The Size Distribution of the Limnoplankton

Martin Ahrens Department of Biology McGill University Montreal, Quebec

February 1989

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy

© Martin Ahrens 1989

T int

#### ABSTRACT

The hypothesis that aquatic biomass is uniformly distributed over logarithmic size classes was evaluated with samples from epilimnetic plankton communities. Although the hypothesis is upheld for oligotrophic lakes, biomass increases between successive size classes in mesotrophic and eutrophic lakes. The abundance of organisms in logarithmic size intervals is strongly negatively correlated with size. The relationship between organism size and physiological performance in mixed communities was examined by testing the hypothesis that limnoplankton respiration rates are predictable functions of mean body size. The equation describing this relationship was found to be similar to those obtained with laboratory cultures. The total epilimnetic phosphorus concentration is correlated with both biovolume and respiration rate. Many limnological relationships, including those established in this thesis, are based on linear regressions between log-transformed variables. The rules for the correct use of backtransformed predictions are elucidated. A theorem is proven, which sets limits to the relationship between the coefficients of determination on the original and transformed scales. Simulated data and empirical results are used to illustrate the applications and limitations of the theoretical results.

i

RÉSUMÉ

la biomasse aguatique est distribuée L'hypothèse que uniformément parmi des groupes de taille logarithmiques a été évaluée à partir d'échantillons des communautés du plancton épilimnétique. L'hypothèse est fondée dans les lacs oligotrophes. Par ailleurs, dans les lacs eutrophes et mésotrophes, la biomasse augmente entre les classes successives. L'abondance des organismes dans ces intervalles de taille logarithmiques a une corrélation inverse très forte avec la taille. La relation entre la taille et le comportement physiologique du plancton en communautés mixtes a été étudiée en évaluant l'hypothèse que le taux de respiration est une fonction predictive de la taille des organismes. L'équation de cette relation s'est avérée semblable a celle obtenue avec les organismes cultives en laboratoire. La concentration épilimnétique totale en phosphore est en corrélation avec la biovolume et le taux respiratoire. Plusieurs relations en limnologie, y compris celles de cette thèse, sont fondées sur des regressions lineaires apres transformations logarithmiques. Les regles qui gouvernent l'utilisation evacte des prédictions sont elucidees. Un théorème est prouvé, qui établit les limites à la relation entre les coefficients de détermination avant et après transformation. Des données de simulation et des resultats empiriques sont utilisés pour illustrer les applications et les limites des résultats théoriques.

ii

# TABLE OF CONTENTS

I

\*

| ABSTRACT                                 | • | • | • | i                 |
|------------------------------------------|---|---|---|-------------------|
| RÉSUMÉ                                   | • | • | • | ii                |
| TABLE OF CONTENTS                        | • | • | • | iii               |
| LIST OF APPENDICES                       | • | • | • | v                 |
| LIST OF FIGURES                          | • | • | • | vi                |
| LIST OF TABLES                           | • | • | • | ix                |
| PREFACE                                  | • | • | • | xii               |
| Remarks on style and authorship          | • | • | • | xii               |
| Contributions to original knowledge      | • | • | • | xiv               |
| Acknowledgements                         | • | • | • | xv                |
| GENERAL INTRODUCTION                     | • | • | • | 1                 |
| CHAPTER I - Limnoplankton size spectra   | • | • | - | 7                 |
| ABSTRACT                                 | • | • | • | 8                 |
| INTRODUCTION                             | • | • | • | 9                 |
| METHODS                                  | • | • | • | 11                |
| RESULTS AND DISCUSSION                   | • | • | • | 24                |
| Detailed size structure                  | • | • | • | 24                |
| Normalized spectrum                      | • | • | • | 35                |
| Variability of parameters                | • | • | • | 4()               |
| Predictions                              | • |   | • | 44                |
| Use of phosphorus as an index of biomass | • | • | • | () ر <del>ا</del> |
| Extrapolations                           |   | • | • | 53                |

iii

| CHAPTER II - Plankton community respiration: relationships<br>with size distribution and lake trophy |
|------------------------------------------------------------------------------------------------------|
| with size distribution and lake trophy 56                                                            |
|                                                                                                      |
|                                                                                                      |
| ABSTRACT  .  .  .  .  .  .  .  .  .                                                                  |
| INTRODUCTION                                                                                         |
| METHODS                                                                                              |
| RESULTS AND DISCUSSION 64                                                                            |
| Relationships with phosphorus                                                                        |
| Allometric relationships                                                                             |
|                                                                                                      |
| CHAPTER III - Logarithmic transformation in predictive                                               |
| ecology                                                                                              |
| ABSTRACT                                                                                             |
| INTRODUCTION                                                                                         |
| PROBLEMS OF BACKTRANSFORMATION                                                                       |
| The correction factor                                                                                |
| Confidence and predictions                                                                           |
| The coefficient of determination 89                                                                  |
| SIMULATION                                                                                           |
| EXAMPLES IN LIMNOLOGY                                                                                |
| Total phosphorus and plankton respiration 98                                                         |
| Plankton size and respiration                                                                        |
| CONCLUSIONS                                                                                          |
|                                                                                                      |
| CONCLUSION                                                                                           |
| BIBLIOGRAPHY                                                                                         |

Į

1

# LIST OF APPENDICES

Ĩ

| Appendix 1. Analytical procedures used in Chapter I       | 131 |
|-----------------------------------------------------------|-----|
| Appendix 2. The correlation between the exponents of      |     |
| bivariate normal variates                                 | 138 |
| Appendix 3. Morphometric information on the lakes sampled |     |
| in southern Quebec                                        | 140 |
| Appendix 4. Chemical data for the samples collected       |     |
| in 1986                                                   | 141 |
| Appendix 5. Chemical data for the samples collected       |     |
| in 1987                                                   | 144 |
| Appendix 6. Size distributions of the samples collected   |     |
| in 1986                                                   | 147 |
| Appendix 7. Size distributions of the samples collected   |     |
| in 1987                                                   | 153 |
| Appendix 8. Principal original APL functions used         | 169 |

v

#### LIST OF FIGURES

CHAPTER I:

Figure 1.1. An example of a normalized spectrum . . . . 20 Figure 1.2. The median distributions over logarithmic size classes of (A) organism density, (B) total organism volume on a logarithmic scale, (C) total organism volume on a linear scale, (D) cumulative total organism volume, and (E) low phosphorus total 25 Figure 1.3. Examples of the impact of magnification used in microscopic analyses on observed densities . . . 30 Figure 1.4. Examples of (A) unimodal and (B) bimodal fits to the volume distribution . . . . . . . . . . . 33 Figure 1.5. The mean normalized curve and the two 37 Figure 1.6. The relationship between observed total planktonic biomasses and the estimates obtained from integration of the normalized curves . . . . . . 39 Figure 1.7. Confidence regions around the parameters of 42 Figure 1.8. The relationship between observed total plankton biomass and total phosphorus concentration in 1986 and 1987 . . . . . . . 49

vi

CHAPTER II:

1

| Figure 2.1. The relationship between the total epilimnetic |    |
|------------------------------------------------------------|----|
| phosphorus concentration and the plankton community        |    |
| metabolic rate                                             | 67 |
| Figure 2.2. The relationships between the total            |    |
| epilimnetic phosphorus concentration and the               |    |
| respiration rates of three plankton size classes .         | 67 |
| Figure 2.3. The relationship between the mean size of      |    |
| plankton in screen-separated assemblages and the           |    |
| mean metabolic rate per organism                           | 74 |
| Figure 2.4. A comparison of five regressions between       |    |
| body size and metabolic rate for planktonic                |    |
| organisms                                                  | 74 |
| Figure 2.5. The relationship between the                   |    |
| respiration/biomass ratio and the mean size of             |    |
| plankton                                                   | 17 |
| Figure 2.6. The relationship between body size and         |    |
| density                                                    | 80 |

CHAPTER III:

| Figure 3.1. The relationship between the correlation of |   |
|---------------------------------------------------------|---|
| bivariate normal variables and the correlation of       |   |
| their exponents 9                                       | 1 |

Figure 3.2. (A) Comparison between coefficients of determination for simulation data before and after transformation. (B) Median correlations for each of five sample sizes. (C) Standard deviations of the correlation coefficients in the simulation . . . . 94 Figure 3.3. (A) The relationship between total phosphorus

concentration and plankton respiration rates.

(B) The data and trend lines on a linear scale 99 - -Figure 3.4. The logarithms of measured respiration rates of plankton assemblages compared with the predicted log rates from the three size-specific linear regressions on the log of the total phosphorus concentration . . . . . . . . 101 . . . . . . Figure 3.5. Observed plankton respiration rates compared with the backtransformed predictions from a linear regression between the logs of observed rates and total phosphorus 105 . . . . . . . . . Figure 3.6. Observed mean respiration rates of individual plankton organisms compared with mean rates predicted from a linear regression between the logarithms of 109 Figure 3.7. Observed respiration rates of 39 plankton assemblages compared with predicted rates from a regression between mean size and mean individual rate 111

# LIST OF TABLES

### CHAPTER I:

1

.

| Table | 1.1.   | Southern Quebec lakes sampled in 1987            | 13 |
|-------|--------|--------------------------------------------------|----|
| Table | 1.2.   | Comparison of the samples collected with a net   |    |
| i     | and a  | tube                                             | 14 |
| Table | 1.3.   | Comparison of the samples counted with an        |    |
|       | electr | conic particle counter and an inverted           |    |
| 1     | micros |                                                  | 15 |
| Table | 1.4.   | Temporal trends in planktonic biomass            |    |
| (     | distri | ibution in two lakes in 1987                     | 27 |
| Table | 1.5.   | Comparison between these lakes and those         |    |
| \$    | studie | ed by Sprules et al. (1983)                      | 29 |
| Table | 1.6.   | Parameters of all unimodal distributions         |    |
| s     | succes | ssfully fitted to samples with good coverage     |    |
| c     | of the | e size range                                     | 32 |
| Table | 1.7.   | Parameters of bimodal and trimodal curves        |    |
| t     | fitted | to the distributions of plankton biovolume .     | 34 |
| Table | 1.8.   | Parameters of the normalized spectra for samples | 5  |
| v     | vith g | good coverage of the size range                  | 36 |
| Table | 1.9.   | Parameters (range and median) of normalized      |    |
| S     | spectr | a for Ontario lakes computed by Sprules and      |    |
| 1     | lunawa | r (1986), with my values included for            |    |
| c     | compar | ison                                             | 41 |

| Table | 1.10.   | Predict | cive | re | egr | es | sio | ns | fo | r | pla | ank | to | nic | 2 5 | siz | ze |   |    |
|-------|---------|---------|------|----|-----|----|-----|----|----|---|-----|-----|----|-----|-----|-----|----|---|----|
| c     | distrib | outions | •••  | •  | •   | •  | ••  | •  | •  | • | •   | • • | •  | •   | •   | •   | •  | • | 45 |

| Table | 1.11.  | Results   | of   | the  | two-way | an | alysi | ls c | of | va | ri | ar | ice | of |    |
|-------|--------|-----------|------|------|---------|----|-------|------|----|----|----|----|-----|----|----|
| 1     | che ph | osphorus, | /bic | mass | ratio   | •  |       | •    | ٠  | •  | •  | •  | •   | •  | 52 |

CHAPTER II:

Į

| Table 2.1. Concentrations of phosphorus and chlorophyll in  |    |
|-------------------------------------------------------------|----|
| integrated epilimnetic samples used for respiration         |    |
| observations                                                | 61 |
| Table 2.2. Rates of oxygen uptake in dark-bottle incubated  |    |
| samples                                                     | 65 |
| Table 2.3. Numbers, mean sizes, and total volumes of        |    |
| organisms in the three size classes                         | 68 |
| Table 2.4. Parameters of the Model I predictive regressions |    |
| between logarithms of the variables measured                | 73 |
| Table 2.5. Parameters of linear regressions between         |    |
| natural logarithms of metabolic rate of individual          |    |
| organisms and body size                                     | 75 |

### CHAPTER III:

ż

| Table 3.1. Statistics of the regressions between the    |     |
|---------------------------------------------------------|-----|
| base 10 logarithms of the total phosphorus              |     |
| concentration and the respiration rates of small,       |     |
| medium, and large plankton                              | 100 |
| Table 3.2. Observed and predicted respiration rates for |     |
| three plankton size classes                             | 103 |
|                                                         |     |

| Table 3.3. Statistics of the regressions between observed |     |
|-----------------------------------------------------------|-----|
| and predicted respiration rates                           | 104 |
| Table 3.4. Predicted mean size class respiration rates,   |     |
| with upper and lower 95% confidence limits                | 107 |
| Table 3.5. Statistics of the relationship between the     |     |
| natural logarithms of plankton organism size and          |     |
| respiration rate                                          | 108 |

PREFACE

Remarks on style and authorship

As required by the <u>Guidelines Concerning Thesis Preparation</u>, the following article is quoted:

"The Candidate has the option, subject to the approval of the Department, of including as part of the thesis the text, or duplicated published text (see below), of an original paper, or papers. In this case the thesis must still conform to all other requirements explained in Guidelines Concerning Thesis Preparation. Additional material (procedural and design data as well as descriptions of equipment) must be provided in sufficient detail (e.g. in appendices) to allow a clear and precise judgment to be made of the importance and originality of the research reported. The thesis should be more than a mere collection of manuscripts published or to be published. It must include a general abstract, a full introduction and literature review and a final overall conclusion. Connecting texts which provide logical bridges between different manuscripts are usually desirable in the interests of cohesion.

"It is acceptable for theses to include as chapters authentic copies of papers already published, provided these are duplicated clearly on regulation thesis stationery and bound as an integral part of the thesis. Photographs or other materials which do not duplicate well must be included in their original form. <u>In such instances, connecting texts</u> <u>are mandatory</u> and supplementary explanatory material is almost always necessary.

"The inclusion of manuscripts co-authored by the candidate and others is acceptable, but the candidate is required to make an explicit statement on who contributed to such work and to what extent, and supervisors must attest to the accuracy of the claims, e.g. before the Oral Committee. Since the task of the Examiners is made more difficult in these cases, it is in the candidate's interest to make the clear. responsibilities of authors perfectly Candidates following this option must inform the Department before it submits the thesis for review."

Each chapter of this thesis is based on the text of manuscripts which have been submitted to learned journals for publication. This format has produced some redundancy, for which I apologize to the reader.

Chapters I and II are based on Ahrens and Peters (1989a and 1989b). Dr. Peters' contributions were limited to the

provision of financial resources and equipment for field and laboratory research, and editorial advice on the manuscripts. During the development of the research program, he of course provided the usual advice and quidance offered by a PhD supervisor. Chapter III is based on Ahrens (1989), which is entirely my own work. Diccon Bancroft provided some editorial advice on this chapter. Marika Kurer and Lesley Pope provided technical assistance with routine field and laboratory work. developed the procedures and conventions for Τ size distribution measurements on the inverted microscope, which were done under my supervision by Marika Kurer and Ashley All of the data analysis programs in Appendix 8 are Evans. entirely my own work.

Contributions to original knowledge

I believe that each of the chapters of this thesis contributes to original knowledge.

Chapter I shows that plankton biomass is uniformly distributed over logarithmic size classes in only the most oligotrophic lakes. As phosphorus concentrations increase, biomass per class tends to increase with size. Although total biomass tends to be correlated with total phosphorus, phosphorus cannot be used as an index of biomass without reference to the size of the organisms involved. This is because the mean phosphorus concentration per organism is size dependent.

Chapter II shows that an allometric relationship between mean organism size and respiration rate holds in natural plankton communities. The total epilimnetic phosphorus concentration is correlated with the total community respiration rate. Gravity screening is an acceptable procedure for separating size fractions of plankton for respiration rate determination, since the sum of rates measured on these fractions is not significantly different from the total community rate.

In Chapter III a formula for the correlation between the logarithms of multivariate normal random variables is developed. This correlation is usually less, and never greater, than the correlation between the original variables. Data from Chapter II and a simulation are used to show that the formula does not apply when data are not multivariate normal. The correction factor for backtransformation, which has been inaccurately presented in the literature, is clarified here.

### Acknowledgements

Although the embryo of this research was once my supervisor's personal project, Rob Peters was wise enough to provide the freedom to allow me to do it my way. Nevertheless, on those few occasions when I sought his advice, it was offered abundantly. While I developed and carried out my research program, and wrote this thesis, his insistence on clarity of exposition and demands that I "finish the thought" had considerable impact: My research program became more coherent and rigorous, this document became more readable, and my thought became more effective than they would have been without his influence.

The Limnology research group of the Biology Department usually provided a congenial environment for my PhD program. Yet I was particularly impressed by the role played by Sara Griesbach. She is faced with ever-changing demands from a succession of strong personalities, each convinced of the importance of his or her own project. Yet I always found her calm, impartial, unpretentious, and willing to deal with whatever urgent request I came up with.

As with all publications of the Limnology research group, this thesis would not have been possible without the assistance of seasonal technicians. In exchange for terrible wages and no prestige, these people are reliable, hard-working, and cooperative. This was certainly true of Ashley Evans, Marika Kurer, and Lesley Pope.

During the preparation of my thesis, I have been privileged to use the facilities of my employer, Consumers Union of United States, Inc. For this, as well as for amicable encouragement and advice, thanks are due to my supervisor, Diccon Bancroft.

My entire research program was funded by grants to Dr. Peters and the McGill Limnology Research Centre from NSERC, FCAR, and the Donner Foundation. My personal stipends were provided by Dr. Peters' research funds and Teaching Assistantships in the Biology Department.

My warmest thanks are due to my family. My daughter, Heidi, had to forego a lot of attention and material advantages when her father decided to become a student again. Yet she has always been supportive and encouraging. But without Marika to share my life, this thesis would never have been written. You have both trusted me, and taken some big risks along with me. This thesis is dedicated to both of you!

#### GENERAL INTRODUCTION

The aquatic ecologist's mandate might be broadly described as the elaboration of models to predict the distribution of biomass, production, and kinds of aquatic organisms (Peters 1980). Like most ecological models, this thesis is premised on the further assumption that the variables measured are important, due either to their predictive power or to their utility. When one refers to "kinds" of organisms, one often thinks of "species". However, the research presented here explores models in which organism <u>size</u>, rather than taxonomy, is of fundamental importance. This introduction explains this choice.

Most previous research on plankton communities has focused on spatial and temporal patterns in the distribution of <u>species</u> (e.g. Hutchinson 1967). Ecological theorists have taken several approaches to the development of quantitative models, founded upon the impressive body of accumulated knowledge about plankton species. Community models based on the environmental physiology of individual taxa have not been successfully applied to natural communities, due to the great spatial and temporal diversity of the plankton. In an effort to overcome this problem, predictive models of community structure have been developed (e.g. Sommer et al. 1986). But such models are difficult to test, primarily qualitative, and difficult (or

1

impossible) to relate to quantitative variables, such as biomass, uptake rates, and productivity. At a still higher level of generalization, species abundance, species-area relations, and the size distribution of species have received attention (e.g. May 1975, 1931). But the species concept remains largely qualitative and categorical, and so predictive relationships with quantitative variables are scarce. In particular, the biomass, uptake rates, and productivity of an individual species vary considerably over space and time. Hence, the limited utility of the species concept has provided impetus for the search for a more quantitative understanding of "kinds of organisms".

This thesis contributes to a body of aquatic modelling which focuses on the distribution of organisms by size, deemphasizing their traditional taxonomic categorization. In this spirit, Sheldon et al. (1972, 1977) sought and found regularities in the size distribution of oceanic seston; Harris et al. (1983), Sprules et al. (1983, 1986), and Bailey-Watts (1986) extended this approach to the limnoplankton; Schwinghamer (1981, 1983) and Warwick (1984) studied the size distribution of marine benthos; and Strayer (1986) examined the size distribution of freshwater benthos. These empirical observations of size distributions have lead to theoretical models of plankton community physiology (e.g. Kerr 1974; Platt & Denman 1978; Silvert & Platt 1980: Borgmann 1982; Griesbach et al. 1982) founded upon apparent regularities in the size structure, as well as on the known size-dependence of production, respiration, and other physiological processes (e.g. Hemmingsen 1960; Banse 1976; Banse & Mosher 1980; Blueweiss et al. 1978).

The choice between species and size implies a choice in theoretical emphasis. A predictive model which emphasizes taxonomy implicitly attributes importance to the role played by phylogenetic determinism in structuring the community. The current community composition is explained as a consequence of the evolutionary ecology of the populations present. Abiotic variables (e.g. geological history, wind, and water course alterations) are invoked when necessary, but the primary emphasis is on the physiological and ecological requirements of the component taxa. Predictions of future system behaviour would be founded upon the known characteristics of these taxa. On the other hand, size-based models emphasize effects which For example, the impact of act independently of taxonomy. hydrography through entrainment and sinking is primarily a function of surface area and volume of particles, hence of their size. Surface area and average radius also help determine potential uptake and excretion rates, and hence the organism's reaction to a given nutrient environment. The total biomass and relative numbers of organisms at size are hypothesized to be constrained primarily by abiotic variables, and this is testable. The difference between the two types of

models is a matter of choice in emphasis. Scientifically, one might justify a particular choice by demonstrating that predictions satisfy pre-established criteria of statistical accuracy.

Possibly a hybrid model would maximize predictive strength. In a given lake, taxonomic variations within size classes are due to recent phylogenetic history. Hence, such a model would incorporate some rules allowing prediction of the size-class specific species structure for the system of interest. Then there would be equations to predict size distribution parameters from abiotic variables, and further equations to predict physiological variables from the size and species This type of model would recognize explicitly composition. that not only do physiological variables depend upon size, but that predictive precision increases with taxonomic homogeneity (Banse & Mosher 1980). Nevertheless, the hybrid model would suffer from the major disadvantage of the species-based model: the enormous amount of information required to predict the species structure for a given system. Hence, we must hope that size structure alone will furnish a sufficient basis for accurate prediction of physiological variables of interest.

Chapter I first establishes that there are predictable regularities in the size structure of the limnoplankton. Its antecedents include the work of Sheldon et al. (1972), who found that pelagic oceanic waters had either a roughly constant total particle volume in successive logarithmic size classes (subtropical waters) or an approximately unimodal distribution (elsewhere). When Sprules et al. (1983) examined limnoplankton size spectra at a finer scale, they found evidence of bimodal distributions. In an effort to quantify the differences in distributions among lakes, I have attempted to estimate the parameters of uni-, bi-, and trimodal models, as well as "normalized spectra" (Appendix 1). I have also dealt with the prediction of these system parameters from other easy-tomeasure variables.

It is well known that many metabolic and physiological rates of both individuals and communities are size dependent (e.g. reviews in Calder 1984 and Peters 1983a). Examples include respiration, production, longevity, growth, assimilation, and fecundity. It is thus reasonable to hypothesize that energetic and material flows within the plankton community may be predicted from the overall size composition. However, allometric relations for aquatic organisms have been founded upon laboratory studies of isolated taxa. So, before community size spectra can be used for physiological predictions, it must be shown that allometric relations also hold for natural communities composed of many taxa. Chapter II addresses this hypothesis, where respiration rate is used as the physiological "response" variable. Since respiration, or metabolic rate, and

5

other physiological rates have a known common size dependence, a demonstration of metabolic allometry in nature should provide support for the hypothesis that other rates of interest may be predicted from the size structure. Alternatively, measurement of the metabolic rate of size classes could be used to predict values of other variables.

Several statistically significant relationships between logarithmically transformed variables are established in the first two chapters. In Chapter III, I deal with the statistical problems of backtransforming the predictions from these models. I present an original result concerning the coefficient of determination, and correct the existing ecological literature with respect to the "correction factor" for backtransformation. The impact of this work on ecological models is examined through a simulation exercise and through a discussion of two relationships established in a previous chapter. CHAPTER I

à.

Area and

LIMNOPLANKTON SIZE SPECTRA

ABSTRACT

The hypothesis that aquatic biomass is uniformly distributed over logarithmic size classes was evaluated with samples from epilimnetic plankton communities at 15 temperate lake sites in southern Quebec. Over the size range from 0.2  $\mu$ m to 1600  $\mu$ m equivalent spherical diameter (ESD), biomass tends to increase between log size classes at a median rate of 7%, in a data set with a median total phosphorus concentration (TP) of 17  $mq m^{-3}$ . The slope of the normalized biomass spectrum (reflecting overall trends in the distribution) becomes significantly steeper with decreasing TP. llence more oligotrophic systems have a more uniform biomass distribution. Over the observed size range, most samples were dominated by the phytoplankton mode between 20 and 50  $\mu$ m ESD. Total plankton biomass was positively correlated with TP. The abundance of organisms in logarithmic size intervals was strongly negatively correlated with size. Many sample distributions did not differ significantly from unimodal lognormal distributions. Efforts to fit bimodal and trimodal distributions met with limited success, since only 39 size classes were used.

8

### Introduction

As a result of their initial empirical observations with electronic particle counts in the ocean, Sheldon et al. (1972) hypothesized that aquatic biomass is roughly uniformly distributed over logarithmic size classes. Later evidence from both marine (Sheldon et al. 1972) and freshwater (Sprules et al. 1983, 1986; Mazumder et al. 1988) systems showed that this is approximately true, especially in more oligotrophic environments. This work also showed that local modes occur, both in pelagic distributions and in those for benthos (Warwick 1984; Schwinghamer 1981, 1983). These modes appear to correspond to the major ecophysiological groups (viz. protists, phytoplankton, zooplankton ...).

These empirical observations of size distributions have lead to theoretical models of plankton community physiology (e.g. Platt and Derman 1978; Borgmann 1982; Griesbach et al. 1982) founded upon apparent regularities in the size structure, and well-established size dependence the of production, respiration, and other physiological processes (e.g. Hemmingsen 1960; Banse 1976; Banse and Mosher 1980; Blueweiss et al. 1978). However the development of practical size-based models has been hampered by the paucity of data and the small number of size classes enumerated. The "normalized spectrum" (Platt and Denman 1978; Sprules and Munawar 1986) uses only two

parameters to characterize size distributions. But substantial differences in the detailed size structure may by indistinguishable at this level of generalization. Peters (1983b) and Mazumder et al. (1988) used cumulative phosphorus concentration to develop linear models based on an easily system variable. These analyses measured assume that phosphorus is a good correlate of biomass at the level of individual size classes. None of these authors has tested quantitative models with more than two parameters. More detailed models may be required before size structure analysis becomes a useful tool in applications such as the prediction of the fate of contaminants in aquatic systems, of fishery yields, or of the impact of nutrients on the abundance of organisms of a given size.

In this paper, the uniform distribution hypothesis is tested with limnoplankton samples from 15 Quebec lakes. The number, relative sizes, and positions of local modes are also examined. In particular, the parameters of the distributions are tested for variability, since insufficient variability would obviate the ability to use variations in size distribution to predict variations in community physiology. To the extent that parameters are variable, several predictive relationships are examined. Predictive power is evaluated using an independent data set. Sampling -- Samples were collected during the day throughout the growing season in 1986 and 1987 from 15 temperate lake sites in southern Quebec. These sites represent a broad range of trophic conditions, as evidenced by phosphorus and chlorophyll concentrations (Table 1.1). Integrated epilimnetic water samples (at least 20 L per site) were collected during the day through a 2.5 cm diameter tube connected to a piston pump.

Although Pace (1986) found that this apparatus collects both phytoplankton and zooplankton effectively, six parallel samples were collected with both the tube and a vertical haul with a conical plankton net (25 cm diameter, 120  $\mu$ m mesh), for subsequent comparison of their efficiencies of collection of zooplankton (Table 1.2). Five of the six counts were similar, and showed no consistent difference between the sampling devices with respect to the number of organisms, the total volume, or the mean size. The one discrepant count represents a dense concentration of small (<500  $\mu$ m length) <u>Daphnia</u>, and is assumed to represent a swarm which was not otherwise sampled.

Water samples were poured into 1 and 4 L bottles, and kept in the shade during transit to the laboratory refrigerator (maximum duration 1 h). Samples for microscopic examination were preserved with either Lugol's iodine (for the phytoplankton size range--1 to 100  $\mu$ m) or 5% formalin (for the bacteria--0.2 to 1.5  $\mu$ m, and zooplankton--80 to 1500  $\mu$ m).

Size Composition -- The size distribution of plankton throughout the range 0.2 to 1500  $\mu$ m equivalent spherical diameter (ESD) was determined by direct microscopic examination.

To test for comparability with studies using electronic particle counts, 7 samples were compared over the size range 4 to 31  $\mu$ m using both microscopic counts and Coulter counts with a 200  $\mu$ m aperture (Table 1.3). Two of the seven distributions differed significantly (P.0.05; Kolmogoroff-Smirnoff test). However, total counts estimated by the Coulter counter were much higher (1.7X to 18.6X) in 6 of 7 comparisons. These differences were primarily due to the two smallest size intervals, where abiotic particles are more abundant (Lal 1977). Excluding these two size classes, the counts were similar, except in the case of a sample from Lake Waterloo, where the microscopic count was higher, and a sample from Baldwin Pond, where the Coulter count was higher. Since Lake Waterloo has the highest phosphorus concentrations (>100 mg m<sup>-3</sup>) of all lakes studied, while Baldwin Pond has one of the lowest (<10 mg  $m^{-3}$ ), the microscopic counts are consistent with the expected trophic response, whereas the

Table 1.1. Southern Quebec lakes sampled in 1987, in order of increasing total phosphorus. Concentrations are for total epilimnetic samples (mg  $m^{-3}$ , with SD). Dates are Julian dates. Central, North, South, and Newport are basins of Lake Memphremagog.

5

J

| Lake       | Latitude |     | e Longitude |     | No. of<br>samples | Range of<br>dates | Total phosphorus | Total<br>chlorophyll |
|------------|----------|-----|-------------|-----|-------------------|-------------------|------------------|----------------------|
|            |          |     |             |     | •                 |                   |                  |                      |
| Bowker     | 45°      | 25' | 72°         | 15' | 1                 | 183               | 3.50             | 1.39                 |
| Stukely    | 45°      | 20' | 72°         | 15' | 2                 | 193-230           | 5.53 (1.53)      | 1.23 (1.40)          |
| Orford     | 45°      | 15' | 72°         | 20' | 5                 | 128-237           | 7.61 (2.90)      | 1.19 (0.50)          |
| Lyster     | 45°      | 04′ | 71°         | 55′ | 3                 | 149-227           | 10.16 (5.01)     | 1.44 (0.91)          |
| Baldwin    | 45°      | 04′ | 71°         | 54′ | 3                 | 149-227           | 14.23 (1.57)     | 2.10 (0.73)          |
| O'Malley   | 45°      | 13' | 72°         | 20' | 1                 | 177               | 14.41            | 4.01                 |
| Central    | 45°      | 10' | 72°         | 15′ | 8                 | 114-228           | 14.46 (3.03)     | 1.97 (0.89)          |
| Cerises    | 45°      | 18' | 72°         | 15' | 2                 | 193-236           | 14.74 (2.59)     | 3.82 (3,56)          |
| North      | 45°      | 15' | 72°         | 15′ | 5                 | 120-226           | 15.03 (2.08)     | 2.18 (1.32)          |
| Massawippi | 45°      | 15' | 72°         | 05' | 1                 | 177               | 15.52            | 2.55                 |
| Lovering   | 45°      | 10' | 72°         | 10′ | 2                 | 128-177           | 16.14 (3.01)     | 1.42 (0.44)          |
| Argent     | 45°      | 15' | 72°         | 25′ | 2                 | 142-183           | 16.57 (0.71)     | 3.02 (2.01)          |
| Trousers   | 45°      | 10' | 72°         | 25' | 1                 | 181               | 17.77            | 3,38                 |
| South      | 45°      | 00' | 72°         | 15' | 6                 | 114-235           | 19.27 (2.19)     | 3.87 (0.74)          |
| Newport    | 44°      | 55′ | 72°         | 15′ | 4                 | 128-204           | 20.70 (3.42)     | 3.16 (0.70)          |
| Brome      | 45°      | 15′ | 72°         | 30′ | 1                 | 142               | 20.82            | 3.15                 |
| Pond       | 45°      | 10' | 72°         | 14′ | 3                 | 183-224           | 24.59 (2.16)     | 2.54 (1.80)          |
| Magog      | 45°      | 20' | 72°         | 05′ | 4                 | 128-223           | 32.61 (6.87)     | 5.01 (2.98)          |
| Waterloo   | 45°      | 20' | 72°         | 30′ | 4                 | 142-229           | 81.72 (35.1)     | 17.64 (11.0)         |

Table 1.2. The densities and total volumes of organisms in the size range from 125 to 1500  $\mu$ m ESD, sampled with a plankton net and a pump and tube Samples are in order of increasing total phosphorus concentration (measured on the tube sample).

V Jak

| Lake    | Date | Density (L <sup>-1</sup> ) |      | Volume<br>Net | (ppm)<br>Tube | Mean size<br>Net | $(\mu m^3 \times 10^{-6})$<br>Tube |  |
|---------|------|----------------------------|------|---------------|---------------|------------------|------------------------------------|--|
|         |      | nec                        | Tube | Nee           | Tube          |                  | 1000                               |  |
| Stukely | 230  | 3                          | 14   | 0.6           | 0.3           | 295 <b>8</b>     | 37.8                               |  |
| Orford  | 203  | 2                          | 3    | 0.1           | 0.1           | 38.5             | 22.3                               |  |
| South   | 188  | 539                        | 73   | 21.0          | 1.0           | 48.5             | 14 O                               |  |
| Newport | 204  | 54                         | 86   | 1.7           | 2.8           | 71.9             | 38.5                               |  |
| Pond    | 193  | 66                         | 65   | 2.5           | 2.7           | 115.2            | 103. <b>l</b>                      |  |
| Magog   | 223  | 91                         | 94   | 4.2           | 2.9           | 57.2             | 60.1                               |  |

Table 1.3 Comparative counts  $(ml^{-1})$  from the electronic Coulter counter and inverted microscope. Interval headings are the base 2 logarithms of particle volume  $(\mu m^3)$ . Note the differing totals (7-13) from the two methods for lakes Baldwin and Waterloo.

~4

T

| Lake      | 5      | 6     | 7    | 8    | 9    | 10   | 11   | 12  | 13  | Totals |      |
|-----------|--------|-------|------|------|------|------|------|-----|-----|--------|------|
|           |        |       |      |      |      |      |      |     |     | 5-13   | 7-13 |
| Coulter   | counte | r     |      |      |      |      |      |     |     |        |      |
| Baldwin   | 16208  | 10419 | 4168 | 1033 | 368  | 138  | 56   | 16  | 3   | 32409  | 5782 |
| Omalley   | 5062   | 3221  | 1134 | 431  | 183  | 64   | 20   | 4   | 1   | 10120  | 1837 |
| Argent    | 3730   | 1750  | 1156 | 551  | 191  | 59   | 13   | 4   | 1   | 7455   | 1975 |
| Waterloo  | 3056   | 1083  | 835  | 519  | 247  | 223  | 95   | 40  | 6   | 6104   | 1965 |
| Bowker    | 2632   | 1640  | 629  | 236  | 84   | 28   | 8    | 3   | 1   | 5261   | 989  |
| Central   | 1663   | 735   | 462  | 260  | 132  | 47   | 18   | 4   | 1   | 3322   | 924  |
| Central   | 1294   | 574   | 355  | 202  | 88   | 43   | 20   | 5   | 1   | 2582   | 714  |
| Microscop | þe     |       |      |      |      |      |      |     |     |        |      |
| Waterloo  | 870    | 1739  | 1217 | 1044 | 1261 | 739  | 1174 | 478 | 130 | 8652   | 6043 |
| Omalley   | 291    | 558   | 655  | 485  | 218  | 279  | 146  | 121 | 73  | 2826   | 1977 |
| Bowker    | 364    | 625   | 523  | 352  | 239  | 205  | 80   | 46  | 57  | 2491   | 1502 |
| Argent    | 225    | 556   | 460  | 182  | 193  | 267  | 246  | 150 | 75  | 2354   | 1573 |
| Central   | 396    | 499   | 484  | 132  | 103  | 176  | 103  | 29  | 29  | 1951   | 1056 |
| Baldwin   | 242    | 220   | 330  | 104  | 10/  | 230  | 121  | / Q | 36  | 1744   | 1163 |
| Contral   | 180    | 1/10  | 150  | 114  | 11/  | 136  | 46   | 22  | 22  | 1/44   | 615  |
| ornerat   | 102    | 140   | 172  | 114  | 114  | T 20 | 40   | 23  | 23  | 740    | 010  |

Coulter counts are not. Hence the Coulter counter is not recommended for the enumeration of natural samples of small freshwater plankton (less than 50  $\mu$ m ESD), where abiotic particles may be numerous.

The abundance and approximate diameters of bacteria were determined by epifluorescence microscopy with DAPI stain (Porter and Feig 1980) of samples preserved in 2% formaldehyde. Larger organismsin the picoplankton fraction were measured at 1250X on an inverted microscope, using samples preserved in Lugol's iodine solution. Nannoplankton were measured at 1000X and 400X (Lund et al. 1958). Zooplankton were measured at 100X on the inverted microscope and at 40X under a dissecting microscope, using both Lugol's samples and others preserved in 2% formalin. Individual volumes of organisms larger than 5  $\mu$ m greatest axial linear dimension (GALD) were estimated by measuring length and width and taking the volume of similar regular geometric shapes as approximations. Smaller organisms were counted in nine diameter intervals between 0.2 and 5  $\mu$ m.

Chemical analyses -- Epilimnetic chlorophyll and phosphorus concentrations are easily measured variables known to be correlates of the abundance and activity of some planktonic organisms (e.g. Smith 1979; Elser et al. 1986). Hence these were measured, along with epilimnetic dry weight, as potential

The total phosphorus concentrations predictors of biomass. were measured in triplicate in several size fractions, separated by stainless steel screens (130, 80, 40  $\mu$ m porosity) and Nuclepore membrane filters (5 and 0.4  $\mu$ m porosity), using the ascorbic acid modification of the molybdenum blue technique (Strickland and Parsons 1968) after digestion with potassium persulfate under pressure (Menzel and Corwin 1965). Whole sample chlorophyll a concentrations were also measured in Epilimnetic dry triplicate (Strickland and Parsons 1968). weights were determined by pouring a known volume of lake water through predried (60° C) weighed GFC filters, and reweighing the filters after they had dried for 24 h to determine the weight difference due to seston particles and plankton.

Data analyses: Size structure - At any magnification, there are maximum and minimum size limits to the organisms which can be measured. Larger organisms are too big for the visual field of the microscope, or may be substantially out of focus if the field depth is too shallow. As organism size decreases, and well before it is as small as the theoretical detection limits at a given magnification, the probability of detection decreases. Small organisms may be hidden by larger ones, confused with debris, or simply overlooked in a busy visual field. Thus one might expect an approximately bell-shaped curve of visual selectivity with a microscope, just as there is a size selection curve for a plankton net. The five magnifications used in this study allowed sufficient overlap between successive selection curves that, for many sizes, a choice was required between the counts at the two magnifications. In every case, the highest count was selected, on the assumption that lower counts were the result of partial selectivity. Computer programs were written to take length, width and shape data, magnifications, and water volumes to compute individual organism volumes, and total counts and total volumes in intervals of volume doubling.

The geometric mean volume of organisms in the smallest interval was  $0.0055 \ \mu m^3$ , corresponding to equivalent spherical diameters from 0.2 to 0.25  $\mu m$ . The mean for the next interval was 0.0110  $\mu m^3$ , corresponding to ESD 0.25 to 0.31  $\mu m$ . In the largest interval counted (the 39th), the mean volume of  $1.5 \times 10^9 \ \mu m^3$  includes organisms with ESD between 1250 and 1600  $\mu m$ .

Curve fitting - Size distributions can only be effectively modelled when there are counts in most of the 39 size intervals. In the case of these collections, 25 of the 58 samples analyzed were amenable to formal curve fitting procedures. Some samples could not be fully counted due to the presence of excessive abiotic particles. Others presented highly "accidented" distributions with empty intervals followed by large single interval peaks, due to the periodic abundance of single phyla. Finally, some oligotrophic lakes yielded too
many zero counts in the zooplankton range. Some of these problems could be addressed; for example, rare organisms would be discovered if sampling were sufficiently intensive. But many of these problems cannot be dealt with after the fact. For the purpose of curve fitting, a total of 25 samples with "good coverage" were identified, where good coverage is defined as non-zero counts in at least 90% of the size classes, including at least some size classes above 600  $\mu$ m ESD. Only samples meeting these criteria were used to estimate the parameters of size distribution models, described in the following paragraphs.

The spectrum of volume concentrations in base 2 logarithmic size intervals was used to compute the "normalized spectrum" (Platt and Denman 1978; Sprules and Munawar 1986; Figure 1.1) for each sample. Such spectra plot log size on the abscissa, and the ordinate is the log of the standardized abundances per interval. The latter is calculated as the volume concentration in the interval divided by the change in modal volume between intervals. The parameters of the straight line fitted to these points may be used to compare samples. Integration over any range of sizes provides a smoothed estimate of biovolume or biomass over that range. The intercept of the line provides an estimate of relative abundance at one mass (or volume) unit. The slope reflects the overall trend in mass or volume change from interval to interval. In particular, a slope of -1 would FIGURE 1.1. An example of a normalized spectrum (Lake Orford, July 22, 1987). The logarithms of organism size (on the abscissa) are plotted against the normalized density (on the ordinate). The latter is the logarithm of the ratio between the total volume in the interval and the difference in organism size between that and the subsequent interval - hence, a density estimate. The straight line is the least squares regression fitted to these data. See Appendix 1 for further information.



Normalized density (L<sup>-1</sup>)

Same and

indicate an approximately even distribution of mass over size classes. Steeper slopes (with larger absolute values) would reflect declining biomass with increasing size, whereas shallower slopes would reflect the reverse. The existence of any significant slope would confirm that there is an overall trend with size, in spite of the existence of one or more local peaks or troughs in the size spectrum. Further details are provided in Appendix 1.

There are usually patterns in the residuals from a fitted normalized spectrum, and hence the diagnostic statistics associated with the regression  $(r^2, F, SEE)$  will probably not be accurate. Nevertheless, if the spectra to be compared are computed over similar size ranges and have similar residual patterns, then the parameters may provide a basis for comparison of general trends in biomass distribution. If the normalized spectrum is an accurate representation of the data, then numerical integration under the fitted curve (multiplying together back-transformed ordinates and abscissas and summing) should provide an estimate of biomass similar to that observed over the same range. To test this hypothesis, the predicted integrated biovolumes from normalized spectra were regressed against observed total biovolumes. Furthermore, the median computed total biovolume from all samples was compared with the observed median value using the modified t test for samples with unequal variances (Snedecor and Cochran 1967). These

tests provided a measure of confidence in the normalized fits, as well as a basis of adjustment between predicted and observed values. The results were also compared with those of Sprules and Munawar (1986) for Ontario lakes.

The finer structure of distributions was examined in three stages. We first examined the possibility that plankton volume might be lognormally distributed over size. Since our size distributions are grouped by logarithmic (base 2) volume intervals, they should look like a normal distribution when graphed (log size on the x axis and linear volume on the y axis). A Kolmogoroff-Smirnoff test (Hollander & Wolfe 1973) was used to test an overall lognormal (unimodal) fit to these We then tested the hypothesis that the distributions data. were bimodal, corresponding to 2 lognormal curves. If this hypothesis were true, then each distribution would be characterized by 5 independent parameters: 2 means, 2 variances, and a parameter between 0 and 1 describing the proportion of the total distribution in one of the modes. These parameters of the mixture density function were sought by a maximum likelihood method (Appendix 1; Clarke 1984). for estimating a linearization technique Finally, the parameters of a non-linear system (Appendix 1; Draper and Smith 1981) was used to estimate the 8 independent parameters of trimodal fits.

Variability of parameters - The heterogeneity among estimated parameters was evaluated in several ways. All pairwise comparisons were made with the Least Significant Difference (95% criterion) using Tukey's test based on the Studentized range rather than the t distribution. Use of the latter would increase the chance of finding more significant differences than is warranted (Type I error; John 1971). Joint confidence regions for the two parameters of the normalized spectra were compared graphically (Appendix 1). When it was necessary to compute statistics for comparing parameter sets with two parameters, the models were first tested for homogeneity of variance by Bartlett's test, and if they passed this test, they were compared using an F test for the coincidence of two or more straight line regressions (Seber 1977).

Predictions - Predictive linear regression models were used to test the ability of various chemical and morphometric variables to predict the parameters of size distributions, to evaluate the correspondence between predictions and observations, and to identify trends between predictions and residuals. Models were evaluated using a data set (1986) independent from that used for their development (1987). In order to evaluate the potential use of phosphorus concentration as an index of size specific biovolume, the phosphorus:volume ratio was compared among size classes by analysis of variance (Seber 1977).

## Results and Discussion

## 1. Detailed Size Structure

The distribution of organism density over logarithmic size classes showed a fairly uniform decline with increasing size (Figure 1.2A). The "median distribution of biomass", composed of the medians of all observed values for each size interval (Figures 1.2B & 1.2C), shows a rapid increase to about 1  $\mu$ m ESD, a more gradual increase to about 30  $\mu$ m, and an erratic distribution beyond that point. On average, 50% of the community biomass is less than 45  $\mu$ m ESD, and 90% less than 700  $\mu$ m (Figure 1.2D). The summed biomass in this median distribution is 14.1 mg  $L^{-1}$ . In contrast, the 12 samples with lowest phosphorus concentrations (median = 6.6  $\mu$ g L<sup>-1</sup>, versus an overall median of 17.4) provide a mean biomass of 6.2 mg L<sup>1</sup>. The peak in the distribution for these oligotrophic lakes occurs at 30  $\mu$ m (Figure 1.2E), and 50% of the biomass is in particles smaller than this. 90% of the biomass is attained by 175 μm. Hence these oligotrophic lakes are clearly dominated by smaller organisms and have lower total plankton biomass concentrations than do lakes with more phosphorus in the epilimnion.

Two lakes were sampled often enough throughout the season to examine temporal trends in the phytoplankton/zooplankton ratio FIGURE 1.2. The median distributions (n=58) over logarithmic size classes of (A) organism density, (B) total organism volume on a logarithmic scale, (C) total organism volume on a linear scale, (D) cumulative total organism volume, and (E) low phosphorus total organism volume. The 95% confidence intervals are shown on the first two panels. Parts per million (ppm) =  $\mu$ m<sup>3</sup> L<sup>-1</sup> x 10<sup>-9</sup>. The mean distribution obtained by Sprules et al. (1983) for low phosphorus Ontario lakes (-----) is included in panel (E).





נא (ך<sub>-ו</sub>)

# Normalized density



Equivalent spherical diameter (um)

I





Cumulative percent biovolume

Į

Biovolume (ppm)



Equivalent spherical diameter (um)

<u>ب</u>ه 🖈

Í.

(Table 1.4). There is some indication of increasing biomass, and in the more eutrophic lake, an increasing proportion of the total biomass is in the zooplankton size range. Using all samples with good coverage of the size spectrum from all lakes, a regression on Julian dates to predict the proportion of total biomass below 80  $\mu$ m shows a significant (P<0.001) decreasing trend (slope = -.00299), explaining 33% of the variation. Thus there is a general trend to increasing size during the period from April to September in these lakes.

Trophic models, using response the total phosphorus concentration as a trophic index, provide a crude basis of comparison for our total biomass results. Peters (1986) summarized several power equations to predict components of plankton biomass from phosphorus. Using these equations, the predicted biomasses at 7 and 17  $\mu$ g phosphorus L<sup>-1</sup> are 1.9 and 4.4 mg  $L^{-1}$  respectively. These predictions are somewhat lower than our observed median values of 6.2 and 14.0 mg  $L^{1}$ . the predictions based on backtransformed However, are logarithmic regressions, and must therefore be increased by a correction factor (Sprugel 1983). Neither Peters (1986) nor the original references provided sufficient statistical information to estimate this factor accurately, but an increase of 25% would not be atypical. Considering that the predictions are based on 5 independent data sets in a variety of lakes, our results are perhaps not too unusual.

Table 1.4. Temporal trends in planktonic biomass distribution in 2 lakes in 1987. The first data column shows the approximate size of an organism ( $\mu$ m ESD) at the 50% point in the distribution. The second column shows the percentage of the total biomass which is due to organisms smaller than 80  $\mu$ m. The third column shows the total biomass concentration (ppm).

### Lake Magog

1

| Julian date | Size at 50% | Percentage at 80 $\mu { m m}$ | Total |
|-------------|-------------|-------------------------------|-------|
| 128         | 8           | 97                            | 3477  |
| 181         | 14          | 97                            | 18072 |
| 193         | 28          | 74                            | 18328 |
| 223         | 50          | 58                            | 18854 |
| Lake Orford |             |                               |       |
| 128         | 4           | 98                            | 2086  |
| 177         | 28          | 92                            | 6958  |
| 199         | 10          | 93                            | 6466  |
| 203         | 18          | 94                            | 8285  |
| 237         | 40          | 65                            | 20140 |
|             |             |                               |       |

Sprules et al. (1983) determined the planktonic size distribution in several small Ontario lakes, with lower phosphorus concentrations than most of ours (Tables 1.1 and 1.5). Whereas their mean distribution shows a phytoplankton peak at about 8  $\mu$ m, our low phosphorus median distribution peaks at about 30  $\mu$ m (Figure 1.2E). About half of the total volume is in each of their two modes, whereas usually less than 10% of ours is in the second mode. Over the same size range  $(1 < ESD < 1500 \ \mu m)$ , their integrated biomass of 1.5 mg L<sup>+</sup> is substantially lower than our 6.2. Although our lakes are larger, deeper, and richer in phosphorus (Table 1.5), the differences in observed biomasses may be due to methodology. The lower end of the observable size distribution depends upon the magnification used. Although they do not specify magnification, detection rates normally decline as size decreases. We consistently found that, when magnification was increased, counts of organisms in the smallest size ranges detected by the previous magnification were considerably higher under the new power (Figure 1.3). Our higher picoplankton counts may be due to our use of 1250X magnification for all organisms smaller than 5  $\mu$ m ESD, and epifluorescence microscopy for bacterial sizes (<1.5  $\mu$ m). Our bacterial counts are similar to those obtained by other authors using similar methods (Hobbie et al. 1977). Hence we are confident that our higher biomasses of bacteria and picoplankton are not a methodological artefact.

Table 1.5 Comparisons between our lakes and those studied by Sprules et al. (1983) The range and median are shown.

|                                     | All samples     | Low phosphorus   | Sprules et al.  |
|-------------------------------------|-----------------|------------------|-----------------|
| Total phosphorus $(m\sigma m^{-3})$ | 3 - 130 (17)    | 3 - 12 (7)       | 0.5 - 27 (4)    |
| Lake area<br>(ha)                   | 20 - 4000 (200) | 120 - 4000 (1/0) | 29 - 1142 (149) |
| Mean depth (m)                      | 1 - 70 (10)     | 14 - 70 (23)     | 1 - 20 (8)      |

FIGURE 1.3. Examples of the impact of magnification used in microscopic analyses on observed densities. Samples are from South (A) and Central (B) basins and Lake Magog (C).

ſ



Size class median (um ESD)

Į



Density

Size class median (um ESD)

l



Size class mode (um ESD)

Ţ

The large difference between our results and those of Sprules et al. is primarily due to the higher biomasses we observed in the 25 to 125  $\mu$ m size range. The low abundance of larger phytoplankton in their samples could also reflect shallower sampling with a small diameter sampling tube. We used a deeper range of depth integration (8 metres as opposed to 4), and our sampling tube has 32 times the cross-sectional area of theirs. Counts from this tube were used for all size classes up to 130  $\mu$ m ESD. Nevertheless the basis of the differences in the distributions will remain speculation until parallel samples from both sampling protocols in both environments have been compared.

Kolmogoroff-Smirnoff tests showed that 46 of 58 volume distributions did not differ significantly from a unimodal lognormal distribution (P<0.05; Table 1.6; Figure 1.4). Modes ranged from 19 to 75  $\mu$ m ESD, with a median value of 48  $\mu$ m for the 17 samples with both good coverage of the size range and significant fits. A unimodal distribution is a good first approximation to the plankton community size distribution, apparently because the phytoplankton mode so dominates the community.

Bimodal and trimodal distributions were fit to the data, but met with limited success (Table 1.7). Only 7 samples out of 25 with good coverage did not differ significantly from a Table 1.6. Parameters of all unimodal distributions successfully fitted to samples with good coverage of the size range. The mean is the mean base 2 logarithm of organism volume ( $\mu$ m<sup>3</sup>) Samples are in order of decreasing total phosphorus concentration The volume in a given size interval (on a base 2 log scale) may be estimated by multiplying the corresponding normal density\* by the total volume.

| Lake     | Julian date | Mean  | SD   | Total volume |
|----------|-------------|-------|------|--------------|
|          |             | (μ)   | (σ)  | (ppm)        |
| Waterloo | 229         | 16.45 | 4.20 | 192.7        |
| Magog    | 223         | 15 77 | 6.56 | 29.5         |
| Magog    | 193         | 15.92 | 6.93 | 18.3         |
| Pond     | 193         | 15.96 | 6 48 | 17.3         |
| Newport  | 204         | 17.04 | 7.13 | 14.7         |
| South    | 235         | 15 49 | 5.40 | 29 9         |
| Cerises  | 236         | 12.45 | 5 31 | 12.0         |
| Central  | 228         | 17.53 | 7.64 | 35.9         |
| Central  | 197a        | 17 66 | 8.22 | 19.6         |
| Central  | 197ь        | 17 78 | 8.13 | 19.4         |
| North    | 226         | 12.51 | 5.18 | 9.4          |
| Stukely  | 193         | 15.83 | 7.29 | 6.9          |
| Orford   | 199         | 12 58 | 6.21 | 64           |
| Lyster   | 2.27        | 13 62 | 5.43 | 11 9         |
| Orford   | 203         | 11.82 | 4.31 | 8,3          |
| Stukely  | 230         | 12 90 | 5.20 | 11.3         |
| Orford   | 237         | 13.62 | 3.89 | 19 5         |
|          |             |       |      |              |

' normal density  $(2\pi\sigma^2)^{-1/2} \exp\left[-1/2((x-\mu)/\sigma)^2\right]$ 

x

FIGURE 1.4. Examples of (A) unimodal and (B) bimodal fits to the volume distribution. Note the apparent third mode below about three  $\mu$ m ESD in both panels.



Size class median (um ESD)



- - - -

(hinnin)

Table 1.7. Parameters of bimodal and trimodal curves fitted to the distributions of plankton biovolume. Units are base 2 logarithms of volume  $(\mu m^3)$ . Samples are listed in order of decreasing total phosphorus concentration. To estimate the volume in a given interval, the contributions of each mode must be weighted by the proportion in that mode and summed. The contribution is itself estimated as in the unimodal case (Table 1.6).

(a) Bimodal:

| Lake    | Date | First | mode | Second | mode | Proportion of      |   |
|---------|------|-------|------|--------|------|--------------------|---|
|         |      | Mean  | n SD | Mean   | SD   | total in first mod | e |
| Magog   | 193  | 13.5  | 5.39 | 26.1   | 1.04 | 0.81               |   |
| Pond    | 224  | 17.2  | 7.47 | 22.5   | 0.98 | 0 46               |   |
| South   | 235  | 7.4   | 8.21 | 16.2   | 4.41 | 0.08               |   |
| Cerises | 236  | 12.5  | 5.19 | 18.8   | 2.47 | 1.00               |   |
| North   | 226  | 7.1   | 4.57 | 14.3   | 3.23 | 0.22               |   |
| Baldwin | 225  | 11.1  | 5.81 | 28.3   | 0.88 | 0.61               |   |
| Orford  | 203  | 8.8   | 6.85 | 12.8   | 2.28 | 0.25               |   |

(b) Trimodal

| Lake    | Date | F    | irst m | ode  | Se   | cond m | ode  | Th   | ird mc | de   |
|---------|------|------|--------|------|------|--------|------|------|--------|------|
|         |      | Mean | SD     | Prop | Mean | SD     | Prop | Mean | SD     | Prop |
| Magog   | 193  | 2.7  | 6 29   | 0.13 | 14.3 | 2.51   | 0.63 | 26.0 | 1.30   | 0.24 |
| Pond    | 193  | 60   | 8.71   | 0.13 | 15.8 | 2.65   | 0.71 | 28.6 | 3.18   | 0.16 |
| Newport | 204  | 19   | 2.27   | 0.11 | 13.9 | 4.74   | 0.53 | 20.4 | 1.00   | 0.36 |
| Brome   | 144  | 31   | 3 41   | 0.49 | 11.1 | 1.00   | 0.29 | 21.7 | 2.75   | 0.22 |
| South   | 186  | -1.2 | 1.00   | 0.33 | 15.1 | 1.00   | 0.14 | 25.4 | 2.19   | 0.53 |
| Baldwin | 225  | 25   | 3 20   | 0.07 | 13.2 | 2.37   | 0.41 | 29.0 | 1.11   | 0.52 |
| North   | 226  | -4.3 | 1.59   | 0 02 | 11.5 | 3.55   | 0.51 | 15.2 | 1.00   | 0.47 |
| Central | 130  | 1.7  | 3 76   | 0.51 | 12.8 | 5.58   | 0.30 | 15.3 | 1.64   | 0.19 |
| Lyster  | 227  | 91   | 5 18   | 0.25 | 14 2 | 1.99   | 0.66 | 27.2 | 1.00   | 0.09 |
| Orford  | 203  | 2.2  | 2 65   | 0.09 | 12.7 | 2.63   | 0.90 | 25.5 | 1.32   | 0.01 |
| Stukely | 230  | 3.8  | 6.13   | 0.14 | 12 3 | 2.23   | 0.76 | 22.1 | 1.00   | 0.10 |
| Orford  | 199  | 60   | 4 25   | 0.19 | 13.0 | 1.95   | 0.66 | 28.9 | 1.12   | 0.15 |

mixture of two normal distributions. Ten samples did not differ significantly from trimodal distributions.

The poor success rate with the bimodal and trimodal fits may not be entirely due to the underlying structure of the community. These models have more parameters to estimate than the simpler unimodal case, and hence require either more data points (size intervals) or more "perfect" data. For example, a trimodal model requires the estimation of 8 independent parameters, and our data are grouped into only 39 intervals. Using narrower, and hence more numerous, intervals would simply generate more noise due to sampling variability. It is also possible that the iterative algorithms used for estimation led to a "dead-end" in the parameter space which is not necessarily the optimal solution. Even when the parameters cannot be estimated analytically, two or three modes are sometimes evident in the distribution (Figure 1.4).

#### 2. Normalized Spectrum

Normalized spectra (Sprules & Munawar 1986) for the 25 samples with good coverage of the size range were computed using base 2 logarithms on both axes (Table 1.8, Figure 1.5). Intercepts varied from 5.16 to 7.98, with a mean of 6.05 (95% C.I. of mean = 5.80 to 6.30). Since all of the regression slopes were highly significant (P<.001), there is indeed a constant trend Table 1.8 Parameters of the normalized spectra for samples with good coverage of the size range, arranged in order of declining intercept. The independent variable 15 the base 2 logarithm of organism volume  $(\mu m^3)$  The dependent variable 15 the base 2 logarithm of the normalized density  $(x10^{-6} L^{-1})$ .

And a state of the state of the

| Lake     | Date        | Intercep | ot SE | Slope   | SE    | F           | R <sup>2</sup> | SEE  |
|----------|-------------|----------|-------|---------|-------|-------------|----------------|------|
| Waterloo | 229         | 7.981    | 0.430 | -0.752  | 0.033 | 516         | 0.94           | 1.90 |
| Lovering | 177         | 7.066    | 0 910 | -1.002  | 0.069 | 214         | 0.88           | 3.91 |
| South    | 235         | 6.679    | 0.734 | -0 951  | 0.048 | 387         | 0.92           | 3.27 |
| South    | 186         | 6.499    | 0 532 | -0 829  | 0.036 | 520         | 0.94           | 2.36 |
| Central  | 228         | 6 327    | 0.458 | -0 870  | 0.031 | 78 <b>3</b> | 0.96           | 2.03 |
| O'Mallev | 177         | 6 304    | 0 734 | -0 797  | 0 065 | 152         | 0 84           | 3 22 |
| Cerises  | 236         | 6 272    | 0 521 | -() 904 | 0 043 | 443         | 094            | 2.29 |
| Magog    | 193         | 6 247    | 0.516 | -0.877  | 0 035 | 618         | 0.95           | 2.29 |
| Pond     | 193         | 6 216    | 0 578 | -0.915  | 0 037 | 62 <b>2</b> | 0 94           | 2.58 |
| Central  | 197a        | 6.079    | 0.425 | -0.867  | 0.029 | 90 <b>3</b> | 0.97           | 1.89 |
| Magog    | 223         | 6 068    | 0 384 | -0 853  | 0.027 | 1011        | 0 97           | 1.70 |
| Pond     | 224         | 6.020    | 0.520 | -0.872  | 0 034 | 64 <b>9</b> | 0 95           | 2.31 |
| Central  | 197ь        | 5 960    | 0.429 | -0 862  | 0 029 | 878         | 0 97           | 1.90 |
| Central  | 166         | 5 957    | 0.533 | -0 764  | 0.047 | 265         | 0 90           | 2.34 |
| Gerises  | 193         | 5 952    | 0 532 | -0 760  | 0 047 | 26 <b>3</b> | 0 90           | 2.33 |
| North    | °26         | 5 870    | 0 588 | -0 938  | 0 045 | 441         | 0 93           | 2.60 |
| Baldwin  | 225         | 5 827    | 0 599 | -0 944  | 0 040 | 552         | 0 94           | 2 67 |
| Stukelv  | 230         | 5.700    | 0 655 | -0 942  | 0 047 | 410         | 0 92           | 2.90 |
| Central  | 186         | 5 636    | 0 703 | -0 894  | 0 057 | 250         | 0 89           | 3.09 |
| Lyster   | 227         | 5 608    | 0.734 | -0.941  | 0 052 | 326         | 0 91           | 3.25 |
| Orford   | 237         | 5 542    | 0 650 | -0 837  | 0 055 | 236         | 0.89           | 2.86 |
| Orford   | 203         | 5 483    | 0 800 | -1 005  | 0.057 | 312         | 0 90           | 3.54 |
| Newport  | 204         | 5 416    | 0 460 | -0 866  | 0 033 | 682         | 0.95           | 2.04 |
| Orford   | 19 <b>9</b> | 5 373    | 0 627 | -0 963  | 0 044 | 483         | 0 94           | 2.78 |
| Stukely  | 193         | 5 162    | 0 683 | -0 975  | 0 043 | 504         | 0.93           | 3.05 |

FIGURE 1.5. The mean normalized curve and the two extremes in this data set (n = 25).

L



Equivalent spherical diameter (µm)

in biomass distribution over logarithmic size classes. The slopes varied from -0.75 to -1.01, with a mean of -0.89 (95% C.I. of mean = -0.87 to -0.91), which is highly significantly shallower (P<.001) than the slope of a spectrum with approximately equal biomass per class. Thus the distribution is not uniform , but shows a small increase in biomass between successive size classes. The mean slope corresponds to a spectrum in which biomass tends to increase by about 7% between successive base 2 logarithmic size classes.

Over the range of sizes from  $10^{-6}$  to  $10^3 \mu g$ , the approximate median parameters (6 and -0.9) generated an integrated biomass estimate of 7.6 mg  $L^{-1}$ , after correction for backtransformation from a logarithmic scale (Sprugel 1983). This was not significantly different from the median (14.1 mg  $L^{-1}$ ) of observed biomasses. Observed biomasses varied from 6.4 to 193 mg L-1, whereas integrated estimates varied from 0.8 to 172 mg L<sup>-1</sup>. The integrated estimates were also significantly correlated (P<.001, F = 31,  $r^2 = 0.57$ ) with the observed total biomasses, where all values were log transformed (base 10) to stabilize variance (Figure 1.6). Although the parameters of this relationship (-3.36, 1.83) were significantly different from 0 and 1 respectively (P<.025), this regression establishes that the spectrum may be used as a basis for comparison of samples.

FIGURE 1.6. The relationship between observed total planktonic biomasses and the estimates obtained from integration of the normalized curves fitted to these data. The 1:1 line is shown.

Ĩ



Sprules and Munawar (1986) reported normalized spectra for several Ontario lakes (Table 1.9). Their median slope values from replicated observations on individual lakes tended to be closer to -1 than ours. Their median intercepts (reported in base 10 logarithms) were smaller. Those authors did not provide sufficient information about the distribution of their values to undertake a parametric comparison, but numeric integration of their curves over the same range as ours yielded values in the range 0.7 to 0.8 mg  $L^{-1}$ , compared to 0.8 to 172  $mg L^{1}$  (median = 7.6) for our integrated totals. Their results spanned a smaller range since each spectrum was based on several samples, whereas we have computed one spectrum per Some of our samples had much higher phosphorus sample. concentrations than those of Sprules and Munawar. Nevertheless our normalized spectra usually reflect higher total plankton biovolumes than do theirs.

## 3. Variability of parameters

The elliptic confidence regions about the parameters of normalized spectra from 4 samples are illustrated in Figure 1.7. The figure shows the variability in the size of the confidence regions, as well as the extent to which different spectra may correspond. Thus ellipses with substantial overlap correspond to spectra which do not differ significantly, whereas disconnected ellipses are significantly different. The Table 1.9. Parameters (range and median) of normalized spectra for Ontario lakes computed by Sprules and Munawar (1986) For purposes of comparison, the values for our spectra computed over a similar size range (n = 25) are included, after conversion to base 10 logarithms

| Lake                      | Slopy                                                                                                                                                                                             | Intercept                                                                                                                                                               |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inland lakes<br>St. Clair | -0.92 to $-1$ 05 (-0 98)<br>-0.76 to $-1$ 05 (-0 90)<br>0.77 to $-1$ 25 (-0 90)                                                                                                                   | 0 92 to 1 93 (1 36)<br>1.11 to 1 83 (1 46)<br>1.79 to 2 41 (1 99)                                                                                                       |
| Ontario<br>Huron          | $\begin{array}{c} -0.97 \ \text{tb} -1 \ 24 \ (-0 \ 99) \\ -0.90 \ \text{to} -1 \ 04 \ (-0 \ 97) \\ -0.90 \ \text{to} -1 \ 18 \ (-1 \ 02) \\ -1 \ 00 \ \text{to} -1 \ 15 \ (-1 \ 10) \end{array}$ | $\begin{array}{c} 1 & 75 & to & 2 & 41 & (1 - 10) \\ 1 & 35 & to & 2 & 16 & (1 - 82) \\ 0 & 64 & to & 1 & 65 & (0 - 90) \\ 0 & 41 & to & 0 & 73 & (0 - 61) \end{array}$ |
| This study                | -0 75 to -1 01 (-0.90)                                                                                                                                                                            | 1 70 to 3 89 (.2 +1)                                                                                                                                                    |

à
FIGURE 1.7. 95% confidence regions around the parameters of some normalized curves. The total phosphorus concentrations are shown, in order to illustrate the general trend to decreasing slope and increasing intercept with increasing phosphorus concentration. Larger ellipses reflect less precise parameter estimates. Greater overlap between two ellipses reflects less significant difference between the distributions.



Į

mean squared errors (variance estimates) of the 25 best spectra were compared using Bartlett's test. The test statistic showed very significant variability (P<0.005) among the residuals. This variability is reflected in the relative sizes of the confidence ellipses.

The variability (among the spectra) of each of the parameters was tested with two pairwise tests. A t-test showed a significant difference (P<0.01) between the smallest and largest intercepts of the 25 normalized spectra. The first and the 24th intercepts were still different (P<0.05). The second and third were also different from the 25th. Otherwise, there were no significant differences among the intercepts. However, bivariate comparisons like this generally increase the number of Type I errors among all possible comparisons in a parameter set. Tukey's LSD test, which is more appropriate, showed no significant differences whatsoever among slopes or amonq intercepts of the normalized spectra. When Tukey's test was applied to the unimodal fits, four overlapping homogeneous sets of means were identified: 1 to 7, 5 to 10, 6 to 12, and 8 to 17 (where the numbers reflect the sequential order of the means from lowest to highest).

The low variability of the parameters of these two models reflects the underlying similarity of size spectra among lakes studied (Figure 1.5). This presents a problem for comparisons

among lakes, and for the development of models to predict parameter differences between lakes. The sampling distribution from a single lake necessarily shows variability, due to short term changes and sampling error. But if the "true" difference between the parameters of two different systems is low, as we have found, then efforts to predict this difference will be confounded with sampling variation.

## 4. Predictions

\* \* \*

These data are the largest available set describing the size distribution of plankton communities in lakes of differing This section develops correlations between the trophy. parameters of size distributions and other lake characteristics, using data collected in 1987 (Table 1.10). Where possible, the predictive power of these relations was tested with data collected in 1986. None of the relationships were significantly improved when the following morphometric variables were tested as additional regressors: lake area, lake volume, mean depth, maximum depth, and a categorical variable depending upon whether or not the lake stratifies in summer.

As a partial check on the validity of some of the data collected, and for a comparison with other published work, the relationship between mean summer chlorophyll concentrations and Table 1.10. Predictive regressions for planktonic size distributions. In general, the amount of explained variation in these analyses is moderate relative to other models (e.g. Peters 1986), because the regressions use point estimates, rather than seasonal means. The F statistics do not include the intercept \* = 0.05 > P > 0.01, \*\* = 0.01 > P. Abbreviations are defined in the footnotes

| Response                   | Intercept           | Predictors                                                                 | n                                                                                   | se <sub>est</sub> R <sup>2</sup> | F     |         |        |                  |
|----------------------------|---------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|-------|---------|--------|------------------|
| Log <sub>10</sub> CHL      | -1.2                | 2 1.29 lo                                                                  | 910 STP                                                                             |                                  | 15    | 0.202   | 0.53   | 15**             |
| log <sub>10</sub> TVOL     | 3 2                 | 7 0.85 lo                                                                  | 910 TP                                                                              |                                  | 25    | 0.237   | 0 55   | 28**             |
| UNIMODE                    | -6.3                | 7 2.58 lo                                                                  | 910 TP                                                                              |                                  |       |         |        |                  |
|                            | •                   | 6.67 lo                                                                    | 910 DW                                                                              |                                  | 17    | 1.488   | 0.58   | 6**              |
| NSLOPE                     | -0.9                | 65 0.00351                                                                 | TP                                                                                  |                                  | 17    | 0.041   | 0.38   | 9 <sup>**</sup>  |
| NINT                       | 5 4                 | 67 0 0200                                                                  | TP                                                                                  |                                  | 47    | 0 562   | 0 32   | 21**             |
| log <sub>2</sub> N         | 5 7                 | 56 - 0 793 1                                                               | og <sub>2</sub> SIZE                                                                | 1647                             | 1.900 | 0 94 24 | .624** |                  |
| log <sub>2</sub> N         | 3.6                 | 01 - 0 792 la<br>0 533 la                                                  | og <sub>2</sub> SIZE<br>og <sub>2</sub> TP                                          | 1647                             | 1.834 | 0.94 13 | 266**  |                  |
| log <sub>10</sub> PICOVOL  | 2.8<br>+            | 5 0 38 log<br>0.00047                                                      | 910 <sup>TP</sup><br>(DATE x log10                                                  | DW)                              | 58    | 0 151   | 0 45   | 23**             |
| log <sub>10</sub> NANNOVOL | 3 84                | 0.006 D/<br>+ 0.499 to                                                     | ATE<br>Pg <sub>10</sub> DW                                                          |                                  | 55    | 0 270   | 0 45   | 22**             |
| ln NE⊺VOL                  | 9.07<br>-<br>-<br>- | ' - 13 97 ir<br>+ 24 08 ir<br>0 84 (ir<br>0 038 (i<br>0 078 (i<br>0 89 (ir | n TP<br>nPNET<br>n DW x in TP)<br>DATE x in TP)<br>DATE x in PNET<br>n DW x in PNET | )<br>\                           | 17    | 0 250   | 0.96   | 75**             |
| log <sub>10</sub> 2000W    | 1 465               | 1 252 Lo                                                                   | 910 TP                                                                              |                                  | 25    | 0 451   | 0 42   | 76 <sup>**</sup> |
| Ln NANNU/NET               | 9 37                | 1 19 ln                                                                    | DW                                                                                  |                                  |       |         |        |                  |
|                            | -                   | 0 60 ln                                                                    | CHL                                                                                 |                                  | 17    | 0 466   | 0.81   | 19**             |

Footnotes overleaf

# Table 1.10 footnotes:

| TVOL      |     | volume density of plankton ( $\mu$ m <sup>3</sup> x 10 <sup>-6</sup> L <sup>-1</sup> )                    |
|-----------|-----|-----------------------------------------------------------------------------------------------------------|
| PICOVOL   | -   | volume density of plankton of ESD < 5 $\mu$ m ( $\mu$ m <sup>3</sup> x 10 <sup>-6</sup> L <sup>-1</sup> ) |
| NANNOVOL. | -   | volume density of plankton of 5 $\mu$ m < ESD < 80 $\mu$ m                                                |
| NETVOL    | -   | volume density of plankton of ESD > 80 $\mu$ m                                                            |
| TP        | -   | total epilimnetic phosphorus concentration (mg $m^{-3}$ )                                                 |
| DATE      | 30  | Julian date                                                                                               |
| DW        | -   | epilimnetic dry mass concentration ( $\mu$ g L <sup>-1</sup> )                                            |
| PNET      |     | phosphorus concentration retained on 80 $\mu$ m filter (mg m <sup>-3</sup> )                              |
| ZOODW     | -   | zooplankton dry mass concentration ( $\mu g L^{-1}$ )                                                     |
| CHL       | **  | chlorophyll-a concentration (mg m <sup>-3</sup> )                                                         |
| N         | ×22 | numeric density of plankton in a size interval $(x10^{-6} L^{-1})$                                        |
| SIZE      | 78  | volume of a single organism $(\mu m^3)$                                                                   |
| UNIMODE   | 28  | mean of normal distribution of volume over log <sub>2</sub> sizes                                         |
| NSLOPE    | -   | slope of the normalized spectrum                                                                          |
| NINT      | 3   | intercept of the normalized spectrum                                                                      |
| STP       | -   | total spring epilimnetic phosphorus concentration (mg m <sup>3</sup> )                                    |

spring total phosphorus concentration was calculated. The relationship explained 53% (n = 15) of the variation in the base 10 log chlorophyll. Our parameters (-1.22, 1.29) were similar to those computed by Dillon and Rigler (1974) using a much larger data set (-1.14, 1.45), and the predictions from the two models were very highly correlated. Hence, there is reason to hypothesize that the relations built on data from these lakes may reflect more general regularities.

The total epilimnetic phosphorus concentration (TP) is the most useful and reliable predictor of size distribution parameters. As TP increases, the mean of the unimodal distribution increases, indicating the relatively greater number of larger organisms. This is further reflected in the shallower slope and higher intercept of the normalized spectrum. The unimodal mean is best predicted from the logs of the concentrations of TP, chlorophyll, and seconic dry weight ( $R^2 = 0.58$ ). The most reliable predictions of the normalized slope and intercept are based on TP alone ( $R^2 = 0.38$  and 0.32 respectively).

Plankton abundance was very negatively correlated with size. Thus 94% of the base 2 log of the numerical density in a size interval was explained by a regression on the log of mean size in that interval (Table 1.10). Furthermore, this model based on 1987 data explained 82% of the variation in the independent 1986 abundance data. Incorporation of log TP as a predictor

slightly increased the variation explained in the original data. This augmented model explained 87% of the variation in the independent data set.

Although only 55% of the variation in the logarithm of the total planktonic biovolume is explained by a regression on the logarithm of the total phosphorus concentration, this relationship is not significantly improved by the inclusion of other likely regressors (e.g. chlorophyll) in the model. When applied to an independent 1986 data set, there was a significant correlation between predictions and observations. A separate regression between total volume and total phosphorus was fitted to the 1986 data. The mean squared errors of the two models were sufficiently similar (Bartlett's test, P>0.25) to allow a direct F test comparison of the two parameter sets, which were not significantly different from one another (Figure 1.8).

Regressions to predict the biomass of different functional groups of plankton explained less than half of the observed variation in the total volume of picoplankton, nannoplankton, and zooplankton as functions of Julian date and some index of trophy. Netplankton volume was more effectively described ( $R^{?}$ = 0.96) by a seven parameter model, but because all terms in this relationship explained similar amounts of variation, all simpler models were less effective. For each of these models, FIGURE 1.8. The relationship between observed total plankton biomass and total phosphorus concentration in 1986 and 1987. There is no significant difference between the two independently fitted relationships.

-----

(mg L<sup>-1</sup>) L 0 Biomass o 1987 Q **\* 1986** О 0<sup>0</sup> ° ° a 

Total phosphorus (mg  $m^{-3}$ )

the trend between model predictions and the original data did not differ significantly from a 1:1 relationship. However, in those cases (nannoplankton and zooplankton) where the predictions of relationships built on 1987 data were compared with data collected in 1986, there was significant deviation from a 1:1 trend.

The ratio nannoplankton/netplankton decreases as phosphorus and chlorophyll concentrations increase. This is consistent with the observed increase in average size as these trophic variables increase.

5. Use of Phosphorus as an Index of Biomass

Peters (1983b) found a roughly linear increase in particulate phosphorus concentration per logarithmic size class over 6 classes spanning roughly the range from 1 to 100 µm ESD. The slopes of these relationships increased with total phosphorus concentration. If the relationships are in fact linear, then the implication is that the phosphorus concentratio.: per size class is constant among classes in the same lake. Increases in slopes and intercepts with total phosphorus imply that each size class contains more phosphorus. Peters' interpretation of these phosphorus d'stributions as biomass distributions relies upon the assumption that the ratio of phosphorus to biomass does not change with either size or total phosphorus

concentration. In order to test this assumption, we conducted a two-way analysis of variance of the log-transformed mean phosphorus/biomass ratios for 3 size classes (0.4-5, 5-80, >80  $\mu$ m) in 4 ranges of total phosphorus concentrations (<9, 9-21, 21-52, >52 mg  $m^{-3}$ ). These intervals correspond to intervals of equal range in log-transformed phosphorus concentration values. The model explained 71% of the variation in the data (n - 121), F = 39.2, P < 0.001, SEE = 0.1584). The predicted mean values (Table 1.11) show a trend to decreasing ratios with increasing size (P<0.01) and increasing ratios with increasing total phosphorus concentration (P>0.05; n.s.). The mean values in the table suggest that the phosphorus concentration in picoplankton is about 8 times higher than that in netplankton. Assuming that dry weight is about 30% of wet weight (Peters & Downing 1983), the mean P content of algae from Vinogradov's data (0.69% of dry mass) converts to (1953)a wet phosphorus/biomass ratio of 0.0023. This value is intermediate between those of the small and medium size classes at all phosphorus levels predicted from our analysis. Peters (1984b) noted that Vinogradov's (1953) data snowed some tendency to declining phosphorus concentration with increasing organism size, Shuter (1978) showed that the and phosphorus concentration in phytoplankton cells declines with cell size. Our analysis shows a similar trend. Thus the phosphorus content of a size class is at best an approximate index of biomass, which should be adjusted by a size-specific correction

Ť.

Table 1 11 Results of the two-way analysis of variance of the phosphorus/biomass ratio. Columns represent three size classes, and rows represent four levels of total phosphorus concentration. The four values in each cell are the number of observations, the mean predicted log<sub>10</sub> ratio, the standard error of this estimate, and the back-transformed ratio corrected for transformational bias (Sprugel 1983)

Picoplankton

2

-

Y

|                                                            | •      | •      | •      |
|------------------------------------------------------------|--------|--------|--------|
| ТР<9                                                       | 8      | 7      | 5      |
|                                                            | -2 77  | -3.63  | -3 68  |
|                                                            | 0.0992 | 0.1020 | 0.1140 |
|                                                            | 0.0026 | 0.0004 | 0.0003 |
| 9 <tp<21< td=""><td>35</td><td>24</td><td>11</td></tp<21<> | 35     | 24     | 11     |
|                                                            | -2.63  | -3.49  | -3 54  |
|                                                            | 0.0599 | 0.0693 | 0 0925 |
|                                                            | 0 0036 | 0.0005 | 0 0004 |
| l <tp<52< td=""><td>12</td><td>9</td><td>5</td></tp<52<>   | 12     | 9      | 5      |
|                                                            | -2.45  | -3.30  | -3 36  |
|                                                            | 0.0873 | 0.0927 | 0 1090 |
|                                                            | 0.0054 | 0 0008 | 0.000/ |
| TP>52                                                      | 3      | 1      | 1      |
|                                                            | - 2.39 | -3.25  | -3 30  |
|                                                            | O 1800 | 0.1880 | 0 1940 |
|                                                            | 0 0062 | 0 0009 | 0 0008 |
|                                                            |        |        |        |

Nannoplankton

Netplankton

## factor.

The size dependence of the phosphorus/biomass ratio has important implications for the use of phosphorus as an index of biomass. First, differences in total phosphorus concentration tend to be greater than differences in biomass. This is reflected by the fractional exponent (0.85) of the regression between total biovolume and total phosphorus (Table Second, the high concentration in the smallest size 1.10). class overestimates small organism biomass compared to that of larger organisms. Hence, the linear trends in the relationship between cumulative phosphorus and organism size reported by Peters and the decline in phosphorus concentration with size imply an increase in biomass with size. This confirms the tendency indicated by our results from the normalized spectrum.

#### 6. Extrapolations

The mean slope and intercept of the normalized spectrum may be used to predict the abundance of organisms at larger sizes. The projected 7% increase in biomass per log 2 size class is necessarily constrained by the more rapid increase in organism size (doubling between classes) and the maximum size of the habitat. Our largest lake (Memphremagog) has a volume of about 1.5 km<sup>3</sup>. If at least 500 individuals are required for a subsistence population, then the rarest species in Lake

Memphremagog might have as few as 330 km<sup>-3</sup>. The model projects an abundance this low for the interval containing organisms of about 4 metres ESD (18 t). If we apply the additional constraint that the rarest organism has a mass lower than 30 kg (corresponding to a large lake sturgeon), then the largest size interval spans the range 18 to 36 kg. The geometric mean weight of fish in this size range is 25 kg. Using our mean parameters from the normalized spectrum, we predict a total abundance of about 150,000 organisms of this size  $km^{-3}$ , or over 200,000 in a lake the size of Lake Memphremagog. This seems unreasonable, but the 95% confidence interval is very broad (between 12,000 and 1,880,000). In light of these unrealistic predictions of the abundance of larger organisms, it is convenient to invoke the rule that predictions beyond the range of the variables used to build a regression are statistically unjustified. Nevertheless, the implication that the size spectrum does not have a constant trend throughout the range of all aquatic organisms needs to be examined. Current theories of energy balance in size-structured aquatic systems (e.g. Platt and Denman 1978; Platt and Silvert 1981) rely essentially upon pelagic analyses. However, beyond the size range of organisms included in our models, interactions with the hypolimnion and the benthos become important. For example, larger zooplankton and fish may conduct diurnal vertical migrations, and some fish spend part of their life cycle near the bottom and part as pelagic feeders. In oceanic systems,

the epilimnion and the benthos are relatively isolated. But in most lakes, the much smaller spatial scales produce more frequent interactions, at least for larger organisms. Hence, accurate predictive models for fish abundance and production may need to build upon the size distributions of both the benthos and the plankton (cf. Sprules & Munawar 1986). CHAPTER II PLANKTON COMMUNITY RESPIRATION: RELATIONSHIPS WITH SIZE

DISTRIBUTION AND LAKE TROPHY

ABSTRACT

tested the hypothesis that limnoplankton We community respiration rates are predictable functions of mean body size, without reference to taxonomic composition. Over a broad range of trophic conditions (6.5  $\leq$  [TP]  $\leq$  130  $\mu$ g L<sup>-1</sup>; 1.2  $\leq$  [chl-a]  $\leq$  29  $\mu$ g L<sup>1</sup>), the mean respiration rate per organism for picoplankton, nannoplankton, and netplankton assemblages is a power function of mean organism size, with an exponent of 0.73. The total epilimnetic phosphorus concentration is correlated with both the biovolume and respiration rate of the plankton community, as well as with the respiration rates of the three plankton size classes. The summed respiration rates of the three screened fractions are not significantly different from the mean total community rate. When respiration (R) and biovolume (B) are standardized to equivalent carbon units, the R/B ratio is a power function of mean organism size, with an exponent of -0.30. These results provide empirical support for the contention that size distributions may be used to construct comprehensive models of community physiology.

調査につ

The respiration rate is a fundamental measure of biological activity for all organisms. It is correlated with other physiological rates, such as growth rate (Banse 1976), and the rates of excretion of ammonia and phosphorus (Ikeda 1985). Since longterm production is proportional to respiration for a wide range of populations (Humphreys 1979), the respiration rate of an entire community might well provide an easilymeasured index of production in the community. Furthermore, the bioaccumulation of contaminants by aquatic organisms is affected by the metabolic rate (Neely 1979), and contaminant fluxes show size effects (Jorgensen 1979).

Direct measurement of plankton community respiration rates must be done in situ or very rapidly after removal of the sample from the lake (Lampert 1984). In addition to being timeconsuming, the procedures themselves may introduce bias into the measurements. Not all procedures measure the same thing: whereas measurement of the activity of the electron transport system (ETS) represents the maximum potential oxygen demand of the community, the measurement of oxygen uptake represents the extent to which this potential is being realized (Packard 1971, 1985; Devol 1975). In spite of these methodological biases and inconsistencies, some general trends may be identified: Plankton community respiration rates tend to increase with biomass, although assemblages of larger organisms respire at a lower rate than similar biomasses of smaller organisms (Williams 1984). But at present there are no models to predict the respiration rate of planktonic communities, although two approaches hold promise.

One approach would extend the existing knowledge of community responses to trophic variables. A number of relationship: exist, describing both the static and dynamic properties of plankton communities as functions of the total phosphorus concentration (see Peters 1986 for a review). For example, the relationships between phosphorus concentration and photosynthetic production (Smith 1979; Gelin and Ripl 1978; Elser et al. 1986), zooplankton abundance (Pace 1986), and relative abundances of netplankton and nannoplankton (Kalif and Knoechel 1978) are known. If the trophic response of respiration rate were known, then one could predict total community respiration from the phosphorus concentration. The second approach is an extension of the known size-dependence of respiration rates of individual taxa, observed in laboratory studies. It would provide a test of the assumption (e.g. Griesbach et al. 1982) that relationships observed on isolated taxa also apply in the field. Rather than concentrating on the allometric response of individual organisms, one could seek size-based trends within whole communities. Thus one could measure the respiration rate of plankton assemblages delimited by size (rather than by taxon), in an effort to determine the size dependence of the community rate. Since the exponents of taxonomically-specific relationships tend to be similar (Lavigne 1982; Banse 1979), one might hypothesize that community regressions would follow a similar trend.

In this paper, we contribute to models of community physiology based upon the community size structure and a trophic variable (the total phosphorus concentration). We examine the hypotheses that respiration rates are predictable functions of the total opilimnetic phosphorus concentration, and of the abundance and size of plankton.

Materials and Methods

Sampling -- Samples were collected during July and August, 1987 from 13 lake sites in southern Quebec. These sites represented a broad range of trophic conditions, as evidenced by phosphorus and chlorophyll concentrations (Table 2.1). Integrated epilimnetic samples were collected during the day through a 2.5 cm. diameter tube connected to a piston pump. This apparatus has been shown to collect both phytoplankton and zooplankton effectively (Pace 1986). Water samples were stored in dark brown Nalgene bottles in a cooler containing ice packs during transit to the laboratory (maximum duration of one hour). Table 2.1. Concentrations of phosphorus (mg + 3) and chlorophyll (mg + 3) in integrated epilimetric sample used for respiration observations. Newport, North, Central, and South are basins of Lake Memphremiolog. Concentrations refer to the total filtrate of the indicated filter, including both the filtrate and retentate of smaller filters.

|                    |     | Porosity |      |     |      |      |       |             |  |
|--------------------|-----|----------|------|-----|------|------|-------|-------------|--|
|                    |     | 0.4      | 5    | 5   |      | )    | TOTAL |             |  |
| Lake &<br>Julian d | ate | Ρ        | Ρ    | Chl | p    | Chl  | Ρ     | Chl         |  |
| Orford             | 237 | 3.7      | 5.3  | 06  | 53   | 1.3  | 65    | 1.6         |  |
| Stukely            | 230 | 4.1      | 5.4  | 03  | 5.7  | 1.4  | 66    | 2.2         |  |
| Orford             | 203 | 3.7      | 5.7  |     | 6.6  |      | 7.9   | -           |  |
| Lyster             | 227 | 4.4      | 8.4  | 0.3 | 7.6  | 1.1  | 9.1   | 1.6         |  |
| North              | 226 | 7.9      | 9.7  | 0.5 | 10.3 | 0.8  | 12.2  | 1.6         |  |
| Baldwin            | 225 | 7.2      | `0.8 | 0.7 | 12.0 | 1.0  | 13.1  | 2.0         |  |
| Central            | 228 | 7.8      | 10.3 | 0 0 | 11.7 | 0.2  | 13 5  | 1.2         |  |
| Cerises            | 236 | 8.0      | 12.2 | •   | 15.5 | 4.2  | 16.6  | 6.3         |  |
| South              | 235 | 6.9      | 11.9 | 10  | 12.8 | 1.8  | 18 6  | 3.5         |  |
| Newport            | 204 | 11.7     | 16.5 |     | 17.9 | •    | 22 7  | 41          |  |
| Pond               | 224 | 15.8     | 20.1 | 14  | 21.8 | 1.6  | 22.9  | 3.8         |  |
| Magog              | 223 | 14.5     | 24.1 | 08  | 29 5 | 5.5  | 393   | <b>9</b> () |  |
| Waterloo           | 229 | 19.7     | 34 6 | 45  | 57 3 | 16 2 | 130 1 | -28-9       |  |

Oxygen uptake -- For oxygen uptake experiments, samples were divided upon arrival at the lakeside laboratory into picoplankton, nannoplankton, and netplankton, using 40  $\mu$ m square mesh stainless steel screens and 5  $\mu$ m Nuclepore filters. In order to obtain measurable and reliable rates from individual size fractions, the subsamples then were concentrated on glass fibre filters (0.45  $\mu$ m nominal porosity). Cornett and Rigler (1986) have shown that this concentration procedure does not significantly alter the rate of oxygen consumption of seston samples. For each subsample except one, a total of one litre of water was used (895 ml filtered through the glass fibre filter and 105 ml added to the incubation bottle). The remaining sample, from a highly eutrophic lake, received only 400 ml of source water. The fractionated subsamples, along with whole community samples, were then incubated in the dark for twenty four hours at in situ temperatures (18 - 22°C). The whole community sample provided a check on the accuracy of the fractionation procedure. Initial and final oxygen concentrations were determined using the sodium azide modification of the Winkler technique (APHA 1971).

Size Composition -- The size distribution of plankton throughout the range 0.2 to 1500  $\mu$ m equivalent spherical diameter (ESD) was determined by direct microscopic examination. The abundance and approximate diameters of bacteria were determined by epifluorescence microscopy with DAPI stain (Porter and Feig 1980) of samples preserved in 2% Larger organisms in the picoplankton fraction formaldehyde. were measured at 1250X on an inverted microscope, using samples preserved in Lugol's iodine solution. Nannoplankton were measured at 1000X and 400X (Lund et al. 1958). Netplankton were measured at 100X on the inverted microscope and at 40X under a dissecting microscope, using both Lugol's samples and others preserved in 2% formalin. Individual volumes of organisms larger than 5  $\mu$ m greatest axial linear dimension (GALD) were estimated by measuring length and width and taking the volume similar geometric of regular shapes as approximations. Smaller organisms were counted in nine diameter intervals between 0.2 and 5  $\mu$ m. In each of the three size fractions (pico-, nanno-, and netplankton), at least 400 organisms were counted and measured.

Chemical analyses -- Epilimnetic phosphorus concentrations were measured as an indicator of lake trophic state. The total phosphorus concentrations in each size fraction and in the total sample were determined in triplicate, using the ascorbic acid modification of the molybdenum blue technique (Strickland and Parsons 1968) after digestion with potassium persulfate under pressure (Menzel and Corwin 1965). As further confirmation of trophic differences between lakes, chlorophyll a concentrations were also measured in triplicate (Strickland and Parsons 1968), and corrected for phaeophytin.

Data analyses -- The biovolume (ppm) in each size class was defined as the sum of the volumes of all organisms in the size interval (1 ppm =  $10^9 \ \mu m^3 L^{-1}$ ). Individual organisms volumes are expressed in  $\mu m^3$ . When conversions among units were required, all organisms were assumed to have a density of 1 g.cm<sup>-3</sup>, implying that  $10^6 \ \mu m^3$  of biovolume (.001 ppm) is equivalent to 1  $\mu$ g of biomass; 1  $\mu$ g of oxygen respired is equivalent to 0.375  $\mu$ g of carbon (Parsons et al. 1984); picoplankton were assumed to contain 0.0963 pg  $\mu m^{-3}$  of carbon (Simon 1987); nannoplankton and netplankton volumes were converted to carbon equivalents using the empirical formula for phytoplankton from Mullin et al. (1966):  $\log_{10} C = -0.29 + 0.76 \log_{10} V$ .

Results and discussion

Respiration rates ranged from 94 mg to 1.3 g  $O_2$  m<sup>3</sup> d<sup>1</sup> (Table 2.2). The highest rate is similar to the 1.2 g  $O_2$  m<sup>3</sup> d<sup>1</sup> measured in natural <u>Anabaena</u> collections (Gessner & Pannier 1958), but lower than the 6.8 g  $O_2$  m<sup>-3</sup> d<sup>-1</sup> in a fertilized Georgia pond (Welch 1968). In mesotrophic Lake Washington (summer chlorophyll 5 mg m<sup>-3</sup>), Devol and Packard (1978) found a summer average respiration rate of 180 mg  $O_2$  m<sup>-3</sup> d<sup>-1</sup>, similar to our intermediate values. In Findlay Lake (Devol 1979), the

| Lake &   |             |         |      | Size F       | Sum of | Meas | Measured |           |       |       |  |
|----------|-------------|---------|------|--------------|--------|------|----------|-----------|-------|-------|--|
| Julian d | ate         | <0.5 µm |      | 5-40 $\mu$ m |        | >40  | ) μm     | Fractions | Total |       |  |
|          |             | mean    | n SE | mean         | SE     | mean | SE       |           | mean  | SE    |  |
| Orford   | 237         | 74      | 5.3  | 1            | 0.5    | 20   | 2.0      | 95        | 109   | 5.1   |  |
| Stukely  | 230         | 18      | 3.5  | 88           | 21.5   | 1    | 0.9      | 106       | 94    | 9.4   |  |
| Orford   | 203         | 42      | 12.2 | 1            | 05     | 7    | 16       | 50        | 59    | 5.8   |  |
| Lyster   | 2 <b>27</b> | 105     | 86   | 7            | 2.6    | 70   | 44       | 182       | 157   | 13.0  |  |
| North    | 226         | 126     | 10 8 | 21           | 5.2    | 32   | 3.0      | 179       | 194   | 8.4   |  |
| Baldwin  | 225         | 60      | 13.8 | 14           | 7.0    | 126  | 8.6      | 200       | 187   | 6.3   |  |
| Central  | 228         | 207     | 13.8 | 14           | 3.5    | 60   | 4.7      | 280       | 295   | 24.4  |  |
| Cerises  | 236         | 130     | 56   | 53           | 15.7   | 11   | 1.6      | 193       | 183   | 15.0  |  |
| South    | 235         | 47      | 98   | 40           | 7.7    | 42   | 13.8     | 130       | 155   | 12.2  |  |
| Newport  | 204         | 182     | 93   | 70           | 11.1   | 14   | 3.2      | 266       | 234   | 10.4  |  |
| Pond     | 224         | 228     | 13.4 | 35           | 16.1   | 98   | 9.7      | 361       | 320   | 20.8  |  |
| Magog    | 223         | 123     | 3.9  | 70           | 6.8    | 189  | 10.8     | 382       | 408   | 16.9  |  |
| Waterloo | 229         | 819     | 19 2 | 459          | 37.7   | 158  | 10 1     | 1435      | 1287  | 124 7 |  |

Table 2.2 Rates of oxygen uptake (mg  $O_2 m^{-3} d^{-1}$ ) in dark-bottle incubated samples. SE = standard error of mean (n = 3).

depth-averaged maximum annual respiration rate of 20 mg  $O_2$  m<sup>-3</sup> d<sup>-1</sup> was lower than our measurements. But this lake was more oligotrophic (summer  $PO_4-P = 1 \text{ mg m}^{-3}$ ) than any of ours (Table 2.1). Hence our respiration measurements are consistent with previous results.

## Relationships with phosphorus:

Over 85% of the variation in the log transformed total epilimnetic respiration rate is explained by variation in the total phosphorus concentration. Potential bias due to the high value for Lake Waterloo was verified by calculating a separate relationship for the remaining points. The resulting parameters (3.017, 0.824) were not significantly different (P<0.01) from those for all thirteen points (Figure 2.1). Total phosphorus (Table 2.1) also predicts a significant portion of the variation in individual size class respiration rates (Table 2.2; Figure 2.2).

Phosphorus is strongly correlated with the chlorophyll concentration, an indicator of algal biomass (Table 2.3). The parameters of this relationship between base 10 logarithms (-0.72, 1.00) describe a line intermediate between those for Florida lakes (-0.15, 0.74; Canfield 1983) and for spring turnover phosphorus versus summer mean chlorophyll (-1.14, 1.45; Dillon & Rigler 1974). Our parameters are individually

FIGURE 2.1. The relationship between the total epilimnetic phosphorus concentration and the plankton community metabolic rate. The regression lines with and without Lake Waterloo (n = 12 and 13) are not statistically different from one another (P>0.05).

FIGURE 2.2. The relationships between the total epilimnetic phosphorus concentration and the respiration rates of three plankton size classes. In each case, n = 13.





1

Total phosphorus (mg m<sup>-3</sup>)

Metabolic rate (mg  $O_2$  m<sup>-3</sup> d<sup>-1</sup>)

Table 2.3. Parameters of the Model I predictive regressions between logarithms of the variables measured Natural logs were used in every case, except #4, where base 2 was used. In every case P< 005, except #10, where P<.05. Abbreviations are defined in the footnotes.

|                  | Varia              | bles Ir   | ntercept          | SELO                  | Slope                                | SELT              | SEast                                           | R <sup>2</sup>  | F     | n    |
|------------------|--------------------|-----------|-------------------|-----------------------|--------------------------------------|-------------------|-------------------------------------------------|-----------------|-------|------|
|                  | Dep.               | Ind.      | p <sup>0</sup>    |                       | bı                                   |                   | est                                             |                 |       |      |
| 1.               | SR                 | TR        | - 0.3             | 1 0 242               | 1 059                                | 0.045             | 0.119                                           | 0 980           | 551   | 13   |
| 2.               | MR                 | MV        | -16.50            | 0 324                 | 0 728                                | 0.041             | 1.37                                            | 0.894           | 313   | 39   |
| 3.               | TR                 | sv        | 3.34              | 0.529                 | 0 754                                | 0.194             | 0.515                                           | 0 579           | 15    | 13   |
| 4.               | N                  | MV        | 5 756             | 5 0 058               | -0 793                               | 0.005             | 1.900                                           | 0 937           | 24624 | 1647 |
| 5.               | R/B                | MC        | -1.871            | 0.262                 | -0.295                               | 0.041             | 1.364                                           | 0.589           | 53    | 39   |
| 6.               | TR                 | TP        | 2 932             | 2 0.310               | 0 858                                | 0.107             | 0.304                                           | 0 854           | 64    | 13   |
| 7.               | sv                 | TP        | 0 700             | 0 553                 | 0 692                                | 0.191             | 0.541                                           | 0 544           | 13    | 13   |
| 8.               | Rs                 | TP        | 2,13              | 5 0 629               | 0.909                                | 0.217             | 0.616                                           | 0 614           | 18    | 13   |
| 9.               | R                  | TP        | -1.278            | 3 1 230               | 1 579                                | 0.425             | 1.204                                           | 0.557           | 14    | 13   |
| 10.              | Ri                 | TP        | 0,423             | 3 1.260               | 1 095                                | 0.435             | 1.233                                           | 0.365           | 6     | 13   |
| 11.              | MP                 | MC        | -4 269            | 9 0.194               | 0,795                                | 0 030             | 1.010                                           | 0.950           | 703   | 39   |
| 12.              | CH                 | TP        | -1.650            | 0 447                 | 1 003                                | 0.151             | 0.171                                           | 0.815           | 44    | 12   |
| 13.              | PR                 | TP        | -0.729            | 0.287                 | 1.694                                | 0.084             | 0.665                                           | 0.863           | 410   | 67   |
| 14.              | PR                 | TR        | -2.68             | 7 1.196               | 1 537                                | 0.222             | 0.626                                           | 0.81            | 48    | 13   |
| SR<br>TR         | = summa<br>= tota  | ed respir | ration rat        | e of all<br>ation rat | three size<br>e (mg O <sub>2</sub> r | e classe<br>n d') | s (mg O <sub>2</sub> i                          | m d             | )     |      |
| R <sub>s</sub> , | R <sub>m</sub> , R | ( = respi | iration ra        | ites of sm            | all, međiu                           | um, and I         | large siz<br>(mg O <sub>2</sub> m <sup>-1</sup> | g classe<br>d ) | 28    |      |
| 57               | = summ             | ea volume | e of all <b>t</b> | inree size            | classes                              | (ppm)             | _                                               | 1               |       |      |

 $MR = mean respiration rate of an individual organism (<math>\mu g O_2 d^{-1}$ ) MV = mean volume of an individual organism ( $\mu m^{-3}$ )

TP = total epilimetic phosphorus concentration (mg  $\pi^{-3}$ ) N = density of organisms in a size class (x10<sup>-3</sup> mL<sup>-1</sup>)

MP = mean phosphorus content per organism (pg)

MC = mean carbon content per organism (pg)

R/B= ratio between size class respiration and size class biomass (d<sup>-1</sup>) CH = epilimmetic chlorophyll-a concentration (mg m<sup>-3</sup>) PR = estimated primary production (mg C m<sup>-3</sup> d<sup>-1</sup>)

not significantly different from those calculated for the same lakes by Pace (-0.53, 1.05; 1984), although their joint distribution is significantly different (P<0.01).

The total phosphorus concentration and the total biovolume are also highly significantly correlated, as are total respiration and total biovolume (Table 2.3). Some coefficients of determination in Table 2.3 are lower than those reported elsewhere for similar relationships (e.g. Peters 1986) because they are based on point values rather than seasonal means.

The trophic response of total respiration may be compared with that of total production. It is well known that production is higher in lakes with higher phosphorus concentrations (e.g. Gelin and Ripl 1978, Elser et al. 1986). Smith (1979) showed that growing season mean primary production (mg C m<sup>-3</sup> d<sup>-1</sup>) is linearly related to the total phosphorus concentration. Transforming his data for a direct comparison with our results, we found the following relationship between mean production and total phosphorus concentration:

 $\ln PROD = -0.729 + 1.694 \ln TP$ 

The parameters of this relationship may be compared with those (1.951, 0.858) for the trophic response of respiration (mg C m<sup>-3</sup> d<sup>-1</sup>). At the lowest observed level of phosphorus (4 mg m<sup>-3</sup>), production is 5 mg C m<sup>-3</sup> d<sup>-1</sup>, whereas the predicted respiration rate is 23 mg C m<sup>-3</sup> d<sup>-1</sup>. But as phosphorus increases,

production increases faster than respiration. Production equals respiration at about 25 mg TP m<sup>-3</sup>. In eutrophic systems beyond this point production exceeds respiration. Only 3 of our 13 lakes exceeded this threshold.

The ratio between production and respiration is a characteristic of the ecosystem, and is not size-dependent (Humphreys 1979; Banse & Mosher 1980; Schwinghamer et al. Hence a regression of production vs respiration over 1986). systems with roughly the same ratio should have a slope not significantly different from unity. A steeper slope would indicate a trend to an increasing ratio within the sample. The comparison in the preceding paragraph suggests that the production/respiration ratio is not constant in our data set. A regression between respiration and estimated production reveals an increasing trend in the P:R ratio:

ln PROD = -2.687 + 1.537 ln RESP The slope is significantly greater than unity (P>0.05).

Because these comparisons involve average trends from quite different water bodies, the discrepancy between production and respiration cannot be interpreted very closely. Nevertheless, the magnitude of the P:R ratio in oligotrophy (0.22) requires some explanation. Because the respiration rates are consistent with other estimates for plankton respiration and with allometric estimates of respiration for the different size classes (see below), one cannot easily dismiss the low P:R ratios as an artefact. Instead, the low ratio suggests some source of fixed carbon other than primary production. In oligotrophic Lake Almind, Denmark, bacterial uptake of dissolved organic carbon (DOC) accounted for 75% of daily carbon fixation (Sondergaard et al. 1988). A similar supplement would restore the carbon balance in our oligotrophic lakes.

The DOC pool in these lakes, calculated from lake colour, varies between 2 and 4 mg C  $L^{-1}$  (Rasmussen, unpublished). These levels are larger than those estimated for Lake Almind, and if similar mechanisms are at work, they would be sufficient to explain the excess of respiration over production in some of our lakes.

If we are correct in suggesting that DOC plays so important a role in oxygen metabolism in the surface waters of oligotrophic lakes, then these lakes are dependent upon energy subsidies from the watershed. As lakes become progressively more eutrophic, this subsidy becomes less important. As a result, metabolism rises more slowly than primary production with eutrophy. In eutrophic lakes, here as elsewhere, production exceeds respiration.

## Allometric relationships:

In order to test the applicability of allometric relationships based upon laboratory studies to our field samples, we needed to estimate mean organism size and corresponding mean individual respiration rates. The mean organism size in each size fraction was estimated by dividing the class biovolume by the number of organisms (Table 2.4). The individual respiration rates were similarly calculated by dividing the respiration rate of the size class by the number of organisms in the class. This procedure is valid only if the sum of the size class rates approximates the observed community total. Table 2.2 shows that this is so. A regression between the mean sizes and the mean respiration rates per organism measures the allometric response of respiration to body size in mixed natural plankton communities. This relationship (Figure 2.3) is highly significant  $(R^2 = 0.89, P<.005)$ , and has a slope of 0.73.

Several relationships between metabolic rate and body size have been determined for planktonic organisms (Table 2.5, Figure 2.4). These relationships differ methodologically from the regression calculated in this paper in that cultured organisms from specific taxa were used. We used natural communities divided into three size classes, measuring the true mean size of the organisms in each class for each sample. The

| classes        | . MV      | = mean                                     | volume         | (μm <sup>3</sup> ). | Volume            | in p            | om ≃ µµm"       | x10 <sup>-0</sup> | ຫ∟ື່.              |                 |       |
|----------------|-----------|--------------------------------------------|----------------|---------------------|-------------------|-----------------|-----------------|-------------------|--------------------|-----------------|-------|
|                |           | <0                                         | .5 <i>ji</i> m | ESD                 | 5 -               | <u>40 μ</u> ι   | n ESD           |                   | -40 μm             | ESD             |       |
| Lake<br>Julian | &<br>date | N ml <sup>-1</sup><br>(x10 <sup>-3</sup> ) | MV             | Volume<br>(ppm)     | N ml <sup>*</sup> | <sup>1</sup> MV | Volume<br>(ppm) | N ml              | . <sup>-1</sup> MV | Volume<br>(ppm) | Total |
| Orford         | 237       | 1522                                       | 0.46           | 0 <b>.70</b>        | 5220              | 1460            | 7.62            | 70                | 89282              | 6.25            | 14.6  |
| Stukely        | 230       | 2030                                       | 0.33           | 0.66                | 5520              | 1295            | 7.15            | 12                | 115737             | 1.39            | 9.2   |
| Orford         | 203       | 1516                                       | 0.46           | 0.70                | 3000              | 1550            | 4.65            | 18                | 95544              | 1.72            | 7.1   |
| Lyster         | 227       | 1434                                       | 0.64           | 0.91                | 3840              | 1456            | 5.59            | 57                | 840 <b>06</b>      | 4.79            | 11.3  |
| North          | 226       | 2615                                       | 0.33           | 0.85                | 5350              | 813             | 4.35            | 60                | 64145              | 385             | 9.1   |
| Baldwin        | 225       | 3302                                       | 0.30           | 0.97                | 2710              | 1022            | 2.77            | 15                | 324450             | 4.87            | 8.6   |
| Central        | 228       | 5858                                       | 0.17           | 1.00                | 4260              | 1822            | 7.76            | 129               | 110870             | 14.31           | 23.1  |
| Cerises        | 236       | 3474                                       | 0.37           | 1.30                | 5680              | 711             | 4.04            | 49                | 103040             | 5.05            | 10.4  |
| South          | 235       | 5794                                       | 0.19           | 1.08                | 9300              | 887             | 8.25            | 125               | 89 <b>884</b>      | 11.24           | 20.6  |
| Newport        | 204       | 2764                                       | 0.29           | 0.81                | 1780              | 860             | 1.53            | 29                | 234445             | 6.82            | 9.2   |
| Pond           | 224       | 4063                                       | 0.22           | 0.89                | 9360              | 255             | 2.39            | 29                | 258342             | 7.51            | 10.8  |
| Magog          | 223       | 3438                                       | 0.25           | 0.87                | 7000              | 641             | 4.49            | 52                | 136687             | 7.12            | 12.5  |
| Vaterloo       | 229       | 9143                                       | 0.48           | 4.43                | 18890             | 1589            | 30.02           | 1259              | 81541              | 102.7           | 137.1 |

Table 2.4. Numbers, mean sizes, and total volumes of organisms in the three size classes. MV = mean volume ( $\mu m^3$ ). Volume in ppm =  $\mu m^3 \times 10^{-6} m L^{-1}$ .

I
FIGURE 2.3. The relationship between the mean size of plankton in screen-separated assemblages and the mean metabolic rate per organism.

Į

FIGURE 2.4. A comparison of five regressions between body size and metabolic rate for planktonic organisms. Only regression #4 (this study) is based on natural community samples separated by size only.







Table 2.5. Parameters of linear regressions between natural logarithms of metabolic rate (pg  $0_2$  d<sup>-1</sup>) of individual organisms and body size ( $\mu$ m<sup>3</sup>). Most relationships had to be transformed to these common units. The unknown precision of these transformations precludes the setting of confidence limits on the intercept. Although the slope parameter does not change under transformation of units, its standard error may be affected. So, the CI shown here may be too narrow. The intercepts shown have been backtransformed from the log scale to the metabolic rate scale.

|               |               |           | Backt                | Backtransformed |       |                    |   |      |            |             |  |
|---------------|---------------|-----------|----------------------|-----------------|-------|--------------------|---|------|------------|-------------|--|
| Organisms     | Size<br>(ESD) | ra<br>11n | inge<br>m)           | Intercept       | Slope | 95% CI<br>of Slope |   |      | Source     |             |  |
|               |               |           |                      |                 |       |                    |   |      |            |             |  |
| Algac         | 3             | -         | 40                   | 0.242           | 0.90  | 0.79               | - | 1.02 | Banse (19  | 976)        |  |
| Unicells      | 0.6           | •         | 60                   | 0.045           | 0.83  | 0.72               | - | 0.94 | Robinson   | et al(1983) |  |
| Unicells      | 1.2           |           | 125                  | 0.507           | 0.76  | 0.72               | - | 0.80 | Hemmingsen | (1960)      |  |
| Protozoa      | 12            | -         | 270                  | 6.596           | 0.68  |                    |   |      | Klekowski  | (1981)      |  |
| Euk. unicells | 130           | •         | 250                  | 0.628           | 0.74  | 0.66               | - | 0.82 | Banse (19  | 82)         |  |
| Rotifers      | 100           | •         | 230                  | 19.936          | 0.52  | 0.21               | - | 0.82 | Banse (19  | 82)         |  |
| Zooplankton   | 300           | -         | 14.4x10 <sup>3</sup> | 0.979           | 0.84  | 0.82               |   | 0.85 | Ikeda (19  | 85)         |  |
| Crustaceans   | 250           | -         | 17x10 <sup>3</sup>   | 2.943           | 0.78  | 0.77               | • | 0.80 | Ivleva (1  | 980)        |  |
| Poikilotherms | 780           |           | 5 7×10 <sup>5</sup>  | 1.623           | 0.74  | 0.72               | • | 0.76 | Hemmingsen | (1960)      |  |
| Plankton      | 07            | -         | 85 <sup>a</sup>      | 0.068           | 0.73  | 0.65               | - | 0.81 | This pape  |             |  |

<sup>a</sup>Median sizes per class.

transformations required to standardize the units and permit comparisons would affect the confidence limits on the parameters to an unknown and variable degree. However we were able to compute 95% confidence limits for our own parameters. Five of the nine slope estimates in Table 2.5 are not significantly different from ours. Furthermore, the intercepts (at a body size of 1  $\mu$ m<sup>3</sup>) from those three regressions which include organisms as small as the picoplankton are similar to ours. Finally, our predicted respiration rates for picoplankton are only about 50% higher than those predicted by the Robinson et al (1983) unicell regression, and about 50% lower in the upper size range of their data set. The mean respiration: biomass ratios (R:B) for picoplankton, nannoplankton, and netplankton respectively were 0.727, 0.038, and 0.027 per day. The ratio declined as a power function of mean organism size, with an exponent of -0.30 (Figure 2.5). The slopes of the relationships of both P:B and R:B to body size tend to decrease with increasing ranges body sizes in taxonomically of homogeneous laboratory samples (Banse and Mosher 1980, Dickie This is also true for at least some field et al. 1987). samples from mixed communities: for example Schwinghamer et al. (1986) fitted slopes of -.304 and -.337 to the relationships between R:B and size of marine benthic meiofauna and macrofauna respectively, whereas the slope of the regression for both size groups combined was only -.21. Both Banse and Mosher (1980) and Dickie et al. (1987) have

FIGURE 2.5. The relationship between the respiration/biomass ratio and the mean size of plankton in screen-separated assemblages from natural plankton communities.



l

Ţ

Mean size (pg C/cell)

speculated that the steeper slope within more homogeneous groups (e.g. meiofauna, fish) reflects an ecological scaling factor, compounding the overall general power relationship between metabolic rate and body mass. Our R:B versus body size regression has a slope (-0.30) which is intermediate between the two extremes (-0.21 for the large scale regression, -0.37 for more homogeneous groups). This might be expected, since our size range is relatively small (compared to the range from bacteria to whales), yet we have a mixture of taxonomic and ecological types (prokaryotes and eukaryotes; autotrophs and heterotrophs; unicells and small metazoans, etc.). However, there is the alternate possibility that the proposed ecological scaling factor is in part a statistical artefact, since the probability of obtaining a steeper regression slope increases as the range of the independent variable decreases (Peters 1988).

Dickie et al. (1987) argued that the ecologically-realized respiration rate for individual organisms, termed an "ecological food requirement", should be proportional to the 0.67 power of body size. Because we did not measure individual rates, but have estimated them by calculating means, our regression is a crude test of this hypothesis with respect to natural plankton communities. However, our exponent of 0.73 is not significantly different from 0.67. These authors based their conclusion on parameter estimates for herbivorous

mammals. They noted that density was proportional to the -0.75power of body mass, and that the ratio B:R is proportional to the 0.33 power. We tested these hypotheses with respect to the plankton. Using a large set of size distribution data (n = 1647) collected in our lakes throughout the summer of 1987, we found that density was proportional to the -0.79 power of body mass (Figure 2.6), which does not differ significantly from the mammalian result. B:R was proportional to the 0.30 power of body mass, which is not significantly different from 0.33. Our results confirm that the mean respiration rate per organism in lakes, as well as in fields, scales to the 2/3 to 3/4 power of body size. Our value is intermediate in this range. Of course, even if some particular data set were to yield values significantly different from one extreme or the other, this statistical observation in itself could not establish the conclusion that specific ecological or physiological mechanisms are at work. But our allometric relation for field metabolism particularly significant for its demonstration that is laboratory-based respiration rates and allometric relations can be extrapolated to the field. This is often assumed in limnology, but rarely demonstrated.

It has often been noted (Hemmingsen 1960; Banse 1976) that the common size dependence of growth, respiration, and photosynthesis would suggest that numerous underlying physiological processes are size dependent. In the last ten FIGURE 2.6. The relationship between body size and density in natural plankton communities. Estimated densities were based on microscopic counting of abundance in as many as 39 size intervals in 58 plankton samples collected throughout the summer of 1987 at 15 lake sites in southern Quebec. Organism size doubles from one interval to the next (log two scale).



I

Body size (um<sup>3</sup>)

years new data and re-analyses of existing data have borne out this contention (e.g. Blueweiss et al. 1978, Schlesinger et al 1981, Knoechel and Holtby 1986, Ikeda 1985, Fenchel 1974, Peters 1983, Calder 1984). The exponents of the allometric dependences of production, growth, and turnover rates on body size may be predicted from the exponent of the equation for For example, if respiration rate (e.g. Dickie et al. 1987). growth and respiration rate are related to body size by a common exponent of 0.75, then the instantaneous rate of increase (r) is a power function of body size with an exponent Platt and Silvert (1981) have proposed that the of -0.25. respiration rate exponent for aquatic organisms is 0.67, and it is 0.75 for terrestrial organisms. Confidence that intervals about the exponents found in most studies do not permit a test of this hypothesis (Table 2.5), but some aquatic results are significantly higher than 0.67 (e.g. Banse 1976), and others are even higher than 0.75 (e.g. Ivleva 1980, Ikeda 1985). Perhaps more remarkable than the question as to whether a particular rate has an exponent closer to 0.67 or to 0.75 is the observation that many studies using different methodologies, very different organisms, and different environments yield fairly similar results. We have shown that the relationship between metabolic rate and body size in field communities is not different from that which would be predicted from more restricted laboratory relationships.

CHAPTER III

1

I

LOGARITHMIC TRANSFORMATION IN

PREDICTIVE ECOLOGY

### ABSTRACT

Ecological data are frequently log transformed prior to the development of linear regression models, which are then used for prediction on the original untransformed scale. In this paper, the rules for backtransformation are elucidated. A theorem is presented, which sets limits to the relationship between the coefficients of determination on the original and transformed scales. Simulated data and empirical results from limnology are used to illustrate the applications and limitations of the theoretical part of the paper.

#### Introduction

Predictive ecologists use regression analyses of loq transformed data extensively (e.g. Peters 1986). Regression establishes quantitative relationships between variables, without addressing issues of mechanism or causality. Each regression is in itself a predictive model applicable to new data drawn from the same populations as the original sample data used in the regression. Since its proponents eschew questions of mechanism (Peters 1983), predictive ecology often resembles a specialized branch of applied regression analysis. At present, the theory and techniques of linear regression are far more advanced than those of non-linear models (e.g. Draper & Smith 1981; Seber 1977). Hence ecologists are frequently obliged to transform non-linear phenomena for analysis in a linear framework.

The conventional linear regression model requires that the variance of the response variable be constant at all levels of the regressor variable(s), that the deviations of repeat observations of the response at a given value of the regressor(s) have an expected value of zero, and that these deviations be uncorrelated (Draper & Smith 1981). Logarithmic transformation of original data following a "power" or exponential curve will often generate new variables which satisfy these requirements. The further requirement that the

above deviations be normally distributed about zero is not essential to regression analysis, but it is essential to the use of the t and F distributions. If the data are normal, then these distributions may be used to establish confidence limits, test the significance of the regression results, and evaluate the precision of predictions, using the original or other suitable data. In practice, if the other conditions of regression analysis are met, then ecologists usually assume that the normality assumption is also met. In most cases the data are not remarkably deviant, and this assumption is a minor source of error. If the results of the regression analysis are satisfactory (high  $R^2$  and low MSE relative to the mean value of the response), then one can draw descriptive conclusions about the relationship between the variables.

This paper addresses the problems which arise when a regression on log transformed data is intended for predictions, beyond the simple description of a trend. These problems concern the correct computation of statistics and predictions for the original variables, when the regression was performed on transformed data. Rules for backtransformation will be elucidated, since these have been ambiguously represented in the ecological literature (Sprugel 1983). The variance and confidence limits on predictions will be related to the broader question of what it is we want to predict. The coefficient of determination ( $R^2$ ) expresses the proportion of variation in the

dependent variable explained by the regression on the independent variable(s), but this value does not apply to backtransformed values, if the regression was performed on log transformed data. A formula for the calculation of the backtransformed  $R^2$  appropriate in many cases is presented in a theorem. Other, less idealized cases, are treated in a simulation exercise. Finally, these statistical results are compared with the analysis of some results in predictive limnology, relating plankton respiration rates to body size and phosphorus concentrations.

Problems of Backtransformation

1. The Correction Factor:

The regression between two log transformed variables produces a series of predicted mean values  $y_1$ , each with its own standard error

 $s_i = SEE[1/n + (x_1 - \mu)^2 / \Sigma (x - \mu)^2]$ 

where SEE is the standard error of the estimate, or square root of the mean squared error (MSE) of the regression,  $\mu$  is the mean value of the independent variable, and x, is the value of x yielding the prediction y, (Draper and Smith 1981). This formula is simply the straight line case of the more general multiple regression formula

 $s_1 = SEE[x_1, (X'X)^{-1}x_1']$ 

where  $\mathbf{x}_i$  is the vector of values of the independent variables

yielding the prediction y,, and X is the matrix of observations (Seber 1977). Each such prediction is expected to be normally distributed, but it is sufficient that it be unimodal and free from skewness and kurtosis. The antilogarithm of each prediction y, corresponds to a prediction on the scale of the original data, prior to the logarithmic transformation. However, on this scale, the errors are lognormally distributed, skewed to the right. Hence the antilogarithm of the mean y, yields the median on the original scale, but not the mean of the antilogs.

The correction factor required to estimate the mean of a backtransformed prediction may be derived as follows. For simplicity, and without loss of generality, we may assume that natural logarithms were used in our regression. Now the moment generating function (Hogg and Craig 1978) of a normally distributed random variable y with mean  $\mu$  and variance  $\sigma^2$  is

 $E[e^{ty}] = exp[\mu t + \sigma^2 t^2/2]$ , for all real t. Hence, the mean prediction of exp[y] at x, is

 $E[e^{y_1}] = exp[y_1 + s_1^2/2]$ , which yields the correction factor  $exp[s_1^2/2]$ .

This correction factor has been presented several times in the recent ecological literature (Baskerville 1972; Sprugel 1983; Lehman 1988; Welsh et al. 1988). However, none of these references make clear what formula is to be used for the standard error, when regression estimates are backtransformed. In fact, Sprugel (1983) incorrectly states that the regression SEE should be used in computing the above correction factor. But it is essential to use the standard error of the prediction y, here, rather than the overall regression standard error, as was incorrectly recommended by Sprugel. Hence the correction factor is not constant for all predictions from a single regression, but increases with distance from the overall mean of the logged observations.

# 2. Confidence and Predictions:

The variance of the predictions on the scale of the original data may be calculated from the variance of the predictions from the regression using the formula

 $Var(exp[y]) = exp[2y_1 + s_1^2](exp[s_1^2]-1)$ 

However, this result cannot be used to calculate confidence limits in the usual fashion, based on the t distribution, since this assumes normality. The simplest procedure to calculate confidence limits on a corrected backtransformed mean prediction is to calculate the confidence limits on the regression prediction (still on a natural log scale), followed by backtransformation and correction using the same correction factor as was used for the mean. This results in an appropriately asymmetric confidence interval.

This result is pertinent to the choice of what we want to

If we choose to predict the mean, then this will predict. correspond to the average of a long run of observations. But this predicted value will be higher than most individual A smaller number of very large values will observations. account for the expectation of eventually attaining the mean. If a correction factor is not used, then we have chosen the median by default. Our predictor will be lower than the long term average. These facts, combined with the asymmetry of the confidence interval, justify the choice of the median (no correction factor) to predict an individual value. A greater proportion of the observations will be closer to this value than to the corrected mean. However, the mean should be used to predict the average of a set of observations of the dependent variable.

## 3. The Coefficient of Determination:

The coefficient of determination, equal to the square of the correlation coefficient, is the proportion of the variation in the observed values of the dependent variable which is accounted for by the regression model. But if the data undergo a logarithmic transformation prior to analysis, then the coefficient of determination does not describe the variation of the original observations accounted for. It applies only to the log transformed values. Appendix 2 shows that if the two variables,  $y_1$  and  $y_2$ , in a straight line regression have a bivariate normal distribution, then the coefficient of

coefficient of determination between  $exp[y_1]$  and  $exp[y_2]$  is

$$r_{z}^{2} = \frac{(\exp[r\sigma_{1}\sigma_{2}] - 1)^{2}}{(\exp[\sigma_{1}^{2}] - 1)(\exp[\sigma_{2}^{2} - 1))}$$

and this value is less than or equal to  $r^2$  between  $y_1$  and  $y_2$ , with equality occurring only at r = 1 or 0 (Appendix 2). As Figure 3.1 shows, negative correlations are reduced more by exponentiation than are positive ones, and the difference between coefficients of correlation on the logarithmic and exponential scales increases rapidly with increasing variance.

In order to meet the requirements for linear regression, a set of data does not have to have a bivariate or multivariate normal distribution. This is the "ideal" regression situation, elliptical cloud of points where an has a major axis corresponding to the regression line. But even when the predictor(s) and response are normally distributed, they are not necessarily bi- or multivariate normal. For example, there might be two or more clusters of data aligned on the regression Under these circumstances, the above formula for the line. coefficient of determination between the exponentiated variables does not apply, and the correlation on the log scale may sometimes be lower than that on the exponential scale. However, if the response and the predictor(s) are jointly multivariate normal, then the regression predictions and the observed values of the response are expected to be samples from FIGURE 3.1. Relationship between the correlation of bivariate normal variables and the correlation of their exponents. Trend lines are shown for six different combinations of standard deviations.

.

r ž



Correlation (exponents)

ř

Į

a bivariate normal distribution, and the above formula will apply. In this case, s, and s, are the respective standard errors of the observed and predicted values of the response Caution must be exercised in interpreting the variable. coefficient of determination. It always expresses the proportion of variation in the response variable explained by a regression on the predictor variable(s). When the conditions of linear regression are met, and especially when all variables have a multivariate normal distribution, concerned the explained and residual variance are distributed randomly among But when the data are exponentiated, distributions the data. are lognormal, and the explained variation is systematically distributed, with unexplained variation due primarily to the skewed pattern in the data. Under these circumstances, the coefficient of determination when correctly calculated with the data on the exponential scale expresses the proportion of variation explained, but this may be an operationally useless observation. In the extreme case, with a cloud of data at one end of the graph and one point at the other,  $r^2$  may depend entirely upon that one point, and provide no information about the rest of the data.

## Simulation

In order to observe the behaviour of  $r^2$  under exponentiation when the requirements of multivariate normality were not met,

simulation data were generated: at 100 values of the independent variable (0.1 to 10, by intervals of 0.1), the dependent variable values were calculated in the following manner. A vector of 500 "observations" was constructed, with 5 values at each X spaced symmetrically around the X value. Thus at X = 5 for example, the five Y values were 2, 4, 5, 6, and 8. The same deviations were set at each X value, to ensure homogeneity of variances. Then five different random samples were selected from this population (without replacement), with sample sizes of 10, 25, 50, 100, and 200. The coefficient of determination (squared correlation coefficient) was calculated for each sample, as well as for the antilogs of both the X and the Y values. These transformed values are analogous to the skewed backtransformed estimates obtained after linear logarithmic regression on data which has undergone а transformation. This procedure was repeated 100 times.

Almost all coefficients of determination for the data with homogeneous variance (original samples = "logarithmic" scale) were higher than those for the antilogged data (Figure 3.2A). Median correlations on the log scale were invariably higher than on the antilogged ("exponential") scale (Figure 3.2B). Median coefficients for the original samples did not differ significantly with sample size. However, the coefficients of antilog data actually decreased with increasing sample size. This is due to the increasing numbers of repeat observations

(A) Comparison between the coefficients of FIGURE 3.2. simulation data before and after determination for the The X-axis coefficient is for the original transformation. data, where the dependent variable has homogeneous variance throughout the range of the independent variable. The Y-axis gives the coefficient for the relationship after both variables have been exponentiated. There are 500 points, 100 for each of five sample sizes. (B) The median correlations for each of the five sample sizes plotted in Figure 3.2A. The 1:1 line and 95% confidence intervals are shown. (C) Standard deviations of the correlation coefficients calculated in the simulation. The fiducial standard deviation is based on a formula which only applies if the underlying data are normally distributed. The "logarithms" are data with homogeneous variance of the dependent variable, whereas the third bar is for the exponents of these same data.







Correlation

(exponents)







Standard deviation

I

Sample size

at individual X values. In any data set, when different repeat observations of the dependent variable are available at given values of the independent variable, then the maximum possible  $r^2$  is less than one. The increasing number of repeat observations had a greater impact on the antilog data since the individual observations were not symmetrically distributed about the median values, and the total sum of squares is potentially greater. The resulting median values of the coefficient of determination are summarized in the following table.

|             | Original data with | Between        |  |  |
|-------------|--------------------|----------------|--|--|
| Sample size | stable variance    | exponents      |  |  |
|             | r <sup>2</sup>     | r <sup>2</sup> |  |  |
|             |                    |                |  |  |
| 10          | 0.711              | 0.699          |  |  |
| 25          | 0.677              | 0.413          |  |  |
| 50          | 0.682              | 0.288          |  |  |
| 100         | 0.674              | 0.263          |  |  |
| 200         | 0.675              | 0.242          |  |  |

With a small sample size (10) and few repeats, a regression between these log transformed values would be expected to explain about 71% of the variation, corresponding to about 70% of the variation in the backtransformed data. At a larger sample size (200) with more repeats, the log:log regression would explain about 68% of the variation, corresponding to only 24%-41% of the backtransformed values.

Confidence limits on the correlation coefficients were calculated by first computing the empirical standard error of the z transformation of the coefficient, calculating the upper and lower 95% limits on z, and then backtransforming to the r scale. The empirical results for the log data were similar to fiducial standard errors, equal to  $(n - 3)^{-0.5}$  (Snedecor & Cochran 1967), which assume normality of the underlying data (Figure 3.2C). All standard errors decreased with increasing sample size (Figure 3.2C). At all sample sizes, the correlation coefficients of the log data had substantially lower standard errors than those for the exponentiated data (Figure 3.2C), resulting in narrower confidence regions (Figure These limits express the confidence one has in the 3.2B). statement that variation in one variable accounts for a certain percentage of the variation in the other variable. This modelling exercise has shown that, for this data set at least, regression with homogeneous variance of the response accounts for a higher percentage of the total variation than regression between the antilogs of the same variables, and that our confidence in this proportion must be higher.

As a general rule, if the variables of interest have been log transformed prior to the examination of predictive

in linear regression, then statements of relationships confidence should refer to backtransformed (real world) results, using a correction factor if mean values are of "percentage variation interest. Statements about the explained" should not be taken directly from the regression analysis at all. Rather, the squared correlation coefficient backtransformed between the original observations and predictions may be separately calculated. The validity of this statistic does not depend upon normality, and the result is a legitimate expression of the extent to which variability in the independent variable accounts for variability in the dependent variable.

Examples in Limnology

This section will follow up on two empirical relationships in plankton communities, based on a small number of samples collected in Canadian lakes. The respiration rate of plankton assemblages ( $\mu$ g O<sub>2</sub> L<sup>-1</sup> d<sup>-1</sup>) was found to be significantly related to the phosphorus concentration measured in the same water samples (Chapter 2 above). After measuring the abundance of organisms and total volume in these same samples, the calculated mean respiration rate of individual plankton was found to be significantly dependent upon the size of the organisms. In both cases, logarithmic transformation was required prior to regression analysis. So they will be treated as examples in which the implications of the first statistical section of this chapter are explored.

1. Total phosphorus and plankton respiration

The relationships between the total phosphorus concentration and the respiration rates of small (<5  $\mu$ m), medium (5 - 40  $\mu$ m), and large (>40  $\mu$ m) plankton are shown in Figure 3.3 and Table In the first two cases,  $r^2$  is significantly higher 3.1. between the backtransformed values than between the loq transformed data. The presence of an outlier at the high end of both log transformed scales makes it clear that these data do not correspond to bivariate normal distributions (Figure 3.3B). Hence the theorem in Appendix 1 does not apply. The regression lines are clearly strongly determined by one point which accounts for most of the variance in the data set. Hence, the "percentage variation explained" by these relationships is very high, even though it is not very relevant to variation among most of the points. In the third data set, the linear fit is poor (although significant), and on either scale only a small portion of the variation is explained by the regression on the independent variable.

In Figure 3.4, the predicted log values are compared with the input log values. For ease of reference, the axes are labelled with backtransformed (median) units. The statistics of

FIGURE 3.3. (A) The relationship between the total phosphorus concentration and plankton respiration rates, for assemblages of three sizes of organisms collected in Canadian lakes. The least squares regression lines between the logarithms of the data are shown. For each line, n = 13. (B) The data and trend lines from 3a on a linear scale.



ļ

Total phosphorus (mg m<sup>-3</sup>)



Total phosphorus (mg m<sup>-3</sup>)
Table 3.1. Statistics of the regressions between the base 10 logarithms of the total phosphorus concentration (TP) and the respiration rates of small, medium, and large size plankton. In each case, n = 13. The first value of the coefficient of determination is the proportion of the variation in the response variable explained by the predictor variable on a log scale (TP). The second value was calculated between the original variables prior to logarithmic transformation. The third value was calculated between the observed response and the predicted response after correction for backtransformation. The lower part of the table presents statistics of the relationships between the log transformed observations and the predictions of the regressions on TP

|        | Parameters |       | MSE   | F    | Coefficients of determination |      |      |  |
|--------|------------|-------|-------|------|-------------------------------|------|------|--|
|        | 8          | ъ     |       |      | 1                             | 2    | 3    |  |
| Small  | .926       | .909  | .0715 | 17.5 | .614                          | .906 | .906 |  |
| Medium | 555        | 1.579 | .2735 | 13.8 | .557                          | .936 | .958 |  |
| Large  | .184       | 1.095 | .2869 | 6.3  | .365                          | .371 | .313 |  |

Observations vs predictions (log scale):

|        | Para | neters | F.  |       |
|--------|------|--------|-----|-------|
|        | ·a   | Ь      |     |       |
| Small  | .782 | .614   | 3.5 | P>.05 |
| Medium | .601 | .557   | 4.4 | P<.05 |
| Large  | .958 | .365   | 9.6 | P<.01 |

\* This F test compares the joint parameters with the pair (0,1)

.

FIGURE 3.4. The logarithms of measured respiration rates of plankton assemblages compared with the predicted log rates from the three size-specific linear regressions on the log of the total phosphorus concentration. The 1:1 line is shown.



ઇ- U

regressions between these predicted and observed values are presented at the bottom of Table 3.1. Ideally, these lines would have intercepts of 0 and slopes of 1, with equal distributions of points on either side of the line. Only the first fit (for small plankton) is not sign\_ficantly different from this ideal (P>.05). Nevertheless, one is usually more interested in the match between the model results and empirical observations than in the match between log transformed numbers.

In order to examine the success of these models at the scale of observable data, predictions were backtransformed and compared with observed input values (Table 3.2). Backtransformed predictions were evaluated with and without correction. Backtransformation without correction should provide an estimate of median values, whereas use of a correction factor based on the specific standard error results in a mean estimate (as discussed in the first part of this paper). A further estimate, based on a uniform correction using the MSE, was also computed. In general, the correspondence between predicted values and observations reflects the relative precision of these three regressions (Table 3.3, Figure 3.5). Hence, in the case of small plankton, all of the three sets of backtransformed estimates are similar to the observed values, and follow the same trend. In the cases of the other two regressions, all backtransformations deviate significantly from the observed values, both in

Table 3.2. Observed and predicted respiration rates  $(\mu g \ 0_2 \ L^{-1} \ d^{-1})$  for three plankton size classes. Predicted rates are backtransformed from linear regressions between logarithmic transformations of observed rates and total phosphorus concentrations. Median predictions are uncorrected Mean predictions are corrected for backtransformation with the standard error specific to each prediction. MSE-corrected predictions are corrected with a single correction factor for all predictions from the same regression

| Observed       | l rate                  |        | Predic   | ted ra | ates  |              |
|----------------|-------------------------|--------|----------|--------|-------|--------------|
|                |                         | Mediar | n Mo     | ean    | MSE-  | corrected    |
| Small size cla | u <mark>ss</mark> (orga | nısms  | smaller  | than   | 5 µm  | ESD)         |
| 73             |                         | 46     |          | 48     |       | 56           |
| 17             |                         | 47     |          | 49     |       | 57           |
| 42             |                         | 55     |          | 57     |       | 66           |
| 105            |                         | 63     |          | 64     |       | 76           |
| 126            |                         | 82     |          | 83     |       | 99           |
| 59             |                         | 87     |          | 89     | 1     | .06          |
| 206            |                         | 90     |          | 91     | 1     | 08           |
| 130            |                         | 108    | 1        | 10     | 1     | .31          |
| 47             |                         | 121    | 1        | 22     | 1     | 46           |
| 182            |                         | 144    | 1        | 47     | 1     | .75          |
| 227            |                         | 146    | 1        | 48     | 1     | 76           |
| 123            |                         | 238    | 2        | 46     | 2     | 288          |
| 819            |                         | 706    | 7        | 93     | 8     | 353          |
| Medium size cl | .ass (org               | anism  | s betwee | n 5 ai | nd 40 | $\mu$ m ESD) |
| 1              |                         | 5      |          | 6      |       | 11           |
| 88             |                         | 5      |          | 6      |       | 11           |
| 1              |                         | 7      |          | 8      |       | 15           |
| 7              |                         | 9      |          | 10     |       | 19           |
| 21             |                         | 14     |          | 15     |       | 30           |
| 14             |                         | 16     |          | 17     |       | 33           |
| 14             |                         | 17     |          | 18     |       | 35           |
| 53             |                         | 23     |          | 25     |       | 48           |
| 40             |                         | 28     |          | 30     |       | 58           |
| 70             |                         | 39     |          | 41     |       | 80           |
| 35             |                         | 39     |          | 42     |       | 81           |
| 70             |                         | 92     | 1        | 04     | 1     | .89          |
| 459            |                         | 606    | 9        | 47     | 12    | 251          |
| Large size cla | ıss (orga               | nisms  | larger   | than d | 40 µm | ESD)         |
| 20             |                         | 12     |          | 14     |       | 25           |
| 1              |                         | 12     |          | 14     |       | 26           |
| 7              |                         | 15     |          | 16     |       | 31           |
| 70             |                         | 17     |          | 19     |       | 37           |
| 32             |                         | 24     |          | 25     |       | 1            |
| 126            |                         | 25     |          | 27     |       | 54           |
| 59             |                         | 26     |          | 28     |       | 56           |
| 11             |                         | 33     |          | 35     |       | 71           |
| 42             |                         | 38     |          | 40     |       | 80           |
| 14             |                         | 47     |          | 50     | 1     | .00          |
| 98             |                         | 47     |          | 51     | 1     | .01          |
| 189            |                         | 85     |          | 97     | 1     | 82           |
| 158            |                         | 316    | 5        | 04     | f     | 575          |

Table 3.3. Statistics of the regressions between observed and predicted respiration rates (Table 3.2). The second F value refers to a test of the hypothesis that the parameter set is equivalent to (0,1). Significant values correspond to biased fits between predictions and observations.

Small size class

-----

|            | а        | b     | MSE  | r²    | F   | F (vs | 0,1)  |
|------------|----------|-------|------|-------|-----|-------|-------|
| Median     | -0 088   | 1.117 | 4633 | 900   | 100 | 0.96  |       |
| Mean       | 10.038   | 0.990 | 4354 | 906   | 107 | 0.11  |       |
| MSE-corr   | -0 088   | 0.924 | 4633 | . 900 | 100 | 0.60  |       |
| Medium sı  | ze clarr |       |      |       |     |       |       |
| Median     | 16.62    | 0 728 | 664  | .958  | 254 | 17.8  | P< 01 |
| Mean       | 21.97    | 0.462 | 666  | .958  | 253 | 180.9 | P<.01 |
| MSE-corr   | 16.62    | 0 352 | 664  | . 958 | 254 | 485.3 | P<.01 |
| Large size | e class  |       |      |       |     |       |       |
| Median     | 39 29    | 0 453 | 2660 | 357   | 6   | 4.7   | P<.05 |
| Mean       | 45 10    | 0 261 | 2840 | 313   | 5   | 20.3  | P<.01 |
| MSE-corr   | 39 29    | 0 212 | 2660 | 357   | 6   | 48.7  | P<.01 |

FIGURE 3.5. Observed plankton respiration rates compared with the backtransformed predictions from a linear regression between the logs of observed rates and total phosphorus. The predictions are shown with and without correction for backtransformation. The 1:1 line is also shown. Separate panels are shown for small, medium, and large plankton.



Observed respiration (mg  $O_2 m^{-3} d^{-1}$ )

the state

individual precision and in trend. Hence, for predictive purposes in these examples, it makes no significant difference whether one chooses the mean or median predictions. This is clear from the examination of confidence limits on the predicted mean values. Ninety-five percent confidence limits were first calculated for regression predictions. These were then backtransformed and corrected to produce the confidence intervals (Table 3.4). At every point the median values (Table 3.2) are well within the 95% confidence intervals for the means.

## 2. Plankton size and respiration

There is a significant statistical relationship between the mean size and respiration rate of plankton. If the size distribution of a plankton community is known, then predictions from this relationship might be used to estimate the community respiration rate. Using the same respiration data as above, the log of mean organism size explained 89% of the variation in the log of the mean respiration rate, and predictions did not differ significantly from observations (Table 3.5). When the predictions were backtransformed, and compared with the observations, the median and MSE-corrected values performed about as well as the mean values, although the variation in the observations (Table 3.5, Figure 3.6). Hence, in this case the

| TP     | Small |             |      |     | Med | ium  |    | Large |      |  |
|--------|-------|-------------|------|-----|-----|------|----|-------|------|--|
|        | L     | Me          | an U | L   | Me  | an U | L  | Mea   | ın U |  |
| 6 52   | 27    | 48          | 85   | 2   | 6   | 19   | 4  | 14    | 43   |  |
| 6.61   | 27    | 48          | 86   | 2   | 6   | 19   | 4  | 14    | 43   |  |
| 785    | 34    | 57          | 94   | 3   | 8   | 22   | 6  | 16    | 45   |  |
| 9.12   | 40    | 64          | 103  | 4   | 10  | 25   | 7  | 19    | 48   |  |
| 12 22  | 56    | 83          | 125  | 7   | 15  | 34   | 11 | 25    | 56   |  |
| 13 06  | 60    | 89          | 131  | 8   | 17  | 37   | 12 | 27    | 59   |  |
| 13 46  | 62    | 91          | 134  | 8   | 18  | 38   | 13 | 28    | 61   |  |
| 16 56  | 76    | 110         | 160  | 12  | 25  | 52   | 16 | 35    | 74   |  |
| 18 62  | 84    | 122         | 179  | 14  | 30  | 63   | 19 | 40    | 86   |  |
| 22.70  | 98    | 147         | 221  | 19  | 41  | 92   | 22 | 50    | 113  |  |
| 22 91  | 98    | 148         | 223  | 19  | 42  | 93   | 22 | 51    | 115  |  |
| 39 36  | 140   | 246         | 433  | 34  | 104 | 315  | 31 | 97    | 302  |  |
| 130 02 | 274   | 79 <b>3</b> | 2299 | 118 | 947 | 7587 | 60 | 504   | 4247 |  |

Table 3.4 Predicted mean size class respiration rates ( $\mu$ g O<sub>2</sub> L<sup>-1</sup> d<sup>-1</sup>), with upper (U) and lower (L) 95% confidence limits.

Table 3.5. Statistics of the relationship between the natural logarithms of plankton organism size and respiration rate (n - 39) At the bottom of the table, the total observed respiration rate in three size classes in thirteen different lakes (n = 39) is compared with predicted rates estimated by applying the results of the regression between size and respiration to the known detailed size composition of these samples

a b MSE  $r^2$  F F (vs 0,1) ln(size) vs ln(resp) -16.502 0.728 1.8656 .894 313 observed vs pred. -1.296 0.894 1.6684 894 313 ?2 Observed vs predicted (after backtransformation)

| Median        | .0000792 | 0.09 | 15 <0.0001 | . 527 | 41 | 2186 |
|---------------|----------|------|------------|-------|----|------|
| Mean          | .0000833 | 0 09 | 74 <0.0001 | . 531 | 42 | 1932 |
| MSE-corrected | 000201   | 0.23 | 25 <0.0001 | 527   | 41 | 230  |

Size class respiration (predicted vs observed).

ì

| Median | 25.184 | 0.351 | 3264 | 456 | 31 | 69 |
|--------|--------|-------|------|-----|----|----|
| Mean   | 26.221 | 0 369 | 3449 | 467 | 32 | 55 |

FIGURE 3.6. Observed mean respiration rates of individual plankton organisms compared with mean rates predicted from a linear regression between the logarithms of mean size and mean rate. Observations were taken on three broad size intervals. Predicted rates are shown with and without correction for backtransformation. This figure is shown on a logarithmic scale to facilitate examination of the results. The 1:1 line is shown.



coefficient of determination was lower after backtransformation. If the log-transformed data had been bivariate normal, which they clearly are not (Figure 3.6), then the theorem in Appendix 1 would predict a maximum  $r^2$  after backtransformation of 15.1%, significantly lower (P<.05) than the empirical result of 59%.

The relationship examined in the previous paragraph was based size and respiration measurements on mean on plankton communities screened into three broad size classes. When this relationship between size and oxygen consumption rates is applied to the known finer size distribution of these same samples (39 size classes), and the finer size class predicted respiration is recombined to generate predictions for the three coarser size intervals, the mean and the median predictions performed equally well, explaining about 47% of the variation in the observations (Table 3.5, Figure 3.7). This suggests that the relationship between size and oxygen consumption is a real one, even at very fine scales of observation.

## Conclusions

This paper has discussed three related problems encountered in the interpretation of log-transformed predictive regressions. The juxtaposition of theoretical results with a simulation and some empirical regressions from limnology justifies the FIGURE 3.7. Observed respiration rates of 39 plankton assemblages (three size intervals from each of 13 lakes), compared with predicted rates from a regression between mean size and mean individual rate, combined with detailed data on the size composition of each size interval.



following conclusions:

1. If regression results are to be used to predict mean values of the response variable, then the appropriate correction factor must be used after backtransformation. However, in actual use the magnitude of this adjustment may be very small compared to the mean itself or the width of the confidence interval.

2. If the purpose of the regression is prediction on the scale of the original observations, then it is essential to give statistics to estimate the confidence interval on the backtransformed (observable) scale. When backtransformed to the original scale, 95% confidence intervals for predictions from quite strong regressions may still span a range as large as the mean value.

3. The theorem proved here states that, when logged random variables are multivariate normal, the correlation in the original scale can be no greater than the correlation between the logs. As variance increases, the original scale correlation becomes substantially less. The homoscedastic simulation data analyzed here usually gave a lower r after backtransformation. But this was not always true of the small empirical data sets with less perfect distributions. In the latter case, there is no general formula for predicting the

backtransformed r from the regression r. Hence, the former should be computed directly, and the implication that the proportion of the variation explained by the regression is indicative of expectations for the backtransformed scale should be avoided. Nevertheless, confidence limits on both r and the predictions are often so broad with ecological survey data, that the pretention that one can predict individual values with a "practical" level of precision should usually be avoided. One can be more confident in predictions of mean values. For example, one could predict the total oxygen consumption of small plankton from the measured phosphorus concentration within a 95% confidence range from about one half the predicted mean to about 170% of the mean (near the mid-point of the data distribution used to construct the regression). But predictions of the mean value in a series of lakes with that phosphorus level, or a series of samples from a single lake when the level was reasonably stable (or recurring), would be more precise (from 85% to 125% of the mean prediction).

## CONCLUSION

This thesis has dealt with the distribution of biomass and oxygen uptake among planktonic organisms ranging in size from 0.2  $\mu$ m to 1.5 mm ESD. Some general patterns were found. Thus, the abundance of organisms in logarithmic size intervals is strongly negatively correlated with size, and biomass per logarithmic size class tends to remain constant or increase slightly as size increases. The normalized spectrum is a standardized expression of the logarithmic decline in abundance All lakes are dominated by a strong in a given lake. phytoplankton mode, and lesser modes for unicellular plankton and zooplankton are usually observed. The mean respiration rate per organism and the ratio between respiration and biovolume are power functions of mean organism size. This collection of statements provides а general coherent description of part of the limnetic ecosystem.

However, this thesis deals more with prediction than with description alone. To what extent can these generalizations be used for predictions of abundance, biomass, or oxygen requirements of specific size intervals in specific lakes? There is a lot of "noise" around these general trends. The relationship between abundance and size applies to all lakes, although some takes contain two orders of magnitude more plankton than otners. Seasonal variation within ore lake may be of the same order as variation among a large number of lakes. It thus appears that useful predictive models built upon many lakes, but intended for single lake predictions, would need to incorporate an ancillary variable, such as the phosphorus concentration, which is correlated with both biovolume and respiration rates. This is fortunate because phosphorus is easy to measure.

The broader promise of size-based models relies upon the laboratory-based correlations among physiological variables. Since this thesis shows that community respiration/size relationships are much as would be expected from lab results, then other physiological rates should be similarly predictable. For example, there is reason here to expect that one should be able to measure the phosphorus concentration a few times throughout the growing season, and hence predict the production of zooplankton.

The final chapter stands as a caveat to all of the rest. Coefficients of determination should always be verified on the scale of the original data. Backtransformations for predictions within a restricted range of the data should be appropriately corrected, depending upon the type of prediction desired. The operator should always be aware of both the assymetry and breadth of the confidence region about the backtransformed predictions.

## BIBLIOGRAPHY

- AMERICAN PUBLIC HEALTH ASSOCIATION, AMERICAN WATER WORKS ASSOCIATION, AND WATER POLLUTION CONTROL FEDERATION. 1971. Standard methods for the examination of water and wastewater. 13th ed. Washington, DC. 1193 p.
- BAILEY-WATTS, A.E. 1986. Seasonal variation in size spectra of phytoplankton assemblages in Loch Leven, Scotland. Hydrobiologia 138: 25-42.
- BANSE, K. 1976. Rates of growth, respiration, and photosynthesis of unicellular algae as related to cell size - a review. J. Phycol. 12: 135-140.
- BANSE, K. 1979. On weight dependence of net growth efficiency and specific respiration rates among field populations of invertebrates. Oecologia (Berl.) 38: 111-126.
- BANSE, K. 1982. Mass-scaled rates of respiration and intrinsic growth in very small invertebrates. Mar. Ecol.-Prog. Ser. 9: 281-297.
- BANSE, K., AND S. MOSHER. 1980. Adult body mass and annual production/biomass relationships of field populations. Ecol. Monogr. 50: 355-379.

¥

- BASKERVILLE, G.L. 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research 2: 49-53.
- BLUEWEISS, L., H. FOX, V. KUDZMA, D. NAKASHIMA, R. PETERS, AND S. SAMS. 1978. Relationships between body size and some life history parameters. Oecologia (Berl.) 37: 257-272.
- BORGMANN, U. 1982. Particle-size conversion efficiency and total animal production in pelagic ecosystems. Can. J. Fish. Aquat. Sci. 39: 668-674.
- BORGMANN, U. 1985. Predicting the effect of toxic substances on pelagic ecosystems. The Science of the Total Environment 44: 111-121.
- CALDER, W.A. III. 1984. Size, Function, and Life History. Harvard University Press, Cambridge, Mass.
- CLARKE, K.R. 1984. Parameter estimation for mixture distributions of species sizes, appendix p. 40-41. <u>In</u> R.M. Warwick. Species size distributions in marine benthic communities. Oecologia (Berl.) 61: 32-41.

CORNETT, R.J., AND R.H. RIGLER. 1986. Simple method of

measuring seston respiration in oligotrophic lakes. Can.
J. Fish. Aquat. Sci. 43: 1660-1663.

- DEVOL, A.H. 1975. Biological oxidations in oxic and anoxic marine environments: rates and processes. PhD thesis, Univ. Washington, Seattle, Wash. 208 p.
- DEVOL, A.H. 1979. Zooplankton respiration and its relation to plankton dynamics in two lakes of contrasting trophic state. Limnol. Oceanogr. 24: 893-905.
- DEVOL, A.H. AND T.T. PACKARD. 1978. Productivity, chlorophyll, and respiration in Lake Washington. Limnol. Oceanogr. 23: 104-111.
- DICKIE, L.M., S.R. KERR, AND P.R. BOUDREAU. 1987. Sizedependent processes underlying regularities in ecosystem structure. Ecol. Monogr. 57: 233-250.
- DRAPER, N.R. AND H. SMITH. 1981. Applied Regression Analysis. 2nd. ed. John Wiley and Sons, New York, NY. 709 p.
- ELSER, J.J., M.M. ELSER, AND S.R. CARPENTER. 1986. Size fractionation of algal chlorophyll, carbon fixation, and phosphatase activity: relationships with species-specific size distributions and zooplankton community structure.

J. Plankton Res. 8: 365-383.

- FENCHEL, T. 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317-326.
- GELIN, C., AND W. RIPL. 1978. Nutrient decrease and response of various phytoplankton size fractions following the restoration of Lake Trummen, Sweden. Arch. Hydrobiol. 81: 339-367.
- GESSNER, F. AND F. PANNIER. 1958. Influence of oxygen tension on respiration of phytoplankton. Limnol. Oceanogr. 3: 478-480.
- GRIESBACH, S., R.H. PETERS, AND S. YOUAKIM. 1982. An allometric model for pesticide bioaccumulation. Can. J. Fish. Aquat. Sci. 29: 727-735.
- HANSON, J.M. AND R.H. PETERS. 1984. Empirical prediction of zooplankton and profundal macrobenthos biomass in lakes. Can. J. Fish. Aquat. Sci. 41: 439-445.
- HARRIS, G.P., B.B. PICCININ, AND J. VAN RYN. 1983. Physical variability and phytoplankton communities. V. Cell size, niche diversification, and the role of competition. Arch. Hydrobiol. 98: 215-239.

- HEMMINGSEN, A.M. 1960. Energy metabolism as related to body size and respiratory area, and its evolution. Rep. Steno. Hosp. Copenh. 9: 1-110.
- HOBBIE, J.E., R.J. DALEY, AND S. JASPERS. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228.
- HOGG, R.V. AND A.T. CRAIG. 1978. Introduction to Mathematical Statistics. 4th ed. Macmillan, New York. 438 p.
- HOLLANDER, M. AND D. WOLFE. 1973. Nonparametric Statistical Methods. John Wiley and Sons, New York.
- HUMPHREYS, W.F. 1979. Production and respiration in animal populations. J. Animal Ecol. 48: 427-453.
- HUTCHINSON, G.E. 1967. A Treatise in Limnology, vol. 2. John Wiley, New York, NY. 1115 p.
- IKEDA, T. 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol. 85: 1-11.

JOHN, P.W.M. 1971. Statistical Design and Analysis of

;

Experiments. Macmillan, New York, NY. 356 p.

- JORGENSEN, S.E. 1979. Modelling the distribution and effect of heavy metals in aquatic ecosystems. J. Ecol. Model. 6: 199-223.
- KALFF, J. AND R. KNOECHEL. 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst. 9: 475-495.
- KERR, S.R. 1974. Theory of size distributions in ecological communities. J. Fish. Res. Board Can. 31: 1859-1862.
- KLEKOWSKI, R.Z. 1981. Size dependence of metabolism in protozoans. Verh. int. Verein. Theor. Angewan. Limnol.21: 1498-1502.
- KNOECHEL, R. AND L.B. HOLTBY. 1986. Construction and validation of a body-length-based model for the prediction of Cladoceran community filtering rates. Limnol. Oceanogr. 31: 1-16.
- LAL, D. 1977. The oceanic microcosm of particles. Science 198: 997-1009.

LAMPERT, W. 1984. The measurement of respiration. In J.A.

Downing and F.H. Rigler [eds]. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Hdbk. 17, Blackwell.

- LAVIGNE, D.M. 1982. Similarity in energy budgets of animal populations. J. An. Ecol. 51: 195-206.
- LEHMAN, J.T. 1988. Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments. Limnol. Oceanogr. 33: 931-945.
- LUND, J.W., C. KIPLING, AND E.D. LECREN. 1958. The inverted microscope method of estimating algal cell numbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143-170.
- MAZUMDER, A., D.J. MCQUEEN, W.D. TAYLOR, AND D.R.S. LEAN. 1988. Effects of fertilization and planktivorous fish (yellow perch) predation on size distribution of particulate phosphorus and assimilated phosphate: Large enclosure experiments. Limnol. Oceanogr. 33: 421-430.
- MENZEL, D.W. AND N. CORWIN. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation.

Limnol. Oceanogr. 10: 280-282.

- MULLIN, M.M., P.R. SLOAN, AND R.W. EPPLEY. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11: 307-311.
- NEELY, W.B. 1979. Estimating rate constants for the uptake and clearance of chemicals by fish. Environ. Sci. Technol. 13: 1506-1510.
- PACE, M.L. 1984. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll <u>a</u> relationship. Can. J. Fish. Aquat. Sci. 41: 1089-1096.
- PACE, M.L. 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 31: 45-55.
- PACKARD, T.T. 1971. The measurement of respiratory electron transport activity in marine phytoplankton. J. Mar. Res. 29: 235-244.

PACKARD, T.T. 1985. Measurement of electron transport activity of microplankton. Adv. Aquat. Microbiol. 3: 207-261.

PARSONS, T.R., Y. MAITA, AND C.M. LALLI. 1984. A Manual of

Chemical and Biological Methods for Seawater Analysis. Pergamon Press.

- PETERS, R.H. 1983a. The Ecological Implications of Body Size. Cambridge University Press, 329 p.
- PETERS, R.H. 1983b. Size structure of the plankton community along the trophic gradient of Lake Memphremagog. Can. J. Fish. Aquat. Sci. 40: 1770-1778.
- PETERS, R.H. 1986. The role of prediction in limnology. Limnol. Oceanogr. 31: 1143-1159.
- PETERS, R.H. 1988. The relevance of allometric comparisons to growth, reproduction, and nutrition in primates and man. p. 1-19 in K. Blaxter and I. Macdonald [eds] Comparative Nutrition. John Libbey, London.
- PETERS, R.H. AND J.A. DOWNING. 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnol. Oceanogr. 29: 763-784.
- PLATT, T. AND K. DENMAN. 1978. The structure of pelagic marine ecosystems. Rapp. P.-v. Réun. Cons. int. Explor. Mer 173: 60-65.

- PLATT, T. AND W. SILVERT. 1981. Ecology, physiology, allometry, and dimensionality. J. Theor. Biol. 93: 855-860.
- PORTER, K.G. AND Y.S. FEIG. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.
- ROBINSON, W.R., R.H. PETERS, AND J. ZIMMERMAN. 1983. The effects of body size and temperature on metabolic rate of organisms. Can. J. Zool. 61: 281-288.
- SCHLESINGER, D.A., L.A. MOLOT, AND B. SHUTER. 1981. Specific growth rates of freshwater algae in relation to cell size and light intensity. Can. J. Fish. Aquat. Sci. 38: 1052-1058.
- SCHWINGHAMER, P. 1981. Characteristic size distributions of integral benthic communities. Can. J. Fish. Aq. Sci. 38: 1255-1269.
- SCHWINGHAMER, P. 1983. Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Mar. Ecol. - Prog. Ser. 13: 151-166.
- SCHWINGHAMER, P., B. HARGRAVE, D. PEER, AND C.M. HAWKINS. 1986. Partitioning of production and respiration among size

groups of organisms in an intertidal benthic community. Mar. Ecol.-Progr. Ser. 31: 131-142.

- SEBER, G.A.F. 1977. Linear Regression Analysis. John Wiley and Sons, New York, NY. 465p.
- SHELDON, R.W., A. PRAKASH, AND W.H. SUTCLIFFE. 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327-340.
- SHELDON, R.W., W.H. SUTCLIFFE, AND M.A. PARAJNAPE. 1977. Structure of pelagic food chains and relationship between plankton and fish production. J. Fish. Res. Board Can. 34: 2344-2353.
- SHUTER, B.J. 1978. Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. Limnol. Oceanogr. 23: 1248-1255.
- SILVERT, W. AND T. PLATT. 1980. Dynamic energy-flow model of the particle size distribution in pelagic ecosystems, p. 754-763. <u>In</u> W.C. Kerfoot [ed.] Evolution and Ecology of Zooplankton communities. Univ. Press of New England, Boston.

SIMON, M. 1987. Biomass and production of small and large free-

living and attached bacteria in Luke Constance. Limnol. Oceanogr. 32: 591-607.

- SMITH, V.H. 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24: 1051-1064.
- SNEDECOR, G.W. AND W.C. COCHRAN. 1967. Statistical Methods. 6th ed. Iowa State Univ. Press, Ames, Iowa. 593 p.
- SOMMER, U., Z.M. GLIWICZ, W. LAMPERT, AND A. DUNCAN. 1986. The PEG-model of seasonal succession of planktonic events in fresh water. Archiv f. Hydrobiol. 106: 433-471.
- SONDERGAARD, M., B. RIEMANN, L. MOLLER JENSEN, N.O.G. JORGENSEN, P.K. BJORNSEN, M. OLESEN, J.B. LARSEN, O. GEERTZ-HENSEN, J. HANSEN, K. CHRISTOFFERSEN, A.-M. JESPERSEN, F. ANDERSEN, AND S. BOSSELMANN. 1988. Pelagic food web processes in an oligotrophic lake. Hydrobiologia 164: 271-286.
- SPRUGEL, D.G. 1983. Correcting for bias in log-transformed allometric equations. Ecology 64: 209-210.
- SPRULES, W.G. AND M. MUNAWAR. 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aq. Sci. 43: 1789-1794.

- SPRULES, W.G., J.M. CASSELMAN, AND B.J. SHUTER. 1983. Size distribution of pelagic particles in lakes. Can. J. Fish. Aq. Sci. 40: 1761-1769.
- STRAYER, D. 1986. The size structure of a lacustrine zoobenthic community. Oecologia (Berl.) 69: 513-516.
- STRICKLAND, J.D.H. AND T.R. PARSONS. 1968. A Practical Handbook of Seawater Analysis. 2nd. ed. Bull. Fish. Res. Board Can. 167.
- VEZINA, F. 1986. Body size and mass flow in freshwater plankton: models and tests. J. Plankton Res. 8: 939-956.
- VINOGRADOV, A.P. 1953. The elementary chemical composition of marine organisms. Mem. no. 2, Sears Found. New Haven, CT.
- WARWICK, R.M. 1984. Species size distributions in marine benthic communities. Oecologia (Berl.) 61: 32-41.
- WELCH, H.E. 1968. Use of modified diurnal curves for the measurement of metabolism in standing water. Limnol. Oceanogr. 13: 679-687.

WELSH, A.H., A.T. PETERSON, AND S.A. ALTMANN. 1988. The fallacy

of averages. Am. Nat. 132: 277-288.

WILLIAMS, P.J.L. 1984. A review of measurements of respiration rates of marine plankton populations, p. 357-389. <u>In</u> J.E. Hobbie and P.J.L. Williams [eds.] Heterotrophic Activity in the Sea. Plenum. APPENDICES

Ĭ

APPENDIX 1. Analytical procedures used in Chapter I.

This appendix provides supplementary technical information about the normalized spectrum, estimation procedures for bimodal and trimodal distributions, and joint confidence regions.

1. The Normalized Spectrum

The normalized spectrum is a straight line least squares regression between the logarithms of body size and normalized abundance (Platt and Denman 1978). The latter is the biomass (or biovolume) density in a size interval divided by the nominal size of organisms in the interval. If logarithms are to base 2, then the size doubles between successive intervals, and nominal size is equal to the interval "width".

The spectrum is clearly a transformation of a histogram representation of biomass per log size class. Whereas the biomass in the system is equal to the <u>sum</u> of histogram ordinates, it may also be estimated by the integral of the normalized function over mass units. This is evident from the following considerations: using N,  $B_i$ , and  $m_i$  to represent the abundance, biomass, and size respectively of organisms in interval i,

$$N_i = B_i / m_i$$
or in the limit, N = dB/dm

The normalized spectrum corresponds to the model

$$\log_2 N = b_0 + b_1 \log_2 m$$

and hence 
$$dB/dm = 2^{b0}m^{b1}$$
, approximately.

Therefore, B = 
$$\int_{m_1}^{m_2} 2^{b0} m^{b1} dm = \frac{2^{b0} m^{b1+1}}{b_1 + 1} \begin{vmatrix} m_2 \\ m_1 \end{vmatrix} \mu g \text{ is an}$$

estimate of the biomass density over the range of sizes from  $m_1$  to  $m_2$  .

Hence, the two parameters of the normalized spectrum provide a standardized basis for comparing estimated biomasses between systems or between size ranges. Furthermore, each of these parameters may be interpreted in terms of observable system characteristics. The intercept  $b_0$  is an estimate of log abundance in the size class corresponding to one size unit (volume or mass). In this paper, the spectra were fitted in volume units  $(\mu m^3)$ . So the intercept size class corresponds to organisms of about 1  $\mu m^3$  (ESD = 1.24  $\mu m$ ).

The slope  $b_1$  is interpretable as a measure of the rate of abundance change with size. For example, if the ordered abscissas are represented by  $m_i$ , then clearly  $m_i = 2m_i$  and the normalized abundance in size class 1+1 is

 $\log (B_{i+1}/2m_i) = b_0 + b_1 \log (2m_i)$ 

Hence 
$$\frac{B_{i+1}}{2m_i} = 2^{b0} (2m_i)^{b1}$$
  
and  $B_{i+1} = 2^{b0+b1+1}m_i^{b1+1}$ 

Similarly,  $B_i = 2^{b0} m_i^{b_i + 1}$ Therefore, in general  $B_{i+1} = 2^{b1+1} B_i$ .

In particular, if  $b_1 = -1$ , then  $B_{i+1} = B_i$ , and biomass is uniformly distributed over logarithmic size intervals. This is Sheldon's hypothesis (Sheldon et al. 1972). Our slopes were almost always "shallower" than -1, and our modal slope of 0.9 implies that  $B_{i+1} = 1.07 B_i$ . In other words, over the range of observed sizes, biomass increases by about 7% between successive log size intervals.

Our parameter estimates (Table 1.8) are based on calculations in  $\mu$ m<sup>4</sup>. If we assume an organism mass density of 1 g cm<sup>-3</sup>, then 1  $\mu$ g = 10<sup>6</sup>  $\mu$ m<sup>4</sup>. Hence our volumetric range from 2<sup>-8</sup> to 2<sup>30</sup>  $\mu$ m<sup>4</sup> corresponds to a mass range from 2<sup>-28</sup> to 2<sup>10</sup>  $\mu$ g. The slope does not change between scales. But if b<sub>0</sub><sup>\*</sup> is the volumetric intercept (Table 1.8), then the corresponding mass scale intercept 1s b<sub>0</sub> = b<sub>0</sub><sup>\*</sup> + 19.932 (1+b<sub>1</sub>), and the estimated biomass over the full range of observed sizes is

$$B = \int_{2}^{2^{10}} \frac{2^{50} m^{51} dm}{2^{29}} = \frac{2^{50} m^{51+1}}{b_1+1} \begin{vmatrix} 2^{50} \\ 2^{-28} \end{vmatrix} \mu g.$$

#### 2. Bimodal Parameter Estimates

Clarke (1984) presented algorithms for maximum likelihood estimation of the five independent parameters of the mixed normal density function  $\Phi(\mathbf{x}) = p_1 \Phi_1(\mathbf{x}) + p_2 \Phi_2(\mathbf{x})$ where  $\Phi_1$  is distributed  $N(\mu_1, \sigma_1^2)$ and  $p_2 = |1-p_1|$  is clearly not independent of  $0 \le p_1 \le 1$ . The vector  $\mathbf{v} = (\mu_1, \mu_2, \sigma_1, \sigma_2, p_1)$  is estimated by maximizing the log-likelihood function  $L(\mathbf{v}) = \Sigma_1 f_1 \log[(2\pi)^{-1/2}\Phi(\mathbf{x}_1)]$ where  $f_1$  represents the observed biomass at size  $\mathbf{x}_1$ , and the summation is over all size classes. After an initial estimate is obtained by inspection, it is improved by iterating the equation

$$\mathbf{V}_{i+1} = \mathbf{V}_i - [\mathbf{L}^{\prime\prime}(\mathbf{V}_i)]^{-1}\mathbf{L}^{\prime\prime}(\mathbf{V}_i)$$

where L'(V) is the 5x1 vector of first derivatives of L with respect to V, and L"(V) is the 5x5 matrix of second derivatives. The distribution corresponding to the final parameter estimates may be compared with the observed distribution by a non-parametric test, such as the Kolmogoroff-Smirnoff, which we used.

### 3. Trimodal Parameter Estimates

The distribution of organism volume over log size classes was used to estimate the eight independent parameters of the trimodal mixed normal density function  $f(x, V) = p_1 \Phi_1(x) + p_2 \Phi_2(x) + p_3 \Phi_3(x)$ 

where  $x = \log_2$  (size) is the abscissa,

the parameter vector  $\mathbf{V} = (\mu_1, \mu_2, \mu_3, \sigma_1, \sigma_2, \sigma_3, p_1, p_2)$ 

and  $\Phi_{j}(x)$  is distributed  $N(\mu_{j}, \sigma_{j}^{2})$ .

Again,  $p_1 = |1 - (p_1+p_2)|$  is not independent of  $0 \le p_1+p_2 \le 1$ . This function is nonlinear in the parameters  $\mu_j$  and  $\sigma_j$ , and hence a linearization technique for nonlinear systems was used (Draper & Smith 1981):

 $Y = (y_1, \dots, y_{39})'$  is the vector of observed biomasses at the 39

log sizes  $X = (x_1, ..., x_{39})'$ , and

 $y_i = f(x_i, V) + \epsilon_i$ 

By analogy to the typical linear model, the error sum of squares is  $S(\mathbf{V}) = \Sigma_i [\mathbf{y}_i - f(\mathbf{x}_i, \mathbf{V})]^2$ If **V** is an estimate of **V** close to **V** then the Taylor seri

If  $\mathbf{V}_0$  is an estimate of  $\mathbf{V}$  close to  $\mathbf{V}_0$ , then the Taylor series expansion of f, truncated after the first derivative term, allows the following approximation

$$f(\mathbf{x}_{1},\mathbf{V}) \approx f(\mathbf{x}_{1},\mathbf{V}_{0}) + \sum_{j=1}^{8} \left[ \frac{\delta f(\mathbf{x}_{1},\mathbf{V})}{\delta \mathbf{V}_{j}} \right] (\mathbf{V}_{j} - \mathbf{V}_{j0})$$

Defining Z as the 39x8 matrix of partial derivatives and  $\beta = \mathbf{V} - \mathbf{V}_0$ , we have  $y_i - f(\mathbf{x}_i, \mathbf{V}_0) = \mathbf{Z}_i \cdot \boldsymbol{\beta} + \boldsymbol{\epsilon}_i$ 

Then the least squares estimate of  $\beta$  is

 $\boldsymbol{\beta} = (\mathbf{Z}^{\dagger} \mathbf{Z})^{-1} \mathbf{Z}^{\dagger} (\mathbf{Y} - \mathbf{f} (\mathbf{X}, \mathbf{V}_0))$ 

The solution to this equation results in a new improved estimate  $\mathbf{v} = \mathbf{b} + \mathbf{v}_{0}$ , which may be substituted for  $\mathbf{v}_{0}$  in  $f(\mathbf{X}, \mathbf{v}_{0})$ 

and the whole process is repeated until S converges to an

acceptably low asymptotic level.

Most of the data sets tested in this paper did not support stable asymptotic convergence. This may have been due to one or more of high error sums of squares, insufficient data, or lack of true correspondence to a trimodal mixed normal distribution in the underlying population.

4. Joint Confidence Regions

The joint  $100(1-\alpha)$ % confidence region for the estimated parameters  $\beta$  of a linear model is defined by

 $(\beta-b)$  'X'X $(\beta-b) \leq ps^2 F_{p,n-p,1-a}$ where n = number of observations

- p = number of parameters in  $\beta$ s<sup>2</sup> = estimated mean squared error
- $\mathbf{X}$  = matrix of regressors

Any vector **b** satisfying this equation defines a point within the p-dimensional confidence ellipsoid.

If the model has only two parameters (a slope and an intercept), then the confidence region is an ellipse. In this case, a simple algebraic solution is available:

Given 
$$\mathbf{A} = \mathbf{X}^{T} \mathbf{X} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

and  $L = ps^2 F$ ,

then  $L = a_{11}C_1^2 + 2a_{12}C_1C_2 + a_{22}C_2^2$  defines the contour of the confidence region. Substituting values of  $C_1$  falling within the single parameter confidence region for  $C_1$ , we may solve the resulting quadratic equation for the two corresponding values of  $C_1$  ( $i \neq j$ ), located on the confidence contour.

More generally, the dimensions and orientation of the pdimensional confidence ellipsoid may be estimated from the eigenvalues  $\epsilon_1$  of the positive definite matrix  $\mathbf{A} = \mathbf{X}'\mathbf{X}$ , where

$$\sum_{i=1}^{p} \epsilon_{i} = tr \mathbf{A} \quad and \quad Prod \ \epsilon_{i} = |\mathbf{A}|$$

The eigenvalues determine the lengths of the half-axes,  $1_{1} = \epsilon_{1}^{-1/2}$ , whereas the direction of these axes is determined by the corresponding eigenvectors. For a given eigenvalue  $\epsilon_{1}$ , the eigenvector  $\mathbf{x}_{1}$  is a solution to the equations  $\mathbf{A}^{*}\mathbf{x}_{1} = \mathbf{0}$ , where  $\mathbf{A}^{*}$  is equivalent to  $\mathbf{A}$  with  $\epsilon_{1}$  subtracted from each value on the main diagonal. This method was used to estimate the contours of the confidence ellipsoids in this paper. APPENDIX 2. The correlation between the exponents of bivariate normal variables.

Theorem: Let  $(X_1, X_2)$  be bivariate normal  $N(\mu, \Sigma)$  where

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}$$

Then the correlation coefficient between  $Z_1 = \exp[X_1]$  and  $Z_2 = \exp[X_2]$  is

$$r_{2} = \frac{\exp[r\sigma_{1}\sigma_{2}] - 1}{(\exp[\sigma_{1}^{2}] - 1)^{n}(\exp[\sigma_{2}^{2}] - 1)^{n}}$$

and

$$|\mathbf{r}_{z}| \leq |\mathbf{r}|$$

Proof:

The moment generating function of X is

 $E(e^{t'X}) = \exp[t'\mu + \frac{1}{2}t'\Sigma t]$ 

so that  $E(2^{\circ}) = \{ \exp[\mu_1 + \sigma_1^2/2], \exp[\mu_2 + \sigma_2^2/2] \}$ 

 $Y = X_1 + X_2$  is univariate normal since it is a linear combination of the elements of a bivariate normal variable, and

the variance of Y is

Hence  

$$1'\Sigma 1 = \sigma_1^2 + \sigma_2^2 + 2r\sigma_1\sigma_2$$

$$E(Z_1Z_2) = E(\exp[X_1 + X_2]) = E(e')$$

$$= \exp[\mu_1 + \mu_2 + (\sigma_1^2 + \sigma_2^2)/2 + r\sigma_2\sigma_2]$$

Therefore  $Cov(Z_1, Z_2) = E(Z_1Z_2) - E(Z_1)E(Z_1)$ 

$$= E(Z_1Z_2) - \exp[\mu_1 + \mu_2 + (\sigma_1^2 + \sigma_2^2)/2]$$
  
=  $\exp[\mu_1 + \mu_2 + (\sigma_1^2 + \sigma_2^2)/2] (\exp[r\sigma_1\sigma_2] - 1)$   
and  $Var(Z_1) = \exp[2\mu_1 + \sigma_1^2] (\exp[\sigma_1^2] - 1)$ 

Hence the correlation between  ${\tt Z}_1$  and  ${\tt Z}_2$  is

$$r_{2} = \frac{\exp[r\sigma_{1}\sigma_{2}] - 1}{(\exp[\sigma_{1}^{2}] - 1)^{\frac{h}{2}}(\exp[\sigma_{2}^{2}] - 1)^{\frac{h}{2}}}$$
$$= \frac{\exp[r\sigma_{1}\sigma_{2}] - 1}{\exp[\sigma_{1}\sigma_{2}] - 1} \cdot \frac{\exp[\sigma_{1}\sigma_{2}] - 1}{(\exp[\sigma_{1}^{2}] - 1)^{\frac{h}{2}}(\exp[\sigma_{2}^{2}] - 1)^{\frac{h}{2}}}$$

The last factor is the correlation when r = 1, and so this last factor lies between 0 and 1. Hence,  $r_2$  is less than or equal to the first factor. So, to show that  $|r_2| \leq |r|$ , let  $\sigma = (\sigma_1 \sigma_2)^{\frac{1}{2}}$ .

Then

$$r_{z} \leq \frac{\exp[r\sigma^{2}] - 1}{\exp[\sigma^{2}] - 1}$$

Consider the Taylor series expansions

$$\exp[r\sigma^{2}] - 1 = r\sigma^{2} + \frac{r^{2}\sigma^{4}}{2!} + \frac{r^{3}\sigma^{6}}{3!} + \dots$$

$$(\exp[\sigma^{2}] - 1) r = r\sigma^{2} + \frac{r\sigma^{4}}{2!} + \frac{r\sigma^{6}}{3!} + \dots$$
But  $|r| \ge r^{1}$ ,  $i \ge 1$ .  
Hence  $(\exp[\sigma^{2}] - 1) r \ge \exp[r\sigma^{2}] - 1$  for  $r \le 1$   
and  $|r_{2}| \le |r|$ 
QED

APPENDIX 3. Morphometric information on the lakes sampled in southern Quebec, in order of increasing total phosphorus. Central, North, South, and Newport are basins of Lake Memphremagog.

ľ

Į

| Lake       | Lati  | tude | Long | itude       | Area<br>km² | Mean<br>Depth<br>m | Maximum<br>Depth<br>M |
|------------|-------|------|------|-------------|-------------|--------------------|-----------------------|
| Bowker     | 45°   | 25'  | 72°  | 15'         | 2.3         | 24.0               | 59.0                  |
| Stukely    | 45°   | 20'  | 72°  | 15'         | 3.9         | 13.6               | 32.2                  |
| Orford     | 45°   | 15'  | 72°  | 20'         | 1.3         | 17.9               | 48.0                  |
| Lyster     | 45°   | 04'  | 71°  | 55 <b>'</b> | 1.7         | 20.0               | 50.0                  |
| Baldwin    | 45°   | 04'  | 71°  | 54 <b>'</b> | 0.3         | 3.0                | 7.6                   |
| O'Malley   | 45°   | 13'  | 72°  | 20'         | 0.2         | 4.0                | 10.4                  |
| Central    | 45°   | 10'  | 72°  | 15'         | 24.6        | 44.3               | 117.0                 |
| Cerises    | 45,   | 101  | 72°  | 15'         | 2.0         | 2.0                | 3.0                   |
| North      | 45°   | 15'  | 72°  | 15 <b>'</b> | 20.4        | 14.7               | 33.5                  |
| Massawippi | . 45° | 15'  | 72°  | 05 <b>'</b> | 17.9        | 40.2               | 85.7                  |
| Lovering   | 45°   | 10'  | 72°  | 10'         | 4.6         | 9.7                | 24.9                  |
| Argent     | 45°   | 15'  | 72°  | 25 <b>'</b> | 1.0         | 4.6                | 15.5                  |
| Trousers   | 45°   | 10'  | 72°  | 25 <b>'</b> | 2.0         | 5.2                | 10.1                  |
| South      | 45°   | 00'  | 72°  | 15'         | 56.1        | 6.2                | 12.8                  |
| Newport    | 44°   | 55'  | 72°  | 15'         | 2.0         | 3.4                | 9.5                   |
| Brome      | 45°   | 15'  | 72°  | 30 <b>'</b> | 14.5        | 5.8                | 12.8                  |
| Pond       | 45°   | 10'  | 72°  | 14'         | 0.2         | 0.9                | 1.5                   |
| Magog      | 45°   | 20'  | 72°  | د0'         | 10.8        | 9.8                | 19.2                  |
| Waterloo   | 45°   | 20'  | 72°  | 30'         | 1.5         | 2.9                | 4.9                   |

Appendix 4. Chemical data for the samples collected in 1986. Chlorophyll and phosphorus data are in mg m<sup>-3</sup>. Dry weight is in mg  $L^{-1}$ . Phosphorus fractions refer to all phosphorus passing through a screen or filter of the stated porosity (microns). LEAVES 142 - 143 NOT INCLUDED IN PAGE NUMBERING.

FEUILLETS 142 - 143 NON INCLUS DANS LA PAGINATION.

National Library of Canada Canadian Theses Service. Bibliothèque nationale du Canada Service des thèses canadiennes. APPENDIX 5. Chemical data for the samples collected in 1987 Chlorophyll and phosphorus data are in mg m<sup>-3</sup>. Dry weight is in mg L<sup>-1</sup> Phosphorus fractions refer to all phosphorus passing through  $\sigma$  screen or filter of the stated porosity ( $\mu$ m)

ś.

4 

ļ

Lake Date Chlor

|           |      |        | DW    | SEm    | Total          | <120  | <80   | <40   | <5            | <0.4 |
|-----------|------|--------|-------|--------|----------------|-------|-------|-------|---------------|------|
|           |      |        |       | 0 01)W |                |       |       |       |               |      |
| South     | 114  | 3 879  |       |        | 16.87          | 17.67 | 16.62 | 16.27 | 11.96         |      |
| Central   | 114  | 0 824  |       |        | 12.11          | 9.91  | 10.56 | 11.61 | 4,55          |      |
| South     | 120  | 2.440  |       |        | 33.63          | 34.38 | 22.27 | 30 13 | 46.35         |      |
| Central   | 120  | 0 456  |       |        | 18 32          | 15.57 | 15 42 | 18.07 | 16.57         |      |
| North     | 120  | () 666 |       |        | 29 98          | 25.33 | 24.27 | 24.37 | 24.67         |      |
| Мадод     | 128  | 3.893  |       |        | 28.38          | 29.43 | 24 37 | 26.13 | 20,17         |      |
| Orford    | 128  | 1 828  |       |        | 12.51          | 11.41 | 7 66  | 6.41  | 3,90          |      |
| Lovering  | 128  | 1 731  |       |        | 18.27          | 17 82 | 14.36 | 15.67 | 12.56         |      |
| Newport   | 128  | 2 334  |       |        | 16 67          | 16,52 | 15.42 | 15.02 | 11.91         |      |
| South     | 128  | 4 036  |       |        | 18 02          | 15.82 | 15.22 | 15.57 | 11.31         |      |
| Central   | 128  | 1 358  |       |        | 10 56          | 16.62 | 16.02 | 13.71 | 10.86         |      |
| South     | 142  | 4 294  |       |        | 17 32          | 17.42 | 15.77 | 17 22 | 12 01         |      |
| Central   | 142  | , 652  | 2 24  | O 25   | 19 72          | 13.31 | 13.11 | 11.76 | 9.46          |      |
| North     | 142  | 4.522  | 2.20  | 0 38   | 17 27          | 16.07 | 7.36  | 6.71  | 6.66          |      |
| Waterloo  | 142  | 6 126  | 8 92  | 0.44   | <i>′</i> ₊8 25 | 38.64 | 38.24 | 26.28 | 17.32         |      |
| Brome     | 142  | 3.154  | 3.11  | O 26   | 20.82          | 17 57 | 20.67 | 17.92 | 14 01         |      |
| Argent    | 142  | 1 596  |       |        | 17.07          | 15.22 | 18.77 | 12 26 | 9.96          |      |
| Lyster    | 149  | 0 457  | 3.48  | O 26   | 15 62          | 14.91 | 13 76 | 13 76 | 9.81          |      |
| Baldwin   | 149  | 1 438  | 2 68  | 0 15   | 16 02          | 15.82 | 14.86 | 16.77 | 12 76         |      |
| South     | 149  | 2 517  | 2 63  | 0 12   | 21.67          | 20.32 | 16.22 | 16.37 | 11.71         |      |
| South     | 166  |        | 1 40  | 0 17   | 22 37          | 14 51 | 13 11 | 11.41 | 13.16         |      |
| Newport   | 166  |        | 1 92  | 0 26   | 19 17          | 18.27 | 19.32 | 16.72 | 13 91         |      |
| Central   | 166  |        | 1 30  | O 18   | 16 92          | 15.12 | 17.52 | 14.11 | 12 71         |      |
| North     | 166  |        | 1 22  | 0.20   | 16 82          | 13.96 | 15 47 | 14.26 | 10 46         |      |
| Lovering  | 177  | 1 106  | 2 20  | 0 11   | 14 01          | 11.81 | 12.41 | 10.91 | 9,46          |      |
| Massawipp | 5177 | 1 546  | 3 22  | 0 23   | 15 52          | 12 91 | 12 86 | 11 56 | 10 36         |      |
| Orford    | 1/7  | 0 885  | 1 52  | 0 07   | 5 86           | 4 80  | 5 16  | 4.05  | 4.15          |      |
| Omalley   | 177  | + 008  | 3 63  | 0 01   | 14 41          | 13 96 | 13 01 | 11.26 | 8 06          |      |
| Magog     | 181  | 5 101  | 4 40  | 0 10   | 37 49          | 29.88 | 28.53 | 25,53 | 23 32         |      |
| Tiousei   | 181  | 3 381  | 4 60  | 0 16   | 17 77          | 16 77 | 16 07 | 15 42 | 13 76         |      |
| Pond      | 183  | 310    | 2 08  | 0.24   | 27 03          | 18.62 | 24 32 | 22 42 | 20.52         |      |
| Bowker    | 183  | 1 385  | .2 02 | 0.12   | 3 50           | 5 81  | 5.21  | 4 90  | <i>′</i> ₊ 20 |      |
| Waterloo  | 183  | ·4 901 | 16.40 | 0 27   | 81 68          | 71 47 | 58.36 | 44 44 | 28 88         |      |
| Aigent    | 183  | + 442  | 2 13  | 0 21   | 16 07          | 15.27 | 14.51 | 14 06 | 11.61         |      |
| Newpoi t  | 186  | 3 115  | ? 78  | 0 31   | 24 22          | 17.12 | 16 32 | 16.52 | 13.61         |      |
| South     | 186  | + 419  | . 62  | 0.08   | 17 62          | 13 81 | 14.31 | 13.21 | 10 81         |      |
| Central   | 186  | 1.041  | 1 08  | 0.09   | 16 67          | 14.81 | 10.76 | 9.91  | 8 86          |      |
| North     | 186  | 1.478  | 1 72  | 0.09   | 13 96          | 11.11 | 10.41 | 8.86  | 8.11          |      |
| Lyster    | 101  | 255    | 0 90  | 0 01   | 5 76           | 5.01  | 5.36  | 4.85  | 4 40          |      |
| Baldwin   | 101  | 884    | . 55  | 0 09   | 13 61          | 13 21 | 12.61 | 12 16 | 10 51         |      |
| Central   | 192  | 1 371  |       |        | 1 97           |       |       |       |               |      |
| Pond      | 143  | 0 180  | 0 88  | 0 07   | 3 82           | 22 37 | 21 87 | 21 42 | 19 02         |      |
| Cerises   | 103  | 1 303  | 2 00  | 0.10   | 12 91          | 12 06 | 11 41 | 11.06 | 9 51          |      |
| Stukely   | 193  | 0.234  | 0 68  | 0 07   | <b>↓</b> 45    | 3 80  | 3 80  | 3 45  | 2.80          |      |
| Magog     | 193  | 1 098  | 2 42  | 0 11   | 25 23          | 24 12 | 21 32 | 20.57 | 17 42         |      |
| Water Loo | 195  | 10 65  | 0 00  | 0 10   | 6 82           | 59 16 | 53 80 | 52 75 | 29-84         |      |

-----

----

Phosphorus

| Lake     | Date        | Chlor.  |       |                  | Phosphorus |        |       |       |       |      |    |
|----------|-------------|---------|-------|------------------|------------|--------|-------|-------|-------|------|----|
|          |             |         | DW    | SE <sub>DW</sub> | Total      | <120   | <80   | <40   | くり    | • () | 4  |
| Central  | 197         | 3.002   | 1 90  | 0 15             | 12.41      | 10.46  | 10.16 | 9,66  | 8,61  |      |    |
| North    | 197         | 1.841   | 1 33  | O 22             | 14.91      | 12.66  | 12.21 | 11 86 | 10 36 |      |    |
| Central  | 19 <b>8</b> | 2 472   | 2.03  | 0 13             | 13 51      | 9.76   | 9 36  | 9-16  | 8 56  |      |    |
| Orford   | 19 <b>9</b> | 0,796   | 2 15  | 0.33             | 5 31       | 4 95   | 4 45  | 4 15  | 3 65  |      |    |
| Orford   | 203         |         | 2 97  | O 23             | 786        | 7 46   | 6 76  | 6 56  | 5 71  | }    | 1  |
| Newport  | 204         | 4 056   | 3 83  | 0 40             | 22 72      | 19.02  | 18 37 | 17 87 | 16 17 | 11   | ,  |
| Magog    | 22 <b>3</b> | 9.039   | 4.78  | 0 21             | 39 34      | 36.64  | 35 04 | 29.53 | 24-12 | 14   | 5  |
| Pond     | 224         | 3.834   | 1.08  | 0.19             | 22 92      | 23 02  | 21 42 | 21 82 | 011   | 15   | 8  |
| Baldwin  | 225         | 1.976   | 2.30  | 0.41             | 13.06      | 13.71  | 12.51 | 12.01 | 10 76 | 1    | 2  |
| North    | 226         | 1 568   | 4 17  | 0.21             | 12.21      | 12.26  | 10 81 | 10 26 | 9.71  | 1    | 9  |
| Lyster   | 227         | 1 592   | 3.33  | 0 29             | 9.11       | 9 01   | 7 21  | 7 61  | 8 41  | 4    | 4  |
| Central  | 228         | 1 195   | 1.47  | 0 12             | 13 46      | 13 06  | 12 91 | 11 66 | 10 31 | 1    | в  |
| Waterloo | 229         | .28,862 | 32 96 | 0.24             | 130 13     | 100 00 | 94-09 | 57-31 | 34 63 | 19   | ,  |
| Stukely  | 230         | 2.216   | 3 70  | 0 10             | 6 61       | 6 76   | 6 16  | 5 /1  | 5 41  | 4    | ł  |
| South    | 235         | 3 515   | 2 30  | 0.15             | 18 62      | 13 21  | 12 91 | 12 81 | 11 91 | 6    | g  |
| Cerises  | 236         | 6.343   | 2 50  | O 32             | 16 57      | 16 27  | 15 42 | 15 47 | 12 21 | 8    | () |
| Orford   | 237         | 1 623   | 2 57  | 0 12             | 6 51       | 5.86   | 5 56  | 5 31  | 1 31  | 3    | 1  |

APPENDIX 6 Size distributions of the samples collected in 1986. The values in the first column are the base 2 logarithms of organism volume ( $\mu m^3$ ), at the lower limit of the size interval. Samples are identified by the name of the lake and the Julian date. N = abundance (ml<sup>-1</sup>)

V - biovolume in the interval  $(\mu m^3 m l^{-1})$  A zero value is an approximation, given the number of significant digits shown. Sampling and measuring procedures are described in the Methods section of Chapter I.

Lakes are in alphabetical order. The basins of Lake Memphremagog are grouped under the name of the lake

|    | Lac d'Argent |         | Baldwin Pond |         | Lake Bowker |         | Lake Brome |         |
|----|--------------|---------|--------------|---------|-------------|---------|------------|---------|
|    | 2            | 14      |              | 12      | .2          | 30      | 214        |         |
|    | N            | V       | N            | V       | N           | V       | N          | v       |
| 6  | 556          | 53869   | 339          | 31837   | 625         | 58405   | 150        | .5088   |
| 7  | 460          | 81957   | 339          | 61849   | 523         | 93638   | 636        | 118473  |
| 8  | 182          | 66232   | 194          | 64496   | 352         | 119954  | 182        | 61376   |
| 9  | 193          | 143034  | 194          | 130179  | 239         | 156296  | .205       | 149210  |
| 10 | 267          | 393205  | 230          | 337925  | 205         | 290849  | 182        | 257373  |
| 11 | 246          | 647847  | 121          | 399587  | 80          | 198397  | 91         | 253909  |
| 12 | 86           | 467857  | 71           | 445031  | 39          | 217827  | 18         | 111095  |
| 13 | 27           | 346277  | 67           | 802301  | 32          | 396960  | Q.         | 110575  |
| 14 | 18           | 418938  | 22           | 515682  | 9           | 222586  | 14         | 260747  |
| 15 | 14           | 579108  | 9            | 421568  | 11          | 540252  | 9          | 386196  |
| 16 | 5            | 556835  | 5            | 328135  | 9           | 930373  | 23         | 2094198 |
| 17 | 5            | 773381  | 0            | 0       | 1           | 1361956 | ')         | 981024  |
| 18 | 3            | 1038095 | ()           | 0       | 1           | 223225  | ,          | 825.51  |
| 19 | 1            | 1073981 | 1            | 368894  | 0           | 0       | }          | 1971080 |
| 20 | 1            | 986892  | 0            | 325375  | 0           | 0       | }          | 5367199 |
| ?1 | 2            | 7815208 | 04           | 1156253 | ()          | 0       | )          | 6995798 |
| 22 | 0            | 0       | 05           | 3927336 | ()          | 0       | 0.6        | 4305701 |
| 23 | 0            | 0       | 0            | 0       | 0           | 0       | 0          | 33503   |
| 24 | 0            | 0       | 0            | 78656   | 0           | 50969   | 0          | 49944   |
| 25 | 0            | 317891  | 0            | 137725  | 0           | 6325    | 0          | 0       |
| 26 | 0            | 0       | 0            | 0       | 0           | 0       | ()         | 250029  |
| 27 | 0            | 0       | 0            | 0       | 0           | 296405  | 0          | 651809  |
| 28 | 0            | 0       | 0            | 0       | 0           | 663504  | 0          | 0       |

\*  H-North

Terrary.

|                | Nort | h Basın | Centi | cal Basin | Centi | al Basin | Centr | al Basin |
|----------------|------|---------|-------|-----------|-------|----------|-------|----------|
|                | 1    | 51      | :     | 188       |       | 209      | 2     | 25       |
|                | И    | V       | И     | V         | N     | v        | N     | v        |
| 6              | 557  | 59522   | 568   | 54115     | 148   | 13834    | 499   | 48703    |
| 1              | 375  | /2076   | 16    | 17924     | 159   | 28815    | 484   | 81955    |
| 8              | 159  | 55955   | 189   | 85530     | 114   | 41798    | 132   | 53423    |
| 9              | 114  | 74498   | 114   | 74337     | 114   | 78379    | 103   | 77808    |
| 10             | 68   | 98436   | 38    | 52796     | 136   | 202579   | 176   | 240216   |
| 11             | 34   | 79931   | 38    | 118791    | 46    | 133569   | 103   | 276184   |
| 12             | 46   | 272471  | 141   | 828290    | 27    | 167446   | 46    | 260632   |
| 13             | q    | 101616  | 101   | 1287212   | 32    | 346673   | 64    | 730273   |
| 14             | 23   | 499114  | 172   | 4606913   | 32    | 749496   | 9     | 188086   |
| 15             | 23   | 1002261 | 131   | 6000936   | 23    | 961369   | 32    | 1572599  |
| 16             | 14   | 1335138 | 71    | 7491141   | 18    | 2195129  | 14    | 1342194  |
| 17             | 5    | /18688  | 0     | 0         | 27    | 4948923  | 0     | 0        |
| 18             | 14   | 5183638 | 111   | 42835179  | 14    | 4713048  | 0     | 0        |
| 19             | )    | 1482548 | 7     | 5401857   | 5     | 3459616  | 4     | 2738711  |
| 20             | 1    | 632233  | 2     | 3010000   | 0     | 0        | 1     | 919566   |
| 21             | 0    | ()      | 1     | 2810487   | 1     | 1737128  | 0     | 0        |
| <b>~</b> ?     | 0 3  | 2267697 | 7     | 44454458  | 0     | 0        | 0.3   | 1970698  |
| 23             | 0    | 170551  | 0     | 2325864   | 0     | 73855    | 0     | 0        |
| 24             | ()   | 167082  | 0     | 217635    | 0     | 102712   | 0     | 0        |
| 25             | ()   | 392067  | 0     | 0         | 0     | 0        | 0     | 147660   |
| 26             | 0    | 316672  | ()    | 0         | 0     | 0        | 0     | 741918   |
| ) <i>7</i>     | ()   | ()      | ()    | 0         | 0     | 0        | 0     | 508938   |
| <sup>,</sup> 8 | ()   | 0       | 0     | 0         | 0     | 0        | 0     | 0        |

T

•

|    | South Basın |                 | South Basin |          | Newpo | Newport Basin |          | ort Bassin |
|----|-------------|-----------------|-------------|----------|-------|---------------|----------|------------|
|    |             | 149             |             | 195      |       | 225           | .'       | 5          |
|    | N           | V               | N           | ν        | N     | v             | N        | V          |
| 6  | 1193        | 115171          | 487         | 47010    | 1406  | 134865        | 1337     | 127640     |
| 7  | 653         | 127954          | 414         | 72021    | 970   | 167886        | 1248     | 231663     |
| 8  | 256         | 89611           | 333         | 113879   | 584   | 13173         | 83.2     | 101.084    |
| 9  | 426         | 315528          | 268         | 190882   | 564   | +13384        | 475      | 328740     |
| 10 | 199         | 317975          | 203         | 275098   | 396   | 550408        | 535      | 151830     |
| 11 | 85          | 247343          | 162         | 473217   | 218   | 618797        | 287      | 827797     |
| 12 | 55          | 320019          | 18          | 105717   | 91    | 551826        | 105      | 600909     |
| 13 | 77          | 94 <b>29</b> 42 | 9           | 115288   | 50    | 664124        | 32       | 363799     |
| 14 | 109         | 2472189         | 17          | 418610   | 14    | +18313        | 4        | 182886     |
| 15 | 32          | 1535428         | 9           | 396909   | 14    | '57531        | 14       | 572203     |
| 16 | 59          | 5700159         | 9           | 942184   | 18    | 1729090       | ()<br>() | 1035119    |
| 17 | 50          | 8790735         | 2           | 305512   | q     | 1+45780       | 27       | 5276695    |
| 18 | 27          | 11354493        | 1           | 320216   | ()    | ()            | ')       | 2375827    |
| 19 | 15          | 11613661        | 0           | ()       | 8     | 6327054       | 3        | 2006436    |
| 20 | 4           | 5101328         | 0           | 0        | 3     | 5626251       | 1        | 554346     |
| 21 | 1           | 1649021         | 0           | 1279923  | 0     | 0             | 0        | ()         |
| 22 | 4           | 26778838        | 3           | 19501767 | ()    | ()            | ()       | 0          |
| 23 | 0           | 0               | () 6        | 5682860  | 1 1   | 10523486      | ()       | 8581       |
| 24 | 0           | 289529          | 0           | 257481   | ()    | 84446         | ()       | ()         |
| 25 | 0           | 0               | 0           | 283738   | ()    | 166479        | ()       | 36994      |
| 26 | 0           | 0               | 0           | 0        | ()    | ()            | ()       | 0          |
| 27 | 0           | 1227714         | 0           | 0        | 0     | ()            | ()       | 0          |
| 28 | 0           | 0               | ()          | 0        | ()    | t,            | ()       | ()         |

|          | Take | lovering, | · ake    | e Lyster | Lak  | e Magog  | Lake | e Magog |
|----------|------|-----------|----------|----------|------|----------|------|---------|
|          |      | 170       |          | 212      |      | 167      | 1    | .85     |
|          | ۰,   | 7         | к<br>. 1 | У        | И    | v        | N    | v       |
| 6        | 247  | 22925     | 261      | 23777    | 1165 | 108234   | 398  | 37788   |
| 1        | 364  | 70162     | 239      | 42228    | 767  | 135354   | 455  | 85885   |
| 8        | 156  | 52422     | 216      | 83036    | 256  | 82017    | 199  | 71041   |
| 9        | 39   | .28845    | 16       | 154761   | 199  | 155043   | 341  | 241317  |
| 10       | 78   | 97373     | 102      | 128453   | 142  | 204935   | 483  | 200709  |
| 11       | 65   | 179631    | 102      | 285709   | 85   | 204915   | 114  | 292422  |
| 12       | 68   | 404103    | 48       | 273379   | 171  | 1032183  | 62   | 364969  |
| 13       | 14   | 168783    | 34       | 411844   | 159  | 1904950  | 20   | 245946  |
| 14       | 14   | 373958    | 23       | 532725   | 141  | 3309124  | 58   | 1412733 |
| 11       | 9    | 482632    | 5        | 189819   | 77   | 3513377  | 34   | 14980   |
| 16       | 14   | 1407898   | 9        | 1113669  | 25   | 2372738  | 12   | 1064200 |
| 17       | . 9  | 3895806   | 18       | 3423287  | 23   | 3723574  | 4    | 661002  |
| 18       | )    | 2285315   | )        | 653904   | 16   | 5423234  | 12   | 4417833 |
| 19       | 25   | 17960478  | 3        | 2335495  | 20   | 13370695 | 3    | 2517898 |
| 20       | )    | 2010802   | ()       | 347647   | 3    | 5049147  | 1    | 531590  |
| '1       | 1    | 3807031   | ()       | 0        | 3    | 11197149 | 0    | 0       |
| ) )<br>) | ()   | ()        | ()       | 0        | 0    | 0        | 0    | Ő       |
| ' }      | 0    | ()        | ()       | 0        | 0    | 94412    | 0    | 54733   |
| 24       | ()   | 161006    | 0        | 0        | 0    | 0        | 0    | 0       |
| 10       | ()   | 196968    | ()       | 0        | 0    | 0        | 0    | Ő       |
| 26       | ()   | 136628    | ()       | 0        | ()   | 0        | 0    | Ő       |
| 27       | ()   | 1,212681  | ()       | 0        | 0    | 0        | 0    | Ő       |
| ,8       | ()   | ()        | ()       | 0        | 0    | 0        | 0    | 0       |

|    | Lake M | assawippi | Lake     | 0'Mallev | Lake | Ortord        | Lake  | Waterloo  |
|----|--------|-----------|----------|----------|------|---------------|-------|-----------|
|    |        | 226       |          | 1.4      | ۱    | 85            |       | `l +      |
|    | N      | v         | N        | V        | N    | v             | N     | V         |
| 6  | 909    | 86327     | 558      | 52331    | 307  | 30379         | 1739  | 157502    |
| 7  | 568    | 105684    | 655      | 123560   | .250 | +5497         | 1.217 | 105448    |
| 8  | 308    | 109828    | 485      | 181205   | 205  | 21966         | 1044  | 356212    |
| 9  | 308    | 211595    | .18      | 157932   | 102  | 66428         | 1.261 | 947564    |
| 10 | 260    | 364268    | 79 י     | 373168   | 1.25 | 181569        | '39   | 1052702   |
| 11 | 138    | 421821    | 146      | +09082   | 91   | <b>^38478</b> | 11.24 | 3503783   |
| 12 | 64     | 372196    | 55       | 336180   | 55   | 316163        | 110   | 611178    |
| 13 | 91     | 1125684   | + 1      | 515951   | 39   | +15610        | 1.2   | 1/3056    |
| 14 | 32     | 779049    | 59       | 1390775  | 18   | +51135        | 1.2   | , '083',  |
| 15 | 5      | 250558    | 23       | 1007598  | 2    | 100230        | 550   | 28680687  |
| 16 | 14     | 1406935   | <i>o</i> | 752345   | 14   | 1418444       | 0     | ()        |
| 17 | 0      | ()        | 9        | 2068708  | 21   | 3329499       | 0     | 0         |
| 18 | ć      | 1435792   | ر        | 1527954  | 1    | >378179       | b     | 19761     |
| 19 | 19     | 12511881  | 3        | 2202122  | 1    | 485210        | 9     | 8654789   |
| 20 | 0      | 0         | 0        | 259843   | 7    | 9111680       | .28   | 41 444594 |
| 21 | 1      | 1597012   | ()       | 706322   | ()   | ()            | ()    | 0         |
| 22 | 1      | 3934277   | ()       | 1492304  | 0    | 0             | 0     | 0         |
| 23 | 0      | 0         | ()       | 0        | 0    | 0             | 0     | 83623     |
| 24 | 0      | 0         | 0        | 0        | ()   | 0             | ()    | 91670     |
| 25 | 0      | ()        | ()       | 101965   | ()   | 0             | 0     | 17876     |
| 26 | ()     | 0         | 0        | 172366   | ()   | ()            | 0     | 189885    |
| 27 | ()     | ()        | ()       | 0        | ()   | 3489900       | 0     | +92671    |
| 28 | 0      | ()        | ()       | 0        | 0    | 0             | Û     | 0         |

**.**....

MPENDIX ( ..., Sile distributions of the samples collected in 1987)

The first column is the base 2 logarithm of organism size  $(\mu m^3)$ , which defines the lower bound of each size interval. Each sample is identified by the name of the lake and the Julian date N = abundance  $(ml^{-1}) = V =$  biovolume  $(\mu m^3 ml^{-1})$ . A zero entry is an approximate value, given the number of significant digits shown. A blank entry indicates that no organisms of this size were counted sampling and counting procedures are described in the Methods section of Chapter 1

lakes are rested in alphabetical order. All basins of Lake Memphremagog are shouped under the name of the lake

|     | Lac d'Argent |        | Lac d'Argent |         | Lake Bowker |         | Lake Brome  |           |
|-----|--------------|--------|--------------|---------|-------------|---------|-------------|-----------|
|     | 14           | 4      | 18           | 33      | 18          | 33      | 14          | 4         |
|     | N            | V      | N            | v       | N           | V       | N           | v         |
| - 8 | 102663       | 565    | 336328       | 1850    | 146232      | 804     | 462697      | 2545      |
| - 7 | 102663       | 1129   | 336328       | 3700    | 146232      | 1609    | 462697      | 5090      |
| - 6 | 102663       | 2259   | 336328       | 7399    | 146232      | 3217    | 462697      | 10179     |
| - 5 | 82960        | 3650   | 298958       | 13154   | 97488       | 4289    | 365587      | 16086     |
| - 4 | 82960        | 7300   | 298958       | 26308   | 97488       | 8579    | 365587      | 321.7.2   |
| - 3 | 49257        | 8718   | 142005       | 25135   | 57884       | 10245   | 298468      | 52829     |
| - 2 | 49257        | 17437  | 142005       | 50270   | 57884       | 20491   | 298468      | 105658    |
| -1  | 25925        | 18329  | 93424        | 66051   | 33850       | 23932   | 142808      | 100965    |
| 0   | 152954       | 215665 | 150404       | 212070  | 70782       | 99803   | 159011      | 226206    |
| 1   | 117076       | 331325 | 86343        | 244351  | 27089       | 76662   | 60856       | 172222    |
| 2   | 64203        | 363389 | 65105        | 368494  | 18569       | 105101  | 37566       | 212699    |
| 3   | 22660        | 256375 | 37601        | 425418  | 8848        | 100106  | 22085       | 2498.70   |
| 4   | 15107        | 341871 | 13926        | 315145  | 4369        | 98870   | 10797       | 244336    |
| 5   | 5665         | 156398 | 7659         | 346646  | 1748        | 79114   | 399         | 246359    |
| 6   | 2242 4       | 203108 | 2818 0       | 243567  | 692 0       | 60876   | 697 0       | 58590     |
| 7   | 1030 3       | 176244 | 3000 0       | -16228  | 067 0       | 112182  | 824 O       | 121183    |
| 8   | 1151 5       | 415342 | 1727 0       | 559951  | 690-0       | 224014  | 255 ()      | 95496     |
| 9   | 582 0        | 412960 | 127 0        | 493702  | 370 0       | 251863  | 115 0       | 236341    |
| 10  | 424 2        | 589231 | 563 6        |         | 270 0       | 349532  | 230 0       | 25894     |
| 11  | 145 0        | 408221 | 472 1        |         | 120.0       | 317407  | 158 0       | 490118    |
| 12  | 91.0         | 430000 | 309 1        |         | 140.0       | /02041  | 61 0        |           |
| 13  | 53.3         | 589683 | 90-9         | 1389739 | 30.0        | 336443  | 36 0        | 602901    |
| 14  | 25 5         | 624109 | 87.9         | 1836088 | 31 0        | 633564  |             | 301136    |
| 15  | 15.8         | 755004 | 67 2         | 2797477 | 12 4        | 572709  | 1 7         | 101150    |
| 16  | 24           | 245666 | 34 5         | 2968781 | 20.0        | 1982134 |             | 0         |
| 17  | 1.2          | 306138 | 10 3         | 189326  | 1 7         | 268082  | 0.0         | ()<br>()  |
| 18  | 12           | 467710 | 52           | 1571517 | Ó Å         | 280268  |             | 107.0.2.1 |
| 19  |              |        | 0.800        | 57227   | · · · 0     | * 00200 | () <b>)</b> | 12407.1   |
| 20  |              |        |              | 1.11661 |             |         |             |           |

÷

|             | Baldwin Pond |         | Baldwin Pond |         | Baldwin Pond    |                | Lake Hertel     |         |
|-------------|--------------|---------|--------------|---------|-----------------|----------------|-----------------|---------|
|             | 15           | 0       | 19           | 91      | 22              | !5             | 27              | 7       |
|             | Ν            | V       | N            | V       | N               | v              | N               | v       |
| - 8         | 274151       | 1508    | 542349       | 2983    | 542349          | 2983           | 447909          | 2463    |
| - 1         | 274151       | 3016    | 542349       | 5966    | 54 <b>234</b> 9 | 5966           | 447909          | 4927    |
| - 6         | 274151       | 6031    | 542349       | 11932   | 542 <b>34</b> 9 | 11932          | 447909          | 9854    |
| - ')        | 182768       | 8042    | 428523       | 18855   | 428523          | 18855          | 364963          | 16058   |
| - 4         | 182768       | 16084   | 428523       | 37710   | 428523          | 37710          | 364963          | 32117   |
| - }         | 120576       | 21342   | 254436       | 45035   | 254436          | 45035          | 2 <b>3639</b> 7 | 41842   |
| - 2         | 120576       | 42684   | 254436       | 90070   | 254436          | 9 <b>00</b> 70 | 236397          | 83685   |
| - 1         | 63461        | 44867   | 167392       | 118346  | 167392          | 118346         | 103683          | 73304   |
| ()          | 87493        | 123365  | 113819       | 160485  | 69770           | 98376          |                 |         |
| 1           | 44647        | 1 26351 | 65340        | 184912  | 32043           | 90682          |                 |         |
| 2           | 33665        | 1 20544 | 35832        | 202809  | 21965           | 124322         |                 |         |
| 3           | 17823        | 201649  | 14227        | 160964  | 11628           | 131559         |                 |         |
| 4           | 6481         | 146665  | 7026         | 158998  | 4651            | 105252         |                 |         |
| 5           | 3240         | 146642  | 4216         | 190816  | 2067            | 93552          |                 |         |
| 6           |              |         | 2428 6       | 207729  | 921.0           | 77977          | 2400 0          | 219914  |
| 1           |              |         | 1642 9       | 283363  | 579 0           | 101822         | 1466 7          | 245191  |
| 8           |              |         | 928 6        | 325071  | 447.0           | 154312         | 11818           | 403643  |
| 9           |              |         | 571 4        | 401357  | 290.0           | 200314         | 6545            | 423309  |
| 10          |              |         | 449 3        | 615690  | 233.3           | 317207         | 509.1           | 667431  |
| 11          |              |         | 362 3        | 959050  | 94.4            | 253003         | 345 4           | 972408  |
| 12          | 36-2         | 15510   | 260.9        | 1421031 | 116.7           | 655920         | 218.2           | 1133867 |
| 13          | 77-6         | 8 32237 | 159 4        | 1726508 | 78.9            | 850470         | 1333            | 1469806 |
| 14          | 84-5         | 1839600 | 47.8         | 1042597 | 22.2            | 514197         | 70 1            | 1597378 |
| 15          | 36 2         | 1621436 | 26 6         | 1132282 | 8.9             | 402465         | 50 6            | 2325701 |
| 16          | ן סי         | 1680137 | 9-1          | 811071  | 2.9             | 240060         | 54.5            | 5488377 |
| 17          | 5 2          | 990980  | 36           | 569959  | 1.7             | 304172         | 18.2            | 3181476 |
| 18          | 5 2          | 1 73503 | 1 2          | 402936  | 1.0             | 336010         | 19.5            | 6259897 |
| 19          |              |         | 0 000        | 0       | - • •           |                | 3,900           | 2200364 |
| <b>'</b> () |              |         | 0.000        | 0       |                 |                | 2 600           | 3893809 |
| 11          |              |         | 0.600        | 2433213 | 0.001           | 3116           | 1 300           | 2620852 |
| 22          |              |         | 0.00         |         | 0.003           | 15580          | 1 500           | 2020052 |
| 13          |              |         |              |         | 0.000           | 0              |                 |         |
| 24          |              |         |              |         | 0.000           | Ő              |                 |         |
| 15          |              |         |              |         | 0.001           | 49855          |                 |         |
| .'6         |              |         |              |         | 0 001           | 112174         |                 |         |
| <b>)</b>    |              |         |              |         | 0 004           | 715109         |                 |         |
| 28          |              |         |              |         | 0.007           | 810925         |                 |         |
| 10          |              |         |              |         | 0.002           | 1885146        |                 |         |
| 30          |              |         |              |         | 0.002           | 1003140        |                 |         |

a shared a

**HAR** 

| Lac Cerises                                                                                                          |                                                                                                                                                                            | Lac Cerises                                                                                                                                                                     |                                                                                                                                                                                      | Lake Lovering                                                                                                                                                                           |                                                                                                                                                                          | Lake Lovering                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                      | 19                                                                                                                                                                         | 93                                                                                                                                                                              | 23                                                                                                                                                                                   | 56                                                                                                                                                                                      | 1.25                                                                                                                                                                     | 9                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                         |
|                                                                                                                      | N                                                                                                                                                                          | v                                                                                                                                                                               | N                                                                                                                                                                                    | v                                                                                                                                                                                       | N                                                                                                                                                                        | ν                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                                                                                                                                                          |
| -8<br>-7<br>-6<br>-5<br>-4<br>-3<br>-2<br>-1<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                 | N<br>398348<br>398348<br>295073<br>295073<br>192719<br>192719<br>92210<br>99022<br>71057<br>46760<br>22692<br>7335<br>4584<br>2214 0<br>1429 0<br>1071 0<br>643 0<br>347 8 | 2191<br>4382<br>8764<br>12983<br>25966<br>34111<br>68223<br>65192<br>139621<br>201091<br>264662<br>256737<br>165991<br>207472<br>196656<br>232603<br>322158<br>406258<br>451782 | N<br>521762<br>521762<br>521762<br>463789<br>309796<br>309796<br>309796<br>181167<br>83479<br>42598<br>26281<br>17005<br>7558<br>3779<br>2313.0<br>1375 0<br>688.0<br>531.0<br>250 0 | V<br>2870<br>5739<br>11479<br>20407<br>40813<br>54834<br>109668<br>128085<br>117705<br>120552<br>148750<br>192395<br>171038<br>171038<br>171038<br>199523<br>222273<br>225859<br>366019 | N<br>275393<br>275393<br>275393<br>244794<br>244794<br>118920<br>118920<br>69544<br>131229<br>50224<br>37870<br>20049<br>9721<br>4860<br>154.0<br>359.0<br>177 0<br>27 0 | V<br>1515<br>3029<br>6059<br>10771<br>21542<br>21049<br>42098<br>49168<br>185033<br>142134<br>214344<br>226834<br>219986<br>219964<br>15394<br>63942<br>67773<br>59185 | N<br>114 7665<br>114 7665<br>114 7665<br>74 1925<br>74 1925<br>44 0518<br>44 0518<br>28 9814<br>20 7 140<br>118 914<br>79 702<br>46 031<br>1 36 39<br>8 524<br>12 36 0<br>600 0                                                                                                                                                                                                                                                                                                                                             | V<br>6312<br>12624<br>25249<br>32645<br>65289<br>77972<br>155943<br>204898<br>292067<br>336527<br>451113<br>520795<br>308651<br>385796<br>398464<br>397935 |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 289.9<br>173.9<br>71.4<br>89.1<br>32.5<br>24.7<br>9.1<br>3.6<br>2.600<br>1.300<br>1.300                                                                                    | 7 38683<br>84 5528<br>97 3981<br>18 37695<br>14 23617<br>20 98722<br>17 26868<br>14 6 2267<br>16 99015<br>17 8 2574<br>87 0 3872                                                | 2 30.0<br>2 81.0<br>166 7<br>52 1<br>67.5<br>29.9<br>10.4<br>6.5<br>1.3<br>1 300<br>0 003<br>0 002<br>0 002<br>0 001                                                                 | 738622<br>823795<br>593761<br>1407088<br>1235964<br>788928<br>1036121<br>545913<br>696318<br>1',179<br>11875<br>22054<br>30536                                                          | 91.0<br>50.0<br>18 0<br>4.5<br>0.7<br>4.5<br>0.7                                                                                                                         | 139716<br>146580<br>111713<br>61871<br>11775<br>250328<br>65414                                                                                                        | $\begin{array}{c} 491 \\ 0\\ 255 \\ 0\\ 36 \\ 4\\ 57.9\\ 36 \\ 4\\ 18 \\ 6.3\\ 1 \\ 6\\ 0 \\ 800\\ 0\\ 0 \\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 800\\ 0\\ 0\\ 0\\ 800\\ 0\\ 0\\ 0\\ 800\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $ | 666549<br>726868<br>776829<br>416746<br>1194313<br>1990511<br>1218556<br>1062117<br>595739<br>1378709                                                      |

Ĭ

|       | Lake Lyster |         | Lake Lyster |         | Lake Lyster |         | Lake Massawippi |         |
|-------|-------------|---------|-------------|---------|-------------|---------|-----------------|---------|
|       | 15          | 0       | 19          | 1       | 22          | 7       | 17              | 7       |
|       | И           | V       | 11          | V       | N           | v       | N               | v       |
| - 8   | 285507      | 1570    | 292969      | 1611    | 208798      | 1148    | 872428          | 4798    |
| - 7   | 285507      | 3141    | 292969      | 3223    | 208798      | 2297    | 872428          | 9597    |
| - 6   | 285507      | 6281    | 292969      | 6445    | 208798      | 4594    | 872428          | 19193   |
| - 5   | 304540      | 13400   | 358073      | 15755   | 185598      | 8166    | 704992          | 31020   |
| -4    | 304540      | 26800   | 358073      | 31510   | 185598      | 16333   | 704992          | 62039   |
| - 3   | 180821      | 32005   | 193278      | 34210   | 110199      | 19505   | 334871          | 59272   |
| - 2   | 180821      | 64011   | 193278      | 68420   | 110199      | 39010   | 334871          | 118544  |
| - 1   | 79307       | 56070   | 101725      | 71920   | 48333       | 34171   | 220310          | 155759  |
| 0     | 127624      | 179950  |             |         | 81409       | 114787  | 295667          | 416890  |
| 1     | 87919       | 248811  |             |         | 41542       | 117564  | 190952          | 540394  |
| 2     | 36160       | 204666  |             |         | 22781       | 128940  | 93080           | 526833  |
| 3     | 17017       | 192530  |             |         | 12061       | 136458  | 67757           | 766603  |
| /     | 7563        | 171151  |             |         | 6700        | 151621  | 21901           | 495620  |
| 5     | 4254        | 192536  |             |         | 3015        | 136459  | 13688           | 619519  |
| 6     | 1273 0      | 102556  | 1344 8      | 113864  | 758 O       | 68504   | 2818.0          | 247857  |
| 1     | 2273 0      | 346200  | 827.6       | 144746  | 727 0       | 122700  | 1273 0          | 223616  |
| 8     | 1177 0      | 386464  | 1034.5      | 350097  | 818.0       | 289302  | 1732.0          | 547602  |
| 9     | 455 0       | 276270  | 545.5       | 364361  | 505.6       | 350175  | 455.0           | 304490  |
| 10    | 182 0       | 217390  | 515 2       | 6986.8  | 359.6       | 493598  | 659.0           | 949785  |
| 11    | 182 0       | 452778  | 242 4       | 677187  | 292.1       | 755299  | 268.0           | 705350  |
| 12    | 182.0       | 1047958 | 137.9       | 835677  | 179.8       | 973304  | 976             | 429095  |
| 13    | 182.0       | 1842457 | 30-3        | 273160  | 151.5       | 1609794 | 48.8            | 510828  |
| 14    | 48 1        | 1014676 | 47.0        | 257282  | 73.0        | 1515424 | 81.0            | 1647300 |
| 11    | 18 2        | 759803  | 69.0        | 3126025 | 36.5        | 1619764 | 47.6            | 2157866 |
| 1,    | 16 1        | 1370139 | 4 2         | 346070  | 17.4        | 1422934 | 63              | 474242  |
| 17    | 1 3         | .267386 | 12          | 162799  | 2.6         | 417742  | 2.8             | 459534  |
| 18    |             |         |             |         | 0.9         | 233115  | 14              | 406003  |
| 19    |             |         |             |         |             |         | 1.600           | 980415  |
| · · · |             |         |             |         |             |         |                 |         |
| 1     |             |         |             |         | 0.002       | 6786    |                 |         |
|       |             |         |             |         | 0 006       | 33929   |                 |         |
| · · · |             |         |             |         | 0.004       | 44108   |                 |         |
| Ń     |             |         |             |         | 0 008       | 173039  |                 |         |
| 14    |             |         |             |         | 0 000       | 0       |                 |         |
| 26    |             |         |             |         | 0 000       | õ       |                 |         |
| , , , |             |         |             |         | 0 001       | 162860  |                 |         |
| 28    |             |         |             |         | 0 000       | 102000  |                 |         |
| 20    |             |         |             |         | 0 001       | 678583  |                 |         |
| 30    |             |         |             |         |             |         |                 |         |

|          | Lake           | Magog  | Lake          | Magog   | Lake   | Magog   | Lake                    | Magog   |
|----------|----------------|--------|---------------|---------|--------|---------|-------------------------|---------|
|          | 129            |        | 181           |         | 19     | 3       |                         | 3       |
|          | N              | V      | N             | V       | N      | v       | Ν                       | v       |
| - 8      | 348520         | 1917   | 597574        | 3287    | 670160 | 3686    | 453952                  | 2497    |
| - 7      | 348520         | 3834   | 597574        | 6573    | 670160 | 1372    | 153952                  | . 4993  |
| - 6      | 348520         | 7667   | 597574        | 13147   | 670160 | 14744   | 453952                  | 9987    |
| - 5      | 309796         | 13631  | 482888        | 21247   | 536128 | 23590   | 605269                  | .26632  |
| -4       | 309796         | 27262  | 482888        | 42494   | 536128 | 47179   | 605269                  | 53264   |
| - 3      | 183941         | 32558  | 229372        | 40599   | 353696 | 62604   | 299482                  | 53008   |
| - 2      | 183941         | 65115  | 229372        | 81198   | 353696 | 125208  | 299482                  | 106017  |
| - 1      | 121014         | 85557  | 150903        | 106688  | 186156 | 131612  | 157622                  | 111439  |
| 0        | 115338         | 162627 | 133850        | 188729  | 85974  | 121223  | 48111                   | 67837   |
| 1        | 4 <b>96</b> 59 | 140535 | 51226         | 144970  | 49355  | 139675  | 30381                   | 85978   |
| 2        | 36310          | 205515 | 31603         | 178873  | 24359  | 137872  | 18175                   | 102871  |
| 3        | 12815          | 144989 | 14872         | 168262  | 11463  | 129692  | 6415                    | 72579   |
| 4        | 7832           | 177238 | 7436          | 168277  | 5732   | 129715  | 4277                    | 96789   |
| 5        | 3560           | 161126 | 4957          | 224354  | 2866   | 129715  | 1604                    | 72597   |
| 6        | 614.6          | 56259  | 2214 0        | 187508  | 921 6  | 80275   | 2313 0                  | 193453  |
| 7        | 593 7          | 105751 | 1929.0        | 329739  | 705.9  | 127797  | 1563 0                  | 276392  |
| 8        | 312.5          | 108630 | 1896.0        | 605532  | 1236.4 | 404755  | 1375.0                  | 460836  |
| 9        | 156.3          | 108673 | 79 <b>2</b> 0 | 557895  | 890.9  | 634021  | 750 0                   | 527719  |
| 10       | 104.2          | 146026 | 417.0         | 568104  | 472 7  | 613999  | 563-0                   | 848615  |
| 11       | 27.0           | 91515  | 214 0         | 582121  | 236.4  | 652008  | 290-0                   | 815390  |
| 12       | 15.2           | 93626  | 125 0         | 541052  | 218 2  | 1181245 | 130 4                   | 683804  |
| 13       | 24.2           | 299747 | 71.0          | 885438  | 127.3  | 1399658 | 29 0                    | 330246  |
| 14       | 22.7           | 528840 | 85.5          | 1848361 | 54.5   | 1403133 | 44 3                    | 947640  |
| 15       | 45             | 197714 | 187.5         | 7206534 | 61.7   | 2941083 | 36 5                    | 1592066 |
| 16       | 0.0            | 0      | 20 0          | 1639305 | 18.2   | 1338584 | 6 1                     | 519380  |
| 17       | 0.0            | 0      | 73            | 1123021 | 26     | 387903  | 43                      | /16130  |
| 18       | 1.5            | 510230 | 18            | 609278  | 0.0    | 0       | 14 5                    | 4468039 |
| 19       |                |        |               |         | 0.870  | 512853  | • • •                   |         |
| 20       |                |        |               |         | 0.870  | 1208469 |                         |         |
| 21       |                |        |               |         | 0.005  | 14678   | 0.023                   | 69439   |
| 22       |                |        |               |         | 0 014  | 78991   | 0.013                   | 21149   |
| 23       |                |        |               |         | 0 018  | 207047  | 0.023                   | 232625  |
| 24       |                |        |               |         | 0 018  | 428680  | 0.013                   | 338464  |
| 25       |                |        |               |         | 0 014  | 731180  | 0.013                   | 638574  |
| 26       |                |        |               |         | 0 016  | 1523370 | 0 003                   | 206120  |
| 27       |                |        |               |         | 0 005  | 869286  | 6 662                   | 488280  |
| 28       |                |        |               |         | 0 001  | 185171  | 0 00 1                  | 244266  |
| 29<br>30 |                |        |               |         |        | <i></i> | , ( <b>)</b> , <b>)</b> |         |

ŝ

b-matera-

-

#### LAKE MEMPHREMAGOG

I.

\*

|                | Central | Basin  | Central           | l Basin | Centra | l Basin | Centra | il Basin |
|----------------|---------|--------|-------------------|---------|--------|---------|--------|----------|
|                | 130     |        | 143               |         | 16     | 6       | 18     | 36       |
|                | N       | V      | N                 | v       | N      | v       | N      | ν        |
| - 8            | 464850  | 2557   | 254136            | 1398    | 433101 | 2382    | 462903 | 2546     |
| - 7            | 464850  | 5113   | 254136            | 2795    | 433101 | 4764    | 462903 | 5092     |
| -6             | 464850  | 10227  | 254136            | 5591    | 433101 | 9528    | 462903 | 10184    |
| - 5            | 550933  | 24241  | 301198            | 13253   | 279984 | 12319   | 336657 | 14813    |
| -4             | 550933  | 48482  | 301198            | 26505   | 279984 | 24639   | 336657 | 29626    |
| - 3            | 218078  | 38600  | 163933            | 29016   | 249361 | 44137   | 244310 | 43243    |
| - 2            | 218078  | 77200  | 163933            | 58032   | 249361 | 88274   | 244310 | 86486    |
| - 1            | 143472  | 101435 | 784 <b>37</b>     | 55455   | 109369 | 77324   | 116895 | 82645    |
| ()             | 58833   | 82955  | 49304             | 69519   | 107541 | 151633  | 59118  | 83356    |
| ]              | 33775   | 95583  | <sup>2</sup> 8304 | 80100   | 67349  | 190598  | 38180  | 108049   |
| 2              | 20205   | 114360 | 19402             | 109815  | 36933  | 209041  | 20938  | 118509   |
| 3              | 8023    | 90772  | 12326             | 139456  | 17924  | 202792  | 13548  | 153282   |
| 4              | 4358    | 98622  | 5478              | 123967  | 8690   | 196655  | 5474   | 123877   |
| 5              | 1783    | 80699  | 2511              | 113648  | 4345   | 196655  | 3011   | 136278   |
| 6              | 327 0   | 30523  | 660.0             | 60602   | 1240.0 | 104313  | 889.0  | 75935    |
| 7              | 316.0   | 58247  | 400.0             | 74192   | 727 0  | 121097  | 389.0  | 71726    |
| 8              | 156 0   | 57718  | 320 0             | 121888  | 1255.0 | 416210  | 383.0  | 130198   |
| 9              | 84 0    | 60499  | 186 7             | 137141  | 436.0  | 309464  | 176.0  | 127834   |
| 10             | 51.0    | 81511  | 166 7             | 256387  | 418.0  | 556118  | 124.0  | 160389   |
| 11             | 55 0    | 150623 | 106.7             | 290996  | 291.0  | 730720  | 83.3   | 261768   |
| 12             | 12 6    | 68123  | 26 7              | 175053  | 164 0  | 874923  | 52 0   | 258359   |
| 13             | 17 4    | 206705 | 67                |         | 109 0  | 1390982 | 30 4   | 347835   |
| 14             | 55      | 119978 | 84                | 194389  | 83 1   | 1731546 | 39 2   | 816267   |
| 15             | 1.6     | 76411  | 70                | 340480  | 32 5   | 1423617 | 22.3   | 956611   |
| 16             | 1.6     | 147893 | 28                | 206872  | 24.7   | 2098722 | 10.1   | 866189   |
| 17             |         |        |                   |         | 91     | 1726868 | 1.4    | 259841   |
| 18             |         |        |                   |         | 2.6    | 1155888 | 1.4    | 597751   |
| 19             |         |        |                   |         | 2.600  | 1699015 | 0 700  | 365172   |
| .'0            |         |        |                   |         | 1.300  | 1782574 |        |          |
| .'1            |         |        |                   |         | 0 000  | 0       | 0 700  | 1494486  |
| 2              |         |        |                   |         | 1.300  | 8703972 |        |          |
| 23             |         |        |                   |         |        |         |        |          |
| 24             |         |        |                   |         |        |         | 1 400  | 24344775 |
| י'ו            |         |        |                   |         |        |         |        |          |
| ' <del>0</del> |         |        |                   |         |        |         |        |          |
| י, י           |         |        |                   |         |        |         |        |          |
| 8 י            |         |        |                   |         |        |         |        |          |
| 10             |         |        |                   |         |        |         |        |          |
| 3()            |         |        |                   |         |        |         |        |          |

\_\_\_\_

×

~

|          | Central | Basın   | Centra | l Basın        | Central | Basin           | Central | Basin   |
|----------|---------|---------|--------|----------------|---------|-----------------|---------|---------|
|          | 197     | a       | 197b   |                | 198     | }               | 228     | 5       |
|          | N       | v       | N      | V              | N       | V               | N       | v       |
| - 8      | 587467  | 3231    | 675836 | 3717           | 691572  | 3804            | 991650  | 5454    |
| - 7      | 587467  | 6462    | 675836 | 7434           | 691572  | 7607            | 991650  | 10908   |
| - 6      | 587467  | 12924   | 675836 | 14868          | 691572  | 15215           | 991650  | 21816   |
| - 5      | 580215  | 25529   | 533994 | 23496          | 558846  | 24589           | 881466  | 38785   |
| - 4      | 580215  | 51059   | 533994 | 46991          | 558846  | 49178           | 881466  | 77569   |
| - 3      | 275602  | 48782   | 317059 | 56119          | 331815  | 58731           | 380633  | 67372   |
| - 2      | 275602  | 97563   | 317059 | 112239         | 331815  | 117463          | 380633  | 134744  |
| -1       | 181317  | 128191  | 208591 | 147474         | 174639  | 123470          | 250417  | 177045  |
| 0        | 60945   | 85932   | 46710  | 68 <b>681</b>  | 66837   | 94240           | 57305   | 80800   |
| 1        | 29156   | 82511   | 34954  | 98920          | 28777   | 81439           | 24673   | 69825   |
| 2        | 15989   | 90498   | 19168  | 108491         | 15781   | 89320           | 13530   | 76580   |
| 3        | 8465    | 95773   | 10148  | 114814         | 8355    | 94528           | 7959    | 90048   |
| 4        | 3010    | 68116   | 3608   | 81649          | 4126    | 93371           | 3537    | 80042   |
| 5        | 1505    | 68116   | 2481   | 112290         | 2475    | 112019          | 1415    | 64043   |
| 6        |         |         | 1484 8 | 130046         | 1131 6  | 98765           | 954 5   | 76868   |
| 7        |         |         | 727 3  | 119329         | 421.1   | 70703           | 1000-0  | 172839  |
| 8        |         |         | 484 8  | 166243         | 342 1   | 114175          | 645 2   | 210519  |
| 9        |         |         | 454 5  | 330732         | 236 8   | 167309          | 532-3   | 579018  |
| 10       |         |         | 463 6  | 635495         | 236.8   | 332873          | 435 5   | 549271  |
| 11       |         |         | 242 4  | 651976         | 184.2   | 549258          | 193 5   | 488061  |
| 12       |         |         | 118 2  | 576922         | 54 5    | 3212//          | 225 8   | 1103137 |
| 13       |         |         | 81.8   | 1005047        | 36 4    | 39 <b>3</b> 789 | 112 9   | 1243124 |
| 14       |         |         | 121.1  | 2970684        | 23 5    | 517903          | 161 3   | 3539120 |
| 15       |         |         | 54 9   | 2240907        | 11.4    | 501144          | 96-8    | 4371472 |
| 16       |         |         | 7 0    | 59 <b>8088</b> | 30      | 26 <b>3</b> 208 | 32-3    | 2537594 |
| 17       |         |         |        |                |         |                 |         |         |
| 18       |         |         |        |                |         |                 |         |         |
| 19       |         |         |        |                |         |                 |         |         |
| 20       |         |         |        |                |         |                 |         |         |
| 21       | 0.004   | 13572   |        |                |         |                 | 0 004   | 12215   |
| 22       | 0 011   | 67010   |        |                |         |                 | 0 014   | 90082   |
| 23       | 0 004   | 43684   |        |                |         |                 | 0 012   | 125199  |
| 24       | 0.008   | 192972  |        |                |         |                 | 0 014   | 345060  |
| 25       | 0 007   | 317662  |        |                |         |                 | 0 002   | 68707   |
| 26       | 0.007   | 760438  |        |                |         |                 | 0 004   | 320631  |
| 27       | 0 011   | 2176556 |        |                |         |                 | 0 010   | 1932945 |
| 28       | 0 002   | 1017875 |        |                |         |                 | 0 008   | 2748263 |
| 29<br>30 | 0 002   | 1587885 |        |                |         |                 | 0 002   | 1758888 |

\*\*

|            | Newpor | t Basın | Newpo  | rt Ba <mark>sin</mark> | Newpo         | rt Basín | Newpo  | rt Basın |
|------------|--------|---------|--------|------------------------|---------------|----------|--------|----------|
|            | 13     | 0       | 166    |                        | 1             | 86       | 2      | 04       |
|            | N      | V       | N      | ν                      | N             | v        | N      | v        |
| - 8        | 612629 | 3369    | 741272 | 4077                   | 309727        | 1703     | 458658 | 2523     |
| - 7        | 612629 | 6739    | 741272 | 8154                   | 309727        | 3407     | 458658 | 5045     |
| - 6        | 612629 | 13478   | 741272 | 16308                  | 309727        | 6814     | 458658 | 10090    |
| د -        | 435647 | 19168   | 658908 | 28992                  | 250285        | 11013    | 339747 | 14949    |
| - /4       | 435647 | 38337   | 658908 | 57984                  | 250285        | 22025    | 339747 | 29898    |
| - 3        | 387998 | 68676   | 391227 | 69247                  | 133746        | 23673    | 242070 | 42846    |
| - 2        | 387998 | 137351  | 391227 | 138494                 | 133746        | 47346    | 242070 | 85693    |
| - 1        | 170175 | 120314  | 228788 | 161753                 | 78214         | 55297    | 106171 | 75063    |
| 0          | 143991 | 203027  | 147197 | 207548                 | 123540        | 174191   | 54793  | 77258    |
| 1          | 92994  | 263173  | 63376  | 179354                 | 59101         | 167256   | 28310  | 80117    |
| ?          | 62329  | 35278?  | 34755  | 196713                 | 29169         | 165097   | 20310  | 117162   |
| 3          | 26998  | 305455  | 22488  | 254429                 | 13727         | 155307   | 8219   | 02000    |
| 1.         | 14666  | 331892  | 8178   | 185068                 | 8388          | 189820   | 4059   | 91855    |
| 5          | 7999   | 362035  | 4543   | 205616                 | 3050          | 138043   | 1826   | 91000    |
| 6          | 400 0  | 35355   | 636 0  | 54495                  | 1818 0        | 166992   | 300 0  | 34436    |
| 1          | 409 0  | 78099   | 227 0  | 122635                 | 2000 0        | 370277   | 370 0  | 63940    |
| 8          | 212 0  | 74765   | 841.0  | 276336                 | 6091 0        | 205793/  | /16 0  | 159660   |
| 9          | 150 0  | 104273  | 696 0  | 501077                 | 3727 0        | 2037934  | 410.0  | 2/2501   |
| 10         | 119 0  | 181195  | 435 0  | 586215                 | 2455 0        | 312/000  | 208 0  | 242391   |
| 11         | 36 0   | 96106   | 203 0  | 499498                 | 1455 0        | 3636766  | 200.0  | 175511   |
| 12         | 78     | 46777   | 58 0   | 296251                 | 546.0         | 21/0046  | 50 /   | 1/0011   |
| 13         | 5-8    | 72131   | 53.2   | 644681                 | 454 5         | /100570  | 22.4   | 202024   |
| 14         | ʻ) ()  | 132236  | 157 4  | 3316806                | <b>ר מ</b> רי | 7/01030  | 29.0   |          |
| 15         | 5 ()   | 315956  | 76.6   | 3525593                | 181 8         | 9270050  | 22.0   | 597685   |
| 16         | 1 9    | 191115  | 20 0   | 2018585                | 00.0          | 6602010  | 14.8   | 072945   |
| 17         | 13     | 188704  | 19 1   | 3175920                | 10 9          | 0092919  |        | /966/5   |
| 18         | 0 6    | 284726  | ) ]    | 739220                 |               |          | 0.7    | 10/9/8   |
| 19         |        |         | 0 000  | 137223                 |               |          | 1 000  | 0156000  |
| 20         |        |         | 2 100  | 3010405                |               |          | 4 000  | 2456388  |
| 21         |        |         | 2.100  | )212425                |               |          | 0.000  |          |
|            |        |         |        |                        |               |          | 0 008  | 24241    |
| • • •      |        |         |        |                        |               |          | 0 013  | 74602    |
| ٦Ý         |        |         |        |                        |               |          | 0.021  | 218232   |
|            |        |         |        |                        |               |          | 0 015  | 339688   |
| 26         |        |         |        |                        |               |          | 0 018  | 945841   |
|            |        |         |        |                        |               |          | 0 008  | 803652   |
| 's         |        |         |        |                        |               |          | 0 003  | 080529   |
| 10         |        |         |        |                        |               |          |        |          |
| <b>`()</b> |        |         |        |                        |               |          |        |          |

|     | South Basin |        | South Basin |        | South Basin |         | South Basin |         |
|-----|-------------|--------|-------------|--------|-------------|---------|-------------|---------|
|     | 13          | 0      | 143         |        | 1           | 51      | 16          | 6       |
|     | N           | V      | Ν           | V      | N           | v       | N           | v       |
| - 8 | 450066      | 2475   | 198609      | 1092   | 539042      | 2965    | /08373      | 1896    |
| - 7 | 450066      | 4951   | 198609      | 2185   | 539042      | 5929    | /08373      | 2 7 9 2 |
| - 6 | 450066      | 9901   | 198609      | 4369   | 539042      | 11859   | 208373      | 15584   |
| - 5 | 327320      | 14402  | 215773      | 9494   | 522708      | 2099    | 629665      | 27705   |
| -4  | 327320      | 28804  | 215773      | 18988  | 522708      | 45998   | 629665      | 55411   |
| - 3 | 237535      | 42044  | 93175       | 16492  | 258631      | 45778   | 456944      | 80879   |
| - 2 | 237535      | 84087  | 93175       | 32984  | 258631      | 91555   | 456944      | 161758  |
| -1  | 113653      | 80353  | 61299       | 43338  | 136122      | 96238   | 218634      | 154574  |
| 0   | 117400      | 165534 | 83125       | 117206 | 69398       | 97851   | 134772      | 190029  |
| 1   | 67396       | 190731 | 47720       | 135048 | 32596       | 92241   | 92843       | 262766  |
| 2   | 36959       | 209188 | 23790       | 134651 | 15889       | 89932   | 16671       | 264158  |
| 3   | 21741       | 245978 | 13854       | 156744 | 9463        | 107064  | 20216       |         |
| 4   | 11595       | 262395 | 5038        | 114010 | 5608        | 126909  | 10981       | ,48500  |
| 5   | 3865        | 174930 | 2799        | 126683 | 2570        | 116318  | 1995        | >>5978  |
| 6   |             |        | 786.0       | 69577  | 2363 6      | 186687  |             | , ,     |
| 7   |             |        | 452 0       | 81657  | 1454 5      | 233260  |             |         |
| 8   |             |        | 371 0       | 138321 | 1145.5      | 372875  |             |         |
| 9   |             |        | 242.0       | 166906 | 654.5       | 492221  |             |         |
| 10  |             |        | 210 0       | 347999 | 690.9       | 927805  |             |         |
| 11  |             |        | 56.0        | 164304 | 90.9        | 222843  |             |         |
| 12  |             |        | 56 0        | 294536 | 90.9        | 534995  |             |         |
| 13  |             |        | 32.0        | 417928 | 72 7        | 893811  |             |         |
| 14  |             |        | 7.6         | 148817 | 90.9        | 1949690 |             |         |
| 15  |             |        | 8 0         | 491771 | 45          | 209592  |             |         |
| 16  |             |        | 45          | 444022 | 0 0         | ()      |             |         |
| 17  |             |        |             |        | 0 0         | 0       |             |         |
| 18  |             |        |             |        | 18 2        | 6092781 |             |         |
| 19  |             |        |             |        | 0 000       | 0       |             |         |
| 20  |             |        |             |        | 2 273       | 2388370 |             |         |
| 21  |             |        |             |        |             |         |             |         |
| 22  |             |        |             |        |             |         |             |         |
| 23  |             |        |             |        |             |         |             |         |
| 24  |             |        |             |        |             |         |             |         |
| 25  |             |        |             |        |             |         |             |         |
| 26  |             |        |             |        |             |         |             |         |
| 27  |             |        |             |        |             |         |             |         |
| 28  |             |        |             |        |             |         |             |         |
| 29  |             |        |             |        |             |         |             |         |
| 20  |             |        |             |        |             |         |             |         |

Services States

|      | Sout   | h Basin      | South   | Basin       | North  | Basın  | North  | Basın        |
|------|--------|--------------|---------|-------------|--------|--------|--------|--------------|
|      | 1 8    | 86           | 235     |             | 14     | 3      | 16     | 6            |
|      | N      | γ            | N       | v           | N      | V      | N      | v            |
| - 8  | 775158 | 4263         | 1000658 | 5504        | 515098 | 2833   | 311147 | 17 <b>11</b> |
| - 1  | 775158 | 8527         | 1000658 | 11007       | 515098 | 5666   | 311147 | 3423         |
| -6   | 775158 | 17053        | 1000658 | 22014       | 515098 | 11332  | 311147 | 6845         |
| - 5  | 612471 | 26949        | 741228  | 32614       | 416241 | 18315  | 345718 | 15212        |
| - /4 | 612471 | 53897        | 741228  | 65228       | 416241 | 36629  | 345718 | 30423        |
| - 3  | 363654 | 64367        | 484114  | 85688       | 271857 | 48119  | 225797 | 39966        |
| - 2  | 363654 | 128734       | 484114  | 171376      | 271857 | 96237  | 225797 | 79932        |
| - 1  | 239246 | 169147       | 231634  | 163765      | 130075 | 91963  | 108037 | 76382        |
| ()   | 149958 | 211441       | 52376   | 73850       | 73410  | 103508 | 56640  | 79862        |
| 1    | 68869  | 194899       | 27061   | 76583       | 30649  | 86737  | 35767  | 101221       |
| 2    | 51930  | 293924       | 16489   | 93328       | 18909  | 107025 | 14265  | 80740        |
| 3    | 27492  | 311044       | 6983    | 79006       | 12235  | 138427 | 8496   | 96124        |
| 4    | 11108  | 251374       | 4268    | 96585       | 4943   | 111860 | 4196   | 94955        |
| 5    | 5554   | 251374       | 2328    | 105365      | 1977   | 89479  | 2308   | 104460       |
| 6    | 1315-8 | 108561       | 2750 0  | 242216      | 513 0  | 52785  | 1357 0 | 120639       |
| 1    | 1105 3 | 187877       | 1750.0  | 304442      | 333 0  | 53059  | 893 0  | 155641       |
| 8    | 1345 5 | 450005       | 1188.0  | 405209      | 205 0  | 63376  | 691 0  | 233228       |
| 9    | 909-1  | 656727       | 1537 0  | 1055269     | 128 0  | 88351  | 250 0  | 186662       |
| 10   | 454 5  | 583231       | 1268 0  | 1727005     | 72 0   | 116653 | 200 0  | 260629       |
| 11   | 200_0  | 513621       | 561.0   | 1443803     | 42 0   | 133315 | 250.0  | 667219       |
| 12   | 272 1  | 1235617      | 125.0   | 611630      | 19 3   | 95978  | 54 5   | 297937       |
| 13   | 105 3  | 1056978      | /3.2    | 772371      | 21 6   | 265833 | 63 6   | 645225       |
| 14   | 50.9   | 1224439      | 73.2    | 1818547     | 17 0   | 385070 | 18 2   | 505092       |
| 15   | 82 4   | 3878189      | 66 7    | 3254750     | 3 4    | 144034 | 27 3   | 126/861      |
| 16   | 18 2   | 158972 "     | 47 3    | 3802734     | 2.4    | 164712 | 4 7    | 411285       |
| 17   | 73     | 1303739      | 9.7     | 1403829     |        | 104/12 | 3 /1   | 576150       |
| 18   |        | 8490         | 14 4    | 9494038     |        |        | 0.8    | 318064       |
| 19   | 0 007  | 1367         | 0.001   | 660         |        |        | 0 400  | 227151       |
| .'0  | 0.009  | 16798        | 0 000   | 000         |        |        | 0 400  | 567151       |
| 1    | 0 023  | 4198         | 0.003   | 11482       |        |        |        |              |
| ??   | 1 200  | 0015102      | 0.008   | 50690       |        |        |        |              |
| , 3  | 0 131  | 1519752      | 0.012   | 151777      |        |        |        |              |
| 14   | 0 142  | 3406180      | 0.008   | 181092      |        |        |        |              |
| 15   | 0 070  | 3.274810     | 0.000   | 101072      |        |        |        |              |
| 26   | 0 017  | 6996824      | 0 002   | 103127      |        |        |        |              |
| 17   | 0 0 1  | 1850045      |         | 610001      |        |        |        |              |
| 18   | 0 005  | 1.60747      |         | U<br>007500 |        |        |        |              |
| ng   |        | 1 +(7(7) + ) | 0.002   | 527333      |        |        |        |              |
| 20   |        |              | 0.001   | 00107       |        |        |        |              |

7

\$

-----

I

Lake O'Mallev

|     | North Basin |         | North Basin |                 | North Basin |         |        |          |
|-----|-------------|---------|-------------|-----------------|-------------|---------|--------|----------|
|     | 186         |         | 19          | 97              | 22          | 26      | 1      | 77       |
|     | N           | V       | N           | v               | N           | v       | N      | v        |
| - 8 | 763584      | 4200    | 816585      | 4491            | 379652      | 2088    | 443491 | 2439     |
| - 7 | 763584      | 8399    | 816585      | 8982            | 379652      | 4176    | 443491 | 4878     |
| - 6 | 763584      | 16799   | 816585      | 17965           | 379652      | 8352    | 443491 | 9757     |
| - 5 | 848427      | 37331   | 967804      | 42583           | 337468      | 14849   | 328512 | 14455    |
| -4  | 848427      | 74662   | 967804      | 85167           | 337468      | 29697   | 328512 | 28909    |
| - 3 | 403003      | 71332   | 430975      | 76283           | 275511      | 48765   | 175548 | 31072    |
| - 2 | 403003      | 142663  | 430975      | 152565          | 275511      | 97531   | 175548 | 6,2144   |
| -1  | 265133      | 187449  | 252032      | 178187          | 131823      | 93199   | 102660 | 72581    |
| 0   | 86282       | 121658  | 70508       | 99416           | 60273       | 84985   | 141244 | 199154   |
| 1   | 45029       | 127432  | 44975       | 127279          | 25164       | 71214   | 89193  | 252416   |
| 2   | 19755       | 111813  | 27130       | 153556          | 17250       | 17635   | +0019  | 26508    |
| 3   | 15688       | 177494  | 15669       | 177279          | 9132        | 103319  | 25895  | 192976   |
| 4   | 5810        | 131480  | 5223        | 118196          | 3653        | 82667   | 8370   | 189413   |
| 5   | 2905        | 131480  | 3192        | 144470          | 2435        | 110208  | 5754   | 260426   |
| 6   | 1136.4      | 98005   | 634.1       | 51493           | 1591 0      | 135201  | 2625 O | 232113   |
| /   | 590.9       | 109475  | 292 7       | 49040           | 1455 0      | 253907  | 2125 0 | 411775   |
| 8   | 831.3       | 276558  | 878 0       | 28 <b>953</b> 5 | 1136 0      | 376943  | 3000-0 | 1073940  |
| 9   | 241.0       | 171028  | 1414 6      | 935454          | 463 4       | 324598  | 1294 0 | 1009674  |
| 10  | 227.3       | 283095  | 658.5       | 910956          | 353 /       | 500175  | 529-0  | 709875   |
| 11  | 325 3       | 901750  | 473 7       | 1335559         | 158 5       | 411216  | 1000-0 | 2639188  |
| 12  | 144.6       | 740860  | 414 6       | 2312210         | 122 0       | 607272  | 1000-0 | 5885503  |
| 13  | 24.1        | 289077  | 210 5       | 1914051         | 61 0        | 610132  | 86-8   | 970128   |
| 14  | 47.3        | 1108321 | 76.8        | 1615604         | 61.0        | 1171350 | -113/2 | 2396510  |
| 15  | 78 5        | 3752953 | 42 7        | 1806752         | 39-1        | 1758165 | 42-1   | 1832837  |
| 16  | 29 0        | 2483907 | 21 9        | 1785258         | ·) ()       | 1584250 | 26-3   | 246248   |
| 17  | 32          | 627255  | 4-9         | 795093          | 0.9         | 119355  | 10-5   | 1896330  |
| 18  | 1 1         | 345913  |             |                 |             |         | 53     | 1568987  |
| 19  |             |         |             |                 |             |         |        |          |
| 20  |             |         |             |                 | 0 002       | 2777    | 2 600  | 2844495  |
| 21  |             |         |             |                 | 0 001       | 2314    |        |          |
| 22  |             |         |             |                 | 0 007       | 43072   | 2-600  | 12399514 |
| 23  |             |         |             |                 | 0 001       | 9643    |        |          |
| 24  |             |         |             |                 | 0 004       | 83239   |        |          |
| 25  |             |         |             |                 | 0 003       | 151717  |        |          |
| 26  |             |         |             |                 | 0 001       | 92573   |        |          |
| 27  |             |         |             |                 |             |         |        |          |
| 28  |             |         |             |                 |             |         |        |          |
| 29  |             |         |             |                 |             |         |        |          |
| 30  |             |         |             |                 |             |         |        |          |

|            | Lake Onford |        | Lake Orford |                | Lake O        | rford  | Lake Orford     |         |
|------------|-------------|--------|-------------|----------------|---------------|--------|-----------------|---------|
|            | 123         | )      | 177         |                | 19            | 9      | 20              | 3       |
|            | 11          | У      | ħĮ.         | V              | N             | v      | N               | v       |
| - 8        | 202849      | 1116   | 30332       | 167            | 234617        | 1290   | 234617          | 1290    |
| - 1        | 202849      | 2231   | 30332       | 334            | 234617        | 2581   | 234617          | 2581    |
| - 6        | 202849      | 4463   | 30332       | 667            | 234617        | 5162   | 234617          | 5162    |
| - 5        | 160276      | 7052   | 26962       | 1186           | 208549        | 9176   | 208549          | 9176    |
| - 4        | 160276      | 14104  | 26962       | 237 <b>3</b>   | 208549        | 18352  | 208549          | 18352   |
| - 3        | 142746      | 25266  | 18010       | 3188           | 103188        | 18264  | 10 <b>318</b> 8 | 18264   |
| - 2        | 142746      | 50532  | 18010       | 6376           | 103188        | 36529  | 103188          | 36529   |
| - 1        | 62608       | 44264  | 10532       | 7446           | 54310         | 38397  | 54310           | 38397   |
| 0          | 81121       | 114381 | 96730       | 136389         | 46981         | 66243  | 66508           | 93776   |
| 1          | 37255       | 105432 | 66636       | 188580         | 32964         | 93288  | 34999           | 99047   |
| 2          | 25538       | 144545 | 36542       | 206828         | 14790         | 83711  | 17448           | 98756   |
| 3          | 10816       | 122372 | 17734       | 200642         | 10440         | 118118 | 10161           | 114962  |
| 4          | 5408        | 122383 | 5732        | 129715         | 3867          | 87510  | 3695            | 83618   |
| ۰°)        | 3305        | 149584 | 3224        | 145918         | 1547          | 70017  | 1847            | 83595   |
| 6          | 312 0       | 29389  | 1167 0      | 53920          | 1090 9        | 95796  | 1318.0          | 121470  |
| 7          | 425 0       | 77805  | 592 0       | 101855         | 757 6         | 132528 | 772 7           | 126303  |
| 8          | 173 0       | 64207  | 829 0       | 279737         | 606 1         | 209802 | 590 9           | 229900  |
| 9          | 67-0        | 48574  | 421 0       | 292499         | 2 <b>92</b> 9 | 207914 | 363 6           | 261694  |
| 10         | 67.0        | 93646  | 224.0       | 312090         | 285 7         | 378618 | <i>′</i> ∙67 8  | 732688  |
| 11         | 17 0        | 42732  | 158.0       | 423729         | 192 9         | 513666 | 455 0           | 1254001 |
| 12         | 6-0         | ++3952 | 100-0       | 507569         | 185.7         | 967932 | 136 4           | 854803  |
| 13         | 99          | 122190 | 26 0        | 269176         | 57.1          | 599595 | 90 9            | 919201  |
| 14         | 12.9        | 292159 | 34-6        | 688387         | 50.0          | 981433 | 45 5            | 1425496 |
| 15         | 2.3         | 125635 | 51          | 219978         |               |        | 84              | 403659  |
| 16         | 06          | 63820  | 33          | 243278         |               |        | 10 4            | 693310  |
| 17         | 0 0         | 0      | 13.0        | 2031782        |               |        | 1.4             | 252171  |
| 18         | 0.6         | 174125 | () 9        | י535 <b>51</b> |               |        | 07              | 196242  |
| 19         |             |        | 0.5         | 250544         |               |        | 0 000           | 35      |
| <u>`()</u> |             |        |             |                |               |        |                 |         |
| .'1        |             |        |             |                | 0 001         | 3393   | 0 000           | 555     |
| 2          |             |        |             |                | 0,002         | 13572  | 0 001           | 3573    |
| , ;        |             |        |             |                | 0 002         | 23750  | 0 002           |         |
| 24         |             |        |             |                | 0 002         | 40715  | 0.001           | 25847   |
| .'5        |             |        |             |                | 0.000         | 0      | 0 001           |         |
| .'6        |             |        |             |                | 0 002         | 169646 | 000             | 36151   |
| ۰ <i>;</i> |             |        |             |                | 0,000         | 0      | 0.000           | 16029   |
| . 8        |             |        |             |                | 0.001         | 343533 |                 |         |
| 20         |             |        |             |                |               |        |                 |         |
| 30         |             |        |             |                |               |        |                 |         |

Terrary and

|     | Lake Orford   |         | Pond   |        | Por    | ıd      | Pond   |          |
|-----|---------------|---------|--------|--------|--------|---------|--------|----------|
|     | 23            | 37      | 183    | 3      | 14     | 3       | 2.     | 24       |
|     | N             | V       | N      | v      | N      | v       | N      | V        |
| - 8 | 246793        | 1357    | 534275 | 2939   | 593210 | 3263    | 593210 | 3263     |
| - 7 | 246793        | 2715    | 534275 | 5877   | 593210 | 6525    | 593210 | 6525     |
| - 6 | 246793        | 5429    | 534275 | 11754  | 593210 | 13051   | 593210 | 13051    |
| - 5 | 219372        | 9652    | 522402 | 22986  | 632757 | 27841   | 632757 | 27841    |
| - 4 | 219372        | 19305   | 522402 | 45971  | 632757 | 55683   | 632757 | 55683    |
| - 3 | 86835         | 15370   | 253780 | 44919  | 375700 | 66499   | 375700 | 66499    |
| - 2 | 86835         | 30740   | 253780 | 89838  | 375700 | 132998  | 375700 | 132998   |
| - 1 | 57128         | 40389   | 148410 | 104926 | 164781 | 116500  | 164781 | 116500   |
| 0   | 50524         | 71239   | 72031  | 101564 | 59928  | 84498   | 43058  | 60712    |
| 1   | 29005         | 82084   | 27567  | 78015  | 51605  | 146042  | 30211  | 85497    |
| 2   | 15906         | 00028   | 15118  | 85568  | 21225  | 120134  | 16568  | 93775    |
| 3   | 9473          | 107178  | 10004  | 113185 | 11237  | 127135  | 7176   | 81189    |
| 4   | 4678          | 105863  | 4891   | 110683 | 4994   | 113014  | 3544   | 80201    |
| 5   | 2573          | 116454  | 2445   | 110661 | 3052   | 138134  | 1595   | 72190    |
| 6   | 678 6         | 57169   | 1393 9 | 117593 | 590 0  | 51695   | 4750 0 | 382182   |
| 7   | 975 6         | 169245  | 939.4  | 160021 | 487 0  | 87216   | 3750 0 | 586666   |
| 8   | 1439 0        | 473278  | 1167 0 | 354124 | 461.5  | 155571  | 500-0  | 157548   |
| 9   | 87 <b>8</b> 0 | 622393  | 145 8  | 91019  | 409 1  | 299047  | 140 5  | 101132   |
| 10  | 463 4         | 651202  | 114.6  | 156337 | 409 1  | 577443  | 86 5   | 113851   |
| 11  | 341 5         | 873709  | 60 6   | 133878 | 307 7  | 816565  | 54-1   | 146043   |
| 12  | 195.1         | 975068  | 60.6   | 329498 | 109-1  | 599530  | 54 1   | 307570   |
| 13  | 122 0         | 1234160 | 178    | 195066 | 76 9   | 129294  | 24 1   | 313919   |
| 14  | 124 2         | 2560593 | 30 2   | 604867 | 55 5   | 1216607 | 22 /   | 506675   |
| 15  | 73 2          | 2697170 | 55     | 203255 | 51 8   | 2141487 | 10 8   | 455921   |
| 16  | 273           | 2116226 | 1 1    | 91245  | 29 1   | 2446861 | 8 1    | 581449   |
| 17  | 3.0           | 467926  | 00     | 0      | 8.2    | 1431072 | / 1    | 1285505  |
| 18  | 45            | 1228305 | 04     | 168453 | 3 6    | 1193210 | 4 5    | 1590885  |
| 19  | 1.500         | 935851  |        |        | 0,000  | 0       | 1 000  | 725660   |
| 20  |               |         |        |        | 0 900  | 1371702 | 0 500  | 566922   |
| 21  |               |         |        |        | 0 014  | 43898   | 2 000  | 5368710  |
| 22  |               |         |        |        | 0 000  | 1585    | 0.003  | 19849    |
| 23  | 0 002         | 18044   |        |        | 0.025  | 164214  | 1 000  | 11526150 |
| 24  | 0 000         | 0       |        |        | 0.022  | 542786  | 0.012  | 281697   |
| 25  | 0 001         | 43375   |        |        | 0 002  | 74231   | 0.009  | 432851   |
| 26  |               |         |        |        | 0 001  | 117977  |        |          |
| 27  |               |         |        |        | 0 000  | 82310   | 0 004  | 821425   |
| 28  |               |         |        |        | 0 001  | 471482  | 0.001  | 268719   |
| 29  |               |         |        |        | 0.001  | ,09710  | 0.001  | /14548   |
| 30  |               |         |        |        | 0 000  | 392403  |        |          |
|     |               |         |        |        |        |         |        |          |

₹ ±

١

|           | Lake S    | tukers  | Lake S   | tukely  | Lake Trousers |          |  |
|-----------|-----------|---------|----------|---------|---------------|----------|--|
|           | 19        | 3       | 23       | 0       | 18            | 1        |  |
|           | ·:        | :       | N T<br>T | V       | N             | V        |  |
| - 8       | 376595    | 2071    | 376595   | 2071    | 134083        | 737      |  |
| - /       | 376595    | 4143    | 376595   | 4143    | 134083        | 1475     |  |
| - 6       | 376595    | 8285    | 376595   | 8285    | 134083        | 2950     |  |
| ٢,        | 223168    | 4819    | 223168   | 9819    | 143022        | 6293     |  |
| - 4       | 223168    | 19639   | 223168   | 19639   | 143022        | 12586    |  |
| - 3       | 132506    | 23454   | 132506   | 23454   | 63689         | 11273    |  |
| - 2       | 132506    | 46907   | 132506   | 46907   | 63689         | 22546    |  |
| - 1       | 87175     | 61633   | 87175    | 61633   | 37245         | 26332    |  |
| 0         | 59784     | 84295   | 47423    | 66866   | 146482        | 206540   |  |
| 1         | 22880     | 64750   | 21780    | 61637   | 77084         | 218148   |  |
| 2         | 18821     | 106527  | 17915    | 101399  | 30743         | 174005   |  |
| 3         | 5643      | , 5159  | 0485     | 107313  | 20345         | 230183°, |  |
| +         | ++28      | 100206  | 3162     | 71556   | 8138          | 184163   |  |
| 3         | 1845      | 33505   | 1756     | 79477   | 4521          | .204620  |  |
| 6         | 393 9     | 33746   | 227 0    | 65803   | 3364 0        | 288827   |  |
| 7         | 257 6     | +5 65   | ,77 ()   | 138120  | 2909 0        | 477529   |  |
| 8         | 363 6     | 127445  | 1546-0   | 591277  | 2429.0        | 785112   |  |
| 9         | 23-5      | 165876  | 1102 0   | 713460  | 1429.0        | 1114668  |  |
| 10        | 147-1     | 200470  | 510 0    | 733122  | 1071 0        | 1451974  |  |
| 11        | '0   6    | 194568  | 346-9    | ··28675 | 727 0         | 2240974  |  |
| 12        | 53 ()     | 195088  | 408-2    | 2246216 | 393.0         | 1986682  |  |
| 13        | +7 1      | 500289  | 81-6     | 712606  | 214 0         | 2365442  |  |
| 14        | 34-4      | 706999  | 90.9     | 1924279 | 138 8         | 2955203  |  |
| 15        | 15-8      | 695495  | 61       | 259875  | 59.2          | 2939428  |  |
| 16        | 6 1       | 543111  | 36       | 304832  | 35,7          | 2393593  |  |
| 17        | 1.2       | 165842  | () 9     | 175472  | 2.0           | 280119   |  |
| 18        | () ()     | ()      | 0.6      | 181159  |               |          |  |
| 19        | () ()()() | ()      | 0 200    | 1 48945 |               |          |  |
| `()       | 000       | 150     | 0.000    | 0       |               |          |  |
| 1'        | 0 000     | 1057    | 0 001    | 3214    |               |          |  |
| `.`       | 0 400     | 1875+91 | 0 200    | 1169814 |               |          |  |
| , }       | 0 001     | 10058   | 0 005    | 54644   |               |          |  |
| <b>`+</b> | 0 000     | 3078    | 0 002    | 54644   |               |          |  |
| .' >      | 0.000     | 185     | 0 001    | +3394   |               |          |  |
| 16        | 0.00      | 13726   | 0 000    | 0       |               |          |  |
| 27        | 0.001     | 109633  | 0 001    | 1-+4645 |               |          |  |
| .'8       | 0 000     | 114791  |          |         |               |          |  |
| 10<br>    | 0.000     | 138380  |          |         |               |          |  |
| 30        | 0 000     | 136866  |          |         |               |          |  |

Ĩ

|                | Lake Waterloo |         | Lake Waterloo  |         | Lake Waterloo |         | Lake Waterloo           |          |
|----------------|---------------|---------|----------------|---------|---------------|---------|-------------------------|----------|
|                | 144           |         | 18             | 3       | 10            | 5       | .'.                     | 29       |
|                | N             | V       | N              | V       | N             | v       | N                       | V        |
| - 8            | 373291        | 2053    | 662835         | 3646    | 368092        | 2025    | 1469619                 | 8083     |
| - 7            | 373291        | 4106    | 662 <b>835</b> | 7291    | 368092        | 4049    | 1469619                 | 16166    |
| - 6            | 373291        | 8212    | 662835         | 14582   | 368092        | 8098    | 1469619                 | 32332    |
| - 5            | 368683        | 16222   | 707024         | 31109   | 392632        | 17276   | 1175695                 | 51731    |
| -4             | 368683        | 32444   | 707024         | 62218   | 392632        | 34552   | 1175695                 | 103461   |
| - 3            | 262686        | 46495   | 349830         | 61920   | 194271        | 34386   | 620506                  | 109830   |
| - 2            | 262686        | 92991   | 349830         | 123840  | 194271        | 68772   | 620506                  | 219659   |
| -1             | 115213        | 81456   | 184121         | 130174  | 102248        | 72289   | +08228                  | 188617   |
| 0              | 205677        | 290005  | 215027         | 303188  | 332338        | +68597  | 322454                  | 454660   |
| 1              | 177111        | 501224  | 100997         | 285822  | 152629        | 431940  | 205681                  | 582077   |
| 2              | 80938         | +58109  | 67694          | 383148  | 83700         | +73742  | 112793                  | 638408   |
| 3              | 51419         | 581755  | 32580          | 368610  | 49851         | 564014  | +7771                   | 540481   |
| 4              | 22853         | 517163  | 15928          | 360451  | 19694         | + +5675 | 19193                   | 660638   |
| 5              | 9522          | 430966  | 5792           | 262146  | 12309         | >57105  | 15924                   | 20720    |
| 6              | 2667 0        | 238802  | /636 0         | 666218  | 9091 0        | 830739  | 5909-0                  | 519600   |
| 7              | 1424 0        | 258556  | 3818 0         | 614344  | 5455 0        | 996906  | 5227-0                  | 863898   |
| 8              | 1000.0        | 372875  | 2909 0         | 957687  | 3263 0        | 1095248 | 4546-0                  | 1532514  |
| 9              | 576.0         | 415905  | 2364 0         | 1645147 | 2579.0        | 1907884 | 2471-0                  | 1751108  |
| 10             | 518.0         | 784656  | 1273 0         | 1696035 | 1842 ()       | 2741230 | 2177-0                  | 3031799  |
| 11             | 82.0          | 250772  | 90 <b>9</b> 0  | 2510420 | 1212 0        | 3748606 | 1823-5                  | 4645036  |
| 12             | 82 0          | 457492  | 182.0          | 1146418 | 210-5         | 975326  | 941-2                   | 5996372  |
| 13             | 47.0          | 510832  | 40 0           | 347435  | 157 9         | 1547646 | 529-4                   | 5598189  |
| 14             | 35 0          | 870656  |                |         | 235 /         | 5120373 | 411-8                   | 10776516 |
| 15             | 24 0          | 1152975 |                |         | 157 9         | 5672058 | 823-5                   | 37373833 |
| 16             | 12.0          | 1459234 |                |         | 28 6          | 2136999 | 529-4                   | 45274376 |
| 17             |               |         |                |         | 71            | 1225519 | 58-8                    | 8426853  |
| 18             |               |         |                |         |               |         | 10-0                    | 2680824  |
| 19             |               |         |                |         |               |         | , 000                   | 4203531  |
| 20             |               |         |                |         |               |         | 2 000                   | 6176617  |
| 21             |               |         |                |         |               |         | 10 000                  | 24663576 |
| 22             |               |         |                |         |               |         | , 000                   | 21618160 |
| 23             |               |         |                |         |               |         | <ol> <li>087</li> </ol> | 0.28811  |
| 24             |               |         |                |         |               |         | 0.073                   | 1781282  |
| 25             |               |         |                |         |               |         | 0.013                   | 113317   |
| 26<br>27<br>28 |               |         |                |         |               |         |                         |          |
| 20<br>)0       |               |         |                |         |               |         |                         |          |
| 20             |               |         |                |         |               |         |                         |          |
| 50             |               |         |                |         |               |         |                         |          |

ľ

\*
APPENDIX 8 Principal original APL functions used

VOLUMIS - computes the volumes of particles. Input data include the shape, length, width and height

DVOIS - computes the volumes of particles composed of several identical subunity. Input data include the shape, length, width, height, and number of subunity.

INTERVALLES computes the frequency distribution of the output from the two preceding functions. The user may specify whether logarithmic or linear units are desired, and the base of the logs. Output includes both number and total volume for each interval.

FOLSHIRBAL? \_\_performs a series of Kolmogoroff-Smirnoff tests on batch input

MIXD151 computes the parameters of the best bimodal fit.

TRIMODAL computes the parameters of the best trimodal fit

CONFILITESE computes 100 points on the contour of a two parameter confidence region, using the statistics of the regression used to estimate the parameters

MEINREG consist to linear regression function, with detailed diagnostic statistics and h pothesis testing. Suitable for all multiple linear models.

"RRORSUM - optional routine called up by MLINREG. hen repeat observations are available to compute the Fiatio for lack of fit

1.61; 11;1 ١ FUE BUT F 

1

ł

.

1

**د** ۱

.....

- , <u>;</u>

+ E ;

1, **1**, -

. . .

• I

-

 r
 n
 n

 n
 n

 n
 n

 n
 n

 n
 n

· · · ; · · ·

к н н н

 $\frac{1}{2} \left\{ \frac{1}{2} \left$ 

CELLO LE

齴

r 2

• i

· · · · ·

1 J. J.

1

1 ,

t

1.

ļ

· · · ŗ.,

**,** 5

۱ × -

1

× .

. 1 .

1 E 1

1 1

T ALS

.

14 11 11

. у г 1 17 1

T. 

ı

, ,

. • •

## a second and a second • 1 1 a set and the set of the set х 1 **т** . Ň

, 1 

· · · · · ·

۰ ۱ : . . .

· · · · • 1

-, 4 · · · · ·

-

· · · · ·

· · · · ·

.

· · · ·

# 

·

·

、 、

· · · ·

,

,

### 1 1 1

n an the second se

n the second s

to and the rest

· · · ·

• · · · · · · · · 1 · · · · ·

t"

• · , , 1

. 1

•

1 <u>F</u> ...

: ,

· ·

٣ . .

. u r • • \* \* ÷, 1.

• • • . . 

.

· · ·

,

- · · ·

· · · ·

· · · · · · · · ·

• 

. } (

, t .

• •

\_ . . . . 

. t . . ŗ I

. 

*i* ,

۲

ĩ

.

• • •

i

1 , ,

, , . .

s statistica second se

-

e e e e

and the second second

ï

,

```
S MLINREG T; P; RSS; DF; TSS; SSREG; R2; SSB; TS; F1; ANS; EST; YH; YSD; A; G; C;
DTCFF
Q+⊖((\$S)+.×S)
B \leftarrow a a (Q + x (a S) + x T)
                          AVECTOR OF REGRESSION COEFFICIENTS
N+i+eS \land P+(-1)+eS
YHAT+S+, ×B
RESIDUALS+ T-YHAT
RSS+, RSS+ (&RESIDUALS)+, *RESIDUALS
S2+RSS-DF+N-P
TSS++/,TSS+(T-YM+(+/,T)-N)*?
SSREG+TSS-RSS
R2+SSREG-TSS
TS+TSS+SSB+N×YII×YM
F1+SSREG-((P-1)\times, S2)
"DO YOU WANT TO TEST FOR LACK OF FIT?"
ANS+E
→ (ANS='Y')/LOF
NORMAL: DTCFF
                       ANOVA '
'SOURCE DE SS MS ERATIO'
I______
D< 'REGRESSION ', (5 0₹(P-1)), (15 4₹SSRFG)
D< 'RESIDUAL ', (5 0₹DF), (15 4₹RSS), (13 4₹S2), (10 2₹,F1)
!_____
                                           ------
→ (ANS≠'Y')/TAB2

D←'LACK DF FIT ', (5 0¤LDF), (15 4¤LSS), (13 4¤Li)

D←'PURE ERROR ', (5 0¤TOTUF), (15 4¤TT), (13 4¤PLMS), (10 2∞F)
TA82:
DTCLF
D + 'MEAN RESPONSE = ', (3 \neq YM), ' R2 = ', (5 3 \neq R2)
DTCLF
□+ 'REGRESSION PARAMETERS: ' ♦ DTCLF
[]← '
D+''', (☞,R) ♦ DTCLF
'ANY KEY TO CONTINUE' ♦ ANS+D
DTCFF
D+ 'COVARIANCE HATEIX OF PARAMETERS: ' ♦ DTCLF
0+(12 67Cm+0×S2)
NTCI F
D+ 'CORRELATION MATRIX:' ♦ DTCLF
X \leftarrow (-Ge(+/A \times 2) \times 5) \times A \leftarrow S - (G \leftarrow N, P - 1)e + /(S \leftarrow S[; 1 + 1(P - 1)]) - N
 X + X, [2] (T - (N, 1) e YN) -TSS×6.5
```

```
A X IS CENTRED/SCALED REGRESSORS AND
                                A
                                                          RESPONSE.
  D \in B \exists \varphi CORRMAT \in (\varphi X) + \times X
  DICLE
  DE VARIANCE INFLATIONARY FACTORS (DIAG DE ECORRMAT):
  DTCLF
  D.A 301 INECORRMAN
 UTCLE ♦ 'ANY KEY TO CONTINUE' ♦ ANS+T
 DICHE
 'TYPE A VECTOR OF VALUES FOR THE PREDICTOR VARIABLES'
 'STARTING WITH 1, TO OBTAIN THE ESTIMATED RESPONSE'
 WITH ITS STANDARD DEVIATION. TYPE 999 TO BYPASS.
 ESTIMATE: EST+G
 → (EST=999) /CONT
 YH+ ISLSTIF, XH
 YSD: ((&EST)+.×Q+.×FST×S2)×0.5
D' (SI. Y = ', (\overline{*}YH), 'SD = ', (\overline{*}YSD)
 'REPEAT FOR ANOTHER ESTIMATE. ' ◊ → ESTIMATE
CON1:
 'DO YOU WANT TO TEST FOR SIGNIFICANCE OF PARAMETERS (Y/N)?'
ANS+2
+(11NS='N')/FIN
AGAIN: 'ENTER SELECTION VECTOR OR MATRIX'
A+[]
A \in (G \in ((cA) - P), P) \in A
'ENTER HYPOTHETICAL VALUES'
£∢₿
C+ (6+6[1],1)eC
F2*(o((A+.xB) C))+.>(C(A+.xQ+.xQA))+.×((A+.xB)-C)-(S2xC[1])
'F FOR HYPOTHESIS = ', (₹, F2) ♦ DTCLF
"ANUTHER PARAMETER TEST (Y/N)?"
ANS*T
→(ANS 'Y')/AGAIN
→F IN
LOF: ERRORSUM
→NORMAL
```

FIN-

```
ERRORSUM
```

```
'THE FUNCTION 'ERRORSUM', CALLED UP FROM MEINREG, COMPUTES THE '
 'ERROF. SUN OF SQUARES FROM REPEAT ODSERVATIONS, AND HENCE THE '
 'F RATIO FOR LACK OF FIT. DRAPER AND SMITH, P. 33'
 1 1
8+8 & Y+T
D+'PERCENTAGE TOLERANCE (+/-) FOR X INTERVALS? • O PCI+D
 11+(180-PCT)-100 ◊ 12+(180+PCT)-100
 I \leftarrow 1 \diamond R \leftarrow J \leftarrow 2 \diamond SIG \leftarrow Y[1;1]
SS+SIG+2 & TOT+1 & TOTOF+TOTERRSQ+8 & VEC+18
NEXT: \rightarrow ((X[J;R] \ge (X[1;R] \times I1)) \land (X[J;R] \le (X[1;R] \times I2))) / AUG
L+ (TUP TO+ N- (PUEC)), ' REMAINING'
R+2
SKIP: J+J+1
+(J∈VEC)/SKIP
→(J≤N)/NEXT
+COMPUTE
INC: I+I+1
→(IEVEC)/INC
→(I≥N)/FINALE
J+1+1
SIG+YEI:17
$$*YEL-11x2
TOT• 1
HU:N: /HEYT
+FINHLE
AUG: R+R+1
+(P≤P)/N(XT
9E0+916.0
$10+$10+¥[0;1]
53+53+11[0;1]x2
T0T+10T+1 4 R+2
→SkIP
COMPUTE: PARTERROQ+SS-(S1G+2)-TOT
TT+ TOTERRSQ+TOTERRSQ+PARTERRSQ
TOTOF+TOTOF+TOT-1
→INÜ
FINALE: ' '
\rightarrow (TOTDF=0)/FIN1
  PENS+TOTERRSD-TOTOF
LF+((LSS+RSS-TOTERRSD)-LDF+DF-TOTDF)
F+LF-PEMS
FIN1: 'NO REPEAT OBSERUATIONS AUAILABLE'
```

İ