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Abstract 

In the dairy industry, datasets pertaining to the milk recording of cows can be 

extremely large and complex, especially in the Province of Quebec where management 

and feed information are also collected for on-farm advising. Any subsequent analysis of 

these data for strategic (or even tactical) decision making is often impeded by the 

transactional nature of the existing databases, whose main purpose is often to produce 

regular and routine reports. Since conventional database management systems mostly 

support simple and short queries and flat views of data, they are less than ideal for the 

analysis of large datasets, particularly those which contain data of varying dimensions. In 

recent years, the high value of multidimensional data has been recognized as an important 

resource in both the academic and business communities. The wider recognition of data 

warehousing and On-Line Analytical Processing (OLAP) applications has highlighted 

their importance. The dairy industry is an excellent example of an area where the analysis 

of its data, and the subsequent decision-making process, could significantly benefit from 

the implementation of data warehousing and OLAP techniques. While these technologies 

have already been used to good advantage for the analysis of business data, the unusual 

nature of dairy data poses certain challenges which are addressed in this study. These 

include selection of a data model which best suits the hierarchical nature of the data, 

selection of the highest and lowest hierarchy for data aggregation, and the definition of 

functions (pre-aggregation) to improve query performance.  

In order to investigate the use of an OLAP system for Quebec milk-recording 

data, a number of multidimensional data models were compared. The star, snowflake and 

fact-constellation schemes each displayed advantages and disadvantages for the particular 

data (and their structure) in this study. The star schema did not support many-to-many 

relationships between fact and dimension tables, and creating combination dimensions 

(e.g., herd_cow) with a key (such as herd_cow_testdate), resulted in an unmanageable 

record length in the dimension table, thus rendering the model impractical. Many-to-

many relationships were captured by a snowflake schema, by normalizing herd, cow and 

test day dimensions. In order to achieve an exact aggregation of milk components on each 

test day and for each cow, a herd_cow bridge dimension was implemented within a 

snowflake model which had a composite key of herd and cow. The lowest granularity 



ix 
 

level was test day and the highest was herd, but data could also be rolled up to regions. 

Queries could subsequently be directly executed on a cube structure, since data were 

stored in a multidimensional online analytical processing (MOLAP) server. All of the 

pre-aggregation was typically based on the milk-production test date, but could also 

support analysis at the individual cow level. The cube structure supports “drill down”, 

“roll up”, and “slice and dice” operations as an aid to the data analyses. Data could also 

be exported to Excel pivot tables as a means of simple overview reporting. It is felt that 

the examination of these technologies, and their future implementation, may lead to 

increased value for the dairy industry as their large quantities of data are explored for 

better management and strategic decision making. 
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Résumé 

Dans l'industrie laitière, les ensembles de données relatives au contrôle des bovins 

laitiers peuvent être extrêmement vastes et complexes, en particulier dans la province de 

Québec où des données de régie et d'alimentation sont également collectées pour le 

service conseil. Une fois ces données collectées, leur analyse ultérieure pour la prise de 

décision stratégique (ou même tactique) est souvent entravée par la nature 

transactionnelle des bases de données existantes, dont le principal objectif est de produire 

des rapports réguliers et de routine. Puisque les systèmes classiques de gestion de bases 

de données servent principalement à des requêtes simples et courtes et à des vues 

simplifiées de données, ils sont loin d'être idéaux pour l'analyse de grands ensembles de 

données, en particulier ceux qui contiennent des données avec de multiples dimensions. 

Dans les dernières années, la valeur élevée de données multidimensionnelles a été 

reconnue comme une ressource importante tant dans les milieux universitaires que 

d'affaires. Une plus large reconnaissance de l'entreposage de données et de techniques 

d’analyse comme le traitement analytique en ligne  (traduction de l’anglais de On-Line 

Analytical Processing ou OLAP) a aussi mis en évidence l’importance de ces données. 

L'industrie laitière est un excellent exemple d'un domaine où l'analyse de ses données et 

les prises de décision qui en découlent pourraient grandement bénéficier de la mise en 

œuvre de l’entreposage de données et des techniques OLAP. Bien que ces technologies 

aient déjà été utilisées pour l'analyse de données dans certaines autres industries, la nature 

inhabituelle des données laitières pose certains défis qui sont abordés dans cette étude. 

Ceux-ci comprennent la sélection d'un modèle de données qui convient le mieux à la 

nature hiérarchique des données, la sélection des niveaux hiérarchiques les plus élevés et 

les plus bas pour l'agrégation des données, et la définition des fonctions de pré-agrégation 

pour améliorer les performances des requêtes. 

 Afin d'étudier l'utilisation d'un système OLAP pour les données de 

contrôle laitier québécois, un certain nombre de modèles de données 

multidimensionnelles ont été comparés. Les modèles en étoile, flocon de neige et 

constellation ont chacun démontré des avantages et des inconvénients pour afficher les 

données (et leur structure) dans cette étude. Le schéma en étoile n’a pas supporté les 

relations plusieurs-à-plusieurs entre les tables de faits et de dimension, et la création de 
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dimensions combinées (e.g., troupeau_vache_date-de-test) avec une clé a entraîné une 

longueur d'enregistrement dans la table de dimension qui était très difficile à gérer, 

rendant ainsi le modèle impraticable. Les relations plusieurs-à-plusieurs ont été capturées 

par un schéma en flocon, en normalisant les dimensions troupeau, vache et date de test. 

Afin de réaliser une agrégation exacte des composants du lait à chaque jour de test et 

pour chaque vache, une dimension pont troupeau_vache a été développée au sein d'un 

modèle en flocon de neige qui avait une clé composée troupeau-vache. Le plus bas niveau 

de granularité était la date de test et le niveau le plus élevé était le troupeau, mais les 

données pouvaient également être agrégées au niveau de la région. Une fois le modèle 

implanté et les données stockées sur le serveur suivant une approche multidimensionnelle 

OLAP (MOLAP), les requêtes pouvaient ensuite être exécutées directement sur la 

structure de cube. Toutes les pré-agrégations ont été généralement fondées sur la date de 

test, mais elles pouvaient également supporter l'analyse au niveau de chaque vache. La 

structure du cube permettait les opérations d’analyse par désagrégation (drill-down), 

agrégation (drill-up) et blocs de données (slicing). Les données pouvaient également être 

analysées dans des tableaux croisés dynamiques à l’intérieur d’un chiffrier électronique. 

L’utilisation éventuelle de ces technologies par l’industrie laitière pourrait accroître la 

valeur du grand volume de données disponibles et augmenter leur utilisation pour 

améliorer la gestion et la prise de décision stratégique. 
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Chapter 1: Introduction 

On August 30, 1890, the popular American magazine, Scientific American (v. 63 

no. 9),, devoted its cover to a number of pieces of equipment constituting the U.S. Census 

Service’s new punched-card tabulating system for processing census data. The 

development of the modern electronic computer began in the mid-twentieth century, after 

the onset of WWII, when governments began to require computers to meet various 

strategic needs. An engineers’ invention, at Harvard University, of an electronic 

calculator for the American Navy was another large step forward in the field of 

computers. Although this machine was very complicated and very large, it could perform 

simple arithmetic calculations.  In 1952, UNIVAC (Universal Automatic Computer) was 

the first computer used to predict a presidential election in the United States.  These first 

generation computers had their own unique machine language, used vacuum tubes, and 

employed magnetic drums for storage of data.   

Subsequent to the invention of transistor and advances in magnetic core memory, 

the computer world underwent a big change. Second generations computers were smaller, 

faster and more energy efficient than their predecessors. The ultimate benefit of the 

discovery of the transistor was the development of the first supercomputers which could 

handle massive amounts of data. Such computers were used by different organizations 

(Atomic energy laboratories and United States Navy Research and Development Centre), 

however they were too expensive for ordinary businesses, and their effectiveness was lost 

to the business world. In this generation of computers assembly language was used 

instead of machine language.             

Although the invention of the transistor was a big step in itself, heat generation 

inside computer components remained a considerable problem. This problem was 

resolved by the use of sheets of non-conductive quartz rock, on which electronic 

components were combined to achieve an integrated circuit (IC). As time went on 

attempts were made to put more components on this IC chip, leading to a smaller third 

generation computer. Third generation computers had a central program (operating 

system) which managed memory for the application programs run on them. 
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Later the sizes and price of the computers were greatly reduced. Large scale 

integration (hundred of components on one chip) led to very large scale integration 

(hundreds of thousands of components on one chip) which turned to ultra-large scale 

integration (millions of components on one chip). The Intel chips took IC’s one step 

ahead by locating the central processing unit, memory, input and output controls in one 

chip, to meet any number of demands. Computers having these chips were equipped with 

user-friendly software packages. International Business Machine Corporation (IBM) 

introduced the personal computer (PC) for use in home, schools and offices, started the 

era of fourth generation computers. Computers have since become smaller, working their 

way down from desktops to laptops and then to palmtops. The use of screen icons instead 

of typing instructions and invention of a device (mouse) that imitated the movement of 

human hand on screen with cursor was another major advancement in this generation of 

computers. Due to smaller size and greater convenience of computers, these were used to 

share memory and software while linked to local area network or through telephone lines. 

These links turned out to be a gigantic network known as Internet. The most popular 

application of this network was electronic mail which became available across the world.           

It is difficult to define the fifth generation computers as this generation is in its 

early stages. But this era has considerable achievement of artificial intelligent computers 

which can use visual input, learn from their own experiences and give output. Other new 

achievements are (i) parallel processing in which more than one central processing unit 

work together as one, and (ii) superconductor technology which improves information 

flow by reducing the resistance in flow of electricity. The good example of fifth 

generation computers can be expert systems which are presently in use in different 

industries. Expert systems are systems which either entirely execute or assist in the 

execution of tasks that are otherwise carried out by human experts. Examples of expert 

systems include systems to forecast stock prices, programme routes for delivery vehicles 

or diagnose human diseases.      

Undoubtedly computers have a great influence in our lives, since computers can 

now do much more than computing. Scanners at shopping stores help in calculation of 

grocery bills, automatic teller machines help in conducting banking transactions, video 

conferencing helps many of us in arranging lectures across the world, and record keeping 
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of tax payers helps governments in tracking public funds. In parallel to the population 

growth and urbanization of the last century, computer technology has continued to grow 

alongside the industries. These have all lead to a need for large-scale information 

collection, processing and communication. As Governments began to have trouble 

counting their populations, telegraph companies could not keep pace with message traffic 

and insurance agencies had trouble processing policies for large numbers of workers. 

Passionate by these increasingly complex problems, driven by advances in understanding 

and technique, and powered by the emergence of the Internet, today’s science is based on 

computation, data analysis, and teamwork, achieved through the efforts of individual 

scientists and theorists (Foster and Kesselman, 1999). 

Advances in computation in an increasing number of scientific disciplines have 

lead to large data-collections which are emerging as important resources, serving a wide 

community of researchers. The communities of researchers that need to access and 

analyze these data are often owned by either single or multiple institutions distributed 

geographically. Likewise the computing and storage resources on which these 

communities depend to store and analyze their data are also present at single or different 

locations. The increase in data production arising from the availability of sophisticated 

computer hardware and software, has led to an information explosion presenting unique 

and complex challenges for analysis, modeling and drawing of conclusions. 

Dealing with large datasets may present many challenges, beginning with data 

collection and design issues and leading to data quality issues such as noise, missing data 

and erroneous data. Sinha et al., (2009) emphasizing information management issues 

related to large datasets, including the identification of relevant and accurate information 

critical for analysis, integration, access control/privacy and performance. They stated that 

model appropriateness with respect to model selection for large datasets and associated 

computational complexity issues, were related to the ability to perform computations in a 

convenient manner.  

Huber (1999) offered a classification of datasets according to their size in 10
x
 

bytes: tiny (x = 2), small (x = 4), medium (x = 6), large (x = 8), huge (x = 10), and 

monster (x = 12). Huber defined massiveness in terms of aggravation. In this regard, he 

associates visualization aggravation with x > 6 and data analysis aggravation with x > 8. 
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As PCs (personal computers) are excellently matched to the requirements of interactive 

analysis of medium datasets, until now people have developed considerable experience of 

data analysis with small and medium datasets. If large datasets are analysed on the same 

PCs several bottlenecks become apparent. Some limitations may be due to human 

capacities and others may be due to computational complexity or by technological limits. 

Others may include financial (e.g. memory cost) or lack of software (for parallel 

processing).  

Along with human-machine interaction, storage requirements and computational 

problems, difficulty in visualizing large datasets is one of the main human limitations 

addressed by Huber (1999). The conditions for efficient human-machine interaction are 

violated in case of large datasets. Necessary prerequisites for human-machine interaction 

include (Huber, 1999): (i), the task is such that a sequence of reasonably straightforward 

decisions has to be made, (ii) these decisions must be made in relatively quick sequence, 

and, (iii) each decision has to be based on the results of the preceding step. With large 

datasets data complexity may result in decisions not being straight, the human response 

too slow, such that the human side of the comment loop is broken when response time 

exceeds the order of human think time. Under such conditions it may be difficult to give a 

sensible basis for the next decision if one cannot visualize the previous results. Moreover, 

data storage capacity, as measured in bits per unit area continues to increase, making it 

possible for certain physics experiments to save as much as peta-bytes (Pb) of data per 

year. In addition, dramatic improvements in microprocessor performance mean that a 

simple desktop or laptop is now a powerful computational engine. 

Memory size frequently represents a bottleneck preventing the full use of fast 

processors. However, according to Foster (2002), computational capabilities are falling 

behind relative to storage, “only” doubling every 18 months and so “only” increasing by 

a single order of magnitude every 5 years. As datasets increase in size their complexity 

increases, and their homogeneity is lost, so that these techniques need to analyse such 

datasets can test the limits of our computing capacities.  

With large datasets, processing time problems generally have more to do with 

storage access than processor speed. To overcome this one will have to produce small, 

derived datasets that selectively contain the required information and can be accessed 
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quickly. Even then parallel processors and distributed memory create additional 

complications, making analytical operations difficult and of greater magnitude. 

Consequently there is a need to develop database structures and access techniques which 

will allow access, exploration and visualization of this era’s large datasets, rather than use 

a “one size fits all” approach, as in the past (French, 1995). 

Digital data are fundamental to all branches of science and engineering now. Such 

datasets are held in databases, which are logically integrated collections of data 

maintained in one or more files and organized to ease their efficient storage, 

modification, and the retrieval of related information (Frawley et al., 1992). The recorded 

data have implicit meanings and the databases which house them represent some aspects 

of the real world, sometimes termed the mini-world. The mini-world’s changes are thus 

reflected in the database (Elmasri and Navathe, 2000).  

Databases are designed, built and populated with data for some specific purpose. 

These have some planned group of users and some preconceived applications in which 

these users are interested. A database management system (DBMS) is a collection of 

procedures for retrieving, storing, and manipulating data within databases (Frawley et al., 

1992). The DBMS is a general-purpose software that facilitates the process of defining, 

constructing and operating databases for various applications. Defining a database 

involves specifying data types, structures and constraints for the data stored in the 

database. Constructing the database is the process of storing data on some storage 

medium that is controlled by the DBMS. Operating a database includes such functions as 

querying the database to retrieve specific data, updating the database to reflect changes 

and generating reports (Elmasri and Navathe, 2000). 

Most of the DBMS in organizations are relational database management systems 

(RDBMS). A relational database consists of tables (also called relations) made up of rows 

and columns. No ordering is implied among the rows of a table. Each column is atomic, 

and repeating items within a column is not allowed. A column, or collection of columns 

for which different rows must have distinct values, is called a table key (Larson, 1983). 

Relational database management systems were originally designed for mainframe 

computers and business data processing applications. Moreover, relational systems were 

optimized for environments with large numbers of users who issue short queries (Hurson 
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et al., 1993), are well established and reliable, and have proved to be flexible platform for 

the evolution towards new functionalities that meet at least a few of the demands of novel 

applications (Bordoloi et al., 1994). Because most RDBMS were developed during the 

1990s their architecture has rarely been amended.  Designers at that time were not aware 

of the potential growth of the Internet and no one could expect that one day databases 

would not only serve for operational tasks in an organization but also be used for data 

analysis. 

The current relational database management system architecture was developed 

keeping in mind the online transaction processing (OLTP), i.e., the architecture was 

optimized for the hardware available at the time, to efficiently support OLTP (Halawani 

et al., 2010). Entity relationship (ER) modeling is a standard technique for building an 

OLTP system; a system which is designed for many simple concurrent requests. This 

kind of modelling is also useful for showing the flow of data within an organization 

(Chaturvedi et al., 2008). OLTP systems (e.g., airline reservations, order entries, and 

banking transaction systems) handle the daily operational features of business dealings 

(Chaudhuri and Dayal, 1997; Cui, 2003; Stamen, 1993). In daily business dealings 

comprehensive and current data are required, wherein the data are read or updated a few 

records at a time, by way of a primary key (Chaudhuri and Dayal, 1997). The data can be 

deleted from the OLTP systems, e.g., if an order is shipped today then its record will be 

deleted from the database (Stamen, 1993). The OLTP systems (operational databases) can 

be expected to be hundreds of megabytes to gigabytes in size. The critical issues are, 

consistency and recoverability of the database along with maximizing transaction 

throughput, which is the key performance metric (Chaudhuri and Dayal, 1997). 

Relational databases have been a de facto standard over the last two decades for 

both operational and analytical applications. For example, current enterprise systems 

have utilized relational databases to incorporate applications across operational areas 

(order entry), whereas analysing enterprise data (e.g., computing the sales history of all 

stores over a certain period of time) is a resource-intensive job that is better performed 

off-line and should not affect the daily operations of the business. The need for analysing 

business data for trends and strategic information is hardly novel. Data analysis can serve 

to define requirements, set targets, plan interventions, and evaluate growth. In a perfect 
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world, the analyst could simply query the operational database in a school to see the 

performance of students in Mathematics, which may point to new ways of training 

Mathematics teachers. In reality, few operational environments have the bandwidth to 

allow information seekers to create the elaborate queries necessary for complicated 

analyses of data. The data which are used for operational systems are physically 

separated from the data used for analytical processing or for information. The supporting 

technology for operational processing is also different for both systems, as the users are 

also different (Jones, 1998). Data in the operational applications are simply used for 

record keeping, whereas data analysis is the process of collection, presentation and 

summarization of information contained in the data, with the goal of helping in decision 

support. A number of different mathematical techniques are used in data analysis, e.g., 

frequency counter, percentage, average, ranks, ratio and standard deviation.  

Data in operational applications are file-oriented and consist of linear lists of 

related values each describing an employee, customer, product or other entity. These data 

are accessed with a single key and viewed as a simple list on the screen. In contrast, 

applications which are based on some data analysis, are best viewed in multidimensional 

format because the user wants to see all the possible combinations of entities and their 

relationships, e.g., performance of different products over time in different markets 

(Stamen, 1993). So data analysis applications place some rather different requirements on 

database technology compared to traditional OLTP applications.  

Many industries around the world, have presented the challenge of analysing large 

datasets. The Quebec dairy industry faces the same challenge, since gigabytes of data are 

produced on the dairy farm every year and data analysis is quite important for drawing up 

strategies at the dairy farm level. Since dairy farming in Quebec constitutes an important 

component of Quebec’s agricultural economy. The Canadian dairy industry ranks third in 

terms of value in the Canadian agricultural sector following grains and oil seeds, and red 

meats. Current dairy production in Canada generated a total for net farm receipts of $5.8 

billion and generated sales of $13.7 billion, representing 16.4 % of the Canadian food and 

beverage sector in 2011 (www.dairyinfo.gc.ca). 

Compared to former decades, many of today’s farmers consider information 

management to be an important element of their business. This interest has been 

http://www.dairyinfo.gc.ca/
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stimulated by the availability of powerful new computer hardware and software at a 

reasonable cost. Software has become easier to use and the hardware/software systems 

are capable of storing more data and doing more useful analysis on these datasets. 

Similarly, agricultural extension systems of the past are now being replaced with 

computer-based decision support systems. For instance, the farmer might want to know 

the peak milk yield of all second lactation cows that calved between August and March, 

from the available data (an example of data analysis query).  

Most of Quebec dairy farms already have computerized information systems, but 

these are mainly focused on record keeping and primarily support operational 

management decisions. To support more steps of the decision-making process these 

systems should be extended. Priority should be given to (i) extension of the record 

keeping systems with modules for data analysis, and (ii) development of models to 

support tactical management decisions. These systems are report-oriented systems and 

the reports are based on the current activities at the farm. If a farmer wants to know the 

performance of a herd in previous years, the processing of a large quantity of data on 

existing systems is necessary. Although not impossible, it might take hours to process 

such a query. This problem results from a number of issues: 

(i) The execution of data analysis queries (analytical queries) requires a great deal 

of system resources as these queries necessitate a lot of scans and joins. Systems used for 

analytical query execution are not completely separated from transaction systems, so the 

sharing of a database or data file slows down both the operational and analysis processes. 

(ii) Because of the limitations of a relational database, users can only observe the 

data in flat views, so data visualization from different perspectives is almost impossible. 

(iii) Historical data is very important as the improvement of future herds is largely 

based on the performance efficiency of past herds. An asset for the dairy sector, these 

datasets, which typically originate from different organizations, need a storage structure 

that will allow them to be analyzed within a convenient time span and give 

multidimensional views of data to decision makers. Such a structure is not supported by 

relational database management systems. 

(iv) When a dataset is sufficiently large the human eye cannot encompass it: thus 

to produce a summary report with relational databases within seconds is a challenge since 
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the person making the query can lose patience or be easily distracted. There is, therefore, 

a need to devise such tools as can help in summarizing data quickly from the same 

datasets. 

Prompted by the above needs, the basic idea of this research was to propose a 

methodology to develop a storage place, which could act as a repository of collected data 

used for data analysis and decision support. The data available on farms today can prove 

an advantage in improving on-farm decision-making, but only if interpreted and exploited 

properly through analytical tools. With the help of these tools, dairy-farm advisors can 

better help producers with respect in decision-making: e.g., keeping animals in different 

management groups for better feed usage and reduced cost of production, and enhancing 

efficiency by harmonizing livestock requirements to feed inputs.      

 

 

  



 

10 
 

Purpose of study 

Nowadays, dairy producers and their advisors in the dairy industry have access to 

an increasing volume of data. This is available at the farm where daily records have been 

kept. The detailed production data from all participating resources are actually present in 

operational systems which support day to day operations. To take effective decisions 

using these data: (i) should be stored separately from operational systems, since the latter 

store current data, whereas historical data are required for strategic decision-making and 

trend analysis; and (ii) these should be modeled in a multidimensional manner to support 

analytical queries which are the basis of decision-support. 

 

Overall objective 

The overall objective of this research was to: (i) develop a methodological framework for 

implementation of multidimensional models to available dairy data, in order to improve 

the advisors’ ability to analyze data and come up with appropriate decision-support 

recommendations. To achieve this overall objective, the study was divided into four 

stages.  

(i) To acquire, explore and understand the data. At this stage understanding the data 

is extremely important; for example, what do missing values for an attribute 

actually indicate (i.e., are they essential), and does it make sense to calculate an 

average or sum for a given attribute; 

(ii) To modify the data, metadata need to be carefully understood, for each selected 

attribute in the previous stage so that they can be manipulated mathematically. 

Desired attributes need to be calculated, and keys selected during the process of 

data transformation; 

(iii) To design different data models to store the selected attributes in a structure which 

could help in analytical query execution. The efficiency of the models needs to be 

carefully examined to assess their relative advantages with respect to dairy data; 

and 
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(iv)  To analyse the data by querying schemas of the DBMS, specifically using a 

front-end graphical user interface that could interpret user information needs to 

support on-farm decision making. 
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Chapter 2: Review of literature 

This Chapter considers the existence of valuable data in operational data stores, 

the need for those data to be extracted, cleaned and transformed for the purposes of 

specific analyses, and their storage in formats that will allow access to be optimized for 

analytical purposes.  Given the desire to make more use of existing data, their use in 

decision-support systems is discussed, and the differences between online transactional 

processing (OLTP) – routine reports – versus online analytical processing (OLAP) – 

query-based analyses – are explained.  In the case of the latter – the subject of interest in 

this thesis – data can be amalgamated from different sources and modeled with the help 

of multidimensional data models.  Their subsequent storage and analysis can be 

facilitated by a data warehouse (cube structure) and various cube operations for viewing 

the data.  Finally, some applications of multidimensional data modelling and data 

warehousing are highlighted from different areas, leading to the topic of interest in this 

study – the dairy industry. 

 

2.1: Data extraction and cleaning 

Data which are to be used for analysis purposes should be stored separately from 

the organization’s operational database. Analysis of data demonstrates altered functional 

and performance requirements. These requirements are quite different from those of the 

OLTP applications traditionally supported by operational databases. OLTP applications 

usually computerize clerical data processing tasks such as banking transactions and order 

entry that are the basic daily operations of an organization. These are organized and 

repetitive tasks and consist of scheduled transactions. The data required by these 

transactions are detailed, current, read and updated in seconds and accessed on a primary 

key. Operational databases can range from hundreds of megabytes to gigabytes in size. In 

contrast, data which are used for analysis and aid in decision-making should be historical. 

Instead of detailed records, summarized and consolidated data is more desirable in the 

case of data analysis, which explains why data which are to be analyzed should be 

separated from operational databases. In this way historical datasets can be created at a 

storage place other than that of operational data storage. Similarly data analyses require 

millions of scans and joins, while the process of analysis and most of the queries are ad 
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hoc; this usually means that using the same database for both operational and analytical 

purposes will slow down the operational database. Data extraction from operational 

databases for analysis of data is usually implemented via standard interfaces such as 

ODBC (open database connectivity) and Oracle Open Connect, etc. (Chaudhuri and 

Dayal, 1997).  

The source of data is a vital factor, as data entry and acquisition are naturally 

prone to errors, both for simple and complex data. A great deal of effort has been given to 

minimize errors in this front-end procedure, but more often than not, errors in large 

datasets are frequent. To avoid these errors during the process of data storage for 

analysis, it is important to make an attempt to clean the data in some way, with the aim of 

exploring datasets for possible problems, with the intention of correcting the errors. 

Naturally, in case of large datasets, doing this task "by hand" is entirely out of the 

question in the real world, and might take hours to months. A manual process of data 

cleansing is also difficult and can itself create errors. Powerful data cleaning tools that 

computerize or greatly assist in the data cleansing process are essential and may be the 

only useful and cost-effective method to attain a rational quality level in an available 

dataset (Maletic and Marcus, 2000). 

Data cleaning is performed to improve the quality. Data quality problems are also 

present in standalone data sources such as files and databases. The problems can be due 

to misspellings during data entry, missing values or invalid data (Rahm and Do, 2000). 

The most important phases in data cleaning are: defining and determining the error types, 

and searching for and identifying the error instances. Each phase is difficult and requires 

the input from a domain expert. Errors can be viewed in an outlier detection process. If a 

large percentage of data elements conform to a general form (99.9%) then the remaining 

(0.1%) are likely to be outliers. Outlier values for data elements can be identified with 

automatically computed statistics. For each data element the mean and the standard 

deviation are calculated and are recognized, based on those elements that have values in a 

given field beyond a number of standard deviations from the mean (Maletic and Marcus, 

2000). Four standard deviation below and above the mean can be used to remove outliers 

in an iterative approach. A four standard deviation threshold can keep most of the valid 

values in the datasets (Pietersma et al., 2006).      
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2.2: Data transformation and de-normalization 

The data transformation process turns the data from its present format into the 

format desired by the target application. For example, if data on values and quantities are 

present in an operational database, then computation for profits (transformation) can be 

performed, so that all three values are stored in, and accessible for analysis. Inclusion and 

organization of related metadata for both original (data coming from operational 

database) and transformed data are crucial to the reliability of the data storage place used 

for data analysis (Thornsbury et al., 2003). The transformed data are summarized; this is 

mostly done to improve of the efficiency of the system (Gray and Watson, 1998).  The 

transformation process can encompass several functions like data reformatting, 

recalculation of certain data elements, adding elements of time, defining new keys in the 

database and merging data from multiple files  (Simitsis and Theodoratos, 2009).      

The data transformation process typically consists of multiple steps, and there are 

different tools available for this process. An easy and common approach is the use of the 

standard query language (SQL) to perform data transformations and utilize the possibility 

of application-specific language extensions. A transformation step specified in SQL is 

illustrated in Figure 2.1. This example covers part of the necessary data transformations 

to be applied to the data source. The transformation describes a view on which additional 

mappings can be made. The transformation carries out a schema reform with added 

attributes in the view acquired by dividing the name and address attributes of the data 

source (Rahm and Do, 2000).  

 

  

 

 

 

 

Figure 2.1: An example of data transformation mapping using standard query language 

(SQL) (Rahm and Do, 2000). 

 

CREATE VIEW Customer2 (LName, FName, Gender, Street, City, State, ZIP, CID) 

AS SELECT LastNameExtract (Name), FirstNameExtract (Name), Sex, Street, 

CityExtract (City), StateExtract (City), ZIPExtract (City), CID 

FROM Customer 
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Transformation process also includes data denormalization (Simitsis and 

Theodoratos, 2009).  The concept of normalizing data in operational databases does not 

apply to data stores prepared for data analysis. In operational databases normalization is a 

well thought-out and significant tool in avoiding redundancy. It typically requires 

dividing a database table into numerous tables and defining relationships among the 

tables. Redundant data can create inconsistencies without normalization and the update of 

irregularities can take place during deletion and insertion procedures. Database 

normalization is important in operational databases where data modifications occur 

rapidly and randomly all over a database (Ahmad et al., 2004). Most of the time, 

operational databases are normalized up to the third normal form which means that: (i) 

there are no repeating fields in a database table (First Normal Form), (ii)  all non-key 

attributes are fully dependant on a primary key (Second Normal Form), and (iii) there are 

no dependencies among non-key attributes in a database table (Third Normal Form). On 

the other hand, denormalization is a technique to move from third to first normal forms of 

database modeling in order to accelerate database access and, ultimately, improve query 

processing. Denormalization is suitable for inactive data, which is historical and used for 

analysis, to expedite query performance (Kimball et al., 1998). A simple process of 

converting normalized data into denormalized data can be viewed in Figure 2.2. 

Accordingly, whilst normalization is a process of dividing a database into smaller tables 

to efficiently work with data in operational databases, denormalization is a procedure of 

collecting data tables into larger tables for well-organized analytical processing (Ahmad 

et al., 2004). This is why redundancies are quite acceptable in the case of analytical 

processing (Gray and Watson, 1998) and, apart from the primary key, all other fields 

allow NULL values (Wah and Sim, 2009). 
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Denormalization  

 

 

 

 

Figure 2.2: A conceptual model for conversion of normalized data into denormalized data 

(Ahmad et al., 2004) 

 

 

 

2.3: Data warehouse 

A data warehouse may be defined in different ways; some of them are merely for 

data, while others may include people, processes, software, tools and data. The global 

definition is that the data warehouse is a collection of integrated, subject-oriented 

databases, designed to support decision-support functions where each unit of data is 

related to some moment in time. The data warehouse is a relatively new concept in 

response to a major business need; the analysis of extremely large volumes of historical 

data to answer difficult business questions. These questions can be: What segment of 

customers buys this product, or with which credit cards do customers pay their bills by 

the due date? Technology existing before the data warehouse lacked the ability to 

accurately answer these types of questions. In the past most information systems were 

designed to create pre-defined reports containing superficial information (AL-Hamami 

and Hashem, 2009).  

Thus, a data warehouse is a collection of technologies that provides ideas and 

techniques which give users valuable information for faster decision-making (Anil et al., 

2008; Chaudhuri and Dayal, 1997; Manole and Gheorghe, 2007). The difference between 

a data warehouse and a traditional operational database is the volatility of the data. The 
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information in an operational database is constantly changing whereas, in a data 

warehouse, the information is stable and updated at standard intervals (monthly or 

weekly). A data warehouse can be updated to add values for the new time period only, 

without changing values which were previously stored in the warehouse (Alkharouf et al., 

2005). So the data warehouse contains summarized data and data having the lowest level 

of detail (Inmon, 1996). Another difference between the two systems is that operational 

databases provide an answer to operational requirements, while data warehouses provide 

an answer to analytical requirements (Manole and Gheorghe, 2007), thus offering the 

possibility for high quality analyses and complex ad hoc queries through user-friendly 

interfaces (Berndt et al., 2003; Manole and Gheorghe, 2007). A subject which is the field 

of activity is the basic criterion for the organisation of data in data warehouses, while 

application is the basic criterion for an operational database (Manole and Gheorghe, 

2007). 

Managers of organizations have realized that the data stored in databases, 

represent informational gold mines if properly exploited. The data warehousing approach 

solves the problem of complex data analysis which could not be achieved with 

operational databases (Manole and Gheorghe, 2007). The need to build a data warehouse 

starts from the requirement of quality information within the organization. The data 

which come from different internal and external sources, having different formats are 

filtered according to business rules and incorporated into a large single data collection 

(Manole and Gheorghe, 2007; McFadden, 2002). The contents of a data warehouse may 

be a copy of a part of operational data or may be the result of preprocessed queries or 

both (Samtani et al., 1999).  

In the process of data warehousing, the raw data fed into the integrated system 

may also contain “metadata” that define and describe that particular source data. 

Metadata normally include descriptions of data elements, data types and attributes, and 

processes and methods of collection. Source data often contain a high percentage of 

“dirty data” with inconsistent, missing, or incomplete values. Thornsbury et al., (2003) 

emphasize that data must be “cleaned” and organized, and metadata must be 

synchronized. Performing data compilation and cleaning functions, including metadata 
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organization, on a regular basis is critical for reducing response time and adding value to 

the operational database. Such an operational/archival database provides storage for large 

volumes of data and maintains the historical record. 

 

A data warehouse is part of a larger client/server environment and does not exist 

in isolation. There are three types of components that comprise the architecture (Inmon, 

1996): 

i) The data acquisition software (or back end), which extracts data from the 

heterogeneous data sources (legacy systems and external data), consolidates and 

summarizes the data, and loads it into the data warehouse. 

ii) The data warehouse presentation server, i.e., the platform and software (including 

the repository) that houses the data warehouse. Data marts which are logical 

subsets of data warehouses will be developed instead of one centralized data 

warehouse; then a bus architecture will be used for communication within the data 

warehouse  

iii) The client (or front-end) software which allows decision support users to access 

and analyze data in the warehouse. 

 

In designing a data warehouse, each unit of data is relevant to some moment in time. 

The process of data warehousing is a collection of decision-support technologies which 

support the knowledge worker (executive, manager, and analyst) to make better and 

faster decisions (McFadden, 2002). The characteristics of a data warehouse are illustrated 

in Table 2.1.  
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CHARACTERISTIC DESCRIPTION OF CHARACTERISTIC 

Subject oriented Data are organized by how users mention and apply them 

Integrated Inconsistencies are removed in inconsistent information (i.e., the 

data are 'cleaned’). 

Non-volatile Read only data. Cannot be altered by users. 

Time series Data are based on time series rather than current status 

Summarized Operational data are recorded into decision-usable form 

Larger Maintenance of time series data, which is why much more data 

are reserved. 

Metadata Metadata are data about the data. 

Not normalized Data in the warehouse can be redundant 

Input  Operational databases 

 

Table 2.1: Characteristics of a data warehouse (Gray and Watson, 1998) . 

 

At present, developmental processes for data warehousing lack an established 

scheme. Existing data warehousing development methods fall within three fundamental 

approaches, clearly defined by List et al., (2002): data-driven, user-driven and goal-

driven.  

(i) The data driven approach explores the data and derives a potential abstract 

schematic for the data warehouse. This abstract schema is developed after the 

process of transformation of the operational data sources. The analytical needs 

of an organization are rarely identified and explained after implementation of 

a data warehouse (Inmon, 1996). 

(ii) The user-driven approach primarily brings out the requirements of the 

decision-making process by group interviews or by separate interviews of 

users and experts. Then a model is developed after recognition of facts and 

dimensions (Kimball et al., 1998). 

(iii) The goal-driven approach encloses numerous considerations like the selection 

of the business process. This allows one to decide the smallest piece of 
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information in the process and then select dimensions and facts. Each business 

process is considered as a major transaction (Kimball et al., 1998). 

 

There are two ways to build the warehoused data: a bottom-up approach or top-down 

approach. In the case of the former, the data are obtained from the operational databases 

relevant to the data warehouse applications. Queries are normally identified in advance, 

and data are then selected, transformed, and integrated by data extraction tools. Using this 

bottom-up approach, user queries can be answered immediately as data are present in the 

data warehouse. For this reason, this approach is deemed realistic, and enhances the 

performance of the system. In a top-down approach, the data are acquired from the 

operational databases whenever a query is created. In this case, the warehouse system 

accesses the operational databases in order to answer the query. Another approach is a 

hybrid approach, which unites aspects of the bottom-up and top-down approaches. In this 

approach, some data are stored in a warehouse, and other data can be acquired from 

operational databases as needed (Hull and Zhou, 1996). 

 

2.4: Decision-support systems 

An application which is currently in high demand today with respect to 

management decision-making is the decision-support system.  Management takes 

information from these systems and make decisions about business growth, levels of 

stock on hand, etc. It is a challenge to derive answers to business questions from the 

available data, so that decision-makers at all levels can react quickly to changes in the 

business environment. The standard transactional query might ask, "When did order x 

ship?" whereas a classic decision-support question might ask, "How do sales in the 

South-western region for this quarter compare with sales a year ago?” (Halawani et al., 

2010). 

Decision-support systems are computer technology solutions that can be used to 

support complex decision-making and problem-solving. Typical DSS tool design consist 

of components for: (i) sophisticated database management capabilities with access to 

internal and external data, information, and knowledge; (ii) powerful modeling functions 

accessed by a model management system; and (iii) a powerful but simple user-interface 
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design which enables interactive queries, reporting, and graphing functions. Much 

research and practical design effort has been conducted in each of these fields (Shim et 

al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The evolution of decision support systems (Arnott and Pervan, 2005) 

Decision support systems are the hub of business IT infrastructures since they 

give companies a way to translate a wealth of business information into factual and 

productive results. It is a massive task to collect, to maintain, and to analyze large 

amounts of data, which presents significant technical challenges, expense, and 

organizational commitment. Before building a system that provides this decision support 

information, analysts must address and resolve three fundamental issues (Chaudhuri et 

al., 2001): (i) what data to gather and how to conceptually model the data and deal with 

their storage, (ii) how to analyze the data, and (iii) how to efficiently load data from 
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several independent sources. Arnott and Pervan (2005) schematically show the evolution 

of decision support system research (Figure 2.3).   

2.5: Analysis of business data 

The need for analysing business data for trends and strategic information is not 

new. In a perfect world, the analyst could simply query the operational database in-

company to determine the long-term effects of a policy or the fiscal inference of a 

marketing decision. In reality, few operational environments have the resources to allow 

information seekers to create the elaborate queries necessary for complicated data 

analysis. The data which are used for operational systems are physically separated from 

data used for analytical processing or for information. The supporting technology for 

operational processing is also different for both systems, so the users are also different 

(Jones, 1998).  

Data in transaction applications are file-oriented and consist of linear lists of 

related values, each describing an employee, customer, product or other entity. These 

data are accessed with a single key and viewed as a simple list on the screen. End-user 

applications, in contrast, are best viewed in multidimensional format because the user 

wants to see various possible combinations of entities and their relationships, e.g., 

performance of different products over time in different markets (Stamen, 1993). Toward 

this purpose, data from various operational sources are reconciled and stored in a 

repository database using a multidimensional data model. The multidimensional 

modeling is a conceptual modeling technique used by OLAP applications or data 

warehouses  (Chaturvedi et al., 2008).  

2.5.1: Online analytical processing (OLAP) 

On-line analytical processing, introduced by Codd et al. (1993), is capable of 

capturing the structure of real world data in the form of multidimensional tables. OLAP 

tools are well-suited for complex data analysis such as multidimensional data analysis 

and to assist in decision-support activities (Chaudhuri and Dayal, 1997), informally 

referred to as end-user computing (Stamen, 1993). The data used for OLAP are obtained 

from a data warehouse, established independently of the current operational data, and can 

consist of data collected from heterogeneous, operational and legacy data sources 
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(Chaudhuri and Dayal, 1997). OLAP allows for the fast analysis of shared 

multidimensional information: most system responses occur within 5 seconds, with the 

simplest analysis taking no more than 1 second and a very few more complex queries 

taking more than 20 seconds. However, speeds vary, depending on the OLAP vendor and 

system hardware (Alkharouf et al., 2005). What the decision-maker needs, and what 

OLAP must provide, are the following functions (Codd et al., 1993): 

 

i. Access to the data in the database management system; 

ii. Data and data consolidation paths or dimensions that can be defined according to 

user requirements; 

iii. Accommodation of the variety of ways or different contexts in which the user 

may wish to view, manipulate and animate the data analyses; and 

iv. Accessibility to these functions via the end-user’s interface. 

 

2.5.2: OLAP versus OLTP 

Database technology is at the center of most information systems. Among these 

information systems are decision-support systems and executive information systems. 

OLTP environments use database technology to execute and query data, and support the 

daily operational needs of business executives. On the other hand, OLAP environments 

use database technology to support analysis and to provide decision-makers with a 

platform from which to generate decision-making information. Because the process by 

which data are extracted, transformed, and loaded into the OLAP environment can be 

relatively slow by transactional data standards, the ability to achieve “real-time” data 

analysis is lost. OLTP database structures are characterized by storage of “atomic” 

values, and they are also transaction-oriented as the name implies. Besides, OLAP 

database structures are generally aggregated and summarized. There is an analytical 

orientation to the nature of the data, and the values represent a historical view of the 

entity (Conn, 2005).  

In the past, corporate data were usually stored in production databases: it is only 

recently that information specialists have realised the need to analyse the data and store 
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these in a different form which can be better utilised for decision-making purposes. The 

work of Codd et al. (1993) has led to a distinction between analytic databases (ADBs), 

and operational or production databases (PDBs). A summary of these differences is 

presented by Thomsen (2002) which provides a clear explanation of the different 

functionalities between OLTP and OLAP. This difference can be illustrated with a simple 

example: consider a customer order processing application in which the production 

database stores information such as: the customer’s identification number, the name of 

the customer, the customer’s order reference number, the value and the date of the order, 

with links to other tables holding other related data e.g., quantity and quality of items 

ordered, mode of payment, date of dispatch, etc. A manager, however, needs to analyse 

the data and requires the resulting information in a more concise form, such as: how 

many orders were posted without a delay, or total number of orders per day, or total 

number of deliveries per day etc. It is much more important for the manager to have this 

information in a timely manner, especially to understand trends in customer behaviour. In 

traditional PDBs, such appropriate information is not available, because the production 

databases update information after every transaction. As a result, trends in customer 

behaviour cannot be identified, which, in turn, denies the business decision-maker from a 

valuable insight. If this information from the PDB is stored in an ADB, the time to 

analyse the data then become suitable for decision-making.  

 

2.5.3: Multidimensional Data Modeling 

Data warehousing provides a framework for integrating data from multiple sources in 

a logical and integrated fashion (Inmon, 1996). It provides users with easy access to 

enterprise data in a consistent manner and a method for storing historical, summarized 

and data aggregations for easy decision-making. Organizational data warehouses are 

projected to be hundreds of gigabytes or terabytes in size; therefore, a basic design and 

implementation issue of a data warehouse is query performance. In order to improve the 

query performance, the data in a data warehouse are typically modeled from a 

multidimensional perspective (Anil et al., 2008). 

A multidimensional-data-model-based data warehouse for agriculture farm histories 

has been developed, and is helping experts to generate quality advice by providing crop-
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related information in an integrated manner (Reddy et al., 2007). The expert advice has 

helped farmers to achieve significant savings in capital investments and improvements in 

yield. The most important analysis capability that has emerged for executive information 

systems and for the data warehouse environment in general is multidimensional analysis. 

A 1996 survey (McFadden, 2002) indicated that 90% of CIOs claimed that their 

organizations were developing data warehouses. Of these, 65% said that using 

multidimensional analysis was a high priority in their organization. The basic feature of 

this model is that it allows the user to visualise data from different perspectives (Mohania 

et al., 1999). Multidimensional analysis allows end-users without extensive mathematical 

or statistical training to perform operations such as drill-down, roll-up, cross-tabulations, 

ratios and trends, slice and dice, and data pivoting (McFadden, 2002). The 

multidimensional aspect of enterprise data can be better viewed with OLAP software 

which enables analysts, managers, and executives to gain insight into an enterprise’s 

performance through fast interactive access to a wide variety of views of 

multidimensional-organized data (Colliat, 1996) and data analysis, through interactive 

querying of data. The multidimensional view of data conceives of information as stored 

in a multidimensional array sometimes called a hyper cube (Vassiliadis, 1998).  

A cube is defined by any number of data dimensions; it is not limited to three; and 

sometimes a cube may have fewer than three dimensions. In relational database systems, 

cubes are constructed from a fact table and one or more dimension tables (Alkharouf et 

al., 2005). A fact table is the relational table in a data warehouse which contains numeric 

data items used to satisfy all calculation options that are of interest to the end user. The 

facts can be additive, semi-additive or non-additive (Anil et al., 2008). The dimension 

tables however are more abstract, containing only one row for each leaf member in the 

fact table. They are used to create summaries and aggregates of the data in the fact table. 

The data dimensions describe a cube just as width, height, and depth, where it is 

appropriate, dimensions can be organized into any number of levels or hierarchies 

(Alkharouf et al., 2005).  
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2.5.4: Analysis of data with a Multidimensional Data Model 

The multidimensional data model is an integral part of the OLAP. Both on-line and 

analytical, the OLAP must provide quick answers to complex queries. Designed to solve 

complex queries in real time, the multidimensional data model is important because it 

enforces simplicity (Kimball, 1996). In contrast to previous technologies, these databases 

view data as multidimensional cubes that are particularly well-suited for data analysis 

(Pedersen and Jensen, 2002). To provide decision-support with this model, developers 

must decide how to structure data and what type of database management system has to 

be used in implementation of the data warehouse or data marts. A developer can follow 

three strategies (McFadden, 2002): 

 

i) Use an RDBMS server. Organize the data in the form of relations (either 

normalized or de-normalized). A client interface which can interact with an 

RDBMS can provide multidimensional viewing and analysis of these data.  

ii) Use a Relational OLAP server. Organize the data in the form of a “star” 

structure. Client interfaces which can interact with the star structure provide 

multidimensional viewing and analysis of the data. Data warehouses can be 

implemented on standard or extended relational DBMSs, called Relational OLAP 

(ROLAP) servers. These servers assume that data are stored in relational 

databases, and support extensions to SQL and special access and implementation 

methods to efficiently implement the multidimensional data model and operations 

(Chaudhuri and Dayal, 1997).  

iii) Use a multidimensional database (MDB) server. Organize the data physically 

in the form of multidimensional arrays. Provide multidimensional viewing and 

analysis through client interfaces that interface with the multidimensional 

database (Chaudhuri and Dayal, 1997; Pedersen and Jensen, 2002). This is also 

known as multidimensional online analytical processing (MOLAP). 

The first option is unsuitable for multidimensional analysis for two reasons: performance 

and reliability. Since data in tabular form are not pre-processed, query responses needs to 

be computed dynamically which requires not only resources but also considerable time 

(Halawani et al., 2010). Also, inconsistent responses may be generated when an attempt 
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is made to analyze multidimensional data against a relational structure. The second 

option, in which the developer can use the star data structure, means that data are stored 

in a relational format that is specially designed for multidimensional analysis. Two types 

of tables are used: fact tables, and dimension tables (McFadden, 2002). The third option 

is to use a multidimensional database (MDB) server or MOLAP servers. With an MDB, 

data are pre-processed and stored in the form of arrays for fast and flexible retrieval in 

multidimensional analysis. In this way, it is possible to implement front-end 

multidimensional queries on the storage layer through direct mapping (Chaudhuri and 

Dayal, 1997).  

The most essential performance-improving techniques in multidimensional 

databases are pre-computation and pre-aggregation, which enable fast, interactive data 

analysis for potentially large amounts of data. As an example, computing and storing, or 

materializing total crop production by region and by year quarter is one application of 

pre-aggregation. These answers can be derived entirely from the pre-computed results 

without needing to access large bulks of data in the data warehouse. This method can 

save time and resources. The latest versions of commercial relational database products, 

as well as dedicated multidimensional systems, offer query optimization based on pre-

computed aggregates and automatic maintenance of stored aggregates during updating of 

the base data (Winter, 1998).  

 

2.5.5: Star schema 

In ROLAP architecture, data are organized in a star schema, the standard schema 

for dimensional modeling, which is divided into two main structures (Correa et al., 2009): 

(i) the additive numerical data which is being stored in a unique table or fact table 

(Abdullah, 2009); and (ii) dimension which is a set of similar entities, e.g., set of all 

employees or all products. The fact table is linked to all the dimension tables by one-to-

many relationships (Stamen, 1993). This is illustrated in Figure 2.4. Abdullah (2009) 

defined dimension as a business parameter that defines a transaction (or record) and 

usually consists of hierarchies. Each dimension in a data warehouse has one or more 

defined hierarchies, e.g., the weather dimension has multiple levels of possible 
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hierarchies like weather > humidity > humidity at 8:00 AM and 

weather > temperature > minimum temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Star schema for sales subsystem (data model) (Mishra et al., 2008). 

 

2.5.6: Snowflake schema 

The snowflake schema can be used in those cases where many-to-many relationships 

exist among the data of a dimension table and a fact table (Ballard et al., 1998). In case of 

the snowflake schema, all dimensional information is stored in the third normal form, 

while maintaining the same fact table structure. To protect the hierarchy, the dimension 

tables are linked with sub-dimension tables using many-to-one relationships. This 

accounts for why this model generates a modification of the star model where the 

dimensional hierarchy is clearly characterized by normalizing the dimension tables 
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(Ahmad et al., 2004). A snowflake schema for decision-support to assist builders is 

illustrated in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Snowflake schema for decision support system to assist builders (data model) 

(Ahmad et al., 2004). 

 

2.5.7: Fact Constellation schema 

Normally it is impossible for all measures and dimensions to be captured in a single 

model. Usually, a data warehouse consists of several fact tables explained by several 

(shared or non- shared) dimensions (Eder et al., 2006). A fact constellation schema has 

more complex structures in which multiple fact tables share dimensional tables 

(Chaudhuri and Dayal, 1997). For example, a sale item and the sale fee may form a fact 

constellation since they share many dimensions (Figure 2.6). 

 

 

 

 

Fact table for land 

appraisal 

Land for sale_key 

Price_key 

Land size 

Dimension table for 

land for sale 

Land for sale_key 

Owner_key 

Location _key 

Municipality  

 

 

Dimension table for 

price 

Price_key 

Base price 

Taxes and fee_key 

Commission  

Final sale price   

 

 

Dimension 

table for 

owner key 

Dimension 

table for 

location key 

Dimension 

table for taxes 

and fee_key 



 

30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Fact Constellation Schema for Sales subsystem (data model) (Mishra et al., 

2008). 
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2.5.8: Comparison of Logical Design Models 

Efficiency is the most important factor in data warehouse modeling because many queries 

access large quantities of data that may possibly engage multiple join operations (Martyn, 

2004). A star schema is usually the most proficient design for two reasons: (i) a design 

with denormalized data needs fewer joins between tables; and (ii) most software have star 

schema and can make efficient “star join” operations. In fact, constellation schema may 

require more join operations on fact tables. While a snowflake schema needs additional 

joins on dimension tables, in specific situations where the denormalized dimension tables 

in the star schema become extensively large, it may be the most adequate design 

methodology.  

Although the star schema is the simplest structure among the three schemas, it has 

the smallest number of tables, and users need to execute fewer join operations which 

makes it easier to create analytical queries. It is easier to learn the star schema than either 

of the other two schemas. Compared to the star and fact constellation schemas, the 

snowflake schema can share dimension tables and can be reused in a data warehouse. 

Dimension tables in a snowflake schema do not contain denormalized data. This makes 

dimension tables in the snowflake schema more reusable in a data warehouse. In star and 

fact constellation schemas design approaches, dimension tables are denormalized, making 

it less suitable to share dimension tables among schemas. Other advantages of the 

snowflake schema include storage of data in normalized tables, which reduces 

redundancy and results in fewer data inconsistency problems arising (Mishra et al., 2008).  

 

2.5.9: Design of a data warehouse 

The design of a data warehouse consists of three basic steps: (i) identifying facts 

and dimensions; (ii) designing fact and dimension tables; and (iii) designing data 

warehouse schemas. Identification of facts and dimensions include the following 

procedures: (i) facts represent quantitative data about a business transaction (e.g., land 

available for sale, price of land etc.) while dimensions reflect description of that fact 

(land owner, location etc.), (ii) design fact and dimension tables include the procedures to 
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define primary keys in the dimension tables and introduce related foreign keys in the fact 

table. As a result a fact table contains facts and keys foreign to the dimension tables. In a 

query, the system first accesses dimension tables and then the fact table. Designing the 

data warehouse schema includes the process of establishing the relationships between fact 

and dimension tables. The resultant schema will contain a central fact table and 

surrounding dimension tables. The three main types of data warehouse design schemas 

are star, snowflake and fact constellation (Ahmad et al., 2004).   

 

2.5.10: Accessing data from the data warehouse for analysis 

The main reason for using multidimensional data models for business data 

analysis is spread sheet programs. These are still a popular front end tool for OLAP. But 

the main thing in using a spread sheet as a front end tool is that either it supports the 

queries of OLAP or not, as OLAP queries are complex and summarize the data coarsely. 

The most accepted operation of spread sheet is “pivoting” (Chaudhuri and Dayal, 1997).  

The pivot operator transposes a spread sheet by aggregating values in the cells of a spread 

sheet. If pivot is created on two columns containing N and M values, the resulting table 

would be N*M values (Gray et al., 1997). 

The simplest view of a pivot is that it selects two dimensions that are used to 

aggregate a measure. In Figure 2.7, for all salesmen, the sale of product A is aggregated 

for years one, two and three in dimension for site one and two (Koutsoukis et al., 1999).  

Other operators associated with pivot table are roll-up or drill down. As in Figure 2.7 the 

pivot table is rolled up to all salesmen. The drill down operation is the converse of roll-

up, i.e., it serves to explore data for an individual salesman. Slice and dice corresponds to 

reducing the dimensionality of the data by taking a projection of the data on a subset of 

dimensions (Chaudhuri and Dayal, 1997). In Figure 2.7, the pivot table (product A) is 

actually a slice of the large pivot table of all the products (A, B, ... , Z).  
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Figure 2.7: Pivot table (Koutsoukis et al., 1999) 
 

Since pivot tables allow for the nesting of multiple dimensions within the same 

axis, they are adequate for displaying the query results in a straightforward fashion. 

However, they fail in showing selected values in a larger context and are thus a rather 

poor option for complex data exploration. Advanced OLAP tools overcome these 

limitations through visual alternatives for retrieving, displaying, and interactively 

exploring the data (Vinnik and Mansmann, 2006). Vassiliadis (1998) classifies OLAP 

cube operations as level-climbing, packing, function-application, projection, dicing, as 

well as more complex operations, such as navigation and slicing, which are defined on 

top of the simple ones. He (Vassiliadis, 1998) does not use pivoting in this classification 

since he claims that pivoting is simply a reorganization of the presentation of the data, 

rather than a modification of their value or structure. When applying these functions to 

the existing cube, each operation resulted in a new cube. Aggregate functions were 

available through slicing and navigation. 

 

 

2.6: Application of data warehousing 

Comprehensive Assessment for Tracking Community Health (CATCH) provides 

methods for community-level assessment that are very useful in resource allocation and 

health care strategy formulation. A community-level focus is proposed to support local 

decision-makers by providing a clear methodology for organizing and understanding 

relevant health care data. Data warehousing technology, has led to an innovative 

application of information technology in the health care arena along with extensive field 
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experience with CATCH methods. The data warehouse allows a core set of reports to be 

produced at a reasonable cost for community use. In addition, OLAP functionality can be 

used to gain a deeper understanding of specific health care issues (Berndt, 2003).  

Data warehousing helps organizations in analyzing patient populations by 

geographic location, diagnosis, and service consumption to determine which disease 

management programs will be most beneficial to the patient and the organization. The 

purpose of this plan is to improve member health status, lower medical expenses and 

increase physician participation. Implementation of disease management programs allow 

providers and organizations to actively manage patient care and inform patients so they 

can monitor their own condition, which will effect a decreased use of high-cost services. 

The organization should be financially successful, and the outcome is a healthier patient. 

Disease management efforts which are well developed may even lower disease 

occurrence in people (Ramick, 2001).  

In the field of education, the goal of the data warehousing project at Stanford 

University was to develop algorithms and tools for the efficient collection and integration 

of information from heterogeneous and self-governing sources, including legacy sources. 

The warehousing approach was particularly useful when high query performance is 

desired, or when information sources were expensive or transitory (Hammer et al., 1995).   

Chaudhary et al. (2004) proposed a data warehouse architecture which had the 

potential to satisfy information requirements for effective decision-making in the 

agricultural domain. Challenges related to administering the collection of a vast amount 

of transactional data, their processing, analysis and display were addressed by three 

capable technologies: sensor web enablement, web services and OLAP. Analysis services 

provided support to build OLAP cubes of varying dimensions. With the support of 

Multidimensional Query [MDX] technology, complex OLAP analysis operations like 

slice, dice, and drilldown, were possible on a simple web browser. This capability has the 

scope to help farmers and policy-makers to make operational and strategic decisions. 

The value is added to data when it can be used as information to improve the 

decision-making capability of individuals. Valuable data are collected and reported, but 

difficulty in finding, accessing, and processing the information lessens its value to 

agricultural decision-makers. A data warehouse structure provides the additional features 
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of data management, query, and decision-support systems, thus moving users towards the 

specificity in data that they desire. This structure would allow decision-makers to more 

resourcefully access and process the assets of available information, thus reducing 

exploration and overall transaction costs in decision-making (Thornsbury et al., 2003).  

The agricultural advisory system called eSagu (a data warehouse), has been 

developed to improve the performance and utilization of agriculture technology and help 

Indian farmers. With the help of this data warehouse, the agricultural expert delivers 

expert advice at regular (weekly) intervals to each farm by getting the crop status in the 

form of digital photographs and other information, rather than visiting the crop in person. 

During 2004-06, agricultural experts’ advice was delivered to about 6000 farms growing 

six crops with the help of this data warehouse. The results show that the experts’ advice 

helped the farmers to achieve savings in capital investment and improved crop yield. The 

data warehouse was based on farm histories providing crop-related information to the 

agricultural experts in an integrated manner, allowing them to generate quality 

agricultural advice (Reddy et al., 2007).  

In another example, a data warehouse based on multidimensional data models was 

used for simulation purposes. Urbanization, climate change and deforestation are 

complex situations and a lot of data is collected on these dynamics. Consequently, these 

dynamics may be better viewed with the help of multidimensional data models, to 

identify and predict the evolution of the environment in response to potential value 

changes in a large number of influence variables. Data warehousing systems provide 

tools for supervision of simulation results originating from different sources. Besides, 

OLAP technologies allow analysis and evaluation of these results and their resultant 

models. The users can use this methodology to design specific data warehouses, and an 

adaptation of an OLAP client tool to provide an adequate visualization of data (Mahboubi 

et al., 2010). 

It is the objective of this study to consider the various sources available for 

improving the decision-making process in the Québec dairy industry, demonstrate the 

process of acquisition, cleaning and de-normalization, and explore the methods for 

modelling these multidimensional data.  Their storage in a data warehouse, as well as 
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their viewing through an appropriate schema, should facilitate the analytical process of 

querying these data for the benefit of producers and their advisors in the dairy industry. 
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Chapter 3: Materials and Methods  

3.1: Data extraction and cleaning 

The Online Transaction Processing (OLTP) Systems at Valacta are the basic 

element in the IT-infrastructure of Quebec Dairy Industry. These are the common data 

storage used by all producers enrolled in the dairy milk recording system. They represent 

the point of data entry for each cow, and provide access to the data collected by other 

systems, e.g., Breed Associations and the Canadian Dairy Network. In spite of these 

characteristics, the databases at Valacta cannot be considered as data warehouses per se. 

Data in these systems are used and organized according to operational purposes, where 

many kinds of data about one cow are presented to get an overview of the milk 

components, feed information, breeding dates, health status, etc. On the other hand data 

in a data warehouse would be stored with respect a specific subject like milk production 

for a herd in a specific year in a specific season in a specific region. Therefore a data 

warehouse needs historical data by which trends can be analyzed. Thus extraction of 

historical data from the operational databases at Valacta was an important component of 

this research. All of the files which were extracted from the operational databases were in 

the form of SAS (Statistical analysis system) datasets, which were denormalized. The 

number of test day records, herds and cows are given in the following table which were 

based on years 2000 to 2009 (Table 3.1).  

 

  

Name of attribute Number of records 

Herds 6,917 

Cows 1,203,134 

Test day records 25,398,435 

 

Table 3.1: Record details 

 

The test day records were extracted in four SAS datasets. Among the four, the dataset 

which was selected for study had 8,295,154 test day records, 1,943 herds and 447,414 
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animals. A typical test day record consist of information such as unique herd 

identification number (hrd_id), unique cow identification number (anm_id), unique herd 

test period identification number (htp_id), parity, milk in kilograms, percentage of fat, 

percentage of protein, percentage of lactose, MUN (milk urea nitrogen (mg/dl), SCC 

(somatic cell count(*1000)), and days in milk (DIM). An anm_id and hrd_id also pointed 

to the records in other files, e.g., lactation file, feed file, breeding file, etc. A change in 

the status of the cow, e.g., shift from one lactation to the next lactation, change in weight 

gain, change in health status, was present in these files. Thus, once a record is entered, it 

is conserved to see the life time history of a cow. Therefore “time” at which the data are 

included in the operational data stores is very important to see the history of a cow, which 

accounts for why there are gigabytes of data stored in operational data stores every year. 

A step by step process of warehousing data is shown in Figure 3.1.  The SAS 

datasets were studied carefully for type of variables, count of different variables, missing 

values, and minimum and maximum values. Then data were “cleaned” (missing values 

and outliers) according to some accepted rules, and classified by using SAS univariate 

and FREQ procedures (Figure 3.2).  

 

Figure 3.1: Process of data warehousing. 

 

After the removal of outliers with ± 4 standard deviation, 7,911,659 records 

remained.  A detailed study was conducted on their attributes with an emphasis on their 

data type and length, since in operational databases; catalogues contain fundamental data-

type information such as whether an attribute is real, string, integer or a date. From this 

information of fundamental data types certain properties were useful to determine which 

attributes could be derived from other attributes. Attributes were also classified as to 
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whether they had continuous or discrete values. This information was very significant 

with respect to the selection of dimensions and facts for the multidimensional data model. 

Data were denormalized so that attributes having null values were also considered, since 

in dimensional data modeling, null values were tackled carefully to avoid wrong 

calculations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: SAS univariate procedure to see the distribution of fat and milk in the data. 

 

3.2: Data transformation 

Data transformation actually encompasses all those features which transform data from 

operational databases to a data warehouse. Different required attributes were calculated 

from the existing attributes, where necessary and data were carefully inspected to 

determine if the output was reasonable or not. In this way values could be easily 

distinguished between the extremes of reasonable and unreasonable. This type of analysis 

dealt with obvious cases of data inaccuracy. An example of the code is given in the 

Figure 3.3 in which different new columns were created from the existing attributes. 

 

 

 

/*Procedure univariate to see the distribution of milk quantity and fat percentage in the 

data*/  

proc univariate data= parity1; 

var fat; 

HISTOGRAM fat/NORMAL (COLOR=RED W=5); 

RUN; 

proc univariate data = chk_lact; 

var milk305; 

by parity; 

HISTOGRAM  milk305/NORMAL (COLOR=RED W=5); 

RUN; 
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Figure 3.3: Calculation of the new columns from the existing columns  

 

 

 

 

 

 

 

 

Figure 3.4: Classification of the data for defining dimensional hierarchies 

 

In the data, variables were identified for defining dimensions (dimension table: 

which give the perspective for the measure) and measures (fact table: the objects of 

analysis) for the development of a multidimensional data model. The primary key and 

foreign key relationships were studied to see how one attribute relates to other attributes 

in other files. For the definition of the dimension structures data were broken into 

separate dimensions, such as a dimension for herd, for cow, for parity groups (parity 

group 1 in which first parity cows were present, parity group 2 in which second parity 

cows were present and parity group 3 in which third and above parity cows were present 

(Figure 3.4), dimension for season of calving, etc.  

What the granularity for each dimension would be was also determined. Like in 

case of test day granularity was considered each test date. In the case of region, breeds, 

herds and cows, region and herds were kept in the one dimension table and breed with 

cows in one dimension table. The level of granularity for region was to the herd, and to 

the cow for the breed table. The reason behind keeping herds and cows in separate 

create view feed_dm1 as Select hrd_id,anm_id,htp_id,qty,ab,FDC3, descrp,DM,nel,cp, 

(Case when (FDC1='7' or  FDC1='8' )  

then qty/1000 else qty  end) as qty_kg from feed_daytest; 

/* Classification of data for parity groups*/ 

data a; 

set MkCom.test_day_scc; 

if parity = 1 then parity_gp="pgp_1"; 

if parity =2 then parity_gp="pgp_2"; 

if parity>= 3 then parity_gp="pgp_3"; 

run; 
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dimension tables was the hierarchical characteristic, since it was a classic ragged or non-

covering hierarchy. A ragged hierarchy or non- covering hierarchy is a hierarchy in 

which children do not have parents at the same next level. In other words, not all leaf 

level (or parent level) entries have the same depth (Not all cows have information on all 

parities, similarly not all herds have the same number of cows). After designing the 

multidimensional models on paper, it was decided to transform them to software, so data 

from SAS were loaded to SQL server management studio 2008 with the help of the SQL 

server native client for the ODBC driver
1
 (Figure 3.5). 

 

 

 

 

 

 

Figure 3.5: Connection of SAS with SQL server for data loading 

After data were in the SQL server, views were created on the data or the required tables 

were created to transform the data into a multidimensional model (Figure 3.6, 3.7 and 

3.8).  

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Fact table 

                                                           
1
 ODBC is a standard definition of an application programming interface (API) used to access data in 

relational databases. SQL Server supports ODBC, via the SQL Server Native Client ODBC driver to 

communicate with the SQL Server. 

libname sqlsvr odbc datasrc="myodbc" user= password=; 

Data sqlsvr.daytest; 

set MkCom.test1; 

run; 

 

 

 

/* daytest the fact table */ 

create table daytest (hrd_id float,anm_id float,parity float,test_date date,  

milk float,fat float, protein float,mun float,lactose float, scc float 

Primary key (hrd_id,anm_id,parity,test_date)); 

 

insert into daytest (hrd_id,anm_id,parity,test_date,milk,fat,protein,mun,lactose,scc) 

select hrd_id,anm_id,parity,test_date,milk,fat,protein,mun,lactose,scc from daytest; 

create view dim_con_rec as select * from testday; 
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Figure 3.7: Creation of dimension tables 

/* Create dimension for date of calving*/ 

create table dim_doc_daytest (doc Date, season_doc varchar(max)); 

insert into dim_doc_daytest(doc,season_doc) select distinct doc,(case when 

month(doc)>9 then 'Fall' 

when month(doc)>3 and month(doc)<=6 then 'Spring' 

when month(doc)>6 then 'Summer' 

else 'Winter' end) as season_doc from daytest; 

/* Creating Dimensions and fact table for test day file*/ 

 

/*Create cow dimension*/ 

create view dim_anm_daytest as   

select distinct anm_id from daytest; 

/*Create herd and cow bridge dimension*/ 

create view dim_hrdanm_daytest as  

select distinct hrd_id,anm_id from daytest; 

/*Create herd dimension*/ 

create view dim_hrd_daytest as  

select distinct hrd_id from daytest; 

/* Create dimension for breed*/ 

create VIEW dis_anb_test AS 

select distinct anb_cd from hrd_anm_test; 

/* Create diemsion for region*/ 

CREATE VIEW DIS_REGION_TEST AS  

select distinct region from hrd_anm_test; 

/* Create diemsion for parity*/ 

create table dim_parity_daytest (parity float, parity_gp varchar(MAX)); 

insert into dim_parity_daytest (parity,parity_gp) Select distinct parity,(case when 

parity=1 then 'First_Parity' 

when parity=2 then 'Second_Parity' else 'Thrid_Parity+' end) as parity_gp from daytest; 
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Figure 3.8: Creation of dimension table. 

 

Microsoft SQL Server Analysis services provides a graphical user interface to 

communicate with the SQL server through standard API OLEDB (Object Linking and 

Embedding, Database). With the help of this API, data source views can be created on the 

tables and views, present in SQL server database engine. The facilities provided by 

Microsoft in analysis services are actually an interface for online analytical processing 

(OLAP). OLAP (Codd et al., 1993) is an area of active business and research interest and 

these tools focus on providing prompt response to ad hoc queries that summarize the 

warehouse data. With the help of this quick response by OLAP tools, clients can analyse 

the data and make informed decisions. OLAP applications are not supported by entity 

relationship and relational models, therefore those models which support 

/* Create dimension for condition record (disease information)*/ 

create table dim_car_daytest (car_1 float , record_condition varchar (max)); 

insert into dim_car_daytest (car_1, record_condition) 

select distinct car_1, (case when car_1=1 then 'Sick' when car_1=2 then 'Bloat' when car_1= 

3 then 'Dysentry' 

when car_1=4 then 'off_feed' when car_1=5 then 'Ketosis' when car_1=6 then 'Peritonitis' 

when car_1=7 then 'Mastitis' 

when car_1=8 then 'Sick_lame' when car_1=9 then 'other_helth_problem' when car_1=10 

then 'Udeer_injury' 

when car_1=11 then 'other_injury' when car_1=12 then 'Milk_fever' when car_1=13 then 

'Metritis' when car_1=14 then 'Displaced_abomasum' 

when car_1=15 then 'Et_flush' when car_1=16 then 'In_heat' when car_1= 17 then 'Nervous' 

when car_1=18 then 'Aborted' 

when car_1=19 then 'Oxcytocine' when car_1=20 then 'Rectal_palpation' when car_1=21 

then 'Growth_hormone'  

when car_1=22 then 'Fever' else 'no_record' end) as record_condition from daytest; 
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multidimensional view of data become known. The models which support a 

multidimensional view of data have measurable facts like milk production, percentage of 

fat, percentage of protein, MUN (mg/dl), percentage of lactose and SSC on a specific test 

day and dimensions which characterize facts such as herd (in a hierarchy of herd and 

cow), date of calving (in a hierarchy of seasons, i.e., winter, spring, summer and fall), 

time for test day (in a hierarchy of year, month and date), parity (parity group 1, 2, and 

3+), region (there were seventeen regions in the test day file), and breed (there were eight 

groups for breed code).   

 

3.3: Data storage in a warehouse with a multidimensional schema 

The development of multidimensional data models of these data was quite 

complex since missing data as well as attributes in dimensions which had different levels 

of granularity had to be accommodated.  As discussed earlier, several approaches exist in 

the literature, e.g., separate star schema for each path (Bauer et al., 2000), by separate 

tables for each level of hierarchies based on different paths (Jagadish et al., 1999), and 

using null values for absent levels of an attribute (Lehner et al., 1998). In this 

dimensional model, separate dimension tables were created for herds and cows 

(snowflaking), and null values were used for the absent level of an attribute. Many-to-

many relationships between facts and dimensions were also captured by using a 

snowflake schema. For performance and study, star and constellation schemas were also 

considered. The details of these schemas are presented in the results and discussion 

section. There was another issue of using the same time dimension for test day and 

calving in a year. Use of same dimension of date for test date (in a hierarchy of year, 

month and date) and calving interval (ideally calving interval is 305 days lactation length 

and 60 days dry period) was impractical. Using the same dimension of time degrades the 

quality of the data – arguably one of the most important potential erroneous conclusions 

based on following OLAP queries. The hierarchies in dimensions (Figure 3.9 are actually 

used for drilling down and rolling up the aggregated data, so that test date is rolled up to 

month and then month is rolled up to year, but the calving in a year was based on season 

of calving. Figure 3.9 depicts the dimensional hierarchies in the case of test day, calving 

interval, herd, and herd-cow bridge dimension.    
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Figure 3.9: Dimensional hierarchies in multidimensional data model. 

 

For the creation and deployment of multidimensional (OLAP) cubes, data were 

loaded into Microsoft Visual Studio 2008 (Analysis services) with the help of the SQL 

server Native Client driver for OLEDB. To create a new Analysis Services project, in the 

environment of Visual Studio 2008, the Analysis Services Project template was selected. 

A new folder was created for this project by default in the directory of My Documents in 

Windows 7.
2
 After creating this new project a data source was created which was a data 

source object, represented by a connection to the data source from which data were 

imported. The connection was established with Native OLEDB/SQL Server Native Client 

10.0. Through this native client of the SQL server, a connection was established between 

analysis services and the SQL server database engine, after entering the name of the 

server and other authentication credentials. This data source wizard had options of 

different databases presented in a list, so the desired database was selected from the list 

(Figure 3.10).   
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Figure 3.10: Analysis services data source  
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Figure 3.11: Analysis services data source view  

 



 

48 
 

This object was used to create data source view. “A data source view contains the logical 

model of the schema used by Analysis Services database objects namely cubes and 

dimensions" (http://msdn.microsoft.com). A data source view (Figure 3.11) had metadata 

that were used to generate an underlying relational data store. It also had relationships; 

primary keys, calculated columns, and queries that were not present in an underlying data 

source and which were separate from the underlying data sources, i.e., if there were any 

changes made to the data source view, there was no change in the original tables in the 

SQL server.   

After the definition of a data source view, the cube was ready to be build. The cube was 

defined with the help of the cube wizard, thereby establishing the primary foreign key 

relation between dimensions and fact. However, in the case of bridge dimensions (many-

to-many relationship between dimension table and fact table) dimensions were defined 

using the dimension wizard, processed, and then added to the cube (Figure 3.12). The 

fundamental components of a cube are dimensions and measures. Dimensions are called 

categorical attributes and measures are called numerical or summary attributes. 

According to Agrawal et al. (1997) there is no formal way of deciding which attributes 

must be made dimensions and which attributes must be made measures; it is left as a 

database-design decision.  

In order to navigate the data, dimensions explained the organization of the cube that was 

used to slice and dice, and measures provide aggregated numerical values of interest to 

the client. At the junction of dimension members, a cell in the cube is defined as 

containing the aggregated values of the measures at that specific junction; thus cells are 

defined for every possible summarized value. As a coherent arrangement, a cube permits 

a client request to extract values or measures, as if they were contained in cells in the 

cube. In the Cube designer window, the cube structure (Figure 3.13) tab gives one the 

opportunity to deal with measure properties and to define new measures and edit existing 

measures. Because analysis services does not support simple average calculations, counts 

of non-empty rows were created for each milk component to divide the sum of each milk 

component value for the calculation of averages. 
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Figure 3.12: Herd_Bridge_Cow (snowflaking for many-to-many relationship between 

herd and cow and fact table). 
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Figure 3.13: Cube structure 

Dimensions appeared in the dimensions pane of the cube structure tab in the cube 

designer window; seven dimensions were created at the database level, as displayed in 
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solution explorer; however, there are eight dimensions in the cube shown in the Figure 

3.13. The time dimension in the cube was not present in SQL server, but the built-in 

dimension in analysis services was used. The data which were used were based on a ten-

year time period (2000-2009) so dates were mapped to the dates of a built-in time 

dimension and a hierarchy of year, month and date was used (Figure 3.14).  

 

Figure 3.14: Dimension structure for time dimension  
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Before deploying and processing the cube each dimension was processed and 

hierarchies were set.   

In the solution explorer pane, the options of the dimension designer included four 

tabs for dimension structure, attribute relationships, translations, and browser. The 

dimension structure tab included three panes: attributes, hierarchies, and data source 

view. Those attributes which were present in the dimension table appeared in the attribute 

pane. The hierarchies were defined in the “hierarchies” pane of the dimension structure 

tab. In the attribute relationship tab, Microsoft SQL Server Analysis Services 

automatically defines the relationship between the key attribute and each non-key 

attribute of the dimension in the case of the star schema. However, in the snowflake 

schema where dimension attributes are derived from multiple related tables (cow  herd-

cow bridge table herd), attribute relationships are automatically defined (i) between the 

key attribute (anm_id-dimension cow) and foreign key attribute (anm_id in fact table); 

(ii) between the key attribute (anm_id, hrd_d id composite key in the herd-cow bridge 

table) and the foreign key attribute (anm_id dimension cow) in the dimension tables; and 

(iii) between the key attribute (hrd_id dimension herd) and the foreign key in the bridge 

table (anm_id, hrd_d id composite key in the herd-cow bridge table). The dimension 

usage tab was important given that it was the place where the relationship between each 

dimension and fact table had to be defined and the granularity level was set for 

calculations (Figure 3.15).  
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Figure 3.15: Dimension usage in cube structure tab  

Before calculated members were created in the cube it was deployed and 

processed. The “deployment” started with the build option and the actual aim of 

deployment was to compile the cube and create an analysis services database and update 

the existing database after each deployment. On the other hand “processing” the cube, 

copied the data from the underlying data sources into the cube objects; however, without 
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processing the cube it could not be browsed. Thus “deployment” gave a structure to the 

analysis services database and “process” gave the data for analysis. Whilst the browser 

tab was used to view both cube and dimension data, this tab provided special capabilities 

based on the objective of browsing. For dimensions, this tab offered a way to navigate a 

hierarchy all the way down to the leaf node (Year-Month-Date). The browser tab also 

offered a built-in MDX query designer by which data were filtered according to 

requirements. Data from the cube were also analyzed using Excel which can point to the 

cube with the help of a predefined connection in analysis services.    

3.4: Analysis of data with an OLAP cube 

Once the cube was processed, the measures which were created in the cube 

structure measures pane were available for calculations or query with a multidimensional 

expression (MDX). The calculations tab of the cube design MDX was used to calculate 

the averages for milk components. Format string property was used to define formatting 

settings ("#, ##0.00;-#, ##0.00") that control how measures are displayed to clients 

(Figure 3.16). After the calculations cube was processed again, different options for 

processing the cube like process default, process full, process data, process structure, 

unprocess, process index and process incremental were available (Figure 3.17). The 

“process default” option identified the process state of the database tables, and performed 

the processing necessary to a fully-processed state. When there were changes in the data, 

this option implemented “Process Full” on the affected table. “Process full” was 

performed on a cube that had previously been processed. Analysis Services discarded all 

data in the cube, and then processed the cube. When a structural change was made to the 

cube this processing was used. “Process data” was only useful when there were no 

aggregations in the cube. “Process structure” was only used for cube structure to be 

processed, not for relevant structures related to cube-like mining models. “Unprocess” 

was used to delete all structures, data indexes and aggregations from the cube. “Process 

index” was used to generate or reconstruct indexes and aggregations for a processed 

cube. “Process incremental” was used to send SQL queries to read the entire dimension 

table and apply the changes. This worked in a different way than “Process full,” as this 

option did not discard the dimension storage contents. However, “Process full,” did an 
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implicit process clear on the cube. “Process incremental” was slower than “Process full” 

since it had added work to apply the changes to the cube.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Calculated measures 
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Figure 3.17: Processing options of a cube 

 After processing, the cube was ready for data analysis, and for the first time 

the cube was available for data analysis in cube editor (Figure 3.18). Data analysis is the 

procedure of drawing out information from large databases. The strong feature of the 

OALP supporting software is the drag and drop option for drill down and roll-up 

navigation inside the cube data. When operations (such as level-climbing, packing, 

function-application, projection, dicing) were applied to the existing cube, each operation 
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resulted in a new cube. Aggregate functions were available through slicing and 

navigation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Cube browser 
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The set of allowed aggregate functions are average, count, sum, min, rank (n), and 

no-operation. All of them were well-known relational aggregate functions, except for no-

operation which means that no function is applied on the data of the cube and rank (n) 

which returns the first n-components of an aggregated set of values which can be ordered. 

Detail of these cube operations are discussed in the results and discussion section. 
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Chapter 4: Results and Discussion 

4.1: Data Extraction and cleaning 

The extraction of data from the operational data stores was important as these 

stores did not support analytical query execution. Analytical topics like ‘number of 

animals in different parities in a herd,’ ‘rank of cows’ milk production, and ‘feed intake 

needs,’ require significant data sorting and the joining of multiple tables. As a result such 

queries really slow down the working of operational databases. Therefore it is advisable 

to separate computer systems; i.e., an operational database for operational tasks and a 

data warehouse for analytical query execution (Chaudhuri and Dayal, 1997). Operational 

databases are relational databases; therefore their structure of relational databases does 

not support the analytical query execution. Relational databases support short queries due 

to their highly normalized data. Analytical queries are ad hoc and access millions of 

records at a time, which requires many table scans, such that normalized tables cannot 

support them. 

The extraction of data from the operational databases at Valacta was not easy as 

these datasets differed from conventional datasets present in business environments. The 

major challenge was to extract data in chronological order as these datasets are available 

for a period of more than 10 years. The main reason to keep historical data is to observe 

the performance of cows; however, an ordinary business would only keep data for six to 

ten years. None of this data had been deleted, allowing one to see the performance of past 

cows. In a business environment, relevant data can change due to the 

introduction/discontinuation of new/old products, price changes, changes in customer 

preferences, so the results of queries can often become outdated. However, in the case of 

dairy data, historical data are as important as data pertaining to human medical issues, 

which are collected but seldom deleted. In this perspective, the design of a data 

warehouse was not easy, as historical data had to be stored in a chronological order so 

that whenever they was extracted for analysis they would give reasonable results. 



 

60 
 

The main objective of collecting data at dairy farms is to see the performance of 

the dairy herds and to take effective decisions at the farm level. Decision-making depends 

upon the analysis of data. If data are entered incorrectly and then used for analysis they 

will not show a clear picture of the cows and ultimately the herds. Thus, to get the desired 

results from the data and to take effective decisions, data were cleaned by taking input 

from the domain experts and consulting the literature. Outliers were removed and missing 

values were also treated while designing the multidimensional data model. Data were 

cleaned in a different staging area before being loaded to the data warehouse. Almost 

everywhere data warehouses have been developed researchers (Ahmad et al., 2004; 

Chaudhuri and Dayal, 1997; Gray and Watson, 1998) have emphasised the importance of 

cleaning the data. Therefore data warehouse was not only a storage place for historical 

data used for analytical purpose, but also contained cleaned data. 

4.2. Data transformation and de-normalization 

The data transformation process was a very important phase of project. In this 

process all the variables which were desired by the analytical queries were calculated, 

e.g., dry matter intake by the cows on a specific test date. Attributes were selected for 

defining dimensions (herd, cow, test date etc.) as well as facts (quantity of milk, fat and 

protein percentages on a specific test date, etc.). The primary key and foreign keys were 

declared while views were created on the base tables. Data were subdivided into, data 

about a cow on individual test day, summarized data on all test days for each cow, and 

information about variables. The lowest level of detail of each record was test day on 

which milk was recorded for each cow. Test day records were considered as a special 

case because these records are unique on Quebec dairy farms, and available for an 

individual cow. If the cow was considered as an entity then it had certain characteristics 

like a registration number, date of birth, weight, body condition score, date of conception, 

lactation start date, lactation end date, information related to milk production and milk 

components, information on calves born, information on the sire to which this cow was 

bred, information related to its feeding and about the herd in which the cow was present. 

The test day records were available from the year 2000 to the year 2009. Milk 

components like fat and protein percentages, SCC and MUN were recorded in year 2000 
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but records on lactose were only available from 2001 onwards. Percentages of available 

MUN and lactose records were 37% and 30%, respectively, among other milk component 

records, as these were recorded in a subset of herds. Almost all transformations were 

conducted with the help of SQL.   

An important part of the data transformation process is de-normalization which 

actually improves query performance. The de-normalized data were used to develop 

multidimensional models which provide: (i) a database structure that are easy for end 

users to understand and submit queries to these databases; and (ii) database structures 

which maximise the efficiency of queries, which is achieved by minimising the number 

of tables and relationships among them. These structures also decrease the complexity of 

the database and lessen the number of joins obligatory in user queries. Therefore de-

normalization is appropriate for a data warehouse (Ahmad et al., 2004). The de-

normalization of cow and test day table into one table is illustrated in Figure 4.1.   

 

 

  

 

    De-normalization  

  

 

 

 

Figure 4.1: Transformation of normalized data into de-normalized data.  
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 The normalization is the main cause for the complexity of transactional databases; 

it tends to increase the number of tables needed to keep functionally-dependent attributes 

in separate tables. Although this helps in updating of data, it seriously thwarts the 

retrieval of data. In data warehousing, redundancy is a minor problem because data is not 

updated on-line. Consequently, data in the data warehouse is de-normalized, a technique 

whereby one moves from higher to lower normal forms of database modeling in order to 

speed up database access and hence query processing (Kimball, 1996).  

4.3: Data warehouse 

After the identification of dimensions and facts, dimension and fact tables were 

created during the data transformation process, make them available for the design of a 

data warehouse schema. A data warehouse schema is a database design which can show 

the relationships between different tables containing data. A schema for a data warehouse 

is a multidimensional data model having a central fact table and surrounding dimension 

tables. To design a data warehouse, a data-driven approach was used. In this approach 

data were first explored for identification of dimension and fact tables and then an 

abstract schema was developed for a data warehouse. This approach was also used by 

Mahboubi et al., (2010) in their design of a data warehouse for simulation results. 

Designing a data warehouse with this approach was found to: (i) be the fastest method for 

the development of a data warehouse; and (ii) provided a good opportunity to understand, 

explore and analyze the data. After the completion of the data warehousing process the 

queries were executed on the warehouse, as suggested by Inmon (1996).            

The use of a data warehouse requires dimensional models, which represents a 

different modelling approach from operational databases. The basic schema of 

operational databases is one of entity relationship modelling. Entity relationship models 

cannot allow users to easily navigate in the database and execute analytical queries, as 

this modeling technique is used to remove redundancy in the data and is coupled with 

normalization. The data in the data warehouse is mostly denormalized; therefore, entity 

relation models could not be used as the basis for data warehouses. On the other hand 

multidimensional data models allowed quick access to the data and were built on 

denormalized data. A possible entity relationship model which depicts the difference 
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between this model and a multidimensional data model is shown in Figure 4.2. Where an 

entity is something which can be distinctly identified, such as herd, cow, test day (on 

which milk is collected), milk components (milk yield, percentage of fat, protein and 

lactose, MUN and SCC). A relationship is an association among entities, e.g., the 

relationships between herd and cows, and cows and test days and test days and milk 

components. Studies also specify that traditional database design techniques, i.e., entity 

relationship modeling and normalized tables, are not appropriate for data warehouse 

applications (Pedersen et al., 2001); as a result, new techniques, e.g., star schemas, have 

emerged. These better support the data warehouse needs of data analysis (Kimball, 1996). 

Some other schemas include the snowflake schema, or a hybrid of the two, the star-flake 

schema (Ahmad et al., 2004).  
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Figure 4.2: An entity relationship diagram of test day records.  
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Multidimensional data models emerged during the last decade to exploit data 

warehouses when the objective was to analyze the data rather than to perform online 

transactions. Multidimensional models categorize data either as facts with associated 

numerical measures or as textual dimensions that characterize the facts. It was found that 

these models were helpful in (i) viewing certain features of the data, (ii) summarizing the 

data, and (iii) providing a quick response to analytical queries.  Need of all three factors 

is most obvious in databases that are used for decision-support. Models were visualized 

in such a way that future users can draw information from these databases even when 

implemented on a larger scale. 

 

4.3.1: Selection of schema (data model) 

Among the three schemas discussed, the star schema had the simplest database 

structure, containing a fact table in the center which is surrounded by the dimension 

tables (Figure 4.3).  
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Figure 4.3: Star schema (data model)  

 

 

Most data warehouses used a star schema to represent the multidimensional data 

model (Chaudhuri and Dayal, 1997). A simple star schema for a test day file (Figure 4.4) 

was arranged such that the dimensions have an exactly one-to-many relationship with the 

fact table. The model is composed of a single fact table surrounded by a single table for 

each dimension. The fact table contains measurements of the mean yields of milk, milk 

fat and milk protein. The dimension tables provide the basis for the summarization of the 

measurements in the fact table. The primary key of the fact table is the combination of the 
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primary keys of all the dimension tables that provide its multidimensional match, and 

stores the numeric measures for those matches. In the case of a star schema, dimension 

tables have embedded hierarchies which are the result of denormalization of the data in a 

data warehouse. A detailed star model is depicted in Figure 4.5.  

 

 

One-to-many relationship  

Figure 4.4: Example of relationship between a fact table and dimension tables (data 

model of star schema). 

Cow ID Test date 

1281960 2000-01-10 

1281960 2000-02-9 
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1281960 
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Figure 4.5: Detailed star schema. 
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Using a star schema approach seems quite simple, and the best practice to design 

a data warehouse (e.g., Kimball et al.,(1998)). The formation of star schemas is based on 

an analysis of user query requirements and then identification of facts that need to be 

aggregated and the dimensional attributes to aggregate them by. Nevertheless there are a 

number of practical challenges with this approach, including the existence of 

relationships in the data leading to ultimately incorrect results (Moody and Kortink, 

2000). As a result the approach of Inmon (1996) was used in the preset study, by first 

exploring and understanding the data and then trying to develop a model. The following 

discussion comprehensively explains the characteristics of datasets available for this 

research and also highlights the need to develop a snowflake schema instead of a star 

schema.   

In the case of multidimensional data models, measures (facts in the fact table) are 

in exactly n-1 relationship with the elements of the dimension tables, which, in turn, set 

strict hierarchies from lower level to upper level, e.g., milk is specifically recorded for 

one cow on one test day, and on a specific test day the cow belongs to a specific 

management group, in a specific parity in one specific herd. But cows belong to different 

management groups according to their stage of lactation within a single parity, and cows 

could also move from one herd to another herd in the same parity or different parities.  

Likewise the relationship between dimension tables and a fact table is also many-to-

many, as a cow normally has multiple test day records in lactation and each cow may 

have has several locations. So a data model in which test day records for each cow were 

counted only once was needed. However this would not be easy using conventional 

multidimensional data models. 

This problem was solved by snowflaking the dimensions having many-to-many 

relations with the data in the fact table. Although Pederson et al., (2001) discussed three 

ways to achieve this – traditional dimensions, mini-dimensions and snow flaking – it was 

found that, in the case of first approach, a primary key was needed for our research, based 

on the combination of herd ID, cow ID and test date, to uniquely identify a record in the 

fact table. The name of this dimension table was herd_cow_testday. The total records 

exceeded one million in our case. The length of each variable in the herd_cow_testday 

dimension table was eight, resulting in a table 24 Mb in size. This was estimated by 



 

69 
 

roughly multiplying the record length with the number of records. The size of this table 

on the disk was 219 Mb on the SQL database server including the index size. If the same 

approach were used for the 117,068,136 rows which are present in the feed file, the disk 

size for this table would be 2.7 Gb.  This would be a very wide dimension table and 

simply unusable for the client. It would also cause difficulties in writing MDX 

(multidimensional expression) queries as this dimension structure would not provide 

implicit attribute hierarchies (herd  cow).  

In a second approach, the use of mini dimensions was chosen, but it proved not be 

very useful as there were 6,917 herds; if we took cows in each herd as a dimension table 

then we would have 6,917 mini dimension tables, which would also be impractical. 

The third approach was to use snowflaking dimensions, which provided a 

refinement of the star schema, where the dimensional hierarchy is clearly represented by 

normalizing the dimension tables (separate herd and cow dimension tables). This 

advantage was also reported by Chaudhuri and Dayal (1997); however, they emphasised 

that the denormalized structure of the dimensional table in a star schema may be more 

suitable for browsing dimensions. In the case of this research, although it was easy to 

browse the dimensions in the star schema, the star schema did not support hierarchies of 

attributes within a dimension table, so they needed to be defined. This concept is known 

as a user-defined hierarchy that is a hierarchy of attribute, used to facilitate browsing 

cube data by users, without adding to cube space. 

The snowflake schema (Figure 4.6) actually appeared by decomposing one or more 

dimensions in which the hierarchy was already present.  

 

 

 

 

 

 

 

 

 



 

70 
 

 

 

  

 

 

 

 

One-to-many relationship  

 

Figure 4.6: Example of hierarchy for herd dimension, herd-cow bridge dimension and 

cow dimension  

 

According to Moody and Kortink (2000) the snowflake schema can be formed from a 

star schema by normalising the hierarchies in each dimension. They also drew upon an 

entity relationship model to discover dimensions and fact tables for the snowflake 

schema. It also proved a good opportunity to design a snowflake schema from an entity 

relationship model; these steps would help database users to understand the schema 

design. The steps were the following:  

 A transaction entity (transaction entities record details about particular events that 

occur at the farm, e.g., milk yield, fat yield, protein yield, etc…) can be used to 

form a fact table. The key to the table is the combination of the keys of the 

associated component entities that is an entity which is directly related to a 

transaction entity via a one-to-many relationship. Component entities describe the 

information or “components” of each business transaction at the farm. These 

entities can answer what, who, when, where and how questions in business 

events. As an example of “what”: What is the production of this herd; “when”: 

When did this cow last calve; “which”: which are the top ten milk producing 

herds; “where”: Where is mastitis most prevalent; and “who”: who achieved the 

highest milk production and a disease-free farm?  

 A component entity can be converted into a dimension table. Numerical attributes 

within transaction entities can be combined by the key attributes. Where 
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hierarchical relationships exist between transaction entities, the child entity 

inherits all of the relationships to component entities (and key attributes) from the 

parent entity. For example Region, herd, breed, cows are all “ancestors” for milk 

yield (Figure 4.7).   

 

 

 

 

 

 

 

 

 

 

One-to-many relationship  

Figure 4.7: Example of hierarchy for region, herd, breed and cow  

 

Another way of defining hierarchy could occur from the herd level but in a 

different way: within herds there were different management groups; in different 

management groups there were different parities; and in different parities there were 

different number of cows. Cows transfer from their present parity to their next parity, and 

can move between different management groups and between different herds. So there 

was hierarchy of herd  management group  parity  cow. To solve the problem of 

many-to-many relationship between herd and cow dimension; a herd-cow bridge 

dimension was used which has a composite of herd ID and cow ID.  

 

This was one advantage to the fact that the size of dimensions on the disk was 

only 20 Mb for herd dimension, herd-cow bridge dimension and cow as a dimension. 

Also, the hierarchical structure of the snowflake schema helped in writing easy MDX 

(multidimensional data expression) queries. Separate dimensions were defined for parity 

and management group. The reason for defining them separately will be discussed below. 
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In the present era hardware is available at a low cost and the disk space required by the 

star schema could be overlooked, but even then the snowflake schema is better in MDX 

query execution, due to its support for hierarchies. Execution time for an MDX query is 

also very important with respect to user interaction through OLAP tools.  

The management group (assigned to a cow according to its status of lactation) and 

the lactation number (parity) in which the cow was, identified a specific cow state at the 

herd level. A management group and parity were good examples of typical OLAP 

dimensions, as these characterize the state of the cow. Since a cow could transfer from 

one herd to another within a parity this was quite an important issue, which was resolved 

by defining separate dimensions of parity and management group to avoid the double 

count of measures in summarization processes like roll-up to next level in a dimension. 

Likewise it was inappropriate to take parity in management group in the same dimension, 

since 60% of test day records had management group information on them. So defining 

either parity under management group or management group over parity created equal 

problems due to insufficient information on management group. Another very important 

aspect was time. The test date was considered the lowest granularity on which 

summarization of different facts were calculated. The test day records show records of 

milk yield and milk components for each cow at approximately each month in her 

productive life. So dealing with the chronological order of recorded data was quite an 

important task, allowing one to show trends in milk yield and milk components over 

time. The condition record dimension had information about the health status of the cow. 

In these data, there were twenty one conditions related to health status of the cow. 

Dimension of date of calving determines the season of calving which is very important 

with respect to milk yield. Figure 4.8 depicts the snowflake schema in detail.   

This study provided an excellent opportunity to observe and design the 

hierarchical structure in the data. Equal hierarchies are fundamental to OLAP tools since 

they allow clients to query summarized data at any level of correctness within the 

hierarchy, drilling down to a more specific analysis or rolling up to a more concise 

analysis when needed. Three features of the hierarchy in cows deserved special attention.   

1) The cow hierarchy was non-strict: a lower-level cow could be a member of 

several herds at a higher-level, on the other hand, strict hierarchies exist where 
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every lower-level cow belongs to a single higher-level parity (cow belongs to a 

specific parity once in a life). 

2) When there was movement of cow from one herd to other herd there was a change 

in hierarchy.  

3) The hierarchy was not balanced: e.g., under the hierarchies of herds there were 

different numbers of cows in each herd.  

It was important to deal with these types of hierarchies to permit drilling down 

from higher levels to lower levels or vice versa and to get the correct summarized results 

from the facts.  
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Figure 4.8: Snowflake schema (data model). 
  

 

 

The capture of hierarchies and other schema-related issues are discussed below:     

 The schema which was developed typically captured non-strict hierarchies in the 

dimensions. This permitted drill-down and roll-up. In our example, the hierarchies 

were arranged cow < cow-herd bridge dimension < herd. If the bridge dimension 
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was not defined with a composite key of herd ID and cow ID the data were double 

counted. The same problem was reported by Pedersen et al., (2001) and they 

proposed an extended multidimensional data model to address this issue.  

 Different dimensions for test date and date of calving. As an example, the test 

date dimension days roll up to months and months roll up to year. However, for 

date of calving, year was divided into four seasons. 

 Occasionally the hierarchies in a dimension were not balanced, i.e., the path from 

the root to the leaves had varying lengths. In this case, which occurs in the cow 

hierarchy, each parity had a varying number of management groups and each 

management group had a varying number of cows. This problem was solved by 

defining separate dimensions for both the parity and management group. In this 

way these dimensions had normalized data and data were counted just once for 

these dimensions. Pedersen et al., (2001) also suggested the normalization for 

these types of unbalanced hierarchies.      

 The schema included aggregation semantics of the data to provide a phenomenon 

which helps users execute only those queries which are meaningful, i.e., avoiding 

addition of non-additive data. As an illustration, it might not be meaningful to add 

% fat together, but performing average calculations on them would make sense. 

 The schema allowed measures to be treated as dimensions and vice versa. In our 

case, the attribute ‘milk yield’ of cows was typically treated as a measure, to 

allow for computations for average milk yields in a herd etc.; however, we could 

define a dimension which allowed grouping cows into low, middle and high milk-

yielders. 

 The schema allowed change in the hierarchy. e.g., entrance of cow into a herd and 

culling of a cow. 

 For some types of data, e.g., test day records, aggregation involves counting the 

number of occurrences. So aggregation functions were carefully studied and 

applied to prevent users from performing wrong calculations. 

 The number of cows in a specific herd varied at a specific time, meaning that the 

total number of cows varied in the overall dataset from time to time. In essence, 
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this means that it was meaningless to count cows over years in herds, but in a year 

or in a month, that information might be useful. 

 The milk yield can be added over cow or over herds for a specific year or over 

years but most temporal milk averages are considered for a cow or for a herd for a 

specific year. 

 

The fact constellation schema was also designed; this is an example of a set of 

complex structures in which multiple fact tables share dimensional tables. The advantage 

of using a fact constellation schema was to combine attributes from two different fact 

tables having the same dimensions; there was provision to access the data from each fact 

table separately or in combination, linked with same dimension. The snowflaking affect 

in herd-herd_cow_bridge-cow dimensions was the same in this schema as when applied 

in a snowflake schema. In the literature two star schemas are combined to form a 

constellation schema (Moody and Kortink, 2000). This schema would provide an 

advantage; if data sources were located at different places where these sources could be 

accessed by common dimensions having different measures in the fact table.  In this case, 

the feed file had a record about feed consumption of a cow on a specific test day. This 

information includes all feed ingredients offered to that cow on that test day. This file had 

a variable named HTP_ID (herd test period id) which was also present in the test day file, 

whereas the feed file did not contain the variable test date. Consequently, it was decided 

to introduce a test date column in the feed file during the transformation process. 

However the test day file already had test day and htp_id. This information in the test day 

file helped us in combining records on the basis of htp_id which is same for a cow in both 

files. But the count of htp_id is less than that of the feed file, since the rest of the htp_ids 

for that cow were present in the DRY COW file.  The feed file (amount of feed intake in 

kilograms) and the test day file (milk components) formed fact tables of feed intake and 

milk components respectively. They shared dimensions of herd, cow, parity, and 

management group and test date. Figure 4.9 shows a constellation schema.       

 



 

77 
 

 

       

 

Figure 4.9: Fact Constellation schema 
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4.3.2: Identified problems with existing OLAP tools 

 While the discussion about hierarchies in the previous section is fully or partially 

supported by the available OLAP tools, there are still potential problems with 

non-strict hierarchies. Summarization of milk yields on those cows which 

transferred from one herd to the other herd counted double if a bridge dimension 

table, having a combination of primary key of cow (cow id) and herd (herd id), 

had not been defined in the SQL server database, i.e., before loading data to 

analysis server. As analysis server supported the definition of a primary 

key/foreign key relationship which did not affect the underlying data stored in the 

SQL server database. The issue of a non-strict hierarchy was also discussed by 

Pedersen and Jensen (1998)  regarding the designing of a data warehouse for 

medical clinics.   

 Calculations based on aggregation functions such as average and percentage 

transformed into new queries. For example an average function is transformed 

into “sum” and “count” functions. Percentages were calculated by dividing 

selected divided and “0%” format string, a function built into the analysis server. 

Undeniably on-the-fly execution of extended queries with percentage and average 

functions lowered the performance of the cube, even if the multidimensional 

model was accurately developed. It appeared that the problem was with the OLAP 

aggregation process, not with the hardware, since the same hardware previously 

calculated “sum” and “count” values for calculation of average within seconds for 

the same datasets. Therefore pre-aggregation in materialized views showed quick 

data upload in the cube and response of query was much faster, but was 

unfortunately very slow in the case of on-the-fly query execution. So the 

developers and researchers in the field of OLAP should consider those situations 

where the query may not already be known. Toja et al., (2007) discussed on-the-

fly query execution and suggested pre-aggregation and the use of sophisticated 

hardware which can support parallel processing. Examples of queries are shown 

in the Figure 4.10 A, B & C. 
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Figure 4.10 (A): Code for cows in different parities in different herds. 

/* Code for percentage parity in a herd in a year */ 

 

WITH MEMBER [Measures].[Denominator] AS 

 SUM([Dim Parity Daytest].[Parity].[Parity], 

  IIF([Measures].[Cows]= 0, null, [Measures].[Cows])) 

  MEMBER [Measures].[percent parity1]AS 

 IIF([Measures].[Denominator] = null, 0, 

 ([Dim Parity Daytest].[Parity].&[1],[Measures].[Cows])/ [Measures].[Denominator]) 

 ,FORMAT_STRING = '0%' 

 

 MEMBER [Measures].[percent parity2] AS 

 IIF([Measures].[Denominator] = null, 0, 

 ([Dim Parity Daytest].[Parity].&[2],[Measures].[Cows]) / [Measures].[Denominator]) 

 ,FORMAT_STRING = '0%' 

 MEMBER [Measures].[percent parity3] AS 

 IIF([Measures].[Denominator] = null, 0, 

 ([Dim Parity Daytest].[Parity].&[3],[Measures].[Cows]) / [Measures].[Denominator]) 

 ,FORMAT_STRING = '0%' 

 MEMBER [Measures].[percent parity4] AS 

 IIF([Measures].[Denominator] = null, 0, 

 ([Dim Parity Daytest].[Parity].&[4],[Measures].[Cows]) / [Measures].[Denominator]) 

 ,FORMAT_STRING = '0%' 

MEMBER [Measures].[percent parity5] AS 

 IIF([Measures].[Denominator] = null, 0, 

 ([Dim Parity Daytest].[Parity].&[5],[Measures].[Cows]) / [Measures].[Denominator]) 

 ,FORMAT_STRING = '0%' 

 

SELECT  {[Measures].[percent parity1],[Measures].[percent parity2],[Measures].[percent 

parity3],[Measures].[percent parity4],[Measures].[percent parity5]} ON COLUMNS 

 ,{[Dim Hrd Daytest].[Hrd Id].[Hrd Id]*[Time 6].[Year].[Year]} ON ROWS 

FROM [Mk Comp 8] 
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Figure 4.10 (B): Code for cows in different parities in different herds. 

 

4.3.3: MOLAP server for query processing 

OLAP systems are typically implemented by using two technologies: ROLAP (relational 

online analytical processing), where data are stored in relational database management 

systems, and MOLAP (multidimensional online analytical processing) where a 

multidimensional database management system is used, and a query can be executed on 

the multidimensional structure, i.e., directly on the cube. In this research a MOLAP 

server was used to store the pre-computation data after modeling them with 

multidimensional data models. MOLAP servers actually store data in a multidimensional 

format, the cube structure and data were queried directly from this structure which was 

not possible with a ROLAP server. It was also found that MOLAP helped in fast and 

flexible retrieval of multidimensional data. Similar results with MOLAP were found by 

Chaudhuri and Dayal (1997). 

 

4.4: Cube Operations 

The multidimensional view of data considers that information is stored in a 

multidimensional array sometimes known as a hypercube. This is a group of data cells 

arranged according to the dimensions of the data. The dimensions of a cube are a list of 

/* Code for count of cows per parity basis in a herd in a specific year*/ 

 

 

SELECT ON COLUMNS, ON ROWS 

FROM [Mk Comp 8] 

/* Code for average milk in a specific herd in a specific herd on a specific cow */ 

 

[Measures].[Milk]/[Measures].[Milk Count] 
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members by which the user wishes to view the data, e.g., according to herd, cow, year, 

calving season, parity, etc. The value present at each intersection of dimension, which can 

be called a cell, has a real measured value like quantity of milk produced or number of 

cows in a specific parity. Navigation is the term which is used to explore the data within a 

cube. Cube operations support navigation functions such as: (i) Roll-up, which involves 

the summarization of data for a higher level of hierarchy, with results that are suitable for 

strategic decision making, (ii) Roll-down, (a.k.a. Drill down or drill through) which 

involves navigation to the lowest granularity of the data for tactical and operational 

decision-making, (iii) Selection, wherein a condition is assessed against the data or 

elements of a dimension in order to limit the set of recovered data, (iv) Slicing, which 

allows for the selection of all data satisfying a condition along a particular dimension), 

and (v) pivoting, which involves changing the dimensional orientation of a cube. 

According to Vassiliadis (1998) cube operations include level_climbing, packing, 

function_applications, projection, dicing while complex functions like navigation and 

slicing are defined on top of the simple functions. Pivoting is the re-organization of the 

data rather than modifications of the values.    

Examples of different cube operations are shown in the following figures. In this 

operation dates climb up to months and months climb up to years. The lowest level of 

granularity, which is cow in this case, can climb up to breed, breed to herds, and herd to 

region (Figure 4.11).  
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Figure 4.11: Level_climbing operation  

 

Packing is the cube operation in which cube is consolidated, such as would be the case if 

the information in Figure 4.12 were packed to years and regions that are the highest level 

hierarchies. 
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Figure 4.12: Packing 

 

To see the number of cows in each parity, in a specific herd, first all the cows in a 

specific parity were counted and then their count was divided by the total number of cows 

present in a herd to get percent of cows in each parity. The basic idea of function 
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application was to build a new cube on an existing one. Another example, with protein to 

fat ratio can be seen in Figures 4.13 A & B. 

 

 

 

 

Figure 4.13 (A): Function application (protein to fat ratio) 
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Figure 4.13(B): Function application 

The cube illustrated in Figure 4.14 has values on Region 1 having all herds with 

cows of the Ayrshire breed. In this case, the purpose of the operators was to form a cube 

which was based on some specific dimensions and aggregate over the rest of the 

dimensions by use of aggregation function.  
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Figure 4.14: Slice and dice 

 

The data could be viewed at the lowest level of granularity i.e., single cow and the 

test date without any effect on aggregate functions. A sample of a few queries which 

were executed on the cube is shown in Table 4.1. 
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 Query Examples 

1 Average milk quantity of a cow in a herd on specific test day   

2 Fat percentage in the milk of a cow in a herd on specific test day 

3 Number of herds in a region 

4 Number of cows within a herd and within a region 

5 Maximum and minimum average milk quantity for all herds 

6 Maximum and minimum fat percentage for all herds   

7 Number of cows within a parity 

8 Protein to fat ratio for all cows 

9 Cows move from one herd to the other herd 

10 Average values for MUN for different herds  

11 Feed intake and milk production of each cow 

12 Average milk production for cows in different calving seasons 

  

Table 4.1: Query Examples  

 

4.4.1: Front end tools to access the data from the cube   

In modern database technology the front-end is separated from back-end database 

server by a presentation layer. These technologies consist of an OLAP client that handles 

the client interface and an OLAP server that administers the data and process queries. The 

client communicates with the server using a standardized application programming 

interface (API), e.g., Microsoft’s OLEDB for OLAP (Figure 4.15).  

 

   

 

Data                         OLAP server                       API (OLEDB)                     User 

Figure 4.15: OALP server communicate with the user through Microsoft OLEDB 
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Studies have shown that queries on a data warehouse consist 80% in navigational 

queries that discover the dimension hierarchies and 20% aggregation queries that 

aggregate or summarize the data at various levels of detail (Kimball, 1996). Examples of 

navigational and aggregation queries are “different herds in different regions having 

various breeds” and correspondingly “count of cows, count of herds grouped by parities 

and season of calving.” 

The OLAP client sends off a query to the query handler, the primary task of 

which is to determine whether the query is a navigational query (inner to a dimension) or 

an aggregation query (linking the facts) (Pedersen et al., 2001). After the status of query 

has been resolved, the navigational queries are passed to the OLAP server which handles 

the original (navigational) data, while aggregation queries are passed to another OLAP 

server that manages the transformed (aggregation) data. The result is that the OLAP 

provides an interface to the data warehouse based on a multidimensional structure. It 

should be noted that the main reason behind the popularity of the multidimensional data 

model are the spread sheets in which clients can view data with different dimensions. The 

spread sheet is still a very popular front-end tool for OLAP tools: they have the ability to 

summarize the data by applying queries that are processed on the OLAP servers. The 

fundamental operation supported by these spread sheets is “pivoting”. If two of the 

dimensions were selected then, at the intersection of each dimension, a value is present 

which has actually appeared due to both dimensions. For example, if regions and year 

were selected, then in the grid at each cell a value would show the summarized value of 

average milk quantity in that specific region in that specific year. Figure 4.16 shows the 

pivot operation in Microsoft Excel 2007. 
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 Figure 4.16: Pivot table. 

 

 

Pivot tables (Figure 4.17) also support operations of roll-up, drill down, slice and 

dice. In this figure (4.17) the milk-component averages can be seen at the test date level 

in region one for the Ayrshire breed. This shows how a pivot table is a two-dimensional 

spreadsheet which supports viewing complex data with related subtotals and totals by 

nesting several dimensions on the x- or y-axis (Pedersen and Jensen, 1998).  
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Figure 4.17: Drill down and slice operation in pivot table. 

 

Pivot tables usually support a collection of data subsets and alteration of the 

presentation level of detail. But spreadsheets are an insufficient tool for administration 

and storing multidimensional data because they bind data storage exceptionally strongly 

to the presentation. Spreadsheets do not separate the information about the organization 

of the data from the required analysis of the information (Pedersen and Jensen, 2002). 

Consequently adding a dimension or grouping data in the spreadsheets is quite difficult. 
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Likewise the ways hierarchies are supported by multidimensional databases are not 

supported by spread sheets. On the other hand a database management system 

recommends significant simplicity in organizing data. The many-to-many relations which 

are not supported satisfactorily by the star model can be handled adequately by 

snowflaking the dimensions which is ultimately helpful in managing hierarchies in 

dimensions. 

However, a simple SQL-based relational model does not handle hierarchical 

dimensions satisfactorily. Nevertheless, creating numerous desired computations such as 

totals and subtotals, or determining rankings (top 10 herds in milk production) is 

complicated if not impractical in standard SQL, but is supported by spreadsheets. Also 

transposing columns and rows involves manual writing of several views in SQL but is 

possible with spreadsheets. Spreadsheets have also been used to view the raw data in 

multidimensional perspective, but spreadsheets and relational databases, although they 

provide sufficient support for small datasets with a few non-hierarchical dimensions, they 

do not fully support the needs for sophisticated data analysis. These observations 

regarding the limitations of spread sheets have been discussed by Pederson and Jenson 

(2002). Therefore, after performing data analysis in Microsoft Excel pivot tables the data 

or reports or graphs can be generated and viewed in Excel, but actual data should be 

stored with a database technology that offers in-built support for the full range of 

multidimensional data modeling for large datasets. 

 

4.5: Updating the data warehouse 

Update the data in the data warehouse would follow similar steps to those by 

which it was first implemented,  i.e., selection of data required to warehouse, cleaning of 

the data, transformation to get the desired variables and loading the data into the 

warehouse. However, these steps would be faster than before since rules would have 

already been set up to prepare the data to be warehoused. If some new data was added 

then rules can be defined for these data also. Although the first process of data 

preparation made later steps in updating the data easier, even then data must be careful 
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observed to avoid any mistakes. Updates would include the addition of variables to the 

dimension tables as well as the addition of variables and rows to the fact tables.  

All the constraints regarding referential integrity (primary key-foreign key 

relationship) were carefully considered and new data were verified against existing data. 

There were also two main things to consider: (i) how many times the data warehouse will 

be updated and (ii) how the data is updated and reflected in the cube. As cow’s lactation 

length and dry period is ideally a year, so to see an effect on a cow’s or a herd’s 

performance; the data warehouse would have to be updated after a year. The cube update 

was also based on data being refreshed; in this case the data inside the cube was changed 

(new aggregations may need to be calculated at some time) but not the underlying 

structure. However, the possibility of introducing a new dimension exists, so in that case 

the full process of the cube was required, based on restructuring and recalculation of the 

data.  It should be mentioned that the Analysis server did not introduce the combine 

primary key relationship in the dimensions according to our needs, so the process of 

introducing a combine primary key was done through the SQL server. Although the 

Analysis server did not produce any error message, it did double count the average milk 

quantity for all those cows which were transferred from one herd to another. 
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Conclusion 

Most computer-oriented techniques have found their way into the dairy sector 

(Lazarus et al., 1990), and a lot of data are produced daily on dairy farms. Operational 

databases such as those at Valacta are not designed to support the required feedback for 

analytical queries, important to strategic decision-making, in an optimal manner. 

Therefore a methodology was developed to store these large historical datasets for 

analytical query execution in order to give advisors a tool that should help them to 

improve the decision-making process. The methodology comprises extraction, cleaning, 

selection and transformation of data, storing of data in a data warehouse in a 

multidimensional format and access to this data with the help of OLAP cubes. It is 

assumed that data warehouse implementation can provide benefits for storage of large 

historical datasets for decision-making at the operational, tactical and strategic level on 

dairy farms. The use of applications like data warehousing have few parallels in the dairy 

industry, which may be due to the complexity of software available for warehousing and 

lack of technical personnel in the field. The other strong reason is the lack of sufficient 

budgets in the public sector. However, mega datasets require customized data analysis 

systems, modified specifically for them, first for the analysis, and then for the 

presentation of results. Attention can subsequently be given to the heterogeneity and 

computational complexity of the data. Therefore, it is potentially possible to increase 

productivity in dairy research through the analysis of large datasets, by using central 

databases (Data warehouses) in which many data definitions and pre-processing are 

already implemented.  

Detailed data was stored in the data warehouse for future use; the lowest 

granularity of the data were cow and test date. A data driven approach was preferred, 

given that it is the fastest method to develop a data warehouse. This method helped in 

data exploration and pilot analysis. Models were visualized in such a way that future 

users should be able to obtain helpful information if this methodology were to be 

implemented on a larger scale. A MOLAP server was used to store pre-computation data 

and store the information derived after modeling the data with multidimensional data 

models. The queries were executed directly on the cube structure supported by MOLAP 

servers. Multidimensional data models were constructed, as these models support 
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analytical query execution (what and why queries). Comparatively, entity relationship 

models could not support such queries, as these models support an OLTP application, 

where queries are mostly restricted to insert, delete and update. Denormalized data were 

used to develop multidimensional models which provide: (i) a database structure that is 

easy for end-users to understand and write queries to these databases; and (ii) database 

structures which maximise the efficiency of queries by minimizing the number of tables 

and relationships among them. It was concluded that the snowflake schema was better 

than the star schema since, with the latter, denormalized data with the herd_cow_testdate 

(composite key of herd and cow dimension) dimension were very large, rendering the 

system difficult to understand and impractical for handling large sets of records. The 

efficiency of the MDX was found to be better with the snowflake schema. It was also 

concluded that any future amalgamation of data from different organizations could be 

facilitated by joining data with similar dimensions through the use of a fact-constellation 

schema.  

OLAP tools are mainly developed for business applications like banking and 

retail. In the dairy field, data show different characteristics, so we were faced with certain 

challenges while developing our query procedures for certain situations. These situations 

were either tackled within the SQL server or with the help of MDX, since there was no 

built-in help for these situations in OLAP tools. For example, the highest level to which 

we wished to aggregate was herd, so it was necessary to define a herd-cow-bridge 

dimension where all the distinct records were present within a single occurrence for each 

herd and cow. If a cow was selected for aggregation then it was double-counted for all 

those appearances where a cow was transferred from one herd to the other. In this way for 

highest level of aggregation – herd – was selected, so that for the appearance of each 

cow, this was present once on that specific test date in that herd. This was not handled 

optimally by the software, so a composite key was defined within the SQL server as the 

herd_cow key, and then a named column property was set to herd in the analysis service 

to stop the double count of measures. Calculations based on aggregation functions such 

as average and percentage were transformed into new queries. Undeniably on-the-fly 

execution of extended queries with percentage and average functions lowered the 

performance of the cube, even when the multidimensional model was accurately 
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developed. It appeared that the problem was associated with the OLAP aggregation 

process, and not with the hardware, since the same hardware had previously calculated 

the “sum” and “count” values efficiently from the same data set, for the calculation of 

averages. This means that if all the required aggregations were calculated in materialized 

views, the cube data upload response would be much faster, which otherwise is 

unfortunately very slow in the case of on-the-fly query execution. Developers and 

researchers in the field of OLAP should consider those situations where the query may 

not already be known.  

Most of those queries performed should aid farmers in decision-making at all 

levels of management: strategic, tactical or operational. These queries were supported 

either by drill-down and roll-up operations of the cube, or by filtering options. If not 

handled through simple drag and drop operations, a special MDX helped in the extract of 

required information from the data warehouse. The OLAP tools provided 

multidimensional views of the data through pivot tables, but, if graphs were required, the 

data could be downloaded to Excel spread sheets. Although Excel spread sheets support 

pivoting of raw data, they do not support more complex queries or the storage of data in a 

multidimensional format. For a complete multidimensional storage structure, and 

multidimensional views of data, a sophisticated system like multidimensional databases 

(MOLAP) would be required.  
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Future work 

This application is an important step towards more advanced implementation of 

data mining, grid computing and cloud computing which meet the needs associated with 

growing datasets. Data mining techniques have already been used in the dairy sector to 

investigate disease risk classification, as a proxy for compromised bio-security of cattle 

herds in Wales (Ángel and Dirk, 2008). However if these techniques were used in 

looking at the weather data along with feed management, they could provide benefits 

with respect to dairy cows’ nutrient uptake during severe winter weather. Moreover, with 

the implementation of a national cow identification system, the Quebec dairy sector could 

conceivably derive benefits from grid computing to process massive amounts of cow 

tracking data. This type of grid would not only serve future researchers, but also 

government agencies, educators and public users. Although grid computing projects are 

long-term projects which can bring benefits, the initial investment can be quite high ( 

Călin et al., 2011), so both government and private agencies would need to contribute 

funds and equipment to build an appropriate infrastructure. The grid would reduce 

bottlenecks that occur during data loading in the data warehouse, making the data 

processing faster. Speeding up the data processing means the data would be immediately 

available to business users for analysis, so that business decisions could arrived at in a 

timely manner. Also in the case of grid technology, the cost remains relatively similar 

since pre-existing resources are being used in a more efficient way. As in any other field, 

the agricultural sector evolves with the implementation of new, cutting-edge computing 

technologies. Consequently it is likely that the Quebec dairy sector could soon become 

such a hub of information where all stake holders can access data from a private cloud, 

with servers housed at different physical locations, all operating in a manner similar to an 

information junction. Analytical applications (which are a main reason for developing a 

data warehouse) are perhaps better suited to cloud environments (Abadi, 2009) since they 

require large amounts of data to be stored for long periods, but be processed infrequently. 

Furthermore, the process of data analysis consists of many large scans, and fact-

constellation schema joins, all of which could conceptually be facilitated through parallel 

processing across nodes in a cloud setting.  
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