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ABSTRACT

This thesis proposes a novel way to find the electromagnetic fields when the

computational domain is defined by a fine grid of pixels (2D) or voxels (3D). This

happens quite often in bioelectromagnetic problems, since tissue shapes are usually

obtained by tomography.

The proposed method is a finite element method in which, in 3D, each ele-

ment is simply a set of p × p × p voxels, where p is an integer. It therefore avoids

the heavy burden of surface extraction and meshing. Since there may be multiple

materials within one element, conventional basis functions are not suitable. Instead,

basis functions are computed using the voxel grid, so that the internal discontinuities

are respected.

The idea is first tested on problems consisting of nested squares (2D) and cubes

(3D) of dielectric, with a charge pair placed inside. The results obtained by using dif-

ferent element sizes p agree well with those obtained by commercial software: when

p = 4, the root-mean-square (RMS) difference is 1.5 % of the maximum potential.

Then the new method is applied to solve an electroencephalography (EEG)

problem, in which the head is modelled as a volume conductor and neural activity

by current dipoles. The head model consists of 180×217×181 voxels. The computed
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electric potential is sampled along a contour on the outer side of the scalp, for dif-

ferent element sizes p. These results, again, agree well with a reference solution: for

p = 4, the RMS difference is about 1% of the maximum potential. Solving one FE

problem with p = 4 is 4.7 times faster than when using each voxel as an element,

i.e., p = 1. When the solution is required for multiple righthand sides, as is common,

the speedup is greater. For example, with 24 righthand sides, the p = 4 solution is

40 times faster than when p = 1.
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ABRÉGÉ

Cette thése propose une nouvelle technique pour trouver les champs

électromagnétiques lorsque le domaine de calcul est défini par un dense quadrillage

de pixels (2D) ou voxels (3D). Un scénario qui arrive souvent dans le domaine de

bioelectromagnetic, puisque les géométries des tissus sont généralement obtenues par

tomographie.

La technique proposée dans cette thése est une méthode des éléments finis dans

laquelle, chaque élément 3D est un ensemble de p × p × p voxels (p est un nombre

entier). Par conséquent, cette technique évite la difficile tâche de l’extraction de sur-

face et de maillage. Comme un élément peut être composé de différents matériaux, les

fonctions de base classiques ne sont plus pertinentes. Ainsi, les fonctions de base sont

calculées en utilisant les grilles de voxels, afin de respecter des discontinuités internes.

L’idée est d’abord testée sur des problèmes comprenant des carrés imbriqués (2D)

et des cubes (3D) de diélectrique, avec une paire de charge placée l’intérieur. Les

résultats obtenus en utilisant différentes tailles d’élément (p) sont en bon accord

avec ceux obtenus par un logiciel commercial: pour p = 4, la différence quadratique

moyenne (RMS) est 1.5% du potentiel maximum.

Ensuite, la nouvelle méthode est appliquée pour résoudre un problème
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électroencéphalographie (EEG), dans lequel la tête est modélisée par un volume con-

ducteur et l’activité neuronale par des dipôles. Le modèle de tête se compose de

180×217×181 voxels. Le potentiel électrique calculée est échantillonné sur un con-

tour sur le côté extérieur du cuir chevelu, pour différentes tailles d’élément, p. Ces

résultats sont toujours en bon accord avec une solution de référence: pour p = 4,

la quadratique moyenne (RMS) est d’environ 1% du potentiel maximum. Résoudre

un problème des éléments finis avec p = 4 est 4.7 fois plus rapide que le cas que

chaque voxel est considéré comme un seul élément, c’est à dire, p = 1. Lorsque le

résoudre pour plusieurs côtés droits est recherché, qui est vrais dans plupart des cas,

l’accélération est plus grande. Par exemple, avec 24 côtés droits, la solution pour p

= 4 est 40 fois plus rapide que le cas de p = 1.
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CHAPTER 1
Introduction

1.1 Introduction

With the discovery of X-rays in 1895 by Wilhelm Conrad Röntgen [68], there

arose the possibility of obtaining images of the internal details of opaque structures.

Initially the technique could only provide a two dimensional (2D) image in which all

the internal details are superimposed. This is also referred to as radiography [50].

Tomography was later proposed to extend this to three dimensions (3D). Computed

tomography (CT) might be the most familiar technique. The mathematical theory

behind CT originated back to 1917 by Johann Radon [45], who proposed a way to

reconstruct a function from its projections. Many reconstruction methods were later

proposed and applied on CT, e.g, filtered back projection (FBP) and iterative recon-

struction (IR) [41]. However, it should be noted that these algorithms only provide

an approximation of the object of interest. It is also possible to perform tomography

with methods other than X-ray imaging, e.g., magnetic resonance imaging (MRI),

ultrasound imaging, positron emission tomography (PET).

Usually the data collected from tomographic imaging consists of a large number

of pixels (2D) or voxels (3D). An example of such data is shown in Fig. 1-1. This

shows a slice of brain MRI image. The region delineated by red lines is magnified to

show that the image is actually composed of a set of pixels. For each of these pixels
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Figure 1–1: Tomographic data example

there is a number representing its grey scale value. Similarly, in 3D, each voxels has

a grey scale value.

Tomography has been used in many fields, including medicine, chemistry, physics,

and biology. One of the most popular fields is medicine [70]. By use of CT [44], MRI

[33], PET [8] etc., physicians are able to screen for diseases and abnormalities in the

human body non-invasively. There are also many other applications. The mapping

of underground resources using tomography is described in [53] [44]. Further, in [24],

CT shows its potential applications in material science. Archaeologist and biologists

have also used tomography for identification of buried remains and criminal evidence

collection [41].

Usually, the tomographic image involves a reconstruction process to recover the

original object in 3D for better visualization. Many image reconstruction algorithms
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exist for this purpose [26]. The reconstructed geometric model helps people to bet-

ter understand the object structure. Often visualization of the object is all that is

required. However, increasingly there is the need to incorporate the reconstructed

image in a simulation of some physical process. For example, sometimes, to an-

alyze the mechanical characteristics of an irregularly structured object [5], first a

tomographic image of the object is obtained, then some differential equations are

solved to get the stress distribution within the object. In these kinds of problems,

the reconstructed model is first meshed into elements and then a numerical method,

e.g. the finite element method (FEM) [43], boundary element method (BEM) [11],

or finite difference method (FDM) [72], is applied to solve the corresponding field

problem [78] [55] [20] [9] [61] [53] [24]. This thesis considers the application of the

finite element method, which is widely used because of its competence and flexibility.

Reconstruction consists of several steps: image registration, artifacts removal,

segmentation and surface extraction [26]. Registration aligns the target image onto

a template image by mapping the target onto the template point by point. Then

artifacts such as noise, misalignment etc. are removed. Segmentation labels the

pixels/voxels in the target image as different regions and parcels these labeled pix-

els/voxels into a meaningful structure [69] [17]. Finally smooth surfaces are extracted

from the voxel data [56]. Unfortunately, many of these techniques are iterative and

require human intervention. Especially, it is usually complicated and time-consuming

to reconstruct the surfaces [56].

3



FE analysis requires the construction of a mesh that conforms to the geome-

try being analyzed. Generating this mesh is known to be time-consuming [66] [73]

[52]. Also robust meshing is very challenging if the model structure is complicated

[66] [73] [52]. Many techniques have been proposed to mesh the tomographic data

more accurately and efficiently [7] [49] [47] [79] [52]. The conventional approach is

to generate a mesh based on the reconstructed model [7] [49] [47] [79], but obtaining

this model, as described above, is itself complicated and time-consuming. There are

some non-conventional approaches which do not require the reconstructed model [52]

[27]. [52] describes a MRI content-adaptive meshing technique. In this approach, a

feature map is created from the pre-processed image which represents the “content”,

and then a mesh is created from the feature map by Delaunay triangulation [19].

[27] applies a standardized mesh with deformation for subject-specific MRI and the

author shows some good examples of neonatal head surface warping. However it

might be difficult to obtain a standard mesh for adults because of the large differ-

ences between individuals. The common problem with these meshing techniques is

their poor ability to model complex structures and their lack of robustness. They

may fail completely in some cases, or they may generate elements with very poor

aspect ratios, which in turn makes the FE computation expensive or inaccurate. In

general mesh generation techniques need careful control by users [52].

A meshless method has therefore been proposed to avoid the complexity of mesh

generation [73] [13] [54]. In the meshless method, only a set of arbitrarily distributed

4



nodes throughout the volume is needed for the computation, not any mesh or connec-

tivity information. In [73], the author applies the meshless method to solve for the

quasi-static Maxwell equations in the electroencephalography (EEG) problem. This

approach reduces the heavy load due to mesh generation, which greatly simplifies

the computation. However, the method requires nodes to be placed on boundaries

between different materials and so a reconstructed model is still needed.

Alternatively, [66] suggests building a hexahedral mesh directly from the tomo-

graphic image. As mentioned above, most tomographic images, e.g. CT, MRI, are

of cubic voxel structure. Each voxel can be treated as a hexahedral finite element.

This procedure avoids both image reconstruction and mesh generation. Further, [75]

shows that the inaccuracies due to hexahedral mesh modeling decrease rapidly as

mesh resolution increases. [66] also shows that, by using a hexahedral mesh of res-

olution 1mm, which is the same resolution as the T1-MRI image [33], the result is

accurate enough.

However, the resulting system matrix in [66] has 3.1 million unknowns and it

takes 56 minutes to solve the required set of 24 matrix equations, one for each EEG

sensor, even using an efficient iterative solver (a preconditioned conjugate gradient

method). This computation time will increase if the number of EEG sensors in-

creases. Further, the FE computational time also increases rapidly as the image

becomes finer. If, for example, the resolution of the image in [66] doubled, there
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would be 8 times more unknowns. Then the computation time would be approxi-

mately 21 hours. (The computational cost of solving a FE matrix system by means

of a preconditioned conjugate gradient method typically increases as N1.5 as N in-

creases, where N is the matrix dimension).

In this thesis, I propose an approach which takes the FE hexahedral mesh di-

rectly from the tomographic image as in [66]. To reduce the computation time, the

new approach uses computed basis functions for the FE analysis instead of the con-

ventional basis functions so that the mesh can be coarser than the image resolution,

i.e. a coarse mesh grid is superimposed on the tomographic data grid so that each

element consists of p×p×p (e.g. p = 2, 4, ...) voxels, even when there is more than

one material filling an element. The computed basis functions are built in such a way

that they respect the material interfaces present within the element. This results in

a much smaller system matrix, e.g. the size of matrix will be reduced by 8 (p = 2)

or 64 (p = 4) times. Therefore the computational effort can be reduced greatly.

The approach described in this thesis has appeared in two publications [29] [31]

[30], with a fourth publication pending [32].

1.2 Thesis Outline

This thesis is organized as following:
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Chapter 2 gives a brief review of FEM and sets up some useful concepts for later

use.

Chapter 3 and chapter 4 show how to use computed basis functions for FE anal-

ysis based on tomographic data, in 2D first, then in 3D. The modelling and detailed

mathematical formulation of the proposed method is given in these two chapters.

Chapter 5 then applies the proposed method to solve an electrostatic problem

involving nested squares (2D) and cubes (3D) of dielectric. Both the 2D and 3D

results are compared with a commercial software for validation.

Chapter 6 describes how the proposed method may be used in EEG. First a

brief background on EEG and the related physiological knowledge are given. Then

the EEG forward and inverse problems are explained, together with their models

and mathematical formulations. A literature review of FEM applied to EEG is also

presented later. The results are presented and discussed, and also the computational

efficiency.

Finally chapter 7 summarizes the thesis work. It comments on the usefulness of

the proposed approach and extends to possible future improvements to the method.

Its potential applications in other fields are discussed.
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CHAPTER 2
The Finite Element Method

2.1 Boundary Value Problem

A boundary value problem (BVP) is a problem governed by a partial differential

equation (PDE) with certain constraints [16]. A linear PDE can be expressed in this

general form:

Lu = g in Ω (2.1)

where L is a linear differential operator, u is the unknown function of position, and

g is the known excitation, also a function of position. Ω is a continuous line in 1D,

surface in 2D, or volume in 3D.

The unknown u also needs to satisfy prescribed constraints called boundary

conditions [16]. In this thesis, two boundary conditions are considered: Dirichlet

and Neumann. The Dirichlet boundary condition can be expressed as follows:

u = u0 (2.2)

where u0 is a given value.
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The Neumann boundary condition can be expressed as follows:

∂u

∂n
= v0 on the boundary (2.3)

where ∂
∂n

denotes differentiation in the direction normal to, and outward from, the

boundary, and v0 is a given value. We consider only the cases v0 = 0 and u0=0,

which are the homogeneous versions of the Dirichlet and Neumann boundary condi-

tions.

Sometimes, if the boundaries of the BVP domain coincide with the coordinate

surfaces of an orthogonal or curvilinear coordinate system, then the problem can be

solved analytically. However, in most cases the domain is arbitrary and the bound-

aries are not aligned with the coordinate surfaces. Such problems need to be solved

numerically. The FEM is one of the most popular numerical methods for solving

BVPs. The mathematical basis of FEM is either the Ritz method or the Galerkin

method.

2.2 The Ritz and Galerkin Methods

The Ritz [65] and Galerkin methods [14] are both ways to find an approximate

solution of a BVP. The Ritz method formulates the BVP as a variational principle

[77] and then obtains the solution by finding the stationary point of a functional with

respect to variables that define the approximate solution. The Galerkin method seeks

the solution by setting to zero a weighted residual of the BVP equation. Details of
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the Ritz method are given in [43]. In this section, I will discuss the Galerkin method.

First we introduce the exact residual r which of course vanishes:

r = Lu− g = 0 (2.4)

The weighted exact residual also vanishes:

R =

∫

Ω

wrdΩ =

∫

Ω

wLudΩ−

∫

Ω

wgdΩ = 0 ∀ w (2.5)

where w is a weighting function.

Generally, we apply integration by parts to the first term to transform it as

follows:

∫

Ω

wLudΩ =

∫

S

wBudS +

∫

Ω

a(w, u)dΩ (2.6)

where B is another linear differential operator, a(., .) is a bilinear map whose nature

will depend on L, and S is the closed surface that surrounds Ω.

Substituting 2.6 in 2.5 then results in

R =

∫

S

wBudS +

∫

Ω

a(w, u)dΩ−

∫

Ω

wgdΩ = 0 ∀ w (2.7)
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Now we define a new weighted residual problem:

R′ =

∫

Ω

a(w, u)dΩ−

∫

Ω

wgdΩ = 0 ∀ w (2.8)

The solution, u, to 2.8 satisfies 2.5 and the following equation:

∫

S

wBudS = 0 ∀ w (2.9)

First let w be zero on S and everywhere in Ω except a very small region around

a point. From 2.4, we will have at that point:

Lu− g = 0 (2.10)

Then let w be zero in Ω and everywhere on S except a very small region around

a point. From 2.9, we will have at that point:

Bu = 0 (2.11)

In other words, by setting R′=0 ∀w , we will have the exact solution for:

Lu = g in Ω (2.12)

Bu = 0 on S (2.13)
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Consider both 2.2 and 2.3 on S . In the examples considered in this thesis, 2.13 is

the Neumann condition, 2.3, which is therefore a natural boundary condition of the

weighted residual problem 2.8. But 2.2 will need to be explicitly imposed on 2.13

since 2.13 only specifies the derivatives of u. The details of the imposition will be

discussed in section 2.3.4.

Now we have established the exact weighted residual formulation of the problem,

2.8. Next we use ū as an approximate solution for u, of this form:

ū =
n

∑

i=1

uiNi (2.14)

where the Ni are chosen expansion functions and ui are constants to be determined.

Replacing u in 2.8 with ū results in:

R′ =

∫

Ω

a(w, ū)dΩ−

∫

Ω

wgdΩ = 0 ∀ w (2.15)

Theoretically we can choose any weighting function w . However, in the Galerkin

method, we use the expansion function Ni as the weighting function wi , i.e.

w = wi = Ni for i=1, 2,...,n (2.16)
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Substituting 2.16 and 2.14 into 2.15 will result in n equations:

R′

i =

∫

Ω

a(Ni,

n
∑

j=1

ujNj)dΩ−

∫

Ω

NigdΩ = 0 for i=1, 2,...,n (2.17)

After some mathematical manipulation, this becomes:

n
∑

j=1

uj

∫

Ω

a(Ni, Nj)dΩ =

∫

Ω

NigdΩ for i=1, 2,...,n (2.18)

In matrix form, it can be written as 2.19:

[S] {u} = {b} (2.19)

where

Sij =

∫

Ω

a(Ni, Nj)dΩ (2.20)

bi =

∫

Ω

NigdΩ

2.19 is the matrix form of 2.1. It is shown in [43] that the Ritz method will also

give the same matrix equation.

2.3 Finite Element Analysis

It is usually difficult to find suitable expansion functions Ni which individually

cover the entire domain of the BVP. Specifically, it is almost impossible to do this

if discontinuities exist in the domain or the geometry of the domain is complicated.
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The FEM was proposed to solve this limitation.

In FEM, the entire domain is subdivided into a set of sub-domains. Expansion

functions are applied in each sub-domain to approximate the local solution. In this

way, simpler expansion functions may be used since the sub-domain is small and so

the expansion functions do not need to vary in a complicated way.

In general, FEM solves the BVP in the following way: first, it discretizes the en-

tire domain into a number of sub-domains and approximates the local solution using

expansion functions in each sub-domain. Then it assembles all these sub-domains

together to form a system of equations. Boundary conditions are then imposed on

the system of equations. Finally a matrix solver is applied to solve this equation

system and find the solution. Below we describe each step in more detail.

2.3.1 Domain discretization and basis function characteristics

Domain discretization is also known as meshing . In this step, the entire domain

is subdivided into a number of sub-domains, called elements. For one dimension

(1D), the elements are line segments. For two dimensions (2D), the elements are

triangles or quadrilaterals. For three dimensions (3D), the elements can be tetrahedra

or hexahedra. These elements are shown in Fig. 2–1, 2–2 and 2–3.

The FEM domain is meshed in such a way that each element only contains one

kind of material, i.e. there are no discontinuities within the element. Also it is known
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Figure 2–1: 1D line element

Figure 2–2: 2D triangular and quadrilateral elements

Figure 2–3: 3D tetrahedral and hexahedral elements

that smaller elements give better accuracy. However, smaller elements also generate

more unknowns and therefore need more computational effort. Hence the size of

elements needs to be controlled carefully.

Then FEM approximates the local solution in each element by using the expan-

sion functions, also known as basis functions. The basis functions are usually chosen

to be linear or higher-order polynomials. Higher-order polynomials offer better ac-

curacy but result in a more complicated formulation. Therefore linear polynomials

are more often used in FEM. The local solution in element e is usually written as

follows:

ūe =

ne

∑

i=1

ue
iN

e
i (2.21)
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where ne is the number of nodes in the element, N e
i is the chosen basis function for

node i , and ue
i is the unknown value at node i .

Each basis function has the following characteristics:

N e
i = 1 at node i (2.22)

N e
i = 0 at other nodes (2.23)

The basis function N e
i is only non-zero within element e and vanishes outside.

Within e, it will be 1 at node i but 0 at the other nodes. Another important require-

ment of the basis functions is that, if two neighboring elements share the same values

of ui at their common nodes, the function ū is continuous across the interelement

boundary. The next subsection will give two examples of elements and their basis

functions.

2.3.2 Quadrilateral and hexahedral elements

Quadrilateral and hexahedral elements [43] are the two elements used in this

thesis. They can be transformed to a square and a cube element respectively. Fig.

2–4 shows the transformation of a quadrilateral element from the xy plane to a square

in the ξη plane. The transformation is defined by:

x =

4
∑

j=1

N e
j (ξ, η)xj (2.24)

y =

4
∑

j=1

N e
j (ξ, η)yj
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Figure 2–4: Transformation of a quadrilateral element from xy plane to ξη plane

where

N e
j (ξ, η) =

1

4
(1 + ξjξ)(1 + ηjη) for j=1,...,4

in which ξj and ηj represent the coordinates of the nodes in the ξη plane.

Similarly, the transformation from a hexahedral element to the cube element

shown in Fig. 2–5 is:

x =
8

∑

j=1

N e
j (ξ, η, ζ)xj (2.25)

y =

8
∑

j=1

N e
j (ξ, η, ζ)yj

z =

8
∑

j=1

N e
j (ξ, η, ζ)zj
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Figure 2–5: Transformation of a hexahedral element from xyz space to ξηζ space

where

N e
j (ξ, η, ζ) =

1

8
(1 + ξjξ)(1 + ηjη)(1 + ζjζ) for j=1,2,...,8

The basis functions for u in these elements are defined in terms of the coordi-

nates (ξ, η, ζ) and are just the same as the functions that are used for the geometric

transformation, i.e.,

ūe =

ne

∑

i=1

ue
iN

e
i (ξ, η, ζ) (2.26)

An example of such linear basis function is shown in Fig. 2–6.
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Figure 2–6: 2D linear basis function distribution

2.3.3 Assembly of elements to give a global system of equations

For convenience of calculation, the integrals in 2.20 are evaluated element by

element, carrying out the integrals over an element in the ξηζ plane.

The following expression is useful for converting derivatives with respect to x ,y ,z

into derivatives with respect to ξ, η, ζ :













∂Ne

i

∂x

∂Ne

i

∂y

∂Ne

i

∂z













= [J−1]













∂Ne

i

∂ξ

∂Ne

i

∂η

∂Ne

i

∂ζ













(2.27)
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where [J ] is the Jacobian matrix [46] given by

[J ] =













∂x
∂ξ

∂y

∂ξ
∂z
∂ξ

∂x
∂η

∂y

∂η
∂z
∂η

∂x
∂ζ

∂y

∂ζ
∂z
∂ζ













(2.28)

Also the volume integral dΩ needs to be replaced by the following:

dΩ = dxdydz = |J |dξdηdζ (2.29)

where |J | is the determinant of J .

Then the integrals in 2.20 are generally evaluated numerically, e.g., by using the

product rules based on Gauss-Legendre quadrature formulas [21]. We calculate the

local matrix [S e ] and {be} for each element and assemble them together to form the

global matrix equation.

Fig. 2–7 shows a domain which consists of 2 triangular elements e1 and e2 .

There are 4 nodes in total, which results in a global matrix [S ] of size 4×4. The node

numbering 1-4 corresponds to the global matrix entries. It is called the global node

numbering. In each element, there is also a local node numbering, which corresponds

to the local matrix entries. A connectivity array is introduced to link the local node

numbering to the global node numbering. For example, the connectivity array in

Fig. 2–7 can be expressed in Table 2–1:
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Figure 2–7: Assembly of two triangular elements

Table 2–1: Connectivity array example

e ne
1 ne

2 ne
3

1 1 2 3
2 1 3 4

where n1
e , n

2
e , and n3

e are for the local node numbers.

We have two local matrices [S e1 ] and [S e2 ] from Fig. 2–7. These two matrices

need to be assembled together to form the global matrix [S ]. First we put [S e1 ] and

{be1} into the global matrix equation as



















Se1
11 Se1

12 Se1
13 0

Se1
21 Se1

22 Se1
23 0

Se1
31 Se1

32 Se1
33 0

0 0 0 0





































u1

u2

u3

0



















=



















be11

be12

be13

0



















(2.30)
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The locations of [S e1 ] entries in [S ] correspond to the connectivity array in Table 2–1.

Similarly, [S e2 ] and {be2} can be added as:



















Se1
11 + Se2

11 Se1
12 Se1

13 + Se2
12 Se2

13

Se1
21 Se1

22 Se1
23 0

Se1
31 + Se2

21 Se1
32 Se1

33 + Se2
22 Se2

23

Se2
31 0 Se2

32 Se2
33





































u1

u2

u3

u4



















=



















be11 + be21

be12

be13 + be22

be23



















(2.31)

The same procedure can be carried on in a general problem with a large number of

elements and nodes.

2.3.4 Imposition of boundary conditions

The homogeneous Neumann boundary condition is generally a natural bound-

ary condition of the Ritz method (see section 2.2). Therefore, only the Dirichlet

boundary condition needs to be imposed explicitly.

Take Fig. 2–7 as an example again. Assume that the following inhomogeneous

Dirichlet boundary condition needs to be imposed:

u3 = u03 (2.32)

Then we set:

S33 = 1;S3i = 0 for i=1,2,4; b3 = u03 (2.33)
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Also, other rows need to be changed to keep the symmetry of the global matrix [S ]

(if it is symmetric):

bi = bi − Si3u03;Si3 = 0 for i=1,2,4 (2.34)

In summary, the global matrix equation will become:



















S11 S12 0 S14

S21 S22 0 S24

0 0 1 0

S41 S42 0 S44





































u1

u2

u3

u4



















=



















b1 − S13u03

b2 − S23u03

u03

b4 − S43u03



















(2.35)

In this thesis, since we only considered the homogeneous Dirichlet boundary

condition, 2.35 then becomes:



















S11 S12 0 S14

S21 S22 0 S24

0 0 1 0

S41 S42 0 S44





































u1

u2

u3

u4



















=



















b1

b2

0

b4



















(2.36)

2.4 Solving The Matrix Equation

Now we have a matrix equation in the form:

[S]{u} = {b} (2.37)

where [S ] tends to be large, but is very sparse.

23



Methods that are used to solve 2.37 can be classified into two categories: direct

and iterative . Direct methods are based on Gaussian elimination. Although ad-

vanced elimination methods try to preserve the matrix sparsity, they tend to require

large amounts of memory and, in general, take more computer time than the best

iterative methods for very large problems. Therefore, iterative methods are more

widely used in large matrix computations. The conjugate gradient(CG) method [42]

is one of the most common iterative solvers.

The CG method finds the solution to 2.38 by starting from an initial guess, and

then finding improvements along a series of search directions. All the search direc-

tions are conjugate to each other to make sure that the algorithm converges fast.

Moreover, a preconditioning technique is applied to increase the rate of convergence.

The preconditioned conjugate gradient (PCG) method multiplies both sides of 2.38

by a preconditioner , which is the inverse of a matrix [P ], constructed so that [P ]−1 [S ]

is better conditioned.

There are many preconditioners, e.g. the Jacobi preconditioner, the block diago-

nal preconditioner etc. In this thesis, a symmetric successive over-relaxation (SSOR)

preconditioner is used. The SSOR preconditioner [L] is defined as follows:

[L] = ([D] + ω ¯[L])
√

[D]−1 (2.38)
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where [D ] is the diagonal part of matrix [S ], [L̄] is the strict lower triangular part

of [S ], and ω is the over relaxation factor. More details of the algorithm are given in

[28].
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CHAPTER 3
The Method of Computed Basis Functions: 2D

3.1 Computed Basis Functions

Consider a rectangular domain Ωv consisting of m×n tomographic pixels shown

in Fig. 3–1. Each pixel has an area of h × h mm2, where h is the length of the

edge. Ω is a subset of the pixels in Ωv as shown by thick lines, which contains several

different kinds of material. Assume there is only one uniform material filling each

pixel. Suppose we are solving the following BVP:

Lu = g in Ω (3.1)

where L is a linear differential operator, u is the unknown, and g is the known

excitation. We will neglect boundary conditions for now; how to enforce them will

be explained in section 3.3.

A coarser uniform square grid is superimposed on Ω. Each square consists of

p×p pixels. Fig. 3–2 shows one such square, abcd , for the case p=4. In Fig. 3–2,

the square abcd consists of 4×4 pixels. Different shades represent different materials.

There are in total 3 materials in it. We take each such square to be a finite element,

Ωe, in the method of computed basis functions, which is very different from the tra-

ditional FEM. In general Ωe may lie partly outside of Ω, but this will be dealt with

in section 3.3, when boundary conditions are discussed. For now we will assume that
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Figure 3–1: Ωv consists of m×n tomographic pixels

Ωe lies entirely inside Ω.

Since material discontinuities exist within the element Ωe, the traditional basis

function of the quadrilateral element, which is smooth throughout Ωe, cannot repre-

sent u well. Instead we compute basis functions which respect these discontinuities,

at least in an approximate way. This is done by computing basis functions that

approximately solve the homogeneous version of 3.1:

LN = 0 in Ωe (3.2)

where N is the unknown basis function. Such basis functions, and linear com-

binations of them, will approximately satisfy the required continuity conditions at

material interfaces within the element.
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Figure 3–2: Ωe: a square element abcd made of p×p pixels. Here p=4. The FE nodes
are labeled as a, b, c and d , marked as the red color circles. The finite difference
(FD) nodes are marked as the orange diamonds. The FE nodes are also FD nodes.
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The above equation system could be solved by FEM, but here for simplicity we

use the finite difference method (FDM). As shown in Fig. 3–2, we use the pixel grid

as the FD grid. The four pixels sharing the same node (i , j ) are labeled as NE, SE,

NW and SW. For FE size p = 4, there are 4 FE nodes, and 5×5 FD nodes. If, for

example, the operator L is the following:

L = ∇·εr∇ (3.3)

where εr is the relative permittivity, then the FD equation for 3.2 can be written as

follows:

εr(i− 1

2
,j)N(i−1,j) + εr(i+ 1

2
,j)N(i+1,j) + εr(i,j− 1

2
)N(i,j−1) + εr(i,j+ 1

2
)N(i,j+1)

−(εr(i− 1

2
,j) + εr(i+ 1

2
,j) + εr(i,j− 1

2
) + εr(i,j+ 1

2
))N(i,j) = 0 (3.4)

where εr(i ,j ) and N(i ,j ) represent the relative permittivity and the basis function at

location (x ,y) = (ih,jh). Since εr is assigned one value per pixel, the values of εr are

obtained by averaging the values of the two adjacent pixels, e.g.:

εr(i+ 1

2
,j) =

1

2
(εNE

r + εSEr ) (3.5)

where εNE
r represents the relative permittivity of the pixel to the North East of point

(i , j ), etc., as shown in Fig. 3–3.

Further, care has to be taken in specifying the boundary conditions used when

solving 3.2. The computed basis function, like the traditional basis function, must
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Figure 3–3: A 2D FD stencil

Figure 3–4: An edge shared by two elements. Here p=4. The FE nodes are labeled
as a, b, marked as the red color circles. The finite difference (FD) nodes are marked
as the orange diamonds. The FE nodes are also FD nodes.

be continuous across boundaries between elements when all the elements are assem-

bled, i.e., the basis function computed for one element must match the basis function

computed in a neighboring element along common edges. In order to preserve the

inter-elemental continuity, we will start by building edge functions using materials

from both the elements sharing the edge and then later use them to build the basis

functions.
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Fig. 3–4 shows the upper edge ab shared by element abcd and its upper neigh-

boring element. The upper 4 pixels are from the upper element, and the lower 4

pixels are from abcd . We build two edge functions eaba (x ) and eabb (x ) for edge ab,

eaba (x ) for node a and eabb (x )for node b. To find the edge function eaba (x ), we need

to solve the following equations:

Leaba (x) = 0 0≤ x ≤ ph (3.6)

subject to the following boundary conditions:

eaba (0) = 1 (3.7)

eaba (ph) = 0

A 1D FDM is applied to solve 3.6 and 3.7. As shown in Fig. 3–4, for p=4,

there are 5 FD nodes. The material property at each point on ab is taken as the

mathematical mean of the material properties of the upper and lower pixels. In this

way, the material property along the edge is the same whether element abcd or its

upper neighbor is considered, and the function eaba (x ) will be the same whichever

element is used to calculate it. This is important for ensuring continuity of the basis

functions. eabb (x ) can be solved in a similar way but with boundary conditions in 3.7

interchanged.

There are 4 edges and therefore 8 edge functions for the element abcd . After we

obtain all 8 edge functions, we can proceed to compute the basis functions. Consider
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the basis function Na(x , y) for node a. It will satisfy the following equations:

LNa(x, y) = 0 0≤x≤ph , 0≤y≤ph (3.8)

subject to the following boundary conditions:

Na(x, ph) = eaba (x) 0≤x≤ph (3.9)

Na(0, y) = eada (y) 0≤y≤ph

Na(x, 0) = 0 0≤x≤ph

Na(ph, y) = 0 0≤y≤ph

Again a 2D FDM is applied to solve the equations. For p=4, we have a 5×5 FD

grid. In the same way we can solve for basis functions Nb(x , y), Nc(x , y) and Nd (x , y)

with their corresponding boundary conditions. Once we have obtained all the basis

functions of one element, we use them in the FEM formulation.

The computed basis functions are defined explicitly only at the nodes of the pixel

grid, not at every point inside the finite element. In this respect, they differ from tra-

ditional FE basis functions. It would be possible to choose a specific interpolation of

the grid points to provide a function that is defined everywhere in the element, but,

as shown in the next section, this is not needed for building the usual FE local matrix.
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3.2 FEM Formulation

From Chapter 2, we have the weighted residual form of 3.1 as follows:

∫

Ω

a(u, w)dΩ =

∫

Ω

wgdΩ (3.10)

where a is a bilinear form whose nature depends on L, and w is the weight function.

The local solution inside each square element can be written as follows:

u =
4

∑

i=1

uiNi (3.11)

where ui is the unknown value to be determined, and Ni is the basis function, whose

computation was described in the last section.

As we described in 2.19 and 2.20 from chapter 2, 3.10 can be written as the

following discrete equation:

[S] {u} = {b} (3.12)

where the global matrix [S ] is built from these local element matrices:

Se
ij =

∫

Ωe

a(Ni, Nj)dΩ (3.13)

bei =

∫

Ωe

NigdΩ
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Figure 3–5: Evaluation of pixel (k , l)

3.13 can be further evaluated in the following way:

Se
ij ≈ h2

p
∑

k,l=1,k,l∈Ω

a(Ni, Nj)|(k,l) (3.14)

bei ≈ h2

p
∑

k,l=1,k,l∈Ω

(Nig)|(k,l)

where (k , l) is one of the p × p pixels. The quantities on the righthand sides in 3.14

are evaluated at the centers of the pixels. For example, let’s consider the pixel (k , l)

shown in Fig. 3–5. Fig. 3–5 shows the node numbering used by the FD scheme.

Each basis function is defined by the values at these nodes, i.e., nodes [0,0],[1,0], . . .,

[p,p]. The basis function at node [k , l ] is written as Ni |[k ,l ], and the basis function at

the center of the pixel (k , l) is expressed as Ni |(k ,l). Then Ni |(k ,l) can be evaluated as

follows:

Ni|(k,l) =
1

4
×

(

Ni|[k−1,l−1] +Ni|[k,l−1] +Ni|[k−1,l] +Ni|[k,l]

)

(3.15)
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The derivatives ∂Ni

∂x
|(k ,l) and

∂Ni

∂y
|(k ,l) can be calculated as follows:

∂Ni

∂x
|(k,l) =

1

2
×

{1

h
·
(

Ni|[k,l] −Ni|[k−1,l]

)

+
1

h
·
(

Ni|[k,l−1] −Ni|[k−1,l−1]

)}

(3.16)

∂Ni

∂y
|(k,l) =

1

2
×

{1

h
·
(

Ni|[k,l] −Ni|[k,l−1]

)

+
1

h
·
(

Ni|[k−1,l] −Ni|[k−1,l−1]

)}

(3.17)

The local entries 3.14 are assembled into the global matrix [S ] and {b}. The

same procedure repeats element by element until all the elements have been assem-

bled.

3.3 Imposition of Boundary Conditions

Suppose we have the Neumann boundary condition to impose on some parts

of the boundary of Ω, and the Dirichlet boundary condition to impose on other

parts. Usually in FEM, the domain is discretized in such a way that the boundary

coincides with element edges. Therefore, as explained in Chapter 2, the Neumann

boundary condition is naturally satisfied at the boundaries by the Ritz formulation;

the Dirichlet boundary condition can be imposed by constraining the values of u

at the FE nodes on the boundary and this can be done after the element assembly.

However, in the new method, since a uniform mesh is applied on Ω, there may be

cases in which the boundaries cut through some of the elements. In these cases, the
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boundary conditions cannot be imposed as explained in section 2.3.4.

Consider the element abcd again, but with an internal staircase-shaped bound-

ary ot constrained by either a Dirichlet boundary condition or a Neumann boundary

condition (Fig. 3–6). The element is separated by this boundary into two regions:

inside and outside Ω. The boundary ot is constrained by one of the following condi-

tions:

u = 0 (3.18)

∂u

∂n
= 0 (3.19)

where n denotes the direction pointing outward from Ω along ot .

Now consider the imposition of the Dirichlet boundary condition 3.18. First we

build the edge and basis functions in the regular way, except before solving the FD

equations we constrain all the FD nodes on ot or outside Ω to zero. For a FE node

that is outside Ω, the resulting edge and basis functions will be entirely zero. For

other FE nodes, the edge and basis functions will be non-zero and will satisfy the

Dirichlet constraint on the boundary. Then we assemble all the elements, whether

they are inside or outside Ω. This will give a system matrix S with some zero rows

and columns, because of the inclusion of entirely zero basis functions. However, this

can be taken care of by, again, constraining all FE nodes outside Ω to zero. Then

we will get a FEM matrix equation which only has the values at nodes inside Ω as
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Figure 3–6: An element abcd with internal Dirichlet boundary condition

unknowns. In this way, the Dirichlet boundary condition is imposed.

The Neumann boundary condition could be imposed in a similar way. However,

in this thesis, we use a simpler approach. The pixels outside Ω are filled with an

artificial material chosen so that the computed edge and basis functions satisfy ap-

proximately ∂u
∂n
=0 along ot inside Ω. As before, basis functions for FE nodes that lie

outside Ω are eliminated by constraining these nodes to zero once the global matrix

is assembled. Chapter 6 will give the details of this approach for a specific case and

show some effects of changing the properties of the artificial material .
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CHAPTER 4
The Method of Computed Basis Functions: 3D

4.1 Computed Basis Functions

This chapter extends the ideas of chapter 3 to the 3D case. Consider a domain

Ωv consisting of m×n× q tomographic voxels. Each voxel has a volume of h×h×h

mm3, where h is the length of the edge. Ω is a subset of the voxels in Ωv which

contains several different kinds of materials, but there is only one uniform material

filling each voxel. Again, we are solving the following BVP:

Lu = g in Ω (4.1)

where L is a linear differential operator, u is the unknown, and g is the known

excitation.

A coarser uniform cubic grid is superimposed on Ω , with each grid cube con-

sisting of p×p×p voxels. One such cube, abcdefgh, is shown in Fig. 4–1. It consists

of 4×4×4 voxels. Different shades represent different materials. The traditional

hexahedral basis function, which is smooth through the element, cannot represent

the potential well when there are these material discontinuities inside the element.

Therefore we compute the basis functions as in chapter 3, so that the discontinuities

inside abcdefgh can be treated well.
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Figure 4–1: A cube element abcdefgh consisting of p × p × p voxels. Here p=4. The
FE nodes are labeled as a, b, c, d , e, f , g and h, marked as the red color circles.
The finite difference (FD) nodes are marked as the orange diamonds. The FE nodes
are also FD nodes.
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Just as described in chapter 3, we build each basis function by solving the

homogeneous version of equation 4.1:

LN = 0 in Ωe (4.2)

where Ωe denotes the domain of the element abcdefgh, and N is the unknown basis

function. Again a FDM is applied to solve this equation system together with its

corresponding boundary conditions. As shown in Fig. 4–1, we take the same voxel

grid as the FD grid. For p = 4, there are 8 FE nodes, and 5×5×5 FD nodes. To

maintain the continuity of basis functions between adjacent elements, we start by

building edge functions which four adjacent elements share, then we build face func-

tions which two elements share, and finally we build the basis functions themselves.

Fig. 4–2 shows an edge ab shared by abcdefgh and 3 adjacent elements. The

four voxels numbered 1 - 4 are from element abcdefgh and correspond to the voxels

labeled in Fig. 4–1. There are 2 edge functions for edge ab: eaba (x ) for node a and

eabb (x ) for node b. To find the edge function eaba (x ), we solve the following equation:

Leaba (x) = 0 0≤ x ≤ ph (4.3)

subject to the boundary conditions:

eaba (0) = 1 (4.4)

eaba (ph) = 0
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Figure 4–2: An edge ab shared by 4 elements. (Only 4 voxels of each element are
shown.) The FE nodes are labeled as a and b, marked as the red color circles. The
finite difference (FD) nodes are marked as the orange diamonds. The FE nodes are
also FD nodes.
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A 1D FDM is applied to solve 4.3 and 4.4. For p=4, there are 5 FD nodes. The

material property at each point on ab is taken as the mathematical mean of the ma-

terial properties of the 4 voxels sharing it, which are the front upper and lower voxels,

and the back upper and lower voxels. In this way, the material property along the

edge is the same whether element abcdefgh or its other neighbors are considered, and

the function eaba (x ) will be the same whichever element is used to calculate it. eabb (x )

can be found in a similar way but with boundary conditions in 4.4 interchanged.

There are 12 edges and therefore 24 edge functions for the element abcdefgh.

After we obtained all those edge functions, we can proceed to compute the face

functions. The edge functions are now used as boundary conditions for the face

function computations. As shown in Fig. 4–3, the face abcd is shared by abcdefgh

and another element, part of which is shown at the front of the figure. The voxels 1-4

from element abcdefgh are labeled to show their positions. Consider the face function

f abcda (x , y) for node a. It will satisfy the following equation:

Lfabcd
a (x, y) = 0 0≤ x , y ≤ ph (4.5)

subject to the following boundary conditions:

fabcd
a (0, y) = eaca (y) 0≤ y ≤ ph (4.6)

fabcd
a (ph, y) = 0 0≤ y ≤ ph

fabcd
a (x, 0) = 0 0≤ x ≤ ph

fabcd
a (x, ph) = eaba (x) 0≤ x ≤ ph

42



Again a 2D FDM is applied to solve the above equations. For p=4, we have a

5×5 FD grid. The material property of each pixel on face abcd is taken as the math-

ematical mean of the two voxels sharing it, one voxel from abcdefgh and the other

from its neighbor. In this way, the material property on abcd is the same whether

element abcdefgh or its neighbor is considered, and the function f abcda (x , y) will be

the same for both elements sharing abcd . Similarly we can solve for basis functions

f abcdb (x , y), f abcdc (x , y), and f abcdd (x , y) with their corresponding boundary conditions.

There are 6 faces and therefore 24 face functions for the element abcdefgh. After

we obtain all 24 face functions for abcdefgh, we can proceed to compute the basis

functions. The face functions are now used as the boundary conditions for the

basis function computation. As shown in Fig. 4–1, let’s consider the basis function

Na(x , y , z ) for node a. It should satisfy the following equations:

LNa(x, y, z) = 0 0≤ x , y , z ≤ ph (4.7)

subject to the following boundary conditions:

Na(x, y, 0) = 0 0≤ x , y ≤ ph (4.8)

Na(x, y, ph) = fabcd
a (x, y) 0≤ x , y ≤ ph

Na(0, y, z) = facge
a (y, z) 0≤ y , z ≤ ph

Na(ph, y, z) = 0 0≤ y , z ≤ ph

Na(x, 0, z) = 0 0≤ x , z ≤ ph
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Figure 4–3: A face abcd shared by element abcdefgh and its neighboring element.
The FE nodes are labeled as a, b, c and d , marked as the red color circles. The
finite difference (FD) nodes are marked as the orange diamonds. The FE nodes are
also FD nodes.
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Na(x, ph, z) = fabfe
a (x, z) 0≤ x , z ≤ ph

A 3D FDM is used to solve the above equations. For p=4, we have a 5×5×5

FD grid. The basis functions for nodes b, c, . . ., h can be computed in the same

way. When we obtain all the basis functions, we use them in the FEM formulation.

4.2 FEM Formulation

As in section 3.2, we start with the weighted residual form of 4.1 as follows:

∫

Ω

a(u, w)dΩ =

∫

Ω

wgdΩ (4.9)

where a is a bilinear form whose nature depends on L, and w is the weight function.

The local solution inside each element can be written as follows:

u =
8

∑

i=1

uiNi (4.10)

where ui is the unknown value to be determined, and Ni is the basis function, whose

computation was described in the last section.

Then 4.9 can be written as the following discrete equation:

[S] {u} = {b} (4.11)
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where the global matrix [S ] is built from these local element matrices:

Se
ij =

∫

Ωe

a(Ni, Nj)dΩ (4.12)

bei =

∫

Ωe

NigdΩ

4.12 can be evaluated in the following way:

Se
ij ≈ h3

p
∑

k,l,t=1,(k,l,t)∈Ω

a(Ni, Nj)|(k,l,t) (4.13)

bei ≈ h3

p
∑

k,l,t=1,(k,l,t)∈Ω

(Nig)|(k,l,t)

where (k , l , t) is one of the p × p × p voxels. The quantities on the righthand sides

in 4.13 are evaluated at the centers of the voxels. For example, let’s consider the

voxel (k , l , t) shown in Fig. 4–4. Fig. 4–4 shows the node numbering used by the

FD scheme. Each basis function is defined by the values at these nodes, i.e., nodes

[0,0,0], [1,0,0], . . ., [p,p,p]. The basis function at node [k , l , t ] is written as Ni |[k ,l ,t ],

and the basis function at the center of the pixel (k , l , t) is expressed as Ni |(k ,l ,t). Then

Ni |(k ,l ,t) can be evaluated as follows:

Ni|(k,l,t) =
1

8
×
(

Ni|[k−1,l−1,t−1] +Ni|[k,l−1,t−1] +Ni|[k−1,l,t−1]

+Ni|[k,l,t−1] +Ni|[k−1,l−1,t] +Ni|[k,l−1,t] +Ni|[k−1,l,t] +Ni|[k,l,t]

)

(4.14)
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Figure 4–4: Evaluation of voxel (k , l , t)

The derivatives ∂Ni

∂x
|(k ,l ,t),

∂Ni

∂y
|(k ,l ,t) and

∂Ni

∂z
|(k ,l ,t) can be calculated as follows:

∂Ni

∂x
|(k,l,t) =

1

4h
×
{(

Ni|[k,l,t] −Ni|[k−1,l,t]

)

+
(

Ni|[k,l−1,t] −Ni|[k−1,l−1,t]

)

+
(

Ni|[k,l−1,t−1] −Ni|[k−1,l−1,t−1]

)

+
(

Ni|[k,l,t−1] −Ni|[k−1,l,t−1]

)}

(4.15)

∂Ni

∂y
|(k,l,t) =

1

4h
×
{(

Ni|[k,l,t] −Ni|[k,l−1,t]

)

+
(

Ni|[k−1,l,t] −Ni|[k−1,l−1,t]

)

+
(

Ni|[k−1,l,t−1] −Ni|[k−1,l−1,t−1] +
(

Ni|[k,l,t−1] −Ni|[k,l−1,t−1]

)}

(4.16)

∂Ni

∂z
|(k,l,t) =

1

4h
×
{(

Ni|[k,l,t] −Ni|[k,l,t−1]

)

+
(

Ni|[k−1,l,t] −Ni|[k−1,l,t−1]

)

+
(

Ni|[k,l−1,t−1] −Ni|[k,l−1,t−1]

)

+
(

Ni|[k−1,l−1,t−1] −Ni|[k−1,l−1,t−1]

)}

(4.17)
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The local entries 4.13 are assembled into the global matrix [S ] and {b}. The

same procedure repeats element by element until all the elements have been assem-

bled.

The Neumann and Dirichlet boundary conditions can be enforced by the meth-

ods explained in section 3.3.
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CHAPTER 5
Test cases: Nested Squares and Nested Cubes

5.1 A Nested Squares Test Case

This chapter will give some test results of the method described in chapters 2

and 3 for some simple geometries that can be analyzed relatively easily and accu-

rately by a conventional finite element method. This section presents 2D results.

The test case is a set of nested squares. Fig. 5–1 shows the geometry which consists

of squares 1, 2, 3 and 4. The shaded color indicates different materials. Square 1

has a relative permittivity of 80, and so does the region between the boundaries of

squares 2 and 3. The other regions are air-filled. The outer boundary of square 4 is

conducting and connected to ground, i.e., the Dirichlet boundary condition u = 0 is

applied on these boundaries.

The whole square is then divided into 128×128 pixels. Denote the edge length

of each pixel as h. The center of the nested squares is set to be (x , y)=(0,0). Inside

square 1 there is a pair of equal and opposite charges as shown in Fig. 5–1. The pair

of charges is of size 8×4 pixels, and its center lies at (x , y) = (0,-42h). The positive

charge is on the right (x>0). Each charge is uniformly distributed through its area,

which is 4×4 pixels. The charge density is set to be:

ρ0 = ±
ε0

4h · 4h
(5.1)
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where ε0 is the permittivity of free space, and the ± sign represents the positive or

negative charge.

This is an electrostatic problem, for which:

Lu = ∇·εr∇u (5.2)

g = −
ρ

ε0

constrained by the following Dirichlet boundary condition:

u = 0 outer boundaries of square 4 (5.3)

where u is the electric potential, εr is the relative permittivity, and ρ is the charge

density. Note that, with the charge density given in 5.1, the solution to 5.2 is inde-

pendent of the pixel size, h. In this 2D case, it is assumed that the potential does

not vary in the z direction.

To eliminate the error that arises when a curve is modeled with a pixel grid, the

test case is deliberately designed to have interfaces that fit exactly to the pixel grid.

In this way, the intrinsic accuracy of the new method can be examined.

In chapter 3, we get a matrix equation as follows:

[S] {u} = {b} (5.4)
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Figure 5–1: A nested square and a pair of equal and opposite charges (not drawn to
scale)

where the global matrix [S ] is built from these local element matrices:

Se
ij =

∫

Ωe

a(Ni, Nj)dΩ (5.5)

bei =

∫

Ωe

NigdΩ

For this problem, we have the following:

a(Ni, Nj) = εr∇Ni · ∇Nj (5.6)

g = −
ρ

ε0
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5.1.1 Unperturbed and perturbed nested squares

In this section, we test the accuracy of the new method. Two cases are designed

for this purpose, both with element size p=4. We denote them as case A and B. In

case A, the square sizes (Table 5–1) are chosen to have only one material filling in-

side each element. This is to show the accuracy of the new method as a conventional

FE solver, since in this case, the new method uses the same basis functions as the

conventional quadrilateral element. The potential sample line is at y= -53h, shown

as the dashed line in Fig. 5–1.

Then in case B, we perturb the nested square sizes so that the boundaries of the

nested squares cut through the interior of elements (as shown in Fig. 5–2). In this

way, there will be some elements containing more than one material. This is to show

the competence of the new method in handling elemental non-uniformity, which is

the basic idea of the new method. The potential sample line for this case is now at

y = -54h, shown in Fig. 5–2. As shown in Fig. 5–3, the results of both cases agree

well with ElecNet [4] FE program results, obtained using a fine mesh of triangular

elements of polynomial order 4.

Table 5–1: Square sizes (pixels per edge)

Square Case A Case B
1 88 90
2 96 98
3 104 106
4 128 128
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Figure 5–2: The FE mesh in relation to the square edges in case B. The pixels are
shown explicitly in one finite element, at the bottom right. Here p=4.
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Figure 5–3: Potential as a function of distance along the sample line for cases A and
B

53



Figure 5–4: Case 1: a pair of equal and opposite charges of size 4×2 pixels inside
the 8×4 area of the original charge pair in Fig. 5–1.

5.1.2 Unperturbed nested squares (case A) with smaller sizes of charge
pairs

This section discusses how to model smaller charge pairs, but still keep the same

big element size. It is possible to reduce the element size to match the smaller charge

size. But that would increase the computational effort. We would like to keep the

same element size as the last section, i.e. p=4.

Fig. 5–4 and Fig. 5–5 show two charge pairs of a smaller size, 4×2 pixels. Both

pairs of charges are placed inside the original pair of charges in Fig. 5–1, but with

different positions: case 1 and 2. If we consider them as dipoles, their dipole moment

then can be computed approximately as follows:

p12 = q12d12 = ρ12 · (2h)
2 · (2h) = ρ12 · (2h)

3 (5.7)
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Figure 5–5: Case 2: a pair of equal and opposite charges of size 4×2 pixels inside
the 8×4 area of the original charge pair in Fig. 5–1.

Similarly, the dipole moment of the original pair can be computed approximately

as follows:

p = qd =
ε0

4h · 4h
· (4h)2 · (4h) = 4hε0 (5.8)

We would like to keep the same dipole moment for all cases. By setting 5.7

equals to 5.8. we find the following:

ρ12 =
4hε0
(2h)3

=
ε0

2h2
(5.9)

The potential values can be found along the same sample line as in Fig. 5–1 for

both cases 1 and 2. They are plotted in Fig. 5–6 and compared with the ElecNet

FE program results. It shows that the results of the new method agree well with the

ElecNet results for the smaller charge pair.
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Figure 5–6: Potential as a function of distance along the sample line shown in Fig.
5–1 compared with ElecNet FE program

The charge pair can be made even smaller, i.e., cases 3, 4, 5, and 6 as shown

in Fig. 5–7, still keeping the same element size (p=4). The charge density for these

cases is as follows, if we keep the same dipole moment (5.8):

ρ3456 =
4ε0
h2

(5.10)

The potential values can be found along the same sample line as in Fig. 5–1.

This time we plot, in Fig. 5–8, the potential differences of cases 1-6 with respect

to the original (Case A) potential values. Cases 1, 2, 3 and 6 have a symmetrical

charge pair placement, i.e. the center of the charge pair is at x=0. From these four

cases, case 1, 3 and 6 should have positive values, since the center of their charge
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Figure 5–7: Case 3, 4, 5 and 6: a pair of equal and opposite charges of size 4×2
pixels inside the 8×4 area of the original charge pair in Fig. 5–1.

pairs is closer to the sample line than Case A (remember that the sample line is

only for x>0). Case 3 has the highest potential values at peak, since it is located

the closest to the sample line. Case 6 has a smaller potential value than both case

1 and 3, since its charge pair center lies further from the sample line than the other

two. Case 2 has a negative potential value, since its charge pair center lies further

from the sample line than case A. Also, case 1 and 2 are symmetrical with respect to

the sample line, since the center of the charge pairs of both cases are in mirror with

respect to the case A. Case 4 and 5 break the symmetry but they are the anti-mirror

of each other with respect to x=0. The magnitude of the potential values at x=0 is

the same for both cases.
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Figure 5–8: Difference in potential between Case N and Case A (ElecNet), for N =
1,..., 6. The difference is given as a function of distance along the sample line shown
in Fig. 5–1

5.2 A Nested Cubes Test Case

The test case in 3D is the set of nested cubes shown in Fig. 5–9. The cross

section shows that there are in total 4 cubes, numbered 1 through 4. The shaded

color indicates different materials. The relative permittivity of cube 1 and the region

between the surfaces of cubes 2 and 3 is 80. The other regions are air-filled. The

outer boundary of cube 4 is conducting and connected to ground, i.e., the Dirichlet

boundary condition u = 0 is applied on the outer surfaces of cube 4.

The whole cube is then divided into 128×128×128 voxels. Denote the length of

the edge of each voxel as h. The center of the nested cubes is set to be (x , y , z) =

(0,0,0). Inside cube 1, there is a pair of equal and opposite charge as shown in Fig.
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Figure 5–9: A set of nested cubes and a pair of equal opposite charges (not drawn
to scale)
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5–9. The pair is of size 8×4×4 voxels, and its center lies at (x , y , z) = (0,-38h,2h).

Each charge is uniformly distributed through its volume, which is 4×4×4 voxels.

The charge density is set to be:

ρ = ±
ε0

4h · 4h
(5.11)

which is chosen to be the same as the nested squares case. The ± sign represents

the positive or the negative charge.

Again, this is an electrostatic problem, governed by 5.2 and 5.3, only this time

there is variation of potential with all three coordinates, and also the Dirichlet bound-

ary condition extends to the outer surfaces.

As explained in the last section, this problem is designed to have interfaces that

fit exactly to the voxel grid, so the error that arises when a curvature is modeled

with voxel grid is eliminated. In this way, the intrinsic accuracy of the new method

can be examined.

The resulting matrix equation is given by 5.4-5.6.

5.2.1 Unperturbed and perturbed nested cubes

In this section, we test the accuracy of the new method. Cases A and B are

designed for this purpose. The cube sizes for both cases are shown in Table 5–2.

In case A, the cube and element sizes are chosen to have only one material filling
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each element, when p=4. This is to show the accuracy of the new method as a

conventional FE solver. The sample line for this case is y = -53h at the cross section

z = 0 (Fig. 5–9). Then in case B, we slightly perturb the sizes of the nested cubes

so that the interfaces cut through the interior of elements as shown in Fig. 5–2. In

this way, there will be some elements containing more than one material. This is

to show the competence of the new method in dealing with element non-uniformity.

The sample line for this case is y = -54h at the cross section z = 0. As shown in

Fig. 5–10, the results of both cases match well the ElecNet FE results, obtained

using a fine mesh of tetrahedral elements of order 3. The RMS difference is 0.125

microV and 0.1625 microV for case B and A, respectively, which is about 1.5% of

the maximum voltage over the sample line. This slight difference may be attributed

to ordinary discretization error, not the computed basis functions. Smaller sizes of

charge pairs can be modeled in the same way as described in section 5.1.2, and will

not be repeated here.

Table 5–2: Cube sizes (voxels per face)

Cube Case A Case B
1 88 90
2 96 98
3 104 106
4 128 128

5.2.2 Cases A and B with varying positions of charge pair

In this section, we would like to see the effects of changing the charge pair po-

sition. Case A has a potential field distribution at its cross-section z = 0 as shown
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Figure 5–10: Potential as a function of distance along the sample line as shown in
Fig. 5–9 compared with ElecNet FE program

in Fig. 5–11. It is seen that the equipotential lines have kinks at each interface of

the nested cubes, because of the abrupt material changes there. Also the field is

mainly concentrated in the region between the surfaces of cubes 1 and 2, especially

the region close to the charge pair. This is because the region between the surfaces

of cubes 1 and 2 is air and therefore confines the strong field near the charge pair.

In case A, the element size, p = 4, and the charge pair position are chosen such that

there is only one element, i.e., 4 voxels, between the charge pair and the surface of

cube 1.

We would like to see the result if we bring the charge pair right up to the surface

of cube 1. Let’s denote this case as case A’. The field in this case will have a more
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Figure 5–12: Potential as a function of distance along the sample line as shown in
Fig. 5–9 compared with ElecNet FE program for case A and case A’.

abrupt change at the surface of cube 1 than case A. Case A’ shows the accuracy of

the new method in dealing with abrupt material changes and the consequent field

change. As shown in Fig. 5–12, the result of case A’ matches the ElecNet result just

as well as case A. Also, we can see that by varying the charge pair position by only

4 voxels, the potential has a significant change.

Now let’s repeat the same procedure for case B. In case B, if we bring the

charge pair closer to the surface of cube 1 by one element, then we still have one

voxel between the surface of cube 1 and the charge pair. Similarly let’s denote this

as case B’. Case B’ examines both the accuracy of the new method in dealing with

abrupt field changes and elemental non-uniformity. As shown in Fig. 5–13, the result
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Figure 5–13: Potential as a function of distance along the sample line as shown in
Fig. 5–9 compared with ElecNet FE program for case B and case B’.

of case B’ matches the ElecNet result just as well as case B in most regions. However,

it also indicates that near the region where the potential changes rapidly, using a

big mesh size, e.g, p = 4, might induce some errors. This therefore implies a smaller

element might be needed locally.
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CHAPTER 6
Application to Electroencephalography (EEG)

6.1 The EEG Forward Problem

6.1.1 An introduction to EEG

EEG can record the electrical activity of the brain. It was first discovered in

1875 by Richard Caton, who found electrical activity in exposed monkey brains [71]

[62] [34]. Then in 1924, Hans Berger found that electric currents generated in the

brain can be recorded without opening the skull [71] [62] [34]. Nowadays, EEG in-

volves placing multiple electrodes on the scalp. The EEG signals are generated by

the cerebral neurons, which set up an electric potential throughout the head. The

potential depends on the conductive properties of the tissues. For these signals to

be measurable by the scalp electrodes, they need to have sufficient strengths and

durations.

Clinically, EEG is mainly used in the diagnosis of epilepsy, since most epileptic

activities can generate clearly abnormal electrical signals. Epilepsy is characterized

by a seizure, which is a transient symptom of “abnormal excessive or synchronous

neuronal activity in the brain” [25]. If a seizure is discovered from the EEG record-

ing, then the recorded data will be sent to a neurologist, who will use some numerical

techniques to predict the epileptic foci where these abnormalities arise. Usually EEG

is combined with other imaging modalities, e.g. CT or MRI. This process is referred
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as EEG source localization.

Fig. 6–1 shows an EEG system. The system consists of: the electrodes on the

scalp, the electrode box, the amplifier/filter/analog-to-digital (AD) converter, and

the computer which takes the EEG recording and postprocesses the recorded data.

First the electrodes record the signals from the scalp surface. Then these signals are

directed by the electrode box to the amplifier/filter/AD converter, where the signals

are amplified, filtered, and digitized. Then these processed signals are directed to

the PC and displayed on the screen. Further signal processing may be required and

will be done on the PC. The signals are usually displayed in a bipolar montage, i.e.,

the signal shown is the difference between two adjacent electrodes.

6.1.2 Physiological basis of EEG

The brain contains about 1010 nerve cells or neurons [62]. The currents from

one neuron or maybe a few of them are too minute to pick up. In fact, to generate

a measurable signal, it takes hundreds of neurons [63] or more to generate currents

synchronously.

A neuron possesses a soma, dendrites and axon, as shown in Fig. 6–2. The soma

or cell body contains the nucleus of the cell. The dendrites branch from the soma

body, and they receive signals from other neurons. The axon is where the received

signals travel within the neuron and are sent to other neurons. The axon’s end also

forms branches, by which the neuron is connected with others. Fig. 6–3(a) shows a
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Figure 6–1: An EEG measurement system. (Images taken from [1] and [71].)
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Figure 6–2: A neuron structure (Image taken from [2])

synapse, which is the interface between two neurons. It is also the communication

channel between one neuron and others, i.e., the electric signal travels from one neu-

ron to others through synapses.

The generators of EEG signals are mainly the cortical pyramidal neurons. These

cells are oriented perpendicular to the cortical surface. Electrical activities are trans-

mitted from other neurons to reach the pyramidal cell at, e.g., the apical dendrites

(the dendrite emerging from the apex of a pyramidal cell [62] ) shown in Fig. 6–

3(b). There the neurotransmitters are released from the pre-synaptic neurons to

the synaptic cleft to generate a post-synaptic potential. There are two types of

post-synaptic potentials: excitatory postsynaptic potentials (EPSP) and inhibitory

postsynaptic potentials (IPSP). In the case of EPSP as shown in Fig. 6–3(b), depo-

larization of the apical dendrite membrane occurs and this causes an inward current
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Figure 6–3: Generators of EEG signals (a) A synaptic activity (b) An EPSP at a
post-synaptic pyramidal cell [12]
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flow and therefore creates a current sink there. Then the current flows intracellularly

to the basal dendrites (the dendrite emerging from the base of a pyramidal cell [62]

) and there it creates a current source. The intracellular currents are known as the

primary currents or impressed currents , while the extracellular currents are known

as volume currents [12]. In the case of IPSP, a hyperpolarization occurs, creating

a current source at the apical dendrites and a current sink at the basal dendrites.

The currents therefore will flow in the reverse direction of Fig. 6–3(b).

6.1.3 EEG forward and inverse problems

In the process of EEG source localization, the forward and inverse problems are

inter-connected. The forward problem involves the calculation of the electric field

from a given current source configuration which represents the active neurons, and a

volume conductor model representing the head. The inverse problem, on the other

hand, iteratively calculates the current sources from both the measurements and ob-

tained forward solutions [58]. Their relationship is shown in Fig. 6–4.

Since repeated forward solutions of the forward problem for different current

source configurations are needed to solve the inverse problem, its accuracy and effi-

ciency are very important in source localization.

6.1.4 The current source model

As shown from Fig. 6–3(b), the EEG source generator, from a macroscopic view,

can be modeled as an equivalent current dipole. The dipole has a source and a sink.
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Figure 6–4: Forward and inverse problems in EEG

Current is injected into the surroundings from the source, while removed from the

surroundings into the dipole itself at the sink. The dipole moment ~m can be written

as follows:

~m = Is~d (6.1)

where ~d is a vector whose magnitude is the distance between the current source

and sink (unit: m), and whose direction is from current sink to source. Is is the cur-

rent injected and removed (unit: A). The dipole moment ~m therefore has a unit A·m.

In order to sustain the current flow out of the source and back into the sink,

there must be electrochemical activity. This sets up a flow of charge that is not

caused by the potential set up by other charges in the problem, but is an impressed

or source current. The source current flows from sink to source inside the dipole, in
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the direction of ~m.

In fact, the dipole can be thought of as a little “tube” of source current, with

source volume current density Js (unit: A·m−2) as shown in Fig. 6–5. The volume

occupied by Js can be written as follows:

∆v = ∆s · d (6.2)

Also, we know the current Is can be written as follows:

Is = Js∆s (6.3)

From 6.1, 6.2 and 6.3, the magnitude of the dipole moment ~m can be written

as follows:

|~m| = Isd = Js∆s · d = Js∆v (6.4)

The source current density Js can therefore be written as follows:

Js =
|~m|

∆v
(6.5)
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Figure 6–5: A little “tube” of source current

6.5 shows that the source current density can actually be viewed just as the

volume density of the dipole moment, and they both have the unit (A·m−2).

6.1.5 The EEG forward problem formulation

We have the following continuity equation [16] at every point within the brain,

and on and outside the brain surface:

∇ · ~J = 0 (6.6)

The current ~J can further be expressed as the sum of the ohmic current and

the source current as follows:

~J = ~JOhmic + ~Js = σ ~E + ~Js (6.7)
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where ~JOhmic is the ohmic current, ~Js is the source current, ~E is the electric field,

and σ is the electric conductivity of the material.

Also, we know that [16]

~E = −∇u (6.8)

where u is the electric potential.

Then the following is obtained:

∇ · σ∇u = ∇ · ~Js (6.9)

Remember Poisson’s equation relating potential to charge density, ρ, which has

the following form:

∇ · ε∇u = −ρ (6.10)

If we replace ε by σ, and ρ by -∇ · ~Js, then we will have 6.9. ∇ · ~Js can be viewed

as a source which generates potentials in the conductive medium (6.10 itself is not

useful because we do not know ρ in advance.)

6.9 is the equation which governs the EEG forward problem.
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Figure 6–6: The three layer concentric spherical head model.

6.1.6 The volume conductor head model

There are basically two kinds of head models used in EEG computations: the

spherical head model and the realistic head model. The spherical head model is a

layered structure which is composed of 3 or 4 concentric spherical layers, while the

realistic head model is usually reconstructed from a tomographic image.

The spherical head model is an inaccurate theoretical representation of the head

geometry. However, due to its simplicity, it has been widely used to solve the EEG

forward problem. [23] derives the EEG forward solution due to a current dipole

source in a single conducting sphere. Then the head model was further refined to

3 or 4 concentric layers, with the inclusion of skull, cerebrospinal fluid (CSF) and

scalp. Fig. 6–6 shows a 3 layer spherical model consisted of scalp, skull and brain. A

semi-analytical solution to the Poisson equation is available for this geometry [67] [6].
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In reality, of course, our heads are not spherical and vary among individuals.

A more accurate forward solution requires a realistic head model built from tomo-

graphic data, e.g. MRI. For example, a MR image may have a plane resolution of

1×1 mm2 with a slice thickness of 1 mm and 256 slices. Chapter 1 discussed the pro-

cessing of this tomographic data in traditional BEM/FEM modeling. In this thesis,

we avoid the computationally expensive and error-prone steps of surface extraction

and meshing, by taking a hexahedral FE mesh directly from the segmented MR im-

age. In the results that follow, the conductivities of the head are taken from [78],

which are listed in Table 6–1.

Table 6–1: Conductivities in the realistic head model

Tissue Conductivity (S·m−1)
Brain 0.33
Skull 0.0165
CSF 1
Scalp 0.33

6.1.7 Literature on solving the EEG forward problem

In the past few decades, both the BEM [39] [40] [38] [61] and the FEM [78] [66]

[7] [36] have been used to solve the EEG forward problem.

The BEM discretizes the boundaries between tissues into a surface BEM mesh.

By assuming the material is piece−wise homogeneous, the differential equation 6.9

is transformed into an integral equation. The solution to this integral equation form

can be obtained by solving a set of linear equations. The number of unknowns is the

total number of nodes in all surface meshes. There are a few limitations of the BEM.
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First, the current source can only be placed on certain surfaces, which causes some

difficulties when deep sources need to be modeled. Second, the anisotropy and inho-

mogeneity of the material properties cannot be handled in the BEM since it assumes

that in each tissue the material is uniform and isotropic. From the computational

point of view, the BEM matrix is dense and relatively expensive to solve because

sparse matrix methods cannot be applied. The cost becomes prohibitive when the

forward equation needs to be solved iteratively if the BEM is used directly in the in-

verse solution. Some pre-computation techniques have been proposed to reduce this

cost [22] [61]. Still, there is a need for further development of numerical techniques

which can resolve these issues.

Instead of discretizing the surfaces only, the FEM meshes the whole head vol-

ume. It means that the current source can be placed anywhere in the brain, with,

of course, certain neurophysiological constraints. Previous studies have also shown

that the FEM can treat both inhomogeneity and anisotropy [76] [48] [15] [37]. Fur-

thermore, the FEM matrix is sparse and many sparse matrix solvers can be applied,

e.g., the Preconditioned Conjugate Gradient (PCG) method. The solution accuracy

of the FEM has been reported in [7] [36] [57] [35]. However, the difficult construc-

tion of the volume mesh and resulting large matrices were considered as a drawback,

especially when many evaluations of the forward problem are needed, e.g., for EEG

source localization. Due to this, some previous studies often used a sub-optimal

number of nodes [15] [74]. [66] proposed a scheme to use each voxel as a hexahedral

element, which avoids the difficulties of volume meshing. However, the resulting FE
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mesh is large (3.1 million unknowns) and even with a fast sparse solver it took 56

minutes to solve the required matrix systems.

In this thesis, I apply the methodology presented in Chapter 3 and 4 to the

EEG forward problem. The next section will give details about the implementation

and present the results.

6.2 Applying The Method of Computed Basis Functions

6.2.1 Mathematical formulations

From section 6.1.4 and 4.1, the EEG forward problem can be defined as follows:

Lu = ∇ · σ∇u

g = ∇ · ~Js (6.11)

with the Neumann boundary condition:

~J · ~n = (~Js − σ∇u) · ~n = 0 on scalp surface (6.12)

where ~J and ~Js are the total current density and the source current density (section

6.1.4), both with units (A·m−2). u is the electric potential with units (V·m−1) and

σ is the electric conductivity with units (S·m−1), here assumed isotropic. ~n is a unit

vector perpendicular to, and pointing outward from, the scalp. 6.12 indicates that

at the outer surface of the scalp the normal component of the current density is zero.
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Assuming the source current density ~Js vanishes at the scalp surface, 6.12 then

becomes:

∂u

∂n
= 0 on scalp surface (6.13)

In chapter 3, we obtained a matrix equation as follows:

[S] {u} = {b} (6.14)

For this problem, we have the following local matrix entries for global matrix [S ]

and {b}:

Se
ij =

∫

Ωe

σ∇Ni · ∇NjdΩ (6.15)

bei =

∫

Ωe

∇Ni · ~JsdΩ

Note that with this formulation, the natural boundary condition on uncon-

strained boundaries is exactly 6.13.

6.2.2 Implementation

The method described in chapter 3 and 4 is applied here to a realistic MR im-

age, which is the brain atlas taken from McConnell Brain Imaging Center of the

Montreal Neurological Institute [3]. The brain atlas is obtained by taking an average

of 250 normal brains aligned with the Talairach stereotaxic space [17]. The MRI

atlas consists of 180×217×181 voxels, each of which is a cube of side 1mm. This is
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volume Ωv, as explained in section 4.1. The tissues within Ωv constitute the analysis

domain, Ω. The voxels in Ω are classified into four tissue types: scalp, skull, CSF

and brain. The conductivities are shown in Table 6–1.

The method of computed basis functions is applied on the structure within

Ω. The Neumann boundary condition is imposed during both the stages of basis

function construction and the FE matrix assembly. To apply 6.12 during the basis

function construction, the following simple, albeit slightly approximate, method is

used. The part of an element outside Ω is filled with a fictitious material that is

poorly conducting compared to the other materials in the problem. Let’s denote the

conductivity of this fictitious material as σf . Then the basis functions are computed

throughout the element without taking into account the boundary condition 6.12.

To explain how this fictitious material σf can help approximate 6.12, consider the

following Neumann boundary condition on the scalp surface:

σscalp

∂u

∂n
= σf

∂u

∂n
(6.16)

Since the material outside Ω is almost non-conducting, i.e, σf is a very small number,

therefore the RHS of 6.16 can be approximated as zero. Also a nearly non-conducting

σf implies that there will be almost no current flow out through the boundary of Ω,

as required by the boundary condition 6.12.

Later at FE matrix assembly stage, the part of each basis function that lies in

the fictitious material is ignored, because it lies outside of the analysis domain, Ω.
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The effect of varying the value of σf will be discussed later in this chapter.

6.2.3 A reference solution

This section gives a reference solution using a 1×1×1 voxel FE mesh built

directly from the MR image. This solution corresponds to the approach used in

[66]. The σf used here is 10 times lower than the skull conductivity.

Since in our model, each voxel is assumed to have uniform electromagnetic prop-

erties, therefore the smallest source that can be modeled is one that uniformly fills

a single voxel. Accordingly, for this test the excitation is taken to be one voxel filled

with a uniform source current density, ~Js , oriented approximately perpendicular to

the parasagittal plane, representing a current dipole of moment ~Js · h
3 . The voxel

is located inside the brain, 20 mm from the surface of the cortex, where there could

be a source of an EEG signal. Fig. 6–7 shows the location of the dipole in three

orthogonal sections through the head, each one passing through the dipole. The

dipole is not drawn to scale.

Fig. 6–8 shows the computed potentials along three contours that run along

the surface of the scalp as shown in Fig. 6–7. Each contour lies in one of the three

orthogonal sections. This solution will be used as a reference for comparison using

different FE element sizes in next section.
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Figure 6–7: Three orthogonal sections through the head, each one passing through
the dipole. The arrows represents the position and orientation of the dipole (which
is not to scale). The lines on the outer surface of the head are the contours along
which the potential is plotted in Fig. 6–8.
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Figure 6–8: Potential as a function of distance along three contours on the surface
of the scalp, one in each of the three orthogonal planes through the dipole.
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6.2.4 Accuracy of the method

To investigate the accuracy, we vary the element size p and compare the results

obtained with the reference solution shown in section 6.2.3. FE element sizes p = 2

and p = 4 are chosen and the potentials are sampled along the three contours shown

in Fig. 6–7. Fig. 6–9 shows the result. There are three curves for each contour,

corresponding to three element sizes: p = 1 (the reference), 2, and 4. The results

show that, using computed basis functions, larger elements can be used with only a

small effect on accuracy.

The root mean square (RMS) difference, over all three curves, between the p

= 2 and p = 1 values is 0.16 mV, which is 0.5% of the peak potential. The RMS

difference between the p = 4 and p = 1 values is 0.36 mV, which is 1.0% of the peak

potential.

To better understand the significance of these RMS differences, we would like

to see the equivalent dipole location errors caused by them, since in source localiza-

tions, the accuracy of a method is evaluated by the distance between the original

source and the one found by the solver. Let’s denote the RMS differences caused by

changing mesh size p as RMSp, and the RMS difference caused by changing dipole

locations as RMSd. First we vary the dipole locations and calculate RMSd, compared

with the original results in Fig. 6–8. Then we compare these RMSd with RMSp to

see the equivalent dipole location changes caused by changing p.
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Figure 6–9: Potential as a function of distance along three contours on the surface of
the scalp, one in each of the three orthogonal planes through the dipole. Solid lines:
p=1; dashed lines: p=2; dash-dot lines: p=4. Note that the three lines overlap and
are, therefore, not clearly distinguishable over most of the range.
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Table 6–2 shows the RMSd caused by changing dipole locations. As mentioned

before, the RMSp are 0.16 mV and 0.36 mV for p = 2 and 4 respectively. We can

see that the equivalent dipole location change when p = 2 is less than 2 voxels (2

mm); the RMSp when p = 4 is less than 3 voxels (3 mm). The overall error in source

localization is due to various factors such as the forward solver, the inverse solver,

the number of electrodes, and the head models. Therefore, the accuracy evaluation

of our method here is only suggestive. We cannot really know the source localization

accuracy of our method until it is applied with an inverse solver. [18] reports an

average localization accuracy of 10.5 mm using a realistically shaped boundary ele-

ment models of the head extracted from a 3 mm resolution CT image. The sources

are created by injecting currents into the implanted depth electrodes. The inverse

solver used is a simplex search method [64] and the reported maximum localization

error is approximately 2 mm in a spherical boundary element model. [51] reports a

7 - 8 mm average localization error using a boundary element head model built from

2 mm resolution CT image and a recursive multiple-signal classification algorithm

(R-MUSIC) inverse solver [60]. [10] includes a thorough investigation over different

EEG source localization methods and reports an average 6 - 20 mm localization error

using 5 different head models based on a head phantom. These models include both

BEM and FEM head models and also consider the effect of non-homogeneity and

anisotropy of the head. Based on these data, our method shows good accuracy as

an EEG forward solver.
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Table 6–2: RMSd caused by changing dipole locations

Dipole location changes RMSd (mV)
1 voxel 0.13
2 voxels 0.27
3 voxels 0.41

6.2.5 The effect of varying the value of σf

This section will discuss the effect of varying σf , the fictitious material used

outside Ω to simulate the Neumann boundary condition. Element sizes p = 2 and 4

are chosen for this purpose. 5 values of σf are picked, starting from the same value

as the skull conductivity, and reducing this by 10 times for each successive value.

Then the RMS differences of the sampled potentials for each contour are calculated

and plotted to see the effects, compared to this reference: σf is the same value as

the skull and p = 1.

Fig. 6–10 and 6–11 show the effects of varying σf and these results. They show

that a RMS plateau is reached when σf is 10 times smaller than the skull conductiv-

ity for both p = 2 and 4. Further decreasing σf has negligible effect on the results.

This is to be expected because, as σf is lowered, the computed basis functions tend

toward those that would have been computed if an exact Neumann condition 6.12

had been applied on the boundary. When it is lowered beyond a certain point, fur-

ther changes in the basis functions are insignificant to the overall solution accuracy.
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Figure 6–10: Effects of varying σf for p = 4
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Figure 6–11: Effects of changing σf for p = 2
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6.2.6 The computational efficiency

This section will discuss the computation time and storage requirements of the

method. The simulation was done on a 3.16 GHz PC with 32GB RAM.

Table 6–3 gives the number of FE unknowns and the timings for different el-

ement sizes. The column headed ”Matrix solutions” gives the time for solving the

global system 6.14 using the successive over-relexation (SSOR) method as mentioned

in section 2.4. Clearly, as the element size increases, both the number of unknowns

and the time for matrix solution dramatically decrease. A matrix solution with p =

4 is approximately 66 times faster than with p = 1. The total solution time decreases

more slowly. Most of the difference between the total time and the matrix time is due

to the computation of the basis functions, which grows with p. The total speed-up

for p = 4 is about 4.7 times compared to p = 1. However, since the basis functions

only need to be computed once, the overall speed-up may actually be much larger

than 4.7 times, especially when multiple forward solutions are needed, e.g., with the

presence of multiple righthand sides (RHS) of the matrix equation, which represents

multiple source configurations. The last column gives the difference timings between

the total solution time and the matrix solution time, and it is mainly consumed by

basis function computations.

In [66], a fast transfer matrix approach is used to reduce the number of FE

equation systems that have to be solved for the inverse problem. Instead of 517,098

systems, which is the number of sources, only 24 systems, which is the number of
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sensors, have to be solved. The 24 systems all involve the same matrix, but have

different RHSs. The time reported in [66] to solve these 24 systems was 56 mins. If

the computed basis function idea is adopted, the speed-up would be approximately

40 (24×787+74
24×12+173

) for the p = 4 case, not 4.7. Then the 56 mins will be 1.4 (56
40
) mins on

the same computer.

The largest storage requirements, when p = 1, is approximately 3 GB. This

is readily available on modern PCs and laptops. Therefore the program is very

portable and no high performance computer is needed. Both the computation time

and storage requirement show that the method is highly efficient and computation-

ally economic, compared to other methods [66] [15] [74] [22] [61].

Table 6–3: Number of unknowns and computation time

Element size Number of Time for matrix Total solution Difference
p unknowns solution (s) time (s) (s)
1 4,513,642 787 861 74
2 586,813 51 222 171
4 79,173 12 185 173
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CHAPTER 7
Conclusions

In bioelectromagnetics, the structures of interest are sometimes defined by a

fine grid of pixels (2D cells) or voxels (3D cells) obtained by tomography. The finite

element method (FEM) is one of the most popular methods to compute the electro-

magnetic field of such structures. What a traditional FEM does is first to extract the

object contours (2D) or surfaces (3D) from the tomographic images, then to mesh

the whole computational domain into a set of elements, and finally to apply the

conventional calculation steps, i.e., element assembly, boundary conditions imposi-

tion, and matrix solution. This thesis presents a novel finite element method which

avoids the first two steps. Instead, the method constructs a simple, regular mesh

of square (2D) or cube (3D) elements directly from the tomographic image grids.

The resulting elements therefore all contain the same, integer number of pixels (2D)

or voxels (3D), and there may be several different types of materials present within

each element. These non-uniformities within one element are, however, accommo-

dated by the computed basis function approach, so that the internal discontinuities

are approximately respected.

Test problems involving nested dielectric squares and cubes were set up. The

nested cubes problem consists of 128×128×128 voxels, and is driven by a charge

pair. The nested squares problem is a cross-section of the nested cubes, which also
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includes the charge pair. The resulting electrostatic potential computed with the new

method for both cases agrees well with that of conventional finite element software

[4], about 1.5% of the maximum voltage over the sample line. Smaller sizes of the

charge pair (smaller than the element size) were also modeled, to show the flexibil-

ity of the method in handling charges of arbitrary sizes without losing efficiency or

accuracy.

Then the method was applied to solve the EEG forward problem. A brain MRI

image of 181×217×181 voxels is considered in this case, with a current dipole placed

inside. The current dipole is used to model a source of neural activity in the brain.

The potentials are computed for different element sizes p. A set of potentials are

sampled on specified contours over the scalp. The potential values for p = 2 and

p = 4 are then compared with those obtained by treating each voxel as an element

[66]. The difference is 1% of the peak voltage (p = 4), but with a global finite el-

ement matrix dimension that is 57 times smaller. This difference is translated into

an equivalent dipole location change (localization error) for better understanding: it

is less than 3 mm (3 voxels). Finally the computational efficiency is discussed, and

it is shown that a total solution speed-up of 4.7 is achieved at p = 4 compared to p

= 1. This translates to an overall speed-up of 40 when there is one matrix with 24

right-hand sides to solve, as in [66].
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[66] claimed that it was “the first study using high-resolution (1 mm) anisotropic

finite element (FE) volume conductor modeling for a non-invasive surface electroen-

cephalography (EEG) based source analysis in presurgical epilepsy diagnosis”. It

avoids the complexities in the traditional FE approach, by skipping model extrac-

tion and meshing, which greatly simplifies and accelerates the computational process,

but there is a large number of unknowns associated with the image resolution. The

computational time grows quickly as the matrix size grows, i.e., as the resolution of

the image data increases. The new method breaks the link between the element size

and the image resolution by allowing the element size to be bigger than the voxel

size (i.e. p > 1). Therefore it can greatly reduce the matrix size, and consequently

the computational time, but still using a high-resolution image and without losing

accuracy.

As explained in section 6.2.6, the number of unknowns decreases greatly as the

element size p increases, and so does the time taken to solve the matrix equation.

However, the overall computation time does not decrease as rapidly, because the

time taken to compute the basis functions increases. However, one can view the

basis functions computation as a pre-processing step, just as any model extraction

and meshing in [78] [66] [7] [36]. The basis functions need to be found only once for

a specified head model and value of p, even if there are multiple righthand sides, e.g.

as in [66]. There are many cases in which the overall speedup is much closer to the

speedup of the matrix solution stage.
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The basis function computation can also be implemented in parallel. To solve

the basis function for one element, only the element itself and its adjacent elements

are needed, therefore this computation is easy to parallelize. This could be done, for

example, on a multi-processor or multi-core PC, which is quite popular nowadays.

The basis function time should reduce linearly as the number of processors increase,

e.g., on a dual-core PC, the total solution time for p = 4 would be approximately

98 ( = (185−12)
2

+12) seconds. In contrast, the parallelization of the matrix solution

is challenging [59].

Although the new method can use a bigger element size than the image resolu-

tion, still, the element size needs to be limited to keep the discretization error small,

just as in any finite element method. For example, for a wave problem, the element

size needs to be no greater than about 1
10
th of the wavelength in each material to keep

the solutions accurate. Ideally, for a computational domain with multiple materials,

the maximum p would be different from region to region, and an adaptive meshing

technique therefore would be a good choice to keep the balance between solution

accuracy and computational efficiency. For example, in the EEG forward model, the

region that occupies most of the computational domain is the brain, while the region

that is most sensitive to the accuracy of the solution, is the skull. Their conductivi-

ties differ by a factor of about 80. It may be computationally more efficient to use a

different element size in each region. An adaptive solution, which allows p to vary,

sounds quite attractive and needs further exploration.
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For the EEG forward problem, the brain anisotropy can be included in the new

method just as it would be in any finite element method. This can be done simply

by replacing the scalar σ by the tensor σ̂ in equation 6.15:

σ̂ =













σxx σxy σxz

σyx σyy σyz

σzx σzy σzz













(7.1)

where the subscript expresses the direction. These values can be found in [78] [15]

[37]. Also, the dipole orientation is along the coordinate axis in this thesis just for

simplicity. Actually it can be of any direction, as indicated by equation 6.15. This

feature is quite important in EEG source localization.

As the theory in Chapter 4 indicates, the method of computed basis functions

can be applied to a wide range of differential operators L, not just the operator used

in Chapters 5 and 6. However, L is required to be linear. More strictly speaking, a

linearized version of the operator is needed for the basis function computation. It

is likely that the method could be extended to nonlinear problems, but this needs

more investigation.

The method can be applied to other problems that use tomographic image as

the computational domain, e.g., in magnetoencephalography (MEG). More gener-

ally, the method can be applied to any problem in which the data is represented by

a grid of pixels or voxels, not necessarily generated by tomography.
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