,

•

•

p(x) is the probability of x. It is also possible to write

L(ylx, B) = -logp(ylx, 0)

l\1DL(k) = -log[maximized likelihood] + !k log lV
2

which, for an AR(ny ) model gives

:\'IDL(ny ) = log[maximized likelihood] + n
y

log N.
lV

2.6.1.7 Relationships Between FPE, Ale and MDL

(2.48)

(2.49)

(2.50)

FPE \Vas developed specifically for AR model arder determination. Ale is a general

measure and can be applied ta other models. For large sampie sizes lV, FPE and Ale

can be shawn to be asymptotically equivalent methods [120]:

•

10g[FPE] = 10 [1 + ny/N A2]
g 1- ny/N

a

_ log Ô"2 + 2ny for large N,
N

therefore AIC(ny) - N log[FPE(ny )] •
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•

•

FPE and AIC are called asymptotic measures, as their derivation involves taking the

number of samples lV to infinity. NIDL does not make this assumption. The penalty

term is the highest for NIDL and lowest for FPE, Le., the penalty term in the ivIDL

definition is larger than that of AIC by a factor of approximately log lV. This causes

a much steeper minimum. In practice, this normally results in a lower and a less

variable estimate for the optimal model order.

AlI these techniques are theoretically a function of the residual noise variance

only. The residuals, however, are a function of the method used to obtain the model

pararneters. Consequently, residual variance estimates can be shawn to be a function

of the input variance and pararneter variance [31]. Therefore, in practice, the training

sampie size and methods used for model order selection and pararneter estimation are

crucial.

In context of order selection for nonlinear systems, we believe that these methods

fail for the following reasons:

1. ~umber of possible terrns for a given order can be very large (see Equation

2.22). Due to over-pararneterization residual estimate will be under-dispersed,

i.e.. biased.

2. AlI three approaches rely on accurate estimates of Ô"2, i.e., accurate estimates

of residuals.

3. AlI three approaches rely on optimal parameter estimates which depend on

the data size 1'1. For finite data lengths these methods rnay give inconsistent

estimates.

4. Inadequacy of the penalty term in each rnethod is known to give inconsistent

estimates of order for linear systems.

2.6.1.8 False Nearest Neighbors Method

Recently, Kennel et al. [2, 82] proposed the false nearest neighbors (FNN) algorithm

for determining the smallest dimension regression vector needed to recreate the dy-
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• namics of autoregressive (autonomous) chaotic systems [126J. The FNN method has

aiso been applied t.o non-autoregressive (non-autonomous) systems for model order

estimation [27, 82, 127J. The focus of this method is to determine the functionai

relationship between a regression vector and an output vector. Given a set of ob­

served regressors 7jJ(n) for n = 1,2, ... ,N and observed outputs, y(n), related to the

regression vector, this method attempts to find a functional relationship

y(n) =G[ô(n)J =G[y(n - 1), .. " y(n - ny), u(n),"', u(n - nu)]

that minimizes sorne error function ç. This error function is often of the form

ç = Ily(n) - G[~(n)]112

(2.52)

(2.53)

•
where G is sorne unknown function of the underlying system. If the system is linear

the function G can be determined exactly using the z-transformation. When the

function is nonlinear computing the function G is impossible except in trivial cases

[53J .

The FNN method starts by determining the closest point to a given point in the

regression space. In other words, for a given regressor ~nll,nu (i) find another regressor

0nll ,nu (j) in the data set which rninimizes distance d:

(2.54)

The indices i and j are not necessarily close to one another. If i and j are always

close to one another the sampling time may be tao small and there may be problems

in accurately estirnating the dimension of the regression vector [54]. To determine

whether neighbors are :ltrue" or "faIse" , a test is defined to assess whether these

neighbors have future outputs that are ;'far apart". A ratio test

is used to determine whether the distance between future outputs is significantly larger•
Iy(i) - y(j) 1 < R

Il 't/Jnll.nu (i) - 1Pn ll ,nu (j) 112 -
(2.55)
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than the distance between time-delay regression vectors that are close in the regressor

space. If the distance between future outputs is "large" (Le., ~ R) when divided by

the distance between two points that are "nearest neighbors" in the regressor space,

then the neighbors are considered to be faise. The percentage of points in the data

set that have false nearest neighbors are calculated for aU times i. This is continued

for increasing n y and nu until the percentage of false nearest neighbors drops to zero

or sorne acceptably small number.

Two search methods may be used with the FNN method: (i) global and (ii) local

search. In the global search the FNN indices become surfaces in two dimensions. It is

possible to find a "global" solution (or solutions) for the model orders by computing

the desired index over all values of input and output lag in a certain range and

deterrnine which point (or points) satisfy the order determination conditions [27, 125].

For a ~'local" solution, initial guesses for the minimum input and output lags are used

and the optimum model order is computed competitively; at each iteration either

the input or output lag is increél5ed by one! depending on which reduces the FNN

index by the greatest amount [27]. The competitive search method provides a "local"

solution to the optimum model arder which may not agree with the "global'! solution.

The FNN technique requires the selection of a tolerance level, R, ta determine true

and false neighbors. Selection of this tolerance requires a priori knowledge about the

true errors and system output! which are seldom available [54]. In the presence

of noise, implernenting either search technique may not provide a unique solution

since noise can be considered as another dynamical system with a very high order

[1]. In addition! this technique does not provide the "full" system order (Equation

2.21) for 0:AR~IAX models since the nonlinear mapping G cannat be computed

[54, 125, 126, 127]. Hence, only ny and nu can be estirnated.

2.6.1.9 Summary

Currently, no optimal method for model order estimation of nonlinear systems exists.

In the sequel (Chapter 5) we will present a method for model arder selection of

NAR1vIAX models based on minimization of the error in cross-validation.
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2.6.2 Structure Detection

:\[any NAR1-fAX models are described by only a few terms. However, if the order of

the system is high the number of candidate terms will be very large. Equation 2.22

gives the maximum number of possible terms in a NAR~IAX mode!. For example, a

system described by tenth-order lag on the input-output and third-order nonlinearity

(i.e., nu = n y = 10~ l = 3) has p = 1771 candidate terms.

The structure detection problem is that of selecting the subset of candidate terms

that best predicts the output while maintaining an efficient system description.

Existing methods for determining model structure include hypothesis testing of

differences between parameters (means) via the t-test, stepwise regression and Ko­

renberg's orthogonal structure detection routine. The t-test (in conjunction with re­

gression analysis) detects structure by determining those parameters whose values are

significantly different from zero. Conversely, stepwise regression computes how much

each parameter contributes to the overall reduction in mean squared error resulting

from adding or removing a parameter. Korenberg's orthogonal method is similar to

stepwise regression since it determines how much each parameter contributes ta the

overall reduction in mean squared error by using orthogonal relationships. The t­

test and stepwise regression are widely used in regression analysis [45, 49. 133, 142].

Howe\"er. aIl of these have difficulty in nonlinear system identification, but for the

different rcasons discussed below.

2.6.2.1 t·test

The t-test in combination with regression analysis is sometimes referred to as a form

of hypothesis testing by computing the differences between means [45].

In regression the significance of the coefficients, (), are checked using statistical

tests. If the model that was postulated is more general than needed, tests of hypoth­

esis are necessary to give a minimal model description. Suppose the following model

\Vas fit

(2.56)
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• The Ô's are then tested against the hypothesis, Ho (nuU hypotheses [33, 56]) or Ôi = 0,

i = 1,2, .... p. This allows the experimenter to assess which parameters are significant

and which are not, consequently which ones to retain.

The t-distribution is defined as the ratio of a normal random variable divided by

the square root of a Chi-squared random variable

normal
t= R' (? ... _)

_.f.) (

•

In standard regression analysis it is assumed that the errors are normally distributed,

therefore, Z must be normaUy distributed which also implies that () - iJ is normally

distributed (see e.g., [45, 56, 133]). In addition, it is assumed that estimates of the

variance have a X2 distribution [45, 133]. A. X2 distribution is defined as the sum of

squared normal random variables, Le., the sum of squared errors (45, 56, 133]. These

statistics fit the definition of the t-test and are easily calculated as a by-product

to the regression procedure, e.g., ELS or MLE. These estimates are typically used

to compute the t-distribution of the estimated parameters (with n - p degrees of

freedom).

The t-test is:

(2.58)

•

The range -tl to t l is determined from standard t-tables for sorne a level of signifi­

canee. If the computed t-statistic is in the range -tl to t l the parameter is accepted

otherwise it is rejected, i.e., removed from the regression.

This procedure assumes that an accurate estimate of parameter variances, i.e.,

residuals, is available [133]. Our results indkate that this assumption is violated for

over-parameterized models and, therefore, may lead to inaccurate estimates of system

structure [90, 93] .
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2.6.2.2 Stepwise Regression

The stepwise regression algorithm that is widely used is due ta the original work of

Efroyrnson [49]. Stepwise regression relies on the incremental change in the residual

sums of squares (RSS) resulting from adding or removing a parameter. Specifically,

two F-Ievels! Fout and Fin, are formed to determine whether a parameter should he

removed from the model (Foud or included in the model (Fin) [49, 133, 142, 141].

These F-levels are based on an F-distribution \Vith l, IV - P degrees of freedom.

This algorithm is summarized as [106]:

1. Enter into the regression model any variables (parameters) that are ta he

··forced!' in.

2. Find the variable from those not in the model but, available for inclusion, with

the largest Fin value. If it is at least as great as a pre-specified value of Fin,

then add the variable ta the mode!. Stop if no variables can be added.

3. Find the variable among those in the model, other than those forced in! that

has the smallest Fout value. If it is less than a pre-specified value of Fout, then

remove the variable from the model. Repeat this step until no further variables

can be removed. Go ta step 2.

Efroymson states that FO1lt must not be greater than Fin for ··good" model param­

eterizations [49! 106, 142, 141]. In the procedure above, if RSSp is the residual sums

of squares for a model \Vith p parameters, then the Fin statistic is given as [106]:

This method is sensitive ta the arder in which the regressors are introduced and often

gives models \Vith incorrect structure [41, 71, 102, 141].•

where JV is the data length. Similarly the Fout statistic is given as [106]:

F. _ RSSp- 1 - RSSp

O1lt - RSSp/(lV _ p) .

(2.59)

(2.60)
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• 2.6.2.3 Orthogonal Structure Detection

Korenberg [3~ 4~ 84~ 85~ 87] developed an orthogonal structure detection routine specif­

ically for nonlinear systems. This method relies on orthogonalizing the regressor ma­

trix and using the orthogonal relationships to compute how rnuch each term would

reduce the total rnean-squared error. The regressor matrL""( 'lJ is decomposed into ~V

and A where ~V is an .oN x p matrLx of orthogonal columns and ..4 is a iV x lV unit

upper triangular matrL""(. This yields an au.xiliary orthogonal system description

is defined: the square of the auxiliary system parameters, 9 l times the inner product

of the orthogonal columns, fV, over the inner product of Z.

A column of Ir is selected which gives the best reduction in error as the first

column ta include in a new orthogonal matrix IV and upper triangular rnatrix ..4. This

is continued until no more columns contribute ta the reduction in error as compared

with sorne preselected tolerance, p.

This algorithm suffers from having to select a desired tolerance level to deterrnine

which terms to accept or reject. Ideally, p should be set as

•

z - rV9 + ç where 9 =.48 and

E. Z - lJ!B = (lJ!A -1 )(AB) = Z - ~Vg.

An error reduction ratio Err

i=1,2, ... ,p

E[e2 (n)]
p = E[y2(n)] :

(2.61)

(2.62)

(2.63)

•

the ratio of the expected value of the squared noise process over the expected value

of the true system output [38]. This requires a priori knowledge about the true errors

and system output, which are seldom available. Therefore, the tolerance level is set

by trial and error [38] .
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• 2.6.2.4 Summary

Our results suggest that these structure detection techniques are difficult to apply to

highly over-parameterized models possibly because the underlying assumptions are

often violated [90~ 93]. Consequently: in Chapter 4 we develop an alternative approach

for structure computation of NARM_~Xmodels.

2.6.3 Parameter Estimation

~IIany parameter estimation techniques are based on least-squares theory. Therefore~

sorne of the basic assumptions made in least-squares estimation are stated.

2.6.3.1 Least-Squares

Consider the system shown in Figure 2.2. This system can be described parametrically

•
Input x(n)

System P
Output y(n}

Figure 2.2: Least-squares system description.

as:

where Y is a 1V x 1 vector of outputs. .IX' is a lV x p matrÏ-x of inputs (regressors), () is

a p x 1 vector of unknown parameters and e is the lV x 1 vector of errors. The vector

e represents the error in measuring the output .IY(J so that XfJ is the true response

and Y is the observed response. This is known as the least-squares problem.

A method for obtaining an estimate of the system parameters, (), is the method

of least-squares [133]. This method consists of minimizing 2::=1 e(n)2 with respect

to B. It can be shown that the least-squares solution to this minimization is

•

}" = .YB + e

(JA _ ( V'TXr )-1 ,rTlI
OLS - ..'\. .l'\. I.
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This is known as the ordinary least-squares (OLS) estimate of B.

Sorne basic properties of least-square are mentioned briefly.

Assumptions:

1. E[e] = 0 assumes zero-mean noise. As a resuIt E[Y] = .YB.

2. _y is a deterministic signal! E[X] = ..\.

3. Y is stochastic.

5. e/s are uncorrelated.

If the "errors!1 are unbiased1 that is! E[e] = 0 then

E[Ô] = (X·T.y)-I;(TE[Y]

(..yT.X)-I ..yT.XB

- B.

Hence, () is an unbiased estimate of B.

(2.66)

If it is assumed that the ei are uncorrelated and have the same variance (ho­

moskedasticL that is~ cov[ei, ej] = 6ij 0'2: then D[e] = (J2 In (where "D" denotes the

"dispersion" or "variance-covariance:' matrLx)

•

D[}~] = D[Y - _YB] = D[e].

It then follows that

_ 2 (Y - );ê)T(y - XÔ)
0' = -------....;.....-----

1'1 - p

is an unbiased estimate of 0'2. Therefore,
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• D[Ô} - D[(.y"T.X)-l ..yTy}

(.yT ..\) -1 .."'(TD [Y"j.."'( (.."'(T.\) -1

_ cr2(.X·T .X)-1 ..\TX (..XT X)-l

= cr2(X·T..\)-1

(2.69)

•

is the variance of the estimated parameters Ô.

Ta summarize~ the OLS estimate assumes that X is deterministic and the equation

errors are zero-mean and uncorrelated. This yields an unbiased minimum variance

estimate of the unknown parameters, which is commonly known as the best linear

unbiased estimate~ or BLUE, of XÔ.

2.6.3.2 Parameter Estimation for NARMAX Models

Although nonlinear structures based on expansions of lagged inputs and outputs may

provide a very concise system representation, any measurement noise will enter the

model as product terms \Vith the system input and output. Consider the system

shown in Figure 2.3. The system P is assumed to be a funetion of both eurrent and

e(n)

u{n) System P y(n) z(n)I---------++LI--------..

•

Figure 2.3: Noisy system configuration.

past inputs and past outputs. The noise term e(n) is assumed to he a stationary,

zero-mean random process with auto-correlation function Ree(T) = 0, 'riT > o. Sinee

the noise term is stoehastic it is diffieult to obtain a "good" estimate of the noise

proeess. :\.S a result estimates of the error terms are eorrelated beeause (1) estimates

of the noise proeess are usually poor and (2) the system is a function of past outputs.

However, it is assumed that the errors are Dot correlated with either the true system

output (y(n)) or the system input.
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• Let system P be represented by the following NARwIA.X model

y(n) = (h u(n - dr) + 82u(n - d2)y(n - d3) + 83y2(n - d4)

+ (lty(n - ds)

(2.70)

where d. represents the delay and 8. the coefficient. The measured output is related

to the measurement noise or errors and true system output as

z(n) = y(n) + e(n) ==} y(n) = z(n) - e(n).

Substituting Equation 2.71 into Equation 2.70 gives

(2.71)

•

z(n) - e(n) - 81u(n - dr) + 82u(n - d2)[z(n - d3 ) - e(n - d3 )] (2.72)

+ 83[z(n - d4 ) - e(n - d4 )]2 + 84 [z(n - ds) - e(n - ds)J.

Note that although the model is linear-in-the-parameters and the noise is output

additive, the noise can enter the system as multiplicative terms with the input and

output. Cansequently, most parameter estimation algorithrns for linear systems can­

nat be applied directly because the assumption that the noise terms in the model are

independent of the input is violated and .."'( is no longer deterministic (68].

The least-squares formulation for this system (Equation 2.72) is

Z = 'lJ zuB + ê where

ê = 82 u(n - d2 )e(n - d3 ) - 283z(n - d4 )e(n - d4 ) + B3e2 (n - d,d

+ (lte(n - ds) + e(n)

(2.73)

•

where Z is a lV x 1 vector of measured outputs, '11zu is a nonsingular N x p matrix

of regressors, based on input-output only, and ê is a N x 1 vector of modeling errors

and noise. The regressor matrix, \li zu, is related to Equation 2.13 since the columns

of 'li zu represent an expansion of NAR~lAX model terrns, for a given model order.

This model formulation assumed that ne = 0, i.e., that \{1 zu is deterministic. However,

since '11 zu is a function of the system inputs (u (n)) and measured outputs (z(n) ), \{1zu
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• is not deterministic. The ordinary least-squares estimate, BOLS, based on this is

(2.74)

which will give a biased estimate of the parameters. This is shown by taking the

expectation of BOLS:

E [ÔOLS] E [(\lJ;u\ll:u)-lW;uZ]

E [( \lI;u \li:u )-1 \li;u[\li :uB+ E]]

= B+ E [(W;u \li:u) -l\ll;uc]

( '> --)_., lJ

•

where E[(\lI;u W:u)-l\lJ;uc] =1= 0 or equivalently E[w;uê] =1= O. This induces a biased

parameter estimate when OLS is applied directly. To obtain an unbiased estimate of

() ~ other parameter estimation techniques based on least-squares are needed.

2.6.3.3 Extended Least-Squares

ELS is a technique that addresses the bias problem by modeling the lagged errors

to obtain an unbiased parameter estimate. Extended least-squares (ELS) for linear

systems has been \Videly studied and is also referred to as Panuska!s method~ the

extended rnatrLx method~ or approximate maximum likelihood [61].

Let the least-squares problem be defined as in Equation 2.73. In general, since the

noise sequence is a stochastic process! it is not possible ta solve for the noise source

e! and it will not be equal ta the prediction errors [22]. The prediction errors are

defined as

i= Z - Z

where Z is the predicted output

(2.76)

•
(2.77)

In ELS, the NAR!\1AX formulation of Equation 2.13 is redefined inta a prediction
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• error model with Ê replacing e; nlaking it a deterministic least-squares problem.

The ELS formulation is an extension of ordinary least-squares and is defined as

(2.78)

•

•

'IJ' is a partitioned regressor matrix where 'IJ':u is a function of =and U only, 'IJ'zui

represents aIl the cross products involving Ê, and \li i is a polynomial function of the

prediction errors only.

The ELS approach is straightforward and is summarized as:

1. Calculate the ordinary least-squares estimate, BOLS.

2. Calculate an estimate of the prediction errors~ Ê.

3. Form the extended regressor matri"c 'IJ', with the estimated prediction errors

and calculate the ELS estimate, BELS,

4. Go to step 2 until conyergence, i.e., until prediction errors are white.

1t is weIl documented that this algorithm does converge when applied to linear systems

[22]. Simulation results for nonlinear systems confirm that the method is weIl suited

for nonlinear polynomial identification also [22, 61J.
The major disadvantage encountered ",hen this method is applied to nonlinear

systems is that noise or prediction errors must be included in the estimation vector.

This results in introducing many additional candidate terms to the model. The

ma.ximum number of entries in the parameter vector is given by Equation 2.22 and

can be large even for moderately complex models. If the nonlinearity within the

system is high-order (i.e.~ large l) the dimension of the parameter vector increases

rapidly.

In an attempt to limit the dimension of the coefficient vector, other least-squares

algorithms are considered.
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• 2.6.3.4 Instrumental Variable Method

The principle of instrumental variables (I\T) has been applied ta linear system identi­

fication in several ways [22, 61]. Consider again the least-squares problem defined in

Equation 2.73. The IV method is based on selecting an instrument matrix F which

satisfies the conditions

lim ~ l,eT 'li ~ - R: where R is nonsingular
N~oo J.V·u .

~im ,\ l"T(Z - \lizuBo) - 0
N~oo.:.

(2.79)

•

where Bo denotes the true parameter \·ector~ Z is the output, 'li zu denotes the regressor

matrix and "lim~l refers to limit in probability. The conditions of Equation 2.i9

require (1) the instrumental matrix to he linearly independent and invertible~ i.e.,

leT\lI =u have full rank and (2) the errors have mean zero and he uncorrelated with

F. This ensures that the estimate

(2.80)

is unhiased since the instrument matrix is not correlated with the errors [68].

The mos! popular \Vay to satisfy Equation 2. i9 is to define FT to have the same

structure as \lJ;u but with the measured outputs replaced by predicted outputs [61. 68].

The columns of leT assaciated \Vith input are unchanged since it is assumed that the

input is measured with negligible errar. This algorithm is often referred to as the

auxiliary model algorithme ünfortunately~ instrumental variables can only be applied

to nonlinear systems if certain properties of the system noise are satisfied.

Consider the NAR!vIAX model with error sequence redefined as

•
to yield the description

Z=Wzu+ç.
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• This model formulation leads ta biased parameter estimates whenever the system

under test is nonlinear because [22J

(2.83)

A typical term in Equation 2.83 takes the form [22]

(2.84)

•

•

and will not in general be zero even when €(n) is a zero-mean white noise sequence

(see example in [22] on pp. 608-9). Therefore! in general, the instrumental variable

algorithm will yield biased estimates for nonlinear systems. However, the IV method

glves unbiased results for one special case of the NARNIf\X model. \Vhen the noise

terms are represented within the NA.RMA.X model as a linear expansion (i.e.~ the

model is represented by linear output terms), it always satisfies the conditions of

Equation 2.79. Only for this special case, is it possible to use IV for NARMAX

model identification.

Often, however, in many applications, there is insufficient a priori information

about the system structure which does not allow for an intelligent choice about when

the IV algorithm can be used. This ambiguity arises when the system structure is

completely known and. therefore, it may be represented by a nonlinear expansion of

output terms. The IV parameter estimation technique is limited to cases in which the

process is nonlinear and the prediction errors are linear, i.e., output terms are linear.

The class of models that give linear output and error terms are blocked structured

;";-L models (static nonlinearity followed by a causal, linear, time-invariant, dynamic

systemL i.e.~ Hammerstein models. Consequently, the class of models that can be

identified using this method is limited.

2.6.3.5 Suboptimal Least-Squares

The number of parameters in the NA.RMAX model increases significantly if the noise

model is included in the estimation vector. Therefore, it would he advantageous
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• if unbiased parameter estimates could he obtained without specifically estimating

a noise mode!. This cao be achieved for the NARMAX model, whenever the noise

enters as an additive signal at the output, by using a suhoptimalleast-squares (SOLS)

aIgorithm [22].

The suboptimal algorithm is a variant of the ordinary least-squares method that

achieyes an unbiased estimate of the parameters by re-expressing Equation 2.13 as:

(2.85)

•

•

eliminating all cross-product terms involving noise. Parameter estimation based on

this ne\\" expansion would~ therefore, require significantly less computational effort

compared with ELS. The noise-free output, y(n), cannat be measured but may be

estimated recursively as

(2.86)

The noise-free output y(n) in Equation 2.85 is effectively replaced by the estimate

y(n). This algorithm was derived by Billings and Voon [22] specifically for nonlinear

systems.

The SOLS algorithm significantly reduces the size of the parameter vector. How­

eyer. the convergence properties of this algorithm crucially depend on the ability to

compute a "good~' estimate of "noise-free" output, }~. Computation of a good esti­

mate of }~ depends on the underlying system and noise characteristics. Even when

it is possible to compute a good estimate of noise-free output, the additive sequence,

e(n), may be highly correlated with itself. Therefore, using e(n) to estimate param­

eter variance will result in a highly biased estimate. This makes structure detection,

which is necessary to obtain a parsimonious description of the system, inaccurate or

impossible.
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• 2.6.3.6 Maximum Likelihood Estimate

\Vhile Ieast-squares based methods are the most popular techniques for parameter

estimation~ they are oot the ooly methods. ~Iaximum likelihood estimators (~ILE)

are also widely used~ especially when least-squares methods converge slowly or not at

aIl [24~ 61J.

The ~ILE has heeo sho\\~n to be equivaleot to the weighted least-squares estimator

for Gaussian innovations [61]. The ~ILE of () is:

(2.87)

•

•

where

The procedure for the maximum likelihood algorithm is similar to the ELS method

and is summarized helow [61].

1. Pick any '"alue of t (say 1)

2. Solve for BOLS using t

3. Soh·e for t using ÔOLs as an initial estimate of {hfLE

- -
4. Solve for (J.",! LE using ~

,J. Soh·e for t using B.u LE

6. Stop if converged, otherwise go to 4

The ~\ILE of the parameters are consistent, asymptotically normally distributed and

asymptotically efficient [61]" Results show that the maximum likelihood algorithm

derived for Gaussian innovations can he applied to generai distributions without any

of the essentiaI properties being lost. Asymptotic normality results for the prediction­

error method implies that statisticai tests can be applied to determine significant

parameters in the estimated model [24]. It should he noted that using MLE aiso

requires modeling the noise; therefore, it is computationally more expensive than
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•

•

the ELS method. ~vforeoveL computing t- 1 may be unstable since E nlay be ill­

conditioned [42]. In this situation, ÔMLE will be biased or impossible to compute. The

choice of method depends on the application, the type of system being investigated

and if there are problems \Vith convergence.

2.6.3.7 Summary

The IV algorithm can be applied only to Hammerstein structure systems, severely

restricting the cIass of nonlinear systenls that can be identified \Vith this approach.

SOLS has problems \Vith convergence and gives an error vector that is highly corre­

lated. Since both the IV and SOLS methods have limitations, they cannot be used

in most cases. However, ELS and ~ILE can be used for parameter estimation. In

most cases ELS is preferred because it is computationally less expensive and does not

invoh'e inverting a possibly ill-conditioned matrix.

2.6.4 Model Validation

?\Iodel \'alidity tests should be a fundamental part of any system identification pro­

cedure. This is an important step in identification since it is often the final check on

the goodness of fit of any identified mode!.

:\Iodel \·alidation is really concerned with "model falsification". That is, the user

tries to establish convincing evidence that a certain model could not have produced

the observed data. A model that "so far:' has not been falsified can be considered ­

for the moment - to be ;·validated" [100]. The essence of model validation, while

trying to falsify the mode!. is to find evidence that the bias error is significantly larger

than the random error [160]. The bias error is defined as the systematic contribution

of the model error that stems from incorrect model structure: while random error is

the contribution that has roots in the various disturbances that affect the data [160].

~'Iany model validity tests have been designed ta indicate the inadequacy of the

fitted mode!. However, most assume that the system under investigation is linear (see,

e.g., [62, 89, 96, 100, Ill, 118, 145, 160]). Few authors have addressed the problem
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•

of model validation for nonlinear systems.

\Vest [165] considered modei validation for nonlinear systems by studying nonlin­

ear signal distortion correlation. This study \Vas limited to characteristics of static

nonlinearities [21]. West split the output from the nonlinear element into two por­

tions: one proportional to the input signal and the other a distortion noise. He then

showed that there is no correlation between the input and distortion signaIs when­

ever the input belongs to a separable class of random process. Douce [44] investigated

this further and proved that the same property occurs for a specifie class of nonlin­

ear dynamic systems. Douce developed a system identification technique based on

cross-correlating the residuals with a test signal obtained by passing the system input

through a pre-specified nonlinearity [21]. These techniques are used to assess if model

residuals contain any unmodeled dynamics, a test of model "goodness".

~Iodel validity involves detecting terms in residuals, which, if ignored will cause

bias in the parameter estimates. Traditional Iinear techniques for model validation,

based on covariance tests, can easily be shown to be inadequate for nonlinear systems,

i.e., residuals are not Gaussian, white, zero-mean. This was illustrated by Billings

and Voon [21J with the following example.

Assume in the identification of a system the following terms were inadvertently

omitted and hence appear in the residuals, ~(n), as

~(n) = Bu(n - 1)e(n - 1) + e(n) (2.88)

where e(n) is Gaussian, white noise and e(n) and u(n) are independent zero-mean.

Computing the normalized auto-correlation function of the residuals and the normal­

ized cross-correlation function between the system input and residuals gives [21]

fjlçç(T) - 6(1')

rPuç(T) - 0 \1 1'.

(2.89)

•
Using standard linear identification criterion, these residuals are considered to contain

no further information and appear white. However, Equation 2.88 clearly shows that
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• unmodeled dynamics exist in the residuals and will undoubtedly introduce bias into

the parameter estimates [19, 21, 28]. This clearly demonstrates that linear covariance

techniques do not~ in general, detect predictable nonlinear effects [12, 13, 17, 21}.

An alternate approach ,vould be to use multidimensional correlation functions such

as <p{{{(Tr, T2), tPuudTl' r2) and tPu{{(rl, r2) to check for nonlinear terms in the residuals

[12! 25]. However, this approach involves two-dimensional correlations and greatly

increases computation. The approach could he extended to higher dimensional cases

but is clearly unrealistic in practice.

Alternatively an r dimensional correlation function can be projected into a single

index higher-order correlation function \Vith r points [25].

Billings and Voon (1983) [21] developed a model validation technique for nonlinear

systems based on this principle. They argued that residuals will be unpredictable from

aIl past inputs and outputs if~ and only if [21],

•
4J(t(r) - 6(r)

tPu( r) 0 'Vr

dJUu(r) - 0 'VT

(2.90)

where the oyerbar ,-, is used ta indicate a zero-mean process.

These criteria are based on correlation coefficient functions of sampIed input­

output systems computed according to the formula [21]

': t 2:~~lT(x(n) - x)(y(n + T) - jj)
(j)xy(r) = - 1 <_ Â.Xy(r) <_ 1., VtPxx(O)rPyy(O) If'

(2.91)

•

In practice~ confidence intervals are used to determine whether the correlation between

variables is significant. If N is large the standard deviation of the correlation estimate

is 1/v'N and the 95% confidence limits are, therefore, approximately ±1.96/.JN [21].

The tests in Equation 2.90 can only be applied if a noise model is fitted as part

of the estimation procedure so that ç(n) is an unpredictable sequence. When IV

or SOLS routines are used only an estimate of the process model is obtained and,

therefore, alternative model validation tests are needed. BiIlings and Voon (1986)
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• [23] derived validation tests for I\T and SOLS methods. The details of these tests are

not provided here.

Korenberg and Hunter [86~ 88] showed several counter-examples ta the work of

Billing and Voon [21, 23), illustrating that the Billings and Voon results are incorrect.

Suppose the true test system has the following output [86, 88]

y(n) = u(n) + u3 (n - 1) - 3u(n - 1) (2.92)

where u is zero-mean, white, Gaussian input with unity variance. The terms u(n - j)

for j = 1,2, ... ~ JV and u3 (n -1) - 3u(n -1) will then be mutually orthogonal for aH j

[86, 88J. If the system is fit by a linear model; estimating coefficient (JI by minimizing

the mean-square error

(2.93)

•

•

it is seen that ÔI = 1 and the residuals will be ç(n) = u3(n - 1) - 3u(n - 1) [86, 88].

This residual sequence is an unpredictable sequence since u(n) is white~ Gaussian

[86, 88]. In addition, the residual has zero-mean and its normalized auto-correlation

is a c5-function [86, 88]. Korenberg and Hunter [88] showed that the three cross­

correlation tests in Equation 2.90 are satisfied for this simple example [86J. However,

the linear model is clearly not valid and the residual is completely predictable from

the input.

Since the correlation based methods discussed above are necessary but not suffi­

dent conditions to determine model "goodness", a complementary measure is typi­

cally computed to validate identified models. This measure is commonly known as

cross-validation. Cross-validation evaluates the predictive capability of a model using

fresh data. The ideal situation is when the predicted outputs are capable of explaining

a major part of the actual (measured) output. The ratio

(2.94)

measures the proportion of the total variation of z that is explained by the regression.
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This measure is also known as the squared multiple correlation coefficient and is often

expressed in percent.

2.6.4.1 Summary

Although Korenberg and Hunter [86, 88] have shown that the techniques for model val­

idation of nonlinear systems provided by Billings and Voon [21, 23] are only necessary

but not sufficient conditions for nonlinear systems, they should still he implemented

to check for any obvious modeling errors. In addition, a model validation test such

as the one given in Equation 2.94 should also be part of any validation procedure.

However, a high R; should be viewed with skepticism until extensive tests of the

system are performed.
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Chapter 3

N ARMAX Representation of

Ankle Dynamics

3.1 Introduction

Traditional approaches to nonlinear system identification of human ankle dynamics

have relied on quasi-linear methods, e.g., IRF method [78]. These methods provide a

convenient, robust means of characterizing the dynamics of nonlinear systems without

requiring a priori assumptions regarding the system structure. However, nonparamet­

ric techniques may require many parameters to describe even simple systems and can

be difficult to relate to the structure and pararneters of the underlying physiological

system.

Although the NARNIAX structure is capable of modeling a wide class of nonlinear

systems, ta date it has been used mostly for control where the main objective is to

achieve a parsimonious system description. In biological modeling the objective is

more often ta gain insight into the function of the underlying system. Therefore, in

this chapter, we (1) theoretically analyze a parallel pathway model of ankle dynamics

ta derive its NARIvIAX representation, (2) assess the applicability of this nonlinear

model for the identification of biological systems and (3) determine the suitability of

NAR11AX identification methods applied to ankle dynamics.
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• 3.2 Parallel Pathway Model of Ankle Dynamics

Our laboratory! the Neurornuscular Control Laboratory, has developed a parallel path­

way model (Figure 3.1) to describe ankle dynamics [79]. The upper, linear path,vay

Intrinsic Stiffness Pathway
Ankle Angle

cl/dt

[S2 + Es + K

Intrinsic Component

Statie Nonlinearity

YL(t)
+

~
Net

Torque
+ y(t)

YN L(t)

Figure 3.1: Nlodel structure assumed for identification of intrinsic and reflex contri­
butions to overall ankle torque. Redrawn from [79].

(HaIf-Wave Rectifier) ~1uscle Activation

Reflex Stiff'ness Pathway•
I.....----.t delay ~__..

6

•

rnodels intrinsic stiffness as a second-order system with parameters corresponding to

inertia (1), viscosity (B) and elasticity (I(). The lower, nonlinear pathway models

reflex stiffness as a cascade of a derivative, a time delay, a static nonlinearity (i.e.,

half-wave rectifier), and a low-pass system. The latter is simplified to second-order,

though in many cases it has been shawn to be better represented by a third-order

filter [108, 109). :\ second-order model is justified for the reflex path since we as­

sume that the "system" is a normal subject under passive conditions [108, 109]. The

parameters associated with the low-pass system are damping parameter ((), natural

frequency (w) and gain (g) .
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3.2.1 Discrete-Domain Approximation to a Derivative vs.

Bilinear Transform

The discrete-domain approximation to a derivative (Newton's backwards formula)

maps points from the left-half s-plane into a circle of radius 1/2, centered at z = 1/2

in the z-plane [66, 121]. Since this mapping confines the discrete-time poles to low

frequencies, its use is restricted to systems with low resonant frequencies [121]. This

is a good approximation to a derivative given the bancllimit of interest is confined

to low frequencies. For our work the bandIimit of interest is 0.15 of the sampling

rate (see § 3.3 & 3.3.2); therefore, it is appropriate for approximating the intrinsic

component of ankle dynamics. Conversely, the bilinear transform maps the left-half

s-plane ioto the entire unit circle and, hence, cloes not have the same restrictions as

above. The bilinear transform gives a better fit ta the transient portion of a step

response than does the discrete-domain approximation [66, 121]. For this reason it is

used to transform muscle activation dynamics, modeled as an UR system, in Figure

3.1.

However, ln the FIR case (intrinsic stiffness pathway Figure 3.1) the bilinear

transform cannat be used because, in general, it cannot transform an aIl-zero system

iota a stable discrete equivalent. (The bilinear transform is valid up to half the

sampling rate. i.e., the Nyquist frequency.) Using the bilinear transform, a derivative

operator in continuous-time transforms ioto a pole-zero system in discrete-time with

a pole at z = -1. This discrete pole maps back ta an unstable pole on the jw-axis in

the s-plane. For this reason, the derivative operator is transformed to discrete-time

using Newton's backwards formula [8].

3.2.2 Theoretical Analysis

The two pathways can be decoupled and analyzed separately since they are summed

to yield the net torque.

The discrete-domain approximation to a derivative (Newton's backwards formula
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• [8])

d u(t)u(n) - u(n - 1)
s =~~ T where T = sampling rate (3.1)

\Vas used to approximate the intrinsic pathway dynamics. In the nonlinear path the

first derivative in the cascade \Vas approximated using the same derivative approxima­

tion as in the linear path. The continuous-time delay was converted ta discrete-time

as T = ~~ where ~ is the continuous-time delay and T the sampling rate. The static

nonlinearity \Vas approximated as Co + ClX + C2X2. The activation dynamics \Vere

converted to discrete-time via the bilinear transform

_2(=-1)s-- --
T =+ 1

(3.2)

where T is the sampling rate.

After collecting terms and combining, the overall nonlinear model was represented

as a nonlinear difference equation with 19 terms as

• y(n) bo + bly(n - 1) + b2 y(n - 2) + b3 u(n) + b4u(n - 1)

+ bsu(n - 2) + b6u(n - 3) + bju(n - 4} + bsu(n - T)

+ bgu(n - T - 1) + blQ U (n - T - 2) + bu u(n - T - 3)

+ bl2 u2(n - T) + bl3 u2 (n - T - 1) + bl4 u2(n - T - 2}

+ b1S u2 (n - T - 3) + b16u(n - T)u(n - T - 1)

+ b17u(n - T - 1)u(n - T - 2) + bl8 u(n - T - 2)u(n - T - 3).

(3.3)

•

This is a NAR~lAX model since (1) it includes input-output terms that are combi­

nations of linear, nonlinear and cross-products and (2) is linear-in-the-parameters.

Table 3.1 shows the relationship of discrete-time NAR1lAX parameters in Equa­

tion 3.3 to the underlying continuous-time coefficients. Note that in this case many

of the coefficients are related to each other. This will be addressed later (see § 3.3.3) .
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Relationship to
Continuous-time Coefficient

(4+w2T2+4(wT)T

qw2T2 c2

(4+w 2 T2 +4(wT)T

-gw2T2 c1

(4+w2T2 +4(wT)T2

3gw2T2 c2

(4+w2 T2+4(wT)T2

gw2T2 c2

4COgw.!T2

4+w2T2+4(wT

-8+2w2T2
4+w2T2 +4(wT

-4(wT+4+w2T2
4+w2T2+4(wT

.J.2+~+K

( -2/ B) (( -8+2w2T2)( l B T.'))
T2 - T - - 4+w2T2+4(wT T2 + T + 1\

( l) (( -8+2w2
T2 )(-21 B))

Tl - - 4+w2T2+4(wT T2 - T
(( -4(wT+4+w2T2 ) ( ! B K))

- - -t+w2T2+4(wT T2 + T +
( -8+2w2T2 )(l) (( -4(wT+4+w2T2)(-2! B))

- - 4+w2T2+4(wT rr - - 4+w2T~+4(wT Tl. - T
_(( -4(wT+4+w2T2 )(L))

4+w2T2+4(wT T2

~w2T2cl

(4+w 2 T2+4(wT)T2

-2qw2 T2 C2

Linear
Relationships

b8 := bg := -b lO = -bu

b13 = 3b12

b1-t = 3b12

b15 = b12

b16 = -2b12

b1i = -4b12

b18 = -2b12

NAR~[AX

Coefficient

b6

bi

b8

• b9

blO

bu

b12

b13

b1-t

b15

b16

b1ï

b18

Table 3.1: Theoretical relationship of NARrvfAX parameters to continuous-time sys­
tem coefficients for parallel pathway model of ankle dynamics.

•
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• 3.3 Simulations

Accuracy of this system representation was validated by simulating the parallel path­

\vay model in continuous-time using Simulink (see Figure 3.2). The parameters used

Simulation Step Size =0.005 5

Elasticity

Sum1Viscosity

,.....----..... BI >--------t~

POS ~---,

Bandlimited Input

•
Sum

Reflex
Delay

Hal1Wave Rectifier

Muscle Activation

Figure 3.2: Sirnulink model of parallel pathway ankle model in continuous-time.

in the simulation were typical values found in experiments (Tables 3.2 & 3.3) [ï9].

The system was perturbed using a 30 Hz bandIimited~ uniformly distributed, white,

zero-mean. random input.

3.3.1 Output Accuracy of NARMAX Ankle Model

•
Ta determine the validity of this NARMAX description model (Equation 3.3) we simu­

lated its response for a parameter set corresponding ta those used for the continuous­

time mode!. The input sequence was a bandIimited, uniformly distributed, white,
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CT Coefficient

l
B
K
w
(

9
~

Value
0.015 Nnl/52/rad
0.800 Nm/rad/s

150 Nm/rad
40.0
1.00

10.00 Nm/rad/s
0.045 5

•

•

Table 3.2: Continuous-time coefficient values. 1: inertia, B: viscosity, K: elasticity, w:

natural frequency, (: damping parameter, g: reflex stiffness gain and ~: reflex delay.

NL Coeff. Value
Co 2.46
Cl 0.500
C2 0.016
T 0.005 s

Table 3.3: Coefficient values of static nonlinearity. Co: De term, Cl: linear term, C2:

squared term and T: sampling interval.
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zero-nlean~ random input, low-pass filtered with an eighth-order 30 Hz Bessel filter.

The bandlimited input had an operating range between ±OAO rad (see left panel of

Figure 3.4).

To compute a ·"theoreticar parameter set for this NAR~IAX model the half­

wave rectifier was approximated, using a least-squares fit, as a second-order static

polynomial. This second-order fit accounted for over 98% of the output variance of the

static nonlinearity C"NLoutpuf' in Figure 3.2). The operating range of velocity input

C"NLinput") was between ±30 radis and the position input (""POS") was between

±OAü rad. A plot of this second-order approximation to the true half-wave rectifier

is shawn in Figure 3.3. Assuming a second-arder nonlinearity, the frequency content

Second Order Fit to Half-Wave Rectifier
35.---..,........----r-------,.---.----..,........-----,

1 - 2nd Order LS Estimate of HWR
30

1
L--'_-_'-_T_ru_e_H_W_R ----J

=r
}

15r
10~

5

_5!......---..l----~--..-.:.---r..---....L.-----..I

-30 -20 -10 0 10 20 30
Input

Figure 3.3: Second-order least-squares approximation to the half-wave rectifier used
in simulations.

of the signal at the output of the half-wave rectifier ("NLoutput") will be at least 60

Hz (plus higher-order harmonies). To avoid internaI aliasing, we selected a sampling

rate of T = 0.005 s (200 Hz); 3.3 times greater than the internai 60 Hz signal.

The estimated output (y) of the NARMAX description model was compared with

the output of the continuous-time simulation (y) by computing the variance accounted
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• for by the ~AR~L\Xmodel as the percent normalized mean-squared-error (%N~1SE):

(3.4)

where .V is the record length.

Figure 3.4 shows the simulation input (left panel) and predicted output of the

~AR!vIAX description model superimposed on top of the simulated output of the

parallel pathway model (right panel). "Vith over 99 % NMSE the NARMAX output

Parallel Palhway and NARMAX Modellnput

21.81.4 1.6
TIme(s)

1.2

Parallel Pathway and NARMAX Madel Ouputs. NMSE=99.S3%
40r----r====::===~=::::::::;::=,..--,

1
- Parallel Pathway Output 1 i
-- NARMAX Output .;

~ 1

20

0

6' 0.1 -20
~ Ê
c::

0
;; -40

g III
w; ::;,

~-o.l
E:-60
0
~

-80
-0.2

-100

-0.3 -120

• -041
-140·1 1.2 1.4 1.6 1.8 2 1

Time (sI

Figure 3.4: Left: Input to simulated parallel pathway model in continuous-time and
~AR~L\X description model. Right: Output of simulated parallel pathway model in
continuous-time and ~AR~1AX description model.

matched that of the continuous-time simulation ,vith negligible error [92].

3.3.2 Parameter Estimation of NARMAX Ankle Model

•

\Ye then assessed the utility of methods developed for identifying NAR~1AX models

using sampled data from this continuous-time simulation. An ELS algorithm [22] was

uscd to identify model parameters.

The :\ARMAX description of the parallel pathway ankle model (Equation 3.3)

is described by past outputs which result in lagged values of disturbance terms in

the presence of output additive noise. If these lagged errors are Dot modeled they

induce a bias in the parameter estimates (see §2.6.3.2). The ELS algorithm was
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implemented because it is designed to model lagged error terms thereby providing

unbiased parameter estimates.

For this study, the system order and structure \Vere assumed to be known with the

full coefficient set in Equation 3.3 and Table 3.1. The regressor matrix used by this

algorithm was formed to only contain those columns (parameters) that corresponded

to our theoretical analysis (Equation 3.3). The estimation set consisted of lV = 4,000

data points sampled at T = 0.005 s. The estimated parameters were cross-validated

to compute the %N~ISE of the net predicted torque. The validation set consisted of

l'll} = 2,000 data points.

3.3.2.1 Monte-Carlo Analysis of NARMAX Parameters: Noise-Free In-

put - Output Additive Noise

A ivlonte-Carlo study of NARMAX parameters describing ankle dynamics was per­

formed to assess their estimation accuracy and variability. Ten !\10nte-Carlo simula­

tions were used in which each input-output realization \Vas unique and had a unique

noise sequence added to the output. Ten wlonte-Carlo trails were chosen due to com­

putational considerations (Le., time) and because it is convenient for subsequent sta­

tistical computations. Each input sequence was bandlimited (uniformly distributed,

white, zero-mean, random input, low-pass filtered with an eighth-order 30 Hz Bessel

filter) while a unique Gaussian, white, zero-mean noise sequence was added to the

output. The output additive noise amplitude was increased in increments of 5 dB,

from 30 dB to a dB SNR and the input sequence was assumed to be measured with

negligible error and, therefore, was noise-free.

Figure 3.5 shows a typical input-output sequence used for this analysis (a noise

sequence of 20 dB SNR was added to the torque).

Figure 3.6 shows the results of this study. Each figure shows the standard deviation

(STD) about the mean, for the NARtvIAX parameters given in Table 3.1. These values

are plotted against SNR, and the theoretical parameter values are given as a dashed

!ine in each plot. Note that sorne parameters do not appear to be scaled versions

of each other since the NARMAX model is over-parameterized. This suggests that
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Figure 3.5: Typical input-output sequence for parallei pathway ankle model. Upper:
Position input. Lower: Nleasured torque output (sum of true system output and
Gaussian, white, zero-mean noise sequence \Vith 20 dB SNR).

the regressor matri."{ may be aimast singular. These figures show that the identified

pararneter values did not correspond closely to those derived theoreticaIly. As the

SNR \Vas decreased the identified parameter's hias and random error increased.

The results illustrated in Figure 3.6 at first glance couid cause sorne concern for

the applicability of NAR~rL.\X identification methods to ankle dynamics or other

biological systems in which the SNR may he poor. However, this may not necessarily

be the case. Below, we investigate whether NAR11AX identification can lead to

accurate results, in the presence of significant noise, by looking at the effects of data

length and the effects of model over-parameterization.

3.3.2.2 Monte-Carlo Analysis of NARMAX Madel: Increased Record

Length

•
For parameter estimation, we implement a least-squares algorithm (Le., ELS). Least­

squares algorithms are weIl known to have good asymptotic properties, i.e., when

lV is large [26, 35, 45, 61, 68, 113, 133, 147]. Therefore, we investigated whether

the full (over-parameterized) model (Equation 3.3) could provide unbiased parameter
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Figure 3.6: Full NAR!\1AX model: BandIimited, zero-mean, random input, Gaussian,
white, zero-mean noise and N=4,000. Ordinate: STD about mean. Abscissa: Output
SNR= 30, 25, 20, 15. 10, 5 and 0 dB. Theoretically expected parameter relationships:
bg = bg = -blQ = -bu; bl3 = 3b12 ; bl4 = 3b12 ; bl5 = b12 ; bl6 = -2b12 ; bl7 = -4b12 ;

bI8 = -2b I2 • (Note that the abscissa is shawn in decreasing SNR which corresponds
ta increasing noise intensity.)
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estimates when the data length was increased.

In this study~ the same input-output realizations were used as in the previous

study but the data length was increased three-fold to JV = 12, 000 points. Figure

3.7 shows the results of this study. The results show that when .LV \Vas increased

by a factor of three the identified parameters were still biased in their mean but did

have less variability. The reason is the correlation between sorne current NAR1L-\-X

coefficients in this description of ankle dynamics.

3.3.3 Reduction of Dimensionality

The previous analysis shows r\AR~IAX parameters deviated significantly from their

true mean for almost allieveis of SNR. Therefore, we investigated the effect of reducing

the number of terms required to describe this NARMAX model. This is not a general

reduction of terms to describe the data but rather a minimization of the number

of regressors or d.o.f. 's (degree of freedom) used to form the regressor matrix. This

reduction should provide a regressor matrix that is more stable in terms of invertibility

since the coefficients will no longer be interrelated [60].

The coefficients of the full NAR~IAX model (Equation 3.3 & Table 3.1) are par­

tially redundant and, therefore, its input-output description can be redefined. Re­

combining aIl terms in Equation 3.3 according to coefficients of the static nonlinearity

(C2' Cl and co) yields an overall nonlinear model represented by la terms as

•

y(n) bo + b1y(n - 1) + b2 y(n - 2) + b3 u(n) + b4 u(n - 1)

+ bsu(n - 2) + b6u(n - 3) + b7u(n - 4) + mr[u(n - T)

+ u(n - r - 1) - u(n - T - 2) - u(n - r - 3)]

+ m2[u2(n - r) + 3u2(n - T - 1) + 3u2(n - r - 2)

+ u2(n-r-3)-2u(n-r)u(n-T-I)

4u(n - r - I)u(n - r - 2) - 2u(n - r - 2)u(n - r - 3)]

- bo + b1y(n - 1) + b2 y(n - 2) + b3u(n) + b4u(n - 1)

+ bsu(n - 2) + b6u(n - 3) + b7u(n - 4) + mlv(n) + m2x(n)
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Figure 3.7: Full NAR~'fAX model: Bandlimited~ zero-mean, random input~ Gaus­
sian, \Vhite~ zero-mean noise and N=12,000. Ordinate: STD about mean. Abscissa:
Output SNR= 30, 25, 20, 15, 10, 5 and 0 dB. Theoretically expected parameter re­
lationships: bs = bg = -blQ = -bu; b13 = 3bl2 ; bI4 = 3b12 ; bI5 = b12 ; bl6 = -2bI2 ;

bl7 = -4b12 ; bI8 = -2b12 . (Note that the abscissa is shawn in decreasing SNR which
corresponds ta increasing noise intensity.)
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• where

L'(n) = u(n - T) + u(n - T - 1) - U(11 - T - 2) - u(n - T - 3) (3.6)

and

x(n) u2 (n - T) + 3u2 (n - T - 1) + 3u2 (n - r - 2) + u2 (n - T - 3) (3.7)

2u(n - T)u(n - T - 1) - 4u(n - T - 1)u(n - T - 2)

2u(n - T - 2)u(n - T - 3).

Table 3.4 gives the relationships of these discrete..time NARl\-1AX parameters

(Equation 3.5) to the underlying continuous-time coefficients. This reduced set of

coefficients now has the same number of degrees of freedom as its initial continuous­

time description (the "extra~' coefficient T denotes the sampling rate).

(4+w2T2 +4(wT)T
qw2T2 c2

Relationship to
Continuous-time Coefficient

4COgw .!Tl

4+w2 T2+4(wT

-8+2w2T2
4+w2T2+4(wT

-4(wT+4+w2T 2

4+w2T2+4(wT

i2+~+K

( -21 B) (( -8+2w2T2)( 1 B R~))
T2 - T - - 4+w2T2+4(wT T2 + T +

(;'2) - (( - 4+~~;.t:4~:T)(* -~)) -(( ~4j:rT2~~~:,~2 ) (.}2 + ~ + K))

( -8+2....2T2) ( 1) (( -4(wT+4+w2T2) ( -2/ B ))
- - 4+w2T2+4(wT T2 - - 4+w2T2+4(wT T2 - T

(( -4(wT+4+w2T2 ) ( 1 ))
- - 4+w2T2+4(wT T2

qw2T2 c1

NAR.MAX

• Coefficient

bo

bl

b2

b3

b4

b5

b6

b-1

ml

m2

•
Table 3.4: Theoretical relationship of compressed NAR~1A...X model parameter set ta
continuous-time system coefficients.
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• 3.3.3.1 Monte-Carlo Analysis of Compressed NARMAX Madel Parame-

ters

:\. :\Ionte-Carlo study of these reduced NARIvIAX parameters (Equation 3.5 & Table

3.4) \Vas performed to assess their accuracy and variability. The simulation protocol

and input-output data sets used for this analysis was the same as described in §3.3.2.

Figure 3.8 shows the results of this study. The NARMAX parameters in this figure

correspond to ones given in Table 3.4. Parameters ml and m2 in Figure 3.8 correspond

~O~:f ~----.-- --.1- ---~:::=-~---L::::1J
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~.:~ . .__~'~l:~ ]
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•
Figure 3.8: Compressed NARNIAX model: Bandlimited, zero-mean, random input,
Gaussian, white, zero-mean noise and N=4,OOO. Ordinate: STD about mean. Ab­
scissa: Output SNR= 30, 25, 20, 15, 10, 5 and 0 dB. (Note that the abscissa is shown
in decreasing SNR which corresponds to increasing noise intensity.)
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• to parameters ba - bu and bI2 - bI8 in Figures 3.6 and 3.7, respectively. This figure

shows that, when the number of terms describing this NAR~IA~Xmodel was reduced

to the appropriate complexity, the identified parameter values corresponded closely

to those derived theoretically for SNRs ~ 20 dB. Note that we expect the mean

value of parameters bI9 and b20 to be biased since they correspond to lagged error

terms. Lagged error terms are difficult ta identify accurately even with high SNR

since they model the output additive noise which is a stochastic process and cannot

he measured. This stochastic process is modeled (approximated) by a deterministic

signal of prediction errors which is only an (poor) estimate of the noise (see §2.6.3.3).

Figure 3.9 shows a cross-validated (predicted) output superimposed on top of the

measured output for a typical parameter set. The predicted output matched the

Measured and Cross-validated Ouputs, NMSE=98.54%
100r------,-----.,----"F====::I~==::::::;)1- Measured Output

._.- Predicted Output

50

• 0
~ 1 1

~
~E 1

~ ~
1

~ 1

A
~ -50

~ INCT..
0
1-

-100

-150 ~

-20~8 28.2 28.4 28.6 28.8 29
Time (s)

Figure 3.9: Cross-validation: l\'Ieasured and predicted output for identified NARMA.X
ankle model with JVv = 2,000 and Gaussian~ white, zero-mean output additive noise
(20 dB SNR).

measured output with over 98% NMSE.

•
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• 3.3.4 Estimation of Continuous-Time Parameters of Ankle

Model

•

•

The previous section demonstrates that existing parameter estimation methods yield

good results for NAR1'IA..X models at low noise levels (Le., high SNR values). In

biological modeling, discrete-time NAR1'IA..IX parameters may not be relevant or may

he difficult to interpret since the biology is often evaluated in terms of physical vari­

ables. Therefore, we evaluated (1) whether it is possible to compute the underly­

ing continuous-time parameters when the model structure is predetermined and (2)

whether these continuous-time parameters are doser to the true mean and have less

\'ariability than ones estimated using traditional nonparametric techniques [79].

Currently, in our laboratory a nonparametric identification technique is used to es­

timate parameters describing ankle dynamics [70, 75, 77: 78, 78, 79, 80J, In this study,

estimates of continuous-time parameters computed using our NARhtlAX approach

were compared to results obtained using the nonparametric method used in our lab­

oratory. This nonparametric method implements a Levenberg-Marquardt nonlinear

least-squares algorithm to compute continuous-time parameters [79]. This approach

requires an initial "'guess" of the unknown continuous-time parameters to compute

them. The true parameter values \Vere used as an initial seed to emphasize the proh­

lem this technique has in computing a global minimum even in a best-case-sccnario

where the true values are known. In contrast, our nonlinear parametric approach does

not require any initial values to compute continuous-time parameters. Employing

our approach, continuous-time parameters are computed directly from discrete-time

NAR1IAX estimates using the theoretical relationships given in Table 3.5.

3.3.4.1 Noise-Ftee Bandlimited Input - Output Additive White Noise

Ten NIonte-Carlo simulations were used ta assess the reliability of our approach ta

estimate these continuous-time parameters. The system was simulated as described in

§3.3.2, except that a data record of N = 7,000 points was used for identification. The

discrete-time parameters were identified using the reduced NARMAX model given in
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• CT Coefficient
1=

B=
K=

w=

(=

g=

DT Relationship
b

7
X _T_2

-f>-,
/ -

b6+bl~ _ (21 B) 21 _ B T
-b2 - - Tl + T + TI - -T x -

b3 - (~+ f=)
-4+4b..+4bJ = . /,-.(W-2....s..Tl-)-X--I..
-l+lr.!-bl V T-

-2-2fn _ (wT
-1+b2-bl - wT

"T2m x (4 + w2T2 + 4(wT) x T = gClw-
l clw2T2

•

•

Table 3.5: Discrete to continuous-time relationships for parameters I, B, K, w, ( and
9 of the parallel pathway ankle mode!.

Equation 3.5.

The results of this study are presented below. Figure 3.10 presents plots of stan­

dard deviation about the mean for estimated continuous-time parameters of the linear

and nonlinear path (1, E, [<, g, w and () using NAR1tIAX identification techniques.

Figure 3.11 shows the resul ts of identifying continuous-time ankle parameters using

nonparametric identification methods [79J. For the !inear path, continuous-time pa­

rameters estimated using our NAR~IAX approach \Vere closer to the true mean and

had less variability far high SNR (~ la dB SNR) than those obtained using non­

parametric techniques. Estimates using a nonparametric appraach were consistently

biased away from the true mean. Variance of the inertial parameter (1), computed

using parametric methods, was approximately 5 times smaller for SNR between 30

to 10 dB and approximately equal for SNR between 5 to a dB compared to non­

parametric estimates. For \'iscous and elastic parameters (B, K), the variance \Vas

approximately 2 - 4 times smaller for 30 dB SNR, equal for SNR between 25 ta 15 dB

a.nd 10 - 15 times larger for SNR between 10 to 0 dB than nonparametric estimates.

Results show that, far the nonlinear path, continuous-time parameters computed

using a NAR!\'IAX approach were closer ta the true mean for SNR 2: 20 dB but were-
biased at lower SNRs. However, the nanparametric estimates \Vere biased at allieveis

of SNR. AIl parameters computed using NARMA.X identification had variability equal

to those obtained using nonparametric techniques for SNR ~ la dB. Between 5 and a
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Figure 3.10: Continuous-time parameters of parallel pathway ankle mode!. Bandlim­
ited, zero-rnean, random input and NARMAX identification. Ordinate: STD about
mean. Abscissa: Output SNR= 30, 25, 20, 15, 10, 5 and 0 dB. (Note that the abscissa
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Figure 3.11: Continuous-time parameters of parallel pathway ankle rnodel. BandIim·
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•

•

•

dB SNR parameters computed using our identification technique had approximately

10 - 20 times more variability.

3.3.4.2 Noise-Free Colored Input - Bandlimited Output Additive Noise

Assumptions made by least-squares theory do Dot allow for non-white disturbances.

However, in many practical situations assumptions regarding whiteness may be vio­

lated or incorrect due to effects of anti-aliasing filters, quantization, etc. [lG1, 101].

In order to evaluate the effects of bandlimited output additive noise on our estima­

tion technique, we performed ten lVlonte-Carlo simulations in which the system \Vas

simulated using a position input (pseudo-random binary sequence (PRBS)) from ex­

periments conducted in our laboratory. We used a PRBS input for this study because

it is the typical input used in our laboratory. The PRBS input \Vas bandlimited with

an eighth-order 30 Hz low-pass Bessel filter and the input-output sequence \Vas sam­

pIed at l' = 0.005 s. The output additive disturbance \Vas a zero-mean bandlimited

sequence (Gaussian, white, zero-mean sequence, low-pass filtered with an eighth-order

GO Hz Butterworth fUter). Each input-output trial and noise sequence was unique.

The noise Ieveis were the same as in the bandlimited input, white output additive

noise case (see §3.3.4.1), however, lV = 5,000 points were used for identification. Note

that this PRBS input is very non-Gaussian and non-white [78J.

Figure 3.12 shows a typical input-output trial used for this analysis. The data

represents a PRBS sequence of 0.03 rad (peak-ta-peak) and 150 ms switching rate.

The characteristics of this trial are consistent \Vith those used for analysis in this

section. The torque sequence shown in this figure is the sum of a noise-free torque

and a noise sequence with 20 dB SNR.

Plots in Figure 3.13 show results of estimating continuous-time ankle parameters

using NAR!vIAX identification techniques.

Figure 3.14 provides plots of ankle parameters computed using nonparametric

identification methods. Continuous-time parameters computed for the linear path,

using a NAR!vIAX approach, were cIoser ta the true mean for aIl levels of SNR

and had less variability for high SNR (~ 10 dB SNR) than those obtained using
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Figure 3.12: Typical position input and torque output recorded from simulation.

•

•

nonparametric techniques. Estimates provided by the nonparametric approach were

consistently biased away from the true mean. Variance of the inertial parameter (1),

computed using this parametric technique, was approximately 200 times smaller for

SNR between 30 to 20 dB and 10 - 2 times less for SNR between 15 to 0 dB than

its nonparametric counterpart. Using a NAR:NIAX approach, the viscous and elastic

parameters (B, K) variance was approximately 10 - 3 times less for SNR between 30

ta 15 dB, approximately 10 times larger for SNR between 10 ta 5 dB and 50 times

larger at 0 dB SNR than nonpararnetric estimates.

The results show that, using a NARNIAX approach, the nonlinear path parameters

were aU significalltly biased except at high SNR (~ 20 dB SNR). However, the bias

was not as severe as for nonparametric estimates where aH parameters were biased

consistently. Nonlinear path parameters computed using our NARMAX method had

approximately 7 times less variability for SNR between 30 to 15 dB and equal variance

for SNR between 10 to 0 dB as obtained using nonparametric methods.

Figures 3.10 & 3.13 shows the performance of our NARl\1AX technique in the

presence of output additive white and bandlimited noise respectively. With bandIim­

ited noise, coefficients of the linear path were less biased but had greater variability

73



Inertlal Parameler

a25 20 15 10 5
SignaJ-to-Noise Ratio (dB)

30

Gain

1arl True Parameter !

16r
1

î 141
~ 12~ ~--lI""----

;10f .•.•._.•._.•.•.•.•.••.•.•. _._._.•.•.•.•.•.•.•.•.•.•. _.••

:r

~·--1

5 025 20 15 10
SlgnaJ-I~OiseRatio (dS)

0.016,---------------........,
i
i

0.015r •• 1

: 1 ..• True Parameter 1
0.014r '--------'

30

'ê

iO.013~
:: 1

!

0.012r
i

0.011 ~
1

•

VISCOUS Parameler Nalura/ Frequenc:y

1.6 1 •.•. True Parameter 1

1.4

!i True Parameter 11'-----------'

50~

0.2~- ......... ___=_--.....:

30 25 20 lS 10 5 0
SignaJ-lo-Noise Ratio (dB)

o25 20 15 10 5
SignaJ·lo-Noise Ratio (dB)

f45

'i 1

40 .----:--.-.-.:----~.----~

35 L...o...._----' -----'__---'---_-----'__--'

30

-
0.6

0.4

~1.2

~ 1
z
iiio.a

•
Elastic SlJffness Damping Parameler

o25 20 15 10 5
SignaJ-lo-Noise Ratio (dB)

30

1 .•.••.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•

1 .... nue Parameter 1

2.5

1.5

2

o25 20 15 10 5
Signal-lo-NoiSe Ratio (dB)

240:i··_ True Parameter 1

220r

200~
1

1

:c1aOr
~ 1

I 16er _ ....__....~-+---t1"";C
:li: 140r

i
12er

l00r
iaO....t """---- ~__"__........
30

•
Figure 3.13: Continuous-time parameters of parallel pathway ankle model. PRBS
input and NAR:rvIAX identification. Ordinate: STD about mean. Abscissa: Output
SNR= 30~ 25, 20, 15, 10, 5 and 0 dB. (Note that the abscissa is shown in decreasing
SNR which corresponds to increasing noise intensity.)

74



O.014~

S"
~

È 0 '~O. 131

Gain

1sfRrue Parameler i
16

1

~ 14
L l

! ::1 In __ : :----:----~- ---.----~ j
SI 1
Gr
i 1

30 25 20 15 10 5 0a25 20 15 la 5
Sigl8l-lo-NOiSe Ratio (dB)

30

i

O.012tt---r--~--t---+---+--I
i
i

0.011 r

InertJaJ Paramet.r
O.016r,======::::::::;'--------,

: 1 .... True Parameter 1
,

O.015~ .•.•.•.•.•.•.•••.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•

•

V'ISCOUS Parameler Natural Frequency

o

1

1

J

j

j
1

1

J
1

o510152025

•.•. True Parameter 1

50

40

35
'------~-----'---'"'------'--_....
30

~ 45
~
s

0.6

1·· True Parameler 11.4 .

1.6 .:II---IEE--"I--~I-----I:t--..;jI~-I

0.2L.---------~----------~
30 25 20 15 10 5

SignaJ-lo-Noise Ratio (dB)

0.4

f1.2
~ 1
~
[oO.S •.•.••••.•.•.•.•.•.••••.•.•.•.•.•.•.•.••.•.•.•.•.•

•
Bastie SlIftness Oamping Parameler

o

2

o25 20 15 10 5
Signai-to-Noise Ratio (dB)

30

1 .... True Parameler 1

2.5

,

'.5 • ._:.__._._~•• __ ~ L_±_.1]
ao~,-- --..J

30 25 20 15 10 5

160"
1 -_._._._ ••• .! . .!._._. ~ ._._~•._......J

140-

240 ~'-,--T-ru-e-p-a-ra-m-e-t-er-'I

12m

l00~

•
Figure 3.14: Continuous-time parameters of parallel pathway ankle model. PRBS in­
put and nonparametric identification. Ordinate: STD about mean. Abscissa: Output
SNR== 30, 25, 20~ 15, 10, 5 and 0 dB. (Note that the abscissa is shawn in decreasing
SNR which corresponds ta increasing noise intensity.)

75



•

•

•

than those with white noise. However, the nonlinear path coefficients were less biased

and had greater variability in the presence of white noise than those with bandlimited

noise.

Figures 3.11 & 3.14 shows the performance of the nonparametric technique in the

presence of output additive white and bandlimited noise respectively. For the linear

path coefficients there was no significant bias between the white and bandlimited noise

study but there was more variability in the presence of white noise. Coefficients of the

nonlinear path had a greater bias and higher variance in the presence of bandlimited

noise than those \Vith white noise.

3.3.5 Input Noise Sensitivity

In the preceding sections we only examined the effects of output noise on our pa­

rameter estimation technique. It is \Vell known that standard least-squares \Vas not

developed to tolerate input noise [45, 105, 113, 133]. When studying ankle dynamics,

under experimental conditions, it is known that the input may not be measured with

negligible error. In our laboratory, experimental (PRES) inputs are typically in the

range of 0.005 - 0.2 rad. The convention used in the laboratory is 0.1 rad = 1 Volt.

The input-output is recorded \Vith a 16-bit A/D (IOTech ADC488) and has a 20 Volt

dynamic range. This yields an input SNR (assuming no other input noise source)

approximately in the range of 82 dB - 50 dB (see [121] p. 756). Although this cor­

responds to small amplitude noise, we examined the effects of input noise \Vith our

standard least-squares parameter estimation algorithm.

For this study, simulation and estimation protocols remained the same as described

in §3.3.2 except that a PRBS input was used to excite the system dynamics. \Ve used

a PRBS input for this study because it is the type of input used under experimental

conditions in our laboratory.

Figure 3.12 shows a typical input-output trial used for this analysis. The data

represents a PRBS sequence of 0.0375 rad (peak-to-peak) and 125 ms switching rate.

The characteristics of this trial are consistent \Vith those used for analysis in this

section. A unique Gaussian, white, zero-mean noise sequence \Vas added to the input,

76



PRBS Position Input• 0.02

0.01

-0.01

,..- ;;=; ~ ....-- ~ ,..-

1- - L..........J ....... '"-

3 4 5 6

Torque Output

7 8

•

•

5

Ez
-5

-10
2 3 4 5 6 7 8

Time (s)

Figure 3.15: Typical position input and torque output recorded from simulation used
to assess input noise sensitivity.

noise amplitude \Vas increased in increments of 5 dB, from 70 dB to 50 dB SNR, the

output \Vas noise-free, and N = 7,000 data points were used for estimation.

3.3.5.1 Monte-Carlo Analysis of NARMAX Parameters: Additive Input

Noise - Noise-Free Output

The results of this study are summarized in Figure 3.16 and correspond to the reduced

:\AR~IAX model (Equation 3.3 & Table 3.1). These plots show that even when an

insignificant amount of input noise \Vas added (with noise-free output) NARNIAX

parameters deviated significantly from their true values. Note that parameters bo, b4 ­

bi and ml -m2~ associated with input only, flipped signs for SNR levels ~ 55 dB SNR

which correspond to continuous-time parameters with incorrect sign, i.e., their STD

encompass zero and, therefore, cannot be distinguished from zero. This bias may be

the combination of two factors: (1) violation of least-squares theory and (2) model

representation, i.e., high-pass nature of the linear path.
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3.3.6 Input and Output Noise Sensitivity

Although the previous study showed that even with an insignificant amount of noise

on the input yields highly parameters~ we investigated sensitivity of this identification

approach ta both input and output noise. This study was conducted to assess the

likely performance of our algorithm under experimental conditions.

Simulation and estimation protocols remained the same as described in §3.3.2 &

§3.3.5. The input and output noise sequences were unique Gaussian, white, zero-mean

processes which were uncorrelated with the input and each other. The input noise

sequence was fixed ta have a SNR of 60 dB while the output additive noise amplitude

was increased in increments of 5 dB~ from 30 dB ta 0 dB.

3.3.6.1 Monte-Carlo Analysis of NARMAX Parameters: Additive Input

and Output Noise

Results of this study are summarized in Figure 3.17. These parameters correspond

ta ?'JAR~L-\X parameters given in Table 3.4. The plots in this figure show that~ for

input SXR of 60 dB~ sorne NAR~IAX parameters deviated significantly from their

true values for output SNR ~ 10 dB (see parameters br, b2 , b4 ,b7 and b20 ). These

parameters, associated \Vith input and output, had incorrect sign, which corresponds

to continuous-time parameters with incorrect sign and large variance.

3.3.6.2 Monte-Carlo Analysis of Continuous-time Parameters: Additive

Input and Output Noise

:\ext, we show results of estimating continuous-time parameters from NARMAX es­

timates gi\"en in §3.3.6.1. Figure 3.18 includes parameter estimates of both the linear

and nonlinear paths. These parameters \Vere computed using our NARl\·IAX identi­

fication approach. In these plots, we did not show the mean and STD for 0 dB SNR

ta gjve better resolution at higher SNRs. The STD of continuous-time parameters

inc1uded zero for 0 dB SNR. The results show that, even with an insignificant amount

of noise added ta the input, variance of continuous-time parameters increased by more
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than 10 times for aIl SNRs compared to the noise-free input, output additive noise

case (see Figure 3.10). Here, STDs of alllinear path parameters, except l, included

zero for output SNR ~ 20 dB. The nonlinear path parameters were significantly biased

for SNR ~ 25 dB. Therefore, parameter estimation using our NARMAX approach

may give biased results in situations where the input is not recorded with very high

precision or a noise-free record of the input is not available.

3.3.7 Closed-Loop Simulation

\Ve investigated the effects of removing continuous-time derivatives from the simu­

lation (see Figure 3.2) as a possible source of bias for the nonparametric identifica­

tion technique. The derivative operator in Simulink is implemented using Newton's

backwards formula [104]. This may give our NARMAX approach an unfair advan­

tage since the derivative operator in the NA.R1·Lo\X formulation of ankle dynarnics is

also approximated using Newton's backwards formula (see §3.2.2). \Ve rernoved the

derivative operators by simulating the ankle model in closed-loop. Le., from torque

to position.

1t is hypothesized that ankle dynamics are physically generated in closed-loop [78].

However. for analysis and identification purposes, system parameters are estimated

using an inverse parallel pathway model (Figure 3.1). The nonparametric technique

has been designed assuming that the input-output data is generated by such a closed­

loop structure. .-\. closed-Ioop formulation of ankle dynamics is shown in Figure 3.19

[78].

Specifically, we removed the effect of the derivative in the feedhack path by sim­

ulating the linear path as a bank of integrators in closed-loop (see Figure 3.20). The

output of the first integrator is velocity, therefore, it was used as input to the nonlinear

path; thereby removing the effects of the derivative.

\Ve simulated this model using two unique torque inputs; uniformly distributed,

white, zero-mean, random input, low-pass filtered with an eighth-order 30 Hz Bessel

filter. The parameters used in the simulation were the same values given in Table 3.2.

The system was identified from position to torque assuming a parallel pathway model,
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Figure 3.19: Closed-Ioop system of ankle dynamics. U(s): System input. Y(s):
System output. F(s): Output of feedback loop. V(s): Error signal.

•

as described in §3.3.2. The continuous-time coefficients were estimated as described

in §3.3.4. The system was identified under noise-free conditions.

Figure 3.21 shows a typicaI input-output trial used for this study. The top panel

shows a position record (labeled "POS" in Figure 3.20), the middle panel shows a

velocity signal (labeled "VEL" in Figure 3.20) and the bottom panel shows a torque

record (the sum of "U:' and "TQr" in Figure 3.20).

The results of this identification are presented in Table 3.6. Results show that the

nonparametric method was able to estimate the continuous-time parameters while

estimates computed by our NAR!\1AX approach were highly biased. Note that the

:\AR~IAXestimate of B, viscosity, has incorrect sign. Therefore, applying NAR!vlAX

identification to experimental data willlikely yield biased results. Although the non­

parametric technique gave better results than NARMAX, the estimates are still biased

eyen under noise free conditions and consistent with our results in §3.3.4. However,

unlike the NAR!vIAX estimates these nonparametric estimates are within reasonable

physiological ranges.

•
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Figure 3.21: Typical position, velocity and torque record from closed-Ioop simulation
of ankle dynamics.

Trial 1 Trial 2
Coefficients Nonparametric NARMAX Nonparametric NARMAX

1 = 1.50 X 10-:l 1.28 X 10-2 2.53 X 10-2 1.21 X 10-2 2.59 X 10-2

B = 8.00 X 10- L 8.51 X 10-1 -4.29 x 100 8.60 X 10-1 -4.30 x 100

I{ = 1.50 X 102 1.23 X 102 5.75 x 102 1.17 X 102 5.75 X 102

W = 4.00 X 10 1 3.84 X 101 6.44 X 101 3.87 X 101 6.44 X 10L

( = 1.00 x 100 1.04 x 100 1.14 x 100 1.06 x 100 1.14 x 100

9 = 1.00 X 101 9.56 x 100 4.64 x 100 9.39 x 10° 4.03 x 10°

Table 3.6: Continuous-time coefficients of ankle model simulated in closed-loop but
identified assuming a parallel pathway modeI. Coefficients: Continuous-time param­
eters values used in simulations. Trai! 1: Estimated continuous-time parameters
using the nonparametric and NARNIAX approach, respectively. Trail 2: Estimated
continuous-time parameters using the nonparametric and NARMAX approach, re­
spectively.
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Lastly~ we assessed our identification technique on experimental human ankle data

collected in our laboratory. The data analyzed for this study is from a single subject

with no history of neuromuscular disease.

• 3.4 Experimental Data

•

•

3.4.1 Apparatus

The subject lay supine with his/her foot attached to the pedal of an actuator by

a custom fitted fiberglass boot [107~ 110]. The fiberglass boot was firm enough to

restrict heel movement during experiments without excessively restricting range of

ankle rotation. Sandbags and a kneestrap held the knee fully extended.

An electro-hydraulic actuator operated as a position-sen'o driving the ankle po­

sition to follo\\" a command input \'\ith a bandwidth of a - 80 Hz. Ankle position

was measured with a precision potentiometer (Beckman 6273-R5K) while torque was

recorded using a torque transducer (Lebow 2ll0-5K) mounted in series with the sub­

ject~s ankle [107].

An angle of 90° between the shank and foot was considered as the neutral position

and defined as zero. Displacements in the dorsiflexing direction were considered as

positive and those in the plantarflexing direction as negative. Torque \Vas assigned a

polarity consistent with the direction of moyement [107].

3.4.2 Perturbations

PRBS inputs [79] were used to excite the dynamics of this system. Data records

in which input sequences had a peak-to-peak amplitude of 0.01 - 0.05 rad and a

switching rate of 45 - 260 ms \Vere used for this study.

3.4.3 Procedures

The subject \Vas instructed to maintain a constant level of activation and not to resist

the perturbations. Torque generated by the subject was measured, low-pass filtered,

86



•

•

•

and fed back to an oscilloscope mounted above the subject 's head. The subject \Vas

asked to match the torque feedback to a command signal displayed on the oscilloscope.

Each PRBS sequence \Vas started once the subject matched the desired torque level

and recording was initiated after the subject re-established a stable contraction at the

desired level [107}. The measured data was anti-alias filtered \Vith an eighth-order 200

Hz Bessel filter (Frequency Devices: 64PF) and sampled at 1000 Hz by a 16-bit A/D

converter (IOTech ADC488). Each input-output set was recorded for 30 seconds.

After recording~ the experimental data \Vas decimated by a factor of 10, resulting

ln a final sampling rate of 100 Hz. The system (ankle dynamics) was identified

using our ~ARlvIAX approach, as outlined in §3.3.4~ except that N = 2,000 points

was used for estimation and .;.'Vv = 1~ 000 points \Vas used for validation. Our least­

squares algorithm fitted parameters for the modeI \Vith a fixed deIay and repeated

the estimation \Vith delays ranging from 50 to 100 ms. The parameter set and delay

which yielded the highest cross-validation %N~ISE \Vas deemed the best-fit mode!.

3.4.4 Results

The results of identifying 8 trials of human ankle experiments are presented. Figure

3.22 shows a typical input-output trial used for this analysis. The data represents a

PRBS sequence of 0.05 rad and 260 ms switching rate while the subject maintained

a mean contraction of -5 Nm. The characteristics of this trial are consistent with

those reported in previous \York done in our laboratory [107}. Figure 3.23 displays

the cross-validation (predicted) output~ for this trial. The predicted output matched

the measured output \Vith over 98% N~ISE.

Table 3. i shows the "expected'~ (Le., ·'ball-park" estimates) continuous-time pa­

rameter ranges for this model of ankle dynamics. These parameter ranges were de­

termined in previous work done in our laboratory using nonparametric techniques

[70. 75. 76, 7i. 78~ 79, 107, 162, 163, 164}.

Figure 3.24 presents the results of NAR1tfAX identification of continuous-time

parameters for ankle dynamics. Parameter estimates computed using our NARMAX

approach were compared with known physiological ranges (Table 3.7) to determine
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Figure 3.23: Cross-validation: Measured and predicted output for identified
NAR~fAX ankle model for experimental data set with Nv = 1,000.
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• CT Parameter ~1inimum ~1a..ximum

1 (Nm/rad) 0.0075 0.015
B (Nm/rad/s) 0.35 2.5
I( (Nm/rad) 50 1000

w (radis) 20 60
( 0.5 1.5

g (Nm s/rad) 1 22.5

Table 3.7: Continuous-time parameter ranges for parallel pathway model of ankle
dynarnics.

•

•

how weIl NAR~IAX estimates agree \Vith these values. The dashed lines in each

figure represent the maximum and minimum range for each parameter. The results

in Figure 3.24 show that estimates obtained using our NARMAX approach failed

to identify aIl but t",o continuous-time parameters (K~ elastic stiffness and g, gain)

within given physiological ranges.

Figure 3.25 shows the cross-validation %NNISE for each trial. The results show

that the predicted output, for these parameter estimates, account for a large portion

of the variance. The range of %NMSE is from a minimum of 94.43% to a maximum

of 99.64%. From the 8 trials examined for this study, 62.50% of predicted outputs ac­

counted for more than 99% NrvISE of the measured output. Although cross-validation

shows a high %N!vISE in fit, the parameter values for 1 and B have incorrect sign.

This irnplies that these subjects have negative inertia and viscosity, which is physi­

cally impossible. The incorrect sign rnay be a result of several factors, (1) too much

input noise, (2) a deficiency in the model arder and/or (3) incorrect structure.

3.5 Discussion

3.5.1 Discrete-Time Parameter Estimation

Simulation studies of discrete-time ankle parameters (§3.3.2 & §3.3.3) demonstrate

that when a model has terms that are closely related, i.e., not described efficiently

or the regressors are "almost" linearly dependent, it is difficult to estimate system
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coefficients (see Equation 3.3 & 3.1). This suggests that discrete-time modeling of

continuous-time systems could provide more stable parameter estimation when the

number of regressors used to describe the system are reduced as much as possible.

In §3.3.3 we showed that, for a compressed NARMAX model representation, the

mean of ~Ionte-Carlo estimates for NARNIAX parameters matched the theoretical

values weIl for high SNR. However, estimates of sorne nonlinear parameters, e.g.,

mlu(n), did not correspond weIl to theoretically computed values. This bias may

be a result of using a low arder approximation to the half-wave rectifier. A stiff

nonlinearity of this form is of high order and, therefore, a second-arder fit is only

an approximation. Possibly for this reason, the theoretical values for the nonlinear

parameters are not accurate. The mean value of the NARMA.X identified parameters

may therefore give a better estimate of the true system coefficients.

3.5.2 Continuous-Time Parameter Estimation

Estimation of continuous-time parameters of ankle dynamics demonstrates that, with

noise-Cree input and low levels of output additive white and bandlimited noise distur-
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bance, NAR~L\X identification methods provide a better estimate than traditional

nonparametric techniques (compare Figure 3.10 with Figure 3.13 and Figure 3.11

with Figure 3.14). The clear advantage lies in the fact that, parametric (NARJ\;IAX)

techniques do not require an initial guess of system parameters, which are seldom

weIl known a priori. Using a nonparametric approach requires an initial guess and,

therefore~ estimated parameter(s) may he highly biased due to an initial seed far from

the true value and/or being attracted to a local minimum [32, 78J.

As the SNR \Vas decreased, estimates computed using our parametric method

had greater variability and moved further away from the true mean than estimates

computed using the nonparametric technique; however, it may be possible to com­

pensate for this by increasing the record length. This may not be the case using a

nonparametric approach since the prohlem of local minima will still persiste

The validity of these "hetter" estimates, obtained using the NARMAX versus

nonparametric approach, depends on the accuracy of our model simulation to repre­

sent continuous-time dynamics weIl, i.e., experimental data. For the parallel path\vay

model~ our NAR11IAX technique may have an advantage over the nonparametric ap­

proach. This is because the derivative operator in the NARIvIAX formulation of ankle

dynamics is implemented using Newton's backwards formula, which is the same as

in Simulink (see §3.2.2). As a result, our NARJ\;IAX model formulation matches the

Simulink model "almost" perfectly. The nonparametric technique does not make the

same model assumptions. Consequently, this may be a source of discrepancy between

the estimates computed by these two techniques.

3.5.3 Input Noise Sensitivity

Any noise on the input violates assumptions and conditions for least-squares to yield

unbiased parameter estimates. Nevertheless, we studied this effect to provide an

understanding of the types of results (or biased results) that can be expected with

experimental data. For this model structure, a study of input noise sensitivity (§3.3.5)

showed that NARMAX identification was not robust to input noise. A study of the

effects of input and output additive noise (§3.3.6) showed that with little noise added
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ta the input (60 dB SNR), the STD of linear path parameters included zero for

output SNR ~ 20 dB. This result suggests that the least-squares algorithm may be

very sensitive ta input noise.

Ta determine whether input noise sensitivity is a result of the model structure or

the least-squares algorithm we analyzed the behavior of this algorithm with a linear

and nonlinear system which had low-pass characteristics. A low-pass system was used

since it filters the effects of any amplified input noise due to derivatives. A preliminary

study showed that least-squares was weIl behaved in the presence of large amplitude

input and output noise, e.g., 10 dB input SNR and 5 dB output SNR. The parameter

estimates were biased; however, none of the parameters had incorrect sign as in §3.3.5

& § 3.3.6.1. Clearly, more investigation is needed. Nevertheless, this showed that our

algorithm may not as sensitive ta input noise as simulation results indicate. This

also suggests that for this ankle model sensitivity ta input noise is not only due ta a

violation of least-squares theory but may also be a result of the model structure. This

model is described by derivatives (Le., unrealizable system) in both the linear and

nonlinear paths which amplify input noise. A discrete-time representation of these

derivatives is present in the regressor matrix when least-squares is implemented and,

therefore, it may also contribute ta parameter bias.

3.5.4 Closed-Loop Simulation

A study of simulating ankle dynamics in closed-loop, removing the effects of deriva­

tives, but identifying the model as parallel pathway (§3.3.7) showed that our NAR1'IAX

approach gave severely biased estimates. Although estimates computed using the

nonparametric technique only had a "slight" bias, giving reasonable estimates (in the

same "baIl-park"), the bias is consistent with our findings in §3.3.4.

The results of this NARNIAX identification indicate that our approach is sensitive

to performing inverse identification, Le., from position ta torque when the data is

actually generated from torque ta position. This suggests that the closed-loop ankle

model may not be invertible, in a parametric form, and has a different structure than

the one posed for identification, Le., parallel pathway.
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vVhen ankle dynamics are simulated via a parallel pathway model in Simulink, a

first-order derivative approximation is implemented which may not be good enough

to accurately represent the "true" (experimental) analog data. This may give biased

parameter estimates using the nonparametric technique. As noted earlier, this is

not a problem for our parametric approach since we derived the NARNIAX ankle

model assuming the same first-order derivative approximation as in Simulink. Further

investigation is needed to determine if our parallel pathway simulation represents the

continuous-time process weIl.

lt may be possible ta generate more accurate simulations of experimental data if

a higher-order derivative approximation is implemented, but one that is stilllinear­

in-the-parameters so it falls within the NARrvIAX class. This approach may give

better estimates via both techniques. An alternate approach may be to theoretically

derive a closed-Ioop NARNIAX model of ankle dynamics and identify the system in

its natural state, in nonlinear feedback.

3.5.5 Experimental Data

Analysis of experimental data showed that our NARNIA.X approach gave results that

are not consistent with known physiological ranges. There are several factors that

may be attributed to this.

Sensitivity ta input noise of the least-squares algorithm, used ta identify param­

eters of this model structure, may exhibit significant bias, Le., parameters with in­

correct sign, as demonstrated by our simulation studies in §3.3.5 - 3.3.6 (see Figures

3.16 - 3.18). A similar bias (incorrect sign) was observed when ankle dynamics were

simulated in feedback but identified as a parallel path\vay model (see Table 3.6).

Physiological ranges used to compare NARMAX estimates of continuous-time

parameters are based on results obtained from nonparametric techniques. Using this

nonparametric method as a "goId" standard may not be a good approach since there

is no certainty that these parameter ranges are correct. Nevertheless, it is unlikely

that these parameter ranges are "\Vay" off since they are consistent with a variety of

physiological measures (see e.g., [78, 74, 80, 107, 162, 163, 164] ).
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High %N~lSE cross-validation fits obtained for parameter estimates using our

NARNIAX method (see Figure 3.25) are misleading at first glance. Parameter values

computed for 1 and B have incorrect sign which implies that these subjects have

negative inertia and viscosity. Clearly, this is not physically reasonable. Therefore,

using %Nl\ISE alone as an indicator of model goodness may lead to incorrect inter­

pretations.

Lastly~ the results may refiect bias in NAR~IAX estimates of continuous-time

parameters due to using an incorrect model structure. A structural deficiency may

not be obvious using nonparametric techniques since the resulting system description

is Dot represented concisely and may be redundant (see §2.4.1).

It is impossible to make more explicit conclusions regarding interpretation of these

results without doing a full study of the data, which would require model order

selection and structure detection. In the present study, we only have two indicators

of model adequacy: (1) %N~ISE and (2) whether estimated parameters faIl within

physiological ranges. Both can be misleading and may be poor indicators of model

adequacy. They are, however~ the only ones available.

3.5.6 Discrete to Continuous-Time Parameter Mapping

.-\.nother possibility for the source of error in the continuous-time parameters com­

puted using our NAR~L\X approach may be related to the nonlinear relationships

between discrete-time NAR1JAX parameters and continuous-time parameters of the

physical system (see Table 3.5). A small deviation from the true parameter value in

discrete-time. due to noise or numerical error, may appear as a significant error in the

estimated continuous-time coefficients. As a result it may be advantageous to study

these model parameters only in discrete-time.

3.5.7 Continuous to Discrete-Time Transformations

In §3.2.2 we used the bilinear transform and Newton's backwards formula to con­

vert the continuous-time linear dynamics to discrete-time. We used these transforms
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since bath require only a simple substitution ta convert a continuous-time system ta

discrete-time. Two other techniques that give better approximation for LTI systems

are linear extrapolation and linear interpolation methods [66, 94, 139J. However,

these techniques are seldom used due to added complexity for little gain.

Linear extrapolation gives an improper transfer function (i.e., more zeros than

poles) and linear interpolation gives a transfer function that is strictly proper (Le.,

equaI zeros and poles) [66,94, 139]. These methods produce a discrete-time transfer

function that gives a better output response than the bilinear transform or Newton's

backwards formula. However, the pitfalI of these methods is that it is difficult to

derive the coefficients of the discrete-time linear system. This is the main reason that

almost ail engineering text books and literature only discussed the bilinear transform

and Newton's backwards formula.

Using linear interpolation or linear extrapolation to derive a NAR~rA.X repre­

sentation of ankle dynamics it may be possible to derive a better approximation to

the derivative than the one used in §3.2.2, i.e., Newton's backwards formula. This

may give a better approximation to the derivative and provide simulation data that

matches the continuous-time process better. However, one drawback is that it may

give a discrete-time approximation to the derivative that is higher than first order

thereby increasing the complexity of the NAR1fAX representation [66, 94, 139J. An­

other drawback is that the continuous to discrete mapping of the continuous-time

parameters will be more complicated since it involves exponential functions. This

may result in more sensitivity to continuous-time parameter estimation since small

deviations from the ·'theoretical" or "'true" in discrete-time will result in large errors

in continuous-time.

3.5.8 Simulation Techniques

Smith [144] states, as that better discrete-time models cao he achieved if the product

of a zero-arder hold and system dynamics are modeled as a discrete-time representa­

tion of the model instead of only representing the continuous-time system in discrete­

time. In addition, as pointed out by Smith using higher-order integrators such as
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Runge-Kutta to simulate continuous-time systems introduces additional poles into

the dynamic process [144]. He suggests that integrators such as the zero! first, or

second-order be used to achieve more accurate simulations since they do not increase

the dynamic order of the system being simulated [144]. However, these integrators

require tuning two parameters to gÎve accurate results.

\Ve may be able to achieve better simulations of our nonlinear ankle model if the

integration methods suggested by Smith [144] are implemented and if the system is

modeled as the product of a zero-order hold and system dynamics in discrete-time.

3.5.9 Total Least-Squares

In the standard linear model (1'~ = ...\'"B+e) it is often assumed that the exact structure

of the regressor matrb.: is known! e is a vector of random errors which are uncorre­

lated and have zero means and the same variance, Le., E(e) = 0, D(e) = (721.

As demonstrated by analysis of experimental ankle data, these assumptions are fre­

quently unrealistic since sampling or modeling errors often affect the regressor matrix

X·. Therefore! it is necessary to consider methods that also allow for random input

errors.

One technique that allows for this is total least-squares [26, 69J. Application

of total least-squares may give insight to determine if parameter estimates for this

biologÎcal data resemble the currently believed ranges and if the ranges are accurate.

Few applications of totalleast-squares have been published in the literature [43].

Van Huffel and Vandewalle daim that in typical applications (linear systems), gains of

10-15% in accuracy can be obtained by using total least-squares instead of standard

least-squares methods [69]. To date there are no known applications of this technique

to nonlinear systems. Therefore, a careful development of existence theory for general

~AR;\L\X models, which allow for input additive noise, needs ta be studied first .
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3.5.10 Relevance of NARMAX Parameters to Physiology

In general, it is unclear if NAR~L-\X parameters will have a better physiological

relevance for model interpretation since, currently, there are no generally accepted

methods to obtain a nonlinear differential equation (continuous-time model) from

a nonlinear difference equation (NARM.U model). However, as we have demon­

strated here, if the exact system structure is known it may be possible to compute

the continuous-time coefficients from the identified discrete-time parameters, thus

allowing greater insight into the underlying physiological process. In addition, sta­

tistical studies of NAR:NIAX coefficients could lead to direct clinical relevance for

diagnosis.

\\Then studying biological systems, as suggested by our results from experimental

data. it may not be practical ta assume that the exact model order and structure

are weIl known a priori. In physiological systems analysis one of the main objectives

is not only to estimate system parameters but ta gain insight into the structure of

the underlying system. Therefore, to address this issue of structure computation, in

Chapter .t~ we will present a practical method for determining structure for NAR~1AX

models.

3.5.11 Summary of Findings

Simulation studies and analysis of experimental data showed the following.

1. Discrete-time modeling of continuous-time systems could enable more stable

parameter estimation when the number of regressors used to describe the system

are minimized as much as possible.

2. Estimation of continuous-time parameters of ankle dynamics demonstrated that,

with noise-free input and low levels of output additive white and bandlimited

noise disturbance, NARMAX identification methods may provide a better esti­

mate than traditional nonparametric techniques (assuming that our simulation

represents the analog data weIl) .
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• 3. A study of the effects of input and output additive noise showed~ with Little

noise added ta the input~ the STD of linear path parameters included zero.

4. A study simulating ankle dynamics in closed-loop, removing the effects of deriva­

tives, but identifying the model as parallel pathway showed that our NARNIAX

approach gave severely biased estimates.

û. Analysis of experimental data showed that our NARJ\iIAX approach gave results

that were inconsistent with known physiological ranges.

Clearly, much work remains ta be done to resolve the possible source(s) of error for

NAR~IAX identification of this ankle model. The accuracy ofour results for simulated

data depends on validating the accuracy of our model simulation to represent the

analog data well. If our simulation does not accurately represent the experimental

data~ it implies that the model used for identification may not be appropriate, thereby

partly explaining our biased results for experimental data.

• 3.6 Conclusions

•

Theoretical results demonstrate that the nonlinear difference equation description for

the parallel pathway model is a NARMAX model. Simulation results show that the

NAR~IAX model matches the continuous-time response weIl [92].

Our analysis of continuous-time parameter estimates and their variance for this

ankle model, using a NARMAX approach, demonstrates that this parametric method

provides a better estimate of system parameters than nonparametric techniques when

the underlying assumptions for standard least-squares are not violated.

\Ve have demonstrated the importance of considering input noise sensitivity when

implementing standard least-squares methods for analyzing experimental data. There­

fore, unless the input is recorded with high precision or a noise-free record is available,

it may be advantageous ta consider alternative estimation methods such as totalleast­

squares.
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The overall significance of these results has been ta demonstrate the importance

and relevance of the N'ARMA_X structure for physiological modeling and analysis.

\Ve have demonstrated this by modeling the dynamic behavior of a parallel pathway

model of ankle dynamics as a NARMAX mode!. In addition, we have illustrated that

apprapriate methods exist ta identify the dynamics of such systems.
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Chapter 4

Bootstrap Structure Detection

4.1 Overview

~\Iany systems may be described by NAR!vfAX models using only a few terms. How­

ever ~ depending on the order of the system the number of candidate terms can be­

come very large. Selection of a subset of these candidate terms is necessary for an

efficient system description. This is an unresolved issue in system identification for

over-parameterized models. Therefore, in this chapter, we develop a bootstrap struc­

ture detection (BSD) algorithm as a means of determining the structure of highly

over-parameterized models.

The performance of this BSD technique was evaluated by using it to estimate the

structure of (1) a simple NAR1fAX mode!. (2) a highly over-parameterized NARrvlAX

model and (3) a :\ARI\·IAX model describing slow-phase dynamics of the vestibule­

ocular reflex. The results demonstrate that the BSD algorithm is a robust method for

detecting the structure of linear regression models. This method provides accurate

estimates of parameter statistics without relying on assumptions made by traditional

procedures and yields a parsimonious description of the system.
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4.2 Introduction

Recently~ bootstrap techniques have received considerable attention due to the avail­

ability of affordable and powerful computers [46J. The bootstrap is a nurnerical pro­

cedure for estimating parameter statistics that requires few assumptions. The condi­

tions needed to apply bootstrap to regression analysis are quite mild; namely, that

the errors be independent, identically distributed~ and have zero-mean. This con­

trasts \Vith regression analysis that requires an accurate estimate of the noise process

which is difficult to obtain unless the model structure is correct. Consequently, we

hypothesize that bootstrap might be a useful tool for structure detection of nonlinear

models.

4.3 Structure Detection

NAR~L-\X representations of many nonlinear systems require only a few terms. How­

ever~ as the order of the system increases, the number of candidate terms becomes very

large (Equation 2.22). The structure detection problem is that of selecting the subset

of candidate terms that best describes the output. Several methods for NARivIAX

structure detection have been proposed including hypothesis testing of differences be­

tween means via the t-test, stepwise regression, and Korenberg's orthogonal structure

detection routine. However, these all encounter problems with nonlinear systems.

The t-test and stepwise regression are widely used in regression analysis [45, 49,

133, 142]. The t-test relies on accurate estimates of parameter variances to determine

significance while stepwise regression relies on the incremental change in residual sum

of squares (RSS) resulting from adding or removing a parameter. Both methods need

accurate estimates of system noise (computed from an estimate of model residuals)

to determine structure. However, accurate or unbiased estimates of residuals are

difficult to obtain even when the structure is correct. This is because the noise process

is assumed to be generated by a stochastic process. In addition, since the number

of candidate terms, p, becomes very large for even moderately complex nonlinear
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models~ the estimated noise may be highly biased~ making structure detection difficult

or impossible. 'Ve expect both the t-test and stepwise regression to have difficulty

with highly over-parameterized models.

Korenberg [3~ 4, 84~ 85, 8ï} developed an orthogonal structure detection routine

specifically for nonlinear systems. This method relies on orthogonalizing the regressor

matrix and using the orthogonal relationships to compute the reduction in the total

mean-squared error due to each column. However, it requires selecting a tolerance

level to determine which terms to reject or accept. The selection of this tolerance

level requires a priori knowledge about the true errors and system output~ which is

seldom available. Therefore, this tolerance level is set by trial and error and may not

yield a parsimonious system description unless sorne a priori information is available

about the system [38J.

4.4 Mathematical Preliminaries

Bickel and Freedman [15, 16~ 55} analyzed the linear regression model where the

number of data points 1'1 and parameters p were both large. For the full p-dimensional

distribution of the least-squares estimates~ as p2/1V -+ 0 the bootstrap distribution

will converge to the true unknown distribution [16]. Since, initially, p cannot change,

the accuracy of the bootstrap estimate is determined by the data length, N, available

for estimation.

Consider the linear model

Z = w(} + e (4.1)

•

with assumptions stated in §2.6.3.1 in force. Z is a N x 1 vector of measured outputs.

'II is a ."'1 x p (p « N) matrix of regressors with full rank (i.e., nonsingular) and

can be non-deterministic. () is a p x 1 vector of parameters. e is a N x 1 vector

of an i.i.d. (independent and identically distributed) noise sequence with zero-mean,

homoskedastic (have the same variance), cornmon distribution F and variance (72 > O.

Both F and (72 are unknown.
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• The number of parameters! p. is given via Equation 2.22 as

1

P = LPi
1=1

Pi-1(ny +nu +n{ +i-l)
Pi = , Po = 1

l

(4.2)

where nu is the maximum lag on the input, ny the maximum lag on the output, ne

the maximum lag on the error and l is the ma"cimum nonlinearity arder. vVe define

the maximum number of terms, p~ as the number of "candidate" terms to be initially

considered for identification.

The least-squares estimate of () is given by Equation 2.78 as

(4.3)

•
the fitted values are

(4.4)

and residuals or prediction errors are given by

i. = Z - Z = re, where r = INxN - P. (4.5)

In Equations -lA and 4.5 P and r are projection matrices. \li is defined as a partitioned

regressor matri..x

(4.6)

•

where \lI;:u is a function of z and U only, \li :ui represents aIl the cross products involving

i., and 'lJ ( is a polynomial function of the residuals only.

Let Q2 = wT\lI be the cross-product matrix and let a2Q-2 be the variance­

covariance matrix (the so-called Fisher information matrix) [16].

Remark 1 'l1T wis positive definite, therefore, it has a unique positive definite square

root, Q. Positive definite is taken in the strict sense. a2Q-2 is interpreted as a2Q-2 =
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• Let YNp(F) be the exact distribution of Q(ê-OL with lV data points, p parameters

and law F governing the disturbance terms.

The ~~~1allows metrics~' are defined in Bickel and Freedman [15]. In summary, let

Il . Il be the Euclidean norm on JRP and let Cl: 2:: 1. Then

(4.7)

•

•

where U has law /1, \. has law lJ and the ~~inr' is over the joint distribution. Conver­

gence in do is equivalent to weak convergence plus convergence of moments of order

Cl: or less [15].

The bootstrap estimates the distribution TNp(F) by Y Np(G). where G is an es­

timate of F. Bounds will be given on d2 [Y Np(F), 'INp(G)] in terms of d2(F, GL for

any F and G [16].

Theorem 1 Bickel and Freedman [16]: Let F and G be two possible laws for the

noise process en in the model (Equation 4.1); it is assumed that both have mean a and

finite variance. Then

d2 [T Np (F). T.I\"p(G)]2 :s p. d2 (F, G)2

Proof 1 Proof in Bickel and Freedman 1982 [16J.

Remark 2 The bound in Theorem 1 has an extra factor p on the right due ta the

fact that it compares p-dimensional distributions.

G is the empirical distribution Ê'.,,-. of the centered residuals. Define {lN = -h 2::=1 in

which may he nonzero since constants (D.C. terms) need not be in the column space

of W. Let F.I\' be the empirical distribution of the centered residuals, assigning mass

Ill\[ to each in - {LN. Let FN he the empirical distribution of the noise process, en,

n = 1,2, .... J.V .
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• Review of the bootstrap operation: Given Zl,'" , ZN, let fi, ... , iN be condi­

tionally independent. with cornmon distribution FN . Let

(4.8)

Informal1y, f* is obtained by resampling the residuals, f , and Z· is generated from

the data, using the regression model with Ôas the vector of parameters and FN as

the distribution of the residuals.

Next~ consider giving the ··starred" data (w·, Z*) ta another experimenter and

asking him or her to estimate 8. The least-squares estimate is simply

(4.9)

•
The bootstrap principle is that the distribution of ({r - Ô), which can be computed

directly from the data, i.e., by Nlonte-Carlo, approximates the distribution of (Ô - 8).

Similarly, for the full p-dimensional distributions.

Let i* be the bootstrap residuals

Let

i* = Z* - w*Ô = ri where r [ _ \lJ*(WT*'Tt*)-l.TtT*NxN 'J!' ';li

I NxN - P.

(4.10)

1 N

,V _ Lin and
. p n=l

1 N

N- Li~.
• p n=l

(4.11)

•

Theorem 2 Bickel and Freedrnan [16]: Assume model4.1 and conditions in §2.6.3.1.

Suppose p is fixed and let lV ~ 00. Then the d2 -distance between the distribution of

Q( il - 8) and the conditional distribution of Q(Fr - Ô) given Zl, ... ,ZN tends ta zero

in probability.

Proof 2 Proof in Bickel and Freedman 1982 [16].
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If p -+ 00 but p2/J.V -+ 0 and E[d2(FN , F)2] = o(lfp), the distance between the

distribution of Q(ê - B) and the corresponding bootstrap distribution tends to zero

[16J. This has an interesting consequence for the Scheffeé method of simultaneous

inference. Consider bootstrapping S = [(ê - B)TQ2(ê - B)]1/2 or Sfâ. Let S· =
[(B- - ê)TQ2(ir _ ê)J1/2.

Theorem 3 Bickel and Freedman [16]: Assume model4.1 and conditions in §2.6.3.1.

If lV --t 00, p2/~V --t 0 and E[d2(~IV,F)2] = o(lfp), the d2-distance between the

distribution of S_pl/2ij and the conditional distribution of S·_pl/2â* given Zl,' .. ' ZN

tends to zero in probability; similarly for the distributions of S - pl/2â and S· - pl/2â· .

Proof 3 Proof in Bickel and Freedman 1982 [16].

Remark 3 In structure computation the objective is often (directly or indirectly)

simultaneous inference testing. For structure detection, to obtain consistent results

the relevant criterion for bootstrap convergence is

(4.12)

Computing a good estimate of parameter statistics is the central issue for aU struc­

ture detection algorithms and. hence, a poor estimate of these statistics may lead

to nlodels with incorrect structure. The analysis by Bickel and Freedman provides

a guideline for data requirements needed for bootstrap estimates of an "unknown"

noise distribution to converge to the true unknown distribution. This analysis was

done in the context of large p (number of regressors) which is the situation experi­

menters encounter when computing structure of nonlinear systems; given the system

order is known. This work is relevant for nonlinear system identification because, as

Bickel and Freedman showed, the bootstrap provides a good estimate of the unknown

distribution of the noise or error process. This implies that bootstrap may lead to

good parameter statistics, if sufficient data is available. When the condition in Equa­

tion 4.12 is applied to the t-test it may give a good estimate of parameter statistics

for a particular input-output realization but, in general, will not be consistent, p 1.
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Although Equation 4.12 pro\ides a guideline for computing a ""better" estimate of

parameter statistics, it only implies that they \\ill on average equal the statistic they

are supposed ta estimate; it does Dot imply that any of these values must necessarily

be close [56]. Therefore, the bootstrap is justified to obtain a consistent estimate

of these ··unknown" parameter statistics, thereby providing a consistent estimate of

model structure.

4.5 Application to Structure Detection

Application of bootstrap ta structure detection involves two steps: (1) computing a

series of parameter replications, in which ··baotstrap data" is generated to compute

new '"bootstrap parameter estimates", and (2) forming percentile intervals for hy­

pothesis testing, where the significance of the parameters is determined. Bootstrap

data is formed by first estimating the residuals of the identified model; these residuals

are then resampled with replacement, centered (mean is removed), and then added

to the predicted output to generate bootstrap replications of the output [46, 48]. A

number ""B" of bootstrap data sets are generated to estimate B bootstrap parameter

replications. Figure 4.1 oudines the procedure.

Significance of the pararneters is determined by forming percentile intervals (Fig­

ure 4.2). The estimates from B parameter replications are ranked in increasing order

and the B·ath and B·(l-a)th values in the ordered list of the B replications are used

as an upper and lower bound for the parameter deviation \Vith an ath and (1 - a)th

leyel of significance, re3pectively [48]. Significance of each parameter is determined

by checking if 0 lies in its interval: if so, the parameter is rejected. This leads to the

fallowing algorithm to detect structure of linear regression models.
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4.5.1 BSD Algorithm

1. Compute an initial estimate of the unknown parameter vector and estimate the

residuals.

2. Generate B bootstrap data sets and compute the bootstrap parameter replica­

tians.

3. Form percentile iDtervals for each parameter by ranking estimates from the B

parameter replications in increasing order.

4. Estimate the upper and lower bounds of each parameter's confidence interval

for a desired Level of significance.

5. Determine if zero lies in the interval of each parameter in the vector.

6. If zero lies in the interval for any parameter(s) remove it/them from the regres­

sion.

(. Compute a new estimate of the parameter vector and residllals.

8. Go ta 2 llntil convergence.

4.6 Implementation of BSD Aigorithm

During each bootstrap replication new bootstrap data is formed which requires the

regressor matrix! W, ta be reformed and re-orthogonalized. Ta decrease computations,

the bootstrap method was implemented ta update only that part of the regressor

matrix that depends on the new bootstrap data. Similarly, for orthogonalization~

only these parts of the matrices need be updated. This is accomplished using well­

known updating schemes for adaptive matrLx orthogonalization [60].

This involved restructuring the regressor matrL'X sa that instead of ordering the

extended matrLx as \li = [\li zu 'lizuiWi] it is reordered as

(4.13)
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where \{1u is a function of u, \li=a function of Z only, \{1 zui represents aIl the cross prod­

ucts involving i, and \{1 i is a polynomial function of the prediction errors only. Thus

aIl the terms that are updated during the bootstrap procedure are lumped together in

the second partition of the matri.."( making reformation and re-orthogonalization of the

regressor matrix efficient. Re-orthogonalization is accomplished using the modified

Gram-Schmidt (~IGS) algorithm. These changes optimize the computational aspects

of the BSD algorithm but do not affect the order in which the steps of the algorithm,

presented in §4.5.1, are implemented.

\Vhen implementing the ~IGS algorithm, if QiZ is explicitly formed, it may

introduce error in the estimated parameters. However, it has been shown that if

~\:IGS is applied to the augmented matrix (see e.g., [60])

(4.14)

then 'Y = QfZ. Computing QiZ in this fashion and solving R1{)ELS = 'Y produces a

least-squares solution {jELS that is "just as good" as the Householder QR method.

4. 7 Simulations

The efficacy of the BSO algorithm was assessed using Monte-Carlo simulations of two

nonlinear systems. For both systems, we assumed a sampling rate of 8,000 Hz (T =

0.000125 s) and bandlimited inputs \Vere used (uniformly distributed, white, zero­

mean, random sequence, low-pass filtered with an eighth-order 600 Hz Butterworth

filter). Fifty ~Ionte-Carlo simulations \Vere generated in which each input-output

realization was unique, and had a unique Gaussian white, zero-meau, noise sequence

added to the output, \Vith 0 dB SNR. For identification, a data length of lV = 3,000

points \Vas used. An initial estimate of the system parameters was computed, and B =

300 bootstrap replications were generated to assess the distribution of each parameter.

Each parameter was then tested for significance at the 95% confidence level. The BSO

routine's performance was compared with two other structure detection methods: the
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• t-test and stepwise regression routine.

4.7.1 Bandlimited Input and White Noise

4.7.1.1 Simple NARMAX Model

\Ve first studied the simple system:

y(n) = O.4(u(n - 1) + u2(n - 1)] + O.8y(n - 1) (4.15)

which is of order 0 = [l, l, l, 2J and has only 15 candidate terms (Equation 4.2).

However, only 4 "true" parameters are needed to describe this system: two lagged

inputs, one lagged output and one lagged error term. vVe studied this system since

it has a smal1 number of candidate terms.

Figure 4.3 shows the results for this mode!. The left panel shows the frequency of

•
False Negatives

0.5
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-o.5L..--'--------------.......~

4
Parameter Number
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Figure 4.3: Predicted structure of a simple NARMAX model using the t-test, BSD and
stepwise regression in the presence of Gaussian, white, zero-mean output disturbance
with 0 dB SNR. Abscissa: True/spurious parameter number. Ordinate: Percent
true/spurious parameter selection.

false negatives, the rate at which parameters actually in the model were rejected. The

right panel shows the frequency of false positives, that is, the rate at which parameters

not part of the model were selected. AH three methods, the t-test, stepwise regression
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• and BSD methods. selected the true parameters with high accuracy. The false positive

rate was similar for stepwise regression and BSD, but was higher for the t-test. Thus,

for a simple model with few free parameters these three methods yielded comparable

results for selecting atrue parameters" while the t-test was less accurate for rejecting

"faise parameters" .

4.7.1.2 Highly Over-Parameterized System

Next~ we examined the performance of the BSD technique for the following system:

y(n) = O.4[u(n - 1) + u2 (n - 1) + 'u3 (n - 1)] + 0.8y(n - 1). (4.16)

•

•

This system is described by 3 lagged inputs, 1 lagged output, 1 lagged error and

third-order nonlinearity (0 = [1,1,1,3]). A system of this order has 35 candidate

terms, but the "true" model has only 5 terms. "Vith 30 spurious parameters this

NARNIAX modei is highly over-parameterized. The identification paradigm was the

same as described in §4.7 except lV = 5,000 data points were used for parameter

estimation and B = 50 bootstrap replications were generated ta assess the distribution

of each parameter. In this case, only 50 bootstrap replications were used ta reduce

computation time required for our BSD algorithme

Figure 4...1 shows that the BSD method consistently selected the correct structure

of this third-order nonlinear system while the t-test and stepwise regressian both

failed. The t-test had a false negative rate of 30% for the term associated with cubed

input, lagged and had faise positive frequency of over 20%. Stepwise regression had

the same rate of rejecting a true parameter (cubed input term), 30%, and had a higher

rate, 30%, of accepting spurious terms. The BSD method selected the true parameters

consistently but did have a 10% false positive rate for two terms associated with input

cross-terms. For this highly over-parameterized, third-order nonlinear model the BSD

method clearly outperformed the t-test and stepwise regression.
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Figure 4.4: Error rate for highly over-parameterized system using the t-test, BSD and
stepwise regression in the presence of Gaussian, white, zero-mean output disturbance
\Vith 0 dB SNR. Abscissa: True/spurious parameter number. Ordinate: Percent
true/spurious parameter selection.

4.7.2 Assessment of Parameter Statistics

Ta assess the accuracy of our BSD technique for estimating parameter statistics the

distribution of each parameter \Vas computed for the simple NAR~IAX model (~Iodel

4.15). The "theoretical'~ distributions \Vere estimated using NIonte-Carlo simulations

consisting of 10,000 runs. For the BSD method, estimates were calculated from

B = 10,000 bootstrap realizations: those for the regression methods (t-test and step­

wise regression) were computed using a single realization via standard least-squares

methods [133]. Parameter distributions \Vere first calculated for the full model and

second for the model including only true parameters, to estimate the "optimal" values

for these terms. The simulation paradigm \Vas the same as described in §4.7.

~\'Iodel 4.15 is fully described as

y(n) = 80 + 81u(n) + 82 u(n - 1) + 83u2(n) + 04u(n)u(n - 1) (4.17)

+ 85 u 2 (n - 1) + 06y(n - 1) + 87u(n)y(n - 1) + 88u(n - 1)y(n - 1)

+ 8gy2(n - 1) + 810u(n)e(n - 1) + Ouu(n - l)e(n - 1)

+ 012y(n - l)e(n - 1) + 013e(n - 1) + 014e2(n - 1)
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• where the ,·true" parameters and regressors are shawn in boldo Figure 4.5 shows

the :\tlonte-Carlo, bootstrap and regression distribution estimates for each parameter

given in Equation 4.17. In each panel, the solid line ('"_!') represents the Ivlonte-
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Figure 4.5: Parameter distribution of spurious and true terms for a simple NARNIAX
model (i\lodel 4.15) when the full model is postulated. Abscissa: Parameter mean.
Ordinate: Probability of ith parameter. \Tertical Line: Estimated mean for each
approach.

•

Carlo distribution, the dash-dot line ("-.") represents bootstrap distribution and the

dash-dash line ("- -") represents the regression distribution. The verticalline in each

panel is the estimated mean for each parameter distribution. Distribution curves for

the ~Jonte-Carloand bootstrap techniques were plotted using the "hist" function in

~latlab, specifying a bin size of 20. For the regression approach the distributions were
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plotted by computing parameter statistics [45, 105, 133), substituting these values into

the standard formula for a normal distribution [56] and plotting the distribution ('ver

a range of parameter values, using a step size of O.OOI.

The distributions shown in the plots are initial estimates for the full model, be­

fore spurious parameters were removed from the regression to obtain an "'improved"

estimate. The distributions calculated via the BSO method were closer to the ~Ionte­

Carlo distribution, while those associated with the regression method were far from

the ~Ionte-Carlo distribution. This result was not surprising since prior to the removal

of any parameters the model \Vas over-parameterized; giving an inaccurate estimate

of the residuals and, therefore, yielding biased estimates of the distribution. Note

that the BSO estimate of each parameter's standard deviation (distribution spread)

and mean was closer to the ~/Ionte-Carlo distribution than those obtained from the

regression method.

Distribution estimates were recomputed after removing spurious parameters. Pa­

rameter distributions calculated for the exact or true model are plotted in Figure

4.6. The results show that the distributions computed using the BSO approach were

doser to the ~Ionte-Carlo distribution than those based on regression analysis. It is

surprising to see that the regression estimates \Vere significantly different from the

~Ionte-Carloeven when the exact structure was used. This deviation may be because

the regression estimates \vere based on a single realization. For a different realization

it may he possible ta compute "better" distribution estimates based on regression

techniques. Note that this result gives sorne insight as to why regression methods

(e.g.. t-test) perform poody when applied to structure detection; since they may pro­

vide poor estimates of parameter statistics. Hence, for this simple NARMA.X model

the BSO Inethod yielded better parameter statistics than the regression method.
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4.7.3 Convergence Analysis of Bootstrap

4.7.3.1 Analysis of Decreasing 7i for Fixed B

To assess the relevance of the theoretical results presented in Bickel and Freedman

[16] we empirically determined "how close to zero" 1r = p2/N must he to achieve

consistent results. In this study, the structure of the systems presented in §4.7.1.1­

4.7.1.2 \Vere computed using our BSD algorithm. The identification protocol was

the same as described in §4.7 except 20 Monte-Carlo simulations were used, B = 100

bootstrap replications were generated to assess the distribution of each parameter and

7ï = 1,0.6. DA, 0.1 were used to determine the data length to be used for parameter

estimation.

•
4.7.3.1.1 Simple NARMAX Model Figure 4.7 shows the empirical probabil­

ity (in percentage) of selecting the correct model structure for the simple NARrvIAX

model (~fodel 4.15), when B \Vas fixed and 1r varied, i.e., lV varied. This figure illus-
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Figure 4.7: Simple NARrvIAX model (Madel 4.15): Rate of model selection as a
function of data length 2V and bootstrap replications B = 100. Gaussian, white, zero­
mean noise added to output. Abscissa: 7r = p2/1V = 1,0.6, DA, 0.1 (i.e., increasing
~). Ordinate: Percent selection.

trates: (1) rate of selecting the '~exact moder', frequency at which our BSD algorithm

computed a model which contained only true system terms, (2) rate of selecting an

"oyer-modeled" system. frequency at which a model \Vith aIl its true system terms

plus spurious parameters was selected and (3) rate of selecting an "under-modeled"

system, frequency at which a model without aIl its true system terms was selected.

An under-modeled system may contain spurious terms as weIl.

The results in Figure 4. ï show that when Ir > 0.1 the likelihood of computing

the exact model structure was low, 10-40%. However, when 7T = p2/N -t 0.1 our

BSD algorithm computed the correct model structure with high accuracy, > 95%,

and had a 0% selection frequency for under-modeling. For the BSD procedure, the

rate of selecting the exact model and under-modeled system dominated the structure

computation procedure while an over-modeled system was computed at a maximum

rate of 5%.
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4.7.3.1.2 Highly Over-Parameterized NARMAX Model Figure 4.8 shows

the empirical probability of selecting the correct model structure for the over-parameterized

NAR~I,'IAX model (~1odel 4.16), when B was fi-xed and 1r varied. The results in Fig-
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1::[ : : ~ l~0

1 0.6 0.4 0.1
1t

Figure ·-1.8: Complex NAR~1AX model (~fodel 4.16): Rate of model selection as a
function of data length lV and bootstrap replications B = 100. Gaussian, white, zero­
mean noise added to output. Abscissa: ïr = p2 IN = 1,0.6,0.4,0.1 (i.e., increasing
;';). Ordinate: Percent selection.

ure 4.8 show that the bootstrap failed to estimate the true underlying structure

for this third-order nonlinear model when Ji > 0.1, with an "exact moder' selec­

tion rate of 0-10%. However, our bootstrap algorithm gave consistent results when

1i = p2(V -t 0.1 ~ O. For this highly over-parameterized model, the results, again,

show that the rate of selecting the exact model and under-modeled system dominated

the structure computation procedure while an over-modeled system \Vas computed at

a rate of 0%.

4.7.3.2 Analysis of Increasing B for Fixed 7r

Next, we appraised how many bootstrap replications, B, are necessary to give accurate

estimates of structure and whether increasing B when p2 IN -++- 0 could compensate

for small lV. Here, 1r = 0.5,0.3,0.2,0.098 and B = 40,80,120,160,200 for each 1r.
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For computationaI reasons only l\lodel 4.15 was studied.

4.7.3.3 Simple NARMAX Model

Figure 4.9 shows the empirical probability of selecting the correct model structure

for the simple :\"ARMAX system when 1r was kept constant and B varied. These

results illustrate that~ in general, increasing the number of bootstrap replications

had little effect on the overaIl probability of selecting the true system structure~ i.e.~

when Ti = p2 /1'1 ~ o. However~ when ;r = p2/1V --t 0.5 and 0.2 ~ 0 increasing B did

impro\"e the probability of selecting the optimal structure. Hence. if the condition il =

p2 /1V ~~ 0 is satisfied. increasing B may be successful in improving the probability

of true selection.

4.7.4 Bandlimited Input and Bandlimited Noise

Lastly. we evaluated the performance of our BSD aIgorithm in the presence of ban­

dlimited noise (Gaussian~ white, zero-mean sequence~ low-pass filtered with an eighth­

order 500 Hz Butterworth filter). \iVe bandlimited the noise process ta assess the

behavior of our algorithm with low frequency noise. The identification paradigm was

the same as described in §4. ï except 20 ~1onte-Carlo simulations \Vere used~ B = 100

bootstrap replications were generated to assess the distribution of each parameter,

Ti = 0.1 ,vas used ta determine the data length for parameter estimation and the

disturbance had a SNR of 0 dB.

4.7.4.1 Simple NARMAX Model

Figure 4.10 shows the results for this simple NARMAX model (Model 4.15). The

t-test had a false negative rate of 100% for the parameter associated with the squared

input term while stepwise regression had a 100% false negative rate for "aIl" true

parameters except the squared input term. In contrast, our BSD procedure selected

true parameters with high accuracy. Stepwise regression had a false positive rate of

0%. The BSD technique had a false positive rate of 5% for an input cross-terrn and
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Figure 4.10: Error rate of a simple NAR!vfAX model (Madel 4.15) using the t­
test! BSD and stepwise regression in the presence of bandlimited output disturbance
with 0 dB SNR. Abscissa: True/spurious parameter number. Ordinate: Percent
truefspurious parameter selection.

35% for the D.C. term! however! the t-test selected more spurious terms and at a

greater rate. In the presence of bandlimited noise! the t-test and stepwise regression

both failed ta select the correct structure for this simple NAR1vfAX model while our

BSD method selected the correct structure with high accuracy.

4.7.4.2 Highly Over-Parameterized Model

Figure 4.11 shows the results of our study for the third-order nonlinear system (~lodei

4.16). Bath the t-test and stepwise regression had a high rate of rejecting true terms

(10-ï.5%) while the BSD method had a maximum rate of 10% for rejecting true

terms. The t-test had an average faise negative rate of 25%. Stepwise regression

had a rate of 0% for accepting spurious terms while the BSD method had an average

10% faise positive rate for several terms. For this highly over-parameterized third­

arder nonlinear model, in the presence of bandlimited output additive noise, al! three

methods, the t-test! stepwise regression and BSD method failed ta select the correct

structure.
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t-test, BSD and stepwise regression with 0 dB SNR of a bandlimited noise sequence.
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eter selection.

•
4.8 Simulated Biological Example

\Ve assessed our structure computation technique on a simulated model of the vestibule­

ocular reflex (VOR). This system was studied for t'Wo reasons: (1) as an example of

application of the BSD algorithm to a biological system and (2) the low system order

restricts data requirements for structure computation.

Figure 4.12 shows a Hammerstein structure model of the VOR. This model is

believed to represent VOR dynamics for normal human subjects [134, 143]. The first

Head
U(s)

Position Eye Ve
..\'" (s)

fl[u(n)] gTS

TS + 1

locity
Y(s)

Statlc
Nonlinearity Linear System

Figure 4.12: A Hammerstein structure model of VÜR.

•
block represents the sensor, horizontal semi-circular canal as a static nonlinearity.

This nonlinearity has been shawn ta be well represented as a third-order static non­

linearity [143]. The second block represents a combination of the central nervous

system and eye plant. These dynamics have been shown to be weIl represented as a
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• first-order dynamic system with parameters, T corresponding to time-constant, and

g to gain [129: 143].

The first-order dynamics of the central nenrous system and eye plant were con­

verted ta the discrete domain via the bilinear transform to give the following NARMA.X:

representation of this model:

y(n) 8oy(n - 1) + Pl[u(n) - u(n - 1)] + J32[u2(n) - u2 (n - 1)]

+ .B3[u3(n) - u3(n - 1)].

(4.18)

•

•

The coefficients ,Bi: i = 0, l, 2. 3 account for parameters of the continuous-time linear

system. nonlinearity and sampling rate.

This model is a theoretical representation of ··slow-phasen dynamics of VaR. A

realistic representation of VaR dynamics includes two modes of operation: (1) slow­

phase and (2) fast-phase dynamics. Issues concerning identification of multiple modes

of this system are discussed in Chapter 6.

4.8.1 Simulation Protocol

Input-output data for this model of slow-phase VOR was simulated in continuous­

time using Simulink and sampled at a rate of 8 Hz (T = 0.125 s). Parameter values

used in the simulation were typical values round in experiments (see Table 4.1).

Parameter Value
Co 6.45
Cl 3.94 x 10-1

C2 1.51 X 10-4

C3 -2.84 X 10-7

T 10 s
g -0.7
T 0.125 s

Table 4.1: VOR slow-phase parameter values. Coefficient values of static nonlinearity:
Co - De term. Cl - linear term, C2 - squared term C3 - cubic term. Dynamic system
parameters: T - time constant, 9 - dynamic gain and T - sampling interval.
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• A !\1onte-Carlo study of the NAR11AX structure describing slow-phase VOR dy­

namics \Vas performed to assess the applicability of the BSD algorithm for biological

systems. Ten :Monte-Carlo simulations were used in which each input-output realiza­

tion was unique and had a unique Gaussian, white~ zero-mean~ noise sequence added

to the outpUL \Vith 0 dB SNR. The system was excited using bandlimited inputs

(uniformly distributed~ white, zero-mean~ random process, low-pass filtered with an

eighth-order 0.5 Hz Butternrorth filter). For this study, the system order was assumed

to be known. The estimation set consisted of 1'1 = 12,250 data points (7T' = 0.1). The

system structure (VOR slow-phase dynamics) was computed using the t-test, stepwise

regression and our BSD algorithm, as outlined in §4.7.

4.8.2 Results

The result of structure computation for this model of slow-phase VOR is presented

in Figure 4.13. The t-test and BSD technique selected the true parameters \Vith high
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Figure 4.13: Bandlimited Input. Error rate for theoretical model of VOR slow-phase
using the t-test, BSD and stepwise regression in the presence of Gaussian, white,
zero-mean output additive noise sequence with 0 dB SNR. Abscissa: True/spurious
parameter number. Ordinate: Percent true/spurious paranleter selection.

accuracy while stepwise regression failed; stepwise regression had a false negative

rate of 100% for aIl but one term. However, stepwise regression had a rate of 0% for

125



•

•

•

accepting spurious terms while the t-test had a 10-30% false positive rate for severa!

terms. The BSD method had a false positive rate of 10% for only one term. Hence~

for this slow-phase model of VOR our BSD algorithm outperformed the t-test and

stepwise regression.

4.9 Discussion

4.9.1 Gaussian White Noise

For the Gaussian, white noise case, the t-test, stepwise regression and BSD methods

yielded similar results when the number of free parameters \Vas smal!. However, the

BSD technique performed better wben there were many candidate terms in the full

model. The t-test and stepwise regressioD techniques both fail in tbis case but for

different reasons. For the t-test, extraneous parameters may model the noise. This

often results in a biased estimate of the variance which may give models with incorrect

structure. Stepwise regression failed probably because it is sensitive ta the order in

which terms (regressors) are entered into or removed from the regression [133J. Miller

[106] recently stated that Efroymson's [49J stepwise regression is weIl documented to

stop at a local minimum hence not converge to a global minima.

For the highly over-parameterized modeL the BSD method gave better estimates

of parameter statistics than the regression technique. The regression method, using

the t-test to determine structure, did not give a correct model description likely

because initial estimates of the standard deviation were biased and, therefore, its

final estimate remained biased. Since the BSD method gave better initial estimates

of the standard deviation it was able to obtain a parsimonious model description and

accurate parameter statistics. However, the bootstrap method accepted two spurious

terms into the model (at a rate of 10%) since the number of bootstrap replications

was low. i.e .. 50 replications. If the number of replication are increased, estimates of

the parameter statistics should improve, thereby, yielding even better results.
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4.9.2 Convergence Analysis

Convergence analysis enlpirically demonstrates that a necessary condition for the

BSD to yield a model with correct structure is 7r = p2 /lV ~ 0 ~ 0.1. The results

indicate that when 7r ~ 0.1, increasing B may have little or no effect in increasing the

probability of computing a model with correct structure. However, we demonstrated

that when 7r is in the neighborhood of ïr = 0.5 - 0.2 it may be possible to "slightly'~

impro\'e the correct selection rate by increasing B. This study also suggests that when

the estimated structure gives a poor fit ta a validation set, i.e.~ indicating incorrect

structure, the system is likely ta be under-modeled. In this event the user has no

choice but ta increase the data length and start anew. If there is sorne evidence

ta demonstrate that the computed structure is over-modeled it may be possible ta

increase lV and continue to compute a new structure from the current mode!.

In addition this study shows, for sufficiently small ïr (ïr ~ 0.1), our BSD algo­

rithm, at worst, provides a model that is slightly over-parameterized. We consider

an over-parameterized model '"better" than an under-modeled model since it is not

possible (\Vith our approach) ta re-enter a parameter into the regression (model) once

it has been removed. An oyer-parameterized model which still contains its ~~true~'

parameters is clearly more useful than one which has dropped a true parameter.

Our results are given for poor SNR conditions (i.e., a dB SNR) therefore they

should be \Videly applicable under most experimental conditions. However~ it is im­

portant to emphasize that a suitable 7r and B may vary for different model structures

and signal-to-noise ratios. In addition, our results reflect a minimum suitable 7f value;

it is not a conservative value and, therefare, it may be advantageous to decrease 1r

by a factor of '"10 for a more conservative value (if there is sufficient recorded data

and/or the computing power is available). These results may not apply to all systems

as a ~4golden rule" and shauld only be used as a "rule-of-thumb" .
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4.9.3 Bandlimited Noise

Analysis of the t-test, stepwise regression and BSD technique in the presence of ban­

dlimited noise showed that all three methods failed to compute an accurate structure

for the highly over-parameterized model. The t-test and stepwise regression failed

for similar reasons. Bath rely on white assumptions for the noise process which are

violated in this case, gjving models with incorrect structure. In general, the BSD

does not rely on white assumptions. Therefore~ it may be possible to use robust

estimation techniques in combination with our BSD method to yield better results

under non-white assumptions [35, 122, 147J. Even without using robust estinlation

techniques, our BSD method gave results superior to those of the t-test and stepwise

regression: it had a faIse negative and faise positive rate that was significantly lower.

4.9.4 Biological Example

\Vith respect to the slow-phase VOR model our BSD method had a higher probability

of converging to the true structure than the t-test or stepwise regression. However,

clinical tests of VOR are often performed with non-ideal harmonie inputs. Certainly

performance will degrade for less-than optimal inputs. But in this case, the nature of

the response provides another dimension which can be used ta still allow identification

(see Chapter 6).

4.9.5 Computational Expense

The computational expense of structure detection using the BSD method without

implementing our updating scheme is significantIy greater than for the ;~modified"

version with updating. For the modei with second-order nonlinearity, we observed a

four-foid reduction in computation using our updating scheme. Computational sav­

ings are realized because rebuilding the entire regressor matrLx is not necessary and

hence re-orthogonolization of aH of 'If (Q and R) is wasteful. The Householder algo­

rithm is computationally cheaper ta solve least-squares problems. This is only true

if the formation of Q is not required. However, when updating is used Q is needed.
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• Therefore, implementing the Householder algorithm ta solve this least-squares proh­

lem is not suitable and the !vIGS algorithm is preferable.

4.9.6 Global Search Versus BSD

Since our BSD method is computationally intensive, it may seem that a global search,

where ever possible subset of the full model is fit, is more efficient. However. this is

not true.

Consider ~.Jodel 4.15 which contains 15 candidate terms (see Model 4.17). Since

only output additive noise \Vas considered in this chapter there are only 10 possible

terms (those not involving e) for which we need consider aIl possible combinations [86].

The noise model terms that will be added ta a chosen combination are determined br

the output y terms present in the combination [86]. For a model \Vith p = 10 possible

terms there are

• (:) p!
r!(p - r)!

1024

for r = 0,1,2, .. . ,p (4.19)

•

possible combinations ta try [86].

In §4.7.3 we demonstrated that for ii = p211\' -t~ 0.1 the number of bootstrap

replications needed for convergence of our BSD algorithm is B = 40. In addition.

the number of iterations needed for BSD to yield a parsimonious model description

is typically one (if 11 = p2 I1V -t~ 0.1).

For our BSD algorithm. say~ we allow for 10-20 iterations for convergence of the

"fuIr noise mode!. For the global search method, let us not consider the number

of iterations needed for convergence of the noise mode!. In addition, assume that

both techniques, global search and BSD, implement the same estimation technique.

Even with this optimistic and biased setting, the computational burden of our BSD

algorithm requires 2.56-1.28 times less computations than would a global search ap­

proach. Under these conditions, our BSD algorithm is computationaUy more efficient

than doing a global search. However, if our BSD algorithm requires, say, two iter-
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ations to converge and we allow for 20 iterations for the noise model our method

requires 1.56 times more computations than the global search. Hence~ depending on

the number of iterations required for BSD to converge it may not be as efficient as a

brute force global search.

4.9.7 Applicability of BSD to More Complicated Structures

In this chapter~ we demonstrated the performance of our BSD algorithm on only three

nonlinear systems. These systems were selected for study for the following reasons:

(1) all three models are described by only a few terms but the ratio of spurious terms

to true terms \Vas large and (2) most systems studied in practice contain at most a

second or third-order nonlinearity (or may be reformulated as such). For a comparable

number of terms in the full model (;§ 50), the systems studied in this chapter are

general enough to provide insight into the behavior of our algorithm when applied to

more complex systems.

Since the BSD algorithm performed weil when the model being tested contained

both a second and third-order nonlinearity, it suggests that our algorithm provides

good estirnates of parameter statistics leading to accurate estimates of model struc­

ture. ~Ioreover, as noted above, our algorithm "at worst" tends to provide a model

that is slightly over-parameterized, if the data record is sufficiently long.

However. BSD may not perform weIl even when the nonlinearity arder is low but

the lag order is large [86]. For example. a second arder NARNIAX model with a

ma..ximum input-output lag of 40 and assuming noise free measurements (Le., nu =

n y = 40, ne = 0, l = 2) will have in excess of 3,400 candidate terms [86]. Even \Vith

noise free data, parameter estimates for the full model could be entirely inaccurate

and numerically difficult. Consequently, the BSD algorithm may fail when the system

ta be identified requires large input or output lags [86]. These difficulties are partIy

due to over-parameterization of the full model. Over-parameterization results in

the residuals being '"under-dispersed" and, hence, they will no longer contain useful

information about the underlying system.

In many practical identification problems there is orten sorne a priori informa-
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tion available about the system such as the presence of large input or output lags.

If this knowledge is available to the user it may be possible to eliminate many of

the candidate terms before starting the structure detection procedure, thereby re­

ducing the problem to one that is of practical dimension and can be solved using

our BSD algorithm. For these reasons we expect the results presented in this chap­

ter to be a good representation for comparable structures and, therefore, we expect

good behavior of BSD when applied to various linear or nonlinear systems, that are

linear-in-the-parameters.

4.9.8 Combined Fast Orthogonal Search and BSD

One difficulty with Korenberg~s fast orthogonal search (FOS) [3, 4, 84, 85, 87] IS

the selection of a threshold value p (see §2.6.2.3 and Equation 2.63) for determining

significance of a candidate term in the full model. Nevertheless, it may be possible to

utilize Korenberg's FOS in combination with our BSD algorithm to provide accurate

reduction of NARwfAX models.

If an aggressive value for p (Le., small p) is selected, it may result in a parsimonious

model but one that does not contain all its true terms. However, if a conservative

value for p (Le., large p) is selected, it will likely give a reduced model that is still

o,"er-parameterized but retains its true terms. Therefore, selecting by a conservative

'"alue for p it may be possible to use a combined FOS-SSD approach to compute

structure. \Vith this approach FOS cao be used to initiallY reduce the full model

then apply our BSD algorithm to "fine tune" the model to gjve a parsimooious model

\Vith good predictive capability.

4.9.9 Summary of Findings

Simulation studies and convergence analysis showed the following.

1. In the presence of Gaussian, white noise, when the number of free parameters

\Vas small, the t-test~ stepwise regression and BSD methods yielded similar
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results. However, our BSD technique performed better when there were many

candidate terms in the full mode!.

2. In the presence of bandlimited noise~ results showed that aH three methods failed

to compute an accurate structure for a highly over-parameterized NAR!vIAX

model.

3. Empirical results demonstrated that a necessary condition for the BSD to yield

correct model structure is 'Ir = p2 / N -+ 0 ::::::; 0.1.

4. Simulations demonstrated that when 1T is in the neighborhood of 1T = 0.5 - 0.2 it

may be possible to improve the correct selection rate by increasing the number

of bootstrap replications, B.

5. Results showed that for 'Ti ::::::; 0.1, our BSD algorithm, at worst, provides a model

that is slightly over-parameterized.

6. Application of BSD to a theoretical model of slow-phase VOR was successful.

Î. Our updating scheme for the BSD algorithm reduces computational require­

ments significantly.

Using bootstrap, it is possible to compute better estimates of parameter statistics

because it requires few assumptions about the error distribution, resulting in more

accurate estinlates of the model structure. Therefore, the BSD algorithm appears

advantageous as a tool for structure detection.

4.10 Conclusions

•

The results demonstrate that the BSD algorithm is a robust method for detecting

the structure of linear regression models and is resistant to noise. This method

provides accurate estimates of parameter statistics without relying on assumptions

made by traditional procedures and yields a parsimonious description of the system.

Convergence results provide an empirical measure for data requirements necessary to
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achieve a true model structure. Hence, the BSD method can be used ta detect the

structure of complex nonlinear dynamic models.

The overall significance of these results has been ta demanstrate our BSD al­

gorithm provides consistent and accurate results, requires no a priori information

regarding the true system output or noise ta select a rejection ratio, and works when

other methods fail. The importance and relevance of this technique was demonstrated

for physiological systems analysis by applying this technique to a theoretical model

of slow-phase VaR.

133



•

•

•

Chapter 5

Bootstrap Model Order Selection

5.1 Overview

Identification of NARNIAX models requires determining both the model order and

parameter values. Good parameter estimation methods exist if the model order is

known, however, model order selection remains a problem.

In this chapter, we develop a bootstrap model order selection (BMOS) algorithm.

The bootstrap method is a numerical procedure for estimating parameter statistics

that requires few assumptions: the errors must be independent and identically dis­

tributed (i.i.d.) \Vith zero mean. The expected error in cross-validation is an appro­

priate cost function to estimate the "optimal" model order since it does not depend

on the estimation set. However, statistical errors may lead to inconsistent or inaccu­

rate estimates of model order for particular realizations. As a means to resolve these

inconsistencies, in this study, we examine the hypothesis that the bootstrap method

yields an accurate estimate of the "true7
' prediction error in cross-validation.

Performance of our BNIOS algorithm \Vas evaluated by estimating the order of a

NARMAX model with a few spurious terms and highest lag order on an even-order

nonlinear term. In addition, we show applicability of this technique to biological

systems by estimating the order of a theoretical modeI of slow-phase VOR. Results

demonstrate that the BMOS algorithm is a robust method for selecting the order of

NARMAX models with a high probability of success.
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• 5.2 Introduction

5.2.1 Model Order

The system order for NARrvIAX models is defined in Equation 2.21 as

(5.1)

where nu is the ma..ximum lag on the input, n y the maximum lag on the output, ne

the ma..ximum lag on the error and l is the ma..ximum nonlinearity order. If the system

is assumed to haye output additive noise. Equation 2.21 can be reduced to a 3-tuple

as

(5.2)

•

•

Through out this chapter, we assume that the system only contains output additive

noise corrupting its output.

Parameter estimation for NARrvIAX models [18, 22, 24, 37, 61] is straight-forward

once the model order is known. The central problem in NAR~L.\X identification is

that of selecting the correct model order. Formally the problem is: given the measured

output z(n), and the input u(n), where n = l, ... ,N; estimate the parameters 0 =
[nUl n y, i] from nu == 0, ... 1nUmax ; ny = 1, . ", nymax and l = l,"', [max.

5.2.2 Existing Methods

Several methods for model order selection have been proposed including AIC (Akaike's

Information Criterion) [5), ~1inimum Description Length (~lDL) [128] and the False

Nearest Neighbors (FNN) algorithm [82]. HO\"'ever, aIl of these can fail in nonlinear

system identification, for various reasons (see §2.6.1).

Both AIC and 1'IDL are widely used in systems analysis to estimate model arder.

A well known problem \Vith AIC is that it is inconsistent since its variance does

not tend ta zero for larger sample sizes. This inconsistency is a result of AIC not

penalizing the addition of extra parameters heavily enough, Le., the penalty term does
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not decrease fast enough with lV to balance the tirst term in Akaike's criterion [72]

(see Equation 2.46). The NIDL model order estimator proposed by Rissanen [128] was

designed to overcome this problem. Ale is an asymptotic measure since it invoives

taking the number of samples N to infinity; rvIDL does not make this assumption.

The difference between rvIDL and Ale is the penalty term (compare Equations 2.46 &

2.50). The penalty term in the ~fDL definition is larger than that of AIC by a factor

of approximately log JV, which causes a much steeper minimum. In practice, the order

estimated by NIDL is normally lower and provides a more consistent estimate for the

optimal model arder.

Theoretically these model arder estimators are a function of residual noise vari­

ance. The noise estimate, however, is related ta the method that was used to obtain

model parameters. The estimated noise variance is a function of output noise variance

and parameter variance [31]. Therefore, in practice, the methods used for model order

selection and parameter estimation as well as the training sampie size are crucial.

As noted in Chapter 2, we conclude that these methods fail for order estimation

of nonlinear systems for the following reasons.

1. The number of possible terms for a given order can be very large (see Equation

2.22). Due to over-parameterization residual estimate may be under-dispersed,

Le. biased.

2. 80th approaches rely on accurate estimates of â2
, i.e., accurate estimates of

residuals, which may not the case for incorrect model orders.

3. 80th approaches rely on optimal parameter estimates which depend on the data

size jV. For finite data lengths these methods may give inconsistent estimates.

4. Inadequacy of the penalty term in each method is known to give inconsistent

estimates of arder for linear systems.

Recently, Kennel et al. [82] developed the faise nearest neighbors (FNN) algorithm

specifically to determine model order for nonlinear systems. This method uses a ratio

test to determine whether neighbors, in the regressor space, are "true" or "faIse",
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I.e., whether the neighbors have future outputs that are "far apart". If the ratio

of the distance between two future outputs points, that are '"nearest neighbors" ~ is

~·large" then the neighbors are considered to be false. The FNN technique is limited

to estimating the dynamic order of NAR..X models, is sensitive to noise and requires

selecting a threshold. The selection of this threshold level requires a priori knowledge

about the true errors and system output, which are seldom available.

5.2.3 Proposed Approach

:\ model having the correct order will minimize the expected value of the predic­

tion errors [135]. However, statistical errors may lead to inconsistent or inaccurate

estimates of model order for particular realizations [56]. One approach to obtain a

consistent estimate of model order would be to acquire extensive data sets to mio­

imize expected error. An alternative would be to improve the estimate of expected

error in prediction with limited data because in many practical applications it is not

possible to collect extensive data sets.

The bootstrap was shown to be a good estimator of parameter statistics, simple to

use, and to require few assumptions (see Chapter 4). Consequently, we hypothesize

that the bootstrap might also be usefui for obtaining a consistent estimate of model

order.

5.3 Model Order Selection

5.3.1 The Linear Model

Consider the linear regression model based on model arder 0

Z=Wo8o +e (5.3)

•
where Z is a ~V x 1 vector of measured outputs, '110 is a N x p (p « N) matrix of

regressors with full rank (Le., nonsingular), Bo is a p x 1 vector of parameters and e

is a N x 1 vector of an i.i.d. noise sequence with zero-mean and hamoskedastic. Note
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• that the number of parameters, p, is related to 0 via Equation 2.22 as

l

P - L Pi; where l is nonlinearity order
i:: l

(5.4)

Pi = Pi-l (ny + nu + ne + i - 1)
~......;...--=--------....;.., Po = 1.

Let the nlodel be fitted using the least-squares estimator in Equation 2.78 as

(5.5)

The predicted outputs are defined as

•
and the prediction errors (error in fit) are defined in Equation 2.76 as

i = Z - Z.

'li is defined as a partitioned regressor matrh: for a given order 0

(5.6)

(5.7)

(5.8)

where 'li zu is a function of z and U only, 'liZUf represents aIl the cross products involving

i.~ and 'li i is a polynomial function of the prediction errors only.

Let the measured data be represented as

(5.9)

•

where Ze is the estimation set of length Ne and Zv validation or future set of length

138



• 5.3.2 Average Loss

The efficiency of a model with order 0 can be measured by the mean squared error

or average loss [135],

L r (0) = _1 ~(_ _ /T {})2 = 'IZe - Ze,0112
1\~ N L "'e,n 'lfJe,n,o 0 N

• e n=l e

(5.10)

•

\vhere II-II is the Euclidean nOrIn. After measuring the data, the objective is ta select

a model 0 E V sa that LN~ (0) will be as srnall as possible. 1) is a collection of sorne

subset of nu = {O~ - _. ~ nuocJ; n y = {l,···, nyoc } and l = {l,···, loo}~ i.e., subset of

O'X;. The largest possible 1) is the one that minimizes L Ne (0).

Let Zv be a lVv x 1 vector of future responses at wv,o and assume that Zv is

independent of Ze. The average conditional expected loss in prediction is [135]

(5.11)

where a 2 is the noise variance. Therefore, selecting a model \Vith the smallest LNlI (0)

aver aIl 0 E 1) is equivalent ta selecting a model \Vith the best prediction ability over

aIl 0 E V.

Let

(5.12)

and

(5.13 )

Completing the square in Equation 5.11, taking the expected value and substituting

the definitions in Equations 5.7, 5.12 & 5.13 gives

•
(5.14)
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• vVhen model 0 is correct E[Z 1 \lIo ] = \I10 0o = PoZ, ~Nv (0) = 0 and

(5.15)

Let 0 0 correspond ta the model arder \Vith the smaIlest size, i.e., Boo contains aIl

. components related to the measured output, Z. Therefore [135],

lim inf ÂNv(O) > 0 for any incorrect model order 0,
Nv-oc

(5.16)

(where "inf' is the infimum functional). Nlodel order 0 0 is optimal in the sense that

it minimizes LNI.'(O) over 0 E V for sufficiently large Nu, Le.,

(5.17)

•
The optimal 0 0 must be estimated since LNv(O) involves the unknown parameters O.

Let Ô be the estimate of 0 0 based on sorne model order selection scheme. Therefore,

a model order selection procedure is said to he consistent if

. lim P {Ô = Oo} = l.
NII-too

5.3.3 Effects of Cross-Validation without Bootstrap

(5.18)

One advantage of cross-validation is that, in the limit, the correct model order mini­

mizes the error in prediction. However, in practical situations fini te data lengths may

Iead to statistical errors giving inconsistent results. To evaluate the effect of finite

data lengths and various levels of noise in cross-validation we simulated the simple

NARNIAX model:

y(n) = O.4[u(n - 1) + u2(n - I)J + 0.8y(n - 1). (5.19)

•
This system has order 0 = [nu = 1, ny = 1, l = 2].

For this study, a 200 Hz bandlimited input was used (uniformly distributed, white,

zero-mean, random sequence, low-pass filtered \Vith an eighth-order 200 Hz But-
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terworth filter). With a 200 Hz bandlimited input the nonlinear input term (i.e..

u2 (n - 1)) generates an internaI signal that is at least 400 Hz (plus higher-order har­

monies). Ta avoid aliasing~ we assumed a sampling rate of T = 0.0005 s (2000 Hz);

5 times greater than the internaI 400 Hz signal. The search space considered for the

optimal modei order was from a minimum order of Omin = [nu = 0, ny = 1, l = 1] to

a maximum of Omax = [nu = 2~ ny = 2, l = 3}.

This modei \Vas selected because it is difficuit to determine the maximum Iag-order

for a nonlinear system which contains its maximum lag on an even-arder nonlinear­

ity~ i.e.. u2(n - 1), and because we studied this system in Chapter 4 (see Equation

4.15). Bussgang's theorem states, for Gaussian input data, the cross-correlation of

any squared input-output terms will be zero [12, 13}. Therefore. the lag associated

with even-order nonlinear terms cannat be determined using first-order correlations;

hence "higher-order statistics" must be used [12, 154]. In generaL estimating model

arder for infinite impulse response (UR) systems, such as the NAR~L-\X mode!. even

using higher-order correlations, aiso fails because the system "theoretically" could

haye infinite memory (see Chapter 2 for an example).

5.3.3.1 Effects of Data Length

\~/e ac.;sessed the effects of data length using Monte-Carlo simulations. Twenty realiza­

tions were generated in which each input-output trial was unique, and had a unique,

Gaussian. \vhite. zero-mean, noise sequence added ta the output, with 20 dB SNR.

The data length \Vas increased from iVe = Nv = 1,000 to 6, 000 data points. The

model that gave the minimum error in prediction in the entire search space (global

minimum) wac;; selected as the ··optima1" or "true" arder.

The results of this study are shawn in Figure 5.1. The plot shows our findings in

percentage: the rate of correct modei selection versus data length. The results show

that as the data length was increased the rate of correct selection improved. These

results are as expected from theory.
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Figure 5.1: Cross-validation selection rate versus data length for a simple NAR~1A...X
mode!. Abscissa: Data length: iVe = ...'Vv. Ordinate: % correct selection.

•
5.3.3.2 Effects of Noise

~ext we assessed the effect of noise intensity on estimating the expected error in

prediction. Here~ the simulation and model arder selection protocol ,~tas the same as

described in the previous study except the data length was kept constant at iVe =

~Vt' = 5.000 points while the SNR was decreased from 15 to 0 dB.

The results of this study are presented in Figure 5.2 as a percentage of correct se­

lection yersus SNR. The results of this study illustrate that as the SNR was decreased

the rate of true selection also decreased. Again, these results are as expected from

theory. Consequently~ when cross-validation alone is used ta estimate model order

the probability of true selection may be low, i.e.~ P{Ô =-= Go} f= 1.

5.3.4 Error in Prediction

•
Efron [47~ 48] derived a bootstrap estimator for the mean of the prediction error

rNv(O). Shao [135~ 136] showed that this estimator is biased and, therefore, gives

inconsistent estimates. Shao [135] proposed a simple, bias-corrected and consistent
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Figure 5.2: Cross-validation selection rate versus SNR for a simple NARMAX model.
Abscissa: SNR. Ordinate: % correct selection. (Note that the abscissa is shown in
decreasing SNR which corresponds ta increasing noise intensity.)

bootstrap estimator for the prediction error based on Efron's [47] original work:

IIZ - 'II . fr- 11
2

t, (Ô) = E v v,a O,m
''''1:.m • l\T":v v

(5.20)

where E. denotes expectation operation with respect to bootstrap sampling and 86,m

is the p x 1 bootstrap analog of estimated parameters, {Jo' based on m i.i.d. pairs

(~';.n' ':;.n) generated from the empirical distribution putting mass .'V;1 on ('l/'c,n, ':e,n),

n = 1. ... ~ ..:Ve : i.e..

(

m ) -1 m
()~. . • f .T '..- = 'li.-"'l!)- 'l/J-zO.m L e,O,n e,a,n L e,O,n e,n'

n=1 n=1

(5.21)

[Nt..m(Ô) will be minimized when the optimal model order is achieved, giving a unique

minimum [135].

Shao [135] states that, to achieve consistency,

• lim P{LmN (00) = min LmN (Ô)} = L
Nv~oc v DE!) 1: . (5.22)
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using this bootstrap estimator values of Nv and m need to be selected such that• lim m = 00 and lim m/Nv = O.
N'I! .....oc Nu-+oo

(5.23)

•

•

This criterion increases variability among bootstrap observations and achieves con­

sistency [135]. A proof of this result can be round in [135]. Our results presented in

Chapter 4 provide a guideline for determining lVe , i.e., 1r = p2 /Ne ~ 0 ~ 0.1. There­

fore, depending on the number of data points available for validation m must be

selected to satisfy lirnNt.-+oo m/1Vv = O. Based on our results in Chapter 4 we selected

m/lv~v = 0.2. Specifically, a value of 0.2 was selected to ensure that (1) conditions in

Equation 5.23 are satisfied and (2) to keep data requirements "reasonable" (both 1r

and m/1Vv effect data requirements).

5.3.5 Model Order Selection Using Bootstrap

Application of the bootstrap method to model order selection involves two steps: (1)

computing a series of mean-squared error (~ISE) replications of prediction, in which

"bootstrap data" is used to compute new ~'bootstrap wISE estimates", and (2) com­

puting the asymptotic expectation of NISE estimates to determine a global minimum.

Bootstrap data is formed by first assuming a model order and then estimating pa­

rameter values for the full model. Residuals for this model are calculated, resampled

with replacement. and then added to the predicted output to generate bootstrap

replications of the output [46, 48]. A number '"B" of bootstrap data sets are gener­

ated ta estimate B bootstrap: (1) parameter replications based on m i.i.d. pairs of

the estimation set and (2) NISE replications based on Nv pairs of the validation set.

The mean value of B bootstrap tv'lSE replications is the bootstrap estimate of the

asymptotic effect of MSE.

The global minimum is determined by storing the bootstrap estimate of the asymp­

totic expected lVISE for each order in an nu x ny x l multi-dimensional array. The

model arder is estimated as the index value of the global minimum of this array.
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5.3.5.1 BMOS Aigorithm

To estimate nlodel order, the BIvIOS procedure requires the selection of a maximum

arder. 0 = [nu == nUmaz ' ny == nymaz ' l == lmax], and appropriate values of J.Ve , .'Vv and

m; the length of estimation, validation and bootstrap data sets, respectively. This

leads ta the following algorithm to detect model order in NARivIA..X models.

2. Compute an initial estimate of the unknown parameter vector and estimate the

residuals for the full model based on Ne pairs of the estimation set.

3. Generate B bootstrap data sets and compute the bootstrap parameter replica­

tians (for the full model) based on m pairs of the estimation set.

4. Compute B bootstrap estimates of ~1SEb' b = l, ... , B based on l'Vu pairs of the

\'alidation and the B parameter replications from step 3.

0. Compute the mean value of ~1SEb replications as E[~1SEb] == ~ ~~=llvISEb'

6. Store E[!vfSEbJ in a multi-dimensional array, t(Ô), at the (nUi th, n Yj th, lkth)

position.

1. If i < nUmax i == i + 1. else reset i = 0, where i is the current input lag.

8. If j < nymax j == j + L else reset j = l, where j is the current output lag.

9. If k < [max k = k + 1, else reset k = l, where k is the current nonlinearity arder.

10. If i = nUmax ' j = nymax and k = lmax stop, else go ta step 2.

11. [~vISE~in' ô]= min [t(Ô)] where Ô is the index of the minimum value, MSE~in'
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5.4 Simulations

The effectiveness of the B1:105 algorithm was assessed using Monte-Carlo simulations

of the nonlinear model studied in §5.3.3 and Chapter 4:

y(n) = O.4[u(n - 1) + u2(n - 1)] + 0.8y(n - 1).

Again~ this system has order 0 = [nu = 1~ ny = 1~ l = 2}.

Fifty ~lonte-Carlo simulations were generated in which each input-output real­

ization was unique. and had a unique Gaussian, white, zero-mean noise sequence

added to each output realization~ with 5 dB SNR. vVe assumed a sampling rate of

T = 0.0005 sand each input had the same characteristics as discussed in §5.3.3. For

identification~ an estimation data length of lVe = 2,300 points was used. After an ini­

tial estimate of the system parameters was computed, B = 200 bootstrap replications

were generated~ with m = 400 points from the estimation data set and l'Iv = 2,000

points from the validation data set (see Equation 5.23), ta assess the distribution

of the expected value of the cross-validation cost function. To estimate the optimal

model arder. we searched from a minimum arder of Ornin = [nu = O~ ny = 1, l = 1] ta

a ma..ximum of Ornax = [nu = 2, ny = 2, l = 3]. The model that gave the minimum

error in prediction in the entire search space (global minimum) was selected as the

"optimal" or ..true~' order. \Ve also compared the results of this bootstrap estimator

with a cross-validation estimator without bootstrap. For the cross-validation estima­

tor without bootstrap the search space and order selection criteria was the same as

for the bootstrap estimator.

5.4.1 Simple NARMAX Model

"'·e studied the simple system shawn in §5.3.3 since it has a small number of candidate

terms and the maximum lag is associated with an even-order term.

The results of a typical trial for this model is shown in Table 5.1. The result

shows that the minimum of t(â) corresponds to Ô = [nu = 1, ny = 1, l = 2]. Note

particularly that the estimated mean-square error increases for model orders above
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ny
l nu 1 2 3

0 0.0749 0.139 0.0704
1 1 0.451 0.329 0.241

2 0.236 0.229 0.184

3 0.213 0.171 0.179

0 0.6806 1.1642 2.2766

2 1 0.0249 0.0344 0.0431

2 0.0278 0.0384 0.0431

3 0.0308 0.0425 0.0450

a 5.824 8.682 13.146

3 1 0.135 0.189 0.254

2 0.122 0.191 0.256

3 0.182 0.201 0.262

Table 5.1: !vISE result of a typical trial for a simple NARMAX model \Vith bootstrap­
ping. First column: nonlinearity order, l. Second column: input lag, nu. First raw:
output lag~ ny. Optimalorder (minimum NISE) in boldo Result divided by 1000.

nu = L ny = 1. l = 2.

To assess the accuracy of this technique for estimating model order, the empirical

probability of selecting a particular model arder \Vas computed for this example with

and without bootstrap. The results for 50 independent runs (in percentage)~ are

gi"en in Table 5.2. The results show that when cross-validation was used without

bootstrap the empirical probability of selecting the true model arder was low, with

a true selection rate of only 52%. Ho\vever, when bootstrap was used in conjunction

with cross-\'alidation (our B!vIOS algorithm) the rate of selecting the model arder was

high. with a success rate of 96%.

5.5 Simulated Biological Example

5.5.1 VOR Model

~ext. we examined the performance of the BMOS technique with a NAR1-1AX model

of VOR slow-phase. Ocular responses consist of interlaced segments classified as
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Without With
Bootstrap Bootstrap

ny ny
l nu 1 2 3 1 2 3

0 0 0 0 0 0 0
l 1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

0 0 0 0 0 0 0
2 1 52 4 2 96 2 0

2 16 8 0 2 0 0
3 2 0 2 0 0 0

0 0 0 0 0 0 0
3 1 0 0 0 0 0 0

2 6 0 0 0 0 0

3 8 0 0 0 0 0

Table 5.2: ~Ionte-Car1o simulation results for simple NAR~IAX model. Left: Em­
pirical probability (percentage) without bootstrapping. Right: Empirical probability
(percentage) with bootstrapping, i.e., B~vIOS algorithm. Optimal arder (maximum
probability) in boldo
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• "slow~~ or ;'fast". according to their average speed characteristics, 50 a time record

has a sawtooth-like pattern called ocular nystagmus [57]. This sawtooth-like pattern

is a consequence of the VOR switching between two different modes of operation. As

stated in Chapter 4~ issues concerning identification of multiple modes of this system

are discussed in Chapter 6. Here7 we focus on a theoretical model of slow-phase VOR

shawn in Figure 5.3.

Linear System
Statlc Nonhneanty

E(s)

U(s) X(s) grs Y(s)

L
Z(s)

auJ(n) + bu2 (n) + cu(n) + d
TS + 1

T

Figure 5.3: Global model structure of slow-phase component for the VOR system.

The slow-phase component is described as (see §4.8) [91]

•
y(n) - ,8oy(n - 1) + ,Bt[u(n) - u(n - 1)] + ~2[u2(n) - u2(n - 1)]

+ ,83 [u 3(n) - u3 (n - 1)]

(5.24)

This physiological system was studied since it exhibits rich dynamic behavior and has

a low system order (0 = [nu = l, ny = 17 l = 3]L hence few candidate terms. Note

that this is the same VaR model studied in §4.8.

5.5.2 Simulation Protocol and Results

•

This VaR model was simulated in continuous-time using Simulink and sampled at a

rate of 200 Hz (T = 0.005 s). The pararneters used in the simulation \Vere the same

as those given in Table 4.1 (except the sarnpling rate, T).

The performance of the BMOS algorithm, as applied to the VOR model, \Vas as­

sessed using ~Ionte-Carlo simulations with bandlimited inputs (uniformly distributed,

white, zero-mean, random sequence, low-pass filtered with an eighth-order 10 Hz

Bessel filter). Fifty Monte-Carlo simulations \Vere generated in which each input­

output realization \Vas unique, and had a unique Gaussian, white, zero-mean, noise
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sequence added to the output, with 5 dB SNR. For identification, an estimation data

length of .Ne = 12,300 points was used. An initial estimate of the system parameters

was computed~ and B = 200 bootstrap replications were generated, with m = 2.400

points from the estimation data set and lVv = 12,000 points from the validation data

set (see Equation 5.23), to assess the distribution offNv,m(â). The optimal order was

computed from a minimum order of Omin = [nu = 0, ny = l, l = 1] to a maximunl of

Omax = [nu = 2, ny = 2, l = 4].

The result of a representative experiment using bootstrap techniques, is presented

in Table 5.3. The result shows that optimal model order is at the global minimum

ny
l nu 1 2

0 1.76 1.68
1 1 1.25 1.25

2 1.23 1.23

0 1.56 1.54
2 1 1.00 0.999

2 1.01 1.02

0 1.45 1.46

3 1 0.801 0.839
2 0.834 0.838

0 1.47 1.43
4 1 0.834 0.840

2 0.839 0.843

Table 5.3: ).;ISE result of a typical trial for the slow-phase component of the VOR
system with bootstrapping. First column: nonlinearity order, l. Second column:
input lag, nu. First row: output lag, ny. Optimal order (minimum ~ISE) in boldo
Result divided by 1000.

(shown in bold): Ô = [nu = l, ny = l, l = 3].

To assess the accuracy of this technique for estimating model order the empirical

probability of selecting a particular model arder (in percentage), with and without

bootstrapping, was computed (Table 5.4). The result shows that the B~IOS tech­

nique selected the correct model order with a 90% success rate. However, without

bootstrapping the rate of success was 42%.
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Without With
Bootstrap Bootstrap

n y ny

l nu 1 2 1 2

0 0 0 0 0
1 1 0 0 0 0

2 0 0 0 0

0 0 0 0 0
2 1 0 0 0 0

2 0 0 0 0

0 0 0 0 0
3 1 42 4 ~O 2

2 24 12 2 0

0 2 0 0 0
4 1 14 0 2 0

2 0 2 0 4

Table 5.4: ~Ionte-Carlo simulation results for the slow-phase component of the VOR
system. Left: Empirical probability (percentage) without bootstrapping. Right: Em­
pirical probability (percentage) \Vith bootstrapping~ i.e., BMOS algorithm. Optimal
order (maximum probability) in boldo
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5.6 Discussion

5.6.1 Simulation Studies

For the simple nonlinear model, a cross-validation approach without bootstrap failed

to give consistent results for true arder selection since it requires asymptotic proper­

ties to be invoked, and it is, therefore, limited by finite record lengths. However, our

B~.fOS technique consistently selected the correct model order. \Vith respect to the

slow-phase VOR model, the BivIOS method again had a higher probability of con­

vergence ta the true model arder than cross-validation without bootstrap. Clearly,

our combined cross-validation/bootstrap algorithm (BrvIOS) was superior to arder

selection via cross-validation alone.

5.6.2 Optimal m

In this study, we did not perform a convergence analysis to determine an "optimar'

choice of bootstrap resampling size, m. An optimal m may depend on model pa­

rameters, noise level/properties and model complexity. Therefore, it is difficult or

impossible to determine an optimal m. Instead we heuristically found that as long as

the criterion iT =p2/IV -+ 0 ~ 0.1 (see Chapter 4) is not violated a choice of m in the

neighborhood of m ~ 0.2 may be sufficient to achieve consistency for the bootstrap

estimator E[rNl.(Ô)]. In this chapter, we again emphasize that a suitable 1r, m and B

may vary for different model structures, perturbations and signal-to-noise ratios. It

may be prudent to decrease 1r and m by a factor of ",-,10 for more conservative values,

if sufficient data records and/or computing power is availabie. These recommenda­

tions may not apply to aIl systems as a "golden rule" and, therefore, should only be

used as a "rule-of-thumb".

5.6.3 Computational Requirements

Our BivlOS algorithm requires long data records and considerable computational

effort. The computational expense is a result of the data requirement and because B
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bootstrap estimates of MSE (l\tISEb, b = 1, ... ,B) are required for each point in the

search space to compute an asymptotic bootstrap MSE (E[MSEb]). Consequently,

our BrvIOS algorithm may not be a practical method for order selection for many

applications where the data length is limited and a powerful computer is not available

or where the user cannot (will not) wait for this algorithm to provide an estimate.

However, in the future we expect that computational expense will not be "much" of

a limiting factor due ta the availability of cheaper and more powerful computers.

5.6.4 Applicability of BMOS to More Complicated Struc­

tures

In this chapter, we demonstrated the performance of our BlVIOS algorithm on only

t,vo nonlinear systems. These models were selected for study since they are difficult

to identify~ for the following reasons: (1) the simple nonlinear model has a ma..ximum

lag associated with an even-order nonlinear term and (2) both models are described

by only a few terms but, for many system orders, the ratio of spurious terms to true

terms may be large.

Since the BNIOS algorithm does not rely on correlation techniques it provides

an unambiguous estirnate of model order and it does not suffer from the effects de­

scribed by Bussgang's Theorem (see §2.6.1.1 & §5.3.3). Results from order selection

of the second-order nonlinear system (l = 2) demonstrated that our BivIOS algorithm

estimated the lag associated with an even-order nonlinear term with high accuracy.

In addition, the BrvIOS algorithm performed weIl when the model being tested was

highly over-parameterized. This suggests that the BlVIOS algorithm is not sensitive

to having "very accurate" parameter statistics to provide good estimates of model

order, as required by AIC and MDL (see §2.6.1.5-2.6.1.7 & §5.2.2). For these rea­

sons we expect the results presented in this chapter to be a good representation for

more complicated structures and, therefore, we expect good behavior of BMOS when

applied to different linear or nonlinear systems, that are linear-in-the-parameters.
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5.6.5 Future Work

Since we only studied the properties of this algorithm in the presence of Gaussian,

white, zero-mean output additive noise, further work is necessary to assess how this

method performs in the presence of bandIimited output additive noise and when ap­

plied to experimental data from biomedical engineering applications. In addition,

we did not compare the performance of our B:lvIOS algorithm against any popular

techniques such as Ale or rvlDL. Future work should include a study of this aJgo­

rithm's ability to select correct model arder, i.e., consistency, compared \Vith classic

approaches.

5.6.6 Summary of Findings

Simulation studies showed the following.

1. For the simple nonlinear model, a cross-validation approach without bootstrap

failed to give consistent results for true order selection.

2. For the simple nonlinear model, our BMOS technique consistently selected the

correct model order.

3. The B~II0S algorithm requires long data records and considerable computa­

tional effort.

4. Our BNIOS algorithm may not be a practical method for order selection for

many applications where the data length is limited and a powerful computer is

not available.

Using our BJ\10S algorithm, we have demonstrated that it is possible to compute

the order of a NARMAX mode!. The bootstrap computes an asymptotic estimate of

the error in cross-validation, resulting in accurate estimates of model order.
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5.7 Conclusions

The results demonstrate that the BMOS algorithm provided a robust method for

selecting the order of a (1) simple NAR~L;.\..X model and (2) an example VOR nlodel

based on slow-phase dynamics. Repeated triaIs illustrated that the BrvIOS algorithm

had a high probability of success. This method provides accurate estimates of model

statistics without relying on assumptions made by traditional procedures and yields

an unambiguous estimate of system order. Hence, the BMOS algorithm may be used

ta estimate the order of complex nonlinear dynamic models.

The overall significance of these results has been to demonstrate that our BMOS

algorithm provides consistent and accurate results. rvloreover, the importance and

relevance of this technique was demonstrated for bialogical systems analysis through

application of BNIOS for arder selection of a theoretical model of VOR slow-phase

dynamics.
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Chapter 6

Parameter Estimation of Hybrid

Systems

6.1 Overview

A "hybrid" or "multimode"system is one that can s,vitch between various modes of

operation. \Vhen a switch occurs from one mode ta another, an impulse or discontinu­

ity may result followed by a smooth evolution under the new regime. Characterizing

the switching behavior of these systems is not well understood. A consequence of

the hybrid nature of these systems is that data available for parameter estimation of

any sub-system may be inadequate. As such, identification or parameter estimation

of nlultimode systems remains an unresolved issue. In this chapter, we (1) show how

the NAR~lAX model structure can he used to characterize the impulsive-smooth be­

havior of these systems and (2) propose a modified extended least squares (MELS)

algorithm ta estimate the coefficients of such systems.

Although the derivation of the NARNIAX model is based on zero-initial-state

response, \Vith sorne extensions (see Chapter 2), the results can he carried over to

the nonzero-initial-state case. This makes the NARMAX model structure suitable

for modeling nonlinear multimode systems.

The responses of hybrid systems have a discontinuity at each switch time; these

will hias parameter estimates if they are not modeled. Therefore, we developed a mod-
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• ified extended least squares (~IELS) algorithm for parameter estimation of multimode

systems to address this bias problem. Existing parameter estimation algorithms can­

nat use data from all measured data segments because smoath continuous behaviar

is assumed. However, our aigorithm allows an the recorded data to be used, and, as

such~ enjoys the same asymptotic properties as standard Ieast-squares estimators.

vVe applied this aigorithm to a model of the vestibulo-ocular reflex (VOR) and

demonstrated that (1) the NARNIAX model structure is suited to modeling the dy­

namics of this nonlinear hybrid system, and (2) the ~fELS algorithm is a robust

method for estimating the coefficients of multimade systems.

6.2 Introduction

A multimode or hybrid system (Figure 6.1) is one that may switch, either by ex­

ternai or internaI causes, between a finite number of different modes of operation.

Consequently its response may have discontinuities at each mode switch [59] .
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Figure 6.1: General Hammerstein model structure for a M mode hybrid system with
output additive noise where U(s) is the input, Y(s) the true (Y(s) is the selected
} ~(s) driven by Xm(s), m = 1,2, ... ,M) system output, E(s) a Gaussian, white,
zero-mean, noise sequence and Z(8) the measured output.
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\Ve consider multimode systems in which the modes of operation are characterized

as finite-dimensional, nonlinear, time-invariant, difference equations since they may

include nonzero initial conditions. The assumptions we made for this system descrip­

tion are (1) the switch times are known for each sub-system, (2) the output additive

noise sequence, e is Gaussian, white, zero-mean and (3) the system is non-zeno, Le.,

cannot switch an infinite number of times in a finite time span [6, 7, 14, 67, 152].

The vestihulo-ocular reflex (VOR) is weIl known to exhibit nonlinear "hybrid"

behavior [40, 57. 132]. Presently, descriptions of the VOR rely on linear a priori

nl0deling methods (57, 124]. These methods provide convenient means of charac­

terizing slow and fast phase dynamics. However, many models do not account for

the rich dynamic behavior due to nonlinearities, therefore limiting their usefulness in

diseased cases because of mode interactions through initial conditions [124].

Parameter estimation involves determining values for unknown system coefficients.

i\Iany parameter estimation techniques for nonlinear systems depend critically on

the choice of model structure, the source of noise within the system and the input

excitation [22]_ ~;Iost parameter estimation algorithms for linear systems cannot be

applied directly ta NARMAX systems because they assume that the noise terms in

the model are independent.

In many situations parameter estimation or identification may be difficult or im­

possible if the recorded data is not sufficiently long. This is a cornmon problem in

many multimode systems since it may not be possible to obtain '"long" record lengths

due ta the switching behavior of the system. Hence, no single data segment may he

long enough for parameter estimation, given noise considerations.

The extended least-squares (ELS) algorithm [22, 61] yields unbiased estimates for

NAR~IAX models (see Chapter 2). However, ELS cannot estimate the impulsive

behayior of multimode systems or use more than a single measured data segment.

Consequently, we will develop a modified ELS (:MELS) algorithm to determine pa­

rameter \-alues of nonlinear multimode systems, which can take advantage of multiple

short data segments. The development in this chapter is specifie to the NARMAX

polynomial class.
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• 6.3 Multimode Model Formulation

Consider a dual mode system structure shawn in Figure 6.2. This is a simple case of
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Figure 6.2: Hammerstein model structure for a dual mode hyhrid system.

the general form described in Figure 6.1. Let Ji (.L }~l (s) and 1;(s) he defined as:

fl(. ) a + bu(n) + cu2(n) + du3(n), (6.1)

Y1(s) K1s X () Yii(o) . i = 1,'" ,q,• --.1 S +--!
S + Pl S + Pl

1;(s) K 2 X () 12l(0). e= 1!·· ',T= --42 S +--,
S+P2 S+P2

where }i.2 .(0) represents the initial condition in continuous-time and q! T are the

number of switches, Le., data segments, of sub-system one and t\VO, respectively. The

two pathways are decoupled, analyzed separately, and then recombined to yield the

overall input-output relationship, provided initial conditions are modeled.

The linear system dynamics can be converted to the discrete domain via the

bilinear transform to give

•

YI (n) = "YIYI(n - 1) + "Y2[Xl(n) - XI(n - 1)] (6.2)

+ fi: 1e511 (n - j) + ... + Ki e5li(n - jd; i = 1"" ,q

Y2(n) - QI + o2Y2(n - 1) + o3[x2(n) + x2(n - l)J

+ À1e521 (n - k) + ... + Àt e5u (n - kt); e= 1," ',T

where the coefficients Iv, v = 1,2 and OU" w = 1,2,3, account for the parameters of
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• the continuous-time linear system and sampling rate. The input-output data (x, y)

are organized according to mode of operation and denoted by a subscript 1 for sub­

system one and 2 for sub-system two. (Note, in general, the number of sub-systems

can he any finite number, m = 1,2,···, M.) The Kronecker impulse function, cS,

is used to represent the onset of an initial condition in discrete-time. "'i and }.t are

discrete-time initial conditions (coefficients), used as impulse weights to scale the

Kronecker impulse, accounting for the discontinuity at each switch time. The indices

j, k represent the lag value of the cSlith and cS2tth impulse.

Suhstituting fl (.) for x(·) into Equation 6.2, collecting terms and combining the

overall nonlinear model is

{

Yl(n) Switch Position SI
y(n)

Y2(n) Switch Position S2

ydn) 11Yl(n - 1) + I3du}(n) - ul(n - 1)J

+ ,B2[uî(n) - uî(n - 1)J + ,B3[u~(n) - u~(n - 1)]

• Y2(n)

+ K1cSll(n - j) + ... + "'icSli(n - jd; i = 1,·· ., q

0:1 + Q2Y2(n - 1) + t9du2(n) + u2(n - 1)J

+ d2[u~(n) + u~(n - 1)] + t93[u~(n) + u~(n - l)J

+ }.lcSll(n - k) + ... + }.tcSll(n - kt); e= 1,···, T

(6.3)

•

which is a NAR~lAX model since it (1) includes both linear and nonlinear input­

output terms and (2) is linear-in-the-parameters. Notice that although the response

function of a system varies for different initial states, the input-output model for the

system \\'ill always be the same regardIess of initial states provided the system is

maintained within a region around an equilibrium point [37]. This simple model can

easily be extended to the general M mode NARMAX model given in Equation 2.20.
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• 6.4 Modified Extended Least-Squares

Since the input-output model for a system is the same regardless of the initial state,

the ELS algorithm can be used to estimate both the input-output and noise models.

However, implementing ELS as presented in §2.6.3.3 will result in a biased estimate

of the coefficients. Since multimodal systems may produce an impulse at each switch

time, these impulses cause a bias of the estimated parameters if they are not modeled.

This bias is shawn using arguments similar to those in Equation 2.75. For a given

mode of operation, the extended least squares formulation is defined as

wmBm + é m , m = 1,2, ... lM, where (6.4)

•

•

Wm - [W ZmUm WZmumim 'lt im ] and

~m(n) - 6m(n - id + om(n - j2) + ... + Om(n - id + em(n), i = L ... , J.

For a given mode of operation m, Wm is defined to be a partitioned regressor matrix

where 'li ZmUm is a function of Zm and U m only, 'lJZmUmfm represents aIl the cross products

involving fm, and 'lJ i m is a polynomial function of the prediction errors only. Note

that Zm is the measured or noise corrupted output for a given mode, m.

Taking the expectation of êm ELS gives

E[Ôm ELS] = (W~Wm)-lw~E[Zm] (6.5)

= ('lJ~ 'ltm)-LW~[WmBm ELS + é m]

= Bm ELS + (\lJ~ Wm)-LW~ém

therefore, E[(\{1~ \lJm)-l\lJ~ém] # o.

This bias is a result of the model error, é m, containing unmodeled dynamics due to

initial conditions, i.e., scaled impulses. To compute an unbiased estimate of Om, we

develop an alternative estimation technique based on ELS.

Consider the system shawn in Figure 6.1. The data segment(s) for each sub­

system are defined as shown in Table 6.1 (See Figure 6.3 for an example of data

segmentation.): where Nk is the length of the kth segment, L::=l Nq , is the total
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• u Z
'U l, l, 1,1,0 Zl,l,l,l.O

Du Zll
'U N I,NI,1,1,O ZNI,Nl.l,l,O

UNI +1,1,2,1,1 ZNl +1,1,2,1,1

U:u 221
UN'l+Nl,N'l,2,1,1 ZN2+Nl,N'l,2,1,1

UN'l+NI +1,1,1,2,2 ZN2+Nl +1,1,1,2,2

U12 Z12
UN3+N2+NI,N3,1,2,2 ZN3+N'l+NI,N3,l,2,2

UN3+N2+Nl +1,1,3,1,3 ZN3+N2+NI +1,1,3,1,3

U31 231
UN4+N3+N2+Nl,N4,3,1,J ZN4+ N3+N2+NI,N4,3,1,3

•
U ·ml

U("k-l u ) 1 ..L...q=l l~q +1, ,m,l,) Z(" k - 1 H) 1 1 ..L...q=l Hq + , ,m,lJ

Table 6.1: Data segmentation.

data length~ k = 1,2, ... ~ (j + 1) is the segment number, j = 0, 1,2, ,h is the

switch number, ln = 1,2, ... , M is the sub-system number and i = 1,2, J is the

segment number of the mth sub-system. Z·,l,m,i,. = 6.,1,m,i,. + U·,l,m,i,. + ... + U~,l,m,i,.,

is the first output of segment i of sub-system m. Umi , Zmi are the input-output data

of the corresponding sub-system and segment. Vle define the concatenation of aIl

input-output segments of the mth sub-system to be

u [Umll Um2 ,· .. , Umi]; m = 1,2,· .', M (6.6)

•
Z [Zm1' Zm2' ... , Zmi]; i = 1,2, ... J.

Let U and Z be J.Vm X 1 vectors of measured input and output, respectively.
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Figure 6.3: Example of VOR input-output data segmentation for a dual mode system.

A least-squares formulation for this system is

z= 1[1zu8 + i. (6.7)

where Z is a iVrn X 1 vector of measured outputs, Wzu is a non-singular Nm x P matrix

of regressors~ based on input-output only, () is a p x 1 vector of unknowIl parameters,

and i. is a 1Vm X 1 vector of prediction errors.

To estimate an initial paramcter set of the mth sub-system the regressor matrix,

\fi zu, is formed similar ta \li zu (see §2.6.3.2), except each data segment is considered

as a new input-output segment. Therefore, the regressor matrix is a concatenated

matrix of sub-regressor matrices formed from individual data segments as

•
'li zu = (6.8)

163



• A modified extended regressor matrLx, ~, used to estimate the noise model and

impulses is defined as

(6.9)

•

where \li is defined as in Equation 6.4. The extension, \li6, represents the effects of

initial conditions when a switch occurs. The number of columns in \{J6 is equal to the

number of data segments, i.e., number of s,vitches. Note that since multiple switches

can occur the columns of \lI6 contain impulses lagged in time. In addition, the number

of impulses or initial conditions in each segment is equal to the dynamic order of the

linear system. For the simple case presented in §6.3 there is one initial condition

per segment since the dynamics are of order one. To model impulses due to output

and noise the effect of the forcing function needs to be removed, i.e., current inputs.

The first input point is subtracted (up to the order of nonlinearity, l) from the first

output, of each segment. The columns of \li6 are formed as

4 4 l
[(z. 1 mi· - BI U. 1 mi· - ... - Biu. 1 m; .

" " , t ,.. l' ,.,

4 Ai ...
{Z.l mi· - (JIU.l mi· - •.. - Bi u. 1 m.· .}€. 1 m i .)e5(.)].

" " " " " " ""

If the impulses due to output and noise are modeled separately as

~ A i
z. 1 mi· - BI U. lm i . - ... - Biu. 1 m.- .)6(·)

" " " " " "
4 4 i ...

z. 1 mi· - th ll. 1 mi· - ... - Blu. 1 m; .)€. 1 mi .6(·)]
" " , t ,! " ,., t" ,

~ will be singular or ill-conditioned.

The extended parameter set

(6.10)

•
can be shown to he an unbiased estinlate of BMELS since the residuals are zero-mean,

in the limit, when aIl impulses and errors are estimated. This modified extended

least-squares algorithm has the same asymptotic properties as OLS and ELS since
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• it models aIl dynamics due to initial conditions or discontinuities as weIl as system

dynamics. This leads to the following algorithm to estimate parameters of nonlinear

hybrid systems.

6.4.1 MELS Aigorithm

1. Segment the input-output data record according to mode of operation.

2. Form lItzu for the mth sub-system, for m = 1,2,···, M, compute an initial

estimate of the unknown parameter vector and estimate the residuals.

3. Form <I> for the mth sub-system, compute an estimate of the extended parameter

vector and compute the residuals.

4. Go to 3 until convergence.

0. Estimate parameters of the next sub-system, m = m+ 1. Go ta 2 until m > M .

• 6.5 VOR Model

•

Ocular responses during head perturbations consist of intermingled segments classified

as "slow" or "fase, according to their average speed characteristics. This describes

the vestibulo-ocular reflex (VOR) and a time record of the response has a sawtooth­

like pattern called ocular nystagmus (Figure 6.4). This sawtooth-like pattern is a

consequence of the VOR switching between two different modes of operation: the

slow-phase which stabilizes the eye in space (É ~ -il) and the fast-phase which

re-orients the eye in the direction of head rotation (E oc il). Note that the VOR is a

dual mode hybrid system (see Figure 6.2), a simple case of the general form in Figure

6.1.
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Figure 6.4: Typîcal plot of VOR output,
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In Figure 6.2 let fi (.), }·I (s) and y; (s) he redefined as:• fl(. )

Y1(s) -

l;(s}

(6.11)

i = 1," ',q,

where YI (s) and Y;(s) are first order approximations for the modes (phases) of the

VOR.

Clinically, vestibular patient evaluation relies on the characteristics of only VOR

slow-phases. However~ our method can provide both the slow and fast phase dy­

namics in discrete-time. A NAR1IAX description of VOR slow-phases. YI (n), and

fast-phases, Y2(n) of the model in Equation 6.11 is:

y(n) { Yl(n) Switch Position SI
(6.12)

Y2(n) Switch Position S2

• YI (n) = /31 + 82YI (n - 1) + /33 [u(n) + u(n - 1)]

P'4[u2(n) + u2(n - 1)] + I3s[u3(n) + u3(n - 1)]+

+ K 1611 (n - j) + ... + Kil5li(n - j): i = 1"", q

Y2(n) VI + 192Y2(n - 1) + 193[u(n) + u(n - 1)]

+ v4[u2(n) + u2(n - 1)] + t95[u3(n) + u3(n - 1)]

+ ÀI811 (n - k) + ... + Àll5ll (n - k); f = 1,···. r.

Table 6.2 shows the relationship of the discrete-time parameters ta the underlying

continuous-time pararneters. This physiological system was studied since it exhibits

rich multirnode behavior.

6.6 Simulation

•
The accuracy of our 11ELS parameter estimation algorithrn was validated by simulat­

ing the VOR model (Figure 6.2) in continuous-tirne using Simulink. The parameters
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• DT Coefficient

I3l ~ dl

,82 , tJ2

133,tJ3

,84 , tJ4

135,195

I\:l,).l

Relationship to CT
(2R ua1')
2+Pl.2T

-( -2+p1.2T )
2+Pl.2T

(2K1.2bT)
2+Pl.2T

(2K1.2CT)

2+pl,2T
(2K1.2clT)

2+P1.2T
(Y1.2(O}Pl.2 )

2+Pl.2T

Table 6.2: Discrete-time relationship of NARlvIAX model parameters to underlying
continuous-time parameters.

used in the simulation were typical values found in experiments and are shown in

Tables 6.3 & 6.4 [57]. The system was perturbed using a sinusoid input {1/6 Hz

CT Coefficient Value

'l 15 s

'2 50 ms

• Kl -9.42
K2 4.44

Table 6.3: Continuous-time coefficient values. 'l: slow-phase time-constant~ '2: fast­
phase time-constant, K l : slow-phase gain (velocity gain == KI/Tl == -0.628) and K 2 :

fast-phase gain (velocity gain == K 2 /T2 == 0.222).

•

frequency and 180 deg/s amplitude) while a Gaussian~ zero-mean, noise sequence

with 5 dB S!\R was added to the output (Figure 6.5). The system input-output was

sampled at 600 Hz. Thirty one slow and thirty fast-phase segments were used for

identification. Extended least-squares and our modified extended least-squares algo­

rithm were used to estimate system parameters from simulated data. ELS ignores

the effect of switching and associated initial conditions. Therefore, it is equivalent

to the traditional analysis of slow-phases~ in the clinie, as belonging to a continuous­

smooth envelope, where the gaps due to fast-phases are interpolated to produce a

continuous slow-phase response. The MELS treats each slow-phase segment as a

transient response including both the forced input and the switching effects. Tables
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• NL Coefficient Value
a 3.00 x10- 1

b 1.20
C -3.00x10-4

d -1.50x 10-6

T 1.67 X 10-3 s

Table 6.4: Coefficient values of static nonlinearity. a: OC term, b: linear term, c:
squared term, d cubic term and T: sampling interval.

Head Velocity
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5Or--~-.......---~--._--.,...._--.....,....__--....,

-100

-2000L---'----2J-.-----l3---4~!!!!II!!!~5~---.J6

Eye Position

•
Figure 6.5: Simulation input-output data used for identification.

•

6.5 and 6.6 compare the results of the ELS and :\IELS algorithms, after estimating

the coefficients of both slow and fast modes in this simulated VüR. In bath tables

the first calumn cantains the theoretically computed parameter values, the second

column cantains the estimated parameter values using the ELS algorithm and the

third column cantains the estimates given by our !vIELS algorithm. As expected, the

ELS estimates are highly biased in bath slow and fast-phases. However, our MELS

algarithm yields accurate estimates of system parameters in both modes, even in the

presence of output additive noise (5dB SNR = noise 75% of signal amplitude).

~ext, we estimated the continuous-time parameters using the identified discrete­

time paralneters in Tables 6.5 & 6.6. The continuous-time parameters were estimated
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DT Coefficients of Sub-system 1
Term () BELS (}MELS

131 (DG) -3.14x 10-4 -1.31x10-3 -3.62x 10-4

f32y('n - 1) 9.99x10-1 9.97x 10-1 9.99x 10-1

S3[u(n) + u(n - 1)] -6.28x 10-4 -1.27x 10-3 -6.26x10-4

j34 [u(nf + u(n - 1)2] 1.5ïx10-7 2.91x10-8 1.54x 10-7

P5[u(n)3 + u(n - 1)3] 7.85x10- 1O -8.04x 10-9 5.8ïx 10-10

,86e(n - 1) -9.99x10- 1 -9.45 x 10-1 -9.57x 10-1

c5(n)[Kr] 1.00 - 9.96x 10-1

Kzc5(n - k2)[K2] 1.00 - 9.93x10- 1

6(n - k31 ) [K3r] 1.00 - 1.00 x 10-1

Table 6.5: Theoretical and estimated discrete-time coefficients of VOR sub-system
1 (slow-phase). () Column: Theoretical parameter values. {JELS Column: Estimated
pararneters using ELS. ÔMELS Column: Estimated parameters using ~IELS. Values
correspond to continuous-time slow-phase parameter value in Tables 6.3 & 6.4.

using the theoretical relationships in Table 6.7. Since it is impossible to rneasure the

signal at the output of the static nonlinearity, we consider the static nonlinearity to

have unity gain and translate the overall gain onto the linear system. For this reason,

the estimated gain (K1,2b) is a product of the linear system and static nonlinearity

gain. Xote that it is possible to compute the continuous-tirne parameters for this

nonlinear hybrid system only because we assume the system structure is fully known.

Table 6.8 shows the continuous-time parameter estimates for the slow and fast­

phase sub-systems. In this table the first column contains the true parameter values,

the second column contains the continuous-time estimates based on the ELS algo­

rithrn and the third colurnn contains the estimates based on our rvlELS algorithme

Although sorne discrete-time pararneters (e.g., 132,192 ) computed via the ELS algo­

rithm "appear:' close to their theoretical values (see Table 6.5 & 6.6), when they were

used to estimate the continuous-time parameters the bias due to ELS becarne notice­

able large. However, the continuous-time parameters computed based on our !'vIELS

algorithm are close to their true values. Hence, for this model of VOR our MELS

algorithm performance was superior to the ELS algorithrn and gave good estimates
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DT Coefficients of Sub-system 2
Term 0 OELS DUELS

19 1 (DG) 2.18x10-J 1.59x 10-:l 1.81 x10-:l
d2 y(n - 1) 9.67x10- l 9.21x 10-1 9.66x10- 1

1?3[u(n) + u(n - 1)] 4.37x10-3 -2.90x10- 1 4.26x 10-3

19.du(n)2 + u(n - 1)2] -1.09xl0-6 -ï.08x 10-3 -1.36x 10-6

t9s[u(n)3 + u(n - 1)3] -5.46x10-9 1.36 x 10-3 -1.70 x 10-10

196e(n - 1) -9.67x10- 1 -9.28x10- 1 -9.44 x 10-1

6(n)[Àd 1.00 - 8.18x10- 1

e5(n - k2 )[À2 J 1.00 - 9.94x10- 1

e5(n - k30 )[À30J 1.00 - 9.94x 10-1

Table 6.6: Theoretical and estimated discrete-time coefficients of VOR sub-system
2 (fast-phase). 0 Column: Theoretical parameter values. ÔELS Column: Estimated
parameters using ELS. ÔMELS Column: Estimated parameters using MELS. \talues
correspond to continuous-time slow-phase parameter value in Tables 6.3 & 6.4.

Pl.2 =

Table 6.7: Discrete to continuous-time relationships for parameters Pl,2 and !(l,2b of
the VOR model.

of the underlying continuous-time parameters.

6.7 Experimental Data

Lastly, we assessed our ~1ELS algorithm on experimental human VOR data collected

in our laboratory, the Oculomotor Control Laboratory. The data analyzed for this

study is from a single suhject with history of vestihulo-ocular disease. The patient is

known ta have no function in one inner ear. This is associated \Vith large nonlinearities

in the VOR and a defective time constant (small). We expect our MELS to he

particularly relevant under these conditions.
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CT Coefficients of Sub-system 1 (Slow-Phase)
Term True Estimate Based on ELS Estimate Based on MELS

Pl O.G667 1.800 0.0600
Klb -0.7540 -1.526 -0.7504

CT Coefficients of Sub-system 2 (Fast-Phase)
Term True Estimate Based on ELS Estimate Based on MELS

P2 20.00 49.34 20.08
K 2b 5.331 -362.3 5.200

Table 6.8: Continuous-time parameter estimates of Pl,2 and K1,2b of the VOR model.

6.7.1 Procedures

Sîlver-silver chIoride electrodes were used to record conjugate eye position in the

horizontal plane, in the dark. The subject remained in dim red light for 20 minutes

to adapt to the dark condition and minimize electrode drift during recordings. The

subject was then seated on a servo-controlled rotating chair, restrained by seat belts

and a head holder. The head and body were fixed en-bloc to the chair during rotations,

while the subject \Vas instructed to perform mental arithmetic during rotations in the

dark.

6.7.2 Perturbation

The experimental protocol used a sinusoidal rotation at 1/6 Hz, with a peak head

velocity '"'"'200 degjs. The test lasted 52s, of which the last 32s were recorded to

measure VOR properties with sensory steady state. Full electro-oculogram (EOG)

calibrations were performed before and after the rotation, to correct for any drift.

6.7.3 Apparatus

The chair was controlled by a Pentium computer, using software developed in house

with rvlodula-2 (Jensen Partners International, Mountain View, California). Eye posi­

tion and head (chair) position channels underwent analogue low-pass filtering (8-pole

Bessel) to 40 Hz to avoid aliasing when sampled. Data were recorded on separate
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channels of a 16-bit National Instruments A/D board, and stored at 500 Hz for Iater

analysis. Signal processing was carried out off-lîne on a Pentium using software de­

veloped Iocally with NIatiab (Nfathworks, Natwick, NIA).

6.7.4 Data Processing

The sampled signaIs were digjtally Iow-pass filtered down to 15 Hz and then decimated

to 250 Hz sampling rate, to improve the signal-to-noise ratio and to save storage

space. Figure 6.6 shows a typical input-output trial used for this analysis. The

! _~ f\Jl
i~ EePosition

-20

-40

~ 2:
~_200~~

o 5 10 15 20 25 30
lime (5)

Figure 6.6: Experimental VOR data. Top: Head velocity input. lvIiddIe: Eye position
output. Bottom: Eye velocity output.

data represents a sinusoidal head velocity of 200 deg/s. The characteristics of this

trial are consistent with those reported in previous work done in our laboratory [58].

This 15 Hz bandwidth was sufficient to examine the slow-phase characteristics, in

spite of mild distortions on the fast-phase trajectories. The position traces were

digitally differentiated to obtain eye and head velocity trajectories, and scanned by

our classification aigorithm to demark slow phase segments automatically [123] .
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6.7.5 Data Analysis

The extracted slow-phase data was fitted \Vith a linear and cubic description of VOR

characteristics, as described in detail elsewhere [73]. This method required first re­

moving any phase shift (dynamics) between the stimulus and response curves. Then

VaR characteristics were modeled by the expressions in Equation 6.13, where "y"

represents the slow-phase eye velocity, and "u" represents the phase-shifted head

velocity in a particular sinusoidal protocol. Parameter estimates \vere obtained by

regression with experimental data.

linear fit: y(n) - a + bu(n) (6.13)

cubic fit: y(n) - a + bu(n) + cu2(n) + du3(n)

model selection criteria: BIC - log(A1SE) + log(N) 2~

quality of fit: %Nl'v/SE (1- ~ L:=l(Yn - Yn)2) X 100
il L:=l (YnF

In Equation 6.13 the linear gain term (b) defines the VaR sensitivity for low-velocity

rotations, the DC offset (or bias) is the zero-order coefficient (a), p is the number

of model parameters, N is the number of data points in the pooled slow-phases and

~ISE is the mean square error of fit, L:-d~n-!ÎnJ2. Note that these monomial fits are

not orthogonal and may be subject to error. In patient cases, a linear fit is often

deficient in describing the data. Therefore, it is often necessary ta fit the data with

a cubic model [9, 58, 73, 114]. Justification for this selection is done on the basis of

the associated normalized mean-squared-error and the Bayesian information criterion

(BIC), ta avoid over-modeling [58].

Our hybrid identification approach consisted of assuming a dual mode Hammer­

stein model structure: a third order static nonlinearity followed by a dynamic first

order high-pass system (see Equation 6.3), was sufficient ta describe the data. Next,

our NIELS algorithm was implemented to estimate model parameters. The quality of

fit was was assessed by computing the %NMSE as given in Equation 6.13.
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6.7.6 Results

The results presented in this section are a comparison of data fit of the classical

methods, described above, to the quality of data fit using our MELS algorithm.

Figure 6.7 show the results of this comparison. Plot (a) shows the linear fit, plot

(b) shows the cubic fit, and plot (c) shows the fit obtained using our rvlELS algorithm

to VOR data. The %NMSE obtained using the classic linear method is 91.35%, with

the classic cubic fit it is 96.47% and using our method it is 96.62%. Table 6.9 shows

the slow-phase time constant, 'Tl, and the nonlinearity coefficients (a, b, c, d) obtained

using both the classical and the NIELS approaches. Although the improvement in

a b c d 'Tl s %NrvISE
Classical 3i.73 -0.542 4.99 91.93

Cubic 22.05 -0.594 1.20 x 10-3 6.66 X 10-7 5.48 96.47

~vIELS 20.59 -0.342 6.57 x 10-4 2.97 X 10-7 0.631 96.88

Table 6.9: Identified continuous-time parameters from experimental VOR data. a:
De term, b: linear term, c: squared term, d cubic term, Tl: slow-phase time constant
and %N~ISE percent normalized mean-squared-error.

fi t between the extended classical nonlinear method (Figure 6. ib) and our NIELS

algorithm (Figure 6.7c) is apparently small (see Table 6.9), it is misleading at first

glance. In the extended classical approach (Figure 6.7b) the average fit is reasonable

but the dynalnics are clearly poorly described during negative eye speeds. Our ~fELS

method describes the dynamics of individual slow-phases during leftward (negative)

eye velocities but at the expense of poorer fits in the opposite direction (positive).

This may indicate that the parameter estimates computed by tvIELS provide a better

description of system dynamics at least during part of the cycle, implying input­

dependent nonlinearities.
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Figure 6.ï: Predicted eye velocity of experimental VOR data. (a): ~Ieasured eye
velocity superimposed on top of predicted output due to classical approach (Le.,
linear fit). (b): wleasured eye velocity superimposed on top of predicted output due
to cubic approach (Le., cubic fit). (c): rvleasured eye velocity superimposed on top of
predicted output due to our hybrid identification (i.e., MELS technique) .
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6.8 Discussion

6.8.1 MELS Aigorithm

The success of parameter estimation methods for nonlinear systems depends upon

the choice of model structure and the development of estimation algorithms to yield

unbiased estimates of system parameters. The limitation of our proposed algorithm

for estimating parameters depends largely on the number of data segments and length

of segments available for estimation. If the number of measurements per sub-system,

say :V, approaches infinity the statistics of the parameters will approach their asymp­

totic values. The limiting factors will depend not only the system dynamics but also

on the feasibility of measuring the system for long periods of time.

6.8.2 Simulation Study

\Vith respect to simulated data, an examination of Table 6.6 (VOR fast-phase) shows

that the estimated parameters ({hlELS) are not as ""accurate" as those in Table 6.5

(VOR slow-phase) because the segment lengths were shorter. Renee, fewer data

points \Vere available to estimate the coefficients of sub-system 2 (VOR fast-phase).

\Ve computed the standard deviation (STO) for the estimated parameters of sub­

systems 1 and 2 (VOR slow and fast). The STO of the coefficients for sub-system 1

were approximately J3 times smaller than those of sub..system 2 since there \Vas three

times more data available for estimation. Rowever, the STO of system parameters

for sub-system 2 were within the 95% confidence bound of the theoretical coefficients.

The percent accuracy should be sensitive to the magnitude of c (i.e., coefficient of the

squared nonlinear term). The parameter estimates should be less accurate for large

c compared ta segment length.

In the simulation (and experimental data) the input \Vas a sinusoid. In general,

a single sinusoid is a "terrible" input for identification. Therefore, it is tempting to

conclude that the ELS results may simply be due to poor input design. The poor

results are not due to poor input alone, though it certainly plays a role, but are due
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to unmodeled dynamics in the residuals. As the time constant of a mode decreases~

switching effects themselves can bias ELS, which MELS takes advantage of despite a

poor forcing function. ivIELS gives good results because by explicitly correcting for

impulses it effectively uses a high frequency input. The continuous-time parameters

in Table 6.8 (ELS estimates) clearly demonstrate that even when sorne discrete-time

parameters "appear" close to the theoretical values the continuous-time estimates

may be far from the true values. This study demonstrates two important cases: (1) it

shows when the time constant is large the percent improvement will be small and (2)

in the opposite case when the time constant is small, where the bias from ELS can

be quite severe (over-estimating the time constant), the percent improvement will be

large. These cases illustrate NIELS is the preferred tool. Although slow-phase time

constants are expected to be large in the normal population, NIELS is still a necessary

tool in disease subjects since the time constants are often significant1y reduced.

6.8.3 Experimental Data

Analysis of a typical experimental VOR data set using MELS showed a better fit

for negative eye velocities but at the expense of poorer fits for the positive direc­

tion (see Figure 6.7c). This may be because more data was available for negative

\'elocities or it may show that there are unique dynamics in each of the positive and

negative directions for slow-phase. This suggests the system may contain a different

static nonlinearities for each path and is not described weIl by a general cascaded

system as we have forced here (i.e., Hammerstein strucLure). This clearly needs to

be investigated with more patient data. Overall, experimental analysis of VOR data

indicates that hybrid identification may be appropriate for this type of system since

it provides an improved data fit, compared to classical linear technique and it gives

a better estimate for negative velocity eye dynamics.
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6.8.4 Future Work

Although this algorithm yielded good results for estimating the parameters of a mul­

timode system, it is unclear how ta determine the model arder and structure for these

types of systems (i.e.~ "black-box" identification). Furthermore, the CUITent formula­

tion is only valid for the identification of switched systems with first arder dynamics

since we have only discussed modeling initial conditions for such systems. The ma­

trix extension (see Equation 6.9) of the MELS algorithm needs additional columns ta

model initial conditions of a general arder dynamic system.

6.8.5 Summary of Findings

~vIodeling~ simulation studies, and analysis of experimental data showed the fol1owing.

1. \:Ve have demonstrated that the NAR11AX polynomial class can be used ta

model the dynamic behavior of nonlinear hybrid systems.

2. Simulation results showed that our ~1ELS algorithm provides better results for

parameter estimation of hybrid systems than applying existing methods which

assume continuous smooth behavior.

3. Analysis of experimental data showed that !vIELS only provides an incremental

improyement in data fit over traditional techniques. \-Ve hypothesize that this

is due to an incorrect model structure used to fit the data (Le., Hammerstein

st rueture) .

Implementation of our ~1ELS algorithm to a s~mulated model of VOR demon­

strated that it is possible ta estimate the parameters of switched nonlinear systems.

The ~1ELS algorithm takes advantage of the switching effects despite a poor forc­

ing function and gives good results because by explicitly correcting for impulses it

effeetively uses a high frequency input .
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6.9 Conclusions

\Ve have demonstrated that the NARJvL-\-X model structure is suited to modeling

the dynamics of nonlinear multimode systems. Furtbermore~ the MELS algorithm

is a robust method for estimating the coefficients of sncb multimode systems. This

method provides accurate estimates of parameters since it takes advantage of the

entire data record. \\Te also provided an example of application of our hybrid modeling

and identification approach on experimental VOR data. The results showed that our

technique produced more accurate estimates of data prediction and system parameters

than traditional approacbes.

These results may have a clinical significance in the analysis of ocular nystagmus.

The technique here allows greater insight iota the functionality of various refiexes~ by

providiog quantitative measures of both saccadic and slow ocular dynamics from a

single experimental record.
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Chapter 7

Conclusions

7.1 Introduction

In this thesis, we have developed practical methods for the identification of linear,

nonlinear and hybrid (multimode) systems which are applicable under relatively gen­

eral conditions, i.e when assumptions and conditions of the estimation technique are

not violated. Since these algorithms were not designed specifically with any system

in mind. they should be applicable ta experiments on a variety of systems in many

different disciplines.

In this chapter, we state the original contributions made during this thesis work,

describe their significance, and give suggestions for further work.

7.2 Statement of Original Contributions

The overall goal of this work was not only for biomedical engineering but to provide an

expanded and improved set of tools for the identification of both linear and nonlinear

systems that faB under the linear regression "umbrella". Results demonstrate that

parametric nonlinear identification is a feasible tool for modeling unknown (black-box)

systems. Sorne potential applications for these methods outside the biomedical realm

are, for example! efficient control and design for aircraft/spacecraft, communications,

analysis of economic trends, analysis of geophysical phenomena, etc. Below is a list
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of the original contributions contained in this thesis.

1. Application of N ARMAX Structure to Biological Modeling. We il­

lustrated that the (polynomial) NA.RNIAX model class is useful for modeling

the input-output behavior of block-structured models encountered in biologi­

cal control. These results suggest that other biological systems may be easHy

represented as a NAR1\1A.X class.

2. Structure Detection. \Ve developed a robust algorithm based on bootstrap

to compute the structure of linear and nonlinear systems (linear regression mod­

els). This method provides accurate estimates of parameter statistics without

relying on assumptions made by traditional procedures and yields a parsimo­

nious system description. Convergence results provide an empirical measure

for data requirements necessary to achieve a true model structure. The signifi­

canee of this finding is that it enhances existing methods for structure detection

by proYiding a method for determining structure of highly over-parameterized

models.

3. Madel Order Selection. \Ve provide a robust technique ta compute the order

of :\AR1\IAX models. This algarithm computes a unique minima over a selected

dimension in 0 = [nu~ ny~ il which provides an unambiguaus estimate of model

order using the cross-validation cost function. This work contributes ta existing

methods for model order estimation by providing an algorithm far determining

the arder of nonlinear systems that are linear-in-the-parameters.

4. Parameter Estimation of Hybrid Systems. \Ve demonstrated that the

!\AR~IAX model structure is weIl suited for modeling the dynarnics of non­

linear hybrid systems. In addition, we developed a robust MELS algorithm to

estimate coefficients of multimode systems. This work contributes ta (1) ba­

sic understanding of hybrid systems modeling.and (2) fundamental algorithmic

development for linear and nonlinear hybrid systems by providing a parameter

estimation technique for these types of systems.
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~Iuch work needs ta be done in terms of theoretical analysis~ algorithmic development

and applications of these techniques ta real-life applications. Since the emphasis

of this thesis was on algorithmic development. our suggestions for future work are

focused on this topic.

7.3.1 Identification of Ankle Dynamics

In Chapter 3 we illustrated the effect(s) of input and output additive noise on a

~AR~IAX representation of ankle dynamics. \Vith the CUITent experimental setup

and protocol used in our laboratory, we expect the input ta have a SNR approximately

in the range of 82 dB - 50 dB (see §3.3.5). \Vith little noise added to the input and

noise-free output, the standard deviation of linear path parameters incIuded zero for

SNR levels ~ 55 dB SNR (see §3.3.5). In addition, with a fixed input SNR of 60

dB and noise added to the output, the standard deviation of linear path parameters

included zero for output SNR ~ 20 dB (see §3.3.6). These results showed thaL for

the given model structure, even if an input is recorded with insignificant noise the

least-squares algorithm will not yield an unbiased estimate of model parameters, as

it violates the basic assumptions.

Identification of ~AR1\1A...X models using "standard'~ least-squares is partieularly

sensith'e to input noise for high-pass systems. HoweveL it is more robust in the low­

pass functional form. Ta address the problem(s) with input noise sensitivity in the

high-pass ease (i.e.. linear path of ankle dynamics) two approaches may be considered.

(1) If NAR!\'fAX is ta be used in the eurrent state for ankle dynamics, then redesign

the experimental paradigm. (2) Othernrise, the optimal solution may be ta generalize

the approach with implementation of total least-squares.

7.3.1.1 Redesign of Experimental Paradigm

Currently~ the intended input (noise free input) is not saved for further analysis.

Instead, the input used for identification is reeorded after being influenced byactuator
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dynamics and measurement noise. We recommend that the intended input be saved

for identification and an effort be made to model actuator dynamics. This should

alleviate the need to record input after being passed through actuator dynamics:

hence~ reduce the introduction of input noise.

For this paradigm an instrumental variable approach may seem appropriate. How­

eveL the IY algorithm only addresses bias, i.e., lagged errors, due to output additive

noise (see §2.6.3.4). Extended least-squares solves this bias problem by explicitly

modeling lagged error terms. ELS was implemented for the study in Chapter 3 and

shown not to provide "good" estimates in the presence of input and output additive

noise. This implies that IV is unlikely to provide "better" results since it only ad­

dresses bias due to output additive noise and does not account for bias due to input

nOise.

:\onlinear feedback is a feature of many biomedical systems. The parallei pathway

model describing ankle dynamics (see Figure 3.1) can be formulated in closed-Ioop

as shown in Figure 3.19 [78]. For the parallel pathway description~ intrinsic compo­

nents are modeled using derivative operators in the linear path. These derivatives

result in an unrealizable model description which also senre as a source of input noise

amplification. Formulating this model in nonlinear c1osed-Ioop reduces the number

of derivative operators (see Figure 3.19) needed to describe the same model and

decreases the potential danger of input noise amplification (sensiti\ity). Note that

when this model is posed in feedback, the linear dynamics are 1D0deled as a low-pass

system. i.e.. compliance dynamics. This model formulation serves ta filter high fre­

quency content associated with input, possibly providing a more robust identification

in the presence of input noise, without resorting to advanced techniques such as to­

tal least-squares. However. this feature cames at the cost of a more complex model

description.

7.3.1.2 Total least-squares

In the standard linear model (Z = w() + e) it is usually assumed that the exact

structure of the regressor matrix is known, e is a vector of random errars which are
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uncorrelated and have zero means and the same variance, Le., E(e) = 0, D(e) =
a 2J. As denl0nstrated br analysis of experimental ankle data1 these assumptions are

frequentIy unrealistic since sampling and/or modeling errors often affect the input 1

and hence, the regressor matrix \lf. Therefore, it is necessary ta consider methods

that aiso allaw for random input errors, such as total least-squares [26, 69]. The

premise of total Ieast-squares is that alIo\\;ng for input as well as output error in the

standard Iinear model above (i.e., modeling input as weIl as output noise), provides

better (hopeful1y unbiased) parameter estimates.

.-\pplicatian of total Ieast-squares may give insight to determine if parameter esti­

mates for this biological data resemble the currently believed ranges and if the ranges

are accurate. Few applications of total least-squares have been published in the lit­

erature [43]. Van Huffel and Vandewalle daim that in typicai applications (linear

systemsL gains of 10-15% in accuracy can be obtained by using totalleast-squares

instead of standard least-squares methods [69]. Ta date there are no known applica­

tions of this technique ta nonlinear systems likely due to the number of terms needed

in the regressor matri.x, requiring considerable computational expense. Future \York

should include a careful development of existence theory for the general NARI\1A_X

modeL allowing for input additive noise.

7.3.2 Structure Detection

\\~e showed in Chapter 4 that when white assumptions \Vere violated 1 our BSD tech­

nique failed to compute the correct structure. The limiting factor is with the param­

eter estimation algorithm implemented in our structure detection routine, i.e., ELS,

since it requires white, zero-mean conditions. In generaL bootstrap does not rely

on white assumptions [48, 136]. Therefore, it may be possible ta use robust estima­

tion techniques in combination \Vith our BSD method ta yield better results under

non-white assumptions [35. 122, 147].
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7.3.3 Model Order Selection

For the SMOS algorithm we did not study the effect(s) of bandlimited (colored)

output additive noise. The properties of this algorithm need to be studied under these

conditions to provide a better understanding of its behavior. In addition, we did not

compare the performance of our B~IOS algorithm against any popular techniques

such as Ale or !vIDL. Future work should include a study of this algorithm's ability

ta select the correct model order as compared ta these classic approaches.

7.3.4 Combined Structure Detection - Model Order Selec­

tion

For model order selection the BJ\10S estimate may not yield the "true:' arder for

aIl structures since the full model is posed at each step of the search. Consider the

mode!:

(7.1)

A model of this order~ i.e.~ high nonlinear and dynamic arder, has many candidate

terms. Howe\'er, the "true" system is described by only two parameters. Systems

described by such a high system arder may lead ta inaccurate estimates of model

order. This is because the number of candidate terms grows rapidly as the nonlinear

or dynamic arder is increased; possibly resulting in highly biased estimates of model

errors during the model arder search. To overcome the effects of this problem it may

be better ta compute arder and structure simultaneously, i.e., estimate structure at

each step of the model order search.

:\Iodel parameters and residuals are computed for both the model arder selec­

tion and structure detection procedures. Instead of discarding information about

the parameters and residuals at each step of the model arder selection process, this

knowledge can he utilized ta (1) determine structure and (2) compute the error in pre­

diction. This approach will significantly reduce the time and computational expense

required for parametric identification of nonlinear systems.
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7.3.5 Hybrid Systems

In Chapter 6 we presented a parameter estimation algorithm for hybrid systems

(:\IELS). The current formulation is ooly valid for the identification of switched sys­

tems \Vith lth order nonlinearity and first order dynamics. Future extensions should

ioclude general dynamics for systems of greater complexity. N1oreover, these results

may be generalized to multiple-input multiple-output (1\111'10) nonlinear hybrid sys­

tems.

Although our ~v[ELS algorithm is a good start for the identification of nonlinear

multimode systems much basic work still needs to be done. Ta perform "black-box"

identification of nonlinear hybrid systems it is necessary to develop algorithms to

compute model order and structure. This can be done in a similar manner as that

employed for single mode systems (see Chapters 4 &. 5) but with the extended least­

squares algorithm replaced by our modified extended least-squares algorithm.

7.3.6 Application to Real Data

:\[uch can be learned from simulations alone. However, many problems encountered

in real situations cannat be duplicated. Sorne examples are those associated \Vith

the finite resolution of A/D converters, and \Vith the finite roll-off of anti-aliasing and

reconstruction filters, bath of which limit input and output signal bandwidth. In order

to demonstrate that these techniques are applicable in real engineering situations,

they need to be verified using real data. As a first step, feasibility of these methods

ta ather engineering applications can he established by building several nonlinear

circuits, this includes:

1. Analog second order low-pass IIR system preceded by squared nonlinearity

2. Analog second order high-pass IIR system preceded by squared nonlinearity

3. Analog second order bandpass UR system preceded by squared nonlinearity

The low-pass circuit will establish how these techniques behave \Vith high frequency

output noise, the high-pass system will provide insight into the robustness of these
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• methods in the presence of low frequency output noise and the bandpass model will

yield information with the combination of the two.

To justify the selection of these structures, consider the nonlinear-linear (NL)

nlodel, a low-pass system preceded by a static nonlinearity, shown in Figure 7.1. This

Static

l

Nonlinearity

nput U(s)
f2[u(n)]

X(s) _gw2 Output Y

s2 +2(ws+w2

(s)

(Squarer) Second Order
Low-Pass System

•

•

Figure 7.1: Low-pass UR system preceded by a static nonlinearity (squarer).

model arrangement is described as:

The :\L description of Figure 7.1 yields a NARMAX model (Equation 7.2) with non­

linear. current and delayed inputs and linear, delayed outputs. This NL configuration

does not result in a ~AR~'1AX description with a large number of terms. Therefore,

it should be difficult to identify because model errors will be highly biased due to

over-parameterization. Moreover, the nonlinearity and system orders should initially

be selected as two in an attempt to keep the number of candidate terms manageable,

i.e., regressor matrix dimension.

7.4 Discussion

Although our bootstrap approach to the structure detection and model arder selection

problems are computationally expensive, it may be the only means to solve such

complex problems. Many techniques available to researchers in the areas of nonlinear

identification and signal processing are purely heuristic. These techniques demand

practically full knowledge of the system before identifying it. This naturally poses

the question: .~ Why identify the system at aU if we need such extensive knowledge
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of the system before commencing the identification process?". Our BSD and B~IOS

techniques do not require many assumptions and/or extensive a priori knowledge of

the system. \Ve only make the standard assumptions needed to satisfy conditions in

least-squares analysis. vVe believe that as the power and usefulness of bootstrap is

realized by developers and practitioners and as computers become cheaper and more

powerfuL the bootstrap will quickly become a standard tool in many disciplines. In

fact. bootstrap is already an emerging tool in both system identification and signal

processing [117~ 148, 149, 150, 151, 168].

Theoretical analysis of hybrid modeling and identification of nonlinear MIMa sys­

tems may lead to sorne usefui applications. However, to date there are few known

"naturaIly" occurring switched mode systems and hence the practical application

or usefulness of such analysis remains speculative. Nevertheless, hybrid control and

identification are rapidly developing fields and have recently been gaining a wider ap­

preciation from the controls community [Il, 50, 97]. Clearly, this is an emerging field

in which much fundamental work remains to be done in terms of analysis, algorithmic

developrnent and applications.

As a final remark, we note that only a few simple nonlinear systems \Vere studied

to validate our methods. Nevertheless, the systems studied in this thesis are general

enough ta provide insight into the behavior of our algorithms when applied to more

complex systems (see §4.9 & §5.6). In addition, the simplicity of the systems studied

was due ta certain limitations regarding computing power and accessibility to a wider

yariety of data from various disciplines. Our algorithms and modeling techniques

should be applicable to many systems that falI in the relevant cIass of models. i.e.~

linear and nonlinear systems that are linear-in-the-parameters. Furthermore, despite

the lack of natural systems known to exist in a hybrid state, we believe that many

biological processes may exhibit hybrid behavior or may be postulated as a cIass of

hybrid systems. Study of such biological systems couId (1) inspire alternate control

strategies in engineering and robotics and (2) lead to the development of better tools

for understanding biological control and automating diagnosis.
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Appendix A

A Matlab Toolbox for Nonlinear

System Identification

A.l Introduction

This appendix contains a list of the tools developed for the analysis of parametric

nonlinear systems (NAR~IIAX models) and gives a brief description of each tool.

AlI routines contained in this appendi.x \Vere written for the rvIatlab simulation and

development platform.

\Ve first give examples detailing the syntax for using sorne of our major routines.

A.2 NARMAX Model Simulation

Consider the NARNIAX model:

y(n) = üAu(n - 1) + ü.4u2(n - 1) + O.8y(n - 1) - ü.8e(n - 1) + e(n). (A.1)

~Iodel A.1 is used through out this appendix ta illustrate the usage of our rvlatlab

routines.

Ta simulate this model the procedure is the following.
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1. Create a uniform stimulus with a rectangular distribution, for example, as:

T~IAX=10000;

STEP-SIZE=I;

t=(O:STEP..5IZE:T1vIAX)';

rand('seed',sum(IOO*clock) );

u=rand(size(t) );

u=u-mean(u);.

2. ~ext, form a noise sequence with Gaussian distribution for the error terms (e.g.,

e(n - 1)) as

randn('seed' ,sum(lOO*clock));

noise=randn (size(u) );

noise==noise-mean(noise); .

3. To sirnulate NAR~[AX model A.l each term of the model is placed into a cell

array as a character string. The synta.x is the following:

model{l }=('O.4u(n-lf];

model{2.:}=['ü.4uA2(n-l) '];

model{3,: }=['O.8y(n-l) '];

model{4,:}=['-O.8e(n-l)'];

model{5.: }=['e(n) '];.

4. The function used to simulate a NARwIAX model is called simnarmax.m and

it is utilized with the following function call

[y] =simnarmax(model,u,noise);.

The function inputs are:

"mode}" - model to be simulated (cell array with appropriate structure),

'~u" - input, and

"noise" - noise process.
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"y" - simulated output of J\llodel A.1.

In ~Iatlab~ ta obtain additional help for function simnarmax. m type 4'help simnar­

max" or type "simnarmaxdemo" for an on-line demo of this function.

A.3 NARMAX Model Order Selection

•

•

Assume that only input-output data is given for :Model A.1. Note that for sorne

systems an input or output set alone may sufficient for order selection.

An estimate of model order can be computed using our bootstrap model order

selection routine (see Chapter 5). This routine name is bmos.m and its function calI

is

(RSS,order]= bmos(u,y,N,n,nu,ny,B);.

The function inputs are:

"u", '.y" - as defined above,

"N~~ - number of data points to be used for estimation, e.g., N=9000,

'"n" - ma.ximum nonlinearity order, e.g.~ n=3,

"nu" - ma.ximum input lag order, e.g., nu=2,

"ny" - ma.ximum output lag order, e.g., ny=2

"B" - number to bootstrap replications, e.g., B=100.

The function outputs are:

"RSS" - multidimensional array of bootstrap estimates of the error in prediction.

The first index references array dimension 1, the row. The second index references

dimension 2, the column. The third index references dimension 3, the page.

"order" - order=[nu ny 1]: estimated order of a NAR~1AX model, where "nu", "ny"

and "1" are defined above. Note that since we assume output additive noise, ne=ny,

Le.. the error lag must equal the output lag order (see Chapter 5).

The order selection procedure starts at a minimum dimension of order=[O 1 1].

This function requires a user to provide integer values for nu, ny and l, defining

a maximum search dimension for model order selection. If the maximum search
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and require a large number of computations to estimate model order. Nloreover, if B

is also large the time required ta compute an estimate of model arder will increase

B-fold.

vVe recommend that this routine only be utilized when the system is known or

likely to be nonlinear and basic information about the system under test is not suf­

ficient to build a regressor matrbc with the proper dimension, i.e., the system order

is unknown. Hence, if the system is linear it may be computationally cheaper to use

existing methods within Matlab such as Ale or MDL.

A.4 N ARMAX Structure Detection

•

•

Assume that input-output data is provided for Nlodel A.1 and the model order is

known or given. To compute structure for this model we use our bootstrap structure

detection routine (see Chapter 4). The syntax for this function is:

[thetaf,vlabel] =bsd(u,y,N,n,nx,ny,iter,B,alphal,alpha2);.

The function inputs are:

"u", ;~y", '~N", '~n", "'nx", "ny", :liter"and "B" - same as defined previously,

"alphaf' - upper confidence hound, e.g., alpha1=O.95, and

"alpha2" - lower confidence bound, e.g., alpha2=O.05.

The function outputs are:

"thetaf' - reduced paranleter vector (containing only significant terms) and

"vlabel" - parameter labels correspond to the regressor associated with each param­

eter in thetaf.

The upper and lower confidence bounds, shown above, are typical values used in

practice. However, they can he varied depending on the intended application. This

function is typically used after the bmos routine has provided an estimate of model

order or if the system order is known a priori. For an on-line demo of this function

type "hsddemo".

193



• A.5 NARMAX Parameter Estimation

•

•

A.ssume that input-output data is given for Model A.l and the model order and

structure are kno\Vn. In sorne special cases, input or output aloue may he sufficient

for parameter estimation. Let the input-output set be given by the simulated model

above.

Since this model is described by lagged outputs and lagged error terms we select

the extended least-squares algorithm to compute an unhiased estimate of model pa­

rameters (see Chapter 2). The function calI for our extended least-squares parameter

estimation algorithm is:

[theta,vlabel,lenu,err,z-hat,PHI] =els(u,y,N,n,nx,ny,iter);.

The function inputs are:

··u", ··i' - as defined previously,

"N" - number of data points used for estimation, e.g., N=5000,

"n" - nonlinearity arder, e.g., n=3,

"nx" - input lag arder, e.g., nx=l,

··ny:' - output lag arder, e.g., ny=l, and "iter" - number of iterations for improving

the noise mode!, e.g., iter=lO.

The function outputs are:

;·theta·' - estimated parameters,

··vlabel" - parameter labels,

··lenu:' - number of columns that are dependent only on input,

··err" - residuals or prediction errors,

··zllat" - predicted output, and

··PHr' - regressor matri.."<.

Note that ··vlabel" contains the corresponding row labels for "theta", i.e., the regres­

sor associated \Vith each parameter.

If the system is described only by lagged input terms it is more efficient to use

ordinary least-squares (ols.m). The syntax for "ols.m" is similar to that of "els.m".

Type "help ols" for more information. For help regarding how to form a regressor
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~·help name2" ~ respectively. For an on-Hne demo of this function type "parmdemo".

A.6 M-files

•

•

The first Hnes of each function describe the purpose of the rn-file, as weIl as the

inputs it requires and the outputs it generates. These comments can be accessed

within Nlatlab by typing help and the rn-file name.
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but uses a 2nd order approximation for the static
nonlinearity.
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ank2mat

function [Vector]=ank2mat(N,x,y,delay);
y. Vector=ank2mat(N,x,y,delay);
Y-
Y- This function computes the regressor matrix for
Y- a 2nd order model of ankle dynamics.
Y-

I.
Y­
ï.

ï.

ï. N= number of data points to be used
ï. x= measured input
ï. y= measured output
Y- delay= reflex delay in discrete-time,
ï. i.e., DT_delay=CT_delay/sampling_rate
ï.
ï. Vector= regressor matrix that contain the correct
ï. terms for Rob's model
y.
ï. Sunil L. Kukreja 8 June 2000

ï. Copyright Sunil L. Kukreja
ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.y.y.ï.y.%%%y.%y.ï.y-y.y.ï.y.y.y.Y-Y-y.y.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.y.Y-ï.ï.ï.ï.ï.ï.ï.ï.ï.
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ank2mate

function [Vector]=ank2mate(N,err);
%Vector=ank2mate(N,err);
%
%This function computes the error regressor matrix
%for a 2nd order model of ankle dynamics.
%
%This assumes the general structure of Rob's model
%but uses a 4th order approximation for the ststic
%nonlinearity.
%
%N= number of data points to be used
%err= residuals
%
%Vector= regressor matrix that contain the correct
% terms for Rob's model
%
% Sunil L. Kukreja 8 June 2000
% Copyright Sunil L. Kukreja
%%%%%%%%%%%%%%%%%%%%%%%ï.%%ï.%%%%%%ï.%%%ï.ï.ï.ï.%ï.%%ï.%%ï.%ï.%ï.%%%%%ï.ï.ï.ï.ï.ï.ï.ï.
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NOTE: We assume output additive noise.
Therefore, ne=ny.
ne: lag order of error

order - order=[nu ny 1]: estimated order of NARMAX
model where nu: lag order of input, ny: lag
order of output, 1: nonlinearity order

Details can be found in:
A BOOTSTRAP METHOD FOR NARMAX MaDEL aRDER SELECTION
S.L. Kukreja, R.E. Kearney and H.L. Galiana,
IFAC-MCBS 2000

RSS - mu1tidimensional array of bootstrap
estimates of the error in prediction.
First references array dimension l, the row
Second references dimension 2, the column
Third references dimension 3, the page

u - input
y - output
N - number of data points to be used
n - maximum nonlinerity order
nx - maximum input lag order
ny - maximum ouput lag order
B - number to bootstrap replications

function [RSS,order]=bmos(u,y,N,n,DX,ny,B);
% Bootstrap Model Order Selection
%
% [RSS,order]=bmos(u,y,N,n,nx,ny,B);
%
r­
r­
%
r­
%
%
Y.
Y.
Y.
%
%
%
Y.
Y.
ï.
ï.
r­
y.
y.
y.
y.

%
ï.
%
%
r­
%
ï. Copyright Sunil L. Kukreja 29 February 2000
y.y.%ï.y.%y.ï.y.y.y.y.y.%%ï.y.y.%%y.%%%y.%y.y.ï.y.%ï.%y.y.y.y.y.y.y.y.y.y.y.%y.y.y.y.y.ï.y.ï.ï.y.y.y.%y.ï.y.y.y.y.%y.
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• bsd

[thetafJvlabel]=bsd(uJy,N,n,nx,nYJiterJB,alphal,alpha2);

Structure Detection of NARMAX Models Using Bootstrap Methods
S.L. Kukreja, H.L. Galiana and R.E. Kearney IEEE-CDC99,
December 1999

Details can be found in:
Structure Detection of Nonlinear Dynamic Systems Using
Bootstrap Methods
S.L. Kukreja, R.E. Kearney and H.L. Galiana J IEEE-EMBS98,
Dctober 1998

noise model

INPUTS:
u - input
y - output
N - number of data points to be used
n - nonlinerity order
nx - input lag order
ny - ouput lag order
iter- number of iterations for improving
B - number to bootstrap replications
alphal - upper confidence bound
alpha2 - lower confidence bound

function [thetaf,vlabel]=bsd(u,YJN,nJnxJnYJ iter JB,alphal Jalpha2) ;
ï. Bootstrap Percential Method for Structure Detection
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï. thetaf - reduced theta
ï. vlabel - parameter labels
ï.
ï.
Y.
ï.
ï.
ï.
%
ï.
%
%
Y.
%
% Copyright Sunil L. Kukreja 7 April 1998
% (updated 15 Jan 99)
%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.Y.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.ï.ï.ï.%%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.ï.ï.ï.ï.ï.Y.ï.ï.ï.%ï.%ï.%%%ï.ï.ï.ï.ï.%ï.
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• els

[theta,vlabel,lenu,err,z_hat,PHI]=els(u,y,N,n,nx,ny,iter);

Method based on ELS algorithm in: Dynamic System
Identification: Experiment Design and Data Analysis
G.C. Goodwin and R.L. Payne, 1977

are purely due to input

for improving noise model

ta be used

INPUTS:
u - input
y - output
N - number of data points
n - nonlinerity order
nx - input lag order
ny - ouput lag order
iter- number of iterations

OUTPUTS:
theta - estimated parameters
vlabel - parameter labels
lenu- number of columns that
err - residuals
z_hat - predicted output
PHI - regressor matrix

function [theta,vlabel,lenu,err,z_hat,PHI]=els(u,y,N,n,nx,ny,iter);
ï. Extended least squares
ï.
ï.

ï.
ï.

ï.

ï.
ï.

ï.
ï.
ï.
ï.
ï.
ï.
Y.
ï.
Y.
Y.
ï.
ï.
ï.
Y.
Y.
ï.
ï.
ï.
ï. Copyright Sunil L. Kukreja 16 November 1999
ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.y.ï.ï.y.ï.ï.ï.ï.%ï.ï.%ï.ï.y.y.ï.ï.y.y.y.ï.ï.ï.ï.%ï.%ï.%ï.ï.ï.ï.ï.ï.ï.ï.%%ï.ï.y.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.
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x- input
z- output

[theta,z_hat]=lankid(x,z)

theta- estimated parameters
z_hat- predicted out

•

•

•

lankid

function [theta,z_hat]=lankid(x,z)
ï. Computes parameters of linear path of parallel pathway
ï. ankle model
ï.

ï.

ï.
ï. This function is meant to be used for itterative
ï. identification of ankle dynamics.
ï.

ï. Inputs:
ï.

ï.

ï.

ï.
ï. Outputs:
ï.

ï.

ï.
ï. Copyright Sunil L. Kukreja 9 October 2000
ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.
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• ls-std

factorization of the

vectortheta - estimated parameter
z - measured output

z_hat - predicted output
R - the R matrix in qr

regressor matrix

function [std_thetaJ =ls_std(theta,z,z_hat,RZ);
ï. Standard deviation of parameters using least-squares
ï. methods.
ï.
ï. [std_thetaJ =ls_std(theta,z,z_hat,R);
ï.
%
ï. Inputs:
ï.
ï.
ï.
ï.
ï.
ï.
ï.

ï. Output:
'le
ï. std_theta - standard deviation of parameters
ï.
'l-
'l- Method based on STO computation in: Linear Regression
ï. Analysis, George A.f. Seber 1977
ï.
ï.
ï. Sunil L. Kukreja 12 May 1998
ï. Copyright Sunil L. Kukreja
'l-ï.ï.ï.'l-ï.ï.'l-ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.ï.ï.ï.'l-ï.ï.ï.ï.ï.
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•

•

•

nngs

function [Q,RJ=mgs(X);
ï. QR factorization using the Modified Gram-Schmidt (MGS)
ï. Algorithm
ï.
ï. Given X E R-mxn with rank(X)=n --> X=Q*R where Q E R-mxn
ï. has orthogonal columns and R E R-mxm is upper triangular.
ï.
ï. Orthogonal-triangular decomposition.
ï. [Q,RJ = mgs(X) produces an upper triangular matrix R of
ï. the same àimension as X and a unitary matrix Q 50 that
ï. X = Q*R.
ï.
ï. Method based on MGS algorithm in: Matrix Computations
ï. Gene H. Golub and Charles F. Van Loan
ï. 3rd Ed., pp. 232
ï. The Johns Hopkins University Press, 1996.
ï.
ï. also see
ï.
ï. Linear Algebra with Applications
ï. Steven J. Leon, 3rd Ed.,
ï. pp. 240,
ï. Macmillan Pubilishing Co., 1990.
ï.
ï. Also see rmmgs.m
ï.
ï. Sunil L. Kukreja 08 December 1998
ï. Copyright Sunil L. Kukreja
ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.%ï.ï.
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R_ee =auto-correlation of errors
R_ue =cross-correlation of input t errors
R_eeu =cross-cross-correlation of errors &error

input= the input to the system provided by the user
residuals= residuals computed from identification
Iag= number of lags correlation is computed to

Function implements method in: Structure detection
and model validity tests in the identification of
nonlinear systems
S.A. Billings and W.F.S. Voon
IEE Porceedings
Vol. 130, Pt. D, No. 4, July 1983

•

•

•

function [R_ee,R_ue,R_eeu]=mod_val{x,err,lag};
% [R_ee,R_ue,R_eeu]=mod_valCx,err,lag};
%
%
%
%
%
%
%
%
%
%
%
'le

'le

%
'le

'le

'le

'le SLK 16 November 1997
'le%Y.'l.'l.%%'l.'l.'l.'l.Y.%'l.'l.'l.'l.'l.Y.'l.%'l.%'l.Y.%'l.'l.'l.%%Y.%%%%'l.%Y.%'l.%Y.%%%'l.%'l.%'l.%'l.%%%%%Y.'l.Y.Y.Y.%%%
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• name2

This function computes the names of aIl the parameters
in the parameter vector.

aIl the columns of the

depending on only the

polynimial
lagged inputs
lagged outputs
lagged errors

- contains the names of
regressor matrix

- the number of columns
input and DC term

function [vlabel,lenu]=name2(n,nx,ny,ne);
% Forms the row names for the prameter vector in
% linear regression.
ï.

ï. [vlabel,lenu]=name2(n,nx,ny,ne);
ï.

ï.

ï.

ï.

ï.

% n= degree of
ï. nx= number of
ï. ny= number of
ï. ne= number of
ï.
ï. vlabel
ï.

ï. lenu
ï.
ï.
ï. Sunil L. Kukreja 12 May 1998 (revised 2 December 1998)
ï. Copyright Sunil L. Kukreja
ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.y.y.ï.ï.ï.y.ï.y.ï.ï.ï.y.ï.ï.ï.y.ï.ï.ï.ï.ï.ï.ï.ï.ï.
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• nlankid

[theta,z_hat]=nlankid(x,z,delay)

theta- estimated parameters
z_hat- predicted out

x- input
z- output

delay- disctete-time delay of reflex path

function [theta,z_hat]=nlankid(x,z,delay)
%Computes parameters of nonlinear path of parallel pathway
% ankle model
%
%
%
% This function is meant to be used for itterative identification
%of ankle dynamics.
%
% Inputs:
%
%
%
%
%Outputs:
%
%
ï.
ï. Copyright Sunil L. Kukreja 12 October2000
ï.%%%ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%%ï.%ï.ï.%ï.ï.ï.%%Y.ï.%ï.ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%%%ï.ï.ï.ï.ï.ï.ï.ï.Y.ï.•
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•

•

•

nDnse

function v = nmse(err,y)
'l. Computes the Nomarlized Mean Square Error between
'l. two signaIs
'l.

'l. v = nmse(err,y)
'l.

'l. err=y-y_hat
'l.

'l. err are the residuals
'l. y is the measured signal
'l.

'l.

'l. Sunil L. Kukreja 25 April 1997
'l. Copyright Sunil L. Kukreja
'l.'l.'l.'l.%'l.'l.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%'l.%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.%ï.ï.ï.
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• ols

[theta,vlabel,PHI,Q,R,err]=olsCu,y,N,n,nx,ny);

Dynamic System ï. Identification: Experiment Design and
Data Analysis
G.C. Goodwin and R.L. Payne, 1977

of PHI
of PHI

to be used

u - input
y - output
N - number of data points
n - nonlinerity order
nx - input lag order
ny - ouput lag order

OUTPUTS:
theta - estimated parameters
vlabel - parameter labels
PHI - regressor matrix
Q - orthogonal decomposition
R - triangular decomposition
err - residuals

function [theta,vlabel,PHI,Q,R,err]=olsCu,y,N,n,nx,ny);
ï. Ordinary least squares
ï.
ï.
ï.
ï. INPUTS:
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï. Method based on OLS method in: Linear Regression Analysis
ï. George A.f. Seber 1977
ï.
ï. also see
ï.
ï.
ï.
ï.
%
ï.
ï. Copyright Sunil L. Kukreja 16 November 1999
%ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.ï.%%%ï.ï.ï.%%ï.ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.%%ï.ï.ï.ï.ï.ï.ï.ï.%%%%%ï.ï.ï.ï.ï.ï.ï.ï.%%ï.ï.ï.ï.ï.ï.ï.%
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This assumes the general structure of Rob's
model but uses a 2nd order approximation for
the static nonlinearity.

N= number of data points to be used
x= measured input
y= measured output
delay= reflex delay in discrete-time.
i.e., DT_delay=CT_delay/sampling_rate

•

•

•

rank2mat

function [Vector]=rank2mat(N.x.y.delay);
% Vector=rank2mat(N,x.y,delay);
y.
y. This function computes the regressor matrix
y. for a 2nd order model of ankle dynamics.
y.
y.
y.
y.
%
%
Y.
Y.
Y.
Y.
Y.
Y. Vector= regressor matrix that contain a
y. compressed version of the correct
y. terms for Rob's model
%
y.
% Sunil L. Kukreja 8 June 2000
y. Copyright Sunil L. Kukreja
y.y.y.y.%y.y.y.y.y.y.y.y.%y.%%y.y.%y.%%y.y.y.%y.y.%y.y.y.%%y.y.y.y.y.y.y.%y.%y.y.y.y.%y.y.%%%Y.y.y.y.%%y.%%%%
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• rank2mati

This assumes the general structure of Rob's model
for the intrinsic path

This function computes the intrinsic regressor matrix
for a 2nd order model of ankle dynamics.

Inputs:
N= number of data points to be used
x= measured input

Output:
Vector= regressor matrix that contain a compressed version

of the correct terms for Rob's model

function [Vector]=rank2mati(N,x);
ï. Vector=rank2mati(N,x);
ï.
ï.
ï.
ï.
ï.
Y.
ï.
ï.
ï.
Y.
Y.
ï.
Y.
Y.
ï.
ï.
ï. Sunil L. Kukreja 11 September 2000
ï. Copyright Sunil L. Kukreja
ï.ï.ï.ï.ï.%ï.ï.ï.ï.ï.ï.%%ï.ï.y.ï.y.y.ï.%ï.y.ï.%ï.y.ï.ï.y.ï.ï.%ï.ï.ï.ï.ï.ï.ï.%ï.ï.%ï.ï.ï.ï.%ï.y.%%ï.y.ï.y.ï.ï.ï.ï.%ï.%y.•
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• rank2matr

Vector= regressor matrix that contain a compressed
version of the correct terms for Rob's model

This function computes the reflex regressor matrix
for a 2nd order model of ankle dynamics.

This assumes the general structure of Rob's model
for the reflex path but uses a 2nd order approximation
for the static nonlinearity.

number of data points to be used
measured input
measured output
reflex delay in discrete-time,
i.e., DT_delay=CT_delay/sampling_rate

function [Vector]=rank2matr(N,x,y,delay);
ï. Vector=rank2matr(N,x,y,delay);
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï. N=
ï. x=
ï. y=
ï. delay=
ï.
ï.
ï.
ï.
ï.
ï.
ï. Sunil L. Kukreja 11 September 2000
ï. Copyright Sunil L. Kukreja
ï.%ï.%%%%ï.%%%%%%%%%ï.ï.ï.ï.%ï.ï.ï.ï.ï.ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.%ï.%ï.%
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• rmmgs

Computations

- an m x n unitary matrix Q so that A_new = Q*R
- an n x n upper triangular matrix

The matrix A is assumed to be in two partitions. The
first, A', does not change while the second partition,
A", is updated or new. A=[A' A"]

This can be used when the entire matrix, A_new,
does not need to be re-orthogonalized. The
"updated or new" columns of A_new are orthogonalized
relative to the previously orthogonalized and unchanged
columns of A_old.

Method based on MGS algorithm in: Matrix
Gene H. Golub and Charles F. Van Loan
3rd Ed., pp. 231-2
The Johns Hopkins University Press, 1996.
ALSO SEE
Linear Algebra with Applications
Steven J. Leon, 3rd Ed., pp. 240,
Macmillan Pubilishing Co., 1990.

function [Q,R]=rmmgs(Q,R,A,c);
%QR factorization using the remodified Modified
%Gram-Schmidt (MGS) Algorithm
%
%Given the QR factorization of A_old, and the new
%updated matrix A_new
%
% [Q,R]=modreg(Q,R,A_new,c) computes the fast
%orthogonal-triangular decomposition of A_new
%
%
%
%
%
%
%
%
%
%
%
%Q,R - Orthogonal-triangular decomposition of A_old
%A - A_new mxn matrix m >= n
%c - number of columns of A_old that do not change
%
%Q
%R
%
%
%
%
%
%
ï.

ï.

ï.

%
.'. Al,. so see mgs.m
ï.

ï. Sunil L. Kukreja 09 December 1998
% Copyright Sunil L. Kukreja
ï.ï.ï.ï.ï.ï.ï.ï.y.ï.ï.y.%%y.y.ï.ï.%ï.ï.ï.ï.ï.ï.ï.y.ï.ï.ï.ï.ï.ï.ï.ï.ï.y.y.ï.y.ï.ï.y.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.y.%y.y.ï.y.y.ï.ï.ï.
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• rmt2

Vector=rmt(N,n,nx,ny,ne,x,y,e);

The regressor matrix is setup in the following format:

y= the output from the system provided by the user
PHI= the regressor matrix

This function computes the regressor matrix (PHI) in
a linear regression problem; i.e. Y=PHI*THETA

the regressor matrixhow Many rows wanted in
number of lagged inputs
number of lagged outputs
number of lagged errors
degree of polynimial

N=

n=

G_e contains the order in which terms containing
e only appear in the third partition of the regressor
matrix.

G_zu contains the order in which terms conta1n1ng
z and u terms appear in the first partition of the
regressor matrix.

G_zue contains the order in which terms containing
z, u and e appear in the second partition of the
regressor matrix.

function Vector=rmt2(N,n,nx,ny,ne,x,y,e);
%Forms a regressor matrix with specified dimensions.
%
%
%
%
%
%
%
%
%
%
% nx=
% ny=
% ne=
%
%
Y.
Y.
Y. Vector=[Gu Gzu Gzue Ge] where
y.
y.
y.

%
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y. Aiso see name.m
y.

% Sunil L. Kukreja 12 May 1998 (revised 2 December 1998)
% Copyright Sunil L. Kukreja
%%%%%%1.%1.1.%%%%1.1.%%1.%%1.%%%%%%%%%%%%%%%%%%%%%%%%%%%%1.1.%1.1.1.%%1.1.1.1.%%%%
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• simnarmax

model{1}=['5.1u~2(n-7)'];
model{2,:}=['3u-2(n-3)'] ;
model{3,:}=['-O.4y(n-4)'] ;
model{4,:}=['O.4y(n-4)*e(n-l)'];
model{5,:}=['-.2e(n-l)'] ;
model{6,:}=['e(n)'];

model - polynomial NARMAX model
The NARMAX model equation must have aIl coeffs in
front of the variables without multiplication sign;
e.g. O.5u(n-l).

To simulate without an input declare input=[];
To simulate without output additive noise declare noise=[];
e.g., y(n)=5.1u(n-l)+3u-2(n-3)-O.4y(n-4)+O.4y(n-4)*e(n-l)
-.2e(n-l)+e(n) would be specified as follows:

Crossterms are written vith a multiplication sign
between the varaibles and the coefficeint in front;
e.g., O.5u(n-l)*y(t-3)
Do not put a plus in front of leading terms;
DO NOT DO THIS: e.g. model{2,:}=['+3u~2 (n-3)']

equation

the input
the output
the noise
the dis crete time step

specifies
specifies
specifies
specifies

Function Inputs:
input-system input
output-system output
noise-system noise
model- polynomial NARMAX

function [output]=simnarmax(model,input,noise);
%Simulate a polynomial NARMAX model
%
%Function: [output]=simnarmax(model,input,noise);
%
%
%
'le
%
%
%
%
%
%
%
%
% 'u'
% 'y'
% 'e'
% 'n'
%
%
%
%
%
'l.

%
%
'l.

'l.

'l.

'l.

%
'l.

'l.

'l.

%
'l.

'l.

Y. Copyright Sunil L. Kukreja 24 July 1998
'l.'l.%%%'l.%'l.'l.'l.'l.'l.'l.'l.'l.ï.%ï.%%y.%%%%%%%y.%'l.'l.'l.'l.%%'l.'l.'l.'l.'l.'l.'l.'l.ï.%%'l.%y.%'l.'l.%ï.ï.%%%%y.y.y.%y.%
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•

•

•

swr

function [thetan,vlabel]=swr(PHI,y,vlabel);
% Stepwise Regression Algorithm
%
% [theta,vlabel]=swr(PHI,y,vlabel)
%
% PHI - Regressor matrix
% y - output
% vlabel - name vector
%
% theta - reduced theta
%
%Method based on SWR in: A prediction-error and
%stepwise-regression estimation algorithm for
%nonlinear systems
%S.A. Billings and W.S.F. Voon
%Int. J. Control, vol. 44 No. 3 pp. 803-822 1986
%
%also see
%
%Applied Regression Analysis
%N.R. Draper and H. Smith
%2nd edition, John Wiley and Sons, 1981
%
% Copyright Sunil L. Kukreja 11 May 1998
%%%%%%%%%%%%ï.ï.%%%%%ï.%ï.%%ï.ï.ï.%%ï.ï.%%%%%ï.ï.%ï.ï.%%%%ï.%%%ï.ï.ï.%%'l.ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.
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conf_level - 80, 90, 95, 97.5, 99 or 99.5 percent

Outputs:
thetan - parameter vector with significant terms

Function:[thetan,vlabel,err,std_theta] =t_test Cvlabel, lenu,
theta,PHI,std_theta,conf_level,n,nx,ny,ne,x,z,err);

vlabel - vector conta1n1ng the variables associated
with each row of theta (see name.m)
estimated parameter vector
standard deviation of parameters Csee ls_std.m)
standard deviation of parameters

z - output
x - input

err - residuals
ny - output lags
nx - input lags
ne - error lags

function [thetan,vlabel,err,std_theta] =t_testCvlabel,lenu,
theta,PHI,std_theta,conf_level,n,DX,ny,ne,x,z,err);

t-test Standard deviation of parameters using least-squares
methods.

y.
y.
y.
y.
y.
y.
y. Inputs:
y.
%
Y.
Y. theta ­
y. std_theta­
y. conf_level ­
ï.
Y.
%
ï.
Y.
ï.
Y.
Y.
Y.
ï.

ï.
ï.
ï. Method based on t-test in: Linear Regression Analysis
ï. George A.f. Seber 1977
ï.
ï.
Y. Sunil L. Kukreja 12 May 1998
ï. Copyright Sunil L. Kukreja
ï.y.y.y.%ï.y.ï.y.ï.ï.ï.y.ï.y.y.y.y.y.ï.ï.ï.y.ï.ï.ï.%ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.y.ï.ï.ï.ï.ï.ï.ï.ï.y.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.
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[std_theta,sys_theta, init_theta ,vlabelJ
=vor_high(u,y,index);

This function computes the parameters for a
high-pass VOR system.

The structure in this function is assumed to
he known, e.g. n=3, nx=l and ny=l which corresponds
to 3rd order nonlineraity and first arder
dynamics on the input-output terms.

FUNCTION INPUTS:
u= the input
y= the output
index= the start and stop indices of each segment,
e.g. 12 3451

1678 9821
where 2 and 678 are the start points and 345 and
982 are the stop points of the segments
FONCTION OUTPUTS:
std_theta= std of estimated parameters
sys_theta= the identified system parameters
init_theta= the identified initial conditions
vlabel= the row labels of the theoretical and

identified parameters

•

•

•

vor-high

function [std_theta,sys_theta,init_theta,vlabelJ=vor_higheu,y,index);
y. Identifies the slow phase parameters of the VOR
y. system with initial conditions
y.
y.
y.
%
Y.
%
Y.
Y.
%
Y.
%
% Assumed Model Structure eHIGH-PASS):
%(3rd Order) _

y. NL Input + 1 KS 1

%----------->1 ------------- 1--------> Output
% 1 tau S + 1 1
% 1 --- 1

% Linear System
%
%
Y.
%
%
%
%
%
%
%
%
Y.
%
Y.
Y.
%
Y. Sunil L. Kukreja 20 January 2000
% Copyright Sunil L. Kukreja
y.y.y.y.y.%%%y.y.y.y.%y.%%%y.%y.y.y.y.%%%y.y.%%%%y.%%%%%%%%%%%%%%%%y.y.y.y.%%Y.y.%%y.%y.y.%%%
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• vor~ow

[std_theta,sys_theta,init_theta,vlabel]
=vor_low(u,y,index);

This function computes the parameters for a
low-pass VOR system.

The structure in this function is assumed to
he knowo, e.g. n=3, nx=l and ny=l which corresponds
to 3rd order nonlineraity and first order
dynamics on the input-output terms.

FUNCTION INPUTS:
u= the input
y= the output
index= the start and stop indices of each segment,
e.g. 12 3451

1678 9821
where 2 and 678 are the start points and 345 and
982 are the stop points of the segments
FUNCTION OUTPUTS:
std_theta= std of estimated parameters
sys_theta= the identified system parameters
init_theta= the identified initial conditions
vlabel= the row labels of the theoretical and

identified parameters

Output

Assumed Model Structure (LOW-PASS):
(3rd Order) _

NL Input + 1 K 1

----------->1 ------------- 1-------->
1 tau S + 1 1
1 --- 1

Linear System

function (std_theta,sys_theta,init_theta,vlabeIJ=vor_lowCu,y,index);
%Identifies the slow phase parameters of the VOR
%system with initial conditions
%
%
%
%
%
%
%
%
%
%
%
%
%
%
ï.
%
%
%
%
%
%
%
%
%
%
%
%
ï.
ï.
ï.
ï.
ï.
ï.
ï.
% Sunil L. Kukreja 10 September 1999
% Copyright Sunil L. Kukreja
ï.ï.%%ï.ï.ï.%%%ï.y.%%y.%%y.ï.ï.ï.ï.%ï.ï.%ï.%%ï.ï.ï.ï.ï.ï.%ï.ï.%ï.ï.ï.%%ï.ï.ï.ï.ï.ï.ï.ï.y.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.ï.
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EPILOGUE

Ta read a poem (sa the King 01' Hearis told the White Rabbit), "begin at
the beginning and go on till you come ta the end: then stop." Theses,
like poems, are sequentially ordered structures, and thus inevitably have a

beginning and an end (although very painfully reached); this is the final
paragraph of this thesis. But the theory of parametrie system identifica­
tion, as we have seen, is not simply a cascaded arrangement of tapies.
There are multiple loops and branches, many parallel and erossing paths.
Most ideas are linked directly and indirectly to many others. There is no
simple step-by-siep route by which this multidimensional web can be sys­
tematically explored and comprehended. There is really no beginning, and
no end. We cannat expect ta appreeiate one tapie Jully until we have con­
sidered others. And so we must continually circle back to examine earlier
concepts from a new vantage point.

- Adapted from Circuits~ SignaIs, and Systems
by \Villiam ft1. Siebert [138]


