

A proposed framework for analytical processing

of information in the dairy industry using

multidimensional data models

By

Aisha Ghaffar

Department of Animal Science

McGill University, Montreal

November, 2012

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfilment of the requirements of the degree of Master of Science

© Aisha Ghaffar, 2012

i

TABLE OF CONTENTS

Table of Contents ………...i

List of Tables ...iv

List of Figures ..iv

List of Abbreviations ……..vii

Abstract …………………..viii

Résumé ..x

Acknowledgements ..xii

Chapter 1 (Introduction) ...1

Purpose of study …..10

Overall objectives ..10

Chapter 2 (Review of Literature) ..12

2.1: Data extraction and cleaning …..12

2.2: Data transformation and de-normalization …..14

2.3: Data warehouse ………..16

2.4 Decision-support systems ...20

2.5 Analysis of business data ..22

ii

2.5.1: Online analytical processing (OLAP) ...22

2.5.2: OLAP versus OLTP ..23

2.5.3: Multidimensional Data Modeling ...24

2.5.4: Analysis of data with a Multidimensional data Model26

2.5.5: Star schema ...27

2.5.6: Snowflake schema ..28

2.5.7: Fact Constellation schema ..29

2.5.8: Comparison of Logical Design Models ..31

2.5.9: Design of a data warehouse ..31

2.5.10: Accessing data from the data warehouse for analysis32

2.6: Application of data warehousing ...33

Chapter 3 (Materials and Methods)...37

3.1: Data extraction and cleaning ...37

3.2: Data transformation ..39

3.3: Data storage in a warehouse with a multidimensional schema44

3.4: Analysis of data with an OLAP cube ...54

Chapter 4 (Results and Discussion) ..59

iii

4.1: Data Extraction and cleaning ..59

4.2. Data transformation and de-normalization...60

4.3: Data warehouse ……..62

4.3.1: Selection of schema (data model) ...64

4.3.2: Identified problems with existing OLAP tools78

4.3.3: MOLAP server for query processing ..80

4.4: Cube Operations …..80

4.4.1: Front end tools to access the data from the cube87

4.5: Updating the data warehouse ..91

Conclusions ..93

Future work ...96

References ..97

iv

List of Tables

Table 2.1: Characteristics of data warehouse …...19

Table 3.1: Record details ..37

Table 4.1: Query Examples ..87

List of Figures

Figure 2.1: Example of data transformation mapping ..14

Figure 2.2: A conceptual model for conversion of normalized data into denormalized data

………………………………………………………………..………………………….16

Figure 2.3: The evolution of decision support systems field ..21

Figure 2.4: Star schema for sales subsystem (data model) ...28

Figure 2.5: Snowflake schema for decision support system to assist builders (data model)

……….…………………………………………………………………….…………….29

Figure 2.6: Fact Constellation Schema for Sales subsystem (data model) 30

Figure 2.7: Pivot tab …..33

Figure 3.1: process of data warehousing …..38

Figure 3.2: SAS univariate procedure to see the distribution of fat and milk in the data..39

Figure 3.3: Calculation of the new columns from the existing columns40

Figure 3.4: Classification of the data for defining dimensional hierarchies40

v

Figure 3.5: Connection of SAS with SQL server for data loading41

Figure 3.6: Fact table ..41

Figure 3.7: Creation of dimension tables ...42

Figure 3.8: Creation of dimension table ...43

Figure 3.9: Dimensional hierarchies in multidimensional model45

Figure 3.10: Analysis services data source ..46

Figure 3.11: Analysis services data source view ...47

Figure 3.12: Herd_Bridge_Cow (snowflaking for many-to-many relationship between

herd and cow and fact table) ..49

Figure 3.13: Cube structure ..50

Figure 3.14: Dimension structure for time dimension ..51

Figure 3.15: Dimension usage in cube structure tab ...53

Figure 3.16: Calculated measures ...55

Figure 3.17: Processing options of a cube ..56

Figure 3.18: Cube browser ...57

Figure 4.1: Transformation of normalized data into de-normalized data61

Figure 4.2: An entity relationship diagram of test day records63

Figure 4.3: Star schema (data model) ..65

vi

Figure 4.4: Example of relationship between a fact table and dimension tables (data

model of star schema) ...66

Figure 4.5: Detailed star Schema ..67

Figure 4.6: Example of hierarchy for herd dimension, herd-cow bridge dimension and

cow dimension …..70

Figure 4.7: Example of hierarchy for region, herd, breed and cow71

Figure 4.8: Snowflake schema ..74

Figure 4.9: Fact Constellation schema ..77

Figure 4.10 (A): Code for cows in different parities in different herds79

Figure 4.10 (B): Code for cows in different parities in different herds80

Figure 4.11: Level-climbing operation …...82

Figure 4.12: Packing ...83

Figure 4.13 (A): Function application (protein to fat ratio) ...84

Figure 4.13 (B): Function application ..85

Figure 4.14: Slice and dice ...86

Figure 4.15: OALP server communicate with the user through Microsoft OLEDB87

Figure 4.16: Pivot table …...89

Figure 4.17: Drill down and slice operation in pivot table ...90

vii

List of Abbreviations

UNIVAC Universal Automatic Computer

IC Integrated circuit

PC Personal computer

DBMS Database management systems

RDBMS Relational database management system

OLTP Online transaction processing

ER Entity relationship

ODBC Open database connectivity

SQL Structured query language

OLAP Online analytical processing

ADBS Analytical databases

PDB Production databases

ROLAP Relational online analytical processing

MOLAP Multidimensional online analytical

processing

MDX Multidimensional Expressions

MUN Milk urea nitrogen

SCC Somatic cell count

FREQ procedures Frequency procedures

SAS Statistical analysis system

API Application programming interface

OLEDB Object Linking and Embedding, Database

CDN Canadian Dairy Network

viii

Abstract

In the dairy industry, datasets pertaining to the milk recording of cows can be

extremely large and complex, especially in the Province of Quebec where management

and feed information are also collected for on-farm advising. Any subsequent analysis of

these data for strategic (or even tactical) decision making is often impeded by the

transactional nature of the existing databases, whose main purpose is often to produce

regular and routine reports. Since conventional database management systems mostly

support simple and short queries and flat views of data, they are less than ideal for the

analysis of large datasets, particularly those which contain data of varying dimensions. In

recent years, the high value of multidimensional data has been recognized as an important

resource in both the academic and business communities. The wider recognition of data

warehousing and On-Line Analytical Processing (OLAP) applications has highlighted

their importance. The dairy industry is an excellent example of an area where the analysis

of its data, and the subsequent decision-making process, could significantly benefit from

the implementation of data warehousing and OLAP techniques. While these technologies

have already been used to good advantage for the analysis of business data, the unusual

nature of dairy data poses certain challenges which are addressed in this study. These

include selection of a data model which best suits the hierarchical nature of the data,

selection of the highest and lowest hierarchy for data aggregation, and the definition of

functions (pre-aggregation) to improve query performance.

In order to investigate the use of an OLAP system for Quebec milk-recording

data, a number of multidimensional data models were compared. The star, snowflake and

fact-constellation schemes each displayed advantages and disadvantages for the particular

data (and their structure) in this study. The star schema did not support many-to-many

relationships between fact and dimension tables, and creating combination dimensions

(e.g., herd_cow) with a key (such as herd_cow_testdate), resulted in an unmanageable

record length in the dimension table, thus rendering the model impractical. Many-to-

many relationships were captured by a snowflake schema, by normalizing herd, cow and

test day dimensions. In order to achieve an exact aggregation of milk components on each

test day and for each cow, a herd_cow bridge dimension was implemented within a

snowflake model which had a composite key of herd and cow. The lowest granularity

ix

level was test day and the highest was herd, but data could also be rolled up to regions.

Queries could subsequently be directly executed on a cube structure, since data were

stored in a multidimensional online analytical processing (MOLAP) server. All of the

pre-aggregation was typically based on the milk-production test date, but could also

support analysis at the individual cow level. The cube structure supports “drill down”,

“roll up”, and “slice and dice” operations as an aid to the data analyses. Data could also

be exported to Excel pivot tables as a means of simple overview reporting. It is felt that

the examination of these technologies, and their future implementation, may lead to

increased value for the dairy industry as their large quantities of data are explored for

better management and strategic decision making.

x

Résumé

Dans l'industrie laitière, les ensembles de données relatives au contrôle des bovins

laitiers peuvent être extrêmement vastes et complexes, en particulier dans la province de

Québec où des données de régie et d'alimentation sont également collectées pour le

service conseil. Une fois ces données collectées, leur analyse ultérieure pour la prise de

décision stratégique (ou même tactique) est souvent entravée par la nature

transactionnelle des bases de données existantes, dont le principal objectif est de produire

des rapports réguliers et de routine. Puisque les systèmes classiques de gestion de bases

de données servent principalement à des requêtes simples et courtes et à des vues

simplifiées de données, ils sont loin d'être idéaux pour l'analyse de grands ensembles de

données, en particulier ceux qui contiennent des données avec de multiples dimensions.

Dans les dernières années, la valeur élevée de données multidimensionnelles a été

reconnue comme une ressource importante tant dans les milieux universitaires que

d'affaires. Une plus large reconnaissance de l'entreposage de données et de techniques

d’analyse comme le traitement analytique en ligne (traduction de l’anglais de On-Line

Analytical Processing ou OLAP) a aussi mis en évidence l’importance de ces données.

L'industrie laitière est un excellent exemple d'un domaine où l'analyse de ses données et

les prises de décision qui en découlent pourraient grandement bénéficier de la mise en

œuvre de l’entreposage de données et des techniques OLAP. Bien que ces technologies

aient déjà été utilisées pour l'analyse de données dans certaines autres industries, la nature

inhabituelle des données laitières pose certains défis qui sont abordés dans cette étude.

Ceux-ci comprennent la sélection d'un modèle de données qui convient le mieux à la

nature hiérarchique des données, la sélection des niveaux hiérarchiques les plus élevés et

les plus bas pour l'agrégation des données, et la définition des fonctions de pré-agrégation

pour améliorer les performances des requêtes.

 Afin d'étudier l'utilisation d'un système OLAP pour les données de

contrôle laitier québécois, un certain nombre de modèles de données

multidimensionnelles ont été comparés. Les modèles en étoile, flocon de neige et

constellation ont chacun démontré des avantages et des inconvénients pour afficher les

données (et leur structure) dans cette étude. Le schéma en étoile n’a pas supporté les

relations plusieurs-à-plusieurs entre les tables de faits et de dimension, et la création de

xi

dimensions combinées (e.g., troupeau_vache_date-de-test) avec une clé a entraîné une

longueur d'enregistrement dans la table de dimension qui était très difficile à gérer,

rendant ainsi le modèle impraticable. Les relations plusieurs-à-plusieurs ont été capturées

par un schéma en flocon, en normalisant les dimensions troupeau, vache et date de test.

Afin de réaliser une agrégation exacte des composants du lait à chaque jour de test et

pour chaque vache, une dimension pont troupeau_vache a été développée au sein d'un

modèle en flocon de neige qui avait une clé composée troupeau-vache. Le plus bas niveau

de granularité était la date de test et le niveau le plus élevé était le troupeau, mais les

données pouvaient également être agrégées au niveau de la région. Une fois le modèle

implanté et les données stockées sur le serveur suivant une approche multidimensionnelle

OLAP (MOLAP), les requêtes pouvaient ensuite être exécutées directement sur la

structure de cube. Toutes les pré-agrégations ont été généralement fondées sur la date de

test, mais elles pouvaient également supporter l'analyse au niveau de chaque vache. La

structure du cube permettait les opérations d’analyse par désagrégation (drill-down),

agrégation (drill-up) et blocs de données (slicing). Les données pouvaient également être

analysées dans des tableaux croisés dynamiques à l’intérieur d’un chiffrier électronique.

L’utilisation éventuelle de ces technologies par l’industrie laitière pourrait accroître la

valeur du grand volume de données disponibles et augmenter leur utilisation pour

améliorer la gestion et la prise de décision stratégique.

xii

Acknowledgements

I would like to express my thanks to all of those who made the completion of this work

possible. Firstly, I would like to express my sincere gratitude to my thesis supervisor, Dr.

Kevin M. Wade, for his guidance, determination and support. Secondly, I wish to express

my respectful thanks to Dr. René Lacroix for his precious advice and innumerable hours

of discussion. I also express my respectful thankfulness to Dr. Roger Cue for his valuable

advice on the available datasets.

This study was made possible with the financial support of the Animal Science

Department, McGill University and the Higher Education Commission, Government of

Pakistan. I am very thankful to Valacta for access to the data used in this research.

I also want to express my gratitude to the staff, Barbara Stewart and Cinthya Horvath,

and the students of the Department of Animal Science for their friendship and their

support. Special thanks are offered to my fellows in Dairy Information Systems lab for all

the good times and valuable support.

I also wise to express my sincerest thanks to my husband Imran, my son Dawood and my

daughter Abeer for their countless support and love during this study. My profound

appreciation for my parents, brothers, and sisters for their continuous love, prayers, and

encouragement to pursue my studies. Above all I wish to avow my belief in the Almighty

who has helped me to complete this thesis.

1

Chapter 1: Introduction

On August 30, 1890, the popular American magazine, Scientific American (v. 63

no. 9),, devoted its cover to a number of pieces of equipment constituting the U.S. Census

Service’s new punched-card tabulating system for processing census data. The

development of the modern electronic computer began in the mid-twentieth century, after

the onset of WWII, when governments began to require computers to meet various

strategic needs. An engineers’ invention, at Harvard University, of an electronic

calculator for the American Navy was another large step forward in the field of

computers. Although this machine was very complicated and very large, it could perform

simple arithmetic calculations. In 1952, UNIVAC (Universal Automatic Computer) was

the first computer used to predict a presidential election in the United States. These first

generation computers had their own unique machine language, used vacuum tubes, and

employed magnetic drums for storage of data.

Subsequent to the invention of transistor and advances in magnetic core memory,

the computer world underwent a big change. Second generations computers were smaller,

faster and more energy efficient than their predecessors. The ultimate benefit of the

discovery of the transistor was the development of the first supercomputers which could

handle massive amounts of data. Such computers were used by different organizations

(Atomic energy laboratories and United States Navy Research and Development Centre),

however they were too expensive for ordinary businesses, and their effectiveness was lost

to the business world. In this generation of computers assembly language was used

instead of machine language.

Although the invention of the transistor was a big step in itself, heat generation

inside computer components remained a considerable problem. This problem was

resolved by the use of sheets of non-conductive quartz rock, on which electronic

components were combined to achieve an integrated circuit (IC). As time went on

attempts were made to put more components on this IC chip, leading to a smaller third

generation computer. Third generation computers had a central program (operating

system) which managed memory for the application programs run on them.

2

Later the sizes and price of the computers were greatly reduced. Large scale

integration (hundred of components on one chip) led to very large scale integration

(hundreds of thousands of components on one chip) which turned to ultra-large scale

integration (millions of components on one chip). The Intel chips took IC’s one step

ahead by locating the central processing unit, memory, input and output controls in one

chip, to meet any number of demands. Computers having these chips were equipped with

user-friendly software packages. International Business Machine Corporation (IBM)

introduced the personal computer (PC) for use in home, schools and offices, started the

era of fourth generation computers. Computers have since become smaller, working their

way down from desktops to laptops and then to palmtops. The use of screen icons instead

of typing instructions and invention of a device (mouse) that imitated the movement of

human hand on screen with cursor was another major advancement in this generation of

computers. Due to smaller size and greater convenience of computers, these were used to

share memory and software while linked to local area network or through telephone lines.

These links turned out to be a gigantic network known as Internet. The most popular

application of this network was electronic mail which became available across the world.

It is difficult to define the fifth generation computers as this generation is in its

early stages. But this era has considerable achievement of artificial intelligent computers

which can use visual input, learn from their own experiences and give output. Other new

achievements are (i) parallel processing in which more than one central processing unit

work together as one, and (ii) superconductor technology which improves information

flow by reducing the resistance in flow of electricity. The good example of fifth

generation computers can be expert systems which are presently in use in different

industries. Expert systems are systems which either entirely execute or assist in the

execution of tasks that are otherwise carried out by human experts. Examples of expert

systems include systems to forecast stock prices, programme routes for delivery vehicles

or diagnose human diseases.

Undoubtedly computers have a great influence in our lives, since computers can

now do much more than computing. Scanners at shopping stores help in calculation of

grocery bills, automatic teller machines help in conducting banking transactions, video

conferencing helps many of us in arranging lectures across the world, and record keeping

3

of tax payers helps governments in tracking public funds. In parallel to the population

growth and urbanization of the last century, computer technology has continued to grow

alongside the industries. These have all lead to a need for large-scale information

collection, processing and communication. As Governments began to have trouble

counting their populations, telegraph companies could not keep pace with message traffic

and insurance agencies had trouble processing policies for large numbers of workers.

Passionate by these increasingly complex problems, driven by advances in understanding

and technique, and powered by the emergence of the Internet, today’s science is based on

computation, data analysis, and teamwork, achieved through the efforts of individual

scientists and theorists (Foster and Kesselman, 1999).

Advances in computation in an increasing number of scientific disciplines have

lead to large data-collections which are emerging as important resources, serving a wide

community of researchers. The communities of researchers that need to access and

analyze these data are often owned by either single or multiple institutions distributed

geographically. Likewise the computing and storage resources on which these

communities depend to store and analyze their data are also present at single or different

locations. The increase in data production arising from the availability of sophisticated

computer hardware and software, has led to an information explosion presenting unique

and complex challenges for analysis, modeling and drawing of conclusions.

Dealing with large datasets may present many challenges, beginning with data

collection and design issues and leading to data quality issues such as noise, missing data

and erroneous data. Sinha et al., (2009) emphasizing information management issues

related to large datasets, including the identification of relevant and accurate information

critical for analysis, integration, access control/privacy and performance. They stated that

model appropriateness with respect to model selection for large datasets and associated

computational complexity issues, were related to the ability to perform computations in a

convenient manner.

Huber (1999) offered a classification of datasets according to their size in 10
x

bytes: tiny (x = 2), small (x = 4), medium (x = 6), large (x = 8), huge (x = 10), and

monster (x = 12). Huber defined massiveness in terms of aggravation. In this regard, he

associates visualization aggravation with x > 6 and data analysis aggravation with x > 8.

4

As PCs (personal computers) are excellently matched to the requirements of interactive

analysis of medium datasets, until now people have developed considerable experience of

data analysis with small and medium datasets. If large datasets are analysed on the same

PCs several bottlenecks become apparent. Some limitations may be due to human

capacities and others may be due to computational complexity or by technological limits.

Others may include financial (e.g. memory cost) or lack of software (for parallel

processing).

Along with human-machine interaction, storage requirements and computational

problems, difficulty in visualizing large datasets is one of the main human limitations

addressed by Huber (1999). The conditions for efficient human-machine interaction are

violated in case of large datasets. Necessary prerequisites for human-machine interaction

include (Huber, 1999): (i), the task is such that a sequence of reasonably straightforward

decisions has to be made, (ii) these decisions must be made in relatively quick sequence,

and, (iii) each decision has to be based on the results of the preceding step. With large

datasets data complexity may result in decisions not being straight, the human response

too slow, such that the human side of the comment loop is broken when response time

exceeds the order of human think time. Under such conditions it may be difficult to give a

sensible basis for the next decision if one cannot visualize the previous results. Moreover,

data storage capacity, as measured in bits per unit area continues to increase, making it

possible for certain physics experiments to save as much as peta-bytes (Pb) of data per

year. In addition, dramatic improvements in microprocessor performance mean that a

simple desktop or laptop is now a powerful computational engine.

Memory size frequently represents a bottleneck preventing the full use of fast

processors. However, according to Foster (2002), computational capabilities are falling

behind relative to storage, “only” doubling every 18 months and so “only” increasing by

a single order of magnitude every 5 years. As datasets increase in size their complexity

increases, and their homogeneity is lost, so that these techniques need to analyse such

datasets can test the limits of our computing capacities.

With large datasets, processing time problems generally have more to do with

storage access than processor speed. To overcome this one will have to produce small,

derived datasets that selectively contain the required information and can be accessed

5

quickly. Even then parallel processors and distributed memory create additional

complications, making analytical operations difficult and of greater magnitude.

Consequently there is a need to develop database structures and access techniques which

will allow access, exploration and visualization of this era’s large datasets, rather than use

a “one size fits all” approach, as in the past (French, 1995).

Digital data are fundamental to all branches of science and engineering now. Such

datasets are held in databases, which are logically integrated collections of data

maintained in one or more files and organized to ease their efficient storage,

modification, and the retrieval of related information (Frawley et al., 1992). The recorded

data have implicit meanings and the databases which house them represent some aspects

of the real world, sometimes termed the mini-world. The mini-world’s changes are thus

reflected in the database (Elmasri and Navathe, 2000).

Databases are designed, built and populated with data for some specific purpose.

These have some planned group of users and some preconceived applications in which

these users are interested. A database management system (DBMS) is a collection of

procedures for retrieving, storing, and manipulating data within databases (Frawley et al.,

1992). The DBMS is a general-purpose software that facilitates the process of defining,

constructing and operating databases for various applications. Defining a database

involves specifying data types, structures and constraints for the data stored in the

database. Constructing the database is the process of storing data on some storage

medium that is controlled by the DBMS. Operating a database includes such functions as

querying the database to retrieve specific data, updating the database to reflect changes

and generating reports (Elmasri and Navathe, 2000).

Most of the DBMS in organizations are relational database management systems

(RDBMS). A relational database consists of tables (also called relations) made up of rows

and columns. No ordering is implied among the rows of a table. Each column is atomic,

and repeating items within a column is not allowed. A column, or collection of columns

for which different rows must have distinct values, is called a table key (Larson, 1983).

Relational database management systems were originally designed for mainframe

computers and business data processing applications. Moreover, relational systems were

optimized for environments with large numbers of users who issue short queries (Hurson

6

et al., 1993), are well established and reliable, and have proved to be flexible platform for

the evolution towards new functionalities that meet at least a few of the demands of novel

applications (Bordoloi et al., 1994). Because most RDBMS were developed during the

1990s their architecture has rarely been amended. Designers at that time were not aware

of the potential growth of the Internet and no one could expect that one day databases

would not only serve for operational tasks in an organization but also be used for data

analysis.

The current relational database management system architecture was developed

keeping in mind the online transaction processing (OLTP), i.e., the architecture was

optimized for the hardware available at the time, to efficiently support OLTP (Halawani

et al., 2010). Entity relationship (ER) modeling is a standard technique for building an

OLTP system; a system which is designed for many simple concurrent requests. This

kind of modelling is also useful for showing the flow of data within an organization

(Chaturvedi et al., 2008). OLTP systems (e.g., airline reservations, order entries, and

banking transaction systems) handle the daily operational features of business dealings

(Chaudhuri and Dayal, 1997; Cui, 2003; Stamen, 1993). In daily business dealings

comprehensive and current data are required, wherein the data are read or updated a few

records at a time, by way of a primary key (Chaudhuri and Dayal, 1997). The data can be

deleted from the OLTP systems, e.g., if an order is shipped today then its record will be

deleted from the database (Stamen, 1993). The OLTP systems (operational databases) can

be expected to be hundreds of megabytes to gigabytes in size. The critical issues are,

consistency and recoverability of the database along with maximizing transaction

throughput, which is the key performance metric (Chaudhuri and Dayal, 1997).

Relational databases have been a de facto standard over the last two decades for

both operational and analytical applications. For example, current enterprise systems

have utilized relational databases to incorporate applications across operational areas

(order entry), whereas analysing enterprise data (e.g., computing the sales history of all

stores over a certain period of time) is a resource-intensive job that is better performed

off-line and should not affect the daily operations of the business. The need for analysing

business data for trends and strategic information is hardly novel. Data analysis can serve

to define requirements, set targets, plan interventions, and evaluate growth. In a perfect

7

world, the analyst could simply query the operational database in a school to see the

performance of students in Mathematics, which may point to new ways of training

Mathematics teachers. In reality, few operational environments have the bandwidth to

allow information seekers to create the elaborate queries necessary for complicated

analyses of data. The data which are used for operational systems are physically

separated from the data used for analytical processing or for information. The supporting

technology for operational processing is also different for both systems, as the users are

also different (Jones, 1998). Data in the operational applications are simply used for

record keeping, whereas data analysis is the process of collection, presentation and

summarization of information contained in the data, with the goal of helping in decision

support. A number of different mathematical techniques are used in data analysis, e.g.,

frequency counter, percentage, average, ranks, ratio and standard deviation.

Data in operational applications are file-oriented and consist of linear lists of

related values each describing an employee, customer, product or other entity. These data

are accessed with a single key and viewed as a simple list on the screen. In contrast,

applications which are based on some data analysis, are best viewed in multidimensional

format because the user wants to see all the possible combinations of entities and their

relationships, e.g., performance of different products over time in different markets

(Stamen, 1993). So data analysis applications place some rather different requirements on

database technology compared to traditional OLTP applications.

Many industries around the world, have presented the challenge of analysing large

datasets. The Quebec dairy industry faces the same challenge, since gigabytes of data are

produced on the dairy farm every year and data analysis is quite important for drawing up

strategies at the dairy farm level. Since dairy farming in Quebec constitutes an important

component of Quebec’s agricultural economy. The Canadian dairy industry ranks third in

terms of value in the Canadian agricultural sector following grains and oil seeds, and red

meats. Current dairy production in Canada generated a total for net farm receipts of $5.8

billion and generated sales of $13.7 billion, representing 16.4 % of the Canadian food and

beverage sector in 2011 (www.dairyinfo.gc.ca).

Compared to former decades, many of today’s farmers consider information

management to be an important element of their business. This interest has been

http://www.dairyinfo.gc.ca/

8

stimulated by the availability of powerful new computer hardware and software at a

reasonable cost. Software has become easier to use and the hardware/software systems

are capable of storing more data and doing more useful analysis on these datasets.

Similarly, agricultural extension systems of the past are now being replaced with

computer-based decision support systems. For instance, the farmer might want to know

the peak milk yield of all second lactation cows that calved between August and March,

from the available data (an example of data analysis query).

Most of Quebec dairy farms already have computerized information systems, but

these are mainly focused on record keeping and primarily support operational

management decisions. To support more steps of the decision-making process these

systems should be extended. Priority should be given to (i) extension of the record

keeping systems with modules for data analysis, and (ii) development of models to

support tactical management decisions. These systems are report-oriented systems and

the reports are based on the current activities at the farm. If a farmer wants to know the

performance of a herd in previous years, the processing of a large quantity of data on

existing systems is necessary. Although not impossible, it might take hours to process

such a query. This problem results from a number of issues:

(i) The execution of data analysis queries (analytical queries) requires a great deal

of system resources as these queries necessitate a lot of scans and joins. Systems used for

analytical query execution are not completely separated from transaction systems, so the

sharing of a database or data file slows down both the operational and analysis processes.

(ii) Because of the limitations of a relational database, users can only observe the

data in flat views, so data visualization from different perspectives is almost impossible.

(iii) Historical data is very important as the improvement of future herds is largely

based on the performance efficiency of past herds. An asset for the dairy sector, these

datasets, which typically originate from different organizations, need a storage structure

that will allow them to be analyzed within a convenient time span and give

multidimensional views of data to decision makers. Such a structure is not supported by

relational database management systems.

(iv) When a dataset is sufficiently large the human eye cannot encompass it: thus

to produce a summary report with relational databases within seconds is a challenge since

9

the person making the query can lose patience or be easily distracted. There is, therefore,

a need to devise such tools as can help in summarizing data quickly from the same

datasets.

Prompted by the above needs, the basic idea of this research was to propose a

methodology to develop a storage place, which could act as a repository of collected data

used for data analysis and decision support. The data available on farms today can prove

an advantage in improving on-farm decision-making, but only if interpreted and exploited

properly through analytical tools. With the help of these tools, dairy-farm advisors can

better help producers with respect in decision-making: e.g., keeping animals in different

management groups for better feed usage and reduced cost of production, and enhancing

efficiency by harmonizing livestock requirements to feed inputs.

10

Purpose of study

Nowadays, dairy producers and their advisors in the dairy industry have access to

an increasing volume of data. This is available at the farm where daily records have been

kept. The detailed production data from all participating resources are actually present in

operational systems which support day to day operations. To take effective decisions

using these data: (i) should be stored separately from operational systems, since the latter

store current data, whereas historical data are required for strategic decision-making and

trend analysis; and (ii) these should be modeled in a multidimensional manner to support

analytical queries which are the basis of decision-support.

Overall objective

The overall objective of this research was to: (i) develop a methodological framework for

implementation of multidimensional models to available dairy data, in order to improve

the advisors’ ability to analyze data and come up with appropriate decision-support

recommendations. To achieve this overall objective, the study was divided into four

stages.

(i) To acquire, explore and understand the data. At this stage understanding the data

is extremely important; for example, what do missing values for an attribute

actually indicate (i.e., are they essential), and does it make sense to calculate an

average or sum for a given attribute;

(ii) To modify the data, metadata need to be carefully understood, for each selected

attribute in the previous stage so that they can be manipulated mathematically.

Desired attributes need to be calculated, and keys selected during the process of

data transformation;

(iii) To design different data models to store the selected attributes in a structure which

could help in analytical query execution. The efficiency of the models needs to be

carefully examined to assess their relative advantages with respect to dairy data;

and

11

(iv) To analyse the data by querying schemas of the DBMS, specifically using a

front-end graphical user interface that could interpret user information needs to

support on-farm decision making.

12

Chapter 2: Review of literature

This Chapter considers the existence of valuable data in operational data stores,

the need for those data to be extracted, cleaned and transformed for the purposes of

specific analyses, and their storage in formats that will allow access to be optimized for

analytical purposes. Given the desire to make more use of existing data, their use in

decision-support systems is discussed, and the differences between online transactional

processing (OLTP) – routine reports – versus online analytical processing (OLAP) –

query-based analyses – are explained. In the case of the latter – the subject of interest in

this thesis – data can be amalgamated from different sources and modeled with the help

of multidimensional data models. Their subsequent storage and analysis can be

facilitated by a data warehouse (cube structure) and various cube operations for viewing

the data. Finally, some applications of multidimensional data modelling and data

warehousing are highlighted from different areas, leading to the topic of interest in this

study – the dairy industry.

2.1: Data extraction and cleaning

Data which are to be used for analysis purposes should be stored separately from

the organization’s operational database. Analysis of data demonstrates altered functional

and performance requirements. These requirements are quite different from those of the

OLTP applications traditionally supported by operational databases. OLTP applications

usually computerize clerical data processing tasks such as banking transactions and order

entry that are the basic daily operations of an organization. These are organized and

repetitive tasks and consist of scheduled transactions. The data required by these

transactions are detailed, current, read and updated in seconds and accessed on a primary

key. Operational databases can range from hundreds of megabytes to gigabytes in size. In

contrast, data which are used for analysis and aid in decision-making should be historical.

Instead of detailed records, summarized and consolidated data is more desirable in the

case of data analysis, which explains why data which are to be analyzed should be

separated from operational databases. In this way historical datasets can be created at a

storage place other than that of operational data storage. Similarly data analyses require

millions of scans and joins, while the process of analysis and most of the queries are ad

13

hoc; this usually means that using the same database for both operational and analytical

purposes will slow down the operational database. Data extraction from operational

databases for analysis of data is usually implemented via standard interfaces such as

ODBC (open database connectivity) and Oracle Open Connect, etc. (Chaudhuri and

Dayal, 1997).

The source of data is a vital factor, as data entry and acquisition are naturally

prone to errors, both for simple and complex data. A great deal of effort has been given to

minimize errors in this front-end procedure, but more often than not, errors in large

datasets are frequent. To avoid these errors during the process of data storage for

analysis, it is important to make an attempt to clean the data in some way, with the aim of

exploring datasets for possible problems, with the intention of correcting the errors.

Naturally, in case of large datasets, doing this task "by hand" is entirely out of the

question in the real world, and might take hours to months. A manual process of data

cleansing is also difficult and can itself create errors. Powerful data cleaning tools that

computerize or greatly assist in the data cleansing process are essential and may be the

only useful and cost-effective method to attain a rational quality level in an available

dataset (Maletic and Marcus, 2000).

Data cleaning is performed to improve the quality. Data quality problems are also

present in standalone data sources such as files and databases. The problems can be due

to misspellings during data entry, missing values or invalid data (Rahm and Do, 2000).

The most important phases in data cleaning are: defining and determining the error types,

and searching for and identifying the error instances. Each phase is difficult and requires

the input from a domain expert. Errors can be viewed in an outlier detection process. If a

large percentage of data elements conform to a general form (99.9%) then the remaining

(0.1%) are likely to be outliers. Outlier values for data elements can be identified with

automatically computed statistics. For each data element the mean and the standard

deviation are calculated and are recognized, based on those elements that have values in a

given field beyond a number of standard deviations from the mean (Maletic and Marcus,

2000). Four standard deviation below and above the mean can be used to remove outliers

in an iterative approach. A four standard deviation threshold can keep most of the valid

values in the datasets (Pietersma et al., 2006).

14

2.2: Data transformation and de-normalization

The data transformation process turns the data from its present format into the

format desired by the target application. For example, if data on values and quantities are

present in an operational database, then computation for profits (transformation) can be

performed, so that all three values are stored in, and accessible for analysis. Inclusion and

organization of related metadata for both original (data coming from operational

database) and transformed data are crucial to the reliability of the data storage place used

for data analysis (Thornsbury et al., 2003). The transformed data are summarized; this is

mostly done to improve of the efficiency of the system (Gray and Watson, 1998). The

transformation process can encompass several functions like data reformatting,

recalculation of certain data elements, adding elements of time, defining new keys in the

database and merging data from multiple files (Simitsis and Theodoratos, 2009).

The data transformation process typically consists of multiple steps, and there are

different tools available for this process. An easy and common approach is the use of the

standard query language (SQL) to perform data transformations and utilize the possibility

of application-specific language extensions. A transformation step specified in SQL is

illustrated in Figure 2.1. This example covers part of the necessary data transformations

to be applied to the data source. The transformation describes a view on which additional

mappings can be made. The transformation carries out a schema reform with added

attributes in the view acquired by dividing the name and address attributes of the data

source (Rahm and Do, 2000).

Figure 2.1: An example of data transformation mapping using standard query language

(SQL) (Rahm and Do, 2000).

CREATE VIEW Customer2 (LName, FName, Gender, Street, City, State, ZIP, CID)

AS SELECT LastNameExtract (Name), FirstNameExtract (Name), Sex, Street,

CityExtract (City), StateExtract (City), ZIPExtract (City), CID

FROM Customer

15

Transformation process also includes data denormalization (Simitsis and

Theodoratos, 2009). The concept of normalizing data in operational databases does not

apply to data stores prepared for data analysis. In operational databases normalization is a

well thought-out and significant tool in avoiding redundancy. It typically requires

dividing a database table into numerous tables and defining relationships among the

tables. Redundant data can create inconsistencies without normalization and the update of

irregularities can take place during deletion and insertion procedures. Database

normalization is important in operational databases where data modifications occur

rapidly and randomly all over a database (Ahmad et al., 2004). Most of the time,

operational databases are normalized up to the third normal form which means that: (i)

there are no repeating fields in a database table (First Normal Form), (ii) all non-key

attributes are fully dependant on a primary key (Second Normal Form), and (iii) there are

no dependencies among non-key attributes in a database table (Third Normal Form). On

the other hand, denormalization is a technique to move from third to first normal forms of

database modeling in order to accelerate database access and, ultimately, improve query

processing. Denormalization is suitable for inactive data, which is historical and used for

analysis, to expedite query performance (Kimball et al., 1998). A simple process of

converting normalized data into denormalized data can be viewed in Figure 2.2.

Accordingly, whilst normalization is a process of dividing a database into smaller tables

to efficiently work with data in operational databases, denormalization is a procedure of

collecting data tables into larger tables for well-organized analytical processing (Ahmad

et al., 2004). This is why redundancies are quite acceptable in the case of analytical

processing (Gray and Watson, 1998) and, apart from the primary key, all other fields

allow NULL values (Wah and Sim, 2009).

16

Denormalization

Figure 2.2: A conceptual model for conversion of normalized data into denormalized data

(Ahmad et al., 2004)

2.3: Data warehouse

A data warehouse may be defined in different ways; some of them are merely for

data, while others may include people, processes, software, tools and data. The global

definition is that the data warehouse is a collection of integrated, subject-oriented

databases, designed to support decision-support functions where each unit of data is

related to some moment in time. The data warehouse is a relatively new concept in

response to a major business need; the analysis of extremely large volumes of historical

data to answer difficult business questions. These questions can be: What segment of

customers buys this product, or with which credit cards do customers pay their bills by

the due date? Technology existing before the data warehouse lacked the ability to

accurately answer these types of questions. In the past most information systems were

designed to create pre-defined reports containing superficial information (AL-Hamami

and Hashem, 2009).

Thus, a data warehouse is a collection of technologies that provides ideas and

techniques which give users valuable information for faster decision-making (Anil et al.,

2008; Chaudhuri and Dayal, 1997; Manole and Gheorghe, 2007). The difference between

a data warehouse and a traditional operational database is the volatility of the data. The

Land for sale

Location 1

Location 2

Location 3

…………………

Location m

Land for sale

Location

17

information in an operational database is constantly changing whereas, in a data

warehouse, the information is stable and updated at standard intervals (monthly or

weekly). A data warehouse can be updated to add values for the new time period only,

without changing values which were previously stored in the warehouse (Alkharouf et al.,

2005). So the data warehouse contains summarized data and data having the lowest level

of detail (Inmon, 1996). Another difference between the two systems is that operational

databases provide an answer to operational requirements, while data warehouses provide

an answer to analytical requirements (Manole and Gheorghe, 2007), thus offering the

possibility for high quality analyses and complex ad hoc queries through user-friendly

interfaces (Berndt et al., 2003; Manole and Gheorghe, 2007). A subject which is the field

of activity is the basic criterion for the organisation of data in data warehouses, while

application is the basic criterion for an operational database (Manole and Gheorghe,

2007).

Managers of organizations have realized that the data stored in databases,

represent informational gold mines if properly exploited. The data warehousing approach

solves the problem of complex data analysis which could not be achieved with

operational databases (Manole and Gheorghe, 2007). The need to build a data warehouse

starts from the requirement of quality information within the organization. The data

which come from different internal and external sources, having different formats are

filtered according to business rules and incorporated into a large single data collection

(Manole and Gheorghe, 2007; McFadden, 2002). The contents of a data warehouse may

be a copy of a part of operational data or may be the result of preprocessed queries or

both (Samtani et al., 1999).

In the process of data warehousing, the raw data fed into the integrated system

may also contain “metadata” that define and describe that particular source data.

Metadata normally include descriptions of data elements, data types and attributes, and

processes and methods of collection. Source data often contain a high percentage of

“dirty data” with inconsistent, missing, or incomplete values. Thornsbury et al., (2003)

emphasize that data must be “cleaned” and organized, and metadata must be

synchronized. Performing data compilation and cleaning functions, including metadata

18

organization, on a regular basis is critical for reducing response time and adding value to

the operational database. Such an operational/archival database provides storage for large

volumes of data and maintains the historical record.

A data warehouse is part of a larger client/server environment and does not exist

in isolation. There are three types of components that comprise the architecture (Inmon,

1996):

i) The data acquisition software (or back end), which extracts data from the

heterogeneous data sources (legacy systems and external data), consolidates and

summarizes the data, and loads it into the data warehouse.

ii) The data warehouse presentation server, i.e., the platform and software (including

the repository) that houses the data warehouse. Data marts which are logical

subsets of data warehouses will be developed instead of one centralized data

warehouse; then a bus architecture will be used for communication within the data

warehouse

iii) The client (or front-end) software which allows decision support users to access

and analyze data in the warehouse.

In designing a data warehouse, each unit of data is relevant to some moment in time.

The process of data warehousing is a collection of decision-support technologies which

support the knowledge worker (executive, manager, and analyst) to make better and

faster decisions (McFadden, 2002). The characteristics of a data warehouse are illustrated

in Table 2.1.

19

CHARACTERISTIC DESCRIPTION OF CHARACTERISTIC

Subject oriented Data are organized by how users mention and apply them

Integrated Inconsistencies are removed in inconsistent information (i.e., the

data are 'cleaned’).

Non-volatile Read only data. Cannot be altered by users.

Time series Data are based on time series rather than current status

Summarized Operational data are recorded into decision-usable form

Larger Maintenance of time series data, which is why much more data

are reserved.

Metadata Metadata are data about the data.

Not normalized Data in the warehouse can be redundant

Input Operational databases

Table 2.1: Characteristics of a data warehouse (Gray and Watson, 1998) .

At present, developmental processes for data warehousing lack an established

scheme. Existing data warehousing development methods fall within three fundamental

approaches, clearly defined by List et al., (2002): data-driven, user-driven and goal-

driven.

(i) The data driven approach explores the data and derives a potential abstract

schematic for the data warehouse. This abstract schema is developed after the

process of transformation of the operational data sources. The analytical needs

of an organization are rarely identified and explained after implementation of

a data warehouse (Inmon, 1996).

(ii) The user-driven approach primarily brings out the requirements of the

decision-making process by group interviews or by separate interviews of

users and experts. Then a model is developed after recognition of facts and

dimensions (Kimball et al., 1998).

(iii) The goal-driven approach encloses numerous considerations like the selection

of the business process. This allows one to decide the smallest piece of

20

information in the process and then select dimensions and facts. Each business

process is considered as a major transaction (Kimball et al., 1998).

There are two ways to build the warehoused data: a bottom-up approach or top-down

approach. In the case of the former, the data are obtained from the operational databases

relevant to the data warehouse applications. Queries are normally identified in advance,

and data are then selected, transformed, and integrated by data extraction tools. Using this

bottom-up approach, user queries can be answered immediately as data are present in the

data warehouse. For this reason, this approach is deemed realistic, and enhances the

performance of the system. In a top-down approach, the data are acquired from the

operational databases whenever a query is created. In this case, the warehouse system

accesses the operational databases in order to answer the query. Another approach is a

hybrid approach, which unites aspects of the bottom-up and top-down approaches. In this

approach, some data are stored in a warehouse, and other data can be acquired from

operational databases as needed (Hull and Zhou, 1996).

2.4: Decision-support systems

An application which is currently in high demand today with respect to

management decision-making is the decision-support system. Management takes

information from these systems and make decisions about business growth, levels of

stock on hand, etc. It is a challenge to derive answers to business questions from the

available data, so that decision-makers at all levels can react quickly to changes in the

business environment. The standard transactional query might ask, "When did order x

ship?" whereas a classic decision-support question might ask, "How do sales in the

South-western region for this quarter compare with sales a year ago?” (Halawani et al.,

2010).

Decision-support systems are computer technology solutions that can be used to

support complex decision-making and problem-solving. Typical DSS tool design consist

of components for: (i) sophisticated database management capabilities with access to

internal and external data, information, and knowledge; (ii) powerful modeling functions

accessed by a model management system; and (iii) a powerful but simple user-interface

21

design which enables interactive queries, reporting, and graphing functions. Much

research and practical design effort has been conducted in each of these fields (Shim et

al., 2002).

Figure 2.3: The evolution of decision support systems (Arnott and Pervan, 2005)

Decision support systems are the hub of business IT infrastructures since they

give companies a way to translate a wealth of business information into factual and

productive results. It is a massive task to collect, to maintain, and to analyze large

amounts of data, which presents significant technical challenges, expense, and

organizational commitment. Before building a system that provides this decision support

information, analysts must address and resolve three fundamental issues (Chaudhuri et

al., 2001): (i) what data to gather and how to conceptually model the data and deal with

their storage, (ii) how to analyze the data, and (iii) how to efficiently load data from

22

several independent sources. Arnott and Pervan (2005) schematically show the evolution

of decision support system research (Figure 2.3).

2.5: Analysis of business data

The need for analysing business data for trends and strategic information is not

new. In a perfect world, the analyst could simply query the operational database in-

company to determine the long-term effects of a policy or the fiscal inference of a

marketing decision. In reality, few operational environments have the resources to allow

information seekers to create the elaborate queries necessary for complicated data

analysis. The data which are used for operational systems are physically separated from

data used for analytical processing or for information. The supporting technology for

operational processing is also different for both systems, so the users are also different

(Jones, 1998).

Data in transaction applications are file-oriented and consist of linear lists of

related values, each describing an employee, customer, product or other entity. These

data are accessed with a single key and viewed as a simple list on the screen. End-user

applications, in contrast, are best viewed in multidimensional format because the user

wants to see various possible combinations of entities and their relationships, e.g.,

performance of different products over time in different markets (Stamen, 1993). Toward

this purpose, data from various operational sources are reconciled and stored in a

repository database using a multidimensional data model. The multidimensional

modeling is a conceptual modeling technique used by OLAP applications or data

warehouses (Chaturvedi et al., 2008).

2.5.1: Online analytical processing (OLAP)

On-line analytical processing, introduced by Codd et al. (1993), is capable of

capturing the structure of real world data in the form of multidimensional tables. OLAP

tools are well-suited for complex data analysis such as multidimensional data analysis

and to assist in decision-support activities (Chaudhuri and Dayal, 1997), informally

referred to as end-user computing (Stamen, 1993). The data used for OLAP are obtained

from a data warehouse, established independently of the current operational data, and can

consist of data collected from heterogeneous, operational and legacy data sources

23

(Chaudhuri and Dayal, 1997). OLAP allows for the fast analysis of shared

multidimensional information: most system responses occur within 5 seconds, with the

simplest analysis taking no more than 1 second and a very few more complex queries

taking more than 20 seconds. However, speeds vary, depending on the OLAP vendor and

system hardware (Alkharouf et al., 2005). What the decision-maker needs, and what

OLAP must provide, are the following functions (Codd et al., 1993):

i. Access to the data in the database management system;

ii. Data and data consolidation paths or dimensions that can be defined according to

user requirements;

iii. Accommodation of the variety of ways or different contexts in which the user

may wish to view, manipulate and animate the data analyses; and

iv. Accessibility to these functions via the end-user’s interface.

2.5.2: OLAP versus OLTP

Database technology is at the center of most information systems. Among these

information systems are decision-support systems and executive information systems.

OLTP environments use database technology to execute and query data, and support the

daily operational needs of business executives. On the other hand, OLAP environments

use database technology to support analysis and to provide decision-makers with a

platform from which to generate decision-making information. Because the process by

which data are extracted, transformed, and loaded into the OLAP environment can be

relatively slow by transactional data standards, the ability to achieve “real-time” data

analysis is lost. OLTP database structures are characterized by storage of “atomic”

values, and they are also transaction-oriented as the name implies. Besides, OLAP

database structures are generally aggregated and summarized. There is an analytical

orientation to the nature of the data, and the values represent a historical view of the

entity (Conn, 2005).

In the past, corporate data were usually stored in production databases: it is only

recently that information specialists have realised the need to analyse the data and store

24

these in a different form which can be better utilised for decision-making purposes. The

work of Codd et al. (1993) has led to a distinction between analytic databases (ADBs),

and operational or production databases (PDBs). A summary of these differences is

presented by Thomsen (2002) which provides a clear explanation of the different

functionalities between OLTP and OLAP. This difference can be illustrated with a simple

example: consider a customer order processing application in which the production

database stores information such as: the customer’s identification number, the name of

the customer, the customer’s order reference number, the value and the date of the order,

with links to other tables holding other related data e.g., quantity and quality of items

ordered, mode of payment, date of dispatch, etc. A manager, however, needs to analyse

the data and requires the resulting information in a more concise form, such as: how

many orders were posted without a delay, or total number of orders per day, or total

number of deliveries per day etc. It is much more important for the manager to have this

information in a timely manner, especially to understand trends in customer behaviour. In

traditional PDBs, such appropriate information is not available, because the production

databases update information after every transaction. As a result, trends in customer

behaviour cannot be identified, which, in turn, denies the business decision-maker from a

valuable insight. If this information from the PDB is stored in an ADB, the time to

analyse the data then become suitable for decision-making.

2.5.3: Multidimensional Data Modeling

Data warehousing provides a framework for integrating data from multiple sources in

a logical and integrated fashion (Inmon, 1996). It provides users with easy access to

enterprise data in a consistent manner and a method for storing historical, summarized

and data aggregations for easy decision-making. Organizational data warehouses are

projected to be hundreds of gigabytes or terabytes in size; therefore, a basic design and

implementation issue of a data warehouse is query performance. In order to improve the

query performance, the data in a data warehouse are typically modeled from a

multidimensional perspective (Anil et al., 2008).

A multidimensional-data-model-based data warehouse for agriculture farm histories

has been developed, and is helping experts to generate quality advice by providing crop-

25

related information in an integrated manner (Reddy et al., 2007). The expert advice has

helped farmers to achieve significant savings in capital investments and improvements in

yield. The most important analysis capability that has emerged for executive information

systems and for the data warehouse environment in general is multidimensional analysis.

A 1996 survey (McFadden, 2002) indicated that 90% of CIOs claimed that their

organizations were developing data warehouses. Of these, 65% said that using

multidimensional analysis was a high priority in their organization. The basic feature of

this model is that it allows the user to visualise data from different perspectives (Mohania

et al., 1999). Multidimensional analysis allows end-users without extensive mathematical

or statistical training to perform operations such as drill-down, roll-up, cross-tabulations,

ratios and trends, slice and dice, and data pivoting (McFadden, 2002). The

multidimensional aspect of enterprise data can be better viewed with OLAP software

which enables analysts, managers, and executives to gain insight into an enterprise’s

performance through fast interactive access to a wide variety of views of

multidimensional-organized data (Colliat, 1996) and data analysis, through interactive

querying of data. The multidimensional view of data conceives of information as stored

in a multidimensional array sometimes called a hyper cube (Vassiliadis, 1998).

A cube is defined by any number of data dimensions; it is not limited to three; and

sometimes a cube may have fewer than three dimensions. In relational database systems,

cubes are constructed from a fact table and one or more dimension tables (Alkharouf et

al., 2005). A fact table is the relational table in a data warehouse which contains numeric

data items used to satisfy all calculation options that are of interest to the end user. The

facts can be additive, semi-additive or non-additive (Anil et al., 2008). The dimension

tables however are more abstract, containing only one row for each leaf member in the

fact table. They are used to create summaries and aggregates of the data in the fact table.

The data dimensions describe a cube just as width, height, and depth, where it is

appropriate, dimensions can be organized into any number of levels or hierarchies

(Alkharouf et al., 2005).

26

2.5.4: Analysis of data with a Multidimensional Data Model

The multidimensional data model is an integral part of the OLAP. Both on-line and

analytical, the OLAP must provide quick answers to complex queries. Designed to solve

complex queries in real time, the multidimensional data model is important because it

enforces simplicity (Kimball, 1996). In contrast to previous technologies, these databases

view data as multidimensional cubes that are particularly well-suited for data analysis

(Pedersen and Jensen, 2002). To provide decision-support with this model, developers

must decide how to structure data and what type of database management system has to

be used in implementation of the data warehouse or data marts. A developer can follow

three strategies (McFadden, 2002):

i) Use an RDBMS server. Organize the data in the form of relations (either

normalized or de-normalized). A client interface which can interact with an

RDBMS can provide multidimensional viewing and analysis of these data.

ii) Use a Relational OLAP server. Organize the data in the form of a “star”

structure. Client interfaces which can interact with the star structure provide

multidimensional viewing and analysis of the data. Data warehouses can be

implemented on standard or extended relational DBMSs, called Relational OLAP

(ROLAP) servers. These servers assume that data are stored in relational

databases, and support extensions to SQL and special access and implementation

methods to efficiently implement the multidimensional data model and operations

(Chaudhuri and Dayal, 1997).

iii) Use a multidimensional database (MDB) server. Organize the data physically

in the form of multidimensional arrays. Provide multidimensional viewing and

analysis through client interfaces that interface with the multidimensional

database (Chaudhuri and Dayal, 1997; Pedersen and Jensen, 2002). This is also

known as multidimensional online analytical processing (MOLAP).

The first option is unsuitable for multidimensional analysis for two reasons: performance

and reliability. Since data in tabular form are not pre-processed, query responses needs to

be computed dynamically which requires not only resources but also considerable time

(Halawani et al., 2010). Also, inconsistent responses may be generated when an attempt

27

is made to analyze multidimensional data against a relational structure. The second

option, in which the developer can use the star data structure, means that data are stored

in a relational format that is specially designed for multidimensional analysis. Two types

of tables are used: fact tables, and dimension tables (McFadden, 2002). The third option

is to use a multidimensional database (MDB) server or MOLAP servers. With an MDB,

data are pre-processed and stored in the form of arrays for fast and flexible retrieval in

multidimensional analysis. In this way, it is possible to implement front-end

multidimensional queries on the storage layer through direct mapping (Chaudhuri and

Dayal, 1997).

The most essential performance-improving techniques in multidimensional

databases are pre-computation and pre-aggregation, which enable fast, interactive data

analysis for potentially large amounts of data. As an example, computing and storing, or

materializing total crop production by region and by year quarter is one application of

pre-aggregation. These answers can be derived entirely from the pre-computed results

without needing to access large bulks of data in the data warehouse. This method can

save time and resources. The latest versions of commercial relational database products,

as well as dedicated multidimensional systems, offer query optimization based on pre-

computed aggregates and automatic maintenance of stored aggregates during updating of

the base data (Winter, 1998).

2.5.5: Star schema

In ROLAP architecture, data are organized in a star schema, the standard schema

for dimensional modeling, which is divided into two main structures (Correa et al., 2009):

(i) the additive numerical data which is being stored in a unique table or fact table

(Abdullah, 2009); and (ii) dimension which is a set of similar entities, e.g., set of all

employees or all products. The fact table is linked to all the dimension tables by one-to-

many relationships (Stamen, 1993). This is illustrated in Figure 2.4. Abdullah (2009)

defined dimension as a business parameter that defines a transaction (or record) and

usually consists of hierarchies. Each dimension in a data warehouse has one or more

defined hierarchies, e.g., the weather dimension has multiple levels of possible

28

hierarchies like weather > humidity > humidity at 8:00 AM and

weather > temperature > minimum temperature.

Figure 2.4: Star schema for sales subsystem (data model) (Mishra et al., 2008).

2.5.6: Snowflake schema

The snowflake schema can be used in those cases where many-to-many relationships

exist among the data of a dimension table and a fact table (Ballard et al., 1998). In case of

the snowflake schema, all dimensional information is stored in the third normal form,

while maintaining the same fact table structure. To protect the hierarchy, the dimension

tables are linked with sub-dimension tables using many-to-one relationships. This

accounts for why this model generates a modification of the star model where the

dimensional hierarchy is clearly characterized by normalizing the dimension tables

29

(Ahmad et al., 2004). A snowflake schema for decision-support to assist builders is

illustrated in Figure 2.5.

Figure 2.5: Snowflake schema for decision support system to assist builders (data model)

(Ahmad et al., 2004).

2.5.7: Fact Constellation schema

Normally it is impossible for all measures and dimensions to be captured in a single

model. Usually, a data warehouse consists of several fact tables explained by several

(shared or non- shared) dimensions (Eder et al., 2006). A fact constellation schema has

more complex structures in which multiple fact tables share dimensional tables

(Chaudhuri and Dayal, 1997). For example, a sale item and the sale fee may form a fact

constellation since they share many dimensions (Figure 2.6).

Fact table for land

appraisal

Land for sale_key

Price_key

Land size

Dimension table for

land for sale

Land for sale_key

Owner_key

Location _key

Municipality

Dimension table for

price

Price_key

Base price

Taxes and fee_key

Commission

Final sale price

Dimension

table for

owner key

Dimension

table for

location key

Dimension

table for taxes

and fee_key

30

Figure 2.6: Fact Constellation Schema for Sales subsystem (data model) (Mishra et al.,

2008).

Period

Dimension

Date

Month

Quarter

Year

Location

Loc_ID

Loc_Name

Loc_type_ID

Loc_type_Name

Loc_region_ ID

Region_Name

Customer

Cust_ID

Cust_Name

Cust_type_ID

Cust_type_Name

Cust_region_ID

Region_name

Product

Dimension

Product _ID

Product Name

Product_type_ID

Product_ type_Name

Sale Item

Fact table

Sale_Date

Period_Date

Product_ID

Cust_ID

Loc_ID

Sum_of_city

Sum_of_value

Sale Fact Table

Period_Date

Sale_Date

Cust_ID

Loc_ID

Sum_of_Discount

Sale Fee fact table

Sale_Date

Period_Date

Product_ID

Cust_ID

Fee_type_ID

Sum_of_fee

Fee Type Dimension

Fee_type_ID

Fee_type_Name

31

2.5.8: Comparison of Logical Design Models

Efficiency is the most important factor in data warehouse modeling because many queries

access large quantities of data that may possibly engage multiple join operations (Martyn,

2004). A star schema is usually the most proficient design for two reasons: (i) a design

with denormalized data needs fewer joins between tables; and (ii) most software have star

schema and can make efficient “star join” operations. In fact, constellation schema may

require more join operations on fact tables. While a snowflake schema needs additional

joins on dimension tables, in specific situations where the denormalized dimension tables

in the star schema become extensively large, it may be the most adequate design

methodology.

Although the star schema is the simplest structure among the three schemas, it has

the smallest number of tables, and users need to execute fewer join operations which

makes it easier to create analytical queries. It is easier to learn the star schema than either

of the other two schemas. Compared to the star and fact constellation schemas, the

snowflake schema can share dimension tables and can be reused in a data warehouse.

Dimension tables in a snowflake schema do not contain denormalized data. This makes

dimension tables in the snowflake schema more reusable in a data warehouse. In star and

fact constellation schemas design approaches, dimension tables are denormalized, making

it less suitable to share dimension tables among schemas. Other advantages of the

snowflake schema include storage of data in normalized tables, which reduces

redundancy and results in fewer data inconsistency problems arising (Mishra et al., 2008).

2.5.9: Design of a data warehouse

The design of a data warehouse consists of three basic steps: (i) identifying facts

and dimensions; (ii) designing fact and dimension tables; and (iii) designing data

warehouse schemas. Identification of facts and dimensions include the following

procedures: (i) facts represent quantitative data about a business transaction (e.g., land

available for sale, price of land etc.) while dimensions reflect description of that fact

(land owner, location etc.), (ii) design fact and dimension tables include the procedures to

32

define primary keys in the dimension tables and introduce related foreign keys in the fact

table. As a result a fact table contains facts and keys foreign to the dimension tables. In a

query, the system first accesses dimension tables and then the fact table. Designing the

data warehouse schema includes the process of establishing the relationships between fact

and dimension tables. The resultant schema will contain a central fact table and

surrounding dimension tables. The three main types of data warehouse design schemas

are star, snowflake and fact constellation (Ahmad et al., 2004).

2.5.10: Accessing data from the data warehouse for analysis

The main reason for using multidimensional data models for business data

analysis is spread sheet programs. These are still a popular front end tool for OLAP. But

the main thing in using a spread sheet as a front end tool is that either it supports the

queries of OLAP or not, as OLAP queries are complex and summarize the data coarsely.

The most accepted operation of spread sheet is “pivoting” (Chaudhuri and Dayal, 1997).

The pivot operator transposes a spread sheet by aggregating values in the cells of a spread

sheet. If pivot is created on two columns containing N and M values, the resulting table

would be N*M values (Gray et al., 1997).

The simplest view of a pivot is that it selects two dimensions that are used to

aggregate a measure. In Figure 2.7, for all salesmen, the sale of product A is aggregated

for years one, two and three in dimension for site one and two (Koutsoukis et al., 1999).

Other operators associated with pivot table are roll-up or drill down. As in Figure 2.7 the

pivot table is rolled up to all salesmen. The drill down operation is the converse of roll-

up, i.e., it serves to explore data for an individual salesman. Slice and dice corresponds to

reducing the dimensionality of the data by taking a projection of the data on a subset of

dimensions (Chaudhuri and Dayal, 1997). In Figure 2.7, the pivot table (product A) is

actually a slice of the large pivot table of all the products (A, B, ... , Z).

33

Figure 2.7: Pivot table (Koutsoukis et al., 1999)

Since pivot tables allow for the nesting of multiple dimensions within the same

axis, they are adequate for displaying the query results in a straightforward fashion.

However, they fail in showing selected values in a larger context and are thus a rather

poor option for complex data exploration. Advanced OLAP tools overcome these

limitations through visual alternatives for retrieving, displaying, and interactively

exploring the data (Vinnik and Mansmann, 2006). Vassiliadis (1998) classifies OLAP

cube operations as level-climbing, packing, function-application, projection, dicing, as

well as more complex operations, such as navigation and slicing, which are defined on

top of the simple ones. He (Vassiliadis, 1998) does not use pivoting in this classification

since he claims that pivoting is simply a reorganization of the presentation of the data,

rather than a modification of their value or structure. When applying these functions to

the existing cube, each operation resulted in a new cube. Aggregate functions were

available through slicing and navigation.

2.6: Application of data warehousing

Comprehensive Assessment for Tracking Community Health (CATCH) provides

methods for community-level assessment that are very useful in resource allocation and

health care strategy formulation. A community-level focus is proposed to support local

decision-makers by providing a clear methodology for organizing and understanding

relevant health care data. Data warehousing technology, has led to an innovative

application of information technology in the health care arena along with extensive field

34

experience with CATCH methods. The data warehouse allows a core set of reports to be

produced at a reasonable cost for community use. In addition, OLAP functionality can be

used to gain a deeper understanding of specific health care issues (Berndt, 2003).

Data warehousing helps organizations in analyzing patient populations by

geographic location, diagnosis, and service consumption to determine which disease

management programs will be most beneficial to the patient and the organization. The

purpose of this plan is to improve member health status, lower medical expenses and

increase physician participation. Implementation of disease management programs allow

providers and organizations to actively manage patient care and inform patients so they

can monitor their own condition, which will effect a decreased use of high-cost services.

The organization should be financially successful, and the outcome is a healthier patient.

Disease management efforts which are well developed may even lower disease

occurrence in people (Ramick, 2001).

In the field of education, the goal of the data warehousing project at Stanford

University was to develop algorithms and tools for the efficient collection and integration

of information from heterogeneous and self-governing sources, including legacy sources.

The warehousing approach was particularly useful when high query performance is

desired, or when information sources were expensive or transitory (Hammer et al., 1995).

Chaudhary et al. (2004) proposed a data warehouse architecture which had the

potential to satisfy information requirements for effective decision-making in the

agricultural domain. Challenges related to administering the collection of a vast amount

of transactional data, their processing, analysis and display were addressed by three

capable technologies: sensor web enablement, web services and OLAP. Analysis services

provided support to build OLAP cubes of varying dimensions. With the support of

Multidimensional Query [MDX] technology, complex OLAP analysis operations like

slice, dice, and drilldown, were possible on a simple web browser. This capability has the

scope to help farmers and policy-makers to make operational and strategic decisions.

The value is added to data when it can be used as information to improve the

decision-making capability of individuals. Valuable data are collected and reported, but

difficulty in finding, accessing, and processing the information lessens its value to

agricultural decision-makers. A data warehouse structure provides the additional features

35

of data management, query, and decision-support systems, thus moving users towards the

specificity in data that they desire. This structure would allow decision-makers to more

resourcefully access and process the assets of available information, thus reducing

exploration and overall transaction costs in decision-making (Thornsbury et al., 2003).

The agricultural advisory system called eSagu (a data warehouse), has been

developed to improve the performance and utilization of agriculture technology and help

Indian farmers. With the help of this data warehouse, the agricultural expert delivers

expert advice at regular (weekly) intervals to each farm by getting the crop status in the

form of digital photographs and other information, rather than visiting the crop in person.

During 2004-06, agricultural experts’ advice was delivered to about 6000 farms growing

six crops with the help of this data warehouse. The results show that the experts’ advice

helped the farmers to achieve savings in capital investment and improved crop yield. The

data warehouse was based on farm histories providing crop-related information to the

agricultural experts in an integrated manner, allowing them to generate quality

agricultural advice (Reddy et al., 2007).

In another example, a data warehouse based on multidimensional data models was

used for simulation purposes. Urbanization, climate change and deforestation are

complex situations and a lot of data is collected on these dynamics. Consequently, these

dynamics may be better viewed with the help of multidimensional data models, to

identify and predict the evolution of the environment in response to potential value

changes in a large number of influence variables. Data warehousing systems provide

tools for supervision of simulation results originating from different sources. Besides,

OLAP technologies allow analysis and evaluation of these results and their resultant

models. The users can use this methodology to design specific data warehouses, and an

adaptation of an OLAP client tool to provide an adequate visualization of data (Mahboubi

et al., 2010).

It is the objective of this study to consider the various sources available for

improving the decision-making process in the Québec dairy industry, demonstrate the

process of acquisition, cleaning and de-normalization, and explore the methods for

modelling these multidimensional data. Their storage in a data warehouse, as well as

36

their viewing through an appropriate schema, should facilitate the analytical process of

querying these data for the benefit of producers and their advisors in the dairy industry.

37

Chapter 3: Materials and Methods

3.1: Data extraction and cleaning

The Online Transaction Processing (OLTP) Systems at Valacta are the basic

element in the IT-infrastructure of Quebec Dairy Industry. These are the common data

storage used by all producers enrolled in the dairy milk recording system. They represent

the point of data entry for each cow, and provide access to the data collected by other

systems, e.g., Breed Associations and the Canadian Dairy Network. In spite of these

characteristics, the databases at Valacta cannot be considered as data warehouses per se.

Data in these systems are used and organized according to operational purposes, where

many kinds of data about one cow are presented to get an overview of the milk

components, feed information, breeding dates, health status, etc. On the other hand data

in a data warehouse would be stored with respect a specific subject like milk production

for a herd in a specific year in a specific season in a specific region. Therefore a data

warehouse needs historical data by which trends can be analyzed. Thus extraction of

historical data from the operational databases at Valacta was an important component of

this research. All of the files which were extracted from the operational databases were in

the form of SAS (Statistical analysis system) datasets, which were denormalized. The

number of test day records, herds and cows are given in the following table which were

based on years 2000 to 2009 (Table 3.1).

Name of attribute Number of records

Herds 6,917

Cows 1,203,134

Test day records 25,398,435

Table 3.1: Record details

The test day records were extracted in four SAS datasets. Among the four, the dataset

which was selected for study had 8,295,154 test day records, 1,943 herds and 447,414

38

animals. A typical test day record consist of information such as unique herd

identification number (hrd_id), unique cow identification number (anm_id), unique herd

test period identification number (htp_id), parity, milk in kilograms, percentage of fat,

percentage of protein, percentage of lactose, MUN (milk urea nitrogen (mg/dl), SCC

(somatic cell count(*1000)), and days in milk (DIM). An anm_id and hrd_id also pointed

to the records in other files, e.g., lactation file, feed file, breeding file, etc. A change in

the status of the cow, e.g., shift from one lactation to the next lactation, change in weight

gain, change in health status, was present in these files. Thus, once a record is entered, it

is conserved to see the life time history of a cow. Therefore “time” at which the data are

included in the operational data stores is very important to see the history of a cow, which

accounts for why there are gigabytes of data stored in operational data stores every year.

A step by step process of warehousing data is shown in Figure 3.1. The SAS

datasets were studied carefully for type of variables, count of different variables, missing

values, and minimum and maximum values. Then data were “cleaned” (missing values

and outliers) according to some accepted rules, and classified by using SAS univariate

and FREQ procedures (Figure 3.2).

Figure 3.1: Process of data warehousing.

After the removal of outliers with ± 4 standard deviation, 7,911,659 records

remained. A detailed study was conducted on their attributes with an emphasis on their

data type and length, since in operational databases; catalogues contain fundamental data-

type information such as whether an attribute is real, string, integer or a date. From this

information of fundamental data types certain properties were useful to determine which

attributes could be derived from other attributes. Attributes were also classified as to

39

whether they had continuous or discrete values. This information was very significant

with respect to the selection of dimensions and facts for the multidimensional data model.

Data were denormalized so that attributes having null values were also considered, since

in dimensional data modeling, null values were tackled carefully to avoid wrong

calculations.

Figure 3.2: SAS univariate procedure to see the distribution of fat and milk in the data.

3.2: Data transformation

Data transformation actually encompasses all those features which transform data from

operational databases to a data warehouse. Different required attributes were calculated

from the existing attributes, where necessary and data were carefully inspected to

determine if the output was reasonable or not. In this way values could be easily

distinguished between the extremes of reasonable and unreasonable. This type of analysis

dealt with obvious cases of data inaccuracy. An example of the code is given in the

Figure 3.3 in which different new columns were created from the existing attributes.

/*Procedure univariate to see the distribution of milk quantity and fat percentage in the

data*/

proc univariate data= parity1;

var fat;

HISTOGRAM fat/NORMAL (COLOR=RED W=5);

RUN;

proc univariate data = chk_lact;

var milk305;

by parity;

HISTOGRAM milk305/NORMAL (COLOR=RED W=5);

RUN;

40

Figure 3.3: Calculation of the new columns from the existing columns

Figure 3.4: Classification of the data for defining dimensional hierarchies

In the data, variables were identified for defining dimensions (dimension table:

which give the perspective for the measure) and measures (fact table: the objects of

analysis) for the development of a multidimensional data model. The primary key and

foreign key relationships were studied to see how one attribute relates to other attributes

in other files. For the definition of the dimension structures data were broken into

separate dimensions, such as a dimension for herd, for cow, for parity groups (parity

group 1 in which first parity cows were present, parity group 2 in which second parity

cows were present and parity group 3 in which third and above parity cows were present

(Figure 3.4), dimension for season of calving, etc.

What the granularity for each dimension would be was also determined. Like in

case of test day granularity was considered each test date. In the case of region, breeds,

herds and cows, region and herds were kept in the one dimension table and breed with

cows in one dimension table. The level of granularity for region was to the herd, and to

the cow for the breed table. The reason behind keeping herds and cows in separate

create view feed_dm1 as Select hrd_id,anm_id,htp_id,qty,ab,FDC3, descrp,DM,nel,cp,

(Case when (FDC1='7' or FDC1='8')

then qty/1000 else qty end) as qty_kg from feed_daytest;

/* Classification of data for parity groups*/

data a;

set MkCom.test_day_scc;

if parity = 1 then parity_gp="pgp_1";

if parity =2 then parity_gp="pgp_2";

if parity>= 3 then parity_gp="pgp_3";

run;

41

dimension tables was the hierarchical characteristic, since it was a classic ragged or non-

covering hierarchy. A ragged hierarchy or non- covering hierarchy is a hierarchy in

which children do not have parents at the same next level. In other words, not all leaf

level (or parent level) entries have the same depth (Not all cows have information on all

parities, similarly not all herds have the same number of cows). After designing the

multidimensional models on paper, it was decided to transform them to software, so data

from SAS were loaded to SQL server management studio 2008 with the help of the SQL

server native client for the ODBC driver
1
 (Figure 3.5).

Figure 3.5: Connection of SAS with SQL server for data loading

After data were in the SQL server, views were created on the data or the required tables

were created to transform the data into a multidimensional model (Figure 3.6, 3.7 and

3.8).

Figure 3.6: Fact table

1
 ODBC is a standard definition of an application programming interface (API) used to access data in

relational databases. SQL Server supports ODBC, via the SQL Server Native Client ODBC driver to

communicate with the SQL Server.

libname sqlsvr odbc datasrc="myodbc" user= password=;

Data sqlsvr.daytest;

set MkCom.test1;

run;

/* daytest the fact table */

create table daytest (hrd_id float,anm_id float,parity float,test_date date,

milk float,fat float, protein float,mun float,lactose float, scc float

Primary key (hrd_id,anm_id,parity,test_date));

insert into daytest (hrd_id,anm_id,parity,test_date,milk,fat,protein,mun,lactose,scc)

select hrd_id,anm_id,parity,test_date,milk,fat,protein,mun,lactose,scc from daytest;

create view dim_con_rec as select * from testday;

42

Figure 3.7: Creation of dimension tables

/* Create dimension for date of calving*/

create table dim_doc_daytest (doc Date, season_doc varchar(max));

insert into dim_doc_daytest(doc,season_doc) select distinct doc,(case when

month(doc)>9 then 'Fall'

when month(doc)>3 and month(doc)<=6 then 'Spring'

when month(doc)>6 then 'Summer'

else 'Winter' end) as season_doc from daytest;

/* Creating Dimensions and fact table for test day file*/

/*Create cow dimension*/

create view dim_anm_daytest as

select distinct anm_id from daytest;

/*Create herd and cow bridge dimension*/

create view dim_hrdanm_daytest as

select distinct hrd_id,anm_id from daytest;

/*Create herd dimension*/

create view dim_hrd_daytest as

select distinct hrd_id from daytest;

/* Create dimension for breed*/

create VIEW dis_anb_test AS

select distinct anb_cd from hrd_anm_test;

/* Create diemsion for region*/

CREATE VIEW DIS_REGION_TEST AS

select distinct region from hrd_anm_test;

/* Create diemsion for parity*/

create table dim_parity_daytest (parity float, parity_gp varchar(MAX));

insert into dim_parity_daytest (parity,parity_gp) Select distinct parity,(case when

parity=1 then 'First_Parity'

when parity=2 then 'Second_Parity' else 'Thrid_Parity+' end) as parity_gp from daytest;

43

Figure 3.8: Creation of dimension table.

Microsoft SQL Server Analysis services provides a graphical user interface to

communicate with the SQL server through standard API OLEDB (Object Linking and

Embedding, Database). With the help of this API, data source views can be created on the

tables and views, present in SQL server database engine. The facilities provided by

Microsoft in analysis services are actually an interface for online analytical processing

(OLAP). OLAP (Codd et al., 1993) is an area of active business and research interest and

these tools focus on providing prompt response to ad hoc queries that summarize the

warehouse data. With the help of this quick response by OLAP tools, clients can analyse

the data and make informed decisions. OLAP applications are not supported by entity

relationship and relational models, therefore those models which support

/* Create dimension for condition record (disease information)*/

create table dim_car_daytest (car_1 float , record_condition varchar (max));

insert into dim_car_daytest (car_1, record_condition)

select distinct car_1, (case when car_1=1 then 'Sick' when car_1=2 then 'Bloat' when car_1=

3 then 'Dysentry'

when car_1=4 then 'off_feed' when car_1=5 then 'Ketosis' when car_1=6 then 'Peritonitis'

when car_1=7 then 'Mastitis'

when car_1=8 then 'Sick_lame' when car_1=9 then 'other_helth_problem' when car_1=10

then 'Udeer_injury'

when car_1=11 then 'other_injury' when car_1=12 then 'Milk_fever' when car_1=13 then

'Metritis' when car_1=14 then 'Displaced_abomasum'

when car_1=15 then 'Et_flush' when car_1=16 then 'In_heat' when car_1= 17 then 'Nervous'

when car_1=18 then 'Aborted'

when car_1=19 then 'Oxcytocine' when car_1=20 then 'Rectal_palpation' when car_1=21

then 'Growth_hormone'

when car_1=22 then 'Fever' else 'no_record' end) as record_condition from daytest;

44

multidimensional view of data become known. The models which support a

multidimensional view of data have measurable facts like milk production, percentage of

fat, percentage of protein, MUN (mg/dl), percentage of lactose and SSC on a specific test

day and dimensions which characterize facts such as herd (in a hierarchy of herd and

cow), date of calving (in a hierarchy of seasons, i.e., winter, spring, summer and fall),

time for test day (in a hierarchy of year, month and date), parity (parity group 1, 2, and

3+), region (there were seventeen regions in the test day file), and breed (there were eight

groups for breed code).

3.3: Data storage in a warehouse with a multidimensional schema

The development of multidimensional data models of these data was quite

complex since missing data as well as attributes in dimensions which had different levels

of granularity had to be accommodated. As discussed earlier, several approaches exist in

the literature, e.g., separate star schema for each path (Bauer et al., 2000), by separate

tables for each level of hierarchies based on different paths (Jagadish et al., 1999), and

using null values for absent levels of an attribute (Lehner et al., 1998). In this

dimensional model, separate dimension tables were created for herds and cows

(snowflaking), and null values were used for the absent level of an attribute. Many-to-

many relationships between facts and dimensions were also captured by using a

snowflake schema. For performance and study, star and constellation schemas were also

considered. The details of these schemas are presented in the results and discussion

section. There was another issue of using the same time dimension for test day and

calving in a year. Use of same dimension of date for test date (in a hierarchy of year,

month and date) and calving interval (ideally calving interval is 305 days lactation length

and 60 days dry period) was impractical. Using the same dimension of time degrades the

quality of the data – arguably one of the most important potential erroneous conclusions

based on following OLAP queries. The hierarchies in dimensions (Figure 3.9 are actually

used for drilling down and rolling up the aggregated data, so that test date is rolled up to

month and then month is rolled up to year, but the calving in a year was based on season

of calving. Figure 3.9 depicts the dimensional hierarchies in the case of test day, calving

interval, herd, and herd-cow bridge dimension.

45

Figure 3.9: Dimensional hierarchies in multidimensional data model.

For the creation and deployment of multidimensional (OLAP) cubes, data were

loaded into Microsoft Visual Studio 2008 (Analysis services) with the help of the SQL

server Native Client driver for OLEDB. To create a new Analysis Services project, in the

environment of Visual Studio 2008, the Analysis Services Project template was selected.

A new folder was created for this project by default in the directory of My Documents in

Windows 7.
2
 After creating this new project a data source was created which was a data

source object, represented by a connection to the data source from which data were

imported. The connection was established with Native OLEDB/SQL Server Native Client

10.0. Through this native client of the SQL server, a connection was established between

analysis services and the SQL server database engine, after entering the name of the

server and other authentication credentials. This data source wizard had options of

different databases presented in a list, so the desired database was selected from the list

(Figure 3.10).

2
 Operating system on the machine was Windows 7

Herd

Herd-cow bridge
diemsion

Animal

Year

Month

Date

Date of
calving

Winter
Spring Summer Fall

Dimension for herd

and cow

Dimension for test

day
Dimension for date

of calving

46

Figure 3.10: Analysis services data source

47

Figure 3.11: Analysis services data source view

48

This object was used to create data source view. “A data source view contains the logical

model of the schema used by Analysis Services database objects namely cubes and

dimensions" (http://msdn.microsoft.com). A data source view (Figure 3.11) had metadata

that were used to generate an underlying relational data store. It also had relationships;

primary keys, calculated columns, and queries that were not present in an underlying data

source and which were separate from the underlying data sources, i.e., if there were any

changes made to the data source view, there was no change in the original tables in the

SQL server.

After the definition of a data source view, the cube was ready to be build. The cube was

defined with the help of the cube wizard, thereby establishing the primary foreign key

relation between dimensions and fact. However, in the case of bridge dimensions (many-

to-many relationship between dimension table and fact table) dimensions were defined

using the dimension wizard, processed, and then added to the cube (Figure 3.12). The

fundamental components of a cube are dimensions and measures. Dimensions are called

categorical attributes and measures are called numerical or summary attributes.

According to Agrawal et al. (1997) there is no formal way of deciding which attributes

must be made dimensions and which attributes must be made measures; it is left as a

database-design decision.

In order to navigate the data, dimensions explained the organization of the cube that was

used to slice and dice, and measures provide aggregated numerical values of interest to

the client. At the junction of dimension members, a cell in the cube is defined as

containing the aggregated values of the measures at that specific junction; thus cells are

defined for every possible summarized value. As a coherent arrangement, a cube permits

a client request to extract values or measures, as if they were contained in cells in the

cube. In the Cube designer window, the cube structure (Figure 3.13) tab gives one the

opportunity to deal with measure properties and to define new measures and edit existing

measures. Because analysis services does not support simple average calculations, counts

of non-empty rows were created for each milk component to divide the sum of each milk

component value for the calculation of averages.

49

Figure 3.12: Herd_Bridge_Cow (snowflaking for many-to-many relationship between

herd and cow and fact table).

50

Figure 3.13: Cube structure

Dimensions appeared in the dimensions pane of the cube structure tab in the cube

designer window; seven dimensions were created at the database level, as displayed in

51

solution explorer; however, there are eight dimensions in the cube shown in the Figure

3.13. The time dimension in the cube was not present in SQL server, but the built-in

dimension in analysis services was used. The data which were used were based on a ten-

year time period (2000-2009) so dates were mapped to the dates of a built-in time

dimension and a hierarchy of year, month and date was used (Figure 3.14).

Figure 3.14: Dimension structure for time dimension

52

Before deploying and processing the cube each dimension was processed and

hierarchies were set.

In the solution explorer pane, the options of the dimension designer included four

tabs for dimension structure, attribute relationships, translations, and browser. The

dimension structure tab included three panes: attributes, hierarchies, and data source

view. Those attributes which were present in the dimension table appeared in the attribute

pane. The hierarchies were defined in the “hierarchies” pane of the dimension structure

tab. In the attribute relationship tab, Microsoft SQL Server Analysis Services

automatically defines the relationship between the key attribute and each non-key

attribute of the dimension in the case of the star schema. However, in the snowflake

schema where dimension attributes are derived from multiple related tables (cow  herd-

cow bridge table herd), attribute relationships are automatically defined (i) between the

key attribute (anm_id-dimension cow) and foreign key attribute (anm_id in fact table);

(ii) between the key attribute (anm_id, hrd_d id composite key in the herd-cow bridge

table) and the foreign key attribute (anm_id dimension cow) in the dimension tables; and

(iii) between the key attribute (hrd_id dimension herd) and the foreign key in the bridge

table (anm_id, hrd_d id composite key in the herd-cow bridge table). The dimension

usage tab was important given that it was the place where the relationship between each

dimension and fact table had to be defined and the granularity level was set for

calculations (Figure 3.15).

53

Figure 3.15: Dimension usage in cube structure tab

Before calculated members were created in the cube it was deployed and

processed. The “deployment” started with the build option and the actual aim of

deployment was to compile the cube and create an analysis services database and update

the existing database after each deployment. On the other hand “processing” the cube,

copied the data from the underlying data sources into the cube objects; however, without

54

processing the cube it could not be browsed. Thus “deployment” gave a structure to the

analysis services database and “process” gave the data for analysis. Whilst the browser

tab was used to view both cube and dimension data, this tab provided special capabilities

based on the objective of browsing. For dimensions, this tab offered a way to navigate a

hierarchy all the way down to the leaf node (Year-Month-Date). The browser tab also

offered a built-in MDX query designer by which data were filtered according to

requirements. Data from the cube were also analyzed using Excel which can point to the

cube with the help of a predefined connection in analysis services.

3.4: Analysis of data with an OLAP cube

Once the cube was processed, the measures which were created in the cube

structure measures pane were available for calculations or query with a multidimensional

expression (MDX). The calculations tab of the cube design MDX was used to calculate

the averages for milk components. Format string property was used to define formatting

settings ("#, ##0.00;-#, ##0.00") that control how measures are displayed to clients

(Figure 3.16). After the calculations cube was processed again, different options for

processing the cube like process default, process full, process data, process structure,

unprocess, process index and process incremental were available (Figure 3.17). The

“process default” option identified the process state of the database tables, and performed

the processing necessary to a fully-processed state. When there were changes in the data,

this option implemented “Process Full” on the affected table. “Process full” was

performed on a cube that had previously been processed. Analysis Services discarded all

data in the cube, and then processed the cube. When a structural change was made to the

cube this processing was used. “Process data” was only useful when there were no

aggregations in the cube. “Process structure” was only used for cube structure to be

processed, not for relevant structures related to cube-like mining models. “Unprocess”

was used to delete all structures, data indexes and aggregations from the cube. “Process

index” was used to generate or reconstruct indexes and aggregations for a processed

cube. “Process incremental” was used to send SQL queries to read the entire dimension

table and apply the changes. This worked in a different way than “Process full,” as this

option did not discard the dimension storage contents. However, “Process full,” did an

55

implicit process clear on the cube. “Process incremental” was slower than “Process full”

since it had added work to apply the changes to the cube.

Figure 3.16: Calculated measures

56

Figure 3.17: Processing options of a cube

 After processing, the cube was ready for data analysis, and for the first time

the cube was available for data analysis in cube editor (Figure 3.18). Data analysis is the

procedure of drawing out information from large databases. The strong feature of the

OALP supporting software is the drag and drop option for drill down and roll-up

navigation inside the cube data. When operations (such as level-climbing, packing,

function-application, projection, dicing) were applied to the existing cube, each operation

57

resulted in a new cube. Aggregate functions were available through slicing and

navigation.

Figure 3.18: Cube browser

58

The set of allowed aggregate functions are average, count, sum, min, rank (n), and

no-operation. All of them were well-known relational aggregate functions, except for no-

operation which means that no function is applied on the data of the cube and rank (n)

which returns the first n-components of an aggregated set of values which can be ordered.

Detail of these cube operations are discussed in the results and discussion section.

59

Chapter 4: Results and Discussion

4.1: Data Extraction and cleaning

The extraction of data from the operational data stores was important as these

stores did not support analytical query execution. Analytical topics like ‘number of

animals in different parities in a herd,’ ‘rank of cows’ milk production, and ‘feed intake

needs,’ require significant data sorting and the joining of multiple tables. As a result such

queries really slow down the working of operational databases. Therefore it is advisable

to separate computer systems; i.e., an operational database for operational tasks and a

data warehouse for analytical query execution (Chaudhuri and Dayal, 1997). Operational

databases are relational databases; therefore their structure of relational databases does

not support the analytical query execution. Relational databases support short queries due

to their highly normalized data. Analytical queries are ad hoc and access millions of

records at a time, which requires many table scans, such that normalized tables cannot

support them.

The extraction of data from the operational databases at Valacta was not easy as

these datasets differed from conventional datasets present in business environments. The

major challenge was to extract data in chronological order as these datasets are available

for a period of more than 10 years. The main reason to keep historical data is to observe

the performance of cows; however, an ordinary business would only keep data for six to

ten years. None of this data had been deleted, allowing one to see the performance of past

cows. In a business environment, relevant data can change due to the

introduction/discontinuation of new/old products, price changes, changes in customer

preferences, so the results of queries can often become outdated. However, in the case of

dairy data, historical data are as important as data pertaining to human medical issues,

which are collected but seldom deleted. In this perspective, the design of a data

warehouse was not easy, as historical data had to be stored in a chronological order so

that whenever they was extracted for analysis they would give reasonable results.

60

The main objective of collecting data at dairy farms is to see the performance of

the dairy herds and to take effective decisions at the farm level. Decision-making depends

upon the analysis of data. If data are entered incorrectly and then used for analysis they

will not show a clear picture of the cows and ultimately the herds. Thus, to get the desired

results from the data and to take effective decisions, data were cleaned by taking input

from the domain experts and consulting the literature. Outliers were removed and missing

values were also treated while designing the multidimensional data model. Data were

cleaned in a different staging area before being loaded to the data warehouse. Almost

everywhere data warehouses have been developed researchers (Ahmad et al., 2004;

Chaudhuri and Dayal, 1997; Gray and Watson, 1998) have emphasised the importance of

cleaning the data. Therefore data warehouse was not only a storage place for historical

data used for analytical purpose, but also contained cleaned data.

4.2. Data transformation and de-normalization

The data transformation process was a very important phase of project. In this

process all the variables which were desired by the analytical queries were calculated,

e.g., dry matter intake by the cows on a specific test date. Attributes were selected for

defining dimensions (herd, cow, test date etc.) as well as facts (quantity of milk, fat and

protein percentages on a specific test date, etc.). The primary key and foreign keys were

declared while views were created on the base tables. Data were subdivided into, data

about a cow on individual test day, summarized data on all test days for each cow, and

information about variables. The lowest level of detail of each record was test day on

which milk was recorded for each cow. Test day records were considered as a special

case because these records are unique on Quebec dairy farms, and available for an

individual cow. If the cow was considered as an entity then it had certain characteristics

like a registration number, date of birth, weight, body condition score, date of conception,

lactation start date, lactation end date, information related to milk production and milk

components, information on calves born, information on the sire to which this cow was

bred, information related to its feeding and about the herd in which the cow was present.

The test day records were available from the year 2000 to the year 2009. Milk

components like fat and protein percentages, SCC and MUN were recorded in year 2000

61

but records on lactose were only available from 2001 onwards. Percentages of available

MUN and lactose records were 37% and 30%, respectively, among other milk component

records, as these were recorded in a subset of herds. Almost all transformations were

conducted with the help of SQL.

An important part of the data transformation process is de-normalization which

actually improves query performance. The de-normalized data were used to develop

multidimensional models which provide: (i) a database structure that are easy for end

users to understand and submit queries to these databases; and (ii) database structures

which maximise the efficiency of queries, which is achieved by minimising the number

of tables and relationships among them. These structures also decrease the complexity of

the database and lessen the number of joins obligatory in user queries. Therefore de-

normalization is appropriate for a data warehouse (Ahmad et al., 2004). The de-

normalization of cow and test day table into one table is illustrated in Figure 4.1.

 De-normalization

Figure 4.1: Transformation of normalized data into de-normalized data.

Cows test date

911399 2000-01-04

911399 2000-02-04

911399 2000-03-12

911399 2000-04-07
Cows

911399

911405

923090

Test day

2000-01-04

62

 The normalization is the main cause for the complexity of transactional databases;

it tends to increase the number of tables needed to keep functionally-dependent attributes

in separate tables. Although this helps in updating of data, it seriously thwarts the

retrieval of data. In data warehousing, redundancy is a minor problem because data is not

updated on-line. Consequently, data in the data warehouse is de-normalized, a technique

whereby one moves from higher to lower normal forms of database modeling in order to

speed up database access and hence query processing (Kimball, 1996).

4.3: Data warehouse

After the identification of dimensions and facts, dimension and fact tables were

created during the data transformation process, make them available for the design of a

data warehouse schema. A data warehouse schema is a database design which can show

the relationships between different tables containing data. A schema for a data warehouse

is a multidimensional data model having a central fact table and surrounding dimension

tables. To design a data warehouse, a data-driven approach was used. In this approach

data were first explored for identification of dimension and fact tables and then an

abstract schema was developed for a data warehouse. This approach was also used by

Mahboubi et al., (2010) in their design of a data warehouse for simulation results.

Designing a data warehouse with this approach was found to: (i) be the fastest method for

the development of a data warehouse; and (ii) provided a good opportunity to understand,

explore and analyze the data. After the completion of the data warehousing process the

queries were executed on the warehouse, as suggested by Inmon (1996).

The use of a data warehouse requires dimensional models, which represents a

different modelling approach from operational databases. The basic schema of

operational databases is one of entity relationship modelling. Entity relationship models

cannot allow users to easily navigate in the database and execute analytical queries, as

this modeling technique is used to remove redundancy in the data and is coupled with

normalization. The data in the data warehouse is mostly denormalized; therefore, entity

relation models could not be used as the basis for data warehouses. On the other hand

multidimensional data models allowed quick access to the data and were built on

denormalized data. A possible entity relationship model which depicts the difference

63

between this model and a multidimensional data model is shown in Figure 4.2. Where an

entity is something which can be distinctly identified, such as herd, cow, test day (on

which milk is collected), milk components (milk yield, percentage of fat, protein and

lactose, MUN and SCC). A relationship is an association among entities, e.g., the

relationships between herd and cows, and cows and test days and test days and milk

components. Studies also specify that traditional database design techniques, i.e., entity

relationship modeling and normalized tables, are not appropriate for data warehouse

applications (Pedersen et al., 2001); as a result, new techniques, e.g., star schemas, have

emerged. These better support the data warehouse needs of data analysis (Kimball, 1996).

Some other schemas include the snowflake schema, or a hybrid of the two, the star-flake

schema (Ahmad et al., 2004).

 ..m ..n

 ..n ..m

 ..n ..m

Figure 4.2: An entity relationship diagram of test day records.

Cow

Herd

Region

Herd ID.

Cow ID

Sex

Age

Weight

Breed

Date of

calving

Date

Time key

Test date

Month

Year

Average

Quantity

for 305

days

Quantity in

Kilograms

for 305

days
Milk

Components

Average

Quantity for

more than 305

days

Quantity in

Kilograms more

than 305 days

Milking

Cows

within

herds
Conducting test

on a cow

Collecting

milk on a

test day

64

Multidimensional data models emerged during the last decade to exploit data

warehouses when the objective was to analyze the data rather than to perform online

transactions. Multidimensional models categorize data either as facts with associated

numerical measures or as textual dimensions that characterize the facts. It was found that

these models were helpful in (i) viewing certain features of the data, (ii) summarizing the

data, and (iii) providing a quick response to analytical queries. Need of all three factors

is most obvious in databases that are used for decision-support. Models were visualized

in such a way that future users can draw information from these databases even when

implemented on a larger scale.

4.3.1: Selection of schema (data model)

Among the three schemas discussed, the star schema had the simplest database

structure, containing a fact table in the center which is surrounded by the dimension

tables (Figure 4.3).

65

Figure 4.3: Star schema (data model)

Most data warehouses used a star schema to represent the multidimensional data

model (Chaudhuri and Dayal, 1997). A simple star schema for a test day file (Figure 4.4)

was arranged such that the dimensions have an exactly one-to-many relationship with the

fact table. The model is composed of a single fact table surrounded by a single table for

each dimension. The fact table contains measurements of the mean yields of milk, milk

fat and milk protein. The dimension tables provide the basis for the summarization of the

measurements in the fact table. The primary key of the fact table is the combination of the

66

primary keys of all the dimension tables that provide its multidimensional match, and

stores the numeric measures for those matches. In the case of a star schema, dimension

tables have embedded hierarchies which are the result of denormalization of the data in a

data warehouse. A detailed star model is depicted in Figure 4.5.

One-to-many relationship

Figure 4.4: Example of relationship between a fact table and dimension tables (data

model of star schema).

Cow ID Test date

1281960 2000-01-10

1281960 2000-02-9

1281960 2000-03-06

1281960 2000-04-02

Test day

2000-01-10

Cows

1281960

67

Figure 4.5: Detailed star schema.

68

Using a star schema approach seems quite simple, and the best practice to design

a data warehouse (e.g., Kimball et al.,(1998)). The formation of star schemas is based on

an analysis of user query requirements and then identification of facts that need to be

aggregated and the dimensional attributes to aggregate them by. Nevertheless there are a

number of practical challenges with this approach, including the existence of

relationships in the data leading to ultimately incorrect results (Moody and Kortink,

2000). As a result the approach of Inmon (1996) was used in the preset study, by first

exploring and understanding the data and then trying to develop a model. The following

discussion comprehensively explains the characteristics of datasets available for this

research and also highlights the need to develop a snowflake schema instead of a star

schema.

In the case of multidimensional data models, measures (facts in the fact table) are

in exactly n-1 relationship with the elements of the dimension tables, which, in turn, set

strict hierarchies from lower level to upper level, e.g., milk is specifically recorded for

one cow on one test day, and on a specific test day the cow belongs to a specific

management group, in a specific parity in one specific herd. But cows belong to different

management groups according to their stage of lactation within a single parity, and cows

could also move from one herd to another herd in the same parity or different parities.

Likewise the relationship between dimension tables and a fact table is also many-to-

many, as a cow normally has multiple test day records in lactation and each cow may

have has several locations. So a data model in which test day records for each cow were

counted only once was needed. However this would not be easy using conventional

multidimensional data models.

This problem was solved by snowflaking the dimensions having many-to-many

relations with the data in the fact table. Although Pederson et al., (2001) discussed three

ways to achieve this – traditional dimensions, mini-dimensions and snow flaking – it was

found that, in the case of first approach, a primary key was needed for our research, based

on the combination of herd ID, cow ID and test date, to uniquely identify a record in the

fact table. The name of this dimension table was herd_cow_testday. The total records

exceeded one million in our case. The length of each variable in the herd_cow_testday

dimension table was eight, resulting in a table 24 Mb in size. This was estimated by

69

roughly multiplying the record length with the number of records. The size of this table

on the disk was 219 Mb on the SQL database server including the index size. If the same

approach were used for the 117,068,136 rows which are present in the feed file, the disk

size for this table would be 2.7 Gb. This would be a very wide dimension table and

simply unusable for the client. It would also cause difficulties in writing MDX

(multidimensional expression) queries as this dimension structure would not provide

implicit attribute hierarchies (herd  cow).

In a second approach, the use of mini dimensions was chosen, but it proved not be

very useful as there were 6,917 herds; if we took cows in each herd as a dimension table

then we would have 6,917 mini dimension tables, which would also be impractical.

The third approach was to use snowflaking dimensions, which provided a

refinement of the star schema, where the dimensional hierarchy is clearly represented by

normalizing the dimension tables (separate herd and cow dimension tables). This

advantage was also reported by Chaudhuri and Dayal (1997); however, they emphasised

that the denormalized structure of the dimensional table in a star schema may be more

suitable for browsing dimensions. In the case of this research, although it was easy to

browse the dimensions in the star schema, the star schema did not support hierarchies of

attributes within a dimension table, so they needed to be defined. This concept is known

as a user-defined hierarchy that is a hierarchy of attribute, used to facilitate browsing

cube data by users, without adding to cube space.

The snowflake schema (Figure 4.6) actually appeared by decomposing one or more

dimensions in which the hierarchy was already present.

70

One-to-many relationship

Figure 4.6: Example of hierarchy for herd dimension, herd-cow bridge dimension and

cow dimension

According to Moody and Kortink (2000) the snowflake schema can be formed from a

star schema by normalising the hierarchies in each dimension. They also drew upon an

entity relationship model to discover dimensions and fact tables for the snowflake

schema. It also proved a good opportunity to design a snowflake schema from an entity

relationship model; these steps would help database users to understand the schema

design. The steps were the following:

 A transaction entity (transaction entities record details about particular events that

occur at the farm, e.g., milk yield, fat yield, protein yield, etc…) can be used to

form a fact table. The key to the table is the combination of the keys of the

associated component entities that is an entity which is directly related to a

transaction entity via a one-to-many relationship. Component entities describe the

information or “components” of each business transaction at the farm. These

entities can answer what, who, when, where and how questions in business

events. As an example of “what”: What is the production of this herd; “when”:

When did this cow last calve; “which”: which are the top ten milk producing

herds; “where”: Where is mastitis most prevalent; and “who”: who achieved the

highest milk production and a disease-free farm?

 A component entity can be converted into a dimension table. Numerical attributes

within transaction entities can be combined by the key attributes. Where

Herd

Dimension

Herd ID

Region ID

Cow

Dimension

Cow ID

Breed Name

Herd-Cow

Bridge

Dimension

Herd ID

Cow ID

71

hierarchical relationships exist between transaction entities, the child entity

inherits all of the relationships to component entities (and key attributes) from the

parent entity. For example Region, herd, breed, cows are all “ancestors” for milk

yield (Figure 4.7).

One-to-many relationship

Figure 4.7: Example of hierarchy for region, herd, breed and cow

Another way of defining hierarchy could occur from the herd level but in a

different way: within herds there were different management groups; in different

management groups there were different parities; and in different parities there were

different number of cows. Cows transfer from their present parity to their next parity, and

can move between different management groups and between different herds. So there

was hierarchy of herd  management group  parity  cow. To solve the problem of

many-to-many relationship between herd and cow dimension; a herd-cow bridge

dimension was used which has a composite of herd ID and cow ID.

This was one advantage to the fact that the size of dimensions on the disk was

only 20 Mb for herd dimension, herd-cow bridge dimension and cow as a dimension.

Also, the hierarchical structure of the snowflake schema helped in writing easy MDX

(multidimensional data expression) queries. Separate dimensions were defined for parity

and management group. The reason for defining them separately will be discussed below.

Cow

Cow ID

Reg_number

Date of birth

Breed Name

Breed

Breed Name

Herd ID

Region

Region ID

Region Name

Herd

Herd ID

Region ID

72

In the present era hardware is available at a low cost and the disk space required by the

star schema could be overlooked, but even then the snowflake schema is better in MDX

query execution, due to its support for hierarchies. Execution time for an MDX query is

also very important with respect to user interaction through OLAP tools.

The management group (assigned to a cow according to its status of lactation) and

the lactation number (parity) in which the cow was, identified a specific cow state at the

herd level. A management group and parity were good examples of typical OLAP

dimensions, as these characterize the state of the cow. Since a cow could transfer from

one herd to another within a parity this was quite an important issue, which was resolved

by defining separate dimensions of parity and management group to avoid the double

count of measures in summarization processes like roll-up to next level in a dimension.

Likewise it was inappropriate to take parity in management group in the same dimension,

since 60% of test day records had management group information on them. So defining

either parity under management group or management group over parity created equal

problems due to insufficient information on management group. Another very important

aspect was time. The test date was considered the lowest granularity on which

summarization of different facts were calculated. The test day records show records of

milk yield and milk components for each cow at approximately each month in her

productive life. So dealing with the chronological order of recorded data was quite an

important task, allowing one to show trends in milk yield and milk components over

time. The condition record dimension had information about the health status of the cow.

In these data, there were twenty one conditions related to health status of the cow.

Dimension of date of calving determines the season of calving which is very important

with respect to milk yield. Figure 4.8 depicts the snowflake schema in detail.

This study provided an excellent opportunity to observe and design the

hierarchical structure in the data. Equal hierarchies are fundamental to OLAP tools since

they allow clients to query summarized data at any level of correctness within the

hierarchy, drilling down to a more specific analysis or rolling up to a more concise

analysis when needed. Three features of the hierarchy in cows deserved special attention.

1) The cow hierarchy was non-strict: a lower-level cow could be a member of

several herds at a higher-level, on the other hand, strict hierarchies exist where

73

every lower-level cow belongs to a single higher-level parity (cow belongs to a

specific parity once in a life).

2) When there was movement of cow from one herd to other herd there was a change

in hierarchy.

3) The hierarchy was not balanced: e.g., under the hierarchies of herds there were

different numbers of cows in each herd.

It was important to deal with these types of hierarchies to permit drilling down

from higher levels to lower levels or vice versa and to get the correct summarized results

from the facts.

74

Figure 4.8: Snowflake schema (data model).

The capture of hierarchies and other schema-related issues are discussed below:

 The schema which was developed typically captured non-strict hierarchies in the

dimensions. This permitted drill-down and roll-up. In our example, the hierarchies

were arranged cow < cow-herd bridge dimension < herd. If the bridge dimension

75

was not defined with a composite key of herd ID and cow ID the data were double

counted. The same problem was reported by Pedersen et al., (2001) and they

proposed an extended multidimensional data model to address this issue.

 Different dimensions for test date and date of calving. As an example, the test

date dimension days roll up to months and months roll up to year. However, for

date of calving, year was divided into four seasons.

 Occasionally the hierarchies in a dimension were not balanced, i.e., the path from

the root to the leaves had varying lengths. In this case, which occurs in the cow

hierarchy, each parity had a varying number of management groups and each

management group had a varying number of cows. This problem was solved by

defining separate dimensions for both the parity and management group. In this

way these dimensions had normalized data and data were counted just once for

these dimensions. Pedersen et al., (2001) also suggested the normalization for

these types of unbalanced hierarchies.

 The schema included aggregation semantics of the data to provide a phenomenon

which helps users execute only those queries which are meaningful, i.e., avoiding

addition of non-additive data. As an illustration, it might not be meaningful to add

% fat together, but performing average calculations on them would make sense.

 The schema allowed measures to be treated as dimensions and vice versa. In our

case, the attribute ‘milk yield’ of cows was typically treated as a measure, to

allow for computations for average milk yields in a herd etc.; however, we could

define a dimension which allowed grouping cows into low, middle and high milk-

yielders.

 The schema allowed change in the hierarchy. e.g., entrance of cow into a herd and

culling of a cow.

 For some types of data, e.g., test day records, aggregation involves counting the

number of occurrences. So aggregation functions were carefully studied and

applied to prevent users from performing wrong calculations.

 The number of cows in a specific herd varied at a specific time, meaning that the

total number of cows varied in the overall dataset from time to time. In essence,

76

this means that it was meaningless to count cows over years in herds, but in a year

or in a month, that information might be useful.

 The milk yield can be added over cow or over herds for a specific year or over

years but most temporal milk averages are considered for a cow or for a herd for a

specific year.

The fact constellation schema was also designed; this is an example of a set of

complex structures in which multiple fact tables share dimensional tables. The advantage

of using a fact constellation schema was to combine attributes from two different fact

tables having the same dimensions; there was provision to access the data from each fact

table separately or in combination, linked with same dimension. The snowflaking affect

in herd-herd_cow_bridge-cow dimensions was the same in this schema as when applied

in a snowflake schema. In the literature two star schemas are combined to form a

constellation schema (Moody and Kortink, 2000). This schema would provide an

advantage; if data sources were located at different places where these sources could be

accessed by common dimensions having different measures in the fact table. In this case,

the feed file had a record about feed consumption of a cow on a specific test day. This

information includes all feed ingredients offered to that cow on that test day. This file had

a variable named HTP_ID (herd test period id) which was also present in the test day file,

whereas the feed file did not contain the variable test date. Consequently, it was decided

to introduce a test date column in the feed file during the transformation process.

However the test day file already had test day and htp_id. This information in the test day

file helped us in combining records on the basis of htp_id which is same for a cow in both

files. But the count of htp_id is less than that of the feed file, since the rest of the htp_ids

for that cow were present in the DRY COW file. The feed file (amount of feed intake in

kilograms) and the test day file (milk components) formed fact tables of feed intake and

milk components respectively. They shared dimensions of herd, cow, parity, and

management group and test date. Figure 4.9 shows a constellation schema.

77

Figure 4.9: Fact Constellation schema

78

4.3.2: Identified problems with existing OLAP tools

 While the discussion about hierarchies in the previous section is fully or partially

supported by the available OLAP tools, there are still potential problems with

non-strict hierarchies. Summarization of milk yields on those cows which

transferred from one herd to the other herd counted double if a bridge dimension

table, having a combination of primary key of cow (cow id) and herd (herd id),

had not been defined in the SQL server database, i.e., before loading data to

analysis server. As analysis server supported the definition of a primary

key/foreign key relationship which did not affect the underlying data stored in the

SQL server database. The issue of a non-strict hierarchy was also discussed by

Pedersen and Jensen (1998) regarding the designing of a data warehouse for

medical clinics.

 Calculations based on aggregation functions such as average and percentage

transformed into new queries. For example an average function is transformed

into “sum” and “count” functions. Percentages were calculated by dividing

selected divided and “0%” format string, a function built into the analysis server.

Undeniably on-the-fly execution of extended queries with percentage and average

functions lowered the performance of the cube, even if the multidimensional

model was accurately developed. It appeared that the problem was with the OLAP

aggregation process, not with the hardware, since the same hardware previously

calculated “sum” and “count” values for calculation of average within seconds for

the same datasets. Therefore pre-aggregation in materialized views showed quick

data upload in the cube and response of query was much faster, but was

unfortunately very slow in the case of on-the-fly query execution. So the

developers and researchers in the field of OLAP should consider those situations

where the query may not already be known. Toja et al., (2007) discussed on-the-

fly query execution and suggested pre-aggregation and the use of sophisticated

hardware which can support parallel processing. Examples of queries are shown

in the Figure 4.10 A, B & C.

79

Figure 4.10 (A): Code for cows in different parities in different herds.

/* Code for percentage parity in a herd in a year */

WITH MEMBER [Measures].[Denominator] AS

 SUM([Dim Parity Daytest].[Parity].[Parity],

 IIF([Measures].[Cows]= 0, null, [Measures].[Cows]))

 MEMBER [Measures].[percent parity1]AS

 IIF([Measures].[Denominator] = null, 0,

 ([Dim Parity Daytest].[Parity].&[1],[Measures].[Cows])/ [Measures].[Denominator])

 ,FORMAT_STRING = '0%'

 MEMBER [Measures].[percent parity2] AS

 IIF([Measures].[Denominator] = null, 0,

 ([Dim Parity Daytest].[Parity].&[2],[Measures].[Cows]) / [Measures].[Denominator])

 ,FORMAT_STRING = '0%'

 MEMBER [Measures].[percent parity3] AS

 IIF([Measures].[Denominator] = null, 0,

 ([Dim Parity Daytest].[Parity].&[3],[Measures].[Cows]) / [Measures].[Denominator])

 ,FORMAT_STRING = '0%'

 MEMBER [Measures].[percent parity4] AS

 IIF([Measures].[Denominator] = null, 0,

 ([Dim Parity Daytest].[Parity].&[4],[Measures].[Cows]) / [Measures].[Denominator])

 ,FORMAT_STRING = '0%'

MEMBER [Measures].[percent parity5] AS

 IIF([Measures].[Denominator] = null, 0,

 ([Dim Parity Daytest].[Parity].&[5],[Measures].[Cows]) / [Measures].[Denominator])

 ,FORMAT_STRING = '0%'

SELECT {[Measures].[percent parity1],[Measures].[percent parity2],[Measures].[percent

parity3],[Measures].[percent parity4],[Measures].[percent parity5]} ON COLUMNS

 ,{[Dim Hrd Daytest].[Hrd Id].[Hrd Id]*[Time 6].[Year].[Year]} ON ROWS

FROM [Mk Comp 8]

80

Figure 4.10 (B): Code for cows in different parities in different herds.

4.3.3: MOLAP server for query processing

OLAP systems are typically implemented by using two technologies: ROLAP (relational

online analytical processing), where data are stored in relational database management

systems, and MOLAP (multidimensional online analytical processing) where a

multidimensional database management system is used, and a query can be executed on

the multidimensional structure, i.e., directly on the cube. In this research a MOLAP

server was used to store the pre-computation data after modeling them with

multidimensional data models. MOLAP servers actually store data in a multidimensional

format, the cube structure and data were queried directly from this structure which was

not possible with a ROLAP server. It was also found that MOLAP helped in fast and

flexible retrieval of multidimensional data. Similar results with MOLAP were found by

Chaudhuri and Dayal (1997).

4.4: Cube Operations

The multidimensional view of data considers that information is stored in a

multidimensional array sometimes known as a hypercube. This is a group of data cells

arranged according to the dimensions of the data. The dimensions of a cube are a list of

/* Code for count of cows per parity basis in a herd in a specific year*/

SELECT ON COLUMNS, ON ROWS

FROM [Mk Comp 8]

/* Code for average milk in a specific herd in a specific herd on a specific cow */

[Measures].[Milk]/[Measures].[Milk Count]

81

members by which the user wishes to view the data, e.g., according to herd, cow, year,

calving season, parity, etc. The value present at each intersection of dimension, which can

be called a cell, has a real measured value like quantity of milk produced or number of

cows in a specific parity. Navigation is the term which is used to explore the data within a

cube. Cube operations support navigation functions such as: (i) Roll-up, which involves

the summarization of data for a higher level of hierarchy, with results that are suitable for

strategic decision making, (ii) Roll-down, (a.k.a. Drill down or drill through) which

involves navigation to the lowest granularity of the data for tactical and operational

decision-making, (iii) Selection, wherein a condition is assessed against the data or

elements of a dimension in order to limit the set of recovered data, (iv) Slicing, which

allows for the selection of all data satisfying a condition along a particular dimension),

and (v) pivoting, which involves changing the dimensional orientation of a cube.

According to Vassiliadis (1998) cube operations include level_climbing, packing,

function_applications, projection, dicing while complex functions like navigation and

slicing are defined on top of the simple functions. Pivoting is the re-organization of the

data rather than modifications of the values.

Examples of different cube operations are shown in the following figures. In this

operation dates climb up to months and months climb up to years. The lowest level of

granularity, which is cow in this case, can climb up to breed, breed to herds, and herd to

region (Figure 4.11).

82

Figure 4.11: Level_climbing operation

Packing is the cube operation in which cube is consolidated, such as would be the case if

the information in Figure 4.12 were packed to years and regions that are the highest level

hierarchies.

83

Figure 4.12: Packing

To see the number of cows in each parity, in a specific herd, first all the cows in a

specific parity were counted and then their count was divided by the total number of cows

present in a herd to get percent of cows in each parity. The basic idea of function

84

application was to build a new cube on an existing one. Another example, with protein to

fat ratio can be seen in Figures 4.13 A & B.

Figure 4.13 (A): Function application (protein to fat ratio)

85

Figure 4.13(B): Function application

The cube illustrated in Figure 4.14 has values on Region 1 having all herds with

cows of the Ayrshire breed. In this case, the purpose of the operators was to form a cube

which was based on some specific dimensions and aggregate over the rest of the

dimensions by use of aggregation function.

86

Figure 4.14: Slice and dice

The data could be viewed at the lowest level of granularity i.e., single cow and the

test date without any effect on aggregate functions. A sample of a few queries which

were executed on the cube is shown in Table 4.1.

87

 Query Examples

1 Average milk quantity of a cow in a herd on specific test day

2 Fat percentage in the milk of a cow in a herd on specific test day

3 Number of herds in a region

4 Number of cows within a herd and within a region

5 Maximum and minimum average milk quantity for all herds

6 Maximum and minimum fat percentage for all herds

7 Number of cows within a parity

8 Protein to fat ratio for all cows

9 Cows move from one herd to the other herd

10 Average values for MUN for different herds

11 Feed intake and milk production of each cow

12 Average milk production for cows in different calving seasons

Table 4.1: Query Examples

4.4.1: Front end tools to access the data from the cube

In modern database technology the front-end is separated from back-end database

server by a presentation layer. These technologies consist of an OLAP client that handles

the client interface and an OLAP server that administers the data and process queries. The

client communicates with the server using a standardized application programming

interface (API), e.g., Microsoft’s OLEDB for OLAP (Figure 4.15).

Data OLAP server API (OLEDB) User

Figure 4.15: OALP server communicate with the user through Microsoft OLEDB

88

Studies have shown that queries on a data warehouse consist 80% in navigational

queries that discover the dimension hierarchies and 20% aggregation queries that

aggregate or summarize the data at various levels of detail (Kimball, 1996). Examples of

navigational and aggregation queries are “different herds in different regions having

various breeds” and correspondingly “count of cows, count of herds grouped by parities

and season of calving.”

The OLAP client sends off a query to the query handler, the primary task of

which is to determine whether the query is a navigational query (inner to a dimension) or

an aggregation query (linking the facts) (Pedersen et al., 2001). After the status of query

has been resolved, the navigational queries are passed to the OLAP server which handles

the original (navigational) data, while aggregation queries are passed to another OLAP

server that manages the transformed (aggregation) data. The result is that the OLAP

provides an interface to the data warehouse based on a multidimensional structure. It

should be noted that the main reason behind the popularity of the multidimensional data

model are the spread sheets in which clients can view data with different dimensions. The

spread sheet is still a very popular front-end tool for OLAP tools: they have the ability to

summarize the data by applying queries that are processed on the OLAP servers. The

fundamental operation supported by these spread sheets is “pivoting”. If two of the

dimensions were selected then, at the intersection of each dimension, a value is present

which has actually appeared due to both dimensions. For example, if regions and year

were selected, then in the grid at each cell a value would show the summarized value of

average milk quantity in that specific region in that specific year. Figure 4.16 shows the

pivot operation in Microsoft Excel 2007.

89

 Figure 4.16: Pivot table.

Pivot tables (Figure 4.17) also support operations of roll-up, drill down, slice and

dice. In this figure (4.17) the milk-component averages can be seen at the test date level

in region one for the Ayrshire breed. This shows how a pivot table is a two-dimensional

spreadsheet which supports viewing complex data with related subtotals and totals by

nesting several dimensions on the x- or y-axis (Pedersen and Jensen, 1998).

90

Figure 4.17: Drill down and slice operation in pivot table.

Pivot tables usually support a collection of data subsets and alteration of the

presentation level of detail. But spreadsheets are an insufficient tool for administration

and storing multidimensional data because they bind data storage exceptionally strongly

to the presentation. Spreadsheets do not separate the information about the organization

of the data from the required analysis of the information (Pedersen and Jensen, 2002).

Consequently adding a dimension or grouping data in the spreadsheets is quite difficult.

91

Likewise the ways hierarchies are supported by multidimensional databases are not

supported by spread sheets. On the other hand a database management system

recommends significant simplicity in organizing data. The many-to-many relations which

are not supported satisfactorily by the star model can be handled adequately by

snowflaking the dimensions which is ultimately helpful in managing hierarchies in

dimensions.

However, a simple SQL-based relational model does not handle hierarchical

dimensions satisfactorily. Nevertheless, creating numerous desired computations such as

totals and subtotals, or determining rankings (top 10 herds in milk production) is

complicated if not impractical in standard SQL, but is supported by spreadsheets. Also

transposing columns and rows involves manual writing of several views in SQL but is

possible with spreadsheets. Spreadsheets have also been used to view the raw data in

multidimensional perspective, but spreadsheets and relational databases, although they

provide sufficient support for small datasets with a few non-hierarchical dimensions, they

do not fully support the needs for sophisticated data analysis. These observations

regarding the limitations of spread sheets have been discussed by Pederson and Jenson

(2002). Therefore, after performing data analysis in Microsoft Excel pivot tables the data

or reports or graphs can be generated and viewed in Excel, but actual data should be

stored with a database technology that offers in-built support for the full range of

multidimensional data modeling for large datasets.

4.5: Updating the data warehouse

Update the data in the data warehouse would follow similar steps to those by

which it was first implemented, i.e., selection of data required to warehouse, cleaning of

the data, transformation to get the desired variables and loading the data into the

warehouse. However, these steps would be faster than before since rules would have

already been set up to prepare the data to be warehoused. If some new data was added

then rules can be defined for these data also. Although the first process of data

preparation made later steps in updating the data easier, even then data must be careful

92

observed to avoid any mistakes. Updates would include the addition of variables to the

dimension tables as well as the addition of variables and rows to the fact tables.

All the constraints regarding referential integrity (primary key-foreign key

relationship) were carefully considered and new data were verified against existing data.

There were also two main things to consider: (i) how many times the data warehouse will

be updated and (ii) how the data is updated and reflected in the cube. As cow’s lactation

length and dry period is ideally a year, so to see an effect on a cow’s or a herd’s

performance; the data warehouse would have to be updated after a year. The cube update

was also based on data being refreshed; in this case the data inside the cube was changed

(new aggregations may need to be calculated at some time) but not the underlying

structure. However, the possibility of introducing a new dimension exists, so in that case

the full process of the cube was required, based on restructuring and recalculation of the

data. It should be mentioned that the Analysis server did not introduce the combine

primary key relationship in the dimensions according to our needs, so the process of

introducing a combine primary key was done through the SQL server. Although the

Analysis server did not produce any error message, it did double count the average milk

quantity for all those cows which were transferred from one herd to another.

93

Conclusion

Most computer-oriented techniques have found their way into the dairy sector

(Lazarus et al., 1990), and a lot of data are produced daily on dairy farms. Operational

databases such as those at Valacta are not designed to support the required feedback for

analytical queries, important to strategic decision-making, in an optimal manner.

Therefore a methodology was developed to store these large historical datasets for

analytical query execution in order to give advisors a tool that should help them to

improve the decision-making process. The methodology comprises extraction, cleaning,

selection and transformation of data, storing of data in a data warehouse in a

multidimensional format and access to this data with the help of OLAP cubes. It is

assumed that data warehouse implementation can provide benefits for storage of large

historical datasets for decision-making at the operational, tactical and strategic level on

dairy farms. The use of applications like data warehousing have few parallels in the dairy

industry, which may be due to the complexity of software available for warehousing and

lack of technical personnel in the field. The other strong reason is the lack of sufficient

budgets in the public sector. However, mega datasets require customized data analysis

systems, modified specifically for them, first for the analysis, and then for the

presentation of results. Attention can subsequently be given to the heterogeneity and

computational complexity of the data. Therefore, it is potentially possible to increase

productivity in dairy research through the analysis of large datasets, by using central

databases (Data warehouses) in which many data definitions and pre-processing are

already implemented.

Detailed data was stored in the data warehouse for future use; the lowest

granularity of the data were cow and test date. A data driven approach was preferred,

given that it is the fastest method to develop a data warehouse. This method helped in

data exploration and pilot analysis. Models were visualized in such a way that future

users should be able to obtain helpful information if this methodology were to be

implemented on a larger scale. A MOLAP server was used to store pre-computation data

and store the information derived after modeling the data with multidimensional data

models. The queries were executed directly on the cube structure supported by MOLAP

servers. Multidimensional data models were constructed, as these models support

94

analytical query execution (what and why queries). Comparatively, entity relationship

models could not support such queries, as these models support an OLTP application,

where queries are mostly restricted to insert, delete and update. Denormalized data were

used to develop multidimensional models which provide: (i) a database structure that is

easy for end-users to understand and write queries to these databases; and (ii) database

structures which maximise the efficiency of queries by minimizing the number of tables

and relationships among them. It was concluded that the snowflake schema was better

than the star schema since, with the latter, denormalized data with the herd_cow_testdate

(composite key of herd and cow dimension) dimension were very large, rendering the

system difficult to understand and impractical for handling large sets of records. The

efficiency of the MDX was found to be better with the snowflake schema. It was also

concluded that any future amalgamation of data from different organizations could be

facilitated by joining data with similar dimensions through the use of a fact-constellation

schema.

OLAP tools are mainly developed for business applications like banking and

retail. In the dairy field, data show different characteristics, so we were faced with certain

challenges while developing our query procedures for certain situations. These situations

were either tackled within the SQL server or with the help of MDX, since there was no

built-in help for these situations in OLAP tools. For example, the highest level to which

we wished to aggregate was herd, so it was necessary to define a herd-cow-bridge

dimension where all the distinct records were present within a single occurrence for each

herd and cow. If a cow was selected for aggregation then it was double-counted for all

those appearances where a cow was transferred from one herd to the other. In this way for

highest level of aggregation – herd – was selected, so that for the appearance of each

cow, this was present once on that specific test date in that herd. This was not handled

optimally by the software, so a composite key was defined within the SQL server as the

herd_cow key, and then a named column property was set to herd in the analysis service

to stop the double count of measures. Calculations based on aggregation functions such

as average and percentage were transformed into new queries. Undeniably on-the-fly

execution of extended queries with percentage and average functions lowered the

performance of the cube, even when the multidimensional model was accurately

95

developed. It appeared that the problem was associated with the OLAP aggregation

process, and not with the hardware, since the same hardware had previously calculated

the “sum” and “count” values efficiently from the same data set, for the calculation of

averages. This means that if all the required aggregations were calculated in materialized

views, the cube data upload response would be much faster, which otherwise is

unfortunately very slow in the case of on-the-fly query execution. Developers and

researchers in the field of OLAP should consider those situations where the query may

not already be known.

Most of those queries performed should aid farmers in decision-making at all

levels of management: strategic, tactical or operational. These queries were supported

either by drill-down and roll-up operations of the cube, or by filtering options. If not

handled through simple drag and drop operations, a special MDX helped in the extract of

required information from the data warehouse. The OLAP tools provided

multidimensional views of the data through pivot tables, but, if graphs were required, the

data could be downloaded to Excel spread sheets. Although Excel spread sheets support

pivoting of raw data, they do not support more complex queries or the storage of data in a

multidimensional format. For a complete multidimensional storage structure, and

multidimensional views of data, a sophisticated system like multidimensional databases

(MOLAP) would be required.

96

Future work

This application is an important step towards more advanced implementation of

data mining, grid computing and cloud computing which meet the needs associated with

growing datasets. Data mining techniques have already been used in the dairy sector to

investigate disease risk classification, as a proxy for compromised bio-security of cattle

herds in Wales (Ángel and Dirk, 2008). However if these techniques were used in

looking at the weather data along with feed management, they could provide benefits

with respect to dairy cows’ nutrient uptake during severe winter weather. Moreover, with

the implementation of a national cow identification system, the Quebec dairy sector could

conceivably derive benefits from grid computing to process massive amounts of cow

tracking data. This type of grid would not only serve future researchers, but also

government agencies, educators and public users. Although grid computing projects are

long-term projects which can bring benefits, the initial investment can be quite high (

Călin et al., 2011), so both government and private agencies would need to contribute

funds and equipment to build an appropriate infrastructure. The grid would reduce

bottlenecks that occur during data loading in the data warehouse, making the data

processing faster. Speeding up the data processing means the data would be immediately

available to business users for analysis, so that business decisions could arrived at in a

timely manner. Also in the case of grid technology, the cost remains relatively similar

since pre-existing resources are being used in a more efficient way. As in any other field,

the agricultural sector evolves with the implementation of new, cutting-edge computing

technologies. Consequently it is likely that the Quebec dairy sector could soon become

such a hub of information where all stake holders can access data from a private cloud,

with servers housed at different physical locations, all operating in a manner similar to an

information junction. Analytical applications (which are a main reason for developing a

data warehouse) are perhaps better suited to cloud environments (Abadi, 2009) since they

require large amounts of data to be stored for long periods, but be processed infrequently.

Furthermore, the process of data analysis consists of many large scans, and fact-

constellation schema joins, all of which could conceptually be facilitated through parallel

processing across nodes in a cloud setting.

97

References

1. Abadi, D.J., 2009. Data management in the cloud: Limitations and opportunities.

IEEE Data Eng. Bull 32, 3-12.

2. Abdullah, A., 2009. Analysis of mealybug incidence on the cotton crop using

ADSS-OLAP (Online Analytical Processing) tool. Computers and Electronics in

Agriculture 69, 59-72.

3. Agrawal, R., Gupta, A., Sarawagi, S., 1997. Modeling multidimensional

databases. IEEE, pp. 232-243.

4. Ahmad, I., Azhar, S., Lukauskis, P., 2004. Development of a decision support

system using data warehousing to assist builders/developers in site selection.

Automation in Construction 13, 525-542.

5. AL-Hamami, A.a.H., Hashem, S.H., 2009. An Approach for Facilating

Knowledge Data Warehouse. International Journal of Soft Computing

Applications © EuroJournals Publishing, Inc. 2009, 35-40.

6. Alkharouf, N.W., Jamison, D.C., Matthews, B.F., 2005. Online Analytical

Processing (OLAP): A Fast and Effective Data Mining Tool for Gene Expression

Databases. Journal of Biomedicine and Biotechnology 2005, 181-188.

7. Ángel, O.P., Dirk, P., 2008. Use of data mining techniques to investigate disease

risk classification as a proxy for compromised biosecurity of cattle herds in

Wales. BMC Veterinary Research 4.

8. Anil, R., Vipin, D., Chaturvedi, K.K., Malhotra, P.K., 2008. Design and

development of data mart for animal resources. computers and electronics in

agriculture 64, 111-119.

9. Arnott, D., Pervan, G., 2005. A critical analysis of decision support systems

research. Journal of Information Technology 20, 67-87.

10. Ballard, C., Herreman, D., Schau, D., Rhonda Bell, Kim, E., Internatio, A.V.,

1998. Data Modeling Techniques for Data Warehousing. International Business

Machines Corporation.

11. Bauer, A., Hümmer, W., Lehner, W., 2000. An alternative relational OLAP

modeling approach. Data Warehousing and Knowledge Discovery, 189-198.

98

12. Berndt, D., 2003. The Catch data warehouse: support for community health care

decision-making. Decision Support Systems 35, 367-384.

13. Berndt, D.J., Hevner, A.R., Studnicki, J., 2003. The Catch data warehouse:

support for community health care decision-making. Decision Support Systems

35, 367-384.

14. Bordoloi, B., Agarwal, A., Sircar, S., 1994. Relational or Object-oriented or

Hybrid?: A Framework for Selecting an Appropriate Database Management

System Type in a Computer Integrated Manufacturing Setting. International

Journal of Operations & Production Management 14, 32-44.

15. Călin, M., Craus, M., Filipov, F., Chiru , C., 2011. Involving grid computing in

agricultural research. Research Journal of Agricultural Science 39, 655-660.

16. Chaturvedi, K.K., Rai, A., K.Dubey, V., Malhotra, P.K., 2008. On-line Analytical

Processing in Agriculture using Multidiemnsioanl Cubes. J.ind.SOc.Agril.Statist

62, 56-64.

17. Chaudhary, S., Sorathia, V., Laliwala, Z., 2004. Architecture of sensor based

agricultural information system for effective planning of farm activities. IEEE, pp.

93-100.

18. Chaudhuri, S., Dayal, U., 1997. An Overview of Data Warehousing and OLAP

Technology. SIGMOD 26.

19. Chaudhuri, S., Dayal, U., Ganti, V., 2001. Database technology for decision

support systems. Computer, 48-55.

20. Codd, E., Codd, S., Salley, C., Codd, Date, I., 1993. Providing OLAP (on-line

analytical processing) to user-analysts: An IT mandate. Codd & Date, Inc.

21. Colliat, G., 1996. OLAP, Relational, and Multidimensional Database Systems.

SIGMOD Record, 25, 64-69.

22. Conn, S.S., 2005. OLTP and OLAP data integration: a review of feasible

implementation methods and architectures for real time data analysis. IEEE, pp.

515-520.

23. Correa, F.E., Corrêa, P.L.P., Junior, J.R.A., Alves, L.R.A., Saraiva, A.M., 2009.

Data warehouse for soybeans and corn market on Brazil, EFITA conference ’09,

pp. 675-681.

99

24. Cui, X., 2003. A Capacity Planning Study of Database Management Systems with

OLAP Workloads, School of Computing. Queen's University, Kingston, Ontario,

Canada.

25. Eder, J., Koncilia, C., Morzy, T., 2006. The COMET metamodel for temporal

data warehouses. Springer, pp. 83-99.

26. Elmasri, R., Navathe, S.B., 2000. Fundamentals of database systems. 3 ed.

Addison Wesley.

27. Foster, I., 2002. The grid: A new infrastructure for 21st century science. Wiley

Online Library, pp. 51-63.

28. Foster, I., Kesselman, C., 1999. The Grid: Blueprint for a New Computing

Architecture.

29. Frawley, W., Piatetsky-Shapiro, G., Matheus, C., 1992. Knowledge discovery in

databases: An overview. Ai Magazine 13, 57.

30. French, C.D., 1995. “One size fits all” database architectures do not work for

DSS. ACM, pp. 449-450.

31. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,

Pellow, F., Pirahesh, H., 1997. Data cube: A relational aggregation operator

generalizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge

Discovery 1, 29-53.

32. Gray, P., Watson, H.J., 1998. Present and future directions in data warehousing.

ACM SIGMIS Database 29, 83-90.

33. Halawani, S.M., Albidewi, I.A., Alam, J., Khan, Z., 2010. A Critical Evaluation

of Relational Database Systems for OLAP Applications. International Journal of

Computer and Network Security 2, 120-127.

34. Hammer, J., Garcia-Molina, H., Widom, J., Labio, W., Zhuge, Y., 1995. The

Stanford DataWarehousing Project. Bulletin of the Technical Committee on Data

Engineering, IEEE Computer Society 18, 40-47.

35. Huber, P.J., 1999. Massive Datasets Workshop: Four Years after. Journal of

Computational and Graphical Statistics 8, 635-652.

36. Hull, R., Zhou, G., 1996. A framework for supporting data integration using the

materialized and virtual approaches. ACM.

100

37. Hurson, A.R., Pakzad, S.H., Cheng, J.B., 1993. Object-oriented database

management systems: evolution and performance issues. Computer 26, 48-58, 60.

38. Inmon, W., 1996. Building the Data Warehouse. John Wiley & Sons, Inc., New

York.

39. Jagadish, H., Lakshmanan, L.V.S., Srivastava, D., 1999. What can Hierarchies do

for Data Warehouses8.

40. Jones, D.K., 1998. An Introduction to Data Warehousing: What Are the

Implications for the Network? International Journal of Network Management 8,

42-56.

41. Kimball, R., 1996. The data warehouse toolkit: practical techniques for building

dimensional data warehouses. John Wiley & Sons, Inc. New York, NY, USA.

42. Kimball, R., Reeves, L., Thornthwaite, W., Ross, M., Thornwaite, W., 1998. The

Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing

and Deploying Data Warehouses with CD Rom. John Wiley & Sons, Inc., New

York, NY.

43. Koutsoukis, N., Mitra, G., Lucas, C., 1999. Adapting on-line analytical processing

for decision modelling: the interaction of information and decision technologies.

Decision Support Systems 26, 1-30.

44. Larson, J., 1983. Bridging the gap between network and relational database

management systems. Computer 16, 82-83.

45. Lazarus, W.F., Streeter, D., Jofre-Giraudo, E., 1990. Management information

systems: impact on dairy farm profitability. North Central Journal of Agricultural

Economics 12, 267.

46. Lehner, W., Albrecht, J., Wedekind, H., 1998. Normal forms for

multidimensional databases. IEEE, pp. 63-72.

47. List, B., Bruckner, R., Machaczek, K., Schiefer, J., 2002. A comparison of data

warehouse development methodologies case study of the process warehouse.

Springer, pp. 203-215.

48. Mahboubi, H., Faure, T., Bimonte, S., Deffuant, G., Chanet, J.P., Pinet, F., 2010.

A Multidimensional Model for Data Warehouses of Simulation Results.

101

International Journal of Agricultural and Environmental Information Systems

(IJAEIS) 1, 1-19.

49. Maletic, J.I., Marcus, A., 2000. Data cleansing: Beyond integrity analysis.

Citeseer, pp. 200-209.

50. Manole, V., Gheorghe, M., 2007. Database Vs Data Warehouse. Revista

Informatica Economică 43, 91-95.

51. Martyn, T., 2004. Reconsidering Mutli-Dimensional Schemas. SIGMOD

RECORD 33, 83-88.

52. McFadden, F., 2002. Data warehouse for EIS: some issues and impacts. IEEE, pp.

120-129.

53. Mishra, D., Yazici, A., Basaran, B., 2008. A casestudy of data models in data

warehousing. IEEE, pp. 314-319.

54. Mohania, M., Samtani, S., Roddick, J., Kambayashi, Y., 1999. Advances and

Research Directions in Data-Warehousing Technology. AJIS 7.

55. Moody, D.L., Kortink, M.A.R., 2000. From Enterprise Models to Dimensional

Models: A Methodology for Data Warehouse and Data Mart Design.

56. Pedersen, T., Jensen, C., 2002. Multidimensional database technology. Computer

34, 40-46.

57. Pedersen, T.B., Jensen, C.S., 1998. Research issues in clinical data warehousing.

IEEE, pp. 43-52.

58. Pedersen, T.B., Jensen, C.S., Dyreson, C.E., 2001. A foundation for capturing and

querying complex multidimensional data. Information Systems 26, 383-423.

59. Pietersma, D., Lacroix, R., Lefebvre, D., Cue, R., Wade, K., 2006. Trends in

growth and age at first calving for Holstein and Ayrshire heifers in Quebec.

Canadian Journal of Animal Science 86, 325-336.

60. Rahm, E., Do, H.H., 2000. Data cleaning: Problems and current approaches.

Bulletin of the Technical Committee on, 3.

61. Ramick, D.C., 2001. Data warehousing in disease management programs. Journal

of Healthcare Information Management 15, 99-106.

62. Reddy, P.K., GV Ramaraju, Reddy, G.S., 2007. eSaguTM: A Data Warehouse

Enabled Personalized Agricultural Advisory System. SIGMOD’07, 910-914.

102

63. Samtani, S., Mohania, M., Kumar, V., Kambayashi, Y., 1999. Recent Advances

and Research Problems in Data Warehousing. Advances in Database

Technologies, 1942-1944.

64. Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.,

2002. Past, present, and future of decision support technology. Decision Support

Systems 33 111-126.

65. Simitsis, A., Theodoratos, D., 2009. Data Warehouse Back-End Tools.

Encyclopedia of Data Warehousing and Mining, 572-579.

66. Sinha, A., Hripcsak, G., Markatou, M., 2009. Large datasets in biomedicine: a

discussion of salient analytic issues. Journal of the American Medical Informatics

Association 16, 759-767.

67. Stamen, J.P., 1993. Structuring databases for analysis. Spectrum, IEEE 30, 55-58.

68. Thomsen, E., 2002. OLAP solutions: building multidimensional information

systems. John Wiley & Sons, Inc. New York, NY, USA.

69. Thornsbury, S., Davis, K., Minton, T., 2003. Adding value to agricultural data: a

golden opportunity. Review of Agricultural Economics 25, 550-568.

70. Tjoa, A.M., Rauber, A., Tomsich, P., Wagner, R., 2007. OLAP of the Future.

Informationssysteme: Daten-Information-Wissen}, 153-166.

71. Vassiliadis, P., 1998. Modeling multidimensional databases, cubes and cube

operations. IEEE, pp. 53-62.

72. Vinnik, S., Mansmann, F., 2006. From analysis to interactive exploration:

Building visual hierarchies from OLAP cubes. Advances in Database

Technology-EDBT 2006, 496-514.

73. Wah, T.Y., Sim, O.S., 2009. Development of a data warehouse for Lymphoma

cancer diagnosis and treatment decision support. WSEAS Transactions on

Information Science and Applications 6, 530-543.

74. Winter, R., 1998. Databases: Back in the OLAP game. Intelligent Enterprise

Magazine 1, 60-64.

