N

- i 4 ' r 4
[
.
i -
' .

A GENERAL PURPOSE GRAPHICS SYSTEM FOR A SMALL COYPUTER

o L]

Tinothy 0'Brien McNeil, B.Eng.

-

. A thesls subnitted to the Faculty of Graduate Studies and Research
. )
in partial fulfillment of the requirements for the degree of

Master of Engineexrlng,

- Department of Electrical Engineering,
' : McGill ‘University, ) -
= Montreal, Québec.
{> Maxrch 1973. ) ‘

I

°
U o . { ”
L] s L N
. s '
) -
o

21

. "~ (© Timothy 0'Brien McNeil ' 1974




\

*ABSTRACT

.
—— T

This thesis presents an implementation of Bell Telephone

Laboratories' BELLGRAPH software system on [icGill's disc refreshed com-
puter grap:hics display. By modifying and installing an existing software
package, it was possible to take advantagel of forty man-years of effort

and experience in the construction of a sophisticated, interactive graphics
system complete with its own high level graphical programming language.

The special considerations and problems encountered in trafsforming a

large operating system designed to drive a core refres}aed display into

(o]

one capable displaying on disc refreshed hardware are described. Certain ..

¥

features of a disc refreshed graphics not attalnable inl systens refreshing

from main menory, such as improved background pro’cessing are also outlined.

~r P
ERUIEN

'X‘.'

“3




ABSTRACT
) -

Cette these préscute une realization sur le systeme graphique
regeneration par disque & 1'Université NMeGill, du systime de programma-
‘tion I;EiLLGRAPH qu'ont developpé les laboratoireé du Bell Telephone., En
modifiant et en’ installant un systeme develop;?é i1 a été possible de
profiter de 1'inv;stissa'nent d*une qua.ranta.i:r.% d'homme-années d'effort
et d'expérience dans la con;tmction d'un syétééue graphique interactif
- avancé qui comporte un language evolvé de programmation graphique. Les
considérations et les problémes rencoutrés en transformant ce vaste K
systéne 4de programnation congu pour un systéme graphique regeneration paxr
1a memoire centrale pour urJ Isystéme Tregeneration par disque son‘t présentés,
Ceftains traits, qui ne sont possibles que sur un systém@‘é’generation par
disque, tel que 1w traitement amelioré de programmes non prioritaires,

-

- sont esquissés,

A



141

ACKNOWLEDGEMENTS

+

I wish to express my sincsm thanks to the many people who con-

tributed to this project.

The guidance, assistance, and patience of my thesis advisor,

Dr. M.D, Levine is much appreciated.

Thanks axe due to Dr. A. Malowany who stimulated many ideas during

, our innumerable discussions.

I would like to thank Larry Rosler, Marty Welt, and Elain Yamin ,
at Bell Telephone Laboratories for providing the BELLGRAPH software and

asslstance in its implementation,

Thanks are due to Juhan Lemitt, who wrote all the PIP-8 prograns,

.

and maintained the graphics hardware.

I an indebted to Chris Thompson at "the Montreal Neurological
Institute who provided machine time on their busy PIP-12,

The many discusgsions on xany diverse toplcs with Doug Skuce and

4

” Ron Poulsen helped the author maintsin his sense of humcur throughout it all,

I especially thank my future bride, Louise, for hex encouragement

and understanding. She also d1d an excellent job in typing thie thesis.
NANEYE . :

b
ANETLE
x»' ."("A)

v The research was supported by the National Ressarch Council,

i




ABSTRACT

ACKNOWLEDGEMENTS

G

4

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER
CHAPTER

CHAPTER

CHAPTER

I
II

- * L ] -*
L] -

*
WLWWWWW NN NN
L]

NNNNN!\)NNNNN
- e & -
AR FWDE W

III

WWWWWWWWWW
= \0 003 OMn F\W N

o

-
<

L]
a

FF’&'PF’?‘F‘FF‘G’F’F
FFEFFFFFFFODR

® @
L ]
PN NN EWN -

~

3
/

INTRODOUCTION

EXISTING GRAPHICS SYSTE!NS

The Sketchpad System
Graphics Hardware

Sy'stem Configuration
Types af Display Hardware
Hardware Sunmmary

. Graphies Software

Introduction

Data Structures o
Data Structure Summary !
Graphics Languages

Graphics Language Summary

THE McGRAPH SYSTEM

Introduction '

McGRAPH's Hardware

The Display Processor

Disc Displdy Refresh

McGRAPH's Software

The GRIN Language

The Operating Systen (GZSYS)
Graphics Device Simulator 20251)5)
The Library Editor System (G2LIBE)
Summary .

GRAPHIC DEVICE CONTROL PROGRAMS

Introduction

Baslc Requirements
System Implementation
GRAPHIC-2 Simulator Progran
Display Disc Control )
Tracking Pattem

Edge Detection "

HMargin Trap Commands

The Console Keyboard

The Pushbutton Lights

The Pushbuttons

‘The Display Processor

?

[ =

S

iv

Page
i, 1%

111

iv

JIAARJRTIIZK

R
B e

N

Al



- i Page
L.s DEC 339 to McCGraph IPU Command Translation 7?8
4,54 The Character Command €CH.A.R) ‘ 79
4,5,2 The Parameter Command (PARAN) ' 80
4.,5,3 The Absolute Point love Command (X-Y) 82
k.,5.4  The Long Vector Move Command (VECT) . 8L .
4.5.5 The Short Vector Move Command (SVEC)" 91 <
k,5.6 Edge Detection Program 91
4,5,7 The Control Command ' 92
4.5.8 The Trap Command 93
b6 The Light Pen Handling Routine ‘ ol
L,7 The PDP-8 Graphics lonitor 100
olt, 7,1 Introduction 100
4,7.2 Tracking Pattern Algorithm 102
k,7.3 PIP-8 Graphics lonitor Users Manual 105
CHAPTER V THE GRAPHICS LANGUAGE ASSEMBLY SYSTEH 110
5.1 Introduction : 110
5.2 Assembler Implenentation 112
5.3 The Prevrocessor : S & 1
5:.3.1 The Operate Instruction Set 115
5.3.2 The IOT Instructions 117
5.3.3 The EAE Instructions 118
5. Preprocessor Error lessages 121
5.4.1 *¥#¥ERROR*** Undefined Operation 121
54,2  #¥*ERROR¥™* Invalid Syntax 124 -,
5.4.3 Too lany Bad Symbols . oy 124
SJi 4 #**ERROR*** Arg List Too Long - Use ETC Statement 124
504,55  #*%CE MACROM* 125
54.6 A List of all Symbols of Illegal Syntax 126
544,77  #*ERROR™** If Operand is Absolute Precede all —*-
References to Label by *+°* . - 129
5.5 The Assembly Step 130
5.5.1 PIP-9 Assembly Language Implementation 132
5.5.2 Memory Reference Instructions 132
5.5¢3 The ZERO-and ADRS lNemory Reference Operations . 135
5.5.44 The DEZCML and'OCTAL Operation 135
5.5.5 The BCD Operation , 136
5.5.6 The EQU and EQUR. Pseudo-Operations 136
5.5.7 The BOOL Pseudo-Operation 137
5.5.8 The NULL Pseudo-Operation 138
5.5.9 The ENTRY, SYNIEF Statements ) 138
5.5.10 The EXTERJ, SNREF Statements ) ‘ 138
5.5.11 The CALL Statement 7 139 N
5.5.12 The DEBUG Pseudo-Operation - ' 139
5.5.13 BELLGRAPR System Symbols , . 140
5.5.1% Blank Operand Fleld T
5.5.15 Statenent Continuation ‘ b1
5.5.16 Progran Control Statements 142
5,6, ' Software Execution of Indirect Memory References - 1i3 T
5.7 Software Execution of Graphics IOT Commands - 148 :
5.8

The Postprocesser Step 149
-‘, - ! K




APPENDIX A
APPENDIX B
APPENDIX C
BIBLIOGRAPHY

-Background ‘ {

DISCUSSION AND CONCLUSIONS

Implementation

McGRAPH's Refresh Policy R
Future Extensions

Conclusions

SIMULATED DEC 339 PROCESSOR

IBM ASSEMBLY SYSTEM ”

SYNTAX DIFFERENCES BETWEEN GR;NZ AND McGRIN
b

- 184

Pagse
151
153

155
156

Al
B1
C1

L1



¥ e CHAPTER I
INTRODUCTION

The lack of effective communigation between man and computer
has 1imited the more intimate use of machines in almost all human en-
de\;ours. To be truly effective people should be able to deal directly
with the machine doing their bank%ng, reserving their airline seat or

.

calculating the stress in their mechanical design.

-t

| Major efforts have been made towards making computers user
I
oriented. In the last decade higp }evel programming languages such as
3 ALG& and PL/1 have been developed with an "English-1ike" syntax and
powerful diagno‘stic support. Timesha.ri;g systemns provide each' user his

own terminal through which he can communicate using a conversational

. language such as APL,

A curre-nt area of interest is getting the co;nputer to compre-
~y hénd data in a form noxre natural to humans than to machines. Optical
readers can now be obtained which input data directly from a typewritt;n
page instead of going through punched cards, magnetic tape, or a keyboard,
Systems which recognize hand writing are also being built.expox_'ilontal]:y.
The computer comprehension of pictorial t;ata has produced;ao-o of the
most rewarding results. Uainé cathode ray tudes (CRT) or television as

4

output devices, computer graphics systems have drawn pictures ranging

. from two acu\ensxom graphs of mathematical results to thres dimensional

‘ s
*y ﬁ?’
. .

%
A



3

colour stenes moving in real-timé. For example, animated cartoons have

been generated by machine through the use of compﬁter graphics.

Another highly exploited use of computer graphics is the
} broad field of computer—aided‘deelgn. An engineer using a light pen
sketches a machine part on the CRT screen, checks its interaction with
ad joining pieces and computes the stress within it, altering his original
idea as he goes until a finished 'design Yesults. The cc;mPutar f.hen pre-
pares the paper.tape used to control an automated machine tool used to ’

cut -the paﬁ. Similar design systems exist for the automated manufac-

turing of integrated circuits.

third example of ther use of computer graphics is pattern

‘ recognition. | High energy physicists spend long hours studyling bubtble

chamber photographs in an attempt to discover sub-atomic events, Physi-
ETY ’

clang pore over X-ray phot;:graphs or microscopes to aghieve ‘& diagnosis.

Weather forecasters use pictt.tres sent by sattelite in arrivin} at

their predictidns. A sechdme which would compress the data stored in a

picture into a few descriptive stateaents would be a powei'ful tool in
many areas,

- This \thesis is concerned with the development of the genexral

) . purpose graphics st;- at NcGill, éapabie of being used for both computer-

aided design and pattern recognition probleas. In Chapter II, a brief re-




view is give.n of existing systems in an attempt to familiarize the reader
with this field’. and provide a basls for the design considerations of “
McGRAPH. The remainder of the thesis thehi describes a general pixrpose
graphics syste‘m for picture synthésis using a small computer. Throughout

the thesis the special problems introduced by picture analysis are also

v Wl\entioned and discussed,

e 2 )
\ ‘ ) N
. . .

)

4.“




i,

s " °.  CHAPTER II :
EXISTING GRAPHICS SYSTEMS ¢

2.1 The Sketchpad: Systen:
<> ’, . .
"Sketchpad”,! a graphics system bullt by I.E. Sutherland at

MIT in 1963, ’dramatically demo}astrated the computer's ability to generate
and display éémplicated drawings. Using togzgle switches, pushbuttons,

( knobs and a light pen one could dra\;: figures on a CRT screen and then
. O [}

rotate, magnify and move them ardund. For exanple, by depressing\ the

"DRAW" pushbutton the computer traces out a straight 1ine stretching like

L]

a rubber band from some initial ﬁoint to the current position of the light

pen, Circle arcs awe constructed in a similar manner by depreéssing the

"CIRCLE CENTRE"™ pushbutton to define’ :1ts‘posit1nn Pnd ‘then choosing a
- point on thé arc ‘and pmssirré "DRAW"*to define its radius., The iqngth ’
of the circle arc is c’ontrolled by the light }/en position -(see F‘igur; 2.1).
o . ’ .
To illustrate Sketchpad%s operation, let us construct an equilateral t;‘i-
angle by '1nscr1b1ng it in a circle., First we drawda lcircl.o_ and any tri:-
angle using the techniques described above, By p’oiru[;l_g\t'ot a “corner' and
depressing the "MOVE" pushbutton we can drag the corner onto the circle.
{d‘ter all three corners have beenp constrained to the circfe. each si‘:le
can be made equd by turning on the "EQUAL" toggle switch and pointing to
each line. The circle can be deleted via the pushbdttog\ "DELETE".. If we

wished -to make a pattern using this triangle, ‘we could copy it with the

-



()

FIGURE 2, f-'

2

\/

DRAWING SEQUEVICE TO CONSTRUCT mmm TRIANCLE
USING SKETCHPAD.

s !
-

Y:".I" -
S PR
“\#¢M\.~ Sk

Womnsmn's



o

—

ol
"COPY" pushbutton, rotate the copy using one of the knobs and attach it
N ’\ . K
to the first, We could then copy this cogp/osite drawing and attach it
to its twijj( see Figures 2.2 a - d) and so on, building up a compli-
cated pattern from an initial simple object. To Qha.nge the pattern to

that in Figure 2.2 e, ve c2ll batk the original triangle and redefine it

as a semicircle, Q‘

From this simple example we can see a number of‘iconcepts which
ﬁave become standard in subsequent systems, For instance, the light pen
to indicate position and move objectas. A number of other positional de-
vices also have appeared such as the RAND tablet, joystick and tracking
mouse each having their own strengths and weaknesses but effectively per-
forming the same function. Pushbuttons are still% popular input device
foR-indicating choice although light pen sensitive "light buttons" have
been universally accepted. A light button is a short piece of text (e.g.,
MOVE, DRAW, ERASE) displayed on the screen along with the picture which
when hit by the light pen ‘interrupts the computer and indicates the
operator's choice; They have an obvious advantage over push‘but'u‘ms since

they require no extra hardware and are more casily interpreted by the

L

-

user as the text displ}.yed describes the function attached to it. Also,
k

they provide greater flexibility since light buttons can asppear and disap-

| pear depending upon the choices available to the operator. Another con-

>
-

-




(4)

The Effect of Redefining The Basic
Primitive From a Triangle to Semicircle.

FIGURE 2.2,  DRAVING SIQUENCE TO CEVRATE PATTERN USING SKETCHPAD.



cept generally found in interactive graphics systems is the description
of pilctures in terms of its component parts. A facility is usually

avallable for selectively ;oving. copying, rotating or erasing any pic-
ture or subpicture. lThis hierarchical description of drawinés has pro-

found impact on the ménner in which data is stored in the computer, We

shall elaborate on this topic in the section on software,

Sketchyad evoked basic relationships between picture parts *~
through the use of toggle switches., In our example, the sides of the
triangle vere made equal by turning on the "EQUAL" switch, Other con-
s;raints such as PARALLEL, VERTICAL, HORIZONTAL were also avalilable.
Additional constraints could be added by writing assembly language pro-
grams and ;ncludi;g them in the system. Sutherland1 gives an ;xample of
tracihg out the movement of threg connected bars under the conditions
of 4o Joints fixéd and a driving force on the third, This ability to
define interrelationships (bésides topological) and to simulate some
action based on a given condition, is an 1mport§nt feature, In many in-
stances, the usew-defines a model (e.g. circuit/diagr;m, molecular con-
figuration) using the graphics console and studies its responss to
given inputs. The picture drawn is merely a convenient representation

of the operator's problem in a notation familiar to him. It is the com-

puter's responsibllity to translate this into a form which it can
. N



) sof'tware.

i
'

use in performing the required computations. Thls capability, essential

to all interactive gré:phics systems 18 also discussed in the section on

To appreciate how.a graphics terminal functions, however, we

must first look at the hardwar.e available, then investigate the progranms

used to draw pictures and input operator attention signals.

. ~n
]

2,2 Graphics Hardware

2.2.1 Systen Configuration \

Graphics terminals used for computer-aided design consist of

a CRT and some positional input device (1light pen, joystick etc.) con-
*

nected to a small local comﬁuter which in turn is interfaced to a large

remote time-sharing system. In the early systgms, such as GRAPHIG-16

and DAC--i.7 all real-time responses plus plocture Mﬂs computation

were handTed by the remote time-shared machine, and .the local processor
pmﬁded merely a terminal }nterface. The slow response tine of these
systens was a source of user annoyance and greatly limited their useful-
ness. The DAC-1 system attempted to alleviate user impatience by special
messages, end audidle b;ua reassuring the o?eutor that the system was

working on his problem and would return shortly, With the advent of

g




10
5

2
e

‘ S powerful mini-computers, the con:puting load shifted away from the large
central processor to the local computer. By handling the real-time inter-

v actions locally and transmitting only data req‘uiring computation, one can

significanily improve the response time and cx‘n communication costs., In

this configuration the central computer, freed of all graphical bookkeeping

becomes basically a large bulk storage and computation unit,

2.2.2 Types of Display Hardware

There are three major classes of displays currently being used
‘ in graphics terminals: calligraphic, TV raster and storage tube,. A brief

comparison of thesg displays is presented here.

z . , b}

(1) Calligraphic Display:

Modern calligraphic systvems have a display prooossilng unit (IPU) ‘
: connected between the local computer and CRT (see Figure 2.3). This pro-

. . y ,
cessor accepts display commands from a direct memory access channel (DMA),
and translates them into analog voltages which position md intensify the
bean, Hence, the picture is "painted" on the screen in a sequence specified

. | by a command list in core., The powsr of these IPU's varies widely from

- ~

o ot . A R e

B -3 ¥ - * [
e ' < « N - . PR
BT T O D 3 L 2L e e et T ey n S



Mini-

. Computer

; Core

Display
Commands

Memoxy

Processoz‘gz

Control Lines

Y
Processor 7

<

FIGURE 2.3.

Light Pen
Analog
Outputs
I~

- /

N~

| \\ ,

N~

1

X Register

Y Register

Paraneters

CALLIGRAPHIC DISPLAYS.

It




g ; ‘ 12

. h
. f{f
¢

kit

5.
simple beam movements to providing selective tnking, dashed lines,
windowing or three dimensional ﬂfojections. Some IPU's also have an ar-
ray of registers which can be read by the computer, An example of such

a set might be:

y I-G‘
1. Display status register (b1Ink on or off,

.

intensity, scale etc.).
2. X and Y co-ordinates,
3. Core address of current command,

Sopm’sticated IPU's have a display subroutine command so that

. different instances of the same picture part need not be repe;ted in coxe,
This 1s a métly option,’however, since toﬁpa\ truly effective the I?PU
nust stack display pametere; (pod.ti%lb. 1nten§1ty scale, orientation,

A
e‘lgo.), as well as return addresses, When hardware costs decrease suf-

ficlently t6 make subroutining feasible it will have major impact on the

design of graphics software especlally its data structures. Other useful

uddiuons are "vd.ndowins" circuits preventing lines which go off screen
fron «mpping around and appearing on the other ddn. and 3-D projection
generators to translate X, Y, Z beam movemsnt commands into perspective

views of a 3-D object.

L




v ot 13

{’i\ﬁ'

Calligraphic disﬁ‘];ays normally use the light pen as its posi-
tional input device. A program can immediately retrieve position and
Picture part identification from the DPU on a light pen interrupt since
it occurs at the precise instant the display is drawing the part hit.
Other posltiggal input de&ices provide only X, Y co-oxrdinates which

must be mapped into part identification.

The disadvantage of calligraphic displays is their cost,
Since they are continuously refreshed, a segment of high speed m:mory
(minimum 4K) must be dedicated to the display. Flicker also can become
objectionable if the drawing becomes too complex. The IPU is another

high cost iten being a speclal complicated piece of hardware,

(11) T.V. Raster

A second popular display uses a T.V. monitor with a standard
_ broadcast raster scan’(see Figure 2.4)., This is a less expensive systenm
since \post of the hardware driving the screen, such as deflection yokes

and amplifiens etc., is mass produced, A pleasant by-product of T.V,

cs is its abllity to generate ‘solid:objects instead of line 1
drawvings. I.E. Sutherland's group at the University of Utah has proGuced

some beautiful computer generated 3-D pictures of solid objects in oolonr.3 .




' Mini-
- Raster Interface
f Computer

P For Mapping Vector
= Commands Into In-

Data

Sequencer

(Coxe or Disc)

tensified Points on

the Screen,

FIGURE 2

M, T.V. RASTER DISPLAYS.

7t




. 15

The screen of the T.V. monitor is comprised of an array of
points (normally about 480 x 480) and is refreshed by a continuous
sweep of a memory, which contains the intensity (and perhaps colour) of

each point.

The major disadvar;tage of T.V., raster graphics 1s the large
amount of storage required for the array, and the probvlem of mapping
lines and curves into it. 'Time taken to put up a new picture is measured
in minutes due to this transformation problem if done by software, Micro-
programmable hardware has beer; built to perform this mappling ;.n a mattezj
of seconds8 btut of course, this decreases the cost advantage of T.V, Also,
even at this rate animation such as <noving\a tracking cross or picture is
impossible in real-time, Another difﬁ.c‘:ul{c{y with T.V. is the information
available from input devices, The x-r" co-/ordinate positional devices
such as joysticks, RAND tablets, etc. are favoured here since a light pen
will not give position directly due to the interleaved scan. To determine

which picture part is selected, a search of the data structure is required,

( & °

(111) Storage Scopes
Storage scopes are capable of drawing very complicated scenes

without flicker, and require no memoxy of their own,. “fheir disadvantsges

<




16

a:re their\ slow drawing speed and inability to provide selective erasure or
anination, In interactive systems using storage tubes as graphics terminals,
a special processor called a "smart téminal“ is connected between the dis-
p’lay and large remote computer (see Figure 2.5). This processor handles

the operator's real-time~re‘quests by drawing a cross (X) <through an object
to be deleted and adding'a; new instance: to simulate movement of an object.
In this mode, the screen soon becomes cluttered with antifacts of p.a'st re-
visions forcing the user to request a cleanup, The “smart terminal” then .

sends ag&xpdate list to the central machine and waits for a fresh display,

In the meantime the operator can go for a coffee,

2.2.3 Hardware Summary

The choice of display depends very nuch on the ;pplication.
Where fast response, fine resolution. and anination are required. calli-
graphic displays are used. In applications where costs override these
human factor nicetlies and resolution capabilltiés. T.V. 1ﬂs the next -~
cholce. T.V.'s also provide the best nea.ns of displaying eoiid gbjecta.
Other systens requuée a high resolution output device and do. not need

graphic interaction. In this case a storage screen provides the best

sexvice. ) &

¢
B L
$ .o
K . B P
. f % N 4 s



Computer

Terminal

<N

(Mint or Large)

FIGURE 2.5.

~1

“STORAGE  SCOPE

GRAPHICS.

¥

e
1/
L3
-
<
4t
el
’l
hg“
[ -
~3
{




/o

18

2.3 Graphlcs Software

2.3.1 Introductign

Software implies the data structure used to organize stored

information, the operating system programmes used to access this data

and handle input/output devices, and programming languages which allow

‘the user to write prog:jams to solve his problem, In this section, we

shall briefly review the software used in interactive graphics systems

with a view to making soﬁe Sudgenent statements concerning what is re-
- {!,<

quired to build a good graphics display.  mentioned
here drive a calligraphic display since this affords the best interaction

N AN .
between man and machinei.. The use of other displays would alter signifi-

)

cantly the software design. i

» First, we shall illustrate by an example how a graphics pro-
gran bullds its éata st,ructur;e from the operator’s light pen inputs. We
then s;nall present other data. structures capable of the same fu:wtion but
having added flexibility., The discussion of data structures is followed

¥

by & review of graphics languages and their use, ° i

™



.

i

2.3.2 Data Structures

A\characteristbc of graphic displays is thelr ability to

.

generate large complex drawings starting from a few primitives, or in the

limit'. from a blank screen, oDuring the drawing procgss, many parts may

g ™™ drawn, moved and discarded, as the operator sees fit., It is evident

a dynanic memory naPagement scheme along with a flexible data structure ~

1s needed to represent the picture as it expands and shrinks, To get a

feel for how this is done, let us look at the-data structure in "Sketchpad"

and see how it is manipulated during the drawing exercise descrihed at the

-

Y

beginning of this chapter. .
1

Y

All geometric.objects in Sketchpad are defined bty their c;om-
ponent parts. For ekample, in the triangle constructed at the beginning
of this chapter, we define the line "L1" by péi»z&ta "P1" and “P2" and
_likewise. "L2" 4n terms of "P2, P3" and "L3" 1in teczfns of "P3, P1".
Triangle T1 is in tum defi:ned by lines "Li, L2, ~L3". The data struc-
{um preserves these hierarchical relationships using a system of rings
implenented as two-way lists, Each object is'represented in menéry by an
n-component block of contiguous registers (Figure 2,6) containing the
block type, (e.g. point.'lin;) pointexrs to the next mesber of its ring,
and in the case of i)oi.nt blocks, its X, Y eo;ordj.mto position. For_
empie, in Figure 2.6, line block "Li* heads ‘q\ two-directional 1ist

containing point blocks, "P1* and “P2", N

. A



G —D
TRIANGLE . TRIANGLE
‘ TN TRIANGLE ] TQ
1
| N -4
o v — T LT I .._lq
«F
1LINE . ‘ LINE LINE
- -~
o 11 12 | 3
i Gy £ & : )
: R1 . @ i ‘
’ .
S POINT POINT 1. POINT
Pt | |. 2 P3
P R IR3E? X2,Y2 3,13
~ \ - - —H 4~ i

R ] ]

FIGURE 2,6. SKETCHPAD DATA STRUCTURE.

0e



Similiarly the triangle block "T1i" heads a ring composed

of 1ine blocks "L1, L2, 13". Note each block has a-pair of pointers

for each ring, one pointing forward and one pointing back, When adding

or removing a block to a ring the pointexrs in the preceding and following

-blocks must be changed. . These*blocks are easfly found using the forward/

A

reverse pointer pairs, I
&

Although'not included in Sketchpad, a tl\ﬂ.rd pointer to the
y .
staxrt of the ring 1s a useful device and is sometihes implehented. For
example, let's select triangle ;"I‘Z". in our display by hitting line "L2"
with the light pen. To find the triangle to which "L2" belongs, we must

/
chase the pointers around the ring until the ring head identifying the .

triangle is reached., If each block had a third pointer to the ring head,

. this information is found directly. This scheme of pointer triplets

creates overhead which is usually intolerable in minicomputers. Hence,

compromises are made, For example, CORAL® uses two pointers per ring

in each block. K One is used as a fo;warcf‘pointar. The other is used as

™ ~ e

a ring head polifiter in every second block and a back pointer in evexy

other one, (See Figure2,7).
’ \

Note that in these two systems ro mention is made of the n>f1

conmands needed to drive the display. Sketchpad used a program to txaverse

the data structure and generate a contiguous list of X, Y positions of in-

1
'




22

"HUALOMMIS VIVQ IVdOD

VY 3




23

tensified points. The rudimentary DPU read these values and generated

the corresponding image, An alternate approach is to imbed the DPU com-

11

mands in the data structure itself, BELLGRAPH's"" data structure does

‘this in a clever fashioh which effectively provicies display ‘subroutining.

BELLGRAPH's data structure is a directed graph (with no closed
loops) -comprised of a set of nodes c;onnected by branches (see Figuxe 2.8),
The branches have a direction associated with them, i.,e. they poigt_from
one node to another. The terminal nodes called leaves have spedaijiéig-

nificance in that they are the only blocks containing displayable commands,

Each node represents a particular sub-part in the picture and each branch

represents a parti;cula.r instance of the node to which it points. .The dis-

play parameters associated with each instance (e.g. position, scals,
orientation) are stored in tlfxe branch blocke. ‘As the disp;lay progran
traverses the data stmcture; ihe bra.nch' addresses are stacked, which ef-
fectively stacks the display 'paramete:rs, thexreby achieving tme'display‘ .
subtroutining as mentioned in the previous section. Figure 2,8 {llustrates
the effect of changing the orientation parameter in a branch block. Un-
1ike Sketchpad, the basic primitives (i.s, leaves) can be defined to be

more than just single lines therety reducing considexably storsge require.

ments, In Figure 2,8 the smallest indivisable pictuxe elements are tri-

angles and rectangles,

/

*




. ‘!)7{".
) ‘{

-

Branch X=00, Y=100 Branch
Parameters '0° Rotation B1

n

Branch X=150, Y=100 ~ Brarch

y
B2 90° Rotation Paraneters
X=-10, Y=0 ' Branch X =410, Y=0
| B3
' A | = = 8
s
e |
‘ (v)
i Resulting Display of Above Data Structure,
® FIGURE'2,8.  BELLGRAPH DATA STRUCIVAE.
\\ ‘ i ) -

o




25

One of the ma jor problems confronting designers is to ﬁ:nd a
data structure contalning the graphic data such that it can be quickly o
supplied to the display processor for display refresh, and ye'!i conta;n |
sufficier;t .':nfomation for the background analysis program., For example,
Figure 2,9 illustrates two representations of the same circuit, One is

used as input to the display prograns the other for frequency response

calculations., -

BELLGRAPH approaches this.problen by including non-display

data blocks, connected to each branch, {ised to store information cone

cerning the instance,

Another technique is to use two data structures. Ons, stored
at the central computer, defines the organization of the pictures and
stores information pertinent to the ;n;ﬂ.ysis prograns, The other data
structure 1s maintained at the remots station and is used solely for dis-

J .
play and attention handling, The UNIVAC graphics systeniz

for example,
- has a data structure in the maln computer which contains all information
concerning the display data, A’ condensed version of this stxucture

~ giving the organization of the currently displayed picture, is concur-

rently naintained -at the teminsl slong with another dsfs structure used

‘ -~
foxr display and operator selection,




NI

Graphic Representing of Low Pass Filter

1/ jwe ,
R+ 1/ jwe

H(jw) =

L4

llathenatical Representation of Low
Pass Filter Frequency Response

Low Pass’
Filter

N =N —t—

Resistor Capacitor Line
Computer Graphics Data Representation

FIGURE 2.9, DIFFERENT REPRESENTATIONS OF ONE PROBLEM.

26




. 2.3.3 (Pata Structure Summary

There are very many data structures used in computexr graphics
each having its own special features., Ve have left the reader to explorxe
the many structures described in the literature and have instead attempted
to 11lustrate the important features common to most. Two good surveys

of graphic data structures are given ty Gray9 and ’dilliams.io )

HWe have presented the basic concepts universal to graphics

data and can now arrive at the attributes of a good data structure,

~

That is, a data structure should do the following: ( e

I

(1) Store a picture in computer memory reserve the

hierarchical relationships between its’parts,

(2) Permit rapid access to all levels of the structure
enabling the usex to select any picture part for

removal or modification,

(3) Have a mechanisa for allowing the data to expand | P

and contract as the user ocpexates on his picture.- . ,

(&) Per;i.t rapid searching, deletion, oxr sddition to

keep up to the cperatoxr's requests.

o

() Provide storage and access for other non-dlsplay

- L)
. « :
. - dats assoclated with any ploture part.
’:' v . *‘
. r-

*




g

" languages, especially graphics W we yofer to-a nethod of des-

2.3.4 Graphics LEEE%ES

There is even less agreenent concerning graphics languages
than thexre is on data structures. Each year more papers are published
presenting yet another graphlics language. A possible cause for this
proliferationof languages is the application of graphics to many diverse

problems, each with its own constraints and criteria.

In the following discussion we will emphasize those languages
used in computer—alided design, and later touch upon the special require-

ments of general picture synthesls and analysis as required in pattemn

recognition systems, This discussion of graphics lanfuages will probably

v »

be clearer 1f we first present a sample c,onimtor—aidad design problea, then

apply a nunmber of languages to it and judge their utility,

Consider a circult designer using a graphics terminal to
develop a particular device, First he must define the primitives he

wishes to use (e.g. resistors, capacitors). Depending on the system

he would do this off-line by inputing a deck of cards at the central

computer orx use the light pen to draw them on-line, In either case he

must use a language of sorts, Note that when we talk of programming
N

L

cridting a sequence of operations to be executed on a ‘ut of data cnuiipi.

A




29

4

The alphabet of a graphics language need not be a set of characters, but
rather includes pushtuttons, 1ight tuttons, and 1ight pen movements. The
syntax of the language gives the order in which these warious func!:ior'xs
are performed, Fox example, the st;tement in Sketchapd to define a circle

centre is

"move tracking cross to the desired location

and depress CIRCLE CENTRE pushbutton”.

»

The syntax is "select a point and depress pushbutton". The statement to
* draw a line has the same syntax., The two dimensional language of Sketchpad

is rigidly defined by the system programs driving the display. It has a |

® 2

simple syntax of three or four statement structures. Sibvley % extends

this concept of two dimensional language by proposing one which enables

il

the user to specify his own procedures within the language.. He states,

"Thus the description of a pm;:eduro (akdn to
writing a program) is done by motions of a light
' pen on a screen or penon a tablet. These motions
are meither, the act of physical writing (using a
character recognizer) nor defining a procedure
bty drawing its flow chart. In fact the motions
‘ are very similar to those a user carries out when
he 18 executing a procedure using drafting -
equipment.” "
| S
. Q, " Sivley illustrates this point using suich a language to generate procedures
B A .

for drawing geonetric objects,

.
L

.-

2
9¥ -
&

i



30

Returning to our designer whc; now has his primitives defined,
he 1; ready to btulld a model. Once defined, the system saves his primitives
for future use. Note the general purpose graphics system also handles prob-
lens posed by logicdesigners and, structural engineers or chemists, each of

who has his own set of primitives. . .

. To be truly interactive the system should permit the user to

N

copy, rotate, scale and connect ﬁogether his.mndamental prinitives using
the positional input device {e.g. light p;n, Joystick, etc.), and imput
component{values via a keyboard. He can now analyze his modal by selecting
preprogramned funcitions suich as D.C. steady state response or A.C. response,
At any time he may return to the other two modes and add new i:rinitives .and
alter his rodel. Depending on the system, he makeg his choices using 1ight
buttons, pushbuttons, the keyboard or some mixture of these. If the existing
functions are not sufficlent the opera.tor--ay 'wish to define new ones using
a graphics language on-1ine while he 1s at the terminal. The langusge should

allow him to merely state an algoritha or procedure and not force him to pre-:

,’ -
pare a complete progranm,

o

We can see fron our example, an off-line programing language

is needed tos

-4
3

* Y
23
a l"
%
« Ry
v AN
5
s
o v o Y
- R
v -7 ) ey
X ., . . - Ty -, %
N “ ) AR Fa a e SR
PR - 4 B + LD N - e, LA £,
R [ U S LRI S W P BN K R MO



31 ’

1. Define the picture synthesis procedures

off-line, !

2. Define analysis procedures which can be

selected by the user on-line,

A nice feature is another language available to the operator to prepare ad-

ditional algorithms or procedures on-line.

Nore precisely, the off-line language pr}o‘vide; the systen ;nalyst
a method of constructing programs which drive the I/O- devices: nanage memory,
and handle the @ata structure. The off-line programs written once, and
modified infrequently, define the capabilities of the graphics system and

the syntax/semantics of the on-line language.

-

For example, in the first case there might be a technique for .
including a generalized light button, that 1s, one can specify the text to
be displayed in a memu and programme 'the accompanying function. Uafing this,
the system analyst may include a "NOVE™ light buttc;n and then wrl.t: #a routine
which permits the light pen to drag an object across the screen. Now, when

the user turns on the graphics terminal, "MOVE" appears. This becomes a -

function in his language. Which language is the graphics language? Should

’ languages be provided to the system analyst buildirifg 'Y ‘asraphicu systea or

should he be forced to use assenbler? Should languages be provided %o the

2 ot




32

/

user which allow him to develop his own algorithms and procedures besides

L]

selecting existing procedures? Pexhaps the same language should be used

.

for both, so that the system, through use, will bootstxrap itself to higher
capabilities, Note this implies a common language for both picture synthesis

and analysls,

Roberts, 2’ kulsrud,® and'Miller and Shaw'> all agree that the

| ¢
same graphics language should be used for both synthesis and an\hlgﬂ.ng\\

v

-

Miller and Shaw states: ; / \
j

"The arguments for treating analysis and syrithe\sis
problens together, 1l.e., using a common description
scheme, are generality, simplicity, and the univere& -
use of common description languages in science. We
also.\ note that most picture analysis applications
have 'I(a.nd need) an associated generative system and
vice versas there are also many situationp whexe
both a synthesis and analysis ecapability are equally
important, for example, in computer-aided desil.gn."

¢ . . .

,If such a language became universally accepted, 'a growing pool

of portable software could accumulate enabling successive workers in the

» ~
fleld tt; build upon existing programs, independent of the computer and
graphics devices used. To gain portability many of the famillar high
level languages such as FORTRAN were modified to st;pport gr:aphics.ﬁ'1"'16’:l7

For example, the language GRAF!} 1s an extended FORTRAN containing an ad-

ditional varisble type called a "display variable® and a sst of functions

<

~~

]



-

for operating on them. The statement

DISPLAY A, J, Q(17) TRi(7, &, 5) '

. \ -
\ | /
declares "A, J, Q and TR1" a&s display variables or display variable arrays.
Pictures are drawn using functions such as PLACE, LINE, CHAR, and PLOT with
display variables specified in their argument lists. In our sample computer-
alded design problem, the circuit designer using GRAF would code his primi-
tives off-line using these functions. Menus of 1light buttons perform pro-

gram branghing through use of the attention poling function "DETECT", fol-

lowed by a list of conditional transfers (i.e. "IF" statements).

&

It is inmmedliately evident that a heavy programming burden is
placed on the user albelt in FORTRAN, Another disadvantage with this ap- -
proach is the necessity t:or anticipation of inputs, In a true interactive |
system one wouldllke to bg able to 1n£ermpt the processor and restart at l.
another point at any tinme. i;or example, if the user finds an.error in his
rmodel while the compliter is analysing it, he would like to abort the compu-
tation and restructure his model.

The "AIDS""

language attempts to circumvent this problem by
formulating an automata approach to pmgrming. Instead of a flowchart,

the programmer builds an automaton model (see Figure 2.10) which defines

a set of states and transitions between them,

@
o



LN

~
.

KNOB1 oxr 2
Update Tracking Cross

o

) .
KNOB 1 or 2 LIGHT PEN HIT
Update Tracking Cross

Position Cross at
Instance Hit

BUTTON 1
ot »
Start New LI;'T%.,?,:{TT‘OJ
Line ——
HET BUTTON 4
oA Position Instance Penned
BUTTON 2

at Current Tracking
Cross Location

'Add a Line to ]

Current Line

Pl

BUTTON 3

3

Drawing Complete

LICHT BUTTON @
T "CRASE"

LIGHT PEN HIT

Destroy Instance

X ”

FIGURE 2.10. AN AIDS PROGRAM TO DRAW AN OBJECT, MOVE IT T0 ANY DESIRED
LOCATION, AND/OR DELETE IT FROM THE SCREEN,

«
J

¢ o
R % A




The programmer can then writei

-

WHER IN STATE n, IF condition a,

f THEN oo response '

where "n" is an integer identifying the state, "condition a" 1is %
input device[ or the m;l-timp clock which is activated by the operating
system when the.progran is in state "n". The phase ",. response” 1is
2 FORTRAN statement or group of FORTRAN statements.

This system also supports a hierarchical graphical structure

similar to BELLGRAPH's, 11

AIDS programs are first processed by a pre-
compiler which extracts the graphic and interactive .stateme;ltﬁ and- passas
the necessary information to the operating system. The remaining FORTRAN
statements are compiled using a standard FORTRAN compiler.

H.E. !(1.11:;1:&1?1"6

proposes the use of. a meta-compiler or compiler-
compiler system for the study of graphics languages. A meta-compiler ac-
cepts commands which define the syntax and semantics of a new language

and produces a compiler. Language statements in this new language )m )
then processed and executed using this compiler, To awoid the input m’m.-
cipation problem, incremental compilation‘is used to produce apon—onciod
programs which can run at all points in tine, That is, gmcoduﬁos are

compiled line-by-line and then executed on demand. In a sample_system”
O

) ¢

‘ wo
¢ . 3
»

FET AN
. Wty e w0 Ey Sadhe A%l v
Vix TeBaFino g Bl e gegie
EUREAIN (5 i S R

- . PR A
5 co, . - . > WAL TR A
. . “Farn - 3
‘ . A PRI S LR RN PP A

P
(] Y
W17 o S

0,

S

%,

CRAN .,
W
g



~

) T

~——

\ 36
built by Kulsrud, each operator or function in the test language evoked a
subroutine from a system lidbrary. These &b‘h)l/.ltinea may be written in any

language., Therefore, input/output functions could be coded in assembler

for fast response, and the computational o;émtions in FORTRAN for quick

implementation. A multilingual. basis for a common supra language appears

a promising approach to the study of graphics language.

There are many other languages too numerous to discuss here.

We shall let the interested reader review the 11teratur,e.17'2u"29

2.3.5 Graphics Language Summary

A1l graphics languages, although differing in attributes ‘and
capabilities depending upon thelr speclal applications, permit some form

of picture synthesis. That is, each must have the basic capability tos,

-

1. Position points, lines, and text on the screen.

2. Draw (;op.tes of any displasyed picture part.

i

3. FKove picture parts around on ti'xo soreen and

\ rotate and scale thea.

\ B
h, ©Provide display management,

<&

S
e
3




37

To be interactive the system must:
£

o

5. Accept text and positional information from

a keyboard and/or light pen, joystick, etc.
6. Not anticipate inputs.

7. Be flexible enough to require little pre-

planning.
8. Provide rapid response,

9. Provide for user errors, allowing him to
correct errors in a simple straight forware

ranner.

Y
\

We now can itemize th?se options which l;ake a graphics language
powerful or high level, "First, we require the picture be described in ’ !
menory in hierarchical levels, which can be quickly accessed in real-time,
Also, it should allow the use;: to 1nputand test his own algorithms and
pm’edufes without having to mte a eonq;lote progran. The language should
use rgotation familiar to the user. A subroutine capability and a subroutine
library initially containing a basic set of functions would be useful.

This makes the language effectively opan-ended, allowing the user to cxj
pand it as the rieed arises, A language permitting easy extension of”its

_ capabilities i,_symlidauo to many classes of problems and hencs ensures

. grester gemeral acceptance, =‘ ‘ | . .



b}

28

In Chapter IIZwe will introduce the "GRIN" language developed
at Bell Laboratories and later moved to lMeGill, Thi; language 1s speci-
fically designed to gnthesize pictures and contains many of the desirable
features above. In Chapter IV, we will discuss some of these features and
the problems encountered in transfering GRIN from it:s hone environment to

McGRAPH, In the Conclusions, proposed future work to enlarge "GRIN's"

capabilities is presented. . o




e, 39 -
CHAPTER III1 '

THE McGRAPH SYSTEM

3.1 Introduction -

4

McGRAPH is a general purpose computer graphics system to be
used for research in a variety of areas ranging from logic and circuit
design to image processing and. pat;oem recognition. Because of its
many different uses MoGRAPH's software must be sufficiently flexible to
support a wide range of applications and yet powerful emough to remove
the user from the programming chores of I/0 communi';:a.tion. and data
management. The system should provide the user a simple direct qethod
of constructingﬁraphical representations of his problem an;l enable him
to define 1ntera_xct1ve problem-solving p?:.edums tailored to his par-
ticular application., These pméMes should be easy to build and

modify, allowing the user to experiment with various spproaches.

The t;sk of effectively interfacing graphics hardwaxre to
problen solving s mot trivial and is ususlly underestimated. Ninks*2
used the triangle shown in Figure 3.1 to illustrate the programning ef-
fort needed to achieve a good interface, The base of the txiangle xe-
presents the d;vicp dependent programs needed to drive the dieplay hard-
wave, éysf:el support prograns for file mansgenent and multiprogramsing x

comprice the rest of this foundstion. Upon this base he pruposed—a

AN



APPLICATIOIS
- PROGRAMHING ’
. LEVEL 1
. GRAPHIC /
LANGUAGE
b PROGRAMMING
L CONTROL
‘ PROGRAMMING
® ’ i -
,‘ T
4 ‘, ‘ . y‘;g
: . FIGURE 3,1,  PROGRAN PLAN TO ACHIEVE A GRAPHIC INTERFACE CAPABELITY.




“h

e,

S Y4
: P Tl

e n o e e ¢

¢ 41

programmning la.nkuage for generating the application oriented graphics sys-

tem. Note that thislangusge is not used explicitly by 'the’( probléil‘ solver,
ty

Its function is to ald in the construction of a specific graphicgs systen

applied to a given class of problems,

Pnzgrams written in this language define the procedures and
features of the graphics system. For example, these programs could d1;~
play a menu of light buttons available to the user ang‘px:ovide tr;e coxY-
responding functions., In a more powerful systenm, the system programs

could interpret statements presented by tlie user in an on-line graphics

x
language. Ninke places these application programs at the -aspex of the

programming effort trianéle (Figure 3.1).

r

The McGRAPH system software descr!.‘be& in this thesis consists
of support at levels I and II. A executive program (Level 1I)
handles all the I/O devices and performs memory and file management.
The graphics language "cmm" (level II) operating under this monitor aids

programners in comnstructing j.nt.rnct;vo graphics systeas,
i ]

The rest of this chapter is an introduction to McGRAPH., The
next section describes the hardwave configuration used. The following

sections provide an overview of its software,

.
P

.

o o
B

! - A y? Y .
., -, L I B wese s
N w - N A
.o Ly > P » 04 at f
P . . . e bt
5 e o
PR A WU U | Sl it SO T



k2

%

3.2 McGRAPH's Hardwaye

Figure 3,2 is a block diagram of the devices comprising
HCGRAPH, The heart of the system s a calligraphic display refreshed
from a disc. The other components of th.e graphics system are a light
pen and joystick for positiona.l input and two computers (24K word
PIP-15 and 4K word PDP-8) with a teletypewriter attached to each. Other
peripherals include two oné quarter million word discs on the PIP-15,
high speed paper tape punch and redder on both machines, as well as two
DEC tape drives on each. There is also a T.V. nonit;r refreshed froa
the display disc for outputting grey level pictures. Another CRT, with

¥

a Polariod camera attached, is connected to the graphics display proces-

e 1 t

sor for taking pictures. All graphics devices are eo;xnectdd to the
PIP-8, which in turn passes data to and froa the PIP-15 along & core to
cox-; 1ink, The PIP-8 is used as a programable I/0 device eou;:muer.

It accepts commands from the PIP-15 and channels data to the sppropriate
output devices Correspondingly, data from input devices is preprocessed

and sent to the PIP-15. By inserting the PIP-8 between the main frame

‘and the devices, one can eaulate a powerful device controller and experi-

ment with its command repetoire-to achieve maximum throughput. For T ‘

exasple, by performing imput data compression and output data expansion *i;;,

in the PIP-8, PIP-15 1/0 processes are quicker,leaving moxe time for com- -

-

putation, -



i

= DEC Tape

Link to
IBM 3601 ., ~ ~
(future)i °

‘ ] Teletype (:::) (:::)

DEC Tape

OO

L

PIP-8

pPIP-15

#

Teletype

1 .
Filename | Register
/ . iJata.
_DPU // . Sequencery -

. Light Pen : ‘k\\\\\\\\\\

. EAPE '

i: ) : "g < O <© >
Al ;; '1 N . ‘ ' >

; ’ Craphlcs Display Craphics Display| With Television Honitor

‘a{ . ' Polariod Canera

FIGURE 3.2,

McGRAPH HARDYARE,

e

%



]

3.3 The Display Processor

As the display disc revolves, a selected track read head con-
timously transmits a list of 8 bit words stored on the track to a difplay
processing unit (DPU). The display processor interprets this data as a
string of commands for driving the X, Y and 32 inputs of a CRT. These
beanrn intensity and move commands trace out the required picture. Screen
refresh is performed on each revolution of the disc; that is, 30 times a
second, Therefore, a picture corresponding to onelmll track of data
(12K commands) can be displayed without flicker. It 1s possible to dis-
play more complex scenes with some flicker by displayins the contents of

two or more tracks through the use of a "branch to another track DPU

)

command. The beam control IPU commands allow one toi

1. Position a point,

2. Draw a vector with 3 bit displweuent; inXand Y,
3. Adjust the scale in elther X or Y.

4. Rotate an .'unage about theXX or Y axis,

8, Adjust the intensity. .- .

Scale, position and 1ntcnpity commands may load in a new viluo.
or add or subtract it to/from the existing one. This is especially useful

in the cass of point and m-tor noves, fqi' it allows one to select an

’ origin oi: starting position of a picture using absolute X, Y point moves, !

e
- et




‘rveglster and passes its contents to the PDP-15. Programs in

-

s
and then trace out the picture using relative vector and point moves.

Now, if at any time we wish to move this.picture to a new position, only

AN
the first X and Y absolute point moves need be changed.

Display data is passed back to the PDP-8 from the display
/

processor by the HEADER DPU con;nand. The HEADER is a two word (16 vit),
command containing a 12 bit constant called a filename I.D, Each time a’
HEADER 1: executed this filéname I.D, is stuffed into a 12 bit register
which can be read by the.Pl’fP-B. The contents of this register remain
static until the next HEADER, The graphics software places a HEAIER
before each string of bcommands cor:‘responding to a seperate picture entity.
For example, the ‘IE'U command list for each instance of a BELLGRAPH leaf

is preceded by a HEADER containing a uniilue filename I.D,

The filename I.D. is used to identify picture parts on a ht

pen strike, .On a light pen interrupt, the PIP-8 reads the filename I.D. ..~

then determine which object was selected and takes the appropriate action.

Chapter IV discusses the picture identification technique in more detail.

The HEADER command is also used to synohronize the PIP-8 pro-
grams with the display disc. A HEADER command contains one bit, which

when set, canses a PDP-8 interrupt each time the HEADER is executed.

‘ B W ke e MY
R N EYIR
« N 4 B BT . AT
AR DE SO AR UL - T e



’ éont.tguous list of display commands in main memory from one pass of the

<

In this section we have provided a brief overview of the opera~-
tion and instruction set of the display processor. A complete description
of the IPU is found in R. Fabi's thesis "The Design and Construction of a

Disc Oriented Graphics System".30

3.4 Disc Display Refresh
v

Refreshing a calligraphic display from a disc is a novel method

-

of obtaining powerful graphics without using a large central compixter.

I3

The disc relieves the need of refreshing from core, thereby
freeing main memory for other tasks such as background computing. In all
interactive graphics systems, the time between input attentions from the
user“ is orders of magnitude greater than that needed to dlsplay one refresh

cycle., Therefore, in systems refreshing from main memory the computer

spends a lot of its time preforming a highly repetitive routine. 'l'hat. is,

the computer must reﬁnéét’:dly traverse the data structure and oﬁtput cone
mands to the IPU, This procedure reduces the amount of time available

for other computations,

In an effort to recover this lost time, some systems tuild a

-

%
1

data structure. Using this approach one sacrifices the memory required

»

‘o -
ama % N »

. g
oA v, .:E:t\;‘-f‘?'

S A
R L A



9

[y

47

for this 1ist, By placing the 1list on a disc instead of in main memory,
we free all the computer's resources (including its DHA channel) from the

refresh load, Another advantage of discs is their large storage. Further

“t e

systen optimizatior; could be~&chieved by putting a number of pictures on

" the disc and allowing the DPU to do simple display switching. The display

could then be changed in response to input attentions without requiring

computer intervention, For example, pictures connected to individual

’
-

li'éht buttons could be selected using hardware,

The disadvantage of disc refreshed graphics is the cost Jf, a’
dedicated disc and controller. In McGRAPH's efwiromnent. however, a disc
18 essential for refreshing the T.V. monitor, The cost of the four ext%ra

: b
tracks used for graphics is negligible compared to dedicated core memory.

3.5 McGRAPH's Sof'tware

-

L"h

The McGRAPH software is designed to achieve a general purpose: '

- -

interactive graphics system easily adapted to any given application. Tli_q

systen performs basic displsy handling such as:

' i. Drawing pictures from a file asseabled off-line,

T 2, Drawing pictures on-line using a light pen.
v

-




3.

5-

- Te

<

Moving, rotating, scaling, and copying

picture parts,

-y

1
Decompose (or construct) pictures into (from)

component parts.

Provide the user a means of calling attention
to any of these parts by light pen or joystick.

Accepting inputs from keyboard, pushbuttons,

light pen and joystick.

Provide display and memory management. s

To make it adaptive a graphics language is provided. This

language has the following features:

»

1. Enables one to program all of the above dis-
play handling functions, - l)
2e Is”' caps,'bleQs of perfoiming some arit étic.
3. Include conditional bfanching 80 that program
flow can be altered by arithmetic results, —
4, Enables subroutining. w ' .
i 5. Is open-ended., That is, allows expansion of
the ianguage by incorporating new functions, . _ .
AB Ninke®> pointed out, development of such s system and lan-
’ o “
guage involves typically 40 man-years of work, drn unreasonable expenditure

o !
. R
o etV Ay e PR T (4
-© R "y PRy %
U R L TE . SO MRNL SR ) 14 7% ]



Lo

in the case of McGRAPH, An alternate approach was to acquire an existing
system and modify 1t to suit the requirements of McGRAPH's disc based

graphics hardware.

BI"}LLGRAPH and its associated language CRIN, -developed by Bell
Laboratories at Murray Hill fits the above design.requirenents \qvvery well,
’I;he fact that BELLGRAPH also uses a PDP-;5 is especlially attractive. Also,
although BELLGRAPH is used in conjunction with a large 1:emote central con-
puter, the PIP-15 programs are sufficiently comprehensive for stand-alone

operation, In fact, the PIP-15 resident software completely supports the

functions of level I and II in Figure 3.1,

The PDP-15 prograns consist of device handlers for a PDP-%
disc, teletype, and high speed tape reader as well as all graphic;; devices
such as a DEC 339 display processor with light pen, console keyboard and
elght back lighted pushbuttons.! There is a core resident on-line monitor
or executlve system used for .memory management, and GRIN program inter-
pretation. A library of subroutines and associated dictionary are kept
on disc foxr use by the executive system.v" A maber of other PIP-15 pro-
grans have been supplied for off-;u._;\a support of the system. For exanple,
there are dehuggigng alds n.nd linking loaders for GRIN programs. One off-
1ine set. of programs labelled G2LIEE has been implenanted on McGRAPH %o

G
- 3
-

3 - . '
build and edit the disc resident library. An assenbler for GRIN programs v

)
f “/ o




/ | ' -
which executes on an IBM 360 is also available, Another GRIN assemblexr
residing 1n the PDP-15 has not been implemented yet. The remainder of
this chapter introduces each of thege software packages. Chapter Vis

a

devoted to the IBY 360 assembly system.

T;:o basic problems required solution in order to install this
BELLGRAPH sof‘t:ware on McGRAPH, First, the hardware control bprograms had
to be altered to drive our disc r;fz:eshed system, Second, the monitoxr
programs were changed to account for a;ld.ressing differences between
McGRAPH's 24K computexr and BELLGRAPH's modified 8K processor. Further
discussion of these problems and thelr solutions is given in Chapters IV

»

and V.,

3.6 . The GRIN Language :

Perhaps the best way to introduce GRIN is by use of an example,
Let us write a GRIN pxogram (Fig}l.x’e 3.3) to draw a pattexn using triangles
a8 in Clmpte:;: II. The associat;d data structure is given in Figure 3.4
Statements 1 to 4 produce a leaf labelled :I'RI« containing oommands to draw
the basic trianglh, Statements 5 to 8 define vt Leaves used im the light
utton menu, The memu is created by Joining these two leaves to“a common

o

node labelled "LTBINS" ih stateunt 9. The branches (Bi, B2) froa this




Stat

o/

ent NO.

s
1

2

[>A NN R R V|

-~3

10
11

12

13
1
15
16
17
18
19
20

HOME

CoPG

MOVEPG

21

LEAF
VECTOR
VECTOR
VECTOR
LEAF
TEXT

~&XT
TREE

BRANCH
NODE
BRANCH
BRANCH
NEWDSP
WHICH

WHICH
COPYBR

MOVE

51

GRIN2 Statement Comments .
TRI LEAF TRI CONTAINS COMMANDS
#0,20 T0 DRAV AN EYILATERAL
10,20 - TRIANGLE

© =20 h
COPY LEAF COPY CONTAINS THE TEXT
(¢,0,2,1) ' CopY"*
HOVE THIS LEAF CONTAINS *MNOVE®
(4,0,V,E)

LBTNS((B1,, .coPY;copc)(Bz(o-ao) » MOVE, MOVEPG)
) CONNECT LEAVES TO NOIE *LBTNS*
USING BRANCHES 'Bi,B2'

1BBRAN, ,(950,0) ,LTBTNS

TRIND

PATBR, ,,,TRIND

TRIBR,TRIND, ( 500, 500),TRI , ,IPON

(mw,pman) DISPLAY TRIANGLE AND LIGHT BUTTONS
.LBTRA

HOME

.IGNOR THE COPY PROGRAM

.w.man,num CREATE A NEW COPY OF THE

HOME ) CURRENT BRANCH AND GO TO HOME
Rt '

HOME

FIGURE 3.3. A SAMPLE GRIN2 PROGRAM.

M3t




P

52

«DSPLY

LBBRAN

b

LTBTNS

1MOVE

COoPY MOVE

Data Structure Cenerated by the GRIN Program of Figuxe 3.3.

Ed

FEGURE 3.4 (a)

(continued)

X "' « -
s 12".?:1«2‘ P

&




D o
“

s ot U

hid

e .
-5

53

(a)
(v)

b, £ gt P gt g i P s o e i e Al i o N g e P s o ke N A st o g et e AT e, T o

in

FICUEE 3.4 (b):

R T e A S e S

57 s ;
A i R
3 i ;
. ? .
S
] 1
. i
.
v
) J .
4
3
¥
"
" :
H
v . N
- - - - . - v -~ v - - . ~ .

. Display Sequence Rcahttng Fron GRIN Pi



L

node represent the light muttons., Each branch (Bi, B2) has a relative
co-ordinate position and transfer address associated with 1t, For
example, light button "HOVI;‘" is 30 units below " COPY", the uer;u's
origin, and has tra:nsi'er address "MOVEPG", :rtrat is, on a 1light pen hit
of "MOVE" the program will trunsfer to MOVEPG, Statement 10 connects
a branch lsbelled LEBRAN to the memu node and specifies its position
(1.e. 950, 0)s Similarly ve connect a node to the triangle leaf via

A branch TRIBR and a branch PATBR to this node in statements 11, 12, 13.

The entire picture consisting of the menu and triangle is defined by

joining branches "PATBR" and "LBBRAN" to the display node in state-

‘ ment 14, “ . : )

The picture is displayed by the “WHICH" function of statew
ment 15, The ,LBTRA argument specifies that when a light button is
picked control should pass to its associated program. If a non-light
button were picked control would pass to statement 16 which transfers

back to 15, therety forcing the usexr to select a light button,

1

Assune the COPY 1ight button‘ is picked, Control is x;assod 7
the mcﬂ function in statement 17 which waits this time for a non-ﬁght
button selection (tl:e «IGNOR argusent), The triangle will blink when
hit with the light pe;l providing the user feedback, 'l‘hroor extra light

L
.. uttons, KORS, OK, and LESS, will appear at the bottca of tha scyeen,




55

The operator can traverse up and down the tree using these light buttons,
For example, by pick(ing MbRE, brarich PATBR ::111 be selected. Now if therer
was another leaf connec;ed to node_'%'R.‘l_:ND, both leaves would blink. The
operator exits the WHICH function via th; 0K 1ight button., Statement 18
creates a new branch to the triangle which creates a new instance on top
of the original, The new triangle can’ now be moved by selecting the

MOVE ugiat button., The KOVEPG program®s WHERE function displays a tracking
cross used to define the position of the new triangle instance. But first,
the FOVE function in statement 20 is executed specifying the branch to be
moved, In this case it is WHICHB, that ’1s;the last branch picked by the
WHICH function, The argument HOME in the WHiERE funttion specifies control
should pass back to HOME (1.e. statement 15) when a key on the consols
keyboard 1s struck. The next time "COPY" is selected the operator can
choose to copy ot:e of the two instances d}splayed. oxr by invoking the
“MORE" option of the WHICH command, both triangles can be reproduced and
moved as a ssperate subpicture. Figure 3.} illustrates the sequence of

displays in copying first the original triangle and then the resulting

pair,

The above exanple is given to illustrate some of the capabilities ’

of GRIN and introduce its syntax, A coaplete description of the language

. 3. -
plus nany tutorial examples is given in the BELLGRAPH Programser's Namal




56

available to any potential user of McCRAPH, Before leaving the discussion

of GRIN, however, two genexral comments should be made.

First, new or potentlial GRIN programmers approach the seeniy
complicated argument lists with trepidation. However, given a few hours
to write a sample progran using the programmer’s manual the sequence of
arguments for the more comnon commands 1s quickly learnt. Thexre has been
a concious effort made in the deslgn of the language to ninimize dif-
ferences between argument 1ists of two functions containing the same in-
ijo;:mation. One simple example 8f this is the TREE function argument list
which 1s composed of a list of BRANGH function argument lists. Such
hierarchies of argument lists is prevalent thmughoutl the language, The
reason GI;IN's syntax is that of an assembler language is to mininige con-
struction time of the assembler and compilation costs of GRIN programs.
A standard macro assembler (such a.s BAL on 05/360) using a library of
nacros to define the function. calls is easier to implement and less ex-
pensive to run than a high level ianguage com)iler. Due to its ssaller

size an assembler is also easier to install on a minicomputer su'ﬁ as

a PIP-~15, The GRIN assenbler is discussed fully in Chapter V.,

1 o




=3 [

s

3.7  The Operating System (G2SYS) :

-

GRIN programs are prepared on pa.;er tape by the asseu,hler and
xead into the PIP-15"under control of the resident monitox ér executive
system, The GRIN prograns consist of a mixture of their PDP-15 machine
instructions, calls to subroutines in the monitor systen, and data. The
monitor subroutines control device interrupts and manage dynamic memory
allocation, When a GRIN function statement 1is executed *t;he monitor
check§ core for a contiguous free épace, loads the corresponding language
statement subroutine fronm disc, adjusts its relocatai:le references and
passes control to it, This subroutine may in turn evoke other disc resident
subroutines, These subroutines also may generate data blocks such as
leaves, nodes and branches, When core space is needed, the executive
syster automatically deleteé as many blocks as necessary. The programmer
can override the axecutive's choice of delete candidates by special memory

t

management functions in GRIN,’

-

Details of the memory mansgeaent scheme are given in 7n'e

BELLGRAPH Programmer's Manual,

R LU A oo x
L e L leras TES

u~: .»1"
%&i‘h .



3.8 Graphics Device Simulator (G2SIM)

A graphics device simulator programs has been written to
translate control commands foxr the DEC 339 into equiiralent McGRAPH in-

structions. In this first phase of constructing the McGRAPH software,

it was decided to minimize changes to the;upplied BELLGRAPH software,

. 6ne nethod of doing this is to simulate a DEC 339 display processor and
associated devices using the lcGRAPH hardware, lLater, with a Iworking
system as back-up, one can alter the BELLGRAPH prograns themselves to

take advantage of the features of disc refreshed graphics.

‘ To simulate the graphics devices, the definition of all their
IOT instructions in the assembler were changed to subroutine calle; to the
simulator program G2SIM, This technique reduced 'the nunbex of programming
modifications to BELLGRAPH, - A few ‘changes were required, however, to“a‘,c-
count for fundamental differences between core refreshed and disc re-

freshed displays.

The display routine in the executive for example, was rewritten
80 that it makes only one pass through the display data, The I(ﬁ"s in this
. routine ewcks G2SIM for tranalating the displsy commands and writing them

o;n the PIP-8's disc, It was found moxre sdvantageous to incorporate the s

® tracking cross into the PIP-8 programs and allow the PIP-15 to acoess it as
N .

another device. This reduces the complexity and sise of the "WHERE® and

[ - - .




59

AN

"DRAV" function subroutines considerably., As experience with the system

[et)

grows other potential reductions in the PIP-15's display load will be

discovered., . . .

-

A detailed description of the simulator program (G2SIM) is

presented in Chapter IV,

)

3.9 The Library Editor System (G2LIBE)

G2LIBE is an off-1line support program, supplied in t};e
BELLGRAPH package, to edit thhe disc ;'esident lilzrax'y. This program ac-
cepts typed commands to change one or more woré; on the disc, add new
subroutines to the library from paper tape, and print out the contents
of the library or dictionary. A user's guide tc; this program is given
in the awvailable BELLGRAPH documentation (memo by L. Rosler "Mass

Storage lMNanagement Software for the GRAPHIC-2 and ADEPT Terminals,

Issue 2-Case 39991-20).

Two changes have been made to this program, First, the
library is stored on haxrdware disc #1 instead of #0 so that Digital
)
Equipment Corporation (DEC) operating system residing on disc #0 is un-

disturbed. Second, the "Q" command to the library editor has been




N ‘ 60 \

altered to return control to the DEC operating system (VSA or DOS) rather

than to the BELLGRAPH executive G2SYS,

3.10 Summary
In this chapter we introduced McGRAfH, first by outliningﬂ its
hardware and then by discussing its accompanying software package.” In
this chapter we have briefly described the function of each software
segment, In the remaining chapters, we will investigate in detail, the
nethod of operation of the graphic simulator program, and the PIP-15
assembler, The(&lemory x;a.nagement system and GRIN language are discussed
fully in the BELLGRAPH Programmer®s Manual provlided in the accompanying
s

documentation, Following this we shall present our conclusions and

suggest future improvements,

o
¢ S

.
s .
Y
o



CHAPTER IV -6

~

@ . CRAPHIC DEVICE CONTROL PROGRAMS

4,1 Introduction

The major obstacle in adapting the BELLGRAPH programs to
. - \
1cGRAPH is the very different display hardware of the two systems..:

Y
) N a

BELLGRAPH repe’:tedly scans the data structure and outputs commands to the
Dbu refreshiné the screen. FcGRAPH need send this information only once
to the dlsplay disc. BMGMH prograns expect-. ‘and use, a lot of r‘"eal‘i-
tine information at the time of a "light pen hit., For example, the X and
Y co-ordinates, core address of current'. display cosmand, current display
parameters, as well as software status such as the path 'ta.ken through the.
’ “data structure are ipmediately available upon an interrupt, A tweive bit

filename I.D. 1s the only immediate real-time information given by MNcGRAPH,

Rather than ;:;:ewrlte large sectlons of the BELLGRAPH prograns

. -and lose all the advantages of an existing working system, we Eecided to

4 4

\ write an additional set of programs to interface the BELLGRAPH software to ©
’ \ #
the NCGRAPH hardware. The effort required to interface BELLGRAPH is less
4. A > -
than that to.extensively modify it. This allows us to more quickly "install

the BELJGRAPH graphlcs system without sacrificing any of its powerful features.

@

This chapter is devoted to describing these interface progranms.,

]
a



62

During the tgonstmction of the interfacing programs, a number
of sltuations originally handled by ‘the BELL\GRAP,H prograns were found to
be better suited within thes; mterfacing programns, For example, when a
vector move goees on or off “the screen, BELLGRAPH expects an interrupt. s
The edge interrupt handler '?hen turns on or off the bean 1ntensitj. pre-
venting f.he picture from wrapping around and appearing on the other side
of the screen. By placing this function within the simulator program
we save the time consume&fh servicing an 1§terrupt, the space occupled

by the edge handler in .the BELLGRAPH managed memory, and space on the dis-

£ ’11“ - '
play disc occupied by non-intensified vector moves. This, Plus other changes
,’* : nade to the BELLGRAPH system will be discussed in a later section of this
©  chapter.’
- b

4,2 Basic Requirements

.

Having decided upon intexfacing the BELLGRAPH monitor system
to the McGRAPH hardware via software simulation programs, what specific

tasks must thegjs‘e’ prograns perform?

First, ‘the BELLGRAPH programs are expecting inputs froi two'

-
K

devices not avallable on HcGRAPH: a console keyboard, and a set of eight

.
. ) ’ ‘ .
. o &

o



63

lighted pushbuttons. Next, the DPU instructlons for drawing vectors and
points, and for setting DPU parameters (i.,e. scale, intensity, orientaj.ion).'

v
must be tra;tslated into the McGRAPH instruction set. As shown la:te:;, this

translation is no\}: one to one, or indeed linear. The resulting McGRAPH
instructions resulting from decbding one DPU command are dependent on the
past commands as well as the current one, Some DPU comr'nsinds have no equi-
valent in the McGRAPH instruction set, and their action nust be s\imulated
entirely by software, Details of the translation procedurgs are given in
a later section of this chapter. There are a total of 36 input/output
transfer (IOT) commands for controlling the graphics devices. The action
of each of th;se must be interpreted in the context of off-line (aise)

P
display refresh. For example, the "izI.PD" (resume with light pen disabled)
is used in BELLGRAPH to start up the display after a light pen hit., In
McGRAPH's environment, the display does not stop on a light pen hit.
Another IOT is "WBCS" (write display m/t;fer and single step)« Single
step has no slgnificance to McGRAPH. These IOT's need to be redefinmed in

}
their new environment.

“In wrifing the interface progrape three additional design
objectives vWere stipulated. The programs should be modular, with thg
physical device control being entirely oqntained in a few modules. Later

changes or additions to the hardware will then impact on only these few -  °

“ -
(L. 4
2



4 1

modules. The inputs and outputs of the Ainterface package

should be well defined and generalized. In other words, 1t should be

¥"independent of BELLGRAPH,.making application to other systems possible.

For example, this set of programs could be incorporatéd into a set of

FORTRAN subroutines to provide graphics to FORTRAN users, (Of

course, one \?rould lose the memory management and hier'a;‘chical
picture r;'presentation Supplied by BELLGRAPH), Table 4.1 gives a 1list

of transfer vectors used by the interface programs to communicate with
BELLGRAPH, When used in other applications these pointers are set to
‘other locations external to the simulator packages for use by the calling
routine. For t;,xample, in a FORTRAN envlronmerit using the DEC standard
operating system, the labels in Table 4.1 would be declared external
globals and removed from the data area. . The MACRO-15 assembler would
assign its own memory locations for these transfer vectors and the

e

linking loader would supply their values.

’

The third objective is-a provision to test the graphics hard-
ware, That is, hardware check-out should be possible by using a simple
procedure such as typing in a few commands, A similar method of debug-

ging new functions of the interface progranms 1s also desirabdble,

~ 0
. "

W
by
n % o



6
TABLE 4.1 5

o

. LIST OF EXTERWAL REFERENCES IN BELLGRAPH/McGRAPH INTERFACE PACKAGE

DSPLY (120)*

LFEHD (336)

AXEDGE (33%4)

AYEDGE (335)

®  AMARGN (407)

AVHERX (230)
'AVHERY (231)
i

-

Pointer to a woxd containing the starting address of

the display routine (used during the light pen search).

Pointer to a end-of-leaf flag. This flag is set to -1

on an end-of-leaf trap intexrrupt.

-

Pointer to the X-edge registexr. This register con-

" tains the number of times the X xegister overflowed

or underflowed On an overflow it is incremented,

On an undexflow it is decremented,

Pointer to the Y-edge register._ On a Y register
overflow it 1s incremented. On a Y register under-
flow it is decremented.. When both the X-edge .
register and Y-edge register contain zexro the beam

is on the screen,

Poitter to margin. On a carriage return or margin
return the X-co-ordinate is reset to this margin

value,

Pointers to latest co-ordinates of tmr,}dn‘g cross.
These are updated by G2SIM each time the tracking
cross interrupts the PIP-15,

*#I0TE1 The octal addmssas in parentheses give the value of the trnnsfer

vector when 5.nterfaced to BELLGRAPH,

.
]

-~




L.,3 System Implementation

" Figure 4.1 gives the data flow paths between the various pro-
grams comprising the-McGRAPH software system. The IOT commands in the
executive call the simulator subroutine (G2SIM), These calls set and.
reset flags maintained in softw.az‘e registers in G2SIM (e.g. the light ) -
pen enable flag) or initiate transfers of display processor commands
from the Mcﬁmmand translator (G2TRAN). The translator

sends a list of display commands to the PDP-8 along with some control

e

commands (e.g. start or stop blink).

The time sequence of display commands sent by the 9xecut1ve

is mapped into a spatial sequence on the disc, This is best .a]iustra*,ed

PR
by example. Consider the followlng DPU instructions sequentially sent

~

to the command translator: N -

N

POSITION BEAM A’? 500, 500

DRAW LINE‘ “L1" WITH DX = 10, DY = 50
SET BLINK ON

DRAW LINE "L2" WITH DX = -10, DY = 50
TURN OFF LIGHT PEN ,

DRAW LINE “L3" WITH DY = -77

TURN ON LIGHT PEN, TURN OFF BLINK
m OF LEAF TRAP

——_—

% . "kg’ 7
0 . N - L AR
. o ¢ . R L] vy TR



resulting list, of McGRAPH display disc commands would be the following:

ABSOLUTE POINT MOVE 500,500

VECTOR MOVZ DX = 1, DY = 5

VECTOR MOVE DX = 1, DY = §
(Repeated 10 tinmes)

START BLINK FILE

VECTOR MOVE DX = -1, DY = §
(Repeated 10 times)

* _ IGNORE LIGHT PEN FILE ‘ ¢
VECTOR MOVE DY = -7

|
e
" (Repeated 11 timesz
|

|

o : *  ALLOW LIGHT PEN HITS

* STOP BLINK FILE

Commands, controlling the display status af a given time in the refresh

) cycle, (marked here by #) are included as speclal non-display files on
the refresh disc, and have unique filename I.D, n;mbers. The graphlcs
device monitor program in the PDP-8 contimually scans the filename I.D.

r

register and takes the appropriate action on these speclal .control I,D.'s,
For ‘exax_lplg, between START BLINK files and STOP BLINK files the graphics
o
monitor program increases and decreases the beam intensity-using one of
S - the D)A's connected to the Pnp-é, cau?sing all pictures stored between ~

. these two files to blink at approximately 2 Hz..

J



Disc Resident
Data and
Subroutines

) BELLGRAPH
. Executive
(G2sys)

: \ o ’ Real-
o _ 10T Calls Time
” Data
Simulator
(G2s1M)
Rohm(
Conmand
Translator
(G2TRAN)

IPU Commands

[ '
|
¢+ Inputs (e.g.

Character
Generator

1

%

‘ w o, Pushbuttons
r THacking Cross
Light Pen) Conman

Control
Conmands

Fllenams I,D,

FIGURE 4.1,  DATA FLOW IN McGRAPH SOFTWARE SYSTEM,



. consuming procedures due to the different refresh policy of McGRAPH,

69

4.4 GRAPHIC-2 Simulator Progran

The GRA?HIC—Z simulator program provides an interface between

Y

the BELLGRAPH executive and the McGRAPH display hardware. #This program
simulates the action of a Lodiﬁ.ed DEC 339 display processor, with console
keyboard and eight lighted pushbuttons. A description of the DEC 339

processor is given in the memo entitled "GRAPHIC-2 - Hardware Organization”

. found in the accompanying BELLGRAPH documentation. All the major data

registers in the DEC 339 processor have their software equivalents in the

HcGRAPUH interface programs, Figure 4,2 1i1ustrates the format and label

of each of the software reglsters. Note the minor differences (e.g. the
\

omi\qaon of the edges flags in the status registers) between these and

their hardware prototypes, The differences are due to changes made to

the software system for more efficient operation.
o .
The objective of the simulator program is to ainimige program-

ming changes in the BELLGRAPH software. However, there are some instances

where direct simulation of the DEC 339 processor results in clumsy, time

’

t

In thess cases additional functions were added to the interface package.

and the BELLGRAPH programs were correspondingly altered. The following

paragraphs describe these ddditional functions and the BELLGRAPH changes
- _ i . I\

currently implemented. All the changes have reduced the size and com-

plexity of the modified BELLGRAPH programs.




o

Display Stattis Rerister (DSTAT)*

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

| Override (0 - beam on, 1 - team off)

L Cycle Control (0 - contlnuous,
. 1 - single step)

Console Keyboard Flag
Pushbutton Flag

Stop Flag

: Light Pen Flag

\ AR Tracking Cross Flag
' Display Trap Flag

#Symbols in parenthe'ggis refer to labels in the sou 1listings of the
" simulator progran, . .

[3

FIGURE 4.2.  SOFTYARS RSCISTERS IN SIFULATED TPU,
. ' ‘ ) (continued)
. '"‘é‘
N Lo
e L4 . , N ;{R%



71

-~

Display Buffer (DISBUF)

. (v)
-
0 ) 17
- contains current 18 bit DPU command
Display Add—ess Rezicter® (DISAD)
— (e} -
T—
0] 5 17
- contains 13 bit address of current IPU command
- upper bits are zero
”
X Resister (XR2G -
|- - (d)
. 8 17
‘\
}
!
: )
Y Rezister (YRZG)
(e)

- bYoth X and Y registers are 10 bits
- upper bits are zero
- contain current absolute point of beam

~

F;WRE 4,2, SOFTWARE REGISTERS IN SIMULATED DPU,
(continued)

©



Display Pararmeter Rerister (DISPAR)

01 2 34 5 6 7 8 9 101112 13 14 15 16 17

72

(£)

o
[ —

e

Intensity

Ve

Scale

Complement Y
Complement X
Exchange X and Y

Light pen enable
(1 - enabled)

Blink enable
(1 - enabled)

FIGURE 4,2,  SOFTWARE REGISTERS IN SIMULATED. IPU.

£y
o



~

~

L. 4,1 Display Disc Control 2

A picture is put up on screen by the display subroutine, in the
executive, traversing the data structure, and feeding control and DPU commands
to the interface programs which translates them and sends 't:hem to the display
Odisc via the PDP-8, Each ﬁme the graphics monitor receives a block of
d;ata corresponding to an 1nsta:nce (one copy of a leaf in the data struc-
ture) ilt adds it to the display 1list of files on the disc‘é‘l‘and waits for
the next. Some means i; required to signal the PDP-8 program that an
entirely new picture is required so that it can erase the current one in
preparation for the new display. A new simulated IOT comnand "CCRT"

(clear CRT screen) (;’s been defined to perform this function. It is in-
serted in the existing BELLGRAPH executive subroutine "DCLEAN" used to
initialize the display at the beginning of each picti&e. 'l:here is anot;xer

“

new simulated IOT "DCRT" used to display leaves., It will be discussed in

~

=

v \ \ihe section on light pen handling.

b2 Tracking Pattern

i

BELLGRAPH displays a tracking pattern during execution of the

t

.WHERE function for inputing positional information via the light pen, On

a light pen interrupt, the-handler determines which ara (if any) of the



2

ol

tracking cross was hit and updates its posit?on accordingly. In McGRAPH,

%

light pen tracking is handleq solely by the PDP-8, This improves response
time, frees the PIP-15 for background compuiation during tracking, and re-
duces the size of the "WHERE" ' subroutine by 70%., A simula.tedlIO‘r talled -
“TCRT" -(disp‘lay tracking pattern) is issued inn “WHERE" for displaying
the pattern. CCRT removes it from the z;cfeen. The aigorithm used for

®

tracking is presented in the section describing the PDP-8 monitor program.

L.4.3 Edge Detection .

In the BELLGRAPH system, the DEC 339 interrupts the processor
whenever one of the beam position registers (the X or Y register)
overflows or underflows. An edge handler routine in BELLGRAPH then takes

the appropriate action to prevent the plcture from wrapping around on

AN
K

the screen, .

In McGRAPH, the translator program G2TRAN updates the software
equivalent of these reg;.sters ;fter decoding each moye; ?nd then checks
for a ten bit overflow or underflow. On an edge violation, G2TRAN re-
nenbers the-la.st X, ¥ position (saved in the X and Y registers)
stops t suissYon tow the PIP-8 btut continues to decode commands and

maintain the X, Y registers. When the beam returns to the ‘screen an



. ' ' 75

) T

]

invisible point move from the saved off-screen position to the new on-

screen point is sent to the PDP-8 and normal transmission resumes,

’

q . .

L.b k4 Margin Trap Commands ° 5

kY

The DPU “TRAP" command of the DEC 339 processor stops the

command transfer to the DPU'and interrupts the C(PU, In BELLGRAPH, this

cqmmé,ngl has many uses. ' One is to signal margin set and reset commands,

s, 1
.

'i‘hat is, on a margin set, a specifiéd X co-ordinate is designated as

the sta.rtirfg column foxr all text. A margin reset trap command resets the

&
X co-ordinate to this v%lue and decrements Y to,the next line, 1In

.HcGRAPH these i\mc‘l}ions are carried out internally by G2TRAN and do not

L}

create interrupts,

‘
»
-

4,4.5  The Console Keyboard
. ' The console keyboard is simulated by the teletype on PDP-8,
o § oo

to the BELLGRAPH software were required to suppoxrt this tele-

- Striking o key on the PDP-B;s teletype interrupts (through
F k) © a

~
*

soft.xime in the PDP-8) the 15DP;-1'5.cansi.ng the interxupt handler to peoll

¢ ! 8
L % e
4

T, ) ' L 3 \ \
AN N . . . ' v\




‘ s . the active device:"‘. W¥hile polling the graphics devices, entriéds into
G2SIM will be made allowing it to accept 'thé device number and ASCII
4

character from the PDP-8. "This data can now be assessed by the main

F

progran by issuing the proper IO0T's. example, a "gkip on console

keyboard flag" IOT t to a G2SIM subroWine which checks the

sof tware conso a s if set.

A "load consold keyboard buffer" IOT simulation loads the accumulator
+ !\ ° ’

. 44,6 The Pushigutton Lights

" Up to elght numeric characters, 0 to 7 displayed along.the
bottom of the screen simulate lidbded pushbuttons allowing the user to
select them with the light pen. Those remaining blank represent pushbut-

tons which do not have their back light illuninated. The-purpose of these

»

pushbutton 1lights is to direct the user to’ those pushbuttons considered -

J
active, the other dark ones being ignored by the progranm,. In our simula- *,.m

tion of the pushbuttons, we remove from the display thgse turmed off by

the program, preventing the user frem selecting them. The G2SIM progran
N -

in the PDP-15, upon receipt of a “turn on" or "turn off" button light

'

. | IOT, commands the PDP-8 to make the required display adjustment.

g



El —L‘

L.b .7 The Pushbuttons

o e
b

[~

Depressing a pushbutton is simulated by a 1ight pen hit on

one of the-numerics at the lower edge of the screen. The PIP-8 program °

&

decodes this hit bs ush'but\“,on selection, intexrrupts :i:he PDP-15 and

passes the pushbu¥ unber in an identical mannexr as the console key-

boaxrd.

L4,8 The Display Processor

o

The DEC 339 'display processor accepts an IOT command "BEG" Owhich

(5N

initiates a data break transfer (direct memory access) of sequential dis-

Play commandis to the display processor, A "TRAP" display command stops

this transfer and creates a PIP-15 interrupt. This action is simulated by

1

© G2SIM, Upon xeceipt of a "BEG" command, G2SIM translates the DEC 339

display instructions into McGRAPH DPU commands and passes them to the
PDP-8, VWhen a trap is du;:‘c?e?. & command issent to the PIP-8 to transfer ‘

the DPU 1nstruct\10n block onto disc, and signala. mcceésful transfer by inter-
rypting the PDP-15. The G25IM routine then exits and returns to the main progran..
By returning to the main p:ooéran immediately, and not Mtiné for the com-

pletion flag fronm the PDP-é. we can more closely approximate the action

of the cere refreshed syéten and si.gnificanily improve xesponae‘tue.

3

b

o+



Py
N

78

A
The display program in the executive has been rewritten to permit 41t to
retrieve the next leaf from the PIP-15's disc while the PDP-8 is writing
its file onto its display disc, This halves the time taken to put up a.e

/

picture. ’

z .

{

.

4,5 DEC 339 ‘to McGRAPH DPU Commahd Translation

-

Due to dj:fferences between the command sets of the DEC 339

s . ’ uf/ !
and McGRAPH processors, ‘the translation of DEC 339 commands ‘t_o‘xose of |

McGRAPE. 1s not one-to-one or in fact linear. For example, g. pair of

1

DEC 339 commands can specify up to a 10 bit vector move, The transla- )
tion program (G2TRAN) 1‘qte:;'pret1ng this command nn:st first remember if
the last move was a vector‘. If not, a serles of commands must be ismi;d
setting the McGRAPH processoxr to vector mede. Then, the wector move is
apﬁroximated by a series of head to tall bit vector moves.. The trans-
lator must also segment the l:IcGraph wd:i.splay- command list .’i.nto a set oéj\ i
display files com;ponding to each 0selectable plcture primitive dis-
played on the scxpen, Each display file is agsighgd 2 ﬂ(;l.enana I.D,
nusber for identification on a light p;n strike. The folloying pars- -

-

graphs describe the trenslation pro:;dures taken fox each of the seven

1y “a L3

Dac 339 commands used in BELLCRAPH, The foxrmat 6¥ f:hesgf conm.nt}a nay

i . :
be found in Appendix A or in the BELLGRAPH Programmer's Manual,

< 4



_ported. Lower case alphabetics are currently displayed aﬁgupper case

4.,5.1  The Character Command ( CHAR) :

The DEC 339 CHAR instruction packs two 7 bit ASCIX characters

into ope 18 bit instruction word. The graphic command translator (G2TRAN)

. an
in the simulation system extracts these two characters, does ‘a table look

up to retrieve a biock of relative vector moves for eac¢h character and

.

transnits these two "blocks to t:he PDP-8, -Note the characters are not af-

) . L ‘ ’ j '
fected by the symmetry ad jusiments since the vector decode step is bypassed.

o

This feature could be included at the cost of slower transnission,

a

The 64 character set given in Appendix A is'cur’rently sup-

-

characters., All ether chai‘acters not in this set are ignored. Néw)

3

characters are easily installed by 1nserting a block of vector '&ﬁove con-

\ 3
mands into the character look up table. '

The size of the alphabetics 18 6 x 7 addressable points

" which include one move ':E'ig?t to provide 1ntra-1ettex: spacing. The mum-

bers and other special characters-are 8 x 10 which includes a right
hand side spacing of two. The line feed character decrements the Y
. 1

position by 155, The carxiage xretumn character resets the X position

to the margin value set by the last margin trap (see TRAP command).
. ~



]
5,2 The Parameter Command (PARAM)
e - Rl Sl X

The parameter command setw display parameters for subsequent

vector moves,” These parameters ares

1, Blink

2, Llight Pen Enable/Disable

i
3. Symnmetry (complement X, complement Y,
) exchange X and Y)
Lk, Scal
j\ .
5. Intensity ) ' o
. p .
. If the blink is set all subsequent pictures displayed on the l
screen blink at k‘approximately 2 Hz, ‘This is pexrformed by sending the
PDP-8 monitor a "blink-on" instruction. Similerly this parameter can !
be reset resulting in a "blink-off' PDP-8 monitor instruction. The
' blink bit ‘in the software parameter word is updated to reflect the cur-
A8 - * | v
o7 .rent 'status,
=4 ° i

The {-151’1'6 Pen enable sets the appropriate flag in the display

N ¢

status word, and affects the filename I.D. numbers in the HEADER commands
- o | B

of the output instruction stream.
The symmetry bits determine whether succeeding X and ¥
o ) . e » _
. vector move commands will be complenented and/ox exéha.nged before being o

L4
-



T

81

decoded and displayed. When both complementing and exchanging are to
occur complementing is done first. THese transformations are simulated
by software. The symnetry bits set three software switches

used by the vector command decqoding subroutine. '
P .

Both the IEC 339 a;ld MéGRAPH display processors permit four
hardware scale settings, normal (1024 x 102% addressible points),
twice noma} size (512 x 512 addressible points), four times
(256 x 256), or ieight tines nérmal #ize (128 x 128). That is, given
a vector command to draw a line ten units in the X direction, in scale
"0"° (normal size) a horizontal line ten units long would appear on the
screen, If the hardware scaling was set to "3" (elght times) however,
the same command would generate a lir;e elghty ﬁnits long. IThe tvo scale
bits are extracted f:pom the parameter word by the command decoding sub-
routine and inserted directly in a scaling sequenc; of‘_DPU comgmands for

9

McGRAPH, The scale then remains at this value until the next scale
adjusting paranmeter command, ﬂwiﬁth one exceptilc‘m. The DEC 339\DPU
absolute point moves (x - I command) are not affected by séaling. To

simulate this, the current scale set'tin& is sa.ved', and a scale "0" com-
mand sequence is inserted befofe each absolute point nove.l The lacale is

reset after the abso].\_xte point move sequence has been generated,

Rt o 1
)



82

The bean intensity is adjusted in a similar manner to the
scale. The two intenslty bits in the parameter word are used to modulate
the high ondLr bits of McGRAPH's four bit intensity reglster., These ree l -

main unaltered until the next intensity setting parameter woxrd.

i

b,5.3 The Absolute Péint Fove Command (X = Y) .

The X-Y command gives a ten bit co-oxrdinate position of
3, ’ -

the beam in either X or Y. Iisi@‘ two of these commands, the bean

can be placed at any point in the 1024 x 1024 addressible point array

LY

regardless of current scaling., Since a palr of X-Y commands generates
an absolute moye independent of all preceding commands, they usually

precede a picture instance drawing list, By making all remaining moves

r

in the 1ist relative vector moves (invisible or visible), the instance
is easily noved on the screer by changing only the first two. X-Y con-

mands, For example, the ciispla.y réufine in the BELLGRAPH software pack-

age issues one and only one X-Y comnand palr for each leaf, These
. . ’ R
comnands are stuffed with the accumulated co-ordinates of each branch

[
Vo
block in the path to the leaf,

To sinulate the attion of a X-Y command G2TRAN generates

the foliowing DPU instructionss 2

L4
1 \—/
L4 -
A il L4




83

SET SCALE TO "O"

HEADER WITH FILENAME I.D. (if X move is viz;ible)

CLEAR AND ADD 10 BIT (visible/invisible) - X POINT HOVE

HEADER WITH FILENA'E I.D. (if Y nove is visa:\:ble)

CLEAR AND ADD 10 BIT (visible/invisible) Y POINT HOVE

RESET SCALE TO "X" '
For the sake of clarity we have omitted the mode changing commands Te-
quired by the HcGRAPH DBU. See Fabi>" for complete details ‘con- |
cerning the display processor. The intensity of each move (4invisidble
or visidble) 4is copied directly from the original X-Y command, The
example sequence above is generated from a pgir of ad;!ka.cent X-Y com-
mands, If there is o;xly one X-Y command followed by another type of

o

command there is only one absolute point move in the generated sequence.
Scale "X" in the al;ove exanple is the scale s_etting previous to the
X-Y commands, In an attempt to optimize the generated code, G2TRAN
looks shead for X-Y command palirs before resetting the scale to "X",
In practice, a PARAM command which seis the séale\ to a n;n value noru;ally
followsan X-Y pair. Thexrefore, further opi;i.‘l'i.za‘u.cm~ could be done by

looking ahead for a scale setting PARAM command, This is not implemented

at present, v



| 84
i .

-The HEADER command pmceg{;n@" each visible move is used to
idex{tify objects on a light pen strike. The 12 bit ﬁlenax;;a I.De in
. each HEADER instruction is the only real-tine data 4vailable on a light

pen hit, (See Chapter IIT for a discussion of McGRAPH®s hardware), All

other data pertaining to each instance is ge}xerated from this twelve bit

number. Therefore, each separate display entit} must have a unique file-

o A
name I.D,., The coding of this I.D. nunbex is discussed in Section 4.6,

1&.5.’-& The long Vector Move Command ( VECT)

° »

» A

bit ‘specifying X or Y and two bits glving the following control in-

. The long vector command contains a ten bit relative move, a

structions;

i, Load holding rggi,ster only.

) 2, Load holding register, draw invisible,

clear registers.

3, Load holding reglister, draw visible,
oclear xfeg.sters.

bk, . Load holding register, draw invisible
(except for end point), clear registexs,

c

. . There are two holding registers (X and Y)' in the DEC 339 display used

oA

to contain the relative.zoves of vectors. These registers are simulated




E 85

in the command decoder routine. The 1list of DPU commands generated f’ibm
a long vecto::v comnmand depends upon the control -specified. A load holding
reglister instruction does just that and generates no commands at all, The |

draw invisible and draw visible, except for end point commands produce

two ten bit relative point moves, A typical output sequence is given
\

belows

(ADD/SUBTRACT) 10 BIT X POINT NOVE (4invisidle)
HEADER WITH FILENAE I.D, (if Y wvisible)

( ADD/SUBTRACT) 10 BIT Y POINT MOVE (visible/invisible)

The contents of the holding registers are insexrted into the

relative point moves, If the contents of the Y holding register is zexo,
w —‘/\"
the X move takes on the intensity attribtute of the VECT command and the

£

-Y move 1s omitted, If the contents of the X holding register is zero

the X move is omitted.

t

Visible vector moves are approximated by‘-a list of vector com-
mands?’ McCRAPH vector commands provide 3 bit (7 units)_ moves in X, -
Y or X and Y. In other woxds, there are twenty discrete slopbs pos~
‘
sible in any octant (Table 4.2). Lines having slopes other than these,
are approximated using the algérithm presented in Figures 4.3 and lh’&;

This algorithm is quite sucdesful especially when the vector segments -

‘used in the éppmximation are snall relative to the vectors drawn, -



TABLE 4,2

POSSIBLE SLOPES OF McGRAPH DPU VECTORS IN FIRST OCTANT

io Y> o0
X> Y
X
Y 0 1 2 -3 L 5 6 7
0 HORIZONTAL LINES
1 2 1/1 2/1 3/1 4/1 5/1 6/1 ?/1
<5
o )
2 H 3/2 5/2 ~7/2
[
-3 . 4/3 5/3 7 7/3
&} - =
L H 5/t 7/4
[ Sl
s
5 =) 6/5 ?/5
> ,
6 6/7
7

.
-



Is Line

Horizontal or =
¢ i
Add '} to
_ Current X or (Y)
Transforn ilove , - Position ‘
Into ®irst Octant

X', Y'> 0
X' > Y*

X or (Y)
> Desired

I YES

1

i Y or (X)
Choose Two Directions
(aY1/aX1)(e Y2/aX2) 8X = XD - X
4Y1/6X1 > DY/DX >aY2/aX2 (AY = YD - Y)
. Send fectoxr Move
Set Current : L aX =7 (AY _7)
° Approximated Update X,(Y) Reglster
Position to (0,0) C
(xA,YA) = (0,0) {
Send Vector ilove ®
Calculate Two Update X,(Y)
New Approximations ' Register

EPX; = (XA +4X,)
EPY, = (YA +8Y,)

| 4;77 @

Calculate .
P Vertical Distances \

‘ E1 and E2

- A
-' v

; : FIGRS 4.3,  VECTOR APPROXIMATION ALGORLTH!.
3 . C _(continucd)

A 0
» '

- M + -~
P _ ’ S A '\. p)



s 88
pdate Approx. Position ’ :’), (K‘J‘
(XA,YA) = (XA,YA) + " PR
(prﬁ,myj) " A
j = §3 Imin(E,,E,)) : ety
, ;
. ¥ S

Call End-Point "
Cheex Routine T bre.
z=X ’ | “ y g
p -”-
Call End-Point ( s
Check Routine - . » .
Z2=1 >
Transforn T:;k Into . o )
Original Octant . . -
Update ¥,Y Peziasters : u o
Send” D7U : : ‘
Commands . . S
\
, ¢
nas ; ) .‘
Either XD Yyas ‘ . .
Or YD 3een - - ' ] . :
Reached g ). ’ CL :
* Pty
I YES Both XD *
And YD Been '
Reached ‘ [
. \ ¢
L . 1 A= XA+aX e
@’ | memter
; . ® . L ' e
FIGURE 4.3, VZCTOR APPROXINATION ALGORITHM ) o
] - (continuad)



HO

nezch

e TDrzched
Other Co=-0xd,
ond Point

wi

Jt{0] o
Set
2= ‘ <
" x
Set Set
Z2=7 (fZ-AZj-(ZA—DZ)
] - “"\”,
P i .

‘ Return )
End-Point Check Routine

FIGURES 4.3, VECTOR APPROXIMATION ALGORITHM,

-~




— +
' 90
(DY, DX)
) (Dx1(2),DY1(2))
- k}
E,(2)
(pDx1,0Y1) , "— ,W_,.'_....--.----—-J (DX2(2).DY2(2))
st b et
3,(1) .
> 4
¢ ' f ’
_ ?‘IWRE 4.4, = APPROXIMATION.OF A LINE USING McGRAPH. VECTORS, - -
»
W \;‘
) “. ,




N
91

13

b ]

A HEADER command precedes the output vector command 1list ifs

Ll

1. The preceding move command was an invisible

vector move with invisible end point,

2, ' The preceding move comnand was ah invisible

x-Y.

3. There has been a change?in the light pen

status (emable/disable) since the last move,

[y

4,5.5 The Short Vector Hove Command ( SVEC)

°

This command is similar to the long vector command except c
that five bit moves for both X and Y are pacl;ed in one command,
Both the X and Y holding regis::ers are loaded with this command
and the execution of ths move is identical to that of the long vector

command..

b,5.6 Edge Detection Progran ) 0

-

- Xn BELLGRAPH, the DE0339 IPU provides an interrupt and ralses
one of four flags in the case when()a vector conmand moves the bean off

screen, The. program can then take corrective action such as turning off

»




92

the intensity to prevent the picture from wrapping around on the J;pposite
edge. This feature must be simulated on McGRAPH. The simulation progran

does this by keeping the 10 bit co-ordinate posjtion of the beam in two

software registers (XREG, YREG). Before sending a vector or point move
to the PDIP-8 these registers are updated and checked for overflow or under-
flow, If :)ne of these conditions occur, subsequent commands are not sent

until the X and Y registers return within range, .Then an invisible

'

relative point move is made from the last point displayed on the screen
to the current re-entxry point. By not sending the off-screen vectors, we
prevent wrap around, and save space on the display disc. By performing

all the edge violatlon procedures within the simulator, we gailn speed,

&

since we no longer require 1n£ermpts for edge detection, and we gain

space in managed memorxy, since we do not need edge handlers in the

JUNSES
e e

BELLGRAPH executive,

k,5.7 The Control Command (CNTRL)

A

ey
o
gy

The control command is used tos
T

1. Stop the transfer of DPU commands,
: ' A
2. Override the bean intensity (tur it off),

3. .‘Sét'the vector mods t6 broksn (dashed) lines.




1o

-

93

The stop command -raises’'the stop fiag in the software display status
register,‘ and causes an exit from the interface programs. The beam over—
ride is effected by turning off the subroutine (CSEND) used to send com-
mandsnto the PDP-8, Dashed line control sets a switch in the vector
generatox subrouti'ne é’ausing‘ it to égnerate alternate invislble vector

[}

segnents,

k.5.8 The Trap Command (TRAP)

13

The trap comrand signals the end of a DMA transfer cycle by

stopping it, raising a trap flag and initiating an interrupt. In

McGRAPH the trap is used as ai

1., Bnd of a leaf flag. . -
2. Hargin set flag.

3. Maxrglin reset flag, ot

In the original BELLGRAPH sqftware, the trap was used for a repeat leaf
/ .
' B

flag and réal-time subroutine entry as well. These funotions are not’

’ /
supported in the current McGRAPH version. The intexested reader is
ri;terréd to the BELLGRAPH Programer's Mamal for details of these tw

features,




d .

.
<
/

The command decoder (G2TRAN) on an end of leaf command returns —
control to the main program after instructing the PIP-8 to transfexr the
previous block of' IPU commands to the display dise. The PDP-15 is later

< .
interrupted by the PIP-8 upon successful completion of this transfer,

The margin set trap comnand is handled internally by the simu-
lation progran and thereby does not require ahandlerin the n}‘aln progran,
This command sets a value for the text margin, in other woxrds, on &

oo

receipt of a carriage return charagcter or margin reset trap command, the

X co-ordinate is set to the value set by this command,

)

L,6 The Light Pen Handling Routine

-

The DEC:339* display processor provides the following real-time

[

data on a 1light pen strike:

1. Address of current IPU command. " .
» 2. X and Y co-ordinates of the bean,’ ,

3. Current display paraneters (intensity,
- blink, ete.)

On a light pen hit the dlsplay subroutine in the original

BELLGRAPH system 1s intexrupted from its traversé of the dath graph, -~
. B Co
so that the status of this progran (e.g. the pushdown stacks) provides - “p3

-

t.
. .
'

x R R

Ut g ISR
. Pt 2y w 7. A
S TSR U - TN L



95

\

4

o

additional information concerning the /picture instance (e.g. the path
- 4 , N

taken through the graph). ,

4 I
In McGRAPH, the digplay subroutine executes only once, and

p
then waits for input interrupts. { A1l real-time information on a light

/

pen hit must be derived from tje 12 bit filename I.D. supplied by the

IPU, requiring each separate instance to have a unique filename I.D, so

/
T v

that it can be identified on a light pen hit. We define an instance as
a section of. text or a contiguous string of visible vectors in which

{ .
there areno light pen status changes, invisible vector moves, or absolute

. . point positions. Every such instance is assigned a unique filename I.D,
‘ . . number and a file on the displ‘ay disc, In other words, an instance is

\ ! 1
i a connected figure separated from all others by space or light pen status.
- Sufficient resolution of light pen strikes is expected using

4

this definition to identify separate instances, for mormally, thé light
o | ;
pen is used to select only picture parts. If finerx positi resolution

-

| ~ .
i is required, the tracking caose is ussd. (

The real-tinme data assoclated with a light pen stxike can be

; ' /o
| , . ,
| - " grouped into categories: )
| Lk . )
) 1, That needed by all users of the simulation
® ° i program, ES .

2. That specific to the BELLGRAPH software paciags.

e
R

[ R

N

¥ Tove
AN ey gt
PR LU S T P O ¢ PSR O A N



@

&

! - ' . 96

o

o "7’,

9 + e ' ot

/((‘
To make the graphic device handler package have universal application for

211 users, 1tis asindependent aspossiblé from the BELLGRAPH software. In
‘an effort to accomplish this objective, the display and light pen handling

is perfoxrmed in two modes, One is used‘"bzr'ﬁéLLGRAPR. the other is re-

0t

served for potentiaiiy difi‘e;eﬁt‘;.pplications. The mode is selected by
choosing one set Qc>f QIOT's to display non-structured pioi;ures oxr lrfessages.
and another for the display of leaves in the dsta graph (See the 1list of
IOT's in Appendix A), The "BEG" instruction is uséd to display non-

structured pictures or messages. In this mode, unique filenane I.D.

nunbers, called message nunbers, are generated for each HEADER in the

i

output data stream wvhile the 1ight pen enable flag is "ENABLED", .If the
light pen is disabled a special filename I.D. mumber is used..
(See filename I.D, mumber allotments in Appendix A). The PDP-é does not
interrupt the PDP-15 on hits of these disabled files. Sixteen separate
light pen sensitive meé.sages' (or pictures) are permitted. For each of
these the following data is saved:

1. Address of the command generating the

nessage mamber, —
2, The cxrent X and Y co-ordinates,

3. The cumnt display parameters.




P

On a light peh hit, the data associated with the selected message is

loaded into the display address register, the X and Y registers, and

-

the parameter register réspectively. Subsequent I0T commands can then
interrogate these reglsters and extract the required data., If the dis-
play exceeds sixteen light pen sensitive mess!ges or pictures the fol-
lowing error message is printeds /
. TOO0 MANY FILES j ’
) \5 RN
MM

¥ ssssss

-

LLLLLL

P
3

where,

*

MMMMMM is the messag;a number,
58333S , is the subleaf number,

! re
LLLLL ' is the leaf number. -

-

The disglay subroutine in the modified BELLGRAPH executive,
and only this subroutine .’*uses the special IOT instruction “DCRT" ¢to .

display leaves in the data structure. 1In this mode, a leaf countex is

.

incremented on each occurrence of an X-Y command palr., Renenber a

*

maxinun of two of these connands ocour in the first two words of each
leaf, ' If the light pen is disabled at this tine, the non-sensitive

f£1lenane~I.D, number is placed in the IRU rmma msuwnons I the -

, N
1light pen is .enabled, tha leaf nunber is inscrtcd in Mts & to 11 o:t the
. ‘) oy . g 9

v
o . 4




(\.

® filenane I.D, (See Figure 4.5). If the leaf number exceeds 367, the

above error message is printed and the program halts.

On each subsequent c;ccurrenc:e of a HEADER command ‘;.n the output
list, while the light pen is éna.bled, a four bit sub-leaf num'ber‘counter
is incremented and inserted into bits of‘ 0-3 of filename I,D, aJ;ong with
v the leaf number, If the sub-leaf counter overflows, the above error message

is printed and the program halts.

This filename I,D. coding technique enables one to display wp

to 3208 instances of leaves (nunbers O-40 are reserved for the systen)

each having wp to 20; individual parts. (Separated by 1‘?v1s1b1é moves).
Although this technique lowers the upper limit on the number of display;d ‘
le;ws. and imposes a potential maximum on the number pictuyre parts per
leaf, it does provide the simylation program more information on light |

" pen hits, significantly reducing the time taken to extract the real-~tine
data needed, The coding pmc;dure appears justified on the grounds that
overflow of the leaf or subleaf o;aunters is noi‘:/ expected during normal

1

use, .

#

If the filename I.D. received from the PDP-8 on a light pen

. W
~ ;?"

_ _ interrupt indicates a leaf, the simlation progra searchies the data

v

structure for this instance. The search is performed by turming off all

by




* [}
1 4
Format for Non-McGRAPH Pictures and lessaces
MN a \
A J '

0 3 4 . 1

MN - message nunmber (o - 178)

k4 . )
Format for 'cCRAPH Leaves
SLK LN ’
| 1

0 3 11

LN - 1leaf number (508- 3768) ‘

SLN - sub-leaf number (0 - 178) '

\ 1
~ 05)
FIGURE 4,5, FORMAT OF FILENAYE I.D, WORD,
- \ £
A \ :‘1
.~.§;~v
- A
By ..




.7 The PDP-8 Graphics Monitor

~ g \”\Q,w M ﬁ?

. ‘ 100

command decoding, save that bf the X-Y instxuction, and then entering

the display subroutine. ¥hile in this search mode, the simmlator receives

. leaf instances fron the display subroutine, as during a display cycle,

and counts them, VWhen a match occurs between this count and the leaf
mumbdg,of the instance struck, a second level search 1s initiated. The
simulator is now allowed to interpret the commands although transmission

»

to the PDP-8 is inhibited, and a match 1s sought on the sub-leaf numbers.

When a match 1s found, both the displa.y subroutine and simulated display

processor are in the desired state and control is returned to the main

progran, All reaI“ttmemm\ sed by the main programs on a light pen hit

\-....,~§
e

are now avallable. The search on light pen hits does dW

'

time although it is not ‘expected to be objectionable (less than 1 second).

-
j

i
'
/ k]

b.7.1 + Introduction |,

All communication betweerl graphics programs residing 1n tl}o
PDP-15 and the graphics hardvare dwfcés.,oonnected to, +r sinulated on, y
e L [ /
the P 11’-8 is handled by tho set of pro ] called the gnphica lonitor.

The graphics uonitor is oa;pletely indepandent of the BELLGRAPH prograns

in the PDP-15, It‘is equally useful to the user wanting to draw mhlcs




[3 -

' - directly with FORTRAN, or it can be used in a stand-alone mode as well,

' Typing a CNTRL T character switches the data input/output device from

»

the PIP-15" to the PIP-8's teletypewriter. In this mode all commgrids

normally originating from the PDP-15 can be typed in as four digit octal

by 3 “N <

"

numbers, and all responses to the PIP-15 are diverted to the Pﬁf’-B tele-
. ST J
\. .
typewriter and are printed as four digit octal mumbers. ¥his PIP-8 stand

-

o 1,
Sl

.

alone mode enables one to investigate hardware faults locally without ~
~tying up the PDP-15. It also helps when adding and d;abugging n?w features

to the PIP-8 monitor progranm itself, ‘
i | .. .
The PDP-8 graphics monitor performs the following functions
\LN on demand from the PDP-15 (or teletypewriteg:) [ ) ) -
1. Recelves display data and writes them out ) . v
. .

© . ,

onto the display disc.

—

a

/ 2.  Displays up to ei.gh{ nunbers on command
along the bottom of the screen as a simu- . ;5
° lation of back lighted pushbuttons. o

‘ 3. Out:puta a puahbutton‘ t:lag and number when
& one of these simulated pushbuttons have
. been selected by the light pen, J
Ik, Displays a tracking cross which can bs . - . E
dragged around using the light peris The
' current co-oxdinates qof this tnck{ns cross

are

/ ) & are continually output after every. update, ‘

¢ ‘j . . .
1 » - »
. - . * b p L . ¢

D N i . . Y Y
. - D



kR

102
.7 5« Accepts a chara_cter from the typewriter,
v translates it into six bit ASCII code, %
, and outputs the result.
R ‘
Cﬁ
6. Accepts 1light pen hits and outputs the light .. .-
pen flag and current filename I,D. (if they Mo

‘ 4

are not on the tracking cross or pushbuttons),
. K
' 7. Blinks specified files at approximately 2 H;: .

[4

A complete user's guide for tl?e Graphics Monitoxr is given in the back of

this section.
. M

h,7.2 The Tracking Pattern Algorithm

Moving the tracking cross is a simple function best done by
'the\grapqics monitor. By removing the tracking cruss procedures from the

BELLGRAPH software, we have significantly d:creased the overhead load on

the PDP-15 during tracking and increased available core space. This has

required a complete rewrite off the GRIN subroutine "WHERE™ tut the

- "

;esult is a simpler smaller routine., A similar revision to the subroutine

“DRAW" 1s required, This also will decrease its size and complexity.

The, tracking pattern aJ:ong with itas algorithm is given in

Figure 4.6, It c’ﬁ;islsts of o!_.ght_.diqpl_q files., The four corners of the

g fe

G a5 - .
. , )

» 1 .

! - Ve s




-

on a
Cornex?

G

Decode Direction

! of love

Set Increment
to laximum
Update X,Y Position .o

L3
-
- 'LJ'Q)\ -~

- -
-
b 7

Send Tracking Pattern
Flag and Co-Ordinates +
to Data Output Dewdce

L

. "ﬂte N“ > [
‘Tracking Pattern
on Dis%.. - -

FIGURE 4.6, - TRACAING PATTERI. ALCORTTHN

L .

B ' ! v aw
- et ’ Y . ¢ P
; L — s © s B D DU LA et




104

¢ ~

Last Hit
On Opposite
Arm?

]
T Decrcase Size of
h
i Update Qiement ‘
Which '
X Arm Y
Fit? ’

Update . Update , }
X by This . N Y by This . ‘ ’
Increment " Increment '

; > 9 [ 2 ‘




)
¢

¥R e e
W -
e

105

box are used for gross moves so that the pattern can be quickly dragged
across the screen, and the inner cross hairs enable fine adjustmen%f
the pattern's position. Any point in the 1024 x 1024 addressible point

array can be selected using the tracking cross.

The tracking crosq‘ is used by first moving it such thgt the

»

desired point is within its box. Holding the light pen on a horizontal
cross hair at the desired ‘X .co-ordinate will move the tracking cross

to this locations The vertical c¢ross halr now intersects the desired

)

point. By holding the light pen at the desired location, the tracking

-

cross will zero: in on ‘this point, »
N h ] »

14

k.7.3 PIP-8 Graphics Monitor Users Manual
* v

» =
N
’

" This section describes the modes of operation of the Graphics

%

) A\
Monitor and its instruction set, The following discussion is suggested

‘for the readsr wishing to use thig software psckage in controlling the .

graphics devices, both real and simulated.

" The graphics sonitor alters its mode of operation upon reeelpt
T T .
of the following mode control commands,




106
$ CONTROL T substitutes the teletype for the PDP-15
as a data input/output device, All data normally
recelved from the PDP~15 is now expected from the

~
teletype's keyboard.

}
fp CONTROL P restoresthe PIP-15 as the data

input/output device, '

}X  CONTROL K indicates that the following text from
the teletype keyboard is to be regarded as coming
from the simulated console keyboard. Another ¢ K

command resets this mode, v
H

tn CONTROL D ifollowea by a two digit octal mumber
allows the user to change the display disc's
.track, NOTE: The selector switch/ on the graphics
unit must also be switched to the !\10\1 track.

Besides accepting mode ¢ontrol conmand8 the graphics monitor can also per-

form certain functions on demand from the data input device, The function

I
comnands are twelve bit negative number. The input data (DPU commands)
are eight bit numbers right justified in the FPDP's word. Therefore,
negative function commands are easily separated from the data in the in- |

put streanm. B \

) nuumnationmuanismudtomuthouhmmz

—_fxon the FIP-15 (ox taletyps) to one of the following uuem Savices:

l

*Notes § indicates the 'CNTHL muupmmammﬂhmmdm
'K’.P, K, Mbmmm . ),’ o Fr g e %“‘i‘*’i*‘“

PO
. Sy ﬁ‘ w2
&y O 3

v il
‘ by




i, Dlsplay.
2, Tracking cross (output of initial position).

3 . "Blink control,

»

4, Pushbutton )iights (selects the displayed
bushbuttons).

L 3

© Table 4.3 gives a 1igidf the function commendsand their action.

-

Devices sending data from the PDP-8 are identified by pre-

ceding the data with a status word., This status word contains one bit

.,
"

set corresponding to one of the following imput devices:

1., Display trap (end of disc write). o
2. Tracking pattern.

3. Light(pen. ;
k., Pushbuttons, |

5. | Console .keyboa.z."d.

oA

Figure i&.? gives the format of th;a status and the data following each one,
»

L4

These function commands and imput .uqn wm'provide & oon- ;
venient nethod to any user.of accosd.ns the graphics dav:l.ou. ) m ;nphi‘qs : b

. sonitor progran allows further additions tothcfunouonwnmdupmon‘

.. ——and supported 1nput devices. For uuplo. ucmrn Joymck is mot our-

rontlywpyorted.hutomﬂ.dbom

- -

i

A

Va -
t

s



. ’ TABLE 4,3 108

‘ _ A LIST OF THE FUNCTIONAL COMMANDS

1, RESET THE DISPLAY (~1):

- Writes the next.display at the beginning of the track thereby P
| erasing the previous picture. -

- Resets the core bu.ffer. |

2. END OF DISPLAY (-2)1 : ,

. = Accepts one more word from the input device (trap address when \
used with BELLGRAPH) then appends the current block of display
data to%the display list on the disc,

- Transmits the last word accepted back to the data input device
as aclnowledgment of succeasful completion,
3. TRACKING PATTERN ERASES (-3)1
- Remove tracking pattern from the display.

b SI‘ART DISPLAY DATA BUFFER (-l):
- Resets the core btuffer in preparation for graphica data fron
the data input device,
. 5. ENABLE BLINKING (-5)3
- Inserts a "start blink” header into the data list,
- The monitor contimuously scans the filename register for the
start blink I,D. and modulates the intensity accordingly,
6. DISABLE BLINKING (-6)1 | ' /
~ Inserts a "stop blink"™ header into the data list,

- - The monitor scanning the filenane ngiater restores normal
intensity ‘on this 1.D,

-~

7. DISPLAY TRACKING PATTERN (-7):

+ = Receives two words from the PgP-is to define the sta.rting
position of the tracking pattexn.

- The tracking pattem is thm displayed. ‘ T
- Each time its position 16 updated two words axe sent in- f
"~ dicating its cuxrent positlon L
8. RECEIVE PUSHBUTTON LIGHT' m (-105)1 -2

"Recedves oné mrd givl.ng the pushbuttons to be dhplwotb

N -" The position ¢ md:it;.;n this woxd W
N . pushbutton splayed: o6.8., Bit mm .
2 B mumu? 1s to. be mpw | R

v

- “ . , N v LT
. ~ . % boa ey D N AR P N
‘ - - . r N el .
AN 3 < ' . R “ AA A B T
P A . . PO L N N L e, Yom sy &



Status Word Device 8 Data

'Bit #

o

Display Trap Word following end of display command

[

Tracking Cross Current X, Y position

Iight Pen ~ Filename of instance hit

\

Pushbuttons Bit # of bit set = pushbutton #
Conisole Keyboard 6 bit ASCII character

~N O o FoWwWwoN

n
8
9 ¢ B3
’ .
10
. -
11 "
i
‘ L]
.
[ o/ $
N
S, ‘
! &
— %

fa e r

-
W ey

[y *
,®

3
“
¢
-
3, ™

[E i e

c
h Y
v
-
- 3
.
5 ey
A
‘o, Y
& v
3
SEHal R,
S
oy




. 110
CHAPTER V >
ol
THE GRAPHICY LANGUAGE ASSEMBLY SYSTEM

5.1 Introduction y

A high level graphical programming languag; called "GRIN" 1is
available to the applications programmer. Using this language, he can pro-
pare programs which deﬁr;e the procedures anci algorithms >va.\1ab§le to-the
user of the graphics teminal) For example, a typical program might dis-
play a mgmu of functions available to the user, Upon picking one with the
1light pen, the program‘ transfiers control fo the correq;onding ‘function
subroutine within 1t.‘ It is i\mportant to keep‘clear the distinction be-
tween the applications pro er and the user, The applications programmer
prepares a progran off-line ch.can be used to solve a class of probleas,
The individual users then run this program, and supply their uniqu‘o data

4

using the graphics devices, in an effort to solve their particular problem.

GRIN prograns are p off-line on cards and are subaitted

to an IBM 360/75 for assembly into macline language. The resulting object .

module is then read into the FIP-15 under control of the graphics executive




111

an "END") 1is tralnslated into one relocatable progran Jblock. Progran
blocks are treated by the memory management system as any other d;.ta block
(e.g. nodes, leaves, 'Branches) and are relocatet‘i in core whenever neceqsary,
with all relocatable references ;.n the block adjusted accordingly. " A table
at the bottom of each program block (called the . trailer") contains the re-

location attributes of each word in the program, Each word is flagged as

C (a)  absolute (not dependent on address in core) !
(v) reloca“haple |
(¢)  block pointer (reference outside the
program block)
Programs can refer to other programs by use of a block pointer. This pointer
is a two word list giving the I.D. number (id) of the referenced progran and

the relative address (ra) of the word referenced.

R
o

i

Program blocks can be loaded on to the PIP-15 disc off—linevuain.g
the G2LIBE program or can be 1;:put dimctl; at Tun tine under the executive.
The McGRAPH executive expects the first program "bhck fron the high speed

paper tape readers Subsequent tlocks are searched for on the disc; If ’

not thers, the. executive returns to the psper tape reader for them. s

" As mmti.omd saxlier, cmz hu bean -omm m;my :Lu u-
4

uplonntauon at accm. The nﬂﬁuﬁmm dho ta . bham of m»

putorl used to umbh Gﬂm m" ﬁ"

L . " .
B L ST R V) My % g A



resided on a GE635 computer using the GMAP assembly language but it was
later supported on an IBM 360 using the BAL assenbly language. Incom-
patiblilities between these two versions arise mainly in statements dealing

with the control of the assembler itself and with macros,

At McGill, we are using the IBM system installed on a model
360/75 to assemble GRIN programs, in order to process the source code
from Bell Laboratories (written in GMAP syntax), a preprocessing step is
required to resolve the incompatabilities between the two systems, and
translate the GMAP syntax into BAL, A PL/ 1 program, supplied by Bell

Laboratories and later modified extensively here, is used to perform this

preprocessing,

5.2 Assenbler Implementation

The syntax of ncG};IN (McG11l's versioh of GRINZ) is that of ’
IBN's 360/0S BAL sssenbly language (Ses IEM Mamual #GC-28-6514-8 ,\;e-bler
Langusge Reference Marual). All BAL assembler pseudo-qumu;ons are
avallable plus a few additional ones specific to McGRIN: These extn

pseudo-operations will be discussed later: A McCRIN progreamer may de~ - ¢

fine macros within his progran using the BAL macxo pmm%ntya L ) -: ’

2



~

2y

113

L N

A

The McGRIN assembler also supports PIP-9 instructions so that a McGRIN
ey .
progkam may consist of GRIN2 function statements intermixed with PDP-9

PR
«
4 L

£
conmands,* : P

The McGRIN assembly system consists of three segments, a/prex

P -‘,"‘

A
processor, a macro library and a postprocessor. The preprocessor podifiqs

certain statements in GRIN source programs, which would cause assembly.

LY

errors in the next job step, and expands certain psaudo-aperq&;tons not

avallable in BAL, ' The modified source, received from the prepmceséor, is -
assembled by BAL using a macro library to define the GRIN function state- ]
ments and PDP-9 instructions, A second smaller macto library is available

for assembly of PIP-9 programs without GRIN statements. The executive

anid the off-line support programs are assembled using this libr;.ry. 11;9

@

cutput of the assembly stbp is'a deck of 32 bit data words, which is tran-

« tslated by a postprocessor program 1nto a list of PIP-9 woxds, Currently o

the postprocessor outputs the list of PIP-9 instructions onto magnetic
tape and a later step tmacrlbu them to paper tape 1n the proper fornat.

The postprocessor also optionally prints a listing of the program,

The remainder of this chapter is devoted to detalled descrip-

tions of each assexbly segment. Appendix B gives the control cards (Job

R . . o
. . et

*The pw-9 1nstruct:lon repetniro is a subsat of the Pll‘-15‘ ' !’Wm. .
uﬂtten for a Pm-sv will run on .m»-;s withaut w lp&ﬁuﬁon-




suppress MACRO expansions. \ “~

114 -

control procedure) used to assemble a GRIN program or PIP-9 prog'ra.n on

McGill's IBM 360 HASP system,

-

™ .

™y

5.3 The Preprocessor

. ¢
The preprocessor is a PL/1 program used to alter certain state-
ments in both GRIN and PDP-9 programs, making them acceptable to the BAL

assembler,

Other illegal statements which are context sensitive and cannot
be transformed by the preprocessor are flagged by the preprocessor and an
m .
accompanying error message is printed. The applications programmer must

make these corrections by hand.

The preprocessor prints the resulting source file and outputs
it on file ASMIN, (See Appendix B). A punch card deck can also be pro-
duced by specifying the "DECK" option, Another option "GEN" inserts

a "PRINT GEN" statement in the output source file, This statement,

upon assembly, causes all MACRO generated statements to be printed in the

. agsembly stips output listings. The de;tfanl}: conditidn is “NOGEN" ox

/
I




v o S R ; - . T ——

w ' o ‘ : 115

-

“ Besldes adjusting the'-ﬁyptax. 1’:he preprog:ess’oxj also oxec;xtes a
set of pseudo-operations to define and construct r;icmpl';:gramed PDP-9
, . .
instructions. The microprogrammable PDP-9 instructions a.re grouped into
4threei classes, the operate instructions, the axten;ied arithmeti; ‘eZ_lement‘ \ -
(BAE) instructions, and the input/output transfers (I0T). The following
1;a'ura.graphs describve the preprocessor pseudo-operations used to.define and -

¢

generate each of these three classes of instructions, -

2 .
w . . @
i
@ A8

5e¢3.1 The Operate Instruction Set

The operate instructions perform various functions on. the ac- . .

! -~ ’
1, cumulator and/or LINK. By setting the appropriate bits in the insgtruction
{ . .

L ) word, a number of these functions can be executed by one instruction. For -
example,
(symbolic) SZA!CLA (internal) 750200

perfoms "ékip if accumulator is zero" followed by a "clear accumulator”

1
XY "

action. The resulting machirie code is the inclusive OR of the machine

~—

-~

codes for SZA and CLA instructions.

(symbolic) SZA (internal) - 740200 o K
. » * . .
o 2y 220000
,. % 750200 .
.-.r_;‘ .

A




116
\
To generate a microprogrammed operate instruction the AUGOPR (augment

operate instruction) pseudo-operation is used. Its format is

cols 1 8 16 ‘
! , AUGOPR  (operation list) [ mnemonic)

where the opepgation list is a 1list of operate instructions, and the mnemoric
field is optional, If the mnemonic is present, a macro will be inserted into
the output source defining the new microprogrammed instruction to the as-

(
sembly step. Subsequent use of this mnemonic will generate the new micro-

megrammed instruction. For example, ‘ o

L

y . ‘ . AUGOPR (sza,CLA), S2C
will generate

v, MACRO
&LOC - 82¢ C

&LOC QCPER 750200
MEND | ‘ : N

¥

* AUGOPR ' (S24A,CLA) , 82C
sze “ ,
. The instruction QOPER 1s used to translate a 6 charsoter string\consisting

{

@ . of octsl digits into an 18,11t binazy word. Note, tie original AUGOPR state- . -

ment is xetained as a comment to identify the following opon;u mcpign. '

4 [}

i




An alternate teshnique is to first define the mew instruction.

using DFNOPR pseudo-operation. = For example, our original source.could be

b
kS

. DIFNOPR 750200,S2C
szc .

with the result being -
c,‘

&1.0C ' szc
QOPER 750200
MEND
@
, szc ¢,
A
The DFNOPR enables one to assign mnemonics to any 6 digit octal word, not
necessarily an operate instruction.,. The mnemonics defined.by DFNOPR or
AUGCOPR can be referenced in the operation lists of all other preprocessor -
pseudo-operations. . ,
o oy l ) . 3
N
{
5.3:2 The IOT Instructions >

opexation, For Mlo.= ST

k] - -

.
. .

N

;. CoL . . 3
- R ot e, - -
. - ‘ o R y "
ECY o . e ik .y o
~ - L s EaY e ¥ i £




118

" DFNIOT DSCF, 707041
DFNIOT DSFX, 707042

generates nacro definitions for two IOT's used to’ drive the RFO9 disc.

.7

- kg
These two‘insﬁtmctions subsequently can be microprogrammed by

M
I

AUGOPR (DSCF, DSFX)

There is one éestriction concem'ing the use of DFNIOT and AUGIPR to generate
Ior ins;,ructions. One must be careful when constructing the graphics de-
vice IOT instructions, for a "jump to subroutine” (JHMS G2SIM,*) instruc-
tion must follow each graphics IOT allowing it to be executed by the simu-
lator pmgranf. This problem ari:es only ‘when attexi:pting to define new

IOT's using AUGOPR or DFNIOT., All graphics device IOT's list;d 1n Appendix A
are already dei“ined in the pemanent macro library and need no special pro-

cessing,

5:3.3 The EAE Instructions

The EAE class of instructions can be sub-divided into &ift

”\4 v

instructions, setup instructions, and step count instructions.

¢

The shift instructions shift the ocontents of the AC and lﬂ

7 xeglsters left or right. For sxample, . R

L i L

s . - ) 3
AT

“ m o i " .y ! Mo

s -~ F . - . EEE e

* . . » e 7 . i

‘ B . e .

- . . . - H

« . . .




1
L1

\'.

' ' 119

4

shifts the AC-KQ registers 9 bits to the right, Note, the BAL assembler

uses a decinal, not octal, number to specify shift count. A pseudo-
“ e
operator called DFNSFT has been provided to define new shift instructions.

For example,

DFNSFT ACLS, 640700

generates the following macro definition

14

MACRO
&1.0C AGS  achT : | .
- QSHFT 640700,&CNT
MEND )

)

The QSHFT (supplied in the macyo library) adds the shift oountf?ld to

the least significant six bits of the PIP-9 word (e.g. 640700):

The EAE setup instructions perform operations on the registers,
(1.0, step count, accumulator, and MQ) and are defined using the DFNEAE

p_seudo-crperatioﬁ. An example of the use.of DFNﬁAB and .the macro inserted

by it is given belowt
DFNBAB 1MQ,652000 Lo




L
RS S

- 120
MACRO | s
" . \ "; , _ e
&LOC g 7
&L.0C STUP 652000

' MEND w

v ‘ The EAE step count ihstructions provide for such operations as

.

) normalization, multipliéation and division, The assexbly xystem allows one

to override the default step count of these- commands, For example, the
' h .

divide instmction "IDIV" has a defanlt step count of 238 - 1910L In

other woxrds, the divide operation pexrforns 19 1terations producing an 18

bit quotient plus remainder from the division of two :18 bit integexs, By

" |

. . explicitly specifying a step count, the length of the dividend, diwvisor
! T and quotient can be varied. Fox Example,
INDIV 11

per:t:oms an, integer division on two ten bt integers. Unlike the shift

&

instruotions'which adds the shift count’to the dafault value, the step

count field replaces the default count., New step count instructions can

«
LI
- 5‘
k
;"

. . .
be defined by the DFNSTP pseudo-cperation. It's format is identical to

DFNIOT, DFNEAE, oy, o s

mmmmmetmwhumpm

using tha AUGEAR m::uoﬁon. It's Mt to u fuum:

,
1
SR
¥ [}
L3 - - ¢
- - L
‘e C s
]

&
YR ‘ - o, .‘S
o . ) Goh. o 1
. . '
t - AR . -
+ - ¥ -~ 4




’ .12

The optional count is a decimal number or arithmetic expression giving.

the shift or step count, and the optional mnemonic defines the new in-

-~

struction by a macro,

v

5L Preprocessor Error Messages

In a few instances, the preprocessor canmnot resolve GMAP/IEM

differences due elther to a context sensitive translation or insufficient
data, These statements it cannot process, are followed by an error message

S

in the output source file and are printed in an error summary. A list of
: thd possible error messages along with a brief discussion of each is &iven

* below,

‘Sly,4  WHAERROR®** UNDEFINED OPERATION : ' ¥

This message may follow the AUGDPR. AUGEAR operations or a

%
K

. Q&AP eonditional a.smbly sta.tmht. Réctorrlng to s ADGOPR or mms




-\".‘., N
i

AUGOPR (82¢,IAC) -

L4

"

would cause this message aince SZC is not defined in the standard PIP-9

instruction set. This could be t;émcted by the following:

n

IFNOPR 750200 ,S2C ) a

AUGOPR (szc,IAC) -

GMAP conditional assembly statenents must be transformed

1

wanually, Table 5.1 gives the syntax of two GE conditional assembly opera-

- o
’

tions. and their IBM equivalent, The reader is referred to IBM Ranual '

#GC28-6514-8 "0S Assembler Language" for a more complete explanation of

the syntax for IBM condivtional asseably instructions, For example, the

source .
A T M
IFE A3,2
| . TAD N100
i, ou ‘ .
AC TR ,
! » ., ta
st be translated into - 3
&8 @A
AP
. .
» oA




o,

S English , MACRO IBM MACRO®
“ < @ =
- Standayd Macro syntax . . Kane MACRO MACRO
. &LOC Name &A,&B,&C
’ “ ENDM Name MEND
ﬁl‘bouc Pmnetm
!‘.‘I.rst qn‘-bouc parameter is operand #1 &A
Second synbolic parsmeter is operand , #2 &B
M ‘synbolic parameter is operand #3 ete. &C
Mtional Assenbly Statements 1 i
;_'{ If "a = %", then assemble next "n" IFE a,bn "ATP (%A NB 4B).x
> o - n statements
kw N "X ANCP . ,
2;"_: If ; f B, then assgnble the next "n" IFE a,b,n ' AIF (&A EQ &B).x
" : n statements
- ANGP
#2XY2 &B,XYZ
XYZ#2 XYZ&B
#2#1 &BXA

;g; &cmmholicpmmsinmnacms
%mmm

e,
Py

e

' ramtE 5.1.

GEGMTOIBHBALMGMSYM:&XCONVERSION.



e AN
J’m

et

.
-
-
B

124

|
® ,
i

i

‘ .

SJ4,2  #SERROR™** INVALID SYNTAX
’ .

/./

This exror occurs whenever the preprocessor encounters a con-
version error vhen converting a character string to an integer, Scrutiny
of the statement before this error message will iihcover a non-numeric

character in'an exclusively numeric field, For example the statement

B . BUFFER BOOL 45-36

will cause a syntax erroxr since the BOOL statement permits only octal numbers,

i not expressions, in its operation field., .

, 544,33  TO0 MANY BAD SYMBOLS

-~

If the number of illegal symbols found in the input source ex- R
El 4 . .
ceeds 70, a table in the preprocessor overflows and the process aborts,

. All preprocessed statsments up to the time of table overflow are output,

. - SJi s weNERRORWNS ARG LIST 700 LOKG -'uw




i 128
4
message 18 printed. The suggested solutlon to this problen is to contime
the argument list on a following "EIC card, The following example il-
lustrates the use of ETG. The statenent
TREE OP1,( ,LH,UF)M)(,RW,UF)WI)( (LH,O)DOOR)( (nw,w)wz)(,(w.o)nooa)
"ka J
is too long to be preprocessed, By changing th'g“input source to
TREE 0?1'|( ’(LW.UF)“)( ,(RH ’UF)WI) - . -
ETC  (,(RW¥,LF)¥I)(,(LW,0)DOOR) \\
»ﬁ) |
N - 4

the statement is correctly translated into

TRE op:,:%,(m,ur).w:),(.(nw.w).wz) +
(, @w,LF) ,¥1),( , (L¥,0) , DOOR)

The charscter "+" in column 80 indicates to the BAL assembler that the

statement 1s continued on the next card,

Gelte§ | HNCE MACROWH

A1l GMAP macxos in the inmput source deck axe printed in the

omraessagelisb mddoletodfmthomm BALm!osmlﬁtun-

altered, mepwmﬁmmmwmwwm
N * \

BAL equivalent, Table 5.1 glves the mmngn of GUP saaro aptex o, 1

- s
. . "y \ et
’ : ¥ N ,n!’q -,
: . o 9
- : g, e e A
that of BAL, o ‘ ‘ N R ek L RE
v . : ] Co e LT L e e el
, A i N 5 PN ., PR o
> Lo

N v R . , v
[ 4 N . -
* ’ L s ¢ - Lo e
, s - - . we el s



. 5,lt,6 A LIST OF ALL SYMBOLS OF TLLEGAL SYNTAX I

Thi!.s printout is not; an error message but is included in this
discussion to ex;lain its ococurrence in the preprocessor's pr;.nted output,
Certain characters within symbols axe acceptable to AP tut are illegal
in IBM assembler language. The preprocessor replaces these offending
characters by othe;s ar.‘;.cepted by BAL, and prints a list o:‘t' symbols so

altered. It is left to the programmer to insure the preprocessor's re-

Placement symbol 1s not already defined in the input source (a highly

g..l’
~ “unlikely occurrence) e 5 )
\,
\\ ‘
S The preprocessoxr identifies two classes of 1llegal symbols and
N
. makes. the appropriate character replacements, Symbols whose fixrst character

1s a mueric. (0 through 9) have their first character replaced by "N".
\\\\\ - ‘[:7
The character “," in-synbols in the label field or in the opexand field

T~

h g ¢ k)
of a SYMREF statement is replaced by the character 2", ' References to this
synbol in the operand field of a1l other statements ave ad justed accordingly.
There is one exception to this rule, BAL mneﬁq syabols appear in the

label field and are identified by a "." as the first character. To pexuit

. 4
sequence syabols in the input source, they are further restricted to the N
forn gtk

3
f 'm * . ' - T8
N L , 3

. where x is any letter or digit,



127

oo
t

. T . A1l 1an:§e1 synbols of this form are passed unaltered by the
preprocessor. In order to clarify the symbol adjusting procedu'rea let us

look at the following example., Consider the input source

.

- SYMREF IR : :
~_ ax SETA 3
B LAC  LDRt '
) " DAc X1 ;
.DR{ LAV -2
AIF - (&N EQ 3).25KP ’ ~
350F LAW -3
N . JZSKP ANCP
DAC 35DF

The resulting output from the preprocessori

A LIST OF SYMBOLS OF ILLEGAL SYNTAX
- @DR2
. ' @DR1

[ -

NSIF

/ e ‘
(Program continued on following page)




ICTL 1,79,80
PRINT NOGEN | .
BEGIN
SYMREF @DR2
) , &N SETA 3
| LAC @DR1
| DAC X1 :
| @DR1 LAW -2 o
" AIF (&N EQ 3).25KP
) N5DF LAW -3 -
: . JZSKP ANCP
P o DAC NSDF
® D :
| END
el

The additional statements ICTL, PRINT, BEGIN and QEND, inserted in every

| N q x

souxrce program, are used to contyol the asseabler and do not concern us
here. In our example, ayabols .DR2, DR1, and 350F ave found to bé 11legal
and all instances of them are'nodiﬁ.ed. Syabol X1 4is left unaltexed
. since it 1s not defined in any label field or in the ppemd fiddd of &
SYHBEF stateaent, Suci: synbols refer to !cGRIN syste&-variables and must
n;t be: changed, The use of these system variables are explained in

Section 5.5,

PR : .
-~ PR LT A



A - RCAME A St A
o .

129

54,7 **XERROR*** IF OPERAND IS ABSOLUTE PRECEDE ALL REFERENCES TO LABEL BY '+'

This warning message is printgd after each EQU statement and
flags potential trouble in the input source program. Due to an implementa~

tion restriction of the assembler, absolute expressions in the operand field

§

‘of memory reference instructions must be preceded by a “+" if their value is

greater than 4095. For each EQU statement the programmer nust determine:

1. If its vperand is relative or absolu,te.
2, If absolute, is its value greater than 4095,
3. If its value is not easily detemineﬁ then
it should be assumed to be greater than 4095,
Next, the programmer must search the source code for references made to . N
synbols equated to absolute values and precede them with a "+%, The fol-

lowing EQU statements illustrate th}s procedure,

Original Source . | Source Modified by Pmmer .
LABL1I  LAC A 'LABL1T  LAC A y
LABLZ DAC B LABLZ  DAC  +B

) ' H
A EQJ  LABL2 A
B EQU 4096 B




Vd
4

- . SR 130

A

" References to .symbol "A" require no changes since A 1is
- . . < ‘ .

equated to label "LABL2", a relative qilanti,ty. References to .symbol

"B" xrequire a preceding "+" since its value is absolute and greater

than 4095, ’ L\

o
e

S T

.
oy

5.5 The Assembly Step

This section describes the actual assenbly process in the
¢ N

]

McGRIN assembly system. Detalls concerning the syntax and format of the ~

BAL assembly language are given in the IBM "0S Assembler Language" manual
#GC28-6514-8, The potential applications programmer may waht to refer to

this manual while reading this section to achieve a detalled uxiderstanding

i

. of the assembly system, To the éasual reader, the semantics of the BAL .

»

statements should be sufficiently described by their context.

There are two assenbly steps available to the McGRIN programmer.
One is used to ge:erate raloca;cable progran blocks from programs written in
preprocessed GRIN2, The other is a PIP-9 assembly language package to
generate absolute PIP-9 prograns. The G;!INZ progran blocks generated by

the GRIN assémbly systems are prépared on paper tape and input to McGRAPH's
~

PIP-15 under the control of an executive program. The PIP-9 assenbly sys- |

N N 3 ;o
ten 1s used to prepare absclute core loads of the PIP-9 monitor system .



: — 131

(1.e, the executive programs) and accompanying off-line support programs
(e.g. G2LIBE), ‘The paper tapes containing absolute core loads have a

v ‘ % )
bootstrap loader placed at the beginning and are read in via the hardware

READ-IN facility of the PIP-15. o

As mentioned earlier the GRIN2 ;la.nguage contains the PIP-9's

N

1nstruction repetoire along with 1ts own funct:’non statements., Since the

-y .
PIP-9 1nstmctiqns in GRIN2 ha.ve the sanme syﬁta:as those ;upported by
the IBii/PIP-9 assenbler, they’can be processe:i by eithexr asset{bly step.
However, the resulting output format of the two systems is different, It
is important to ‘remember this fundamental distinctlion between these twc;
a;sem'ﬁlers to avoid confusion in deciding which one to use, ' In this sec~
tion, we will present the syntax of the PIP-9 assembler language input to
either of these assembly steps. The preprocessing is assumed to be done. ©

The preprocessor is a large (300K) and expensive program to run, 80 it is

e

suggested all new programs written at McGill be directly input to the P
assembly step. Instructions writfen in the syntax presented here need no

preprocessirig before the assembly step. The usexr 1s referred to Appendix C |

for a list of modifications to GRIN2 programs syntax which, if done by hand,

avoid preprocessing.

After the di.scusaion of the PIP-9 asseably language syntu




5e5.2 Memory Reférence Instructions

132

5,5,1 PIP-9 Assembly Language Implementation

Two libraries of BAL macros residing on the IBM 360's on-line
disc storage are used to. translate the PIP-9 source instructions into a
list of 32 bit words which are later processed by a postprocessor into 18

bit machine instructions. ~One_Iibrary is resérved for GRIN2 programs,
9 ~ *

the other-for absolute PIP-9 code. The mnemonics of the PIP-9 instructions

-

are those usell in DEC's own MACRO-9 assembler language but the instruction

/

syntax has been altered slightly to accomodate BAL's macro calling format.

A nunber of additional pseudo-operations and storage defining statements

v
i

are also available 1ncreasiné the power of the assembly language.

The applications programmer or potential applications programmer,
—_— . .
of McGRAPH should become familiar with the statement and macro format, terms
and expressions, and types of gymbols in BAL. These are adequately described

in the "0S Assenbler Language Hanual #GC28-6514-8, Only those features

unique to Hcmx'mmsimctibn format are presented here,

b /

The PIP-9 memory reference instxuotions format is as follows

RPN

&

foxmental]

Ve
N I
' s
: N
a
g -
¥ f
v v
T
.
v

Cols ' g . 8 16
Yocation . Operstion = Opsrand fiindizect]

L

L

PO
PO LI
-

e

P

.

1 Xy

'
¥
[
Ny
2

e
Lk e

*

. . “ N Bt ey vy PR
DR 4 o« S A P S P

T
3

L e T

7

4




133

. Note, square brackets always indicate optional fields and the -

LOCATION field can contain an ordinary BAL symbol (See page i1 of OS

Assembler Language Manual). The OPERATION field must contain a mnemonic

representing one of the thirteen memory reference instructions or one of
the special instructlons ZERO or ADRS (See DEC PDP-15 Reference Namual

DEC-15-BRZC-D, page 6-~1). The OPERAND may be one of the following:

(1) A signed deqimal literal. Decimal 1iterals are indicated

by a preced:}“ng = gign, For example,

- :%Am' LAC w190

¢

- (2) A signed octal literal., Octal literals are indicated by

. a preceding =0, For examplse, ,

LABEL  IAC o1dd | ° _J

€3) A ’reloct:atabl; synbolic address or symbolic address + or
- an absolute symbol or constant. The symbol "#" is &
legel relocatable sysbolic address dsnoting the current
value of the location counter, For example,

JMP *.1

' Notes Caution must be taken -when using the location T

\ o counter. See indirect addvessing.

) ()  An sbsclute aecun address.or a.baoluto smol. Absolute .
' r sysbols vhose nluo 18 greater thm 10095 must Yn pmudod
i{’. byn.+. J‘o:r example,




........... o - AIDR © B k096
LABEL LAC  +ADDR

-4

The symbol o assenbles an aidress of O.

(5)  An external symbolic address or an external symbolic

+ or - an sbsolute symbol or constant,

Two modes of indirect addressing are available by plac;ing an

H

"I" or a "*" in the INDIRECT FIELD,

(1). An "™ in this field denotes the normal indirect.
addressing mode, In a PIP-15 the referenced word S
contains a 16 bit effective address, For example,

v

. LAC TABLE,*
TABLE OCTAL 57777
4

loads the AC with the contents of location 57777.

(2) An "I" in this field denotes the referenced word S
_ " contains a 13 bit effective address, The upper bits 5
. i i

are red, For example, ) ,

LAC TABLE,I

: . TABLE ' OCTAL 57?777
x . * ‘
loads the AC with the contents of 17777,

. ~‘1, ;B
w genmteﬂgeeorfmm!’-as woxds. Thsmnfowth-atmmq?~'~‘

LI-\



¥ °

ALS

—
L
~
o
.
-
N
-
P,
v

135

.

and Bell Laboratories modified Pm-9. Section 5.6 gives a complete descrip- ’

tion of the differences and explains how the modified 1ndimct nenory Y0~

ferences dre simulated by sg@tware on McGRAPH, ”—
5.5¢3 The‘ ZERO and ADRS Memory Reference Operations |
] g ( t
ZERO and ADRS“ operations produce a data word containing a 13 bit 5
address. For example, “
LABEL CLA ' ﬂ ]
p : .
u DATA ZERO - LABEL
places the value of LABEL in word DATA. The operation ADRS is used 1f the
Operand‘ is an external refexence, ' ‘ j
- g , ' ‘ ;
5.5  The DEQIL and OCTAL Operation " ,
The DEGHL and OGTAL cperation are used: to place a list of - ;;

oonstantaintlnpxogru&w'l‘hoirfomu L B

o R R
Cols 1 8 S
i - . ‘ ! .‘;p
2 ¢ . - 3
- =
Loeation- B88 " N NI pe
- b T R )
:"'*’ Y e ' . T et Lk ",W' m%
. . . , Do ,,%
o W a ber r e S
- L \ ¢ ¢ n_,wan)«u % - .:v.h 2 ‘N‘,ﬂ\' 3 ?w
.0 AW gf»' £ ,xrw 2 "32, Ay
’ N *1’« g ] *“‘ &9@ &
f U . e, . 1
- Y. L r R Y e »mr‘;’t‘@? oy n&% i




2]

where __!!ymbaolut? decinal quantityﬂspecifyinc the mumber of loca- '
' tions to be allocated, The symbol in the LOCATION field 1:1 glven the

value of the location counter before allocation takes place, When al-

locating storage it cannot be assumed _that the contents of the entire

) :block ~ is zero.

5.5.,5  The BCD Operation ~

- The BCD operation packs alphamumeric chhra.cfers three per 18

bit word for printing onh the teletype. "Its format iss

' Location BCD Fumber, (Text) Conments

o

The NUMBER argunent gives the mumbexr of tharacters in the TEXT _ .

axgunent, The TEXT argument is the desired information, This argument must
be enclosed by parentheses and cannot oonta}n spaces or parentheses, A
space is Tepresented by a — sign and a carriage veturn and line feed by -

f o
< or g, ‘ ..

PR,

T,

. .
. , -
‘ b
P 'L L BTl g
RO Y oL,
by Aol
. \
bR AR I8 SHD 1 pu SRR
LA N N IR 3P el

74

P
v “
e .ép

1




J———

h

plus or minus a constant in the EQUR case, -

Cols, 1 8
Symbol*  BY Absolute Expression o
, BWR Syadol ¥ constant ? .

The EQU pseudo-operation is not defined by a macro, tut is

’

implemented directly in BAL, It is presented here to illustrate the dif-

forence between it and EQUR, a macro 1mplenonied pseudo-operation, Since

@

EQU is not implemented bty a madwo, system symbols (See 5.5.14) in its g

operand f1e1d must have their illegal charactars replaced sanually by the ‘
! | ?
programmer, For example,
TEMP 201 Jb
) L
‘ is 1llegal, This must be written :
o —_— TRP . BY #b
vy - o ]

-

- 5,57  The BOGL Pessdo-Operstion

&

The BOCL opexation establishes an equivalence between a symbol .

.
. «
vt
, 8 positive octal nui Lo .
’ + .
. ¢ ' N b e
) N
o . ° H .o ' .
f - N N N

‘ - . L - N .

‘v + 1 vy
- - y ? ’ - . LT t - y
.o -* P P . PR

R 8 . . . P "

. \ L] c e * : Ve e Y
e - ' . " P " e i : f N

; ‘ , L Coon Lot e e AR

B ) B . ~ ’ F/ - A R 13 v hAL IR O + ()

o . . ) 3 . % . % e o & e RS . LA

s 1 R LR 3, .t s . ' 4, () Nty » R ..
- ' b, Symbads S RBOE 0 C Nedbat Bl -0



.o

| 5.5.8 The NULL Pseudo-Operation . -

, Cols, i 8 16

N )

Location NULL . .

" @

The symbol in the LOCATION field is given the current value

of the location counter, If t};e location field is empty nothing is done,

e

5 . 5 09 The ENTRY 9 SYHDEF' Statements -

The ENTRY or SYMIEF statements declare a st of symbols defined

. in this progran to :5; external gntrleq which ca.n be used by other prograis,
Their format is ~ ; .
Cols, 1 8 16 ’

ENTRY  A7list of up to 10 symbols Comments

SYMIEF

S . . N
These statements are not supported in the current version of MeGRIN bt are

available in the PIP-9 assembler.,

#

-

N . ' . &
.
» - . N - x
) y
, .
4
The Stat ; ' Co- : ;
s e — . . “ £ :
\ 4 . =

. R - 2 2 T “ rins

) i y

’ b}
N _‘r\ »~o

§

mmmmmmu»mmmmm

T
¥ Tt




- 139

~——
. or SYMIEF. These statements axe not supported in the current version of

McGRIN but are available in the PIP-$- assembler,

~

5 . 5 Jd1 The CALL Statement

*y

The CALL statement 1s used to call an external mbmutix;é and

supply its arguments. It has the following format,
, !

\ Cols, i 8 16

3.
Location® CALL Name, (Arguments) Comments ’

The NAME field contains the name of the external ENTRY point of the sub-

. )

routine, This name must not appear in the operand field of a SYMREF state-

ment since the CALL generates its own external reference statement, The

»

parenthesized 1ist of arguments generates a woxd for the address of each.

synbolic paraneter or absolute argument within tpe«list, — ’

¢ +* .

. - "
- ° . i

o e “ - R

5.5.12  The DEBUG Pseudo-Operation - ~ 3

o . o -l

] " The DEBUG pseudo-operation has the following format; L ?1?

| ‘ K S

) - . , - DEBUG 07 4 *
' or

@

(
’ £
DERUC - M - -
- A « A 4
.3 ‘ < v




'x‘ | tll'-o

® With the DEBUG switch ON, the octal address of each assenbled statement is

printed so that symbolic. statements can be traced to the memory dump given \

 ms ICLEAN 'g
* * 000127

by the postprocessor. For example,

The JMS instruction is at octal location 000127 relative to the start of

]

the progran, The default for all assemblies i1s DEBUG ON, but this can be

reversed by IEBUG OFF, In addition, by issuing just DEBUG, the switch will
"

restore the mode prior to the last IiEBUG ON or OFF statement.
. 3

¥
5¢5.13 BELLGRAPH System Symbols ! : .

There is a set of symbols defined internally (in the BEGIN and

QBEGIN macros) for each GRINZ or PIP-9 program. These syabols refer to

elther locations in the executive's transfer vector tabls, or to standard,

eysten values, They are denoted by r"ﬁmw_tmﬁ_ e
by . .
five alphamimerics, or by ".." followsd by up to four alphanumerics,

t-‘orimp:e. X1 uth-moluumdtolmumu.mmm

}ncmni rags.stem in a PIP-15s .LPOF is a paraneter swuuut W

‘indicating tho light pen is to be d:!.aahldo

. a
‘ Loy 3 .
s - -
v, . i T
5




An anonaly seems to exist concerning the system symbols, As

mentioned earlier, BAL rejects symbols containing "," but these system -

——
L
e N ]

symbois are perfectly legal, 'To upla.in this, one must recall l;oéw 1';he

BAL assembler operates. All macros calls are processed and expanded first,

Then tt;e resulting code is assembled. The macro packaée will accept symbols
;

of any format, Those preceded by a "." are processed as system symbols

by the macro package and the . "." 4s changed to a "#'  (a legal symbolic

character) before assenbly.

5.5.4%  Blank OPERAND Field | .

b }

Blank OPERAND fields are denoted by a comma in column.16. State-
ments which do not ha.ve an OPERAND field or whose OPERAND field is blank

nust have this comma. For example, -

.

Col. i 8 16
K '

5.5745  Statement Contimsation = : - ﬁxﬁé

Statuncnts sre ooutimed onto thi mt cmt ‘bymnchugw 'ﬁf:{.n‘

.cm(nomuyg-rw)incolm&o. ‘monltotthmm , o

etirti in columi 16 of the rat.eaxdi't L. . .t



142

Source decks which are preprocessed befors assembly use the
preprocessor pseudo-operation ETC to indicate a statement continuation,
ETC pseudo-operation causes the preprocessor to insert a + sign in column
80 of the previous card and erase the "ETC" characters from the curr

caxd,

5,5.16 Program Control Statements

)

Bach program requires a set of assembler control statements to

" define the card statement boundaries, the .control sections to be used, and

the BELLGRAPH system variables. PDP-9 programs are bound by the following

control cards,

ICTL 1,79,16
. : o
BECTR ’
- PRINT NOGEN
. o

(Body of Progranm) e

QEND ’

( Fas , o
END

All the control state;i;ants. except END are ‘genexrated by the preprocessor.
Of course, if the preprocessor step 1s omitted, they must be insérted

mamially.




[ S

!

-r

! 143

v - \

-

GRIN2 progran blocks are identified by the following tontrol

statements; ;
1CTL 1,79,16
G2ID XXX
PRINT NOGEN )
. ;;"
QEND ’
END

where XXX in the G2ID sta."terﬁgnt gives the program block's I.D. number,

The G2ID statement is not inserted by the preprocessor.

-
r
~

..

5.6

“

~ Software Execution of Indirect emory References

In Section 5.5.2 we briefly discussed two modes of indirect

memory references in the McGRAPH version of the BELLGRAPH softwave., The

-, first mode is the conventional procedure used by the PIP-15. That is, the

effective address used by indirect memoxy referenced instructions is found

¥

! . - .
in the low order sixteen q:Ji.‘l’.s of the word pointed to“by the instruction.

The second mode is used by Bell Laborstories' modified PIP-9
processor, In this machine, the effective address of indirect memory

' reference instructions is contained in the thirtesn low oz_dﬂ.' bits of |




p L2

the address word. Since the upper bits of these words are not considered
part of the address, they may be used to store other data, The BEF.LGRAPH
prograns in fact do assign othexr uses to them., ' On a convéntional ui&ctx‘ine.
the non-gero high order,bits 1;1 a word become part of the ad%.ress. pre-

venting proper execution of BELLGRAPH programs.
To run BELLGRAPH at McGill we require some technique to circunm-
) ot

vent this problem. The system programs make far too extensive use of

words containing both 13 bit address and data to make changing them prac-

+

tical., Modifying the PIP-15's processor to operate as Bell Laboratories'
is not possible‘ since McGill's machine must support 6ther existing software
systems as well, (Note this mode of indirect addressing limits the addres-
sing range to 8K, a severe restriction). The last possible approach (used
in McGRAPH) 1is to .simulate by software the truncation of the address word
on each indirect memory reference instruction. Doing this; one pays a

penalty in both core used and execution time. Each indirect memory reference

4

instruction requires two or three extra words and takes approximately twenty

times longer to execute, Since indirect memory reference instructions com-
prise less than 10% of all.executable code the increased execution time 1s
. - 0 - *

“not unreasonable. ) \

a

s

Software calculation of 13 bit effective addresses is invoked by

B v . '
inserting subroutine calls before each indirect memory reference statement.

4 - ¢




145

The assemblgg expands indirect references into the following

sequence of commands,

JI-fS FIX,* Junp to indirect processing subroutine

OPR LABEL,* - Instruction to be executed by FIX

OPR  LABEL,* 2nd word of calling sequency used for work space.
where OPR LABEL,* is an indirect memory reference statement (e.g. LAC
TABiE.*). The subroutine FIX computes the 13 bit effective add;ress of the
indirect memory reference instruction immediately f;allowing it, and places
the newiy constructed direct memory reference instxuction in the second
word of its calling sequence. Control is then passed to this fabricated
instruction, Initially the second word contains a copy of th; indirect <
menory reference instruction to insure it is considered a relocatable word
by the monitor's memory managepent system. If an interrupt occurs during

the execution of FIX, it's internal temporary storage is stacked by the

interrupt handler making FIX re-entrant,

A

The above instruction .sequence for simulating 8K wrap around of
indirect memory referenced instructions fails under certain conditions,

For example, consider the following piece-of code.

LS

SNL ) i SKIP -ON NON-ZERO LINK

DZM - X1T,I




146 .
K T <
‘ When expanded by the assembler this would become .
SiL
A .
o JMS FIX ,%*
. DZM X1iT,*
) D21 X1T ,* -

4 N 1

To prevent the subroutine call to FIX being by-pa;sed by the skip command,
an additional jump instruction is inserted in the calling sequence, Our

example expands to

‘ JHS FIX,*
‘ o P M3
. . D2 XiT,*
DZM  XIT,*
\ Now on a skip due to non-zexro ;I.ink. the DZM command is not executed.’ Note

this expansion consumes four words of mem\ory for each indirect memory re-

a

ference, Assembled BELLGRAPK.programs using this expansion created object

modules too large to load into the PIP-15, Therefore, the indirect memory

-

reference expansion macro inserts the "JMP 3" only if the 1n¢}irect

menory reference command 1s p;ocedod by one of the following commands.

1, Jump to mﬁiontipfe (Jmus) )
- ¢ - 2, Execute nenc;ry location (xcr)
. : 3. ALl sidp 1natm5uong (8KP, SNL, SZ etc.) "

\

¥




2
‘.
v
.

/ ' T oWy

-
¥y, A1 JOT 1nstructions whose last digit is odd.

r

5. Skip if memory not equal to ACC (sap),.
6. Ihcrement memory and skip on zero (ISZ),
7. Jump (JMP). ¢

There is one other situation which is potentially troublesome

when using indirect nenoxy reference e;cpansioné. Transfer commands of

the form
JHMP *41

where

. * represents the current location counter, and

n is any decimal number,

-

may no longer transfer to the desired location if there is an expa.nded

instruction nearby. Foxr example, consider: Lo

P w3 : )
LAC  XIT,I

DAC TMP

CLA ¢

*

Becsuse of the expanston of "LAC XIT,I% the ¢ode must be altered to

¥

) | *




LAC XIT,X )
' DAC TP
LABL CLA ’ ,

s /

. »
The use of the location counter (*) in JMP instructions was rare in

BELLGRAPH programs 80 they have been removed manually.

5.7  Software Execution of Graphies IOT Commands N

In Chapters III and IV, we discussed the simulation of the
oxriginal BELLCRAPH graphics devices by eatecut?.ng the graphics device I0T g
by software, This is accomplished by writing a‘BAL macro defining the
mnemonlcs of the IOT commends as subroutine calls to the simulation
routine G2SIH. Each PIP-9 load module assenbled using this system which

contains graphic IOT commands. must contain the following trensfer vector

]

location

a1

) |
G2SIM OCTAL 20900 Starting Addx, of G2SIM .

9 .- . o
Graphics IOT expansions generate an indirect trsnsfer through the location

%

§
%
t
[ ) ' ‘&
G2STH, , ~ - s

cnmz or HeGRIN prograns use & systu'm:uuo ", sz'ta

refer to the aimlation “transfer vector location in the mw‘uv- qatu.




149

The I0T's in the McGRIN assenbly package refer to this system varisble,
For example -the command BEG (begin display) expands to
700547
< NS «G25TH, *

The progfammer need not concern himself with the generated call to G2SIM

except to remember IOT commands generate two woxds,

< .

5.8 The Postprocessor Step

Ed

The ppstprocessor is a PL/1 program which transforms the object

-

modules from the assembler into files a.cceptable to the PIP-15,

1

PIP-9 object modules from the assembler are linked together by
the postprocessor forming a PIP-9 executable load module, A bootstrap
loader is automatically inserted at the beginning of the load module so

that 1t can be read into the PIP-15 using the haxrdware READ-IN facility.

{

The postprocessor prints an external referende table giving the definition

of each external label and a list of all references to it. ;Unresclved re-

- -

ferences generats exTor nessages. A dump of the entire load ndMo is

also printed giving the contents and octal aidress of each m&.'

> LY




150

builds a relocation table called the "trailer" at the end of each program
block to provide the memory mansgement system information for relocating

the block in core, A dump of the program block excluding the "trailer”

is printed for each GRIN object module,

3

The postp:;o.cessor Wil produce a listing of both program blocks

o

and load modules if the option “LIST" 4is included in the parameter field
(See Appendix B), 'I;he listing merely gives the mnemonics of each instruc-

tion word followed by its octal operand, Due to the lack of comments this
-

option is not very useful, A punched deck of the input o'bjéct modules 1is

produced when the option "DECK" is given, This option 18 useful when the
'
input modules reside on disc, and one would like to save them on cards and

! ,
Terove the disc files upon postprocessing, .

.
- s

The output modules from the postprocessor are currently placed
N . u
on 9 track800 EPInagnetic tape, and later transcribed to paper tape using
a SABR program "TAPNCH" which runs on a PIP-12, This extra step is neces-

sary since thexre is no data medium common to McGRAPH's PDP-15 and the IBM 360.
\ o -

Ses Appendix B for a 1isting and description of TAPNCH,
» ) : , ! ) ) /, o /

o




Y
CHAPTER VI S

CONGLUSIONS =~ | :

a

'l‘l'xis~ project was undertaken to provide a grapk}ics language for
the users of the McGRAPH disc oriented @isplay system. The language is
required to be sufficiently genexral to be applicable to a wide class of
problens, ;ince users of McGRAPH are x:esearching in many different areas
of Electrical Engineering and Computer Science. With such a general pur-
pose gz'apbi.cs language, the indiwvidual applications pmg:;ammers can quickly

apply interactive graphics techniques to thelr problem solving. .

v

At the beginning, numerous existing gra;phica syst;ns, were
surdeyed to determine those features common and/or desiratle in a éraphics )
langu;ge. It was fm;nd that during a normal session using an interactive y
graphics t;eninal. the displayed pictures, hence their data representation,

continually grow and diminish, Demands to the system for storage fluctuate

widely in real-time and cannot be anticipated at progran generation time,

!

For this reason, intetactive graphics software must provide sose sort of ‘
dynanic memory manageaent scheme which al_loutu space on tulk storage and ) g
in main memoxy. s . | s
‘- . - , . ,' ' “» ‘ ig{ﬁ

Another cbsexvation made duxring a session of computer-alded e

. ' oo " R

design, using an interactive graphics terminal, concerns the m;n:}', S §



e . - N " T o - > . K . d
R ' N - e 7 Ry

which pictures are generated. The designer first defines the ba;sip ple-
ture parts' or primitives (e.,g. resistors, capacitors, molecules, shapes) "
he 4ntends to use. He then combines these into sub-assemblies which can

be reproduced and inserted into a larger assembly and s on, Complex
scenes a:‘re quickly produced by progressively adding new components made

of prev.iously defined objects, Usuany,- 1nfo:°:naﬂon concerning the
hierarchy of pleture parts in a total display is significant, and should

be saved in the computer's data structure, 7

Based on these observations, one can state that dynamic memory
nanagement and a hierarchical data structure ‘are fundamental to computer
graphics, and should be included in McGRAPH, Although these features

exist on large data processing machines, minicomputer manufacturers have

[
L

yet to write operating systibgs of this complexity,

Therefore, we had a choice of developing our ovh, or attempting
to obtain an operating systea' from another source. The technique of
obtaining an already existing sy;tu appeared pgoudng. since it afforded
the opportunity to attaln a graphics system of more sophistication and

power than could be produced here given the limited available tine,
o W

- In oux svaluation of differemt systems, the Bell Tﬁtpm

® Laboratories' BELLGRNPH was particularly attrective since besides pro-




viding the attributes of a good general purpose graphics system, it was
written for a PIP~15, The accompanying "GRIN2" langusge suited our
requirements perfectly. I+t is a general purpose picture synthesis
language which fullyi exploits the dynamic memoxy allocation provided by
the operating‘system and s open~ended ‘so that additional fsatures, such
as picture anslysis statements, are easily added to it.

PR

LIS

6.2 I@lex’nentation v

b

Two najor obstacles prevented direct implementation of BELLGRAPH

¥

on McGRAPH. First, the display haxdware is very different especially the

display refresh policy. This has grest impact on the operating philosophy

of the soﬂ:ware systea, We shall discuss fzhis later in Section 6.3.

Sscond, the BELLGRAPH p:‘:ograns vwere written for ; 8K PIP-15 vhose proces-

sor was modified 80 that all .nnory' references used only the 13 lower bits

of the address tus, The full signiﬁcanco o.f éh&.u problea was Lound only

after an intensive Joumey deep into the 1istings. ™A »w £1x wp Lo

was found, as described in Chapter IV, which performs adequately.

LY "

- s - |kt




2
4

e
.

r

*

m

6.3  McGRAPH's Refresh Policy

0
—

The original BELLGRAPH system supplied to us operates in a

Q@

single task environment, That is, a;nly one operation is 1;erfomed at a
time, For example, when the display is running, the display routine
cycles through tpe data structure and cgptinually passes DPU commands to
t;xe display. In;;errupts occuring during this process stop the display

L]

and initiaste other routines. The display is resumed or restarted by

either the interrupting routine or by subsequent language statement sub-
‘ ® .

routines in the running GRIN2 program. The time interval, during which

' v
the screen is dark, ranges from a few microseconds to seconds.

In M¢GRAPH, the display monitor program traverses the data

‘ i
structure once and then idly awalts an interrupt. Future additions to
MoGRAPH could make extensive use of this idle time, For example, a

background FORTRAN prograr could be swapped into core and be executed

while the graphics user is deciding what, action to take next.

BELLGRAPH requires the entire data stxructure be in core
during its display since its continual refresh does not perait time to
bring sections in from disc, NcGRAPH imposés no such restriction. The

display disc on the PIP-8 poses a iowgr’ 1linit on the tike taken to up-

date the screen, 1}!:1: is & characteristic of the hardvare (thc~ diyl)

which camnot be hp:mfod by softvare, Hawovir, we can dfoeuvol; '
K i Jé:_ . - o & . A‘\"n‘f,‘,

s f -

" v ‘ « < P

¢ vl sl s » o« * o 5 5!
N - , . P



155

I :
multiplex the time taken by the PIP-8 in transfering a picture to the

display disc, by allowing the PIP-15 to get the next data segment from
its disc during this time, Therefore, we can reduce the amount of
PDP-15 core required by display data without significantly degrading

the display update time.

6.4 Future Extensions

Although the major 1mp1eﬁergtation prodlems hdve been over-
come, sone effori: is still required to make the McGRAPil version of
BELLGRAPH a convenient workable systemf The bottleneck in transoribing
the IBM assenbler's output fn;n magnetic tape to paper must be removed.
The data channel between McGRAPH®s PDP=8 and the IBM 360 at the McGill
Computer Centre could grea;:ly improve access of the asseablexr to future
GRIN and McGRAPH system programmers, although tﬁs is not working at

"present. Establishment of the inter-computer link is of prime impoxtance.

Bell Telephone Laboratories at Holmdel also provided us with
a GRIN assenmbler which resides on the PIP-15 and runs under the BELLCRAPH
operating systems By installing this assemblexr NcGRAPH would be free-

from its IBM 360 dependency. : - IR

~




&

. ' 156

v

On the other Hand, the aveilability of a 1ink to the IBM 360
opens many avenues of research, Further modifications to the operatingc

system and the PDP-15 could permit GRIN programs access to tie IBM

rmachine's larxge 'computlational and storage facilities,

Extension to the GiZIN language for picture analysis as well
\ B
as synthesis is a possibility., Provisilon for an on-line algorithmic

language as. discussed in Chapter II is another desirable feaffure.

6.5 Conclusions ’

BELLGRAPH has a number of drawbacks., It was designed for an

&

8K computer and cannot use a larger amount ;f core withoutgﬁompletely
vewriting it. The GRIN assembly system on the IBM 360 15N;:1§ibe¥aome
and expensive, It is incon‘patible with Digital Equipment Corporation®s
PIP-15 operating system and i:herefore cannot interface with FORTRAN
programs,

Hovever, we must weigh these against _tho graphiocs pbwer
achieved via the GRIN language. Such a language could not have been
developed in the time. available, Full appreciation of the powex of

GRIN will have to await actual applications and further experience,

—d




Al
APPENDIX_ A

~ SIMULATED DEC - 339 PROCESSOR -

- ‘ ' ) This appendix includes detailed information needed to inter-
face the DEC 339 display processor simulation programs with the user's
own, The simulaf;or progran package enables one to Tun P;)P-9 or PDP-;115 .
ppémms, which drive ‘a DEC 339 display, on 1cGRAPH., It consists of four
separate .absolute prograns which are loaded in the middle 8K memory g

-

bank of the PDP-15,

The source code of these four programs are saved in the fol-— :

lowing files on DEC tape #122,

() 1, G2SM

2.  G2TRAN - DEC 339 DPU command translator.

IOT simulator.

3. SYSGGN - = Character genéerator.

L, sSYsVa - Vector generatox,

Py




- N

Ja Simulated Graphic Device IOT's

The graphiés devices are driven by user prograns via calls to

the simulation program package. These calls are of the form
R

/ Ior

JMS  G2SIM,*

where IOT is an PIP~-15 I0T command addressing a non-existent device. Since
’ v
the device is non-existent, the IOT executes as a no-operation (NOP). The

1list of IOT's below describe those recognized by the simulation program.

The assembly system on the IBM 360 generates the appropriate

call to G2SIli when it encounters the graphic device IOT mnemonics.,

For a complete description of the action of these IOT's, see

the memo "Graphic-2 Hardware Organization" in the accompanying BELLGRAPH

documentation.
Mnemonic - Instruction ) - ) Description
‘ o ' Console Keyboard (device #43)
. CCK - 704304 ..Clear flag.
LCK * pou312 Load console l;eyboard into AC.
ScK & 704301 - Skip on flag.
0CK 206302 ., . OR cori?i}o keyboard with AC.
. g



%

'J’"\

Mnemonic Instruction Description
. Pushbuttons (device #t) .
SPB ~ “708h01 Skip od flag
1LPB 704412 L Load pushbutton buffer” into AC.
" oem 204402 _ OR pushbutton buffer with AC,
CPB 70404 - & Clear pushbutton flag,

Pushbutton Lights (device ##42)

WBL . 70442k . Write contents of AC into light buffer,
1BL 2044432 ' Load light‘buffer into AC.

Light Pen (device #07)
[
ELP 700701 Enable light pen,
P 700721 Disable light pen. :

i)isplay (device #05) .

CDF 700501 Clear all display flags.
WDA . 700502 Write display address from AC.
BEG 200547 Start the display at location specified

o by the contents on the 13 low order
. N bits of the AC,

\]

1

‘ McGRAPH Display (device #46)
(The following IOT*s are uniéue to McGRAPH) h '

CCRT . 704601 Clear display screen, °

TCRT 704621 ‘Initialize tracking pattern (tracking
. ' ’ pattern is display at the position 0
glven by .WHEREX and .WHEREY), ~

DCRT 208602 Display leaf., (A 1ea£ nunber and sub-
" number-are inserted into the fite - .

&

header). ."




Mnemoni c Instruction Description
’ TPU Registers
ILX (or QLX) 701412 Load the AC with the contents of
o the X register,
LY ‘ L 703412 Load the AC with the contents of
the Y register,
LDS : 701052 Load the AC with the display status °
. - ﬂa&s\c .
Qu-{)’ '
N
v \
A2  Filename Allotments ) , .

i

i

Display files on the PIP-8 disc are separated by HEADER com-

-

Al

mands’contgining 12 bit filename I.D.*s. These 12 bit‘ words are divided
into two fields, an 8 bit leaf number field, and a 4 bit sub-leaf number
field. (See Figl;re 4,5), " Certain filenane I.D.*s are reserved for systen
use, The list below glves the octal contents of the leaf and sub-leaf

fields of the reserved filenames plus those used for leaves and messages.

00 000

) - 00 097 Simulated 1ighted pushbuttons.
00 010 - 00 027 Tracking pattern,
00 030 - 00 037 Spave.
00 OO0 - 1:? o040 Message nunl;pra. 0
00 050 - 17 367 Leaf and sub-leaf number,’

17370 - 17 373 Syeten epare. ' -

{7’
w
3 .




A5

17 374 " Light pen insensitive file,
17 375 Turn off blink file,

17 376 Turn on blink file.

17 377 © Track original file, |

A2.1 Lesf and Sub-Leaf Filename I.D.'s

Each instance of a leaf in a BELLGRAPH data structu;:e is given
a 8 bvit identiﬂcatigrlx nunber, Bach seperable picture part within the leaf
is given a 4 bit number. These two numbers concatenated together give a
unique filename I.D, for eac.h seper'able pitture part displayed. By sub-
dividing the filename I.D. into leaf and sub-leaf nunbers, the seaxrch

through the data structure, which the executive must make on.a light pen

strike, is speeded up.

-

A2,2 Hessage Filename 1,D,

At times one may wish to display a plcture not rei)resented by
a BELLGRAPH data structure. In this case we cannot use a traverse through T

the data structure to find the display status information assoclated with

the instance struck by the light pen. Non-structured instances are generated

T S

s .
- - . .
r . urg

» s



by a "BEG" IOT which assigns a "message number” instead of "leaf/sub~
r C . "
leaf mumber" to each instance. In this mode, the contents of the display

parameters, display status, and X and Y registers are saved for each in-
; .

<

stance. On a light pen strike, these registers are loaded with the saved

values so that they can be intérrogated by the progranm.




¢

A7

A3 GRAPHIC-2 SCOPE COMMANDS
- ; . .
< . o 1 _21% a4 sle. ols 10 nliz 13 1alis 16 17
~aHARAcTER| o [ o | o | o ‘
[y 3 ; P A — 7
o CHARACTER | CHARACTER 2
v, o 1 213 4 sle 7 elo w0 wliz 13 1alis 16 17 ,
C"ARAMETER oj o] o} s:rJeuud sevfLP Es/A) E Jcx | Cy |SET) So |S; ISEY] 1o |1,
- 7 — v 7 \ " 7 " ~7
SYMMETRY
BLINK ucnr L LA IwLATE SCALE  INTENSITY 0
1 213 a 5Ie 7 819°10 nliz 13 alis 16 17
LONG . x:20 [+ -0
[+] [+ ' 0 CON}ROL "] M A°|A|lﬁz A, Dy A, As Oy As A,
VECTOR ! - .
e i *
00 — LOAD HOLDPING REGISTERS ONLY
Ol — LOAD REGISTERS, DRAW INVISIBLE, CLEAR REGISTERS
10 —= LOAD REGISTERS, DRAW VISIBLE (EXCEPT STARTING POINT), CLEAR REGISTERS
It == LOAD REGISTERS, DRAW INVISIBLE EXCEPT END POINT (WHICH IS VISIBLE),
CLEAR REGISTERS
o 1 2|3 a-s5l6 7 8lo 10 nuliz 13 alis 6 17
Xz
X~Yjojolj: 1"‘“‘{"‘7 vel of | 2|3l o] 5] & 2] o] o
s NO DELAY }[ NG » — : :
0= INVISIBLE _ CcO NAT .
=38 DELAY|! | i = VISIBLE ORDI E: ’
o 1 2|3 a4« sle 7 8lo 10 nwliz 13 wlis 18 17
SHORT v +10 +10
VECTOR o oj]o \cou}aoLl :,, Axpl AX ) A%z} AXxy Ax:I:,, Avgl oy Yy | Ay AY:
00 — NO OPERAT ION.AX COMPONENT AY COMPONENT '
01,10,11— SAME AS iN LONG VECTOR .
o1 2|3 4« s|le, 7 al9 w0 nuliz 13 wlis 18
INCREMENT] o | 0 ) aﬁnu;s INT DI;ECY:ON nv:n‘s Nt nu{scn:)u
. i L [ — L 1 1 n - o |
0= INVISIBLE T T T
_INTX{ e visIBLE INCR | INCR 2 DIR c%z ,
1203 a st v—ote—wouliz i3 aalis 18 7 1Y
OND 4
CONTROL} o | + |1 | O lsvo' im $ET fovRD snbnnu
\ Y 7 \ - —t
OVERRIDE NJo=DRAW SOLID LINES
i=ON OsOFF 1 = DRAW BROKEN LINES
. o 1 213 « sle 7 6l 10 nliz 3 wlis w8 17 -
TRAP| ]

——

SPECIFIES APL CNANNEL‘LOCA\‘ION TO TRAP TO oL




AJt  CHARACTER CODES

[

ASCII‘ Character Set

8-t G-It H 8]-Bie 6-Bit
Character | Octal Octal Character Octul Octal
A 301 ! 241 41
B 302 s 242 42
G 303 1#* 243 43
Up | 304 s 244 | a4
E 305 % 245 45
F 306 & 246 46
G 307 ' 247 47
H 310 ( 250 50
1 311 ) 251 51
J 312 . 252 52
K 313 + 253 53
L 314 * 254 54
M 315 - 255 55
N 3te6 . 256 56
0 317 I4 257 57
P 320 \ 272 72
Q 321 g 273 73
R 322 < . , 274 74
s 323 = 275 75
T 324 > 276 76
U 325 ? . 27 77
v 326 ] | 300
w 327 BN 33 kX
X 330 - \ 334 34
Y 331 i 335 35
z 32 t 336 36
0 260 - 337 »n
1 261 Leader/Trailer 200
2 262 LINE FEED 212
kK 263 Carringc RETURN 215 .
4 264 [ SPACE 240 40
s 265 ®
6 266 a
1 | 267
8 ‘270
9 py) " @

gobta

A8




B1 .
APPENDIX B o

IBM ASSEMBLY SYSTEM

B.1 Compilg and Load Preprocessor

The following control, cards are needed to corpile the pre-
\’ (=]
processor and load it on the disc.

This job requires 200K of core,

// EXEC  PLiLFCL,PARM.PLiL='SORNGIN=(1,72,80)",
/- COND.LKED=(9,LE,PL1L)
//PLAL,SYSIN DD * '

(source of PL/1 preprocessor)

/* " o
//LKED,SYSLEOD DD DSNAME=~A.EE39 ,PREPRO(PRE) 7

/- , ' UNIT=ONLN,DISP=( ,CATLG) , SPACE=(TRK,(20,10,1))
r/* ’ ——— T »

B.2 Loading the PIP-9 Assemblexr Macro Library

The following control cards are required to load the PIP-9 macro

libra:y onto the disc., This macro library is uasd“tc; assemble PIP-9 load
modules,

This job requires 100K core and is I/0 bound, o °,
[ . a - AN




ik

({‘2"& “
e i’
!
"

s -
¥

B2
// EXEC Pcm-mwm;rm-m
//sYsuT2 DD DSNAME=A ,EE39 .P9bucnoé.mr-om,
// " DISP=(,CATLG) ,DCB( RECFN=FB ,LRECL80 ,BLKSIZE=8360), -
// : SPACE=(TRK, (65,5,50) }RLSE) ¢ -
//StSPRINT DD SYSOUT=A
//SYSIN DD *

. (PDP-9 macros)

/¥ : u

B.3 Loading the GRIN Assembler Macro Library

. The following control cards are required to load the GRIN macro

1ibrary on disc, This library is used in assembly of GRIN programs,

" This job requires 100K of core and is I/0 bound.

S
i

// EXEC  PGU=IEBUPDTE,PARM=NEW |
//SYsuT2 D nsxmm-a.ﬁ”.cnmz »UNIT=ONLN , DISPw=( ,CATLG) ,

// ncn-{nnmx-‘-m +LRECI=80 ,BLKSIZE=8360) ,

/. . SPACB=(TRK,(65,5,50)) | |
//stSPRINT D - Srsovres o | .
//stsa m e

(GRIN2: macro library)
(3 boxes of cards) ' | L

hd -
' - cLoF
- . 8 Ve
3 AR
’ - < M >
%




B3

.

!

B.lt Compile and Load of Postprocessor "

<

° ’ The following control cards are needed to compile and load the

PL/1 postprocessor. ' - -

This job requires 200K of core and is CPU bound,

// EXEC ~ PLILFCL,PARM.PL1L="SORGNIN=(1,72,80)",
// J COND,LKED=(9,LE,P11L) '
//PLIL,SYSIN DD . %

(PL/1 source of postprocessor)

/*

//LKED,SYSLMOD DD DSNAKE=A,EE39, GZPOST(POST), ,

// UNIT=ONLN, DISP=( , CATLG) , SPACE=(CYL,(2,1,1) ,RLSE)
/*

a t

- s

B.5 Preprocessing, Assembling and Postprocessing a GRINZ Program

The following control cards execute the entire assembly job.
’ A ¢

The GRIN2 source deck is included as shown below., The resulting prograa
blocks are output on an unlabelled, 9 tré,ck. 800 EPI magnetic tape for

later processing by “TAPNCH" (See B,7).

[3

'

Due to the large pmpzooosaor_tho following Job must be run in

3001{0 of core. B ‘ -




<

The input source deck may contain any numbex of .individual

GRIN programs or PIP-9 programs, as they are assenmbled in a batch mode.

The postprocessor generates one program block for each GRIN program and

a load module containing all the PDP-9 programs,‘ The postprocessor re-

quires the GRIN ‘prograns be first, in a mixed input source deck containing

bl

both PDP-9 and GRIN progranms.

(Job step 'PRE')

//PRE EXEC PGH=PRE,PARM='options'
//STEPLIB D nsﬁum—p..mw.?mpno;nxsp-(ow,}m)
//sterivr.. DD . #SYSOUT=A
//eunc oo’ ;’f SY SOUT=J, DCB=( RECFH=F3 , LRECL=80, BLKSIZE=3200)
//PREIN e DISK, SPACE=(7280,(35,4)),DISP=(NEW,DELETE ),
// | ncﬁ;(%ﬁm,nmm,—so,mxs:mﬂzaoy
//ASHIN oD UNIT=DISK,SPACE=(7280,(35,4)),DISP=(11E¥,PASS),
// DCBw=( RECFN=FB ,LRECL=80 , BLKSIZE=7280)
//SYSIN DD » !
S b

(GRIN2 source deck)
/&

(Job step 'AS')
//ASH EXEC  PQi=ASHGASH,PARN="NCLOAD,DECK,BATGH® *
//SYSLIB oD DSNAME=A . EE39 .GRINZ,DISP=0LD ) -
//StSeRINT DD SYSUT-A o \
//SYSPUNCH D mmm.nxq-(m:mss),

w




B5

3

// ' DCB=( RECFM=FBS,BLKSIZE=1600 , LRECL=80 , BUFNO=1)
//SYsuT1 ™ UNIT=ONLN , SPACE=( GYL, (10,20))

//stsut2 m UNIT-_ONLN,s.ﬁ.P-srsgn,QAcm-(crL.(io.zo))
//sSYsuT3 DD sw-srsu'm.sm\cg-(cg}..(m,zo)) , |

/! UNIT=(2314 , SEP=SY SUT2)

//SYSIN D DSYAVE~* ,PRE. ASIIN, DISP=(OLD, DELETE)

(Job step 'POST*)

/] EXEC ~ SETUP,PARNM=T8«PIP9(RING IN,NL,SLOTEA3)®

* //PosT " "EXEC  PQ{=POST,PARM='option 1list®
//STEPLIB DD DSNAME=A , EE39,G2POST , DISP=( OLD, KEEP )
//SYSPRINT m; SYSOUT=A ,DCB=( RECF¥=VBA, LRECL*137 ,BLKSIZE=1580)
//¥TAPE DD VOL=SER=PIP9 ,LABEL=( ,NL) ,UNIT=TAPES,
// DCB=( RECFl=F ,BLKSIZE=300 , LRECL=300 , DEN=2)
//PUNCH D SYSOUT=B,

DCB=( RECFH=F ,BLKSIZE=1600,LRECL=80)
//SYSIN DD DSNAME=* , ASM, SY SPUNCH , DI SP=( OLD,DELETE)

/{-

It is usually more economical to run the preprocessor as a

seperate job and create a preprocessed source card deck.-"'iza'{he programmer
I

can then do any necessary corrections indicated by the preprocessor and

input the preprocessed deck to the assembler in another job.

Job.step 'PRE' given above can be executed in 300K of core
seperately., To direct the preprocessed output to thé‘\ card punch the-
| 4
option’ °*DECK' 1s given on the EXEC statement. That is, the first con-

trol caxd beoéuos

. ) ,
s AN L
. , - . .



N y

//PRE EXEC PGM=PRE,PARM=*DECK*

Inputing source to the assembler from cards instead of dizw‘ectly

from the preprocessor requires a change to the //SYSIN card in the 'ASH!

Jjob step. It now becomes °T
° {y

//SYSIN DD R

£

followed by the source deck, p

AN

The assembler and postprocessor require only 200K of core and

are CPU bound,

/ .
‘ £

B.6 Preprocessing, Assembling and Postprocessing PDP-9 Programs

t

To prepare PIP-9 load modules the above job control séquence
is used with the GRIN2 macro library replaced by POMACRO, This is done
by changing the library reference in the //SYSLIB card of the ASM step

to the following ' ,

//SYsLIB DD DSNAHE=A .EE39 . PHACROS , DISP=( OLD, KEEP )

e -

&




P

-7

w

B.7 Preprocessor Options ,

A

The following options may be given in the parameter field of

//PRE  EXEC statement of the above job control sequence.

*®

DECK - a deck of cards containing the prepmcesséd -

source 1s produced. '

GEN -~ 1inserts a statement 1n each preprocessed i)rogram

! which causes the macro expansions to be printed

out in the assembler listing.

B.8 Postprocessor Options

The following options may be given in the parameter field of

the- //POST  EXEC

ORG=rinnnn =~

LIST -

L

o

statement of the above 5ob control sequence,

specifies the octal starting address of
absolute load modules, It is ignored on

input of GRIN programs.,
nmnn is an-octal number,

default origin value is 0.

produces a listing of PDP-9 mnemonics and

contents of each woxd.

[

.



DECK - produces a deck of cards containing the

object modules input to the preprocessor,

NODUIP - suppress the printing of the contents of

each woxrd in the progran.

4} . P
- the dump printing cannot be suppressed on

PIP-9 programs.

g

B.9 TAPNCH: - Magmetic Tave to Papexr Tape Conversion

> The load modules and program blocks output by the postprocessor

are contained in 300 character records on an unlabelled 9 track 800 BPI1

“ N
magnetic tape. Each record is considered by TAPNCH as contalning 50

.PIP-9 words, each word being represented by 6 characters. The format of

= - - 'J
these records differ depending on whether they contain a load module

, g - NN
segment or program block segment. The first character is used to identify
the ‘type of record as shown in Table B.1. The format:of the ‘rest of the

veaord is given An Figure B.1..

' Paper tapes in the correct format -ave produced using a PIP-12

., [ .

~ '~ v ;
with's § track 800 BPI sagnetic tepe drive, and the PS/8 cperating systen.

Two programs are required, TAPNCH and TAPE. TAPNCH is a SABR program .

¥

whose soui'cé' is g.p}an in this appendj,af.w1apd TAPE is a subroutine sup-

t "

A



2

TYPES OF RECORDS ON MAGNETIC TAPE POSTPROCESSOR QUTPUT.

First Character
in Record

o~

=

I
3
Type of Record

e
"Record coniains bootstrap loader,

o

Record is part of a load module.d

Last reocord of load module.

One record of a GRIN program Yblock,

2

Last ‘record of GRIN program block.

End of a batch of GRIN progranm.blocks.

&

TABLE B.1 . ) .




Fornat of PIP-9 Load lodule Recoxrds . .

_ 6 characters
Record I, D. | X e 5 octal starting address *
.| 6 octal word count of this record
6 octal checksum of this record

4

—
-/ |

<

u1'> to 32 PTP-9 instructions

\

N ™™

For—at o:f‘ First Record in GRI'2 Program Block
o 6 characters '

Record I.D, {R{ E L R E C ' ) - o
' card identification
checksun of this record
number of PIP-9 woxrds in program bdlock .
I.D. nunber of program block
rest of the retord is not used

t:/ ' : . .
" !
{ , s
. .
.

Format of Other GRIN2 Program Block Records

3

o

Record 1.D. |R|] E L B I ]

LN

octal word count of this record '
octal checksum of this record
up to 46 woxds \

- S . f

FIGNE B.{,  FORMAT OF.THE POSTPROCESSOR'S OUTPUT.

4 ' " LR i

/ - §i | ’4,\




- B11

. . plied by the Hontreal Neurological Institute for driving the magnetic
tape transport, Compiling, loading and executing SABR prograns is ex-
plained in DEC's PS/8 Operating Ma'.nual.\

The program TAPNCH starfs by printing
- L

B
TYPE A 1 OR .0

¥

A "1 respon‘se causes the entire contents.of the magnetic tape to be
output on the teletype. A *'0O¢ respo'nse causes only the record number
A

and its word count to bé printed. A paper tape is punched regardless of
J

the option, Successful completion of the jcé‘b is signalled by the message

. o ‘DONE. ‘ \

B.10 Error Vessages

‘ The fellowing errors may occur when using TAPNCH,

.
- ! s

- ) BAD | 15% CHAR .

) . . h 3
The first cha ter of every record hust be a B, G, T, B, orE,
‘ . N7 N
Any other charadter will stop 'TAPNCH® and printlthis message.
v - - -b.’)

Most pmﬁable sause 1s incorrect operation of the postprocessor,




Q-

B12

.

'READ  ERROR

°

An error in attempting to read the magnetic tape occured if {h;s ‘

message is printed. This is caused by a malfunct;ionJ in the

magnetic tape transport, or an error in its handler TAPE,

¢
il

EOF - ,
. /
An EOF mark was encount;ered before the _1ogical end of jhe program
on ‘the tape, when attemgting to read the tape, This is usual}y,

caused by forgetting to rewind the tape af‘ter being read once,

\ v ‘
’
. \‘ ’ B ' - - Q
\ : '
, o .
.
B Y
- L4
\ . , »
1] \ A
N
[
LY -
\\ .
o b
g
b
il
/ q
2
v 1 ' ”
4
3
L3 A
LY <
~ & /
L[] - »
; -~ -
-
. . -~
, n
%
<
v ~
» £
.
.
© ¢ l -
< ¢ , )
- ¢ .
< LN .
t
r
6 wh



SOURCE OF TAPNCH . . . , B13

Y

C THIS PROGRAM TRANSFERS PDP-9 OBJECT CODE FROM MAGTAPE
c TO PAPER TAPE *
c

Q

. COMMON LREC -
i, . DIMENSION LREC(380),LOUT(3),I'NC6),ITTY(E)
READ(1, 15) ISUP
FORMATC°*IYPE 1 on 0,11y =
IREC=D
CLA //START PUNCH
PLS ‘
PUNCH LEADER TRAILER
Do 181 1:=1,10 }f ' .
JMS PNCH :
CONTINUE

~
(%))

& ©
o

READ MAGNETIC TAPE

Qoo—nViaonun

NERR=2 . \
1=9 . )
IREC=1REC+!
‘URJTE(I,IZ)IREC
12 . FORMAT (10X, "RECORD NO.', 16)

CALL TAPE(6,300,LREC(1), NERR)
IF(NERR 250 2@1 202

ERROR CODES (NERR) ARE:

c :
c I ILLEGAL 1ST ARG OF TAPE SUBROUTINE ~
c- -1, AN EOF WAS FOUND ON THE' TAPE v

C 512 TRANSMIT ERROR
2081 LSTRT=LREEC(1)
I=1 - .
S . JMS EBCASC # /CONVERT EBSDIC TO ASCII & TYPE '
C- 1ST CHARACTER = °R' (217) FLAGS A RELOCATABLE OBJECT TAPE .
C IST CHARACTER = °*T' (227) FLAGS END OF RELOCATABLE PROGRAM
C IST CHARACTER = °G' (199) FLAGS END OF RELOCATABLE ASSEMBLY
C 1ST CHARACTER = L' (211) FLAGS READ-IN LOADER
C 1ST CHARACTER = °*B' (194) FLAGS ABSOLUTE OQBJECT TAPE
C I1ST CHARACTER ='E' (197) FLAGS END OF ABSOLUTE TAPE :
IF(LSTRI-199)47,416, 47 .
47 IF(LSTPT-217)48 793 48 : ?
48 IF(LSTRT-227)49, 700,49 - ‘
c IGNORE RECORDS WITH WRD CNT>32
49 IF(LRECC¢D)-247)58,51,50 g
51-; IF(LSTRT-194) 316, 320 316 ° R
316 1F(LSTRT=197) 317 32@,317 -
317 IF(LSTRT-211) 322 321,322 °
322 GO.TO 328
3208 ~-INCH=O _ Y .
S ’ JMS ASCBIN . /CONTERT TO BINARY AND PUNCH
700" 1=1 - ,
S ‘ JNS EBCASC /CONVERT ~WORD COUNT-& TYPE .
S JMS ASCBIN /CONVERT TO BINARY AND PUNCH , '
S ! CLA o > E" ' -
S TAD \INNIL' \ /GET WORD COUNT . ) ¢
S AND (DOT7 . A oo
S SNA . /CHECK FOR ZERO WRD COUNT



s

«
Y

"R

it lhannnnty nn
P
'

—
0

0

N KW MO LK

\n
-]

-~
mm
—

HOOO

1

=)
o
-

JMP ZRO _

DCA \KWC

1F(LSTRT-217> 701, 782, 162

CONTINUE

CLA ‘

TAD \KWC 5 , g
TAD (7720 @

CIA /VORD COUNT 1S ANEGATIVE NUMBER

DCA \KWC /AND PUT IN 'DO" LOQP LIMIT

- WRITE(1, I 1DKWC

FORMATC 18X, *WRD CNT®,15)
KWC=KUCx6+18

I=13

JMS EBCASC /CONVERT =-CHECKSUM
JMS ASCEBIN /PUNCH ~CHECKSUM

e

PUNCH BODY OF TAPE BLOCK r’

END

IF 1ST GHARACTER IS AN °L' (211) THIS RECORD CONTAINS . | .
THE READ IN LOADZR
- PUNCH E) "CODE FOR THE READ IN LOADER °

DO 428 1=19,XWC,6 /

JNS EBCASC : _
JMS ASCBIN

CONTINUE

IF(LSTRT-211) ‘418,411,410

IF(LSTRT-194) 412,508,412

IFC(LSTRT=217) 413,580,413

IF(LSTRT~-227)417,750,417

IF(LSTRT-197) -322, 414,322

OF TAPE

CONTINUE

CLA

TAD (277 , :

JMS PHCH /PUNCH BINARY TRANSFER BLOCK

JMS PHCH
JMS PHCH
JMS PNCH
JMS PNCH : .
JMS PHCH 7PUNCH END OF TAPE CODE

CLA ° . ’ "

TAD (200

JMS PNCH - \
JMS PNCH

JMS PNCH

WRITEC1 ,2)

FORMATC *DONE®)

STOP

WRITE €1,3)

FORMAT € * BAD 1ST CHAR") |

STOP f

DO 751 1=1,38 :

JMS PNCH

CONTINUE

GO TO 50

£

-

, CONTINUE v

7
3




B15

CLA - ’
TAD (8261 : ’
JNS PHCH
CLA
TAD (0277
JMS PHCH
CLA |
TAD (8375
- JMS PNCH
GO TO 50
321 KwWe= 31
WRITE(1, [1)KWC
KWC= KWOKG+18
GO TO 401
200 WRITE(],4)
4 FORMAT("EOF")
. GO TO 414
202 WRITECl,5) - : S S
5 FORMAT( *“READ ERROR ) ‘ :
STOP
SPNCH, © /PNCH ONE FRAME : .
SPCK, PSF ;
S JMP PCK
s PLS
S JMP 1 PNCH /YES
C :
. " SASCBIN, 2 /ASC1I TO BINARY & PUNCH ROUTINE
7 ! -

nnunuunmnnnuninywny

S 162 /CLR AC AND MQ
DO 500 K=1,6,2
IHNN= THCK)D g
INNI= INCK+])
S TAD \INN . )
S ARND (0087 :
S 7413 /SHIFT LEFT 3
S 2 ’
, S DCA \INN i
S TAD \INNHI [
S AND (0007 .
S . ‘TAD \INN
S TAD (200 : - T
S JMS PHCH - ' ’ bt
S DCA \INNL '
500 CONTINUE
S © JMP I ASCBIN .-
c EBSDIC TO ASCI1I SUBROUTINE
SERCASC, /0 '
o JJ= I+5 ) " .
JK=0 .
DO 620 J=1,JJ
JK= JK+1
INNISLRECCD) g
CLA CLL ' , '
TAD \INNI . .
AND (@77

ey
. .

3
)4
¥
b

wnwnn




~

I

nnnuuLLLuNLLLALLLBLINNVLNVLNLVNY BITNLN WV

n ununnwnw

oSnnhrnwn
[~
Q

N
=
N

601
6e3
S

STEMP,

" "tAD TABAD

DCA TEMP

TAD 1 TEMP

DCA \INNI

INCJK)=INNI

1621 /CLEAR AC AND-MQ

TAD \INNI

7413 /SHIFT LEFT 6

5 o ‘
DCA \INN2 )

ITTY(JK)= T HNN2
IFCISUP)602,603,602

CONTINUE

WRITECL,GB1)ITTY :
FORMAT(6A1) -
CONTIHNUE

JMP I EBCASC

8

STALAD, LOOKUP /LOOK UP TABLE ADDRESg

S
c

SLOOK UP, 240

Ll

4

~
~

PAGE
CHARACTER CONV TABLE FROM-EBCDIC TO ASCIl
/SPACE
381 /A
B2 /B
333 /¢ :
384 /D
395 /E - 5
386 /F &
387 /6 a t
319 /H
311 /1
2408 /N0 EQUIV
256 /.
274 . /<
2508  /(
253 . °/+
240 /NO EQUIV '
< 246 /& '
32 74
313 /K
314 /L
35 /M - -
316 /N ‘
317 /0
320 /P
21 _/q :
322 //R , I
241 /1 ° :
244 /% . o
252 /+
251 /) ;
213 /3
236 /1
255 /=

B16



& O

Ay

T

“n mmm'p‘»mmmmmm nnuntnunnunhnunnunnunnn nnn

2517

324
325
, 326
3217
330
331
332
240
254
245
255
- 2176
2711
260
261
262
263
264
265
266
2617
217¢
2171
272
243
240
274

275
o 242
249
END

/SLASH
/S
/T
/U
/V
7V
/X
7Y
/7

-/ N0 EQUIV.

/
/%
/-
/>
/1.
/1
/1
/2
/3
/4
/5
/6
/77 ..
V:
/9

4

7 \
/N0 EQUIV
/
/=
/n

%z

0, e

B17 -

ay



C1
APPENDIX C

~—

SYNTAX DIFFERENCES BETWEEN GRIN2,&ND McGRIN

-Cel Introduction

> GRIN2 programs require some prepx.%c;ssing before they can be
assembled by the Ién 360 assenmbly system, It is suggested that new GRIN
programs written at lcGill be coded in the preprocessed syntax therety
a'.\coiding this expensive and time consuming job step. The GRIN2 dialect

defined by the preprocessed syntax is called McGRIN.

A complete descril;tion of GRINZ and its -syntax is giYen in
thew BELLGRAPH Programnmex*®s Manual., The.rules given below 1list the altera-
tions and restrictions of the GRIN2 syntax imposed by the McGl:iIN dialect.
By followlng these rules when writting GRIN programs, the prograne‘r- does

pot need to preprocess his source deck.

.

C.2 McGRIN Macros

Macros are defined in McGRIN programs using the BAL mgcxro

processing facility. A description of BAL macros is given in Sections 8

b4

through 10 of the 0S Assembler Language Mamual (IBM #GC28-6514-8),

‘-“
Y

e
'



N

c2

C.3 Blank Operand Field

S o

"It is stamdard practice to define the statement field -
boundarles as follows: ~
. Columns 1 - 7 Label field

Columns|8 - 15 Operation field

Columns 16 — 30 Opexand field

Columns 31 - 79 Comments
Column 16 must not be blank, If there is no operand field a comna should N

be placed in colunmn 16,

C.4  GRIN Function Statement Argument Lists

j

, Unlike GRINZ2, McGRIN-requires a comma delim.t(tating all arguments

and subarguments. The example below illustrates this,

§

GRINZ , . o McGRIN
TEXT 8, .Ué(AN ARROW) ' TEXT 8, .UC, (AN ARROW)
CURVE (gov W)(".O)(O,—V)(-“.O)) WRVE' (~(°!w)|(w!‘°)l(°i"')l("wlo)).

<

¥

Ce5 ASCII Charactexr Set

Y

@

- - The McGRAPH software system supports the standard 64. character

£

* _ASCII set. ALl lower cass text (indicated by .LG in text argusents) is

s
=~ i

~ - ‘ @ g o
3

3 . . v
.
. 4 < - > - d .
- “ LTI . SRS . = KD Y PORLIY®.Y T m:’,oi




C3

P

El

assembled into its correct ASCII representation by the McGRIN assembler,

tut is displayed in upper case by the McGRAPH character genérator.

c.6 ASCII Text Arguments

The téxt arguments of TEXTIN, ASCII, TEXT, TYPOUT and BCD
/

. must conform to the following rules. (See page 2.1-70 in the BELLGRAPH

Programmer's Kanual)s Text strings arguments of the form

k, .UC, (string) or k, .LC, (string)
mist not contain

(2) parentheses
(b) spaces (the character "—" is‘translated as
“' »
a space

. (e) commas .

Aso, the text string mst be delimited by parentl:?pgs.
* X

| /

Ay



-

C.7 Modified Operation Mnemonics

Sy
A

The following GRINZ operation mnemonics must be preceded by

By

MR OR ENTRY - START END* , .

ADD NOP - , de o )

)

-t

o

<}

gl

—~

<

-

7

h

for example, NOP becomes QNOP, . ° e -
. . , . (,1
*NOTE: ENDU becomes QEND . e,
‘ END ,
) - 9 . )
9 > " (S
1"
. ) ‘ y
\ y _
" }
, \ .
14 » - . *
i ’ e , 2 b
» {:\
. R L] . 4
2 Y 3 -

. 3 v B ©
o¥ N (%
.
R , , «
v N
.
¢ % . s «
. . . ’
)
]
’ - - "
hd -
H - - o
. N . . »
A SR
L)
L
»
- - -
P »
. - N
v
a " A
N
4 *
. .
~
.
.
- " .
“ # v -
3
- o
f a
r .
[]
] . 3



1.

2.

30

5.

7.

9.

| ™

BIBLIOGRAPHY

L1

84

Sutherland, I.E., '_'Sketchpads, A Man-Machine Graphical Communication-

Systen", Proceedings AFIPS, Spring 1963,

Sutherland, I.E., "Computer Graphics", Datamation, Vol. 12, pp. 22-27,

May 1966,

Sutherland, I.E,, "“Computexr Displays", Scientific American, Vol., 222,

pp. 57-81, June 1970 .

Stack, T.R. and Walker, S.T., "AIDS - Advanced Interactive Display

System", Proceedings of AFIPS, Vol. 38, pp. 113-121, Spring 1971.

Sutherland, W.R., "_On-Line Graphical Specifications of Computer

Procedures”, Tech. Rep. 405, Lincoln Lab MIT, Mdy 1946,

’

F

Ninke, W.H., "GRAPHIC-1: A Remote Graphical Display Console Systen”,

" Proceedings of AFIPS, Fall Joint Computer:Conference, Vol. 27, «

pp. 834-846, 1965, .

Devere, G.S., Hargreaves, B,, Walker, D.M., "The DAC-1 System™, -

Datamation, Vol., 12, pp. 3';-“7. June 1966,

" -Lidinsky, W.P., "MIRAGE: A Microprogrammable Interactive Raster

Graphics Bquipment", Proceedings of the IEEE International

~

Computer Society Conference, pp.. 15-16, 1971.

. <o
Gray, J.C., "Compound Data Stq:cture for Computer-Aided Design;

A Survey”, Proceedings of A.C.M. National Meeting, pp. 355-36%,
1967. '

. . . B
N L R e S S




10,

11.

12,

13.

1k,

" 15,

16.

17.

L2

»~

Williams, R., "A Survey of Data Structur.es for Computer Graphics

Systems", Computing Surveys of the A.C.M., Vol, 3, No. 1y

-pp. 1-21, March 1971.

Christensen, C. and Pinson, E.N., "Multi-Function Graphics for a
Large Computer Systen", Proc. AFIPS, Fall Joint Computer Conference,

Vol. 31’ PP. 69?—771’ 1967.

Cotton, I., and Creatorex, F.S., Jr., "Data Structures and Techniques
for Remote Computer Graphics", Pxoc. AFIPS, Fall Joint Computer
Conference, Vol. 33, Pt. 1, pp. 533-544, 1968.

Hurwitz, A., "GRAF: Graphic Additions to FORTRAN", Proc. AFIPS,
Spiing Joint Computer Conference, Vol. 30, pp. 553-557, 1967. -

Bracchi, G. and Ferrari, D., "A Language for Treatiné Geometric
Patterns in a Two-Dimensional Space", Comm. of A.C.M,, Vol. 14,

PP 26—32' Jan, 19710

Miller, W.F. and Shaw, A.C., "Linguistic Héthods in Pictuxe
Processing - A Survey", Conf., Proc. AFIPS, Fall Joint Computer

Conference, Vol. 33, Pt. 1, pp. 279-290, 1968.
T
Kulsrud, H.E., "A General Purpose (iraphic Language", Comm, of A,C.M.,

Vol. 11. FPe 2“7—25“' Aprll 1963.

-

Rully, A.D., "A Subroutine Package for roa'.rgm Interactive Graphics
in Data Processing™, IBM Systeas JM. Vol. 7, pp. 208-256,
1968¢ ‘ ~ ' )




18.

19.

20.

21.

22.

N 13

. .
¥

Ledley, R.S., "BUGSYS: A Programming Systeh for Picture Processing -

Not for Debugging", Comm. of the A.C.M., Vol. 9, pPP. 79-84,

’ February 1966.

r bt e aie P i ot o Pkt e

Shaw, A.C., "The Formal Description and Pa.rsing of Pictures » Ph.D,

Thesis, SLAC Report No. 84, Stanford Linear Accelerator Center,

Stanford, 'California, 1968.

Roberts, L.G., "A Graphical Service System with Variable Syntax",
Comm. of the A.C.H., Vol. 9, pp. 173-175, Maxch 1966.

Wagner, F.V. and Laltood, J., Computer Graphics: Software Design‘,

Computer Graphics, Graphics Symposium University of Califormnia,

. Academic Press, pp. 9-135, 1966.

Ninke, W.H., "Interactive Computer Graphics: Some Interpolations

and Extrapolations", Pertinent Concepts in-Computer Graphics,

Proceedings of the Second University of Illinoéis Conference
on Graphics, University of Il1linois Press, pp. 429-439, 1969,

4

Baskin, H.B., "A Comprehensive Applications Methodology for Symbolic
Graphics”, Pertinent Concepts in Computer Graphics, Proceedings

. of the Second University of Illinois Conference on Computer
. Graphics, University of Illinois Press; pp. 41l4-428, April 1969.

Sivley, E.H., "The Use of a Graphic Languege to Cererate Graphics
Procedures™, Pertinent Concepts in Computer Graphics, Proceedings




25,

26,

27,

29,

30.

14

Chen, F.C., and Dougherty, R.L., "A System for Implementing -Interactive
Applicationé” » Interactive Graphics in Data Processféng. IBM §xstem§
Joumal' v°1. 7' PP. 257'270' 19680 )

Yarbrough, L,D., "CAFE: A Non-Procedursl Languege for Computer

Animation", Pertinent Concepts in Computer Graphics, Proceedings
of the' Second University of Illinols Conference on Computer
Graphics, University of Illinois Press, April 1969,

L

Brown, S.A., "A Destription of the APT Language", Comn, of the A,C.M,,

Vol. 6, pp. 649-658, November 1963.

Ledley, R.S‘. y and Ruddle, F.k-l. s "Chnonosome Analysis by Computer",

0 .
Scientific American, pp. 4O-46, April 1966,

Streit, Edward, "VIP: A Gonvei-gqtiohal Systen for Computer-Aided
Craphics”, Pertinent Concepts in Computer Graphies, Proce‘edings
of the Second University o.f Illinois Conference on Computer
_'.QPMcs. University of I1linois Press, i)p. 224260, April 1969. .

Fabl, R., "The Design and Construction of a Disc Oriented Graphics
Systen", Thesis Department of Electrical Engineering, McGill
University, February 1971. . o ‘

}l,

ha)




