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Abstract 

 

The brain can be characterized as a set of large-scale functional networks which interact on 

multiple spatial and temporal scales to give rise to perception, cognition, and behaviour. Among 

the most studied of the large-scale networks is the so-called ‘default network’. This distributed 

network, initially borne out of the observation of reduced activation during cognitive tasks and 

later characterized using resting-state functional connectivity (RSFC) methods, spans the frontal, 

parietal, and temporal lobes and is implicated in a variety of complex cognitive functions. Despite 

nearly two decades of research on the DN, however, there is still debate on (1) its precise 

organization, particularly as relates to its relationship to the putative ‘limbic network’, (2) the 

nature of its subsystem organization and subsystem-specific contributions to behaviour and 

cognition, and (3) the stability of the DN’s functional organization and whole-brain RSFC in 

response to pharmacological manipulations. The present thesis is comprised by three studies, each 

of which tackles one of these outstanding questions.  

 

Study 1 leveraged the superior temporal signal-to-noise ratio of multi-echo resting-state functional 

magnetic resonance imaging to evaluate the rightful inclusion of regions comprising the limbic 

network within the default network. Consistent with our hypotheses, data-driven modularity 

analyses indicated that a large proportion of regions within the limbic network may indeed be 

extensions of the DN. RSFC mapping and clustering analyses further revealed significant 

heterogeneity within the limbic network, with distinct clusters exhibiting distinct patterns of large-

scale (sub)network connectivity. 

 

Study 2 applied multivariate analyses to a resting-state multi-echo fMRI dataset with rich 

behavioural phenotyping in order to assess how DN subsystems – alongside limbic and 

temporoparietal networks, as motivated by the results of Study 1 – uniquely and differentially 

contribute to individual differences in a broad constellation of traits, behaviours, and cognitive 

processes. Multivariate analyses revealed complex associations between measures of DN 

subsystem, limbic, and temporoparietal structure and function, and behaviour. Consistent with our 

hypotheses, each axis of brain-behaviour covariance featured differential contributions from the 
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examined (sub)networks, with evidence for functional selectivity that converges with and goes 

beyond past task-based fMRI research.  

 

Study 3 evaluated whether DN functional organization and relationship to other large-scale 

networks was significantly altered by psychedelic drug administration. This study leveraged two 

previously published pharmaco-fMRI datasets collected with serotonergic psychedelic drugs. A 

combination of novel gradient- and RSFC- mapping analyses were applied to assess changes in 

DN and macroscale cortical organization in the psychedelic state. Consistent with our hypotheses, 

results revealed that the principal axis of macroscale cortical organization – delineating a gradient 

from unimodal cortex (anchored in sensorimotor networks) to transmodal cortex (anchored within 

the DN) – was significantly attenuated in the psychedelic state. Analyses further indicated that this 

was underpinned by a break-down of intra-network RSFC in sensorimotor networks and increased 

RSFC between the DN and sensorimotor networks.  

 

The studies of this thesis offer novel findings on multiple core aspects of the DN: its functional 

organization, relationship to individual differences in cognition and behaviour, and its 

pharmacological sensitivity. Collectively, the results provide a significant contribution towards the 

advancement of theoretical perspectives and empirical approaches on the DN and large-scale brain 

function more generally.  
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Résumé  

Le cerveau peut être caractérisé comme un ensemble de réseaux fonctionnels à grande échelle 

qui interagissent à de multiples échelles spatiales et temporelles pour donner naissance à la 

perception, à la cognition et au comportement. Parmi les réseaux à grande échelle les plus 

étudiés, on trouve le "réseau par défaut". Ce réseau distribué, né initialement de l'observation 

d'une activation réduite lors de tâches cognitives et caractérisé par la suite à l'aide de méthodes 

de connectivité fonctionnelle à l'état de repos (RSFC), s'étend sur les lobes frontaux, pariétaux et 

temporaux et est impliqué dans une variété de fonctions cognitives complexes. Cependant, 

malgré près de deux décennies de recherche sur le DN, des débats subsistent sur (1) son 

organisation précise, en particulier en ce qui concerne sa relation avec le supposé "réseau 

limbique", (2) la nature de l'organisation de ses sous-systèmes et les contributions spécifiques de 

ces sous-systèmes au comportement et à la cognition, et (3) la stabilité de l'organisation 

fonctionnelle du DN et de la RSFC du cerveau entier en réponse à des manipulations 

pharmacologiques. La présente thèse comprend trois études, chacune abordant l'une de ces 

questions en suspens.  

 

L'étude 1 s'est appuyée sur le rapport signal-bruit temporel supérieur de l'imagerie par résonance 

magnétique fonctionnelle multiéchogène à l'état de repos pour évaluer l'inclusion légitime des 

régions du réseau limbique dans le réseau par défaut. Conformément à nos hypothèses, les 

analyses de modularité basées sur les données ont indiqué qu'une grande partie des régions du 

réseau limbique peuvent en effet être des extensions du réseau par défaut. Les analyses de 

cartographie et de regroupement du RSFC ont en outre révélé une hétérogénéité significative au 

sein du réseau limbique, avec des regroupements distincts présentant des schémas distincts de 

connectivité (sous-)réseau à grande échelle. 

 

L'étude 2 a appliqué des analyses multivariées à un ensemble de données d'IRMf multiéchogène 

à l'état de repos avec un phénotypage comportemental riche afin d'évaluer comment les sous-

systèmes du DN - parallèlement aux réseaux limbiques et temporo-pariétaux, comme motivé par 

les résultats de l'étude 1 - contribuent de manière unique et différenciée aux différences 

individuelles dans une vaste constellation de traits, de comportements et de processus cognitifs. 

Les analyses multivariées ont révélé des associations complexes entre les mesures du sous-
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système DN, la structure et la fonction limbique et temporo-pariétale, et le comportement. 

Conformément à nos hypothèses, chaque axe de covariance cerveau-comportement présentait 

des contributions différentielles des (sous-)réseaux examinés, avec des preuves de sélectivité 

fonctionnelle qui convergent avec les recherches antérieures sur l'IRMf basées sur les tâches et 

vont au-delà.  

 

L'étude 3 a évalué si l'organisation fonctionnelle du DN et sa relation avec d'autres réseaux à 

grande échelle étaient significativement modifiées par l'administration de drogues 

psychédéliques. Cette étude s'est appuyée sur deux ensembles de données d'IRM-pharmacologie 

publiés antérieurement et recueillis avec des drogues psychédéliques sérotoninergiques. Une 

combinaison de nouvelles analyses de cartographie de gradient et de RSFC a été appliquée pour 

évaluer les changements dans le DN et l'organisation corticale à grande échelle dans l'état 

psychédélique. Conformément à nos hypothèses, les résultats ont révélé que l'axe principal de 

l'organisation corticale à grande échelle - délimitant un gradient du cortex unimodal (ancré dans 

les réseaux sensorimoteurs) au cortex transmodal (ancré dans le DN) - était significativement 

atténué dans l'état psychédélique. Les analyses ont en outre indiqué que ce phénomène était étayé 

par une rupture du RSFC intra-réseau dans les réseaux sensorimoteurs et une augmentation du 

RSFC entre le DN et les réseaux sensorimoteurs.  

 

Les études menées dans le cadre de cette thèse offrent de nouvelles découvertes sur de multiples 

aspects fondamentaux du DN : son organisation fonctionnelle, sa relation avec les différences 

individuelles en matière de cognition et de comportement, et sa sensibilité pharmacologique. 

Collectivement, les résultats apportent une contribution significative à l'avancement des 

perspectives théoriques et des approches empiriques sur le DN et les fonctions cérébrales à 

grande échelle de manière plus générale. 
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Contribution to Original Knowledge 

 
Contemporary functional neuroimaging views the brain as a set of functionally specialized 

networks of regions that interact to mediate behaviour and cognition. Among the most studied of 

these is the so-called ‘default network’ (DN). This network exhibits a variety of unique functional 

and structural characteristics, is the most expanded in humans relative to other primates, and is 

thought to be the seat of complex behaviour and cognition. It has been implicated in a broad variety 

of complex cognitive processes, as well as neurological and neuropsychiatric conditions. The 

studies contained within this thesis apply cutting-edge neuroimaging approaches to investigate the 

DN from three interrelated angles: its functional organization and regional composition, its 

complex associations with a broad variety of traits and behaviours, and its sensitivity to a potent 

acute pharmacological manipulation.  

 

Study 1 evaluated whether regions comprising the so-called ‘limbic network’ are more accurately 

construed as members of the DN. Importantly, this investigation was facilitated by an in-house 

dataset that features strong signal quality in limbic regions that exhibit signal drop-out in standard 

functional magnetic resonance imaging (fMRI) acquisitions. Data-driven modularity analyses 

indicated that a large proportion of regions within the limbic network may indeed be extensions of 

the DN. Resting-state functional connectivity mapping and clustering analyses further revealed 

significant heterogeneity within the limbic network, with distinct clusters exhibiting distinct 

patterns of large-scale (sub)network connectivity. Findings from Study 1 suggest that past work 

has neglected limbic membership in the DN as a result of poor signal quality, and that future 

conceptions and investigations of the DN may profit from greater acknowledgement of limbic 

regions and their associated functions. 

 

Study 2 evaluated how DN subsystems uniquely and differentially contribute to individual 

differences in a broad constellation of traits, behaviours, and cognitive processes. Given the results 

of Study 1, we also included the limbic and temporoparietal networks in this study. Partial least 

squares multivariate analyses revealed complex associations between measures of DN subsystem, 

limbic, and temporoparietal structure and function, and behaviour. Results indicated several 

distinct axes of brain-behaviour covariance, each of which featured differential contributions from 
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the examined (sub)networks. Functional selectivity was present between particular networks and 

particular behaviours, broadly consistent with past task-based fMRI research. However, results 

also indicated significant shared variance across networks – particularly between the limbic 

network and DN, consistent with the results of Study 1. These findings offer novel evidence in 

support of functional heterogeneity within the DN, the DN’s close association with the functionally 

related limbic and temporoparietal networks, and, more generally, the multifaceted and complex 

nature of brain-behaviour relationships involving the DN. 

 

Study 3 evaluated whether DN functional organization and relationship to other large-scale 

networks was significantly altered by psychedelic drug administration. This study leveraged two 

previously published pharmaco-fMRI datasets collected with serotonergic psychedelic drugs. A 

combination of novel gradient- and RSFC- mapping analyses were applied to assess changes in 

DN and macroscale cortical organization in the psychedelic state. Results revealed that the 

principal axis of macroscale cortical organization – delineating a gradient from unimodal cortex 

(anchored in sensorimotor networks) to transmodal cortex (anchored within the DN) – was 

significantly attenuated in the psychedelic state. Analyses further indicated that this was 

underpinned by a break-down of intra-network RSFC in sensorimotor networks and increases in 

RSFC between the DN and sensorimotor networks. These findings provided novel evidence that a 

fundamental organizational property of macroscale organization can be significantly disrupted by 

an acute serotonergic manipulation and, moreover, that this is specifically due to a breakdown in 

the functional segregation between the DN and lower-order sensorimotor networks. This 

underscores the role of DN in global brain organization and the utility of psychedelics as scientific 

tools that uniquely enable a potent transient perturbation of this network. 

 

Results across Study 1 and Study 2 collectively highlight that the DN is a complex and 

functionally heterogenous network with distinct subregions/subnetworks – including regions 

within limbic and temporoparietal networks – that jointly and differentially contribute to a 

variety of traits and behaviours. Study 3 adds to these findings by revealing that the fundamental 

organization of the DN within the context of macroscale cortical organization is sensitive to an 

acute serotonergic manipulation that has potent subjective effects. Study 3 further underscores 

the role of the DN and its functional segregation from other networks in ongoing conscious 
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experience. The studies of this thesis offer significant advances on our current understanding of 

the DN and pave the way forward for future theoretical perspectives and empirical approaches 

with respect to the DN and complex brain function more generally. 
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Chapter 1: General Introduction  

Literature Review 

 
Contemporary functional neuroimaging views the brain as a set of functionally specialized 

networks of regions that interact to mediate behaviour and cognition. Among the most studied of 

these is the so-called ‘default network’. Originally discovered as a set of regions that consistently 

deactivate in response to most cognitive paradigms, the default network has now been implicated 

in a variety of complex cognitive processes, as well as neurological and neuropsychiatric 

conditions. Considered as the apex of the macroscale cortical processing hierarchy, regions 

comprising this network are considered to be critical for global brain function. The present thesis 

contributes to our growing understanding of this pivotal network by investigating the inclusion of 

additional regions within its functional organization, the role of its distinct subsystems in a broad 

constellation of traits and behaviours, and its sensitivity to a potent acute pharmacological 

manipulation. The following literature review is written to complement the reviews provided in 

the introduction of each manuscript. 

 
Historical Overview 
 

Functional neuroimaging has exploded as a discipline over the past three decades, spearheaded by 

a variety of technological, methodological, and analytical developments (Raichle, 2009). The 

initial kindling of this area can be attributed to the highly fruitful marrying of functional magnetic 

resonance imaging (fMRI) with the frameworks and paradigms of cognitive psychology (Posner 

& DiGirolamo, 2000; Raichle, 2009). This research – described under the heading of ‘cognitive 

neuroscience’ – has afforded an unprecedented window into the relations between brain function 

and cognition. Early research in cognitive neuroscience focused on contrast-based analyses of task-

evoked activity (Friston et al., 1994). In such research, participants’ brain activity while engaging 

in a cognitive task of interest is contrasted with their activity during a task or context that serves 

as a neutral baseline or active comparator. This serves to isolate task-evoked activity of interest, 

which is then interpreted as comprising the neural correlates of that given cognitive process. An 

interesting finding from this research was that although the activation maps widely varied based 

on the task paradigm in question, there appeared to be strong consistency in the set of regions 
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exhibiting task-induced deactivation (Shulman et al., 1997). Subsequent targeted analyses based 

on baseline oxygen consumption indicated that these regions comprised an organized baseline 

‘default mode’ of brain function that is sustained while subjects are at rest, and which is 

temporarily suspended during goal-directed cognitive tasks (Raichle et al., 2001). This discovery 

helped stimulate interest in the ‘intrinsic’ activity of the awake resting brain and dovetailed with 

the then recent finding that low-frequency fluctuations of activity in the sensorimotor cortices were 

significantly correlated at rest (Biswal et al., 1995; Gusnard & Raichle, 2001). Soon thereafter, it 

was discovered that the regions comprising this default mode of brain function were also highly 

correlated at rest (Greicius et al., 2003). 

 

Fast-forward two decades and this approach of characterizing correlations between regional 

timeseries – now referred to as ‘resting-state functional connectivity (RSFC) – has transformed 

functional neuroimaging, shedding significant light on the intrinsic functional organization of the 

brain and opening the door to a wide variety of novel analytical techniques and associated findings 

(Bassett & Sporns, 2017; Buckner et al., 2013). Most notably, RSFC investigations have revealed 

that, within the structure of correlations between the low-frequency activity of distributed neural 

regions at rest, there exist functionally-dissociable large-scale networks that interact to mediate 

perception, cognition, and behaviour (Bassett & Sporns, 2017; Bressler & Menon, 2010; Uddin et 

al., 2019). These networks are reliable and consistent across time and context (Cole et al., 2014; 

Damoiseaux et al., 2006), exhibit strong correspondence to task-evoked activation patterns 

revealed by fMRI contrast-based approaches (Smith et al., 2009), and are thought to reflect 

underlying polysynaptic neuroanatomy (Fox & Raichle, 2007; Van Dijk et al., 2010). Of these 

large scale networks, the network initially found to comprise the ‘default mode’ of brain function 

– now referred to as the ‘default network’ (DN) – has been the focus of considerable research 

(Buckner & DiNicola, 2019; Smallwood, Bernhardt, et al., 2021).  

 

The functional organization of the default network 

 

RSFC studies have characterized the DN as a set of cortical regions spanning the frontal, temporal, 

and parietal lobes (Buckner et al., 2008; Buckner & DiNicola, 2019; Greicius et al., 2003; 

Smallwood, Bernhardt, et al., 2021; Yeo et al., 2011). These studies specifically describe it as 
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consisting of dorsal, anterior, and ventral medial prefrontal cortex, posterior cingulate/retrosplenial 

cortex, the inferior parietal lobule, lateral temporal cortex, as well as the parahippocampus and 

hippocampus. In earlier studies, this organization was revealed by placing a seed region within a 

putative core region of the DN (posterior cingulate) and examining its correlation with every other 

voxel of the brain (Buckner et al., 2008; Greicius et al., 2003). Subsequently, additional methods 

for characterizing the DN and the large-scale network organization of the brain were introduced, 

including clustering algorithms (Yeo et al., 2011), modularity algorithms derived from graph 

theory (Meunier et al., 2010; Sporns & Betzel, 2016), and dimensionality reduction techniques 

such as independent component analysis (Doucet et al., 2011).  

 

The network parcellation scheme that has arguably been the most influential was proposed by Yeo 

and colleagues (2011). This investigation applied data-driven clustering analysis to resting-state 

fMRI data from two large (n=500) subsamples collected as part of the Human Connectome Project, 

and proposed that the brain can be reliably parcellated into 7 or 17 networks, depending on the 

spatial resolution desired (Yeo et al., 2011). Two important characteristics of this parcellation bear 

emphasis: (i) this was a cortex-only parcellation and did not examine the large-scale network 

memberships of subcortical regions, and (ii) the employed dataset featured poor signal quality in 

the regions described as comprising the ‘limbic network’, spanning the temporal poles (TPs), 

ventral anterior temporal lobes (vATL), and orbitofrontal cortex (OFC), rendering its designation 

as a distinct network suspect.  

 

The former is pertinent as a variety of studies have highlighted the potential inclusion of 

subcortical regions within the DN, as well as the significant role of subcortical regions in 

modulating DN function (Alves et al., 2019; Buckner et al., 2011; Bzdok et al., 2013; Choi et al., 

2012; Cunningham et al., 2017; Harrison et al., 2022). In particular, the basal forebrain and 

mediodorsal nucleus of the thalamus have been highlighted as critical drivers of the DN – wherein 

the former may play a role in the engagement of internally-directed cognitive processes, and the 

latter may be a driver of task-induced deactivation (Alves et al., 2019; Harrison et al., 2022). Strong 

evidence also exists for the inclusion of the amygdala within the DN (Alves et al., 2019; Bzdok et 

al., 2013), as well as the involvement of regions within the striatum (Alves et al., 2019; Choi et 

al., 2012; Li et al., 2021).  
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With regard to the so-called limbic network, multi-modal and multi-species evidence suggests a 

strong relationship between the regions comprising this network and the DN. Tract-tracing studies 

in non-human primates have found evidence for significant anatomical connections between the 

TPs, vATL, and OFC with DN regions (Barbas et al., 1999; Carmichael & Price, 1995, 1996; 

Kondo et al., 2003; Moran et al., 1987; Saleem et al., 2008). Consistent with this, RSFC 

investigations with modest but reliable signal quality in these regions has also found evidence for 

strong RSFC between them and the DN (Pascual et al., 2015) (Andrews-Hanna et al., 2010; 

Jackson et al., 2016; Simmons et al., 2010) (Jackson et al., 2018; Jackson et al., 2016; Simmons et 

al., 2010) (Du et al., 2020). (Andrews-Hanna et al., 2010; Vincent et al., 2006). Further support 

for the close relationship between the DN and LIM comes from task-based fMRI studies which 

have consistently found the co-recruitment of regions form these networks across a variety of 

semantic, social, and emotional tasks (Andrews-Hanna et al., 2014; Dixon et al., 2017; Kieran C.R. 

Fox et al., 2018; Frith & Frith, 2007; Spreng et al., 2009) (Chase et al., 2020; Zald et al., 2012) 

(Andrews-Hanna et al., 2014; Frith & Frith, 2007; Simmons et al., 2010; Spreng et al., 2009). 

Collectively, these findings – as well as the findings of subcortical involvement discussed above 

– suggest the possibility that the DN is an extended cortical-limbic-subcortical network, but this 

had yet to be studied in a targeted investigation. Study 1 of the present thesis seeks to resolve this 

gap. 

 

The role of default network subsystems in cognition 

 

Since its first characterization by RSFC studies, it was evident that correlations between DN 

regions are not uniform: certain subsets of regions have stronger correlations with each other 

relative to others (Buckner et al., 2008). Concordantly, research has provided evidence for a 

fractionation of the DN into distinct subsystems (Andrews-Hanna et al., 2010; Braga & Buckner, 

2017; Buckner & DiNicola, 2019; DiNicola et al., 2020; Yeo et al., 2011). An influential 

fractionation of the DN into subsystems based on RSFC and meta-analytic task-based fMRI studies 

separates it into three networks: (i) the DNA, which includes the anteromedial prefrontal cortex 

and dorsal posterior cingulate cortex, (ii) the DNB, which includes the dorsomedial prefrontal 

cortex, anterior inferior parietal lobule/temporoparietal junction, and lateral temporal cortex, and 
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(iii) the DNC, which includes ventromedial prefrontal cortex, posterior inferior parietal lobule, 

parahippocampus, and hippocampus (Andrews-Hanna et al., 2010; Yeo et al., 2011). Each of these 

networks have been linked to distinct, but partially overlapping, cognitive functions (Andrews-

Hanna et al., 2014). DNA has been most implicated in self-related processing and meaning creation, 

and is viewed as an integrative hub that interlinks the DNB and DNC – often acting in concert with 

each of them towards their associated cognitive functions (Andrews-Hanna et al., 2014; Qin & 

Northoff, 2011; Stawarczyk et al., 2019). DNB has been linked predominantly to social cognitive 

processes and is also often recruited alongside the semantic system during linguistic-semantic 

tasks (Andrews-Hanna et al., 2014; Binder et al., 2009; Ralph et al., 2017; Spreng & Andrews-

Hanna, 2015). Finally, DNC is strongly implicated in episodic memory recollection and projection 

(Andrews-Hanna et al., 2014; Schacter et al., 2012). 

 

An alternative fractionation proposes that the DN is comprised of two distinct networks: (i) 

DefaultA, which includes the ventromedial prefrontal cortex, retrosplenial cortex/ventral posterior 

cingulate, posterior inferior parietal lobule, and parahippocampal cortex, and (ii) DefaultB, which 

includes the anterior and dorsal ventromedial prefrontal cortex, dorsal posterior cingulate, anterior 

inferior parietal lobule/temporoparietal junction, and the temporal poles. This view argues that the 

DNA’s putative role as a hub that integrates the two other subsystems into a unified DN is a result 

of the blurring of individual differences in fine-scale functional neuroanatomy that occurs with 

group-level averaging (Braga & Buckner, 2017; Buckner & DiNicola, 2019; DiNicola et al., 2020). 

In contrast, it proposes that DN comprises two distinct networks that are spatially interdigitated 

throughout the frontal, temporal, parietal lobes, and that their functional separation requires 

consideration of differences in the spatial location of these regions across individuals (Braga & 

Buckner, 2017; Buckner & DiNicola, 2019; DiNicola et al., 2020). Within this view, DefaultA is 

linked to episodic memory processes, whereas DefaultB is linked to social cognition/theory of mind 

(DiNicola et al., 2020). 

 

The ‘correct’ fractionation of the DN notwithstanding, the cognitive roles of these putative 

subsystems are based exclusively on findings from task-based fMRI investigations which examine 

one of these cognitive processes in isolation. While this approach has provided significant 

advances in mapping cognitive processes to functional neuroanatomy, it does not provide direct 
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evidence of functional specializations and dissociations in brain-behaviour associations. Rather, 

these must be inferred via cross-study comparisons. An alternative approach, which can allow a 

fuller characterization of the diverse functionality of the DN (and other networks) within a single 

study, is one that involves relating individual differences in brain structure and function to 

differences in a range of cognitive and behavioral variables (Bzdok & Yeo, 2017; Dubois & 

Adolphs, 2016; Smith et al., 2015). Notably, such an approach is afforded by the analysis of large, 

phenotypically rich neuroimaging datasets (Bzdok & Yeo, 2017; Dubois & Adolphs, 2016; Smith 

et al., 2015). Such datasets and associated analytic frameworks afford potential to go beyond 

circumscribed investigations of specific variables of interest, to assessments of complex 

multivariable relationships between the brain and rich suites of cognitive, emotional, social, 

personality, and lifestyle measures. This approach has gained increasing traction in recent years as 

a result of the coordinated collection of large-scale neuroimaging brain-behaviour datasets (Casey 

et al., 2018; Dubois & Adolphs, 2016; Mendes et al., 2019; Snoek et al., 2021; Sudlow et al., 2015; 

Van Essen et al., 2013). Research has yet to investigate whether and to what extent this approach 

convergences with the functionality of DN subsystems as revealed by task-based fMRI, as well as 

to what extent it offers novel insight into their roles and interrelationships. Study 2 is aimed at 

answering these questions. 

 

Pharmacological manipulation of default network function 

 

An application of fMRI that has become more prevalent over the past decade is the assessment of 

functional brain changes elicited by pharmacological challenges (i.e., drugs). This work – 

sometimes dubbed ‘pharmaco-fMRI’ – has often been applied in the context of drug development 

and discovery protocols, as a means of shedding additional light on drug efficacy, side effects, and 

neuropharmacological mechanisms (Nathan et al., 2014; Wandschneider & Koepp, 2016). 

Historically, neuropharmacological imaging had been carried out with positron emission 

tomography (PET), owing to the ability for this modality to assess receptor occupancy and affinity, 

as well as other neurochemical changes (Wang & Maurer, 2005). The advantage of fMRI is the 

ability to assess, with strong temporal and spatial resolution, the changes in distributed regional 

and large-scale network activity that occur as a downstream consequence of receptor-level 

alterations (Carmichael et al., 2018; Nathan et al., 2014; Wandschneider & Koepp, 2016). This 
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approach notably also allows direct comparison of drug effects to the patterns of pathological 

versus healthy neural phenotypes. To date, pharmaco -fMRI has been applied to study the acute 

effects of a wide variety of drugs on brain function, including anesthetics, stimulants, 

depressants/anxiolytics, anti-depressants, psychedelics, and cannabis (Fang et al., 2021; Flodin et 

al., 2012; Girn et al., 2023; Schrantee et al., 2016; Stamatakis et al., 2010; Wall et al., 2019). This 

work has suggested that the DN is particularly sensitive to serotonergic manipulations – whether 

it is in the form of tryptophan depletion (Zhang et al., 2019), serotonin reuptake inhibitors (Arnone 

et al., 2018; Dutta et al., 2019; Klaassens et al., 2017; Klaassens et al., 2015; van de Ven et al., 

2013), or psychedelics drugs (Carhart-Harris et al., 2012; Carhart-Harris & Friston, 2019; Carhart-

Harris, Muthukumaraswamy, et al., 2016; Girn et al., 2023; Girn et al., 2022; Vollenweider & 

Preller, 2020).  

 

Among these manipulations, serotonergic psychedelic drugs – which includes psilocybin (the 

compound in so-called ‘magic mushrooms’), lysergic acid diethylamide (LSD), and 

dimethyltryptiamine (DMT) – are a particularly interesting case. Known for their potent acute 

subjective effects, these drugs have seen a significant renewal of scientific interest over the past 

decade – spearheaded by clinical trials indicated that psychedelic-assisted psychotherapy can 

induce rapid and sustained symptom reductions across multiple disorders, including treatment-

resistant depression, end-of-life anxiety, and substance use (Andersen et al., 2021; Johnson et al., 

2019; McClure-Begley & Roth, 2022). Although each drug exhibits complex and unique 

neuropharmacological effects, the unifying mechanistic factor across serotonergic psychedelics is 

their role as partial agonists at the 5-HT2A receptor (Kwan et al., 2022; Nichols, 2016). Findings 

from both human and rodent studies have consistently found that pre-treatment with a 5-HT2A 

antagonist (e.g., ketanserin) abolishes nearly all subjective/behavioural and neural effects of these 

drugs (Kwan et al., 2022; Nichols, 2016). Notably, research from high-resolution in vivo PET 

imaging in humans has revealed that 5-HT2A densities are highest in regions comprising the DN 

(Beliveau et al., 2017). This distribution of 5-HT2A receptors, combined with their excitatory 

effects on highly influential layer 5 pyramidal neurons (Aghajanian & Marek, 1997; Aghajanian 

& Marek, 1999), a priori suggests a strong ability to modulate DN function. This has indeed been 

confirmed by a several pharmaco-fMRI investigations with serotonergic psychedelics, which have 

consistently found significant decreases in DN within-network RSFC and increases in the RSFC 
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between the DN and other networks (Carhart-Harris et al., 2012; Carhart-Harris, 

Muthukumaraswamy, et al., 2016; McCulloch et al., 2022; Müller et al., 2018; Preller et al., 2018; 

Preller et al., 2020; Roseman et al., 2014).  

 

While this work has identified consistent alterations to DN RSFC, it has yet to directly assess 

whether and how these changes relate to broader properties of cortical functional organization. 

This question has direct relevance both in the context of recent ‘gradient-mapping’ 

characterizations of macroscale cortical organization (Margulies et al., 2016; Smallwood, 

Bernhardt, et al., 2021), as well as for a leading theoretical model of psychedelic drug effects 

(Carhart-Harris & Friston, 2019). In contrast to typical approaches which parcellate the brain into 

regions and networks and examine their relationships, gradient-mapping techniques characterize 

the brain as the superposition of multiple continuous axes of feature (dis)similarity (Haak & 

Beckmann, 2020; Huntenburg et al., 2018). These approaches have found that the principal axis 

of cortical organization is a gradient spanning from unimodal sensorimotor regions to transmodal 

association regions centered on the DN (Margulies et al., 2016). This gradient aligns with feature 

variation in a wide variety of structural, functional, and genetic measures (Sydnor et al., 2021), 

and represents a functional hierarchy from low-level sensorimotor processing to abstract, 

perceptually-decoupled cognition (Huntenburg et al., 2018; Margulies et al., 2016; Murphy et al., 

2018). The presence of this gradient, which is founded on the functional differentiation of the DN 

from sensorimotor regions, is viewed as a fundamental organizational feature of the cortex. 

Interestingly, a leading theory of psychedelic drug effects has posited that a breakdown of this 

hierarchical organization and a concomitant blurring of DN-encoded abstract representations and 

low-level sensory inputs may be a core mechanism underlying the subjective effects of 

serotonergic psychedelics (Carhart-Harris & Friston, 2019). Study 3 brings these separate lines of 

research together and assesses psychedelic-induced alterations to the principal gradient of cortical 

organization, with a specific interest in alterations to the functional differentiation of the DN from 

unimodal sensorimotor cortices. 

Rationale and Objectives 

 

As described above, the literature on the DN spans several independent but interrelated lines of 

research, including on its functional organization, role in cognition, and sensitivity to 
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pharmacological perturbations. Each of these three research domains are critical to advancing our 

our understanding of the DN, and by extension, the neural processes that underlie complex 

cognition and behaviour in health and disease. The present thesis directly follows from the latest 

research in each of these three domains, consisting of projects designed to resolve critical gaps and 

thereby provide impactful insights that help advance our understanding of this network and guide 

future investigations. 

 

Study 1 assesses the inclusion of limbic regions with the functional organization of the DN. 

Critically, this study will leverage an in-house multi-echo fMRI dataset which affords strong signal 

reliability in limbic regions which usually exhibit signal dropout in standard single-echo fMRI 

acquisitions. This affords a superior ability to reliably map the whole-brain and large-scale 

network RSFC of these regions. We apply data-driven modularity and clustering algorithms to 

comprehensively examine the structure of the data and evaluate how regions comprising the limbic 

network – as defined by the influential Yeo and colleagues 7 network parcellation – get grouped 

together and with other large-scale networks based on their whole-brain RSFC patterns. This 

RSFC mapping study explores the presence of functional heterogeneity within the limbic network, 

and interrelations between the limbic network, DN, and subcortical regions. Collectively, the 

results have potential to expand accounts of the functional organization of the DN and will shed 

novel light on the RSFC and large-scale network relationships of limbic regions. 

 

Study 2 assesses the associations between DN subsystems and a broad variety of cognitive, 

emotional, social, and trait measures. Here, we again leverage the same in-house multi-echo 

fMRI dataset, this time making use of the rich suite of behavioural measures that were also 

assessed in these participants. In particular we apply multivariate analyses to examine relationships 

between individual differences in multiple measures of DN structure and function and a set of 85 

behavioural variables. Critically, all analyses are stratified by DN subsystem, following the 

tripartite scheme of DNA, DNB, and DNc since it is more amenable to a large-scale group-level 

approach. Limbic and temporoparietal language networks were also included in the analyses, 

based on the results of Study 1. This analytic approach enabled us to assess whether the 

functionality of these (sub)networks as revealed by task-based fMRI converges with an individual 

differences approach, and also whether this approach reveals patterns of shared and unique 
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(sub)network-behaviour variance that is not afforded by task-based approaches. Results from this 

study will provide novel insights into the complex relations between DN subsystems, closely 

related networks, and behaviour. More specifically, it will shed light on the manner in which these 

(sub)networks selectively and jointly mediate complex behavioural phenotypes. 

 

Study 3 assess whether serotonergic psychedelic drugs reduce the functional differentiation 

of the DN from unimodal sensory cortices and thereby alter the principal axis of macroscale 

cortical organization. In this study we collaborate with researchers from Imperial College London 

and conduct a re-analysis of two pharmaco-fMRI datasets, collected after administration of 

psilocybin and LSD, respectively. We apply a combination of cutting-edge gradient-mapping 

analyses and RSFC mapping to characterize psychedelic-induced changes to the principal gradient 

of macroscale cortical organization which spans from transmodal (DN) to unimodal (visual and 

somatomotor) cortex. We assess whether this core organizational feature of the brain is sensitive 

to a pharmacological challenge, and whether this is specifically driven by a reduction in functional 

segregation between the DN and unimodal sensory cortices. This study will offer findings with 

direct relevance to leading theoretical models of psychedelic drug effects and will provide novel 

insight into the stability (or lack thereof) of a core organizational feature of the cortex in which the 

DN plays a pre-eminent role. 
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Chapter 2: Evaluating the inclusion of limbic regions within the default network 

Adapted from: Girn, M., Setton, R., Mwilambwe-Tshilobo, L., Turner, G., Spreng, R.N. (In 

Preparation) The limbic network is part of an extended default network: Evidence from multi-

echo resting state fMRI 

Abstract 

 

Resting-state functional magnetic resonance imaging (fMRI) investigations have provided a view 

of the default network (DN) as composed of a specific set of frontal, parietal, and temporal cortical 

regions. This spatial topography is typically defined with reference to an influential network 

parcellation scheme which designated the DN as one of seven large-scale networks. However, the 

precise functional organization of the DN is still under debate, with studies arguing for varying 

subnetwork configurations and the inclusion of subcortical regions. In this vein, the so-called 

‘limbic network’ – defined as a distinct large-scale network comprising the bilateral temporal 

poles, ventral anterior temporal lobes, and orbitofrontal cortex – is of particular interest. A large 

multi-modal and multi-species literature on the anatomical, functional, and cognitive properties of 

these limbic regions suggests a strong relationship to the DN. Notably, these regions have poor 

signal quality in conventional fMRI acquisitions; likely obscuring their precise large-scale network 

affiliation in most studies. Here, we leverage a multi-echo fMRI dataset with high temporal signal-

to-noise ratio across the entire cortical mantle to examine the large-scale network resting-state 

functional connectivity of limbic regions and assess their associations with the DN. Consistent 

with our hypotheses, our results support the inclusion of the majority of the limbic network as part 

of the DN and reveal significant heterogeneity in limbic functional connectivity. We observed that 

left-lateralized regions within the temporal poles and ventral anterior temporal lobes, as well as 

medial orbitofrontal regions, exhibited the greatest resting-state functional connectivity with the 

DN, with different connectivity patterns across DN subnetworks. Overall, our findings suggest 

that, rather than being a functionally distinct network, the limbic network comprises a set of 

regions that are part of a larger, extended default network. 
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Introduction 

 

Technological and methodological advances in functional magnetic resonance imaging (fMRI) 

research over the past three decades have afforded an unprecedented ability to characterize the 

functional organization of the human brain (Raichle, 2009). Chief among these approaches is 

resting-state functional connectivity (RSFC), which assesses the interregional correlation structure 

of the brain while an individual is not engaged in an explicit task (Biswal et al., 1995; Buckner et 

al., 2013). RSFC investigations have revealed that the brain is comprised by a set of reliable and 

consistent large-scale networks that interact to mediate perception, cognition, emotion, and 

behaviour (Bassett & Sporns, 2017; Bressler & Menon, 2010; Damoiseaux et al., 2006; Uddin et 

al., 2019). The rise of RSFC approaches led to the discovery that a set of regions that consistently 

deactivated during cognitive tasks were strongly positively correlated in the absence of any overt 

task (Raichle & Snyder, 2007). This set of regions, now referred to as the ‘default network’ (DN), 

has been the focus of a considerable amount of research and the DN has now been linked to a 

variety of complex cognitive processes (Andrews-Hanna et al., 2014; Buckner & DiNicola, 2019; 

Smallwood et al., 2021). 

 

RSFC studies have characterized the DN as a set of regions spanning the frontal, temporal, and 

parietal lobes (Buckner et al., 2008; Buckner & DiNicola, 2019; Raichle et al., 2001; Smallwood 

et al., 2021; Yeo et al., 2011). These studies generally characterize the DN as consisting of dorsal, 

anterior, and ventral medial prefrontal cortex, posterior cingulate/retrosplenial cortex, the inferior 

parietal lobule, lateral temporal cortex, as well as the parahippocampus and hippocampus. RSFC 

and meta-analytic task findings have further supported a fractionation of the DN into three 

subnetworks: (i) the DNA, which includes the anteromedial prefrontal cortex and dorsal posterior 

cingulate cortex, (ii) the DNB, which includes the dorsomedial prefrontal cortex, anterior inferior 

parietal lobule/temporoparietal junction, and lateral temporal cortex, and (iii) the DNC, which 

includes ventromedial prefrontal cortex, posterior inferior parietal lobule, parahippocampus, and 

hippocampus (Andrews-Hanna et al., 2010; Yeo et al., 2011).  

 

Despite these advances, the precise organization of the DN is still a matter of debate (Uddin et al., 

2019). For example, there is disagreement about whether the DN consists of the three partially 
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dissociable systems described above, or composed of two dissociable systems that are typically 

conflated as a result of group-level averaging and the obscuring influence of individual differences 

in functional neuroanatomy (Andrews-Hanna et al., 2010; Braga & Buckner, 2017; Buckner & 

DiNicola, 2019; DiNicola et al., 2020; Yeo et al., 2011). A line of work has also pushed back 

against the prevalence of corticocentric views of the DN and has provided evidence for the 

inclusion of subcortical regions as a core part of this network (Alves et al., 2019; Buckner et al., 

2011; Bzdok et al., 2013; Choi et al., 2012; Cunningham et al., 2017). An additional area of interest 

with regard to the functional organization of the DN is the so-called limbic network (LIM; Yeo et 

al., 2011) and its potential inclusion as part of the DN (see Uddin et al., 2019).  

 

The LIM was defined by the highly cited Yeo et al. (2011) network parcellation scheme as a 

distinct network that is composed of two subnetworks, LIMA which encompasses the temporal 

pole (TP) and adjacent regions of the ventral anterior temporal lobe (vATL), and LIMB which 

corresponds to orbitofrontal cortex (OFC). The reliability of these regions forming a distinct 

network, however, is unclear given that they have among the least reliable signal in conventional 

fMRI acquisition protocols. This is due to their close proximity to nasal airways and consequent 

vulnerability to susceptibility-related signal loss (Ojemann et al., 1997). Indeed, the Yeo et al. 

(2011) study featured poor temporal signal to noise ratio (TSNR~40) in most limbic regions, 

suggesting that the grouping of these regions into a distinct network may, at least partially, be 

driven by their shared property of poor signal.  

 

Findings from tract-tracing work in non-human primates, as well as RSFC and task-based fMRI 

investigations where modestly reliable signal is present, suggest that regions within LIM – i.e., 

spanning the TP, vATL, and OFC – may be construed as extensions of the DN. Tract-tracing in 

non-human primates has found that the TP and vATL exhibit extensive anatomical connections to 

a broad variety of cortical and subcortical regions, many of which correspond to homologs of 

human DN regions (Barbas et al., 1999; Kondo et al., 2003; Moran et al., 1987; Saleem et al., 

2008). Putative DN regions found to exhibit anatomical connectivity with subregions of the TP 

and vATL in macaque monkeys include the anteromedial and ventromedial prefrontal cortex 

(Barbas et al., 1999; Kondo et al., 2003), superior and inferior temporal gyrus (Kondo et al., 2003; 

Moran et al., 1987; Saleem et al., 2008), as well as the parahippocampal cortex and hippocampus 
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(Moran et al., 1987; Muñoz & Insausti, 2005; Saleem et al., 2008). Similarly, the OFC has also 

been found to exhibit anatomical connections to much of the brain, including regions 

corresponding to the DN. Putative DN regions found to exhibit anatomical connectivity with the 

OFC in macaque monkeys include the anteromedial and ventromedial prefrontal cortex 

(Carmichael & Price, 1996; Price, 2006; Saleem et al., 2008), anterior, mid, and posterior cingulate 

gyrus (Carmichael & Price, 1995, 1996), inferior frontal gyrus (Carmichael & Price, 1996), 

superior temporal gyrus (Carmichael & Price, 1995; Kondo et al., 2003; Saleem et al., 2008), as 

well as the parahippocampal cortex and hippocampus (Carmichael & Price, 1995; Kondo et al., 

2005). 

 

Consistent with these findings, RSFC investigations with modest but reliable signal quality 

(TSNR>50) in the TP, vATL, and OFC have found evidence for strong RSFC between each limbic 

network region and the DN. With regard to the TP, one RSFC-based parcellation study found that  

two anterolateral subdivisions of the left TP – spanning the anterior tip and the middle and inferior 

temporal gyri, and collectively comprising ~50% of total TP surface area – strongly recapitulated 

the full breadth of the DN (Pascual et al., 2015). This RSFC map also included the OFC – 

suggesting the presence of a combined DN-LIM network (Pascual et al., 2015). Another study 

parcellated the TP based on anatomical connectivity estimated by diffusion tensor imaging (DTI) 

and similarly found a bilateral anterolateral subregion that exhibited an RSFC pattern strongly 

resembling the DN (Fan et al., 2014). Additional studies have also supported the presence of RSFC 

between TP subregions and the DN (Andrews-Hanna et al., 2010; Jackson et al., 2016; Simmons 

et al., 2010). Similarly, strong RSFC between the vATL, particularly in the left hemisphere, and 

regions overlapping with the DN have also been found (Jackson et al., 2018; Jackson et al., 2016; 

Simmons et al., 2010). With regard to the OFC, a RSFC-based parcellation of this region revealed 

that medial subregions of the OFC in particular were significantly correlated with the mPFC and 

PCC – two core regions of the DN (Kahnt et al., 2012). This finding was consistent with earlier 

RSFC investigations which, in addition to the mPFC and PCC, also revealed RSFC between the 

OFC and medial temporal regions such as the parahippocampus and hippocampus (Andrews-

Hanna et al., 2010; Vincent et al., 2006). A more recent study assessed OFC RSFC in 654 

individuals and again found that multiple subregions – including the medial extent of OFC along 

the ventral frontal lobes – exhibited significant RSFC with the majority of the DN (Du et al., 2020).  



 28 

 

Task-based fMRI investigations provide further evidence for strong linkages between each of the 

TP, vATL, and OFC, and the DN. A notable example is the common recruitment of the TP, vATL, 

and OFC alongside the DN in investigations of complex cognitive processes, including social 

cognition, spontaneous thought, episodic memory recollection and prospection, and self-

referential processing (Andrews-Hanna et al., 2014; Dixon et al., 2017; Fox et al., 2018; Frith & 

Frith, 2007; Spreng et al., 2009). Among these, the coactivation of the TP with DNB for social 

cognitive processes is a particularly consistent and robust finding (Andrews-Hanna et al., 2014; 

Frith & Frith, 2007; Simmons et al., 2010; Spreng et al., 2009). The TP and vATL are also central 

regions within a distributed conceptual processing/semantic memory network that highly overlaps 

with DNB (Binder et al., 2009; Ralph et al., 2017). Further examples with respect to the OFC come 

from two meta-analytic connectivity modelling investigations of this region based on the Brain 

Map database (Chase et al., 2020; Zald et al., 2012). These studies revealed – directly in line with 

RSFC studies – that subregions of the OFC consistently exhibit significant task-based coactivation 

with the mPFC, PCC, and the medial temporal lobes (parahippocampus and hippocampus) across 

a variety of cognitive tasks (Chase et al., 2020; Zald et al., 2012).  

 

Collectively, therefore, there is a strong body of evidence suggesting that the TP/vATL and OFC 

– or subregions thereof – may be regarded as part of the DN. However, this has yet to be evaluated 

in a targeted investigation. We leverage an open access multi-echo fMRI dataset (Spreng et al., 

2023) that affords exceptional signal quality in LIM regions, thereby overcoming limitations 

concerning poor LIM tSNR in past work. Briefly, the signal of a given brain region at a given echo 

time (TE) is based on the transverse relaxation time (T2*) of brain tissue in that region. Brain 

regions vary in T2* and therefore a given TE will result in higher tSNR in some regions and lower 

tSNR in others. In typical fMRI acquisitions, data is collected at a single TE with the goal of 

maximizing signal quality across the entire brain – however, this results in notable trade-offs, such 

as poor signal in the TP/vATL and OFC. Critically, the multi-echo acquisitions used here collected 

data at three TEs, including a shorter TE that exhibits significantly less signal dropout in regions 

vulnerable to susceptibility distortions (Kundu et al., 2017). We optimally combined each TE 

timeseries in a manner that optimized for signal quality on a voxel-wise level, thereby mitigating 

signal dropout and significantly boosting whole-brain tSNR (see Figure 1). Moreover, the use of 
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multi-echo data enabled the use of multi-echo independent component analysis (ME-ICA) 

denoising, a biophysically-based noise-removal technique that separates BOLD from non-BOLD 

signal based on TE-dependence. This principled denoising technique has been found effective in 

removing motion and physiological artifacts in resting-state fMRI data (Kundu et al., 2013; Kundu 

et al., 2012; Lynch et al., 2020; Setton et al., 2023), including distant-dependent motion effects 

(Power et al., 2018; Spreng et al., 2019).  

 

Combining multi-echo resting-state fMRI data and ME-ICA denoising affords the ability to map 

the RSFC and network organization of LIMA (TP/vATL) and LIMB (OFC). Leveraging these data, 

we sought to (i) determine whether data-driven network parcellation approaches assign LIM 

regions to the same network as DN regions, (ii) assess the whole-brain RSFC of LIMA and LIMB 

subnetworks, and (iii) assess the presence of functional heterogeneity within LIMA and LIMB via 

data-driven clustering. We hypothesize that (i) data-driven network parcellation approaches will 

assign the majority of LIM regions to the DN, (ii) data-driven clustering will delineate functionally 

heterogenous subregions within the LIM, and (iii) left-lateralized LIMA and medial LIMB regions 

will exhibit the greatest RSFC with the  DN, given the former’s overlap with the DN-overlapping 

semantic system (Binder et al., 2009; Ralph et al., 2017), and the latter’s previously documented  

RSFC with DN regions (Du et al., 2020; Kahnt et al., 2012). 

 

Methods 

 

Participants 

 

154 young adults (mean age 22.29, SD: 3.12; range: 18–34 years; 86 women) participated in the 

current study. All participants were healthy and had no history of psychiatric, neurological, or 

other medical illness that could compromise cognitive function. 

 

Neuroimaging data acquisition 

 

All imaging data were acquired on a 3T GE Discovery MR750 scanner (General Electric, 

Milwaukee, United States) with a 32-channel receive-only phased-array head coil at the 
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Cornell Magnetic Resonance Imaging Facility in Ithaca. High resolution structural images were 

acquired during one 5m25s run using a T1-weighted (T1w) volumetric MRI magnetization 

prepared rapid gradient echo (MPRAGE) sequence [repetition time (TR)=2530 ms; echo time 

(TE)=3.4 ms; inversion time (TI)=1100 ms; flip angle (FA)=7°; bandwidth=195 Hz/pixel; 1.0 mm 

isotropic voxels, 176 slices]. Structural scans were acquired with 2x acceleration with sensitivity 

encoding.  

 

Participants completed two 10-minutes 6-seconds resting-state multi-echo BOLD functional scans 

with eyes open, blinking and breathing normally in the dimly lit scanner bay. These scans were 

acquired using a multi-echo echo planar imaging (ME-EPI) sequence with online reconstruction 

(TR = 3000 ms; TE's = 13.7, 30, 47 ms; FA = 83°; matrix size = 72 × 72; field of view (FOV) = 

210 mm; 46 axial slices; 3.0 mm isotropic voxels). Resting-state functional scans were acquired 

with 2.5x acceleration with sensitivity encoding and were acquired prior to engagement in any 

cognitive task. 

 

Neuroimaging preprocessing and denoising  

 

Resting-state fMRI data were collected at three echo times (TEs), as afforded by the multi-echo 

fMRI acquisition. Timeseries data at each TE were first minimally preprocessed: the first 4 

volumes were discarded, images were computed for de-obliquing, motion correction, and 

anatomical-functional coregistration, and volumes were brought into spatial alignment across TEs. 

 

Given interregional differences in T2* relaxation rates, volumes collected at each TE result in 

differential signal quality across regions. To exploit this, the resting-state fMRI data was averaged 

across TEs in a manner that was optimally weighted to maximize the temporal signal to noise ratio 

(TSNR) of each voxel. This significantly improves whole-brain TSNR and, critically, attenuates 

signal drop out in typically problematic regions along the ventral-anterior surface of the brain (i.e., 

orbitofrontal cortex and the temporal pole; (Kundu et al., 2013; Kundu et al., 2012; Lynch et al., 

2020)).  
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In addition, a multi-echo acquisition facilitates the biophysically-based removal of noise 

components from resting fMRI datasets (Kundu et al., 2013; Kundu et al., 2012). This is because 

collecting data at multiple TEs allows the direct measurement of TE-dependent variability in the 

signal. The denoising method presently employed – multi-echo independent component analysis 

(ME-ICA) – exploits this information to distinguish BOLD signal from non-BOLD noise (Kundu 

et al., 2012). TE-dependent variability of the signal can be fit to models of changes in T2* (i.e., the 

transverse relaxation rate; the basis for the BOLD contrast) or changes in baseline signal (S0) which 

are the product of scanner artifacts, motion, and other sources of noise (Kundu et al., 2012). By 

comparing the relative goodness of fit of TE dependence to each of these models, one can separate 

BOLD signal from non-BOLD noise. Past work has supported the effectiveness of this technique 

in denoising BOLD signal of motion and physiological artifacts in resting-state fMRI (Kundu et 

al., 2013; Kundu et al., 2012; Lynch et al., 2020; Setton et al., 2023). Importantly, ME-ICA 

denoising has been found to remove distant dependent motion effects from RSFC data (Power et 

al., 2018; Spreng et al., 2019). ME-ICA outputs include: (i) spatial maps consisting of the BOLD-

like components, (ii) reconstructed time series based on back-projecting the BOLD-like 

components only, and (iii) the BOLD-like component coefficient sets.  

 

Quality assessments were performed on the reconstructed time series (ME-ICA output ii) in native 

space to identify and exclude participants with unsuccessful coregistration, residual noise 

(framewise displacement > 0.50-mm coupled with denoised time series showing DVARS > 1), 

temporal signal-to-noise ratio < 50, or fewer than 10 retained BOLD-like components. The 

denoised BOLD component coefficient sets (ME-ICA output iii) in native space, optimized for 

functional connectivity analyses (Kundu et al., 2013), were used in subsequent steps. We refer to 

these BOLD component coefficient sets as multi-echo functional connectivity (MEFC) data. 

Additional measures were taken to account for variation in the number of independent components 

from ME-ICA once connectivity matrices were estimated, as detailed below.  

 

ME-ICA processing was run with ME-ICA version 3.2 beta; https://github.com/ME-ICA/ (Kundu 

et al., 2013; Kundu et al., 2012). Anatomical images were first skull stripped using the default 

parameters in FSL BET. ME-ICA processing was then run with the following options: -e 13.6, 

29.79, 46.59; -b 12; --no_skullstrip; –space = Qwarp_meanE+tlrc. Here, the Qwarp_meanE+tlrc 
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file represented a site-specific MNI-space template (available here: 

https://zenodo.org/record/3575255). This template was created in AFNI using @toMNI_Qwarpar. 

MNI-space ME-ICA BOLD coefficient time series were resampled to 2mm isotropic. Timeseries 

were not smoothed, given that the parcel-wise timeseries extraction approach applied here 

represents a de facto form of smoothing (i.e., by averaging across spatially contiguous voxels). 

 

Signal quality 

 

In order to assess the whole-brain signal quality of the ME-ICA processed images, TSNR was 

calculated for each voxel as the mean signal intensity across its timeseries, divided by its standard 

deviation. Derived TSNR spatial maps were averaged across all subjects and thresholded at 50 

(Figure 1). The results indicate strong whole-brain coverage, including within limbic areas which 

typically exhibit signal-drop out (i.e., orbitofrontal cortex and the temporal pole), consistent with 

prior reports of ME-ICA (e.g., DuPre et al., 2016; Setton et al., 2023; Spreng et al., 2017). 

 

 
 
Figure 1. Parcel-wise (1000 parcels; Schaefer et al., 2017) temporal signal to noise ratio, thresholded at 50. 

 

Neuroimaging Data Analysis 

  

Resting-state functional connectivity  
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The MEFC denoised resting-state fMRI data (see Section 2.3 above) were parcellated into 1032 

regions as follows: 1000 cortical regions following Schaefer et al. (2017) and 32 subcortical 

regions following (Tian et al., 2020). RSFC was computed as the product-moment correlation 

coefficient between all parcels, resulting in a 1032 × 1032 RSFC matrix for each subject. Given 

our use of MEFC data, RSFC was calculated as the correlation of the ME-ICA coefficients across 

parcels (parcel × coefficient vectors), rather than a correlation across BOLD signal time-series 

(parcel × timepoint vectors), as is typically done (see (Kundu et al., 2013)). The Fisher’s r-to-z 

transformation was applied to normalize the distribution of correlation values and, importantly, 

account for variation in MEFC data degrees of freedom (as quantified by the number of BOLD 

ME-ICA components), across individuals (Kundu et al., 2013)): 

 

Z = arctanh(R)･!𝑑𝑓 − 3 

 

where R is the product–moment correlation value and df is the number of BOLD ME-ICA 

components.  

 

Modularity  

 

Modularity is a measure derived from the subfield of mathematics referred to as graph theory. The 

application of graph theory to neuroimaging data formalizes the brain as a network of nodes (e.g., 

brain regions) which are connected by edges/links (e.g., functional correlations, white matter 

pathways; (Bassett & Sporns, 2017; Rubinov & Sporns, 2010)). This formalization enables the 

quantification of topological properties associated with the brain’s graph (i.e., network) structure. 

Modularity in particular indexes the decomposability of a given network (in this case, whole-brain 

functional connectivity) into distinct modules.  

 

Two modularity algorithms were applied: the Louvain algorithm and the InfoMap algorithm. The 

Louvain algorithm(Blondel et al., 2008) was implemented with the Network Community Toolbox 

(http://commdetect.weebly.com/). This algorithm finds modular partitions of the graph 

(synonymous with network) which optimize the modularity value, Q, by grouping nodes into non-
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overlapping (sub)networks that maximize intra-modular and minimize inter-modular connections 

(Newman, 2004). The modularity value Q for a given modular partition is computed as follows: 

 

𝑄 =	
1
𝑙 + ,𝑤!" −

𝑘!𝑘"
𝑙	 / 𝛿$!$"

	

!,"∈'

 

 

where 𝑤 is the edge weight (i.e., functional connectivity value) between nodes i and j, 𝑙w is the 

sum of all weights in the graph, 𝑘i is the weighted degree (edge weight summed across all edges) 

of node i, and 𝑚i is a module containing node i. 𝛿$!$" =1 if nodes i and j belong to the same 

module, and = 0 otherwise. The Q value for a given partition therefore quantifies the strength of 

within-module edges relative to the strength of between-module edges, or, in other words, the 

extent to which distinct modules can be delineated in the data. This algorithm has a single free 

parameter, gamma (γ), which controls how many modules will be detected. Modularity was 

computed with three gamma values: 1 (the default), 1.25, and 1.5. The Louvain algorithm was run 

on the group-level mean RSFC matrix, using the Yeo 7 network assignments as the initial 

conditions. These initial assignments were used because our goal was to identify whether limbic 

regions remain assigned to a distinct ‘limbic network’, or get assigned to one or more of the other 

large-scale networks.  

 

Clustering  

 

Clustering analyses were applied as a data-driven assessment of subnetwork organization within 

the limbic network. To prepare the data for clustering, eta squared similarity was computed on 

matrices corresponding to RSFC between limbic regions (as defined based on the Schaefer-Yeo 

17 network, 1000 region parcellation) and the rest of the brain (i.e., on subject-wise 61 × 1032 

RSFC matrices). This yielded a 61 × 61 RSFC similarity matrix per subject, wherein each value 

represents the similarity between two given limbic regions in their whole-brain RSFC profile.  

 

Clustering was performed on the group-level mean similarity matrix using Ward’s agglomerative 

clustering. This clustering algorithm was chosen as past RSFC research has found that it produces 

results that are more accurate and reproducible than other popular algorithms (i.e., k-means 
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clustering or spectral clustering; (Thirion et al., 2014)). In addition, it does not require the a priori 

specification of number of clusters. Ward’s clustering is an unsupervised algorithm that iteratively 

merges clusters in the data while seeking to minimize the “error sum of squares”, which is 

computed as the sum of squares of the deviations from the cluster centroid. At initialization, all 

vectors (in this case, 1 × 61 vectors representing a given LIM parcel’s similarity to all other LIM 

parcels) are their own cluster, and the algorithm stops after the further merging of clusters does 

not reduce the error sum of squares. 

 

RSFC maps 

 

We refer to the whole-brain interregional RSFC of a given parcel, subnetwork, or cluster as an 

‘RSFC map’. For a given parcel, this corresponds to a row of the whole-brain RSFC matrix (i.e., 

a 1 × 1032 vector). For a given subnetwork or cluster, this corresponds to the mean across the 

parcels comprising that subnetwork or cluster. Mass univariate one-sample t-tests were computed 

across subjects for all RSFC maps of interest (p<0.01 Bonferroni; 1032 comparisons). To highlight 

the unique topography of RSFC maps of interest, maps were further thresholded to include only 

the (absolute) top 25% of connections. Mass univariate paired-sample t-tests were computed to 

assess pair-wise differences between RSFC maps of interest (p<0.01 Bonferroni; 1032 

comparisons). Contrasts were also computed on the mean values for subcortical regions of interest, 

as well as at the network-wise level for the 17 networks defined by the Yeo et al. 2011 parcellation. 

These networks include: visual network A (VISA), visual network B (VISB), somatomotor network 

A (SMNA), somatomotor network B (SMNB), dorsal attention network A (DANA), dorsal attention 

network B (DANB), salience network A (SALA), salience network B (SALB), LIMA, LIMB, 

frontoparietal network A (FPNA), frontoparietal network B (FPNB), frontoparietal network C 

(FPNC), default network A (DNA), default network B (DNB), and default network C (DNC). 

 

Results 

 

Modularity results 
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In order to assess, in a data-driven manner, whether limbic regions comprise a distinct large-scale 

network or may be more accurately construed as a part of the default network or other large-scale 

network, we applied two modularity algorithms (see Section 2.4.2 above) to the group-level mean 

whole-brain RSFC data. These algorithms assign each parcel to a given module (broadly 

synonymous with network or cluster) based on their RSFC profile. 

 

Modularity was first computed using the Louvain modularity algorithm (Figure 2A) This 

algorithm requires specification of a gamma parameter which controls the resolution of the output 

(i.e., number of modules). Three values for the gamma resolution parameter were examined: 1 (the 

default), 1.25, and 1.5. Results with gamma=1 parcellated the brain into putative visual (purple), 

somatomotor (blue), frontoparietal/executive (orange), and default networks (light red). Results 

with gamma=1.25 mirrored the results with gamma=1, with the further differentiation of the 

putative salience network (magenta). Finally, results with gamma=1.5 mirrored the results with 

gamma=1.25, with the further differentiation of the putative dorsal attention network (green). 

Critically – consistent with our hypothesis – LIM parcels were assigned to the putative DN across 

resolutions, with the single exception of parcels within the right medial temporal pole for 

gamma=1 and 1.5. Louvain results were consistent across runs with minor differences 

(Supplementary Figure 1).   
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Figure 2. (A) Data-driven network assignments based on the Louvain modularity algorithm, at three values of the 

gamma resolution parameter. (B) Data-driven network assignments based on the Infomap modularity algorithm. 

Networks are colored according to their putative corresponding large-scale network according to the Yeo 7 network 

parcellation scheme (Yeo et al., 2011). 

 

To assess the dependence of these results on the modularity algorithm, parcel to network 

assignments were also computed using the Infomap algorithm (Figure 2B). This algorithm 

parcellated the brain into three networks: a visual network (purple), a combined 

somatomotor/auditory/executive network (blue), and a putative default network (light red). Similar 

to the Louvain algorithm, the majority of LIM parcels were assigned to the DN. However, in this 

case several parcels within both OFC and the TP were assigned to the 

somatomotor/auditory/executive network. These parcels were primarily right-lateralized and 

included: the medial temporal poles, ventral-posterior OFC, and regions within the medial-

posterior aspect of the ventral extent of the TP. Infomap were broadly consistent across runs, with 

the main difference being a greater assignment of left vATL parcels outside of the DN 

(Supplementary Figure 1). 
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RSFC map results 

 

Having provided evidence that the LIM, or subregions thereof, are assigned to the DN in a data-

driven manner, we next sought to examine the particular LIM RSFC patterns that underlie these 

assignments. In particular, we performed data-driven clustering on LIM-to-whole-brain RSFC to 

assess the presence of LIM subdivisions and examined the differential whole-brain RSFC of 

distinct clusters. Clustering was first performed on the full LIM (i.e., LIMA and LIMB combined) 

as defined by the Yeo et al. (2011) 17 network parcellation, and then each of LIMA (TP/vATL) 

and LIMB (OFC) separately. RSFC maps and contrasts for each of LIMA and LIMB as defined 

based on Yeo et al. (2011) are shown in Supplementary Figure 2. 

 

LIM data-driven clusters 

 

Data-driven clustering performed on the full LIM revealed the presence of multiple clusters and 

subclusters within this network, supporting our hypothesis of LIM functional heterogeneity 

(Figure 3B). Qualitative examination of the cluster dendrogram indicates the presence of three 

primary clusters. Cluster 1 RSFC maps thresholded for the absolute top 25% of connections 

revealed strong RSFC spanning regions within the bilateral medial prefrontal cortex, anterior, mid, 

and posterior cingulate, left temporal gyri extending through Wernicke’s area into the 

supramarginal and angular gyri, right temporal pole, medial temporal lobes, left inferior frontal 

gyrus, and superior frontal gyrus. Cluster 2 RSFC maps thresholded for the absolute top 25% of 

connections revealed strong RSFC spanning regions within the bilateral anterior and mid cingulate, 

dorsomedial prefrontal cortex, inferior temporal gyri, medial temporal lobes, lateral prefrontal 

cortex, and superior and inferior parietal lobule. Cluster 3 RSFC maps thresholded for the absolute 

top 25% of connections revealed strong RSFC spanning regions within medial prefrontal cortex, 

bilateral anterior, mid, and dorsal posterior cingulate, bilateral middle and superior temporal gyri 

extending into Wernicke’s area, bilateral inferior frontal gyri, and the medial temporal lobes. 
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Figure 3. Data-driven clusters revealed by applying Ward clustering to all LIM parcels, spanning both LIMA and 

LIMB (A) Left: RSFC maps thresholded at p<0.01 Bonferroni for Cluster 1 (C1; Top), Cluster 2 (C2; Middle), and 

Cluster 3 (C3; Bottom). Right: RSFC maps thresholded at top absolute 25% of connections for Cluster 1 (C1; Top), 

Cluster 2 (C2; Middle), and Cluster 3 (C3; Bottom). (B) Cluster dendrogram. (C) Between-cluster contrasts. (D) 
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Spider plots displaying network-wise (Left) and subcortical (Right) between-cluster contrasts. Networks are defined 

based on the Yeo et al. 2011 17 network parcellation. 

 

Between-subnetwork contrasts revealed a variety of significant differences between clusters. 

Cluster 1 exhibited significantly greater RSFC than Cluster 2 in the medial prefrontal cortex, 

posterior cingulate, medial temporal lobes, and primarily left lateralized superior and middle 

temporal gyri extending into Wernicke’s area. Cluster 2 exhibited significantly greater RSFC than 

Cluster 1 in right lateral prefrontal cortex, bilateral inferior frontal gyrus, dorsomedial 

prefrontal/premotor cortex, and bilateral anterior parietal lobule. Network-wise contrasts between 

Cluster 1 and Cluster 2 revealed significantly different RSFC in SALA, SALB, LIMA, LIMB, DNA, 

DNB, DNC, and TPar. Subcortical contrasts between Cluster 1 and Cluster 2 revealed significantly 

different RSFC in the hippocampus, amygdala, and thalamus.  

 

Cluster 1 exhibited significantly greater RSFC than Cluster 3 in the medial prefrontal cortex, 

posterior cingulate, medial temporal lobes, and primarily left lateralized superior and middle 

temporal gyri extending into Wernicke’s area. Cluster 3 exhibited significantly greater RSFC than 

Cluster 1 in the bilateral superior temporal gyrus and sulcus, bilateral inferior frontal gyrus, inferior 

somatosensory cortex, Wernicke’s area, and the medial temporal lobes. Network-wise contrasts 

between Cluster 1 and Cluster 3 revealed significantly different RSFC in SALA, SALB, LIMA, 

LIMB, DNA, DNB, DNC, and TPar. Subcortical contrasts between Cluster 1 and Cluster 3 revealed 

significantly different RSFC in the hippocampus (HIP), amygdala (AMY), and thalamus (THA).  

 

Cluster 2 exhibited significantly greater RSFC than Cluster 3 in bilateral middle frontal gyrus, 

parietal lobule, posterior mid cingulate, and ventral OFC. Cluster 3 exhibited significantly greater 

RSFC than Cluster 2 in anterior/ventral medial prefrontal cortex, posterior cingulate and 

precuneus, temporal poles, and middle and super temporal gyri extending in Wernicke’s area. 

Network-wise contrasts between Cluster 2 and Cluster 3 revealed significantly different RSFC in 

SMNA, SMNB, DANA, SALA, SALB, LIMA, LIMB, FPNA, FPNB, DNA, DNB, DNC, and TPar. 

Subcortical contrasts between Cluster 1 and Cluster 3 revealed significantly different RSFC in the 

hippocampus, amygdala, and thalamus.  
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Results were predominantly consistent across runs (Supplementary Figure 3). 

 

Temporal pole intra-subnetwork heterogeneity  

 

Next, we sought to evaluate whether clustering performed separately on each of LIMA and LIMB 

allows greater sensitivity to finer subdivisions. Data-driven clustering performed on the LIMA 

revealed the presence of multiple clusters and subclusters (Figure 4B). Qualitative examination of 

the cluster dendrogram indicates the presence of two primary clusters. Cluster 1 RSFC maps 

thresholded for the absolute top 25% of connections revealed strong RSFC spanning regions 

spanning the majority of bilateral temporal lobes excluding portions of the middle temporal gyri, 

anterior, mid, and dorsal-posterior and cingulate, bilateral inferior frontal gyri, and medial 

prefrontal cortex. Cluster 2 RSFC maps thresholded for the absolute top 25% of connections 

revealed strong RSFC spanning the majority of bilateral temporal lobes with a greater extent in 

the left hemisphere extending into Wernicke’s area and the angular gyrus, medial prefrontal cortex, 

bilateral inferior, superior, and middle frontal gyri, and portions of anterior, mid, and dorsal-

posterior cingulate.  
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Figure 4. Data-driven clusters revealed by applying Ward clustering to LIMA parcels only (A) Left: RSFC maps 

thresholded at p<0.01 Bonferroni for Cluster 1 (C1; Top) and Cluster 2 (C2; Bottom). Right: RSFC maps 

thresholded at top absolute 25% of connections for Cluster 1 (C1; Top) and Cluster 2 (C2; Bottom (B) Cluster 

dendrogram. (C) Between-cluster C1>C2 contrast. (D) Spider plots displaying network-wise (Left) and subcortical 

(Right) between-cluster contrasts. Networks are defined based on the Yeo et al. 2011 17 network parcellation. 

 

Between-cluster contrasts revealed highly lateralized differences between clusters. Cluster 1 

exhibited significantly greater RSFC than Cluster 2 in the right superior temporal gyrus extending 

from the temporal pole to Wernicke’s area and the angular gyrus, the right inferior temporal gyrus 

and temporal pole along the ventral surface, the right medial temporal lobe, the right dorsal 

posterior cingulate extending into the precuneus, and regions within ventromedial and dorsomedial 

prefrontal cortex. Cluster 2 exhibited significantly greater RSFC than Cluster 1 in left inferior, 

middle, and superior frontal gyri, left inferior temporal gyrus, left interior parietal 
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lobule/temporoparietal junction, and left dorsomedial prefrontal cortex. Network-wise contrasts 

between Cluster 1 and Cluster 2 revealed significantly different RSFC in SMNA, SALA, LIMA, 

FPNB, DNB, DNC, and TPar. Subcortical contrasts between Cluster 1 and Cluster 2 revealed 

significantly different RSFC in the hippocampus, and amygdala.  

 

Results were predominantly consistent across runs (Supplementary Figure 4). 

 

Orbitofrontal intra-subnetwork heterogeneity 

 

Data-driven clustering performed on the LIMB revealed the presence of multiple clusters and 

subclusters (Figure 5B). Qualitative examination of the cluster dendrogram indicates the presence 

of three primary clusters. Cluster 1 RSFC maps thresholded for the absolute top 25% of 

connections revealed strong RSFC spanning regions within the bilateral medial prefrontal cortex, 

anterior and posterior cingulate, temporal poles, posterior inferior parietal lobule, medial temporal 

lobes, inferior and superior frontal gyri, and superior somatomotor cortex. Cluster 2 RSFC maps 

thresholded for the absolute top 25% of connections revealed strong RSFC spanning regions within 

the bilateral medial prefrontal cortex, bilateral anterior and mid cingulate, left dorsal posterior 

cingulate, temporal poles, left inferior parietal lobule, medial temporal lobes, and bilateral 

superior, middle, and inferior frontal gyri. Cluster 3 RSFC maps thresholded for the absolute top 

25% of connections revealed strong RSFC spanning the cingulate gyrus extending from its 

subgenual portion to immediately anterior to its dorsal-posterior portion, bilateral inferior and 

middle frontal gyri, bilateral parietal lobules, dorsomedial prefrontal cortex, and medial temporal 

lobes. 
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Figure 5. Data-driven clusters revealed by applying Ward clustering to LIMB parcels (A) Left: RSFC maps 

thresholded at p<0.01 Bonferroni for Cluster 1 (C1; Top), Cluster 2 (C2; Middle), and Cluster 3 (C3; Bottom). 

Right: RSFC maps thresholded at top absolute 25% of connections for Cluster 1 (C1; Top), Cluster 2 (C2; Middle), 

and Cluster 3 (C3; Bottom). (B) Clustering dendrogram. (C) Between-cluster contrasts. (D) Spider plots displaying 
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network-wise (Left) and subcortical (Right) between-cluster contrasts. Networks are defined based on the Yeo et al. 

2011 17 network parcellation. 

 

Between-subnetwork contrasts revealed a variety of significant differences between clusters. 

Cluster 1 exhibited significantly greater RSFC than Cluster 2 in the medial prefrontal cortex, 

posterior cingulate, medial temporal lobes, bilateral somatomotor cortex, and bilateral temporal 

poles extending along the ventral surface of the temporal lobes/inferior frontal gyri. Cluster 2 

exhibited significantly greater RSFC than Cluster 1 in bilateral superior, middle, and inferior 

frontal gyri, dorsomedial prefrontal/premotor cortex, and anterior superior parietal lobule. 

Network-wise contrasts between Cluster 1 and Cluster 2 revealed significantly different RSFC in 

SMNA, SMNB, DANA, SALA, SALB, LIMA, LIMB, FPNA, FPNB, DNA, and DNC. Subcortical 

contrasts between Cluster 1 and Cluster 2 revealed significantly different RSFC in the 

hippocampus, amygdala, and nucleus accumbens.  

 

Cluster 1 exhibited significantly greater RSFC than Cluster 3 in the medial prefrontal cortex, 

posterior cingulate, medial temporal lobes, and bilateral temporal poles extending along the ventral 

surface of the temporal lobes/inferior frontal gyri. Cluster 3 exhibited significantly greater RSFC 

than Cluster 1 in bilateral superior, middle, and inferior frontal gyri, dorsomedial 

prefrontal/premotor cortex, and anterior superior parietal lobule. Network-wise contrasts between 

Cluster 1 and Cluster 3 revealed significantly different RSFC in SMNA, SMNB, DANA, SALA, 

SALB, LIMA, LIMB, FPNA, FPNB, DNA, DNB, and DNC. Subcortical contrasts between Cluster 1 

and Cluster 2 revealed significantly different RSFC in the hippocampus, amygdala, and thalamus. 

 

Cluster 2 exhibited significantly greater RSFC than Cluster 3 in bilateral anterior and dorsal medial 

prefrontal cortex, dorsal posterior cingulate cortex, bilateral temporal poles, bilateral inferior 

parietal lobule/angular gyri, bilateral inferior frontal gyri, and the left superior frontal gyrus. 

Cluster 3 exhibited significantly greater RSFC than Cluster 2 in ventromedial and orbital prefrontal 

cortex, bilateral middle frontal gyri, bilateral superior parietal lobule, right precuneus, and right 

posterior-mid cingulate. Network-wise contrasts between Cluster 2 and Cluster 3 revealed 

significantly different RSFC in SMNA, SMNB, DANA, LIMB, FPNA, DNA, DNB, and TPar. 
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Subcortical contrasts between Cluster 1 and Cluster 3 revealed significantly different RSFC in the 

nucleus accumbens and caudate. 

 
Results were predominantly consistent across runs (Supplementary Figure 5). 

Discussion 

 

In the present study, we leveraged a multi-echo resting-state fMRI dataset with whole-brain signal 

coverage, including within limbic regions, to characterize the large-scale network organization and 

whole-brain RSFC of the LIM as defined by the Yeo et al. 2011 17 network parcellation. This 

includes the two putative LIM subnetworks: LIMA (comprising the TP and spatially adjacent 

vATL), and LIMB (comprising the OFC). Our primary goal was to evaluate whether the LIM, or 

subregions thereof, may be plausibly construed as part of the DN, and, in addition, to examine 

intra-LIM heterogeneity in whole-brain RSFC via data-driven clustering and RSFC mapping. 

Data-driven modularity results with the Louvain algorithm supported the inclusion of the LIM 

within the DN: with the exception of parcels within the right medial temporal pole, all LIM parcels 

were assigned to the DN across the resolutions examined. Similarly, Infomap results also revealed 

that most LIM parcels were assigned to the DN, but revealed less uniformity wherein several most 

right lateralized parcels – particularly in the vATL – were assigned to a combined somatomotor-

executive network. Data-driven clustering results indicated the presence of RSFC heterogeneity 

across the LIM as a whole, as well as within each of LIMA and LIMB separately. Distinct parcel 

clusters within the LIM exhibited differential RSFC with cortical and subcortical areas across the 

brain, with medial OFC and left-lateralized TP regions exhibiting the greatest RSFC with the DN, 

in a subnetwork-specific manner. Taken together, both the data-driven clustering and a priori, 

intra-LIM functional connectivity findings provide strong evidence that significant, and 

predominantly left lateralized, aspects of the LIM network may be more accurately characterized 

as the extended DN. 

 

Modularity results from both algorithms assigned the majority of LIM parcels to the same 

module/network as putative DN regions. This indicates that most LIM regions exhibit strong RSFC 

with DN regions and that their RSFC with each other is not sufficiently greater to afford their 

segregation into a distinct network. LIM parcels assigned outside of the DN were assigned to 
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modules corresponding to executive (frontoparietal/ dorsal attention/salience) and/or somatomotor 

networks. These parcels were exclusively in the right medial TP for the Louvain algorithm and, 

for the Infomap algorithm, comprised bilateral medial TPs and a mostly right-lateralized set of 

parcels in the posterior OFC and an expanse of the right vATL spanning from its anterior-medial 

to posterior-lateral extent. This set of non-DN parcels within the vATL revealed by the Infomap 

algorithm was found to be more bilaterally localized for Run 2 (Supplementary Figure 1). Notably, 

the functional differentiation of the posteromedial versus anterolateral vATL has been highlighted 

in past task-based fMRI research (Binney et al., 2016; Humphreys et al., 2015; Jackson et al., 

2016). This work has indicated that the vATL can be characterized in terms of a gradient from 

basic and modality-specific semantic representations within its posteromedial aspect, to complex 

and modality-general representations within its anterolateral aspect (Binney et al., 2016; 

Humphreys et al., 2015; Jackson et al., 2016). According to this work, the anterolateral vATL – 

which is the region of the vATL consistently assigned to the DN in the present study – represents 

the apex of the ATL’s processing hierarchy, acting as a multi-modal integrative hub (Binney et al., 

2016). As such, our finding that anterolateral vATL parcels were assigned to the DN across 

algorithms, whereas the remainder of the vATL was not, is consistent with past work indicating 

that the anterolateral vATL serves to integrate modality-specific inputs into complex abstract 

representations in a manner similar to regions comprising the DN (Smallwood et al., 2021). More 

generally, the present modularity findings do not support the differentiation of LIM regions into a 

large-scale network that is unified and functionally distinct from other networks. 

 

The present clustering results provided deeper insight into the differential RSFC patterns of LIM 

subdivisions and how these might underpin the modularity assignments. Notably, the parcels 

assigned outside of the DN by the Infomap algorithm significantly overlap with Cluster 3 from the 

combined LIMA-LIMB clustering analysis and Cluster 1 from the LIMA clustering analysis. These 

two clusters both comprise the majority of the right vATL, as well as portions of the bilateral 

medial TPs. In the case of the LIMA-LIMB clustering analysis, this cluster was differentiated from 

a cluster that combined the left TP and vATL with medial OFC regions, and which exhibited 

significantly greater RSFC with the DN. In the case of the LIMA clustering analysis, this cluster 

was differentiated from a cluster that comprised the left medial TP and vATL, and which exhibited 

greater RSFC with a left-lateralized set of regions span the DN and the semantic control system 
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(Binder et al., 2009; Jackson, 2021). These clustering results therefore suggest that left lateralized 

TP/vATL regions may be more associated with the DN, potentially via their involvement in a DN-

overlapping semantic processing network. 

 

Interestingly, relative to left lateralized clusters dominated by LIMA, the strongly right-lateralized 

LIMA-LIMB cluster comprising the TP, vATL, and posterior OFC exhibited greater RSFC with 

the bilateral superior temporal gyri and sulci, as well as the inferior frontal gyrus and insula. This 

pattern has notably been found in social and non-verbal semantic processing task-fMRI 

investigations that have argued for a right hemisphere bias in the ATL for the processing of social 

concepts and non-verbal stimuli (Kumfor et al., 2016; Skipper et al., 2011; Zahn et al., 2007). As 

such, the hemispheric dissociation in RSFC observed here – also partially mirrored in the 

modularity results – may reflect the distinction between a left-lateralized TP/vATL network that 

is closely related to the ‘semantic system’ as typically defined and predominantly involved in 

verbal and non-social semantic processing, and a right-lateralized TP/vATL network more 

involved in non-verbal and social semantic processing. It should be noted here, however, that 

previous studies of the RSFC of TP and vATL subdivisions have not found strong evidence for 

lateralization effects (Fan et al., 2014; Jackson et al., 2016), and multiple fMRI studies have found 

strong bilateral activation for social concepts and stimuli (Binney et al., 2016; Jackson et al., 2018). 

That said, it is likely that the former may be due to the relatively poor signal quality of LIM regions 

in past fMRI investigations. With respect to the latter, strong evidence from lesion studies and 

patients with lateralized semantic dementia suggests that some degree of right-lateralized 

specificity for social concepts have been observed (Pobric et al., 2016; Rice et al., 2018; Snowden 

et al., 2018), and it is likely that each hemisphere has a partially-specialized and graded 

contribution across semantic tasks (Ralph et al., 2017; Rice et al., 2018). The high tSNR in the 

present study may have provided greater sensitivity to hemispheric differences in TP/vATL RSFC. 

 

DN-associated clusters of LIMA and LIMB did not exhibit uniform RSFC across the entire DN, 

but, rather, showed DN-subnetwork-specific patterns. Both LIMA clusters were most associated 

with DNB in particular, with strong RSFC also present for DNA. The association between the 

TP/vATL and the DNB is consistent with this subnetwork’s spatial overlap with the semantic 

processing system, and its role in social cognitive processes for which the temporal lobes are 
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consistently co-recruited (Binder et al., 2009; Olson et al., 2013; Spreng & Andrews-Hanna, 2015). 

Indeed, the investigation which introduced the notion of tripartite subnetwork organization of the 

DN included the TP as a component of DNB (Andrews-Hanna et al., 2010). LIMA clusters were 

also particularly strongly connected to the TPar network (Yeo et al., 2011) which encompasses the 

superior temporal gyri and sulci, including primary auditory cortex and extending posteriorly into 

Wernicke’s area and anterior visual association regions. TPar RSFC was particularly strong for 

the right-lateralized LIMA Cluster 1 (which nonetheless includes a cluster within the left vATL). 

This can be seen as consistent with the findings discussed above, supporting a role for right 

superior temporal regions in right-lateralized social cognitive and non-verbal (i.e., pictorial) 

semantic processes (Kumfor et al., 2016; Pobric et al., 2016; Rice et al., 2018; Skipper et al., 2011; 

Snowden et al., 2018; Zahn et al., 2007). In contrast, LIMB Cluster 1 (medial-most OFC) was most 

associated with DNA and DNC. This directly aligns with a recent large-scale RSFC study of the 

OFC which found that medial subregions exhibited RSFC patterns most overlapping with the DN 

midline (i.e., DNA) and the medial temporal lobes (DNC; (Du et al., 2020)). Moreover, the 

functional differentiation of medial versus lateral OFC is supported by a large multi-species 

literature of task-based studies (Kringelbach & Rolls, 2003; Rolls et al., 2020; Schultz et al., 2000; 

Xie et al., 2021), as well as additional functional and anatomical parcellation studies (Hsu et al., 

2020; Rolls et al., 2020; Rolls et al., 2023). It remains unclear, however, why medial OFC regions 

in particular, which mediate positive reward value, should be more connected to the DN than 

lateral OFC regions which are involved in the negative reward value/the denial of an expected 

reward (Rolls et al., 2020). LIMB Cluster 2, which comprised a small number of parcels within the 

most anterior and posterior aspects of the OFC, was most associated with DNB. This also aligns 

with the results of the above-mentioned large scale RSFC study, in which similarly located parcels 

exhibited broadly similar RSFC patterns (Du et al., 2020). The results here extend these findings 

by highlighting how these spatially non-contiguous regions form a functionally dissociable 

subnetwork within the OFC, with a specific pattern of strong DNB RSFC. Finally, Cluster 3 (the 

remainder of the OFC) was not significantly associated with the DN – exhibiting minimal RSFC 

across DN subsystems. Instead, Cluster 3 was most associated with FPCN and SAL subnetworks, 

potentially in line with the OFC’s documented role in reward-based cognitive control (Dixon & 

Christoff, 2012; Dixon et al., 2017). Overall, results based on RSFC clustering indicate that several 

subdivisions of LIM exhibit significant RSFC with the DN in a subsystem-specific manner. These 
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results underscore the notion that the LIM is likely not a unified and distinct network, but is a 

collection of regions which show differential patterns of whole-brain RSFC – most prominently 

with particular DN subnetworks – to an extent that suggests membership in these subnetworks. 

 

RSFC between LIM regions and subcortical regions was also assessed. All LIM subdivisions 

exhibited significant RSFC with the subcortical regions examined – which included the 

hippocampus, amygdala, nucleus accumbens, globus pallidus, putamen, and thalamus –   

indicating strong interconnectivity across limbic, cortical, and subcortical regions. Of note, the 

clusters which exhibited the greatest RSFC with the DN included the hippocampus, amygdala, 

thalamus, and to a lesser extent, the nucleus accumbens. Each of these regions correlate strongly 

with the DN, and recent studies have argued for their inclusion as part of the DN (Alves et al., 

2019; Buckner & DiNicola, 2019; Bzdok et al., 2013; Li et al., 2021). This indicates the limitations 

of previous corticocentric – and non-limbic – conceptions of the DN and suggest that LIM regions 

may also join these regions in a combined cortical-limbic-subcortical extended DN.  

 

In conclusion, by leveraging multi-echo fMRI data which provide strong tSNR in LIM regions, 

we found support for the hypothesis that the LIM is an extension of the DN. However, our results 

also highlighted the distributed and heterogenous nature of LIM RSFC, and indicated the presence 

of multiple subregions with distinct RSFC across DN subnetworks and the other large-scale 

networks of the brain. Among LIM regions, we found that the medial OFC and left TP/vATL were 

most associated with the DN and, more specifically, that medial OFC was primarily associated 

with DNA and DNC, while the left TP/vATL was primarily associated with DNB. Our findings are 

consistent with and extend past task-based and RSFC investigations of the TP, vATL, and OFC, 

providing novel evidence on the precise large-scale network affiliations of these regions. This 

study contributes to the growing literature expanding the set of regions conceived of as constituents 

of the DN and suggests that past accounts of a distinct LIM may have been based on poor signal 

quality and relatively unreliable functional mapping. 
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Bridge to Chapter 3 

 

Findings from Study 1 indicated that the majority of regions within the limbic network may be 

accurately construed as members of the DN. Moreover, RSFC-mapping revealed that distinct 

clusters within the limbic network exhibit distinct patterns of whole-brain RSFC, including 

differential patterns of RSFC with DN subsystems. Of note, the regions of limbic network A 

(temporal poles and ventral anterior temporal lobe) exhibited stronger RSFC with DNB and the 

functionally related temporoparietal network, whereas the regions of limbic network B 

(particularly in medial orbitofrontal cortex) exhibited stronger RSFC with DNA and DNC. This 

suggests that subregions of the limbic network may differentially couple with subregions of the 

DN in the service of shared behaviours and cognitive processes. 

 

In Study 2, we build on this study and assess how the structure and function of these networks 

(limbic, default, and temporoparietal) jointly and differentially covaries with individual 

differences in a broad variety of behavioural (in the sense of ‘non-neural’) variables. For this study, 

we leveraged the same multi-echo resting-state fMRI dataset as Study 1 and additionally included 

the rich set of behavioural measures that were collected in these same participants, which span 

social cognition, emotion, memory, executive function, and personality. Results from this study 

will extend the results of Study 1 and will provide insight into how the functional organization of 

the DN and related networks discovered at rest may relate to variation in complex behavioural 

phenotypes. 
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Chapter 3 – A multivariate examination of default network subsystem-specific brain-

behaviour covariance 

Adapted from: Girn, M., Bzdok, D., Lockrow, A., Setton, R., Mwilambwe-Tshilobo, L., Turner, 

G.R., Spreng, R.N., (In preparation). Brain-behaviour associations across default network 

subsystems as revealed by deep behavioural phenotyping 

 

Abstract 
 
Research over the last decades has extensively investigated the default network (DN), a large-

scale brain network associated with a wide array of complex and human-defining cognitive 

processes. This network’s diverse functionality is thought to be afforded by significant intra-

network heterogeneity; wherein distinct subsystems mediate distinct cognitive processes. To 

date, the functional roles of DN subsystems have been primarily revealed via task-based 

neuroimaging studies examining one or two behavioral tasks in isolation. A more comprehensive 

characterization of the diverse functions mediated by the DN and their topographic distribution 

across subsystems is lacking. Large, phenotypically rich neuroimaging datasets make possible 

such characterizations by enabling assessments of complex multivariable relationships between 

the brain and a large number of behavioural (non-neural) measures. Here, we leverage a unique 

dataset and apply such an approach to examine multivariate associations between DN subsystem-

specific measures of brain structure and function and a wide array of cognitive, emotional, 

social, and personality measures. Partial least squares (PLS) analyses revealed several axes of 

DN-behavior covariance which were distinct across neural measures, exhibited differential 

subsystem contributions, and which encompassed complex groupings between brain and 

behavior. These results underscore the subsystem organization of the DN and the multifaceted 

nature of its associations with behavior. More generally, the present study provides further 

evidence for the DN’s complex role in traits and behaviors central to everyday human 

functioning. 
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Introduction 

 

The brain comprises functionally specialized networks that interact to mediate complex human 

behaviors (Bassett & Sporns, 2017). Among the most studied of these networks is the ‘default 

network’ (DN) (Andrews-Hanna et al., 2014; Buckner et al., 2008; Buckner & DiNicola, 2019; 

Smallwood, Bernhardt, et al., 2021). Although initially characterized as a ‘task negative’ network 

involved in internally-directed processes which compete with task demands, investigations have 

now established the much broader functionality of the DN (Margulies & Smallwood, 2017; 

Smallwood, Bernhardt, et al., 2021; Stawarczyk et al., 2019). In addition to internally-directed 

processes such as spontaneous thought, social cognition/mentalizing, and prospection, the DN has 

also been implicated in a variety of externally- and goal-directed processes, including working 

memory, task updating, narrative/movie comprehension, and visual perception (Andrews-Hanna 

et al., 2014; Baldassano et al., 2017; Gonzalez-Garcia et al., 2018; Margulies & Smallwood, 2017; 

Smith et al., 2018; R Nathan Spreng et al., 2014; Stawarczyk et al., 2019; Vatansever, Manktelow, 

et al., 2017). Broadly, converging evidence suggests that the DN is recruited whenever access to 

internal representations (e.g., episodic and semantic memory, self/other knowledge, concepts etc.) 

is required for, or facilitates, a given cognitive/emotional/perceptual process or task (Margulies & 

Smallwood, 2017; Murphy et al., 2017; Smallwood, Bernhardt, et al., 2021; Smallwood, Turnbull, 

et al., 2021; Sormaz et al., 2018; R.N. Spreng et al., 2014; Spreng et al., 2010; Stawarczyk et al., 

2019; Vatansever, Menon, et al., 2017; Vidaurre et al., 2017). This proposed functionality is 

consistent with findings indicating that the DN is situated at the apex of the macroscale cortical 

hierarchy, playing a critical role in spatially distributed transmodal processing that serves to 

integrate sensory and mnemonic information in the service of complex behaviors (Huntenburg et 

al., 2018; Margulies et al., 2016; Margulies & Smallwood, 2017; Smallwood, Bernhardt, et al., 

2021). 

 

The DN’s diverse functionality is thought to be underpinned by significant heterogeneity within 

this network, wherein distinct regions are associated with dissociable functions (Andrews-Hanna 

et al., 2010; Andrews-Hanna et al., 2014; Braga & Buckner, 2017; DiNicola et al., 2020; Yeo et 

al., 2011). Past work has suggested that the DN has either a tripartite (Andrews-Hanna et al., 2010; 

Andrews-Hanna et al., 2014; Yeo et al., 2011) or bipartite (Braga & Buckner, 2017; DiNicola et 
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al., 2020; Dohmatob et al., 2020) subsystem organization. The tripartite scheme, revealed via 

standard group-level analyses and meta-analytic findings, separates the DN into (i) a self-related 

processing and meaning creation subsystem that runs along the DN midline and includes antero-

medial prefrontal and posterior cingulate cortex (DNA), (ii) a social cognition subsystem that 

includes dorsomedial prefrontal, lateral parietal, and lateral temporal cortex (DNB), and (iii) an 

episodic memory subsystem that includes the medial temporal lobes and ventral posteromedial 

parietal cortex (DNC; (Andrews-Hanna et al., 2010; Andrews-Hanna et al., 2014; Bzdok et al., 

2015; Yeo et al., 2011). In contrast, the bipartite scheme, revealed via a ‘precision mapping’ 

approach that involves dense sampling of a small number of individuals, proposed two 

interdigitated subsystems: (i) an autobiographical/episodic memory subsystem that includes the 

medial temporal lobes and (ii) a social cognition subsystem that includes lateral temporal, as well 

as lateral and dorsomedial parietal cortex (Braga & Buckner, 2017; DiNicola et al., 2020). In 

addition, evidence from tract-tracing, as well as resting-state and task-based fMRI studies, suggest 

that the limbic network (LIM) and the temporoparietal network (TPar) may also be extensions of 

the DN. LIM consists of the bilateral temporal poles and ventral anterior temporal lobe, whereas 

TPar comprises the bilateral superior temporal gyrus and sulci, extending into Wernicke’s area 

and the angular gyrus (Yeo et al., 2011). LIM regions typically exhibit signal drop out in 

conventional fMRI acquisitions, but several studies in which reliable signal is present provide 

evidence for significant RSFC between LIM and DN regions, and consistent task-based 

coactivation in semantic, social, and affective tasks (Andrews-Hanna et al., 2014; Du et al., 2020; 

Pascual et al., 2013; Rolls et al., 2020; Setton et al., 2022; Spreng & Andrews-Hanna, 2015; Zald 

et al., 2012). TPar regions are consistently co-recruited alongside DN and LIM regions in service 

of linguistic/semantic and social functions (Andrews-Hanna et al., 2014; Binder et al., 2009). 

Broadly, the studies supporting these schemes indicate that spatially distinct subsystems within 

the DN (conceived to include the LIM and TPar) make differential contributions to the functional 

domains of self-related processing, episodic memory, social cognition, emotion, and semantic-

linguistic processing. 

 

Multiple approaches have advanced our understanding of how specific regions of the brain mediate 

discrete cognitive processes (Poldrack & Farah, 2015; Yarkoni et al., 2010). Initial breakthroughs 

in the localization of function advanced primarily with lesion studies, which determine the brain 
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regions that are necessary for a cognitive function (Adolphs, 2016). Subsequently, task activation 

studies with fMRI came to dominate cognitive neuroscience, whereby regions involved in 

cognitive processes are mapped to the corresponding functional neuroanatomy (Poldrack, 2006; 

Poldrack & Farah, 2015; Yarkoni et al., 2010). A third approach involves examining inter-

individual differences in behavior and determining the corresponding inter-individual variance in 

brain structure and function that predicts these behaviors (Bzdok & Yeo, 2017; Dubois & Adolphs, 

2016; Smith et al., 2015). Characterization of individual differences according to this third 

approach can provide evidence that converges with findings from lesion-symptom mapping and 

task activation but can also reveal novel brain-behavior associations. This characterization may be 

afforded by the analysis of large, phenotypically rich neuroimaging datasets (Bzdok & Yeo, 2017; 

Dubois & Adolphs, 2016; Smith et al., 2015), which create potential to go beyond circumscribed 

investigations of specific variables of interest, to assessments of complex multivariable 

relationships between the brain and rich suites of cognitive, emotional, social, personality, and 

lifestyle measures. This approach has gained increasing traction in recent years as a result of the 

coordinated collection of large-scale neuroimaging brain-behavior datasets (Casey et al., 2018; 

Dubois & Adolphs, 2016; Mendes et al., 2019; Snoek et al., 2021; Sudlow et al., 2015; Van Essen 

et al., 2013). 

 

Applying this data-driven individual differences approach, an influential large-scale investigation 

(n = 461) found that the DN was the most strongly implicated of all large-scale networks in a 

multivariate axis of brain-behavior covariance that linked whole-brain resting-state functional 

connectivity (RSFC) to a wide variety of cognitive, social, demographic, lifestyle, and 

neuropsychological factors collected for the Human Connectome Project  (Smith et al., 2015). A 

pre-registered study replicated these findings and also demonstrated that the DN in particular 

shared the greatest variance with behaviour relative to other networks (Goyal et al., 2022). 

However, this study was not well-suited for detecting heterogeneities in brain-behaviour 

covariance within the DN. This study also exclusively focused on RSFC and did not examine 

associations involving brain structure (e.g., grey matter density or cortical thickness). Three 

outstanding questions, therefore, are (i) whether an individual differences approach focused on the 

DN can reveal DN subsystem-specific associations with behavior, (ii) whether these align with the 
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cognitive functions implicated by task-based investigations, and (iii) whether RSFC brain-

behaviour relationships align with associations involving brain structure. 

 

The present study seeks to address these questions by applying partial least squares (PLS) analyses 

to assess associations between the DN and a phenotypically rich set of behavioral measures. More 

specifically, we sought to examine the differential contributions of DN subnetworks, as well as 

LIM and TPar networks, to multivariate patterns of brain-behaviour covariance. To do so, RSFC 

and grey matter density (GMD) were computed within a mask that combines DN, LIM, and TPar 

(sub)networks as defined by the Schaefer-Yeo 17 network parcellation (Schaefer et al., 2017; Yeo 

et al., 2011). This parcellation follows the tripartite DN subsystem fractionation, which is more 

amenable to large-scale group-level analyses than the bipartite scheme, which had its genesis in a 

precision mapping approach in a small set of individuals (Braga & Buckner, 2017). RSFC 

connectomes for each participant were derived using an individualized parcellation approach 

which has been found to increase intra-parcel homogeneity and sensitivity to brain-behavior 

relationships (Chong et al., 2017). This affords a more precise mapping of RSFC patterns that can 

then be closely related to individual differences in behavior. We leverage a unique dataset that 

features a diverse array of cognitive, emotional, social, and personality variables to reveal complex 

multi-variable brain-behavior relationships involving the DN (Spreng et al., 2022). To facilitate 

identification of relationship with pre-established subnetwork functionality, behavioral variables 

were grouped into the categories of self, episodic memory, semantic memory/language, social, 

emotion, personality, and executive/other (Table 1, below). 

 

We hypothesize that individual differences across these discrete behavioral categories will be 

robustly related to distinct DN subsystems for RSFC and GMD. Specifically, we predict that 

behaviour-subnetwork associations will be strongest for (1) DNA and self variables (2) DNB and 

social variables, (3) DNC and episodic memory variables, (4) LIM and emotion variables (5) TPar 

and semantic memory/language variables. Our analytic approach will assess these hypotheses in 

terms of multivariate axes of brain-behaviour covariance, wherein each ‘axis’ pertains to a specific 

grouping of neural (connection-wise RSFC or voxel-wise GMD) and behavioural variables. 
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Methods 

 

Participants 

 

121 young adults (mean age 22.52, SD: 4.66; range: 18–32 years; 70 women) participated in the 

current study. All participants were healthy and had no history of psychiatric, neurological, or 

other medical illness that could compromise cognitive function. The present sample size is capable 

of detecting reliable associations between brain and behavior with a magnitude of r > .20 with 95% 

confidence intervals (CI’s).  85 behavioural variables were included in the present analysis (Table 

1).  

 

Behavioural measures 

 

Category Measures Relevant Citation(s) 
Self Meaning and Purpose (NIH) 

Self-Efficacy (NIH) 

SAWS Experience  

SAWS Emotions  

SAWS Reminiscence 

SAWS Openness 

SAWS Humor 

SLCSR Self-liking 

SLCSR Self-competence 

Spiritual Transcendence Index 

3D-WS Cognitive 

3D-WS Affective 

3D-WS Reflective 

(Gershon et al., 2013; Seidlitz et 

al., 2002; Tafarodi & Swann Jr, 

2001; Webster, 2003) 

Episodic Memory Picture Sequence Memory (NIH) 

Autobiographical Interview 

Internal Density 

(Akshoomoff et al., 2013; Levine et 

al., 2002) 

Semantic Memory/Language Associative Recall 

Autobiographical Interview 

External Density 

(Brainerd et al., 2014; Levine et al., 

2002; Moore & Gordon, 2015; 

Palombo et al., 2013; Shipley et al., 

2009) 



 66 

Author Recognition Task Non-

Fiction 

Author Recognition Task Fiction 

Shipley Vocab 

Oral Reading Recognition (NIH) 

Picture Vocabulary (NIH) 

Social Emotional Support (NIH) 

Friendship (NIH) 

Instrumental Support (NIH) 

Loneliness (NIH) 

IRI Empathic Concern 

IRI Fantasy 

IRI Personal Distress 

IRI Perspective Taking 

Total Toronto Empathy 

Questionnaire 

ECR Close Relationships: Anxiety 

ECR Close Relationships: Avoid 

SNI Social Network Size 

SNI Social Network Diversity 

UCLA Loneliness 

Reading the Mind in the Eyes 

Moral Foundations Questionnaire 

(MFQ) 

Moral Competency Test (MCT) C 

Score 

(Davis, 1983; Spreng* et al., 2009) 

(Baron-Cohen et al., 2001; Bickart 

et al., 2011; Davies et al., 2014; 

Fraley et al., 2000; Gerritsen et al., 

2014; Graham et al., 2008; Russell, 

1996) 

Emotion Anger-Affect (NIH) 

Anger-Hostility (NIH) 

Anger-Physical Aggression (NIH) 

Fear-Affect (NIH) 

Fear-Somatic Arousal (NIH) 

General Life Satisfaction (NIH) 

Perceived Hostility (NIH) 

Perceived Rejection (NIH) 

Perceived Stress (NIH) 

Sadness (NIH) 

Toronto Alexithymia DDF 

(Gershon et al., 2013) (Bagby et al., 

1994; Carver & White, 1994) 
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Toronto Alexithymia DIF 

Toronto Alexithymia EOT 

Toronto Alexithymia Total 

Trait Boredom Scale 

BIS/BAS BAS Drive 

BIS/BAS BAS Fun 

BIS/BAS BAS Reward 

BIS/BAS BIS 

Personality  Volatility 

Withdrawal 

Neuroticism 

Compassion 

Politeness 

Agreeableness 

Industrious 

Orderliness 

Conscientiousness 

Enthusiasm 

Assertiveness 

Extraversion 

Openness 

Intellect 

Introverted 

(DeYoung et al., 2007) 

Executive/Other Card Sort  

Flanker Inhibitory Control and 

Attention 

List Sorting Working Memory 

Pattern Comparison Process Speed  

Shipley Blocks 

DGI Delayed Gratification 

(Akshoomoff et al., 2013; Hoerger 

et al., 2011; Lind, 2014) 

Table 1. Abbreviations: NIH, National Institutes of Health; SAWS, Self-Assessed Wisdom Scale; 3D-WS, Three-

Dimensional Wisdom Scale; SAM, Survey of Autobiographical Memory; AI, Autobiographical Interview; IRI, 

Interpersonal Reactivity Index; ECR, Experience in Close Relationships Revised; SNI, Social Network Index; DDF, 

Difficulty Describing Feelings; DIF, Difficulty Identifying Feelings; EOT, Externally Oriented Thinking; DGI, 

Delaying Gratification Inventory; SLCSR, Self-liking/Competence Scale Revised; MCT, Moral Competence Test. 

 

Neuroimaging data acquisition 
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All imaging data were acquired on a 3T GE Discovery MR750 scanner (General Electric, 

Milwaukee, United States) with a 32-channel receive-only phased-array head coil at the 

Cornell Magnetic Resonance Imaging Facility in Ithaca. Participants completed two ×	10 minutes 

6 seconds resting-state multi-echo BOLD functional scans with eyes open, blinking and breathing 

normally in the dimly lit scanner bay. These scans were acquired using a multi-echo echo planar 

imaging (ME-EPI) sequence with online reconstruction (TR = 3000 ms; TE's = 13.7, 30, 47 ms; 

FA = 83°; matrix size = 72 × 72; field of view (FOV) = 210 mm; 46 axial slices; 3.0 mm isotropic 

voxels). Resting-state functional scans were acquired with 2.5x acceleration with sensitivity 

encoding and were acquired prior to engagement in any cognitive task fMRI experiment. 

 

Anatomical images were acquired during one 5m25s run using a T1-weighted volumetric MRI 

magnetization prepared rapid gradient echo (MPRAGE) sequence (repetition time (TR)=2530 ms; 

echo time (TE)=3.4 ms; inversion time (TI)=1100 ms; flip angle (FA)=7°; 

bandwidth=195 Hz/pixel; 1.0 mm isotropic voxels, 176 slices). Anatomical scans were acquired 

with 2x acceleration with sensitivity encoding. 

 

Neuroimaging preprocessing and denoising 

 

The present multi-echo fMRI acquisition collected data at three echo times (TEs). Given 

interregional differences in T2* relaxation rates, a given TE results in differential signal quality 

across regions. An acquisition with three TEs therefore allows the optimally-weighted voxel-wise 

averaging of data across echoes. This significantly improves whole-brain TSNR and attenuates 

signal drop out in typically problematic regions along the ventral-anterior surface of the brain (e.g., 

orbitofrontal cortex, temporal pole) (Kundu et al., 2013; Kundu et al., 2012; Lynch et al., 2020). 

In addition, a multi-echo acquisition facilitates the biophysically-based removal of noise 

components from resting fMRI datasets (Kundu et al., 2013; Kundu et al., 2012). This is because 

collecting data at multiple TEs allows the direct measurement of TE-dependent variability in the 

signal. The denoising method presently employed – multi-echo independent component analysis 

(ME-ICA) – exploits this information to distinguish BOLD signal from non-BOLD noise (Kundu 

et al., 2012). TE-dependent variability of the signal can be fit to models of changes in T2* (i.e., the 
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transverse relaxation rate; the basis for the BOLD contrast) or changes in baseline signal (S0) which 

are the product of scanner artifacts, motion, and other sources of noise (Kundu et al., 2012). By 

comparing the relative goodness of fit of TE dependence to each of these models, one can separate 

BOLD signal from non-BOLD noise. Past work has supported the effectiveness of this technique 

in denoising BOLD signal of motion and physiological artifacts in resting-state fMRI (Kundu et 

al., 2013; Kundu et al., 2012; Lynch et al., 2020; Setton et al., 2022). Importantly, ME-ICA 

denoising removes distant dependent motion effects from RSFC data (Power et al., 2018; Spreng 

et al., 2019). Resting-state fMRI data were preprocessed with ME-ICA version 2.7 (https://afni-

nimh-nih-gov.proxy3.library.mcgill.ca/pub/dist/src/pkundu/meica.py). Anatomical images were 

first skull stripped using the default parameters in FSL BET. ME-ICA processing was then run 

with the following options: -e 13.6, 29.79, 46.59; -b 12; --no_skullstrip; –space = 

Qwarp_meanE+tlrc. Here, the Qwarp_meanE+tlrc file represented a site-specific MNI-

space template (available here: https://zenodo.org/record/3575255). This template was created in 

AFNI using @toMNI_Qwarpar. Finally, ME-ICA denoised time series were resampled to 2mm 

isotropic and smoothed with a 6 mm FWHM kernel in SPM8. 

 

Signal quality 

 

In order to assess the signal quality of the ME-ICA processed images within the extended DN, we 

calculated tSNR on the data within a combined DN-LIM-TPar mask. This mask was defined based 

on the Yeo et al. (2011) 17 network parcellation, created by combining ROIs across these networks 

as parcellated by Schaefer and colleagues (Schaefer et al., 2017). tSNR, a measure of signal 

strength at the voxel level, was calculated as the mean signal intensity of a voxel across the 

timeseries divided by its standard deviation. 

 

tSNR was calculated on the smoothed optimally combined (across TEs) timeseries following ME-

ICA denoising. Derived tSNR spatial maps were averaged across all subjects, thresholded at 50, 

and projected onto a surface, as shown in Figure 1. tSNR was considered only within the combined 

DN-limbic mask used for analyses. The results display strong tSNR, including within areas that 

typically exhibit signal-drop out (e.g., orbitofrontal cortex and the temporal pole). 
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Figure 1. Mean TSNR for subjects of the current study within the combined DN-LIM-TPar mask, 

thresholded at 50.  

 

Neural measures 

 

Two PLS analyses were conducted to examine brain-behaviour relationships, each with distinct 

neural variables and identical behavioral variables. The first analysis featured GMD (Ashburner 

& Friston, 2000) as computed within the combined mask. The second analysis featured 

interregional RSFC between all regions corresponding to DN, LIM, and TPar based on the 400 

region Schaefer cortical parcellation (119 individualized parcels collectively comprising these 

three networks). The measures are described in detail below. 

 

Grey matter density (GMD) 

 

GMD was calculated from the individual-subject T1-weighted images using voxel-based 

morphometry (VBM) as implemented in CAT12, a SPM12 add-on (Ashburner & Friston, 2000; 

Gaser & Dahnke, 2016). Raw T1-weighted images were first spatially normalized to a high-

resolution stereotactic space using the DARTEL template and then underwent automated 

segmentation into gray matter, white matter, and cerebrospinal fluid (CSF). CAT12 uses a tissue 

probability map (TPM) prior to skull strip the data and initialize the segmentation, and 

segmentation is conducted using a hypothesis-free adaptive maximum a posteriori (AMAP) 

segmentation approach (Gaser & Dahnke, 2016). This approach estimates the amount of brain 
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tissue type within each voxel and allows for the control of partial volume effects. The resulting 

grey matter maps were visually inspected to ensure consistency in orientation across subjects. 

Once this was confirmed, the homogeneity of the total sample was evaluated in order to identify 

outliers. Homogeneity was determined to be high with average inter-subject spatial correlations of 

r = >0.90 and no significant outliers were identified. Prior to analysis, total intracranial volume 

was regressed from the grey matter maps to more reliably extract individual differences in relative 

gray matter proportions. The regressed grey matter maps were then smoothed with an 8mm 

Gaussian kernel prior to being used as input to the PLS analyses. 

 

Individualized-parcel interregional resting-state functional connectivity (RSFC) 

 

Recent years have seen great strides made in neuroimaging-based parcellations of the brain, which 

are generated in a data-driven fashion on the basis of functional or multimodal neuroimaging data 

(Eickhoff et al., 2018; Glasser et al., 2016; Gordon et al., 2014; Schaefer et al., 2017). As a result, 

certain group-level parcellations have been taken as reliable indicators of individual-subject 

neuroanatomy and have been employed in a wide-variety of studies (Eickhoff et al., 2018). 

However, neuroimaging research has increasingly revealed that the sizes, locations, and spatial 

arrangements of brain regions (parcels) vary across individuals (Braga & Buckner, 2017; Chong 

et al., 2017; Gordon et al., 2017; Kong et al., 2019; Laumann et al., 2015). The uniform application 

of a group-level parcellation to subjects with varying neuroanatomy, therefore, is likely to reduce 

correspondence across subjects, reduce intra-parcel homogeneity, and thereby reduce effect sizes. 

Consistent with this, individualized parcellation methods have been found to improve the 

homogeneity of BOLD signal within parcels and provide better estimates of task-related variance 

(Chong et al., 2017), as well as improve behavioral prediction (Kong et al., 2019). 

 

Here we generated subject-specific parcels using a Group Prior Individual Parcellation (GPIP) 

approach (Chong et al., 2017). This approach is initialized by a pre-defined group parcellation, 

and then iteratively shifts parcel boundaries based on individual-specific resting-state fMRI data 

while preserving parcel label correspondence across subjects. More specifically, GPIP iterates 

between two primary steps. First, an initial pre-defined group parcellation atlas is refined to 

optimize each individual’s parcel boundaries with respect to their resting state fMRI data. Second, 
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a group sparsity constraint is applied to model connectivity by leveraging the group similarities in 

connectivity between parcels while optimizing the parcel boundaries within individuals. With this 

two-step iterative process, parcel labels are continuously updated in order to converge upon the 

most optimal partition. Relative to group-based parcellations, GPIP has been shown to improve 

homogeneity of BOLD signal within parcels and delineation between regions of functional 

specialization (Chong et al., 2017). This approach therefore enables a more accurate estimation of 

subject-specific functional areas (Chong et al., 2017) and is more sensitive to detecting 

associations between RSFC and behaviour (Kong et al., 2019; Mwilambwe-Tshilobo et al., 2019; 

Setton et al., 2022). 

 

In the present study, the GPIP algorithm was initialized with the Schaefer local-global 400 region 

parcellation (Schaefer et al., 2017) and run for 20 iterations of the two steps described above.  

Intra-parcel homogeneity (average correlation of intra-parcel vertex pairs) was calculated at each 

iteration for each subject and analyses confirmed increased homogeneity following the algorithm, 

as described in a previous paper (Setton et al., 2022).  RSFC matrices for each subject were 

computed by calculating the product-moment correlation coefficient between each pair of 

individualized parcels. The Fisher’s r-to-z transformation was then applied to account for variation 

in data degrees of freedom – in this case the number of de-noised ICA coefficients produced by 

ME-ICA – across individuals (Kundu et al., 2013): 

 

Z = arctanh(R)･!𝑑𝑓 − 3 

 

where R is the correlation value and df refers to the number of de-noised ICA coefficients. 

 

 

Partial least squares (PLS) 

 

PLS is a multivariate statistical technique that assesses linear relationships between two variable 

sets/matrices (X and Y) in a data-driven manner (Wold et al., 1983). In the context of 

neuroimaging, PLS is commonly used to examine multivariate brain-behaviour relationships 

(McIntosh & Lobaugh, 2004). Given a set of neural variables X (e.g., voxel-wise patterns) and a 
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set of behavioural variables Y, PLS conducts a singular value decomposition of the cross-

correlation matrix X’Y to identify the linear combinations of the individual variables which 

maximizes the covariance between X and Y across subjects. This process yields several mutually-

orthogonal latent variables (LVs) which can be understood as covariance-maximized brain-

behaviour groupings. Each LV is composed of three elements: (i) a left singular vector, containing 

weights for each of the behavioral measures (‘behavioural saliences’); (ii) a right singular vector, 

containing weights for each of the functional connections (‘neural saliences’); and (iii) a scalar 

singular value. Squared singular values reflect effect size: they are proportional to the covariance 

between connectivity and behavior that is accounted for by each latent variable. We refer to the 

whole-brain mean of neural saliences as a ‘brain score’ and the mean behavioural salience across 

all behavioural measures as a ‘behaviour score’. The number of latent variables is equal to the rank 

of X’Y; in the present case, this is the number of behavioral measures. 

 

Two distinct PLS analyses were conducted in the present study. Each included identical behavioral 

variables (Y) but differed in neural variables (X), which pertained to either connection-wise RSFC 

or voxel-wise GMD values. For computational purposes and as a form of ‘denoising’, principal 

component analysis (PCA) was applied to the (79 variable) behavior matrix in order to reduce the 

dimensionality of the data (see Supplementary Table 1 for PCA component weightings for each 

behavioural variable). The top 20 principal components, representing 80% of cumulative explained 

variance, were used as the Y matrix. X for the first analysis consisted of the voxel-wise GMD 

vector for each subject. X for the second analysis consisted of the vectorized lower triangle of 

119x119 Fisher-transformed DN-LIM-TPar interregional RSFC matrices for each subject.  

 

The statistical significance of each LV was evaluated using permutation testing. This involved 

iteratively computing the PLS analysis 1000 times while permuting the rows of one of the data 

matrices (X) each time. This process generates a distribution of singular values under the null 

hypothesis that there is no relationship between the neural measures and behavior. The significance 

of each LV is then estimated by computing the proportion of times the permuted singular values 

is higher than the observed singular values (significance thresholded at P < .05). This step is 

required to determine whether a given LV likely reflects actual structure in the data as opposed to 

random noise.  
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In addition to computing the significance of a given LV, the reliability of the weights (saliences) 

for individual voxels and behavioural measures was assessed using bootstrap resampling. This step 

allows the identification of the variables (both neural and behavioural) which are likely core 

constituents of the given LV - as opposed to being more ‘peripheral’ and interchangeable - and 

enables more reliable interpretation. The rows of both data matrices (X and Y) were iteratively 

sampled with replacement and used as input to the PLS analysis 1000 times. This generated a 

sampling distribution for each neural and behavioural salience. To identify connections and 

behaviors that (i) make a large contribution to the overall multivariate pattern and (ii) are relatively 

insensitive to sub-sampling, the ratio between each weight and its bootstrap-estimated standard 

error was calculated. The resulting ‘bootstrap ratios’ (BSRs) are large for voxels/behaviors that 

have large weights and narrow confidence intervals. If the sampling distribution is approximately 

unit normal, BSRs are equivalent to z-scores. Voxels were considered reliable if the absolute value 

of the BSR > 2 (approximately P < .05). Thresholded neural BSR maps for each measure were 

projected to surface space and visualized using the BrainNet viewer software (Xia et al., 2013). 

 

LV ‘brainscores’ were calculated as the dot product of the LV neural salience values with each 

subject’s corresponding (input) neural measure values. Behavioural associations with a given LV 

were computed as the correlation between that LV’s participant brainscores and the 79 input 

variables. We chose this approach rather than back-projecting the principal-component-wise 

behavioural loadings into the input variable space as it affords more direct interpretations of 

correlation values. For each LV and brain score-behaviour correlation, bootstrapped 95% 

confidence intervals were computed and behavioural measures with a confidence interval that 

crossed zero were excluded from visualization and interpretation. 

 

Within-Sample Validation 

 

Given concerns regarding the reliability of brain-behaviour associations, some form of validation 

is required. The present analyses were conducted on a unique in-house dataset with an 

idiosyncratic set of behavioural variables, therefore precluding an exact replication. Validation for 

RSFC findings was therefore conducted across runs within the current sample. For this within-
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sample validation, functional neural measures and associated PLS analyses were first conducted 

on data from resting-state run 1 and then replicated on resting-state run 2 in the form of a direct 

replication. More specifically, each PLS analysis was applied to run 1 data, and, for each subject, 

the dot product was then computed between the neural salience maps of each resulting statistically 

significant LV and the corresponding input matrix computed on subject-level run 2 data. The dot 

product value therefore represents the extent to which the neural pattern associated with each run 

1 LV is expressed in the run 2 data. The correlation between the dot product and the 79 behavioral 

measures was then computed for each LV, and reliability assessed, in the same manner as was 

done with run 1. Importantly, only the behavioral measures that were found as reliable in both runs 

are visualized and interpreted in the main text. The behavioral heatmaps for each LV shown in the 

main text represents the average correlation value across runs for these measures (correlations 

from each run were Fisher r-to-z transformed, averaged, and then reverse transformed). As such, 

all functional results were internally validated prior to interpretation. Within-validation was 

unfortunately not possible in the present dataset, given the availability of only one structural 

volume per subject. 

 

Results 

 

Behavioural Results 

 

We first looked at descriptive statistics for the behavioral data to determine whether they were 

suitable for linear decomposition with PLS. Pair plots and box plots were created for each of the 

measures to confirm normality and spread in the distributions. Second, consistent with this, the 

pairwise correlations (product-moment correlation coefficients) were computed between all the 

measures, and the observed associations were consistent with hypothesized relationships based on 

the nature of the constructs  (Supplementary Figure 1). 

 

PLS Results 

 

The PLS results revealed five significant LV for GMD and five for RSFC (all p’s < 0.05, 1000 

permutations). Each LV corresponds to a multivariate axis of covariance spanning multiple neural 
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(voxels or interregional connections) and behavioral variables (principal components). Note that 

the present manuscript uses the words ‘axis’ and ‘LV’ interchangeably. Each LV was represented 

as a set of neural and behavioral loadings (‘saliences’). For visualization and interpretation, neural 

loadings are expressed as bootstrap ratios (BSRs) of neural saliences (1000 bootstrap samples) and 

behavioral loadings are expressed as correlations between brainscores (subject-wise whole-brain 

mean of neural saliences) and the input behavioral variables. See Section 2.6 for more details on 

the PLS approach. 

 

GMD Results 

 

Five statistically significant LVs of GMD-behaviour covariance are displayed in Figure 2 in 

descending order of covariance explained (see Supplementary Figure 2 for scree plot). GMD LVs 

did not exhibit significant sex differences (Supplementary Figure 3). 
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Figure 2. Statistically significant LVs each representing an axis of covariance between GMD and behaviour 

(p<0.05). For each LV: (Top-left) The most reliable neural weightings as determined by a voxel-wise BSR 

value >|2|, equivalent to p <0.05. (Bottom-left) Thresholded voxel-wise BSR values expressed as network 

proportions according to the Yeo et al. (2011) 17 network parcellation scheme, for positive (left) and 

negative (right) values. (Right) The correlation values of reliable brain-behaviour correlations pertaining 

to that LV (see Methods). For each LV, higher GMD values are depicted in warm colors and are: (i) 

positively associated with higher values of the positively weighted, warm-colored, behaviors, and (ii) 

negatively associated with lower values for the negatively weighted, cool colored, behaviors. Additionally, 

negative GMD values depicted in cooler colors are (i) positively associated with lower values of the 

negatively weighted, cool-colored, behaviors and (ii) negatively associated with higher values for the 

positively weighted, warm colored, behaviors.  
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Overall, results revealed multiple axes of GMD-behaviour covariance that map groupings of 

cognitive, emotional, personality, and social variables to brain structure. Each LV represents a 

complex latent brain-behaviour phenotype that is expressed to varying degrees across subjects.  

 

On the brain side, LV 1 on the positive aspect loaded highest within bilateral ventral, dorsal, and 

orbital medial prefrontal cortex (PFC) as well as within temporopolar cortex extending ventrally. 

Clusters were also found in the bilateral inferior frontal junction, as well as along the superior 

temporal gyrus/temporal sulcus. Network-wise stratification indicated that LIM, TP, DNB, and 

DNA exhibited the greatest proportion of voxels with significant positive BSR values. No 

significant negative neural values were found for this LV. On the behavior side, LV 1 on the 

positive aspect loaded highly on measures of loneliness, stress, a tendency toward cognitive 

reflection, and two measures of crystallized cognition. Negatively, LV 1 loaded highly on 

measures of meaning and purpose, positive affect, and satisfaction with life, as well as a tendency 

towards recourse to authority/respect in moral judgments and reward-driven motivations. For each 

LV, higher values for the neural feature depicted in warm colored regions are associated with 

higher values for the positively weighted, warm colored, behaviors and lower values for the 

negatively weighted, cool colored, behaviors. For example, in this specific case, higher GMD in 

the anterior temporal poles is associated with greater loneliness and a lower sense of meaning and 

purpose in life.  

 

On the brain side, LV 2 on the positive aspects loaded highly within bilateral temporopolar cortex 

extending ventrally. Of all the networks, this cluster predominantly overlapped with LIM.  

Negatively, LV 2 loads highest in left subgenual anterior cingulate/ventromedial PFC and right 

dorsomedial PFC, predominantly overlapping with DNB. On the behaviour side, LV 2 on the 

positive aspect loaded highly on measures of episodic memory, executive function, and verbal 

learning, as well as the orderliness aspect of the personality domain of conscientiousness. 

Negatively, LV 2 loaded highly on measures of internal episodic memory detail, feelings of 

interpersonal hostility, perception of interpersonal appraisal, and a tendency toward neurotic 

withdrawal, as well as interpersonal unease, neurotic withdrawal, and behavioural inhibition, as 

well as self-assessed competence, empathy, reward-driven motivations, and trait enthusiasm. 
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On the brain side, LV 3 on the positive aspect loaded highly along the cortical midline 

encompassing bilateral anterior cingulate cortex and the PCC and precuneus, as well as within 

small clusters of lateral temporal cortex and the left superior frontal gyrus. Of all the networks, 

significant positive BSR values predominantly overlapped with DNA. Negatively, LV 2 loaded 

highly within small clusters of anterior/ventromedial PFC, the left inferior frontal junction, and 

right temporal pole. On the behaviour side, LV 3 on the positive aspect loaded highly on measures 

of sophisticated moral reasoning, non-fiction knowledge, perception of interpersonal appraisal, 

and processing speed. Negatively, LV 3 loaded highly on measures of education, meaning and 

purpose, orderliness, a tendency towards rumination, and self-liking, as well as positive affect, fear 

affect, and a difficulty describing feelings. 

 

On the brain side, LV 4 on the positive aspects loaded highly within a small cluster of the left 

temporal pole, extending ventromedially, as well as within the right inferior parietal lobule. 

Negatively, LV 4 loaded highly within the anterior superior temporal gyrus/temporal pol, as well 

as in left anterior/dorsomedial PFC. On the behaviour side, LV 4 on the positive aspect loaded 

highly on measures of education, crystallized cognition, empathy, and cognitive flexibility, as well 

as behavioural inhibition, moral judgments based on fairness and reciprocity, and perceived 

hostility. Negatively, LV 4 loaded highly on measures of existential and religious well-being, 

moral judgments based on in-group loyalty, purity, and authority, an avoidant relationship style, a 

sense of interpersonal belonging, and externally oriented thinking in relation to one’s feelings. 

 

On the brain side, LV 5 on the positive aspects loaded highly within small clusters in bilateral 

ventral PCC/retrosplenial cortex, and the left middle temporal gyrus. Negatively, LV 5 loaded 

highest within a large cluster of left superior temporal gyrus, extending in a dorsal-posterior 

direction. On the behaviour side, LV 5 on the positive aspect loaded highest on measures of moral 

judgments based on in group loyalty, authority, and purity, a style of fantasy and empathic concern 

style of interpersonal reactivity, as well as a tendency towards high agreeableness/politeness and 

interpersonal self-esteem. Negatively, LV 5 loads highly on measures of executive function, 

difficulty describing feelings, neuroticism-volatility, and loneliness, as well as crystallized 

knowledge, and behavioural activation driven by fun and drive. 
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RSFC Results 

 

Five statistically significant LVs of RSFC-behaviour covariance are displayed in Figure 3 in 

descending order of covariance explained (see Supplementary Figure 2 for scree plot). RSFC LVs 

did not exhibit significant sex differences (Supplementary Figure 4). Overall, results revealed 

multiple axes of RSFC-behaviour covariance that map groupings of cognitive, emotional, 

personality, and social variables to brain functional connectivity. Each LV represents a complex 

latent brain-behaviour phenotype that is expressed to varying degrees across subjects.  
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Figure 3. Statistically significant LVs each representing an axis of covariance between RSFC and 

behaviour (p<0.05). For each LV: (Top-left) the most reliable interregional neural weightings as 

determined by a voxel-wise BSR value >|2|, equivalent to p <0.05. (Bottom-left) Network-wise values 

according to the Yeo et al. (2011) 17 network parcellation scheme. Values are p values representing 

network-wise statistical significance based on permutation testing (see Methods), for negative (left) and 

positive (right) BSR values. (Top-right) The correlation values of reliable brain-behaviour correlations 

pertaining to that LV (see Methods). (Bottom-right) Mean whole-brain BSR value for each region (row-
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wise mean based on top-left). For each LV, higher GMD values are depicted in warm colors and are: (i) 

positively associated with higher values of the positively weighted, warm-colored, behaviors, and (ii) 

negatively associated with lower values for the negatively weighted, cool colored, behaviors. Additionally, 

negative GMD values depicted in cooler colors are (i) positively associated with lower values of the 

negatively weighted, cool-colored, behaviors and (ii) negatively associated with higher values for the 

positively weighted, warm colored, behaviors. 

 

On the brain side, LV 1 on the positive aspect displayed predominantly positive loadings across 

the examined networks, with the exception of TP within-network RSFC. Positive network loadings 

were most reliable for DNA and LIM within-network RSFC. Negative loadings for LV 1 loads 

were scattered across the examined networks, with the most reliable loadings pertaining to DNB 

within-network FC. On the behavior side, LV 1 on the positive aspect loaded highly on measures 

of interpersonal belonging and appraisal, friendship, and the enthusiastic aspect of extraversion, 

as well as physical aggression, somatic arousal, and behavioural activation based on fun and drive. 

Negatively, LV 1 loads highly on measures of crystallized cognition, education, episodic memory 

detail, loneliness, and moral judgments based on fairness/reciprocity. 

 

On the brain side, LV 2 on the positive aspect loaded most consistently for RSFC between DNA 

and each of TP and LIM, as well as between TP and LIM. Negatively, LV 2 loaded most 

consistently for RSFC between DNA and each of DNB and DNC, as well as between DNB and DNC. 

On the behaviour side, LV 2 on the positive aspect loaded highly on measures of education, 

difficulty describing feelings, anxiety, and loneliness, as well as perspective taking interpersonal 

reactivity, spiritual transcendence, and self-assessed reflective wisdom. Negatively, LV 2 loaded 

highly on measures of interpersonal belonging and appraisal, friendship the enthusiasm aspect of 

extraversion, and measures of cognitive processing speed. 

 

On the brain side, LV 3 on the positive aspect exhibited predominantly positive loadings across 

the networks examined, but a reliable pattern of RSFC did not emerge for any specific network or 

network-pair. Negatively, LV 3 loaded on connections between LIM and each of DNB and TP. On 

the behaviour side, LV 3 on the positive aspect loaded highest on measures of emotional support, 

affective and reflective wisdom, satisfaction with life, and the industriousness aspect of 

conscientiousness. Negatively, LV 2 loaded highly on measures perceived rejection, the volatility 
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and withdrawal aspects of neuroticism, loneliness, avoidance tendences in relationships, and 

feelings of hostility, stress, anger, and fear. 

 

On the brain side, LV 4 on the positive aspect loaded most reliably for RSFC within DNA and 

between DNA and TP, as well as between DNB and LIM. Negatively, LV 4 loaded most reliably 

for RSFC between DNA and DNB. On the behaviour side, LV 4 on the positive aspect loaded highly 

on measures of fluid cognition, false positives on a sustained attention task, theory of mind, 

visuospatial memory, and a difficulty describing feelings and tendency to engage in externally 

oriented thinking. Negatively, LV 4 loads highly on measures of false negatives on a sustained 

attention task, the compassion aspect of agreeableness, drive-based behavioural activation, 

empathy, affective wisdom, and the industrious aspect of conscientiousness. 

 

On the brain side, LV 5 on the positive aspect loaded highest on particular left lateralized 

connections within DNA and between DNA and DNB, but these were not reliable at the level of the 

entire network/network pair. Negatively, LV 5 loaded most reliably for RSFC between TP and 

each od DNB, DNC, and TP. On the behaviour side, LV 5 on the positive aspect loads highly on 

measures of the volatility aspect of neuroticism, self-liking, executive control, and instrumental 

support, as well as fear affect and cognitive and reflective wisdom. Negatively, LV 5 loads highly 

on measures of perceived rejection and hostility, spiritual transcendence, false negatives on a 

sustained attention task, fluid cognition, mental state, and the politeness aspect of agreeableness. 

Discussion 

 

In the present study, we assessed individual differences in DN structure and function and related 

these to differences in a variety of human behaviors. More specifically, multivariate analyses were 

conducted for DN GMD (structure) and RSFC (function), linking each to 79 variables spanning 

measures of cognition, emotion, social behavior, and personality. Results revealed multiple 

statistically significant multivariate axes of brain-behavior covariance for each neural measure, 

wherein each axis represents a pattern that links a group of behavioral variables to a group of 

neural variables (voxel-wise GMD or connection-wise RSFC). As hypothesized, results indicated 

significant intra-DN heterogeneity in brain-behavior covariance, wherein each DN subsystem 

differentially contributed to each axis. Many, but not all, DN subsystem-specific associations 
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aligned with their putative cognitive/behavioral functions as revealed by task-based fMRI. This 

was particularly the case for axes which linked LIM to semantic memory/language and emotion, 

and DNB to semantic memory/language and social variables. This study underscores the 

complexity of brain-behavior relationships involving the DN, and provides further evidence for 

DN subnetwork-specific roles in a variety of human traits and behaviors. 

 

Based on previous findings, we hypothesized DN subsystem-specific associations with behavior. 

Our results revealed that DN subsystems indeed differentially contribute to axes of brain-behavior 

covariance, with certain axes exhibiting selectivity for a particular subsystem and others featuring 

joint contributions across subsystems. With marginal exceptions, DN subsystems did not 

uniformly contribute to the axes in which they were strongly implicated. More specifically, for 

GMD, in certain cases one or two subsystems/networks (out of five total) exhibited 

disproportionate contributions suggestive of DN subnetwork functional specificity. In other cases, 

three or more featured a sizeable number of significant voxels, indicative of domain generality 

across the DN. With respect to RSFC, each axis linked a distributed neural pattern to behavior, but 

evidence also indicated specific subnetwork-level associations more than others. These findings 

suggest that DN subnetworks exhibit a combination of unique and shared variance across 

participants in their association with behavior. This is consistent with the fact that the behavioral 

loadings for each axis cut across putative functional divides – often grouping together, for 

example, socio-emotional, personality, and cognitive variables. The brain-behavior axes revealed 

by our approach can, therefore, be said to represent complex behavioral phenotypes that span 

disparate functional domains, and which are accordingly underpinned by a selective mix of 

contributions across DN subsystems and functionally related networks – shedding light on the 

distributed nature of brain-behaviour associations. The intra-DN heterogeneity in brain-behaviour 

associations found here provides evidence against treating the DN as a unified system when 

evaluating associations with behavior (Andrews-Hanna et al., 2014; DiNicola et al., 2020; 

Kernbach et al., 2018). 

 

A question of interest is to what extent the observed subsystem associations align with their 

putative contributions to behaviour and cognition based on task-based fMRI investigations. Across 

the observed brain-behavior axes, LIM – and/or a combination of LIM with DNA or DNB – was 
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the most commonly represented neural pattern. LIM comprises the bilateral temporal poles, ventral 

anterior temporal lobes, and orbitofrontal cortex and has been implicated in a variety of processes, 

most notably including linguistic-semantic processing, social cognition, and emotional/reward-

related processing (Binder et al., 2009; Binney et al., 2016; Humphreys et al., 2015; Jackson, 2021; 

Jackson et al., 2016; Rolls et al., 2020). Important for the present context, the LIM has been reliably 

found to co-activate alongside regions comprising the DN – particularly DNB – in the service of 

most of these processes (Andrews-Hanna et al., 2010; Andrews-Hanna et al., 2014; Binder et al., 

2009; Fox et al., 2018; Olson et al., 2013). Consistent with this, we found that axes which featured 

strong contributions from LIM and/or LIM and DNA or DNB were most associated with semantic 

memory/language, social, and/or emotion variables. For example, GMD LV1 featured strongest 

weightings from voxels comprising LIM, with secondary strong weightings form TPar and DNB, 

and was linked to five behavioral variables, two of which were semantic memory/language related 

and two of which social and emotional-related. Another example is RSFC LV1, which featured 

within-network RSFC for DNA and LIM as the most reliable neural pattern. The behavioral 

variables linked to this pattern predominantly included social, emotion, and self-related variables. 

The present individual-differences findings, therefore, complement past task-based findings 

supporting the consistent recruitment of LIM and DN regions in the service of semantic, social, 

and emotional processes and, further, highlight the presence of DN-subsystem specific 

associations. 

 

DNA was associated with brain-behavior axes that spanned several behavioral categories, but was 

only loosely aligned with self-related measures as would be predicted from previous research. For 

example, GMD LV3 highly selectively features voxels overlapping with DNA but its behavioral 

variables were distributed across executive/other, social, and semantic memory/language 

measures. The DNA was also strongly implicated in RSFC LV1, in which case it was grouped 

alongside LIM and was predominantly associated with social and emotion variables. This 

functionality does not necessarily directly align with the DNA’s hypothesized primary involvement 

in self-related processes, but is does accord with the notion that it comprises a hub which not only 

integrates the other DN subsystems, but also other large-scale networks in general (Kernbach et 

al., 2018; Smallwood, Bernhardt, et al., 2021; Van Den Heuvel & Sporns, 2011). Indeed, regions 

within DNA have been found to co-activate alongside the DNB, DNC, LIM, and TPar across their 
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diverse cognitive roles (Andrews-Hanna et al., 2014; Stawarczyk et al., 2019; Zald et al., 2012). 

Emerging evidence also suggests a role for DNA, through connections with other large-scale brain 

systems, in executive cognitive processes, such as working memory and task-set shifting (Smith 

et al., 2018; Vatansever, Manktelow, et al., 2017; Vatansever, Menon, et al., 2017). Thus, the 

diverse behavioral associations of DNA support its more general role as an integrative hub, as 

opposed to a specialized DN subsystem (Braga & Buckner, 2017; Smallwood, Bernhardt, et al., 

2021; Stawarczyk et al., 2019; Van Den Heuvel & Sporns, 2011). Of the DN subsystems, DNC 

was the least implicated in all observed brain-behaviour axes. This may be due to the small number 

(4 out of 79) of measures pertaining to episodic memory in the current study and the relatively 

selective specialization of DNC for such processes (Andrews-Hanna et al., 2014). Overall, our 

results support the presence of functional specialization within each subsystem, while also 

indicating joint covariance in support of multi-variable behavioural phenotypes. 

 

A comparable previous study leveraged data from the Human Connectome Project and assessed 

multivariate brain-behavior associations (Smith et al., 2015). This study found a multivariate axis 

of whole-brain brain-behavior covariance separating ‘positive’ behavioral variables – in the sense 

of being healthy or desirable – from ‘negative’ variables, with DN RSFC strongly positively 

weighted and exhibiting the strongest weighting of all networks (Goyal et al., 2022; Smith et al., 

2015). The present results suggest considerably greater complexity in brain-behavior associations 

involving the DN by revealing groups of covarying behaviors that do not readily lend themselves 

to straightforward distinctions such as ‘positive’ versus ‘negative’. Indeed, several of the 

behavioral LVs indicate covarying relationships with the brain that group together ostensibly 

desirable and undesirable characteristics. As an illustrative example, RSFC LV 1 groups together 

several ‘positive’ social variables, including measures of belonging, friendship, interpersonal 

appraisal, and emotional support, alongside measures of anger/physical aggression and fear-based 

somatic arousal – and separates them from several crystallized cognition and education-related 

variables, which themselves positively covary with a measure of loneliness. These groupings of 

behavior go beyond a simple positive-negative axis and may better reflect the complexities of real-

world behavioral phenotypes.  We note, however, that RSFC LV3 represents an axis that is broadly 

consistent with a positive-negative axis, and which may correspond to the axis found by Smith et 

al (2015). Similar to their earlier findings, RSFC LV3 implicates connections spanning much of 
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the DN, and these connections are positively associated with ‘positive’ behavioral measures, 

including measures of emotional support, interpersonal appraisal, satisfaction with life, self-

efficacy, cognitive-affective wisdom, enthusiasm, and industriousness. In contrast, the opposing 

side of this axis encompasses measures of perceived rejection, neurotic volatility and withdrawal, 

loneliness, stress, anger, fear, and hostility. The neural pattern contributing to the negative side of 

axis predominantly implicates RSFC between LIM and each of DNB and LIM – consistent with 

the role of these networks in social and emotional processing (Andrews-Hanna et al., 2014; Olson 

et al., 2013; Rolls et al., 2020; Rudebeck & Rich, 2018; Spreng & Andrews-Hanna, 2015). This 

latter neural finding is notable given that Smith et al. did not find within-DN connections which 

were associated with the negative side of the axis and can be attributed to the increased sensitivity 

of our DN-focused analyses (i.e., given the reduction of the feature space), as well as due to our 

inclusion of LIM and TPar. 

 

More fundamentally, the present results suggest that characterizing brain-behavior associations 

based on a single behavioral measure alone may not provide an accurate portrayal of inter-

individual variation. In particular, it was found that, across LVs, a given behavioral measure 

sometimes loaded strongly with a very different set of additional behavioral measures in its 

association with the brain. For example, in GMD LV1, loneliness loaded strongly with cognitive 

and reflective wisdom, perceived stress, and measures of crystallized cognition, whereas in RSFC 

LV3 loneliness loaded highly with measures such as perceived rejection, interpersonal avoidance, 

and the withdrawal and volatility aspects of neuroticism. Thus, a failure to consider the broader 

phenotypic context (i.e., co-occurring traits and tendencies) in which a particular behavior 

manifests may obscure multifaceted brain-behavior associations. In other words, the examination 

of multivariate interrelations across variables provides an important context that can help inform 

more subtle interpretations. This is because a given behavior or trait may be differentially 

expressed in brain structure and/or function depending on the constellation of behaviors with 

which it co-occurs. The present results therefore suggest that distinct ‘phenotypic subtypes’ might 

exist for particular brain-behavior associations.  

 

An important limitation of the present study is a lack of an out-of-sample replication (Bzdok & 

Yeo, 2017). However, given that we used a unique dataset with a rich and idiosyncratic set of non-
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neural variables, an independent replication is untenable. We believe that the use of unique datasets 

is critical for exploratory investigations which provide the foundation for novel discoveries. 

Comprehensive replications of the findings of such datasets by necessity will not be possible, but 

the intention is that they will serve to motivate future studies, inform the interpretation of previous 

ones, and potentially guide the inclusion of additional behavioral variables for larger future studies. 

To provide evidence of reliability in the present context, we conducted a within-sample replication 

for the RSFC results, using resting-state fMRI run 1 for discovery and run 2 for validation as 

described in the Methods. RSFC results exhibited significant correspondence across runs and the 

results reported in the main text represent across-run overlap. It was not possible to conduct a 

within-sample replication for the GMD findings, as only one structural volume was available per 

participant. Concerns regarding reliability are particularly relevant given the poor replicability of 

findings within neuroimaging-based individual differences research (Button et al., 2013; Marek et 

al., 2022; Poldrack et al., 2017). This has been attributed predominantly to the use of underpowered 

datasets and overestimates of ‘true’ effect sizes (Yarkoni et al., 2009). A recent large-scale 

investigation of neuroimaging-based brain-behavior associations found that the effect sizes of the 

investigated univariate correlations continually decreased as a function of sample size, ultimately 

reaching  |r < 0.1| in the full sample of ~3000 subjects (Marek et al., 2022). In addition, this study 

found that with n=100 iterative subsampling from this full sample, univariate correlations ranged 

from approximately r = -0.3 to 0.3 within a 95% confidence interval (Marek et al., 2022). This 

raises an alarm given the abundance of individual differences studies that have used samples of 

n<100 (Schulz et al., 2020). Critically, however, three important points distinguish the current 

study from the Marek et al. study: (i) The above-mentioned estimates were based on univariate 

single-measure correlations, whereas we applied a multivariate approach spanning many 

behavioral variables. Moreover, Marek et al. (2022) notably found larger (and more replicable) 

effect sizes (r = 0.4 to 0.6, n = ~2000) when using canonical correlation analysis, a multivariate 

technique similar to the PLS approach adopted here. (ii) The above-mentioned estimates were 

based on whole-brain exploratory analyses ("brain wide association studies"; BWAS), whereas the 

present analyses were constrained to the DN and therefore afford increased sensitivity due to a 

hypothesis-driven reduction of the feature space. (iii) Marek et al. used single echo data, which 

has been found to exhibit significantly lower inter-scan RSFC reliability than multi-echo data 

(Lynch et al., 2020), and is therefore less likely to reveal large effect sizes. Taken together, the 
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present dataset and the analytical protocol implemented here affords confidence in the reliability 

of the findings, but future targeted analyses are needed to test specific hypotheses that emerge. 

 

In conclusion, we applied PLS to assess multivariate axes of brain-behavior covariance involving 

the DN and found several complex mappings that group together sets of cognitive, social, 

emotional, and personality measures with subsystem-specific patterns of DN structure and 

function. Our findings support the presence of significant functional heterogeneity within the DN 

and this network’s close association with the functionally related LIM and TPar networks. 

Consistent with our hypotheses, contributions from each DN subsystem (and each of LIM and 

TPar networks) were not uniform across the revealed brain-behaviour axes. Neural patterns 

involving the LIM, and the LIM in association with DNA or DNB, were the most common across 

the patterns observed and were most associated with semantic memory/language, social, and/or 

emotion variables. Broadly, the present results underscore the multifaceted and complex nature of 

brain-behavior relationships involving the DN and the value of deep behavioral phenotyping for a 

more comprehensive understanding of the functionality of large-scale networks, as revealed by 

taking an individual differences approach to identifying brain-behavior relationships. 
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Bridge to Chapter 4 
 
Findings from Study 2 built on Study 1 and provided evidence for several axes of covariance that 

link the structure and function of the default, limbic, and temporoparietal networks to a broad 

variety of behaviours. There was evidence for both (sub)network functional specialization, as well 

as for shared contributions across (sub)networks. A notable finding was that the limbic network 

and DNB in particular were among the most consistently implicated neural regions, and multiple 

brain-behaviour axes displayed shared covariance across DN subnetworks and each of the limbic 

and temporoparietal networks. This offers further credence to the idea that regions within these 

two networks may actually be members of the DN, and that complex, distributed interactions 

between them may underlie complex real-world behavioural phenotypes. 

 

Having assessed the DN’s functional organization and relationship to limbic and temporoparietal 

networks, as well as their relationship to behavior, Study 3 switches gears assesses whether the 

DN’s functional organization is sensitive to an acute pharmacological manipulation. A core 

property of the DN, supported by past work, is its role in high-level integrative and abstract 

cognitive processes, and its differentiation from low-level specialized and concrete sensory 

processes. Studie 3 examines whether 5-HT2A agonist psychedelic drugs are able to significantly 

alter functional organization of the DN in terms of its relationship to sensory regions and its 

embeddedment in macroscale hierarchical cortical organization. Given the potent subjective 

effects of psychedelic drugs, this also has implications for the DN’s role in the maintenance of 

‘normal’ ongoing conscious experience. Findings of this study will inform understanding of both 

DN organization and function, and can shed light on the usefulness of serotonergic psychedelic 

drugs as perturbational research tools. 
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Chapter 4 – Serotonergic psychedelic drugs reduce the functional differentiation of the 

default network from sensory cortices 

Adapted from: Girn, M., Roseman, L., Bernhardt, B., Smallwood, J., Carhart-Harris, R., Spreng, 

R.N. (2022) Serotonergic psychedelic drugs LSD and psilocybin reduce the hierarchical 

differentiation of unimodal and transmodal cortex. Neuroimage (39 citations as of May 28, 2023) 

 

 

Abstract 

 

Lysergic acid diethylamide (LSD) and psilocybin are serotonergic psychedelic compounds with 

potential in the treatment of mental health disorders. Past neuroimaging investigations have 

revealed that both compounds can elicit significant changes to whole-brain functional organization 

and dynamics. A recent proposal linked past findings into a unified model and hypothesized 

reduced whole-brain hierarchical organization as a key mechanism underlying the psychedelic 

state, but this has yet to be directly tested. We applied a non-linear dimensionality reduction 

technique previously used to map hierarchical connectivity gradients to assess cortical 

organization in the LSD and psilocybin state from two previously published pharmacological 

resting-state fMRI datasets (N = 15 and 9, respectively). Results supported our primary hypothesis: 

The principal gradient of cortical connectivity, describing a hierarchy from unimodal to transmodal 

cortex, was significantly flattened under both drugs relative to their respective placebo conditions. 

Between-condition contrasts revealed that this was driven by a reduction of functional 

differentiation at both hierarchical extremes – default and frontoparietal networks at the upper end, 

and somatomotor at the lower. Gradient-based connectivity mapping indicated that this was 

underpinned by a disruption of modular unimodal connectivity and increased unimodal-

transmodal crosstalk. Results involving the second and third gradient, which respectively represent 

axes of sensory and executive differentiation, also showed significant alterations across both drugs. 

These findings provide support for a recent mechanistic model of the psychedelic state relevant to 

therapeutic applications of psychedelics. More fundamentally, we provide the first evidence that 

macroscale connectivity gradients are sensitive to an acute pharmacological manipulation, 

supporting a role for psychedelics as scientific tools to perturb cortical functional organization. 
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Introduction  

 

The past decade has seen a resurgence of scientific interest in serotonergic psychedelic compounds 

such as lysergic acid diethylamide (LSD), psilocybin, and dimethyltryptamine (DMT)/ayahuasca, 

primarily motivated by suggestive findings from preliminary clinical trials for depression, end-of-

life-anxiety, alcoholism, and tobacco addiction (Bogenschutz et al., 2015; Carhart-Harris, 

Bolstridge, et al., 2016; Davis et al., 2020; Gasser et al., 2014; Griffiths et al., 2016; Johnson et 

al., 2014; Johnson et al., 2019). Mirroring their complex subjective effects (Preller & 

Vollenweider, 2016; Schmid et al., 2015; Studerus et al., 2011), functional neuroimaging 

investigations have shown significant alterations to whole-brain functional organization and 

dynamics following psychedelic administration (Carhart-Harris et al., 2012; Carhart-Harris & 

Friston, 2019; Carhart-Harris, Muthukumaraswamy, et al., 2016; McCulloch et al., 2021; Preller 

et al., 2018; Preller et al., 2020; Roseman et al., 2014; Tagliazucchi et al., 2016; Vollenweider & 

Preller, 2020). More specifically, findings suggest that psychedelic administration shifts the brain 

towards greater global functional integration, as reflected by the reduced functional segregation of 

large-scale brain networks and increased global functional connectivity (FC; Carhart-Harris, 

Muthukumaraswamy, et al., 2016; Müller et al., 2018; Preller et al., 2018; Roseman et al., 2014; 

Tagliazucchi et al., 2016). In addition, the complexity of brain dynamics has been shown to 

increase under psychedelics, as indexed by increases in regional and population-level entropy 

(Carhart-Harris, 2018; Carhart-Harris et al., 2014; Lebedev et al., 2016; Schartner et al., 2017; 

Varley et al., 2019), as well as increases in the diversity of functional connectivity (FC) states 

(Barnett et al., 2020; Lord et al., 2019; Luppi et al., 2021; Tagliazucchi et al., 2014; Varley et al., 

2019). 

 

Notably, the recently proposed RElaxed Beliefs Under Psychedelics (REBUS) model (Carhart-

Harris & Friston, 2019) unifies past psychological and neural findings with psychedelics into a 

common theoretical framework based on hierarchical predictive coding and the Free Energy 

Principle (Friston, 2010). A primary hypothesis of this model is that psychedelics elicit their 

characteristic subjective effects by increasing the sensitivity of high-level representations (e.g., 

beliefs or assumptions) encoded within transmodal cortex to low-level inputs from sensory and/or 

limbic sources (Carhart-Harris & Friston, 2019). An acute reduction in the hierarchical 
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differentiation of transmodal versus unimodal cortex, consistent with increased crosstalk between 

these typically segregated functional zones, would provide support for this hypothesized effect. 

However, the impact of psychedelics on neural hierarchical organization has yet to be directly 

tested. 

  

In parallel to research involving psychedelics, gradient-mapping techniques have emerged in 

recent years as valuable tools to characterize brain organization (de Wael et al., 2020; Haak et al., 

2018; Huntenburg et al., 2018). In contrast to parcellation approaches which decompose the brain 

into discrete regions and networks, these approaches model the brain as the superposition of 

eigenmodes describing continuous axes of feature (dis)similarity (Haak & Beckmann, 2020; 

Huntenburg et al., 2018). Such techniques have consistently revealed a principal component 

describing a gradient of functional connectivity (FC) (dis)similarity spanning from unimodal 

sensorimotor regions to transmodal association regions centered on default and frontoparietal 

networks. This gradient is consistent with canonical tract-tracing work identifying hierarchical 

cortical organization in non-human primates (Mesulam, 1998), and fMRI investigations have 

indicated that it represents a functional hierarchy from low-level sensorimotor processing to 

abstract, perceptually-decoupled cognition (Huntenburg et al., 2018; Margulies et al., 2016; 

Murphy et al., 2018). In addition, recent multimodal gradient-mapping investigations have further 

found that a wide variety of cortical features vary along this hierarchical unimodal-transmodal 

axis, including myeloarchitecture, gene transcription, receptor densities, electrophysiology, 

metabolism, and cortical thickness (Burt et al., 2018; Huntenburg et al., 2017; Paquola, De Wael, 

et al., 2019; Sydnor et al., 2021). On the basis of this growing body of work, the unimodal-

transmodal hierarchy has been highlighted as a central organizing principle of the cortex with 

direct links to neurodevelopmental and phylogenetic trajectories (Sydnor et al., 2021). Gradient-

mapping has now been applied to characterize cortical hierarchy in diverse contexts, including 

autism (Hong et al., 2019), neonatal development (Larivière et al., 2019), schizophrenia (Dong et 

al., 2020), and lifespan development (Bethlehem, Paquola, Ronan, et al., 2020; Paquola, 

Bethlehem, et al., 2019).   

  

Here, we leverage gradient-mapping approaches to investigate alterations to macroscale functional 

hierarchy in the psychedelic state. In particular, we apply gradient-mapping analyses to 
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interregional FC data from two previously published pharmacological fMRI datasets each 

collected with a different serotonergic psychedelic compound: LSD (Carhart-Harris, 

Muthukumaraswamy, et al., 2016) and psilocybin (Carhart-Harris et al., 2012). We apply cortex-

wide and network-specific analyses to characterize psychedelic-dependent changes in cortical 

gradients. In addition, we leverage the organizational scheme provided by the hierarchical gradient 

to probe hierarchy-specific changes in whole-brain functional connectivity. We predicted that both 

LSD and psilocybin will be associated with a contraction of the principal gradient, reflecting 

reduced dissimilarity in the FC profiles of unimodal and transmodal cortices and dedifferentiation 

of these distinct processing zones. Further, we predicted that this hierarchical contraction would 

be specifically consistent with increased cross-talk between unimodal and transmodal cortices. In 

addition, we investigated psychedelic-induced changes to the second and third gradient, which 

have been shown, respectively, to differentiate visual from somatomotor/auditory cortex, and 

executive cortex from non-executive cortex. We also predicted gradient dedifferentiation along 

these axes, given past work which highlighted alterations to sensory and executive connectivity in 

the psychedelic state (Carhart-Harris et al., 2013; Carhart-Harris, Muthukumaraswamy, et al., 

2016; Preller et al., 2018; Preller et al., 2020; Roseman et al., 2014). Collectively, this study 

provides a comprehensive assessment of whether serotonergic drugs LSD and psilocybin 

pharmacologically alter the primary axes of cortical functional organization. In addition, it 

constitutes the first direct assessment of whether cortical gradients are sensitive to acute 

pharmacological manipulation. 

 

Methods 

  

Participants 

 

LSD. Neuroimaging data from an already published dataset (Carhart-Harris, Muthukumaraswamy, 

et al., 2016) was used for the present analyses. The acquisition protocol is described in greater 

detail in the original publication; we describe it in brief here. Twenty participants were recruited 

via word of mouth and provided written informed consent to participate after study briefing and 

screening for physical and mental health. The screening for physical health included 

electrocardiogram (ECG), routine blood tests, and urine test for recent drug use and pregnancy. A 
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psychiatric interview was conducted, and participants provided full disclosure of their drug use 

history. Key exclusion criteria included: < 21 years of age, personal history of diagnosed 

psychiatric illness, immediate family history of a psychotic disorder, an absence of previous 

experience with a classic psychedelic drug (e.g. LSD, mescaline, psilocybin/magic mushrooms or 

DMT/ayahuasca), any psychedelic drug use within 6 weeks of the first scanning day, pregnancy, 

problematic alcohol use (i.e. > 40 units consumed per week), or a medically significant condition 

rendering the volunteer unsuitable for the study 

 

In a within-subjects design, resting-state BOLD fMRI data were acquired in 20 subjects for each 

of LSD and placebo conditions. Each condition occurred on separate scanning days (separated by 

14 days), and the order was counterbalanced across subjects; subjects were blind to this order, but 

the researchers and those analyzing the data were not. The scans on each of the days were as 

follows: (1) resting-state eyes-closed with no music, (2) resting-state eyes-closed with music, (3) 

resting-state eyes-closed with no music. Scans featuring no music (scans 1 and 3) were used in the 

present analyses. For the placebo condition, subjects were given 10mL of saline and for the LSD 

condition they were given 75μg of LSD in 10-mL saline via intravenous injection. Ego-dissolution 

scores were collected via intra-scanner visual analogue scale ratings, whereas complex imagery 

scores were derived from the 11-factor altered states of consciousness (ASC) questionnaire 

(Dittrich, 1998; Studerus et al., 2010) which was completed at the end of each scan day. 

 

Psilocybin. Neuroimaging data from an already published dataset (Carhart-Harris et al., 2012) was 

used for the present analyses. The acquisition protocol is described in detail in the original 

publication; we describe it in brief here.  Fifteen healthy participants were recruited via word of 

mouth and provided written informed consent to participate after study briefing and screening for 

physical and mental health. The screening for physical health included electrocardiogram (ECG), 

routine blood tests, and urine test for recent drug use and pregnancy. A psychiatric interview was 

conducted, and participants provided full disclosure of their drug use history. Key exclusion 

criteria included: < 21 years of age, pregnancy, personal or immediate family history of psychiatric 

disorder, substance dependence, cardiovascular disease, claustrophobia, blood or needle phobia, 

or a significant adverse response to a hallucinogenic drug. All subjects had previous experience 
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with a ‘classic’ psychedelic drug (e.g., LSD, mescaline, psilocybin/magic mushrooms or 

DMT/ayahuasca) but not within 6 weeks of the study.  

 

In a within-subjects design, resting-state BOLD fMRI data were acquired in 15 subjects for each 

of psilocybin and placebo conditions. Each condition occurred on separate scanning days 

(separated by ~14 days), and the order was counterbalanced across subjects; subjects were blind 

to this order, but the researchers and those analyzing the data were not. For the placebo condition, 

subjects were given 10mL of saline and for the psilocybin condition they were given 2mg of 

psilocybin in 10mL saline, via intravenous injection. Each scanning day consistent of one 12-

minute scan with infusion beginning at 6 minutes following the start of the scan. The post-infusion 

half of the scan for each condition was used in the present analyses. Ego-dissolution scores were 

collected via intra-scanner visual analogue scale ratings, whereas complex imagery scores were 

derived from the 11-factor altered states of consciousness (ASC) questionnaire (Dittrich, 1998; 

Studerus et al., 2010) which was completed at the end of each scan day. 

 

Ethics Statement 

  

Data collection for both LSD and psilocybin datasets were approved by the National Research 

Ethics Service committee London-West London and was conducted in accordance with the revised 

declaration of Helsinki (2000), the International Committee on Harmonization Good Clinical 

Practice guidelines, and National Health Service Research Governance Framework. Imperial 

College London sponsored the research, which was conducted under a Home Office license for 

research with schedule 1 drugs. 

 

Neuroimaging Data Preprocessing and Denoising 

 

Both datasets underwent an identical preprocessing protocol, as described in detail elsewhere 

(Carhart-Harris, Muthukumaraswamy, et al., 2016). Subjects with excessive head motion were 

discarded from analyses (>15% volumes with FD >= 0.5). This resulted in 4 exclusions in the LSD 

dataset, and 6 exclusions in the psilocybin dataset. The excessive head motion was found in scans 

conducted during the drug conditions. One additional subject in the LSD dataset exited the scanner 
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due to intra-scanner anxiety, leaving a final sample of 15 for the LSD dataset and 9 for the 

psilocybin dataset. 

 

The following pre-processing  and denoising steps were performed on the BOLD resting-state 

fMRI data for each dataset: removal of the first three volumes, de-spiking (3dDespike, AFNI), 

slice time correction (3dTshift, AFNI), motion correction (3dvolreg, AFNI) by registering each 

volume to the volume most similar to all others, brain extraction (BET, FSL); rigid body 

registration to anatomical scans, non-linear registration to a 2mm MNI brain (Symmetric 

Normalization (SyN), ANTS), scrubbing (FD = 0.4), spatial smoothing (FWHM) of 6mm, band-

pass filtering between [0.01 to 0.08] Hz, linear and quadratic de-trending (3dDetrend, AFNI), 

regression of 6 motion parameters, and regression of 3 anatomical nuisance regressors (ventricles, 

draining veins, and local white matter). Global signal regression was not performed. Quality 

control tests confirmed the lack of distance-dependent motion confounds in the denoised data 

(Carhart-Harris et al., 2012; Carhart-Harris, Muthukumaraswamy, et al., 2016). 

 

Structural T1w images were processed using Freesurfer v5.3 (http://surfer.nmr.mgh.harvard.edu/).  

Structural processing included bias field correction, registration to stereotaxic space, intensity 

normalization, skull-stripping, and white matter segmentation. A deformable mesh model was fit 

on the white matter volume via a triangular surface tessellation. This resulted in >160,000 vertices 

which differentiate gray matter, white matter, and pial surfaces. Individual subject surfaces were 

fit to the fsaverage5 spherical surface template, which enables stronger inter-subject 

correspondence in gyral and sulcal folding patterns. 

 

Statistical Analysis 

  

Gradient-mapping. Cortical gradients were computed using the BrainSpace toolbox 

(https://github.com/MICA-MNI/BrainSpace; (de Wael et al., 2020)) as implemented in MATLAB. 

Surfaces were first downsampled from fsaverage 5 space (20,484 vertices) to 10,000 vertices for 

computational efficiency. For each subject, a 10,000 x 10,000 connectivity matrix was then 

computed by calculating the pairwise Pearson’s correlation between all vertices. As has been done 

previously (e.g., Hong et al., 2019; Margulies et al., 2016), this matrix was z-transformed and 
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thresholded row-wise at 90% sparsity in order to retain only the strongest connections. Cosine 

similarity was then computed on the thresholded z-matrix in order to generate a similarity matrix 

which captures the similarity in whole-brain connectivity patterns between vertices. This similarity 

matrix is required as input to the diffusion map embedding algorithm we employed here. The use 

of cosine similarity as the similarity metric of choice is consistent with past work using this 

approach (Hong et al., 2019; Margulies et al., 2016; Paquola et al., 2020).  

 

Diffusion map embedding (Coifman et al., 2005; Margulies et al., 2016), a non-linear manifold 

learning technique from the family of graph Laplacians, was applied to similarity matrices in order 

to identify gradient components at the individual subject level. The technique estimates a low-

dimensional set of embedding components (gradients) from a high-dimensional similarity matrix, 

where each embedding can intuitively be viewed as a dimension of FC pattern similarity 

covariance. In the embedding space, vertices that are strongly connected (as weighted by FC 

pattern similarity) by many connections or a few very strong connections are closer together, 

whereas vertices with little or no connections are farther apart. Euclidean distance between two 

points in the embedding space is equivalent to the diffusion distance between probability 

distributions centered at those points (hence the name of the algorithm), each of which are 

equivalent to ‘difference in gradient value’ as referred to in the main text. The algorithm is 

controlled by a single parameter α, which controls the influence of density of sampling points on 

the manifold (α = 0, maximal influence; α = 1, no influence). Diffusion map embedding is 

specifically characterized by α = 0.5 (Coifman et al., 2005), which allows the influence of both 

global and local relationships between data points in the estimation of the embedding space. 

Following past work (Bethlehem, Paquola, Seidlitz, et al., 2020; Hong et al., 2019), to enable 

comparisons across subjects, Procrustes rotation was performed to align individual-subject 

embedding (gradient) components to an all-subjects group average embedding component 

template. This rotation ensures that gradient axes are matched across subjects. Group contrasts and 

behavioural associations were conducted using surface-based linear models, as implemented in the 

SurfStat toolbox (http://www.math.mcgill.ca/keith/surfstat; Worsley et al., 2009).  

 

Gradient-based connectivity mapping. In order to further explicate how observed gradient 

differences related to interregional FC, we examined unimodal versus transmodal functional 
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connectivity changes as stratified by gradient scores. More specifically, we wanted to determine 

whether unimodal regions (as defined based on the hierarchical gradient) preferentially exhibited 

increased FC with transmodal regions, as opposed to non-specific global increases. To do this, we 

first separated vertex-wise gradient scores into 10 percentile bins (0-10, 11-20, 21-30, etc.) for 

each subject. These 10 bins were then used as ROIs in FC analyses. We were interested in whether 

each bin preferentially increased its connectivity with unimodal versus transmodal cortex after 

psychedelic administration. A combined unimodal cortex ROI was created as the combination of 

the first three percentile bins and a combined transmodal cortex ROI was defined as the last three 

percentile bins. Unimodal-specific FC and transmodal-specific FC was computed for each of the 

10 bins, by computing the Pearson’s correlation (r) between each bin and the combined unimodal 

ROI and the combined transmodal ROI. T-tests were applied to evaluate drug vs. placebo 

differences at each bin for each of unimodal-specific and transmodal-specific FC. 

 

To complement this analysis and examine the spatial distribution of FC associated with each 

gradient percentile bin, we additionally computed seedmaps for each bin and compared across 

drug and placebo conditions at both vertex-wise and network-wise levels. This enabled a more 

detailed look at unimodal-specific versus transmodal-specific changes in whole-brain FC. 

 

Data and code availability 

 

All analyses were conducted in MATLAB using custom code and included functions within the 

BrainSpace and SurfStat toolboxes described above. Data is freely available at 

https://openneuro.org/datasets/ds003059/versions/1.0.0. 

  

Results 
  

We applied gradient-mapping techniques to characterize differences in macroscale cortical 

gradients in each of LSD and psilocybin states relative to their respective placebo states. The 

diffusion-map embedding algorithm used here is, compared to other gradient-mapping approaches, 

robust to noise, computationally inexpensive, and governed by a single parameter controlling the 

influence of the sampling density on the manifold (see Methods for details). Applying this 
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algorithm with standard settings revealed 98 mutually orthogonal gradient components per subject 

in each of the LSD dataset and psilocybin dataset. We presently include discussion of the first 

three gradients revealed by this approach, given that these explain the greatest variance and have 

been highlighted in past work (Margulies et al., 2016). 

 

Principal gradient  
 
The principal gradient of cortical connectivity revealed in the present datasets replicates past 

findings (Hong et al., 2019; Margulies et al., 2016) of a putatively hierarchical axis of FC similarity 

variance spanning from unimodal regions centered in somatomotor cortex on one end to 

transmodal regions centered on the default network and superior frontal gyrus on the other (Figure 

1). Lower principal gradient values reflect greater FC similarity to unimodal cortex, whereas 

higher principal gradient values reflect greater FC similarity to transmodal cortex. This gradient 

explained the greatest amount of variance in each of LSD placebo (mean 12.9% variance 

explained), LSD (mean 12.6% variance explained), psilocybin placebo (mean 13.1% variance 

explained), and psilocybin (mean 11.9% variance explained) conditions. T-tests revealed 

significantly greater explained variance in respective placebo conditions: LSD-placebo (t28 = -

2.17, p=0.047), psilocybin-placebo (t17 = -2.93, p<0.01). 
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Figure 1. Figures are arranged vertically. A. Mean principal gradients representing an axis from unimodal to 
transmodal cortex, and unthresholded and thresholded vertex-wise contrasts in the LSD dataset B: (Top) Histogram 
showing number of occurrences for principal gradient values for each of LSD and placebo (LSD) conditions. (Mid-
Top) Principal gradient range. Between-condition comparisons indicate a significant contraction in the LSD state (t28 

= -2.5, p=0.01). (Mid-Bottom) The principal gradient manifold for both LSD (y-axis) and placebo (LSD) (x-axis) 
conditions, color coded for overall trends in between-condition differences (see inset). (Bottom)  Spider plot displaying 
mean intra-network principal gradient scores for each of six functional networks, following the (Yeo et al., 2011) 
parcellation. Network-wise values indicate the mean gradient value of vertices within that network. Values are 
normalized to the placebo (LSD) condition (black lines). C: (Top) Histogram showing the number of occurrences of 
principal gradient values for each of psilocybin and placebo (psilocybin) conditions. (Mid-Top) Principal gradient 
range. Between-condition comparisons indicate a significant contraction in the psilocybin state (t28 = -3.9, p=0.001). 
(Mid-Bottom) The principal gradient manifold for both psilocybin (y-axis) and placebo (psilocybin) (x-axis) 
conditions, color coded for overall trends in between-condition differences (see inset). (Bottom)  Spider plot displaying 
mean intra-network principal gradient scores for each of six functional networks, following the (Yeo et al., 2011) 
parcellation. Network-wise values indicate the mean gradient value of vertices within that network.  Values are 
normalized to the placebo (psilocybin) condition (black lines). D: Mean principal gradients representing an axis from 
unimodal to transmodal cortex, and unthresholded and thresholded vertex-wise contrasts in the psilocybin dataset. 
Abbreviations: DN = default network; FPCN = frontoparietal control network; DAN = dorsal attention network; SAL 
= salience network; SM = somatomotor network; VIS = visual network 
 
Principal gradient histograms for both datasets suggest a contraction on both sides of this gradient 

in the drug conditions relative to the respective placebo conditions, providing qualitative support 

for our hypothesis of reduced differentiation along this putatively hierarchical axis in the 
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psychedelic state (Figure 1B and 1C Top). To quantitatively assess this, we calculated the 

difference between each subject’s maximum and minimum principal gradient value and compared 

these differences across conditions (Figure 1B and 1C Mid-Top). Results confirmed the presence 

of a significant contraction in both LSD (t28 = -2.5, p=0.01) and psilocybin (t16 = -3.9, p=0.001) 

conditions, reflective of reduced functional differentiation along this axis. We additionally 

evaluated left and right tail contractions separately, this indicated a contraction for the left 

(unimodal) and right (transmodal) tail for psilocybin (t16 = -3.4, p=0.01, right t16 = -3.7, p=0.01) 

and only for the left tail for LSD (left t28 = -3.9, p=0.09, right t28 = -1.27, p=0.22). This indicates 

that unimodal contractions may be more prominent or consistent. Finally, we also conducted a 

Brown-Forsythe test to evaluate whether drug and placebo distributions exhibit unequal variances, 

which was confirmed for both datasets (p<0.001). Similar results were also found with alternative 

tests of unequal variance (Bartlett’s test and the Levene’s test). In order to examine overall trends 

in psychedelic-dependent changes in hierarchical differentiation, we then visualized the principal 

gradient for each dataset as a scatter plot, color coded for increases (red) and decreases (blue) in 

each drug condition relative to placebo (Figure 1D). This revealed that both unimodal-proximal 

regions and transmodal-proximal regions become less differentiated along this axis, suggesting a 

contraction on both sides of the gradient.  

 

Next, we quantitatively assessed between-condition differences in gradient score values at a 

vertex- (Figure 1A and 1D Mid-Bottom/Bottom) and network-wise (Figure 1B and 1C Bottom) 

level. Unthresholded maps at the vertex level are included to display the overall consistency in 

topology between LSD and psilocybin states, indicating that these distinct serotonergic drugs 

affect the principal gradient in a similar manner (Figure 1A and 1D Mid-Bottom). LSD vertex-

wise contrasts revealed LSD-dependent principal gradient increases in somatomotor cortex, as 

well as in both medial and lateral visual regions. LSD-dependent principal gradient decreases were 

found in the precuneus, premotor cortex, superior and inferior frontal gyrus, superior parietal 

lobule, and Wernicke’s area (FWEp<0.05, cdt<0.01). Psilocybin vertex-wise contrasts revealed 

psilocybin-dependent principal gradient increases in somatomotor and auditory cortex, as well in 

visual cortex predominantly on the lateral surface. Psilocybin-dependent gradient decreases were 

found in the superior frontal gyrus and inferior parietal lobule (FWEp<0.05, cdt<0.01).  
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Network-wise differences were assessed according to the Yeo et al. (2011) network parcellation 

scheme. Our use of FDR correction for network-wise contrasts is because FWE (e.g., Bonferroni) 

is unduly stringent at this sample size and likely to produce false negatives. We contend that FDR-

correction with a 5% chance of a false positive is more appropriate for the current datasets and the 

number of tests performed. We also emphasize that the network-wise contrasts are predominantly 

aimed at facilitating the interpretation of the vertex-wise findings.  LSD results indicated a 

significant increase in gradient score within visual and somatomotor networks, and a significant 

decrease within default, frontoparietal control, and dorsal attention networks (p<0.05 FDR 

corrected, critical t-value = |2.7|). Psilocybin results indicated a significant increase in gradient 

score within the somatomotor network and decrease in the default network (p<0.05 FDR corrected, 

critical t-value = |3.3|) All between-condition differences were consistent with the gradient scores 

of significant regions and networks approaching zero, indicating reductions in FC pattern 

similarity to corresponding extremes along this axis. These results therefore offer further 

quantitative support for the qualitative trend seen in Figure 1B and 1C Mid-Bottom. Namely, that 

the LSD state is characterized by a pulling-together of both unimodal (visual and somatomotor) 

and transmodal (default, frontoparietal control, and dorsal attention) networks in gradient space – 

reflective of relatively symmetrical reduction in differentiation along this hierarchical axis of 

cortical connectivity. Control analyses indicate that principal gradient score differences are not 

significantly correlated with motion (Supplementary Figure 1). 

 

Gradient-Based Connectivity Mapping 
 

In order to further explicate the observed reduction in hierarchical organization in the psychedelic 

state, we sought to determine whether the observed changes in gradient values were specifically 

consistent with increased cross-talk between unimodal and transmodal cortices, as hypothesized 

by the abovementioned REBUS model (Carhart-Harris & Friston, 2019). This interest was further 

motivated by the fact that the principal gradient changes found in both datasets each represent a 

movement towards zero. As such, the results are consistent with the changes simply corresponding 

to less of a loading on this gradient in general and not necessarily to increases/decreases in 

unimodal- or transmodal-specific connectivity. To evaluate whether the gradient changes are 

indicative of structured and hierarchically specific changes in FC, we applied a gradient-based 
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connectivity mapping approach. We constructed ROIs based on percentile bins along the principal 

gradient and evaluated drug-induced unimodal versus transmodal changes in FC. In particular, bin 

ROIs were correlated with each of a combined unimodal cortex ROI (three lowest bins) and 

combined transmodal cortex ROI (three highest bins; see Methods for more details). 

 

Between-condition comparisons of unimodal versus transmodal-specific FC supported our 

hypotheses of increased crosstalk between unimodal and transmodal cortices. For both LSD and 

placebo, multiple lower percentile bins (corresponding to the unimodal side of the gradient) 

showed significantly reduced FC with unimodal cortex and less negative FC with transmodal 

cortex (p<0.05, FDR-corrected or uncorrected; Figure 2). In addition, higher percentile bins 

(corresponding to the transmodal side of the gradient) displayed significantly increased FC with 

unimodal cortex but not with transmodal cortex. This suggests that the observed gradient changes 

have their basis in structured, hierarchically specific changes in FC that are consistent with 

increased unimodal-transmodal crosstalk. 

 
 

 
 
Figure 2. Line plots for each of LSD (A) and psilocybin (B) datasets, indicating FC between 10 percentile bins along 
the principal gradient and unimodal (blue) and transmodal (red) cortex. Solid lines indicate drug conditions, while 
dotted lines indicate corresponding placebo conditions. ** = p<0.05, FDR-corrected, * = p<0.05, uncorrected. 
 
To further probe this effect, we also examined the spatial distribution of hierarchically specific 

changes in FC. In particular, we computed whole-brain seedmaps based on each gradient bin ROI 

and compared across conditions at both the vertex-wise and network-wise level (Figure 3). Results 

were largely consistent across drugs and indicate that lower percentile bins exhibit significantly 
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reduced FC with somatosensory and visual networks and increased connectivity with the 

frontoparietal control network, particularly in lateral prefrontal and lateral parietal cortex 

(FWEp<0.05, cdt<0.05 vertex-wise, p<0.05 FDR or uncorrected network-wise). This effect was 

largely sustained in the median percentile bin, with greater differences involving the default and 

limbic networks for LSD. With respect to higher percentile bins, with the exception of the default 

network for the eighth bin of psilocybin, results indicated more of a trend toward increased FC, 

particularly involving visual, dorsal attention, and salience networks (FWEp<0.05, cdt<0.05 vertex-

wise, p<0.05 FDR or uncorrected network-wise).  

 

 
Figure 3. Vertex-wise and network-wise seedmap contrasts for the two lowest, median, and two highest percentile 
bins. Seeds/ROIs were defined based on percentile bins along the principal gradient. (A) The spatial distribution of 
each bin-based ROI. (B) LSD>Placebo contrasts: (left) vertex-wise contrast at FWEp<0.05, cdt<0.05, (right) network-
wise contrast, significance indicated. (C) Psilocybin>Placebo contrasts: (left) vertex-wise contrast at FWEp<0.05, 
cdt<0.05, right network-wise contrast, significance indicated. **=p<0.05, FDR-corrected, *=p<0.05 uncorrected. 
 
Second and third gradient 
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Having found support for our hypothesis of a contraction in macroscale functional hierarchy in the 

LSD state that is consistent with greater unimodal-transmodal crosstalk, we additionally examined 

the second and third gradient of macroscale functional organization. The second gradient 

represents an axis of FC similarity variance that separates the visual cortex on one end from the 

somatosensory/auditory on the other (Figure 4A and 4B). Lower second gradient values reflect 

greater FC similarity to visual cortex, whereas higher principal gradient values reflect greater FC 

similarity to somatomotor/auditory cortex. This gradient explained the second most variance in 

each of LSD placebo (mean 8.8% variance explained), LSD (8.6 variance explained), psilocybin 

placebo (9.8% variance explained), and psilocybin (mean 10.3% variance explained) conditions. 

T-tests revealed significantly greater explained variance in respective placebo conditions: LSD-

placebo (t28 = -2.58, p=0.02), psilocybin-placebo (t17 = -2.68, p=0.02). 

 

The third gradient represents an axis of FC similarity variance that separates executive control 

from the rest of cortex (Figure 4C and 4D). Lower third gradient values reflect greater FC 

similarity to executive networks, whereas higher principal gradient values reflect greater FC 

similarity to non-executive networks. This gradient explained the third most variance in each of 

LSD placebo (mean 7.7% variance explained), LSD (mean 6% variance explained), psilocybin 

placebo (mean 8.4% variance explained), and psilocybin (mean 7.5% variance explained) 

conditions. T-tests revealed significantly greater explained variance in psilocybin placebo (t28 = -

2.36, p=0.03) conditions and a trend-level effect for LSD-placebo (t17 = -1.94, p=0.073). 
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Figure 4. Mean second gradients representing an axis from visual to somatomotor cortex, unthresholded and 
thresholded vertex-wise contrasts, and network-wise contrasts in the LSD dataset (A) and (B) the psilocybin dataset. 
(C) Mean third gradients representing an axis from executive control regions to the rest of the cortex, unthresholded 
and thresholded vertex-wise contrasts, and network-wise contrasts in the LSD dataset and (D) the psilocybin dataset. 
Network-wise contrasts display mean intra-network gradient values for each of six functional networks, following the 
(Yeo et al., 2011) parcellation. Values are normalized to the respective placebo conditions (black lines). Blue lines 
indicate drug condition. Abbreviations: DN = default network; FPCN = frontoparietal control network; DAN = dorsal 
attention network; SAL = salience network; SMN = somatomotor network; VIS = visual network. 
 
LSD second gradient vertex-wise contrasts revealed LSD-dependent increases in lateral and 

ventral visual cortex and the middle and superior frontal gyrus bilaterally, while decreases were 

found in somatomotor and auditory cortex (pFWE<0.05, cdt<0.01). Network-wise contrasts 

revealed significant increases in frontoparietal control and visual networks and decreases in the 

somatomotor network (FDR p<0.05, critical t-value = |2.9|). Psilocybin vertex (FWEp<0.05, 

cdt<0.01) and network-wise (FDR p<0.05, critical t-value = |3.4| contrasts revealed no significant 

differences), likely due to a lack of power in this dataset. Visual inspection of the unthresholded 
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contrast maps indicates overlap in topology between psilocybin and LSD-induced changes 

predominantly within lateral prefrontal cortex and posteromedial cortex. Control analyses indicate 

that second gradient score differences are not significantly correlated with motion (Supplementary 

Figure 2). 

 

LSD third gradient vertex-wise contrasts revealed LSD-dependent increases in clusters within 

somatomotor vortex, lateral and medial visual cortex, and the retrosplenial/posterior cingulate 

cortex, while decreases were found in bilateral posterior middle temporal gyrus, bilateral inferior 

frontal gyrus, left premotor cortex, and right supramarginal gyrus (FWEp<0.05, cdt<0.01). Network-

wise contrasts revealed significant increases in visual and somatomotor networks and decreases in 

the frontoparietal control network (FDR p<0.05, critical t-value = |2.6}). Psilocybin third gradient 

vertex-wise contrasts revealed significant decreases in the right supramarginal gyrus and right 

posterior middle temporal gyrus (p<0.05, cdt<0.01). Network-wise contrasts revealed a significant 

decrease within the dorsal attention network (FDR p<0.05, critical t-value = |3.1|). Control 

analyses indicate that third gradient score differences are not significantly correlated with motion 

(Supplementary Figure 3). 

 
Gradient manifolds 
 
To visualize the relationship between the three gradients examined in this study and how they 

differ across drug and placebo conditions, we created gradient manifold scatter plots, color coded 

for each of the Yeo et al. 2011 7 networks (Figure 4). Qualitative examination of the LSD manifold 

plots (Figure 5A and 5B) reveals an overall less diffuse embedding space distribution in the LSD 

state, marked by notable contractions on the unimodal aspect of the principal gradient and the 

visual aspect of the second gradient. Qualitative examination of the psilocybin manifold plots 

(Figure 5C and 5D) similarly shows a significant contraction on the unimodal side of the principal 

gradient, but less contraction of the visual network along the second gradient relative to LSD. 

Psilocybin also displays a greater contraction of transmodal (default and frontoparietal control 

network) nodes in the principal gradient, and, interestingly, a greater contraction of the third 

gradient primarily involving regions within salience and dorsal attention networks. 
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Figure 5. (A) Scatterplots representing the gradient embedding space across the first three gradients, for LSD placebo 
(left) and LSD (right) conditions. (B) Scatterplots representing the gradient embedding space across the principal and 
second gradient, for LSD placebo (left) and LSD (right) conditions. (C) Scatterplots representing the gradient 
embedding space across the first three gradients, for psilocybin placebo (left) and psilocybin (right) conditions. (D) 
Scatterplots representing the gradient embedding space across the principal and second gradient, for psilocybin 
placebo (left) and psilocybin (right) conditions. Scatter plot colors indicate functional network as per the (Yeo et al., 
2011) 7-network parcellation scheme (see inset for legend).. Black arrows indicate contractions along each gradient. 
  
Control Analyses 
 
To support the robustness and reliability of our results we conducted multiple control analyses. 

First, to further ascertain whether our results are robust to motion confounds, we conducted all 

analyses on the principal gradient following a more stringent pipeline which appplied the original 

denoising approach but included an expanded set of 24 motion regressors and global signal 

regression. Results shown the Supplementary Figure 1 indicate a replication of hierarchy 

contraction in both LSD and psilocybin datasets. Second, to ascertain whether the results are 

independent of placebo effects, we conducted analyses on the principal gradient contrasting a 

psilocybin pre-infusion scan to the post-infusion scan used in the primary analyses. Hierarchy 

contraction was indeed replicated (Supplementary Figure 2A). Finally, we also conducted 

principal gradient analyses on additional LSD and LSD placebo scans that were conducted with 

music. Hierarchy contraction was also replicated when contrasting these scans (Supplementary 

Figure 2B). These control analyses, along with fact of replication in two distinct datasets, offer 

considerable support for the robustness and reliability of the present findings. 
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Discussion  

  

To investigate psychedelic-induced changes in cortical functional organization and test the 

hypothesis that serotonergic psychedelics attenuate brain hierarchical organization, we 

characterized macroscale cortical gradients after LSD and psilocybin administration. Our results 

for both LSD and psilocybin datasets replicated past findings (Hong et al., 2019; Margulies et al., 

2016) of a hierarchical principal gradient which represents a pattern of FC (dis)similarity spanning 

from unimodal sensory to transmodal association cortex. Between-condition contrasts supported 

our primary hypothesis: relative to placebo conditions, this gradient exhibited a significant 

contraction in both LSD and psilocybin states, reflective of less differentiated hierarchical 

organization. This contraction was more prominent on the unimodal side of the gradient, 

particularly with LSD, but was also evident on the transmodal axis as evidenced by vertex- and 

network-wise findings with both drugs. This suggests that both somatomotor regions on the 

unimodal aspect and default and frontoparietal regions on the transmodal aspect both became less 

differentiated along this hierarchical axis. Gradient-based connectivity mapping indicated that this 

contraction has its basis in hierarchically specific changes in FC that are consistent with increased 

crosstalk between unimodal and transmodal cortices and a disruption of specialized sensory 

processing. Overall, there was strong convergence in the topographical changes across the LSD 

and psilocybin datasets, providing important support for the robustness of our findings given the 

small sample sizes. Results with the second and third gradient indicate alterations to axes of 

cortical organization related to sensory differentiation and executive region differentiation, 

respectively. The topography of changes for these two gradients showed strong overlap across 

datasets, but with greater significant changes with LSD, likely owing to power differences. Second 

gradient findings with LSD extend previous work suggesting significant alterations to whole-brain 

visual FC in the LSD state (Carhart-Harris, Muthukumaraswamy, et al., 2016; Preller et al., 2018). 

Collectively, these results provide evidence for significant alterations of macroscale cortical 

gradients following psychedelic administration, marked by attenuation of hierarchical 

differentiation between unimodal and transmodal cortices as well as dedifferentiation along 

sensory and executive axes of cortical organization. 
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Past neuroimaging investigations with LSD and psilocybin, including past analyses of the present 

datasets, have revealed that they elicit a complex set of changes to both static and dynamic FC, as 

well as to regional and interregional entropy/complexity (Barnett et al., 2020; Carhart-Harris, 

2018; Carhart-Harris, Muthukumaraswamy, et al., 2016; Lebedev et al., 2016; Lord et al., 2019; 

Luppi et al., 2021; Müller et al., 2018; Preller et al., 2018; Roseman et al., 2014; Schartner et al., 

2017; Tagliazucchi et al., 2014; Tagliazucchi et al., 2016; Varley et al., 2019). This work has often 

attempted to manage this complexity by describing results either in terms of a focus on specific 

large-scale network interactions (e.g., involving the default network) or in terms of general trends 

(e.g., towards global integration; Carhart-Harris, Muthukumaraswamy, et al., 2016; Preller et al., 

2018; Preller et al., 2020; Roseman et al., 2014; Tagliazucchi et al., 2016).  This approach, while 

useful and necessary given the infancy of the field, can obscure important nuances in the structure 

of the datasets in question. For example, although decreased within-network and increased 

between-network FC is often listed as a consistent finding with serotonergic psychedelics, the 

effects with respect to specific networks and network pairs has limited overlap across drugs and 

datasets (Carhart-Harris, Muthukumaraswamy, et al., 2016; Müller et al., 2018; Roseman et al., 

2014). Although this is to be somewhat expected given small sample sizes and analytical 

discrepancies, it suggests the need for approaches which can help organize findings and facilitate 

comparisons. The cortical gradient approach used here provides a novel perspective on the neural 

effects of serotonergic psychedelics by collapsing the complex mosaic of increases and decreases 

in FC into a low-dimensional set of macroscale axes which suggest specific alterations in cortical 

information processing. This approach can facilitate both functional interpretation (as described 

below) and the identification of effects specific to this class of drugs, which, evidently, decreased 

network segregation (or decreased default mode network integration) is not. As an example, 

healthy aging is also characterized by decreased within-network and increased between-network 

FC, yet gradient analyses comparing young and older adults have revealed qualitatively very 

different effects than those observed here (Bethlehem, Paquola, Seidlitz, et al., 2020; Setton et al., 

2021). 

 

Our results indicate that the FC profiles of unimodal and transmodal cortices are less dissimilar in 

the serotonergic psychedelic state, and that this is largely driven by a disintegration of unimodal 

cortices and greater unimodal-transmodal integration. This points to important systems-level 
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alterations in the psychedelic state. During regular functioning, the hierarchical axis spanning from 

unimodal to transmodal cortex represents a central organizing principle of the cortex which allows 

for the functional segregation and integration of concrete sensory and abstract cognitive 

information (Margulies et al., 2016; Mesulam, 1998; Murphy et al., 2018; Vézquez-Rodríguez et 

al., 2020). Consistent with segregation, meta-analytic and task-based fMRI studies have provided 

evidence that lower levels of the hierarchy pertain to behaviours that are coupled to immediate 

sensory input, while higher hierarchical zones pertain to perceptually-decoupled, abstract 

cognitive processes (Margulies et al., 2016; Mckeown et al., 2020; Murphy et al., 2018). Consistent 

with integration, increasing resting-state fMRI evidence indicates that cortical signals tend to 

propagate through the macroscale processing hierarchy from specialized sensory processing, to 

multi-modal integration, to higher-order, integrative processing within a distributed network of 

transmodal hubs (Hong et al., 2019; Paquola et al., 2020; Park et al., 2020; Sepulcre et al., 2012; 

Vézquez-Rodríguez et al., 2020). Understood in light of this research, our findings provide novel 

evidence that serotonergic psychedelics reduce the intervening processing steps between unimodal 

and transmodal cortex and further suggest that this may be related to a disruption of functionally 

specialized unimodal processing. In line with the REBUS model (Carhart-Harris & Friston, 2019), 

this pattern of results suggests decreased functional differentiation between sensory and abstract 

cognitive processing in the psychedelic state – a notion in line with reports that psychedelics can 

elicit a blurring of the internal-external/subject-object distinction and an increased influence of 

internal mentation on perceptual processing (Fox et al., 2018; Girn & Christoff, 2018; Girn et al., 

2020; Kraehenmann et al., 2017; Millière, 2017).  

 

Intriguingly, a contraction in cortical hierarchy was recently observed in patients suffering from 

schizophrenia (Dong et al., 2021) – a condition long considered to feature phenomenological 

similarities to the psychedelic state (Leptourgos et al., 2020; Mogar, 1970; Rucker et al., 2018). 

This study similarly found that the contraction in hierarchy was underpinned by a disruption of 

specialized unimodal processing and increased unimodal-transmodal cross-talk. The overlap found 

here suggests a common systems-level disruption in the relationship between concrete sensory and 

abstract cognitive processing in schizophrenia and the psychedelic state (Leptourgos et al., 2020; 

Mogar, 1970; Preller & Vollenweider, 2016). However, we note this disruption may occur via 

differential causal trajectories, with potentially different behavioural implications. Dong and 
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colleagues interpret their results in light of past schizophrenia research suggesting that  “… [the 

disruption of] early regions of the sensory pathway may result in bottom-up dysregulation of 

higher cortical function” (Dong et al., 2021, p. 9). According to this ‘bottom-up’ view, the 

observed systems-level alterations of cortical hierarchy have their locus in dysfunctional sensory 

processing. A contrasting ‘top-down’ view posits that alterations in transmodal processing are the 

locus of changes in cortical hierarchy. One top-down interpretation is that increased global FC of 

transmodal cortex disrupts specialized unimodal sensory processing and increases the sensitivity 

of low-level sensory processing to high-level representations. An alternative top-down 

interpretation, proposed by the REBUS model, is that alterations of transmodal activity and 

connectivity lead to reduced top-down control of lower-order areas, leading to increased influence 

of unimodal sensory inputs on high-level transmodal representations. Although these 

interpretations cannot be adjudicated based on the current datasets (and may not be mutually 

exclusive), the top-down interpretations for psychedelic findings are consistent with evidence from 

in vivo PET molecular imaging that serotonin 2A receptor (the receptor most robustly linked to 

psychedelic effects (Nichols, 2016)) densities are highest in human transmodal cortices (Beliveau 

et al., 2017). However, we also note that the bottom-up view is consistent with thalamocortical 

models of psychedelic brain effects, which posit that agonism of presynaptic serotonin 2A 

receptors on thalamocortical afferents attenuates sensory gating, thereby producing cortical 

sensory overload and subsequent higher-order disruptions (Vollenweider & Preller, 2020). Future 

work should seek to evaluate these competing hypotheses of psychedelic action and their 

(dis)similarity to neural alterations in schizophrenia. 

 

In addition to changes in cortical hierarchy, we examined changes in the second and third gradient 

of cortical connectivity. The second gradient represents the differentiation of visual versus 

somatomotor/auditory processing. We found multiple changes to this gradient with LSD which 

were not present with psilocybin, pertaining primarily to visual network differentiation along this 

axis. However, it is unclear given the limitations of the present datasets whether this is related to 

differential noise or ‘true’ drug-specific effects. The third gradient represents an axis which 

differentiates the so-called task positive (Fox et al., 2005)/multiple demand (Duncan, 

2010)/executive network (Niendam et al., 2012; Seeley et al., 2007) from the rest of the cortex. 

Results with both drugs broadly indicate a contraction of this gradient consistent with reduced 
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differentiation of executive regions from the rest of cortex. Although speculative, this might relate 

to certain cognitive impairments present while under the influence of these drugs (Pokorny et al., 

2020). 

 

Finally, to our knowledge, this is the first investigation which has shown significant 

pharmacologically-induced alterations of macroscale cortical gradients. In particular, we have 

demonstrated that cortical gradients can be acutely altered by two distinct pharmacological 

manipulations. Although LSD and psilocybin exhibit a complex pharmacology, past investigations 

with LSD and psilocybin have consistently found that antagonist blockade of the 5-HT2A receptor 

abolishes the characteristic subjective and neural effects of these drugs, including changes to 

whole-brain functional connectivity (Kraehenmann et al., 2017; Nichols, 2016; Preller et al., 2018; 

Preller et al., 2017; Vollenweider et al., 1997; Vollenweider et al., 1998). As such, although strong 

conclusions cannot be made in the absence of explicit 5-HT2A antagonism, the present findings 

provide preliminary evidence that 5-HT2A agonism may modulate the functional differentiation 

of unimodal and transmodal systems, as well macroscale axes of cortical connectivity more 

generally. Targeted research is needed to investigate whether this is indeed the case and whether 

this effect generalizes to endogenous serotonergic 5-HT2A agonism. 

 

An important limitation to the present results is the relatively small sample sizes. For this reason, 

we encourage cautious interpretation of our findings. However, the convergence across drugs and 

replication across multiple control analyses found here provides strong evidence for the robustness 

of the observed effects. Despite consistent evidence indicating their safety in controlled research 

settings (Johnson et al., 2008; Schmid et al., 2015), as well as their potential as both clinical and 

basic science tools (e.g., Carhart-Harris & Friston, 2019; Girn & Christoff, 2018; Girn et al., 2020; 

Johnson et al., 2019; Mason et al., 2021; Nour & Carhart-Harris, 2017), collecting large datasets 

with psychedelics is currently difficult due to persisting regulatory and financial hurdles (Nutt et 

al., 2013). We hope our findings serve as a foundational guide for future research in this nascent 

field and as motivation for replication in larger samples.  

 

Another related limitation is that the principal gradient as derived from the psilocybin placebo 

condition features gradient values that are on the whole lower than the placebo condition of the 
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LSD dataset. Ideally, the two placebo conditions should be identical and form a baseline indicator 

of reliability. We note, however, that although gradient values are lower in psilocybin, the overall 

topography of the principal gradient highly convergent with LSD. This was confirmed 

quantitatively by an evaluation of the vertex-wise correlation between the mean LSD placebo and 

psilocybin placebo principal gradients (Spearman’s rho = 0.96). As such, the difference in gradient 

values observed across placebo conditions is not expected to result in systematic differences in 

contrast results. Moreover, in further support of a lack of dependence of the results on 

idiosyncrasies within the placebo condition, the psilocybin results were replicated with a pre versus 

post infusion contrast (Supplementary Figure 2B). 

 

The present study extends past findings on the neural underpinning of the psychedelic state by 

revealing that the whole-brain effects of LSD and psilocybin can be represented as a contraction 

the brain’s macroscale functional hierarchy – directly in line with a recently proposed unified 

model of psychedelic brain action (Carhart-Harris & Friston, 2019). We also provided evidence of 

reductions in sensory and executive region differentiation following psychedelic administration. 

Future work is needed to ascertain whether reductions in cortical hierarchy in the acute psychedelic 

experience directly relate to findings of rapid and sustained symptom reductions observed via 

psychotherapeutically-mediated experiences with these drugs (Carhart-Harris & Friston, 2019; 

Johnson et al., 2019). The findings of this study lend further weight to the view that psychedelics 

can be powerful tools for investigating brain organization and dynamics. 
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Chapter 5: General Discussion 

Collectively, these three studies offered novel findings on DN functional organization, role in 

cognition and behaviour, and sensitivity to pharmacological manipulation. In Study 1, we applied 

modularity, clustering, and RSFC-mapping analyses to assess whether limbic network (LIM) 

regions can be construed of as extensions of the DN, as well as to assess LIM heterogeneity in 

whole-brain RSFC. In support of our hypotheses, a large proportion of the LIM was assigned to 

the DN via modularity approaches, and clustering and RSFC-mapping analyses supported the 

presence of distinct LIM regions with varying patterns of DN subsystem RSFC. In Study 2, we 

assessed multivariate brain-behaviour associations involving DN subsystems, as well as LIM and 

temporoparietal (TPar) networks. We found evidence for complex mappings between the structure 

and function of DN subsystems and related networks, and behaviour. Our findings converged with 

and went beyond task-based investigations of these (sub)networks, providing evidence for 

selective and distributed contributions to complex behavioural phenotypes. Study 3 applied a 

combination of gradient- and RSFC- mapping analyses to assess whether DN functional 

organization and relationship to other large-scale networks was significantly altered by 

psychedelic drug administration. Results supported our hypotheses: there was a significant 

attenuation of the principal gradient of macroscale cortical organization in the psychedelic state, 

underpinned by reduced functional differentiation between transmodal (i.e., the DN) and unimodal 

cortices. These findings provided novel evidence that a fundamental organizational property of 

macroscale organization can be significantly disrupted by an acute serotonergic manipulation and 

support a leading theory of psychedelic brain action. In sum, the present thesis provides significant 

advances on multiple components of our current understanding of the DN and pave the way 

forward for future theoretical perspectives and empirical approaches. 

 

The default network, limbic network, and emotional processing: the affect-laden nature of 
thought 
 
Studies 1 and 2 underscore a close relationship between the DN and LIM – both in terms of RSFC 

and of associations with non-neural individual differences. As described in the Literature Review 

above, the DN was first identified as a set of regions that consistently deactivate in response to 

most canonical cognitive paradigms, and was later identified based on seed-based RSFC (Greicius 

et al., 2003; Raichle & Snyder, 2007; Shulman et al., 1997). These two approaches set the standard 
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for our understanding of the regional composition of the DN, and was later supported by the 

influential Yeo et al. (2011) network parcellation which applied clustering analyses to reveal a 

similar composition. These studies did not find consistent evidence that LIM regions – i.e., the 

temporal poles (TP), orbitofrontal cortex (OFC), and ventral anterior temporal lobe (vATL) – are 

a part of the DN.  Critically, the data for these studies (and the majority of fMRI studies in general) 

were collected with conventional fMRI acquisitions which yield poor signal quality in LIM regions 

(Ojemann et al., 1997).  

 

The notion that the exclusion of LIM regions from the DN in past work is likely a false negative 

due to a lack of sensitivity is supported by a large task-activation literature. This literature has 

consistently found evidence for the co-recruitment of DN and LIM regions across a variety of tasks 

(Andrews-Hanna et al., 2014; Dixon et al., 2017; Kieran C.R. Fox et al., 2018; Frith & Frith, 2007; 

Spreng et al., 2009). Each of these networks have been linked to distinct but likely highly 

interrelated functions. LIM regions have been strongly linked to processes at the intersection of 

memory, emotion, and (social) cognition (Binney et al., 2016; Herlin et al., 2021; Jackson et al., 

2016; Olson et al., 2007; Rolls et al., 2020). In particular, the OFC has been linked to emotional 

appraisal, value attribution, and reward representations (Dixon et al., 2017; Rolls et al., 2020), and 

both the TP and vATL have been linked to the integration of emotional and perceptual information 

into multimodal abstract representations that are accessed and manipulated for semantic 

processing, language, and social cognition (Binder et al., 2009; Binney et al., 2016; Herlin et al., 

2021; Jackson et al., 2016; Olson et al., 2007; Ralph et al., 2017; Rolls et al., 2020). In contrast, 

contemporary conceptions of the DN have highlighted its central role in all cognitive processes 

that rely on internal representations (i.e., memory) rather than (or in addition to) sensory 

information available in the here-and-now (Smallwood, Bernhardt, et al., 2021; Stawarczyk et al., 

2019). Examples include social cognition/mentalizing, spontaneous thought/mind-wandering, 

episodic memory recall and projection, self-referential processing, and narrative comprehension 

(Andrews-Hanna et al., 2014; Smallwood, Bernhardt, et al., 2021; Stawarczyk et al., 2019).  

 

The functional bridge connecting these two networks is that the various cognitive processes in 

which the DN is engaged in are usually, if not always, emotionally valenced (Kieran C.R. Fox et 

al., 2018). Consistent with the results of Study 1 which indicated high RSFC between medial OFC, 
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left TP, and the DN, a variety of studies have found activation within both the medial OFC and TP 

during internally-directed/self-generated thinking – which includes mentalizing, episodic 

recall/projection, and self-referential thinking – and correlations between medial OFC activity and 

the emotional valence of such thinking (D'Argembeau et al., 2005; D'Argembeau et al., 2007; 

Dixon et al., 2017; Kieran C.R. Fox et al., 2018; Koelsch et al., 2022; Spiers & Maguire, 2006; 

Taruffi et al., 2017; Tusche et al., 2014). It is further worth noting that high RSFC in Study 1 was 

found particularly between medial OFC and each of DNA and DNC, as well as the hippocampus 

and amygdala – all of which are involved in processes at the intersection of episodic memory, 

spontaneous thought, and emotion (Ellamil et al., 2012; Ellamil et al., 2016; Kieran C.R. Fox et 

al., 2018). The overlap in function between the DN and LIM was additionally supported by the 

results of Study 2, which found that LIM and DNB were the strongest contributors to multiple axes 

of brain-behaviour covariance and, in particular, axes which featured a disproportionate number 

of social, emotional, and/or semantic variables. The present results and past task-based research, 

therefore, underscores the relatively neglected contribution of LIM-mediated emotional-semantic 

processing to DN function and self-generated cognition, and the likelihood that LIM regions may 

be accurately construed as extensions of the DN. 

 

This notion of a close link between the DN and emotion aligns with multiple theoretical proposals 

on the neuroscience of emotion. Differences aside, these distinct proposals argue that, rather than 

cognition and emotions having their basis in discrete regions/networks, both are deeply intertwined 

and emerge from distributed interactions between multiple large-scale networks (Barrett, 2017; 

Dixon et al., 2017; Pessoa, 2008; Satpute & Lindquist, 2019). In this manner, cognition and 

emotion cannot be fully dissociated: abstract cognitive functions enable the appraisal of a 

particular viscerosomatic/interoceptive state as a particular emotional category, and this appraisal 

informs one’s thought process and action selection (Barrett, 2017; Satpute & Lindquist, 2019). 

These proposals also highlight the manner in which valuation/emotional appraisal is intrinsic to 

perception and cognition – that is, all apprehended internal and external stimuli carry an affective 

tone (Dixon et al., 2017; Pessoa, 2008). This idea is supported, for example, by a variety of studies 

on internally-directed/self-generated thinking which have explicitly assessed and highlighted the 

affect-laden nature of cognition (Kieran C.R. Fox et al., 2018). The results of Study 1 and Study 2 

therefore also dovetail with the latest theoretical perspectives on the neuroscience of emotion, 
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providing novel evidence in support of the DN’s role in LIM-mediated emotional processing and 

the LIM’s role in DN-mediated cognition. Future RSFC, task-based, and individual differences 

research should seek to employ acquisitions which afford reliable signal in LIM regions and further 

evaluate their relationship to the DN and complex cognition – with directly relevance for cases in 

which cognition goes awry in psychopathology, such as ruminative depression (Rolls et al., 2020). 

 

Multivariate individual differences studies reveal the true complexity of brain-behaviour 
associations 
 
The results of Study 2 revealed complex multivariable links between the brain and behaviour. A 

particularly interesting finding was that particular behavioural variables (e.g., loneliness) were 

found in multiple distinct axes and grouped alongside highly distinct variable sets in each case. 

This indicates that high scores in a given behavioural measure can occur in varying phenotypic 

contexts. For example, RSFC results from Study 2 found that, for one axis, high loneliness 

occurred along high neuroticism, emotional avoidance, and perceived hostility and rejection, while 

for another axis it co-occurred alongside measures of semantic memory/crystallized education and 

greater education. The former suggests a broader phenotype in which loneliness occurs in the 

context of poor mental health and interpersonal dysfunction, whereas the latter suggests the 

presence of loneliness in the context of a prioritization of solo academic/intellectual pursuits. A 

testable hypothesis that emerges from these results is whether high loneliness (or any other 

individual-differences measure) is differentially neurally expressed depending on the broader 

phenotypic context in which it is present.  

 

The plausibility of this hypothesis is supported by neuropsychiatric research on data-driven 

phenotypic subtypes in the context of mental health disorders (Brucar et al., 2023; Drysdale et al., 

2017; Feczko et al., 2019). In such approaches, data-driven analyses are applied to large datasets 

consisting of behavioural/clinical assessments and (neuro)biological data with the goal of 

extracting distinct and dissociable subtypes for a given disorder (e.g., depression) or across 

disorders (Brucar et al., 2023; Drysdale et al., 2017; Feczko et al., 2019). This process can 

disentangle intra-disorder heterogeneity, thereby facilitating targeted treatment options, helping 

clarify biological underpinnings, and improving future diagnoses (Brucar et al., 2023). Phenotypic 

subtyping research has indeed found evidence for behaviorally and biologically distinct subtypes 
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across multiple disorders, with direct clinical relevance (Brucar et al., 2023; Drysdale et al., 2017; 

Faraone et al., 1998; van Rentergem et al., 2021). This work highlights the limitations of univariate 

studies which seek to relate particular symptoms to the brain in isolation, and underscores the value 

of deep phenotyping and analysis of the interrelations between symptom clusters and brain 

clusters.  

 

It is possible, therefore, – as suggested by Study 2 of the present thesis – that there are also distinct 

phenotypic subtypes of behavioural variation in healthy functioning and that the broader 

contextual embeddedment of a particular measure may be needed to accurately ascertain its neural 

basis. Speculatively, this may be most the case with complex measures which can ostensibly 

manifest in a variety of ways (e.g., socio-emotional measures such as loneliness, interpersonal 

support/appraisal/belonging, and perceived rejection, as well as personality measures). It is worth 

highlighting that the greater acknowledgement of how non-neural measures group together in 

complex ways in tandem with the brain is uniquely afforded by multivariate individual differences 

studies. While univariate brain-behaviour studies may reveal associations involving specific 

measures, they operate under the dubious statistical assumption that these associations occur in a 

vacuum. The results from such studies may therefore obscure important relationships between 

measures and, by extension, downplay interactions between functionally distinct 

regions/networks. This is also supported by the results of Study 2 – as well as previous similar 

investigations (Goyal et al., 2022; Smith et al., 2015) – which indicate the presence of complex 

behavioural variation that is underpinned by neural patterns that show some functional selectivity, 

but ultimately cut across functionally distinct large-scale (sub)networks. These suggest that 

regions comprising the DN and related networks collectively play graded and complex roles across 

a wide variety of shared traits, behaviours, and cognitive processes. Thus, it can be argued that, 

although task and univariate studies are able to isolate specific processes/measures and link them 

to functionally dissociable networks, this process of isolation will necessarily downplay the 

interactivity between networks and how they act in concert in varying was to give rise to variation 

in overall behavioural phenotypes. Future multivariate individual-differences studies are needed, 

therefore, to further illuminate how distinct networks – and/or the brain as a whole – jointly 

contribute to the complex behaviours that underlie day-to-day human life. 
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Psychedelic drugs, macroscale hierarchical predictive coding, and the default network  
 
 
After a multi-decade research hiatus, psychedelic drugs such as psilocybin, LSD, and DMT have 

re-emerged as scientific and clinical tools of significant interest (Girn et al., 2023; Kwan et al., 

2022; McClure-Begley & Roth, 2022; Nutt & Carhart-Harris, 2021). The value of psychedelics 

tools for basic (neuro)scientific research is driven by their ability to uniquely and potently alter 

multiple dimensions of conscious experience, spanning perception, cognition, emotion, and sense 

of self (Girn & Christoff, 2018; Girn et al., 2020; Girn et al., 2023; Girn et al., 2022; Preller & 

Vollenweider, 2016; Vollenweider & Preller, 2020). Important for the present context, empirical 

findings and theoretical models have highlighted changes to DN function as central to psychedelic 

brain action (Carhart-Harris, 2018; Carhart-Harris et al., 2012; Carhart-Harris & Friston, 2019; 

Carhart-Harris et al., 2014; Girn et al., 2022; Lebedev et al., 2015; Muthukumaraswamy et al., 

2013).  

 

The notion that psychedelics elicit their primary effects via a disruption of DN function and the 

downstream consequences thereof is supported by their neuropharmacological mechanisms. As 

mentioned in the manuscript for Study 3, the primary subjective and neural effects of serotonergic 

psychedelics can be largely attributed to agonism of 5-HT2A receptors - as evidenced by studies 

in humans and rodents with 5-HT2A antagonists (Kwan et al., 2022; Nichols, 2016). This receptor 

is the most abundant cortical serotonin receptor and, critically, has its highest density in transmodal 

association cortex centered on the default network, as well as in visual area V1 (Beliveau et al., 

2017). Moreover, within transmodal cortex, 5-HT2A receptors are located specifically on the 

apical dendrites of layer 5 pyramidal cells (Aghajanian & Marek, 1997) – a neuron type that is 

critical for local (across cortical layers) and global (via long-range cortical and subcortical 

connections) information integration in the brain (Ramaswamy & Markram, 2015). The 

neuroanatomical localization of 5-HT2A receptors therefore suggests that they are poised to have 

a strong ability to modulate transmodal/DN function and, by extension, whole-brain RSFC and 

dynamics.  

 

Further supporting this notion are the neuronal effects of 5-HT2A agonism. In particular, 5-HT2A 

agonism leads to a general increase in the excitability of layer 5 pyramidal neurons and the 
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activation of recurrent networks of deep layer 5 pyramidal neurons specifically (Aghajanian & 

Marek, 1997; Aghajanian, 2009; Aghajanian & Marek, 1999; Lambe & Aghajanian, 2006). This 

occurs via an increase in glutamatergic transmission, through a combination of synaptic and 

volume-transmission effects (Aghajanian, 2009; Aghajanian & Marek, 1999; Lambe & 

Aghajanian, 2006). Regarding the latter, there is evidence of 5-HT2A-receptor-induced ‘glutamate 

spillover’, where in glutamate spills into the extracellular space and alters the firing patterns of 

neurons in adjacent populations (Aghajanian, 2009; Aghajanian & Marek, 1999; Lambe & 

Aghajanian, 2006). Evidence suggests that this results in a disruption of local oscillatory dynamics 

in transmodal association cortices and, consequently, a disruption of functionally segregated, 

population-level information processing in these regions (Carhart-Harris & Friston, 2019; Carhart-

Harris et al., 2014; Carhart-Harris, Muthukumaraswamy, et al., 2016; Muthukumaraswamy et al., 

2013; Schartner et al., 2017; Timmermann et al., 2019). This, in turn, is thought to result in a 

cascade of brain-wide consequences which ultimately result in the potent effects of psychedelics 

on whole-brain RSFC and large-scale network dynamics as observed by functional neuroimaging 

(Alamia et al., 2020; Carhart-Harris, Muthukumaraswamy, et al., 2016; Girn et al., 2023; Girn et 

al., 2022; Lewis et al., 2017; Lord et al., 2019; Luppi et al., 2021; McCulloch et al., 2022; Müller 

et al., 2018; Preller et al., 2018; Roseman et al., 2014; Varley et al., 2020) 

 

The centrality of the DN in the neuropharmacological effects of psychedelics, its relationship to 

psychedelic alterations of global brain function, and how all of this relates to psychedelic 

subjective effects can be fruitfully characterized in terms of hierarchical predicting coding 

accounts of brain function (Carhart-Harris & Friston, 2019; Clark, 2013; Girn et al., 2022; Rao & 

Ballard, 1999). These accounts posit that the brain represents the world via a multilevel cascade 

of dynamically updated predictive models, wherein a model at a given hierarchical level predicts 

and explains the models at lower levels (Clark, 2013). For example, in visual perception, this 

account proposes that object recognition neurons predict and explain the activity of neurons 

encoding low-level sensory features such as lines and edges. According to such accounts of brain 

function, the DN may represent the pinnacle of the brain’s representational hierarchy, drawing 

from long-term and associative mnemonic information to generate high-level representations of 

ongoing experience in order to optimally predict and guide perception, cognition, and behaviour 

(Carhart-Harris & Friston, 2019; Smith et al., 2018; Stawarczyk et al., 2019; Vatansever, Menon, 
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et al., 2017). These high-level representations have variably referred to as scenes (Hassabis & 

Maguire, 2007), contexts (Bar, 2007; Ranganath & Ritchey, 2012; Smith et al., 2018), or event 

models (Baldassano et al., 2017; Stawarczyk et al., 2019). In relation to psychedelics, it may be 

that, via the 5-HT2A-based mechanisms described above, they disrupt the population-encoding of 

these high-level representations, thereby impairing the usual top-down prediction-based 

organization of experience and resulting in ‘psychedelic’ subjective effects. This perspective is 

consistent with the RElaxed Beliefs Under pSychedelics (REBUS) model of psychedelic effects 

(Carhart-Harris & Friston, 2019). A core idea of this model is that psychedelics impair the top-

down constraining effect of association cortices on lower-level sensory and limbic networks, 

thereby liberating bottom-up information flow and increasing crosstalk between abstract (i.e., DN) 

and concrete (visual/somatosensory/auditory) processing (Carhart-Harris & Friston, 2019). As 

described above, Study 3 provided empirical support for this in two independent psychedelic 

datasets, one with LSD and one with psilocybin (Girn et al., 2022). A recently published study 

also found a similar pattern with DMT (Timmermann et al., 2023). 

 

An often-discussed component of the psychedelic experience that may be plausibly explained from 

the above-described hierarchical predictive coding perspective is so-called ‘ego dissolution’, 

which pertains to an attenuation of one’s sense of being distinct from others and the external world, 

and which coincides with a blurring between internal and external experience (Girn & Christoff, 

2018; Nour & Carhart-Harris, 2017; Nour et al., 2016). Speculatively, this aspect of psychedelic 

phenomenology may be the result of a disruption of DN-mediated processes that underpin the 

‘high-level representations’ that mediate the sense of individualized identity/self-hood that is 

characteristic of normal conscious experience. Another component of the psychedelic experience 

amenable to this perspective is the presence of complex visual imagery (Aqil & Roseman, 2022; 

Studerus et al., 2010). This refers to closed-eye imagery of complex scenes, landscapes, and 

vivified episodic memories (Preller & Vollenweider, 2016; Studerus et al., 2010). It may be that 

these subjective effects are a result of disruptions to the functional segregation of the DN – 

particularly the medial temporal lobe regions within DNC – from visual regions, wherein high-

level episodic representations spill into visual processing. Supporting this, functional 

neuroimaging research has found evidence for significant alterations in the RSFC between visual 

and medial temporal lobe regions (Carhart-Harris, Muthukumaraswamy, et al., 2016; Girn et al., 
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2022; Kaelen et al., 2016; Lebedev et al., 2015; Roseman et al., 2014), and one study specifically 

found a relationship between increased parahippocampus-visual RSFC and increased music-

evoked autobiographical imagery (Kaelen et al., 2016). Collectively, this further underscores an 

essential role for DN functional integrity and functional segregation from other networks in 

mediating fundamental aspects of conscious experience – including our experience of a coherent 

perceptual world ‘out there’ that is distinct from a sense of inhibiting an individualized identity ‘in 

here'. By transiently perturbing the structures of consciousness in this manner, psychedelics 

represent unique and powerful tools for probing the large-scale brain functional connectivity and 

dynamics that undergird ‘regular’ human consciousness, as well as how these might relate to the 

functional roles of the DN in particular. 

 

Conclusions 

 
This thesis consisted of studies which set out to assess each of the DN’s functional organization, 

relationship to non-neural individual differences, and sensitivity to pharmacological perturbation. 

In doing so, it sought to offer novel and impactful contributions to each of these domains so as to 

offer far-reaching influence on current understandings of the DN. This was accomplished: Study 

1 revealed novel evidence supporting the inclusion of the limbic network as part of the DN and 

extended past findings exploring the functional heterogeneity of limbic network regions; Study 2 

revealed multiple multivariate axes of DN-behaviour covariance, which underscored unique and 

overlapping contributions across DN subnetworks and related networks in relation to complex 

behavioural phenotypes; Study 3 revealed the significant sensitivity of the DN and macroscale 

cortical organization to the acute effects of psychedelic drugs, thereby supporting the DN’s 

essential but malleable role in processes that are central to conscious experience. Collectively, 

these findings highlight the importance of limbic regions in understanding the DN’s organization 

and role in cognition, the complex and distributed nature of relationships between the DN and 

behaviour/cognition, and the manner in which certain drugs can be used to probe fundamental 

aspects of DN organization and function and their relationship to ongoing conscious experience. 

In doing so, they offer impactful contributions with strong high potential to help revise and advance 

theoretical conceptions of the DN and to motivate future empirical investigations of this network. 

 



 145 

Master References 

 

Adolphs, R. (2016). Human lesion studies in the 21st century. Neuron, 90(6), 1151-1153.  
Aghajanian, G., & Marek, G. (1997). Serotonin induces excitatory postsynaptic potentials in 

apical dendrites of neocortical pyramidal cells. Neuropharmacology, 36(4-5), 589-599.  
Aghajanian, G. K. (2009). Modeling “psychosis” in vitro by inducing disordered neuronal 

network activity in cortical brain slices. Psychopharmacology, 206(4), 575-585.  
Aghajanian, G. K., & Marek, G. J. (1999). Serotonin, via 5-HT2A receptors, increases EPSCs in 

layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate 
release. Brain Research, 825(1-2), 161-171.  

Akshoomoff, N., Beaumont, J. L., Bauer, P. J., Dikmen, S. S., Gershon, R. C., Mungas, D., Slotkin, 
J., Tulsky, D., Weintraub, S., & Zelazo, P. D. (2013). VIII. NIH Toolbox Cognition Battery 
(CB): composite scores of crystallized, fluid, and overall cognition. Monographs of the 
Society for Research in Child Development, 78(4), 119-132.  

Alamia, A., Timmermann, C., Nutt, D. J., VanRullen, R., & Carhart-Harris, R. L. (2020). DMT alters 
cortical travelling waves. Elife, 9. https://doi.org/10.7554/eLife.59784  

Alves, P. N., Foulon, C., Karolis, V., Bzdok, D., Margulies, D. S., Volle, E., & de Schotten, M. T. 
(2019). An improved neuroanatomical model of the default-mode network reconciles 
previous neuroimaging and neuropathological findings. Communications biology, 2(1), 
1-14.  

Andersen, K. A., Carhart-Harris, R., Nutt, D. J., & Erritzoe, D. (2021). Therapeutic effects of 
classic serotonergic psychedelics: A systematic review of modern-era clinical studies. 
Acta Psychiatrica Scandinavica, 143(2), 101-118.  

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-
anatomic fractionation of the brain's default network. Neuron, 65(4), 550-562. 
https://doi.org/10.1016/j.neuron.2010.02.005  

Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-
generated thought: Component processes and dynamic control. Annals of the New York 
Academy of Sciences, 1316(1), 29-52.  

Aqil, M., & Roseman, L. (2022). More than meets the eye: The role of sensory dimensions in 
psychedelic brain dynamics, experience, and therapeutics. Neuropharmacology, 109300.  

Arbabshirani, M. R., Damaraju, E., Phlypo, R., Plis, S., Allen, E., Ma, S., Mathalon, D., Preda, A., 
Vaidya, J. G., & Adali, T. (2014). Impact of autocorrelation on functional connectivity. 
Neuroimage, 102, 294-308.  

Arnone, D., Wise, T., Walker, C., Cowen, P. J., Howes, O., & Selvaraj, S. (2018). The effects of 
serotonin modulation on medial prefrontal connectivity strength and stability: a 
pharmacological fMRI study with citalopram. Progress in Neuro-Psychopharmacology 
and Biological Psychiatry, 84, 152-159.  

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. Neuroimage, 
11(6), 805-821.  

Bagby, R. M., Parker, J. D., & Taylor, G. J. (1994). The twenty-item Toronto Alexithymia Scale—I. 
Item selection and cross-validation of the factor structure. Journal of psychosomatic 
research, 38(1), 23-32.  



 146 

Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). 
Discovering event structure in continuous narrative perception and memory. Neuron, 
95(3), 709-721. e705.  

Bar, M. (2007). The proactive brain: using analogies and associations to generate predictions. 
Trends in Cognitive Sciences, 11(7), 280-289.  

Barbas, H., Ghashghaei, H., Dombrowski, S., & Rempel-Clower, N. (1999). Medial prefrontal 
cortices are unified by common connections with superior temporal cortices and 
distinguished by input from memory-related areas in the rhesus monkey. Journal of 
Comparative Neurology, 410(3), 343-367.  

Barnett, L., Muthukumaraswamy, S. D., Carhart-Harris, R. L., & Seth, A. K. (2020). Decreased 
directed functional connectivity in the psychedelic state. Neuroimage, 209, 116462.  

Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in 
the Eyes” Test revised version: a study with normal adults, and adults with Asperger 
syndrome or high-functioning autism. The Journal of Child Psychology and Psychiatry 
and Allied Disciplines, 42(2), 241-251.  

Barrett, L. F. (2017). The theory of constructed emotion: an active inference account of 
interoception and categorization. Social cognitive and affective neuroscience, 12(1), 1-
23.  

Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nat Neurosci, 20(3), 353-364.  
Beliveau, V., Ganz, M., Feng, L., Ozenne, B., Højgaard, L., Fisher, P. M., Svarer, C., Greve, D. N., & 

Knudsen, G. M. (2017). A high-resolution in vivo atlas of the human brain's serotonin 
system. Journal of Neuroscience, 37(1), 120-128.  

Bethlehem, R. A., Paquola, C., Ronan, L., Seidlitz, J., Bernhardt, B., & Tsvetanov, K. A. (2020). 
Dispersion of functional gradients across the lifespan. bioRxiv.  

Bethlehem, R. A., Paquola, C., Seidlitz, J., Ronan, L., Bernhardt, B., Tsvetanov, K. A., & 
Consortium, C.-C. (2020). Dispersion of functional gradients across the adult lifespan. 
Neuroimage, 222, 117299.  

Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala 
volume and social network size in humans. Nat Neurosci, 14(2), 163.  

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? 
A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral 
Cortex, 19(12), 2767-2796.  

Binney, R. J., Hoffman, P., & Lambon Ralph, M. A. (2016). Mapping the multiple graded 
contributions of the anterior temporal lobe representational hub to abstract and social 
concepts: evidence from distortion-corrected fMRI. Cerebral Cortex, 26(11), 4227-4241.  

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the 
motor cortex of resting human brain using echo-planar mri. Magnetic resonance in 
medicine, 34(4), 537-541.  

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of 
communities in large networks. Journal of statistical mechanics: theory and experiment, 
2008(10), P10008.  

Bogenschutz, M. P., Forcehimes, A. A., Pommy, J. A., Wilcox, C. E., Barbosa, P., & Strassman, R. 
J. (2015). Psilocybin-assisted treatment for alcohol dependence: A proof-of-concept 
study. Journal of Psychopharmacology, 29(3), 289-299.  



 147 

Braga, R. M., & Buckner, R. L. (2017). Parallel interdigitated distributed networks within the 
individual estimated by intrinsic functional connectivity. Neuron, 95(2), 457-471. e455.  

Brainerd, C., Reyna, V., Gomes, C. F., Kenney, A., Gross, C., Taub, E., & Spreng, R. (2014). Dual-
retrieval models and neurocognitive impairment. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 40(1), 41.  

Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods 
and principles [Research Support, U.S. Gov't, Non-P.H.S. 

Review]. Trends Cogn Sci, 14(6), 277-290. https://doi.org/10.1016/j.tics.2010.04.004  
Brucar, L. R., Feczko, E., Fair, D. A., & Zilverstand, A. (2023). Current approaches in 

computational psychiatry for the data-driven identification of brain-based subtypes. 
Biological psychiatry, 93(8), 704-716.  

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: 
anatomy, function, and relevance to disease. Ann N Y Acad Sci, 1124, 1-38. 
https://doi.org/10.1196/annals.1440.011  

Buckner, R. L., & DiNicola, L. M. (2019). The brain’s default network: updated anatomy, 
physiology and evolving insights. Nature Reviews Neuroscience, 1-16.  

Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of 
the human cerebellum estimated by intrinsic functional connectivity. American Journal 
of Physiology-Heart and Circulatory Physiology.  

Buckner, R. L., Krienen, F. M., & Yeo, B. T. T. (2013). Opportunities and limitations of intrinsic 
functional connectivity MRI. Nat Neurosci, 16(7), 832-837.  

Burt, J. B., Demirtaş, M., Eckner, W. J., Navejar, N. M., Ji, J. L., Martin, W. J., Bernacchia, A., 
Anticevic, A., & Murray, J. D. (2018). Hierarchy of transcriptomic specialization across 
human cortex captured by structural neuroimaging topography. Nat Neurosci, 21(9), 
1251-1259.  

Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. 
(2013). Power failure: why small sample size undermines the reliability of neuroscience. 
Nature Reviews Neuroscience, 14(5), 365-376.  

Bzdok, D., Laird, A. R., Zilles, K., Fox, P. T., & Eickhoff, S. B. (2013). An investigation of the 
structural, connectional, and functional subspecialization in the human amygdala. 
Human Brain Mapping, 34(12), 3247-3266.  

Bzdok, D., & Yeo, B. T. (2017). Inference in the age of big data: Future perspectives on 
neuroscience. Neuroimage, 155, 549-564.  

Carhart-Harris, R. L. (2018). The entropic brain-revisited. Neuropharmacology, 142, 167-178.  
Carhart-Harris, R. L., Bolstridge, M., Rucker, J., Day, C. M., Erritzoe, D., Kaelen, M., Bloomfield, 

M., Rickard, J. A., Forbes, B., & Feilding, A. (2016). Psilocybin with psychological support 
for treatment-resistant depression: an open-label feasibility study. The Lancet 
Psychiatry, 3(7), 619-627.  

Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., Tyacke, R. J., 
Leech, R., Malizia, A. L., & Murphy, K. (2012). Neural correlates of the psychedelic state 
as determined by fMRI studies with psilocybin. Proceedings of the National Academy of 
Sciences, 109(6), 2138-2143.  

Carhart-Harris, R. L., & Friston, K. J. (2019). REBUS and the Anarchic Brain: Toward a Unified 
Model of the Brain Action of Psychedelics. Pharmacological Reviews, 71(3), 316-344.  



 148 

Carhart-Harris, R. L., Leech, R., Erritzoe, D., Williams, T. M., Stone, J. M., Evans, J., Sharp, D. J., 
Feilding, A., Wise, R. G., & Nutt, D. J. (2013). Functional connectivity measures after 
psilocybin inform a novel hypothesis of early psychosis. Schizophrenia bulletin, 39(6), 
1343-1351.  

Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., Chialvo, 
D. R., & Nutt, D. (2014). The entropic brain: a theory of conscious states informed by 
neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8, 20.  

Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., 
Tagliazucchi, E., Schenberg, E. E., Nest, T., Orban, C., Leech, R., Williams, L. T., Williams, 
T. M., Bolstridge, M., Sessa, B., McGonigle, J., Sereno, M. I., Nichols, D., Hellyer, P. J., 
Hobden, P., Evans, J., Singh, K. D., Wise, R. G., Curran, H. V., Feilding, A., & Nutt, D. J. 
(2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. 
Proceedings of the National Academy of Sciences, 113(17), 4853-4858. 
https://doi.org/10.1073/pnas.1518377113  

Carmichael, O., Schwarz, A. J., Chatham, C. H., Scott, D., Turner, J. A., Upadhyay, J., Coimbra, A., 
Goodman, J. A., Baumgartner, R., & English, B. A. (2018). The role of fMRI in drug 
development. Drug discovery today, 23(2), 333-348.  

Carmichael, S., & Price, J. (1995). Limbic connections of the orbital and medial prefrontal cortex 
in macaque monkeys. Journal of Comparative Neurology, 363(4), 615-641.  

Carmichael, S., & Price, J. (1996). Connectional networks within the orbital and medial 
prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 371(2), 179-
207.  

Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective 
responses to impending reward and punishment: the BIS/BAS scales. Journal of 
personality and social psychology, 67(2), 319.  

Casey, B., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., 
Teslovich, T., Dellarco, D. V., & Garavan, H. (2018). The adolescent brain cognitive 
development (ABCD) study: imaging acquisition across 21 sites. Developmental cognitive 
neuroscience, 32, 43-54.  

Chase, H. W., Grace, A. A., Fox, P. T., Phillips, M. L., & Eickhoff, S. B. (2020). Functional 
differentiation in the human ventromedial frontal lobe: A data-driven parcellation. 
Human Brain Mapping.  

Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared 
memories reveal shared structure in neural activity across individuals. Nat Neurosci, 
20(1), 115-125.  

Choi, E. Y., Yeo, B. T., & Buckner, R. L. (2012). The organization of the human striatum estimated 
by intrinsic functional connectivity. J Neurophysiol, 108(8), 2242-2263.  

Chong, M., Bhushan, C., Joshi, A., Choi, S., Haldar, J., Shattuck, D., Spreng, R., & Leahy, R. (2017). 
Individual parcellation of resting fMRI with a group functional connectivity prior. 
Neuroimage, 156, 87-100.  

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive 
science. Behavioral and Brain Sciences, 36(03), 181-204.  



 149 

Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., & Zucker, S. W. (2005). 
Geometric diffusions as a tool for harmonic analysis and structure definition of data: 
Diffusion maps. Proceedings of the National Academy of Sciences, 102(21), 7426-7431.  

Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-
evoked network architectures of the human brain. Neuron, 83(1), 238-251.  

Cunningham, S. I., Tomasi, D., & Volkow, N. D. (2017). Structural and functional connectivity of 
the precuneus and thalamus to the default mode network. Human Brain Mapping, 
38(2), 938-956.  

D'Argembeau, A., Collette, F., Van der Linden, M., Laureys, S., Del Fiore, G., Degueldre, C., 
Luxen, A., & Salmon, E. (2005). Self-referential reflective activity and its relationship with 
rest: a PET study. Neuroimage, 25(2), 616-624.  

D'Argembeau, A., Ruby, P., Collette, F., Degueldre, C., Balteau, E., Luxen, A., Maquet, P., & 
Salmon, E. (2007). Distinct regions of the medial prefrontal cortex are associated with 
self-referential processing and perspective taking. Journal of Cognitive Neuroscience, 
19(6), 935-944.  

Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C., Smith, S. M., & Beckmann, C. 
(2006). Consistent resting-state networks across healthy subjects. Proceedings of the 
National Academy of Sciences, 103(37), 13848-13853.  

Davies, C. L., Sibley, C. G., & Liu, J. H. (2014). Confirmatory factor analysis of the Moral 
Foundations Questionnaire. Social Psychology.  

Davis, A. K., Barrett, F. S., May, D. G., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., Finan, P. 
H., & Griffiths, R. R. (2020). Effects of psilocybin-assisted therapy on major depressive 
disorder: a randomized clinical trial. JAMA Psychiatry.  

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a 
multidimensional approach. Journal of personality and social psychology, 44(1), 113.  

de Wael, R. V., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S., Xu, T., Hong, S.-J., 
Langs, G., & Valk, S. (2020). BrainSpace: a toolbox for the analysis of macroscale 
gradients in neuroimaging and connectomics datasets. Communications biology, 3(1), 1-
10.  

DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: 10 aspects 
of the Big Five. Journal of personality and social psychology, 93(5), 880.  

DiNicola, L. M., Braga, R. M., & Buckner, R. L. (2020). Parallel distributed networks dissociate 
episodic and social functions within the individual. Journal of neurophysiology, 123(3), 
1144-1179.  

Dittrich, A. (1998). The standardized psychometric assessment of altered states of 
consciousness (ASCs) in humans. Pharmacopsychiatry.  

Dixon, M. L., Thiruchselvam, R., Todd, R., & Christoff, K. (2017). Emotion and the prefrontal 
cortex: An integrative review. Psychol Bull, 143(10), 1033.  

Dong, D., Luo, C., Guell, X., Wang, Y., He, H., Duan, M., Eickhoff, S. B., & Yao, D. (2020). 
Compression of Cerebellar Functional Gradients in Schizophrenia. Schizophrenia bulletin.  

Doucet, G., Naveau, M., Petit, L., Delcroix, N., Zago, L., Crivello, F., Jobard, G., Tzourio-Mazoyer, 
N., Mazoyer, B., & Mellet, E. (2011). Brain activity at rest: a multiscale hierarchical 
functional organization. Journal of neurophysiology, 105(6), 2753-2763.  



 150 

Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R. N., 
Zebley, B., Oathes, D. J., & Etkin, A. (2017). Resting-state connectivity biomarkers define 
neurophysiological subtypes of depression. Nature medicine, 23(1), 28-38.  

Du, J., Rolls, E. T., Cheng, W., Li, Y., Gong, W., Qiu, J., & Feng, J. (2020). Functional connectivity 
of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus in 
humans. Cortex, 123, 185-199.  

Dubois, J., & Adolphs, R. (2016). Building a Science of Individual Differences from fMRI. Trends 
in Cognitive Sciences, 20(6), 425-443. 
https://doi.org/https://doi.org/10.1016/j.tics.2016.03.014  

Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for 
intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172-179.  

DuPre, E., Luh, W.-M., & Spreng, R. N. (2016). Multi-echo fMRI replication sample of 
autobiographical memory, prospection and theory of mind reasoning tasks. Scientific 
data, 3, 160116.  

Dutta, A., McKie, S., Downey, D., Thomas, E., Juhasz, G., Arnone, D., Elliott, R., Williams, S., 
Deakin, J. W., & Anderson, I. M. (2019). Regional default mode network connectivity in 
major depressive disorder: modulation by acute intravenous citalopram. Translational 
psychiatry, 9(1), 116.  

Eickhoff, S. B., Yeo, B., & Genon, S. (2018). Imaging-based parcellations of the human brain. 
Nature Reviews Neuroscience, 19(11), 672-686.  

Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of 
thought during the creative process. Neuroimage, 59(2), 1783-1794. 
https://doi.org/10.1016/j.neuroimage.2011.08.008  

Ellamil, M., Fox, K. C., Dixon, M. L., Pritchard, S., Todd, R. M., Thompson, E., & Christoff, K. 
(2016). Dynamics of neural recruitment surrounding the spontaneous arising of 
thoughts in experienced mindfulness practitioners. Neuroimage, 136, 186-196.  

Fan, L., Wang, J., Zhang, Y., Han, W., Yu, C., & Jiang, T. (2014). Connectivity-based parcellation of 
the human temporal pole using diffusion tensor imaging. Cerebral Cortex, 24(12), 3365-
3378.  

Fang, X., Deza-Araujo, Y. I., Petzold, J., Spreer, M., Riedel, P., Marxen, M., O’Connor, S. J., 
Zimmermann, U. S., & Smolka, M. N. (2021). Effects of moderate alcohol levels on 
default mode network connectivity in heavy drinkers. Alcoholism: Clinical and 
Experimental Research, 45(5), 1039-1050.  

Faraone, S. V., Biederman, J., Weber, W., & Russell, R. L. (1998). Psychiatric, 
neuropsychological, and psychosocial features of DSM-IV subtypes of attention-
deficit/hyperactivity disorder: results from a clinically referred sample. Journal of the 
American Academy of Child & Adolescent Psychiatry, 37(2), 185-193.  

Feczko, E., Miranda-Dominguez, O., Marr, M., Graham, A. M., Nigg, J. T., & Fair, D. A. (2019). 
The heterogeneity problem: approaches to identify psychiatric subtypes. Trends in 
Cognitive Sciences, 23(7), 584-601.  

Flodin, P., Gospic, K., Petrovic, P., & Fransson, P. (2012). Effects of L-dopa and oxazepam on 
resting-state functional magnetic resonance imaging connectivity: a randomized, cross-
sectional placebo study. Brain Connectivity, 2(5), 246-253.  



 151 

Fox, K. C. R., Andrews-Hanna, J. R., Mills, C., Dixon, M. L., Markovic, J., Thompson, E., & 
Christoff, K. (2018). Affective neuroscience of self-generated thought. Ann NY Acad Sci, 
1426, 25-51.  

Fox, K. C. R., Girn, M., Parro, C., & Christoff, K. (2018). Functional neuroimaging of psychedelic 
experience: An overview of psychological and neural effects and their relevance to 
research on creativity, daydreaming, and dreaming. The cambridge handbook of the 
neuroscience of creativity, 92-113.  

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with 
functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700-711. 
https://doi.org/10.1038/nrn2201  

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). 
The human brain is intrinsically organized into dynamic, anticorrelated functional 
networks. Proc Natl Acad Sci U S A, 102(27), 9673-9678.  

Fraley, R. C., Waller, N. G., & Brennan, K. A. (2000). An item response theory analysis of self-
report measures of adult attachment. Journal of personality and social psychology, 
78(2), 350.  

Friston, K. J. (2010). The free-energy principle: a unified brain theory? Nature Reviews 
Neuroscience, 11(2), 127.  

Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human 
Brain Mapping, 1(2), 153-171.  

Frith, C. D., & Frith, U. (2007). Social cognition in humans. Current Biology, 17(16), R724-R732.  
Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W., Lindenberger, U., McIntosh, A. R., & 

Grady, C. L. (2013). Moment-to-moment brain signal variability: a next frontier in human 
brain mapping? Neuroscience & Biobehavioral Reviews, 37(4), 610-624.  

Gaser, C., & Dahnke, R. (2016). CAT-a computational anatomy toolbox for the analysis of 
structural MRI data. Hbm, 2016, 336-348.  

Gasser, P., Kirchner, K., & Passie, T. (2014). LSD-assisted psychotherapy for anxiety associated 
with a life-threatening disease: A qualitative study of acute and sustained subjective 
effects. Journal of Psychopharmacology, 29(1), 57-68.  

Gerritsen, C. J., Toplak, M. E., Sciaraffa, J., & Eastwood, J. (2014). I can’t get no satisfaction: 
Potential causes of boredom. Conscious Cogn, 27, 27-41.  

Gershon, R. C., Wagster, M. V., Hendrie, H. C., Fox, N. A., Cook, K. F., & Nowinski, C. J. (2013). 
NIH toolbox for assessment of neurological and behavioral function. Neurology, 80(11 
Supplement 3), S2-S6.  

Girn, M., & Christoff, K. (2018). Expanding the Scientific Study of Self-Experience with 
Psychedelics. Journal of Consciousness Studies, 25(11-12), 131-154.  

Girn, M., Mills, C., Roseman, L., Carhart-Harris, R. L., & Christoff, K. (2020). Updating the 
dynamic framework of thought: Creativity and psychedelics. Neuroimage, 116726.  

Girn, M., Rosas, F. E., Daws, R. E., Gallen, C. L., Gazzaley, A., & Carhart-Harris, R. L. (2023). A 
complex systems perspective on psychedelic brain action. Trends in Cognitive Sciences.  

Girn, M., Roseman, L., Bernhardt, B., Smallwood, J., Carhart-Harris, R., & Spreng, R. N. (2022). 
Serotonergic psychedelic drugs LSD and psilocybin reduce the hierarchical 
differentiation of unimodal and transmodal cortex. Neuroimage, 119220. 
https://doi.org/https://doi.org/10.1016/j.neuroimage.2022.119220  



 152 

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., 
Andersson, J., Beckmann, C. F., & Jenkinson, M. (2016). A multi-modal parcellation of 
human cerebral cortex. Nature, 536(7615), 171-178.  

Gonzalez-Garcia, C., Flounders, M. W., Chang, R., Baria, A. T., & He, B. J. (2018). Content-specific 
activity in frontoparietal and default-mode networks during prior-guided visual 
perception. Elife, 7, e36068.  

Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. 
(2014). Generation and evaluation of a cortical area parcellation from resting-state 
correlations. Cerebral Cortex, 26(1), 288-303.  

Gordon, E. M., Laumann, T. O., Adeyemo, B., & Petersen, S. E. (2017). Individual variability of 
the system-level organization of the human brain. Cerebral Cortex, 27(1), 386-399.  

Goyal, N., Moraczewski, D., Bandettini, P. A., Finn, E. S., & Thomas, A. G. (2022). The positive-
negative mode link between brain connectivity, demographics, and behavior: A pre-
registered replication of Smith et al. 2015. arXiv preprint arXiv:2201.10598.  

Graham, J., Nosek, B. A., Haidt, J., Iyer, R., Spassena, K., & Ditto, P. H. (2008). Moral foundations 
questionnaire. Journal of personality and social psychology.  

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the 
resting brain: a network analysis of the default mode hypothesis. Proceedings of the 
National Academy of Sciences, 100(1), 253-258.  

Griffiths, R. R., Johnson, M. W., Carducci, M. A., Umbricht, A., Richards, W. A., Richards, B. D., 
Cosimano, M. P., & Klinedinst, M. A. (2016). Psilocybin produces substantial and 
sustained decreases in depression and anxiety in patients with life-threatening cancer: A 
randomized double-blind trial. Journal of Psychopharmacology, 30(12), 1181-1197.  

Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the 
resting human brain. Nature Reviews Neuroscience, 2(10), 685-694.  

Haak, K. V., & Beckmann, C. F. (2020). Understanding brain organisation in the face of 
functional heterogeneity and functional multiplicity. Neuroimage, 220, 117061.  

Haak, K. V., Marquand, A. F., & Beckmann, C. F. (2018). Connectopic mapping with resting-state 
fMRI. Neuroimage, 170, 83-94.  

Harrison, B. J., Davey, C. G., Savage, H. S., Jamieson, A. J., Leonards, C. A., Moffat, B. A., Glarin, 
R. K., & Steward, T. (2022). Dynamic subcortical modulators of human default mode 
network function. Cerebral Cortex, 32(19), 4345-4355.  

Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic memory with construction. 
Trends in Cognitive Sciences, 11(7), 299-306.  

Herlin, B., Navarro, V., & Dupont, S. (2021). The temporal pole: From anatomy to function—A 
literature appraisal. J Chem Neuroanat, 113, 101925.  

Hoerger, M., Quirk, S. W., & Weed, N. C. (2011). Development and validation of the Delaying 
Gratification Inventory. Psychological assessment, 23(3), 725.  

Hong, S.-J., de Wael, R. V., Bethlehem, R. A., Lariviere, S., Paquola, C., Valk, S. L., Milham, M. P., 
Di Martino, A., Margulies, D. S., & Smallwood, J. (2019). Atypical functional connectome 
hierarchy in autism. Nature communications, 10(1), 1022.  

Hsu, C.-C., Rolls, E. T., Huang, C.-C., Chong, S. T., Zac Lo, C.-Y., Feng, J., & Lin, C.-P. (2020). 
Connections of the human orbitofrontal cortex and inferior frontal gyrus. Cerebral 
Cortex, 30(11), 5830-5843.  



 153 

Humphreys, G. F., Hoffman, P., Visser, M., Binney, R. J., & Ralph, M. A. L. (2015). Establishing 
task-and modality-dependent dissociations between the semantic and default mode 
networks. Proceedings of the National Academy of Sciences, 112(25), 7857-7862.  

Huntenburg, J. M., Bazin, P.-L., Goulas, A., Tardif, C. L., Villringer, A., & Margulies, D. S. (2017). A 
systematic relationship between functional connectivity and intracortical myelin in the 
human cerebral cortex. Cerebral Cortex, 27(2), 981-997.  

Huntenburg, J. M., Bazin, P.-L., & Margulies, D. S. (2018). Large-scale gradients in human 
cortical organization. Trends in Cognitive Sciences, 22(1), 21-31.  

Jackson, R. L. (2021). The neural correlates of semantic control revisited. Neuroimage, 224, 
117444.  

Jackson, R. L., Bajada, C. J., Rice, G. E., Cloutman, L. L., & Ralph, M. A. L. (2018). An emergent 
functional parcellation of the temporal cortex. Neuroimage, 170, 385-399.  

Jackson, R. L., Hoffman, P., Pobric, G., & Ralph, M. A. L. (2016). The semantic network at work 
and rest: differential connectivity of anterior temporal lobe subregions. Journal of 
Neuroscience, 36(5), 1490-1501.  

Johnson, M. W., Garcia-Romeu, A., Cosimano, M. P., & Griffiths, R. R. (2014). Pilot study of the 
5-HT2AR agonist psilocybin in the treatment of tobacco addiction. Journal of 
Psychopharmacology, 28(11), 983-992.  

Johnson, M. W., Hendricks, P. S., Barrett, F. S., & Griffiths, R. R. (2019). Classic psychedelics: An 
integrative review of epidemiology, therapeutics, mystical experience, and brain 
network function. Pharmacology & therapeutics, 197, 83-102.  

Johnson, M. W., Richards, W. A., & Griffiths, R. R. (2008). Human hallucinogen research: 
guidelines for safety. Journal of Psychopharmacology.  

Kaelen, M., Roseman, L., Kahan, J., Santos-Ribeiro, A., Orban, C., Lorenz, R., Barrett, F. S., 
Bolstridge, M., Williams, T., & Williams, L. (2016). LSD modulates music-induced imagery 
via changes in parahippocampal connectivity. European neuropsychopharmacology.  

Kahnt, T., Chang, L. J., Park, S. Q., Heinzle, J., & Haynes, J.-D. (2012). Connectivity-based 
parcellation of the human orbitofrontal cortex. Journal of Neuroscience, 32(18), 6240-
6250.  

Kernbach, J. M., Yeo, B. T., Smallwood, J., Margulies, D. S., De Schotten, M. T., Walter, H., 
Sabuncu, M. R., Holmes, A. J., Gramfort, A., & Varoquaux, G. (2018). Subspecialization 
within default mode nodes characterized in 10,000 UK Biobank participants. 
Proceedings of the National Academy of Sciences, 115(48), 12295-12300.  

Klaassens, B. L., Rombouts, S. A., Winkler, A. M., van Gorsel, H. C., van der Grond, J., & van 
Gerven, J. M. (2017). Time related effects on functional brain connectivity after 
serotonergic and cholinergic neuromodulation. Human Brain Mapping, 38(1), 308-325.  

Klaassens, B. L., van Gorsel, H. C., Khalili-Mahani, N., van der Grond, J., Wyman, B. T., Whitcher, 
B., Rombouts, S. A., & van Gerven, J. M. (2015). Single-dose serotonergic stimulation 
shows widespread effects on functional brain connectivity. Neuroimage, 122, 440-450.  

Koelsch, S., Andrews-Hanna, J. R., & Skouras, S. (2022). Tormenting thoughts: The posterior 
cingulate sulcus of the default mode network regulates valence of thoughts and activity 
in the brain's pain network during music listening. Human Brain Mapping, 43(2), 773-
786.  



 154 

Kondo, H., Saleem, K. S., & Price, J. L. (2003). Differential connections of the temporal pole with 
the orbital and medial prefrontal networks in macaque monkeys. Journal of 
Comparative Neurology, 465(4), 499-523.  

Kondo, H., Saleem, K. S., & Price, J. L. (2005). Differential connections of the perirhinal and 
parahippocampal cortex with the orbital and medial prefrontal networks in macaque 
monkeys. Journal of Comparative Neurology, 493(4), 479-509.  

Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., Sun, N., Zuo, X.-N., Holmes, A. J., 
& Eickhoff, S. B. (2019). Spatial topography of individual-specific cortical networks 
predicts human cognition, personality, and emotion. Cerebral Cortex, 29(6), 2533-2551.  

Kraehenmann, R., Pokorny, D., Vollenweider, L., Preller, K. H., Pokorny, T., Seifritz, E., & 
Vollenweider, F. X. (2017). Dreamlike effects of LSD on waking imagery in humans 
depend on serotonin 2A receptor activation. Psychopharmacology, 234(13), 2031-2046.  

Kringelbach, M. L., & Rolls, E. T. (2003). Neural correlates of rapid reversal learning in a simple 
model of human social interaction. Neuroimage, 20(2), 1371-1383.  

Kumfor, F., Landin-Romero, R., Devenney, E., Hutchings, R., Grasso, R., Hodges, J. R., & Piguet, 
O. (2016). On the right side? A longitudinal study of left-versus right-lateralized semantic 
dementia. Brain, 139(3), 986-998.  

Kundu, P., Brenowitz, N. D., Voon, V., Worbe, Y., Vértes, P. E., Inati, S. J., Saad, Z. S., Bandettini, 
P. A., & Bullmore, E. T. (2013). Integrated strategy for improving functional connectivity 
mapping using multiecho fMRI. Proceedings of the National Academy of Sciences, 
201301725.  

Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M., & Bandettini, P. A. (2012). Differentiating BOLD 
and non-BOLD signals in fMRI time series using multi-echo EPI. Neuroimage, 60(3), 
1759-1770.  

Kundu, P., Voon, V., Balchandani, P., Lombardo, M. V., Poser, B. A., & Bandettini, P. A. (2017). 
Multi-echo fMRI: a review of applications in fMRI denoising and analysis of BOLD signals. 
Neuroimage, 154, 59-80.  

Kwan, A. C., Olson, D. E., Preller, K. H., & Roth, B. L. (2022). The neural basis of psychedelic 
action. Nat Neurosci, 1-13.  

Lambe, E. K., & Aghajanian, G. K. (2006). Hallucinogen-induced UP states in the brain slice of rat 
prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors. 
Neuropsychopharmacology, 31(8), 1682-1689.  

Larivière, S., Vos de Wael, R., Hong, S.-J., Paquola, C., Tavakol, S., Lowe, A. J., Schrader, D. V., & 
Bernhardt, B. C. (2019). Multiscale Structure–Function Gradients in the Neonatal 
Connectome. Cerebral Cortex.  

Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z., Joo, S. J., Chen, M.-Y., Gilmore, A. 
W., McDermott, K. B., Nelson, S. M., & Dosenbach, N. U. (2015). Functional system and 
areal organization of a highly sampled individual human brain. Neuron, 87(3), 657-670.  

Lebedev, A. V., Kaelen, M., Lövdén, M., Nilsson, J., Feilding, A., Nutt, D., & Carhart-Harris, R. 
(2016). LSD-induced entropic brain activity predicts subsequent personality change. 
Human Brain Mapping.  

Lebedev, A. V., Lövdén, M., Rosenthal, G., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2015). 
Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. 
Human Brain Mapping, 36(8), 3137-3153.  



 155 

Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and 
autobiographical memory: dissociating episodic from semantic retrieval. Psychol Aging, 
17(4), 677.  

Lewis, C. R., Preller, K. H., Kraehenmann, R., Michels, L., Staempfli, P., & Vollenweider, F. X. 
(2017). Two dose investigation of the 5-HT-agonist psilocybin on relative and global 
cerebral blood flow. Neuroimage, 159, 70-78.  

Li, J., Curley, W. H., Guerin, B., Dougherty, D. D., Dalca, A. V., Fischl, B., Horn, A., & Edlow, B. L. 
(2021). Mapping the subcortical connectivity of the human default mode network. 
Neuroimage, 245, 118758. https://doi.org/10.1016/j.neuroimage.2021.118758  

Lind, G. (2014). Moral competence test (MCT). In. 
Lord, L.-D., Expert, P., Atasoy, S., Roseman, L., Rapuano, K., Lambiotte, R., Nutt, D. J., Deco, G., 

Carhart-Harris, R. L., & Kringelbach, M. L. (2019). Dynamical exploration of the 
repertoire of brain networks at rest is modulated by psilocybin. Neuroimage, 199, 127-
142.  

Luppi, A. I., Carhart-Harris, R. L., Roseman, L., Pappas, I., Menon, D. K., & Stamatakis, E. A. 
(2021). LSD alters dynamic integration and segregation in the human brain. Neuroimage, 
227, 117653.  

Lynch, C. J., Power, J. D., Scult, M. A., Dubin, M., Gunning, F. M., & Liston, C. (2020). Rapid 
precision functional mapping of individuals using multi-echo fMRI. Cell reports, 33(12), 
108540.  

Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, 
M. R., Foran, W., Miller, R. L., & Hendrickson, T. J. (2022). Reproducible brain-wide 
association studies require thousands of individuals. Nature, 603(7902), 654-660.  

Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., Bezgin, G., 
Eickhoff, S. B., Castellanos, F. X., & Petrides, M. (2016). Situating the default-mode 
network along a principal gradient of macroscale cortical organization. Proceedings of 
the National Academy of Sciences, 113(44), 12574-12579.  

Margulies, D. S., & Smallwood, J. (2017). Converging evidence for the role of transmodal cortex 
in cognition. Proceedings of the National Academy of Sciences, 114(48), 12641-12643.  

Mason, N., Kuypers, K., Reckweg, J., Müller, F., Tse, D., Da Rios, B., Toennes, S., Stiers, P., 
Feilding, A., & Ramaekers, J. (2021). Spontaneous and deliberate creative cognition 
during and after psilocybin exposure. Translational psychiatry, 11(1), 1-13.  

McClure-Begley, T. D., & Roth, B. L. (2022). The promises and perils of psychedelic 
pharmacology for psychiatry. Nature Reviews Drug Discovery, 1-11.  

McCulloch, D. E. W., Knudsen, G. M., Barrett, F. S., Doss, M. K., Carhart-Harris, R. L., Rosas, F. E., 
Deco, G., Kringelbach, M. L., Preller, K. H., Ramaekers, J. G., Mason, N. L., Müller, F., & 
Fisher, P. M. (2022). Psychedelic Resting-state Neuroimaging: A Review and Perspective 
on Balancing Replication and Novel Analyses. Neuroscience & Biobehavioral Reviews, 
104689. https://doi.org/https://doi.org/10.1016/j.neubiorev.2022.104689  

McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: 
applications and advances. Neuroimage, 23, S250-S263.  

Mckeown, B., Strawson, W. H., Wang, H.-T., Karapanagiotidis, T., de Wael, R. V., Benkarim, O., 
Turnbull, A., Margulies, D., Jefferies, E., & McCall, C. (2020). The relationship between 



 156 

individual variation in macroscale functional gradients and distinct aspects of ongoing 
thought. Neuroimage, 220, 117072.  

Mendes, N., Oligschlaeger, S., Lauckner, M. E., Golchert, J., Huntenburg, J. M., Falkiewicz, M., 
Ellamil, M., Krause, S., Baczkowski, B. M., & Cozatl, R. (2019). A functional connectome 
phenotyping dataset including cognitive state and personality measures. Scientific data, 
6, 180307.  

Mesulam, M. (1998). From sensation to cognition. Brain: A journal of neurology, 121(6), 1013-
1052.  

Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. D., & Bullmore, E. T. (2010). Hierarchical 
modularity in human brain functional networks. Hierarchy and dynamics in neural 
networks, 1, 2.  

Millière, R. (2017). Looking for the Self: Phenomenology, Neurophysiology and Philosophical 
Significance of Drug-induced Ego Dissolution. Frontiers in Human Neuroscience, 11, 245.  

Moore, M., & Gordon, P. C. (2015). Reading ability and print exposure: Item response theory 
analysis of the author recognition test. Behavior research methods, 47, 1095-1109.  

Moran, M., Mufson, E., & Mesulam, M. M. (1987). Neural inputs into the temporopolar cortex 
of the rhesus monkey. Journal of Comparative Neurology, 256(1), 88-103.  

Müller, F., Dolder, P. C., Schmidt, A., Liechti, M. E., & Borgwardt, S. (2018). Altered network hub 
connectivity after acute LSD administration. NeuroImage: Clinical, 18, 694-701.  

Muñoz, M., & Insausti, R. (2005). Cortical efferents of the entorhinal cortex and the adjacent 
parahippocampal region in the monkey (Macaca fascicularis). European Journal of 
Neuroscience, 22(6), 1368-1388.  

Murphy, C., Jefferies, E., Rueschemeyer, S.-A., Sormaz, M., Wang, H.-t., Margulies, D., & 
Smallwood, J. (2017). Isolated from input: Transmodal cortex in the default mode 
network supports perceptually-decoupled and conceptually-guided cognition. bioRxiv, 
150466.  

Murphy, C., Jefferies, E., Rueschemeyer, S.-A., Sormaz, M., Wang, H.-t., Margulies, D. S., & 
Smallwood, J. (2018). Distant from input: Evidence of regions within the default mode 
network supporting perceptually-decoupled and conceptually-guided cognition. 
Neuroimage, 171, 393-401.  

Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., 
Errtizoe, D., Sessa, B., Papadopoulos, A., Bolstridge, M., & Singh, K. D. (2013). Broadband 
cortical desynchronization underlies the human psychedelic state. The Journal of 
Neuroscience, 33(38), 15171-15183.  

Mwilambwe-Tshilobo, L., Ge, T., Chong, M., Ferguson, M. A., Misic, B., Burrow, A. L., Leahy, R. 
M., & Spreng, R. N. (2019). Loneliness and meaning in life are reflected in the intrinsic 
network architecture of the brain. Social cognitive and affective neuroscience, 14(4), 
423-433.  

Nathan, P. J., Phan, K. L., Harmer, C. J., Mehta, M. A., & Bullmore, E. T. (2014). Increasing 
pharmacological knowledge about human neurological and psychiatric disorders 
through functional neuroimaging and its application in drug discovery. Current opinion 
in pharmacology, 14, 54-61.  

Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical 
review E, 69(6), 066133.  



 157 

Nichols, D. E. (2016). Psychedelics. Pharmacological Reviews, 68(2), 264-355.  
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-

analytic evidence for a superordinate cognitive control network subserving diverse 
executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241-268.  

Nour, M. M., & Carhart-Harris, R. L. (2017). Psychedelics and the science of self-experience. The 
British Journal of Psychiatry, 210(3), 177-179.  

Nour, M. M., Evans, L., Nutt, D., & Carhart-Harris, R. L. (2016). Ego-dissolution and psychedelics: 
Validation of the ego-dissolution inventory (EDI). Frontiers in Human Neuroscience, 10, 
269.  

Nutt, D., & Carhart-Harris, R. (2021). The Current Status of Psychedelics in Psychiatry. JAMA 
Psychiatry, 78(2), 121-122. https://doi.org/10.1001/jamapsychiatry.2020.2171  

Nutt, D. J., King, L. A., & Nichols, D. E. (2013). Effects of Schedule I drug laws on neuroscience 
research and treatment innovation. Nature Reviews Neuroscience, 14(8), 577-585.  

Ojemann, J. G., Akbudak, E., Snyder, A. Z., McKinstry, R. C., Raichle, M. E., & Conturo, T. E. 
(1997). Anatomic localization and quantitative analysis of gradient refocused echo-
planar fMRI susceptibility artifacts. Neuroimage, 6(3), 156-167.  

Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior 
temporal lobes: a review and theoretical framework. Social cognitive and affective 
neuroscience, 8(2), 123-133.  

Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: a review of findings 
on social and emotional processing. Brain, 130(7), 1718-1731.  

Palombo, D. J., Williams, L. J., Abdi, H., & Levine, B. (2013). The survey of autobiographical 
memory (SAM): A novel measure of trait mnemonics in everyday life. Cortex, 49(6), 
1526-1540.  

Paquola, C., Bethlehem, R. A., Seidlitz, J., Wagstyl, K., Romero-Garcia, R., Whitaker, K. J., de 
Wael, R. V., Williams, G. B., Vértes, P. E., & Margulies, D. S. (2019). Shifts in 
myeloarchitecture characterise adolescent development of cortical gradients. Elife, 8.  

Paquola, C., De Wael, R. V., Wagstyl, K., Bethlehem, R. A., Hong, S.-J., Seidlitz, J., Bullmore, E. T., 
Evans, A. C., Misic, B., & Margulies, D. S. (2019). Microstructural and functional gradients 
are increasingly dissociated in transmodal cortices. PLoS Biology, 17(5), e3000284.  

Paquola, C., Seidlitz, J., Benkarim, O., Royer, J., Klimes, P., Bethlehem, R. A., Lariviere, S., de 
Wael, R. V., Hall, J. A., & Frauscher, B. (2020). The cortical wiring scheme of hierarchical 
information processing. bioRxiv.  

Park, B.-y., de Wael, R. V., Paquola, C., Larivière, S., Benkarim, O., Royer, J., Tavakol, S., Cruces, 
R. R., Li, Q., & Valk, S. L. (2020). Signal diffusion along connectome gradients and inter-
hub routing differentially contribute to dynamic human brain function. Neuroimage, 
224, 117429.  

Pascual, B., Masdeu, J. C., Hollenbeck, M., Makris, N., Insausti, R., Ding, S.-L., & Dickerson, B. C. 
(2013). Large-scale brain networks of the human left temporal pole: a functional 
connectivity MRI study. Cerebral Cortex, 25(3), 680-702.  

Pascual, B., Masdeu, J. C., Hollenbeck, M., Makris, N., Insausti, R., Ding, S.-L., & Dickerson, B. C. 
(2015). Large-scale brain networks of the human left temporal pole: a functional 
connectivity MRI study. Cerebral Cortex, 25(3), 680-702.  



 158 

Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews 
Neuroscience, 9(2), 148-158.  

Pobric, G., Lambon Ralph, M. A., & Zahn, R. (2016). Hemispheric specialization within the 
superior anterior temporal cortex for social and nonsocial concepts. Journal of Cognitive 
Neuroscience, 28(3), 351-360.  

Pokorny, T., Duerler, P., Seifritz, E., Vollenweider, F. X., & Preller, K. H. (2020). LSD acutely 
impairs working memory, executive functions, and cognitive flexibility, but not risk-
based decision-making. Psychological medicine, 50(13), 2255-2264.  

Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? [Research 
Support, N.I.H., Extramural 

Research Support, U.S. Gov't, Non-P.H.S.]. Trends Cogn Sci, 10(2), 59-63. 
https://doi.org/10.1016/j.tics.2005.12.004  

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., 
Nichols, T. E., Poline, J.-B., Vul, E., & Yarkoni, T. (2017). Scanning the horizon: towards 
transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 
18(2), 115-126.  

Poldrack, R. A., & Farah, M. J. (2015). Progress and challenges in probing the human brain. 
Nature, 526(7573), 371-379.  

Posner, M. I., & DiGirolamo, G. J. (2000). Cognitive neuroscience: origins and promise. Psychol 
Bull, 126(6), 873.  

Power, J. D., Plitt, M., Gotts, S. J., Kundu, P., Voon, V., Bandettini, P. A., & Martin, A. (2018). 
Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial 
and physical bases in multiecho data. Proceedings of the National Academy of Sciences, 
115(9), E2105-E2114.  

Preller, K. H., Burt, J. B., Ji, J. L., Schleifer, C. H., Adkinson, B. D., Stämpfli, P., Seifritz, E., Repovs, 
G., Krystal, J. H., & Murray, J. D. (2018). Changes in global and thalamic brain 
connectivity in LSD-induced altered states of consciousness are attributable to the 5-
HT2A receptor. Elife, 7, e35082.  

Preller, K. H., Duerler, P., Burt, J. B., Ji, J. L., Adkinson, B., Stämpfli, P., Seifritz, E., Repovs, G., 
Krystal, J. H., & Murray, J. D. (2020). Psilocybin induces time-dependent changes in 
global functional connectivity: Psi-induced changes in brain connectivity. Biological 
psychiatry.  

Preller, K. H., Herdener, M., Pokorny, T., Planzer, A., Kraehenmann, R., Stämpfli, P., Liechti, M. 
E., Seifritz, E., & Vollenweider, F. X. (2017). The fabric of meaning and subjective effects 
in LSD-induced states depend on serotonin 2A receptor activation. Current Biology, 
27(3), 451-457.  

Preller, K. H., & Vollenweider, F. X. (2016). Phenomenology, structure, and dynamic of 
psychedelic states. In Behavioral Neurobiology of Psychedelic Drugs (pp. 221-256). 
Springer.  

Price, J. L. (2006). Connections of orbital cortex. The orbitofrontal cortex, 39-55.  
Qin, P., & Northoff, G. (2011). How is our self related to midline regions and the default-mode 

network? Neuroimage, 57(3), 1221-1233.  
Raichle, M. E. (2009). A brief history of human brain mapping. Trends Neurosci, 32(2), 118-126. 

https://doi.org/10.1016/j.tins.2008.11.001  



 159 

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. 
(2001). A default mode of brain function. Proceedings of the National Academy of 
Sciences U.S.A., 98(2), 678-682.  

Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an 
evolving idea. Neuroimage, 37(4), 1083-1090. 
https://doi.org/10.1016/j.neuroimage.2007.02.041  

Ralph, M. A. L., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational 
bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42-55.  

Ramaswamy, S., & Markram, H. (2015). Anatomy and physiology of the thick-tufted layer 5 
pyramidal neuron. Frontiers in cellular neuroscience, 9, 233.  

Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory-guided behaviour. 
Nature Reviews Neuroscience, 13(10), 713-726.  

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional 
interpretation of some extra-classical receptive-field effects. Nat Neurosci, 2(1), 79.  

Rice, G. E., Caswell, H., Moore, P., Hoffman, P., & Lambon Ralph, M. A. (2018). The roles of left 
versus right anterior temporal lobes in semantic memory: a neuropsychological 
comparison of postsurgical temporal lobe epilepsy patients. Cerebral Cortex, 28(4), 
1487-1501.  

Rolls, E. T., Cheng, W., & Feng, J. (2020). The orbitofrontal cortex: reward, emotion and 
depression. Brain Communications, 2(2). https://doi.org/10.1093/braincomms/fcaa196  

Rolls, E. T., Deco, G., Huang, C.-C., & Feng, J. (2023). The human orbitofrontal cortex, vmPFC, 
and anterior cingulate cortex effective connectome: emotion, memory, and action. 
Cerebral Cortex, 33(2), 330-356.  

Roseman, L., Leech, R., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2014). The effects of 
psilocybin and MDMA on between-network resting state functional connectivity in 
healthy volunteers. Frontiers in Human Neuroscience, 8.  

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and 
interpretations. Neuroimage, 52(3), 1059-1069.  

Rudebeck, P. H., & Rich, E. L. (2018). Orbitofrontal cortex. Current Biology, 28(18), R1083-
R1088.  

Russell, D. W. (1996). UCLA Loneliness Scale (Version 3): Reliability, validity, and factor 
structure. Journal of personality assessment, 66(1), 20-40.  

Saleem, K. S., Kondo, H., & Price, J. L. (2008). Complementary circuits connecting the orbital and 
medial prefrontal networks with the temporal, insular, and opercular cortex in the 
macaque monkey. Journal of Comparative Neurology, 506(4), 659-693.  

Satpute, A. B., & Lindquist, K. A. (2019). The default mode network’s role in discrete emotion. 
Trends in Cognitive Sciences, 23(10), 851-864.  

Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). 
The future of memory: remembering, imagining, and the brain. Neuron, 76(4), 677-694.  

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S. B., & 
Yeo, B. (2017). Local-global parcellation of the human cerebral cortex from intrinsic 
functional connectivity mri. Cerebral Cortex, 1-20.  



 160 

Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K., & Muthukumaraswamy, S. D. 
(2017). Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, 
LSD and psilocybin. Scientific Reports, 7, 46421.  

Schmid, Y., Enzler, F., Gasser, P., Grouzmann, E., Preller, K. H., Vollenweider, F. X., Brenneisen, 
R., Müller, F., Borgwardt, S., & Liechti, M. E. (2015). Acute effects of lysergic acid 
diethylamide in healthy subjects. Biological psychiatry, 78(8), 544-553.  

Schrantee, A., Ferguson, B., Stoffers, D., Booij, J., Rombouts, S., & Reneman, L. (2016). Effects of 
dexamphetamine-induced dopamine release on resting-state network connectivity in 
recreational amphetamine users and healthy controls. Brain imaging and behavior, 10, 
548-558.  

Schultz, W., Tremblay, L., & Hollerman, J. R. (2000). Reward processing in primate orbitofrontal 
cortex and basal ganglia. Cerebral Cortex, 10(3), 272-283.  

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & 
Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing 
and executive control. The Journal of Neuroscience, 27(9), 2349-2356.  

Seidlitz, L., Abernethy, A. D., Duberstein, P. R., Evinger, J. S., Chang, T. H., & Lewis, B. b. L. 
(2002). Development of the spiritual transcendence index. Journal for the scientific study 
of religion, 41(3), 439-453.  

Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H., & Johnson, K. A. (2012). Stepwise connectivity of 
the modal cortex reveals the multimodal organization of the human brain. Journal of 
Neuroscience, 32(31), 10649-10661.  

Setton, R., Mwilambwe-Tshilobo, L., Girn, M., Lockrow, A. W., Baracchini, G., Hughes, C., Lowe, 
A. J., Cassidy, B. N., Li, J., & Luh, W.-M. (2023). Age differences in the functional 
architecture of the human brain. Cerebral Cortex, 33(1), 114-134.  

Setton, R., Mwilambwe-Tshilobo, L., Girn, M., Lockrow, A. W., Baracchini, G., Hughes, C., Lowe, 
A. J., Cassidy, B. N., Li, J., Luh, W.-M., Bzdok, D., Leahy, R. M., Ge, T., Margulies, D. S., 
Misic, B., Bernhardt, B. C., Stevens, W. D., De Brigard, F., Kundu, P., Turner, G. R., & 
Spreng, R. N. (2022). Age differences in the functional architecture of the human brain. 
Cerebral Cortex. https://doi.org/10.1093/cercor/bhac056  

Setton, R., Mwilambwe-Tshilobo, L., Girn, M., Lockrow, A. W., Baracchini, G., Lowe, A. J., 
Cassidy, B. N., Li, J., Luh, W.-M., Bzdok, D., Leahy, R. M., Ge, T., Margulies, D. S., Misic, B., 
Bernhardt, B. C., Dale Stevens, W., Brigard, F. D., Kundu, P., Turner, G. R., & Nathan 
Spreng, R. (2021). Functional architecture of the aging brain. bioRxiv, 
2021.2003.2031.437922. https://doi.org/10.1101/2021.03.31.437922  

Shipley, W. C., Gruber, C. P., Martin, T. A., & Klein, A. M. (2009). Shipley-2. Los Angeles, CA: 
Western Psychological Services.  

Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, 
S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral 
cortex. Journal of Cognitive Neuroscience, 9(5), 648-663.  

Simmons, W. K., Reddish, M., Bellgowan, P. S., & Martin, A. (2010). The selectivity and 
functional connectivity of the anterior temporal lobes. Cerebral Cortex, 20(4), 813-825.  

Skipper, L. M., Ross, L. A., & Olson, I. R. (2011). Sensory and semantic category subdivisions 
within the anterior temporal lobes. Neuropsychologia, 49(12), 3419-3429.  



 161 

Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The 
default mode network in cognition: a topographical perspective. Nature Reviews 
Neuroscience, 1-11.  

Smallwood, J., Turnbull, A., Wang, H.-t., Ho, N. S., Poerio, G. L., Karapanagiotidis, T., Konu, D., 
Mckeown, B., Zhang, M., & Murphy, C. (2021). The neural correlates of ongoing 
conscious thought. Iscience, 102132.  

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, 
K. E., Toro, R., & Laird, A. R. (2009). Correspondence of the brain's functional 
architecture during activation and rest. Proceedings of the National Academy of 
Sciences, 106(31), 13040-13045.  

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E., Glasser, M. F., Ugurbil, 
K., Barch, D. M., Van Essen, D. C., & Miller, K. L. (2015). A positive-negative mode of 
population covariation links brain connectivity, demographics and behavior. Nat 
Neurosci, 18(11), 1565.  

Smith, V., Mitchell, D. J., & Duncan, J. (2018). Role of the default mode network in cognitive 
transitions. Cerebral Cortex, 28(10), 3685-3696.  

Snoek, L., van der Miesen, M. M., Beemsterboer, T., van der Leij, A., Eigenhuis, A., & Steven 
Scholte, H. (2021). The Amsterdam Open MRI Collection, a set of multimodal MRI 
datasets for individual difference analyses. Scientific data, 8(1), 1-23.  

Snowden, J. S., Harris, J. M., Thompson, J. C., Kobylecki, C., Jones, M., Richardson, A. M., & 
Neary, D. (2018). Semantic dementia and the left and right temporal lobes. Cortex, 107, 
188-203.  

Sormaz, M., Murphy, C., Wang, H.-t., Hymers, M., Karapanagiotidis, T., Poerio, G., Margulies, D. 
S., Jefferies, E., & Smallwood, J. (2018). Default mode network can support the level of 
detail in experience during active task states. Proceedings of the National Academy of 
Sciences, 115(37), 9318-9323.  

Spiers, H., & Maguire, E. (2006). Spontaneous mentalizing during an interactive real world task: 
An fMRI study. Neuropsychologia, 44(10), 1674-1682. 
https://doi.org/http://dx.doi.org/10.1016/j.neuropsychologia.2006.03.028  

Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annu Rev Psychol, 67, 613-640.  
Spreng, R. N., & Andrews-Hanna, J. (2015). The Default Network and Social Cognition. In A. W. 

Toga (Ed.), Brain Mapping: An Encyclopedic Reference (pp. 165-169). Academic Press.  
Spreng, R. N., DuPre, E., Selarka, D., Garcia, J., Gojkovic, S., Mildner, J., Luh, W.-M., & Turner, G. 

R. (2014). Goal-Congruent Default Network Activity Facilitates Cognitive Control. The 
Journal of Neuroscience, 34(42), 14108-14114.  

Spreng, R. N., Fernández-Cabello, S., Turner, G. R., & Stevens, W. D. (2019). Take a deep breath: 
Multiecho fMRI denoising effectively removes head motion artifacts, obviating the need 
for global signal regression. Proceedings of the National Academy of Sciences, 
201909848.  

Spreng, R. N., Lockrow, A. W., DuPre, E., Setton, R., Spreng, K. A., & Turner, G. R. (2017). 
Semanticized autobiographical memory and the default–executive coupling hypothesis 
of aging. Neuropsychologia.  



 162 

Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical 
memory, prospection, navigation, theory of mind, and the default mode: a quantitative 
meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489-510.  

Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). 
Default network activity, coupled with the frontoparietal control network, supports 
goal-directed cognition [Research Support, N.I.H., Extramural]. Neuroimage, 53(1), 303-
317. https://doi.org/10.1016/j.neuroimage.2010.06.016  

Spreng*, R. N., McKinnon*, M. C., Mar, R. A., & Levine, B. (2009). The Toronto Empathy 
Questionnaire: Scale development and initial validation of a factor-analytic solution to 
multiple empathy measures. Journal of personality assessment, 91(1), 62-71.  

Stamatakis, E. A., Adapa, R. M., Absalom, A. R., & Menon, D. K. (2010). Changes in resting neural 
connectivity during propofol sedation. PLoS One, 5(12), e14224.  

Stawarczyk, D., Bezdek, M. A., & Zacks, J. M. (2019). Event Representations and Predictive 
Processing: The Role of the Midline Default Network Core. Topics in cognitive science.  

Studerus, E., Gamma, A., & Vollenweider, F. X. (2010). Psychometric evaluation of the altered 
states of consciousness rating scale (OAV). PLoS One, 5(8), e12412.  

Studerus, E., Kometer, M., Hasler, F., & Vollenweider, F. X. (2011). Acute, subacute and long-
term subjective effects of psilocybin in healthy humans: a pooled analysis of 
experimental studies. Journal of Psychopharmacology, 25(11), 1434-1452.  

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, 
J., & Landray, M. (2015). UK biobank: an open access resource for identifying the causes 
of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3), 
e1001779.  

Sydnor, V. J., Larsen, B., Bassett, D. S., Alexander-Bloch, A., Fair, D. A., Liston, C., Mackey, A. P., 
Milham, M. P., Pines, A., & Roalf, D. R. (2021). Neurodevelopment of the association 
cortices: Patterns, mechanisms, and implications for psychopathology. Neuron, 109(18), 
2820-2846.  

Tafarodi, R. W., & Swann Jr, W. B. (2001). Two-dimensional self-esteem: Theory and 
measurement. Personality and Individual Differences, 31(5), 653-673.  

Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D., & Chialvo, D. R. (2014). Enhanced 
repertoire of brain dynamical states during the psychedelic experience. Human Brain 
Mapping, 35(11), 5442-5456.  

Tagliazucchi, E., Roseman, L., Kaelen, M., Orban, C., Muthukumaraswamy, S. D., Murphy, K., 
Laufs, H., Leech, R., McGonigle, J., & Crossley, N. (2016). Increased global functional 
connectivity correlates with LSD-Induced ego dissolution. Current Biology, 26(8), 1043-
1050.  

Taruffi, L., Pehrs, C., Skouras, S., & Koelsch, S. (2017). Effects of sad and happy music on mind-
wandering and the default mode network. Scientific Reports, 7(1), 14396.  

Thirion, B., Varoquaux, G., Dohmatob, E., & Poline, J.-B. (2014). Which fMRI clustering gives 
good brain parcellations? Frontiers in neuroscience, 8, 167.  

Tian, Y., Margulies, D. S., Breakspear, M., & Zalesky, A. (2020). Topographic organization of the 
human subcortex unveiled with functional connectivity gradients. Nat Neurosci, 23(11), 
1421-1432.  



 163 

Timmermann, C., Roseman, L., Haridas, S., Rosas, F. E., Luan, L., Kettner, H., Martell, J., Erritzoe, 
D., Tagliazucchi, E., & Pallavicini, C. (2023). Human brain effects of DMT assessed via 
EEG-fMRI. Proceedings of the National Academy of Sciences, 120(13), e2218949120.  

Timmermann, C., Roseman, L., Schartner, M., Milliere, R., Williams, L. T., Erritzoe, D., 
Muthukumaraswamy, S., Ashton, M., Bendrioua, A., & Kaur, O. (2019). Neural correlates 
of the DMT experience assessed with multivariate EEG. Scientific Reports, 9(1), 1-13.  

Tusche, A., Smallwood, J., Bernhardt, B. C., & Singer, T. (2014). Classifying the wandering mind: 
Revealing the affective content of thoughts during task-free rest periods. Neuroimage, 
97, 107-116.  

Uddin, L. Q., Yeo, B., & Spreng, R. N. (2019). Towards a universal taxonomy of macro-scale 
functional human brain networks. Brain topography, 32(6), 926-942.  

van de Ven, V., Wingen, M., Kuypers, K. P., Ramaekers, J. G., & Formisano, E. (2013). 
Escitalopram decreases cross-regional functional connectivity within the default-mode 
network. PLoS One, 8(6), e68355.  

Van Den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. 
The Journal of Neuroscience, 31(44), 15775-15786.  

Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). 
Intrinsic functional connectivity as a tool for human connectomics: theory, properties, 
and optimization. J Neurophysiol, 103(1), 297.  

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & Consortium, 
W.-M. H. (2013). The WU-Minn human connectome project: an overview. Neuroimage, 
80, 62-79.  

van Rentergem, J. A. A., Deserno, M. K., & Geurts, H. M. (2021). Validation strategies for 
subtypes in psychiatry: A systematic review of research on autism spectrum disorder. 
Clin Psychol Rev, 87, 102033.  

Varley, T., Carhart-Harris, R., Roseman, L., Menon, D., & Stamatakis, E. (2019). Serotonergic 
Psychedelics LSD & Psilocybin Increase the Fractal Dimension of Cortical Brain Activity in 
Spatial and Temporal Domains. bioRxiv, 517847.  

Varley, T. F., Carhart-Harris, R., Roseman, L., Menon, D. K., & Stamatakis, E. A. (2020). 
Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical 
brain activity in spatial and temporal domains. Neuroimage, 220, 117049.  

Vatansever, D., Manktelow, A., Sahakian, B. J., Menon, D. K., & Stamatakis, E. A. (2017). Angular 
default mode network connectivity across working memory load. Human Brain 
Mapping, 38(1), 41-52.  

Vatansever, D., Menon, D. K., & Stamatakis, E. A. (2017). Default mode contributions to 
automated information processing. Proceedings of the National Academy of Sciences, 
114(48), 12821-12826.  

Vazquez-Rodriguez, B., Liu, Z.-Q., Hagmann, P., & Misic, B. (2020). Signal propagation via 
cortical hierarchies. bioRxiv.  

Vidaurre, D., Smith, S. M., & Woolrich, M. W. (2017). Brain network dynamics are hierarchically 
organized in time. Proceedings of the National Academy of Sciences, 114(48), 12827-
12832.  



 164 

Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., & Buckner, 
R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory 
network [Research Support, N.I.H., Extramural 

Research Support, Non-U.S. Gov't 
Research Support, U.S. Gov't, Non-P.H.S.]. J Neurophysiol, 96(6), 3517-3531. 

https://doi.org/10.1152/jn.00048.2006  
Vollenweider, F. X., & Preller, K. H. (2020). Psychedelic drugs: neurobiology and potential for 

treatment of psychiatric disorders. Nature Reviews Neuroscience, 1-14.  
Von Neumann, J., Kent, R., Bellinson, H., & Hart, B. t. (1941). The mean square successive 

difference. The Annals of Mathematical Statistics, 12(2), 153-162.  
Wall, M. B., Pope, R., Freeman, T. P., Kowalczyk, O. S., Demetriou, L., Mokrysz, C., Hindocha, C., 

Lawn, W., Bloomfield, M. A., & Freeman, A. M. (2019). Dissociable effects of cannabis 
with and without cannabidiol on the human brain’s resting-state functional connectivity. 
Journal of Psychopharmacology, 33(7), 822-830.  

Wandschneider, B., & Koepp, M. J. (2016). Pharmaco fMRI: determining the functional anatomy 
of the effects of medication. NeuroImage: Clinical, 12, 691-697.  

Wang, J., & Maurer, L. (2005). Positron emission tomography: applications in drug discovery 
and drug development. Current topics in medicinal chemistry, 5(11), 1053-1075.  

Webster, J. D. (2003). An exploratory analysis of a self-assessed wisdom scale. Journal of Adult 
Development, 10(1), 13-22.  

Wold, S., Martens, H., & Wold, H. (1983). The multivariate calibration problem in chemistry 
solved by the PLS method. In Matrix pencils (pp. 286-293). Springer.  

Worsley, K. J., Taylor, J., Carbonell, F., Chung, M., Duerden, E., Bernhardt, B., Lyttelton, O., 
Boucher, M., & Evans, A. (2009). A Matlab toolbox for the statistical analysis of 
univariate and multivariate surface and volumetric data using linear mixed effects 
models and random field theory. NeuroImage Organisation for Human Brain Mapping 
2009 Annual Meeting,  

Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: a network visualization tool for human brain 
connectomics. PLoS One, 8(7), e68910.  

Xie, C., Jia, T., Rolls, E. T., Robbins, T. W., Sahakian, B. J., Zhang, J., Liu, Z., Cheng, W., Luo, Q., & 
Lo, C.-Y. Z. (2021). Reward versus nonreward sensitivity of the medial versus lateral 
orbitofrontal cortex relates to the severity of depressive symptoms. Biological 
Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(3), 259-269.  

Yarkoni, T., Poldrack, R. A., Van Essen, D. C., & Wager, T. D. (2010). Cognitive neuroscience 2.0: 
building a cumulative science of human brain function. Trends Cogn Sci, 14(11), 489-496. 
https://doi.org/10.1016/j.tics.2010.08.004  

Yeo, B. T. T., Kirienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, 
J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). 
The organization of the human cerebral cortex estimated by intrinsic functional 
connectivity. J Neurophysiol, 106, 1125-1165. https://doi.org/10.1152/jn.00338.2011.-  

Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are 
represented in the superior anterior temporal cortex. Proceedings of the National 
Academy of Sciences, 104(15), 6430-6435.  



 165 

Zald, D. H., McHugo, M., Ray, K. L., Glahn, D. C., Eickhoff, S. B., & Laird, A. R. (2012). Meta-
analytic connectivity modeling reveals differential functional connectivity of the medial 
and lateral orbitofrontal cortex. Cerebral Cortex, 24(1), 232-248.  

Zhang, X., Huettel, S. A., O'Dhaniel, A., Guo, H., & Wang, L. (2019). Exploring common changes 
after acute mental stress and acute tryptophan depletion: Resting-state fMRI studies. 
Journal of Psychiatric Research, 113, 172-180.  

Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., Wang, Y.-F., & Zang, Y.-F. 
(2008). An improved approach to detection of amplitude of low-frequency fluctuation 
(ALFF) for resting-state fMRI: fractional ALFF. Journal of neuroscience methods, 172(1), 
137-141.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 166 

Appendix A: Supplementary Material to “Evaluating the inclusion of limbic regions within 

the default network” 

 

 

 
Supplementary Figure 1.  Modularity results for Run 2. (A) Data-driven network assignments based on the Louvain 
modularity algorithm, at three values of the gamma resolution parameter. (B) Data-driven network assignments 
based on the Infomap modularity algorithm. Networks are colored according to their putative corresponding large-
scale network according to the Yeo 7 network parcellation scheme (Yeo et al., 2011). 
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Supplementary Figure 2. RSFC maps for LIMA and LIMB, as defined by the Yeo et al. 2011 17 network parcellation (A) 
Left: RSFC maps thresholded at p<0.01 Bonferroni for Cluster 1 (C1; Top) and Cluster 2 (C2; Bottom). Right: RSFC 
maps thresholded at top absolute 25% of connections for Cluster 1 (C1; Top) and Cluster 2 (C2; Bottom (B) Cluster 
dendrogram. (C) Between-cluster C1>C2 contrast. (D) Spider plots displaying network-wise (Left) and subcortical 
(Right) between-cluster contrasts. Networks are defined based on the Yeo et al. 2011 17 network parcellation. 
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Supplementary Figure 3. Run 2 data-driven clusters revealed by applying Ward clustering to all LIM parcels, 
spanning both LIMA and LIMB (A) Left: RSFC maps thresholded at p<0.01 Bonferroni for Cluster 1 (C1; Top), Cluster 
2 (C2; Middle), and Cluster 3 (C3; Bottom). Right: RSFC maps thresholded at top absolute 25% of connections for 
Cluster 1 (C1; Top), Cluster 2 (C2; Middle), and Cluster 3 (C3; Bottom). (B) Cluster dendrogram. (C) Between-cluster 
contrasts. (D) Spider plots displaying network-wise (Left) and subcortical (Right) between-cluster contrasts. 
Networks are defined based on the Yeo et al. 2011 17 network parcellation. 
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Figure 4. Run 2 data-driven clusters revealed by applying Ward clustering to LIMA parcels only (A) Left: RSFC maps 
thresholded at p<0.01 Bonferroni for Cluster 1 (C1; Top) and Cluster 2 (C2; Bottom). Right: RSFC maps thresholded 
at top absolute 25% of connections for Cluster 1 (C1; Top) and Cluster 2 (C2; Bottom (B) Cluster dendrogram. (C) 
Between-cluster C1>C2 contrast. (D) Spider plots displaying network-wise (Left) and subcortical (Right) between-
cluster contrasts. Networks are defined based on the Yeo et al. 2011 17 network parcellation. 
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Supplementary Figure 5. Run 2 data-driven clusters revealed by applying Ward clustering to LIMB parcels (A) Left: 
RSFC maps thresholded at p<0.01 Bonferroni for Cluster 1 (C1; Top), Cluster 2 (C2; Middle), and Cluster 3 (C3; 
Bottom). Right: RSFC maps thresholded at top absolute 25% of connections for Cluster 1 (C1; Top), Cluster 2 (C2; 
Middle), and Cluster 3 (C3; Bottom). (B) Clustering dendrogram. (C) Between-cluster contrasts. (D) Spider plots 
displaying network-wise (Left) and subcortical (Right) between-cluster contrasts. Networks are defined based on 
the Yeo et al. 2011 17 network parcellation. 
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Appendix B: Supplementary Material to “A multivariate examination of default network 

subsystem-specific brain-behaviour covariance” 
 

Supplementary Table 1. Variable loadings for all 20 behaviour principal components included in the 

present analyses. 

 
Behaviour PC Loadings (1-10) PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 

Agreeableness-Compassion -0.05 0.27 0.12 0.01 -0.01 -0.02 -0.02 -0.12 -0.08 0.01 

Agreeableness-Politeness 0.01 0.1 0.18 0.24 -0.08 0.15 -0.17 -0.12 -0.05 0.03 

AI-External Density 0.01 0.02 -0.08 -0.09 0.09 0.07 0.11 -0.19 -0.16 0.19 

AI-Internal Density -0.02 0.04 -0.07 -0.03 0.13 0.01 0.05 -0.21 -0.19 0.25 

ART Fiction 0.05 0.21 -0.11 0.07 -0.06 0.18 -0.06 0.13 -0.09 -0.08 

ART Nonfiction 0.02 0.19 -0.17 0 -0.02 0.13 0 0.07 -0.18 0 

Beck Depression Inventory 0.16 0.06 0.04 -0.01 0.1 0 0.15 0.05 -0.07 -0.17 

BISBAS BAS-Drive -0.1 0.06 0.06 -0.24 0.15 -0.05 -0.01 -0.11 0.12 -0.18 

BISBAS BAS-Fun -0.02 0.07 0.03 -0.15 0.11 -0.12 -0.06 -0.02 0.18 -0.02 

BISBAS BAS-Reward -0.09 0.12 0.11 -0.04 0.13 -0.1 -0.05 -0.04 0.06 -0.15 

BISBAS BIS 0.08 0.1 0.15 0.17 0.12 -0.01 -0.12 0.03 -0.04 -0.05 

Conscientiousness-Industriousness -0.19 -0.04 0.03 0.03 -0.06 0.05 0.07 -0.17 0.08 0.02 

Conscientiousness-Orderliness -0.07 -0.03 0.1 0.12 0.09 0.04 -0.07 -0.1 0.12 0.07 

Delayed Gratification -0.1 0.1 0.07 0.06 0.02 0.19 0.04 -0.09 0.06 0.05 

ECR-R Anxiety 0.16 0.04 0.06 -0.05 0.06 0.18 -0.13 -0.17 0.02 0.06 

ECR-R Avoidance 0.13 -0.05 0.01 -0.07 0.02 0.19 -0.03 -0.05 0.06 0.05 

Education -0.01 0.01 -0.02 0.12 -0.14 0.03 0.17 0.18 -0.2 0.15 

Extraversion-Assertiveness -0.16 0.08 -0.06 -0.19 0.11 -0.05 0.16 0.01 0.06 -0.12 

Extraversion-Enthusiasm -0.16 0.13 0.08 -0.05 0.12 -0.11 -0.09 0.01 -0.05 -0.15 

IRI-Empathic Concern -0.04 0.17 0.15 0.08 0.02 0.02 0.04 0.08 0.05 -0.11 

IRI-Fantasy -0.03 0.17 0.08 0.1 0.15 -0.13 -0.01 -0.02 0.04 -0.02 

IRI-Personal Distress 0.08 0.04 0.13 0.08 0.06 -0.11 -0.2 0 0.1 -0.03 

IRI-Perspective Taking -0.07 0.14 0.1 0.02 0.03 0.25 0.02 -0.01 0.09 0.09 

ISEL-Appraisal -0.15 0.04 -0.05 -0.05 0.05 -0.06 -0.06 0.15 0.1 -0.03 

ISEL-Belonging -0.16 0.01 -0.03 -0.04 0.19 0.03 -0.13 0.06 0.19 -0.11 

ISEL-Self Esteem -0.18 -0.02 -0.06 0 0.06 0.01 -0.07 0.07 0.08 0.06 

ISEL-Tangible -0.09 0.08 -0.12 0 0.15 0.08 -0.05 0.1 0.09 0.03 
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MFQ-Authority/Respect -0.06 -0.16 0.19 -0.04 0.12 0.16 0.04 -0.05 -0.07 0.01 

MFQ-Fairness/Repricrocity 0.03 0.22 0.07 0.04 0.01 0.12 0.02 -0.05 -0.04 -0.05 

MFQ-Harm/Care -0.03 0.17 0.15 -0.07 0.08 0.14 -0.04 -0.05 -0.1 -0.07 

MFQ-In Group Loyalty -0.06 -0.2 0.18 -0.09 0.1 0.15 0.06 -0.02 -0.08 0.03 

MFQ-Purity/Sanctity -0.06 -0.16 0.24 -0.07 0.12 0.14 0.08 0.05 -0.01 -0.05 

MJT-C 0 -0.03 -0.17 0.02 -0.11 -0.02 -0.1 0 0.07 -0.23 

MMSE 0.04 0.01 -0.15 0.08 0.01 0.05 0.01 -0.06 0.1 -0.03 

Neuroticism-Volatility 0.11 -0.02 -0.03 -0.11 0.12 -0.1 0 0.23 0.09 -0.02 

Neuroticism-Withdrawal 0.22 0.08 0.1 0.04 0.11 -0.02 -0.04 0.11 -0.06 0.05 

NIHCog_PictureSeqREMOVE 0.03 -0.11 -0.03 0.18 0.26 0 0.25 -0.12 0.15 -0.06 

NIHCog-DCCS -0.04 0 0.04 0.1 -0.01 0.06 0.08 0.23 -0.14 -0.15 

NIHCog-Flanker -0.03 -0.01 0.08 0.11 -0.08 0.03 -0.07 0.11 0.02 0.05 

NIHCog-List Sort -0.02 0.07 -0.2 0.09 0.12 0.06 0.05 -0.01 0.07 -0.01 

NIHCog-Pattern Comparison 0.02 0.02 -0.17 -0.1 -0.01 0.06 -0.09 -0.18 0.13 0.01 

NIHCog-Picture Sequence 0.03 -0.1 -0.01 0.2 0.25 0 0.25 -0.11 0.15 -0.06 

NIHCog-Reading Recognition 0.02 0.13 -0.2 0.11 -0.02 0.25 0.11 0.05 0.02 -0.03 

NIHCog-Rey Immediate 0.03 0 -0.07 0.2 0.26 0.05 -0.04 -0.1 -0.18 -0.03 

NIHEmo-Anger Affect 0.02 -0.05 0.03 -0.14 0.15 -0.04 -0.15 -0.02 -0.16 0.1 

NIHEmo-Anger Hostility 0.16 -0.02 0.08 -0.11 0.17 -0.03 0.03 -0.04 -0.02 0.03 

NIHEmo-Anger Physical Aggression 0.01 -0.06 -0.07 -0.23 0.1 -0.04 0.1 0.06 -0.02 0.17 

NIHEmo-Emotional Support -0.21 0 0.04 0.07 0.01 -0.04 -0.11 0.05 -0.05 -0.04 

NIHEmo-Fear Affect 0.06 0.03 0.05 -0.04 0.15 -0.16 0.23 0.02 -0.07 -0.03 

NIHEmo-Fear Somatic Arousal 0 0.05 -0.06 -0.11 0.21 0.01 -0.07 0.09 -0.08 0.06 

NIHEmo-Friendship -0.19 0.01 -0.02 -0.09 0.12 0.01 -0.12 0.04 -0.02 -0.09 

NIHEmo-Instrumental Support -0.13 -0.04 -0.05 0.01 0.01 0 0.03 0.28 -0.11 -0.04 

NIHEmo-Life Satisfaction -0.17 -0.02 -0.07 0.04 0.06 0.12 -0.06 -0.05 -0.03 0.08 

NIHEmo-Loneliness 0.22 0.1 0.02 -0.06 -0.02 -0.02 0.03 -0.08 0.12 0.09 

NIHEmo-Meaning and Purpose -0.17 -0.05 0.11 -0.04 0.08 0.01 0.03 0.02 -0.16 0.07 

NIHEmo-Perceived Hostility 0.09 0.07 -0.06 -0.19 0.09 0.22 0.03 0.18 0 0.05 

NIHEmo-Perceived Rejection 0.18 0.04 -0.02 -0.17 0.06 0.12 0.03 0.08 0.13 0.01 

NIHEmo-Perceived Stress 0.21 0.05 0.1 -0.06 0.04 -0.02 0.1 0.08 0.05 -0.03 

NIHEmo-Positive Affect -0.13 -0.04 0 -0.04 0.04 0.01 -0.1 -0.08 -0.16 0.12 

NIHEmo-Sadness 0.04 -0.01 0.02 0.02 0.04 -0.15 0.07 -0.09 -0.14 -0.07 

NIHEmo-Self Efficacy -0.18 0.03 -0.08 -0.17 0.08 0.04 0.19 -0.06 -0.02 0 

Openness-Intellect -0.07 0.18 -0.19 -0.14 0 0.01 0.11 0.01 -0.14 -0.03 

Openness-Openness 0 0.27 0.07 -0.06 -0.07 -0.08 -0.06 0.03 0 0.11 

Reading the Mind in the Eye -0.03 0.08 -0.12 0.13 0.16 0.03 -0.07 0.06 -0.08 -0.07 

Rey Delay Test H-F 0.05 0.04 0.05 0.16 0.26 0.09 0.03 -0.04 -0.16 0 

Ruminative Response Scale 0 -0.05 0.11 0.07 0.06 -0.06 0.08 -0.01 -0.14 0.06 
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SART Commission Error -0.05 -0.04 0 0.2 0.03 -0.14 0.02 0.16 -0.03 0.11 

SART Omission 0.02 0.06 0 -0.24 -0.06 0.13 -0.15 -0.09 0 -0.09 

Satisfaction With Life Scale -0.21 -0.05 -0.06 0.02 0.01 0.17 -0.08 0.03 0.01 0.04 

SDMT Oral -0.03 -0.06 -0.2 0.09 0.14 0 0.07 -0.19 0.11 -0.06 

Shipley Blocks 0 -0.05 -0.13 0.16 0.13 -0.04 0 0.08 0.04 -0.11 

Shipley Vocab 0.01 0.21 -0.2 0.03 0.05 0.19 0 -0.05 0 -0.01 

SLCSR_Competence 0.04 0.11 -0.04 -0.16 0.08 -0.01 -0.07 0.05 -0.07 0.11 

SLCSR-Liking -0.09 0.01 -0.01 -0.11 -0.03 -0.01 0.3 0.12 -0.05 0.14 

SNI-Network Diversity 0.01 0.08 -0.01 0.1 0.13 -0.07 -0.07 0.18 0.2 0.4 

SNI-Network Size 0 0.1 -0.01 0.09 0.15 -0.07 -0.07 0.18 0.21 0.39 

Spiritual Transcendence Inventory -0.05 -0.04 0.24 -0.05 -0.03 0.23 0.09 0.16 0.09 0 

SWBS-Existential -0.22 -0.05 0.03 0 0.01 0.03 -0.08 0.03 0.1 0.07 

SWBS-Religious -0.05 -0.08 0.23 -0.05 -0.04 0.18 0.1 0.12 0.06 -0.02 

TAS20-DDF 0.15 -0.12 0 0 0.04 0.2 -0.09 0.11 0.1 -0.09 

TAS20-DIF 0.14 -0.03 -0.01 -0.05 0.11 0.11 -0.08 0.2 0.08 -0.15 

TAS20-EOT 0.05 -0.25 -0.06 0.01 0.04 0.13 -0.07 0.02 0.08 -0.03 

Toronto Empathy Questionnaire -0.04 0.23 0.15 0.02 0.07 -0.11 0.06 0.07 -0.05 -0.08 

Trails Test B-A 0.03 0.05 0.11 -0.09 -0.02 -0.08 -0.11 -0.19 0.12 0.15 

UCLA Loneliness 0.23 0.06 0.01 -0.02 0 0.04 0.11 -0.06 0.03 0 

Wisdom Scale-Affective -0.08 0.18 0.15 0.09 -0.11 0.07 0.15 -0.06 0.13 -0.08 

Wisdom Scale-Cognitive -0.06 0.16 0.04 -0.01 -0.1 -0.12 0.29 -0.02 0.2 -0.01 

Wisdom Scale-Reflective -0.11 0.09 0.01 0.05 -0.15 0.12 0.19 -0.03 0.22 0.13 

 

 

 Behaviour PC Loadings (11-20) 

PC 

11 

PC 

12 

PC 

13 

PC 

14 

PC 

15 

PC 

16 

PC 

17 

PC 

18 

PC 

19 

PC 

20 

Agreeableness-Compassion 0.12 0.03 -0.1 0.09 0.01 0.07 -0.09 0.05 -0.07 0.08 

Agreeableness-Politeness 0.09 0.01 0.03 0.01 0.05 0.01 -0.01 0.12 -0.14 0.02 

AI-External Density 0.09 0.08 0.19 -0.16 0.14 0.1 0.15 0.15 0.21 0.16 

AI-Internal Density 0.1 0.03 0.19 -0.18 0.11 0.12 0.09 0.08 0.18 0.09 

ART Fiction 0 0 0.12 -0.11 -0.11 -0.03 0 -0.1 0 -0.12 

ART Nonfiction 0.05 0 0.01 -0.04 0.01 0.09 0.06 0.07 -0.07 -0.22 

Beck Depression Inventory -0.03 -0.01 0.02 0.16 -0.06 0.06 0.1 0.05 0.09 -0.01 

BISBAS BAS-Drive -0.05 0.02 0.12 0.02 0.12 -0.05 0.06 -0.12 -0.05 -0.03 

BISBAS BAS-Fun -0.09 0.31 0.11 0 0.13 -0.12 -0.06 -0.04 0.17 -0.03 

BISBAS BAS-Reward -0.13 0.05 0.14 0.06 0.14 0.05 -0.1 -0.16 0.19 -0.22 

BISBAS BIS -0.13 -0.11 0.33 0.01 0.05 0.03 -0.02 -0.08 0.12 0.02 

Conscientiousness-Industriousness 0.09 -0.21 0.1 0.08 0.05 0.11 0 -0.04 -0.2 0.07 

Conscientiousness-Orderliness -0.13 -0.31 0.19 0.2 -0.03 0.01 0.07 -0.08 -0.16 0.18 
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Delayed Gratification 0.05 -0.09 0.02 0.11 -0.07 0.03 -0.11 0.17 -0.08 -0.13 

ECR-R Anxiety 0.01 0.07 0.08 0.04 -0.02 -0.06 -0.04 -0.16 -0.01 0.05 

ECR-R Avoidance -0.05 0.12 -0.02 0.03 0.02 0.26 -0.09 -0.19 -0.21 0.07 

Education -0.08 0 0.06 0.04 -0.17 -0.16 -0.2 -0.15 0.01 -0.04 

Extraversion-Assertiveness -0.09 -0.07 -0.01 0.04 0.03 0.07 0.02 -0.11 -0.08 0.03 

Extraversion-Enthusiasm 0.05 0.03 0.05 0 0.13 0.02 -0.12 0.11 -0.02 -0.05 

IRI-Empathic Concern -0.17 -0.03 -0.26 -0.18 -0.1 0.14 -0.02 0.06 0.08 0.02 

IRI-Fantasy -0.1 0.04 -0.05 -0.2 -0.04 0.06 -0.2 0.05 0.04 0.15 

IRI-Personal Distress 0.04 0.13 0.04 -0.15 0.08 -0.01 0.12 -0.16 0.07 -0.08 

IRI-Perspective Taking -0.05 0.2 -0.05 -0.03 -0.06 -0.08 0.14 0.06 -0.02 0.06 

ISEL-Appraisal 0.19 -0.03 0.13 -0.07 -0.06 0.1 0.18 0.25 -0.14 -0.02 

ISEL-Belonging 0.2 0.1 0.04 -0.1 -0.05 0.09 0.02 0.03 -0.08 -0.01 

ISEL-Self Esteem -0.07 0.06 -0.08 -0.11 -0.13 0.18 -0.08 -0.06 -0.03 0.07 

ISEL-Tangible -0.13 0.03 0.1 -0.03 -0.09 0.01 0.08 0.21 -0.09 0.09 

MFQ-Authority/Respect -0.05 -0.12 0.02 0.06 -0.06 0.06 -0.13 0.05 0.18 -0.2 

MFQ-Fairness/Repricrocity 0.01 -0.19 -0.14 0.04 -0.1 -0.14 0.15 -0.05 0.11 -0.05 

MFQ-Harm/Care -0.03 -0.1 -0.04 -0.03 -0.19 -0.06 -0.09 -0.04 0.14 0.05 

MFQ-In Group Loyalty 0.02 -0.06 -0.05 0 0 0.06 -0.16 0.05 0.2 -0.15 

MFQ-Purity/Sanctity -0.01 -0.11 -0.05 -0.03 0.17 0.01 0.07 0 0.08 -0.09 

MJT-C 0.04 -0.08 -0.04 0.23 -0.09 0.08 -0.11 0.06 0.25 -0.08 

MMSE 0.08 -0.03 0.19 0.2 0.12 0.15 -0.18 -0.02 0.08 0.09 

Neuroticism-Volatility -0.04 -0.18 0.24 -0.2 -0.11 -0.06 0.05 -0.08 0 0.04 

Neuroticism-Withdrawal -0.03 -0.1 0.16 -0.01 -0.09 0 -0.02 0.03 0.07 0.01 

NIHCog_PictureSeqREMOVE 0.11 0.07 -0.03 -0.01 -0.08 -0.21 -0.01 0.04 0.02 0.08 

NIHCog-DCCS 0.05 0.03 0.16 0.01 0.05 0.01 -0.19 -0.05 -0.1 0.25 

NIHCog-Flanker 0.08 0.1 0.14 0 -0.03 -0.11 -0.02 0.27 0.21 -0.03 

NIHCog-List Sort -0.04 -0.16 -0.09 -0.16 0.12 -0.1 -0.1 0.21 0.02 0 

NIHCog-Pattern Comparison -0.21 -0.2 -0.08 -0.03 -0.01 -0.2 -0.09 -0.11 -0.06 -0.08 

NIHCog-Picture Sequence 0.09 0.06 -0.04 -0.03 -0.08 -0.23 0 0.06 -0.02 0.08 

NIHCog-Reading Recognition -0.01 -0.11 0.08 0.06 0.14 0.2 0.03 0.01 0.04 -0.03 

NIHCog-Rey Immediate 0 0.03 -0.11 -0.08 0.1 -0.12 0.03 -0.14 -0.09 -0.09 

NIHEmo-Anger Affect -0.08 -0.17 -0.02 0 0.01 -0.1 0.15 0.19 -0.14 -0.11 

NIHEmo-Anger Hostility 0.17 -0.11 0.09 0.17 -0.06 0.03 -0.08 0.07 -0.1 0.06 

NIHEmo-Anger Physical Aggression 0.11 0.01 0.01 0.11 0.01 -0.26 -0.11 0.06 -0.11 0.06 

NIHEmo-Emotional Support 0.15 -0.11 0.12 0.08 -0.01 -0.1 0.1 -0.02 0.06 -0.06 

NIHEmo-Fear Affect -0.09 -0.04 -0.03 -0.06 -0.2 0.27 0.04 -0.05 -0.13 0 

NIHEmo-Fear Somatic Arousal -0.22 0.1 -0.11 0.15 -0.08 -0.1 -0.13 0.18 -0.1 0.05 

NIHEmo-Friendship 0.27 0.05 0.04 0.06 -0.05 0.07 0.04 -0.04 -0.11 -0.04 

NIHEmo-Instrumental Support 0.04 -0.04 0.06 0.02 -0.09 -0.25 0.17 0.01 0.09 0.1 
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NIHEmo-Life Satisfaction -0.15 0.11 0.1 -0.11 -0.16 -0.01 0.17 -0.19 -0.02 -0.05 

NIHEmo-Loneliness -0.09 0.02 0.04 -0.03 0.06 0.01 -0.03 0.05 0.06 0.01 

NIHEmo-Meaning and Purpose -0.17 0.04 0.01 0.14 -0.1 0.15 0.02 -0.05 0.06 0.12 

NIHEmo-Perceived Hostility 0.14 0.11 0.03 -0.06 0 -0.02 -0.15 0.02 0 -0.11 

NIHEmo-Perceived Rejection 0.01 0.04 -0.07 0.01 0.04 0.03 -0.14 0.09 -0.08 -0.07 

NIHEmo-Perceived Stress 0.07 -0.12 0.07 0.03 0.01 0.05 0.01 0.04 -0.03 -0.12 

NIHEmo-Positive Affect 0.01 0.19 -0.03 0.1 -0.14 0.04 -0.2 -0.06 0.04 0.23 

NIHEmo-Sadness -0.07 0.06 -0.09 0.22 -0.16 0.2 0.31 0.16 0.14 0.08 

NIHEmo-Self Efficacy -0.08 -0.02 -0.03 0.06 -0.02 0 0.05 -0.13 0.05 0.12 

Openness-Intellect 0.03 -0.01 -0.14 0.01 0.18 0.01 0.07 -0.18 0.01 0.02 

Openness-Openness -0.09 0.11 -0.05 0.06 0.08 -0.03 -0.02 0.04 -0.01 0.1 

Reading the Mind in the Eye -0.07 -0.05 0.07 0.23 0.11 -0.14 -0.06 -0.08 -0.08 0.06 

Rey Delay Test H-F 0.05 0.03 -0.14 -0.01 -0.03 -0.02 0.13 -0.16 -0.09 -0.19 

Ruminative Response Scale 0.24 0.27 0.04 0.12 0.05 -0.04 -0.08 -0.18 -0.07 -0.16 

SART Commission Error -0.19 0.08 0.01 0.16 0.27 0.06 0.07 0.06 -0.16 -0.17 

SART Omission 0.27 -0.17 -0.07 -0.03 -0.12 -0.08 0.02 -0.13 0.15 0.18 

Satisfaction With Life Scale -0.13 0.06 -0.02 0.01 -0.1 -0.05 0.06 0 0.12 -0.05 

SDMT Oral -0.01 -0.01 -0.02 -0.09 -0.05 0.1 -0.08 0.08 0.06 -0.2 

Shipley Blocks 0.01 0 -0.15 0.19 0.16 -0.02 -0.09 -0.01 0.22 0.22 

Shipley Vocab -0.08 0.06 0.11 0.09 0.11 -0.01 0.05 0.05 0 -0.02 

SLCSR_Competence 0.01 -0.01 -0.12 0.27 0.11 -0.02 0.03 0.11 0.16 -0.08 

SLCSR-Liking -0.06 0.01 0.17 0.01 -0.07 0.05 -0.11 -0.03 -0.03 -0.22 

SNI-Network Diversity 0.14 -0.12 -0.15 0.06 -0.02 0.12 0.02 -0.15 0.12 0.01 

SNI-Network Size 0.15 -0.13 -0.16 0.05 -0.02 0.11 0.01 -0.14 0.11 -0.01 

Spiritual Transcendence Inventory 0 -0.01 -0.12 -0.04 0.25 -0.02 0.07 -0.03 -0.04 0.09 

SWBS-Existential -0.11 -0.08 -0.03 -0.03 0.07 -0.01 -0.11 0.08 0.08 -0.04 

SWBS-Religious -0.1 -0.03 -0.04 -0.03 0.31 -0.03 0.12 0.05 -0.03 0.16 

TAS20-DDF -0.02 0.19 0 0.12 -0.11 0.04 0.18 -0.07 0.07 -0.02 

TAS20-DIF -0.01 0.13 -0.02 0.15 -0.11 0.06 0.14 0.01 -0.04 0.09 

Toronto Empathy Questionnaire -0.1 0.05 0.08 0 -0.11 0.18 -0.12 0.04 0.01 -0.04 

Trails Test B-A 0.01 -0.06 0.06 -0.12 -0.07 -0.04 -0.19 0.02 -0.04 0.04 

UCLA Loneliness -0.14 0.05 0.09 0.19 -0.17 -0.16 0.06 0.08 -0.12 -0.13 

Wisdom Scale-Affective -0.1 0.01 0.06 -0.05 0.02 0.02 0.05 0.03 -0.01 0.16 

Wisdom Scale-Cognitive 0.13 0.12 -0.07 0.13 -0.12 0.01 -0.05 0.11 -0.12 -0.04 

Wisdom Scale-Reflective 0.05 0.02 0.04 0.11 -0.03 -0.02 0.14 -0.11 0.1 -0.14 

 

Abbreviations. PC, principal component; AI, Autobiographical Interview; ART, Author Recognition Task; BISBAS, Behavioural 

Inhibition System Behavioral Activation System; ECR, Experience in Close Relationships; IRI, Interpersonal Reactivity Index; 

ISEL, Interpersonal Support Evaluation List; MFQ, Mood and Feelings Questionnaire; MJT, Moral Judgement Task; MMSE, 
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Mini-Mental State Examination; NIH, National Institute of Health; SART, Sustained Attention to Response Task; SDMT, Symbol 

Digit Modalities Test; SLCSR, Self-Liking/Competence Scale Revised; TAS, Toronto Alexithymia Scale; DDF, Difficulty 

Describing Feelings; DIF, Difficulty Identifying Feelings; EOT, Externally-Oriented Thinking; UCLA, University of Los Angeles. 
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Supplementary Figure 1. Pearson’s correlations (r) between all of the included behavioural measures. 

Correlations are thresholded at p<0.05 and ordered based on hierarchical clustering. 
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Supplementary Figure 2. Scree plots for each PLS analysis indicating the percent variance explained for 

each latent variable. 

 

 

Supplementary Figure 3. Sex-specific correlations for the GMD-behaviour PLS analysis. Correlations are 

between subject-level neural (‘brain scores’) and behavioural (‘behaviour scores’) latent variable loadings. 

No statistically significant sex differences were found (p< 0.05). Red = female, blue = male. 
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Supplementary Figure 4. Sex-specific correlations for the FC-behaviour PLS analysis. Correlations are 

between subject-level neural (‘brain scores’) and behavioural (‘behaviour scores’) latent variable loadings. 

No statistically significant sex differences were found (p< 0.05). Red = female, blue = male. 

 

Appendix C: Supplemental Material to: “Serotonergic psychedelic drugs reduce the 

functional differentiation of the default network from sensory cortices” 

 

Supplementary Methods 

 

Neuroimaging Data Acquisition 

 

LSD. Neuroimaging data from an already published dataset (Carhart-Harris, Muthukumaraswamy, 

et al., 2016) was used for the present analyses. The data acquisition and preprocessing details have 

been described in detail elsewhere (Carhart-Harris, Muthukumaraswamy, et al., 2016); we outline 

them in brief here. Subjects participated in two scanning days that were separated by 14 days and 

which each featured three 7-minute resting-state fMRI scans. On a given scanning day, subjects 

received either a placebo (10ml saline) or LSD (75 µg) via a bolus intravenous injection. The low-

moderate LSD dosage was selected to minimize the potential for intra-scanner anxiety while 
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ensuring drug effects (Johnson et al., 2008). The order of the conditions was balanced across 

participants; participants were blind to this order, but the researchers and those analyzing the data 

were not. The scans on each of the days were as follows: (1) resting-state eyes-closed with no 

music, (2) resting-state eyes-closed with music, (3) resting-state eyes-closed with no music. Scans 

featuring no music (scans 1 and 3) were used in the present analyses.  

 

Resting-state BOLD fMRI data were acquired using a gradient echo planar imaging sequence, 

TR/TE = 2000/35ms, FoV = 220mm, 64×64 acquisition matrix, parallel acceleration factor = 2, 

90◦ flip angle. Thirty-five oblique axial slices were acquired in an interleaved fashion, each 3.4mm 

thick with zero slice gap (3.4mm isotropic voxels). Structural T1w images were acquired on a 3T 

GE HDx system. These were 3D fast spoiled gradient echo scans in an axial orientation, with field 

of view = 256 × 256 × 192 and matrix = 256 × 256 × 20 192 to yield 1mm isotropic voxel 

resolution. TR/TE = 7.9/3.0ms; inversion time = 450ms; flip angle = 20°. 

 

Psilocybin. Neuroimaging data from an already published dataset (Carhart-Harris et al., 2012) was 

used for the present analyses. The data acquisition and preprocessing details have been described 

in detail elsewhere (Carhart-Harris et al., 2012) ; we outline them in brief here. Subjects 

participated in two scanning days that were separated by 14 days and which each featured one 12-

minute resting-state scan. Infusion began at 6 minutes following the start of the scan. The post-

infusion half of the scan for each condition was used in the present analyses. 

 

Resting-state BOLD fMRI data were acquired using a gradient echo planar imaging sequence, 

TR/TE 3000/35 ms, field-of-view = 192 mm, 64 × 64 acquisition matrix, parallel acceleration 

factor = 2, 90° flip angle. Fifty-three oblique- axial slices were acquired in an interleaved fashion, 

each 3 mm thick with zero slice gap (3 × 3 × 3-mm voxels). A total of 240 volumes were acquired.  

 

 

Subjective Measures. Subjects completed a number of intra-scanner visual analogue scale (VAS) 

ratings at the end of each scan for each dataset, reporting on different facets of the psychedelic 

experience (Carhart-Harris, Muthukumaraswamy, et al., 2016). In addition, subjects completed the 

11-factor altered states of consciousness (ASC) questionnaire (Dittrich, 1998; Studerus et al., 
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2010) at the end of each scan day. In the present study, we conducted brain-behaviour analysis 

with two self-report measures which relate to core components of the psychedelic experience: ego 

dissolution (“I experienced a disintegration of my 'self' or 'ego”) and complex imagery (a 

composite of  “I could see images from my memory or imagination with exceeding clarity”, “I saw 

whole scenes in complete darkness or with closed eyes”, and “My imagination was extremely 

vivid”). The former measure was an intra-scanner VAS rating, while the latter measures were ASC 

measures conducted at the end of the scan day.  

 

Supplementary Figures 
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Supp. Figure 1. Unthresholded correlations between difference in mean frame-wise displacement 

and difference in vertex-wise gradient scores, for each of (A) LSD-Placebo and (B) Psilocybin-
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Placebo contrasts. No significant correlations were found. (Top) principal gradient, (Middle) 

second gradient, (Bottom) third gradient. 

 

 


