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Abstract

The thesis presents an introduction to numerical methods to solve Stochastic Differential

Equations by comparison of methods from an application point of view. These numerical

methods are used in the simulation of a power system based model from a paper by

Professor Xiaozhe Wang and Konstantin Turitsyn [1]. The methods are compared by

simulating the trajectories of the discretization and the diffusion.



Résumé

La thèse présente une introduction aux méthodes numériques pour résoudre les équations

différentielles stochastiques par comparaison de méthodes d’un point de vue applicatif.

Ces méthodes numériques sont utilisées dans la simulation d’un modèle basé sur un

système électrique à partir d’un article du professeur Xiaozhe Wang et Konstantin

Turitsyn cite wang. Les méthodes sont comparées en simulant les trajectoires de la

discrétisation et de la diffusion.
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Chapter 1

Ordinary Differential Equations [2]

An ordinary differential equation (ODE) is an equation, where the unknown quantity is

a function, and the equation involves derivatives of the unknown function. For example,

the second order differential equation for a forced spring can generally be expressed as

d2x(t)

dt2
+ γ

dx(t)

dt
+ ν2x(t) = ω(t) (1.1)

where ν and γ are constants that determine the resonant angular velocity and damp-

ing of the spring. The force ω(t) is some given function which may or may not depend

on time. In the Equation (1.1) the position variable x is called the dependent variable

and time t is the independed variable. The equation is second order, because it contains

the second derivative and it is linear, because x(t) appears linearly in the equation. The

equation is non-homogenous, because it contains the forcing term ω(t).

To solve the differential equation it is necessary to know the initial conditions. It

means that we need to know the spring position x(t0) and velocity dx(t0)/dt at some

fixed initial time t0. Fixing some other boundary conditions instead of the initial con-

ditions yields a unqiue solution to the differential equation.

Differential equations of order n can be converted into n first order vector differential

equation. Considering the spring model Equation (1.1) and defining the state variables

as x(t) = (x1, x2) = (x(t), dx(t)/dt), Equation (1.1) can be written as(
dx1(t)/dt

dx2(t)/dt

)
︸ ︷︷ ︸

dx(t)/dt

=

(
0 1

−ν2 −γ

)(
x1(t)

x2(t)

)
︸ ︷︷ ︸

f(x(t))

+

(
0

1

)
︸︷︷︸
L

ω(t). (1.2)
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Equation (1.2) can be represented as

dx(t)

dt
= f(x(t), t) + L(x(t), t)w(t), (1.3)

where the vector valued function x(t) ∈ Rn is called the state of the system and ω(t) ∈ Rs

is a forcing function.

The spring model in Equation (1.2) can also be expressed as

dx(t)

dt
= u(t)x(t) + v(t)ω(t), (1.4)

An nth order differential equation can always be converted into equivalent vector

valued first order differential equations, called the state-space form.

1.1 Solutions of General Linear Differential Equations

Consider a general time-varying linear differential equation,

dx

dt
= u(t)x, for a given x(t0), (1.5)

The solution to Equation (1.5) can be implicitly expressed as

x(t) = ψ(t, t0)x(t0), (1.6)

where ψ(t, t0) is the transition matrix with the following properties:

∂ψ(τ, t)/∂τ = u(τ)ψ(τ, t)

∂ψ(τ, t)/∂t = −ψ(τ, t)u(t)

ψ(τ, t) = ψ(τ, s)ψ(s, t)

ψ(t, τ) = ψ−1(τ, t)

ψ(t, t) = I

(1.7)

Consider a non-homogeneous equation,

dx(t)

dt
= u(t)x(t) + v(t)ω(t), for a given x(t0), (1.8)
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Given the transition matrix, the solution to Equation (1.8) is

x(t) = ψ(t, t0)x(t0) +

∫ t

t0

ψ(t, τ)v(τ)w(τ)dτ (1.9)

Thus, linear equations can be solved analytically.

1.2 Numerical Solutions of Non-Linear Equations

For a general non-linear differential equation of the form

dx(t)

dt
= f(x(t), t), for a given x(t0) (1.10)

there is no general way to find an analytic solution. However, it is possible to ap-

proximate the solution numerically. Integrating the Equation (1.10) from t to t + ∆t

yields,

x(t+ ∆t) = x(t) +

∫ t+∆t

t

f(x(τ), τ)dτ (1.11)

If the integral on the right hand side can be computed, the solution at time steps

t0, t1 = t0 + ∆t, t2 = t0 + 2∆t can be generated by iterating the Equation (1.11):

x(t0 + ∆t) = x(t0) +

∫ t0+∆t

t0

f(x(τ), τ)dτ

x(t0 + 2∆t) = x(t0 + ∆t) +

∫ t+2∆t

t0+∆t

f(x(τ), τ)dτ

x(t0 + 3∆t) = x(t0 + 2∆t) +

∫ t+3∆t

t0+2∆t

f(x(τ), τ)dτ

...

(1.12)

It is now possible to derive various numerical methods by constructing approximations

to the integrals on the right hand side. There exists a wide class of other numerical

ODE solvers with fixed or variable step size, which can be found in [2] [3].
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1.3 Picard-Lindelöf theorem

One important issue in differential equations is the question if the solution exists and

whether it is unique. To analyze this question, consider a generic equation of the form

dx(t)

dt
= f(x(t), t), x(t0) = x0, (1.13)

where f(x, t) is some given function. If the function t 7→ f(x(t), t) happens to be

Riemann integrable, then we can integrate both sides from t0 to t to yield

x(t) = x0 +

∫ t

t0

f(x(τ), τ)dτ (1.14)

Using this identity an approximate solution to the differential equation can be found by

following Picard’s iteration.

Picard’s Iteration.
1. Start with initial guess ϕ0(t) = s0.
2. Compute approximations ϕ1(t), ϕ2(t), ϕ3(t), · · · via the following recursion

ϕn+1(t) = x0 +

∫ t

t0

f(ϕn(τ), τ)dτ (1.15)

The iteration can be shown to converge to the unique solution

lim
n→∞

ϕn(t) = x(t) (1.16)

provided that f(x, t) is continuous in both arguments and Lipschitz continuous in the
first argument.
The implication of the above is the Picard-Lindelöf theorem, which says that under the
above continuity conditions the differential equation has a solution and it is unique at
a certain interval around t = t0. Emphasis on the function f(x, t) which needs to be
continuous. This is important because in the case of stochastic differential equations
the corresponding function will be discontinuous everywhere and thus, a new existence
theory is required for them.

In the following chapter, probability and stochastic processes are discussed first,

followed by Stochastic Ordinary Differential Equations
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Chapter 2

Introduction to Stochastic

Processes [4]

2.1 Motivation

Fix a point x0 ∈ Rn and consider the ordinary differential equation,

dx

dt
= u(x(t)), for a given x(0), (2.1)

where f : Rn −→ Rn is a given smooth vector field, the solution is the trajectory

x(.) : [0,∞) −→ Rn.

Figure 2.1 Trajectory of the Differential Equation

x(t) is called the state of the system at time t ≥ 0,

ẋ(t) :=
d

dt
x(t) (2.2)

In many applications, however, the experimentally measured trajectories of systems

modeled by equation (2.2) do not behave as predicted.
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Figure 2.2 Sample path of the Stochastic Differential Equation

Thus, to accommodate the random effects disturbing the system, the equation (2.1)

can be modified as,

ẋ(t) = f(x(t), t) + L(x(t), t)ξ(t),∀t > 0 with x(0) = x0 (2.3)

where f : Rn −→ Rn and L : Rn −→Mn×m, M is the space of n×m matrices and ξ(t)

is called the “white noise”.

Assume m = n, f(x(t), t) = 0 and L(x(t), t) = I, then the solution to equation (2.3)

is the n-dimensional Wiener process or Brownian motion (refer Section (3.1), given by

Ẇ (.) = ξ(.)

Thus, “white noise” is the time derivative of the Wiener process. The equation (2.3)

can be written as,

dx(t) = f(x(t), t)dt+ L(x(t), t)dW (t), x(0) = x0 (2.4)

The Equation (2.4) is interpreted as a Stochastic Differential Equation(SDE) and the

solution is

x(t) = x0 +

∫ t

0

f(x(τ), τ)dτ +

∫ t

0

L(x(τ), τ)dW, ∀t > 0 (2.5)

For n = 1, consider an SDE of the form

dx = f(x)dt+ dW (2.6)

with a solution x(.). Suppose, z : R −→ R is a smooth function defined as

Y (t) := z(x(t)), ∀t ≥ 0 (2.7)
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From equation (2.6), solution to equation (2.7) is expected to be

dY = z′dx = z′fdt+ z′dW (2.8)

according to the usual chain rule, where ′ = d
dx

.

dW ≈ (dt)2 (2.9)

But the solution of equation (2.7) is computed as follows,

dY = z′dx+
1

2
z′′(dx)2 + .... (2.10)

Substituting equation (2.6) and (2.9) into equation (2.10) yields,

dY = z′(fdt+ dW ) +
1

2
z′′(fdt+ dW )2 + ...

=

(
z′f +

1

2
z′′
)
dt+ z′dW + higher order terms

(2.11)

The higher order terms can be neglected. Thus, the solution to equation (2.7) is given

by

dY =
(
z′f +

1

2
z′′
)
dt+ z′dW (2.12)

where “1
2
z′′dt” is an additional term that is not found in equation (2.8). Hence, ordinary

calculus does not solve SDEs.

2.2 Probability Spaces

To understand stochastic processes, knowledge of probability and it’s properties is nec-

essary.

Terminology:

(i). A set A ∈ U is called an event; points ω ∈ Ω are sample points.

(ii). P (A) is the probability of the event A.

(iii). A property which is true except for an event of probability zero is said to hold

almost surely (usually abbreviated “a.s.”).

Consider a set denoted by Ω. Certain subsets of Ω are interpreted as “events”.
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Definition 2.2.1. A σ − algebra is a collection U of subsets of Ω with the following

properties:

(i). φ,Ω ∈ U .

(ii). If A ∈ U , then Ac ∈ U .

(iii). If A1, A2, ....∈ U , then
∞⋃
k=1

Ak,

∞⋂
k=1

Ak ∈ U

Here, Ac := Ω− A is the complement of A.

Definition 2.2.2. Let U be a σ − algebra of subsets of Ω. P : U −→ [0, 1] is called a

probability measure, provided:

(i). P (φ) = 0, P (Ω) = 1,

(ii). If A1, A2, ...∈ U , then

P (
∞⋃
k=1

Ak) ≤
∞∑
k=1

P (Ak)

(iii). If A1,A2, ... are disjoint sets in U , then

P (
∞⋃
k=1

Ak) =
∞∑
k=1

P (Ak).

It follows that if A, B ∈ U , then

A ⊆ B implies P (A) ≤ P (B).

Definition 2.2.3. A triple (Ω,U , P ) is called a probability space provided Ω is any set,

U is a σ − algebra of subsets of Ω, and P is a probability measure on U .

2.3 Random Variables

The smallest σ-algebra containing all the open subsets of Rn is called Borel σ-algebra.

B denotes the collection of Borel subsets of Rn.

Definition 2.3.1. Let (Ω,U , P ) be a probability space. A mapping

X : Ω −→ Rn
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is called an n - dimensional random variable, if for each B ∈ B,

X−1(B) ∈ U .

It is equivalent to say that X is U -measurable.

2.4 Stochastic Process

Definition 2.4.1. (i). A collection X(t)|t ≥ 0 of random variables is called a stochas-

tic process.

(ii). For each point ω ∈ Ω, the mapping t −→ X(t, ω) is the corresponding sample

path.

If an experiment is conducted and the random values of X(.) are observed as time

evolves, it is the sample path X(t, ω)|t ≥ 0 for some fixed ω ∈ Ω. If the experiment is

rerun, a different sample path is observed.

Figure 2.3 Two sample paths of a Stochastic Process

2.5 Expected Value and Variance

Definition 2.5.1. If (Ω,U , P ) is a probability space and X is a real-valued simple

random variable, then

E(X) =

∫
Ω

XdP

is the expected value (or mean value) of X.

Definition 2.5.2. If (Ω,U , P ) is a probability space and X is a real-valued simple
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random variable, then

V (X) :=

∫
Ω

|X − E(X)|2dP

is the variance of X.

It is observed that,

V (X) = E(|X − E(X)|2) = E(|X|2 − |E(X)|2)

2.6 Distribution Function

Let (Ω,U , P ) be a probability space and X : Ω −→ Rn be a random variable.

Notation: Let x = (x1, ..., xn) ∈ Rn, y = (y1, ..., yn) ∈ Rn. Then

x ≤ y implies xi ≤ yi ∀i = 1, ..., n

Definition 2.6.1. (i). The distribution function of X is the function FX : Rn −→
[0, 1] defined by

FX(x) := P (X ≤ x) for all x ∈ Rn

(ii). If X1, ...., Xm : Ω −→ Rn are random variables, their joint distribution function

FX1,.....,Xm : (Rn)m −→ [0, 1] is,

FX1,.....,Xm(x1, ...., xm) := P (X1 ≤ x1, ....., Xm ≤ xm)

for all xi ∈ Rn, i = 1, .....,m.

Definition 2.6.2. Suppose X : Ω −→ Rn is a random variable and F = FX is it’s

distribution function. If there exists a non-negative, integrable function f : Rn −→ R
such that

F (x) = F (x1, ....., xn) =

∫ x1

−∞
...

∫ xn

−∞
f(y1, ...., yn)dyn....dy1

then f is called the density function for X.

It follows that

P (X ∈ B) =

∫
B

f(x)dx for all B ∈ B

The properties discussed in this chapter are helpful in understanding how an stochastic

system functions. The next chapter discusses what an SDE is.
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Chapter 3

Stochastic Differential Equations [2]

Stochastic Ordinary Differential Equation gives the realistic mathematical model of a

systems/situation. The origin of the stochastic differential equations (SDEs) is dated

back to the classic paper of Einstein [5], where a mathematical connection between

microscopic random motion of particles and macroscopic diffusion equation is presented.

3.1 Brownian Motion

Brownian motion is critical in modelling a stochastic process as it represents ‘white

noise’. This motion enables modelling of systems which usually cannot be determinis-

tically modeled, which means it has a property that is independent at each increment.

The direction and magnitude at every change of the process is random and independent

of the previous change.

Consider the two cases :

Case 1: Microscopic motion of Brownian particles

Let τ be a small interval and n is the number of particles suspended in liquid. During

the time interval τ the x-coordinates of particles experience a change by displacement

∆. The number of particles within the displacements ∆ and ∆ + d∆ is

dn = nφ(∆)d∆, (3.1)

where φ(∆) is the probability density of ∆. φ(n) can be assumed to be symmetric

φ(∆) = φ(−∆) and it differs from zero only for very small values of ∆.

Let u(s, t) be the number of particles per unit volume. Then, the number of particles
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at time t+ τ located at x+ dx is

u(x, t+ τ)dx =

∫ ∞
−∞

u(x+ ∆, t)φ(∆)d∆dx. (3.2)

Because τ is very small, one can replace

u(x, t+ τ) = u(x, t) + τ
∂u(x, t)

∂t
. (3.3)

Expanding u(x+ ∆, t) using Taylor series ∆ :

u(x+ ∆, t) = u(x, t) + ∆
∂u(x, t)

∂x
+

∆2

2

∂2u(x, t)

∂x2
+ . . . (3.4)

Substituting into (3.3) and (3.4) into (3.2) gives

u(x, t) + τ
∂u(x, t)

∂t
= u(x, t)

∫ ∞
−∞

φ(∆)d∆ +
∂u(x, t)

∂x

∫ ∞
−∞

∆φ(∆)d∆

+
∂2u(x, t)

∂x2

∫ ∞
−∞

∆2

2
φ(∆)d∆ + . . .

(3.5)

where all the odd order terms vanish, recall that,
∫∞
−∞ φ(∆)d∆ = 1.

Finally the obtained diffusion equation,

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
(3.6)

where, ∫ ∞
−∞

∆2

2
φ(∆)d∆ = D (3.7)

This connection was significant during the time, because diffusion equation was only

known as a macroscopic equation. Einstein was also able to derive a formula for D in

terms of microscopic quantities. From this, the prediction for mean squared displace-

ment of the particles as function of time is computed as:

z(t) =
RT

N

1

3πηr
t, (3.8)

where η is the viscosity of liquid, r is the diameter of the particles, T is the temperature,

R is the gas constant, and N is the Avogadro constant.

Case 2: Langevin’s model of Brownian motion

After Einstein’s contribution to the Brownian motion, Langevin presented an alternative
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construction of Brownian motion leading to similar macroscopic properties, but more

mechanical than Einstein’s derivation.

Consider a small particle suspended in liquid, assuming two forces acting on the

particle.

1. Friction force Ff , which by the Stokes law has the form:

Ff = −6πηrν, (3.9)

where η is the viscosity, r is the diameter of particle and ν is the velocity.

2. Random force Fr caused by the random collision of the particles. From Newton’s

law,

m
d2x

dt2
= −6πηr

dx

dt
+ Fr, (3.10)

where m is the mass of the particle. Recall that,

1

2

d(x)2

dt
=
dx

dt
x

1

2

d2(x2)

dt2
=
d2x

dt2
x+

(dx
dt

)2

.

(3.11)

Multiplying Equation (3.10) with x, substituting the identities (3.11), and taking ex-

pectations

m

2
E

[
d2(x2)

dt2

]
−mE

[(dx
dt

)2
]

= −3πηrE

[
d(x)2

dt

]
+ E[Frx]. (3.12)

The relation between the average kinetic energy and temperature is

mE

[(
dx

dt

)2
]

=
RT

N
. (3.13)

Assuming that the random force and the position are uncorrelated, E[Frx] = 0 and

defining a new variable, z1 = dE[x2]/dt, the following differential equation is produced,

m

2

dz1

dt
− RT

N
= −3πηrz1 (3.14)

which has the general solution

z1(t) =
RT

N

1

3πηr
[1− exp

(
6πηr

m
t

)
] (3.15)
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The exponential on the right goes to zero very quickly and therefore, the resulting mean

squared displacement is nominally the constant multiplied with time,

z(t) =
RT

N

1

3πηr
t. (3.16)

Equation (3.16) is also the same equation derived by Einstein, Equation (3.11). The

above model of Brownian motion is not seen as a solution to the white noise driven

differential equation
dβ(t)

dt
= ω(t), (3.17)

but as the solution to the equation of the form

d2β̃(t)

dt2
= −cdβ̃(t)

dt
+ ω(t) (3.18)

within the limit of vanishing time constant. Langevin’s version is called the physical

Brownian motion and Einstein’s version is called the mathematical Brownian motion.

In this thesis, Brownian motion means the mathematical Brownian motion.

Consider a Brownian motion as a solution to Equation (3.17), where ω(t) is a white

random process. “White” means that every value of ω(t) and ω(t
′
) are independent

whenever t 6= (t
′
).

Before moving on to the solution of SDEs, consider the derivative of Wiener Pro-

cess(Brownian Motion), called the Gaussian White Noise in the following section.

3.2 Linear Differential Equations with Driving White Noise

A stochastic differential equation of the form

dx

dt
= f(x, t) + L(x, t)ω(t) (3.19)

where ω(t) is some vector of forcing functions. Since the forcing function is random, the

solution to the stochastic differential equation is a random process as well.

In the context of SDEs, the term f(x, t) in Equation (3.19) is called the drift function

which determines the nominal dynamics of the system, and L(x, t) is the dispersion

matrix which determines how the noise ω(t) enters the system.

The unknown function usually modeled as Gaussian and “white” in the sense ω(t)

arises from the property that the power spectrum of white noise is constant (flat) over

all frequencies. In mathematical sense white noise process can be defined as follows:
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Definition 3.2.1. (White Noise). White noise process ω(t) ∈ Rs is a random function

with the following properties:

1. ω(t1) and ω(t2) are independent if t1 6= t2.

2. t 7→ ω(t) is a Gaussian process with zero mean and Dirac-delta-correlation :

mw(t) = E[ω(t)] = 0

Cw(t, s) = E[ω(t)ωT (s)] = δ(t− s)Q,
(3.20)

where Q is the spectral density of the process.

From the above properties we can also deduce the following somewhat peculiar

properties of white noise:

1. The sample path t 7→ ω(t) is discontinuous almost everywhere.

2. White noise is unbounded and it takes arbitrary large positive and negative values

at any finite interval.

3.3 Heuristic Solutions of Linear SDEs

Consider a linear time-invariant stochastic differential equations (LTI SDEs) of the form:

dx(t)

dt
= Fx(t) + Lw(t), x(0) ∼ N(m0, P0), (3.21)

where F and L are some constant matrices, white noise process w(t) has zero mean

and a given spectral density Q. In Equation (3.21), the specified random initial condition

for the equation such that at initial time t = 0, the solutions should be Gaussian with

a given mean m0 and covariance P0.

If assumed that the driving process w(t) is deterministic and continuous, one can

form the general solution to the differential equation as follows:

x(t) = exp(Ft)x(0) +

∫ t

0

exp(F (t− τ))Lw(τ)dτ, (3.22)

where exp(Ft) is the matrix exponential function. Since the differential equation is

linear, the solution is valid when w(t) is a white noise process. The solution also

turns out to be Gaussian, because the noise process is Gaussian and a linear differential

equation can be considered as a linear operator acting on the noise process. White noise

process has zero mean, taking expectations on both sides of Equation (3.22) yields,

E[x(t)] = exp(Ft)m0, (3.23)
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which is the expected value of the SDE solutions over all realizations of noise. The

mean function is here denoted as m(t) = E[x(t)].

The covariance of the solution can be derived by substituting the solution into the

definition of covariance and by using the delta-correlation property of white noise, which

results in

E[(x(t)−m(t))(x(t)−m(t))T ] = exp(Ft(P0exp(Ft)))
T

+

∫ t

0

exp(f(t− τ))LQLT exp(F (t− τ))Tdτ
(3.24)

Denoting the covariance as P (t) = E[x(t) − m(t))(x(t) − m)T ]. Differentiating the

mean and covariance solutions and collecting the terms we can also derive the following

differential equations for the mean and covariance:

dm(t)

dt
= Fm(t)

dP (t)

dt
= FP (t) + P (t)F T + LQLT

(3.25)

Despite the heuristic derivation, Equations (3.25) are indeed the correct differential

equations for the mean and covariance. But it is easy to demonstrate that one has to

be extremely careful in extrapolation of deterministic differential equation results to

stochastic setting.

To derive the covariance differential equation, taking expectations on both sides of

Equation (3.21)

E

[
dx(t)

dt

]
= E[Fx(t)] + E[Lw(t)], (3.26)

Exchanging the order of expectation and differentiation, using the linearity of expec-

tation and also recalling that white noise has zero mean then results in correct mean

differential equation. One can attempt to do the same for the covariance. By chain rule

of ordinary calculus produces,

d

dt

[
(x−m)(x−m)T

]
=

(
dx

dt
− dm

dt

)
(x−m)T + (x−m)

(
dx

dt
− dm

dt

)T
, (3.27)

Substituting the time derivatives to the right hand side and taking expectations,

d

dt
E
[
(x−m)(x−m)T

]
= FE

[
(x(t)−m(t))(x(t)−m(t))T

]
+ E

[
(x(t)−m(t))((x(t)−m(t))T

]
F T ,

(3.28)



3 Stochastic Differential Equations [2] 19

which implies the covariance differential equation

dP (t)

dt
= FP (t) + P (t)F T . (3.29)

But the equation is wrong, because the term L(t)QLT (t) is missing on the right hand

side. The mistake is that we assume it is possible to use the product rule in Equation

(3.27), which one cannot. This is one of the unique features of stochastic calculus and

also shows us that we cannot just assume without analyzing solutions of SDEs via formal

extensions of deterministic ODE solutions.

3.4 Heuristic Solutions of Non-Linear SDEs

Let us now analyze a differential equation of the form:

dx

dt
= f(x, t) + L(x, t)w(t), (3.30)

where f(x, t) and L(x, t) are non-linear functions and w(t) is a white noise process

with a spectral density Q. Unfortunately, one cannot take a similar approach to solve

the equation using deterministic solutions like in the case of linear differential equa-

tions. The generalization of numerical methods for deterministic differential equations

discussed in the previous chapter does not work since the basic requirement in those

methods is the continuity of the right hand side and in fact, even differentiability of

several orders. Because white noise is discontinuous everywhere, the right hand side is

discontinuous everywhere and is certainly not differentiable anywhere either.

3.5 Existence and Uniqueness of Solutions

A solution to a stochastic differential equation is called strong, if for given Brownian

motion β(t) it is possible to construct a solution s(t), which is unique for that given

Brownian motion. It means that the whole path of the process is unique for a given

Brownian motion. Hence strong uniqueness is also called path-wise uniqueness.

The strong uniqueness of a solution to SDE of the general form

dx = f(x, t)dt+ L(x, t)dβ, x(t0) = x0, (3.31)

can be determined using stochastic Picard’s iteration. Thus we first rewrite the equation
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in integral form

x(t) = x0 +

∫ t

t0

f(x(τ), τ)dτ +

∫ t

t0

L(x(τ), τ)dβ(τ). (3.32)

Then the solution can be approximated with the following iteration. It can be shown

Stochastic Picard’s iteration
Starting from the initial guess ϕ0(t) = x0. With the given β, computing approximations
ϕ1(t), ϕ2(t), · · · via the following recursion:

ϕn+1(t) = x0 +

∫ t

t0

f(ϕn(τ), τ)dτ +

∫ t

t0

L(ϕn(τ), τ)dβ(τ). (3.33)

This iteration converges to the exact solution in mean squared sense if both of the

functions f and L grow at most linearly in x, and they are Lipschitz continuous in the

same variable (see, e.g., Øksendal, 2003 [6]). If these conditions are met, then there

exists a unique strong solution to the SDE.

A solution is called weak if it is possible to construct some Brownian motion β̃(t)

and a stochastic process x̃(t) such that the pair is a solution to the stochastic differential

equation. Weak uniqueness means that the probability law of the solution is unique,

that is, there cannot be two solutions with different finite dimensional distributions.

An existence of strong solution always implies the existence of a weak solution (every

strong solution is also a weak solution), but the converse is not true. Determination if

an equation has a unique weak solution when it does not have a unique strong solution

is considerably harder than the criterion for the strong solution.

The next chapter discusses the probability distribution and the statistics of the SDEs

and how the mean and covariance of linear SDEs are derived using the Fokker-Planck-

Kolmogorov Equation.
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Chapter 4

Statistics of SDEs [2]

4.1 Fokker-Planck-Kolmogorov Equation

In this section we derive the equation for the probability density of Itô process x(t) (see

Appendix A2), when the process is defined as the solution to the SDE

dx = f(x, t)dt+ L(x, t)dβ. (4.1)

The probability density is usually denoted as p(x(t)), but in this section the density

is actually a function of both x and t, thus we represent it as p(x, t).

Theorem 4.1.1 (Fokker-Planck-Kolmogorov equation). The probability density p(x, t)

of the solution of the SDE in equation (4.1) solves the partial differential equation

∂p(x, t)

∂t
= −

∑
i

∂

∂xi
[fi(x, t)p(x, t)]

+
1

2

∑
ij

∂2

∂xi∂xj
[L(x, t)QLT (x, t)]ijp(x, t).

(4.2)

This partial differential equation is called the Fokker-Planck-Kolmogorov equation.

Proof. Let φ(x) be an arbitrary twice differential function. The Itô differential of φ(x(t))
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is, by the Itô formula(see A2), given as follows:

dφ =
∑
i

∂φ

∂xi
dxi +

1

2

∑
ij

(
∂2φ

∂xi∂xj

)
dxidxj

=
∑
i

∂φ

∂xi
fi(x, t)dt+

∑
i

∂φ

∂xi
[L(x, t)dβ]i

+
1

2

∑
ij

(
∂2φ

∂xi∂xj
[L(x, t)QLT (x, t)]ij

)
dt.

(4.3)

Taking expectations from both sides with respect to x and formally dividing by dt gives:

dE[φ]

dt
=
∑
i

E

[
dφ

dxi
fi(x, t)

]
+

1

2

∑
ij

E

[(
∂2φ

∂xi∂xj

)
[L(x, t)QLT (x, t)]ij

]
.

(4.4)

The left hand side of the equation can be written as

dE[φ]

dt
=

d

dt

∫
φ(x)p(x, t)dx

=

∫
φ(x)

∂p(x, t)

∂t
dx.

(4.5)

Using multidimensional integration by parts,∫
C

∂u(x)

∂xi
υ(x)dx =

∫
∂

Cu(x)υ(x)nidS −
∫
C

u(x)
∂υ(x)

∂xi
dx, (4.6)

where n is the normal of the boundary ∂C of C and dS is it’s area element. If the

integration area is the whole Rn and the functions u(x) and υ(x) vanish at infinity,

then the boundary term on the right hand side vanishes, the formula becomes∫
∂u(x)

∂xi
υ(x)dx = −

∫
u(x)

∂υ(x)

dxi
dx (4.7)

Consider the right hand side of Equation (4.3), the term inside the summation can be

written as,

E

[
∂φ

dxi
fi(x, t)

]
=

∫
∂φ

∂xi
fi(x, t)p(x, t)dx

= −
∫
φ(x)

∂

∂xi
[fi(x, t)p(x, t)]dx,

(4.8)
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where by integration by parts with u(x) = φ(x) and υ(x) = fi(x, t)p(x, t). For the term

inside the summation of the second term yields,

E

[(
∂2φ

∂xi∂xj

)
[L(x, t)QLT (x, t)]ij

]
=

∫ (
∂2φ

∂xi∂xj

)
[L(x, t)QLT (x, t)]ijp(x, t)dx

= −
∫ (

∂φ

∂xj

)
∂

∂xi

[
L(x, t)QLT (x, t)]ijp(x, t)

]
dx

=

∫
φ(x)

∂2

∂xi∂xj

[
L(x, t)QLT (x, t)]ijp(x, t)

]
dx,

(4.9)

where we have first used the integration by parts formula with u(x) = ∂φ(x)/∂xj,

υ(x) = [L(x, t)QLT (x, t)]ijp(x, t) and then again with u(x) = φ(x),

υ(x) = ∂
∂xi

([
L(x, t)QLT (x, t)

]
ij
p(x, t)

)
.

If substituting Equations (4.7) (4.8) (4.9) into (4.1) we get:∫
φ(x)

∂p(x, t)

∂t
dx = −

∑
i

∫
φ(x)

∂

∂xi
[fi(x, t)p(x, t)]dx

+
1

2

∑
ij

∫
φ(x)

∂2

∂xi∂xj
[L(x, t)QLT (x, t))]ijp(x, t)dx,

(4.10)

which can be written as∫
φ(x)

[
∂p(x, t)

∂t
+
∑
i

∂

∂xi
[fi(x, t)p(x, t)

]

− 1

2

∑
ij

∂2

∂xi∂xj
[L(x, t)QLT (x, t)]ijp(x, t)]dx = 0.

(4.11)

The only way the equation can be true for an arbitrary φ(x) is that the term within the

brackets vanishes, which gives the FPK equation.

4.2 Mean and Covariance of SDE

In the previous section we derived the Fokker-Planck-Kolmogorov (FPK) equation

which, in principle, is the complete probabilistic description of the state. The mean,

covariance and other moments of the state distribution can be derived from it’s solu-

tion. However, we are often interested primarily on the mean and covariance of the

distribution and would like to avoid solving the FPK equation as an intermediate step.

If we take a look at Equation (4.1), we see that it can be interpreted as equation for
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the general moments of the state distribution. The equation can be generalized to time

dependent φ(x, t) by including the time derivative:

dE[φ]

dt
= E

[
∂φ

∂t

]
+
∑
i

E

[
∂φ

∂xi
fi(x, t)

]
+

1

2

∑
ij

E

(
∂2φ

∂xi∂xj

)
[L(x, t)QLT (x, t)]ij].

(4.12)

If we select the function as φ(x, t) = xu, then the Equation (4.12) reduces to

dE[xu]

dt
= E[fu(x, t)], (4.13)

which can be seen as the differential equation for the components of the mean of the

state. Let us denote the mean function as m(t) = E[x(t)] and select the function as

φ(x, t) = xuxυ −mu(t)mυ(t), then the equation gives

dE[xuxυ −mu(t)mυ(t)]

dt
= E[(xυ −mυ(t))fu(x, t)]

+ E[(xu −mu(t))fυ(x, t)] + [L(x, t)QLT (x, t)]uυ.

(4.14)

If we denote the covariance as P (t) = E[x(t) − m(t))(x(t) − m(t))T ], then equations

(4.13) and (4.14) can be written in the following matrix form:

dm

dt
= E[f(x, t)] (4.15)

dP

dt
= E

[
f(x, t)(x| −m)T

]
+ E

[
(x−m)fT (x, t)

]
+ E

[
L(x, t)QLT (x, t)

]
,

(4.16)

which are the differential equations for mean and covariance of the state. These

equations cannot be used practically because the expectations should be taken with

respect to the actual distribution of the state, which is the solution to the FPK equation.

Only in Gaussian case the first two moments actually characterize the solution. Even

though in non-linear case we cannot use these equations as such, they provide a useful

starting point for forming Gaussian approximations to SDEs.
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4.3 Higher Order Moments of SDEs

It is possible to derive differential equations for the higher order moments of SDEs, but

the required number of equations quickly becomes huge, because if the state dimension

is n, the number of independent third moments is cubic n3 in the number of state

dimension, the number of fourth order moments is quartic n4 and so on.

Let us consider the scalar SDE

dx = f(x)dt+ L(x)dβ (4.17)

We know that the expectation of an arbitrary twice differentiable function φ(x) satisfies

dE[φ(x)]

dt
= E

[
∂φ(x)

∂x
f(x)

]
+
q

2
E

[
∂2φ(x)

∂x2

L2(x)

]
. (4.18)

If we apply this to φ(x) = xn, where n ≥ 2, produces

dE[xn]

dt
= nE[xn−1f(x, t)] +

q

2
n(n− 1)E[xn−2L2(x)], (4.19)

which, in principle, gives the equations for third order moments, fourth order moments

and so on. It is also possible to derive similar differential equations for the central

moments, cumulants and quasi-moments.

However, unless f(x) and L(x) are linear(or affine) functions, the equation for the

nth order moment depends on the moments of higher order > n. Therefore, in order to

compute these expectations we would need to integrate an infinite number of moment

equations which is not practically possible. This problem can be solved by using moment

closure methods which typically are based on replacing the higher order moments (or

cumulants or quasi-moments) with suitable approximations.

In scalar case, it is possible to form a distribution which has the given set of moments

or cumulants or quasi-moments, for example, as the maximum entropy distribution.

Unfortunately, in multidimensional case the situation is much more complex.

4.4 Mean and covariance of linear SDEs

Consider a linear stochastic differential equation of the general form

dx = F (t)x(t)dt+ u(t)dt+ L(t)dβ(t), (4.20)
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where the initial conditions are x(t0) ∼ N(m0, P0), F (t) and L(t) are matrix valued

functions of time, u(t) is a vector valued function of time and β(t) is a Brownian motion

with diffusion matrix Q.

The mean and covariance can be solved from the Equations (4.15) and (4.16) which

in this cases is reduced to

dm(t)

dt
= F (t)m(t) + u(t)

dP (t)

dt
= F (t)P (t) + P (t)F T (t) + L(t)QLT (t),

(4.21)

with the initial conditions m0(t0) = m0 and P (t0) = P0. The general solutions to these

differential equations are

m(t) = Ψ(t, t0)m(t0) +

∫ t

t0

Ψ(t, τ)u(τ)dτ

P (t) = Ψ(t, t0)P (t0)ΨT (t, t0)

+

∫ t

t0

Ψ(t, τ)L(τ)QLT (τ)ΨT (t, τ)dτ,

(4.22)

which could also be obtained by computing the mean and covariance of the solution in

Equation (A.33).

Because the solution is a linear transformation of the Brownian motion, which is a

Gaussian process, the solution is also Gaussian

p(x, t) = N(x(t)|m(t), P (t)), (4.23)

which can be verified by checking that this distribution indeed solves the corresponding

FPK equation (3.22).

In case of LTI SDE

dx = Fx(t)dt+ Ldβ(t), (4.24)

the mean and covariance are also given by Equations (4.22). The only difference is

that the matrices F,L as well as the diffusion of the Brownian motion Q are constant.

In this LTI SDE, the transition matrix is the matrix exponential function Ψ(t, τ) =
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exp(F (t− τ)) and the solutions to the differential equations reduce to

m(t) = exp(F (t− t0))m(t0)

P (t) = exp(F (t− t0))P (t0)exp(F (t− t0))T

+

∫ t

t0

exp(F (t− τ))LQLT exp(F (t− τ))Tdτ,

(4.25)

The covariance above can also be solved using matrix fractions (see e.g. [7]). If we

define matrices C(t) and D(t) such that P (t) = C(t)D−1(t), it is easy to show that P

solves the matrix Riccati differential equation

dP (t)

dt
= FP (t) + P (t)F T + LQLT (4.26)

if the matrices C(t) and D(t) solve the differential equation(
dC(t)/dt

dD(t)/dt

)
=

(
F LQLT

0 −F T

)(
C(t)

D(t)

)
, (4.27)

and P (t0) = C(t0)D(t0)−1. Let us take an example,

C(t0) = P (t0)

D(t0) = I
(4.28)

Since the differential equation is linear and time invariant, it can be solved using the

matrix exponential function:(
C(t)

D(t)

)
= exp

{(
F LQLT

0 −F T

)
t

}(
C(t0)

D(t0)

)
. (4.29)

The final solution is then given as P (t) = C(t)D−1(t). It is useful since both the mean

and covariance can now be solved via simple matrix exponential function computation.

Now that we have a better understanding of the probability distribution and statis-

tics of SDEs, in the next chapter we discuss the Numerical Methods that can be used

to solve SDEs.
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Chapter 5

Numerical Methods for Solving

SDEs

This chapter discusses the algorithms for solutions of scalar SDEs and multivariate

SDEs. The following are the methods:

1. Euler- Maruyamma Method.

2. Milstein’s Method.

3. Itô-Taylor Method.

Firstly, the Itô-Taylor series for Stochastic Differential Equations is discussed briefly in

the next section.

5.1 Itô-Taylor series of SDEs [2]

The Itô-Taylor series is an extension of the Taylor series of ODEs to SDEs (A1). The

derivation is similar to the Taylor series. The Taylor series expansion of ODE consists

of time derivatives of an input function. When these derivatives are replaced with the

Itô formula, it forms the Itô-Taylor series of SDEs.

Consider the following SDE

dx = f(x(t), t)dt+ L(x(t), t)dβ (5.1)

with the initial condition x(t0) and a probability distribution p(x(t0)). f(x(t), t) is a

differentiable function, and L(x(t), t) is the dispersion matrix which determines how

the noise enters the system. β is a random variable. In case of multivariate SDEs, the

vectors x(t) ∈ Rp, β ∈ Rq and f(x(t), t) ∈ Rp, while the matrix L(x(t), t) ∈ Rp×q. In
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integral form, the equation (5.2) can be expressed as

x(t) = x(t0) +

∫ t

t0

f(x(τ), τ) dτ +

∫ t

t0

L(x(τ), τ) dβ(τ) (5.2)

Applying the Itô formula (A.32) to the differentiation of the terms f(x(t), t) and L(x(t), t)

produces,

df(x(t), t) =
∂f(x(t), t)

∂t
dt+

∑
u

∂f(x(t), t)

∂xu
fu(x(t), t)dt

+
∑
u

∂f(x(t), t)

∂xu
[L(x(t), t)dβ(τ)]u

+
1

2

∑
uv

∂2f(x(t), t)

∂xu∂xv
[L(x(t), t)QLT (x(t), t)]uvdt,

(5.3)

dL(x(t), t) =
∂L(x(t), t)

∂t
dt+

∑
u

∂L(x(t), t)

∂xu
fu(x(t), t)dt

+
∑
u

∂L(x(t), t)

∂xu
[L(x(t), t)dβ(τ)]u

+
1

2

∑
uv

∂2L(x(t), t)

∂xu∂xv
[L(x(t), t)QLT (x(t), t)]uvdt.

(5.4)

where Q is the diffusion of the Brownian motion.

Integrating the equations (5.3) and (5.4) across the time interval [t0, t] yields

f(x(t), t) = f(x(t0), t0) +

∫ t

t0

∂f(x(τ), τ)

∂t
dτ

+

∫ t

t0

∑
u

∂f(x(τ), τ)

∂xu
fu(x(τ), τ)dτ

+

∫ t

t0

∑
u

∂f(x(τ), τ)

∂xu
[L(x(τ), τ) dβ(τ)]u

+

∫ t

t0

1

2

∑
uv

∂2f(x(τ), τ)

∂xu∂xv
[L(x(τ), τ)QLT (x(τ), τ)]uvdτ,

(5.5)
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L(x(t), t) = L(x(t0), t0) +

∫ t

t0

∂L(x(τ), τ)

∂t
dτ

+

∫ t

t0

∑
u

∂L(x(τ), τ)

∂xu
fu(x(τ), τ)dτ

+

∫ t

t0

∑
u

∂L(x(τ), τ)

∂xu
[L(x(τ), τ) dβ(τ)]u

+

∫ t

t0

1

2

∑
uv

∂2L(x(τ), τ)

∂xu∂xv
[L(x(τ), τ)QLT (x(τ), τ)]uvdτ.

(5.6)

It is useful to define the following operators acting on a differentiable function g ∈ Rp×q,

Ltg =
∂g

dt
+
∑
u

∂g

∂xu
fu +

1

2

∑
uv

∂2g

∂xu∂xv
[LQLT ]uv

Lβ,vg =
∑
u

∂g

∂xu
Luv, u, v = 1, · · · , p.

(5.7)

Using these defined operators, equations (5.5) and (5.6) can be written as,

f(x(t), t) = f(x(t0), t0) +

∫ t

t0

Ltf(x(τ), τ)dτ

+
∑
v

∫ t

t0

Lβ,vf(x(τ), τ)dβv(τ),

(5.8)

L(x(t), t) = L(x(t0), t0) +

∫ t

t0

LtL(x(τ), τ)dτ

+
∑
v

∫ t

t0

Lβ,vL(x(τ), τ)dβv(τ).

(5.9)

Substituting the equations of (5.8) in equation (5.2) gives

x(t) = x(t0) + f(x(t0), t0)(t− t0) + L(x(t0), t0)(β(t)− β(t0))

+

∫ t

t0

∫ τ

t0

Ltf(x(τ).τ)dτdτ +
∑
v

∫ t

t0

∫ τ

t0

Lβ,vf(x(τ), τ)dβv(τ)dτ

+

∫ t

t0

∫ τ

t0

LtL(x(τ), τ)dτdβ(τ)

+
∑
v

∫ t

t0

∫ τ

t0

Lβ,vL(x(τ), τ)dβv(τ)dβ(τ).

(5.10)
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The equation (5.10) can be rewritten as

x(t) = x(t0) + f(x(t0), t0)(t− t0) + L(x(t0), t0)(β(t)− β(t0)) + r1(t), (5.11)

where the remainder r(t) is given by

r1(t) =

∫ t

t0

∫ τ

t0

Ltf(x(τ), τ)dτdτ +
∑
v

∫ t

t0

∫ τ

t0

Lβ,vf(x(t), t)dβv(τ)dτ

+

∫ t

t0

∫ τ

t0

LtL(x(τ), τ)dτdβ(τ)

+
∑
v

∫ t

t0

∫ τ

t0

Lβ,vL(x(τ), τ)dβv(τ)dβ(τ).

(5.12)

The first order approximation of equation (5.11) is given by,

x(t) ≈ x(t0) + f(x(t0), t0)(t− t0) + L(x(t0), t0)(β(t)− β(t0)) (5.13)

This approximation is used to evaluate x(t) in the algorithm Euler-Maruyama.

5.2 Euler-Maruyama Method [2]

In this method, x(t) is approximated by simulating it as a discrete process denoted by

x̂(t). For a SDE of the form (5.1), with initial condition x̂(t0) = x̂0 and a probability

distribution p(x0), x̂(t) is simulated in K steps over the time interval [0, t] with step

size ∆t = t/K. At each step k,

x̂(tk+1) = x̂(tk) + f(x̂(tk), tk)∆t+ L(x̂(tk), tk)∆βk (5.14)

where ∆βk is a random variable with the distribution N(0, Q∆t) and tk = k∆t, k =

1, .., K. In case of scalar SDEs, N(0, Q∆t) is a normal distribution with mean µ = 0 and

variance σ2 = Q∆t. While for multivariate SDEs N(0, Q∆t) is a normal distribution

with zero mean and covariance Q∆t.

The Euler-Maruyama algorithm for scalar SDE in pseudo code is as follows
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Algorithm 5.1 Euler-Maruyama method

t = 0, x̂ = x0

for k = 1 to t/∆t := K do
∆β ∼ N(0, Q∆t)
x̂(t) = x̂(t) + f(x̂(t), t)∆t+ L(x̂(t), t)∆β

end for

In case of multivariate SDEs, the algorithm for Euler-Maruyama method remains the

same, except x(t) ∈ Rp, β ∈ Rq and f(x(t), t) ∈ Rp are vectors, and L(x(t), t) ∈ Rp×q is

a matrix.

5.2.1 Properties of the Algorithm [2][8]

Definition 5.2.1. The strong order of convergence of a stochastic numerical integration

method can be defined to be the smallest exponent γ, such that there exists a constant

C that satisfies the inequality given below,

E[|x(tk)− x̂(tk)|] ≤ C∆tγ (5.15)

where E represents the expectation or mean, x(tk) is the actual value of x(t) at tk = k∆t,

x̂(tk) is the discretized approximation value of x(t) at tk and ∆t is the step size.

Definition 5.2.2. The weak order of convergence can be defined to be the smallest

exponent α, such that there exists a constant C that satisfies the inequality given

below,

|E[g(x(tn))]− E[g(x̂(tn))]| ≤ C∆tα (5.16)

for any function g.

It is shown in Kloeden and Platen 1999 [3]that the Euler-Maruyama method has

strong order of convergence, γ = 1/2 and weak order of convergence, α = 1. The strong

order of convergence value is half of the weak order of convergence value due to the fact

that the term dβv(τ)dβ(τ) in the remainder (5.12) when integrated gives the term dβ(τ)

which is approximately equal to dt1/2. Hence, expansion of this term can increase the

strong order of convergence leading to the Milstein’s approximation method for SDEs.

h
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5.3 Milstein’s Method [2]

In equation (5.10), the term Lβ,vL(x(τ), τ), can be expanded using the Itô-Taylor ex-

pansion like in equation (5.8) and (5.9), thus producing

Lβ,vL(x(t), t) = Lβ,vL(x(t0), t0) +

∫ t

t0

LtLβ,vL(x(t), t)dt

+
∑
v

∫ t

t0

L 2
β,vL(x(τ), τ)dβv(τ).

(5.17)

Substituting equation (5.17) into equation (5.10) gives,

x(t) = x(t0) + f(x(t0), t0)(t− t0) + L(x(t0), t0)(β(t)− β(t0))

+
∑
v

Lβ,vL(x(t0), t0)

∫ t

t0

∫ τ

t0

dβv(τ)dβ(τ) + r2(t)
(5.18)

where the remainder r2(t) is given by

r2(t) =

∫ t

t0

∫ τ

t0

Ltf(x(τ), τ)dτdτ +
∑
v

∫ t

t0

∫ τ

t0

Lβ,vf(x(t), t)dβv(τ)dτ

+

∫ t

t0

∫ τ

t0

LtL(x(τ), τ)dτdβ(τ) +
∑
v

∫ t

t0

∫ τ

t0

{∫ t

t0

LtLβ,vL(x(t), t)dt

+
∑
v

∫ t

t0

L 2
β,vL(x(τ), τ)dβv(τ)

}
dβv(τ)dβ(τ)

(5.19)

Part of equation (5.18) evolves as a double iterated Itô integral given by∫ t

t0

∫ τ

t0

dβv(τ)dβ(τ). (5.20)

This iterated Itô integral is quite complex to compute. However, assuming it can be

computed and the corresponding Brownian increment can be drawn, the equation (5.18)

can be approximated as follows

x(t) ≈ x(t0) + f(x(t0), t0)(t− t0) + L(x(t0), t0)(β(t)− β(t0))

+
∑
v

Lβ,vL(x(t0), t0)

∫ t

t0

∫ τ

t0

dβv(τ)dβ(τ)
(5.21)

This approximation is used to evaluate x(t) in the algorithm of Milstein’s method.

Similar to the Euler-Maruyama method, x(t) is simulated as a discrete process given
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by x̂(t). For a SDE of the form (5.1), having initial condition x̂(t0) = x̂0 with a

probability distribution p(x0), x̂(t) is simulated in K steps over the time interval [0, t]

with step size ∆t = t/K. For multivariate system, x(t) ∈ Rp, β ∈ Rq and f(x(t), t) ∈ Rp

are vectors, and L(x(t), t) ∈ Rp×q is a matrix. At each step k,

x̂(tk+1) = x̂(tk) + f(x̂(tk), tk)∆t+ L(x̂(tk), tk)∆βk

+
∑
v

[∑
u

∂L

∂xu
(x̂(tk), tk)Luv(x̂(tk), tk)

]
∆χv,k

(5.22)

where tk = k∆t, k = 1, ...K, ∆βk = β(tk+1) − β(tk) is a Brownian motion increment

and ∆χv,k is it’s related Itô integral given by

∆χv,k =

∫ tk+1

tk

∫ τ

tk

dβv(τ)dβ(τ) (5.23)

The algorithm of Milstein’s method for multivariate SDEs in pseudo code is given below,

Algorithm 5.2 Milstein’s method for multivariate SDEs

t = 0, x̂ = x0

for k = 1 to t/∆t := K do
∆β = β(tk+1)− β(tk)

∆χv =
∫ (k+1)∆t

k∆t

∫ τ
k∆t

dβv(τ)dβ(τ)
x̂(t) = x̂(t) + f(x̂(t), t)∆t+ L(x̂(t), t)∆β

+
∑

v

[∑
u
∂L
∂xu

(x̂(t), t)Luv(x̂(t), t)

]
∆χv

end for

In case of scalar SDEs, the iterated Itô integral can be computed as:∫ t

t0

∫ τ

t0

dβτdβτ =
1

2
[(β(t)− β(t0))2 − q(t− t0)] (5.24)

Hence, Milstein’s method algorithm in pseudo code for scalar SDEs can be written

explicitly as:

Algorithm 5.3 Scalar Milstein’s method

t = 0, x̂ = x0

for k = 1 to t/∆t := K do
∆β ∼ N(0, Q∆t)
x̂(t) = x̂(t) + f(x̂(t), t)∆t+ L(x̂(t), t)∆β +1

2
∂L
∂x

(x̂(t), t)L(x̂(t), t)(∆β2
k −Q∆t)

end for
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5.3.1 Properties of the Algorithm [2]

The strong and weak order of convergence of Milstein’s method are both equal to 1.

Considering that noise is additive, that is, L(x, t) = L(t) the Milstein’s algorithm re-

duces to Euler-Maruyama. Hence, in the case of additive noise, the strong order of

convergence for Euler-Maruyama is 1.

Higher order Itô-Taylor series expansions can be formed by including more terms into

the series. However, derivation of higher order methods involves drawing the iterated

stochastic integral jointly with Brownian motion, which is difficult.

5.3.2 Example

A stochastic differential equation represented by Brownian motion,

x̂ = f(x(t), t)dt+ L (x(t), t)dβ(t) (5.25)

where f(.) and L are the drift and diffusion coefficients and β(t) is a Brownian motion.

In the special case of Geometric Brownian Motion, where f(.) = µẋ and L (.) = σẋ,

the SDE is

x̂ = µx(t)dt+ σx(t)dβ() (5.26)

Rewriting the integral form of Geometric Brownian motion as follows:

x(tn+1)− x(tn) = µ

∫ tn+1

tn

x(x)ds+ σ

∫ tn+1

tn

x(s)dβs (5.27)

The Euler-Maruyama approximation is

xn+1 − xn = µxn∆tn + σxn∆βn (5.28)

The first integral is being approximated by µxnδt and the second integral by σxnδβn.

The Milstein method increases the accuracy of the E-M approximation with the addition

of a second-order correction term derived from the stochastic Taylor series expansion[call

appendix], yields the following differential form

xn+1 − xn = f(xn)∆t+ (xn)∆βn + 0.5σ2xn((∆βN)2 −∆t) (5.29)

for the Geometric Brownian motion.
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Figure 5.1 Milstein vs Euler-Maruyama

5.4 Itô-Taylor Method [2]

In a SDE of the form (5.1), consider L, the diffusion term denotes a constant matrix,

that is LtL = Lβ,vL = 0. In addition to that, we assume the diffusion of Brownian

motion Q as a constant. From (5.4), (5.5) and (5.7) the equation (5.10) reads,

x(t) = x(t0) + f(x(t0), t0)(t− t0) + L(x(t0), t0)(β(t)− β(t0))

+

∫ t

t0

∫ τ

t0

Ltf(x(τ), τ)dτdτ +
∑
v

∫ t

t0

∫ τ

t0

Lβ,vf(x(t), t)dβvdτ
(5.30)
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Here, the composite terms Ltf(x(t), t) and Lβ,vf(x(t), t) are expanded using the Itô-

Taylor series (5.8) resulting in,

Ltf(x(t), t) = Ltf(x(t0), t0) +

∫ t

t0

L 2
t f(x(t), t)dt

+
∑
v

∫ t

t0

Lβ,vLtf(x(t), t)dβv

Lβ,vf(x(t), t) = Lβ,vf(x(t0), t0) +

∫ t

t0

LtLβ,vf(x(t), t)dt

+
∑
v

∫ t

t0

L 2
β,vf(x(t), t)dβv

(5.31)

Substituting equations of (5.31) in equation (5.30) gives

x(t) = x(t0) + f(x(t0), t0)(t− t0) + L(x(t0), t0)(β(t)− β(t0))

+ Ltf(x(t0), t0)
(t− t0)2

2

+
∑
v

Lβ,vf(x(t0), t0)

∫ t

t0

[βv(τ)− βv(t0)]dτ + r3(t),

(5.32)

where the remainder r3(t) is given by

r3(t) =

∫ t

t0

∫ τ

t0

{∫ t

t0

L 2
t f(x(t), t)dt+

∑
v

∫ t

t0

Lβ,vLtf(x(t), t)dβv

}
dτdτ

+
∑
v

∫ t

t0

∫ τ

t0

{∫ t

t0

LtLβ,vf(x(t), t)dt+
∑
v

∫ t

t0

L 2
β,vf(x(t), t)dβv

}
dβv(τ)dτ

(5.33)

Thus, the equation (5.32) can be approximated as,

x(t) ≈ x(t0) + f(x(t0), t0)(t− t0) + L(x(t0), t0)(β(t)− β(t0))

+ Ltf(x(t0), t0)
(t− t0)2

2
+
∑
v

Lβ,vf(x(t0), t0)

∫ t

t0

[βv(τ)− βv(t0)]dτ.
(5.34)

The term β(t)− β(t0) and the integral
∫ t
t0

[βv(τ)− βv(t0)]dτ refer to the same Brownian

motion and thus are correlated. Both terms are Gaussian by assumptions, and so it

follows that their joint distribution is:
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[∫ t
t0

[β(τ)− β(t0)]

β(t)− β(t0)

]
∼ N

([
0

0

]
,

[
Q(t− t0)3/3 Q(t− t0)2/2

Q(t− t0)2/2 Q(t− t0)

])
(5.35)

Thus, the equation (5.34) gives the Itô-Taylor method.

Because L and Q are constant, using the properties of the distribution (5.32), ŝ is

written in the form For a SDE of the form (5.1), with the given initial conditions and

properties of the terms, x̂(t) is simulated in K steps over the time interval [0, t] with

step size ∆t = t/K. At each step k, x̂(tk) is computed as

x̂(tk+1) = x̂(tk) + f(x̂(tk), tk)∆t+ L∆βk

+ ak
(∆t)2

2
+
∑
v

bv,k∆ζk,
(5.36)

where

ak =
∂f

∂t
(x̂(tk), tk) +

∑
u

∂f

∂xu
(x̂(tk), tk)fu(x̂(tk), tk)

+
1

2

∑
uv

∂2f

∂xu∂xv
(x̂(tk), tk)[LQL

T ]uv

bυ,k =
∑
u

∂f

∂xu
(x̂(tk), tk)Luv,

(5.37)

and ∆ζk, ∆βk are random variables defined using the joint distribution given by[
∆ζk

∆βk

]
∼ N

([
0

0

]
,

[
Q∆t3/3 Q∆2/2

Q∆t2/2 Q∆t

])
(5.38)

The algorithm for Itô-Taylor method in pseudo code is as follows:

Algorithm 5.4 Itô-Taylor Method

t = 0, x̂ = x0

for k = 1 to t/∆t := K do[
∆ζ
∆β

]
∼ N

([
0
0

]
,

[
Q∆t3/3 Q∆2/2
Q∆t2/2 Q∆t

])
a = ∂f

∂t
(x̂(t), t) +

∑
u
∂f
∂xu

(x̂(t), t)fu(x̂(t), t) + 1
2

∑
uv

∂2f
∂xu∂xv

(x̂(t), t)[LQLT ]uv

bυ =
∑

u
∂f
∂xu

(x̂(t), t)Luv

x̂(t) = x̂(t) + f(x̂(t), t)∆t+ L∆β + a (∆t)2

2
+
∑

v bv∆ζ
end for
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5.4.1 Properties of the Algorithm [2]

The strong order of convergence of the above Itô-Taylor method is shown to be 1.5 [3].

Hence, this method is also called as Strong order 1.5 Itô-Taylor method. This order is

achieved by adding more terms from the Itô-Taylor expansion to Milstein’s method.

When the SDE contains a diffusion term which is not constant, in both scalar and

multivariate cases, one can use either the Euler-Maruyama Method or the Milstein’s

method, where Milstein’s method has superior accuracy. The third Itô-Taylor method

is a specialized one because it applies to only the special cases where L and the diffusion

Q are constant. In the next chapter, an example power system [1] is considered and the

numerical methods are used to simulate trajectories of discretization and diffusion.
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Chapter 6

Application of the Numerical

Methods for Solving SDEs

The methods are used to provide a good estimation of the dynamic state Jacobian ma-

trix from the paper by Professor Wang [1]. In the paper, a proposed hybrid measurement

and model based method is used to estimate the dynamic state Jacobian matrix, which

provides invaluable information for various security analysis. Conventionally, the Ja-

cobian matrix can be constructed based on state estimation results provided that an

accurate dynamic model and network parameter values are available, which is not prac-

tically possible resulting in imprecise estimations. But, the proposed hybrid method

does not depend on network model and can work as a robust alternative to the tradi-

tional state estimation based approaches when uncertainty in network topology is an

issue.

6.1 Estimation of the Dynamic State Jacobian Matrix [1]

Considering the general power system dynamic model:

ẋ = f(x, y)

O = g(x, y)
(6.1)

The above equations describe the generator dynamics (associated control) and the elec-

trical transmission system and the static behavior of devices respectively. f and g are

continuous functions, vectors x ∈ Rnx and y ∈ Rny are the corresponding state variables

(generator rotor angles, rotor speeds) and algebraic variables (bus voltages, bus angles).

In the paper, the proposed method uses the classical generator model, which can
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typically represents the generator dynamics in ambient conditions. Assuming that the

load variations and renewable injections can be transformed into the variation on gen-

erator mechanical power, i.e., the mechanical power for Generator i is Pmi
+σixi, where

xi is the standard Gaussian noise, and σ2
i is the noise variance. Then, Equations (6.1)

can be represented as:

δ̇ = ω

Mω̇ = Pm − Pe −Dω +
∑

ξ
(6.2)

with,

Pei =
3∑
j=i

EiEj(Gijcos(δ̃i − δ̃j) +Bijsin(δ̃i − δ̃j)) (6.3)

Here, δ = [δ1, · · · δn]T is a vector of generator rotor angles, ω = [ω1, · · · , ωn]T is a

vector of generator rotor speeds, Pm = [Pm1 , · · · , Pmn ]T is a vector of generators’

mechanical power, Pe = [Pe1 , · · · , Pen ]T is a vector of generators’ electrical power,

M = diag(M1, · · · ,Mn) are the inertia constants, D = diag(D1, · · · , Dn) are the damp-

ing factors. In addition, xi is a vector of independent standard Gaussian random vari-

ables representing the variation of power injections, and
∑

= diag(σ1, · · · , σn) is the

covariance matrix, and constant impedances for triviality .

Linearizing Equations (6.2) gives,[
δ̇

ω̇

]
=

[
0 In

−M−1 ∂Pe

∂δ
−M−1D

][
δ

ω

]
+

[
0

M−1
∑] ξ (6.4)

Let x = [δ, ω]T , A =

[
0 In

−M−1 ∂Pe

∂δ
−M−1D

]
, B = [0,M−1

∑
]T , then Equation (6.4)

becomes,

ẋ = Ax+Bξ (6.5)
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6.2 System Model [1]

Considering the standard WSCC 3-generator, 9-bus system model. The system model

in the center-of-inertia (COI) formulation is given below:

˙̃δ1 = ω̃1

˙̃δ2 = ω̃2

M1
˙̃ω1 = Pm1 − Pe1 −

M1

MT

Pcoi −D1ω̃1 + σ1ξ1

M2
˙̃ω2 = Pm2 − Pe2 −

M2

MT

Pcoi −D2ω̃2 + σ2ξ2

(6.6)

where δ0 = 1
MT

∑3
i=1Miδi, ω0 = 1

MT

∑3
i=1 Miωi,MT =

∑3
i=1Mi, δ̃i = δi−δ0, ω̃i = ωi−ω0,

for i = 1, 2, 3, and

Pcoi =
3∑
i=1

(Pmi
− Pei) (6.7)

Let the parameter values be assumed as: Pm1 = 0.72 p.u., Pm2 = 1.63 p.u., Pm3 =

0.85 p.u.; E1 = 1.057p.u., E2 = 1.050p.u., E3 = 1.017p.u.; M1 = 0.63, M2 = 0.34,

M3 = 0.16; D1 = 0.63, D2 = 0.34, D3 = 0.16.

Because the following relations that δ̃3 = −M1δ̃1+M2δ̃2
M3

and ω̃3 = −M1ω̃1+M2ω̃2

M3
hold in

the COI formulation, δ̃3 and ω̃3 depending on the other state variables can be obtained

without integration.

Thus, the system matrix can be written as follows:

A =


0 0

0 0
I

J
−D1

M1

0

0 −D2

M2

 (6.8)
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where J = −M−1
(
∂Pe

∂δ̃
+M 1

MT

∂Pcoi

∂δ̃

)
= −M−1

(
∂Pe

∂δ̃

)
coi

, for i = 1, 2;

((∂Pe
∂δ̃

)
coi

)
ij

=



EiEj(Gijsin(δ̃i − δ̃j)−Bijcos(δ̃i − δ̃j))

+ Mi

MT

∂Pcoi

∂δ̃i
if i 6= j∑n

k=1 EiEk(Giksin(δ̃i − δ̃k)

+Bikcos(δ̃i − δ̃k)) + Mi

MT

∂Pcoi

∂δ̃i
if i = j

(6.9)

where ∂Pcoi

∂δ̃i
= 2

∑
k 6=iEiEkGiksin(δ̃i − δ̃k). And the input matrix is as follows:

B =


0 0 0 0

0 0 0 0

0 0 σ1 0

0 0 0 σ2

 (6.10)

Thus, the system can be analysed using the numerical methods for SDE discussed in

the previous chapter.

6.3 Derivatives of Itô- Taylor Method for the System model

Consider the initial conditions, δ0 = 0, ω0 = 0 and σ1 = σ2 = 0.01. Hence, δ̃i = δi and

ω̃i = ωi. The system model discussed in section (6.2) can be written as

ẋ = Ax+Bξ (6.11)

where

x =


δ1

δ2

ω1

ω2

 ; A =


0 0

0 0
I

J
−D1

M1

0

0 −D2

M2

 (6.12)
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where J = −M−1
(
∂Pe

∂δ

)
coi

for i = 1, 2;

((∂Pe
∂δ

)
coi

)
ij

=



EiEj(Gijsin(δi − δj)−Bijcos(δi − δj))

+ Mi

MT

∂Pcoi

∂δi
if i 6= j∑n

k=1 EiEk(Giksin(δi − δk) +Bikcos(δi − δk))

+ Mi

MT

∂Pcoi

∂δi
if i = j

(6.13)

where ∂Pcoi

∂δi
= 2

∑
k 6=iEiEkGiksin(δi − δk). And the input matrix is as follows:

B =


0 0 0 0

0 0 0 0

0 0 0.01 0

0 0 0 0.01

 (6.14)

and ξ is the noise input to the system. From equations (5.1) and (6.11), f(x(t), t) and

L(x(t), t) can be written as,

f(x(t), t) = Ax and L(x(t), t) = B (6.15)

The Itô-Taylor algorithm for numerical solutions of SDE uses partial derivatives of

f(x(t), t) with respect to x and t.

Partial derivative of f(x(t), t) with respect to t is given by

∂

∂t
(f(x(t), t)) =

∂

∂t
(Ax) =


∂ω1/∂t

∂ω2/∂t
∂
∂t

(J11δ1 + J12δ2 − D1

M1
ω1)

∂
∂t

(J21δ1 + J22δ2 − D2

M2
ω2)

 (6.16)
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where Jij is the element in ith row and jth column of matrix J . The terms of equation

6.16 are given by,

∂

∂t

(
J11δ1 + J12δ2 −

D1

M1

ω1

)
=− 1

M1

{
3∑

k=1

E1Ek

(
∂δ1

∂t

(
G1ksin(δ1 − δk) +B1kcos(δ1 − δk)

)
+ δ1

(∂δ1

∂t
− ∂δk

∂t

)(
G1kcos(δ1 − δk)−B1ksin(δ1 − δk)

))
+ E1E2

((
G12sin(δ1 − δ2)−B12cos(δ1 − δ2)

)∂δ2

∂t

+ δ2

(∂δ1

∂t
− ∂δ2

∂t

)(
G12cos(δ1 − δ2) +B12sin(δ1 − δ2)

))
+ 2

M1

MT

( ∑
k=2,3

E1Ek

(
G1ksin(δ1 − δk)

(∂δ1

∂t
+
∂δ2

∂t

)
+ (δ1 + δ2)

(∂δ1

∂t
− ∂δk

∂t

)
G1kcos(δ1 − δk)

))}
− D1

M1

∂ω1

∂t

(6.17)

and

∂

∂t

(
J21δ1 + J22δ2 −

D2

M2

ω2

)
=− 1

M2

{
3∑

k=1

E2Ek

(
∂δ2

∂t

(
G2ksin(δ2 − δk) +B2kcos(δ2 − δk)

)
+ δ2

(∂δ2

∂t
− ∂δk

∂t

)(
G2kcos(δ2 − δk)−B2ksin(δ2 − δk)

))
+ E2E1

((
G21sin(δ2 − δ1)−B21cos(δ2 − δ1)

)∂δ1

∂t

+ δ1

(∂δ2

∂t
− ∂δ1

∂t

)(
G21cos(δ2 − δ1) +B21sin(δ2 − δ1)

))
+ 2

M2

MT

( ∑
k=1,3

E2Ek

(
G2ksin(δ2 − δk)

(∂δ1

∂t
+
∂δ2

∂t

)
+ (δ1 + δ2)

(∂δ2

∂t
− ∂δk

∂t

)
G2kcos(δ2 − δk)

))}
− D2

M2

∂ω2

∂t

(6.18)
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The partial derivative of f(x(t), t) = Ax with respect to x1 = δ1 is given by

∂

∂δ1

(Ax) =


0

0
∂
∂δ1

(J11δ1 + J12δ2)
∂
∂δ1

(J21δ1 + J22δ2)

 (6.19)

where

∂

∂δ1

(J11δ1 + J12δ2) =− 1

M1

{ ∑
k=2,3

E1Ek

(
G1k

(
sin(δ1 − δk) + δ1cos(δ1 − δk)

)
+B1k

(
cos(δ1 − δk)− δ1sin(δ1 − δk)

))
+ E2

1B11

+ E1E2δ2

(
G12cos(δ1 − δ2) +B12sin(δ1 − δ2)

)
+ 2

M1

MT

( ∑
k=2,3

E1EkG1k

(
sin(δ1 − δk) + (δ1 + δ2)cos(δ1 − δk)

))}
(6.20)

and

∂

∂δ1

(J21δ1 + J22δ2) =− 1

M2

{
δ2E2E1

(
−G21cos(δ2 − δ1) +B21sin(δ2 − δ1)

)
+ E2E1

(
G21sin(δ2 − δ1)−B21cos(δ2 − δ1)− δ1

(
G21cos(δ2 − δ1)

+B21sin(δ2 − δ1)
))

+ 2
M2

MT

(
E2E1G21

(
sin(δ2 − δ1)

− (δ1 + δ2)cos(δ2 − δ1)
)

+ E2E3G23sin(δ2 − δ3)

)}
(6.21)

The partial derivative of f(x(t), t) = Ax with respect to x2 = δ2 is given by

∂

∂δ2

(Ax) =


0

0
∂
∂δ2

(J11δ1 + J12δ2)
∂
∂δ2

(J21δ1 + J22δ2)

 (6.22)
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where

∂

∂δ2

(J11δ1 + J12δ2) =− 1

M1

{
δ1E1E2

(
−G12cos(δ1 − δ2) +B12sin(δ1 − δ2)

)
+ E1E2

(
G12sin(δ1 − δ2)−B12cos(δ1 − δ2)− δ2

(
G12cos(δ1 − δ2)

+B12sin(δ1 − δ2)
))

+ 2
M1

MT

(
E1E2G12

(
sin(δ1 − δ2)

− (δ1 + δ2)cos(δ1 − δ2)
)

+ E1E3G13sin(δ1 − δ3)

)}
(6.23)

and

∂

∂δ2

(J21δ1 + J22δ2) =− 1

M2

{ ∑
k=1,3

E2Ek

(
G2k

(
sin(δ2 − δk) + δ2cos(δ2 − δk)

)
+B2k

(
cos(δ2 − δk)− δ2sin(δ2 − δk)

))
+ E2

2B22

+ E2E1δ1

(
G21cos(δ2 − δ1) +B21sin(δ2 − δ1)

)
+ 2

M2

MT

( ∑
k=1,3

E2EkG2k

(
sin(δ2 − δk) + (δ1 + δ2)cos(δ2 − δk)

))}
(6.24)

The partial derivative of f(x(t), t) = Ax with respect to x3 = ω1 is given by

∂

∂ω1

(Ax) =


1

0
−D1

M1

0

 (6.25)

The partial derivative of f(x(t), t) = Ax with respect to x4 = ω2 is given by

∂

∂ω2

(Ax) =


0

1

0
−D2

M2

 (6.26)
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The partial derivative of equation (6.19) with respect to x1 = δ1 is given by

∂2

∂δ2
1

(Ax) =


0

0
∂2

∂δ21
(J11δ1 + J12δ2)

∂2

∂δ21
(J21δ1 + J22δ2)

 (6.27)

where

∂2

∂δ2
1

(J11δ1 + J12δ2) = − 1

M1

{ ∑
k=2,3

E1Ek

(
G1k

(
2cos(δ1 − δk)− δ1sin(δ1 − δk)

)
−B1k

(
2sin(δ1 − δk) + δ1cos(δ1 − δk)

))
+ E2E1δ2

(
−G12sin(δ1 − δ2) +B12cos(δ1 − δk)

)
+ 2

M1

MT

( ∑
k=2,3

E1EkG1k

(
2cos(δ1 − δk)− (δ1 + δ2)sin(δ1 − δk)

))}
(6.28)

and

∂2

∂δ2
1

(J21δ1 + J22δ2) =− 1

M2

{
− δ2E2E1

(
G21sin(δ2 − δ1) +B21cos(δ2 − δ1)

)
− E2E1

(
2
(
G21cos(δ2 − δ1) +B21sin(δ2 − δ1)

)
+ δ1

(
G21sin(δ2 − δ1)−B21cos(δ2 − δ1)

))
− 2

M2

MT

E2E1G21

(
2cos(δ2 − δ1) + (δ1 + δ2)sin(δ2 − δ1)

)}
(6.29)

The partial derivative of equation (6.22) with respect to x2 = δ2 is given by

∂2

∂δ2
2

(Ax) =


0

0
∂2

∂δ22
(J11δ1 + J12δ2)

∂2

∂δ22
(J21δ1 + J22δ2)

 (6.30)
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where

∂2

∂δ2
2

(J11δ1 + J12δ2) =− 1

M1

{
− δ1E1E2

(
G12sin(δ1 − δ2) +B12cos(δ1 − δ2)

)
− E1E2

(
2
(
G12cos(δ1 − δ2) +B12sin(δ1 − δ2

)
+ δ2

(
G12sin(δ1 − δ2)−B12cos(δ1 − δ2)

))
− 2

M1

MT

E1E2G12

(
2cos(δ1 − δ2) + (δ1 + δ2)sin(δ1 − δ2)

)}
(6.31)

and

∂2

∂δ2
2

(J12δ1 + J22δ2) = − 1

M2

{ ∑
k=1,3

E2Ek

(
G2k

(
2cos(δ2 − δk)− δ2sin(δ2 − δk)

)
−B2k

(
2sin(δ2 − δk) + δ2cos(δ2 − δk)

))
+ E2E1δ1

(
−G21sin(δ2 − δ1) +B21cos(δ2 − δk)

)
+ 2

M2

MT

( ∑
k=1,3

E2EkG2k

(
2cos(δ2 − δk)− (δ1 + δ2)sin(δ2 − δk)

))}
(6.32)

The partial derivative of equation (6.25) with respect to x3 = ω1 is given by

∂2

∂ω2
1

(Ax) = 0 (6.33)

The partial derivative of equation (6.26) with respect to x4 = ω2 is given by

∂2

∂ω2
2

(Ax) = 0 (6.34)

The partial derivative of equation (6.19) with respect to x3 = ω1 is given by

∂2(Ax)

∂δ1∂ω1

=
∂2(Ax)

∂ω1∂δ1

= 0 (6.35)

The partial derivative of equation (6.19) with respect to x4 = ω2 is given by

∂2(Ax)

∂δ1∂ω2

=
∂2(Ax)

∂ω2∂δ1

= 0 (6.36)
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The partial derivative of equation (6.22) with respect to x3 = ω1 is given by

∂2(Ax)

∂δ2∂ω1

=
∂2(Ax)

∂ω1∂δ2

= 0 (6.37)

The partial derivative of equation (6.22) with respect to x4 = ω2 is given by

∂2(Ax)

∂δ2∂ω2

=
∂2(Ax)

∂ω2∂δ2

= 0 (6.38)

The partial derivative of equation (6.25) with respect to x4 = ω2 is given by

∂2(Ax)

∂ω1∂ω2

=
∂2(Ax)

∂ω2∂ω1

= 0 (6.39)

The partial derivative of equation (6.19) with respect to x2 = δ2 is given by

∂2(Ax)

∂δ1∂δ2

=
∂2(Ax)

∂δ2∂δ1

=


0

0
∂2(J11δ1+J12δ2)

∂δ1∂δ2
∂2(J21δ1+J22δ2)

∂δ1∂δ2

 (6.40)

where

∂2(J11δ1 + J12δ2)

∂δ1∂δ2

= − 1

M1

{
E1E2

(
G12(δ1 + δ2)sin(δ1 − δ2) +B12

(
2sin(δ1 − δ2)

+ (δ1 − δ2)cos(δ1 − δ2)
))

+ 2
M1

MT

(
E1E2G12(δ1 + δ2)sin(δ1 − δ2)

+ E1E3G13cos(δ1 − δ2)
)}

(6.41)

and

∂2(J21δ1 + J22δ2)

∂δ1∂δ2

= − 1

M2

{
E2E1

(
G21(δ1 + δ2)sin(δ2 − δ1) +B21

(
2sin(δ2 − δ1)

+ (δ2 − δ1)cos(δ2 − δ1)
))

+ 2
M2

MT

(
E2E1G21(δ1 + δ2)sin(δ2 − δ1)

+ E2E3G23cos(δ2 − δ3)
))

(6.42)
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These partial derivatives from equation (6.16) to equation (6.42) are used to compute

the discrete process x̂ in the algorithm for Itô-Taylor method.

6.4 Euler-Maruyama Method

The system model in section (6.3) is approximated using the algorithm for Euler-

Maruyama method discussed in the section (5.2). The plots of trajectory of x with

respect to t are as follows:

Figure 6.1 Trajectory of δ1 on [0, 100s]
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Figure 6.2 Trajectory of ω1 on [0, 100s]

Figure 6.3 Trajectory of δ2 on [0, 100s]
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Figure 6.4 Trajectory of ω2 on [0, 100s]

The system model in section (6.3) is approximated with varying ∆t to analyse the

behaviour of the algorithm with discretization. The plots of trajectories of x are as

follows:
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Figure 6.5 Trajectories of δ1 for varying ∆t

Figure 6.6 Trajectories of ω1 for varying ∆t
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Figure 6.7 Trajectories of δ2 for varying ∆t

Figure 6.8 Trajectories of ω2 for varying ∆t

When the diffusion of the Brownian motion Q is varied and the system equations

are approximated, the plots of trajectories of x are as follows:
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Figure 6.9 Trajectories of δ1 for varying Q

Figure 6.10 Trajectories of ω1 for varying Q
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Figure 6.11 Trajectories of δ2 for varying Q

Figure 6.12 Trajectories of ω2 for varying Q
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6.5 Milstein’s Method

The system equations in section (6.3) are approximated using the algorithm for Mil-

stein’s method discussed in section (5.3). The trajectory plots of x with respect to t are

as follows:

Figure 6.13 Trajectory of δ1 on [0, 100s]
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Figure 6.14 Trajectory of ω1 on [0, 100s]

Figure 6.15 Trajectory of δ2 on [0, 100s]
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Figure 6.16 Trajectory of ω2 on [0, 100s]

The system model in section (6.3) is approximated with varying ∆t to present the

effects of discretization on the algorithm. The trajectory plots of x are as follows:

Figure 6.17 Trajectories of δ1 for varying ∆t
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Figure 6.18 Trajectories of ω1 for varying ∆t

Figure 6.19 Trajectories of δ2 for varying ∆t
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Figure 6.20 Trajectories of ω2 for varying ∆t

When the system in section (6.3) is approximated with varying the diffusion of the

Brownian motion Q, the trajectory plots of x is as follows:

Figure 6.21 Trajectories of δ1 for varying Q
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Figure 6.22 Trajectories of ω1 for varying Q

Figure 6.23 Trajectories of δ2 for varying Q
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Figure 6.24 Trajectories of ω2 for varying Q

6.6 Ito-Taylor Method

When the system model in section (6.3) is approximated using the Ito-Taylor method,

the trajectory plots obtained are as follows:



6 Application of the Numerical Methods for Solving SDEs 65

Figure 6.25 Trajectory of δ1 on [0, 100s]

Figure 6.26 Trajectory of ω1 on [0, 100s]
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Figure 6.27 Trajectory of δ2 on [0, 100s]

Figure 6.28 Trajectory of ω2 on [0, 100s]

The system model is approximated with varying ∆t to analyse the effects of dis-

cretization on the approximated algorithm. The trajectory plots of x are as follows:
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Figure 6.29 Trajectories of δ1 for varying ∆t

Figure 6.30 Trajectories of ω1 for varying ∆t
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Figure 6.31 Trajectories of δ2 for varying ∆t

Figure 6.32 Trajectories of ω2 for varying ∆t

The system model when approximated with varying diffusion of the Brownian motion

Q, gives the trajectories shown in plots below.
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Figure 6.33 Trajectories of δ1 for varying Q

Figure 6.34 Trajectories of ω1 for varying Q
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Figure 6.35 Trajectories of δ2 for varying Q

Figure 6.36 Trajectories of ω2 for varying Q
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6.7 Conclusion

The thesis is designed to give the readers a brief insight on how the power system is

studied using various numerical methods that solve Stochastic Differential Equations.

In our system, since the function L is independent of x and t, the partial derivatives

in Milstein’s method is 0. Therefore, Milstein’s method is reduced to Euler-Maruyama

method. The graphs are plotted with various discretization values. From these graphs

we observe that when dt is too huge and we approximate xt, the time taken is longer.

In addition to that, with higher dt, the trajectories are not accurate since not all the

points on the curve are included, leading to slower convergence. But when more points

are included, the approximation converges faster.

In addition to these methods, there are other methods like Runge-Kutta method,

stronger order of convergence Itô-Taylor methods, etc., although these methods tend

to be more complex to solve for higher order systems. A more in depth study of such

numerical methods can be found in Kloeden and Platen 1999 [3].
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Appendix A

Itô-Calculus and SDEs [2]

A.1 Taylor Series of ODEs

We can use Taylor series expansion as one of the methods, to find the approximate

solutions of deterministic ordinary differential equations. It is quite practical in ODE

numerical approximation, but is superseded by Runge-Kutta type of derivative free

methods. Since the corresponding Itô-Taylor series solution of SDEs, in the next sec-

tion, provides a useful basis for numerical methods of SDEs, and the derivation is also

analogous to the ODE derivation, we will derive the Taylor series solution for ODEs

first.
dx(t)

dt
= f(x(t), t), x(t0) = given, (A.1)

which can be integrated to give,

x(t) = x(t0) +

∫ t

t0

f(x(τ).τ)dτ. (A.2)

If the function f is differentiable, we can also write as t 7→ f(x(t), t) as the solution to

the differential equation

df(x(t), t)

dt
=
∂f

∂t
(x(t), t) +

∑
i

fi(x(t), t)
∂f

∂xi
(x(t), t), (A.3)

where (x(t0), t0)is the given initial condition. The integral form of this is,

f(x(t), t) = f(x(t0), t0) +

∫ t

t0

[
∂f

∂t
(x(τ), τ) +

∑
i

fi(x(τ), τ)
∂f

∂xi
(x(τ), τ)

]
dτ. (A.4)
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The linear operator can be defined as,

L g =
∂g

∂t
+
∑
i

fi
∂g

∂xi
(A.5)

and rewrite the integral equation,

f(x(t), t) = f(x(t0), t0) +

∫ t

t0

Lf(x(τ), τ)dτ. (A.6)

Substituting this equation is Equation (A.2) gives,

x(t) = x(t0) +

∫ t

t0

[f(x(t0), t0) +

∫ t

t0

L f(x(τ), τ)dτ ]dτ

= x(t0) + f(x(t0), t0)(t− t0) +

∫ t

t0

∫ t

t0

L f(x(τ), τ)dτdτ.

(A.7)

The term in the integrand on the right can be defined as a solution to the differential

equation

d[L f(x(t), t)]

dt
=
∂[L f(x(t), t)]

∂t
+
∑
i

fi(x(t), t)
∂[L f(x(t), t)]

∂xi

= L 2f(x(t), t).

(A.8)

which is in integral form,

L f(x(t), t) = L f(x0), t0) +

∫ t

t0

L 2f(x(τ), τ)dτ. (A.9)

Substituting into the equation of x(t) which gives,

x(t) = x(t0) + f(x(t0), t)(t− t0)

+

∫ t

t0

∫ t

t0

[L f(x(t0), t0) +

∫ τ

t0

L 2f(x(τ), τ)dτ ]dτdτ

= x(t0) + f(x(t0), t0)(t− t0) +
1

2
L f(x(t0), t0)(t− t0)2

+

∫ t

t0

∫ τ

t0

∫ τ

t0

L 2f(x(τ), τ)dτdτdτ

(A.10)
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Continuing this procedure ad infinitum, we obtain the following Taylor series expansion

for the solution of the ODE:

x(t) = x(t0) + f(x(t0), t0)(t–t0) +
1

2!
L f(x(t0), t0)(t–t0)2

+
1

3!
L 2f(x(t0), t0)(t–t0)3 + · · ·

(A.11)

From the derivation above, if we truncate the series at the nth term, the residual error

is:

rn(t) =

∫ t

t0

·
∫ t

t0

L nf(x(τ), τ)dτn+1, (A.12)

which by integration by parts and mean value theorem, can be further simplified. To

derive the series expansion for an arbitrary function x(t), we can define it as a solution

to the trivial differential equation

dx

dt
= f(t), x(t0) = given. (A.13)

where f(t) = dx(t) /dt. Because f is independent of x, therefore,

L nf =
dn+1x(t)

dtn+1
. (A.14)

Thus, the corresponding series becomes the classical Taylor series:

x(t) = x(t0) +
dx

dt
(t0)(t–t0) +

1

2!

d2x

dt2
(t0)(t–t0)

+
1

3!

d3x

dt3
(t0)(t–t0)3 + ·

(A.15)

A stochastic differential equation can be heuristically considered as a vector differ-

ential equation of the form, which is already discussed in the previous section,

dx

dt
= f(x, t) + L(x, t)w(t), (A.16)

where w(t) is a zero mean white Gaussian process. This is sometimes true, but

not all the time. Therefore, in this section we shall read about what goes on with a

stochastic differential equation and how we are supposed to treat them.

The problem with equation (A.16) is that it cannot be a differential equation in the

traditional sense, because the ordinary theory of differential equations does not permit

discontinuous functions, the white Gaussian process w(t) in differential equations. The
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problem is not all theoretical because the solution turns out to depend on infinitesimally

small differences in mathematical definitions of the noise and thus, without further

restrictions the solution would not be unique even with a given realization of white

noise w(t). The solution to this problem is that, if we need to reduce the problem to

define a new kind of integral called the Itô integral, which is an integral with respect to

a stochastic process. Let us formally first integrate the differential equation from some

initial time t0 to final time t:

x(t)− x(t0) =

∫ t

t0

f(x(t), t)dt+

∫ t

t0

L(x(t), t)w(t)dt (A.17)

The first integral is just a normal integral with respect to time and can be defined

a Riemann integral of t 7−→ f(x(t), t) or as a Lebesgue integral with respect to the

Lebesgue measure, for generality.

The second integral is the one which cannot be defined as Riemann integral due to

the unboundedness and discontinuity of the white noise process. In the Riemannian

sense, the integral would be defined as the following kind of limit :∫ t

t0

L(x(t), t)w(t)dt = lim
n→∞

∑
k

L(x(t∗k), t
∗
k)w(t∗k)(tk + 1− tk) (A.18)

where t0 < t1 < · · · < tn = t and t∗k ∈ [tk, tk + 1]. In the context of Riemann

integrals so called upper and lower sums are defined as the selections of t∗k such that

the integrand L(s(t∗k), t
∗
k)w(t∗k) has its maximum and minimum values respectively. The

Riemann integral is defined if the upper and lower sums converge to the same value,

which then defined to be the value of the integra. In the case of white noise, since it

is not bounded and takes arbitrarily small and large values at every finite interval, the

Riemann integral does not converge.

We could also attempt to define it as a Stieltjes integral which is more general

than the Riemann integral. To define it, we need to interpret the increment w(t)dt as

increment of another process β(t) such that the integral becomes:∫ t

t0

L(x(t), t)w(t)dt =

∫ t

t0

L(x(t), t)dβ(t) (A.19)

Turns out, that the Brownian motion discussed in the previous section is a suitable

process for this purpose.

Unfortunately, the definition of the latter integral in Equation(A.18) in terms of

increments of Brownian motion as in Equation (A.19) does not solve our existence
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problem. The problem is the discontinuous derivative of β(t) which makes it too irreg-

ular for the defining sum of Stieltjes integral to converge. The same issue arises with

Lebesgue integral. These integrals are essentially defined as limits of the form:∫ t

t0

L(x(t), t)dβ = lim
n→∞

∑
k

L(x(t∗k), t
∗
k)[β(tk + 1)− β(tk)] (A.20)

where t0 < t1 < · · · < tn and t∗k ∈ [tk, tk + 1]. The main problem in both of these

definitions is that they would require the limit to be independent of the position on the

interval t∗k ∈ [tk, tk + 1]. But for integration with respect to Brownian motion this is

not the case. Therefore, the two integral definitions, Stieltjes or Lebesgue, do not work

either.

The solution is the Itô stochastic integral which is based on the observation that if

we fix the choice to t∗k = tk, then the limit becomes unique. The Itô integral can thus

be defined as the limit:∫ t

t0

L(x(t), t)dβ(t) = lim
n→∞

∑
k

L(x(tk), tk)[β(tk + 1)− β(tk)] (A.21)

which is a sensible definition of the stochastic integral required for the SDE.

The stochastic differential equation (3.21) can be defined as, corresponding to the

Itô integral equation

x(t)− x(t0) =

∫ t

t0

f(x(t), t)dt+

∫ t

t0

L(x(t), t)dβ(t), (A.22)

which should be true for arbitrary t0andt. We can choose the integration limits in

Equation (A.22) to be tandt+ dt, where dt is “small”, we can write the equation in the

differential form as

dx = f(x, t)dt+ L(x, t)dβ, (A.23)

which is the shorthand representation of the integral equation and most often used

in literature on stochastic differential equation. We can now formally divide by dt to

obtain a differential equation:

dx

dt
= f(x, t) + L(x, t)

dβ

dt
, (A.24)

which shows that here white noise can be interpreted as the formal derivative of Brow-

nian motion. However, due to non-classical transformation properties of the Itô differ-

entials, one has to be careful in working with such formal manipulations.
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It is now easy to see why we are not permitted to consider more general differential

equations of the form:
dx(t)

dt
= f(x(t), w(t), t). (A.25)

where the white noise w(t) enters the system through a non-linear transformation.

We cannot rewrite this equation as a stochastic integral with respect to a Brownian

motion and thus, cannot define the mathematical meaning of this equation. White

noise generally should not be thought as an entity as such, but only exists as the formal

derivative of Brownian motion. Therefore, only linear functions of white noise have a

meaning whereas non-linear functions do not.

Let us now see how Itô integrals are often treated in stochastic analysis. In the above

solution, we have only considered stochastic integration of the term L(x(t), t) , but the

definition can be extended to arbitrary Itô processes Θ(t), which are “adapted” to the

Brownian motion β(t) to be integrated over. The meaning of “adapted” here means

that β(t) is the only stochastic “driving force” in Θ(t) in the same sense that L(x(t), t)

was generated as function of x(t), which in turn is generated through the differential

equation, where the only stochastic driver is the Brownian motion. This adaptation

can be denoted by including the “event space element” ω as argument to the function

Θ(t, ω) and Brownian motion β(t, ω). The resulting Itô integral is then defined as the

limit ∫ t

t0

Ω(t, ω)dβ(t, ω) = lim
n→∞

∑
k

Ω(tk, ω)[β(tk + 1, ω)− β(tk, ω)]. (A.26)

The definition is slightly more complicated, but the principle is the same as above.

This kind of analysis requires us to use the full measure theoretical formulation of Itô

stochastic integral which we do not do here. But in the next section we will see the Itô

formula.

A.2 Itô Formula

Consider the stochastic integral ∫ t

0

β(t)dβ(t) (A.27)

where β(t) is a standard Brownian motion, that is, scalar Brownian motion with diffu-

sion Q = 1. Based on the ordinary calculus we would expect the value of this integral

to be β2(t)/2, but that is wrong. If we select a partition 0 = t0 < t1 < · · · < tn = t , we
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get by rearranging the terms∫ t

0

dβ(t) = lim
∑
k

β(t)k)[beta(tk + 1)− β(tk)]

= lim
∑
k

[
−1

2
(β(tk + 1)− β(tk))

2 +
1

2
(β2(tk + 1)− β2(tk))

2

]
= −1

2
t+

1

2
β2(t)

(A.28)

where we have used the result that the limit of the first term is lim
∑

k(β(tk + 1) −
β(tk))

2 = t. The Itô differential of β2(t) is analogously

d

[
1

2
β2(t)

]
= β(t)dβ(t) +

1

2
dt, (A.29)

not β(t)dβ(t) as we might expect. This is a consequence and also a drawback of the

selection of the fixed t∗k = tk. The generalized rule for calculating the Itô differentials and

thus Itô integrals can be summarized as the following Itô formula, which corresponds

to the chain rule in ordinary calculus.

Although the Itô formula above is defined only for scalar φ, it is obviously works

for each of the components of a vector values function separately and thus includes the

vector case also. Note that every Itô process has a representation as the solution of a

SDE of the form

Dx = f(x, t)dt+ L(x, t)dβ (A.30)

and the explicit expression for the differential in terms of the function f(x, t) and L(x, t)

could be derived by substituting the above equation for dx in the Itô formula.

The Itô formula can be conceptually derived by Taylor series expansion:

φ(x+ dx, t+ dt) = φ(x, t) +
∂φ(x, t)

∂t
dt+

∑
i

∂φ(x, t)

∂xi
dxi

+
1

2

∑
ij

(
∂2φ

∂xi∂xj

)
dxjdxj + . . .

(A.31)

that is, to the first order in dt and second order in dx we have

dφ = φ(x+ dx, t+ dt)− φ(x, t)

≈ ∂φ(x, t)

∂t
dt+

∑
i

∂φ(x, t)

∂xi
dxi +

1

2

∑
ij

(
∂2φ

∂xi∂xj

)
dxidxj.

(A.32)
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In deterministic case we could ignore the second order and higher order terms, because

dxdxT would already be of the order dt2. Thus the deterministic counterpart is

dφ =
∂φ

∂t
dt+

∂φ

∂x
dx. (A.33)

But in the stochastic case we know that dxdxT is potentially of the order dt, because

dβdβT is of the same order. Thus, we need to retain the second order term also.

A.3 Explicit Solutions of Linear SDEs

In this section, we derive the full solution to a general time-varying linear stochastic

differential equation. The time-varying multidimensional SDE is assumed to have the

form:

dx = F (t)xdt+ u(t)dt+ L(t)dβ (A.34)

where x ∈ Rn is a Brownian motion.

We continue by defining a transition matrix Ψ(τ, t). We multiply the above SDE

with the integrating factor Ψ(t0, t) and rearranging the terms,

Ψ(t0, t)dx−Ψ(t0, t)F (t)xdt = Ψ(t0, t)u(t)dt+ Ψ(t0, t)L(t)dβ (A.35)

The Itô formula gives us,

d[Ψ(t0, t)x] = −Ψ(t, t0)F (t)xdt+ Ψ(t, t0)dx (A.36)

Thus, the SDE can be rewritten as

d[Ψ(t0, t)x] = Ψ(t0, t)u(t)dt+ Ψ(t0, t)L(t)dβ (A.37)

here the differential is a Itô differential. Now we apply Itô integration from t0tot which

gives,

Ψ(t0, t)x(t)−Ψ(t0, t0)x(t0) =

∫ t

t0

Ψ(t0, τ)u(τ)dτ +

∫ t

t0

Ψ(t0, τ)L(τ)dβ(τ), (A.38)

which can further be written in the form

x(t) = Ψ(t, t0)x(t0) +

∫ t

t0

u(τ)dτ +

∫ t

t0

Ψ(t, τ)L(τ)dβ(τ), (A.39)



A Itô-Calculus and SDEs [2] 82

which is the desired solution.

In the case of LTI SDE,

dx = Fxdt+ Ldβ (A.40)

where F and L are constant and β has a constant diffusion Q, the solution becomes,

x(t) = exp(F (t− t0))x(t0) +

∫ t

t0

exp(F (t− τ))Ldβ(τ), (A.41)

This is the solution what we would expect if we formally replaced w(τ)dτ with dβ(τ)

in the deterministic solution. It is just the usage of Itô formula which resulted as we

expect the deterministic differentiation would, however, we cannot expect to get the

right solution in the non-linear case with this kind of replacement.


