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ABSTRACT

The hypothesis that aquatic biomass is uniformly distributed
over logarithmic size classes was evaluated with samples from
epilimnetic plankton communities. Although the hypothesis is
upheld for oligotrophic lakes, biomass increases between
successive size classes in mesotrophic and eutrophic 1lakes.
The abundance of organisms in logarithmic size intervals is
strongly negatively correlated with size. The relationship
between organism size and physiological performance in mixed
communities was examined by testing the hypothesis that
limnoplankton respiration rates are predictable functions of
mean body size. The equation describing this relationship wag
found to be similar to those obtained with laboratory cultures.
The total epilimnetic phosphorus concentration is correlated
with both biovolume and respiration rate. Many limnological
relationships, including those established 1n this thesis, are
based on linear regressions between log-transformed variables.
The rules for the correct use of backtransformed predictions
are elucidated. A theorem is proven, which sets limits to the
relationship between the coefficients of determination on the
original and transformed scales. Simulated data and empirical
results are used to illustrate the applications and limitations

of the theoretical results.
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RESUME

L'hypothése que 1la biomasse aquatique est distribueée
uniformément parmi des groupes de taille logarithmiques a été

évaluée a partir d'échantillons des communautés du plancton

épilimnétique. L'hypothése est fondée dans 1les lacs
oligotrophes. Par ailleurs, dans 1les lacs eutrophes et
mesotrophes, la biomasse augmente entre les classes
successives. L'abondance des organismes dans ces intervalles

de taille logarithmiques a une corrélation inverse trés forte
avec la taille. La relation entre la taille et le comportement
physiologique du plancton en communautés mixtes a été étudiée
en évaluant 1'hypothése que le taux de respiration est une
fonction predictive de la taille des organismes. L'équation
de cette relation s'est avérée semblable a celle obtenue avec
les organismes cultives en laboratoire. La concentration
épilimnétique totale en phosphore est en corrélation avec la
biovolume et le taux respiratoire. Plusieurs relations en
limnologie, y compris celles de cette thése, sont fondées sur
des regressions lineaires apres transformations logarithmiques.
Les regles qui gouvernent l'utilisation evacte des prédictions
sont elucidees. Un théoréme est prouve, qui établit les
limites & la relation entre les coefficients de détermination
avant et aprés transformation. Des données de simulation et
des resultats empiriques sont utilisés pour illustrer les

applications et les limites des résultats théoriques.
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» PREFACE

Remarks on style and authorship

As required by the Guidelines Concerning Thesis Preparation,
the following article is quoted:

"The Candidate has the option, subject to the
approval of the Department, of including as part of
the thesis the text, or duplicated published text
(see below), of an original paper, or papers. In
this case the thesis must still conform to all other
requirements explained in Guidelines Concerning
Thesis Preparation. Additional material (procedural
and design data as well as descriptions of equipment)
must pe provided in sufficient detail (e.g. in
appendices) to allow a clear and precise judgment to
be made of the importance and originality of the
research reported. The thesis should be more than
a mere collection of manuscripts published or to be

published. It must include a general abstract, a full

introduction and literature review and a final

overall conclusion. Connecting texts which provide

logical bridges between different manuscripts are
usually desirable in the interests of cochesion.
"It is acceptable for theses to include as

i chapters authentic copies of papers already
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published, provided these are duplicated clearly on
regulation thesis stationery and bound as an integral
part of the thesis. Photographs or other materials
which do not duplicate well must be included in their

original form. In such instances, connecting texts

are mandatory and supplementary explanatory material

is almost always necessary.

"The inclusion of manuscripts co-authored by the
candidate and others is acceptable, but the candidate
is required to make an explicit statement on who
contributed to such work and to what extent, and
supervisors must attest to the accuracy of the
claims, e.g. before the Oral Committee. Since the
task of the Examiners is made more difficult in these
cases, it is in the candidate's interest to make the
responsibilities of authors perfectly clear.
Candidates following this option must inform the

Department before it submits the thesis for review."

Each chapter of this thesis is based on the text of manuscripts
which have been submitted to learned journals for publication.
This format has produced some redundancy, for which I apologize

to the reader.

Chapters I and II are based on Ahrens and Peters (1989a and

1989b) . Dr. Peters' contributions were limited to the
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provision of financial resources and equipment for field and
laboratory research, and editorial advice on the manuscripts.
During the development of the research program, he of course
provided the usual advice and guidance offered by a PhD
supervisor. Chapter III is based on Ahrens (1989), which is
entirely my own work. Diccon Bancrcft provided some editorial
advice on this chapter. Marika Kurer and Lesley Pope provided
technical assistance with routine field and laboratory work.
I developed the procedures and conventions for size
distribution measurements on the inverted microscope, which
were done under my supervision by Marika Kurer and Ashley
Evans. All of the data analysis programs in Appendix 8 are

entirely my own work.

Contributions to original knowledge

I believe that each of the chapters of this thesis contributes

to original knowledge.

Chapter I shows that plankton biomass is uniformly distributed
over logarithmic size classes in only the most oligotrophic
lakes. As phosphorus concentrations increase, biomass per
class tends to increase with size. Although total biomass
tends to be correlated with total phosphorus, phosphorus cannot
be used as an index of biomass without reference to the size

of the organisms involved. This is because the mean phosphorus



XV

concentration per organism is size dependent.

Chapter II shows that an allometric relationship between mean
organism size and respiration rate holds in natural plankton
communities. The total epilimnetic phosphorus concentration
is correlated with the total community respiration rate.
Gravity screening is an acceptable procedure for separating
size fractions of plankton for respiration rate determination,
since the sum of rates measured on these fractions is not

significantly different from the total community rate.

In Chapter III a formula for the correlation between the
logarithms of multivariate normal random variables is
developed. This correlation is wusually less, and never
greater, than the correlation between the original variables.
Data from Chapter II and a simulation are used to show that the
formula does not apply when data are not multivariate normal.
The correction factor for backtransformation, which has been

inaccurately presented in the literature, is clarified here.
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GENERAL INTRODUCTION

The aquatic ecologist's mandate might be broadly described as
the elaboration of models to predict the distrikution of
biomass, production, and kinds of aquatic organisms (Peters
1980) . Like most ecological models, this thesis is premised
on the further assumption that the variables measured are
important, due either to their predictive power or to their
utility. When one refers to "kinds" of organisms, one often
thinks of "“species". However, the research presented here
explores models in which organism size, rather than taxonomy,

is of fundamental importance. This introduction explains this

choice.

Most previous research on plankton communities has focused on
spatial and temporal patterns in the distribution of species
(e.g. Hutchinson 1967). Ecological theorists have taken
several approaches to the development of quantitative models,
founded upon the impressive body of accumulated knowledge about
plankton species. Community models based on the environmental
physiology of individual taxa have not been successfully
applied to natural communities, due to the great spatial and
temporal diversity of the plankton. In an effort to overcome
this problem, predictive models of community structure have
been developed (e.g. Sommer et al. 1986). But such models are

difficult to test, primarily qualitative, and difficult for
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impossible) to relate to quantitative variables, such as
biomass, uptake rates, and productivity. At a still higher
level of generalization, species abundance, species-area
relations, and the size distribution of species have received
attention (e.g. May 1975, 1931). But the species concept
remains largely qualitative and categorical, and so predictive
relationships with quantitative variables are scarce. In
particular, the biomass, uptake rates, and productivity of an
individual species vary considerably over space and time.
Hence, the limited utility of the species concept has provided
impetus for the search for a more quantitative understanding

of "kinds of organisms’".

This thesis contributes to a body of aquatic modelling which
focuses on the distribution of organisms by size, deemphasizing
their traditional taxonomic categorization. In this spirit,
Sheldon et al. (1972, 1977) sought and found regularities in
the size distribution of oceanic seston; Harris et al. (1987),
Sprules et al. (1983, 1986), and Bailey-Watts (1986) extended
this approach to the limnoplankton; Schwinghamer (1981, 1983)
and Warwick (1984) studied the size distribution of marine
benthos; and Strayer (1986) examined the size distribution of
freshwater benthos. These empirical observations of size
distributions have lead to theoretical models of plankton
community physiology (e.g. Kerr 1974; Platt & Denman 1973;

Silvert & Platt 1980: Borgmann 1982; Griesbach et al. 1932)
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founded upon apparent regularities in the size structure, as
well as on the known size-dependence of production,
respiration, and other physiological processes (e.g. Hemmingsen

1960; Banse 1976; Banse & Mosher 1980; Blueweiss et al. 1978).

The choice between species and size implies a choice in
theoretical emphasis. A predictive model which emphasizes
taxonomy implicitly attributes importance to the role played
by phylogenetic determinism in structuring the community. The
current community composition is explained as a consequence of
the evolutionary ecology of the populations present. Abiotic
variables (e.g. geological history, wind, and water course
alterations) are invoked when necessary, but the primary
emphasis is on the physiological and ecological requirements
of the component taxa. Predictions of future system behavicur
would be founded upon the known characteristics of these taxa.
on the other hand, size-based models emphasize effects which
act independently of taxonomy. For example, the impact of
hydrography through entrainment and sinking is primarily a
function of surface area and volume of particles, hence of
their size. Surface area and average radius also help
determine potential uptake and excretion rates, and hence the
organism's reaction to a given nutrient environment. The total
biomass and relative numbers of organisms at size are
hypothesized to be constrained primarily by abiotic variables,

and this is testable. The difference between the two types of
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models is a matter of choice in emphasis. Scientifically, one
might Jjustify a particular choice by demonstrating that
predictions satisfy pre-established criteria of statistical

accuracy.

Possibly a hybrid model would maximize predictive stroength.
In a given lake, taxonomic variations within size classos are
due to recent phylogenetic history. Hence, such a model would
incorporate some rules allowing prediction of the size-class
specific species structure for the system of interest. Then
there would be equations to predict size distribution
parameters from abiotic wvariables, and further equations to
predict physiological variables from the size and species
composition. This type of model would recognize explicitly
that not only do physiological variables depend upon size, but
that predictive precision ircreases with taxonomic homogeneity
(Banse & Mosher 1980). Nevertheless, the hybrid model would
suffer from the major disadvantage of the species-based model:
the enormous amount of information required to predict the
species structure for a given system. Hence, we must hope that
size structure alone will furnish a sufficient basis for

accurate prediction of physiological variables of interest.

Chapter I first establishes that there are predictable
regularities in the size structure of the limnoplankton. Its

antecedents include the work of Sheldon et al. (1972), who
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found that pelagic oceanic waters had either a roughly constant
total particle volume in successive logarithmic size classes
(subtropical waters) or an approximately unimodal distribution
(elsewhere). When Sprules et al. (1983) examined limnoplankton
size spectra at a finer scale, they found evidence of bimodal
distributions. In an effort to quantify the differences in
distributions among lakes, I have attempted to estimate the
parameters of uni-, bi-, and trimodal models, as well as
"normalized spectra" (Appendix 1). I have also dealt with the
prediction of these system parameters from other easy-to-

measure variables.

It is well known that manv metabolic and physiological rates
of both individuals and communities are size dependent (e.q.
reviews in Calder 1984 and Peters 1983a). Examples include
respiration, production, longevity, growth, assimilation, and
fecundity. It is thus reasonable to hypothesize that energetic
and material flows within the plankton community may be
predicted from the overall size composition. However,
allometric relations for aquatic organisms have been founded
upon laboratory studies of isolated taxa. So, before community
size spectra can be used for physiological predictions, it must
be shown that allometric relations also hold for natural
communities composed of many taxa. Chapter II addresses this
hypothesis, where respiration rate is used as the physiological

"response" variable. Since respiration, or metabolic rate, and
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other physiological rates have a known common size dependence,
a demonstration of metabolic allometry in nature should provide
support for the hypothesis that other rates of interest may be
predicted from the size structure. Alternatively, measurement
of the metabolic rate of size classes could be used to predict

values of other variables.

Several statistically significant relationships between
logarithmically transformed variables are established in the
first two chapters. In Chapter III, I deal with the
statistical problems of backtransforming the predictions from
these models. I present an original result concerning the
coefficient of determination, and correct the existing
ecological literature with respect to the "correction factor"
for backtransformation. The impact of this work on ecological
models is examined through a simulation exercise and through
a discussion of two relationships established in a previous

chapter.
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LIMNOPLANKTON SIZE SPECTRA
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ABSTRACT

The hypothesis that aquatic biomass is uniformly distributed
over logarithmic size classes was evaluated with samples from
epilimnetic plankton communities at 15 temperate lake sites in
southern Quebec. Over the size range from 0.2 um to 1600 um
equivalent spherical diameter (ESD), biomass tends to increase
between log size classes at a median rate of 7%, in a data set
with a median total phosphorus concentration (TP) of 17

mg m3. The slope of the normalized biomass spectrum
(reflecting overall trends in the distribution) becomes
significantly steeper with decreasing TP. lecnce nmore
oligotrophic systems have a more uniform biomass distribution.
Over *he observed size range, most samples were dominated by
the phytoplankton mode between 20 and 50 um ESD. Total
plankton biomass was positively correlated with TP. The
abundance of organisms in logarithmic size intervals was
strongly negatively correlated with size. Many sample
distributions did not differ significantly from unimedal
lognormal distributions. Efforts to fit bimodal and trimodal

distributions met with limited success, since only 329 size

classes were used.




Introduction

As a result of their initial empirical observations with
electronic particle counts in the ocean, Sheldon et al. (1972)
hypothesized that aquatic biomass is roughly uniformly
distributed ove> logarithmic size classes. Later evidence from
both marine (Sheldon et al. 1972) and freshwater (Sprules et
al. 1983, 1986; Mazumder et al. 1988) systems showed that this
is approximately true, especially in more oligotrophic environ-
ments. This work also showed that local modes occur, both in
pelagic distributions and in those for benthos (Warwick 1984;
Schwinghamer 1981, 1983). These modes appear to correspond to
the major ecophysiological groups (viz. protists, phyto-

plankton, zooplankton ...).

These empirical observations of size distributions have lead
to theoretical models of plankton community physiology (e.q.
Platt and Denman 1978; Borgmann 1982; Griesbach et al. 1982)
founded upon apparent regularities in the size structure, and
the well-established size dependence of production,
respiration, and other physiological processes (e.g. Hemmingsen
1960; Banse 1976; Banse and Mosher 1980; Blueweiss et al.
1978). However the development of practical size-based models
has been hampered by the paucity of data and the small number
of size classes enumerated. The "normalized spectrum" (Platt

and Denman 1978; Sprules and Munawar 1986) uses only two
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parameters to characterize size distributions. But substantial
differences in the detailed size structure may by
indistinguishable at this level of generalization. Peters
(1983b) and Mazumder et al. (1988) used cumulative phosphorus
concentration to develop linear models based on an easily
measured system variable. These analyses assume that
phosphorus 1is a good correlate of biomass at the level of
individual size classes. None of these authors has tested
gquantitative models with more than two parameters. More
detailed models may be required before size structure analysis
becomes a wuseful tool 1in applications such as the prediction
of the fate of contaminants in aquatic systems, of fishery
vields, or of the impact of nutrients on the abundance of

organisms of a given size.

In this paper, the uniform distribution hypothesis is tested
with limnoplankton samples from 15 Quebec lakes. The number,
relative sizes, and positions of local modes are also examined.
In particular, the parameters of the distributions are tested
for variability, since insufficient variability would obviate
the ability to use variations in size distribution to predict
variations 1in community physiology. To the extent that
parameters are variable, several predictive relationships arec
examined. Predictive power is evaluated using an independent

data set.
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Methods

Sampling -- Samples were collected during the day throughout
the growing season in 1986 and 1987 from 15 temperate lake
sites in southern Quebec. These sites represent a broad range
of trophic conditions, as evidenced by phosphorus and
chlorophyll concentrations (Table 1.1). Integrated epilimnetic
water samples (at least 20 L per site) were collected during

the day through a 2.5 cm diameter tube connected to a piston

pump.

Although Pace (1986) found that this apparatus collects both
phytoplankton and zooplankton effectively, six parallel samples
were collected with both the tube and a vertical haul with a
conical plankton net (25 cm diameter, 120 um mesh), for
subsequent comparison of their efficiencies of collection of
zooplankton (Table 1.2). Five of the six counts were similar,
and showed no consistent difference between the sampling
devices with respect to the number of organisms, the total
volume, or the mean size. The one discrepant count represents
a dense concentration of small (<500 um length) Daphnia, and
is assumed to represent a swarm which was not otherwise

sampled.

Water samples were poured into 1 and 4 L bottles, and kept in

the shade during transit to the 1laboratory refrigerator
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(maximum duration 1 h). Samples for microscopic examination
were preserved with either Lugol's iodine (for the
phytoplankton size range--1 to 100 um) or 5% formalin (for the

bacteria--0.2 to 1.5 um, and zooplankton--80 to 1500 um).

Size Composition -- The size distribution of plankton throug-
hout the range 0.2 to 1500 um eguivalent spherical diameter

(ESD) was determined by direct microscopic examination.

To test for comparability with studies wusing electronic
particle counts, 7 samples were compared over the size range
4 to 31 um using both microscopic counts and Coulter counts
with a 200 um aperture (Table 1.3). Two of the seven
distributions differed significantly (P-0.05; Kolmogoroft-
Smirnoff test). However, total counts estimated by the Coulter
counter were much higher (1.7X to 18.6X) in 6 of 7 comparisons.
These differences were primarily due to the two smallest size
intervals, where abiotic particles are more abundant (Lal
1977). Excluding these two size classes, the counts were
similar, except in the case of a sample from Lake Waterloo,
where the microscopic count was higher, and a sample from
Baldwin Pond, where the Coulter count was higher. Since Lake
Waterloo has the highest phosphorus concentrations

(>100 mg m°) of all lakes studied, while Baldwin Pond has one
of the lowest (<10 mg mg), the microscopic counts are

consistent with the expected trophic response, whereas the




Table 1.1.
total phosphorus.

Southern Quebec lakes sampled in 1987,

m™?, with SD).
are basins of Lake Memphremagog.

Lake

Bowker
Stukely
Orford
Lyster
Baldwin
O'Malley
Central
Cerises
torth
Massawippi
Lovering
Argent
Trousers
South
Newport
Brome
Pond
Magog
Waterloo

45°
45°
45°
45°
45°
45°
45°
45°
45°
45°
45°
45°
45°
45°
44°
45°
45°
45°
45°

25'
20’
15’
04’
04’
13’
10’
18’
15’
15’
10’
15’
10’
00’
55’
15’
10’
20’
20’

72°
72°
72°
71°
71°
72°
72°
72°
72°
72°
72°
72°
72°
72°
72°
72°
72°
727
72°

15°
15
20’
55¢
54°
20'
15°
157
157
05’
10’
25’
25’
15’
15°
30'
14’
05’
307

Dates are Julian dates.

Latitude Longitude No. of

samples

FPFOFRPEPEOFENNEONDO R WIWWL N

13

in order of increasing

Concentrations are for total epilimnetic samples (mg

Central, North, South, and Newport

Range of

dates

183
193-230
128-237
149-227
149-227

177
114-228
193-236
120-226

177
128-177
142-183

181
114-235
128-204

142
183-224
128-223
142-229

3.
5.
.61

7

10.
14.
14.
14.
14.
15.
15.
16.
16.
17.
19.
20.
20.
24.
32.
81.

Total
phosphorus

50
53

16
23
41
46
74
03
52
14
57
77
27
70
82
59
61
72

(2.
(6.
(35.1) 1

.53)
.80)
.01)
.57)

.03)
.59)
.08)

.0L)
.71)

.19)
.42)

16)
87)

Total

chlorophyll

1.39
1.23
1.19
1.44
2.10
4.01
1.97
3.82
2.18
2.
1
3
3
3
3
3
2
5
7

55
42
.02
.38
.87

.16

.15
.54
01
.64

(1

(0.
(0.
(0.

(0.
(3.
(1.

(0

(2.

(0.
(0.

(1

.40)

50)
91)
73)

89)
56)
32)

Lb)

01)

74)
70)

.80)
(2.

98)

(11.0)
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Table 1.2. The densities and total volumes of organisms in the size range
from 125 to 1500 um ESD, sampled with a plankton net and a pump and tuhe
Samples are in order of increasing total phosphorus concentration
(measured on the tube sample).

Lake Date Density (L°1) Volume (ppm) Mean size (un’x10°%)

Net Tube Net Tube Net Tube
Stukely 230 3 14 0.6 0.3 295 8 37.8
Oxford 203 2 3 0.1 0.1 38.5 22.3
South 188 539 73 21.0 1.0 48.5 14 0O
Newport 204 54 86 1.7 2.8 71.9 38.95
Pond 193 66 65 2.5 2.7 115.2 103.1
Magog 223 91 94 4.2 2.9 57.2 60.1
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Table 1 3 Comparative counts (ml~!) from the electronic Coulter counter and
inverted microscope. Interval headings are the base 2 logarithms of particle
volume (um®). Note the differing totals (7-13) from the two methods for lakes

Baldwin and Waterloo.
Lake 5 6 7 8 9 10 11 12 13 Totals

5-13 7-13

Coulter counter

Baldwin 16208 10419 4168 1033 368 138 56 16 3 32409 5782
Omailey 5062 3221 1134 431 183 64 20 4 1 10120 1837
Argent 3730 1750 1156 551 191 59 13 4 1 7455 1975
Waterloo 3056 1083 835 519 247 223 95 40 6 6104 1965
Bowker 2632 1640 629 236 84 28 8 3 1 5261 989
Central 1663 735 462 260 132 47 18 4 1 3322 924
Central 1294 574 355 202 88 43 20 5 1 2582 714
Microscope

Waterloo 870 1739 1217 1044 1261 739 1174 478 130 8652 6043
Omalley 291 558 655 485 218 279 146 121 73 2826 1977
Bowker 364 625 523 352 239 205 80 46 57 2491 1502
Argent 225 556 460 182 193 267 246 150 75 2354 1573
Central 396 499 484 132 103 176 103 29 29 1951 1056
Baldwin 242 339 339 194 194 230 121 49 36 1744 1163
Central 182 148 159 114 114 136 46 23 23 945 615
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Coulter counts are not. Hence the Coulter counter is not
recommended for the enumeration of natural samples of small
freshwater plankton (less than 50 um ESD), where abiotic

particles may be numerous.

The abundance and approximate diameters of bacteria were
determined by epifluorescence microscopy with DAPI stain
(Porter and Feig 1980) of samples preserved in 2% formaldehyde.
Larger organismsin the picoplankton fraction were measured at
1250X on an inverted microscope, using samples preserved in
Lugol's iodine solution. Nannoplankton were measured at 1000X
and 400X (Lund et al. 1958). Zooplankton were measured at 100X
on the inverted microscope and at 40X under a dissccting
microscope, using both Lugol's samples and others preserved in
2% formalin. Individual volumes of organisms larger than 5 um
greatest axial linear dimension (GALD) were estimated by
measuring length and width and taking the volume of similar
regular geometric shapes as approximations. Smaller organisms

were counted in nine diameter intervals between 0.2 and 5 um,

Chemical analyses =-- Epilimnetic chlorophyll and phosphorus
concentrations are easily measured variables known to be
correlates of the abundance and activity of some planktonic
organisms (e.g. Smith 1979; Elser et al. 1986). Hence these

were measured, along with epilimnetic dry weight, as potential
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predictors of biomass. The total phosphorus concentrations
were measured in triplicate in several size fractions,
separated by stainless steel screens (130, 80, 40 pm porosity)
and Nuclepore membrane filters (5 and 0.4 um porosity), using
the ascorbic acid modification of the molybdenum blue technique
(Strickland and Parsons 1968) after digestion with potassium
persulfate under pressure (Menzel and Corwin 1965). Whole
sample chlorophyll a concentrations were also measured 1in
triplicate (Strickland and Parsons 1968). Epilimnetic dry
weights were determined by pouring a known volume of lake water
through predried (60° C) weighed GFC filters, and reweighing
the filters after they had dried for 24 h to determine the

weight difference due to seston particles and plankton.

Data analyses: Size structure - At any magnification, there
are maximum and minimum size limits to the organisms which can
be measured. Larger organisms are too big for the visual field
of the microscope, or may be substantially out of focus if the
field depth is too shallow. As organism size decreases, and
well before it is as small as the theoretical detection linmits
at a given nmagnification, the probability of detection
decreases. Small organisms may be hidden by larger ones,
confused with debris, or simply overlooked in a busy visual
field. Thus one might expect an approximately bell-shaped
curve of visual selectivity with a microscope, just as there

is a size selection curve for a plankton net. The five mag-
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nifications used in this study allowed sufficient overlap
between successive selection curves that, for many sizes, a
choice was required between the counts at the two magnifica-
tions. In every case, the highest count was selected, on the
assumption that lower counts were the result of partial selec-
tivity. Computer programs were written to take length, width
and shape data, magnifications, and water volumes to compute
individual organism volumes, and total counts and total volumes

in intervals of volume doubling.

The geometric mean volume of organisms in the smallest interval
was 0.0055 um>, corresponding to equivalent spherical diameters
from 0.2 to 0.25 um. The mean for the next interval was 0.0110
umz, corresponding to ESD 0.25 to 0.31 um. In the largest

interval counted (the 39th), the mean volume of 1.5x10° p.m"’

includes organisms with ESD between 1250 and 1600 pum.

Curve fitting - Size distributions can only be effectively
modelled when there are counts in most of the 39 size
intervals. In the case of these collections, 25 of the 58
samples analyzed were amenable to formal curve fitting
procedures. Some samples could not be fully counted due to the
presence of excessive abiotic particles. Others presented
highly "accidented" distributions with empty intervals followed
by large single interval peaks, due to the periodic abundance

of single phyla. Finally, some oligotrophic lakes yielded too
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many 2Zero counts in the zooplankton range. Some of these
problems could be addressed; for example, rare organisms would
be discovered if sampling were sufficiently intensive. But
many of these problems cannot be dealt with after the fact.
For the purpose of curve fitting, a total of 25 samples with
"goocd coveragc" were identified, where good coverage is defined
as non-zero counts in at least 90% of the size classes,
including at least some size classes above 600 um ESD. Only
samples meeting these criteria were used to estimate the
parameters of size distribution models, described in the

following paragraphs.

The spectrum of volume concentrations in base 2 logarithmic
size intervals was used to compute the "normalized spectrum"
(Platt and Denman 1978; Sprules and Munawar 1986; Figure 1.1)
for each sample. Such spectra plot log size on the abscissa,
and the ordinate is the log of the standardized abundances per
interval. The latter is calculated as the volume concentration
in the interval divided by the change in modal volume between
intervals. The parameters of the straight line fitted to these
points may be used to compare samples. Integration over any
range of sizes provides a smoothed estimate of biovolume or
biomass over that range. The intercept of the line provides
an estimate of relative abundance at one mass (or volume) unit.
The slope reflects the overall trend in mass or volume change

from interval to interval. 1In particular, a slope of -1 would
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FIGURE 1.1. An example of a normalized spectrum (Lake Orford,
July 22, 1987). The logarithms of organism size (on the
abscissa) are plotted against the normalized density (or the
ordinate). The latter is the logarithm of the ratio bztween
the total volume in the interval and the difference in organism
size between that and the subsequent interval - hence, a
density estimate. The straight line is the 1least squares
regression fitted to these data. See Appendix 1 for further

information.
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indicate an approximately even distribution of mass over size
classes. Steeper slopes (with larger absolute values) would
reflect declining biomass with increasing size, whereas
shallower slopes would reflect the reverse. The existence of
any significant slope would confirm that there is an overall
trend with size, in spite of the existence of one or more local
peaks or troughs in the size spectrun. Further details are

provided in Appendix 1.

There are usually patterns in the residuals from a fitted
normalized spectrum, and hence the diagnostic statistics
associated with the regression (rz, F, SEE) will probably not
be accurate. Nevertheless, if the spectra to be compared are
computed over similar size ranges and have similar residual
patterns, then the parameters may provide a basis for com-
parison of general trends in biomass distribution. If the
normalized spectrum is an accurate representation of the data,
then numerical integration under the fitted curve (multiplying
together back-transformed ordinates and abscissas and summing)
should provide an estimate of biomass similar to that observed
over the same range. To test this hypothesis, the predicted
integrated biovolumes from normalized spectra were regressed
against observed total biovolumes. Furthermore, the median
computed total biovolume from all samples was compared with

the observed median value using the modified t test for samples

with unequal variances (Snedecor and Cochran 1967). These
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tests provided a measure of confidence in the normalized fits,
as well as a basis of adjustment between predicted and observed
values. The results were also compared with those of Sprules

and Munawar (1986) for Ontario lakes.

The finer structure of distributions was examined in three
stages. We first examined the possibility that plankton volume
might be lognormally distributed over size. Since our size
distributions are grouped by logarithmic (base 2) volume
intervals, they should look like a normal distribution when
graphed (log size on the x axis and linear volume on the y
axis). A Kolmogoroff-Smirnoff test (Hollander & Wolfe 1973)
was used to test an overall lognormal (unimodal) fit to these
data. We then tested the hypothesis that the distributions
were bimodal, corresponding to 2 lognormal curves. If this
hypothesis were true, then each distribution would be
characterized by 5 independent parameters: 2 means, 2
variances, and a parameter between 0 and 1 describing the
proportion of the total distribution in one of the modes.
These parameters of the mixture density function were sought
by a maximum likelihood method (Append.x 1; Clarke 1984).
Finally, a 1linearization technique for estimating the
parameters of a non-linear system (Appendix 1; Draper and Smith
1981) was used to estimate the 8 independent parameters of

trimodal fits.
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Variability of parameters - The heterogeneity among estimated
parameters was evaluated in several ways. All pairwise com-
parisons were made with the Least Significant Difference (95%
criterion) using Tukey's test based on the Studentized range
rather than the t distribution. Use of the latter would
increase the chance of finding more significant differences
than is warranted (Type I error; John 1971). Joint confidence
regions for the two parameters of the normalized spectra were
compared graphically (Appendix 1). When it was necessary to
compute statistics for comparing parameter sets with two
parameters, the models were first tested for homogenecity of
variance by Bartlett's test, and if they passed this test, they
were compared using an F test for the coincidence of two or

more straight line regressions (Seber 1977).

Predictions - Predictive linear regression models were used to
test the ability of various chemical and morphometric variables
to predict the parameters of size distributions, to evaluate
the correspondence between predictions and observations, and
to identify trends between predictions and residuals. Modelgo
were evaluated using a data set (1986) independent from that
used for their development (1987). 1In order to evaluate the
potential use of phosphorus concentration as an index of size
specific biovolume, the phosphorus:volume ratio was compared

among size classes by analysis of variance (Seber 1977).
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Results and Discussion

1. Detailed Size Structure

The distribution of organism density over logarithmic size
classes showed a fairly uniform decline with increasing size
(Figure 1.2A). The "median distribution of biomass", composed
of the medians of all observed values for each size interval
(Figures 1.2B & 1.2C), shows a rapid increase to about 1 um
ESD, a more gradual increase to about 30 um, and an erratic
distribution beyond that point. On average, 50% of the
community biomass is less than 45 um ESD, and 90% less than 700
um (Figure 1.2D). The summed biomass in this median distribu-
tion is 14.1 mg L''. In contrast, the 12 samples with lowest
phosphorus concentrations (median = 6.6 pug IJ1, versus an
overall median of 17.4) provide a mean biomass of 6.2 mg L.
The peak in the distribution for these oligotrophic lakes
occurs at 30 um (Figure 1.2E), and 50% of the biomass 1s in
particles smaller than this. 90% of the biomass is attained
by 175 um. Hence these oligotrophic lakes are clearly
dominated by smaller organisms and have lower total plankton
biomass concentrations than do lakes with more phosphorus in

the epilimnion.

Two lakes were sampled often enough throughout the season to

examine temporal trends in the phytoplankton/zooplankton ratio




25

FIGURE 1.2. The median distributions (n=58) over logarithmic
size classes of (A) organa.sm density, (B) total organism volume
on a logarithmic scale, (C) total organism volume on a linecar
scale, (D) cumulative total organism volume, and (E) low
phosphorus total organism volume. The 95% confidence intervals
are shown on the first two panels. Parts per million (ppm) =

3

pum’ L

x 10°. The mean distribution obtained by Sprules et
al. (1983) for low phosphorus Ontario lakes (=------ ) is

included in panel (E).
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(Table 1.4). There is some indication of increasing biomass,
and in the more eutrophic lake, an increasing proportion of the
total biomass is in the zooplankton size range. Using all
samples with good coverage of the size spectrum from all lakes,
a regression on Julian dates to predict the proportion of total
biomass below 80 um shows a significant (P<0.001) decreasing
trend (slope = -.00299), explaining 33% of the variation. Thus
there is a general trend to increasing size during the period

from April to September in these lakes.

Trophic response models, using the total phosphorus
concentration as a trophic index, provide a crude basis of
comparison for our total biomass results. Peters (1986)
summarized several power equations to predict components of
plankton biomass from phosphorus. Using these equations, the
predicted biomasses at 7 and 17 ug phosphorus L' are 1.9 and
4.4 mg L respectively. These predictions are somewhat lower
than our observed median values of 6.2 and 14.0 mqg L.
However, the predictions are based on backtransformed
logarithmic regressions, and must therefore be increased by a
correction facter (Sprugel 1983). Neither Peters (1986) nor
the original references provided sufficient statistical
information to estimate this factor accurately, but an increase
of 25% would not be atypical. Considering that the predictions

are based on 5 independent data sets in a variety of lakes, our

results are perhaps not too unusual.
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Table 1.4. Temporal trends in planktonic biomass distribution in 2 lakes in
1987. The first data column shows the approximate size of an organism (um ESD)
at the 50% point in the distribution. The second column shows the percentage
of the total biomass which is due to organisms smaller than 80 um. The third
column shows the total biomass concentration (ppm).

Lake Magog

Julian date Size at 50% Percentage at 80 um Total
128 8 97 3477
181 14 97 18072
193 28 74 18328
223 50 58 18854

Lake Orford

128 4 98 2086
177 28 92 6958
199 10 93 6466
203 18 94 8285
237 40 65 20140
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Sprules et al. (1983) determined the planktonic size dis-
trihution in several small Ontario lakes, with lower phospho-
rus concentrations than mcst of ours (Tables 1.1 and 1.5).
Whereas their mean distribution shows a phytoplankton peak at
about 8 um, our low phosphorus median distribution peaks at
about 30 um (Figure 1.2E). About half of the total volume is

in each of their two modes, whereas usually less than 10% of

ours is 1in the second mode. Over the same size range
(1<ESD<1500 um), their integrated biomass of 1.5 mg ! is
substantially lower than our 6.2. Although our lakes are
larger, deeper, and richer in phosphorus (Table 1.5), the

differences in observed biomasses may be due to methodology.
The lower end of the observable size distribution depends upon
the magnification used. Although they do not specify
magnification, detection rates normally decline as size dec-
reases. We consistently found that, when magnification was
increased, counts of organisms in the smallest size rangen
detected by the previous magnification were considerably higher
under the new power (Figure 1.3). Our higher picoplankton
counts may be due to our use of 1250X magnification for all
organisms smaller than 5 um ESD, and epifluorescence microscopy
for bacterial sizes (<1.5 um). Our bacterial counts arec
similar to those obtained by other authors using similar
methods (Hobbie et al. 1977). Hence we are confident that our
higher biomasses of bacteria and picoplankton are not a

methodological artefact.

%
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Table 1 5 Comparisons beiwcen our lakes and those studied by Sprules et al.
(1983) The range ana median are shown.

All samples Low phosphorus Sprules et al.
Total phosphorus 3 -130 (17) 3 - 12 (7) 0.5 - 27 (&)
(mg m )
l.ake area 20 - 4000 (200) 120 - 4000 (1/0) 29 - 1142 (149)
(ha)
Mean depth 1 - 70 (10) 14 - 70 (23) 1 - 20 (8)
(m)
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FIGURE 1.3. Examples of the impact of magnification used in
microscopic analyses on observed densities. Samples are from

South (A) and Central (B) basins and Lake Magog (C).
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The large difference between our results and those of Sprules
et al. is primarily due to the higher biomasses we observed in
the 25 to 125 um size range. The low abundance of larger
phytoplankton in their samples could also reflect shallower
sampling with a small diameter sampling tube. We used a deeper
range of depth integration (8 metres as opposed to 4), and our
sampling tube has 32 times the cross-sectional area of theirs.
Counts from this tube were used for all size classes up to 130
pgm ESD. Nevertheless the basis of the differences in the
distributions will remain speculation until parallel samples
from both sampling protocols in both environments have been

compared.

Kolmogoroff-Smirnoff tests showed that 46 of 58 volume
distributions did not differ significantly from a unimodal
lognormal distribution (P<0.05; Table 1.6; Figure 1.4). Modes
ranged from 19 to 75 um ESD, with a median value of 438 um for
the 17 samples with both good coverage of the size range and
significant fits. A unimodal distribution is a good first
approximation to the plankton community size distribution,
apparently because the phytoplankton mode so dominates the

community.

Bimodal and trimodal distributions were fit to the data, bhut
met with limited success (Table 1.7). Only 7 samples out of

25 with good coverage did not differ significantly from a
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Table 1.6. Parameters of all unimodal distributions successfully fitted to
samples with good coverage of the size range. The mean is the mean base 2
logarithm of organism volume (um®) Samples are in order of decreasing total
phosphorus concentration The volume in a given size interval (on a base 2 log
scale) may be estimated by multiplying the corresponding normal density” by the
total volume.

Lake Julian date Mean SD Total volume

(W) (o) (ppm)
Waterloo 229 16.45 4,20 192.7
Magog, 223 15 77 6.56 29.5
Magog, 193 15.92 6.93 18.3
Pond 193 15.96 6 48 17.3
Newport 204 17.04 7.13 14.7
South 235 15 49 5.40 29 9
Cerises 236 12.45 5 31 12.0
Central 228 17.53 7.64 35.9
tentral 197a 17 66 8.22 19.6
Central 197h 17 78 8.13 19.4
North 226 12.51 5.18 9.4
Stukely 193 15.83 7.29 6.9
Orford 199 12 58 6.21 6 4
lyster 227 13 62 5.43 11 9
Orford 203 11.82 4.31 8.3
Stukely 230 12 90 5.20 11.3
Ortord 237 13.62 3.89 19 5

" normal density Omosy YV oexp-1/2((x-p) /o))
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i*v

FIGURE 1.4. Examples of (A) unimodal and (B) bimodal fits to
the volume distribution. Note the apparent third mode below

about three pym ESD in both panels.
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Table 1.7. Parameters of bimodal and trimodal curves fitted to the
distributions of plankton biovolume. Units are base 2 logarithms of volume
(um®) . Samples are listed 1in order of decreasing total phosphorus

concentration. To estimate the volume in a given interval, the contributions
of each mode must be weighted by the proportion in that mode and summed. The
contribution is itself estimated as in the unimodal case (Table 1.6).

(a) Bimodal:

Lake Date First mode Second mode Proportion of
Mean SD Mean SD total in first mode

Magog 193 13.5 5.39 26.1 1.04 0.81

Pond 224 17.2 7.47 22.5 0.98 0 46

South 235 7.4 8.21 16.2 4.41 0.08
Cerises 236 12.5 5.19 18.8 2.47 1.00

North 226 7.1 4.57 14.3 3.23 0.22
Baldwin 225 11.1 5.81 28.3 0.88 0.61
Orford 203 8.8 6.85 12.8 2.28 0.25

(b) Trimodal
Lake Date First mode Second mode Third mode

Mean S§D Prop Mean SD Prop Mean SD Prop

Magog 193 2.7 6 29 0.13 14.3 2.51 0.63 26.0 1.30 0.24
Pond 193 6 0 8.71 0.13 15.8 2.65 0.71 28.6 3.18 0.16
Newport 204 1 9 2.27 O0.11 12.9 4.74 0.53 20.4 1.00 0.36
Biome l44 31 341 0.49 11.1 1.00 0.29 2Y.7 2.75 0.22
South 186 -1.2 1.00 0.33 15.1 1.00 0.14 25.4 2.19 0.53
Baldwin 225 2 5 3 20 0.07 13.2 2.37 0.41 29.0 1.11 0.52
North 226 -4.3 1.59 0 02 11.5 3.55 0.51 15.2 1.00 0.47
Central 130 1.7 376 0.51 12.8 5.58 0.30 15.3 1.64 0.19
Lvater 227 91 518 0.25 1l4 2 1.99 0.66 27.2 1.00 0.09
Ortord 203 2.2 265 0.09 12.7 2.63 0.90 25.5 1.32 0.01
Stukhely 230 3.8 6.13 0.14 12 3 2.23 0.76 22.1 1.00 0.10
Orford 199 60 425 0.19 13.0 1.95 0.66 28.9 1.12 0.15
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mixture of two normal distributions. Ten samples did not

differ significantly from trimodal distributions.

The poor success rate with the bimodal and trimodal fits may
not be entirely due to the underlying structure of the
community. These models have more parameters to estimate than
the simpler unimodal case, and hence require either more data
points (size intervals) or more "perfect" data. For example,
a trimodal model requires the estimation of 8 independent
parameters, and our data are grouped into only 39 intervals.
Using narrower, and hence more numerous, intervals would sinmply
generate more noise due to sampling variability. It is also
possible that the iterative algorithms used for estimation led
to a "dead-end" in the parameter space which is not necessarily
the optimal solution. Even when the parameters cannot be
estimated analytically, two or three modes are sometimes

evident in the distribution (Figure 1.4).

2. Normalized Spectrum

Normalized spectra (Sprules & Munawar 1986) for the 25 samples
with good coverage of the size range were computed using base
2 logarithms on both axes (Table 1.8, Figure 1.5). Intercepts
varied from 5.16 to 7.98, with a mean of 6.05 (95% C.I. of mean
= 5.80 to 6.30). Since all of the regression slopes were

highly significant (P<.00l1), there is indeed a constant trend
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Table 1 8 Parameters of the normalized spectra for samples with good coverage
ot the sive range, arranged in order of declining intercept. The independent
variable 14 the base 2 logarithm of organism volume (uml) The dependent
variable 15 the base 2 logarithm of the normalized density (x107° L7!).

Lake Date Intercept SE Slope SE F R? SEE
Waterloo 229 7.981 0.430 -0.752 0.033 516 0.94 1.90
Lovering 177 7.066 0 910 -1.002 0.069 214 0.88 3.91
South 235 6.679 0.734 -0 951 0.048 387 0.92 3.z27
South 186 6.499 0532 -0 829 0.036 520 0.94 2.36
Central 228 6 327 0.458 -0 870 0.031 783 0.96 2.03
0'Malley 177 6 304 0734 -0 797 0 065 152 O 84 322
Cerises 236 6 272 0521 -0 904 0 043 443 0 94 2.29
Magog 193 6 247 0.516 -0.877 0 035 618 0.95 2.29
Pond 193 6 216 0578 -0.915 0 037 622 0 94 2.58
Central 197a 6.079 0.425 -0.867 0.029 903 0.97 1.89
Magog 223 6 068 0 384 -0 853 0.027 1011 0 97 1.70
Pond 224 6.020 0,520 -0.872 0 034 649 0 95 2.31
Central 197b 5960 0.429 -0 862 0 029 878 0 97 1.90
Central 166 5 957 0.533 -0 764 0.047 265 0 90 2.34
Cerises 193 5952 0532 -0 760 0 047 263 0 90 2.33
North 726 5 870 0 588 -0 938 0 045 44l 0 93 2.60
Baldwin 225 5 827 0599 -0 944 0 040 552 O 94 2 67
Stukelvy 230 5.700 0 655 -0 942 0 047 410 0 92 2.90
Central 186 5 636 0 703 -0 894 0 057 250 O 89 3.09
Lvster 227 5 608 0.734 -0.941 0 052 326 0 91 3.25
Ortord 237 5 542 0 650 -0 837 0 055 236 0.89 2.86
Orford 203 > 483 0 800 -1 005 0.057 312 0O 90 3.5
Newport 204 5 416 0 460 -0 866 0 033 682 0.95 2.04
Orford 199 5373 0627 -0 963 0 044 483 0 9 2.78
Stukely 193 5162 0 683 -0 975 0 043 504 0.93 3.05
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FIGURE 1.5. The mean normalized curve and the two extremes in

this data set (n = 25).
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in biomass distribution over logarithmic size classes. The
slopes varied from -0.75 to -1.01, with a mean of =-0.89 (95%
C.I. of mean = -0.87 to ~-0.91), which is highly significantly
shallower (P<.001) than the slope of a spectrum with
approximately equal biomass per class. Thus the distribution
is not uniform , but shows a small increase 1n biomass betwecen
successive size classes. The mean slope corresponds to a
spectrum in which biomass tends to increase by about 7% between

successive base 2 logarithmic size classes.

Over the range of sizes from 10° to 10° g, the approximate
median parameters (6 and -0.9) generated an integrated biomass
estimate of 7.6 mg L', after correction for backtransformation
from a logarithmic scale (Sprugel 1983). This was not

4) of

significantly different from the median (14.1 mg L
observed biomasses. Observed biomasses varied from 6.4 to 193
mg L-1, whereas integrated estimates varied from 0.8 to 172 mg

-1

L The integrated estimates were also significantly

correlated (P<.00l1, F = 31, r’ = 0.57) with the observed total
bhiomasses, where all values were log transformed (base 10) to
stabilize variance (Figure 1.6). Although the parameters of
this relationship (-3.36, 1.83) were significantly different
from 0 and 1 respectaively (P<.025), this regression establishes

that the spectrum may be used as a basis for comparison of

samples.
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FIGURE 1.6. The relationship between observed total planktonic
biomasses and the estimates obtained from integration of the

normalized curves fitted to these data. The 1:1 line is shown.
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Sprules and Munawar (1986) reported normalized spectra for
several Ontario lakes (Table 1.9). Their median slope values
from replicated observations on individual lakes tended to be
closer to -1 than ours. Their median intercepts (reported in
base 10 logarithms) were smaller. Those authors did not
provide sufficient information about the distribution of their
values to undertake a parametric comparison, but numeric
integration of their curves over the same range as ours yielded
values in the range 0.7 to 0.8 mg L'1, compared to 0.8 to 172
mg L' (median = 7.6) for our integrated totals. Their results
spanned a smaller range since each spectrum was based on
several samples, whereas we have computed one spectrum per
sample. Some of our samples had much higher phosphorus
concentrations than those of Sprules and Munawar. Nevertheless

our normalized spectra usually reflect higher total plankton

biovolumes than do theirs.

3. Variability of parameters

The elliptic confidence regions about the parameters of
normalized spectra from 4 samples are illustrated in Figure
1.7. The figure shows the variability in the size of the
confidence regions, as well as the extent to which different
spectra may correspond. Thus ellipses with substantial overlap
correspond to spectra which do not differ significantly,

whereas disconnected ellipses are significantly different. The



Table 1.9. Paramecters (range and median) of normalized spectra tor Ontario lakes
computed by Sprules and Munawar (1984) For purposes of compattson, the values
for our spectra computed over a similar size range (n = 25) are included, atter
conversion to base 10 logarithms

Lake Slop» Intercept
Inland lakes -0.92 to -1 05 (-0 98) 0 92 to 1 93 (1 it
St. Clair -0.76 to -1 05 (-0 90) 1.11 to 1 83 (1 46)
Erie -0.77 to -1 24 (-0 99) 1 79 to 2 41 (1 99)
Ontario -0.90 to -1 04 (-9 97) 1 35 to 2 16 (1 82
Huron -0 90 to -1 18 (-1 02) O 64 to 1 65 (O M
Superior -1 00 to -1 15 (-1 10) 041 to O 73 (0 o)

This study -0 75 to -1 01 (-0.,90) 1 70 to 3 89 ¢ D)
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FIGURE 1.7. 95% confidence regions around the parameters of
some normalized curves. The total phosphorus concentrations
are shown, 1n order to 1illustrate the general trend to
decreasing slope and increasing intercept with increasing
phosphorus concentration. Larger ellipses reflect less precise
parameter nstimates. Greater overlap between two ellipses

reflects less significant difference between the distributions.
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mean squared errors (variance estimates) of the 25 best spectra
were compared using Bartlett's test. The test statistic showed
very significant variability (P<0.005) among the residuals.

This variability is reflected in the relative sizes of the

confidence ellipses.

The variability (among the spectra) of each of the parameters
was tested with two pairwise tests. A t-test showed a
signiticant difference (P<0.01) between the smallest and
largest i1ntercepts of the 25 normalized spectra. The first and
the 24th intercepts were still different (P<0.05). The second
and third were also different from the 25th. Otherwise, there
were no significant differences among the intercepts. However,
bivariate comparisons like this generally increase the number
ot Type 1 errors among all possible comparisons in a parameter
set. Tukey's LSD test, which is more appropriate, showed no
si1gniti1cant differences whatsoever among slopes or among
1ntercepts ot the normalized spectra. When Tukey's test was
applied to the unimodal fits, four overlapping homogeneous
sets ot means were identified: 1 to 7, 5 to 10, 6 to 12, and
8 to 17 (where the numbers retlect the sequential order of the

means from lowest to highest).

The low variability of the parameters of these two models
reflects the underlying similarity of size spectra among lakes

studied (Figure 1.5). This presents a problem for comparisons
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among lakes, and for the development of models to predict
parameter differences between lakes. The sampling distribution
from a single lake necessarily shows variability, due to short
term changes and sampling error. But if the "true" difference
between the parameters of two different systems is low, as we
have found, then efforts to predict this difference will be

confounded with sampling variation.

4., Predictions

These data are the largest available set describing the size
distribution of plankton communities in lakes of differing
trophy. This section develops correlations between the
parameters of size distributions and other lake
characteristics, using data collected in 1987 (Table 1.10).
Where possible, the predictive power of these relations was
tested with data collected in 1986. None of the reldationships

were significantly improved when the following morphometric

variables were tested as additional regressors: lake area,
lake wvolume, mean depth, maximum depth, and a cateqgorical
variable depending upon whether or not the lake wtratifica 1n
summer.

As a partial check on the validity of some of the davn.a <ol

lected, and for a comparison with other published wordy, the

relationship between mean summer chlorophyll concentratisns and

|




Tabie 1 10 Predictive regressions for planktonic size distributions In general, the amount of explainea
variation 1n these analyses 1s moderate relative to other models (e.g Peters 1986), because the regressions

use point estimates, rather than seasonal means. The f statistics do not include the 1ntercept * =

0 05-p»0.01, ** = 0 01>p. Abbrevistions are defined 1n the footnotes

Response Intercept Predictors n SEect r? F
*
logy CHL -1.22 1.29 togyg STP 15 0.202  0.53 15"
"
logyq TVOL 3 27 0.85 logyg TP 25 0.237 055 28
UN1MODI -6.37 2.58 logqg TP
+ 2.47 logyg CHL .
. 6.67 logqg DW 17 1.488  0.58 6
NSLOPF -6.965 0.00351 TP 17 0.041  0.38 9"
NINT 5 467 0 0206 TP 47 0562 032 a™
logy N 575 - 0793 logy SIZE 1647 1.900 0 94 26624°
logp N 3.601 0 792 logy SIZE e
. 0 533 log, 1P 1647 1.83«  0.94 13266
logy PICOVOL 2.85 0 38 logyg TP .
. 0.00047 (DATE x logyq DW) 58 0151 045 23
logyp NANNOVOL 3 84 0.006 DATE o
0 499 logyg DW 55 0270 045 22
(n NETVOL 9.07 1397 (n TP
24 08 nPNET
- 0 86 (in DW x in TP)
0 038 (DATE x In TP)
0 078 (DATE x ln PNET) e
+ 0 89 (In DW x Ln PNET) 17 0.259 0 96 35
logy 2000W 1 46 1252 logyg TP 25 0451 042 76"
[ NANNO/NE T 9 37 119 In DW
: 081 In TP .
0 60 In CHL 17 0 466  0.81 19

Foornotes over Leat




Table 1.10

TVOL -
PICOVOL =
NANNOVOL =
NETVOL -
TP -
DATE -
DW -
PNET -
Z00DW -
CHL -
N -
SIZE -
UNIMODE =
NSLOPE -
NINT =
STP =

footnotes:

volume density of plankton (um® x 107® L°1)

volume density of plankton of ESD < 5 pum (um® x 10 LY
volume density of plankton of 5 um < ESD < 80 um

volume density of plankton of ESD > 80 um

total epilimnetic phosphorus concentration (mg m™*)

Julian date

epilimnetic dry mass concentration (ug L7!)

phosphorus concentration retained on 80 um filter (mg m™?)
zooplankton dry mass concentration (ug L°!)

chlorophyll-a concentration (mg m™3)

numeric density of plankton in a size interval (x107® LY
volume of a single organism (um’)

mean of normal distribution of volume over log, sizes
slope of the normalized spectrum

intercept of the normalized spectrum

total spring epilimnetic phosphorus concentration (mg m *)

46
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spring total phosphorus concentration was calculated. The
relationship explained 53% (n = 15) of the variation in the
base 10 log chlorophyll. Our parameters (-~1.22, 1.29) were
similar to those computed by Dillon and Rigler (1974) using a
much larger data set (~1.14, 1.45), and the predictions from
the two models were very highly correlated. Hence, there is
reason to hypothesize that the relations built on data from

these lakes may reflect more general regularities.

The total epilimnetic phosphorus concentration (TP) is the most
useful and reliable predictor of size distribution parameters.
As TP 1increases, the mean of the unimodal distribution
increases, indicating the relatively greater number of larger
organisms. This is further reflected in the shallower slope
and higher intercept of the normalized spectrum. The unimodal
mean 1s best predicted from the logs of the concentrations of
TP, chlorophyll, and cc=:onic dry weight (R2==0.58). The most
reliable predictions of the normalized slope and intercept are

hased on TP alone (R2 = 0.38 and 0.32 respectively).

Plankton abundance was very negatively correlated with size.
Thus 94% of the base 2 log of the numerical density in a size
interval was explained by a regression on the log of mean size
in that interval (Table 1.10). Furthermore, this model based
on 1987 data explained 82% of the variation in the independent

1986 abundance data. Incorporation of log TP as a predictor
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slightly increased the variation explained in the original
data. This augmented model explained 87% of the variation in

the independent data set.

Although only 55% of the variation in the logaritam of the
total planktonic biovolume is explained by a regression on the
logarithm of the total phosphorus concentration, this
relationship is not significantly improved by the inclusion of
other likely regressors (e.g. chlorophyll) in the model. When
applied to an independent 1986 data set, there was a
significant correlation between predictions and observations.
A separate regression between total volume and total phospho-
rus was fitted to the 1986 data. The mean squared errors of
the two models were sufficiently similar (Bartlett's test,
P>0.25) to allow a direct F test comparison of the two param-
eter sets, which were not significantly different from one

another (Figure 1.8).

Regressions to predict the biomass of different functional
groups of plankton explained less than half of the observed
variation in the total volume of picoplankton, nannoplankton,
and zooplankton as functions of Julian date and some index of
trophy. UNetplankton volume was more effectively described (R
= 0.96) by a seven parameter model, but because all terms 1n
this relationship explained similar amounts of variation, all

simpler models were less effective. For each of these models,
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FIGURE 1.8. The relationship between observed total plankton
biomass and total phosphorus concentration in 1986 and 1987.
There is no significant difference Dbetween the two

independently fitted relationships.
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the trend between model predictions and the original data did
not differ significantly from a 1:1 relationship. However, in
those cases (nannoplankton and <zooplankton) where the
predictions of relationships built on 1987 data were compared
with data collected in 1986, there was significant deviation

from a 1:1 trend.

The ratio nannoplankton/netplankton decreases as phosphorus and
chlorophyll concentrations increase. This is consistent with
the observed increase in average size as these trophic

variables 1increase.

5. Use of Phosphorus as an Index of Biomass

Peters (1983b) found a roughly linear increase 1in particulate
phosphorus concentration per logarithmic size class over 6
classes spanning roughly the range from 1 to 100 pum ESD. The
slopes of these relationships increased with total phosphorus
concentration. If the relationships are in fact linear, then
the i1mplication is that the phosphorus concentratio.. per size
class 15 constant among classes in the same lake. Increases
in slopes and intercepts with total phosphorus imply that each
size class contains more phosphorus. Peters' interpretation
of these phosphorus distributions as biomass distributions
relies upcn the assumption that the ratio of phosphorus to

biomass does not change with either size or total phosphorus
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concentration. In order to test this assumption, we conducted
a two-way analysis of variance of the log-transformed mean
phosphorus/biomass ratios for 3 size classes (0.4-5, 5-80, >80
pm) in 4 ranges of total phosphorus concentrations (.9, 9-21,
21-52, >52 mg m'3) . These intervals correspond to intervals of
equal range in log-transformed phosphorus concentration value:.
The model explained 71% of the varilation in the data (n - 121,
F = 39.2, P<0.001, SEE = 0.1584). The predicted mean values
(Table 1.11) show a trend to decreasing ratios with increasing
size (P<0.01) and increasing ratios with increasing total
phosphorus concentration (P>0.05%; n.s.). The mean values 1n
the table suggest that the phosphorus concentration 1n
picoplankton is about 8 times higher than that in netplankton.
Assuming that dry weight is about 30% of wet weight (Peters &
Downing 1983), the mean P content of algae from Vinogradov':.
(1953) data (0.69% of dry mass) converts to a wet
phosphorus/biomass ratio of 0.0023. This value 1s intermcdiate
between those of the small and medium size classces at all
phosphorus levels predicted from our analysis. Peters (198:h)
noted that Vinogradov's (1953) data snowed some tendency to
declining phosphorus concentration with 1increasing organism
size, and Shuter (1978) showed that the phoasphorue,
concentration in phytoplankton cells declines with cell]l sizec.
Our analysis shows a similar trend. Thus the phosphorue,
content of a size class 1is at best an approximate 1ndex of

biomass, which should be adjusted by a size—specific correction
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Table 1 11 Results of the two-way analysis of variance of the phospho-
rus/biomass ratio. Columns represent three size classes, and rows represent
four levels of total phosphorus concentration. The four values in each cell
are the number of observations, the mean predicted log,, ratio, the standard
error of this estimate, and the back-transformed ratic corrected 1or
transformational bias (Sprugel 1983)

Picoplankton Nannoplankton Netplankton

TP<9 8 7 p)
-2.77 -3.63 -3 68

0.0992 0.1020 0.1140

0.0026 0.0004 0.0003

9<TP<21 35 24 11
-2.63 -3.49 -3 54

0.0599 0.0693 0 0925

0 0036 0.0005 0 0004

21<TP<52 12 9 5
-2.45 -3.30 -3 36

0.0873 0.0927 0 1090

0.0054 0 0008 0.000/

TP>52 3 1 1
-2.39 -3.25 -3 30

0 1800 0.1880 0 1940

0 0062 0 0009 0 000§




factor.

The size dependence of the phosphorus/biomass ratio has
important implications for the use of phosphorus as an index
of biomass. First, differences in total phosphorus con-
centration tend to be greater than differences in biomass.
This is reflected by the fractional exponent (0.85) of the
regression between total biovolume and total phosphorus (Table
1.10). Second, the high concentration in the smallest size
class overestimates small organism biomass compared to that ot
larger organisms. Hence, the linear trends 1n the relationship
between cumulative phosphorus and organism size reported by
Peters and the decline in phosphorus concentration with size
imply an increase in biomass with size. This contirms the

tendency indicated by our results from the normalized spectrum.

6. Extrapolations

The mean slope and intercept of the normalized spectrum may be
used to predict the abundance of organisms at larqger sizes.
The projected 7% increase in biomass per log 2 siao class as
necessarily constrained by the more rapid increase 1n organisn
size (doubling between classes) and the maximum s1ze of the
habitat. Our largest lake (Memphremagog) has a volume of ahout
1.5 km°. If at least 500 individuals are required for a

subsistence population, then the rarest species in Lake
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Memphremagog might have as few as 330 km>. The model projects
an abundance this low for the interval containing organisms of
about 4 metres ESD (18 t). If we apply the additional con-
straint that the rarest organism has a mass lower than 30 kg
(corresponding to a large lake sturgeon), then the largest size
interval spans the range 18 to 36 kg. The geometric mean
weight of fish in this size range is 25 kg. Using our mean
parameters from the normalized spectrum, we predict a total
abundance of about 150, 000 organisms of this size km™*, or over
200,069 in a lake the size of Lake Memphremagog. This seens
unreasonable, but the 95% confidence interval 1is very broad
(between 12,000 and 1,880,000). In light cf these unrealistic
predictions of the abundance of larger organisms, it is
convenient to invoke the rule that predictions beyond the range
ot the variables used to build a regression are statistically
unjustified. Nevertheless, the implication that the size
spectrum does not have a constant trend throughout the range
ot all aquatic organisms needs to be examined. Current
theories of energy balance in size-structured aquatic systems
(e.g. Platt and Denman 1978; Platt and Silvert 1981l) rely
essentially upon pelagic analyses. However, beyond the size
range of organisms included in our models, interactions with
the hypolimnion and the benthos become important. For example,
larger :zooplankton and fish may conduct diurnal vertical
migrations, and some fish spend part of their life cycle near

the bottom and part as pelagic feeders. In oceanic systems,
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the epilimnion and the benthos are relatively isolated. But
in most lakes, the much smaller spatial scales produce more
frequent interactions, at least for larger organisms. Hence,
accurate predictive models for fish abundance and production
may need to build upon the size distributions of both the

benthos and the plankton (cf. Sprules & Munawar 1986).
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CHAPTER 1I

PLANKTON CCMMUNITY RESPIRATION: REILATIONSHIPS WITH SIZE

DISTRIBUTION AND LAKE TROPHY

56
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ABSTRACT

We tested the hypothesis that limnoplankton community
respiration rates are predictable functions of mean body si:ze,
without reference to taxonomic composition. Over a broad range
of trophic conditions (6.5 < [TP] € 130 pg L' ; 1.2 < [chl-a)]
< 29 ug L"), the mean respiration rate per organism for
picoplankton, nannoplankton, and netplankton assemblages 1s a
power function of mean organism size, with an exponent of 0.73.
The total epilimnetic phosphorus concentration is correlated
with both the biovolume and respiration rate of the plankton
community, as well as with the respiration rates of the three
plankton size classes. The summed respiration rates of the
three screened fractions are not significantly different from
the mean total community rate. When respiration (R) and
biovolume (B) are standardized to equivalent carbon units, the
R/B ratio is a power function of mean organism size, with an
exponent of -0.30. These results provide empirical support for
the contention that size distributions may be used to construct

comprehensive models of community physiology.
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Introduction

The respiration rate is a fundamental measure of biological
activity for all organisms. It 1is correlated with other
physiological rates, such as growth rate (Banse 1976), and the
rates of excretion of ammonia and phosphorus (Ikeda 1985).

Since longterm production is proportional to respiration for
a wide range of populations (Humphreys 1979), the respiration
rate of an entire community might well provide an easily-
measured index of production in the community. Furthermore,
the bioaccumulation of contaminants by aquatic organisms 1is
affected by the metabolic rate (Neely 1979), and contaminant

fluxes show size effects (Jorgensen 1979).

Direct measurement of plankton community respiration rates must
be done in situ or very rapidly after removal of the sample
from the lake (Lampert 1984). In addition to being time-
consuming, the procedures themselves may introduce bias into
the measurements. Not all procedures measure the same thing:
whereas measurement of the activity of the electron transport
system (ETS) represents the maximum potential oxygen demand of
the community, the measurement of oxygen uptake represents the
extent to which this potential is being realized (Packard 1971,
1985; Devol 1975). In spite of these methodclogical biases and
inconsistencies, some general trends may be identified:

Plankton community respiration rates tend to increase with
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biomass, although assemblages of larger organisms respire at
a lower rate than similar biomasses of smaller organiuams
(Williams 1984). But at present there are no models to predict
the respiration rate of planktonic communities, although two

approaches hold pronise.

One approach would extend the existing knowledge of community
responses to trophic variables. A number of relati1onships
exist, describing both the static and dynamic propertiecs ot

plankton communities as functions of the total phosphorus

concentration (see Peters 1986 'for a review). l'or example, the
LB -

relationships between phosphorus concentration and

photosynthetic production (Smith 1979; Gelin and Ripl 19/8;

Elser et al. 1986), =zooplankton abundance (Pace 1986), and

relative abundances of netplankton and nannoplankton (Kaltf{ and
Knoechel 1978) are known. If the trophic response ot
respiration rate were known, then one could predict total
community respiration from the phosphorus concentration. 'The
second approach 1s an extension of the known si1ze-dependence
of respiration rates of individual taxa, cbserved 1i1n laboratory
studies. It would provide a test of the assumption (c.qg.
Griesbach et al. 1982) that relationships observed on 150latod
taxa also apply 1n the field. PRather than concentrating on the
allometric response of individual organisms, one could ceek
size-based trends within whole communities. Thus one couldd

measure the respiration rate of plankton assemblages delimiterd
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Ly ©1ze (rather than by taxon), in an effort to determine the
s1ze dependence of the community rate. Since the exponents of
taxonomically-specific relationships tend to be similar
(LLavigne 1982; Banse 1279), one might hypothesize that

community regressions would follow a similar trend.

In thi1s paper, ve contribute to models of community physiology

based upon the community size structure and a trophic variable

(the total phosphorus concentration). We examine the hypo-
theses that respiration rates are predictable functions of the
total epilimnetic  phosphorus concentration, and of the

abundance and si1ze of plankton.

Materials and Methods

sampling -- samples were collected during July and August, 1987
from 13 lake si1tes 1n southern Quebec. These sites representead
4 broad range ot trophic conditions, as evidenced by phosphorus
and chlorophyll concentrations (Table 2.1). Integrated epilim-
netic samples were collected during the day through a 2.5 cm.
d1awmeter tube connected to a piston pump. This apparatus has
been shown to collect both phytoplankton and zooplankton
ettfoctively (Pace 19286), Water samples were stored in dark
brown Nalgene bottles in a cooler containing ice packs during

transit to the laboratory (maximum duration of one hour).
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Tabte 2.1. Concentrations of phosphorus {(mg I 3

) and chlorophy!l (mg m
used for respiration observations. Newport, North, Central,

61

3) inointegr ated eprbimnetic samgler
and South are bastins of Lake Mempht emagog

Concentrations refer to the total filtrate of the \ndicated fritar, including both the filtrate and retentate

of smaller filters.

Porosity of screen or filter {um)

0.4 S 40 T0TAL
Lake &

Julian date P P Chl P Chl chi
Orford 237 3.7 5.3 06 53 .3 65 1.6
Stukely 230 4.1 5.4 03 5.7 1.4 b6 2.2
Orford 203 3.7 5.7 . 6.6 - 7.9 -

Lyster 227 4.4 8.4 0.3 7.6 1.1 9.1 1.6
North 226 7.9 ?.7 0.5 10.3 0.8 12.2 1.6
Baldwin 225 7.2 ‘0.8 0.7 12.0 1.0 13 2.0
Central 228 7.8 10.3 00 1.7 c.? 13 5 1.2
Cerises 236 8.0 12.2 - 15.5 4.2 16.6 6.3
South 235 6.9 1.9 10 12.8 1.8 18 6 3.5
Newport 20« 1.7 16.5 - 17.9 - 22 7 4 1
Pond 224 15.8 20.1 14 21.8 1.6 22 9 3.8
Magog 223 14.5 4.1 08 29 5 5.5 393 Q0
waterloo 229 19.7 3% 6 45 573 16 2 1301 2B 9
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Oxygen uptake -- For oxygen uptake experiments, samples were
divided upon arrival at the 1lakeside laboratory into
picoplankton, nannoplankton, and netplankton, using 40 um
square mesh stainless steel screens and 5 um Nuclepore filters.
In order to obtain measurable and reliable rates from
individual size fractions, the subsamples were then
concentrated on glass fibre filters (0.45 um nominal porosity).
Cornett and Rigler (1986) have shown that this concentration
procedure does not significantly alter the rate of oxygen
consumption of seston samples. For each subsample except one,
a total of one litre of water was used (895 ml filtered through
the glass fibre filter and 105 ml added to the incubation
bottle). The remaining sample, from a highly eutrophic lake,
received only 400 ml of source water. The fractionated
subsamples, along with whole community samples, were then
incubated in the dark for twenty four hours at 1in situ
temperatures (18 - 22°C) . The whole community sample provided
a check on the accuracy of the fractionation procecedure.
Initial and final oxygen concentrations were determined using
the sodium azide modification of the Winkler technique (APHA

1971) .

Size Composition -- The size distribution of plankton
throughout the range 0.2 to 1500 um equivalent spherical
diameter (ESD) was determined by direct microscopic

examination. The abundance and approximate diameters of
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bacteria were determined by epifluorescence microscopy with
DAPI stain (Porter and Feig 1980) of samples preserved in 2%
formaldehyde. Larger organisms in the picoplankton fraction
were measured at 1250X on an inverted microscope, using samples
preserved in Lugol's iodine solution. Nannoplankton were
measured at 1000X and 400X (Lund et al. 1958). Netplankton
were measured at 100X on the inverted microscope and at 40X
under a dissecting microscope, using both Lugol's samples and
others preserved in 2% formalin. Individual volumes of
organisms larger than 5 um greatest axial linear dimension
(GALD) were estimated by measuring length and width and taking
the volume of similar regular geometric shapes as
approximations. Smaller organisms were counted in nine
diameter intervals between 0.2 and 5 um. In each of the three
size fractions (pico-, nanno-, and netplankton), at least 400

organisms were counted and measured.

Chemical analyses -- Epilimnetic phosphorus concentrations were
measured as an indicator of lake trophic state. The total
phosphorus concentrations in each size fraction and in the
total sample were determined in triplicate, using the ascorbic
acid modi fication of the molybdenum blue technique (Strickland
and Parsons 1968) after digestion with potassium persul fate
under pressure (Menzel and Corwin 1965). As further
confirmation of trophic differences between lakes, chlorophyll

a concentrations were also measured in triplicate (Strickland
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i and Parsons 1968), and corrected for phaeophytin.

Data analyses -- The biovolume (ppm) in each size class was
defined as the sum of the volumes of all organisms 1n the size
interval (1 ppm = 10° um3 1''y. Individual organism volumes are
expressed in u.m3. When conversions among units were required,
all organisms were assumed to have a density of 1 g.cm’,
implying that 10° um3 of biovolume (.001 ppm) is equivalent to
1 ug of biomass; 1 ug of oxygen respired is equivalent to 0.375
#g of carbon (Parsons et al. 1984); picoplankton were assumed
to contain 0.0963 pg ,um'3 of carbon (Simon 1987); nannoplankton
and netplankton volumes were converted to carbon equivalents
using the empirical formula for phytoplankton from Mullin et

al. (1966): log,, C = -0.29 + 0.76 log,, V.
Results and discussion

Respiration rates ranged from 94 mg to 1.3 g O, m® a' (Table

|

-4

2.2). The highest rate is similar to the 1.2 g O, m d

2
measured in natural Anabaena collections (Gessner & Pannier

3 @' in a fertilized

1958), but lower than the 6.8 g O, m
Georgia pond (Welch 1968). In mesotrophic Lake Washington
(summer chlorophyll 5 mg m'3) , Devol and Packard (1978) found

. . . -1 .
a summer averade resplration rate of 180 mg O, m? d , Similar

to our intermediate values. In Findlay Lake (Devol 1979), the




65

Table 2.2 Rates of oxygen uptake (mg 0, m™® d’!) in dark-bottle incubated
samples. SE = standard error of mean (n = 3).

Lake & Size Fraction Sum of Measured
Julian date <0.5 um 5-40 Mm >40 pm Fractions Total
mean SE mean SE mean SE mean SE
Orford 237 74 5.3 1 0.5 20 2.0 95 109 5
Stukely 220 18 3.5 88 21.5 1 0.9 106 94 9
Orford 203 h2 12.2 1 05 7 16 50 59 5
Lyster 227 105 8 6 7 2.6 70 4 4 182 157 13.
North 226 126 08 21 5.2 32 3.0 179 194 8.
Baldwin 225 60 13.8 14 7.0 126 8.6 200 187 6
Central 228 207 13.8 14 3.5 60 4.7 280 295 24
Cerises 236 130 5 6 53 15.7 11 1.6 193 183 15
South 235 h7 9 8 40 7.7 42 13.8 130 155 12
Newport 204 182 93 70 11.1 14 3.2 266 234 10
Pond 224 228 3.4 35 16.1 98 9.7 361 320 20.
Magog 223 123 3.9 70 6.8 189 10.8 382 408 16
Waterloo 229 819 19 2 459 37.7 158 10.1 1435 1287 124,

NOOPFPNOEWDO®MS
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depth-averaged maximum annual respiration rate of 20 mg 0, m'3
a' was lower than our measurements. But this lake was more
oligotrophic (summer PO,-P = 1 mg m>) than any of ours (Table

2.1). Hence our respiration measurements are consistent with

previous results.

Relationships with phosphorus:

Over 85% of the variation in the log transformed total epi-
limnetic respiration rate is explained by variation in the
total phosphorus concentration. Potential bias due to the high
value for Lake Waterloo was verified by calculating a separate
relationship for the remaining points. The resulting
parameters (3.017, 0.824) were not significantly different
(P<0.01) from those for all thirteen points (Figure 2.1).
Total phosphorus (Table 2.1) also predicts a significant
portion of the variation in individual size class respiration

rates (Table 2.2; Figure 2.2).

Phosphorus 1is strongly correlated with the chlorophyll
concentration, an indicator of algal biomass (Table 2.3). The
par=meters of this relationship between base 10 logarithms

(-0.72, 1.00) describe a line intermediate bhetween those for
Florida 1lakes (-0.15, 0.74; Canfield 1983) and for spring
turnover phosphorus versus summer mean chlorophyll (-1.14,

1.45; Dillon & Rigler 1974). Our parameters are individually
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FIGURE 2.1. The relationship between the total epilimnetic
phosphorus concentration and the plankton community metabolic
rate. The regression lines with and without Lake Waterloo

(n = 12 and 13) are not statistically different from one

another (P>0.05).

FIGURE 2.2. The relationships between the total epilimnetic
phosphorus concentration and the respiration rates of three

plankton size classes. In each case, n = 13.
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Table 2.3. Parameters of the Model

1 predictive regressions between logarithms of the variables measured
Natural logs were used \n every case, except #4, where base 2 was used.

where P<.05. Abbreviations are defined i1n the footnotes.

In every case P« 005, except #10,

Slope  SEpy  SEegy RO

variables Intercept SEp, n

Dep. Ind. b by
1. SR TR - 0.31 022 1059  0.045 0.119 0 980 55 13
2. MR MV <16.50 0 326 0728 0.04 1.37 0.894 313 39
3. TR SV 3.34  0.529 075 0.194 0.515 0 579 15 13
4, N MV 5756 0058 -0 793 0.005 1.900 0 937 24626 1647
5. R/B MC -1.871  0.262 -0.295  0.041 1.364 0.589 52 39
6. TR ™" 2 932 0.310 0858 0.107 0.304 0 854 66 13
7. sV TP 0 700 0 553 0 692 0.191 0.541 0 544 13 13
8. Rg ™ 2.133 0 629 0.909 0.217 0.616 0 614 18 13
9. Rp TP -1.278 1230 1579 0.425 1.204 0.557 & 13
10. Ry ™ 0.423  1.260 1095 0.435 1.233 0.365 6 13
11. MP MC -4 269  0.194 0.795 0 030 1.010 0.950 703 39
12. CH P -1.650 0 447 1 003 06.151 0.171 0.815 13 12
13. PR 114 -0.729  0.287 1.694  0.084 0.665 0.863 410 67
14. PR TR -2.687  1.196 1537 0.222 0.626 0.81 48 13

Rg, Rm, Ry = respiration rates of small, medium, and large mgg c!(fsses
(mg Op m d )

SV = summed volume of all three size classes (ppm)

MR = mean respiration rate of an individual orgamsm (ug 02 d'1)

MV = mean velume of an individual organmism (um™)

TP = total eprlimnetic phosphorus concentratlor_w3(mg_q\-3)

N = density of organisms in a s1ze class (x10 " mL ')

MP = mean phosphorus content per organism (pg)

MC = mean carbon content per organism (pg) 1

R/B= ratio between size class respiration and snevglasﬁ biomass (d )

CH = eprivmnetic chlorophyltt-a concentrat}gn (Tg m")

PR = estimated primary production (mg Cm~d ')

SR = summed respyration rate of all three suc_glaﬁec. (mg Oy m-od )
= total community respiration rate (mg 0y m =~ d ')
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not significantly different from those calculated for the same
lakes by Pace (-0.53, 1.05; 1984), although their joint

distribution is significantly different (P<0.01l).

The total phosphorus concentration and the total biovolume are
also highly significantly correlated, as are total respiration
and total biovolume (Table 2.3). Some coefficients of
determination 1in Table 2.3 are lower than those reported
elsewhere for similar relationships (e.g. Peters 1986) because

they are based on point values rather than seasonal means.

The trophic response of total respiration may be compared with
that of total production. It is well known that production is
higher in lakes with higher phosphorus concentrations (e.q.
Gelin and Ripl 1978, Elser et al. 1986). Smith (1979) showed
that growing season mean primary production (mg C m’ dq) is
linearly related to the total phosphorus concentration.
Transforming his data for a direct comparison with our results,
we found the following relationship between mean production and
total phosphorus concentration:
In PROD = -0.729 + 1.694 1n TP

The parameters of this relationship may be compared with those
(1.951, 0.858) for the trophic response of respiration (mg C
m> d*). At the lowest observed level of phosphorus (4 mg md),
production is 5 mg ¢ m> d', whereas the predicted respiration

rate is 23 mg C m°> q’. But as phosphorus increases,
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production increases faster than respiration. Production
equals respiration at about 25 mg TP m>. In eutrophic systenms
beyond this point production exceeds respiration. Only 3 ot

our 13 lakes exceeded this threshold.

The ratio Dbetween production and respiration is a
characteristic of the ecosystem, and is not size-dependent
(Humphreys 1979; Banse & Mosher 1980; Schwinghamer ct al.
1986). Hence a regression of production vs respiration over
systems with roughly the same ratio should have a slope not
significantly different from unity. A steeper slope would
indicate a trend to an increasing ratio within the sample. The
comparison 1in the preceding paragraph suvggests that the
production/respiration ratio is not constant in our data sect.
A regression between respiration and estimated production
reveals an increasing trend in the P:R ratio:
In PROD = -2.687 + 1.537 1ln RESP

The slope is significantly greater than unity (P>0.05).

Because these comparisons involve average trends from quite
different water bodies, the discrepancy between production and
respiration cannot be interpreted very closely. levertheless,
the magnitude of the P:R ratio in oligotrophy (0.22) requires
some explanation. Because the respiration rates are consistent
with other estimates for plankton respiration and with

allometric estimates of respiration for the different oize
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classes (see below), one cannot easily dismiss the low P:R
ratios as an artefact. Instead, the low ratio suggests some
source of fixed carbon other than primary production. In
oligotrophic Lake Almind, Denmark, bacterial uptake of
dissolved organic carbon (DOC) accounted for 75% of daily
carbon fixation (Sondergaard et al. 1988). A similar
supplement would restore the carbon balance in our oligotrophic

lakes.

The DOC pool 1n these lakes, calculated from lake colour,
varies between 2 and 4 mg C L (Rasmussen, unpublished).
These levels are larger than those estimated for Lake Almind,
and if similar mechanisms are at work, they would be sufficient
to explain the excess of respiration over production in some

of our lakes.

If we are correct in suggesting that DOC plays so important a
role in oxygen metabolism in the surface waters of oligotrophic
lakes, then these lakes are dependent upon energy subsidies
from the watershed. As lakes become progressively mnore
cutrophic, this subsidy becomes less important. As a result,
metabolism rises more slowly than primary production with
cutrophy. In eutrophic lakes, here as elsewhere, production

exceeds respiration.




Allometric relationships:

In order to test the applicability of allometric relationships
based upon laboratory studies to our field samples, we needed
to estimate mean organism size and corresponding mean
individual respiration rates. The mean organism size in each
size fraction was estimated by dividing the class biovolume by
the number of organisms (Table 2.4). The individual
respiration rates were similarly calculated by dividing the
respiration rate of the size class by the number of organisms
in the class. This procedure is valid only if the sum of the
size class rates approximates the observed community total.
Table 2.2 shows that this is so. A regression between the mean
sizes and the mean respiration rates per organism measures the
allometric response of respiration to body size in mixed
natural plankton communities. This relationship (Figure 2.3)
is highly significant (R2 = 0.89, P<.005), and has a slope of

0.73.

Several relationships between metabolic rate and body size have
been determined for planktonic organisms (Table 2.5, Fiqgure
2.4). These relationships differ methodologically from the
regression calculated in this paper in that cultured organisms
from specific taxa were used. We used natural communities
divided into three size classes, measuring the true mean size

of the organisms in each class for each sample. The




Table 2.4, Numbers, mean sizes, total volumes of orgamsms in the three size
classes. MV = mean volume (Mm).  Volwe  in ppm = [J,m3 x07¢ ot
<0.5 Mm ESD 5 40  [m ESD >40  Um ESD
Lake & Total
Julian  date Nl Volune Nt My volume N oot My volume
(x1073 ) (opm) (ppm) (pom) __(pom)
Oorford 237 1522 0.46 0.70 5220 1460 7.62 70 89282 6.25 14.6
Stukely 230 2030 0.33 0.66 5520 1295 7.15 12 115737 1.39 9.2
orford 203 1516 0.46 0.70 3000 1550 4 .65 18 95544 1.72 7.1
Lyster 227 1434 0.64 0.91 3840 1456 5.59 57 84006 4.79 1.3
North 226 2615 0.33 0.85 5350 813 4.35 60 64145 385 9.1
Baldwin 225 3302 0.30 0.97 2710 1022 2.77 15 324450 4.87 8.6
Central 228 5858 0.17 1.00 4260 1822 7.76 129 110870 14.31 23.1
Cerises 236 3474 0.37 1.30 5680 ™M 4.04 49 103040 5.05 10.4
South 235 S794 0.19 1.08 9300 887 8.25 125 89884 11.24 20.6
Newport 204 2764 0.29 0.81 1780 860 1.53 29 234445 6.82 9.2
Pond 224 4063 0.22 0.89 9360 255 2.39 29 258342 7.51 10.8
Magog 223 3438 0.25 0.87 7000 641 4.49 52 136687 7.12 12.5
Viaterloo 229 9143 0.48 4.43 18890 1589 30.02 1259 81541 102.7 137.1
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FIGURE 2.3. The relationship between the mean size of plankton

in screen-separated assemblages and the mean metabolic rate per

organism.

FIGURE 2.4. A comparison of five regressions between body size
and metabolic rate for planktonic organisms. Only regression
#4 (this study) is based on natural community samples separated

by size only.

¥
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Table 2.5. Parameters of linear regressions between natural logarithms of
metabolic rate (pg 0y d'1) of 1ndividual organisms and  body size (,Ums). Most
relationships had to be transformed to these common units. The unknown
precision of these transformations precludes the setting of confidence Limits
on the intercept. Al though the slope parameter does not change under
transformation of umts, 1ts  standard error may be affected. So, the (I
shown here may be too narrow. The 1ntercepts shown have been backtransformed
fron the log scale to the metabolic rate scale.
Backtransformed

organisms Si1ze  range Intercept Sltope 95% Cl1 Source

(ESD, HUm) of Slope
Algac 3 - 40 0.242 0.90 0.79 - 1.02 Banse (1976)
Umicells 0.6 - 60 0.045 0.83 0.72 - 0.94 Robinson et al(1983)
Unicells 1.2 - 125 0.507 0.76 0.72 - 0.80 Hemmingsen (1960)
Protozoa 12 - 270 6.5%96 0.68 Kt ekowsk1 (1981)
Euk. wunicells 130 - 250 0.628 0.74 0.66 - 0.82 Banse  (1982)
Rotifers 100 - 23D 19.936 0.52 0.2 - 0.82 Banse  (1982)
Zooplankton 300 - 14.4x10°  0.979 0.84 0.82 - 0.85 Tkeda (1985)
Crustaceans 250 - 17)(103 2.943 0.78 0.77 - 0.80 lvleva (1980)
Potkilotherms 780 5 'f')n(‘lO‘j 1.623 0.74 0.72 - 0.76 Hemmingsen (1960)
Plankton p7 - 8° 0.068 0.73 D.65 - 0.81  This paper

0,
Median si1zes  per  class.
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transformations required to standardize the units and permit
comparisons would affect the confidence limits on the parame-
ters to an unknown and variable degree. However we were able
to compute 95% confidence limits for our own parameters. Five
of the nine slope estimates in Table 2.5 are not significantly
different from ours. Furthermore, the intercepts (at a body
size of 1 umﬂ from those three regressions which include
organisms as small as the picoplankton are similar to ours.
Finally, our predicted respiration rates for picoplankton are
only about 50% higher than those predicted by the Robinson et
al (1983) unicell regression, and about 50% lower in the upper
size range of their data set. The mean respiration:biomass
ratios (R:B) for picoplankton, nannoplankton, and netplankton
respectively were 0.727, 0.038, and 0.027 per day. The ratio
declined as a power function of mean organism size, with an
exponent of -0.30 (Figure 2.5). The slopes of the
relationships of both P:B and R:B to body size tend to decrease
with increasing ranges of body sizes 1in taxonomically

homogeneous laboratory samples (Banse and Mosher 1980, Dickie

et al. 1987). This is also true for at least some field
samples from mixed communities: for example Schwinghamer et
al. (1986) fitted slopes of -.304 and -.337 to the

relationships between R:B and size of marine benthic meiofauna
and macrofauna respectively, whereas the =slope of the
regression for both size groups combined was only -.21. Both

Banse and Mosher (1980) and Dickie et al. (1987) have
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FIGURE 2.5. The relationship between the respiration/biomass
ratio and the mean size of plankton in screen-separated

assemblages from natural plankton communities.




(18970 Bd) azIS uesiy

oL 0L 0O ! el

& _ - o
- - 0l
,.0L
- O
op-0-SNGH 0=/ e |}

(,-p) a/d



78
speculated that the steeper slope within more homogeneous
groups (e.g. meiofauna, fish) reflects an ecological scaling
factor, compounding the overall general power relationship
between metabolic rate and body mass. Our R:B versus body size
regression has a slope (-0.30) which is intermediate between
the two extremes (-~0.21 for the large scale regression, -0.37
for more homogeneous groups). This might be expected, since
our size range is relatively small (compared to the range from
bacteria to whales), yet we have a mixture of taxonomic and
ccological types (prokaryotes and eukaryotes; autotrophs and
heterotrophs; unicells and small metazoans, etc.). However,
there is the alternate possibility that the proposed ecological
scaling factor is in part a statistical artefact, since the
probability of obtaining a steeper regression slope increases
as the range of the independent variable decreases (Peters

1988) .

Dickie et al. (1987) argued that the ecologically-realized
respiration rate for individual organisms, termed an
"ecological food requirement'", should be proportional to the
0.67 power of body size. Because we did not measure individual
rates, but have estimated them by calculating means, our
regression is a crude test of this hypothesis with respect to
natural plankton communities. However, our exponent of 0.73
is not significantly different from 0.67. These authors based

their conclusion o©n parameter estimates for herbivorous
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mammals. They noted that density was proportional to the -0.75
power of body mass, and that the ratio B:R is proportional to
the 0.33 power. We tested these hypotheses with respect to the
plankton. Using a large set of size distribution data (n =
1647) collected in our lakes throughout the summer of 1987, we
found that density was proportional to the -0.79 power of body
mass (Fiqure 2.6), which does not differ significantly from
the mammalian result. B:R was proportional to the 0.30 power
of body mass, which is not significantly different from 0.33.
Our results confirm that the mean respiration rate per organism
in lakes, as well as in fields, scales to the 2/3 to 3/4 power
of body size. Our value is intermediate in this range. Of
course, even if some particular data set were to yield values
significantly different from one extreme or the other, this
statistical observation in itself could not establish the
conclusion that specific ecological or physiological mechanisms
are at work. But our allometric relation for field metabolism
is particularly significant for its demonstration that
laboratory-based respiration rates and allometric relations can
be extrapolated to the fieid. This 1is often assumed in

limnology, but rarely demonstrated.

It has often been noted (Hemmingsen 1960; Banse 1976) that the
common size dependence of growth, respiration, and
photosynthesis would suggest that numerous underlying

physiological processes are size dependent. 1In the last ten
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FIGURE 2.6. The relationship between body size and density in
natural plankton communities. Estimated densities were based
on microscopic counting of abundance in as many as 39 size
intervals in 58 plankton samples collected throughout the
summer of 1987 at 15 lake sites in southern Quebec. Or3yanism

size doubles from one interval to the next (log two scale).
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vears new data and re-analyses of existing data have borne out
this contention (e.g. Blueweiss et al. 1978, Schlesinger et al
1981, Knoechel and Holtby 1986, Ikeda 1985, Fenchel 1974,
Peters 1983, Calder 1984). The exponents of the allometric
dependences of production, growth, and turnover rates on body
size may be predicted from the exponent of the equation for
respiration rate (e.g. Dickie et al. 1987). For example, if
growth and respiration rate are related to body size by a
common exponent of 0.75, then the instantaneous rate of
increase (r) is a power function of body size with an exponent
of -0.25. Platt and Silvert (1981) have proposed that the
respiration rate exponent for aquatic organisms is 0.67, and
that it is 0.75 for terrestrial organisms. Confidence
intervals about the exponents found in most studies do not
permit a test of this hypothesis (Table 2.5), but some aquatic
results are significantly higher than 0.67 (e.g. Banse 1976),
and others are even higher than 0.75 (e.g. Ivleva 1980, Ikeda
1985) . Perhaps more remarkable than the question as to whether
a particular rate has an exponent closer to 0.67 or to 0.75 is
the observation that many studies using different methodolo-
gies, very different organisms, and different environments
yield fairly similar results. We have shown that the rela-
tionship between metabolic rate and body size in field com-
munities is not different from that which would be predicted

from more restricted laboratory relationships.



CHAPTER III
LOGARITHMIC TRANSFORMATION IN

PREDICTIVE ECOLOGY
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ABSTRACT

Ecological data are frequently log transformed prior to the
development of linear regression models, which are then used
for prediction on the original untransformed scale. In this
paper, the rules for backtransformation are elucidated. A
theorem is presented, which sets limits to the relationship
between the coefficients of determination on the original and
transformed scales. Simulated data and empirical results from
limnology are used to 1illustrate the applications and

limitations of the theoretical part of the paper.
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Introduction

Predictive ecologists use regression analyses of log
transformed data extensively (e.g. Peters 1986). Regression
establishes quantitative relationships between variables,
without addressing issues of mechanism or causality. Each
regression is in itself a predictive model applicable to new
data drawn from the same populations as the original sample
data used in the regression. Since 1its proponents cschew
questions of mechanism (Peters 1983), predictive ecology otten
resembles a specialized branch of applied regression analysis.
At present, the theory and techniques of linear regression are
far more advanced than those of non-linear models (e.g. Draper
& Smith 1981; Seber 1977). Hence ecologists are frequently
obliged to transform non-linear phenomena for analysis in a

linear framework.

The conventional linear regression model requires that the
variance of the response variable be constant at all lecvels of
the regressor variable(s), that the deviations of rcpeat
observations of the response at a given value of the
regressor (s) have an expected value of zerc, and that these
deviations be uncorrelated (Draper & Smith 1981). Logarithmic
transformation of original data following a '"power" or
exponential curve will often generate new variables which

satisfy these requirements. The further requirement that %he
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above deviations be normally distributed about zero is not
essential to regression analysis, but it is essential to the
use of the t and F distributions. If the data are normal, then
these distributions may be used to establish confidence limits,
test the significance of the regression results, and evaluate
the precision of predictions, using the original or other
suitable data. In practice, if the other conditions of
regression analysis are met, then ecologists usually assume
that the normality assumption is also met. In most cases the
data are not remarkably deviant, and this assumption is a minor
source of error. If the results of the regression analysis are
satisfactory (high R® and low MSE relative to the mean value of
the response), then one can draw descriptive conclusions about

the relationship between the variables.

This paper addresses the problems which arise when a regression
on log transformed data is intended for predictions, beyond the
simple description of a trend. These problems concern the
correct computation of statistics and predictions for the
original variables, when the regression was performed on
transformed data. Rules for backtransformation will be
elucidated, since these have been ambiguously represented in
the ccological literature (Sprugel 1983). The variance and
confidence limits on predictions will be related to the broader
question of what it is we want to predict. The coefficient of

determination (Rz) expresses the proportion of variation in the
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dependent variable explained by the regression on the
independent variable(s), but this value does not apply to
backtransformed values, if the regression was performed on log
transformed data. A formula for the calculation of the
backtransformed R? appropriate in many cases is presented in a
theorem. Other, 1less idealized cases, are treated in a
simulation exercise. Finally, these statistical results are
compared with the analysis of some results in predictive
limnology, relating plankton respiration rates to body size and

phosphorus concentrations.

Problems of Backtransformation

1. The Correction Factor:
The regression between two log transformed variables produces
a series of predicted mean values y,, each with its own
standard error

si =SEE[{l/n + (x, - w)? /=(x - w)? ]
where SEE is the standard error of the estimate, or square root
of the mean squared error (MSE) of the regression, a4 1is the
mean value of the independent variable, and x, is the value of
x yielding the prediction y, (Draper and Smith 1981). This
formula is simply the straight line case of the more general
multiple regression formula

s, = SEE[X,(X'X) 'x']

where X; is the vector of values of the independent variables
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yielding the prediction y,, and X is the matrix of observations
(Seber 1977). Each such prediction is expected to be normally
distributed, but it is sufficient that it be unimodal and free
from skewness and kurtosis. The antilogarithm of each
prediction y corresponds to a prediction on the scale of the
original data, prior to the 1logarithmic transformation.
However, on this scale, the errors are lognormally distributed,
skewed to the right. Hence the antilogarithm of the mean vy,
yields the median on the original scale, but not the mean of

the antilogs.

The correction factor required to estimate the mean of a
backtransformed prediction may be derived as follows. For
simplicity, and without loss of generality, we may assume that
natural logarithms were used in our regression. Now the moment
generating function (Hogg and Craig 1978) of a normally
distributed random variable y with mean p and variance o is
E{e"] = exp[ut + 0°t?/2]) , for all real t.
Hence, the mean prediction of exp[y] at X, is
E[e”] = exply, + s°/2] ,

which yields the correction factor exp[siz/'z‘,] .

This correction factor has been presented several times in the
recent ecological literature (Baskerville 1972; Sprugel 1983;
Lehman 1988; Welsh et al. 1988). However, none of these

references make clear what formula is to be used for the
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standard error, when regression estimates are backtransformed.
In fact, Sprugel (1983) incorrectly states that the regression
SEE should be used in computing the above correction factor.
But it is essential to use the standard error of the prediction
Y, here, rather than the overall regression standard error, as
was incorrectly recommended by Sprugel. Hence the correction
factor is not constant for all predictions from a single
regression, but increases with distance from the overall mean

of the logged observations.

2. Confidence and Predictions:

The variance of the predictions on the scale of the original
data may be calculated from the variance of the predictions
from the regression using the formula

var (expl[y]) = exp[2y, + s, (exp(s,?]-1)

However, this result cannot be used to calculate confidence
limits in the usual fashion, based on the t distribution, since
this assumes normality. The simplest procedure to calculate
confidence 1limits on a corrected backtransformed mean
prediction 1is to calculate the confidence 1limits on the
regression prediction (still on a natural log scale), followed
by backtransformation and correction using the same correction
factor as was wused for the nmean. This results 1i1n an

appropriately asymmetric confidence interval.

This result is pertinent to the choice of what we want to
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predict. If we choose to predict the mean, then this will
correspond to the average of a long run of observations. But
this predicted value will be higher than most individual
observations. A smaller number of very large values will
account for the expectation of eventually attaining the mean.
1f a correction factor is not used, then we have chosen the
median by default. Our predictor will be lower than the long
term average. These facts, combined with the asymmetry of the
confidence interval, 7justify the choice of the median (no
correction factor) to predict an individual value. A greater
proportion of the observations will be closer to this value
than to the corrected mean. However, the mean should be used
to predict the average of a set of observations of the

dependent variable.

3. The Coefficient of Determination:

The coefficient of determination, equal to the square of the
correlation coefficient, is the proportion of the variation in
the observed values of the dependent variable which is
accounted for by the regression model. But if the data undergo
a logarithmic transformation prior to analysis, then the
coefficient of determination does not describe the variation
of the original observations accounted for. It applies only
to the log transformed values. Appendix 2 shows that if the
two variables, y, and y, , in a straight line regression have

a bivariate normal distribution, then the coefficient of
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coefficient of determination between exp[y,] and exp[y,] is

(exp{ro,0,] -1)2

(exp[o,’] - 1) (exp[o,” - 1)

and this value is less than or equal to r? between y, andy, ,
with equality occurring only at r = 1 or 0 (Appendix 2). As
Figure 3.1 shows, negative correlations are reduced more by
exponentiation than are positive ones, and the difference
between coefficients of correlation on the logarithmic and

exponential scales increases rapidly with increasing variance.

In order to meet the requirements for linear regression, a set
of data does not have to have a bivariate or multivariate
normal distribution. This is the "ideal" regression situation,
where an elliptical cloud of points has a major axis
corresponding to the regression 1line. But even when the
predictor(s) and response are normally distributed, they are
not necessarily bi- or multivariate normal. For example, there
might be two or more clusters of data alignad on the regression
line. Under these circumstances, the above formula for the
coefficient of determination between the exponentiated
variables does not apply, and the correlation on the log scale
may sometimes be lower than that on the exponential scale.
However, if the response and the predictor(s) are jointly
multivariate normal, then the regression predictions and the

observed values of the response are expected to be samples fron
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FIGURE 3.1. Relationship between the correlation of bivariate
normal variables and the correlation of their exponents. Trend
lines are shown for six different combinations of standard

deviations.
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a bivariate normal distribution, and the above formula will
apply. In this case, s , and s , are the respective standard
errors of the observed and predicted values of the response
variable. Caution must be exercised 1in interpreting the
coefficient of determination. It always expresses the
proportion of variation in the response variable explained by
a regression on the predictor variable(s). When the conditions
of linear regression are met, and especially when all variables
concerned have a multivariate normal distribution, the
explained and residual variance are distributed randomly among
the data. But when the data are exponentiated, distributions
are lognormal, and the explained variation is systematically
distributed, with unexplained variation due primarily to the
skewed pattern in the data. Under these circumstances, the
coefficient of determination when correctly calculated with the
data on the exponential scale expresses the proportion of
variation explained, but this may be an operationally useless
observation. In the extreme case, with a cloud of data at one
end of the graph and one point at the other, r 2 may depend
entirely upon that one point, and provide no information about

the rest of the data.

Simulation

. 2 . -
In order to observe the behaviour of r° under exponentiation

when the requirements of multivariate normality were not met,
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simulation data were generated: at 100 values c¢f the
independent variable (0.1 to 10, by intervals of 0.1), the
dependent variable values were calculated in the following
manner. A vector of 500 "observations" was constructed, with
5 values at each X spaced symﬁetrically around the X value.
Thus at X = 5 for example, the five Y values were 2, 4, 5, 6,
and 8. The same deviations were set at each X value, to ensure
homogeneity of variances. Then five different random samples
were selected from this population (without replacement), with
sample sizes of 10, 25, 50, 100, and 200. The coefficient of
determination (squared correlation coefficient) was calculated
for each sample, as well as for the antilogs of both the X and
the Y values. These transformed values are analogous to the
skewed backtransformed estimates obtained after linear
regression on data which has wundergone a logarithmic

transformation. This procedure was repeated 100 times.

Almost all coefficients of determination for the data with
homogeneous variance (original samples = "logarithmic" scale)
were higher than those for the antilogged data (Fiqure 3.2A).
Median correlations on the log scale were invariably higher
than on the antilogged (“exponential') scale (Figure 3.2Bj.

Median coefficients for the original samples did not differ
significantly with sample size. However, the coefficients of
antilog data actually decreased with increasing sample size.

This is due to the increasing numbers of repeat observations
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FIGURE 3.2. (A) Comparison between the coefficients of
determination for the simulation data before and after
transformation. The X-axis coefficient is for the original
data, where the dependent variable has homogeneous variance
throughout the range of the independent variable. The Y-axis
gives the coefficient for the relationship after both variables
have been exponentiated. There are 500 points, 100 for each
of five sample sizes. (B) The median correlations for each of
the five sample sizes plotted in Figure 3.2A. The 1:1 line and
95% confidence intervals are shown. (C) Standard deviations of
the correlation coefficients calculated in the simulation. The
fiducial standard deviation is based on a formula which only
applies if the underlying data are normally distributed. The
"logarithms' are data with homogeneous variance of the
dependent variable, whereas the third bar is for the exponents

of these same data.
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at individual X values. In any data set, when different repeat
observations of the dependent variable are available at given
values of the independent variable, then the maximum possible
r is less than one. The increasing number of repeat
observations had a greater impact on the antilog data since the
individual observations were not symmetrically distributed
dabout the median values, and the total sum of squares is
potentially greater. The resulting median wvalues of the

coefficient of determination are summarized in the following

table.

Original data with Between
Sample size stable variance exponents
r’ re
10 0.711 0.699
25 0.677 0.413
50 0.682 0.288
100 0.674 0.263
200 0.675 0.242

With a small sample size (10) and few repeats, a regression
between these log transformed values would be expected to
explain about 71% of the variation, corresponding to about 70%
of the variation in the backtransformed data. At a larger

sample size (200) with more repeats, the log:log regression
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would explain about 68% of the variation, corresponding to only

24%~-41% of the backtransformed values.

Confidence 1limits on the correlation coefficients were
calculated by first computing the empirical standard error of
the z transformation of the coefficient, calculating the upper
and lower 95% limits on 2z, and then backtransforming to the r
scale. The empirical results for the log data were similar to

fiducial standard errors, equal to (n - 3)'0'5

(Snedecor &
Cochran 1967), which assume normality of the underlying data
(Figure 3.2C). All standard errors decreased with increasing
sample size (Figure 3.2C). At all sample sites, the
correlation coefficients of the log data had substantially
lower standard errors than those for the exponentiated data
(Figure 3.2C), resulting in narrower confidence regions (Figure
3.2B). These limits express the confidence one has in the
statement that variation in one variable accounts for a certain
percentage of the variation in the other variable. This
modelling exercise has shown that, for this data set at least,
regression with homogeneous variance of the response accounts
for a higher percentage of the total variation than regression

between the antilogs of the same variables, and that our

confidence in this proportion must be higher.

As a general rule, if the variables of interest have been log

transformed prior to the examination of predictive
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relationships in 1linear regression, then statements of
confidence should refer to backtransformed (real world)
results, using a correction factor if mean values are of
interest. Statements about the '"percentage variation
explained” should not be taken directly from the regression
analysis at all. Rather, the squared correlation coefficient
between the original observations and backtransformed
predictions may be separately calculated. The validity of this
statistic does not depend upon normality, and the result is a
legitimate expression of the extent to which variability in the
independent variable accounts for variability in the dependent

variable.

Examples in Limnology

This section will follow up on two enpirical relationships in
plankton communities, based on a small number of samples
collected in Canadian lakes. The respiration rate of plankton
assemblages (ug 02151d'5 was found to be significantly related
to the phosphorus concentration measured in the same water
samples (Chapter 2 above). After measuring the abundance of
organisms and total volume in these same samples, the
calculated mean respiration rate of individual plankton was
found to be significantly dependent upon the size of the
organisms. In both cases, logarithmic transformation was

required prior to regression analysis. So they will be treated
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as examples in which the implications of the first statistical

section of this chapter are explored.

1. Total phosphorus and plankton respiration

The relationships between the total phosphorus concentration
and the respiration rates of small (<5 um), medium (5 - 40 um),
and large (>40 pum) plankton are shown in Figure 3.3 and Table
3.1. In the first two cases, r’ is significantly higher
between the backtransformed values than between the 1log
transformed data. The presence of an outlier at the high end
of both log transformed scales makes it clear that these data
do not correspond to bivariate normal distributions (Figure
3.3B). Hence the theorem in Appendix 1 does not apply. The
regression lines are clearly strongly determined by one point
which accounts for most of the variance in the data set.
Hence, the ‘'"percentage variation explained" by these
relationships is very high, even though it is not very relevant
to variation among most of the points. 1In the third data set,
the linear fit is poor (although significant), and on either

scale only a small portion of the variation is explained by the

regression on the independent variable.

In Figure 3.4, the predicted log values are compared with the
input log values. For ease of reference, the axes are labelled

with backtransformed (median) units. The statistics of




FIGURE 3.3. (A) The relationship between the total phosphorus

concentration and plankton respiration rates, for assemblages
of three sizes of organisms collected in Canadian lakes. The
least squares regression lines between the logarithms of the
data are shown. For each line, n = 13. (B) The data and trend

lines from 3a on a linear scale.
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Table 3.1. Statistics of the regressions between the base 10 logarithms of the total phosphorus
concentration (TP) and the respiration rates of small, medium, and large si1ze plankton. In each cose, n
= 13. The first value of the coefficient of determnation 1s the proportion of the variation in the
response variable explained by the predictor variable on a log scale (TP). The second valuc waw
calculated between the oryginal variables prior to logarithmc transformation. The third value wa-
calculated between the observed response and the predicted response after correction for
backtransformation. The lower part of the table presents statistics of the relationships between the lug
transformed observations and the predictions of the regressions on TP

Parameters MSE F Coefficrents of determination

8 b 1 2 3
Smalt 926  .909  .0715 17.5 .614 .906 .906
Medhum -.555 1.579 .2735 13.8 557 .936 .958
Large 184 1,095 .2869 6.3 .365 .3 .313

Observations vs predictions (log scale):

Parameters F

a b
Smalt .782 614 3.5 P>.05
Medyum .601  .557 4.6 P<.05
Large .958 365 9.6 P<.01

®
This F test compares the joint parameters with the pair (0,1)
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FIGURE 3.4. The logarithms of measured respiration rates of
plankton assemblages compared with the predicted log rates from
the three size-specific linear regressions on the log of the

total phosphorus concentration. The 1:1 line is shown.
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regressions between these predicted and observed values are
presented at the bottom of Table 3.1. Ideally, these lines
would have intercepts of 0 and slopes of 1, with equal
distributions of points on either side of the line. Only the
first fit (for small plankton) is not sign.ficantly different
from this ideal (P>.095). Nevertheless, one is usually more
interested in the match between the model results and empirical

observations than in the match between log transformed numbers.

In order to examine the success of these models at the scale
of observable data, predictions were backtransformed and
compared with observed input values (Table 3.2).
Backtransformed predictions were evaluated with and without
correction. Backtransformation without correction should
provide an estimate of median values, whereas use of a
correction factor based on the specific standard error results
in a mean estimate (as discussed in the first part of this
paper). A further estimate, based on a uniform correction
using the MSE, was also computed. In general, the
correspondence between predicted values and observations
reflects the relative precision of these three regressions
(Table 3.3, Figure 3.5). Hence, in the case of small plankton,
all of the three sets of backtransformed estimates are similar
to the observed values, and follow the same trend. In the
cases of the other two regressions, all backtransformations

deviate significantly from the observed values, both in




Bt

103

Table 3.2. Observed and predicted respiration rates (ug 0, L' d™') for three

plankton size classes. Predicted rates are backtransformed from linear
regressions between logarithmic transformations of observed rates and total
phosphorus concentrations. Median predictions are uncorrected Mean

predictions are corrected for backtransformation with the standard error
specific to each prediction. MSE-corrected predictions are corrected with a
single correction factor for all predictions from the same regression

Observed rate Predicted rates
Median Mean MSE-corrected

Small size class (organisms smaller than 5 pm ESD)

73 46 48 56
17 47 49 57
42 55 57 66
105 63 64 76
126 82 83 99
59 87 89 106
206 90 91 108
130 108 110 131
47 121 122 146
182 144 147 175
227 146 148 176
123 238 246 288
819 706 793 853
Medium size class (organisms between 5 and 40 um ESD)

1 5 6 11
88 b) 6 11
1 7 8 15

7 9 10 19
21 14 15 30
14 16 17 33
14 17 18 )
53 23 25 He
40 28 30 58
70 39 41 80
35 39 42 81
70 92 104 189
459 606 947 1251

Large size class (organisms larger than 40 pm ESD)

20 12 14 25
1 12 14 26

7 15 15 31
70 17 19 37
32 24 25 9y
126 25 27 Sh
59 26 28 56
11 33 35 71
42 38 40 80
14 47 o0 100
98 47 51 101
189 85 97 182
158 716 504 hH75
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Table 3.3. Statistics of the regressions between observed and predicted
respiration rates (Table 3 2). The second F value refers to a test of the
hypothesis that the parameter set 1s equivalent to (0,1). Significant values
correspond to biased fits between predictions and observations.

Small size class

a b MSE r? F F (vs 0,1)
Median -0 088 1.117 4633 900 100 0.96
Mean 10.038 0.990 4354 906 107 0.11
MSE-corr -0 088 0.924 4633 .900 100 0.60
Medium s1ze cla--
Median 16.62 0 728 664 .958 254 17.8 P< 01
Mean 21.97 0.462 666 .958 253 180.9 p<.01
MSE-corr 16.62 0O 352 664 .958 254 485.3 P<.01
Large size class
Median 39 29 0 453 2660 357 6 4.7 P<.05
Mean 45 10 0 261 2840 313 5 20.3 P<.01
MSE-corr 39 29 0 212 2660 357 6 48.7 P<.01
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FIGURE 3.5. Observed plankton respiration rates compared with
the backtransformed predictions from a linear regression
between the logs of observed rates and total phosphorus. The
predictions are shown with and without correction for
backtrans formation. The 1:1 line is also shown. Separate

panels are shown for small, medium, and large plankton.
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individual precision and in trend. Hence, for predictive
purposes in these examples, it makes no significant difference
whether one chooses the mean or median predictions. This is
clear from the examination of confidence 1limits on the
predicted mean values. Ninety-five percent confidence 1limits
were first calculated for regression predictions. These were
then backtransformed and correct @d to produce the contidence
intervals (Table 3.4). At every point the median values (Table
3.2) are well within the 95% confidence 1intervals tor the

means.

2. Plankton size and respiration

There is a significant statistical relationship between the
mean size and respiration rate of plankton. If the size
distribution of a plankton community is known, then predictions
from this relationship might be used to estimate the community
respiration rate. Using the same respiration data as above,
the log of mean organism size explained 89% of the variation
in the log of the mean respiration rate, and predictions did
not differ significantly from observations (Table 3.%). When
the predictions were backtransformed, and compared with the
observations, the median and MSE-corrected values performed
about as well as the mean values, although the variation 1n the
predicted values explained only 53% of the variation in the

observations (Table 3.5, Figure 2.6). Hence, 1n this case the
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Table 3.4 redicted mean size class respiration rates (ug O, L' d™!), with
upper () and lower (L) 95% confidence limits.

TP Small Medium Large

L. Mean U L Mean U L Mean U
h 52 27 48 85 2 6 19 4 14 43
6.61 27 48 86 2 6 19 4 14 43
7 85 34 57 94 3 8 22 6 16 45
9.12 40 64 103 A 10 25 7 19 48
12 22 56 33 125 7 15 34 11 25 56
13 06 60 89 131 8 17 37 12 27 59
13 46 Hh2 91 134 8 18 38 12 28 61
16 56 76 110 160 12 25 52 16 35 74
18 62 84 122 179 14 20 63 19 40 gh
22.70 98 147 221 19 41 92 22 50 113
72 91 98 148 223 19 42 93 22 51 115
39 36 140 246 433 34 104 315 31 97 302

130 02 274 793 2299 118 947 7587 60 504 4247
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Table 3.5. Statistics of the relationship between the natural logarithmus ot

plankton organism size and respiration rate (n = 39) At the bottom of the
table, the total observed respiration rate in three size classes in thirteen
different lakes (n = 39) is compared with predicted rates cstimated by

applying the results of the regression between size and respiration to the
known detailed size composition of these samples

a b MSE r? F F (vs 0,1)

In(size) vs 1ln(resp) -16.502 0.728 1.8656 .894 1313

r

observed vs pred. -1.296 0.894 1.6684 894 313 )
Observed vs predicted (after backtransformation)
Median .0000792 0.0915 <0.0001 .527 41 ?186
Mean .0000833 0 0974 <0.0001 .531 42 1932
MSE-corrected 000201 0.2325 <0.0001 527 41 730

Size class respiration (predicted vs observed) -

Median 25.184 0.351 3264 456
Mean 26.221 0 369 3449 467

69

59

NI
D
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FIGURE 3.6. Observed mean respiration rates of individual
plankton organisms compared with mean rates predicted from a
linear regression between the logarithms of mean size and mean
rate. Observations were taken on three broad size intervals.
Predicted rates are shown with and without correction for
backtransformation. This figure is shown on a logarithmic
scale to facilitate examination of the results. The 1:1 line

is shown.
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coefficient of determination was lower after
backtransformation. If the log-transformed data had been
bivariate normal, which they clearly are not (Figure 3.6), then
the theorem in Appendix 1 would predict a maximum r’ after
backtransformation of 15.1%, significantly lower (P<.05) than

the empirical result of 59%.

The relationship examined in the previous paragraph was based
on mean silize and respiration measurements on plankton
communities screened into three broad size classes. When this
relationship between size and oxygen consumption rates is
applied to the known finer size distribution of these same
samples (39 size classes), and the finer size class predicted
respiration is recombined to generate predictions for the three
coarser size intervals, the mean and the median predictions
performed equally well, explaining about 47% of the variation
in the observations (Table 3.5, Figure 3.7). This suggests
that the relationship between size and oxygen consumption is

a real one, even at very fine scales of observation.

Conclusions

This paper has discussed three related problems encountered in
the interpretation of log-transformed predictive regressions.
The juxtaposition of theoretical results with a simulation and

some empirical regressions from limnology justifies the
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FIGURE 3.7. Observed respiration rates of 39 plankton
assemblages (three size intervals from each of 13 lakes),
compared with predicted rates from a regression between mean
size and mean individual rate, combined with detailed data on

the size composition of each size interval.
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following conclusions:

1. If regression results are to be used to predict mean valucs
of the response variable, then the appropriate correction
factor must be used after backtransformation. However, in
actual use the magnitude of this adjustment may be very small
compared to the mean itself or the width ot the confidence

interval.

2. If the purpose of the regression is prediction on the scale
of the original observations, then it is essential to give
statistics to estimate the confidence interval on the
backtransformed (observable) scale. When backtransformed to
the original scale, 95% confidence intervals for predictions
from quite strong reqressions may still span a range as large

as the mean value.

3. The theorem proved here states that, when logged random
variables are multivariate normal, the correlation in the

original scale can be no greater than the correlation between

the 1logs. As variance 1increases, the original scale
correlation becomes substantially less. The homoscedastic
simulation data analyzed here usually gave a lower r after

backtransformation. But this was not always true of the small
empirical data sets with less perfect distributions. In the

latter case, there 1is no general formula for predicting the
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backtransformed r from the regression r. Hence, the former
should be computed directly, and the implication that the
proportion of the variation explained by the regression is
indicative of expectations for the backtransformed scale should
be avoided. Nevertheless, confidence limits on both r and the
predictions are often so broad with ecological survey data,
that the pretention that one can predict individual values with
a "practical" level of precision should usually be avoided.
One can be more confident in predictions of mean values. For
example, one could predict the total oxygen consumption of
small plankton from the measured phosphorus concentration
within a 95% confidence range from about one half the predicted
mean to about 170% of the mean (near the mid-point of the data
distribution wused to construct the regression). But
predictions of the mean value in a series of lakes with that
phosphorus level, or a series of samples from a single lake
when the level was reasonably stable (or recurring), would be

more precise (from 85% to 125% of *the mean prediction).
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CONCLUSION

This thesis has dealt with the distribution of biomass and
oxygen uptake among planktonic organisms ranging in size from
0.2 um to 1.5 mm ESD. Some general patterns were found. Thus,
the abundance of organisms in logarithmic size intervals is
strongly negatively correlated with size, and biomass per
logarithmic size class tends to remain constant or increase
slightly as size increases. The normalized spectrum is a
standardized expression of the logarithmic decline in abundance
in a given lake. All lakes are dominated by a strong
phytoplankton mode, and lesser modes for unicellular plankton
and zooplankton are usually observed. The mean respiration
rate per organism and the ratio between respiration and
biovolume are power functions of mean organism size. This
collection of statements provides a general coherent

description of part of the limnetic ecosysten.

However, this thesis deals more with prediction than with
description alone. To what extent can these gencralizations
be used for predictions of abundance, biomass, or oxygen
requirements of specific size intervals in specific lakes?
There is a lot of "no.se" around these general trends. 'The
relationship between abundance and size applies to all lakes,
although some Lakes contain two orders of magnitude more

plankton than others. Seasonal variation within ore lake may
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be of the same order as variation among a large number of
lakes. It thus appears that useful predictive models built
upon many 1lakes, but intended for single lake predictions,
would need to incorporate an ancillary variable, such as the
phosphorus concentration, which 1is correlated with both
biovolume and respiration rates. This is fortunate because

phosphorus is easy to measure.

The broader promise of size-based models relies upon the
laboratory—based correlations among physiological variables.
Since this thesis shows that community respiration/size
relationships are much as would be expected from lab results,
then other physioclogical rates should be similarly predictable.
For example, there is reason here to expect that one should be
able to measure the phosphorus concentration a few times
throughout the growing season, and hence predict the production

of zooplankton.

The tinal chapter stands as a caveat to all of the rest.
Coefficients of determination should always be verified on the
scale of the original data. Backtransformations for
predictions within a restricted range of the data should be
appropriately corrected, depending upon the type of prediction
desired. The operator should always be aware of both the
assymetry and breadth of the confidence region about the

backtransformed predictions.
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APPENDIX 1. Analytical procedures used in Chapter I.

This appendix provides supplementary technical information
about the normalized spectrum, estimation procedures fox
bimodal and trimodal distributions, and Jjoint confidence

regions.

1. The lNormalized Spectrum

The normalized gpectrum is a straight 1line least squares
regression between the logarithms of body size and normalized
abundance (Platt and Denman 1978). The latter is the biomass
(or biovolume) density in a size interval divided by the
nominal size of organisms in the interval. If logarithms are
to base 2, then the size doubles between successive intervals,

and nominal size 1s equal to the interval "width™.

The spectrum s clearly a transformation of a histogram
representation of biomass per log size class. Whereas the
biomass in the system is equal to the sum of histogram
ordinates, 1t may also be estimated by the integral of the
normal ized function over mass units. This is evident from the
tollowing considerations: using N, B, and m_ to rcpresent
the abundance, biomass, and size respectively of organisms in
interval i,

N, = B/m;
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or in the limit, N = dB/dm
The normalized spectrum corresponds to the model

log, N = by, + b, log, m

and hence dB/dm = 2"m" , approximately.
l\mZ Zbomblfl m?
Therefore, B = |2”m"dn = g 1S an
ot b,+1 I,y
estimate of the biomass density over the range ot sices from

m, to m,

Hence, the two parameters of the normalized spectrum provide
a standardized basis for comparing estimated biomasses between
systems or between size ranges. Furthermore, cach ot these
parameters may be interpreted in terms of observable system
characteristics. The intercept b, 1is an estimate ot log
abundance in the size class corresponding to one size unit
(volume or mass). In this paper, the spectra were fitted in
volume units (um’). So the intercept size class corresponds to

organisms of about 1 um’ (ESD = 1.24 um).

The slope b, 1is interpretable as a measure of the rate ot
abundance change with size. For example, 1f the ordered
abscissas are represented by ., , then clearly m, - 2m. and

the normalized abundance in size class 1+1 is

log (B,.,,/2m.) = b, + b. log (2m,)
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Bin

Hence = 2 (2m)"™
2m,
and B, = 2umb1+1mlbn1
Similarly, B, = 2"m """
Theretore, 1n general B,,, = 2"'*' B,
In particular, if b, = -1, then B,,, = B, , and biomass 1is

uniformly distributed over logarithmic size intervals. This
is Sheldon's hypothesis (Sheldon et al. 1972). Our slopes were
almost always "shallower" than -1, and our modal slope of 0.9
implies that B,, = 1.07 B, . In other words, over the range
ot observed sizes, biomass increases by about 7% between

successive log size i1ntervals.

Our parameter estimates (Table 1.8) are based on calculations

in pum'.  1f we assume an organism mass density of 1 g cm ™ ,
then 1 pg = 10° um'. Hence our volumetric range from 27 to 2°°
pm'  corresponds to a mass range from 2% to 2°° ug. The slope

does not change between scales. But if b," is the volumetric
intercept (Table 1.8), then the corresponding mass scale
intercept 1s b, = b, + 19.932 (1l+b, ), and the estimated

bliomass over the full range of observed sizes is
‘21\ 2u0mblu 2“)

2m"dm = Lg.
- b,+1 |27°°

B

8]

J
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2. Bimcdal Parameter Estimates

Clarke (1984) presented algorithms for maximum likelihood
estimation of the five independent parameters of the mixed
normal density function ¢(x) = p,¢,(x) + p,d,(x)

where &, is distributed N(u,,0,%)

and p, = |1-p,| is clearly not independent of 0 < p, < 1.
The vector V = (u,,4,,0,,0,,pP,) is estimated by maximizing the
log-likelihood function L(V) = £, f, log[(2m) '"&(x,)]

where f, represents the observed biomass at size x,, and the
summation is over all size classes. After an initial estimate
is obtained by inspection, it is improved by iterating the
equation

Via =V, = [L"(V) 1LY (V)

where L' (V) is the 5x1 vector of first derivatives ot [. with
respect to V, and L" (V) is the 5x5 matrix of seccond
derivatives. The distribution corresponding to the tinal
parameter estimates may be compared with the ohserved
distribution by a non-parametric test, such as the

Kolmogoroff-Smirnoff, which we used.
3. Trimodal Parameter Estimates

The distribution of organism volume over log size classes wau
used to estimate the eight independent parameters of the

trimodal mixed normal density function
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I(x,V) = pd (%) + P®,(X) + P3ds3(X)

where x = log, (size) 1s the abscissa,
the parameter vector V = (W, Uy, 12,0,,0,,0+,P,P2)
and % (x) is distributed N(u,,0).
Again, p, = |1 - (p,+p,) | is not independent of 0 < p;+p, < 1.
This function is nonlinear in the parameters u, and o,, and
hence a linearization technique for nonlinear systems was used
(Draper & Smith 1981):

Y= (Y,...,¥y)" 1is the vector of observed biomasses at the 39

log sizes X = (X,,...,Xs)"', and

y, = £(x,V) + ¢
By analogy to the typical linear model, the error sum of
squares is S(V) = 2, [ v, - f(:«:L,V)]2
If V, is an estimate of V close to V,, then the Taylor series
expansion of f, truncated after the first derivative term,

allows the tollowing approximation

s 0f£(x,,V)
£(x,,V) = £(x,,V,) + 51:,: - :] (V;=V50)
! sV, v=vo

Defining Z as the 39x8 matrix of partial derivatives and

B = V-V, we have y, - £(x,,V,) =2,'8+ €,

Then the lecast squares estimate of g is
B = (2'2) 2" (Y-(X,V,))
The solution to this equation results in a new improved

estimate V = b + Vv, which may be substituted for Vv, in f(X,V,)

and the whole process is repeated until S converges to an
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acceptakly low asymptotic level.

Most of the data sets tested in this paper did not support
stable asymptotic convergence. This may have been due to one
or more of high error sums of squares, insufficient data, or
lack of true correspondence to a trimodal mixed normal

distribution in the underlying population.
4. Joint Confidence Regions

The joint 100(1-a)% confidence region for the estimated
parameters B of a linear model is defined by

(B-b) 'X'X(B~b) = ps'F

p.a-p,l-a

where n = number of observations
p = number of parameters in f
s’ = estimated mean squared error

X = matrix of regressors

Any vector b satisfying this equation defines a point within

the p-dimensional confidence ellipsoid.

If the model has only two parameters (a slope and an
intercept) , then the confidence region is anellipse. 1In this

case, a simple algebraic solution is avallable:

Given A =X'X = [ a,;;, A,
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then L = a,C,” + 2a,,C,C, + a,C,° defines the contour of the
confidence region. Substituting values of C, falling within

the single parameter confidence region for C,, we may solve the

resulting quadratic equation for the two corresponding values

of ¢, (i#j), located on the confidence contour.

)

More generally, the dimensions and orientation of the p-
dimensional confidence ellipsoid may be estimated from the

eligenvalues €, of the positive definite matrix A = X'X, where
Z €, = trA and Pred €, = |al

The ei1genvalues determine the lengths of the half-axes,

1, = ¢, ", whereas the directicn of these axes is determined
by

the corresponding eigenvectors. For a given eigenvalue €_, the

eirgenvector x. 1s a solution to the equations A'x = 0,
where A" {5 equivalent to A with € subtracted from each value
on the main diagonal. This method was used to estimate the

contours ot the confidence ellipsoids in this paper.
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APPENDIX 2. The correlation between the exponents of bivariate
normal variables.

Theorem: Let (X,,X,)' be bivariate normal N(u,E) where

6,° ro,o,
I = .
ro,0, O,
Then the correlation coefficient between Z, = exp(X,] and

Z, = exp[X,] is

exp[ro,0,] - 1
r, =

(expfo,”] - 1)"(exp(0."] - 1)°"
and lr,] < |r] .

Proof:
The moment generating function of X is
E(e"' ) = exp[t'p + Lt'Tt)

so that E(2') = {exp(w + 0,°/2], exp(p, + 0.°/21)

Y = X, + X, is univariate normal since it is a linear

combination of the elements of a bivariate normal variable, and

the variance of Y is

1's1 = 0,° + 0, + 2ro,0,

1

F,(e{)

I

Hence E(Z,72,) = E(exp(X, + X.])

= exp(p, + 4, + (o, + 0,)/2 + ro.o,)

Therefore Cov(2,,2,) = E(Z.Z,) - E(Z.)E(Z))
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E(21Z2;) - exp[uy + pup + (042 + 05%)/2]

i

= exp(u + Hp + (08 + 07°)/2] (exp[roy0;] - 1)
and Var(z,) = exp(2u4, + 0,°) (exp[0,°] - 1)

Hence the correlation between Z; and Z, is

expl[roq.o;] - 1
T (exp[04°)-1)"(exp[0;"]-1)"
exp[roq.0,] -1 exp(o,0,] - 1
i explo102] - 1 (exp(0y1-1)"(exp[o71-1)"

The last factor is the correlation when r = 1, and so this last

factor lies between 0 and 1. Hence, r, 1is less than or equal

to the first factor. So, to show that |r,| < |r| , let o =
(0102)".
Then

exp(roz] -1
r; <

exp[oe] -1

Consider the Taylor series expansions

réo* rlot
exp[rcz] - 1= ro® + + +
2! 3!
, , r o r of
(exp[o"] - 1) r = ro + + +
2! 3!
But |r| 2 r', i 2 1.
Hence  (exp[o®] - 1) r 2 exp[ro’] - 1 for r <1

and |r;| < |r|
QED
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APPENDIX 3. Morphometric information on the lakes sampled in
southern Quebec, in order of increasing total phosphorus.
Central, North, South, and Newport are basins of Lake Memph-
remagog.

Area Mean Maximum
Lake Latitude Longitude Depth Depth
km? m n

Bowker 45° 25' 72° 15! 2.3 24.0 59.0
Stukely 45° 20' 72° 15! 3.9 13.6 32.2
Orford 45° 15' 72° 20! 1.3 17.9 48.0
Lyster 45° 04' 71° 55! 1.7 20.0 50.0
Baldwin 45° 04' 71° 54! 0.3 3.0 7.6
O'Malley 45° 13' 72° 20! 0.2 4.0 10.4
Central 45° 10%' 72° 15! 24 .6 44.3 117.0
Cerises 45° 1°!' 72° 15! 2.0 2.0 3.0
North 45° 15' 72° 15! 20.4 14.7 33.5
Massawippi 45° 15' 72° 05'°' 17.9 40.2 85.7
Lovering 45° 10' 72° 10°' 4.6 9.7 24.9
Argent 45° 15" 72° 25! 1.0 4.6 15.5
Trousers 45° 10' 72° 25! 2.0 5.2 10.1
South 45° 00' 72° 15! 56.1 6.2 12.8
Newport 44° 55" 72° 15! 2.0 3.4 9.5
Brome 45° 15' 72° 30 14.5 5.8 12.8
Pond 45° 10' 72° 14" 0.2 0.9 1.5
Magog 45° 20' 72° QL' 10.8 9.8 19.2
Waterloo 45° 20' 72° 30" 1.5 2.9 4.9
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Append1ix 4. Chemical data for the samples collected in 1986.
Chlorophyll and phosphorus data are in mng m™>. Dry weight is
in mg L' . Phosphorus fractions refer to all phosphorus
passing through a screen or filter of the stated porosity

(microns).
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APPRNDIXE 6 Size distributions of the samples collected in 1986, The values
in the first column are the base 2 logarithms of organism volume (um3), at the
lower Timit of the <1-e 1nterval Samples are identified by the name of the
lake and the Talran date N = abundance (ml™%)

V. - brovolume 1n the interval (um® ml™') A zero value 1s an approximation,
given the number of si1gnificant digits shown. Sampling and measuring procedures

are descraibed 1n the tethods section of Chapter I.

Fakes are 1o alphabetical order The basins of lLake Memphremagog are grouped

nnder the name ot the lake
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LAKE MEMPHREMAGOG (continued)
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Lake Taovering, “ake lyster Lake Magog Lake Magog
170 212 167 185
Y 7 o Y N V) N \Y
h 27 22925 201 23777 1165 108234 398 37788
! 164 10162 239 42228 767 135354 455 85885
# 196 92022 216 83036 256 82017 199 71041
4 29 JB84G *16 154761 199 155043 341 241317
10 /8 97373 102 128453 142 204935 483 700709
11 Ah 179631 102 285709 85 204915 114 292422
17 H8 h04103 % 273379 171 1032183 62 364969
1) 14 1687873 34 411844 159 1904950 20 245946
14 14 373958 23 532725 141 3309124 58 1412733
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SPPEEDEY Sloe distribntions ot the samples collected in 1987

Ihe trirat column 14 the base 2 logarithm of organism size (um®), which defines
the lower bound of each si1ze interval Each sample is identified by rhe name
ob the lale ond the Tulian date % = abundance (ml11) 7 = biovolume (um3 ml~
) A cero entry 1L oan approximate value, glven the number of significant
digt e shown A blank entry indicates that no organisms of this size were

counted  Samplhine and counting procedures are described in the Methods section

ot Chapter

cakben are v atod i alphabetreal order All basins of Lake !emphremagog arve

stouped under the name of the lake
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Balduin Pond Baldwin Pond Baldwin Pond Lake Hertel
150 191 225 2717

N v N \ N v N Vv
-8 274151 1508 542349 2983 542349 2983 447909 2463
- 274151 I016 542349 5966 542349 5966 447909 4927
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0 0 002 1885146
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APPENDIZ 8 vrincipal original APL functions used

YOLUMES - compnteg the wolumes of particles Input data 1nclude the shape,
length, width o d herpht
bvolLs - computes the valumes of particles composed of several identical

Subunit e, Input data 1nclude the shape, length, width, height, and number of

cubunite,

PHTERVALLLS coarputes the frequency distribution of the output from the two

preceding tunctions  The user mav specifv whether logarithmic or linear units

are desired, and the base of the logs Output 1ncludes both number and total

volume for cache ontereal

FOLSITIRBAL performs o serics of Kolmogoroff-Smirnoff tests on batch input
TINDIST compute o the parameters of the best bimodal fit.

FRIMODAL computoes the parameters of the best trimodal fit

CONFTLITPSE  computes 100 points on the contour of a two parameter confidence

rerton. asang the statistics of the regression used to estimate the parameters

HEINREG terest e binear tesression function., with detailed diagnostic

ntatisties and hopothests testing Suitable for all multiple linear models.

PRRORSUM - horqema vout ine calied up by MLINREG. hen repeat observatlons are

ivatlable o (ospute the P ratio for lack of fit
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[S]TgHNREG T;P;RSS;DF;T8S; SSREG;R2; S8B;TS; F4;ANS; EST; YH;YSD; ;60
QeE((uS) +. x§)

Bern {0+, x(x8)+.xT) AUECTOR OF REGRESSTON COEFFICIENTS
Nei4eS ¢ Pe(71)4eS

YHATeS+, xB

RESIDUALS«+ T-YHAT

RSS¢ RS5S¢ (WRESIDUALS)+. xRESIDUALS

S2¢RSS-DFeN-P

TSt/ TSS«{T-W (+/,T)-N)X?

SSREG«TSS-RSS

R2«SSREG-TSS

TS« TSS+SSB e NxVHxYH

F1«SSREG-( (P-1)x,S2)

'DO YOU KANT 70 TEST FOR LACK OF FIT?

ANSeL

+{ANS="Y") JLOF

NORMAL: OTCFF

! ANOUR

" SOURCE Df 5% HS FORATID
Ue 'REGRESSIOR ', (5 B3{P-1}),(15 4=80RIG)
[« 'RERIDUAL Y5 BEDE) (15 43REN) 11 4887, (1 2o f 1)

> {ANS#'Y') JT002
O« 'LACK OF FIT 7, {5 BsLDF), (45 42188) (13 4sii)
(3 'PURE ERROR 7, (5 BeTOTLR), (15 411), (179 4sbINS), (18 2o1)

TRRZ:

O« 'TOTAL {CORR,Y ', {5 Ba(DF41)), (15 4z180)

O« " INTERCEPT Y05 881), (15 4=8SE)

O« 'TOTAL 'o(S B (DF42)), {15 415

OiCcLf

O« "HEAN RESPORSE = ', (35YM)," R2 = ' (5% 33,R)

QO7CLf

fb *REGRESSION PARANETERS: * O OTCLF

O« Y, (5,8 ¢ OTCLF

YANY KEY TO CORTINUE' ¢ ANGeD

OTCFF

O« 'COURRTABLE HATE.IX OF PARAMETIRS:* ¢ OICLE

(¢ {i? 63Cin+GxS2)

OTeLs

O« 'CORRELAT ION HATRIX¥: " & OICLE

Re (—Gr (4407210, 0) xfreS- (0o N, P-1)e + A (S8 140 (P- 1) ] ) -
ek, [21{T-{R, Dent) -T88x6.9



ﬂ K IS CENTRED/SCALED REGRESSORS AND

RESPONSE.
0¢C 35CORRMATS (k) 4. 8
UICHF
D¢ 'URRTANCT INFLATIONARY FACTORS (DIAC DF HCORRMAT):'
OTCLE

(<R 351 {xCORRKAY
OTCLE O 'ANY KEY T0 CONTINUE' O ANSeT
OTCHE
"TYP'L R UECTOR OF VALUES FOR THE PREDICTOR VARIABLES'
'SIRRTING WITH 1, T0 OBTRIN THE ESTIMATED RESPONSE'
'WITH 178 STANGARD DEVIATION, TPt 999 70 BYPASS.”
ESTIMATE: STl
+(E81=999) JCONT
YHO(BEST )4, b
YSDC({REST) 4, %04 xSTx§2) 5.5
0" EST. ¥V = ' (3, o = 7, (wYED)
‘RIPEAT FOR ANOTHER ESTINATE.' ¢ SESTINATE
CONT:
‘D6 YOU AR T0 TEST FOR SICKIFICANCE OF PARAHETERS (Y/N) 2"
ANe

PCANG= W) JEIN
RGATR: "ENTER SELECTION VECTOR OR HATRIK -
il

A (G {(eA)-P).PeR

"ERTER HYPOTHETICAL VALyES?
€<l

Ce{bei[1T,1)eC
F2e{u({(R+.xB) ))* ¥
'FOHOR HYPOTHESTS =
"ANUTHER DHRHMET{F T
ANSeT

+{ANS 'Y')/A0AIN

+f N

LOF: ERRORSUM

+NORNAL

fIR-

BeQh ) M x((A+ B -0 - (826G [11)
=, F2) ¢ OTCLF

Cih
(3, F
STy




ERRURSiH

"THE FUNCTION “ERRORSUMY, CALLED U FROM MUINREG, CONPUTES THE °
'ERROF. SUn OF SQUARLS FROM REPEAT OBSLRURTIONS, AND HENCE THE
'F RRTI10 FOR LACK OF FIT. DRAPER AND SMITH, P. 33

ReS O YT
O« 'PERCENTAGE TOLERANCE (+/-) FOR K INTERUAIS? O PCle
[1e{188-PCT)-160 ¢ [2« (106+PCT) -100
l«l ¢ Rede? © SIGeY[1;1]
S3+S16AZ ¢ T0T«1 ¢ TOTDF«TOTERRSOeR ¢ ULCeE
NERT: (XL RIZ ORI RI®ID)A(REL;RI(RTT;RIX12) ) JAlG
L*é?UPTﬂ*H-(eUEC)),‘ REMAINING®
Re
SKIP: dedl
+{JeVEC) /SKIP
+{JSN) JNEXT
+COMPUTE
INC: T« 1+
+{1eU[C) /IKC
+{I2Ny /EINALE
Je i+
SIGeY[1:13
SSe¥{ - 10wd
HIHS
‘I\me (rH:\”
SEIRaLE
ful: ReR+t
PPN
BECelL
SHeOiaviey
ostonty o tinr
TOTAIGTL 7 Re?
+3K1P
COWPUTE: PARTERRSG¢SS- (S162)-T0T
TT« TOTERRSG« TR TERRSQIPARTERRSE
TOTDF«TUTPF+TOT -1
it
FINALE: ' ¢
+{T0TDF=8)/FINt
PLHS« TOTERREQ-TOTDF
LFe{{LSS«RSS- TGTERRS0) L DF«DE-TOIDF )
FelF-PEMS
EY

FING: "NO REPEAT OBSERUATINGG AURTIABIE




