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Abstract

This thesis presents three different proofs of the Shannon–McMillan–Breiman theorem, a corner-

stone in information theory. The three proofs exploit distinct mathematical approaches and shed

light on different facets of the theorem. We begin by establishing some classical results from er-

godic theory and probability theory which will be required for the first two proofs. We then give

the statement of the theorem, followed by some important mathematical constructions as techni-

cal preparations for the proofs. Finally, we give three different proofs to the theorem. For the first

and second proofs, which adapt Kingman’s subadditive ergodic theorem and the martingale conver-

gence theorem respectively, the theorem is justified for general shift-invariant measures. The third

proof, which is due to D. Ornstein and B. Weiss, takes a combinatorial approach and only shows

the ergodic case of the theorem.

Résumé

Ce mémoire présente trois preuves différentes du théorème de Shannon–McMillan–Breiman, une

pierre angulaire de la théorie de l’information. Les trois démonstrations exploitent des approches

mathématiques distinctes et jettent un éclairage sur différentes facettes du théorème. On commence

par établir quelques résultats classiques de la théorie ergodique et de la théorie des probabilités qui

sont nécessaires aux deux premières preuves. Nous donnons l’énoncé du théorème, suivi de con-

structions mathématiques qui interviennent dans les démonstrations du théorème. Finalement, les

trois démonstrations sont exposées. Pour les première et seconde preuves, qui adaptent respective-

ment le théorème ergodique sous-additif de Kingman et le théorème de convergence des martin-

gales, le théorème est justifié pour les mesures générales invariantes sous translation. La troisième

preuve, due à D. Ornstein et B. Weiss, prend une approche combinatoire qui est restreinte au cas

ergodique du théorème.
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Chapter 1

Introduction

A foundational pillar in information theory is the Shannon–McMillan–Breiman (SMB) theorem,

which sometimes is also referred as the asymptotic equipartition property in certain contexts. Ini-

tially proven for Markov chains by Claude E. Shannon in his well-known 1948 paper [Sha48],

the theorem was later generalized to discrete stochastic processes by Brockway McMillan in 1953

[Mc53] and finally shown for almost-sure convergence by Leo Breiman in 1957 [Bre57]. The SMB

theorem illuminates fundamental yet profound connections between information-theoretic notion

of entropy and randomness carried in classical discrete dynamical systems.

In this thesis, we are concerned with the SMB theorem in the setting of one-sided shift over finite

alphabet and we summarize three different proofs of the SMB theorem in this setting. These proofs

employ distinct approaches involving different mathematical theorems and ideas, which serve as

key ingredients in the proofs and shed light on different facets of the SMB theorem.

The primary mathematical languages throughout the context of this thesis will be measure the-

ory, probability theory, and dynamical systems. For basic and classical measure-theoretic tech-

niques such as the monotone convergence theorem, the dominated convergence theorem, and Fa-

tou’s lemma, one may refer to [Fo99] and [Ru87]. For sufficient probability background, one may

consult [Bill95] and [Wil91], where preliminary probability concepts and important elementary

theorems such as the Borel–Cantelli lemma and Chebyshev’s inequality are covered to full details.

One may also find the lecture notes [AB19] very good, useful, and well-organized. If one wants to

grasp materials of ergodic theory and dynamical systems, they may consult [Wa82] and [KH95],

both of which are decent for this purpose.

Moreover, there are important concepts, notably entropy, and mathematical ideas such as cov-
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ering and packing that will be discussed and used in this thesis, and close references for reviewing

these are [Jak19] and [Sh96]. Some of the basic aspects of entropy will also be introduced in Ap-

pendix D of the thesis.

In Chapter 2, some important classical theorems from ergodic theory and probability theory,

along with their detailed proofs, are presented. These theorems are Birkhoff’s ergodic theorem,

Kingman’s subadditive ergodic theorem, and Doob’s martingale convergence theorem respectively,

and they will also be introduced in this order. The versions of these theorems to be presented will

be specified in the chapter and they will all be applied as crucial technical ingredients in the first

two proofs of the SMB theorem.

In Chapter 3, we quickly introduce the basic mathematical setting of one-sided shift over finite

alphabet, and then give the statement of the SMB theorem. After that, we perform two important

mathematical constructions, namely extension from one-sided shift setting to two-sided shift and

the establishment of some functionsZn for n ≥ 2which will be used to derive the so-called entropic

function logZ. These mathematical constructions are essential to the first two proofs of the SMB

theorem, where it will be convenient for us to work on the two-sided shift setting for the first proof

and the entropic function logZ plays quite an important role in the second proof.

In Chapter 4, we give the three proofs of the SMB theorem. They are referred as the subaddtive

proof, the martingale proof, and the Ornstein–Weiss proof respectively. The three proofs will also

be introduced in this order. It can be told from their names that the first two proofs will employ

Kingman’s subadditive ergodic theorem and the martingale convergence theorem respectively. For

the third proof, it is quite self-contained in a way that it adapts information-theoretic ideas of pack-

ing, which are never mentioned in the preceding chapters. For this reason, the Ornstein–Weiss proof

is presented at the very end along with basic introductions to covering and packing. Moreover, the

subadditive and martingale proofs will justify the SMB theorem for general shift-invariant proba-

bility measures, while the Ornstein–Weiss proof will only show the ergodic case of the theorem.
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Chapter 2

Classical theorems for the proofs

We begin with introduction and proofs of three well-known classical results from ergodic theory

and probability theory, which will play as key ingredients in the first two proofs of the SMB the-

orem. These results are: a general version of Birkhoff’s ergodic theorem for measure-preserving

dynamical systems, a general version of Kingman’s subadditive ergodic theorem that allows an ad-

ditional error term in the subadditive property, and a version of Doob’s martingale convergence

theorem for non-negative supermartingales.

2.1 Birkhoff’s ergodic theorem

As one of the most classical ergodic theorems, Birkhoff’s ergodic theorem was initially proven by

George D. Birkhoff in 1931 [Bir31], who was a pioneer of ergodic theory. Its statement and proof

are given below.

Theorem 2.1.1 (Birkhoff). Given a probability space (Ω,F ,P) and let T : Ω −→ Ω be a measure-

preserving transformation. Suppose X ∈ L1(Ω, dP), then the limit

X(x) := lim
n→∞

1

n

n−1∑
m=0

X ◦ Tm(x)

exists for P-almost all x ∈ Ω. X is T -invariant and the convergence also holds in L1(Ω, dP).
Moreover, ∫

Ω

X dP =

∫
Ω

X dP.
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Proof. Denote FT as the T -invariant σ-algebra. Namely, FT := {E ∈ F : T−1(E) = E}. It is

trivial to check that FT is a sub-σ-algebra of F .

For the given X ∈ L1(Ω, dP), we shall justify the above claimed pointwise convergence by

showing that the limit superior of its Birkhoff average, namely 1
n

∑n−1
m=0 X ◦ Tm, is essentially

bounded above by the limit function X P-a.s. and the limit inferior is bounded below by X P-a.s.

Let us first consider some arbitrary Y ∈ L1(Ω, dP). For each n ∈ N, define the following

function on Ω:

Gn(x) := max
1≤j≤n

j−1∑
m=0

Y ◦ Tm(x).

If for each x ∈ Ω, we treat {Gn(x)}n∈N as a sequence in R, then clearly this is an increasing

sequence.

Now that the functions Gn’s are defined in terms of Y , we associate Y with a set of points which

admit divergent behavior under Gn’s asymptotically:

AY :=
{
x ∈ Ω : lim

n→∞
Gn(x) = ∞

}
.

Under this definition, we can write AY alternatively as follows:

AY =
{
x ∈ Ω : lim

n→∞
Gn(x) = ∞

}
=

∞⋂
N=1

∞⋃
ℓ=1

∞⋂
n=ℓ

{Gn > N}.

By the definition of our function Gn, it is F -measurable. Hence, AY is F -measurable.

Then on Ω\AY , limn→∞ Gn(x) < ∞ and

lim sup
n→∞

1

n

n−1∑
m=0

Y ◦ Tm(x) ≤ lim
n→∞

1

n
Gn(x) = 0. (2.1)

We are interested in the measure of AY . If for some Y , AY has measure 0, then (2.1) will hold

P-a.s.

To proceed, consider the following manipulation:

Gn+1(x)−Gn(T (x)) = max
1≤j≤n+1

j−1∑
m=0

Y ◦ Tm(x)− max
1≤j≤n

j∑
m=1

Y ◦ Tm(x)

= max
1≤j≤n+1

j−1∑
m=0

Y ◦ Tm(x)− max
2≤j≤n+1

j−1∑
m=1

Y ◦ Tm(x)
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= max

{
Y (x), Y (x) + max

2≤j≤n+1

j−1∑
m=1

Y ◦ Tm(x)

}

− max
2≤j≤n+1

j−1∑
m=1

Y ◦ Tm(x)

= max {Y (x), Y (x) +Gn(T (x))} −Gn(T (x))

= Y (x)−min{0, Gn(T (x))},

and we have derived a useful relation

Gn+1(x) = Gn(T (x)) + Y (x)−min{0, Gn(T (x))}, (2.2)

which holds for all x ∈ Ω.

For any x ∈ AY , limn→∞ Gn+1(x) = ∞. Then by the relation (2.2), if taking limit as n → ∞,

we must also have limn→∞ Gn(T (x)) = ∞. Thus, T (x) ∈ AY and AY ⊆ T−1(AY ).

On the other hand, if T (x) ∈ AY , then for n ∈ N large enough, Gn(T (x)) > 0 and Gn+1(x) =

Gn(T (x)) + Y (x). Then again if we take limit as n → ∞ on both sides, we must have

lim
n→∞

Gn+1(x) = ∞.

This gives us x ∈ AY and therefore, T−1(AY ) ⊆ AY .

Hence, T−1(AY ) = AY and AY ∈ FT .

For any fixed x ∈ Ω, Gn(x) is monotonically increasing in n by its definition, then Gn+1(x) −
Gn(x) ≥ 0 for all x ∈ Ω, and we naturally have

0 ≤
∫
AY

[Gn+1(x)−Gn(x)] dP

=

∫
AY

Gn+1(x) dP−
∫
AY

Gn(x) dP

=

∫
AY

Gn+1(x) dP−
∫
AY

Gn(T (x)) dP (2.3)

=

∫
AY

[Gn+1(x)−Gn(T (x))] dP,

where in the step (2.3), we are using the fact that the pushforward measure of P given by T , denoted

as PT , is identical to P, because of T -invariance of P:
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∀ F ∈ F ,PT (F ) = P ◦ T−1(F ) = P(F ). Then for any W ∈ L1(Ω, dP), we would have∫
AY

W dP =

∫
AY

W dPT =

∫
T−1(AY )

W ◦ T dP =

∫
AY

W ◦ T dP.

For x ∈ AY , T (x) ∈ AY and the sequence {Gn(T (x))}n∈N diverges to infinity, so by (2.2),

Gn+1(x) − Gn(T (x)) decreases to Y (x) as n → ∞. Besides, for every x ∈ AY , Gn(T (x)) ≥
Y (T (x)) by definition, so

−Gn(T (x)) ≤ −Y (T (x)) ⇒ max{0,−Gn(T (x))} ≤ max{0,−Y (T (x))}

⇒ −min{0, Gn(T (x))} ≤ −min{0, Y (T (x))}.

Thus,

∀ x ∈ AY : |Gn+1(x)−Gn(T (x))| ≤ |Y (x)| −min{0, Gn(T (x))}

≤ |Y (x)| −min{0, Y (T (x))}

≤ |Y (x)|+ |Y (T (x))|.

Then |Gn+1 −Gn ◦ T | ≤ |Y |+ |Y ◦ T | on AY . By the dominated convergence theorem,

0 ≤
∫
AY

[Gn+1(x)−Gn(T (x))] dP
n→∞−−−→

∫
AY

Y (x)dP.

Next, we want to have (2.1) realized P-a.s. and that requires us to come up with some Y such

that AY has measure 0. On the other hand, as we showed before, AY is always a T -invariant set,

which means that AY is a set in the sub-σ-algebra FT . If for a given Y , we want to find a function

whose integral on AY agrees with that of Y , and at the same time, it could be “the best T -invariant

approximation” of Y , then the conditional expectation1 of Y conditioning onFT is a good candidate

to be used here and we denote it as YT := E[Y |FT ].

Then we shall have

0 ≤
∫
AY

Y dP =

∫
AY

YT dP,

and if we can find some Y such that YT < 0 on AY , then we must have P(AY ) = 0. This is where

we start to construct such Y ’s by using our given L1 function X .
1We refer the readers to Appendix A for a heuristic derivation of conditional expectation and some of its useful properties.
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Define Y (k) := X−XT − 1
k

for k ∈ N, where XT = E[X|FT ]. For the corresponding set AY (k)

for each Y (k), we simply write it as Ak.

By properties of conditional expectation, Y (k)
T = XT −XT − 1

k
= − 1

k
. Thus, Y (k)

T is a negative

constant on Ω and we shall have P(Ak) = 0.

Therefore, (2.1) holds P-a.s. for Y (k). Plug in its expression and by T -invariance of XT , we get

lim sup
n→∞

1

n

n−1∑
m=0

X ◦ Tm(x) ≤ XT (x) +
1

k
(2.4)

on Ω\Ak.

Since (2.4) holds for each k ∈ N P-a.s., then

lim sup
n→∞

1

n

n−1∑
m=0

X ◦ Tm(x) ≤ XT (x)

on ∩∞
k=1(Ω\Ak) = Ω\(∪∞

n=1Ak), and

P

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

P(Ak) = 0 ⇒ P

(
∞⋂
k=1

(Ω\Ak)

)
= 1.

Hence, lim supn→∞
1
n

∑n−1
m=0 X ◦ Tm(x) ≤ XT (x) P-a.s.

By replacing X with −X , we are getting the symmetric relation

lim inf
n→∞

1

n

n−1∑
m=0

X ◦ Tm(x) ≥ XT (x) P-a.s.

Therefore, we have the limit

X(x) = lim
n→∞

1

n

n−1∑
m=0

X ◦ Tm(x)

exists for P-almost all x ∈ Ω, and the limit function is the conditional expectation ofX conditioning

on FT : X = XT = E[X|FT ], where XT is T -invariant.

It remains to show the convergence also holds in L1(Ω, dP). For the case that X ∈ L1(Ω, dP)
is bounded, the convergence in L1 follows from P-a.s. pointwise convergence and the dominated

convergence theorem.

Now consider the general case. Define U : L1(Ω, dP) −→ L1(Ω, dP) by sending X 7→ X ◦ T .
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Since P is T -invariant, U preserves the L1-norm:∫
Ω

|X| dP =

∫
Ω

|X| ◦ T dP.

Set Un := 1
n

∑n−1
j=0 U

j and it is easy to check that ∥UnX∥1 ≤ ∥X∥1.
We want to show that the sequence {UnX}n∈N is Cauchy in L1(Ω, dP). Let ε > 0 be arbitrary.

Since X is L1, there exists some C > 0 such that∫
{|X|>C}

|X| dP =

∫
Ω

∣∣X −X1{|X|≤C}
∣∣ dP <

ε

3
.

Let Y := X1{|X|≤C}. Then Y is a bounded integrable function and {UnY }n∈N converges to

YT in L1 and {UnY }n∈N is Cauchy in L1(Ω, dP), so there exists some N ∈ N such that for all

n,m ≥ N , ∥UnY − UmY ∥1 <
ε
3
.

Then for n,m ≥ N , we have the following

∥UnX − UmX∥1 = ∥UnX − UnY + UmY − UmX + UnY − UmY ∥1

≤ ∥UnX − UnY ∥1 + ∥UmY − UmX∥1 + ∥UnY − UmY ∥1

≤ 2 ∥X − Y ∥1 + ∥UnY − UmY ∥1

< 2 · ε
3
+

ε

3
= ε.

Hence, {UnX}n∈N is Cauchy in L1(Ω, dP). Since L1(Ω, dP) is a complete metric space, we

have that {UnX}n∈N converges to its limit limn→∞ UnX = X in L1.

Furthermore, if we set Xn := UnX , we have

0 ≤
∣∣∣∣∫

Ω

(
Xn −X

)
dP
∣∣∣∣ ≤ ∫

Ω

∣∣Xn −X
∣∣ dP, ∀ n ∈ N.

On the other hand, by T -invariance,∫
Ω

Xn dP =

∫
Ω

X dP, ∀ n ∈ N,

so

0 ≤
∣∣∣∣∫

Ω

X dP−
∫
Ω

X dP
∣∣∣∣ ≤ ∫

Ω

∣∣Xn −X
∣∣ dP, ∀ n ∈ N.
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Finally, as {Xn}n∈N converges to X in L1,
∥∥Xn −X

∥∥
1
→ 0 as n → ∞, and it gives that∣∣∣∣∫

Ω

X dP−
∫
Ω

X dP
∣∣∣∣ = 0 ⇒

∫
Ω

X dP =

∫
Ω

X dP.

This finishes the proof.

In the ergodic case, we have FT consists of sets with either zero measure or full measure.

Hence, the limit function, which is the conditional expectation of X conditioning on FT and is

FT -measurable, must be constant for P-almost all x ∈ Ω. The constant value is given by what we

have shown in the end of the proof:∫
Ω

X dP =

∫
Ω

X dP ⇒ X =

∫
Ω

X dP.

Thus, in the case when P is ergodic for T , we have

1

n

n−1∑
m=0

X ◦ Tm n→∞−−−→
∫
Ω

X dP

P-a.s. and the convergence also holds in L1. This is exactly what the famous saying “the time

average agrees with the space average almost everywhere” refers to.

To conclude, given an integrable function X , the asymptotic time average is given by the best T -

invariant approximation, which is the conditional expectation of X conditioning on FT for general

T -invariant P and is the space average for ergodic P.

For this proof, the general routine we followed is inspired from the one presented in [KH95,

Theorem 4.1.2].

Remark. In probability theory, an important result regarding the asymptotic behavior in the large

n-limit of the basic averaging of a sequence of random variables {Xn}n∈N is the law of large num-

bers. In the most classical version of the result, namely Kolmogorov’s strong law of large numbers

(SLLN), we assume the i.i.d. (independent and identically distributed) condition and integrability

for {Xn}n∈N. We can see in this section that, bringing in the same conclusion, Birkhoff’s ergodic

theorem relaxes the independent assumption in the setting, which provides a generalized version of

SLLN.
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2.2 Kingman’s subadditive ergodic theorem

It appears that in ergodic theory, possessing a property known as subadditivity can lead to highly

useful ergodic results. The subadditive property turns out to be important and useful in many con-

texts and one fundamental result about real numbers is Fekete’s lemma2. Analogous to the case of

real numbers, an ergodic theorem was obtained as a consequence of assuming pointwise subaddi-

tive property to a sequence of random variables, and it was originally due to Sir John Kingman in

1968 [King68]. After that, further generalizations of the theorem followed subsequently3, and one

notable result of our interest relaxes the original strict subadditivity to allow an additional additive

error term. We refer this generalized subadditivity as weak subadditivity and we shall present this

generalized version of the subadditive ergodic theorem in this section.

The version of the theorem we are about to show was originally due to Yves Derriennic [Der83].

However, in his paper, a much more general result is presented and it encompasses the theorem to

be shown in this section as one particular assertion. The readers may consult [Der83] for his full

result.

Theorem 2.2.1 (Kingman–Derriennic). Let (Ω,F ,P) be a probability space and T be a measure-

preserving transformation on it. Let {Xn}n∈N be a sequence of functions onΩwithX+
1 ∈ L1(Ω, dP)

and

Xn+m ≤ Xn +Xm ◦ T n + Ym ◦ T n, ∀ n,m ∈ N, (2.5)

where {Yn}n∈N is a sequence of non-negative functions with the following two properties:

sup
n≥1

∥Yn∥1 < ∞ and lim
n→∞

1

n
Yn = 0 P-a.s.

Then the limit

X(x) := lim
n→∞

1

n
Xn(x)

exists for P-almost all x ∈ Ω. X is T -invariant, X+ ∈ L1(Ω, dP), and∫
Ω

X dP = lim
n→∞

1

n

∫
Ω

Xn dP.

2See Lemma B.1 in Appendix B.
3For readers who are interested, the most general version (up-to-date) of Kingman’s subadditive ergodic theorem can be found

in the paper by Renaud Raquépas [Raq23].
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In addition, if {Xn}n∈N is non-negative, then X ∈ L1(Ω, dP), X is non-negative, and 1
n
Xn

converges to X in L1 as well.

Proof. In the proof, we will consider the functions
{

1
n
Xn

}
n∈N in most of the cases. Denote the

functions given by the pointwise limit inferiors and limit superiors of the sequence as below:

X := lim inf
n→∞

1

n
Xn, X := lim sup

n→∞

1

n
Xn.

To show the limit function exists P-a.s., the goal is then to show X = X P-a.s.

For the given sequence of functions {Xn}n∈N, although no explicit information is given re-

garding the integrability, we can show, using the given almost-subadditive property (2.5) of the

sequence, that the positive parts {X+
n }n∈N are L1.

First, iterating (2.5) for n times and using the fact that Y1 is non-negative, we have

Xn ≤ Xn−1 +X1 ◦ T n−1 + Y1 ◦ T n−1

≤ Xn−2 +X1 ◦ T n−2 + Y1 ◦ T n−2 +X1 ◦ T n−1 + Y1 ◦ T n−1

≤ · · · ≤ X1 +
n−1∑
j=1

(X1 + Y1) ◦ T j ≤
n−1∑
j=0

(X1 + Y1) ◦ T j

⇒ Xn ≤
n−1∑
j=0

(X1 + Y1) ◦ T j. (2.6)

This holds for all n ∈ N.

It is trivial to see the following two facts: for any two F -measurable functions W1 and W2,

(W1 +W2)
+ ≤ W+

1 +W+
2 ; for an F -measurable function W , (W ◦ T )+ = W+ ◦ T .

Thus, (2.6) implies that

X+
n ≤

n−1∑
j=0

(X+
1 + Y +

1 ) ◦ T j.

Integrating both sides and dividing by n give

1

n

∫
Ω

X+
n dP ≤ 1

n

n−1∑
j=0

∫
Ω

(X+
1 + Y +

1 ) ◦ T j dP =

∫
Ω

(X+
1 + Y +

1 ) dP,

where we used T -invariance of P.
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Since Y1 is non-negative, supn≥1 ∥Yn∥1 < ∞, and X+
1 ∈ L1(Ω, dP), we have

1

n

∫
Ω

X+
n dP ≤

∫
Ω

(X+
1 + Y +

1 ) dP =

∫
Ω

X+
1 dP+ ∥Y1∥1 ≤

∫
Ω

X+
1 dP+ sup

n≥1
∥Yn∥1 < ∞.

Hence, X+
n ∈ L1(Ω, dP) for all n ∈ N and an :=

∫
Ω
Xn dP ∈ [−∞,∞). We next show

very quickly that the limit of the integral values of the functions
{

1
n
Xn

}
n∈N exists and yields in

[−∞,∞).

Integrate both sides of (2.5), we have∫
Ω

Xn+m dP ≤
∫
Ω

Xn dP+

∫
Ω

Xm ◦ T n dP+

∫
Ω

Ym ◦ T n dP

(by T -invariance of P) =

∫
Ω

Xn dP+

∫
Ω

Xm dP+

∫
Ω

Ym dP

(Ym is non-negative) =

∫
Ω

Xn dP+

∫
Ω

Xm dP+ ∥Ym∥1

≤
∫
Ω

Xn dP+

∫
Ω

Xm dP+ sup
n≥1

∥Yn∥1 .

If replacing the above integral terms by an’s and letting M := supn≥1 ∥Yn∥1 < ∞, then we have

that the real sequence {an}n∈N satisfies

an+m ≤ an + am +M,

for all n,m ∈ N. By Lemma B.1, we have the limit of the sequence
{

1
n
an
}
n∈N exists in [−∞,∞):

lim
n→∞

an
n

= inf
n≥1

an
n
.

Denote this limit as L:

L := lim
n→∞

an
n

= lim
n→∞

1

n

∫
Ω

Xn dP.

Next, let us show that X+ ∈ L1(Ω, dP), which will help to show X+ ∈ L1(Ω, dP) in the end

and will also act implicitly as one of the conditions for applying the monotone convergence theorem

in some context below.

12



Note that

X+ = max(X, 0) = lim inf
n→∞

1

n
X+

n =: X♯. (2.7)

The reason is as follows:

If for some x ∈ Ω, X+(x) = X(x) ≥ 0, then there exists some N ∈ N such that for all n ≥ N ,
1
n
Xn(x) ≥ 0. By the definitions of X+

n and X♯, for such x, we have X♯(x) = X(x). If for some

x ∈ Ω, X(x) < 0 ⇒ X+(x) = 0, then that means the terms 1
n
Xn(x) fall below 0 infinitely often.

In other words, for all n ∈ N, there exists some N ≥ n such that 1
N
XN(x) < 0. Then again by the

definitions of X+
n and X♯, for such x, X♯(x) = 0.

Then we can apply Fatou’s lemma:∫
Ω

X+ dP ≤ lim inf
n→∞

1

n

∫
Ω

X+
n dP ≤

∫
Ω

X+
1 dP+ sup

n≥1
∥Yn∥1 < ∞,

so X+ ∈ L1(Ω, dP).
To proceed, we shall first show the desired relation X = X P-a.s. for the special case when the

sequence of functions
{

1
n
Xn

}
n∈N is bounded from below. After that, this result will, under simple

arguments, naturally extend to the general case when assumption on boundedness from below is

erased.

For the special case, our strategy to achieve the desired relation X = X P-a.s. is to show: (i).
L =

∫
Ω
X dP and (ii). L ≥

∫
Ω
X dP. Since X ≥ X always holds true on Ω and once (i) and (ii)

are justified, we get

0 ≤
∫
Ω

(
X −X

)
dP ≤ L− L = 0 ⇒ X = X P-a.s.

In addition, we will also show the relation (i) holds for the general case when the assumption on

boundedness from below is removed, for the purpose of showing the integral of the limit function

equals the limit of the integrals of 1
n
Xn in the end, namely (2.15).

Moreover, in the context of the special case of (i), we will show T -invariance of X and X , as

T -invariance of X will play an important role in the proof of a claimed relation (2.12) that we

will give in support of the proof of (i). T -invariance of X and X in the general case will follow

immediately in the end once the property is justified for the special case.

Special case - (i). Suppose there exists some C ∈ N such that 1
n
Xn ≥ −C for every n ∈ N. Then

13



Fatou’s lemma can be applied and it gives∫
Ω

X dP ≤ lim inf
n→∞

∫
Ω

1

n
Xn dP = lim

n→∞

1

n

∫
Ω

Xn dP = L.

Before moving on to prove the other direction, let us first show T -invariance of X and X for this

special case.

A simple case of the almost-subadditive property (2.5) is

Xn+1 ≤ X1 +Xn ◦ T + Yn ◦ T,

so if we divide both sides by n+ 1 and take limit inferior, we get

X = lim inf
n→∞

1

n+ 1
Xn+1 ≤ lim inf

n→∞

1

n+ 1
(X1 +Xn ◦ T + Yn ◦ T ) . (2.8)

However, for any x ∈ Ω,X1(x) is just a constant and for one of the conditions regarding {Yn}n∈N,

we have

lim
n→∞

1

n
Yn = 0 P-a.s. (2.9)

Thus,

lim
n→∞

1

n+ 1
(X1 + Yn ◦ T ) = 0 P-a.s.

and (2.8) would become

X ≤ lim inf
n→∞

1

n+ 1
(X1 +Xn ◦ T + Yn ◦ T )

= lim inf
n→∞

(
n

n+ 1

1

n
Xn ◦ T

)
+ lim

n→∞

1

n+ 1
(X1 + Yn ◦ T )

= lim inf
n→∞

1

n
Xn ◦ T + 0 = X ◦ T (P-a.s.) .

Therefore, we have shown that X ≤ X ◦ T P-a.s. Similarly, in fact, with fewer arguments, it

also follows that X ≤ X ◦ T P-a.s.

However, T -invariance of P tells us that∫
Ω

X dP =

∫
Ω

X ◦ T dP,
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then

0 ≤
∫
Ω

(X ◦ T −X) dP = 0 ⇒ X = X ◦ T P-a.s.

Similarly, we also have X = X ◦T P-a.s. This shows P-almost sure T -invariance of both X and

X for the special case, which will be useful in the later proof as well as for showing the conclusion

of T -invariance of the limit function.

We continue with showing the other direction of (i). Consider the following construction of a

sequence of sets. Let ε > 0 be fixed. For each k ∈ N, we define

Eε
k :=

{
x ∈ Ω : ∃ j ∈ {1, ..., k} such that

1

j
Xj(x) +

1

j
Yj(x) ≤ X(x) + ε

}
.

We have {Eε
k}k∈N is a sequence of monotonically increasing nested sets: If x ∈ Eε

k for some k,

then that means there exists some j ∈ {1, ..., k} such that 1
j
Xj(x) +

1
j
Yj(x) ≤ X(x) + ε. For this

j, it is also in {1, ..., k, k + 1}, so x ∈ Eε
k+1 as well and Eε

k ⊆ Eε
k+1.

We also have the union of all sets in {Eε
k}k∈N has full measure. To put it explicitly, suppose the

set where (2.9) holds is Ω′. Then Ω′ ⊆ Ω and P(Ω′) = 1. We claim the following:

Ω′ ⊆
∞⋃
k=1

Eε
k.

Let x ∈ Ω′. (2.9) tells us that there exists some Nx ∈ N such that for all n ≥ Nx,

1

n
Yn(x) ≤

ε

2
. (2.10)

On the other hand, by the definition of limit inferior, the terms in the sequence
{

1
n
Xn(x)

}
n∈N

will be less than or equal to X(x) + ε
2

infinitely often. That is, for all N ∈ N, there exists some

K ≥ N such that 1
K
XK(x) ≤ X(x) + ε

2
. Hence, for N = Nx, we denote the corresponding K as

Kx, and we would have

1

Kx

XKx(x) ≤ X(x) +
ε

2
. (2.11)
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Combining (2.10) and (2.11), we are having

1

Kx

XKx(x) +
1

Kx

YKx(x) ≤ X(x) + ε,

so for any k ≥ Kx, x ∈ Eε
k ⊆ ∪∞

k=1E
ε
k. This justifies the claimed inclusion.

As {Eε
k}k∈N is a sequence of monotonically increasing nested sets with the union achieves full

measure, by continuity from below,

lim
k→∞

P (Eε
k) = P

(
∞⋃
k=1

Eε
k

)
= 1,

so there would exist some k0 ∈ N, such that for all k ≥ k0, P(Eε
k) > 0.

We next define the following functions for k ≥ k0:

Hε
k := (X + ε)1Eε

k
+ (X1 + Y1)

(
1− 1Eε

k

)
;

Rε
k := max (Hε

k, X1 + Y1) .

It might be difficult to see why we define these two functions this way at first, but it turns out

that they give a good upper bound (2.12) for Xn (as will be presented below), which will lead to

the desired other direction of (i). In the proof of (2.12), one will see the reasoning behind the

definitions of Hε
k and Rε

k.

Let k ≥ k0 be fixed. For any n > k, the two functions Hε
k and Rε

k, in the form of ergodic sum,

give an upper bound for Xn:

Xn ≤
n−k−1∑
j=0

Hε
k ◦ T j +

n−1∑
j=n−k

Rε
k ◦ T j P-a.s. (2.12)

The proof of (2.12) takes quite an amount of space, so to avoid affecting the continuity of the

main proof of the theorem, we shall accept the claimed relation (2.12) for now and give its own

proof after the main proof.

Integrating (2.12) and dividing n on both sides give that

1

n

∫
Ω

Xn dP ≤ n− k

n

∫
Ω

Hε
k dP+

k

n

∫
Ω

Rε
k dP,
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where 1
n

∫
Ω
Xn dP converges to L and both

∫
Ω
Hε

k dP and
∫
Ω
Rε

k dP are constants (we assume the

two constants are both finite, since if one of them reaches −∞, then L = −∞ and the result follows

trivially). Let n → ∞, we get

L ≤
∫
Ω

Hε
k dP =

∫
Eε

k

(X + ε) dP+

∫
Ω\Eε

k

(X1 + Y1) dP.

As discussed earlier, {Eε
k}k∈N is nested and will eventually achieve full measure, so if we let

k → ∞, we obtain

L ≤
∫
Ω

(X + ε) dP+ 0 =

∫
Ω

X dP+ ε.

This relation holds for all ε > 0, so letting ε ↓ 0 and we finally get

L ≤
∫
Ω

X dP.

Thus, we have shown (i). L =
∫
Ω
X dP in this special case.

Next, we remove the boundedness from below assumption temporarily and show that the relation

(i) also holds for general {Xn}n∈N.

Continuation of (i) - general case. For our sequence of functions {Xn}n∈N that is not necessarily

bounded from below, consider a corresponding sequence defined as follows:

XC
n := max(Xn,−nC),

where C ∈ N.

If in addition, we denote

XC := lim inf
n→∞

1

n
XC

n ,

then by what we just showed in the special case,∫
Ω

XC dP = lim
n→∞

1

n

∫
Ω

XC
n dP = inf

n≥1

1

n

∫
Ω

XC
n dP. (2.13)

With the same reasoning as showing (2.7), we essentially have XC(x) = max(X,−C).
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As it is clear that XC ↓ X , then the monotone convergence theorem tells us∫
Ω

X dP = lim
C→∞

∫
Ω

XC dP = inf
C≥1

∫
Ω

XC dP.

Plugging in (2.13) gives∫
Ω

X dP = inf
C≥1

∫
Ω

XC dP = inf
C≥1

inf
n≥1

1

n

∫
Ω

XC
n dP = inf

n≥1

1

n
inf
C≥1

∫
Ω

XC
n dP,

and by the monotone convergence theorem again (since XC
n ↓ Xn), we get∫

Ω

X dP = inf
n≥1

1

n

∫
Ω

Xn dP = L.

Therefore, we have justified L =
∫
Ω
X dP for the general case as well.

We proceed in the special case that
{

1
n
Xn

}
n∈N is bounded below by −C for some C ∈ N, and

move on to the justification of (ii). L ≥
∫
Ω
X dP.

Special case - (ii). For this part, we shall look along a subsequence of {Xn}n∈N which will be an

intermediate step to justify the desired relation. Let k ∈ N be fixed and we refer k to be “the size

of the steps” in this auxiliary subsequence we are looking at.

For n ≥ k, we can always write it as n = kmn + qn, where mn is the quotient and qn is the

remainder, so qn ∈ [0, k − 1]. We would then like to show the following inequality:

Xn = Xkmn+qn ≤ Xkmn +
k∑

j=1

(
X+

j + Y +
j

)
◦ T kmn . (2.14)

If qn = 0, then this is obvious. Otherwise, by (2.5),

Xn = Xkmn+qn ≤ Xkmn +Xqn ◦ T kmn + Yqn ◦ T kmn .

Since 0 < qn < k in this case, we have

(Xqn + Yqn) ◦ T kmn ≤
(
X+

qn + Y +
qn

)
◦ T kmn ≤

k∑
j=1

(
X+

j + Y +
j

)
◦ T kmn ,

as the sum contains the qn-th term.
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Hence,

Xn = Xkmn+qn ≤ Xkmn + (Xqn + Yqn) ◦ T kmn ≤ Xkmn +
k∑

j=1

(
X+

j + Y +
j

)
◦ T kmn ,

so (2.14) follows.

Now denote

F :=
k∑

j=1

(
X+

j + Y +
j

)
.

As we showed before, X+
n ∈ L1(Ω, dP) for all n ∈ N. Together with the integrability of every

Yn, we have F ∈ L1(Ω, dP). Thus, by Theorem 2.1.1 (Birkhoff’s ergodic theorem),

lim
n→∞

1

kmn

kmn∑
i=1

F ◦ T i < ∞ P-a.s.

and this gives

lim
n→∞

1

kmn

F ◦ T kmn = 0 P-a.s.

Return to (2.14), divide both sides by kmn, and take limit superior as n → ∞, we get

lim sup
n→∞

1

kmn

Xn ≤ lim sup
n→∞

1

kmn

Xkmn + lim sup
n→∞

1

kmn

F ◦ T kmn = lim sup
n→∞

1

kmn

Xkmn

P-a.s.

Since mn is the quotient of n divided by k or n = kmn + qn for qn ∈ [0, k − 1], then asymptot-

ically, n
kmn

→ 1. Hence,

lim sup
n→∞

1

kmn

Xn = lim sup
n→∞

n

kmn

1

n
Xn = lim sup

n→∞

1

n
Xn.

On the other hand, mn1 = mn2 if n1, n2 ∈ [kN, k(N + 1)) for some N ∈ N. Then essentially,

lim sup
n→∞

1

kmn

Xkmn = lim sup
n→∞

1

kn
Xkn.

Therefore, we obtain that

lim sup
n→∞

1

n
Xn ≤ lim sup

n→∞

1

kn
Xkn P-a.s.
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As
{

1
kn
Xkn

}
n∈N is a subsequence of

{
1
n
Xn

}
n∈N, then

lim sup
n→∞

1

kn
Xkn ≤ lim sup

n→∞

1

n
Xn.

We finally get the P-almost everywhere equality between X and the limit superior taken along

the subsequence with gaps of size k:

X = lim sup
n→∞

1

n
Xn = lim sup

n→∞

1

kn
Xkn P-a.s. ⇒ lim sup

n→∞

1

n
Xkn = kX P-a.s.

Next, define the following functions:

S(k)
n := −

n−1∑
j=0

(Xk + Yk) ◦ T jk, S(k) := lim inf
n→∞

1

n
S(k)
n .

Technically, we are summing over n values of Xk + Yk taken at every k step and the minus sign

in the front will help with turning limit inferior to limit superior later.

For S(k)
1 , as we have supposed that 1

n
Xn ≥ −C for some C > 0, then

[
S
(k)
1

]+
= (−Xk − Yk)

+ ≤ (−Xk)
+ + (−Yk)

+ ≤ kC,

so
[
S
(k)
1

]+
∈ L1(Ω, dP).

On the other hand,
{
S
(k)
n

}
n∈N

is a (sub)additive sequence:

S
(k)
n+m = −

n+m−1∑
j=0

(Xk + Yk) ◦ T jk

= −
n−1∑
j=0

(Xk + Yk) ◦ T jk −
n+m−1∑
j=n

(Xk + Yk) ◦ T jk

= S(k)
n −

m−1∑
j=0

(Xk + Yk) ◦ T jk ◦ T nk

= S(k)
n + S(k)

m ◦
(
T k
)n

.
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Then we can apply the result of (i) for the general case to S
(k)
n ’s and get∫

Ω

S(k) dP = lim
n→∞

1

n

∫
Ω

S(k)
n dP.

Substitute the expression for S(k)
n and apply T -invariance of P, it follows∫

Ω

S(k) dP = lim
n→∞

(
−
∫
Ω

(Xk + Yk) dP
)

= −
∫
Ω

(Xk + Yk) dP.

Let us now look at −S(k). By applying subadditive property (backwards) for n times, we are

getting

−S(k) = − lim inf
n→∞

1

n
S(k)
n = lim sup

n→∞
− 1

n
S(k)
n

= lim sup
n→∞

1

n

n−1∑
j=0

(Xk + Yk) ◦ T jk

≥ lim sup
n→∞

1

n
(Xkn + Yk)

≥ lim sup
n→∞

1

n
Xkn = kX (P-a.s.) .

Taking integration on both sides implies∫
Ω

−S(k) dP ≥ k

∫
Ω

X dP ⇒ 1

k

∫
Ω

(Xk + Yk) dP ≥
∫
Ω

X dP.

This holds for all k ∈ N. Note that Yk is non-negative for all k ∈ N, so

0 ≤ 1

k

∫
Ω

Yk dP =
1

k
∥Yk∥1 ≤

supn≥1 ∥Yn∥1
k

=
M

k
,

where M = supn≥1 ∥Yn∥1 as given before and is finite. Then by taking k → ∞, we are getting

lim
k→∞

1

k

∫
Ω

Yk dP = 0.

We also have

lim
k→∞

1

k

∫
Ω

Xk dP = L,
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so ∫
Ω

X dP ≤ lim
k→∞

1

k

∫
Ω

(Xk + Yk) dP = L.

This justifies the relation (ii). L ≥
∫
Ω
X dP for the special case.

Therefore, for the special case, X = X P-a.s. We next move to the general case, where 1
n
Xn’s

are not necessarily bounded from below.

General case. We adapt the defined bounded version of the functions XC
n and XC for C ∈ N as in-

troduced in the above context of continuation of (i) for the general case. We define XC analogously

and with the same reasoning, XC = max(X,−C).

By (i) and (ii) for the special case, we have∫
Ω

XC dP ≤ lim
n→∞

1

n

∫
Ω

XC
n dP =

∫
Ω

XC dP,

so

0 ≤
∫
Ω

(
XC −XC

)
dP ≤ 0 ⇒ XC = XC P-a.s.

This holds for all C ∈ N. For each C ∈ N, if we denote the set where XC = XC holds as ΩC ,

then ΩC ⊆ Ω and P(ΩC) = 1.

Then on ∩∞
C=1ΩC which is the set where XC = XC holds for all C ∈ N, we have X = X and

P

(
Ω\

(
∞⋂

C=1

ΩC

))
= P

(
∞⋃

C=1

(Ω\ΩC)

)
≤

∞∑
C=1

P (Ω\ΩC) = 0

implies ∩∞
C=1ΩC has full measure.

Therefore, we eventually get X = X P-a.s. and this tells us that the limit X := limn→∞
1
n
Xn

exists P-a.s.

Then it directly follows, from (i) for the general case, that∫
Ω

X dP =

∫
Ω

X dP = lim
n→∞

1

n

∫
Ω

Xn dP. (2.15)

Since X+ ∈ L1(Ω, dP) and X = X P-a.s., then X+ ∈ L1(Ω, dP).
We have also shown P-almost sure T -invariance of both X and X for the special case, then here
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we would have XC and X
C are T -invariant P-a.s. for each C ∈ N. By letting C → ∞ and by

X = X = X P-a.s., we have X is T -invariant P-a.s.

If we further assume that Xn is non-negative for all n ∈ N, then clearly X is also non-negative

by P-almost sure pointwise convergence. We also have X ∈ L1 since X = X+ ∈ L1(Ω, dP).
In addition, for the corresponding sequence

{
1
n
Xn

}
n∈N, which is a sequence of L1 functions now,

we have 1
n
Xn → X P-a.s. as just concluded above, then by Scheffé’s lemma4, (2.15) implies

1
n
Xn → X in L1.

We now turn to the proof of the claimed relation (2.12):

Proof of (2.12). Recall that there exists some k0 ∈ N such that for all k ≥ k0, P(Eε
k) > 0. Next,

for each k ≥ k0 fixed, we defined the two functions

Hε
k = (X + ε)1Eε

k
+ (X1 + Y1)

(
1− 1Eε

k

)
;

Rε
k = max (Hε

k, X1 + Y1) .

Then for every n > k, we have the inequality:

Xn ≤
n−k−1∑
j=0

Hε
k ◦ T j +

n−1∑
j=n−k

Rε
k ◦ T j P-a.s.

To prove this claimed inequality, we shall fix our k ≥ k0 and also fix x ∈ Ω. The reason why we

need a positive measure for Eε
k is to use Poincaré’s recurrence theorem5. That is, given P(Eε

k) > 0,

we have that for P-almost every x ∈ Eε
k, the sequence {T j(x)}j∈N revisits Eε

k infinitely often.

Then it suffices to consider only two cases: (1). {T j(x)}j∈N never meets Eε
k, in other words,

T j(x) ̸∈ Eε
k for all j ∈ N0 := {0} ∪ N; (2). T j(x) ∈ Eε

k for some j ∈ N0, and thus, there are

infinitely many i ∈ N such that i ≥ j and T i(x) ∈ Eε
k, by Theorem B.2.

For case (1), (2.12) would simply be given by the almost-subadditive property (2.5): We already

have (2.6) obtained from (2.5), then we further split the sum into two parts:

Xn ≤
n−1∑
j=0

(X1 + Y1) ◦ T j =
n−k−1∑
j=0

(X1 + Y1) ◦ T j +
n−1∑

j=n−k

(X1 + Y1) ◦ T j.

4See Lemma B.3 in Appendix B.
5See Theorem B.2 in Appendix B.
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For x ∈ Ω such that T j(x) ̸∈ Eε
k, or equivalently, T j(x) ∈ Ω\Eε

k, for all j ∈ N0, we have

(X1 + Y1) ◦ T j(x) = Hε
k ◦ T j(x) for all j ∈ N0 by the definition of Hε

k . With Rε
k ≥ Hε

k , (2.12)

directly follows:

Xn =
n−k−1∑
j=0

Hε
k ◦ T j +

n−1∑
j=n−k

Hε
k ◦ T j ≤

n−k−1∑
j=0

Hε
k ◦ T j +

n−1∑
j=n−k

Rε
k ◦ T j.

We move on to case (2). For our fixed x ∈ Ω that satisfies case (2), we inductively construct

infinite sequences {mj}j∈N0 and {nj}j∈N satisfying

mj ≤ nj+1 < mj+1 ≤ nj+2, ∀ j ∈ N0.

The definitions of the two sequences are as follows: Set m0 = 0, then

• Given mj−1, define

nj := inf{i ≥ mj−1 : T
i(x) ∈ Eε

k}.

Since {T i(x)}i∈N revisits Eε
k infinitely often, nj is always well-defined.

• With nj defined, T nj(x) ∈ Eε
k, so by the definition of Eε

k, there exists some ℓ ∈ {1, ..., k} such

that 1
ℓ
Xℓ(T

nj(x))+ 1
ℓ
Yℓ(T

nj(x)) ≤ X(T nj(x))+ε = X(x)+ε, where we used T -invariance

of X . Take the first such ℓ:

ℓj := min

{
ℓ ∈ {1, ..., k} :

1

ℓ
Xℓ(T

nj(x)) +
1

ℓ
Yℓ(T

nj(x)) ≤ X(T nj(x)) + ε

}
,

and set mj := nj + ℓj .

Based on this definition, the intervals on natural numbers {[mj,mj+1) ∩ N0}j∈N0
form a parti-

tion ofN0. Hence, for our given n > k, we can always find some J ∈ N0 such thatmJ ≤ n < mJ+1.

Then by the almost-subadditive property (2.5), we get that

Xn ≤ XmJ
+

n−1∑
i=mJ

(X1 + Y1) ◦ T i.

If J = 0, then we simply have (2.6) here. If mJ ̸= 0, then we can continue with the almost-
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subadditive property (2.5) with mJ = nJ + ℓJ we defined above:

XmJ
≤ XnJ

+ (XℓJ + YℓJ ) ◦ T nJ ,

and this gives, by substituting back, that

Xn ≤ XnJ
+ (XℓJ + YℓJ ) ◦ T nJ +

n−1∑
i=mJ

(X1 + Y1) ◦ T i.

Then for the XnJ
term, we again use (2.5) to “downgrade from nJ to mJ−1”:

XnJ
≤ XmJ−1

+

nJ−1∑
i=mJ−1

(X1 + Y1) ◦ T i,

and again by (2.5), “to downgrade from mJ−1 to nJ−1”:

XmJ−1
≤ XnJ−1

+
(
XℓJ−1

+ YℓJ−1

)
◦ T nJ−1

Substitute all these back, we obtain

Xn ≤ XnJ−1
+

nJ−1∑
i=mJ−1

(X1 + Y1) ◦ T i +
n−1∑
i=mJ

(X1 + Y1) ◦ T i +
J∑

j=J−1

(
Xℓj + Yℓj

)
◦ T nj .

We iterate like this by applying (2.5) repeatedly and this finally leads to the result:

Xn ≤ Xn1 +
J−1∑
j=1

nj+1−1∑
i=mj

(X1 + Y1) ◦ T i +
n−1∑
i=mJ

(X1 + Y1) ◦ T i +
J∑

j=1

(
Xℓj + Yℓj

)
◦ T nj ,

but “the next stop after downgrading from n1” is m0 = 0, so for the term Xn1 , the upper bound is

simply given by (2.6):

Xn1 ≤
n1−1∑
i=0

(X1 + Y1) ◦ T i.

Therefore, we obtain the following upper bound for Xn in terms of a bunch of sums:

Xn ≤
J∑

j=1

nj−1∑
i=mj−1

(X1 + Y1) ◦ T i

︸ ︷︷ ︸
(I)

+
n−1∑
i=mJ

(X1 + Y1) ◦ T i

︸ ︷︷ ︸
(II)

+
J∑

j=1

(
Xℓj + Yℓj

)
◦ T nj

︸ ︷︷ ︸
(III)

, (2.16)
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where we label the three summation terms in (2.16) as (I), (II), and (III) respectively (as shown

above). We will show that, in the end, it turns out that (I) and (III) will be bounded by sums in

terms of Hε
k; (II) will be bounded by sums that partially involve Hε

k and partially involve Rε
k.

Let us look at (III) first. By how we defined each ℓj , we have

1

ℓj

(
Xℓj + Yℓj

)
◦ T nj ≤ X ◦ T nj + ε, ∀ j ∈ {1, ..., J}.

Besides, by the definition of Hε
k and Eε

k, if x ∈ Eε
k, Hε

k(x) = X(x) + ε; if x ∈ Ω\Eε
k, Hε

k(x) =

X1(x) + Y1(x) > X(x) + ε. Hence, we always have X(x) + ε ≤ Hε
k(x).

With the above information, we proceed with the following manipulation:

J∑
j=1

(
Xℓj + Yℓj

)
◦ T nj ≤

J∑
j=1

ℓj (X ◦ T nj + ε)

=
J∑

j=1

mj−1∑
i=nj

(
X ◦ T i + ε

)
(2.17)

≤
J∑

j=1

mj−1∑
i=nj

Hε
k ◦ T i,

where for the step (2.17), we are technically rewriting our ℓj copies of X ◦ T nj + ε, using T -

invariance of X , in terms of the sum of X ◦ T i + ε ranging from i = nj to i = mj − 1 (there are

exactly ℓj of them).

Hence, we have obtained an upper bound in terms of sums involving Hε
k for (III).

Next, we look at the double sum (I). By how nj’s are defined, we have that for i = mj, ..., nj+1−
1, T i(x) ̸∈ Eε

k, which is equivalent to T i(x) ∈ Ω\Eε
k.

This implies that (X1 + Y1) ◦ T i(x) > X ◦ T i(x) + ε and (X1 + Y1) ◦ T i(x) = Hε
k ◦ T i(x).

Therefore, (I) becomes

J∑
j=1

nj−1∑
i=mj−1

(X1 + Y1) ◦ T i =
J∑

j=1

nj−1∑
i=mj−1

Hε
k ◦ T i.

Note that if Tmj(x) ∈ Eε
k for some mj , then by definition, nj+1 = mj and the sum over (X1 +

Y1) ◦ T i from i = mj to nj+1 − 1 would be an empty sum, and thus, skipped.
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Then the bound for (I) + (III) would be

(I) + (III) ≤
J∑

j=1

mj−1∑
i=nj

Hε
k ◦ T i +

J∑
j=1

nj−1∑
i=mj−1

Hε
k ◦ T i =

mJ−1∑
i=0

Hε
k ◦ T i,

so (2.16) becomes

Xn ≤
mJ−1∑
i=0

Hε
k ◦ T i +

n−1∑
i=mJ

(X1 + Y1) ◦ T i. (2.18)

We shall finally deal with the remaining sum (II). The problem with (II) is that this sum involves

the given n, which is between mJ and mJ+1, but we do not know the relative position of nJ+1 with

respect to n. It is possible that mJ ≤ n ≤ nJ+1 while it is also possible that nJ+1 < n < mJ+1.

If we have mJ ≤ n ≤ nJ+1, then everything is fine and it would be the same situation as

discussed in (I), that (X1 + Y1) ◦ T i = Hε
k ◦ T i for i ∈ {mJ , ..., n − 1}. However, if nJ+1 <

n < mJ+1, then for i such that nJ+1 ≤ i ≤ n − 1, there is at least one term, which is nJ+1, such

that T i(x) ∈ Eε
k. For T i(x) ∈ Eε

k, we have Hε
k ◦ T i(x) = X ◦ T i(x) + ε, but it is possible that

(X1 + Y1) ◦ T i(x) > X ◦ T i(x) + ε for this T i(x) ∈ Eε
k. This is where the function Rε

k comes into

the place.

To guarantee the bound will hold, we shall bound the terms with indices greater than or equal to

nJ+1 by Rε
k, as X1 + Y1 ≤ Rε

k always holds. Then the question comes to how many such terms do

we have with the given n. As discussed earlier, it is also possible that mJ ≤ n ≤ nJ+1 and in that

case, it would be safe to have the bound involves Hε
k only. Nevertheless, we always have Hε

k ≤ Rε
k,

so it never hurts to preserve the last several terms and have them be bounded by Rε
k.

Notice that since mJ ≤ n < mJ+1 and mJ+1 − nJ+1 = ℓJ+1 ≤ k, then if n would ever exceed

nJ+1, n cannot exceed nJ+1 by k. Hence, we shall preserve the last k terms and have them be

bounded above by Rε
k.

Then there again involve two cases for consideration: One is that there are at least k terms in the

sum (II); the other is the number of terms in (II) is less than k.

For the first case, we can split (II) into two parts:

n−1∑
i=mJ

(X1 + Y1) ◦ T i =
n−k−1∑
i=mJ

(X1 + Y1) ◦ T i +
n−1∑

i=n−k

(X1 + Y1) ◦ T i
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≤
n−k−1∑
i=mJ

Hε
k ◦ T i +

n−1∑
i=n−k

Rε
k ◦ T i.

Substitute this bound back into (2.18), we get

Xn ≤
mJ−1∑
i=0

Hε
k ◦ T i +

n−k−1∑
i=mJ

Hε
k ◦ T i +

n−1∑
i=n−k

Rε
k ◦ T i

=
n−k−1∑
i=0

Hε
k ◦ T i +

n−1∑
i=n−k

Rε
k ◦ T i,

which exactly gives us (2.12).

For the second case when there are no enough terms in (II), we could borrow the rest of the

terms from
∑mJ−1

i=0 Hε
k ◦ T i and have them also be bounded by Rε

k. Suppose n −mJ < k. Then

we split the last (k − n+mJ) terms from
∑mJ−1

i=0 Hε
k ◦ T i and (2.18) becomes

Xn ≤
n−k−1∑
i=0

Hε
k ◦ T i +

mJ−1∑
i=n−k

Hε
k ◦ T i +

n−1∑
i=mJ

(X1 + Y1) ◦ T i

≤
n−k−1∑
i=0

Hε
k ◦ T i +

mJ−1∑
i=n−k

Rε
k ◦ T i +

n−1∑
i=mJ

Rε
k ◦ T i

=
n−k−1∑
i=0

Hε
k ◦ T i +

n−1∑
i=n−k

Rε
k ◦ T i.

Thus, we have also derived (2.12) under this second case.

This completes our proof to the claimed inequality (2.12).

Given how nicely Fekete’s lemma shows the existence of limit of a real sequence satisfying sub-

additivity, Kingman’s subadditive ergodic theorem indicates that when given a sequence of random

variables such that they satisfy subadditivity in a pointwise sense, there would almost-surely ex-

ist a limit function coming out of this property, so one can regard Kingman’s subadditive ergodic

theorem as a random variable version of Fekete’s lemma.

Remark. Our presented proof of Kingman’s subadditive ergodic theorem is an adaptation of the

unpublished work of Artur Avila and Jairo Bochi [AB]. Although we used Birkhoff’s ergodic theo-

rem as an intermediate step in our proof, Avila and Bochi provided an alternative approach to prove

the result without using Birkhoff’s ergodic theorem, namely [AB, Lemma 2], where they employed

very elegant arguments involving an application of the Borel–Cantelli lemma.
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As one may have already observed, Kingman’s subadditive ergodic theorem is a generalization

of Birkhoff’s ergodic theorem. In the same setting, when function X0 ∈ L1(Ω, dP) is given, one

can construct a sequence of functions {Xn}n∈N by defining

Xn :=
n−1∑
j=0

X0 ◦ T j, ∀ n ∈ N,

and {Xn}n∈N is clearly (sub)additive with the auxiliary sequence {Yn}n∈N simply a sequence of

zero functions.

From here, we can see that Birkhoff’s ergodic theorem can be a direct consequence of Kingman’s

subadditive ergodic theorem.

2.3 The martingale convergence theorem

The theory of martingales was once dramatically developed by Joseph L. Doob and there are many

related classical results named after him, such as Doob’s martingale inequality, Doob’s decom-

position theorem, and Doob’s martingale convergence theorem, all of which can be traced back

to his celebrated 1953 treatise [Doob]. In this section, we introduce a weaker version of Doob’s

(super)martingale convergence theorem, which is adapted for non-negative supermartingales only.

This is because in the martingale proof of the SMB theorem, our constructed functions {Zn}n≥2, as

will be introduced in Subsection 3.2.2, turn out to be non-negative supermartingales, and it suffices

to use this weaker version of the theorem.

Throughout its proof, we will also use an important result from probability theory, which is the

optional stopping theorem, and we refer it as Theorem B.4 in Appendix B so that the readers can

consult for more details.

Theorem 2.3.1 (Doob). Let (Ω,F , {Fn}n∈N,P) be a filtered probability space and {Xn}n∈N a

non-negative supermartingale with respect to {Fn}n∈N. Then there exists a non-negative random

variable X such that

lim
n→∞

Xn = X

for P-almost all x ∈ Ω and X ∈ L1(Ω, dP).
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Proof. For each point x ∈ Ω where the limit does not exist, the strict inequality

lim inf
n→∞

Xn(x) < lim sup
n→∞

Xn(x)

holds. Then by the density of Q in R, there exist ax, bx ∈ Q such that

lim inf
n→∞

Xn(x) < ax < bx < lim sup
n→∞

Xn(x). (2.19)

In other words, by definitions of limit inferior and limit superior, Xn(x) upcrosses the interval

[ax, bx] infinitely often: There are infinitely many i ∈ N such that Xi(x) < ax and infinitely

many j ∈ N such that Xj(x) > bx. If we take some i ∈ N where Xi(x) < ax and choose

j = inf{k ≥ i : Xk(x) > bx}, then from i to j, our process completes one upcrossing from ax

to bx. Hence, by characterization using upcrossings, we can see that (2.19) is equivalent to the

situation where {Xn}n∈N evaluated at x has infinite numbers of upcrossings from ax to bx.

Thus, in contrast, we want to show that for every pair of a, b ∈ Q such that a < b, the number

of upcrossings from a to b is finite for P-almost all x ∈ Ω. As our supermartingale is non-negative,

it suffices to just consider non-negative rationals. First, let us formulate everything mathematically

and this will use stopping times.

Fix arbitrary a, b ∈ Q such that 0 ≤ a < b and fix x ∈ Ω. Set S0(x) = T0(x) = 0 and then

define the sequences {Sk(x)}k∈N and {Tk(x)}k∈N inductively as below:

• Given Tk−1(x), define

Sk(x) := inf{m ≥ Tk−1(x) : Xm(x) < a};

• Given Sk(x), define

Tk(x) := inf{m ≥ Sk(x) : Xm(x) > b}.

From this definition, we know that the sequences {Sk(x)}k∈N and {Tk(x)}k∈N take values in

N∪{∞}, and both could be defined for all x ∈ Ω, so for each k ∈ N, we have Sk : Ω −→ N∪{∞}
and Tk : Ω −→ N∪ {∞}. It is trivial to check, by showing inductively using elementary measure-

theoretic arguments, that for every k ∈ N, Sk and Tk are stopping times.

We next define, for any N ∈ N,

U
[a,b]
N (x) := max{k ∈ N : Tk(x) ≤ N},
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which gives the number of times that our process evaluated at x upcrosses [a, b] by time N .

Apparently, U [a,b]
N (x) is non-decreasing in N . We then take

U [a,b](x) := lim
N→∞

U
[a,b]
N (x),

which gives the total number of times that {Xn(x)}n∈N upcrosses [a, b].

Our goal then is to show that U [a,b](x) < ∞ for P-almost all x ∈ Ω for our fixed a, b ∈ Q.

To approach this, we shall show that the expectation of U [a,b] is finite, since U [a,b] is clearly non-

negative.

Given arbitrary N ∈ N, the constant N is also a stopping time. Then for any k ∈ N, Sk ∧N and

Tk ∧N are both bounded stopping times. Fix N ∈ N and incorporate with stopping times Sk’s and

Tk’s, we shall be looking at our process at finite times Sk ∧N and Tk ∧N : XSk∧N and XTk∧N . The

reasoning why we want to avoid just looking at the process at Sk and Tk is either quantity could be

infinity and in that case, we might run into trouble seeing what XSk
or XTk

could be.

We now look at the gap XTk∧N −XSk∧N for each k ∈ N and claim that for each x ∈ Ω,

∞∑
k=1

(XTk∧N −XSk∧N) (x) ≥ (b− a)U
[a,b]
N (x)− a. (2.20)

This claim, together with the use of the optional stopping theorem, will later show the desired

finite expectation for each U
[a,b]
N .

We look at each gap in the above sum: (XTk∧N −XSk∧N) (x). Depending on the comparison

between k and U
[a,b]
N (x), there are three cases for us to discuss:

Case 1. When k ≤ U
[a,b]
N (x). To have simpler notation, let us denote U [a,b]

N (x) = M . Then k ≤ M

implies both Sk(x) ≤ N and Tk(x) ≤ N . In this case, we shall have

Sk(x) ∧N = Sk(x) ⇒ XSk(x)∧N(x) = XSk(x)(x) < a;

Tk(x) ∧N = Tk(x) ⇒ XTk(x)∧N(x) = XTk(x)(x) > b.

Thus, when k ≤ U
[a,b]
N (x), we have

(XTk∧N −XSk∧N) (x) > b− a.

Case 2. When k > U
[a,b]
N (x) + 1. k > M + 1 implies both Sk(x) > N and Tk(x) > N . It is clear
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to see that we must have Tk(x) > N , since otherwise, M = U
[a,b]
N (x) ≥ k > M + 1, which is a

contradiction. We must also have Sk(x) > N , because if this were not true, then we would have

Sk(x) ≤ N ⇒ Tk−1(x) ≤ Sk(x) ≤ N,

meaning that (together with Tk(x) > N ), M = U
[a,b]
N (x) = k − 1 ⇒ k = M + 1, contradicting

k > M + 1.

Hence, in this case, we shall have Sk(x) ∧N = N and Tk(x) ∧N = N and this gives

(XTk∧N −XSk∧N) (x) = XN(x)−XN(x) = 0,

for all k > U
[a,b]
N (x) + 1.

Case 3. When k = U
[a,b]
N (x) + 1. With the same reasoning as used in the previous case, we must

have Tk(x) > N here, so Tk(x) ∧N = N and XTk(x)∧N(x) = XN(x).

However, as for Sk(x), it is possible that either Sk(x) > N or Sk(x) ≤ N happens. If we have

Tk−1(x) < N and there exists some m ∈ N ∩ [Tk−1(x) + 1, N ] such that Xm(x) < a, then we

shall get Sk(x) ≤ N . If there is no existence of such m or Tk−1(x) = N , then Sk(x) > N would

happen.

Let us further split this third case into two subcases: (i). Sk(x) ≤ N ; (ii). Sk(x) > N . Under

(i), Sk(x) ∧N = Sk(x), so

XSk(x)∧N(x) = XSk(x)(x) < a.

On the other hand, our supermartingale is non-negative, so XN(x) ≥ 0. These give us

(XTk∧N −XSk∧N) (x) = XN(x)−XSk(x)(x) ≥ 0− a = −a.

Under (ii), Sk(x) ∧N = N , then we would simply get

(XTk∧N −XSk∧N) (x) = XN(x)−XN(x) = 0.

As we have assumed that a ≥ 0, then −a ≤ 0 and under both subcases, we would have

(XTk∧N −XSk∧N) (x) ≥ −a.
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Hence, when k = U
[a,b]
N (x) + 1, we get (XTk∧N −XSk∧N) (x) ≥ −a.

With the discussion of the above three cases, it is now clear to see why the claim (2.20) holds:

∞∑
k=1

(XTk∧N −XSk∧N) (x) =
M∑
k=1

(XTk∧N −XSk∧N) (x) +
(
XTM+1∧N −XSM+1∧N

)
(x)

+
∞∑

k=M+2

(XTk∧N −XSk∧N) (x)

≥ M(b− a)− a+ 0

= (b− a)U
[a,b]
N (x)− a.

Note that (2.20) holds for all x ∈ Ω, so

∞∑
k=1

(XTk∧N −XSk∧N) ≥ (b− a)U
[a,b]
N − a,

and by taking expectations of both sides, we get

E

[
∞∑
k=1

(XTk∧N −XSk∧N)

]
≥ E

[
(b− a)U

[a,b]
N − a

]

⇒
∞∑
k=1

E [XTk∧N −XSk∧N ] ≥ (b− a)E
[
U

[a,b]
N

]
− a. (2.21)

By the fact that {Xn}n∈N is a supermartingale and the optional stopping theorem, for each k ∈ N,

we have

Sk ∧N ≤ Tk ∧N ≤ N ⇒ E [XTk∧N ] ≤ E [XSk∧N ] ⇒ E [XTk∧N −XSk∧N ] ≤ 0.

Hence, (2.21) further becomes

0 ≥
∞∑
k=1

E [XTk∧N −XSk∧N ] ≥ (b− a)E
[
U

[a,b]
N

]
− a ⇒ E

[
U

[a,b]
N

]
≤ a

b− a
.

This shows the expectation of U [a,b]
N is finite for all N ∈ N.
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On the other hand,

U [a,b] = lim
N→∞

U
[a,b]
N = sup

N≥1
U

[a,b]
N

on Ω, then by the monotone convergence theorem,

E
[
U [a,b]

]
= lim

N→∞
E
[
U

[a,b]
N

]
≤ a

b− a
,

which shows that the expectation of U [a,b] is finite.

Since U [a,b] is clearly a non-negative random variable, having a finite expectation implies that

U [a,b] is finite P-a.s.

Therefore, if we denote

Ω[a,b] :=
{
x ∈ Ω : U [a,b](x) < ∞

}
,

then P(Ω[a,b]) = 1. Since our a, b ∈ Q are arbitrarily chosen, we then have P(Ω[a,b]) = 1 for any

pair of a, b ∈ Q such that 0 ≤ a < b.

Taking

Ω̃ :=
⋂

a,b∈Q
0≤a<b

Ω[a,b]

and we shall have P(Ω̃) = 1, as the intersection is countable.

This in turn completes the proof that lim infn→∞ Xn = lim supn→∞ Xn P-a.s., so the limit

X := lim
n→∞

Xn

exists for P-almost all x ∈ Ω, and is clearly non-negative since our supermartingale is non-negative.

To see X is L1, note that

E [|X|] = E[X] ≤ lim inf
n→∞

E[Xn] ≤ E[X1] < ∞,

where we use Fatou’s lemma and the fact that {Xn}n∈N is a supermartingale.
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Chapter 3

The Shannon–McMillan–Breiman Theorem

In this chapter, we introduce our basic information-theoretic setting and present the statement of

the SMB theorem, followed by some important mathematical constructions in preparation for its

first two proofs.

3.1 The setup and the statement

We use A to denote a finite alphabet, namely a finite set with its elements called letters. If A =

{a1, a2, ..., aℓ} for some ℓ ∈ N, then |A| = ℓ. Occasionally, A is taken to be specific and in the

context of Markov chains, A is simply taken to be A = {0, 1, 2, ..., ℓ − 1} for some ℓ ∈ N. In

telecommunication, one often takes A = {0, 1}. To make it a metric space, we take the discrete

metric dA on A: dA(a, a′) = 0 if a = a′ and dA(a, a
′) = 1 if a ̸= a′. This makes (A, dA) a compact

metric space.

In this thesis, especially for our information-theoretic setting for the SMB theorem, we have our

space Ω is taken to be the set of all sequences indexed by natural numbers and taking values in

A, namely Ω = AN. For every x ∈ Ω, we refer its n-th entry via simple indexing: xn ∈ A. In

particular, we refer a finite string (or a finite part of x ∈ Ω) by the following notation:

xn
m = (xm, xm+1, ..., xn) ∈ An−m+1 = A× · · · × A︸ ︷︷ ︸

(n−m+ 1)-fold

,

for any natural numbers m ≤ n.
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We usually equip Ω with topology of pointwise convergence, which is generated by the metric

d(x, y) :=
∞∑
n=1

2−ndA(xn, yn), ∀ x, y ∈ Ω.

This makes (Ω, d) a compact metric space, which could be shown using diagonal arguments.

When given some xn
m ∈ An−m+1, a cylinder set, which is a subset of Ω, determined by xn

m, is

then defined to be

[xn
m] := {y ∈ Ω : ynm = xn

m}.

If m = 1, we say the cylinder set is standard and xn
1 is the prefix word of the cylinder. Standard

cylinder sets are fundamentally important in our one-sided shift context, since they coincide with

open balls in Ω. We then take the Borel σ-algebra F for Ω to be the one generated by standard

cylinder sets.

The shift map T : Ω −→ Ω is defined by (T (x))n := xn+1 for all n ∈ N, for all x ∈ Ω. It gives

the desired one-sided shifting dynamic on our space (Ω,F). A T -invariant probability measure P
on (Ω,F , T ) is then called shift-invariant, and we denote the set of all shift-invariant probability

measures on Ω by Pinv(Ω). Recall that if P ∈ Pinv(Ω) satisfies that P(E) ∈ {0, 1} for all E ∈ FT ,

then P is said to be ergodic. We denote the set of all ergodic elements in Pinv(Ω) by Perg(Ω).

There are some fundamental aspects of shift-invariant measures defined on Ω worth mention-

ing, and we include this part in Appendix C. Another notion that is absolutely important in our

information-theoretic context is entropy. It is usually denoted by S and we refer the readers to

Appendix D for a brief introduction of entropy and some of its basic facets.

Now with the basic setup and related notions reviewed, here we present the SMB theorem:

Theorem 3.1.1 (Shannon–McMillan–Breiman). Let P ∈ Pinv(Ω). Then the limit

lim
n→∞

− 1

n
logP([xn

1 ]) = hP(x)

exists for P-almost all x ∈ Ω and the convergence also holds in L1(Ω, dP).
The limit function hP satisfies hP ≥ 0 P-a.s. and hP ◦ T = hP (shift-invariant) and∫

Ω

hP(x) dP = S(P).
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In particular, if P ∈ Perg(Ω), then

lim
n→∞

− 1

n
logP([xn

1 ]) = S(P)

for P-almost all x ∈ Ω and in L1(Ω, dP).

The proofs of the SMB theorem will be given in Chapter 4. For the moment, we go through

some essential mathematical constructions which will be used in the first two proofs. They are a

bit long to discuss and take up much space, so instead of being introduced in Chapter 4, they are

included in this chapter right after the statement of the SMB theorem.

3.2 Preparations for the proofs

3.2.1 Extension to two-sided shift

Analogous to one-sided shift, there is also two-sided shift (also known as full shift), where potential

links between the two setups can be drawn such as extension from one to another. Here we shall

briefly discuss about two-sided shift over finite alphabet, which we still useA to denote, and suppose

|A| = ℓ.

The setup for two-sided shift overA is then Ω̂ = AZ, namely Ω̂ is the set of all maps x : Z −→ A
or sequences of the form (xk)k∈Z with xk ∈ A for each k ∈ Z. We also equip Ω̂ with topology of

pointwise convergence. There are many metrics that generate this topology and a canonical choice

is d̂(x, y) := λn(x,y) for any x, y ∈ Ω̂, where λ ∈ (0, 1) is given and n(x, y) := min{|k| : xk ̸= yk}.

One can check that (Ω̂, d̂) is a compact metric space.

Finite strings and cylinder sets in the two-sided shift context are denoted and defined analogously.

For two integers m ≤ n, we denote xn
m = (xm, ..., xn) ∈ An−m+1. A cylinder set determined by

xn
m is

[xn
m] :=

{
y ∈ Ω̂ : yk = xk, ∀m ≤ k ≤ n

}
.

Cylinder sets are again both open and closed in Ω̂ and the family of all cylinder sets generates the

Borel σ-algebra in Ω̂.

The dynamic given in the two-sided shift setting is the left shift T̂ , which is a map T̂ : Ω̂ −→ Ω̂

defined by (T̂ (x))n = xn+1 for all n ∈ Z. T̂ is a continuous bijection and its inverse is the right

shift on Ω̂. In particular, T̂ is a homeomorphism on (Ω̂, d̂). Note that a big difference between

37



one-sided and two-sided shifts is that in one-sided shift, T is onto, but not bijective.

For any P̂ ∈ P(Ω̂) and integers m ≤ n, we define its (m,n)-marginal P̂n
m on An−m+1 by

P̂n
m(x

n
m) = P̂([xn

m]), ∀ xn
m ∈ An−m+1.

The marginals in this case also satisfy a consistency condition and a version of Kolmogorov’s

consistency theorem in this case follows. We refer the readers to the end of Appendix C. Shift-

invariance is defined in the same way as one-sided shift case: P̂ ∈ Pinv(Ω̂) if P̂ ◦ T̂−1 = P̂.

As mentioned in the beginning, one-sided shift space Ω and two-sided shift space Ω̂ possess

potential yet deep links, and there is one close relation between Pinv(Ω) and Pinv(Ω̂):

Any element P ∈ Pinv(Ω) uniquely extends to an element P̂ ∈ Pinv(Ω̂) by setting that, for any

integers m ≤ n,

P̂([xn
m]) := P([xn+k

m+k]), where m+ k ≥ 1.

Note that by shift-invariance, it does not matter what value k is, as long as m+ k ≥ 1.

On the other hand, every P̂ ∈ Pinv(Ω̂) determines a unique element P ∈ Pinv(Ω) by setting

P([xn
1 ]) := P̂([xn

1 ]), ∀ n ∈ N.

Therefore, we have bijective correspondence between Pinv(Ω) and Pinv(Ω̂), and this offers con-

venience to construct the other shift setting, either by extension or restriction, from the given setting.

3.2.2 Functions Zn and Zmax

In this subsection, we would like to construct a series of functions, denoted as Zn for n ≥ 2, defined

on the one-sided shift space Ω = AN. The sequence of the functions Zn possess good convergence

behavior and it extends some consequences and subsequent constructions which contribute a lot to

the first and second proofs of the SMB theorem. We shall first give the definition.

Given some P ∈ Pinv(Ω), let

Zn(x) :=
P([xn

2 ])

P([xn
1 ])

=
Pn−1(x

n
2 )

Pn(xn
1 )

for any n ≥ 2.
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Note that Zn is well-defined P-a.s. If we set

Fn := {x ∈ Ω : P([xn
1 ]) = 0} and En := {xn

1 ∈ An : [xn
1 ] ⊆ Fn}

for any n ≥ 1, then trivially,

Fn ⊆
⊔

xn
1∈En

[xn
1 ] ⇒ P(Fn) ≤

∑
xn
1∈En

P([xn
1 ]) = 0 ⇒ P(Fn) = 0.

Hence, P([xn
1 ]) > 0 for P-almost all x ∈ Ω, and this shows P-almost sure well-definedness of

Zn for any n ≥ 2. Note that, on the domain with full measure where Zn is well-defined, Zn ≥ 1,

due to compatibility implied by shift-invariance (c.2).

There is a crucial property of Zn which relates closely to the entropy associated to P and its

marginals, and in turn motivates its definition:

S(Pn+1)− S(Pn) =

∫
Ω

logZn+1 dP. (3.1)

We approach this crucial relation from some nice properties of entropy of shift-invariant mea-

sures on Ω. However, before delving into this discussion, we quote two useful results: one is an

inequality observed and proven in [Jak19, Proposition 4.7], named the log-sum inequality, and the

other is about distribution functions from [Ru87, Chapter 8]. We refer their proofs to these refer-

ences.

Lemma 3.2.1. Let N ∈ N and suppose aj and bj are non-negative numbers for j ∈ {1, ..., N}.

Then

N∑
j=1

aj log
aj
bj

≥
N∑
j=1

aj log

(∑N
k=1 ak∑N
k=1 bk

)
,

with the usual convention that “0 · log 0 = 0”, “0/0 = 0”, and so on.

Theorem 3.2.2. Given a probability space (Ω,F ,P) and a measurable function f : Ω −→ [0,∞],∫
Ω

f dP =

∫ ∞

0

P({x ∈ Ω : f(x) > t}) dt.

Now let us introduce the important properties of entropy of shift-invariant measures on Ω as

mentioned above.
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Theorem 3.2.3. Let P ∈ Pinv(Ω) and set

An = S(Pn+1)− S(Pn), ∀ n ∈ N.

Then:

(1). 0 ≤ An ≤ log ℓ for all n ∈ N, where |A| = ℓ;

(2). An ≥ An+1 for all n ∈ N;

(3). limn→∞ An = S(P).

Proof. Let n ∈ N be fixed. For any xn
1 ∈ suppPn, we define a probability measure on A as follows:

Pxn
1

n+1(a) :=
Pn+1(x1, ..., xn, a)

Pn(x1, ..., xn)
, ∀ a ∈ A.

One can trivially check it is a probability measure. We then claim the following relation:

S(Pn+1) = S(Pn) +
∑

xn
1∈suppPn

Pn(x
n
1 )S

(
Pxn

1
n+1

)
. (3.2)

We show (3.2) by explicitly expanding and computing the right hand side. For each xn
1 ∈

suppPn,

S
(
Pxn

1
n+1

)
= −

∑
a∈A

Pxn
1

n+1(a) logP
xn
1

n+1(a)

= −
∑
a∈A

Pn+1(x1, ..., xn, a)

Pn(x1, ..., xn)
log

(
Pn+1(x1, ..., xn, a)

Pn(x1, ..., xn)

)
= −

∑
a∈A

Pn+1(x1, ..., xn, a)

Pn(x1, ..., xn)
(logPn+1(x1, ..., xn, a)− logPn(x1, ..., xn)) .

Then,

∑
xn
1∈suppPn

Pn(x
n
1 )S

(
Pxn

1
n+1

)
= −

∑
xn
1∈suppPn

Pn(x
n
1 )
∑
a∈A

Pn+1(x1, ..., xn, a)

Pn(x1, ..., xn)
(logPn+1(x1, ..., xn, a)− logPn(x1, ..., xn))

= −
∑

xn
1∈suppPn

∑
a∈A

Pn+1(x1, ..., xn, a) (logPn+1(x1, ..., xn, a)− logPn(x1, ..., xn))
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= −
∑

xn
1∈suppPn

∑
a∈A

(Pn+1(x1, ..., xn, a) logPn+1(x1, ..., xn, a)−

Pn+1(x1, ..., xn, a) logPn(x1, ..., xn))

= −
∑

xn
1∈suppPn

∑
a∈A

Pn+1(x1, ..., xn, a) logPn+1(x1, ..., xn, a)+

∑
xn
1∈suppPn

logPn(x1, ..., xn)
∑
a∈A

Pn+1(x1, ..., xn, a)

= −
∑

(x1,...,xn,a)∈An+1

Pn+1(x1, ..., xn, a) logPn+1(x1, ..., xn, a) +
∑

xn
1∈An

Pn(x
n
1 ) logPn(x

n
1 )

=S(Pn+1)− S(Pn).

This proves the claim (3.2). By Proposition D.1, entropy is always non-negative, so

∑
xn
1∈suppPn

Pn(x
n
1 )S

(
Pxn

1
n+1

)
≥ 0.

On the other hand, Proposition D.1 also suggests

S
(
Pxn

1
n+1

)
≤ log ℓ

for all xn
1 ∈ suppPn.

Then (3.2) implies that

S(Pn+1) ≥ S(Pn) ⇒ An = S(Pn+1)− S(Pn) ≥ 0,

and

S(Pn+1) ≤ S(Pn) + log ℓ
∑

xn
1∈suppPn

Pn(x
n
1 ) = S(Pn) + log ℓ

which gives An = S(Pn+1)− S(Pn) ≤ log ℓ.

This proves Property (1).

To prove (2), we take use of Lemma 3.2.1. Note that, by adopting the reverse thinking of the
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steps in the derivation of claim (3.2), we have

S(Pn+1)− S(Pn) = −
∑

xn+1
1 ∈An+1

Pn+1(x
n+1
1 ) logPn+1(x

n+1
1 ) +

∑
xn+1
2 ∈An

Pn(x
n+1
2 ) logPn(x

n+1
2 )

(By (c.2)) = −
∑

xn+1
1 ∈An+1

Pn+1(x
n+1
1 ) logPn+1(x

n+1
1 ) +

∑
xn+1
1 ∈An+1

Pn+1(x
n+1
1 ) logPn(x

n+1
2 )

= −
∑

xn+1
1 ∈An+1

Pn+1(x
n+1
1 ) log

(
Pn+1(x

n+1
1 )

Pn(x
n+1
2 )

)

(By (c.1)) = −
∑

xn+1
1 ∈An+1

(∑
a∈A

Pn+2(x1, ..., xn+1, a) log

(∑
a∈A Pn+2(x1, ..., xn+1, a)∑
a∈A Pn+1(x2, ..., xn+1, a)

))

and we can see from here, that the terms inside the big bracket have the form that matches what

appears in the log-sum inequality. Thus, by Lemma 3.2.1,

S(Pn+1)− S(Pn) = −
∑

xn+1
1 ∈An+1

(∑
a∈A

Pn+2(x1, ..., xn+1, a) log

(∑
a∈A Pn+2(x1, ..., xn+1, a)∑
a∈A Pn+1(x2, ..., xn+1, a)

))

≥ −
∑

xn+1
1 ∈An+1

(∑
a∈A

Pn+2(x1, ..., xn+1, a) log

(
Pn+2(x1, ..., xn+1, a)

Pn+1(x2, ..., xn+1, a)

))

= −
∑

xn+2
1 ∈An+2

Pn+2(x
n+2
1 ) log

(
Pn+2(x

n+2
1 )

Pn+1(x
n+2
2 )

)

= S(Pn+2)− S(Pn+1).

This shows An ≥ An+1, which is Property (2).

Property (3) then simply follows from (1) and (2). Indeed, (1) and (2) suggest that {An}n∈N is a

decreasing real sequence bounded below by 0, so limn→∞ An exists by the monotone convergence

theorem. Its value, on the other hand, can be derived by the so-called Cesàro mean.

We claim that

lim
n→∞

An = lim
n→∞

A1 + · · ·+ An

n
, (3.3)

where the right hand side is known as the Cesàro mean. We can quickly justify this relation. Sup-

pose that

lim
n→∞

An = L
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for some L ∈ [0, log ℓ]. Let ε > 0 be arbitrary. Then there exists some N ∈ N such that for all

n ≥ N , |An − L| < ε
3
. Besides, let d =

(
3
ε
L− 1

)
N . Then for any n ≥ max(N, d),

∣∣∣∣∣ 1

N + n

N+n∑
k=N+1

Ak − L

∣∣∣∣∣ =
∣∣∣∣∣
∑N+n

k=N+1 Ak − nL−NL

N + n

∣∣∣∣∣
≤
∑N+n

k=N+1 |Ak − L|+NL

N + n

≤
∑N+n

k=N+1 |Ak − L|
n

+
NL

N + n

<
ε

3
+

NL

N + d
=

ε

3
+

ε

3
=

2ε

3
.

Now pick M ∈ N large enough so that |A1+···+AN |
M

< ε
3

and M ≥ N + max(N, d). Denote

R = M −N ≥ max(N, d) and observe the following:∣∣∣∣∣ 1M
M∑
k=1

Ak − L

∣∣∣∣∣ =
∣∣∣∣∣ 1M

N∑
k=1

Ak +
1

M

M∑
k=N+1

Ak − L

∣∣∣∣∣
≤

∣∣∣∣∣ 1M
N∑
k=1

Ak

∣∣∣∣∣+
∣∣∣∣∣ 1

N +R

N+R∑
k=N+1

Ak − L

∣∣∣∣∣
<

ε

3
+

2ε

3
= ε.

This proves the claim (3.3). Plugging in the expression for each An, we then get a telescoping

sum in the expression of the Cesàro mean. This gives

lim
n→∞

An = lim
n→∞

A1 + · · ·+ An

n
= lim

n→∞

S(Pn+1)− S(P1)

n
= lim

n→∞

S(Pn)

n
= S(P).

This finishes the proof of Property (3).

Repeating the same manipulation as done in some steps in the proof of Theorem 3.2.3, together

with the definition of Zn, we bring forward the relation (3.1):

An = S(Pn+1)− S(Pn) =
∑

xn+1
1 ∈An+1

Pn+1(x
n+1
1 ) log

(
Pn(x

n+1
2 )

Pn+1(x
n+1
1 )

)

=
∑

xn+1
1 ∈An+1

P([xn+1
1 ]) logZn+1(x)
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=

∫
Ω

logZn+1(x) dP.

By Theorem 3.2.3 (3), we have

lim
n→∞

An = S(P) = lim
n→∞

∫
Ω

logZn(x) dP. (3.4)

We shall keep this relation for later use in the proofs in Chapter 4.

We also have Zn is integrable for all n ≥ 2:∫
Ω

Zn dP =
∑

xn
1∈An

Zn(x)P([xn
1 ]) =

∑
xn
1∈An

Pn−1(x
n
2 )

Pn(xn
1 )

Pn(x
n
1 )

=
∑

xn
1∈suppPn

Pn−1(x
n
2 )

Pn(xn
1 )

Pn(x
n
1 ) =

∑
xn
1∈suppPn

Pn−1(x
n
2 ) ≤

∑
xn
1∈An

Pn−1(x
n
2 ) = ℓ,

so ∫
Ω

Zn dP ≤ ℓ, ∀ n ≥ 2. (3.5)

Remark. In the above step of deriving (3.5), it is important to do the transition from “xn
1 ∈ An”

to “xn
1 ∈ suppPn” for the summation, because it is possible that for some xn

1 ∈ An\ suppPn,

Pn(x
n
1 ) = 0 while Pn−1(x

n
2 ) ̸= 0.

Another important subsequent construction given our already established {Zn}n≥2 is function

Zmax, which is set as below:

Zmax(x) := sup
n≥2

Zn(x) = sup
n≥2

Pn−1(x
n
2 )

Pn(xn
1 )

.

Since Zn is well-defined P-a.s. for all n ≥ 2, Zmax is also well-defined P-a.s. We next introduce

two lemmas regarding Zmax.

Lemma 3.2.4. For any t > 0,

P ({x ∈ Ω : Zmax(x) > t}) ≤ ℓ

t
.

Proof. Fix arbitrary t > 0. Denote

B = {x ∈ Ω : Zmax(x) > t}
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and set

B2 = {x ∈ Ω : Z2(x) > t} and Bn = {x ∈ Ω : Z2(x) ≤ t, ..., Zn−1(x) ≤ t, Zn(x) > t},

for all n > 2. We then can write

B =
∞⋃
n=2

Bn.

We can see the sets Bn’s are disjoint. For every n ≥ 2, if we denote Fn to be the sub-σ-algebra

generated by the standard cylinder sets [xn
1 ] for xn

1 ∈ An, then Bn is measurable with respect to Fn

and if x ∈ Bn, then [xn
1 ] ⊆ Bn. This is due to the definitions of Zn and Bn for each n ≥ 2.

To proceed, we construct a probability measure P̃ on Ω defined by the marginals:

P̃1(x1) =
1

ℓ
, ∀ x1 ∈ A,

and

P̃n(x1, ..., xn) = P̃1(x1)Pn−1(x2, ..., xn), ∀ xn
1 ∈ An,

for any n ≥ 2.

One can easily check the above marginals {P̃n}n∈N are well-defined probability measures on

An, and by Kolmogorov’s consistency theorem (it suffices to use the simple version of the special

case of one-sided shift, namely Theorem C.1), P̃ is a uniquely defined probability measure on Ω by

these marginals. The introduction of P̃ is to give an upper bound to the measure of each Bn, and

we will see how this is done below.

For rigorous use of languages, we set

B̃n = {xn
1 ∈ An : [xn

1 ] ⊆ Bn}, ∀ n ≥ 2.

On each Bn, we know Zn > t. With an application of Chebyshev’s inequality, we have

P(Bn) ≤
1

t

∫
Bn

Zn(x) dP =
1

t

∫
Bn

Pn−1(x
n
2 )

Pn(xn
1 )

dP =
1

t

∑
xn
1∈B̃n

xn
1∈suppPn

Pn(x
n
1 )
Pn−1(x

n
2 )

Pn(xn
1 )

=
1

t

∑
xn
1∈B̃n

xn
1∈suppPn

Pn−1(x
n
2 ) ≤

1

t

∑
xn
1∈B̃n

Pn−1(x
n
2 ) =

ℓ

t

∑
xn
1∈B̃n

1

ℓ
· Pn−1(x

n
2 )
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=
ℓ

t

∑
xn
1∈B̃n

P̃1(x1)Pn−1(x
n
2 ) =

ℓ

t

∑
xn
1∈B̃n

P̃n(x
n
1 ) =

ℓ

t

∫
Bn

dP̃ =
ℓ

t
P̃(Bn).

Therefore, we have obtained this bounded from above relation

P(Bn) ≤
ℓ

t
P̃(Bn) (3.6)

for each n ≥ 2.

Besides, Bn’s are disjoint. Then with (3.6), it gives

P(B) = P

(
∞⋃
n=2

Bn

)
=

∞∑
n=2

P(Bn) ≤
ℓ

t

∞∑
n=2

P̃(Bn) =
ℓ

t
P̃

(
∞⋃
n=2

Bn

)
=

ℓ

t
P̃(B) ≤ ℓ

t
.

Hence, we get P(B) ≤ ℓ
t

and this finishes the proof.

Lemma 3.2.5. logZmax ∈ L1(Ω, dP).

Proof. Fix arbitrary t > 0. By Lemma 3.2.4,

P ({x ∈ Ω : logZmax > t}) = P
(
{x ∈ Ω : Zmax > et}

)
≤ ℓ

et
= ℓe−t.

Note that Zmax ≥ 1 P-a.s., and thus, logZmax ≥ 0 P-a.s. To check integrability of Zmax, we

apply Theorem 3.2.2:∫
Ω

logZmax dP =

∫ ∞

0

P ({x ∈ Ω : logZmax > t}) dt ≤
∫ ∞

0

ℓe−t dt = ℓ.

Hence, logZmax ∈ L1(Ω, dP).
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Chapter 4

Three proofs of the SMB theorem

We give three different proofs of the SMB theorem in this chapter, which are referred as the subad-

ditive proof, the martingale proof, and the Ornstein–Weiss proof respectively. Among these three

proofs, the subadditive proof and the martingale proof will fully justify Theorem 3.1.1, while the

Ornstein–Weiss proof will only show the ergodic case of the theorem.

4.1 The subadditive proof

In the given setup of the SMB theorem, we would like to undergo some constructions and ma-

nipulations to create subadditive condition so that Kingman’s subadditive ergodic theorem (The-

orem 2.2.1) can be applied to give the desired conclusion. Due to the central involvement of the

subadditive ergodic theorem, we refer this first proof as “the subadditive proof”.

The subadditive proof was originally given by Derriennic [Der83], in the same paper that he

proved a generalized version of Kingman’s subadditive ergodic theorem, which we presented as

Theorem 2.2.1 in Section 2.2. Here we give a refined version of the proof under the one-sided shift

setting, and it will involve the extension from one-sided shift to two-sided shift.

Proof. First, we would like to extend our one-sided shift setting to two-sided shift one, as it will

turn out that the two-sided shift case will be more convenient to work on for our purpose. Please see

Remark 4.1.1 for a more detailed explanation. The related standard extension has been introduced

in Subsection 3.2.1.

Let Ω̂ = AZ and our given P ∈ Pinv(Ω) can be uniquely extended to some P̂ ∈ Pinv(Ω̂). If
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we establish the conclusion of the SMB theorem for the two-sided shift case, namely the conver-

gence of − 1
n
log P̂([xn

1 ]), then we are done since the P̂-a.s. convergence and the L1 convergence

of − 1
n
log P̂([xn

1 ]) are essentially the same as the ones of − 1
n
logP([xn

1 ]) and the conclusion can be

smoothly translated to the one-sided shift case. We will elaborate this in the end of the proof.

We begin with letting

X̂n(x) := − log P̂n
1 (x

n
1 ) = − log P̂([xn

1 ]), ∀ n ∈ N.

Each X̂n is well-defined for P̂-almost all x ∈ Ω̂ and clearly each X̂n is non-negative. We then want

to show that X̂n is in L1(Ω̂, P̂) for each n ∈ N.

Recall the function logZmax constructed and analyzed in Subsection 3.2.2. We can define a

version of this function on Ω̂ (denoted as log Ẑmax) analogously to the definition given in the one-

sided shift case and this can be done by repeating exactly the same definitions given to Zn for n ≥ 2

andZmax in Section 3.2, except substitutingΩwith Ω̂. We would have log Ẑmax(x) = logZmax(x|Ω)
for every x ∈ Ω̂, where x|Ω stands for the restriction of x on Ω. This is because the definition of

every Zn only depends on x1, ..., xn, whose indices are all positive. Then all the subsequent results

related to logZmax also translate to the two-sided shift case and hold true for log Ẑmax, especially

Lemma 3.2.5, so we have log Ẑmax ∈ L1(Ω̂, P̂).
We then observe the following manipulation and derive an a priori bound for X̂n:

X̂n(x) = log
1

P̂n
1 (x

n
1 )

= log

(
P̂n−1
1 (xn

2 )

P̂n
1 (x

n
1 )

· P̂
n−2
1 (xn

3 )

P̂n−1
1 (xn

2 )
· · · P̂1

1(xn)

P̂2
1(x

n
n−1)

· 1

P̂1
1(xn)

)

≤ log

(
sup
n≥2

P̂n−1
1 (xn

2 )

P̂n
1 (x

n
1 )

)n−1

+ log
1

P̂1
1(xn)

≤ (n− 1) log Ẑmax(x) +K,

where

K = sup
a∈supp P̂1

1

(
log

1

P̂1
1(a)

)
< ∞.

Since K is a finite constant and log Ẑmax ∈ L1(Ω̂, P̂), then we have X̂n ∈ L1(Ω̂, P̂) for each

n ∈ N.

We now want to establish the desired weak subadditivity with respect to our {X̂n}n∈N. For
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n,m ∈ N, set

Dn,m(x) := log

(
P̂([xn

1 ])P̂([xn+m
n+1 ])

P̂([xn+m
1 ])

)
,

then with easy computation, it can be checked that

X̂n+m = X̂n + X̂m ◦ T̂ n +Dn,m. (4.1)

If in addition, for any integer j ≤ 0 and any m ∈ N, we define

Rj,m(x) := log

(
P̂([x0

j ])P̂([xm
1 ])

P̂([xm
j ])

)
,

then it can be computationally checked that for any n,m ∈ N,

R−(n−1),m

(
T̂ n(x)

)
= Dn,m(x). (4.2)

A good thing about the definition ofRj,m is that in the relation (4.2) when connecting withDn,m,

it involves composition with T̂ n. This provides a sign that Rj,m can be used to construct the desired

error terms so that the weak subadditive condition is created. Meanwhile, we also want to generate

an upper bound for (4.1), so supremum of Rj,m’s over j ≤ 0 is a good choice to realize that.

Let us denote the desired subadditive error terms as Ŷn for n ∈ N, which is the same notation as

in the subadditive condition (2.5). Based on the above analysis, we set

Ŷn(x) := sup
j≤0

max (0, Rj,n(x))

for all n ∈ N. Note that this definition guarantees each Ŷn is non-negative. Together with (4.2), we

further derive the following estimate from (4.1):

X̂n+m(x) = X̂n(x) + X̂m ◦ T̂ n(x) +Dn,m(x)

= X̂n(x) + X̂m ◦ T̂ n(x) + R−(n−1),m ◦ T̂ n(x)

≤ X̂n(x) + X̂m ◦ T̂ n(x) + Ŷm ◦ T̂ n(x)

⇒ X̂n+m ≤ X̂n + X̂m ◦ T̂ n + Ŷm ◦ T̂ n, ∀ n,m ∈ N. (4.3)
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Hence, our defined error terms Ŷn’s give the desired weak subadditivity. It remains to check that

{Ŷn}n∈N satisfies the two properties as outlined in the statement of Theorem 2.2.1, namely

sup
n≥1

∥∥∥Ŷn

∥∥∥
1
< ∞ and lim

n→∞

Ŷn

n
= 0 P̂-a.s. (4.4)

To show these two properties are met, we instead prove an a priori estimate first: Let t > 0, then

P̂
({

x ∈ Ω̂ : Ŷn(x) > t
})

≤ e−t, ∀ n ∈ N. (4.5)

Then the two properties (4.4) will follow from (4.5).

To show the a priori estimate (4.5), we fix arbitrary t > 0 and let

A =
{
x ∈ Ω̂ : Ŷn(x) > t

}
.

By the definition of each Ŷn, we can write

Ak =
{
x ∈ Ω̂ : max (0, R−k,n(x)) > t and max (0, R−i,n(x)) ≤ t, ∀ 0 ≤ i ≤ k − 1

}
for every k ∈ N and then it is a basic measure-theoretic fact that

A =
∞⊔
k=1

Ak,

whereAk’s are disjoint by construction and for each k ∈ N, the indicator function 1Ak
only depends

on xn
−k ∈ An+k+1.

For each x ∈ Ak, we have max (0, R−k,n(x)) > t by its definition and this implies that we must

have R−k,n(x) > t. Besides, based on how R−k,n is defined, we would then have

R−k,n(x) > t ⇒ log

(
P̂([x0

−k])P̂([xn
1 ])

P̂([xn
−k])

)
> t ⇒

P̂([x0
−k])P̂([xn

1 ])

P̂([xn
−k])

> et,

for all x ∈ Ak. Then by Chebyshev’s inequality,

P̂(Ak) ≤
1

et

∫
Ak

P̂([x0
−k])P̂([xn

1 ])

P̂([xn
−k])

dP̂ = e−t
∑

xn
−k∈An+k+1

1Ak
(x)

P̂([x0
−k])P̂([xn

1 ])

P̂([xn
−k])

· P̂([xn
−k])
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= e−t
∑

xn
−k∈An+k+1

1Ak
(x) P̂([x0

−k])P̂([xn
1 ]). (4.6)

Let Z≤ = {n ∈ Z : n ≤ 0} and set Ω− = AZ≤ and Ω+ = Ω = AN. For our probability measure

P̂ on Ω̂, by Kolmogorov’s consistency theorem, if we consider the restrictions of P̂ on Ω− and Ω+

respectively, then these two restrictions are probability measures on Ω− and Ω+ respectively. We

denote them as P̂− and P̂+ respectively.

Now take P̃ = P̂− × P̂+, which is the product measure obtained by taking the product between

P̂− and P̂+. P̃ is then a probability measure on Ω− ×Ω+ = Ω̂. Note that P̃ is not necessarily shift-

invariant. We can see that the term (4.6) looks exactly like the decomposed form of P̃, so given this

probability measure P̃ on Ω̂ we just constructed, (4.6) can be rewritten as

e−t
∑
x∈Ak

P̂([x0
−k])P̂([xn

1 ]) = e−t
∑
x∈Ak

P̃([xn
−k]) = e−tP̃(Ak),

and we obtain

P̂(Ak) ≤ e−tP̃(Ak),

which holds for all k ∈ N. This then implies

P̂(A) = P̂

(
∞⊔
k=1

Ak

)
=

∞∑
k=1

P̂(Ak) ≤ e−t

∞∑
k=1

P̃(Ak) = e−tP̃

(
∞⊔
k=1

Ak

)
= e−tP̃(A) ≤ e−t,

which gives the desired a priori estimate (4.5).

With (4.5) proven, we now show that {Ŷn}n∈N satisfies the two properties (4.4). First, by Theo-

rem 3.2.2 and the estimate (4.5), we have∫
Ω̂

Ŷn dP̂ =

∫ ∞

0

P̂
({

Ŷn > t
})

dt ≤
∫ ∞

0

e−t dt = 1, ∀ n ∈ N,

so trivially

sup
n≥1

∥∥∥Ŷn

∥∥∥
1
≤ 1 < ∞.

On the other hand, note that for any k ∈ N, (4.5) gives

∞∑
n=1

P̂

({
Ŷn

n
>

1

k

})
≤

∞∑
n=1

e−
n
k < ∞,
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since e− 1
k < 1 for every k ∈ N. Then by the Borel–Cantelli lemma, we have

1

n
Ŷn(x) ≤

1

k

eventually always for P̂-almost all x ∈ Ω̂. Since this holds for all k ∈ N, then

lim
n→∞

Ŷn

n
= 0 P̂-a.s.

Hence, (4.4) is justified and we have both {X̂n}n∈N and {Ŷn}n∈N meet the conditions to apply

Theorem 2.2.1. By Theorem 2.2.1, there exists a limit function, denoted as hP̂, such that

hP̂ = lim
n→∞

1

n
X̂n P̂-a.s., (4.7)

and the convergence also holds in L1 since {X̂n}n∈N is non-negative. Moreover, hP̂ is non-negative

and T̂ -invariant, and ∫
Ω̂

hP̂ dP̂ = lim
n→∞

1

n

∫
Ω̂

X̂n dP̂. (4.8)

As we mentioned earlier in the beginning, this result translates smoothly to the one-sided shift

case. A key reason is that, by its definition, we have the functions X̂n only depend on entries with

positive indices for elements in Ω̂. Moreover, for each n ∈ N,

X̂n = − log P̂([xn
1 ]) = − logP([xn

1 ]), (4.9)

so it directly relates to our studied subject in the one-sided shift setting, namely − 1
n
logP([xn

1 ]).

Then the limit function hP̂ essentially also depends on entries with positive indices for P̂-almost

all elements in Ω̂, and we can define a corresponding function hP on Ω by simply restricting hP̂

on Ω. Then hP is non-negative and shift-invariant and we have hP(x|Ω) = hP̂(x) for P̂-almost all

x ∈ Ω̂. Combining this with (4.7) and (4.9), we get

lim
n→∞

− 1

n
logP([xn

1 ]) = hP(x)

for P-almost all x ∈ Ω. Convergence inL1 also follows immediately, given hP is obtained by simply

restricting hP̂ on Ω and by the fact that the only variables these quantities depend on are the entries
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with positive indices.

Finally, plugging (4.9) into (4.8) and replacing hP̂ with hP, we have∫
Ω

hP(x) dP = lim
n→∞

− 1

n

∫
Ω

logP([xn
1 ]) dP

= lim
n→∞

− 1

n

∑
xn
1∈An

Pn(x
n
1 ) logPn(x

n
1 )

= lim
n→∞

1

n
S(Pn) = S(P)

⇒
∫
Ω

hP(x) dP = S(P).

For the ergodic case, namely if P ∈ Perg(Ω), it follows as a special case of Theorem 2.2.1 (just

like the ergodic version of Theorem 2.1.1) that hP is a constant P-a.s. and this constant is exactly

S(P) by the relation we just derived above.

Remark 4.1.1. We can see in the proof the convenience of extending the setting to two-sided shift,

when the definition of Rj,m for integers j ≤ 0 and m ∈ N was introduced. Deeper motivation

for such extension can be understood from the functions X̂n we were concerned with and the rela-

tion (4.1), which we would like to manipulate to incorporate some error terms to satisfy the weak

subadditive property. Note that in the condition of weak subadditivity, the error terms are composed

with the transformation T raised to some power n. This means that in the shift setting, especially

in the relation of our interest (4.1) regarding the term Dn,m and its potential subsequent construc-

tions, we need to preserve n entries in the elements so that they could be shifted to the left to have

the desired error term match the weak subadditivity. This cannot be realized in the one-sided shift

setting, but it can be done in the two-sided shift, as the left shift is bijective.

This extension is also convenient in the way that the conclusions derived in the two-sided shift

setting can be smoothly translated back to the one-sided shift case. It therefore shows evidence that

such extension can be an effective strategy to be used in information theory and dynamical systems

when shift spaces are involved.

4.2 The martingale proof

The second proof to be presented in this section is based on the information established in Subsec-

tion 3.2.2 about the functions {Zn}n≥2. In fact, the entire technical input for this proof is given with
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respect to {Zn}n≥2, where Doob’s martingale convergence theorem (Theorem 2.3.1) is our central

technical ingredient, ensuring some nice convergence behavior of {Zn}n≥2. For this reason, we

refer this proof of the SMB theorem as “the martingale proof”.

The use of martingales first appeared in the proofs of a series of generalizations of the early result

of the SMB theorem, which were mostly done in the 1960s and 1970s. These generalizations in-

clude the extension of the conclusion to L1 convergence and to different measures such as Lebesgue

measure, counting measure, and Markov measure. The 1985 paper by Andrew R. Barron [Ba85]

gives a quick historical account on these works and readers may consult it for an overview and for

the listed papers that present these generalizations. The paper [Ba85] itself also gives a further

generalization of the SMB theorem to non-discrete processes and extends the L1 convergence con-

clusion obtained from preceding works. Its proof involves logarithms of supermartingales and it

gives some insights to the second proof we are about to present, despite we are going to work in

the specific setting of one-sided shift.

Proof. We start by showing more facts about the functions {Zn}n≥2 that will be of central impor-

tance in our martingale proof.

For each n ∈ N, denoteFn to be the σ-algebra generated by the standard cylinder sets [xn
1 ], where

xn
1 ∈ An. Fix some m,n ∈ N such that 2 ≤ m < n, let us consider the conditional expectation

E[Zn|Fm]. Let φ be an F -measurable function on Ω such that 0 ≤ φ ≤ 1 and φ depends only on

the first m entries of x ∈ Ω, namely x1, x2, ..., xm. Then clearly, φ is Fm-measurable.

In the following manipulation of integrals that involve the conditional expectation E[Zn|Fm],

we take use of Property (xii) as stated and proven in [AB19, Proposition 11.1]:∫
Ω

E[Zn|Fm] φ dµ =

∫
Ω

E[Znφ|Fm] dµ =

∫
Ω

Znφ dµ

=
∑

xn
1∈suppPn

Pn−1(x
n
2 )

Pn(xn
1 )

φ(x1, ..., xm)Pn(x
n
1 )

=
∑

xn
1∈suppPn

Pn−1(x
n
2 ) φ(x1, ..., xm)

≤
∑

xn−1
1 ∈suppPn−1

∑
xn∈A

Pn−1(x
n
2 ) φ(x1, ..., xm)

=
∑

xn−1
1 ∈suppPn−1

Pn−2(x
n−1
2 ) φ(x1, ..., xm).
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For the above derivation, we repeat the last two steps until it hits m:

∑
xn−1
1 ∈suppPn−1

Pn−2(x
n−1
2 ) φ(x1, ..., xm) ≤ · · · ≤

∑
xm
1 ∈suppPm

Pm−1(x
m
2 ) φ(x1, ..., xm).

Thus, we obtain the following:∫
Ω

E[Zn|Fm] φ dµ =

∫
Ω

Znφ dµ ≤
∑

xm
1 ∈suppPm

Pm−1(x
m
2 ) φ(x1, ..., xm)

=
∑

xm
1 ∈suppPm

Pm−1(x
m
2 )

Pm(xm
1 )

φ(x1, ..., xm)Pm(x
m
1 )

=

∫
Ω

Zmφ dµ

⇒
∫
Ω

E[Zn|Fm] φ dµ ≤
∫
Ω

Zmφ dµ.

This relation holds for any φ that depends only on the first m entries of x ∈ Ω and takes values

between 0 and 1, so it follows that

E[Zn|Fm] ≤ Zm P-a.s. (4.10)

for any 2 ≤ m < n (one may see this by taking φ = 1E for arbitrary E ∈ Fm). Moreover, it is

obvious that Zn is Fn-measurable for every n ≥ 2, and we have shown (3.5) which says Zn is L1

for all n ≥ 2. Thus, {Zn}n≥2 is a supermartingale with respect to {Fn}n≥2 by definition.

Remark. If the probability measure P is fully supported, then Pn(x
n
1 ) > 0 for all xn

1 ∈ An and

for all n ∈ N, and all the inequalities in the above derivation would become equality, resulting in a

martingale for us.

Now that {Zn}n≥2 is a non-negative supermartingale with respect to {Fn}n≥2, then by Theo-

rem 2.3.1, there exists a non-negative function Z such that

Z(x) = lim
n→∞

Zn(x)

for P-almost all x ∈ Ω. Clearly Z ≥ 1 P-a.s. Z is also L1, which can shown by Fatou’s lemma
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and (3.5): ∫
Ω

Z(x) dP =

∫
Ω

lim
n→∞

Zn(x) dP ≤ lim inf
n→∞

∫
Ω

Zn(x) dP ≤ ℓ.

We next turn to the subsequent construction {logZn}n≥2 by taking logarithm on both sides

of (4.10). Since logarithmic function is concave, we apply conditional Jensen’s inequality1 and get

E[logZn|Fm] ≤ logE[Zn|Fm] ≤ logZn ⇒ E[logZn|Fm] ≤ logZn P-a.s.

The integrability of each logZn is in fact already justified, given by (3.1) and Theorem 3.2.3 (1):

0 ≤
∫
Ω

logZn dP ≤ log ℓ.

Then {logZn}n≥2 is also a non-negative supermartingale with respect to {Fn}n≥2. Again by

Theorem 2.3.1, there exists P-a.s. a limit function for {logZn}n≥2. In fact, this limit function can

be directly granted by the P-a.s. convergence of {Zn}n≥2 to Z, and we have

lim
n→∞

logZn(x) = logZ(x)

for P-almost all x ∈ Ω. We have logZ ≥ 0 P-a.s. and it is L1 by Fatou’s lemma and (3.4):∫
Ω

logZ dP =

∫
Ω

lim
n→∞

logZn dP ≤ lim
n→∞

∫
Ω

logZn dP = S(P) ≤ log ℓ.

However, we do not only have an inequality here, but actually an equality. This can be shown

using the dominated convergence theorem, where the dominant L1 function is logZmax.

By the definition of Zmax, we have 1 ≤ Zn ≤ Zmax for any n ≥ 2. Then 0 ≤ logZn ≤
logZmax for any n ≥ 2 as well. logZmax is L1 by Lemma 3.2.5. We can then apply the dominated

convergence theorem and naturally get

S(P) = lim
n→∞

∫
Ω

logZn dP =

∫
Ω

lim
n→∞

logZn dP =

∫
Ω

logZ dP

⇒ S(P) =
∫
Ω

logZ dP. (4.11)

Relation (4.11) will be of central importance in this proof. In addition, the dominated conver-
1See Property (viii) in [AB19, Proposition 11.1].
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gence theorem can also be applied to show that {logZn}n≥2 converges to logZ in L1. We have

{logZn}n≥2 converges to logZ P-a.s., and we have logZn’s and logZ are all L1 functions as well.

Moreover, 0 ≤ logZn ≤ logZmax for any n ≥ 2 also gives 0 ≤ logZ ≤ logZmax, then

0 ≤ | logZn − logZ| ≤ logZn + logZ ≤ 2 logZmax,

where logZmax is L1. Hence, by the dominated convergence theorem,

lim
n→∞

∫
Ω

|logZn(x)− logZ(x)| dP = 0. (4.12)

Returning to our second proof, we observe the following manipulations:

− logP([xn
1 ]) = log

1

Pn(xn
1 )

= log

(
Pn−1(x

n
2 )

Pn(xn
1 )

· Pn−2(x
n
3 )

Pn−1(xn
2 )

· · · P1(xn)

P2(xn
n−1)

· 1

P1(xn)

)

= log
1

P1(xn)
+

n−2∑
k=0

logZn−k(T
k(x))

= log
1

P1(xn)
+

n−2∑
k=0

(
logZn−k(T

k(x))− logZ(T k(x))
)
+

n−2∑
k=0

logZ(T k(x)).

Dividing both sides by n, it yields

− 1

n
logP([xn

1 ]) =
1

n
log

1

P1(xn)
+ (4.13)

1

n

n−2∑
k=0

(
logZn−k(T

k(x))− logZ(T k(x))
)
+ (4.14)

1

n

n−2∑
k=0

logZ(T k(x)), (4.15)

which decomposes our primary object of interest − 1
n
logP([xn

1 ]) into three manageable parts, upon

which are worked to prove the SMB theorem.

(4.13) gives an elementary estimate. Note that if we denote

K = max

{
log

1

P1(a)
: a ∈ A and P1(a) > 0

}
,
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then K is a finite constant and

log
1

P1(xn)
≤ K P-a.s.

Thus, as n → ∞, (4.13) goes to 0 P-a.s., and we are done with this term.

As for (4.14) and (4.15), we can see the term (4.15) is in the form of an ergodic sum and a limit

function would exist P-a.s. by Birkhoff’s ergodic theorem (Theorem 2.1.1). On the other hand,

regarding the limit behavior of (4.14), which is represented by terms involving differences between

logZn’s and logZ, an estimate could be given to be 0 P-a.s. This is exactly due to the convergence

of logZn’s to logZ. Hence, by setting

Xn(x) :=
1

n

n−2∑
k=0

∣∣logZn−k(T
k(x))− logZ(T k(x))

∣∣
=

1

n

n∑
k=2

∣∣logZk(T
n−k(x))− logZ(T n−k(x))

∣∣
for all n ≥ 2, it then suffices for us to show that Xn converges to 0 P-a.s.

Let m ≥ 2 and define

Ym(x) := sup
k≥m

|logZk(x)− logZ(x)| .

For any m ≥ 2, Ym is well-defined P-a.s. and Ym ≥ 0. Since {logZn}n≥2 converges to logZ

P-a.s., we have

lim
m→∞

Ym(x) = 0 P-a.s.

For well-defined value x, it is also clear that {Ym(x)}m≥2 is decreasing, and

Y2(x) = sup
k≥2

|logZk(x)− logZ(x)| ≤ log

(
sup
k≥2

Zk(x)

)
+ logZ ≤ 2 logZmax,

so Ym ∈ L1(Ω, dP) for all m ≥ 2.

Now fix some m > 2. For any n ≥ m, we rewrite the expression of Xn and derive an upper
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bound for it as follows:

Xn(x) =
1

n

m−1∑
k=2

∣∣logZk(T
n−k(x))− logZ(T n−k(x))

∣∣+
1

n

n∑
k=m

∣∣logZk(T
n−k(x))− logZ(T n−k(x))

∣∣
≤ 2

n

m−1∑
k=2

logZmax(T
n−k(x)) +

1

n

n∑
k=m

Ym(T
n−k(x))

≤ 2

n

m−1∑
k=2

logZmax(T
n−k(x)) +

1

n

n−1∑
k=0

Ym(T
k(x)). (4.16)

We end up getting the bound (4.16) by adding m − 1 more non-negative terms to the previous

step. We focus on this estimate and show {Xn}n≥2 goes to 0 P-a.s. by showing this asymptotic

behavior holds for (4.16).

We initially deal with the first term in (4.16). Note that with respect to our n, by elementary

probabilistic arguments,{
x ∈ Ω :

m−1∑
k=2

logZmax(T
n−k(x)) ≥

√
n

}
⊆

m−1⋃
k=2

{
x ∈ Ω : logZmax(T

n−k(x)) ≥
√
n

m− 2

}
.

Then

P

({
m−1∑
k=2

logZmax ◦ T n−k ≥
√
n

})
≤

m−1∑
k=2

P
({

logZmax ◦ T n−k ≥
√
n

m− 2

})

≤
m−1∑
k=2

P
({

logZmax ◦ T n−k ≥
√
n

m

})
(By shift-invariance of P) = (m− 2) P

({
logZmax ≥

√
n

m

})
(By Lemma 3.2.4) ≤ (m− 2) ℓ e−

√
n

m .

Hence,

∞∑
n=m

P

({
m−1∑
k=2

logZmax ◦ T n−k ≥
√
n

})
≤ (m− 2) ℓ

∞∑
n=1

e−
√
n

m < ∞

by integral test. It then follows from the Borel–Cantelli lemma, that for P-almost all x ∈ Ω, there
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exists some n0(x) ≥ m, such that for all n ≥ n0(x),

m−1∑
k=2

logZmax ◦ T n−k(x) ≤
√
n.

Thus, for P-almost all x ∈ Ω, we have

0 ≤ lim
n→∞

2

n

m−1∑
k=2

logZmax(T
n−k(x)) ≤ lim

n→∞

2
√
n

n
= 0,

and the first term in (4.16) goes to 0 asymptotically P-a.s.

As for the second term in (4.16), we notice that it takes the form of an ergodic sum. Then by

Theorem 2.1.1, there exists a limit function Ỹm such that

Ỹm(x) = lim
n→∞

1

n

n−1∑
k=0

Ym(T
k(x)) P-a.s.

Therefore, we have so far derived (4.16) to

0 ≤ lim sup
n→∞

Xn(x) ≤ 0 + lim
n→∞

1

n

n−1∑
k=0

Ym(T
k(x)) = Ỹm(x) P-a.s.

⇒ lim sup
n→∞

Xn(x) ≤ Ỹm(x) P-a.s. (4.17)

Since {Ym}m≥2 is decreasing, non-negative, and converging to 0 P-a.s., and Y2 ≤ 2 logZmax

where logZmax is integrable, then by the dominated convergence theorem,

lim
m→∞

∫
Ω

Ym dP = 0.

Besides, as shown in the end of the proof of Theorem 2.1.1, we also have∫
Ω

Ym dP =

∫
Ω

Ỹm dP (4.18)

for every m > 2. This gives

lim
m→∞

∫
Ω

Ym dP = lim
m→∞

∫
Ω

Ỹm dP = 0. (4.19)
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On the other hand, for every m > 2, Ỹm is clearly non-negative. It is also true that the sequence

of the limit functions {Ỹm}m>2 is decreasing. This can be observed in a pointwise sense: Fix

arbitrary value x on the set with full measure where all Ỹm’s are well-defined. For each pair of

m1,m2 ∈ N ∩ (2,∞) such that m1 < m2, and for any n ≥ m2, we have

1

n

n−1∑
k=0

Ym1(T
k(x)) ≥ 1

n

n−1∑
k=0

Ym2(T
k(x)).

This is because we used the fact that {Ym}m≥2 is decreasing: For every k ∈ [0, n − 1] ∩ N,

Ym1(T
k(x)) ≥ Ym2(T

k(x)). Then taking limit of n → ∞ on both sides, we get Ỹm1(x) ≥ Ỹm2(x).

As {Ỹm}m>2 is non-negative and decreasing, then a limit function for {Ỹm}m>2 exists for P-

almost all x ∈ Ω:

Ỹ (x) := inf
m>2

Ỹm(x).

Since (4.17) holds for every m > 2, then we have

lim sup
n→∞

Xn(x) ≤ Ỹ (x) P-a.s., (4.20)

Moreover, every Ỹm is integrable by (4.18). Then another application of the dominated conver-

gence theorem and (4.19) give ∫
Ω

Ỹ dP = lim
m→∞

∫
Ω

Ỹm dP = 0.

However, Ỹ is clearly non-negative P-a.s., so Ỹ = 0 P-a.s. This, together with (4.20) and the

fact that Xn is non-negative for all n ≥ 2, implies limn→∞ Xn = 0 P-a.s.

This in turn shows the representation (4.14) asymptotically goes to 0 P-a.s.

Finally, we are left with (4.15), whose limit behavior is determined by Theorem 2.1.1: For P-

almost all x ∈ Ω, there exists a limit function, which we denote as hP, such that

hP(x) = lim
n→∞

1

n

n−2∑
k=0

logZ(T k(x)).

61



Combing the limit behavior of all three terms (4.13), (4.14), and (4.15), we conclude that

lim
n→∞

− 1

n
logP([xn

1 ]) = hP(x) P-a.s.

This finishes the part for showing P-a.s. convergence.

To show the convergence also holds in L1, we go back to the three decomposed parts (4.13),

(4.14), and (4.15), where it is trivial to see that the estimate (4.13) converges to 0 in L1 by the P-a.s.

upper bound of K
n

. Theorem 2.1.1 also tells that the convergence of (4.15) to hP holds in L1. It

remains to show that (4.14) converges to 0 in L1 by showing Xn → 0 in L1.

We know Xn is non-negative for every n ≥ 2. Then plugging in its expression and by shift-

invariance of P, we get

∫
Ω

|Xn − 0| dP =

∫
Ω

Xn dP =
1

n

n∑
k=2

∫
Ω

|logZk − logZ| ◦ T n−k dP

=
1

n

n∑
k=2

∫
Ω

|logZk − logZ| dP.

For the integral terms in the summation on the right hand side, they are all non-negative and

finite, and the whole term (the sum divided by n) can be viewed as the Cesàro mean. Since we have

shown (4.12), and recall how we justified the equality (3.3) regarding the Cesàro mean, we have

lim
n→∞

∫
Ω

Xn dP = lim
n→∞

1

n

n∑
k=2

∫
Ω

|logZk − logZ| dP = lim
n→∞

∫
Ω

|logZn − logZ| dP = 0.

This completes the proof of convergence to hP in L1.

For the remaining properties of hP, it is obvious that hP ≥ 0P-a.s., and shift-invariance (hP◦T =

hP) also follows from Theorem 2.1.1.

By the convergence of the term (4.15) to hP via Theorem 2.1.1, we also have∫
Ω

hP dP =

∫
Ω

logZ dP,

and by (4.11), we obtain ∫
Ω

hP dP = S(P).

Finally, if P ∈ Perg(Ω), then by the ergodic version of Theorem 2.1.1, we have hP is constant
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P-a.s., and this constant value is exactly S(P), so in this case,

lim
n→∞

− 1

n
logP([xn

1 ]) = S(P)

for P-almost all x ∈ Ω and the convergence also holds in L1(Ω, dP).

In this martingale proof, we can see the absolute central involvement of the constructed func-

tions logZn and logZ as well as their relations with entropy, such as (3.1), (3.4), and (4.11). These

functions, as established earlier in Subsection 3.2.2, exhibit excellent convergence behavior, moti-

vating the applications of the martingale convergence theorem and Birkhoff’s ergodic theorem and

nicely leading to the desired conclusions of convergence to a limit function.

These constructions themselves, especially the function logZ, play fundamental roles not only

in information theory, but also in the theory of dynamical systems and statistical mechanics. We

will conclude the technical aspects and more about the martingale proof in Chapter 5.

4.3 The Ornstein–Weiss proof

For the third proof, it is self-contained in an information-theoretic way, where packing ideas are

used, and it will only prove the ergodic case of the SMB theorem. The very original proof, given by

Donald Ornstein and Benjamin Weiss dating back to 1983 [OW83], is part of their works to extend

ideas from ergodic theory and dynamical systems to random fields and amenable groups. For this

reason, the third proof is credited as “the Ornstein–Weiss proof”. The reference, which our third

proof is closely based upon, is [Sh96, Section I.5].

We begin with a very quick introduction to covering and packing. For simplicity, in this specific

section, we use the usual interval notations to denote intervals in N, since there will be no appear-

ance of continous interval in the sense of real line. That is, for any pairwise natural numbers n ≤ m,

we denote [n,m] = {j ∈ N : n ≤ j ≤ m}. Similarly, we have (n,m] = {j ∈ N : n < j ≤ m}
and so on. When we mention intervals in this section, we mean intervals referred and denoted in

the above sense.

Definition 4.3.1 (Strong cover). A strong cover C of N is a collection of intervals {[n,m(n)]}n∈N,

where m : N −→ N such that m(n) ≥ n for all n ∈ N.

By cover, we clearly mean the property that the union of the given intervals is N. A strong cover

C of N has a subcover {[ni,m(ni)]}i∈N such that its members are disjoint: {ni}i∈N is a sequence
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of natural numbers satisfying n1 = 1 and ni+1 = 1 + m(ni) for all i ≥ 1. This is referred as the

“packing property” in [Sh96].

Definition 4.3.2. Let C be a strong cover of N. We say that the interval [1, K] is (L, δ)-strongly

covered by C if

|{n ∈ [1, K] : m(n)− n+ 1 > L}|
K

≤ δ.

Definition 4.3.3. A collection C ′ of subintervals of [1, K] is called a (1 − δ)-packing of [1, K] if

the intervals in C ′ are disjoint and their union has cardinality at least (1− δ)K.

Here is a classical and important result concerning these defined properties:

Lemma 4.3.4 (The packing lemma). LetC be a strong cover ofN and letL ∈ N and 0 < δ < 1
2

be

given. Suppose K > L
δ
. If [1, K] is (L, δ)-strongly covered by C, then there exists a subcollection

C ′ ⊆ C that is a (1− 2δ)-packing of [1, K].

Proof. We define a sequence of natural numbers {ni}i∈N inductively as follows: Set n0 = m(0) = 0

and

ni = min{j ∈ [1 +m(ni−1), K − L] : m(j)− j + 1 ≤ L}.

In other words, we proceed from small values to large ones, picking the first interval with length at

most L that is disjoint from the previous selected intervals. Our inductive assumption stops after

I < ∞ steps, where in the end, either m(nI) ≥ K − L or there is no j ∈ [1 +m(nI), K − L] for

which m(j)− j + 1 ≤ L.

Now we claim

C ′ = {[ni,m(ni)]}Ii=1

is a (1− 2δ)-packing of [1, K].

We check Definition 4.3.3. By construction, C ′ is automatically disjoint. We also have all the

intervals in C ′ are contained in [1, K]. To show this, we need to show m(nI) ≤ K. By the above

inductive assumption, we have m(nI)− nI + 1 ≤ L and nI ≤ K − L. Then trivially,

m(nI) ≤ L+ nI − 1 ≤ L+K − L− 1 = K − 1.

Finally, we check the cardinality of the union of all intervals in C ′ is at least (1 − δ)K. Let us
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denote that

U =
⊔

i∈[1,I]

[ni,m(ni)].

By our assumption, |(K − L,K]| ≤ L < δK. Then,

|(K − L,K]\U | ≤ |(K − L,K]| < δK.

On the other hand, if j ∈ [1, K − L]\U , then we must have m(j)− j + 1 > L (otherwise, our

construction would give j ∈ U ). The assumption that [1, K] is (L, δ)-strongly covered by C then

gives |[1, K − L]\U | ≤ δK. Combing both estimates, we get

|[1, K]\U | ≤ 2δK ⇒ |U | ≥ (1− 2δ)K.

Thus, by Definition 4.3.3, we have found a subcollection C ′ of C, which is a (1 − 2δ)-packing

of [1, K].

Another useful related result which will provide some estimate of upper bound in our third proof

is a combinatorial one. Given some 0 < δ < 1, we denote by

H(δ) = −δ log δ − (1− δ) log (1− δ), (4.21)

where we adapt the notation H of entropy with respect to a random variable from Appendix D,

since if we set some probability measure P on B = {0, 1} by letting P(0) = δ and P(1) = 1 − δ,

then (4.21) could be regarded as the entropy of some random variable taking values in B whose

probability distribution is P. Then simply H(δ) = S(P).

Proposition 4.3.5 (Combinatorial bound). Let 0 < δ < 1
2
, then

∑
0≤k≤nδ

(
n

k

)
≤ enH(δ).

Proof. We start by defining a function f : R −→ R as below:

f(x) := −x log δ − (1− x) log (1− δ).

65



Then since 0 < δ < 1
2
,

f ′(x) = log

(
1− δ

δ

)
> 0

for all x ∈ R, so f is increasing.

For x ≤ δ, we have f(x) ≤ f(δ) = H(δ). Then for any k such that 0 ≤ k ≤ nδ, we would have

0 ≤ k
n
≤ δ and

f

(
k

n

)
= −k

n
log δ −

(
n− k

n

)
log (1− δ) ≤ H(δ)

⇒ − 1

n
log
(
δk(1− δ)n−k

)
≤ H(δ)

⇒ e−nH(δ) ≤ δk(1− δ)n−k.

We now do the following manipulations based on what we obtained above:

e−nH(δ)
∑

0≤k≤nδ

(
n

k

)
=

∑
0≤k≤nδ

e−nH(δ)

(
n

k

)

≤
∑

0≤k≤nδ

δk(1− δ)n−k

(
n

k

)

≤
n∑

k=0

δk(1− δ)n−k

(
n

k

)
(Binomial expansion) = (δ + (1− δ))n = 1

⇒
∑

0≤k≤nδ

(
n

k

)
≤ enH(δ),

which completes the proof.

We now introduce the other ingredients for the Ornstein–Weiss proof. A measurable function

τ : Ω −→ N ∪ {∞} is called a generalized stopping time. If P ∈ Pinv(Ω) and

P({x ∈ Ω : τ(x) = ∞}) = 0,

then τ is said to be P-a.s. finite. By shift-invariance of P,

P({x ∈ Ω : τ(x) = ∞}) = P({x ∈ Ω : τ ◦ T n−1(x) = ∞}), ∀ n ∈ N,
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and we shall have τ ◦ T n−1 is P-a.s. finite for all n ∈ N. Then in this case, the so-called stopping

interval starting at n, [n, τ(T n−1(x)) + n − 1], is well-defined for P-almost all x ∈ Ω, and from

here, we can define a strong cover in a pointwise sense for N:

C(x, τ) = {[n, τ(T n−1(x)) + n− 1] : n ≥ 1},

which is well-defined for P-almost all x ∈ Ω.

We then introduce a lemma that will be of central importance in the Ornstein–Weiss proof:

Lemma 4.3.6 (The ergodic stopping time packing lemma). Let P ∈ Perg(Ω) and τ be a P-a.s.

finite stopping time. For any 0 < δ < 1 and P-almost all x ∈ Ω, there exists N(δ, x) ∈ N such that

for all n ≥ N(δ, x), the interval [1, n] is (1− δ)-packed by intervals from C(x, τ).

Proof. Fix some arbitrary 0 < δ < 1. Since τ is P-a.s. finite, then

P({x ∈ Ω : τ(x) = ∞}) = lim
L→∞

P({x ∈ Ω : τ(x) > L}) = 0,

and there exists L ∈ N large enough such that

P({x ∈ Ω : τ(x) > L}) ≤ δ

2
.

We set D = {x ∈ Ω : τ(x) > L} and consider the corresponding indicator function 1D. By

Theorem 2.1.1, we have

lim
n→∞

1

n

n−1∑
j=0

1D(T
j(x)) =

∫
Ω

1D(x) dP = P(D) ≤ δ

2

for P-almost all x ∈ Ω.

Hence, if we let

Gn =

{
x ∈ Ω :

1

n

n−1∑
j=0

1D(T
j(x)) ≤ δ

2

}

for all n ∈ N, then we have x ∈ Gn eventually almost-surely (by this, we mean that for P-almost

all x ∈ Ω, it holds that there exists some n(x) ∈ N such that for all n ≥ n(x), x ∈ Gn).

Now pick such an x ∈ Ω and let n > max
(
n(x), 2L

δ

)
. The definition of Gn then gives that

τ ◦ T j−1(x) ≤ L for at least
(
1− δ

2

)
n2 indices j ∈ [1, n], because otherwise, there would be more

2As we take the value of n to be greater than 2L
δ

, it guarantees the value
(
1− δ

2

)
n is strictly positive.
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than n−
(
1− δ

2

)
n indices from [1, n] such that τ ◦ T j−1(x) > L, implying

1

n

n−1∑
j=0

1D(T
j(x)) >

1

n

(
n−

(
1− δ

2

)
n

)
· 1 =

δ

2
,

leading to a contradiction.

Hence,

∣∣{j ∈ [1, n] : τ ◦ T j−1(x) > L}
∣∣ ≤ n−

(
1− δ

2

)
n =

δ

2
n

⇒ |{j ∈ [1, n] : τ ◦ T j−1(x) > L}|
n

≤ δ

2
,

and it means [1, n] is
(
L, δ

2

)
-strongly covered by C(x, τ). By Lemma 4.3.4, there exists a subcol-

lection of C(x, τ) that is (L, 1 − δ)-packing of [1, n]. Note that the existence of such N(δ, x) is

already indicated above, where we can set N(δ, x) = max
(
n(x), 2L

δ

)
+1, and then this conclusion

holds for all n ≥ N(δ, x).

We now turn to the proof of the SMB theorem, which is referred as “the entropy theorem”

in [Sh96]. In this book, the theorem is given to state that for P ∈ Perg(Ω), − 1
n
logP([xn

1 ]) converges

P-a.s. to a non-negative constant, denoted as h(P). We will show this statement first, and from there,

further derive that this constant h(P) is actually S(P), and the convergence also holds in L1.

Proof. Let P ∈ Perg(Ω). Set

h(x) := lim inf
n→∞

− 1

n
logP([xn

1 ]),

which is P-a.s. well-defined on Ω. Clearly, h ≥ 0. By Fatou’s lemma, h is L1:∫
Ω

h(x) dP ≤ lim inf
n→∞

− 1

n

∫
Ω

logP([xn
1 ]) dP = lim inf

n→∞

S(Pn)

n
= S(P). (4.22)

Note that for all x ∈ Ω,

P([xn+1
2 ]) ≥ P([xn+1

1 ]) ⇒ P([T (x)]n1 ) ≥ P([xn+1
1 ]),

so h(T (x)) ≤ h(x) for all well-defined x. Let G = {h ◦ T < h}. We want to show that P(G) = 0
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so that h ◦ T = h P-a.s. Assume P(G) > 0, then with shift-invariance of P,∫
Ω\G

h ◦ T dP+

∫
G

h ◦ T dP <

∫
Ω\G

h dP+

∫
G

h dP

⇒
∫
Ω

h ◦ T dP <

∫
Ω

h dP

⇒
∫
Ω

h dP <

∫
Ω

h dP,

which is a contradiction.

Thus, P(G) = 0 and h ◦ T = h P-a.s. Besides, since P is ergodic, then there exists some non-

negative constant h(P), such that h(x) = h(P) for P-almost all x ∈ Ω. (Similar reasoning has been

mentioned in the conclusion part of Section 2.1.)

Hence, we have shown that

lim inf
n→∞

− 1

n
logP([xn

1 ]) = h(P) P-a.s., (4.23)

and by (4.22), h(P) ≤ S(P). We would then like to show this also holds for limit superior.

Let 0 < δ < 1 and M ∈ N. We will make further restrictions on δ and M later on. Fix arbitrary

ε > 0. Let K ≥ M and let JK(δ,M) be the set of all xK
1 ∈ AK such that the following holds:

There is a collection S(xK
1 ) = {[ni,mi]}i∈IK of disjoint subintervals of [1, K] (IK is a finite index

set depending on K) with the following properties:

(i). mi − ni + 1 ≥ M for all i ∈ IK ;

(ii).

P([xmi
ni
]) ≥ e−(mi−ni+1)(h(P)+ε), ∀ i ∈ IK ;

(iii). ∑
i∈IK

(mi − ni + 1) ≥ (1− δ)K.

We give the following lemmas to characterize the existence and size of JK(δ,M).

Lemma 4.3.7. xK
1 ∈ JK(δ,M) eventually almost-surely.

Proof. We would like to show that for P-almost all x ∈ Ω, there exists some K0 = K0(x, δ,M) ≥
M such that for all K ≥ K0, xK

1 ∈ JK(δ,M).
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For any x ∈ Ω, let

τ(x) := min
{
n ≥ M : P([xn

1 ]) ≥ e−n(h(P)+ε)
}
.

Apparently τ is measurable and is a generalized stopping time. By (4.23), we have τ(x) < ∞
P-a.s., and τ is P-a.s. finite. Applying Lemma 4.3.6, for P-almost all x ∈ Ω, there would exist

K0 = K0(x, δ,M) ≥ M such that for all K ≥ K0, the interval [1, K] is (1 − δ)-packed by the

intervals from

C(x, τ) = {[n, τ(T n−1(x)) + n− 1] : n ≥ 1},

and we take these intervals to form the desired collection S(xK
1 ).

By the definition of τ , we have τ(x) ≥ M for P-almost all x ∈ Ω, so Property (i) holds as we

would have mi = τ(T ni−1(x)) + ni − 1 for all i ∈ IK . The definition of τ also implies Property

(ii), since for every i ∈ IK , mi = τ(T ni−1(x)) + ni − 1 gives τ(T ni−1(x)) = mi − ni + 1, and we

also have [
(T ni−1(x))mi−ni+1

1

]
= [xmi

ni
],

implying

P
([

(T ni−1(x))
τ(Tni−1(x))
1

])
≥ e−τ(Tni−1(x))(h(P)+ε)

⇒ P([xmi
ni
]) ≥ e−(mi−ni+1)(h(P)+ε).

Finally, Property (iii) follows immediately from (1− δ)-packing.

Lemma 4.3.8. There exist 0 < δ < 1 and M ∈ N such that

|JK(δ,M)| ≤ eK(h(P)+2ε).

Proof. We adapt terminologies and notations from [Sh96]. A collection S = {[ni,mi]}i∈IK of

disjoint subintervals of [1, K] is called a skeleton if Properties (i) and (iii) hold. A string xK
1 is

compatible with the skeleton S if Property (ii) holds.

Technically, we will get the bound on |JK(δ,M)| by first bounding the number of possible skele-

tons, and then bounding the number of strings compatible with each skeleton. |JK(δ,M)| is then

bounded by the number of possible skeletons multiplied by the number of compatible strings. Fi-

nally, we shall choose δ and M such that this lemma holds.
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Suppose S is a skeleton. Since S is a collection of disjoint subintervals of [1, K] and satisfies

Property (i), we trivially have M |S| ≤ K ⇒ |S| ≤ K
M

. Hence, there are at most K
M

points in [1, K]

that could be the starting points of the intervals in S.

An upper bound for the number of possible skeletons (if we denote this number simply as N1)

is then given by Proposition 4.3.5:

N1 ≤
∑

0≤j≤K
M

(
K

j

)
≤ eKH( 1

M ), (4.24)

where H
(

1
M

)
is of the form shown in (4.21).

Now for each skeleton S, let us consider the number of possible strings xK
1 that are compatible

with it. First of all, for each i ∈ IK , if we look at the number of possible distinct substrings xmi
ni

for

which Property (ii) holds, then it is bounded from above by e(mi−ni+1)(h(P)+ε), because otherwise,

we can see that P would not be a probability measure by summing over these possible choices of

distinct xmi
ni

: Denoting the set of all possible distinct substrings xmi
ni

here as Qi,

∑
x
mi
ni

∈Qi

P([xmi
ni
]) > e(mi−ni+1)(h(P)+ε) · e−(mi−ni+1)(h(P)+ε) = 1.

For the other indices in xK
1 that fall outside of [ni,mi]’s, there will be at most δK of them, due to

Property (iii). Then for each such index, or each entry with such an index, it can be filled by letters

from A and there are ℓ letters. Then this number of choices for the remaining entries is bounded

above by ℓδK .

Summing up what we have concluded above, for a given skeletonS = {[ni,mi]}i∈IK , the number

of possible strings xK
1 that are compatible with S (denoted as N2) is bounded above by

N2 ≤ ℓδK
∏
i∈IK

e(mi−ni+1)(h(P)+ε) ≤ ℓδKeK(h(P)+ε), (4.25)

where we used the fact that all [ni,mi]’s here are subintervals of [1, K].

Combining (4.24) and (4.25), we obtain the estimate

|JK(δ,M)| ≤ N1N2 ≤ eKH( 1
M )ℓδKeK(h(P)+ε).
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Note that regardless what value ℓ is, we always have ℓ ≤ eℓ. Then the estimate becomes

|JK(δ,M)| ≤ eKH( 1
M )eℓδKeK(h(P)+ε).

Now we control the values of δ and M . Since by the expression (4.21), we can see that

lim
M→∞

H

(
1

M

)
= 0,

then we can choose M large enough such that H
(

1
M

)
< ε

2
. On the other hand, choose δ < ε

2ℓ
. We

finally obtain

|JK(δ,M)| ≤ eK
ε
2 eK

ε
2 eK(h(P)+ε) = eK(h(P)+2ε),

as desired.

Let us proceed to finish the third proof. We choose δ and M as the ones from Lemma 4.3.8. Let

RK =
{
xK
1 ∈ AK : PK(x

K
1 ) < e−K(h(P)+3ε)

}
.

Then with JK = JK(δ,M), we have

PK(RK ∩ JK) =
∑

xK
1 ∈RK∩JK

PK(x
K
1 ) <

∑
xK
1 ∈RK∩JK

e−K(h(P)+3ε) = |RK ∩ JK | e−K(h(P)+3ε)

≤ |JK | e−K(h(P)+3ε) ≤ eK(h(P)+2ε)e−K(h(P)+3ε) = e−Kε,

where we applied Lemma 4.3.8.

It then follows that ∞∑
K=M

PK(RK ∩ JK) < ∞,

which by the Borel–Cantelli lemma, means for P-almost all x ∈ Ω, xK
1 ̸∈ RK ∩ JK eventually

always3. However, by Lemma 4.3.7, we have xK
1 ∈ JK eventually almost-surely. Thus, we must

have that xK
1 ̸∈ RK eventually almost-surely. In other words, for P-almost all x ∈ Ω, there exists

3Note that there is a subtle difference between the terms “eventually always” and “eventually almost-surely”, where the latter
also encompasses P-almost all x ∈ Ω.
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some K ′(x) ≥ M , such that for all K ≥ K ′(x),

P([xK
1 ]) = PK(x

K
1 ) ≥ e−K(h(P)+3ε) ⇒ − 1

K
logP([xK

1 ]) ≤ h(P) + 3ε.

Hence, for P-almost all x ∈ Ω,

lim sup
K→∞

− 1

K
logP([xK

1 ]) ≤ h(P) + 3ε.

Since ε > 0 is taken arbitrarily, we obtain that

lim sup
n→∞

− 1

n
logP([xn

1 ]) ≤ h(P) P-a.s. (4.26)

Combining (4.23) and (4.26), we get

lim
n→∞

− 1

n
logP([xn

1 ]) = h(P) P-a.s. (4.27)

This completes the proof of “the entropy theorem” as presented in [Sh96]. We continue to show

that h(P) = S(P) and the convergence also holds in L1.

As stated earlier, we have got h(P) ≤ S(P) by (4.22). It remains to show h(P) ≥ S(P). Fix

arbitrary ε > 0 and set

En =
{
xn
1 ∈ An : P([xn

1 ]) > e−n(h(P)+ε)
}
, ∀ n ∈ N.

Let Bn = An\En and we can do the following manipulations:

S(Pn) = −
∑

xn
1∈Bn

P([xn
1 ]) logP([xn

1 ])−
∑

xn
1∈En

P([xn
1 ]) logP([xn

1 ])

≤ −
∑

xn
1∈Bn

P([xn
1 ]) logP([xn

1 ]) + n(h(P) + ε)Pn(En). (4.28)

If P(Bn) = 0, then we have a bound

S(Pn) ≤ n(h(P) + ε)Pn(En) (4.29)
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right away; Otherwise, we can further observe that:

−
∑

xn
1∈Bn

Pn(x
n
1 )

Pn(Bn)
log

(
Pn(x

n
1 )

Pn(Bn)

)
≤ log |Bn| ≤ log |An| = n log ℓ,

where it is trivial to see that Pn(xn
1 )

Pn(Bn)
is a probability measure on Bn, and then Proposition D.1 (2) is

applied.

Then the first term as in (4.28) can be further bounded:

−
∑

xn
1∈Bn

P([xn
1 ]) logP([xn

1 ]) ≤ n log ℓ Pn(Bn)− Pn(Bn) logPn(Bn),

and from (4.28), the bound would further become

S(Pn) ≤ n log ℓ Pn(Bn)− Pn(Bn) logPn(Bn) + n(h(P) + ε)Pn(En). (4.30)

A basic probabilistic fact is that P-a.s. convergence implies convergence in probability. Hence,

given how En is defined for each n ∈ N, (4.27) implies that Pn(En) → 1 as n → ∞. At the same

time, Pn(Bn) → 0 as n → ∞ as well.

Therefore, for either cases, if dividing n on both sides and passing it to infinity, we would have

both (4.29) and (4.30) give that

S(P) = lim
n→∞

S(Pn)

n
≤ h(P) + ε,

which holds true for any ε > 0. We then obtain that S(P) ≤ h(P) and this completes the proof of

h(P) = S(P) and

lim
n→∞

− 1

n
logP([xn

1 ]) = S(P) P-a.s. (4.31)

Finally, we have each − 1
n
logP([xn

1 ]) is L1, since its integral is simply S(Pn). As we also have

both P-a.s. convergence (4.31) and integral convergence as shown in (4.22), then by Scheffé’s

lemma (Lemma B.3), we have − 1
n
logP([xn

1 ]) → S(P) in L1.
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Chapter 5

Conclusion

The three proofs we have given to the SMB theorem elucidates three different facets of the theorem

and their comparisons can be done on both technical and conceptual levels.

The subadditive proof is done in the extended setting of one-sided shift, namely two-sided shift,

making it easier for us to construct the desired subadditivity. The key technical ingredient that

this proof is based on is Kingman’s subadditive ergodic theorem, together with two key a priori

estimates which share similar forms: One is

P ({logZmax > t}) ≤ ℓe−t,

which is used to show the integrability of logZmax and in turn, implies that the defined non-negative

functions {X̂n}n∈N are integrable; the other one is

P̂
({

Ŷn > t
})

≤ e−t,

which is applied to verify the conditions for the error terms {Ŷn}n∈N as specified in Kingman’s

subadditive ergodic theorem. Note that the proofs of these two estimates are essentially identical

and the two a priori estimates play a key role in verifying the assumptions of Kingman’s subadditive

ergodic theorem.

On the other hand, the martingale proof centers around the formula

S(Pn+1)− S(Pn) =

∫
Ω

logZn+1 dP
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and relies on the basic facts and properties of entropy and the functions Zn’s. It then employs

the martingale convergence theorem to control the limit of Zn’s. Together with Birkhoff’s ergodic

theorem and a priori estimates, the final result follows. Some of the constructions and key relations

involved in the martingale proof, for example, the so-called entropy formula

S(P) =
∫
Ω

logZ dP,

also have far-reaching implications in other topics of information theory and statistical mechanics,

a sister field of information theory. One example is that it links with important notions of weak

Gibbsianity, which is closely related to the theory of equilibrium measures of spin systems on Ω.

Finally, the Ornstein–Weiss proof is rather self-contained and it did not use any major theorem.

A key ingredient is the ergodic stopping time packing lemma, which relates to Doob’s upcrossing

inequality, a result that is essential to the proof of the martingale convergence theorem. In this sense,

the notion martingale is appearing in this proof, but not directly. Comparing with the other two, the

flavor of the Ornstein–Weiss proof appears to be the most information-theoretic among the three.

This is important in the sense that the arguments or technicality involved in the Ornstein–Weiss

proof can also be sketched for deriving or proving some relevant subsequent results in information

theory. This aspect cannot be seen in the other two proofs.

Despite the Ornstein–Weiss proof presented in this thesis does not cover general shift-invariant

measures, this generalization can be realized through “ergodic decomposition” of any P ∈ Pinv(Ω)

(see [Sh96, Section I.4.c]). This can be fully detailed and conducted as an independent project.
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Appendix

A Conditional expectation

Let (Ω,F ,P) be a probability space and T be a measure-preserving transformation. For X ∈
L1(Ω, dP), if we define a measure PX as follows,

∀ E ∈ F : PX(E) :=

∫
E

X dP,

then naturally PX ≪ P and X is the Radon–Nikodym derivative of P with respect to PX .

For the sub-σ-algebra FT (see Section 2.1 for its definition), we know that X is F -measurable

but not necessarily FT -measurable. To construct an approximation of X which only preserves the

information carried in FT , we can follow the same idea on viewing X as the Radon–Nikodym

derivative dP/dPX .

For the measurable space (Ω,FT ), we can define a probability measure on it by simply restricting

P on the sub-σ-algebra FT . In other words, let I : FT −→ F be the natural injection, then the

probability measure we are defining on (Ω,FT ) is P|FT
:= P ◦ I.

A more natural way to see this is to consider the identity mapping id : (Ω,F) −→ (Ω,FT ). id is

clearly F/FT -measurable and its distribution P ◦ (id)−1 defines a probability measure on (Ω,FT ),

which is exactly P|FT
, so the natural injection I here is (id)−1.

Similarly, define PX |FT
:= PX ◦ (id)−1, and it is a measure on (Ω,FT ). It is trivial to check

that PX |FT
≪ P|FT

and by the Lebesgue–Radon–Nikodym theorem, the Radon–Nikodym deriva-

tive XT := (dP|FT
)/(dPX |FT

) exists. We call this function XT the conditional expectation of X

conditioning on FT and it is usually denoted as XT = E[X|FT ] in probability theory.
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It can be checked that the integrals of X and XT on any set E ∈ FT agree:∫
E

XT dP|FT
= PX |FT

(E) = PX ◦ (id)−1(E) = PX(E) =

∫
E

X dP,

and on the other hand,∫
E

XT dP|FT
=

∫
E

XT dP ◦ (id)−1 =

∫
(id)−1(E)

XT ◦ id dP =

∫
E

XT dP,

so
∫
E
X dP =

∫
E
XT dP for all E ∈ FT .

We also have XT is T -invariant. Consider arbitrary E ∈ FT , then∫
E

XT dP =

∫
E

XT dPT =

∫
T−1(E)

XT ◦ T dP =

∫
E

XT ◦ T dP,

so XT ◦ T = XT P-a.s. and XT is T -invariant.

We list some basic properties of conditional expectation below:

Similar to FT , for any sub-σ-algebra G of F and arbitrary X ∈ L1(Ω, dP), we can always define

the conditional expectation of X conditioning on G: E[X|G], and it could be regarded as the best

approximation of X on the sub-σ-algebra G. E[X|G] is G-measurable and it exists uniquely P-a.s.

(i). If Y = E[X|G], then ∫
Ω

Y dP =

∫
Ω

X dP;

(ii). If X is already G-measurable, then E[X|G] = X;

(iii) (Linearity). For any a, b ∈ R and X, Y ∈ L1(Ω, dP),

E[aX + bY |G] = aE[X|G] + bE[Y |G];

(iv) (Monotonicity). If X1 ≤ X2 P-a.s., then E[X1|G] ≤ E[X2|G] P-a.s.

For more properties and their proofs, please see Sections 9.7 and 9.8 of [Wil91].
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B Minor mathematical theorems

The mathematical results given and proven in this section of the appendix are applied as necessary

steps in the proofs involved in Chapter 2 and Chapter 4. Although as a mere measure-theoretic

result, Lemma B.3 may be not as deep and important as the others, it is not that common in the

usual mathematical literature and thus, is also included here.

Lemma B.1 (Fekete). Let {an}n∈N be a sequence of real numbers satisfying subadditive property:

an+m ≤ an + am, ∀ n,m ∈ N.

Then the limit exists for an
n

as n → ∞ and we have

lim
n→∞

an
n

= inf
n∈N

an
n

∈ [−∞,∞).

Proof. Fix an arbitrary k ∈ N and consider any n ∈ N such that n ≥ m. Then there exist some

qn ∈ N (as quotient) and rn ∈ N0 := N ∪ {0} (as remainder), such that n = kqn + rn.

If for some n ∈ N, we have rn = 0, then n = kqn and by subadditivity (for qn times),

an
n

=
akqn
kqn

≤ qnak
kqn

=
ak
k
.

Then

lim sup
n→∞

an
n

≤ ak
k
.

Otherwise, if rn ̸= 0, then still, through subadditivity,

an
n

=
akqn+rn

kqn + rn
≤ akqn + arn

kqn + rn
=

akqn
kqn + rn

+
arn
n

≤ akqn
kqn

+
arn
n

≤ qnak
kqn

+
arn
n

. (b.1)

Since in this case, rn ∈ {1, 2, ..., k−1} as the remainder is always smaller than the divisor, then

we can bound arn by the maximum among a1, a2, ..., ak−1:

arn ≤ max{a1, a2, ..., ak−1} =: K.

As k is a fixed value, then so is the above maximum quantity, which we denote as K.
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Then (b.1) becomes

an
n

≤ ak
k

+
K

n
,

and by taking limit superior on both sides, we are getting

lim sup
n→∞

an
n

≤ ak
k

+ lim
n→∞

K

n
=

ak
k

+ 0 =
ak
k
.

Hence, we get

lim sup
n→∞

an
n

≤ ak
k

either way, and this holds for any k ∈ N. Then, by taking infimum over k ∈ N, we get

lim sup
n→∞

an
n

≤ inf
k∈N

ak
k
.

On the other hand, for every n ∈ N, we naturally have

inf
k∈N

ak
k

≤ an
n
,

so

inf
k∈N

ak
k

≤ lim inf
n→∞

an
n
.

Then due to the relation

lim sup
n→∞

an
n

≤ inf
k∈N

ak
k

≤ lim inf
n→∞

an
n
,

we have shown that the limit exists for an
n

and

lim
n→∞

an
n

= inf
n∈N

an
n
.

The fact that the limit equals the infimum of an
n

guarantees that the limit value cannot be positive

infinity.

Remark. It is possible that the limit of an
n

is −∞. One trivial example is an = −n2 for all n ∈ N.
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Clearly subadditivity holds:

an+m = −(n+m)2 = −n2 − 2nm−m2 ≤ −n2 −m2 = an + am,

and the limit for an
n

is trivially −∞.

Theorem B.2 (Poincaré). Let (Ω,F ,P) be a probability space and T be a measure-preserving

transformation on Ω. If E ∈ F and P(E) > 0, then for P-almost all x ∈ E, the sequence

{T n(x)}n∈N revisits E infinitely often.

Proof. Fix an arbitrary E ∈ F such that P(E) > 0. We may focus on the subset of E such that

the sequence {T n(x)}n∈N will never go back to E eventually always. We characterize this subset

as follows.

For every m ∈ N0, set

Fm :=
∞⋃

k=m

T−k(E).

We then immediately have E ⊆ F0, and we also have the nested relation Fj ⊆ Fi whenever

i ≤ j. Moreover, it is easy to check that for any i ≤ j, Fj = T i−j(Fi). Then by T -invariance of P,

we have P(Fj) = P(Fi) for all i, j ∈ N0.

Now for any x ∈ E such that {T n(x)}n∈N will eventually always be outside E, it means that

there exists some N ∈ N such that for all n ≥ N , T n(x) ̸∈ E, or equivalently x ̸∈ T−n(E). In

other words, for this specific x, we have

x ̸∈
∞⋃

n=N

T−n(E) = FN ,

which is equivalent to

x ∈ E\FN .

We would like to consider all possible such x’s. In other words, the threshold index N as ap-

peared above might be any natural number. Then the set

G :=
∞⋃

N=1

(E\FN) = E\

(
∞⋂

N=1

FN

)

characterizes all possible x ∈ E such that for some N ∈ N and for all n ≥ N , T k(x) ̸∈ E. We

shall now show that G is a P-null set.
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Since E ⊆ F0, then E\Fn ⊂ F0\Fn and by monotonicity of a probability measure,

P(E\Fn) ≤ P(F0\Fn).

Since for any n ∈ N, Fn ⊆ F0 and P(Fn) = P(F0), then

P(E\Fn) ≤ P(F0\Fn) = P(F0)− P(Fn) = 0.

This shows P(E\Fn) = 0 for all n ∈ N, and

P(G) = P

(
∞⋃

N=1

(E\FN)

)
≤

∞∑
N=1

P(E\FN) = 0.

Hence, P(G) = 0, meaning the subset of E such that {T n(x)}n∈N will eventually always be out-

side E has zero measure, so for P-almost all x ∈ E, the sequence {T n(x)}n∈N revisits E infinitely

often.

Lemma B.3 (Scheffé). Given a probability space (Ω,F ,P), suppose {Xn}n∈N is a sequence of L1

functions, X ∈ L1(Ω, dP), and Xn converges to X P-a.s. Then Xn converges to X in L1 if and

only if

lim
n→∞

∫
Ω

|Xn| dP =

∫
Ω

|X| dP.

Proof. We begin with the “only if” direction. Suppose Xn → X in L1. Then

lim
n→∞

∥Xn −X∥1 = 0.

On the other hand,

∥Xn −X∥1 =
∫
Ω

|Xn −X| dP ≥
∫
Ω

||Xn| − |X|| dP ≥
∣∣∣∣∫

Ω

|Xn| dP−
∫
Ω

|X| dP
∣∣∣∣ ≥ 0.

Hence,

lim
n→∞

∣∣∣∣∫
Ω

|Xn| dP−
∫
Ω

|X| dP
∣∣∣∣ = 0

and

lim
n→∞

∫
Ω

|Xn| dP =

∫
Ω

|X| dP.
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For the “if” direction, we set

Yn := |Xn|+ |X| − |Xn −X|

for every n ∈ N. It is easy to see that {Yn}n∈N is a sequence of non-negative L1 functions.

Then we apply Fatou’s lemma to {Yn}n∈N:∫
Ω

lim inf
n→∞

Yn dP ≤ lim inf
n→∞

∫
Ω

Yn dP. (b.2)

Plug in the expression of each Yn, we have

lim inf
n→∞

Yn = lim inf
n→∞

(|Xn|+ |X| − |Xn −X|)

= lim
n→∞

|Xn|+ |X|+ lim inf
n→∞

(−|Xn −X|)

= |X|+ |X| − lim sup
n→∞

|Xn −X|︸ ︷︷ ︸
=0

,

where we applied P-a.s. convergence of Xn to X twice. Thus,∫
Ω

lim inf
n→∞

Yn dP =

∫
Ω

2|X| dP.

On the other hand,

lim inf
n→∞

∫
Ω

Yn dP = lim inf
n→∞

∫
Ω

(|Xn|+ |X| − |Xn −X|) dP

= lim inf
n→∞

(∫
Ω

|Xn| dP+

∫
Ω

|X| dP−
∫
Ω

|Xn −X| dP
)

= lim
n→∞

∫
Ω

|Xn| dP+

∫
Ω

|X| dP+ lim inf
n→∞

(
−
∫
Ω

|Xn −X| dP
)

=

∫
Ω

|X| dP+

∫
Ω

|X| dP− lim sup
n→∞

∫
Ω

|Xn −X| dP

= 2

∫
Ω

|X| dP− lim sup
n→∞

∥Xn −X∥1 ,
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where we used the assumption that

lim
n→∞

∫
Ω

|Xn| dP =

∫
Ω

|X| dP.

Then (b.2) becomes

2

∫
Ω

|X| dP ≤ 2

∫
Ω

|X| dP− lim sup
n→∞

∥Xn −X∥1 ⇒ lim sup
n→∞

∥Xn −X∥1 ≤ 0.

Hence, we get

lim
n→∞

∥Xn −X∥1 = 0,

namely Xn converges to X in L1.

Theorem B.4 (The optional stopping theorem). Let (Ω,F , {Fn}n∈N0 ,P) be a filtered probability

space and let {Xn}n∈N0 be a supermartingale with respect to the filtration {Fn}n∈N. Then for any

bounded stopping times S and T with 0 ≤ S ≤ T P-a.s., we have E[XT ] ≤ E[XS].

Proof. Suppose we have two bounded stopping times S and T such that 0 ≤ S ≤ T for P-almost

all on x ∈ Ω. Then there exists some n ∈ N such that T (x) ≤ n for all x ∈ Ω, namely

P ({T ≤ n}) = 1,

and S ∧ T = min(S, T ) is also a stopping time.

For each x ∈ Ω, we have eitherS(x) ≥ T (x) orS(x) < T (x), and for the case thatS(x) < T (x),

we would have at least one integer k ∈ [0, n − 1] such that S(x) ≤ k < T (x). With this in mind,

we can then write the following:

XT = XS∧T +
n∑

k=0

(Xk+1 −Xk)1{S≤k<T}. (b.3)

Recall that for a stopping time R, we define

FR := {A ∈ F : A ∩ {R ≤ k} ∈ Fk, ∀ 0 ≤ k ≤ ∞}.

Then for any A ∈ FS and k ∈ N0, we have A∩{S ≤ k} ∈ Fk. Besides, {T > k} ∈ Fk for any
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k ∈ N0 as well. Hence,

(Xk+1 −Xk)1{S≤k<T}1A = (Xk+1 −Xk)1{T>k}1A∩{S≤k}

is Fk-measurable for any A ∈ FS and k ∈ N0.

Together with the properties of conditional expectation, as formulated in [AB19, Proposition

11.1]1, we have that for any A ∈ FS and k ∈ N0,

E
[
(Xk+1 −Xk)1{T>k}1A∩{S≤k}

]
= E

[
E
[
(Xk+1 −Xk)1{T>k}1A∩{S≤k}|Fk

]]
= E

[
E [(Xk+1 −Xk) |Fk]1{T>k}1A∩{S≤k}

]
,

and by the fact that {Xn}n∈N0 is a supermartingale,

E[Xk+1|Fk] ≤ Xk = E[Xk|Fk] ⇒ E [(Xk+1 −Xk) |Fk] ≤ 0,

so

E
[
(Xk+1 −Xk)1{S≤k<T}1A

]
= E

[
E [(Xk+1 −Xk) |Fk]1{T>k}1A∩{S≤k}

]
≤ E

[
0 · 1{T>k}1A∩{S≤k}

]
= 0.

Combine this with (b.3), where we multiply 1A for arbitrary A ∈ FS and integrate both sides,

we get

E[XT · 1A] = E[XS∧T · 1A] +
n∑

k=0

E
[
(Xk+1 −Xk)1{S≤k<T}1A

]
≤ E[XS∧T · 1A].

Then again by the properties of conditional expectation, we can write

E [E[XT |FS] · 1A] = E [E[XT · 1A|FS]] = E[XT · 1A] ≤ E[XS∧T · 1A].

Now that both E[XT |FS] and XS∧T are FS-measurable, it follows that E[XT |FS] ≤ XS∧T P-a.s.
1More specifically, see Properties (i) and (xii) in [AB19, Proposition 11.1].
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and

E[XT ] = E [E[XT |FS]] ≤ E[XS∧T ].

In addition, since S ≤ T P-a.s., then XS∧T = XS P-a.s. and

E[XS∧T ] = E[XS].

Therefore, we have obtained E[XT ] ≤ E[XS].

Remark. The proof of Theorem B.4 given above follows closely to the proofs of different directions

of implication involved in [AB19, Theorem 12.4].
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C Shift-invariant measures on one-sided shift spaces

Given any probability measure P defined on Ω = AN, we can associate it with a sequence of

functions {Pn}n∈N, with each Pn defined on An in the following way:

Pn(x1, ..., xn) := P([xn
1 ]).

One can see that each Pn essentially defines a probability measure on An, with the σ-algebra

being the power set of An. For simplicity, we shall use the same notation Pn for this probability

measure, and we refer Pn’s as the marginals of the probability measure P.

A nice thing about the marginals of a probability measure P is that they possess a good compat-

ible property. Observe that ⊔
xn+1∈A

[xn+1
1 ] = [xn

1 ],

and we apply P on both sides:

P

 ⊔
xn+1∈A

[xn+1
1 ]

 =
∑

xn+1∈A

P
(
[xn+1

1 ]
)
= P ([xn

1 ])

⇒
∑

xn+1∈A

Pn+1(x1, x2, ..., xn, xn+1) = Pn(x1, x2, ..., xn). (c.1)

This holds true for all (x1, x2, ..., xn) ∈ An and for all n ∈ N. We refer (c.1) as “compatibility

with marginals”.

On the other hand, if we further assume P is shift-invariant, another compatibility condition will

be satisfied. Suppose P ∈ Pinv(Ω). Observe that for our one-sided shift map T ,

T−1([xn
1 ]) =

⊔
a∈A

[(a, x1, x2, ..., xn)].

Apply P on both sides and by its shift-invariance,

P
(
T−1([xn

1 ])
)
= P([xn

1 ]) =
∑
a∈A

P([(a, x1, x2, ..., xn]) = P

(⊔
a∈A

[(a, x1, x2, ..., xn)]

)
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⇒ Pn(x1, x2, ..., xn) =
∑
a∈A

Pn+1(a, x1, x2, ..., xn),

which can be rewritten as

Pn(x2, x3, ..., xn+1) =
∑
x1∈A

Pn+1(x1, x2, ..., xn+1). (c.2)

This also holds true for all (x2, x3, ..., xn+1) ∈ An and for all n ∈ N, and we call the condition

as shown in (c.2) “compatibility implied by shift-invariance”.

In contrast, for a sequence of probability measures {Pn}n∈N with Pn defined on An for each

n ∈ N, if they fulfill the first compatibility (c.1), a unique probability measure P on Ω can be

constructed from them, with each Pn acting as a marginal of P. In addition, if {Pn}n∈N satisfies the

second compatibility (c.2), then P is also shift-invariant.

This inverse direction of implication is a fundamental consequence of Kolmogorov’s consistency

theorem (also known as Kolmogorov’s extension theorem or Kolmogorov’s existence theorem),

which is a very important theorem in probability theory for constructing probability measures on

infinite product spaces. Let us formulate it in this very specific context of one-sided shift:

Theorem C.1 (Kolmogorov). Let {(An,Pn)}n∈N be a sequence of probability spaces such that for

all n ∈ N and for all xn
1 ∈ An, if the compatibility condition (c.1) is satisfied, then there exists a

unique probability measure P on Ω such that for all n ∈ N and for all xn
1 ∈ An, P([xn

1 ]) = Pn(x
n
1 ).

If in addition, the compatibility condition (c.2) is also met by {Pn}n∈N, then P is shift-invariant.

In the two-sided shift setting, as discussed in Subsection 3.2.1, for any P̂ ∈ P(Ω̂), its marginals

also satisfy a consistency condition, which is trivial to check: If four integers satisfy n′ ≤ n ≤
m ≤ m′, then

P̂m
n (xn, ..., xm) =

∑
xn′ ,...,xn−1,xm+1,...,xm′∈A

P̂m′

n′ (xn′ , ..., xn−1, xn, ..., xm, xm+1, ..., xm′). (c.3)

There is also a version of Kolmogorov’s consistency theorem for two-sided shift:

Theorem C.2. Let {Am−n+1, P̂m
n }n≤m be a family of probability spaces such that the probability

measures P̂m
n satisfy the consistency condition (c.3). Then there exists a unique Borel probability

measure P̂ ∈ P(Ω̂) such that for all integers n ≤ m, P̂m
n (x

m
n ) = P̂([xm

n ]).

For the proof of general Kolmogorov’s consistency theorem, we refer to [Bill95, Section 36].
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D Entropy

This section of the appendix is dedicated to review basic aspects of entropy and give coherent

notations as used in the main body of the thesis. For comprehensive preliminaries and materials on

entropy with full details, one can consult [Jak19].

We introduce the notions of entropy progressively in the following order:
• Entropy of probability distribution on a finite set;
• Entropy of random variables taking values in finite sets;
• Entropy of shift-invariant measures on the shift space Ω = AN.

Entropy of probability distribution on a finite set

Let A be a finite set with |A| = ℓ. Denote P(A) to be the collection of all probability measures on

A. In other words, P(A) is the collection of all maps P : A −→ [0,∞) with
∑

a∈A P(a) = 1.

We have P(A) is a convex set with an obvious notion of convergence: For a sequence of prob-

ability measures {Pn}n∈N on A, Pn converges to P if

∀ a ∈ A : lim
n→∞

Pn(a) = P(a).

An element P ∈ P(A) is called pure if P(a) = 1 for some a ∈ A, and is called uniform if

P(a) = 1
ℓ

for all a ∈ A.

The entropy of a probability measure P ∈ P(A) is defined to be

S(P) = −
∑
a∈A

P(a) logP(a).

Remark. We take the base for the logarithm in the definition of entropy to be e in our context.

In many other contexts of information theory, however, it could be more often to use base 2 for

the logarithm. Moreover, based on different contexts, the entropy S(P) is defined up to a positive

multiplicative constant, which amounts to specify units.

From this given definition, one can think about entropy as the measure of the randomness of a

probability distribution. The more random the probability distribution is, the larger its entropy is.

Note that we adapt the convention that “0 · log 0 = 0 · ∞ = 0” for the case that P(a) = 0 for some

a ∈ A. Here are some basic properties of entropy:
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Proposition D.1. Let P ∈ P(A) for some finite set A with |A| = ℓ.

(1). S(P) ≥ 0, and S(P) = 0 if and only if P is pure;

(2). S(P) ≤ log ℓ, and S(P) = log ℓ if and only if P is uniform;

(3). The map P(A) ∋ P 7→ S(P) (known as entropy map) is continuous and concave2.

(4). The concavity property as shown in (3) has the following “almost convexity” counter-part:

S

(
ℓ∑

k=1

pkPk

)
≤

ℓ∑
k=1

pkS(Pk) + S(p1, ..., pℓ) (d.1)

with equality if and only if the supports3 of pairwise probability distributions have empty intersec-

tion:

suppPi ∩ suppPj = ∅, ∀ i ̸= j. (d.2)

Remark. Property (3) is called stability property of entropy. This concavity follows from the con-

cavity of logarithm. The term S(p1, ..., pℓ) as in (d.1) means that we set a new probability distribu-

tion by assigning the probability values to be p1, ..., pℓ and then take its entropy. For the equality

case of Property (4), namely when (d.2) holds, it is called split-additivity property of entropy.

For the proof of Proposition D.1, we refer to [Jak19, Proposition 3.1].

Now we consider the case of product spaces. Let A1 and A2 be two finite sets and set A =

A1 ×A2. Given P ∈ P(A), denote P1 and P2 to be its marginals. We have

P1(a) =
∑
a′∈A2

P(a, a′), ∀ a ∈ A1, and P2(a
′) =

∑
a∈A1

P(a, a′), ∀ a′ ∈ A2.

For a ∈ suppP1, we define the conditional probability measure on A2 conditioning on a by

setting

Pa
2|1(a

′) =
P(a, a′)
P1(a)

.

An identity then follows from this definition:

∑
a∈suppP1

P1(a)Pa
2|1(a

′) =
∑

a∈suppP1

P(a, a′) =
∑
a∈A1

P(a, a′) = P2(a
′),

2That is, for ℓ scalars p1, ..., pℓ such that pk > 0 for all k ∈ {1, ..., ℓ} and
∑ℓ

k=1 pk = 1 and P1, ...,Pℓ ∈ P(A), we have∑ℓ
k=1 pkS(Pk) ≤ S

(∑ℓ
k=1 pkPk

)
with equality if and only if P1 = · · · = Pℓ.

3The support of a probability measure P ∈ P(A) is defined to be: suppP = {a ∈ A : P(a) > 0}.
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which holds for any a′ ∈ A2.

Proposition D.2. With the same setting as above, we have

(1).

S(P) = S(P1) +
∑

a∈suppP1

P1(a)S
(
Pa
2|1
)
;

(2). Strict subadditivity of entropy:

S(P) ≤ S(P1 × P2) = S(P1) + S(P2), (d.3)

with equality holds if and only if P = P1 × P2.

Remark. An intuitive view of (d.3) is that when taking the product between the marginals P1 and

P2, the correlation between the two subsystems is completely erased, resulting in greater random-

ness.

Both split-additivity (d.2) and strict subadditivity (d.3) extend and define properties of S(P)
naturally, and it goes to the subject of axiomatization of entropy. An elegant discussion on the

axiomatic characterizations of entropy is given in [Jak19, Section 3.4].

We refer Proposition D.2 together with its proof to [Jak19, Proposition 3.2].

Entropy of random variables taking values in finite sets

We adapt finite set A with |A| = ℓ. The notion of entropy related to a random variable X defined

on A is defined via its probability distribution, denoted as PX .

Given an underlying probability space (Ω̃, P̃) and a random variable X : Ω̃ −→ A with its

probability distribution

PX(a) = P̃
(
{x ∈ Ω̃ : X(x) = a}

)
,

the entropy of X is defined as

H(X) = S(PX) = −
∑
a∈A

PX(a) logPX(a).

The basic properties ofH(X) are then the same as those of S(PX)with change of terminologies.

The properties presented in Proposition D.1 and Proposition D.2 would trivially be translated to the

setting of random variables.
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Full discussions on entropy of random variables, including the one involved when conditioning

one random variable on another, can be found in [Sh96, Section I.6.a].

Entropy of shift-invariant measures on the shift space

Now we extend the setting to the shift space Ω = AN and discuss the entropy of shift-invariant

measures, which we have introduced in Appendix C.

For any P ∈ Pinv(Ω), its n-th marginal Pn is a probability measure on An, which is a finite set.

Hence, the entropy of Pn for each n ∈ N is

S(Pn) = −
∑

xn
1∈An

Pn(x
n
1 ) logPn(x

n
1 ).

Let n,m ∈ N and write An+m = An ×Am. Let µ1 and µ2 be the marginals of Pn+m on An+m

with respect to this decomposition. We show that µ1 = Pn and µ2 = Pm.

For any xn
1 ∈ An, we have, by the definition of a marginal,

µ1(x1, ..., xn) =
∑

xn+1,...,xn+m∈A

Pn+m(x1, ..., xn, xn+1, ..., xn+m)

(By (c.1)) = Pn(x1, ..., xn),

so µ1 and Pn agree on An and µ1 = Pn.

For any xm
1 ∈ Am, since P ∈ Pinv(Ω), then by shift-invariance,

µ2(x1, ..., xm) =
∑

y1,...,yn∈A

Pn+m(y1, ..., yn, x1, ..., xm)

(By (c.2)) = Pm(x1, ..., xm),

so µ2 and Pm agree on Am and µ2 = Pm.

Together with the subadditivity of entropy (d.3), we obtain that

S(Pn+m) ≤ S(µ1) + S(µ2) = S(Pn) + S(Pm).

Hence, the non-negative real sequence {S(Pn)}n∈N is subadditive and by Lemma B.1, it has a
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limit

S(P) := lim
n→∞

S(Pn)

n
= inf

n≥1

S(Pn)

n
.

The quantity S(P) is then called the entropy of P ∈ Pinv(Ω). Sometimes it is also called the

specific entropy of P. In more sophisticated literature, it is the special one-sided shift case of the

more general notion of the Kolmogorov–Sinai entropy.

It then follows trivially from (1) and (2) of Proposition D.1 and the fact that S(Pn)
n

converges to

S(P) as n → ∞, that 0 ≤ S(P) ≤ log ℓ.
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[Der83] Yves Derriennic, Un théorème ergodique presque sous-additif, Ann. Probab. 11 (1983),

no. 3, pp. 669–677. issn: 0091-1798. MR704553.

[Doob] Joseph L. Doob, Stochastic Processes, John Wiley & Sons, New York, 1953, pp. 292–

390. MR26286.

[Fo99] Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications (2nd ed.),

John Wiley & Sons, New York, 1999. isbn: 0-471-31716-0. MR1681462.

94

https://personal.science.psu.edu/jzd5895/docs/kingbirk.pdf
https://problab.ca/louigi/courses/2020/math589/probnotes.pdf
https://problab.ca/louigi/courses/2020/math589/probnotes.pdf
 https://doi.org/10.1214/aop/1176992813
http://www.jstor.org/stable/86016
 https://doi.org/10.1214/aoms/1177706899
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